Sample records for field bold response

  1. Feedback to distal dendrites links fMRI signals to neural receptive fields in a spiking network model of the visual cortex.

    PubMed

    Heikkinen, Hanna; Sharifian, Fariba; Vigario, Ricardo; Vanni, Simo

    2015-07-01

    The blood oxygenation level-dependent (BOLD) response has been strongly associated with neuronal activity in the brain. However, some neuronal tuning properties are consistently different from the BOLD response. We studied the spatial extent of neural and hemodynamic responses in the primary visual cortex, where the BOLD responses spread and interact over much longer distances than the small receptive fields of individual neurons would predict. Our model shows that a feedforward-feedback loop between V1 and a higher visual area can account for the observed spread of the BOLD response. In particular, anisotropic landing of inputs to compartmental neurons were necessary to account for the BOLD signal spread, while retaining realistic spiking responses. Our work shows that simple dendrites can separate tuning at the synapses and at the action potential output, thus bridging the BOLD signal to the neural receptive fields with high fidelity. Copyright © 2015 the American Physiological Society.

  2. Neuronal synchrony and the relation between the blood-oxygen-level dependent response and the local field potential

    PubMed Central

    Nguyen, Mai; Winawer, Jonathan

    2017-01-01

    The most widespread measures of human brain activity are the blood-oxygen-level dependent (BOLD) signal and surface field potential. Prior studies report a variety of relationships between these signals. To develop an understanding of how to interpret these signals and the relationship between them, we developed a model of (a) neuronal population responses and (b) transformations from neuronal responses into the functional magnetic resonance imaging (fMRI) BOLD signal and electrocorticographic (ECoG) field potential. Rather than seeking a transformation between the two measures directly, this approach interprets each measure with respect to the underlying neuronal population responses. This model accounts for the relationship between BOLD and ECoG data from human visual cortex in V1, V2, and V3, with the model predictions and data matching in three ways: across stimuli, the BOLD amplitude and ECoG broadband power were positively correlated, the BOLD amplitude and alpha power (8–13 Hz) were negatively correlated, and the BOLD amplitude and narrowband gamma power (30–80 Hz) were uncorrelated. The two measures provide complementary information about human brain activity, and we infer that features of the field potential that are uncorrelated with BOLD arise largely from changes in synchrony, rather than level, of neuronal activity. PMID:28742093

  3. High spatial correspondence at a columnar level between activation and resting state fMRI signals and local field potentials.

    PubMed

    Shi, Zhaoyue; Wu, Ruiqi; Yang, Pai-Feng; Wang, Feng; Wu, Tung-Lin; Mishra, Arabinda; Chen, Li Min; Gore, John C

    2017-05-16

    Although blood oxygenation level-dependent (BOLD) fMRI has been widely used to map brain responses to external stimuli and to delineate functional circuits at rest, the extent to which BOLD signals correlate spatially with underlying neuronal activity, the spatial relationships between stimulus-evoked BOLD activations and local correlations of BOLD signals in a resting state, and whether these spatial relationships vary across functionally distinct cortical areas are not known. To address these critical questions, we directly compared the spatial extents of stimulated activations and the local profiles of intervoxel resting state correlations for both high-resolution BOLD at 9.4 T and local field potentials (LFPs), using 98-channel microelectrode arrays, in functionally distinct primary somatosensory areas 3b and 1 in nonhuman primates. Anatomic images of LFP and BOLD were coregistered within 0.10 mm accuracy. We found that the point spread functions (PSFs) of BOLD and LFP responses were comparable in the stimulus condition, and both estimates of activations were slightly more spatially constrained than local correlations at rest. The magnitudes of stimulus responses in area 3b were stronger than those in area 1 and extended in a medial to lateral direction. In addition, the reproducibility and stability of stimulus-evoked activation locations within and across both modalities were robust. Our work suggests that the intrinsic resolution of BOLD is not a limiting feature in practice and approaches the intrinsic precision achievable by multielectrode electrophysiology.

  4. High spatial correspondence at a columnar level between activation and resting state fMRI signals and local field potentials

    PubMed Central

    Shi, Zhaoyue; Wu, Ruiqi; Yang, Pai-Feng; Wang, Feng; Wu, Tung-Lin; Mishra, Arabinda; Chen, Li Min; Gore, John C.

    2017-01-01

    Although blood oxygenation level-dependent (BOLD) fMRI has been widely used to map brain responses to external stimuli and to delineate functional circuits at rest, the extent to which BOLD signals correlate spatially with underlying neuronal activity, the spatial relationships between stimulus-evoked BOLD activations and local correlations of BOLD signals in a resting state, and whether these spatial relationships vary across functionally distinct cortical areas are not known. To address these critical questions, we directly compared the spatial extents of stimulated activations and the local profiles of intervoxel resting state correlations for both high-resolution BOLD at 9.4 T and local field potentials (LFPs), using 98-channel microelectrode arrays, in functionally distinct primary somatosensory areas 3b and 1 in nonhuman primates. Anatomic images of LFP and BOLD were coregistered within 0.10 mm accuracy. We found that the point spread functions (PSFs) of BOLD and LFP responses were comparable in the stimulus condition, and both estimates of activations were slightly more spatially constrained than local correlations at rest. The magnitudes of stimulus responses in area 3b were stronger than those in area 1 and extended in a medial to lateral direction. In addition, the reproducibility and stability of stimulus-evoked activation locations within and across both modalities were robust. Our work suggests that the intrinsic resolution of BOLD is not a limiting feature in practice and approaches the intrinsic precision achievable by multielectrode electrophysiology. PMID:28461461

  5. Brain functional BOLD perturbation modelling for forward fMRI and inverse mapping

    PubMed Central

    Robinson, Jennifer; Calhoun, Vince

    2018-01-01

    Purpose To computationally separate dynamic brain functional BOLD responses from static background in a brain functional activity for forward fMRI signal analysis and inverse mapping. Methods A brain functional activity is represented in terms of magnetic source by a perturbation model: χ = χ0 +δχ, with δχ for BOLD magnetic perturbations and χ0 for background. A brain fMRI experiment produces a timeseries of complex-valued images (T2* images), whereby we extract the BOLD phase signals (denoted by δP) by a complex division. By solving an inverse problem, we reconstruct the BOLD δχ dataset from the δP dataset, and the brain χ distribution from a (unwrapped) T2* phase image. Given a 4D dataset of task BOLD fMRI, we implement brain functional mapping by temporal correlation analysis. Results Through a high-field (7T) and high-resolution (0.5mm in plane) task fMRI experiment, we demonstrated in detail the BOLD perturbation model for fMRI phase signal separation (P + δP) and reconstructing intrinsic brain magnetic source (χ and δχ). We also provided to a low-field (3T) and low-resolution (2mm) task fMRI experiment in support of single-subject fMRI study. Our experiments show that the δχ-depicted functional map reveals bidirectional BOLD χ perturbations during the task performance. Conclusions The BOLD perturbation model allows us to separate fMRI phase signal (by complex division) and to perform inverse mapping for pure BOLD δχ reconstruction for intrinsic functional χ mapping. The full brain χ reconstruction (from unwrapped fMRI phase) provides a new brain tissue image that allows to scrutinize the brain tissue idiosyncrasy for the pure BOLD δχ response through an automatic function/structure co-localization. PMID:29351339

  6. Locating the cortical bottleneck for slow reading in peripheral vision

    PubMed Central

    Yu, Deyue; Jiang, Yi; Legge, Gordon E.; He, Sheng

    2015-01-01

    Yu, Legge, Park, Gage, and Chung (2010) suggested that the neural bottleneck for slow peripheral reading is located in nonretinotopic areas. We investigated the potential rate-limiting neural site for peripheral reading using fMRI, and contrasted peripheral reading with recognition of peripherally presented line drawings of common objects. We measured the BOLD responses to both text (three-letter words/nonwords) and line-drawing objects presented either in foveal or peripheral vision (10° lower right visual field) at three presentation rates (2, 4, and 8/second). The statistically significant interaction effect of visual field × presentation rate on the BOLD response for text but not for line drawings provides evidence for distinctive processing of peripheral text. This pattern of results was obtained in all five regions of interest (ROIs). At the early retinotopic cortical areas, the BOLD signal slightly increased with increasing presentation rate for foveal text, and remained fairly constant for peripheral text. In the Occipital Word-Responsive Area (OWRA), Visual Word Form Area (VWFA), and object sensitive areas (LO and PHA), the BOLD responses to text decreased with increasing presentation rate for peripheral but not foveal presentation. In contrast, there was no rate-dependent reduction in BOLD response for line-drawing objects in all the ROIs for either foveal or peripheral presentation. Only peripherally presented text showed a distinctive rate-dependence pattern. Although it is possible that the differentiation starts to emerge at the early retinotopic cortical representation, the neural bottleneck for slower reading of peripherally presented text may be a special property of peripheral text processing in object category selective cortex. PMID:26237299

  7. Long-Latency Reductions in Gamma Power Predict Hemodynamic Changes That Underlie the Negative BOLD Signal

    PubMed Central

    Harris, Samuel; Bruyns-Haylett, Michael; Kennerley, Aneurin; Zheng, Ying; Martin, Chris; Jones, Myles; Redgrave, Peter; Berwick, Jason

    2015-01-01

    Studies that use prolonged periods of sensory stimulation report associations between regional reductions in neural activity and negative blood oxygenation level-dependent (BOLD) signaling. However, the neural generators of the negative BOLD response remain to be characterized. Here, we use single-impulse electrical stimulation of the whisker pad in the anesthetized rat to identify components of the neural response that are related to “negative” hemodynamic changes in the brain. Laminar multiunit activity and local field potential recordings of neural activity were performed concurrently with two-dimensional optical imaging spectroscopy measuring hemodynamic changes. Repeated measurements over multiple stimulation trials revealed significant variations in neural responses across session and animal datasets. Within this variation, we found robust long-latency decreases (300 and 2000 ms after stimulus presentation) in gamma-band power (30–80 Hz) in the middle-superficial cortical layers in regions surrounding the activated whisker barrel cortex. This reduction in gamma frequency activity was associated with corresponding decreases in the hemodynamic responses that drive the negative BOLD signal. These findings suggest a close relationship between BOLD responses and neural events that operate over time scales that outlast the initiating sensory stimulus, and provide important insights into the neurophysiological basis of negative neuroimaging signals. PMID:25788681

  8. Long-latency reductions in gamma power predict hemodynamic changes that underlie the negative BOLD signal.

    PubMed

    Boorman, Luke; Harris, Samuel; Bruyns-Haylett, Michael; Kennerley, Aneurin; Zheng, Ying; Martin, Chris; Jones, Myles; Redgrave, Peter; Berwick, Jason

    2015-03-18

    Studies that use prolonged periods of sensory stimulation report associations between regional reductions in neural activity and negative blood oxygenation level-dependent (BOLD) signaling. However, the neural generators of the negative BOLD response remain to be characterized. Here, we use single-impulse electrical stimulation of the whisker pad in the anesthetized rat to identify components of the neural response that are related to "negative" hemodynamic changes in the brain. Laminar multiunit activity and local field potential recordings of neural activity were performed concurrently with two-dimensional optical imaging spectroscopy measuring hemodynamic changes. Repeated measurements over multiple stimulation trials revealed significant variations in neural responses across session and animal datasets. Within this variation, we found robust long-latency decreases (300 and 2000 ms after stimulus presentation) in gamma-band power (30-80 Hz) in the middle-superficial cortical layers in regions surrounding the activated whisker barrel cortex. This reduction in gamma frequency activity was associated with corresponding decreases in the hemodynamic responses that drive the negative BOLD signal. These findings suggest a close relationship between BOLD responses and neural events that operate over time scales that outlast the initiating sensory stimulus, and provide important insights into the neurophysiological basis of negative neuroimaging signals. Copyright © 2015 Boorman et al.

  9. Inferring neural activity from BOLD signals through nonlinear optimization.

    PubMed

    Vakorin, Vasily A; Krakovska, Olga O; Borowsky, Ron; Sarty, Gordon E

    2007-11-01

    The blood oxygen level-dependent (BOLD) fMRI signal does not measure neuronal activity directly. This fact is a key concern for interpreting functional imaging data based on BOLD. Mathematical models describing the path from neural activity to the BOLD response allow us to numerically solve the inverse problem of estimating the timing and amplitude of the neuronal activity underlying the BOLD signal. In fact, these models can be viewed as an advanced substitute for the impulse response function. In this work, the issue of estimating the dynamics of neuronal activity from the observed BOLD signal is considered within the framework of optimization problems. The model is based on the extended "balloon" model and describes the conversion of neuronal signals into the BOLD response through the transitional dynamics of the blood flow-inducing signal, cerebral blood flow, cerebral blood volume and deoxyhemoglobin concentration. Global optimization techniques are applied to find a control input (the neuronal activity and/or the biophysical parameters in the model) that causes the system to follow an admissible solution to minimize discrepancy between model and experimental data. As an alternative to a local linearization (LL) filtering scheme, the optimization method escapes the linearization of the transition system and provides a possibility to search for the global optimum, avoiding spurious local minima. We have found that the dynamics of the neural signals and the physiological variables as well as the biophysical parameters can be robustly reconstructed from the BOLD responses. Furthermore, it is shown that spiking off/on dynamics of the neural activity is the natural mathematical solution of the model. Incorporating, in addition, the expansion of the neural input by smooth basis functions, representing a low-pass filtering, allows us to model local field potential (LFP) solutions instead of spiking solutions.

  10. Shy birds play it safe: personality in captivity predicts risk responsiveness during reproduction in the wild

    PubMed Central

    Cole, Ella F.; Quinn, John L.

    2014-01-01

    Despite a growing body of evidence linking personality to life-history variation and fitness, the behavioural mechanisms underlying these relationships remain poorly understood. One mechanism thought to play a key role is how individuals respond to risk. Relatively reactive and proactive (or shy and bold) personality types are expected to differ in how they manage the inherent trade-off between productivity and survival, with bold individuals being more risk-prone with lower survival probability, and shy individuals adopting a more risk-averse strategy. In the great tit (Parus major), the shy–bold personality axis has been well characterized in captivity and linked to fitness. Here, we tested whether ‘exploration behaviour’, a captive assay of the shy–bold axis, can predict risk responsiveness during reproduction in wild great tits. Relatively slow-exploring (shy) females took longer than fast-exploring (bold) birds to resume incubation after a novel object, representing an unknown threat, was attached to their nest-box, with some shy individuals not returning within the 40 min trial period. Risk responsiveness was consistent within individuals over days. These findings provide rare, field-based experimental evidence that shy individuals prioritize survival over reproductive investment, supporting the hypothesis that personality reflects life-history variation through links with risk responsiveness. PMID:24829251

  11. Global signal modulation of single-trial fMRI response variability: Effect on positive vs negative BOLD response relationship.

    PubMed

    Mayhew, S D; Mullinger, K J; Ostwald, D; Porcaro, C; Bowtell, R; Bagshaw, A P; Francis, S T

    2016-06-01

    In functional magnetic resonance imaging (fMRI), the relationship between positive BOLD responses (PBRs) and negative BOLD responses (NBRs) to stimulation is potentially informative about the balance of excitatory and inhibitory brain responses in sensory cortex. In this study, we performed three separate experiments delivering visual, motor or somatosensory stimulation unilaterally, to one side of the sensory field, to induce PBR and NBR in opposite brain hemispheres. We then assessed the relationship between the evoked amplitudes of contralateral PBR and ipsilateral NBR at the level of both single-trial and average responses. We measure single-trial PBR and NBR peak amplitudes from individual time-courses, and show that they were positively correlated in all experiments. In contrast, in the average response across trials the absolute magnitudes of both PBR and NBR increased with increasing stimulus intensity, resulting in a negative correlation between mean response amplitudes. Subsequent analysis showed that the amplitude of single-trial PBR was positively correlated with the BOLD response across all grey-matter voxels and was not specifically related to the ipsilateral sensory cortical response. We demonstrate that the global component of this single-trial response modulation could be fully explained by voxel-wise vascular reactivity, the BOLD signal standard deviation measured in a separate resting-state scan (resting state fluctuation amplitude, RSFA). However, bilateral positive correlation between PBR and NBR regions remained. We further report that modulations in the global brain fMRI signal cannot fully account for this positive PBR-NBR coupling and conclude that the local sensory network response reflects a combination of superimposed vascular and neuronal signals. More detailed quantification of physiological and noise contributions to the BOLD signal is required to fully understand the trial-by-trial PBR and NBR relationship compared with that of average responses. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Direct evidence for attention-dependent influences of the frontal eye-fields on feature-responsive visual cortex.

    PubMed

    Heinen, Klaartje; Feredoes, Eva; Weiskopf, Nikolaus; Ruff, Christian C; Driver, Jon

    2014-11-01

    Voluntary selective attention can prioritize different features in a visual scene. The frontal eye-fields (FEF) are one potential source of such feature-specific top-down signals, but causal evidence for influences on visual cortex (as was shown for "spatial" attention) has remained elusive. Here, we show that transcranial magnetic stimulation (TMS) applied to right FEF increased the blood oxygen level-dependent (BOLD) signals in visual areas processing "target feature" but not in "distracter feature"-processing regions. TMS-induced BOLD signals increase in motion-responsive visual cortex (MT+) when motion was attended in a display with moving dots superimposed on face stimuli, but in face-responsive fusiform area (FFA) when faces were attended to. These TMS effects on BOLD signal in both regions were negatively related to performance (on the motion task), supporting the behavioral relevance of this pathway. Our findings provide new causal evidence for the human FEF in the control of nonspatial "feature"-based attention, mediated by dynamic influences on feature-specific visual cortex that vary with the currently attended property. © The Author 2013. Published by Oxford University Press.

  13. Effect of surrounding vasculature on intravoxel BOLD signal.

    PubMed

    Chen, Zikuan; Caprihan, Arvind; Calhoun, Vince

    2010-04-01

    The nonlocal influence from distant magnetization will affect the magnetic field at a voxel in question. Existing reports on BOLD simulation only consider vasculature inside a single voxel, thus omitting the contribution from the surrounding regions. In this article, the authors study the effect of the surrounding vasculature on the magnetic field and the BOLD signal at a cortical voxel by numerical simulation. A cortical voxel is generated as a cubic bin filled with randomly networked capillary vessels. First, the authors generate a cortical voxel with a random vessel network and embed it in a greater voxel by filling its surrounding region with vasculatures by different strategies. Next, they calculate the blood-susceptibility-induced magnetic field (BOLD field) at the voxel of interest (VOI) by a Fourier transform technique for different surrounding scenarios and varying surrounding extent. The BOLD field inhomogeneity is described by a radial distribution with a collection of cubic shell masks. The surrounding extent is defined by a collection of concentric cubes, which encase the VOI. Given a BOLD field in the presence of surrounding vasculature, they calculate BOLD signals by intravoxel dephasing. The influence from the surroundings on the BOLD field at a voxel in question mainly happens at the boundary. The most influence to the BOLD signal is from the inner surroundings. For a 160 x 160 x 160 microm3 voxel embedded in a 480 x 480 x 480 microm3 greater region, the surroundings could disturb the magnetic field by an amount in the range of [-0.002, 0.010] ppmT and could change the BOLD signal ratio in the range of [2.5%, 10%]. (These results were generated from the setting of delta(chi b)B0 = 3 ppmT, capillary = {2.5,6,9} microm, and relaxation time = 60 ms). The surrounding vasculature will impose a magnetic field disturbance at the voxel in question due to the nonlocal influence of magnetization. Simulation results show that the surrounding vasculature significantly alters the magnetic field (up to 0.01 ppmT) and BOLD signal (typically no more than 10%) at the central voxel and thus should be considered in accurate BOLD modeling.

  14. Mechanisms of migraine aura revealed by functional MRI in human visual cortex

    PubMed Central

    Hadjikhani, Nouchine; Sanchez del Rio, Margarita; Wu, Ona; Schwartz, Denis; Bakker, Dick; Fischl, Bruce; Kwong, Kenneth K.; Cutrer, F. Michael; Rosen, Bruce R.; Tootell, Roger B. H.; Sorensen, A. Gregory; Moskowitz, Michael A.

    2001-01-01

    Cortical spreading depression (CSD) has been suggested to underlie migraine visual aura. However, it has been challenging to test this hypothesis in human cerebral cortex. Using high-field functional MRI with near-continuous recording during visual aura in three subjects, we observed blood oxygenation level-dependent (BOLD) signal changes that demonstrated at least eight characteristics of CSD, time-locked to percept/onset of the aura. Initially, a focal increase in BOLD signal (possibly reflecting vasodilation), developed within extrastriate cortex (area V3A). This BOLD change progressed contiguously and slowly (3.5 ± 1.1 mm/min) over occipital cortex, congruent with the retinotopy of the visual percept. Following the same retinotopic progression, the BOLD signal then diminished (possibly reflecting vasoconstriction after the initial vasodilation), as did the BOLD response to visual activation. During periods with no visual stimulation, but while the subject was experiencing scintillations, BOLD signal followed the retinotopic progression of the visual percept. These data strongly suggest that an electrophysiological event such as CSD generates the aura in human visual cortex. PMID:11287655

  15. Blood oxygenation level-dependent (BOLD) contrast magnetic resonance imaging (MRI) for prediction of breast cancer chemotherapy response: a pilot study.

    PubMed

    Jiang, Lan; Weatherall, Paul T; McColl, Roderick W; Tripathy, Debu; Mason, Ralph P

    2013-05-01

    To determine whether a simple noninvasive method of assessing tumor oxygenation is feasible in the clinical setting and can provide useful, potentially predictive information. Tumor microcirculation and oxygenation play critical roles in tumor growth and responsiveness to cytotoxic treatment and may provide prognostic indicators for cancer therapy. Deoxyhemoglobin is paramagnetic and can serve as an endogenous contrast agent causing signal loss in echo planar magnetic resonance imaging (MRI) (blood oxygenation level-dependent [BOLD]-MRI). We used BOLD-MRI to provide early evaluation of response to neoadjuvant chemotherapy in patients with locally advanced breast cancer. MRI was performed on 11 patients with biopsy-proven malignancy. MRI exams were scheduled before, during, and after chemotherapy. The BOLD study applied a 6-minute oxygen breathing challenge. Seven patients successfully completed the exams. Before chemotherapy, BOLD contrast enhancement was observed in all tumors, but the patients, who ultimately had complete pathological response, exhibited a significantly higher BOLD response to oxygen breathing. We have successfully implemented an oxygen-breathing challenge BOLD contrast technique as part of the standard breast MRI exam in patients with locally advanced breast cancer. The preliminary observation that a large BOLD response correlated with better treatment response suggests a predictive capability for BOLD MRI. Copyright © 2012 Wiley Periodicals, Inc.

  16. Brain atrophy can introduce age-related differences in BOLD response.

    PubMed

    Liu, Xueqing; Gerraty, Raphael T; Grinband, Jack; Parker, David; Razlighi, Qolamreza R

    2017-04-11

    Use of functional magnetic resonance imaging (fMRI) in studies of aging is often hampered by uncertainty about age-related differences in the amplitude and timing of the blood oxygenation level dependent (BOLD) response (i.e., hemodynamic impulse response function (HRF)). Such uncertainty introduces a significant challenge in the interpretation of the fMRI results. Even though this issue has been extensively investigated in the field of neuroimaging, there is currently no consensus about the existence and potential sources of age-related hemodynamic alterations. Using an event-related fMRI experiment with two robust and well-studied stimuli (visual and auditory), we detected a significant age-related difference in the amplitude of response to auditory stimulus. Accounting for brain atrophy by circumventing spatial normalization and processing the data in subjects' native space eliminated these observed differences. In addition, we simulated fMRI data using age differences in brain morphology while controlling HRF shape. Analyzing these simulated fMRI data using standard image processing resulted in differences in HRF amplitude, which were eliminated when the data were analyzed in subjects' native space. Our results indicate that age-related atrophy introduces inaccuracy in co-registration to standard space, which subsequently appears as attenuation in BOLD response amplitude. Our finding could explain some of the existing contradictory reports regarding age-related differences in the fMRI BOLD responses. Hum Brain Mapp, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  17. Parietal blood oxygenation level-dependent response evoked by covert visual search reflects set-size effect in monkeys.

    PubMed

    Atabaki, A; Marciniak, K; Dicke, P W; Karnath, H-O; Thier, P

    2014-03-01

    Distinguishing a target from distractors during visual search is crucial for goal-directed behaviour. The more distractors that are presented with the target, the larger is the subject's error rate. This observation defines the set-size effect in visual search. Neurons in areas related to attention and eye movements, like the lateral intraparietal area (LIP) and frontal eye field (FEF), diminish their firing rates when the number of distractors increases, in line with the behavioural set-size effect. Furthermore, human imaging studies that have tried to delineate cortical areas modulating their blood oxygenation level-dependent (BOLD) response with set size have yielded contradictory results. In order to test whether BOLD imaging of the rhesus monkey cortex yields results consistent with the electrophysiological findings and, moreover, to clarify if additional other cortical regions beyond the two hitherto implicated are involved in this process, we studied monkeys while performing a covert visual search task. When varying the number of distractors in the search task, we observed a monotonic increase in error rates when search time was kept constant as was expected if monkeys resorted to a serial search strategy. Visual search consistently evoked robust BOLD activity in the monkey FEF and a region in the intraparietal sulcus in its lateral and middle part, probably involving area LIP. Whereas the BOLD response in the FEF did not depend on set size, the LIP signal increased in parallel with set size. These results demonstrate the virtue of BOLD imaging in monkeys when trying to delineate cortical areas underlying a cognitive process like visual search. However, they also demonstrate the caution needed when inferring neural activity from BOLD activity. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  18. Against Boldness

    ERIC Educational Resources Information Center

    Kennedy, Mary M.

    2010-01-01

    This special issue, "Bold Ideas for a New Era in Teacher Education, Teacher Preparation, and Teacher Practice," seeks to examine the impact of bold ideas on our field. Authors were asked to propose particular bold ideas that they wanted to examine. I proposed to examine the concept of bold ideas itself. In this article, I challenge the notion that…

  19. Latencies in BOLD response during visual attention processes.

    PubMed

    Kellermann, Thilo; Reske, Martina; Jansen, Andreas; Satrapi, Peyman; Shah, N Jon; Schneider, Frank; Habel, Ute

    2011-04-22

    One well-investigated division of attentional processes focuses on alerting, orienting and executive control, which can be assessed applying the attentional network test (ANT). The goal of the present study was to add further knowledge about the temporal dynamics of relevant neural correlates. As a right hemispheric dominance for alerting and orienting has previously been reported for intrinsic but not for phasic alertness, we additionally addressed a potential impact of this lateralization of attention by employing a lateralized version of the ANT, capturing phasic alertness processes. Sixteen healthy subjects underwent event-related functional magnetic resonance imaging (fMRI) while performing the ANT. Analyses of BOLD magnitude replicated the engagement of a fronto-parietal network in the attentional subsystems. The amplitudes of the attentional contrasts interacted with visual field presentation in the sense that the thalamus revealed a greater involvement for spatially cued items presented in the left visual field. Comparisons of BOLD latencies in visual cortices, first, verified faster BOLD responses following contra-lateral stimulus presentation. Second and more importantly, we identified attention-modulated activation in secondary visual and anterior cingulate cortices. Results are discussed in terms of bottom-up and lateralization processes. Although intrinsic and phasic alertness are distinct cognitive processes, we propose that neural substrates of intrinsic alertness may be accessed by phasic alertness provided that the attention-dominant (i.e., the right) hemisphere is activated directly by a warning stimulus. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Placental baseline conditions modulate the hyperoxic BOLD-MRI response.

    PubMed

    Sinding, Marianne; Peters, David A; Poulsen, Sofie S; Frøkjær, Jens B; Christiansen, Ole B; Petersen, Astrid; Uldbjerg, Niels; Sørensen, Anne

    2018-01-01

    Human pregnancies complicated by placental dysfunction may be characterized by a high hyperoxic Blood oxygen level-dependent (BOLD) MRI response. The pathophysiology behind this phenomenon remains to be established. The aim of this study was to evaluate whether it is associated with altered placental baseline conditions, including a lower oxygenation and altered tissue morphology, as estimated by the placental transverse relaxation time (T2*). We included 49 normal pregnancies (controls) and 13 pregnancies complicated by placental dysfunction (cases), defined by a birth weight < 10th percentile in combination with placental pathological signs of vascular malperfusion. During maternal oxygen inhalation, we measured the relative ΔBOLD response ((hyperoxic BOLD - baseline BOLD)/baseline BOLD) from a dynamic single-echo gradient-recalled echo (GRE) MRI sequence and the absolute ΔT2* (hyperoxic T2*- baseline T2*) from breath-hold multi-echo GRE sequences. In the control group, the relative ΔBOLD response increased during gestation from 5% in gestational week 20 to 20% in week 40. In the case group, the relative ΔBOLD response was significantly higher (mean Z-score 4.94; 95% CI 2.41, 7.47). The absolute ΔT2*, however, did not differ between controls and cases (p = 0.37), whereas the baseline T2* was lower among cases (mean Z-score -3.13; 95% CI -3.94, -2.32). Furthermore, we demonstrated a strong negative linear correlation between the Log 10 ΔBOLD response and the baseline T2* (r = -0.88, p < 0.0001). The high hyperoxic ΔBOLD response demonstrated in pregnancies complicated by placental dysfunction may simply reflect altered baseline conditions, as the absolute increase in placental oxygenation (ΔT2*) does not differ between groups. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Non-neural BOLD variability in block and event-related paradigms.

    PubMed

    Kannurpatti, Sridhar S; Motes, Michael A; Rypma, Bart; Biswal, Bharat B

    2011-01-01

    Block and event-related stimulus designs are typically used in fMRI studies depending on the importance of detection power or estimation efficiency. The extent of vascular contribution to variability in block and event-related fMRI-BOLD response is not known. With scaling, the extent of vascular variability in the fMRI-BOLD response during block and event-related design tasks was investigated. Blood oxygen level-dependent (BOLD) contrast data from healthy volunteers performing a block design motor task and an event-related memory task requiring performance of a motor response were analyzed from the regions of interest (ROIs) surrounding the primary and supplementary motor cortices. Average BOLD signal change was significantly larger during the block design compared to the event-related design. In each subject, BOLD signal change across voxels in the ROIs had higher variation during the block design task compared to the event-related design task. Scaling using the resting state fluctuation of amplitude (RSFA) and breath-hold (BH), which minimizes BOLD variation due to vascular origins, reduced the within-subject BOLD variability in every subject during both tasks but significantly reduced BOLD variability across subjects only during the block design task. The strong non-neural source of intra- and intersubject variability of BOLD response during the block design compared to event-related task indicates that study designs optimizing for statistical power through enhancement of the BOLD contrast (for, e.g., block design) can be affected by enhancement of non-neural sources of BOLD variability. Copyright © 2011. Published by Elsevier Inc.

  2. The BOLD signal and neurovascular coupling in autism.

    PubMed

    Reynell, Clare; Harris, Julia J

    2013-10-01

    BOLD (blood oxygen level dependent) fMRI (functional magnetic resonance imaging) is commonly used to study differences in neuronal activity between human populations. As the BOLD response is an indirect measure of neuronal activity, meaningful interpretation of differences in BOLD responses between groups relies upon a stable relationship existing between neuronal activity and the BOLD response across these groups. However, this relationship can be altered by changes in neurovascular coupling or energy consumption, which would lead to problems in identifying differences in neuronal activity. In this review, we focus on fMRI studies of people with autism, and comparisons that are made of their BOLD responses with those of control groups. We examine neurophysiological differences in autism that may alter neurovascular coupling or energy use, discuss recent studies that have used fMRI to identify differences between participants with autism and control participants, and explore experimental approaches that could help attribute between-group differences in BOLD signals to either neuronal or neurovascular factors. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. The BOLD signal and neurovascular coupling in autism

    PubMed Central

    Reynell, Clare; Harris, Julia J.

    2013-01-01

    BOLD (blood oxygen level dependent) fMRI (functional magnetic resonance imaging) is commonly used to study differences in neuronal activity between human populations. As the BOLD response is an indirect measure of neuronal activity, meaningful interpretation of differences in BOLD responses between groups relies upon a stable relationship existing between neuronal activity and the BOLD response across these groups. However, this relationship can be altered by changes in neurovascular coupling or energy consumption, which would lead to problems in identifying differences in neuronal activity. In this review, we focus on fMRI studies of people with autism, and comparisons that are made of their BOLD responses with those of control groups. We examine neurophysiological differences in autism that may alter neurovascular coupling or energy use, discuss recent studies that have used fMRI to identify differences between participants with autism and control participants, and explore experimental approaches that could help attribute between-group differences in BOLD signals to either neuronal or neurovascular factors. PMID:23917518

  4. Mapping and characterization of positive and negative BOLD responses to visual stimulation in multiple brain regions at 7T.

    PubMed

    Jorge, João; Figueiredo, Patrícia; Gruetter, Rolf; van der Zwaag, Wietske

    2018-06-01

    External stimuli and tasks often elicit negative BOLD responses in various brain regions, and growing experimental evidence supports that these phenomena are functionally meaningful. In this work, the high sensitivity available at 7T was explored to map and characterize both positive (PBRs) and negative BOLD responses (NBRs) to visual checkerboard stimulation, occurring in various brain regions within and beyond the visual cortex. Recently-proposed accelerated fMRI techniques were employed for data acquisition, and procedures for exclusion of large draining vein contributions, together with ICA-assisted denoising, were included in the analysis to improve response estimation. Besides the visual cortex, significant PBRs were found in the lateral geniculate nucleus and superior colliculus, as well as the pre-central sulcus; in these regions, response durations increased monotonically with stimulus duration, in tight covariation with the visual PBR duration. Significant NBRs were found in the visual cortex, auditory cortex, default-mode network (DMN) and superior parietal lobule; NBR durations also tended to increase with stimulus duration, but were significantly less sustained than the visual PBR, especially for the DMN and superior parietal lobule. Responses in visual and auditory cortex were further studied for checkerboard contrast dependence, and their amplitudes were found to increase monotonically with contrast, linearly correlated with the visual PBR amplitude. Overall, these findings suggest the presence of dynamic neuronal interactions across multiple brain regions, sensitive to stimulus intensity and duration, and demonstrate the richness of information obtainable when jointly mapping positive and negative BOLD responses at a whole-brain scale, with ultra-high field fMRI. © 2018 Wiley Periodicals, Inc.

  5. Controlled inspiration depth reduces variance in breath-holding-induced BOLD signal.

    PubMed

    Thomason, Moriah E; Glover, Gary H

    2008-01-01

    Recent studies have shown that blood oxygen level dependent (BOLD) response amplitude during short periods of breath holding (BH) measured by functional magnetic resonance imaging (fMRI) can be an effective metric for intersubject calibration procedures. However, inconsistency in the depth of inspiration during the BH scan may account for a portion of BOLD variation observed in such scans, and it is likely to reduce the effectiveness of the calibration measurement. While modulation of BOLD signal has been correlated with end-tidal CO2 and other measures of breathing, fluctuations in performance of BH have not been studied in the context of their impact on BOLD signal. Here, we studied the degree to which inspiration depth corresponds to BOLD signal change and tested the effectiveness of a method designed to control inspiration level through visual cues during the BH task paradigm. We observed reliable differences in BOLD signal amplitude corresponding to the depth of inspiration. It was determined that variance in BOLD signal response to BH could be significantly reduced when subjects were given visual feedback during task inspiration periods. The implications of these findings for routine BH studies of BOLD-derived neurovascular response are discussed.

  6. Functional MRI during Hippocampal Deep Brain Stimulation in the Healthy Rat Brain.

    PubMed

    Van Den Berge, Nathalie; Vanhove, Christian; Descamps, Benedicte; Dauwe, Ine; van Mierlo, Pieter; Vonck, Kristl; Keereman, Vincent; Raedt, Robrecht; Boon, Paul; Van Holen, Roel

    2015-01-01

    Deep Brain Stimulation (DBS) is a promising treatment for neurological and psychiatric disorders. The mechanism of action and the effects of electrical fields administered to the brain by means of an electrode remain to be elucidated. The effects of DBS have been investigated primarily by electrophysiological and neurochemical studies, which lack the ability to investigate DBS-related responses on a whole-brain scale. Visualization of whole-brain effects of DBS requires functional imaging techniques such as functional Magnetic Resonance Imaging (fMRI), which reflects changes in blood oxygen level dependent (BOLD) responses throughout the entire brain volume. In order to visualize BOLD responses induced by DBS, we have developed an MRI-compatible electrode and an acquisition protocol to perform DBS during BOLD fMRI. In this study, we investigate whether DBS during fMRI is valuable to study local and whole-brain effects of hippocampal DBS and to investigate the changes induced by different stimulation intensities. Seven rats were stereotactically implanted with a custom-made MRI-compatible DBS-electrode in the right hippocampus. High frequency Poisson distributed stimulation was applied using a block-design paradigm. Data were processed by means of Independent Component Analysis. Clusters were considered significant when p-values were <0.05 after correction for multiple comparisons. Our data indicate that real-time hippocampal DBS evokes a bilateral BOLD response in hippocampal and other mesolimbic structures, depending on the applied stimulation intensity. We conclude that simultaneous DBS and fMRI can be used to detect local and whole-brain responses to circuit activation with different stimulation intensities, making this technique potentially powerful for exploration of cerebral changes in response to DBS for both preclinical and clinical DBS.

  7. Functional MRI during Hippocampal Deep Brain Stimulation in the Healthy Rat Brain

    PubMed Central

    Van Den Berge, Nathalie; Vanhove, Christian; Descamps, Benedicte; Dauwe, Ine; van Mierlo, Pieter; Vonck, Kristl; Keereman, Vincent; Raedt, Robrecht; Boon, Paul; Van Holen, Roel

    2015-01-01

    Deep Brain Stimulation (DBS) is a promising treatment for neurological and psychiatric disorders. The mechanism of action and the effects of electrical fields administered to the brain by means of an electrode remain to be elucidated. The effects of DBS have been investigated primarily by electrophysiological and neurochemical studies, which lack the ability to investigate DBS-related responses on a whole-brain scale. Visualization of whole-brain effects of DBS requires functional imaging techniques such as functional Magnetic Resonance Imaging (fMRI), which reflects changes in blood oxygen level dependent (BOLD) responses throughout the entire brain volume. In order to visualize BOLD responses induced by DBS, we have developed an MRI-compatible electrode and an acquisition protocol to perform DBS during BOLD fMRI. In this study, we investigate whether DBS during fMRI is valuable to study local and whole-brain effects of hippocampal DBS and to investigate the changes induced by different stimulation intensities. Seven rats were stereotactically implanted with a custom-made MRI-compatible DBS-electrode in the right hippocampus. High frequency Poisson distributed stimulation was applied using a block-design paradigm. Data were processed by means of Independent Component Analysis. Clusters were considered significant when p-values were <0.05 after correction for multiple comparisons. Our data indicate that real-time hippocampal DBS evokes a bilateral BOLD response in hippocampal and other mesolimbic structures, depending on the applied stimulation intensity. We conclude that simultaneous DBS and fMRI can be used to detect local and whole-brain responses to circuit activation with different stimulation intensities, making this technique potentially powerful for exploration of cerebral changes in response to DBS for both preclinical and clinical DBS. PMID:26193653

  8. Physiological self-regulation of regional brain activity using real-time functional magnetic resonance imaging (fMRI): methodology and exemplary data.

    PubMed

    Weiskopf, Nikolaus; Veit, Ralf; Erb, Michael; Mathiak, Klaus; Grodd, Wolfgang; Goebel, Rainer; Birbaumer, Niels

    2003-07-01

    A brain-computer interface (BCI) based on real-time functional magnetic resonance imaging (fMRI) is presented which allows human subjects to observe and control changes of their own blood oxygen level-dependent (BOLD) response. This BCI performs data preprocessing (including linear trend removal, 3D motion correction) and statistical analysis on-line. Local BOLD signals are continuously fed back to the subject in the magnetic resonance scanner with a delay of less than 2 s from image acquisition. The mean signal of a region of interest is plotted as a time-series superimposed on color-coded stripes which indicate the task, i.e., to increase or decrease the BOLD signal. We exemplify the presented BCI with one volunteer intending to control the signal of the rostral-ventral and dorsal part of the anterior cingulate cortex (ACC). The subject achieved significant changes of local BOLD responses as revealed by region of interest analysis and statistical parametric maps. The percent signal change increased across fMRI-feedback sessions suggesting a learning effect with training. This methodology of fMRI-feedback can assess voluntary control of circumscribed brain areas. As a further extension, behavioral effects of local self-regulation become accessible as a new field of research.

  9. Plasticity of boldness in rainbow trout, Oncorhynchus mykiss: do hunger and predation influence risk-taking behaviour?

    PubMed

    Thomson, Jack S; Watts, Phillip C; Pottinger, Tom G; Sneddon, Lynne U

    2012-05-01

    Boldness, a measure of an individual's propensity for taking risks, is an important determinant of fitness but is not necessarily a fixed trait. Dependent upon an individual's state, and given certain contexts or challenges, individuals may be able to alter their inclination to be bold or shy in response. Furthermore, the degree to which individuals can modulate their behaviour has been linked with physiological responses to stress. Here we attempted to determine whether bold and shy rainbow trout, Oncorhynchus mykiss, can exhibit behavioural plasticity in response to changes in state (nutritional availability) and context (predation threat). Individual trout were initially assessed for boldness using a standard novel object paradigm; subsequently, each day for one week fish experienced either predictable, unpredictable, or no simulated predator threat in combination with a high (2% body weight) or low (0.15%) food ration, before being reassessed for boldness. Bold trout were generally more plastic, altering levels of neophobia and activity relevant to the challenge, whereas shy trout were more fixed and remained shy. Increased predation risk generally resulted in an increase in the expression of three candidate genes linked to boldness, appetite regulation and physiological stress responses - ependymin, corticotrophin releasing factor and GABA(A) - but did not produce a significant increase in plasma cortisol. The results suggest a divergence in the ability of bold and shy trout to alter their behavioural profiles in response to internal and exogenous factors, and have important implications for our understanding of the maintenance of different behavioural phenotypes in natural populations. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Caffeine Increases the Linearity of the Visual BOLD Response

    PubMed Central

    Liu, Thomas T.; Liau, Joy

    2009-01-01

    Although the blood oxygenation level dependent (BOLD) signal used in most functional magnetic resonance imaging (fMRI) studies has been shown to exhibit nonlinear characteristics, most analyses assume that the BOLD signal responds in a linear fashion to stimulus. This assumption of linearity can lead to errors in the estimation of the BOLD response, especially for rapid event-related fMRI studies. In this study, we used a rapid event-related design and Volterra kernel analysis to assess the effect of a 200 mg oral dose of caffeine on the linearity of the visual BOLD response. The caffeine dose significantly (p < 0.02) increased the linearity of the BOLD response in a sample of 11 healthy volunteers studied on a 3 Tesla MRI system. In addition, the agreement between nonlinear and linear estimates of the hemodynamic response function was significantly increased (p= 0.013) with the caffeine dose. These findings indicate that differences in caffeine usage should be considered as a potential source of bias in the analysis of rapid event-related fMRI studies. PMID:19854278

  11. Biophysical and physiological origins of blood oxygenation level-dependent fMRI signals.

    PubMed

    Kim, Seong-Gi; Ogawa, Seiji

    2012-07-01

    After its discovery in 1990, blood oxygenation level-dependent (BOLD) contrast in functional magnetic resonance imaging (fMRI) has been widely used to map brain activation in humans and animals. Since fMRI relies on signal changes induced by neural activity, its signal source can be complex and is also dependent on imaging parameters and techniques. In this review, we identify and describe the origins of BOLD fMRI signals, including the topics of (1) effects of spin density, volume fraction, inflow, perfusion, and susceptibility as potential contributors to BOLD fMRI, (2) intravascular and extravascular contributions to conventional gradient-echo and spin-echo BOLD fMRI, (3) spatial specificity of hemodynamic-based fMRI related to vascular architecture and intrinsic hemodynamic responses, (4) BOLD signal contributions from functional changes in cerebral blood flow (CBF), cerebral blood volume (CBV), and cerebral metabolic rate of O(2) utilization (CMRO(2)), (5) dynamic responses of BOLD, CBF, CMRO(2), and arterial and venous CBV, (6) potential sources of initial BOLD dips, poststimulus BOLD undershoots, and prolonged negative BOLD fMRI signals, (7) dependence of stimulus-evoked BOLD signals on baseline physiology, and (8) basis of resting-state BOLD fluctuations. These discussions are highly relevant to interpreting BOLD fMRI signals as physiological means.

  12. Biophysical and physiological origins of blood oxygenation level-dependent fMRI signals

    PubMed Central

    Kim, Seong-Gi; Ogawa, Seiji

    2012-01-01

    After its discovery in 1990, blood oxygenation level-dependent (BOLD) contrast in functional magnetic resonance imaging (fMRI) has been widely used to map brain activation in humans and animals. Since fMRI relies on signal changes induced by neural activity, its signal source can be complex and is also dependent on imaging parameters and techniques. In this review, we identify and describe the origins of BOLD fMRI signals, including the topics of (1) effects of spin density, volume fraction, inflow, perfusion, and susceptibility as potential contributors to BOLD fMRI, (2) intravascular and extravascular contributions to conventional gradient-echo and spin-echo BOLD fMRI, (3) spatial specificity of hemodynamic-based fMRI related to vascular architecture and intrinsic hemodynamic responses, (4) BOLD signal contributions from functional changes in cerebral blood flow (CBF), cerebral blood volume (CBV), and cerebral metabolic rate of O2 utilization (CMRO2), (5) dynamic responses of BOLD, CBF, CMRO2, and arterial and venous CBV, (6) potential sources of initial BOLD dips, poststimulus BOLD undershoots, and prolonged negative BOLD fMRI signals, (7) dependence of stimulus-evoked BOLD signals on baseline physiology, and (8) basis of resting-state BOLD fluctuations. These discussions are highly relevant to interpreting BOLD fMRI signals as physiological means. PMID:22395207

  13. Comparison of fMRI analysis methods for heterogeneous BOLD responses in block design studies

    PubMed Central

    Bernal-Casas, David; Fang, Zhongnan; Lee, Jin Hyung

    2017-01-01

    A large number of fMRI studies have shown that the temporal dynamics of evoked BOLD responses can be highly heterogeneous. Failing to model heterogeneous responses in statistical analysis can lead to significant errors in signal detection and characterization and alter the neurobiological interpretation. However, to date it is not clear that, out of a large number of options, which methods are robust against variability in the temporal dynamics of BOLD responses in block-design studies. Here, we used rodent optogenetic fMRI data with heterogeneous BOLD responses and simulations guided by experimental data as a means to investigate different analysis methods’ performance against heterogeneous BOLD responses. Evaluations are carried out within the general linear model (GLM) framework and consist of standard basis sets as well as independent component analysis (ICA). Analyses show that, in the presence of heterogeneous BOLD responses, conventionally used GLM with a canonical basis set leads to considerable errors in the detection and characterization of BOLD responses. Our results suggest that the 3rd and 4th order gamma basis sets, the 7th to 9th order finite impulse response (FIR) basis sets, the 5th to 9th order B-spline basis sets, and the 2nd to 5th order Fourier basis sets are optimal for good balance between detection and characterization, while the 1st order Fourier basis set (coherence analysis) used in our earlier studies show good detection capability. ICA has mostly good detection and characterization capabilities, but detects a large volume of spurious activation with the control fMRI data. PMID:27993672

  14. BOLD temporal dynamics of rat superior colliculus and lateral geniculate nucleus following short duration visual stimulation.

    PubMed

    Lau, Condon; Zhou, Iris Y; Cheung, Matthew M; Chan, Kevin C; Wu, Ed X

    2011-04-29

    The superior colliculus (SC) and lateral geniculate nucleus (LGN) are important subcortical structures for vision. Much of our understanding of vision was obtained using invasive and small field of view (FOV) techniques. In this study, we use non-invasive, large FOV blood oxygenation level-dependent (BOLD) fMRI to measure the SC and LGN's response temporal dynamics following short duration (1 s) visual stimulation. Experiments are performed at 7 tesla on Sprague Dawley rats stimulated in one eye with flashing light. Gradient-echo and spin-echo sequences are used to provide complementary information. An anatomical image is acquired from one rat after injection of monocrystalline iron oxide nanoparticles (MION), a blood vessel contrast agent. BOLD responses are concentrated in the contralateral SC and LGN. The SC BOLD signal measured with gradient-echo rises to 50% of maximum amplitude (PEAK) 0.2±0.2 s before the LGN signal (p<0.05). The LGN signal returns to 50% of PEAK 1.4±1.2 s before the SC signal (p<0.05). These results indicate the SC signal rises faster than the LGN signal but settles slower. Spin-echo results support these findings. The post-MION image shows the SC and LGN lie beneath large blood vessels. This subcortical vasculature is similar to that in the cortex, which also lies beneath large vessels. The LGN lies closer to the large vessels than much of the SC. The differences in response timing between SC and LGN are very similar to those between deep and shallow cortical layers following electrical stimulation, which are related to depth-dependent blood vessel dilation rates. This combined with the similarities in vasculature between subcortex and cortex suggest the SC and LGN timing differences are also related to depth-dependent dilation rates. This study shows for the first time that BOLD responses in the rat SC and LGN following short duration visual stimulation are temporally different.

  15. Multiple sclerosis-related white matter microstructural change alters the BOLD hemodynamic response.

    PubMed

    Hubbard, Nicholas A; Turner, Monroe; Hutchison, Joanna L; Ouyang, Austin; Strain, Jeremy; Oasay, Larry; Sundaram, Saranya; Davis, Scott; Remington, Gina; Brigante, Ryan; Huang, Hao; Hart, John; Frohman, Teresa; Frohman, Elliot; Biswal, Bharat B; Rypma, Bart

    2016-11-01

    Multiple sclerosis (MS) results in inflammatory damage to white matter microstructure. Prior research using blood-oxygen-level dependent (BOLD) imaging indicates MS-related alterations to brain function. What is currently unknown is the extent to which white matter microstructural damage influences BOLD signal in MS. Here we assessed changes in parameters of the BOLD hemodynamic response function (HRF) in patients with relapsing-remitting MS compared to healthy controls. We also used diffusion tensor imaging to assess whether MS-related changes to the BOLD-HRF were affected by changes in white matter microstructural integrity. Our results showed MS-related reductions in BOLD-HRF peak amplitude. These MS-related amplitude decreases were influenced by individual differences in white matter microstructural integrity. Other MS-related factors including altered reaction time, limited spatial extent of BOLD activity, elevated lesion burden, or lesion proximity to regions of interest were not mediators of group differences in BOLD-HRF amplitude. Results are discussed in terms of functional hyperemic mechanisms and implications for analysis of BOLD signal differences. © The Author(s) 2015.

  16. Right anterior cerebellum BOLD responses reflect age related changes in Simon task sequential effects.

    PubMed

    Aisenberg, D; Sapir, A; Close, A; Henik, A; d'Avossa, G

    2018-01-31

    Participants are slower to report a feature, such as color, when the target appears on the side opposite the instructed response, than when the target appears on the same side. This finding suggests that target location, even when task-irrelevant, interferes with response selection. This effect is magnified in older adults. Lengthening the inter-trial interval, however, suffices to normalize the congruency effect in older adults, by re-establishing young-like sequential effects (Aisenberg et al., 2014). We examined the neurological correlates of age related changes by comparing BOLD signals in young and old participants performing a visual version of the Simon task. Participants reported the color of a peripheral target, by a left or right-hand keypress. Generally, BOLD responses were greater following incongruent than congruent targets. Also, they were delayed and of smaller amplitude in old than young participants. BOLD responses in visual and motor regions were also affected by the congruency of the previous target, suggesting that sequential effects may reflect remapping of stimulus location onto the hand used to make a response. Crucially, young participants showed larger BOLD responses in right anterior cerebellum to incongruent targets, when the previous target was congruent, but smaller BOLD responses to incongruent targets when the previous target was incongruent. Old participants, however, showed larger BOLD responses to congruent than incongruent targets, irrespective of the previous target congruency. We conclude that aging may interfere with the trial by trial updating of the mapping between the task-irrelevant target location and response, which takes place during the inter-trial interval in the cerebellum and underlays sequential effects in a Simon task. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Prospects for Quantitative fMRI: Investigating the Effects of Caffeine on Baseline Oxygen Metabolism and the Response to a Visual Stimulus in Humans

    PubMed Central

    Griffeth, Valerie E.M.; Perthen, Joanna E.; Buxton, Richard B.

    2011-01-01

    Functional magnetic resonance imaging (fMRI) provides an indirect reflection of neural activity change in the working brain through detection of blood oxygenation level dependent (BOLD) signal changes. Although widely used to map patterns of brain activation, fMRI has not yet met its potential for clinical and pharmacological studies due to difficulties in quantitatively interpreting the BOLD signal. This difficulty is due to the BOLD response being strongly modulated by two physiological factors in addition to the level of neural activity: the amount of deoxyhemoglobin present in the baseline state and the coupling ratio, n, of evoked changes in blood flow and oxygen metabolism. In this study, we used a quantitative fMRI approach with dual measurement of blood flow and BOLD responses to overcome these limitations and show that these two sources of modulation work in opposite directions following caffeine administration in healthy human subjects. A strong 27% reduction in baseline blood flow and a 22% increase in baseline oxygen metabolism after caffeine consumption led to a decrease in baseline blood oxygenation and was expected to increase the subsequent BOLD response to the visual stimulus. Opposing this, caffeine reduced n through a strong 61% increase in the evoked oxygen metabolism response to the visual stimulus. The combined effect was that BOLD responses pre- and post-caffeine were similar despite large underlying physiological changes, indicating that the magnitude of the BOLD response alone should not be interpreted as a direct measure of underlying neurophysiological changes. Instead, a quantitative methodology based on dual-echo measurement of blood flow and BOLD responses is a promising tool for applying fMRI to disease and drug studies in which both baseline conditions and the coupling of blood flow and oxygen metabolism responses to a stimulus may be altered. PMID:21586328

  18. Early anti-correlated BOLD signal changes of physiologic origin.

    PubMed

    Bright, Molly G; Bianciardi, Marta; de Zwart, Jacco A; Murphy, Kevin; Duyn, Jeff H

    2014-02-15

    Negative BOLD signals that are synchronous with resting state fluctuations have been observed in large vessels in the cortical sulci and surrounding the ventricles. In this study, we investigated the origin of these negative BOLD signals by applying a Cued Deep Breathing (CDB) task to create transient hypocapnia and a resultant global fMRI signal decrease. We hypothesized that a global stimulus would amplify the effect in large vessels and that using a global negative (vasoconstrictive) stimulus would test whether these voxels exhibit either inherently negative or simply anti-correlated BOLD responses. Significantly anti-correlated, but positive, BOLD signal changes during respiratory challenges were identified in voxels primarily located near edges of brain spaces containing CSF. These positive BOLD responses occurred earlier than the negative CDB response across most of gray matter voxels. These findings confirm earlier suggestions that in some brain regions, local, fractional changes in CSF volume may overwhelm BOLD-related signal changes, leading to signal anti-correlation. We show that regions with CDB anti-correlated signals coincide with most, but not all, of the regions with negative BOLD signal changes observed during a visual and motor stimulus task. Thus, the addition of a physiological challenge to fMRI experiments can help identify which negative BOLD signals are passive physiological anti-correlations and which may have a putative neuronal origin. Published by Elsevier Inc.

  19. Early anti-correlated BOLD signal changes of physiologic origin

    PubMed Central

    Bright, Molly G.; Bianciardi, Marta; de Zwart, Jacco A.; Murphy, Kevin; Duyn, Jeff H.

    2014-01-01

    Negative BOLD signals that are synchronous with resting state fluctuations have been observed in large vessels in the cortical sulci and surrounding the ventricles. In this study, we investigated the origin of these negative BOLD signals by applying a Cued Deep Breathing (CDB) task to create transient hypocapnia and a resultant global fMRI signal decrease. We hypothesized that a global stimulus would amplify the effect in large vessels and that using a global negative (vasoconstrictive) stimulus would test whether these voxels exhibit either inherently negative or simply anti-correlated BOLD responses. Significantly anti-correlated, but positive, BOLD signal changes during respiratory challenges were identified in voxels primarily located near edges of brain spaces containing CSF. These positive BOLD responses occurred earlier than the negative CDB response across most of gray matter voxels. These findings confirm earlier suggestions that in some brain regions, local, fractional changes in CSF volume may overwhelm BOLD-related signal changes, leading to signal anti-correlation. We show that regions with CDB anti-correlated signals coincide with most, but not all, of the regions with negative BOLD signal changes observed during a visual and motor stimulus task. Thus, the addition of a physiological challenge to fMRI experiments can help identify which negative BOLD signals are passive physiological anti-correlations and which may have a putative neuronal origin. PMID:24211818

  20. Cortical functional anatomy of voluntary saccades in Parkinson disease.

    PubMed

    Rieger, Jochem W; Kim, Aleander; Argyelan, Miklos; Farber, Mark; Glazman, Sofya; Liebeskind, Marc; Meyer, Thomas; Bodis-Wollner, Ivan

    2008-10-01

    In Parkinson Disease (PD) several aspects of saccades are affected. The saccade-generating brainstem neurons are spared, however, the signals they receive may be flawed. In particular voluntary saccades suffer, but the functional anatomy of the impairment of saccade-related cortical control is unknown. We measured blood-oxygenation-level-dependent (BOLD) activation with functional Magnetic Resonance Imaging (fMRI) while healthy participants and patients with PD performed horizontal voluntary saccades between peripheral visual targets or fixated centrally. We compared saccade-related BOLD-activity vs. fixation in patients with PD and in healthy controls and correlated perisaccadic BOLD-activity in PD patients with saccade kinetics (multistep saccades). Saccade related BOLD-activation was found in both PD and healthy participants in the superior parietal cortex (PEF) and the occipital cortex. Our results suggest remarkable hypoactivity of the frontal and supplementary eye fields (FEF and SEF) in PD patients. On the other hand, PD patients showed a statistically more reliable BOLD modulation than healthy participants in the posterior cingulate gyrus, the parahippocampal gyrus, inferior parietal lobule, precuneus and in the middle temporal gyrus. Given abnormal frontal and normal PEF responses, our results suggest that in PD a frontal cortical circuitry, known to be associated with saccade planning, selection, and predicting a metric error of the saccade, is deficient.

  1. Comparison of fMRI analysis methods for heterogeneous BOLD responses in block design studies.

    PubMed

    Liu, Jia; Duffy, Ben A; Bernal-Casas, David; Fang, Zhongnan; Lee, Jin Hyung

    2017-02-15

    A large number of fMRI studies have shown that the temporal dynamics of evoked BOLD responses can be highly heterogeneous. Failing to model heterogeneous responses in statistical analysis can lead to significant errors in signal detection and characterization and alter the neurobiological interpretation. However, to date it is not clear that, out of a large number of options, which methods are robust against variability in the temporal dynamics of BOLD responses in block-design studies. Here, we used rodent optogenetic fMRI data with heterogeneous BOLD responses and simulations guided by experimental data as a means to investigate different analysis methods' performance against heterogeneous BOLD responses. Evaluations are carried out within the general linear model (GLM) framework and consist of standard basis sets as well as independent component analysis (ICA). Analyses show that, in the presence of heterogeneous BOLD responses, conventionally used GLM with a canonical basis set leads to considerable errors in the detection and characterization of BOLD responses. Our results suggest that the 3rd and 4th order gamma basis sets, the 7th to 9th order finite impulse response (FIR) basis sets, the 5th to 9th order B-spline basis sets, and the 2nd to 5th order Fourier basis sets are optimal for good balance between detection and characterization, while the 1st order Fourier basis set (coherence analysis) used in our earlier studies show good detection capability. ICA has mostly good detection and characterization capabilities, but detects a large volume of spurious activation with the control fMRI data. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Contributions of dopaminergic and non-dopaminergic neurons to VTA-stimulation induced neurovascular responses in brain reward circuits.

    PubMed

    Brocka, Marta; Helbing, Cornelia; Vincenz, Daniel; Scherf, Thomas; Montag, Dirk; Goldschmidt, Jürgen; Angenstein, Frank; Lippert, Michael

    2018-04-30

    Mapping the activity of the human mesolimbic dopamine system by BOLD-fMRI is a tempting approach to non-invasively study the action of the brain reward system during different experimental conditions. However, the contribution of dopamine release to the BOLD signal is disputed. To assign the actual contribution of dopaminergic and non-dopaminergic VTA neurons to the formation of BOLD responses in target regions of the mesolimbic system, we used two optogenetic approaches in rats. We either activated VTA dopaminergic neurons selectively, or dopaminergic and mainly glutamatergic projecting neurons together. We further used electrical stimulation to non-selectively activate neurons in the VTA. All three stimulation conditions effectively activated the mesolimbic dopaminergic system and triggered dopamine releases into the NAcc as measured by in vivo fast-scan cyclic voltammetry. Furthermore, both optogenetic stimulation paradigms led to indistinguishable self-stimulation behavior. In contrast to these similarities, however, the BOLD response pattern differed greatly between groups. In general, BOLD responses were weaker and sparser with increasing stimulation specificity for dopaminergic neurons. In addition, repetitive stimulation of the VTA caused a progressive decoupling of dopamine release and BOLD signal strength, and dopamine receptor antagonists were unable to block the BOLD signal elicited by VTA stimulation. To exclude that the sedation during fMRI is the cause of minimal mesolimbic BOLD in response to specific dopaminergic stimulation, we repeated our experiments using CBF SPECT in awake animals. Again, we found activations only for less-specific stimulation. Based on these results we conclude that canonical BOLD responses in the reward system represent mainly the activity of non-dopaminergic neurons. Thus, the minor effects of projecting dopaminergic neurons are concealed by non-dopaminergic activity, a finding which highlights the importance of a careful interpretation of reward-related human fMRI data. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Cerebral Blood Flow and BOLD Responses to a Memory Encoding Task: A Comparison Between Healthy Young and Elderly Adults

    PubMed Central

    Restom, Khaled; Bangen, Katherine J.; Bondi, Mark W.; Perthen, Joanna E.; Liu, Thomas T.

    2007-01-01

    Functional magnetic resonance imaging (fMRI) studies of the medial temporal lobe have primarily made use of the blood oxygenation level dependent (BOLD) response to neural activity. The interpretation of the BOLD signal as a measure of medial temporal lobe function can be complicated, however, by changes in the cerebrovascular system that can occur with both normal aging and age-related diseases, such as Alzheimer's disease. Quantitative measures of the functional cerebral blood flow (CBF) response offer a useful complement to BOLD measures, and have been shown to aid in the interpretation of fMRI studies. Despite these potential advantages, the application of ASL to fMRI studies of cognitive tasks and at-risk populations has been limited. In this study, we demonstrate the application of ASL fMRI to obtain measures of the CBF and BOLD responses to the encoding of natural scenes in healthy young (mean 25 years) and elderly (mean 74 years) adults. The percent CBF increase in the medial temporal lobe was significantly higher in the older adults, whereas the CBF levels during baseline and task conditions and during a separate resting-state scan were significantly lower in the older group. The older adults also showed slightly higher values for the BOLD response amplitude and the absolute change in CBF, but the age group differences were not significant. The percent CBF and BOLD responses are consistent with an age-related increase in the cerebral metabolic rate of oxygen metabolism (CMRO2) response to memory encoding. PMID:17590353

  4. Retinotopic mapping with Spin Echo BOLD at 7 Tesla

    PubMed Central

    Olman, Cheryl A.; Van de Moortele, Pierre-Francois; Schumacher, Jennifer F.; Guy, Joe; Uğurbil, Kâmil; Yacoub, Essa

    2010-01-01

    For blood oxygenation level-dependent (BOLD) functional MRI experiments, contrast-to-noise ratio (CNR) increases with increasing field strength for both gradient echo (GE) and spin echo (SE) BOLD techniques. However, susceptibility artifacts and non-uniform coil sensitivity profiles complicate large field-of-view fMRI experiments (e.g., experiments covering multiple visual areas instead of focusing on a single cortical region). Here, we use SE BOLD to acquire retinotopic mapping data in early visual areas, testing the feasibility of SE BOLD experiments spanning multiple cortical areas at 7 Tesla. We also use a recently developed method for normalizing signal intensity in T1-weighted anatomical images to enable automated segmentation of the cortical gray matter for scans acquired at 7T with either surface or volume coils. We find that the CNR of the 7T GE data (average single-voxel, single-scan stimulus coherence: 0.41) is almost twice that of the 3T GE BOLD data (average coherence: 0.25), with the CNR of the SE BOLD data (average coherence: 0.23) comparable to that of the 3T GE data. Repeated measurements in individual subjects find that maps acquired with 1.8 mm resolution at 3T and 7T with GE BOLD and at 7T with SE BOLD show no systematic differences in either the area or the boundary locations for V1, V2 and V3, demonstrating the feasibility of high-resolution SE BOLD experiments with good sensitivity throughout multiple visual areas. PMID:20656431

  5. Plasticity in animal personality traits: does prior experience alter the degree of boldness?

    PubMed

    Frost, Ashley J; Winrow-Giffen, Alexandria; Ashley, Paul J; Sneddon, Lynne U

    2007-02-07

    Theoreticians predict that animal 'personality' traits may be maladaptive if fixed throughout different contexts, so the present study aimed to test whether these traits are fixed or plastic. Rainbow trout (Onchorhyncus mykiss) were given emboldening or negative experiences in the forms of watching bold or shy individuals responding to novelty or winning or losing fights to examine whether prior experience affected boldness. Bold individuals that lost fights or watched shy demonstrators became more shy by increasing their latency to approach a novel object, whereas shy observers that watched bold demonstrators remained cautious and did not modify their responses to novelty. Shy winners became bolder and decreased their latency to approach a novel object, but shy losers also displayed this shift. In comparison, control groups showed no change in behaviour. Bold fishes given negative experiences reduced their boldness which may be an adaptive response; however, shy fishes may base their strategic decisions upon self-assessment of their relative competitive ability and increase their boldness in situations where getting to resources more quickly ensures they outcompete better competitors.

  6. A second-order orientation-contrast stimulus for population-receptive-field-based retinotopic mapping.

    PubMed

    Yildirim, Funda; Carvalho, Joana; Cornelissen, Frans W

    2018-01-01

    Visual field or retinotopic mapping is one of the most frequently used paradigms in fMRI. It uses activity evoked by position-varying high luminance contrast visual patterns presented throughout the visual field for determining the spatial organization of cortical visual areas. While the advantage of using high luminance contrast is that it tends to drive a wide range of neural populations - thus resulting in high signal-to-noise BOLD responses - this may also be a limitation, especially for approaches that attempt to squeeze more information out of the BOLD response, such as population receptive field (pRF) mapping. In that case, more selective stimulation of a subset of neurons - despite reduced signals - could result in better characterization of pRF properties. Here, we used a second-order stimulus based on local differences in orientation texture - to which we refer as orientation contrast - to perform retinotopic mapping. Participants in our experiment viewed arrays of Gabor patches composed of a foreground (a bar) and a background. These could only be distinguished on the basis of a difference in patch orientation. In our analyses, we compare the pRF properties obtained using this new orientation contrast-based retinotopy (OCR) to those obtained using classic luminance contrast-based retinotopy (LCR). Specifically, in higher order cortical visual areas such as LO, our novel approach resulted in non-trivial reductions in estimated population receptive field size of around 30%. A set of control experiments confirms that the most plausible cause for this reduction is that OCR mainly drives neurons sensitive to orientation contrast. We discuss how OCR - by limiting receptive field scatter and reducing BOLD displacement - may result in more accurate pRF localization as well. Estimation of neuronal properties is crucial for interpreting cortical function. Therefore, we conclude that using our approach, it is possible to selectively target particular neuronal populations, opening the way to use pRF modeling to dissect the response properties of more clearly-defined neuronal populations in different visual areas. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Corticostriatal and Dopaminergic Response to Beer Flavor with Both fMRI and [(11) C]raclopride Positron Emission Tomography.

    PubMed

    Oberlin, Brandon G; Dzemidzic, Mario; Harezlak, Jaroslaw; Kudela, Maria A; Tran, Stella M; Soeurt, Christina M; Yoder, Karmen K; Kareken, David A

    2016-09-01

    Cue-evoked drug-seeking behavior likely depends on interactions between frontal activity and ventral striatal (VST) dopamine (DA) transmission. Using [(11) C]raclopride (RAC) positron emission tomography (PET), we previously demonstrated that beer flavor (absent intoxication) elicited VST DA release in beer drinkers, inferred by RAC displacement. Here, a subset of subjects from this previous RAC-PET study underwent a similar paradigm during functional magnetic resonance imaging (fMRI) to test how orbitofrontal cortex (OFC) and VST blood oxygenation level-dependent (BOLD) responses to beer flavor are related to VST DA release and motivation to drink. Male beer drinkers (n = 28, age = 24 ± 2, drinks/wk = 16 ± 10) from our previous PET study participated in a similar fMRI paradigm wherein subjects tasted their most frequently consumed brand of beer and Gatorade(®) (appetitive control). We tested for correlations between BOLD activation in fMRI and VST DA responses in PET, and drinking-related variables. Compared to Gatorade, beer flavor increased wanting and desire to drink, and induced BOLD responses in bilateral OFC and right VST. Wanting and desire to drink correlated with both right VST and medial OFC BOLD activation to beer flavor. Like the BOLD findings, beer flavor (relative to Gatorade) again induced right VST DA release in this fMRI subject subset, but there was no correlation between DA release and the magnitude of BOLD responses in frontal regions of interest. Both imaging modalities showed a right-lateralized VST response (BOLD and DA release) to a drug-paired conditioned stimulus, whereas fMRI BOLD responses in the VST and medial OFC also reflected wanting and desire to drink. The data suggest the possibility that responses to drug-paired cues may be rightward biased in the VST (at least in right-handed males) and that VST and OFC responses in this gustatory paradigm reflect stimulus wanting. Copyright © 2016 by the Research Society on Alcoholism.

  8. The role of the GABAergic and dopaminergic systems in the brain response to an intragastric load of alcohol in conscious rats.

    PubMed

    Tsurugizawa, T; Uematsu, A; Uneyama, H; Torii, K

    2010-12-01

    The brain's response to ethanol intake has been extensively investigated using electrophysiological recordings, brain lesion techniques, and c-Fos immunoreactivity. However, few studies have investigated this phenomenon using functional magnetic resonance imaging (fMRI). In the present study, we used fMRI to investigate the blood oxygenation level-dependent (BOLD) signal response to an intragastric (IG) load of ethanol in conscious, ethanol-naive rats. An intragastrically infused 10% ethanol solution induced a significant decrease in the intensity of the BOLD signal in several regions of the brain, including the bilateral amygdala (AMG), nucleus accumbens (NAc), hippocampus, ventral pallidum, insular cortex, and cingulate cortex, and an increase in the BOLD signal in the ventral tegmental area (VTA) and hypothalamic regions. Treatment with bicuculline, which is an antagonist of the gamma-aminobutyric acid A (GABA(A)) receptor, increased the BOLD signal intensity in the regions that had shown decreases in the BOLD signal after the IG infusion of 10% ethanol solution, but it did not affect the BOLD signal increase in the hypothalamus. Treatment with SCH39166, which is an antagonist of D1-like receptors, eliminated the increase in the BOLD signal intensity in the hypothalamic areas but did not affect the BOLD signal decrease following the 10% ethanol infusion. These results indicate that an IG load of ethanol caused both a GABA(A) receptor-mediated BOLD decrease in the limbic system and the cortex and a D1-like receptor-mediated BOLD increase in the hypothalamic regions in ethanol-naive rats. Copyright © 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  9. Metabolic demands of neural-hemodynamic associated and disassociated areas in brain.

    PubMed

    Sanganahalli, Basavaraju G; Herman, Peter; Rothman, Douglas L; Blumenfeld, Hal; Hyder, Fahmeed

    2016-10-01

    Interpretation of regional blood oxygenation level-dependent (BOLD) responses in functional magnetic resonance imaging (fMRI) is contingent on whether local field potential (LFP) and multi-unit activity (MUA) is either dissociated or associated. To examine whether neural-hemodynamic associated and dissociated areas have different metabolic demands, we recorded sensory-evoked responses of BOLD signal, blood flow (CBF), and blood volume (CBV), which with calibrated fMRI provided oxidative metabolism (CMR O2 ) from rat's ventral posterolateral thalamic nucleus (VPL) and somatosensory forelimb cortex (S1 FL ) and compared these neuroimaging signals to neurophysiological recordings. MUA faithfully recorded evoked latency differences between VPL and S1 FL because evoked MUA in these regions were similar in magnitude. Since evoked LFP was significantly attenuated in VPL, we extracted the time courses of the weaker thalamic LFP to compare with the stronger cortical LFP using wavelet transform. BOLD and CBV responses were greater in S1 FL than in VPL, similar to LFP regional differences. CBF and CMR O2 responses were both comparably larger in S1 FL and VPL. Despite different levels of CBF-CMR O2 and LFP-MUA couplings in VPL and S1 FL , the CMR O2 was well matched with MUA in both regions. These results suggest that neural-hemodynamic associated and dissociated areas in VPL and S1 FL can have similar metabolic demands. © The Author(s) 2016.

  10. Negative BOLD in default-mode structures measured with EEG-MREG is larger in temporal than extra-temporal epileptic spikes

    PubMed Central

    Jacobs, Julia; Menzel, Antonia; Ramantani, Georgia; Körbl, Katharina; Assländer, Jakob; Schulze-Bonhage, Andreas; Hennig, Jürgen; LeVan, Pierre

    2014-01-01

    Introduction: EEG-fMRI detects BOLD changes associated with epileptic interictal discharges (IED) and can identify epileptogenic networks in epilepsy patients. Besides positive BOLD changes, negative BOLD changes have sometimes been observed in the default-mode network, particularly using group analysis. A new fast fMRI sequence called MREG (Magnetic Resonance Encephalography) shows increased sensitivity to detect IED-related BOLD changes compared to the conventional EPI sequence, including frequent occurrence of negative BOLD responses in the DMN. The present study quantifies the concordance between the DMN and negative BOLD related to IEDs of temporal and extra-temporal origin. Methods: Focal epilepsy patients underwent simultaneous EEG-MREG. Areas of overlap were calculated between DMN regions, defined as precuneus, posterior cingulate, bilateral inferior parietal and mesial prefrontal cortices according to a standardized atlas, and significant negative BOLD changes revealed by an event-related analysis based on the timings of IED seen on EEG. Correlation between IED number/lobe of origin and the overlap were calculated. Results: 15 patients were analyzed, some showing IED over more than one location resulting in 30 different IED types. The average overlap between negative BOLD and DMN was significantly larger in temporal (23.7 ± 19.6 cm3) than extra-temporal IEDs (7.4 ± 5.1 cm3, p = 0.008). There was no significant correlation between the number of IEDs and the overlap between DMN structures and negative BOLD areas. Discussion: MREG results in an increased sensitivity to detect negative BOLD responses related to focal IED in single patients, with responses often occurring in DMN regions. In patients with high overlap with the DMN, this suggests that epileptic IEDs may be associated with a brief decrease in attention and cognitive ability. Interestingly this observation was not dependent on the frequency of IED but more common in IED of temporal origin. PMID:25477775

  11. Common neural correlates of intertemporal choices and intelligence in adolescents.

    PubMed

    Ripke, Stephan; Hübner, Thomas; Mennigen, Eva; Müller, Kathrin U; Li, Shu-Chen; Smolka, Michael N

    2015-02-01

    Converging behavioral evidence indicates that temporal discounting, measured by intertemporal choice tasks, is inversely related to intelligence. At the neural level, the parieto-frontal network is pivotal for complex, higher-order cognitive processes. Relatedly, underrecruitment of the pFC during a working memory task has been found to be associated with steeper temporal discounting. Furthermore, this network has also been shown to be related to the consistency of intertemporal choices. Here we report an fMRI study that directly investigated the association of neural correlates of intertemporal choice behavior with intelligence in an adolescent sample (n = 206; age 13.7-15.5 years). After identifying brain regions where the BOLD response during intertemporal choice was correlated with individual differences in intelligence, we further tested whether BOLD responses in these areas would mediate the associations between intelligence, the discounting rate, and choice consistency. We found positive correlations between BOLD response in a value-independent decision network (i.e., dorsolateral pFC, precuneus, and occipital areas) and intelligence. Furthermore, BOLD response in a value-dependent decision network (i.e., perigenual ACC, inferior frontal gyrus, ventromedial pFC, ventral striatum) was positively correlated with intelligence. The mediation analysis revealed that BOLD responses in the value-independent network mediated the association between intelligence and choice consistency, whereas BOLD responses in the value-dependent network mediated the association between intelligence and the discounting rate. In summary, our findings provide evidence for common neural correlates of intertemporal choice and intelligence, possibly linked by valuation as well as executive functions.

  12. BOLD Imaging in Awake Wild-Type and Mu-Opioid Receptor Knock-Out Mice Reveals On-Target Activation Maps in Response to Oxycodone

    PubMed Central

    Moore, Kelsey; Madularu, Dan; Iriah, Sade; Yee, Jason R.; Kulkarni, Praveen; Darcq, Emmanuel; Kieffer, Brigitte L.; Ferris, Craig F.

    2016-01-01

    Blood oxygen level dependent (BOLD) imaging in awake mice was used to identify differences in brain activity between wild-type, and Mu (μ) opioid receptor knock-outs (MuKO) in response to oxycodone (OXY). Using a segmented, annotated MRI mouse atlas and computational analysis, patterns of integrated positive and negative BOLD activity were identified across 122 brain areas. The pattern of positive BOLD showed enhanced activation across the brain in WT mice within 15 min of intraperitoneal administration of 2.5 mg of OXY. BOLD activation was detected in 72 regions out of 122, and was most prominent in areas of high μ opioid receptor density (thalamus, ventral tegmental area, substantia nigra, caudate putamen, basal amygdala, and hypothalamus), and focus on pain circuits indicated strong activation in major pain processing centers (central amygdala, solitary tract, parabrachial area, insular cortex, gigantocellularis area, ventral thalamus primary sensory cortex, and prelimbic cortex). Importantly, the OXY-induced positive BOLD was eliminated in MuKO mice in most regions, with few exceptions (some cerebellar nuclei, CA3 of the hippocampus, medial amygdala, and preoptic areas). This result indicates that most effects of OXY on positive BOLD are mediated by the μ opioid receptor (on-target effects). OXY also caused an increase in negative BOLD in WT mice in few regions (16 out of 122) and, unlike the positive BOLD response the negative BOLD was only partially eliminated in the MuKO mice (cerebellum), and in some case intensified (hippocampus). Negative BOLD analysis therefore shows activation and deactivation events in the absence of the μ receptor for some areas where receptor expression is normally extremely low or absent (off-target effects). Together, our approach permits establishing opioid-induced BOLD activation maps in awake mice. In addition, comparison of WT and MuKO mutant mice reveals both on-target and off-target activation events, and set an OXY brain signature that should, in the future, be compared to other μ opioid agonists. PMID:27857679

  13. Characterization of the blood-oxygen level-dependent (BOLD) response in cat auditory cortex using high-field fMRI.

    PubMed

    Brown, Trecia A; Joanisse, Marc F; Gati, Joseph S; Hughes, Sarah M; Nixon, Pam L; Menon, Ravi S; Lomber, Stephen G

    2013-01-01

    Much of what is known about the cortical organization for audition in humans draws from studies of auditory cortex in the cat. However, these data build largely on electrophysiological recordings that are both highly invasive and provide less evidence concerning macroscopic patterns of brain activation. Optical imaging, using intrinsic signals or dyes, allows visualization of surface-based activity but is also quite invasive. Functional magnetic resonance imaging (fMRI) overcomes these limitations by providing a large-scale perspective of distributed activity across the brain in a non-invasive manner. The present study used fMRI to characterize stimulus-evoked activity in auditory cortex of an anesthetized (ketamine/isoflurane) cat, focusing specifically on the blood-oxygen-level-dependent (BOLD) signal time course. Functional images were acquired for adult cats in a 7 T MRI scanner. To determine the BOLD signal time course, we presented 1s broadband noise bursts between widely spaced scan acquisitions at randomized delays (1-12 s in 1s increments) prior to each scan. Baseline trials in which no stimulus was presented were also acquired. Our results indicate that the BOLD response peaks at about 3.5s in primary auditory cortex (AI) and at about 4.5 s in non-primary areas (AII, PAF) of cat auditory cortex. The observed peak latency is within the range reported for humans and non-human primates (3-4 s). The time course of hemodynamic activity in cat auditory cortex also occurs on a comparatively shorter scale than in cat visual cortex. The results of this study will provide a foundation for future auditory fMRI studies in the cat to incorporate these hemodynamic response properties into appropriate analyses of cat auditory cortex. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Task-evoked BOLD responses are normal in areas of diaschisis after stroke.

    PubMed

    Fair, Damien A; Snyder, Abraham Z; Connor, Lisa Tabor; Nardos, Binyam; Corbetta, Maurizio

    2009-01-01

    Cerebral infarction can cause diaschisis, a reduction of blood flow and metabolism in areas of the cortex distant from the site of the lesion. Although the functional magnetic resonance imaging (fMRI) blood oxygen level dependent (BOLD) signal is increasingly used to examine the neural correlates of recovery in stroke, its reliability in areas of diaschisis is uncertain. The effect of chronic diaschisis as measured by resting positron emission tomography on task-evoked BOLD responses during word-stem completion in a block design fMRI study was examined in 3 patients, 6 months after a single left hemisphere stroke involving the inferior frontal gyrus and operculum. The BOLD responses were minimally affected in areas of chronic diaschisis. Within the confines of this study, the mechanism underlying the BOLD signal, which includes a mismatch between neuronally driven increases in blood flow and a corresponding increase in oxygen use, appears to be intact in areas of chronic diaschisis.

  15. Physiological and genetic correlates of boldness: characterising the mechanisms of behavioural variation in rainbow trout, Oncorhynchus mykiss.

    PubMed

    Thomson, Jack S; Watts, Phillip C; Pottinger, Tom G; Sneddon, Lynne U

    2011-01-01

    Bold, risk-taking animals have previously been putatively linked with a proactive stress coping style whereas it is suggested shyer, risk-averse animals exhibit a reactive coping style. The aim of this study was to investigate whether differences in the expression of bold-type behaviour were evident within and between two lines of rainbow trout, Oncorhynchus mykiss, selectively bred for a low (LR) or high (HR) endocrine response to stress, and to link boldness and stress responsiveness with the expression of related candidate genes. Boldness was determined in individual fish over two trials by measuring the latency to approach a novel object. Differences in plasma cortisol concentrations and the expression of eight novel candidate genes previously identified as being linked with divergent behaviours or stress were determined. Bold and shy individuals, approaching the object within 180 s or not approaching within 300 s respectively, were evident within each line, and this was linked with activity levels in the HR line. Post-stress plasma cortisol concentrations were significantly greater in the HR line compared with the LR line, and six of the eight tested genes were upregulated in the brains of LR fish compared with HR fish. However, no direct relationship between boldness and either stress responsiveness or gene expression was found, although clear differences in stress physiology and, for the first time, gene expression could be identified between the lines. This lack of correlation between physiological and molecular responses and behavioural variation within both lines highlights the complexity of the behavioural-physiological complex. Copyright © 2010 Elsevier Inc. All rights reserved.

  16. A Novel Method of Combining Blood Oxygenation and Blood Flow Sensitive Magnetic Resonance Imaging Techniques to Measure the Cerebral Blood Flow and Oxygen Metabolism Responses to an Unknown Neural Stimulus

    PubMed Central

    Simon, Aaron B.; Griffeth, Valerie E. M.; Wong, Eric C.; Buxton, Richard B.

    2013-01-01

    Simultaneous implementation of magnetic resonance imaging methods for Arterial Spin Labeling (ASL) and Blood Oxygenation Level Dependent (BOLD) imaging makes it possible to quantitatively measure the changes in cerebral blood flow (CBF) and cerebral oxygen metabolism (CMRO2) that occur in response to neural stimuli. To date, however, the range of neural stimuli amenable to quantitative analysis is limited to those that may be presented in a simple block or event related design such that measurements may be repeated and averaged to improve precision. Here we examined the feasibility of using the relationship between cerebral blood flow and the BOLD signal to improve dynamic estimates of blood flow fluctuations as well as to estimate metabolic-hemodynamic coupling under conditions where a stimulus pattern is unknown. We found that by combining the information contained in simultaneously acquired BOLD and ASL signals through a method we term BOLD Constrained Perfusion (BCP) estimation, we could significantly improve the precision of our estimates of the hemodynamic response to a visual stimulus and, under the conditions of a calibrated BOLD experiment, accurately determine the ratio of the oxygen metabolic response to the hemodynamic response. Importantly we were able to accomplish this without utilizing a priori knowledge of the temporal nature of the neural stimulus, suggesting that BOLD Constrained Perfusion estimation may make it feasible to quantitatively study the cerebral metabolic and hemodynamic responses to more natural stimuli that cannot be easily repeated or averaged. PMID:23382977

  17. Reduced BOLD response to periodic visual stimulation.

    PubMed

    Parkes, Laura M; Fries, Pascal; Kerskens, Christian M; Norris, David G

    2004-01-01

    The blood oxygenation level-dependent (BOLD) response to entrained neuronal firing in the human visual cortex and lateral geniculate nuclei was investigated. Periodic checkerboard flashes at a range of frequencies (4-20 Hz) were used to drive the visual cortex neurons into entrained oscillatory firing. This is compared to a checkerboard flashing aperiodically, with the same average number of flashes per unit time. A magnetoencephalography (MEG) measurement was made to confirm that the periodic paradigm elicited entrainment. We found that for frequencies of 10 and 15 Hz, the periodic stimulus gave a smaller BOLD response than for the aperiodic stimulus. Detailed investigation at 15 Hz showed that the aperiodic stimulus gave a similar BOLD increase regardless of the magnitude of jitter (+/-17 ms compared to +/-33 ms), indicating that flashes need to be precise to at least 17 ms to maintain entrainment. This is also evidence that for aperiodic stimuli, the amplitude of the BOLD response ordinarily reflects the total number of flashes per unit time, irrespective of the precise spacing between them, suggesting that entrainment is the main cause of the BOLD reduction in the periodic condition. The results indicate that, during entrainment, there is a reduction in the neuronal metabolic demand. We suggest that because of the selective frequency band of this effect, it could be connected to synchronised reverberations around an internal feedback loop.

  18. Distributions of Irritative Zones Are Related to Individual Alterations of Resting-State Networks in Focal Epilepsy

    PubMed Central

    Song, Yinchen; Sanganahalli, Basavaraju G.; Hyder, Fahmeed; Lin, Wei-Chiang; Riera, Jorge J.

    2015-01-01

    Alterations in the connectivity patterns of the fMRI-based resting-state networks (RSNs) have been reported in several types of epilepsies. Evidence pointed out these alterations might be associated with the genesis and propagation of interictal epileptiform discharges (IEDs). IEDs also evoke blood-oxygen-level dependent (BOLD) responses, which have been used to delineate irritative zones during preoperative work-up. Therefore, one may expect a relationship between the topology of the IED-evoked BOLD response network and the altered spatial patterns of the RSNs. In this study, we used EEG recordings and fMRI data obtained simultaneously from a chronic model of focal epilepsy in Wistar rats to verify our hypothesis. We found that IED-evoked BOLD response networks comprise both cortical and subcortical structures with a rat-dependent topology. In all rats, IEDs evoke both activation and deactivation types of BOLD responses. Using a Granger causality method, we found that in many cases areas with BOLD deactivation have directed influences on areas with activation (p<0.05). We were able to predict topological properties (i.e., focal/diffused, unilateral/bilateral) of the IED-evoked BOLD response network by performing hierarchical clustering analysis on major spatial features of the RSNs. All these results suggest that IEDs and disruptions in the RSNs found previously in humans may be different manifestations of the same transient events, probably reflecting altered consciousness. In our opinion, the shutdown of specific nodes of the default mode network may cause uncontrollable excitability in other functionally connected brain areas. We conclude that IED-evoked BOLD responses (i.e., activation and deactivation) and alterations of RSNs are intrinsically related, and speculate that an understanding of their interplay is necessary to discriminate focal epileptogenesis and network propagation phenomena across different brain modules via hub-based connectivity. PMID:26226628

  19. Context consistency and seasonal variation in boldness of male two-spotted gobies.

    PubMed

    Magnhagen, Carin; Wacker, Sebastian; Forsgren, Elisabet; Myhre, Lise Cats; Espy, Elizabeth; Amundsen, Trond

    2014-01-01

    In order to attribute the behaviour of an animal to its personality it is important to study whether certain behavioural traits show up consistently across a variety of contexts. The aim of this study was to investigate whether breeding state males of the two-spotted goby, Gobiusculus flavescens, showed consistent degree of boldness when tested in four different behaviour assays. We also wanted to investigate whether boldness varied over the breeding season in accordance with changes in male-male competition for matings. We used two standard assays (the emergence test and the open field test), and two simple assays related to threat response. Repeated runs of each of the tests were highly correlated, and we found significant correlations between all four assays. Thus, we have documented both a within and a between-context consistency in risk-taking behaviour. Furthermore, we found that goby males studied during the middle of the breeding season were bolder than males studied at the end of the season. Since male two-spotted gobies face strongly decreasing male-male competition as the season progresses, the benefit of being bold for the mating success of the males may differ over the time of the breeding season. The difference in behaviour found over the season thus corresponds well with the sexual dynamics of this model species.

  20. Bold Ideas for Improving Teacher Education and Teaching: What We See, Hear, and Think

    ERIC Educational Resources Information Center

    Wang, Jian; Spalding, Elizabeth; Odell, Sandra J.; Klecka, Cari L.; Lin, Emily

    2010-01-01

    The editors of this issue of the "Journal for Teacher Education" invited experienced scholars working in different teacher education fields and research traditions to share their bold ideas drawn from personal understandings of their fields and research. The new editorial team for the "Journal of Teacher Education" has published these scholars'…

  1. Differential responses in dorsal visual cortex to motion and disparity depth cues

    PubMed Central

    Arnoldussen, David M.; Goossens, Jeroen; van den Berg, Albert V.

    2013-01-01

    We investigated how interactions between monocular motion parallax and binocular cues to depth vary in human motion areas for wide-field visual motion stimuli (110 × 100°). We used fMRI with an extensive 2 × 3 × 2 factorial blocked design in which we combined two types of self-motion (translational motion and translational + rotational motion), with three categories of motion inflicted by the degree of noise (self-motion, distorted self-motion, and multiple object-motion), and two different view modes of the flow patterns (stereo and synoptic viewing). Interactions between disparity and motion category revealed distinct contributions to self- and object-motion processing in 3D. For cortical areas V6 and CSv, but not the anterior part of MT+ with bilateral visual responsiveness (MT+/b), we found a disparity-dependent effect of rotational flow and noise: When self-motion perception was degraded by adding rotational flow and moderate levels of noise, the BOLD responses were reduced compared with translational self-motion alone, but this reduction was cancelled by adding stereo information which also rescued the subject's self-motion percept. At high noise levels, when the self-motion percept gave way to a swarm of moving objects, the BOLD signal strongly increased compared to self-motion in areas MT+/b and V6, but only for stereo in the latter. BOLD response did not increase for either view mode in CSv. These different response patterns indicate different contributions of areas V6, MT+/b, and CSv to the processing of self-motion perception and the processing of multiple independent motions. PMID:24339808

  2. A review of calibrated blood oxygenation level-dependent (BOLD) methods for the measurement of task-induced changes in brain oxygen metabolism

    PubMed Central

    Blockley, Nicholas P.; Griffeth, Valerie E. M.; Simon, Aaron B.; Buxton, Richard B.

    2013-01-01

    The dynamics of the blood oxygenation level-dependent (BOLD) response are dependent on changes in cerebral blood flow, cerebral blood volume and the cerebral metabolic rate of oxygen consumption. Furthermore, the amplitude of the response is dependent on the baseline physiological state, defined by the haematocrit, oxygen extraction fraction and cerebral blood volume. As a result of this complex dependence, the accurate interpretation of BOLD data and robust intersubject comparisons when the baseline physiology is varied are difficult. The calibrated BOLD technique was developed to address these issues. However, the methodology is complex and its full promise has not yet been realised. In this review, the theoretical underpinnings of calibrated BOLD, and issues regarding this theory that are still to be resolved, are discussed. Important aspects of practical implementation are reviewed and reported applications of this methodology are presented. PMID:22945365

  3. Neural and vascular variability and the fMRI-BOLD response in normal aging

    PubMed Central

    Kannurpatti, Sridhar S.; Motes, Michael A.; Rypma, Bart; Biswal, Bharat B.

    2010-01-01

    Neural, vascular and structural variables contributing to the BOLD signal response variability were investigated in younger and older humans. Twelve younger healthy human subjects (6M and 6F; mean age: 24 years; range: 19–27 years) and twelve older healthy subjects (5M and 7F; mean age: 58 years; range: 55–71 years) with no history of head trauma and neurological disease were scanned. FMRI measurements using the BOLD contrast were made when participants performed a motor, cognitive or a breath hold task. Activation volume and the BOLD response amplitude were estimated for the younger and older at both group and subject levels. Mean activation volume was reduced by 45, 40 and 38% in the elderly group during the motor, cognitive and breath hold tasks respectively compared to the younger. Reduction in activation volume was substantially higher compared to the reduction in the gray matter volume of 14% in the older compared to the younger. A significantly larger variability in the inter-subject BOLD signal change occurred during the motor task, compared to the cognitive task. BH-induced BOLD signal change between subjects was significantly less-variable in the motor task-activated areas in the younger compared to older whereas such a difference between age groups was not observed during the cognitive task. Hemodynamic scaling using the BH signal substantially reduced the BOLD signal variability during the motor task compared to the cognitive task. The results indicate that the origin of the BOLD signal variability between subjects was predominantly vascular during the motor task while being principally a consequence of neural variability during the cognitive task. Thus, in addition to gray matter differences, the type of task performed can have different vascular variability weighting that can influence age-related differences in brain functional response. PMID:20117893

  4. Neural and vascular variability and the fMRI-BOLD response in normal aging.

    PubMed

    Kannurpatti, Sridhar S; Motes, Michael A; Rypma, Bart; Biswal, Bharat B

    2010-05-01

    Neural, vascular and structural variables contributing to the blood oxygen level-dependent (BOLD) signal response variability were investigated in younger and older humans. Twelve younger healthy human subjects (six male and six female; mean age: 24 years; range: 19-27 years) and 12 older healthy subjects (five male and seven female; mean age: 58 years; range: 55-71 years) with no history of head trauma and neurological disease were scanned. Functional magnetic resonance imaging measurements using the BOLD contrast were made when participants performed a motor, cognitive or a breath hold (BH) task. Activation volume and the BOLD response amplitude were estimated for the younger and older at both group and subject levels. Mean activation volume was reduced by 45%, 40% and 38% in the elderly group during the motor, cognitive and BH tasks, respectively, compared to the younger. Reduction in activation volume was substantially higher compared to the reduction in the gray matter volume of 14% in the older compared to the younger. A significantly larger variability in the intersubject BOLD signal change occurred during the motor task, compared to the cognitive task. BH-induced BOLD signal change between subjects was significantly less-variable in the motor task-activated areas in the younger compared to older whereas such a difference between age groups was not observed during the cognitive task. Hemodynamic scaling using the BH signal substantially reduced the BOLD signal variability during the motor task compared to the cognitive task. The results indicate that the origin of the BOLD signal variability between subjects was predominantly vascular during the motor task while being principally a consequence of neural variability during the cognitive task. Thus, in addition to gray matter differences, the type of task performed can have different vascular variability weighting that can influence age-related differences in brain functional response. 2010 Elsevier Inc. All rights reserved.

  5. The role of beta-arrestin2 in shaping fMRI BOLD responses to dopaminergic stimulation.

    PubMed

    Sahlholm, Kristoffer; Ielacqua, Giovanna D; Xu, Jinbin; Jones, Lynne A; Schlegel, Felix; Mach, Robert H; Rudin, Markus; Schroeter, Aileen

    2017-07-01

    The dopamine D 2 receptor (D 2 R) couples to inhibitory G i/o proteins and is targeted by antipsychotic and antiparkinsonian drugs. Beta-arrestin2 binds to the intracellular regions of the agonist-occupied D 2 R to terminate G protein activation and promote internalization, but also to initiate downstream signaling cascades which have been implicated in psychosis. Functional magnetic resonance imaging (fMRI) has proven valuable for measuring dopamine receptor-mediated changes in neuronal activity, and might enable beta-arrestin2 function to be studied in vivo. The present study examined fMRI blood oxygenation level dependent (BOLD) signal changes elicited by a dopamine agonist in wild-type (WT) and beta-arrestin2 knockout (KO) mice, to investigate whether genetic deletion of beta-arrestin2 prolongs or otherwise modifies D 2 R-dependent responses. fMRI BOLD data were acquired on a 9.4 T system. During scans, animals received 0.2 mg/kg apomorphine, i.v. In a subset of experiments, animals were pretreated with 2 mg/kg of the D 2 R antagonist, eticlopride. Following apomorphine administration, BOLD signal decreases were observed in caudate/putamen of WT and KO animals. The time course of response decay in caudate/putamen was significantly slower in KO vs. WT animals. In cingulate cortex, an initial BOLD signal decrease was followed by a positive response component in WT but not in KO animals. Eticlopride pretreatment significantly reduced apomorphine-induced BOLD signal changes. The prolonged striatal response decay rates in KO animals might reflect impaired D 2 R desensitization, consistent with the known function of beta-arrestin2. Furthermore, the apomorphine-induced positive response component in cingulate cortex may depend on beta-arrestin2 signaling downstream of D 2 R.

  6. Origins of intersubject variability of blood oxygenation level dependent and arterial spin labeling fMRI: implications for quantification of brain activity.

    PubMed

    Gaxiola-Valdez, Ismael; Goodyear, Bradley G

    2012-12-01

    Accurate localization of brain activity using blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) has been challenged because of the large BOLD signal within distal veins. Arterial spin labeling (ASL) techniques offer greater sensitivity to the microvasculature but possess low temporal resolution and limited brain coverage. In this study, we show that the physiological origins of BOLD and ASL depend on whether percent change or statistical significance is being considered. For BOLD and ASL fMRI data collected during a simple unilateral hand movement task, we found that in the area of the contralateral motor cortex the centre of gravity (CoG) of the intersubject coefficient of variation (CV) of BOLD fMRI was near the brain surface for percent change in signal, whereas the CoG of the intersubject CV for Z-score was in close proximity of sites of brain activity for both BOLD and ASL. These findings suggest that intersubject variability of BOLD percent change is vascular in origin, whereas the origin of inter-subject variability of Z-score is neuronal for both BOLD and ASL. For longer duration tasks (12 s or greater), however, there was a significant correlation between BOLD and ASL percent change, which was not evident for short duration tasks (6 s). These findings suggest that analyses directly comparing percent change in BOLD signal between pre-defined regions of interest using short duration stimuli, as for example in event-related designs, may be heavily weighted by large-vessel responses rather than neuronal responses. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. An fMRI study of behavioral response inhibition in adolescents with and without histories of heavy prenatal alcohol exposure

    PubMed Central

    Ware, Ashley L.; Infante, M. Alejandra; O’Brien, Jessica W.; Tapert, Susan F.; Jones, Kenneth Lyons; Riley, Edward P.; Mattson, Sarah N.

    2014-01-01

    Heavy prenatal alcohol exposure results in a range of deficits, including both volumetric and functional changes in brain regions involved in response inhibition such as the prefrontal cortex and striatum. The current study examined blood oxygen level-dependent (BOLD) response during a stop signal task in adolescents (ages 13–16 y) with histories of heavy prenatal alcohol exposure (AE, n = 21) and controls (CON, n = 21). Task performance was measured using percent correct inhibits during three difficulty conditions: easy, medium, and hard. Group differences in BOLD response relative to baseline motor responding were examined across all inhibition trials and for each difficulty condition separately. The contrast between hard and easy trials was analyzed to determine whether increasing task difficulty affected BOLD response. Groups had similar task performance and demographic characteristics, except for full scale IQ scores (AE < CON). The AE group demonstrated greater BOLD response in frontal, sensorimotor, striatal, and cingulate regions relative to controls, especially as task difficulty increased. When contrasting hard vs. easy inhibition trials, the AE group showed greater medial/superior frontal and cuneus BOLD response than controls. Results were unchanged after demographics and FAS diagnosis were statistically controlled. This was the first fMRI study to utilize a stop signal task, isolating fronto-striatal functioning, to assess response inhibition and the effects task difficulty in adolescents with prenatal alcohol exposure. Results suggest that heavy prenatal alcohol exposure disrupts neural function of this circuitry, resulting in immature cognitive processing and motor-association learning and neural compensation during response inhibition. PMID:25281280

  8. Predicting the practice effects on the blood oxygenation level-dependent (BOLD) function of fMRI in a symbolic manipulation task

    NASA Astrophysics Data System (ADS)

    Qin, Yulin; Sohn, Myeong-Ho; Anderson, John R.; Stenger, V. Andrew; Fissell, Kate; Goode, Adam; Carter, Cameron S.

    2003-04-01

    Based on adaptive control of thought-rational (ACT-R), a cognitive architecture for cognitive modeling, researchers have developed an information-processing model to predict the blood oxygenation level-dependent (BOLD) response of functional MRI in symbol manipulation tasks. As an extension of this research, the current event-related functional MRI study investigates the effect of relatively extensive practice on the activation patterns of related brain regions. The task involved performing transformations on equations in an artificial algebra system. This paper shows that the base-level activation learning in the ACT-R theory can predict the change of the BOLD response in practice in a left prefrontal region reflecting retrieval of information. In contrast, practice has relatively little effect on the form of BOLD response in the parietal region reflecting imagined transformations to the equation or the motor region reflecting manual programming.

  9. Boldness predicts social status in zebrafish (Danio rerio).

    PubMed

    Dahlbom, S Josefin; Lagman, David; Lundstedt-Enkel, Katrin; Sundström, L Fredrik; Winberg, Svante

    2011-01-01

    This study explored if boldness could be used to predict social status. First, boldness was assessed by monitoring individual zebrafish behaviour in (1) an unfamiliar barren environment with no shelter (open field), (2) the same environment when a roof was introduced as a shelter, and (3) when the roof was removed and an unfamiliar object (Lego® brick) was introduced. Next, after a resting period of minimum one week, social status of the fish was determined in a dyadic contest and dominant/subordinate individuals were determined as the winner/loser of two consecutive contests. Multivariate data analyses showed that males were bolder than females and that the behaviours expressed by the fish during the boldness tests could be used to predict which fish would later become dominant and subordinate in the ensuing dyadic contest. We conclude that bold behaviour is positively correlated to dominance in zebrafish and that boldness is not solely a consequence of social dominance.

  10. Boldness Predicts Social Status in Zebrafish (Danio rerio)

    PubMed Central

    Dahlbom, S. Josefin; Lagman, David; Lundstedt-Enkel, Katrin; Sundström, L. Fredrik; Winberg, Svante

    2011-01-01

    This study explored if boldness could be used to predict social status. First, boldness was assessed by monitoring individual zebrafish behaviour in (1) an unfamiliar barren environment with no shelter (open field), (2) the same environment when a roof was introduced as a shelter, and (3) when the roof was removed and an unfamiliar object (Lego® brick) was introduced. Next, after a resting period of minimum one week, social status of the fish was determined in a dyadic contest and dominant/subordinate individuals were determined as the winner/loser of two consecutive contests. Multivariate data analyses showed that males were bolder than females and that the behaviours expressed by the fish during the boldness tests could be used to predict which fish would later become dominant and subordinate in the ensuing dyadic contest. We conclude that bold behaviour is positively correlated to dominance in zebrafish and that boldness is not solely a consequence of social dominance. PMID:21858168

  11. Spatio-Temporal Information Analysis of Event-Related BOLD Responses

    PubMed Central

    Alpert, Galit Fuhrmann; Handwerker, Dan; Sun, Felice T.; D’Esposito, Mark; Knight, Robert T.

    2009-01-01

    A new approach for analysis of event related fMRI (BOLD) signals is proposed. The technique is based on measures from information theory and is used both for spatial localization of task related activity, as well as for extracting temporal information regarding the task dependent propagation of activation across different brain regions. This approach enables whole brain visualization of voxels (areas) most involved in coding of a specific task condition, the time at which they are most informative about the condition, as well as their average amplitude at that preferred time. The approach does not require prior assumptions about the shape of the hemodynamic response function (HRF), nor about linear relations between BOLD response and presented stimuli (or task conditions). We show that relative delays between different brain regions can also be computed without prior knowledge of the experimental design, suggesting a general method that could be applied for analysis of differential time delays that occur during natural, uncontrolled conditions. Here we analyze BOLD signals recorded during performance of a motor learning task. We show that during motor learning, the BOLD response of unimodal motor cortical areas precedes the response in higher-order multimodal association areas, including posterior parietal cortex. Brain areas found to be associated with reduced activity during motor learning, predominantly in prefrontal brain regions, are informative about the task typically at significantly later times. PMID:17188515

  12. Context Matters: Multiple Novelty Tests Reveal Different Aspects of Shyness-Boldness in Farmed American Mink (Neovison vison).

    PubMed

    Noer, Christina Lehmkuhl; Needham, Esther Kjær; Wiese, Ann-Sophie; Balsby, Thorsten Johannes Skovbjerg; Dabelsteen, Torben

    2015-01-01

    Animal personality research is receiving increasing interest from related fields, such as evolutionary personality psychology. By merging the conceptual understanding of personality, the contributions to both fields of research may be enhanced. In this study, we investigate animal personality based on the definition of personality traits as underlying dispositional factors, which are not directly measurable, but which predispose individuals to react through different behavioural patterns. We investigated the shyness-boldness continuum reflected in the consistency of inter-individual variation in behavioural responses towards novelty in 47 farmed American mink (Neovison vison), which were raised in identical housing conditions. Different stages of approach behaviour towards novelty, and how these related within and across contexts, were explored. Our experimental design contained four tests: two novel object tests (non-social contexts) and two novel animated stimuli tests (social contexts). Our results showed consistency in shyness measures across multiple tests, indicating the existence of personality in farmed American mink. It was found that consistency in shyness measures differs across non-social and social contexts, as well as across the various stages in the approach towards novel objects, revealing that different aspects of shyness exist in the farmed American mink. To our knowledge this is the first study to reveal aspects of the shyness-boldness continuum in the American mink. Since the mink were raised in identical housing conditions, inherited factors may have been important in shaping the consistent inter-individual variation. Body weight and sex had no effect on the personality of the mink. Altogether, our results suggest that the shyness-boldness continuum cannot be explained by a simple underlying dispositional factor, but instead encompasses a broader term of hesitating behaviour that might comprise several different personality traits.

  13. Longitudinal decrease in blood oxygenation level dependent response in cerebral amyloid angiopathy.

    PubMed

    Switzer, Aaron R; McCreary, Cheryl; Batool, Saima; Stafford, Randall B; Frayne, Richard; Goodyear, Bradley G; Smith, Eric E

    2016-01-01

    Lower blood oxygenation level dependent (BOLD) signal changes in response to a visual stimulus in functional magnetic resonance imaging (fMRI) have been observed in cross-sectional studies of cerebral amyloid angiopathy (CAA), and are presumed to reflect impaired vascular reactivity. We used fMRI to detect a longitudinal change in BOLD responses to a visual stimulus in CAA, and to determine any correlations between these changes and other established biomarkers of CAA progression. Data were acquired from 22 patients diagnosed with probable CAA (using the Boston Criteria) and 16 healthy controls at baseline and one year. BOLD data were generated from the 200 most active voxels of the primary visual cortex during the fMRI visual stimulus (passively viewing an alternating checkerboard pattern). In general, BOLD amplitudes were lower at one year compared to baseline in patients with CAA (p = 0.01) but were unchanged in controls (p = 0.18). The longitudinal difference in BOLD amplitudes was significantly lower in CAA compared to controls (p < 0.001). White matter hyperintensity (WMH) volumes and number of cerebral microbleeds, both presumed to reflect CAA-mediated vascular injury, increased over time in CAA (p = 0.007 and p = 0.001, respectively). Longitudinal increases in WMH (rs = 0.04, p = 0.86) or cerebral microbleeds (rs = -0.18, p = 0.45) were not associated with the longitudinal decrease in BOLD amplitudes.

  14. Interpreting BOLD: towards a dialogue between cognitive and cellular neuroscience.

    PubMed

    Hall, Catherine N; Howarth, Clare; Kurth-Nelson, Zebulun; Mishra, Anusha

    2016-10-05

    Cognitive neuroscience depends on the use of blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) to probe brain function. Although commonly used as a surrogate measure of neuronal activity, BOLD signals actually reflect changes in brain blood oxygenation. Understanding the mechanisms linking neuronal activity to vascular perfusion is, therefore, critical in interpreting BOLD. Advances in cellular neuroscience demonstrating differences in this neurovascular relationship in different brain regions, conditions or pathologies are often not accounted for when interpreting BOLD. Meanwhile, within cognitive neuroscience, the increasing use of high magnetic field strengths and the development of model-based tasks and analyses have broadened the capability of BOLD signals to inform us about the underlying neuronal activity, but these methods are less well understood by cellular neuroscientists. In 2016, a Royal Society Theo Murphy Meeting brought scientists from the two communities together to discuss these issues. Here, we consolidate the main conclusions arising from that meeting. We discuss areas of consensus about what BOLD fMRI can tell us about underlying neuronal activity, and how advanced modelling techniques have improved our ability to use and interpret BOLD. We also highlight areas of controversy in understanding BOLD and suggest research directions required to resolve these issues.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'. © 2016 The Author(s).

  15. Negative BOLD response and serotonin concentration within rostral subgenual portion of the anterior cingulate cortex for long-allele carriers during perceptual processing of emotional tasks

    NASA Astrophysics Data System (ADS)

    Hadi, Shamil M.; Siadat, Mohamad R.; Babajani-Feremi, Abbas

    2012-03-01

    We investigated the effect of synaptic serotonin concentration on hemodynamic responses. The stimuli paradigm involved the presentation of fearful and threatening facial expressions to a set of 24 subjects who were either5HTTLPR long- or short-allele carriers (12 of each type in each group). The BOLD signals of the rACC from subjects of each group were averaged to increase the signal-to-noise ratio. We used a Bayesian approach to estimate the parameters of the underlying hemodynamic model. Our results, during this perceptual processing of emotional task, showed a negative BOLD signal in the rACC in the subjects with long-alleles. In contrast, the subjects with short-alleles showed positive BOLD signals in the rACC. These results suggest that high synaptic serotonin concentration in the rACC inhibits neuronal activity in a fashion similar to GABA, and a consequent negative BOLD signal ensues.

  16. Localization of cortical primary motor area of the hand using navigated transcranial magnetic stimulation, BOLD and arterial spin labeling fMRI.

    PubMed

    Kallioniemi, Elisa; Pitkänen, Minna; Könönen, Mervi; Vanninen, Ritva; Julkunen, Petro

    2016-11-01

    Although the relationship between neuronavigated transcranial magnetic stimulation (nTMS) and functional magnetic resonance imaging (fMRI) has been widely studied in motor mapping, it is unknown how the motor response type or the choice of motor task affect this relationship. Centers of gravity (CoGs) and response maxima were measured with blood-oxygen-level dependent (BOLD) and arterial spin labeling (ASL) fMRI during motor tasks against nTMS CoGs and response maxima, which were mapped with motor evoked potentials (MEPs) and silent periods (SPs). No differences in motor representations (CoGs and response maxima) were observed in lateral-medial direction (p=0.265). fMRI methods localized the motor representation more posterior than nTMS (p<0.001). This was not affected by the BOLD fMRI motor task (p>0.999) nor nTMS response type (p>0.999). ASL fMRI maxima did not differ from the nTMS nor BOLD fMRI CoGs (p≥0.070), but the ASL CoG was deeper in comparison to other methods (p≤0.042). The BOLD fMRI motor task did not influence the depth of the motor representation (p≥0.745). The median Euclidean distances between the nTMS and fMRI motor representations varied between 7.7mm and 14.5mm and did not differ between the methods (F≤1.23, p≥0.318). The relationship between fMRI and nTMS mapped excitatory (MEP) and inhibitory (SP) responses, and whether the choice of motor task affects this relationship, have not been studied before. The congruence between fMRI and nTMS is good. The choice of nTMS motor response type nor BOLD fMRI motor task had no effect on this relationship. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. BOLD repetition decreases in object-responsive ventral visual areas depend on spatial attention.

    PubMed

    Eger, E; Henson, R N A; Driver, J; Dolan, R J

    2004-08-01

    Functional imaging studies of priming-related repetition phenomena have become widely used to study neural object representation. Although blood oxygenation level-dependent (BOLD) repetition decreases can sometimes be observed without awareness of repetition, any role for spatial attention in BOLD repetition effects remains largely unknown. We used fMRI in 13 healthy subjects to test whether BOLD repetition decreases for repeated objects in ventral visual cortices depend on allocation of spatial attention to the prime. Subjects performed a size-judgment task on a probe object that had been attended or ignored in a preceding prime display of 2 lateralized objects. Reaction times showed faster responses when the probe was the same object as the attended prime, independent of the view tested (identical vs. mirror image). No behavioral effect was evident from unattended primes. BOLD repetition decreases for attended primes were found in lateral occipital and fusiform regions bilaterally, which generalized across identical and mirror-image repeats. No repetition decreases were observed for ignored primes. Our results suggest a critical role for attention in achieving visual representations of objects that lead to both BOLD signal decreases and behavioral priming on repeated presentation.

  18. Monaural and binaural contributions to interaural-level-difference sensitivity in human auditory cortex.

    PubMed

    Stecker, G Christopher; McLaughlin, Susan A; Higgins, Nathan C

    2015-10-15

    Whole-brain functional magnetic resonance imaging was used to measure blood-oxygenation-level-dependent (BOLD) responses in human auditory cortex (AC) to sounds with intensity varying independently in the left and right ears. Echoplanar images were acquired at 3 Tesla with sparse image acquisition once per 12-second block of sound stimulation. Combinations of binaural intensity and stimulus presentation rate were varied between blocks, and selected to allow measurement of response-intensity functions in three configurations: monaural 55-85 dB SPL, binaural 55-85 dB SPL with intensity equal in both ears, and binaural with average binaural level of 70 dB SPL and interaural level differences (ILD) ranging ±30 dB (i.e., favoring the left or right ear). Comparison of response functions equated for contralateral intensity revealed that BOLD-response magnitudes (1) generally increased with contralateral intensity, consistent with positive drive of the BOLD response by the contralateral ear, (2) were larger for contralateral monaural stimulation than for binaural stimulation, consistent with negative effects (e.g., inhibition) of ipsilateral input, which were strongest in the left hemisphere, and (3) also increased with ipsilateral intensity when contralateral input was weak, consistent with additional, positive, effects of ipsilateral stimulation. Hemispheric asymmetries in the spatial extent and overall magnitude of BOLD responses were generally consistent with previous studies demonstrating greater bilaterality of responses in the right hemisphere and stricter contralaterality in the left hemisphere. Finally, comparison of responses to fast (40/s) and slow (5/s) stimulus presentation rates revealed significant rate-dependent adaptation of the BOLD response that varied across ILD values. Copyright © 2015. Published by Elsevier Inc.

  19. Context Consistency and Seasonal Variation in Boldness of Male Two-Spotted Gobies

    PubMed Central

    Magnhagen, Carin; Wacker, Sebastian; Forsgren, Elisabet; Cats Myhre, Lise; Espy, Elizabeth; Amundsen, Trond

    2014-01-01

    In order to attribute the behaviour of an animal to its personality it is important to study whether certain behavioural traits show up consistently across a variety of contexts. The aim of this study was to investigate whether breeding state males of the two-spotted goby, Gobiusculus flavescens, showed consistent degree of boldness when tested in four different behaviour assays. We also wanted to investigate whether boldness varied over the breeding season in accordance with changes in male-male competition for matings. We used two standard assays (the emergence test and the open field test), and two simple assays related to threat response. Repeated runs of each of the tests were highly correlated, and we found significant correlations between all four assays. Thus, we have documented both a within and a between-context consistency in risk-taking behaviour. Furthermore, we found that goby males studied during the middle of the breeding season were bolder than males studied at the end of the season. Since male two-spotted gobies face strongly decreasing male-male competition as the season progresses, the benefit of being bold for the mating success of the males may differ over the time of the breeding season. The difference in behaviour found over the season thus corresponds well with the sexual dynamics of this model species. PMID:24671255

  20. The spatio-temporal mapping of epileptic networks: Combination of EEG–fMRI and EEG source imaging

    PubMed Central

    Vulliemoz, S.; Thornton, R.; Rodionov, R.; Carmichael, D.W.; Guye, M.; Lhatoo, S.; McEvoy, A.W.; Spinelli, L.; Michel, C.M.; Duncan, J.S.; Lemieux, L.

    2009-01-01

    Simultaneous EEG–fMRI acquisitions in patients with epilepsy often reveal distributed patterns of Blood Oxygen Level Dependant (BOLD) change correlated with epileptiform discharges. We investigated if electrical source imaging (ESI) performed on the interictal epileptiform discharges (IED) acquired during fMRI acquisition could be used to study the dynamics of the networks identified by the BOLD effect, thereby avoiding the limitations of combining results from separate recordings. Nine selected patients (13 IED types identified) with focal epilepsy underwent EEG–fMRI. Statistical analysis was performed using SPM5 to create BOLD maps. ESI was performed on the IED recorded during fMRI acquisition using a realistic head model (SMAC) and a distributed linear inverse solution (LAURA). ESI could not be performed in one case. In 10/12 remaining studies, ESI at IED onset (ESIo) was anatomically close to one BOLD cluster. Interestingly, ESIo was closest to the positive BOLD cluster with maximal statistical significance in only 4/12 cases and closest to negative BOLD responses in 4/12 cases. Very small BOLD clusters could also have clinical relevance in some cases. ESI at later time frame (ESIp) showed propagation to remote sources co-localised with other BOLD clusters in half of cases. In concordant cases, the distance between maxima of ESI and the closest EEG–fMRI cluster was less than 33 mm, in agreement with previous studies. We conclude that simultaneous ESI and EEG–fMRI analysis may be able to distinguish areas of BOLD response related to initiation of IED from propagation areas. This combination provides new opportunities for investigating epileptic networks. PMID:19408351

  1. Shyness and boldness in pumpkinseed sunfish: individual differences are context-specific.

    PubMed

    Coleman; Wilson

    1998-10-01

    Natural selection often promotes a mix of behavioural phenotypes in a population. Adaptive variation in the propensity to take risks might explain individual differences in shyness and boldness in humans and other species. It is often implicitly assumed that shyness and boldness are general personality traits expressed across many situations. From the evolutionary standpoint, however, individual differences that are adaptive in one context (e.g. predator defence) may not be adaptive in other contexts (e.g. exploration of the physical environment or intraspecific social interactions). We measured the context specificity of shyness and boldness in a natural population of juvenile pumpkinseed sunfish, Lepomis gibbosus, by exposing the fish to a potentially threatening stimulus (a red-tipped metrestick extended towards the individual) and a nonthreatening stimulus (a novel food source). We also related these measures of shyness and boldness to behaviours observed during focal observations, both before and after the introduction of a predator (largemouth bass, Micropterus salmoides). Consistent individual differences were found within both contexts, but individual differences did not correlate across contexts. Furthermore, fish that were scored as intermediate in their response to the metrestick behaved most boldly as foragers and in response to the bass predators. These results suggest that shyness and boldness are context-specific and may not exist as a one-dimensional behavioural continuum even within a single context. Copyright 1998 The Association for the Study of Animal Behaviour.

  2. Caffeine reduces resting-state BOLD functional connectivity in the motor cortex.

    PubMed

    Rack-Gomer, Anna Leigh; Liau, Joy; Liu, Thomas T

    2009-05-15

    In resting-state functional magnetic resonance imaging (fMRI), correlations between spontaneous low-frequency fluctuations in the blood oxygenation level dependent (BOLD) signal are used to assess functional connectivity between different brain regions. Changes in resting-state BOLD connectivity measures are typically interpreted as changes in coherent neural activity across spatially distinct brain regions. However, this interpretation can be complicated by the complex dependence of the BOLD signal on both neural and vascular factors. For example, prior studies have shown that vasoactive agents that alter baseline cerebral blood flow, such as caffeine and carbon dioxide, can significantly alter the amplitude and dynamics of the task-related BOLD response. In this study, we examined the effect of caffeine (200 mg dose) on resting-state BOLD connectivity in the motor cortex across a sample of healthy young subjects (N=9). We found that caffeine significantly (p<0.05) reduced measures of resting-state BOLD connectivity in the motor cortex. Baseline cerebral blood flow and spectral energy in the low-frequency BOLD fluctuations were also significantly decreased by caffeine. These results suggest that caffeine usage should be carefully considered in the design and interpretation of resting-state BOLD fMRI studies.

  3. Neural Correlates of Facial Mimicry: Simultaneous Measurements of EMG and BOLD Responses during Perception of Dynamic Compared to Static Facial Expressions

    PubMed Central

    Rymarczyk, Krystyna; Żurawski, Łukasz; Jankowiak-Siuda, Kamila; Szatkowska, Iwona

    2018-01-01

    Facial mimicry (FM) is an automatic response to imitate the facial expressions of others. However, neural correlates of the phenomenon are as yet not well established. We investigated this issue using simultaneously recorded EMG and BOLD signals during perception of dynamic and static emotional facial expressions of happiness and anger. During display presentations, BOLD signals and zygomaticus major (ZM), corrugator supercilii (CS) and orbicularis oculi (OO) EMG responses were recorded simultaneously from 46 healthy individuals. Subjects reacted spontaneously to happy facial expressions with increased EMG activity in ZM and OO muscles and decreased CS activity, which was interpreted as FM. Facial muscle responses correlated with BOLD activity in regions associated with motor simulation of facial expressions [i.e., inferior frontal gyrus, a classical Mirror Neuron System (MNS)]. Further, we also found correlations for regions associated with emotional processing (i.e., insula, part of the extended MNS). It is concluded that FM involves both motor and emotional brain structures, especially during perception of natural emotional expressions. PMID:29467691

  4. Complex relationship between BOLD-fMRI and electrophysiological signals in different olfactory bulb layers.

    PubMed

    Li, Bo; Gong, Ling; Wu, Ruiqi; Li, Anan; Xu, Fuqiang

    2014-07-15

    Blood oxygenation level dependent functional magnetic resonance imaging (BOLD-fMRI), one of the most powerful technologies in neuroscience, measures neural activity indirectly. Therefore, systematic correlation of BOLD signals with other neural activity measurements is critical to understanding and then using the technology. Numerous studies have revealed that the BOLD signal is determined by many factors and is better correlated with local field potentials (LFP) than single/multiple unit firing. The relationship between BOLD and LFP signals under higher spatial resolution is complex and remains unclear. Here, changes of BOLD and LFP signals in the glomerular (GL), mitral cell (MCL), and granular cell layers (GCL) of the olfactory bulb were evoked by odor stimulation and sequentially acquired using high-resolution fMRI and electrode array. The experimental results revealed a rather complex relationship between BOLD and LFP signals. Both signal modalities were increased layer-dependently by odor stimulation, but the orders of signal intensity were significantly different: GL>MCL>GCL and GCL>GL>MCL for BOLD and LFP, respectively. During odor stimulation, the temporal features of LFPs were similar for a given band in different layers, but different for different frequency bands in a given layer. The BOLD and LFP signals in the low gamma frequency band correlated the best. This study provides new evidence for the consistency between structure and function in understanding the neurophysiological basis of BOLD signals, but also reminds that caution must be taken in interpreting of BOLD signals in regard to neural activity. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Negative blood oxygen level dependent signals during speech comprehension.

    PubMed

    Rodriguez Moreno, Diana; Schiff, Nicholas D; Hirsch, Joy

    2015-05-01

    Speech comprehension studies have generally focused on the isolation and function of regions with positive blood oxygen level dependent (BOLD) signals with respect to a resting baseline. Although regions with negative BOLD signals in comparison to a resting baseline have been reported in language-related tasks, their relationship to regions of positive signals is not fully appreciated. Based on the emerging notion that the negative signals may represent an active function in language tasks, the authors test the hypothesis that negative BOLD signals during receptive language are more associated with comprehension than content-free versions of the same stimuli. Regions associated with comprehension of speech were isolated by comparing responses to passive listening to natural speech to two incomprehensible versions of the same speech: one that was digitally time reversed and one that was muffled by removal of high frequencies. The signal polarity was determined by comparing the BOLD signal during each speech condition to the BOLD signal during a resting baseline. As expected, stimulation-induced positive signals relative to resting baseline were observed in the canonical language areas with varying signal amplitudes for each condition. Negative BOLD responses relative to resting baseline were observed primarily in frontoparietal regions and were specific to the natural speech condition. However, the BOLD signal remained indistinguishable from baseline for the unintelligible speech conditions. Variations in connectivity between brain regions with positive and negative signals were also specifically related to the comprehension of natural speech. These observations of anticorrelated signals related to speech comprehension are consistent with emerging models of cooperative roles represented by BOLD signals of opposite polarity.

  6. Negative Blood Oxygen Level Dependent Signals During Speech Comprehension

    PubMed Central

    Rodriguez Moreno, Diana; Schiff, Nicholas D.

    2015-01-01

    Abstract Speech comprehension studies have generally focused on the isolation and function of regions with positive blood oxygen level dependent (BOLD) signals with respect to a resting baseline. Although regions with negative BOLD signals in comparison to a resting baseline have been reported in language-related tasks, their relationship to regions of positive signals is not fully appreciated. Based on the emerging notion that the negative signals may represent an active function in language tasks, the authors test the hypothesis that negative BOLD signals during receptive language are more associated with comprehension than content-free versions of the same stimuli. Regions associated with comprehension of speech were isolated by comparing responses to passive listening to natural speech to two incomprehensible versions of the same speech: one that was digitally time reversed and one that was muffled by removal of high frequencies. The signal polarity was determined by comparing the BOLD signal during each speech condition to the BOLD signal during a resting baseline. As expected, stimulation-induced positive signals relative to resting baseline were observed in the canonical language areas with varying signal amplitudes for each condition. Negative BOLD responses relative to resting baseline were observed primarily in frontoparietal regions and were specific to the natural speech condition. However, the BOLD signal remained indistinguishable from baseline for the unintelligible speech conditions. Variations in connectivity between brain regions with positive and negative signals were also specifically related to the comprehension of natural speech. These observations of anticorrelated signals related to speech comprehension are consistent with emerging models of cooperative roles represented by BOLD signals of opposite polarity. PMID:25412406

  7. Influence of DARPP-32 genetic variation on BOLD activation to happy faces.

    PubMed

    Persson, Ninni; Lavebratt, Catarina; Ebner, Natalie C; Fischer, Håkan

    2017-10-01

    Dopaminergic pathways play a crucial role in reward processing, and advanced age can modulate its efficiency. DARPP-32 controls dopaminergic function and is a chemical nexus of reward processing. In 61 younger (20-30 years) and older adults (54% ♀) (65-74 years), we examined how blood-oxygen-level dependent (BOLD) activation to emotional faces, vary over genotypes at three single nucleotide polymorphism (SNPs), coding for DARPP-32 (rs879606; rs907094; 3764352). We also assessed age-magnification of DARPP-32 effects on BOLD activation. We found that major homozygote G, T or A genotypes, with higher cortical expression of DARPP-32, higher dopamine receptor efficacy, and greater bias toward positive cues, had increased functional connectivity in cortical-subcortical circuits in response to happy faces, engaging the dorsal prefrontal cortex (DLPFC), fusiform gyrus (FG) and the midbrain (MB). Local BOLD response to happy faces in FG, and MB was age-dependent, so that older carriers of the major G, T or A alleles showed lesser activation than minor genotypes. These genetic variants of DARPP-32 did not modulate BOLD response to angry faces, or engagement of the inferior occipital gyrus, to happy or angry faces. Taken together our results lend support for a potential role of DARPP-32 genetic variants in neural response to potential reward triggering cues. © The Author (2017). Published by Oxford University Press.

  8. Crosslinking EEG time-frequency decomposition and fMRI in error monitoring.

    PubMed

    Hoffmann, Sven; Labrenz, Franziska; Themann, Maria; Wascher, Edmund; Beste, Christian

    2014-03-01

    Recent studies implicate a common response monitoring system, being active during erroneous and correct responses. Converging evidence from time-frequency decompositions of the response-related ERP revealed that evoked theta activity at fronto-central electrode positions differentiates correct from erroneous responses in simple tasks, but also in more complex tasks. However, up to now it is unclear how different electrophysiological parameters of error processing, especially at the level of neural oscillations are related, or predictive for BOLD signal changes reflecting error processing at a functional-neuroanatomical level. The present study aims to provide crosslinks between time domain information, time-frequency information, MRI BOLD signal and behavioral parameters in a task examining error monitoring due to mistakes in a mental rotation task. The results show that BOLD signal changes reflecting error processing on a functional-neuroanatomical level are best predicted by evoked oscillations in the theta frequency band. Although the fMRI results in this study account for an involvement of the anterior cingulate cortex, middle frontal gyrus, and the Insula in error processing, the correlation of evoked oscillations and BOLD signal was restricted to a coupling of evoked theta and anterior cingulate cortex BOLD activity. The current results indicate that although there is a distributed functional-neuroanatomical network mediating error processing, only distinct parts of this network seem to modulate electrophysiological properties of error monitoring.

  9. Mapping glucose-mediated gut-to-brain signalling pathways in humans.

    PubMed

    Little, Tanya J; McKie, Shane; Jones, Richard B; D'Amato, Massimo; Smith, Craig; Kiss, Orsolya; Thompson, David G; McLaughlin, John T

    2014-08-01

    Previous fMRI studies have demonstrated that glucose decreases the hypothalamic BOLD response in humans. However, the mechanisms underlying the CNS response to glucose have not been defined. We recently demonstrated that the slowing of gastric emptying by glucose is dependent on activation of the gut peptide cholecystokinin (CCK1) receptor. Using physiological functional magnetic resonance imaging this study aimed to determine the whole brain response to glucose, and whether CCK plays a central role. Changes in blood oxygenation level-dependent (BOLD) signal were monitored using fMRI in 12 healthy subjects following intragastric infusion (250ml) of: 1M glucose+predosing with dexloxiglumide (CCK1 receptor antagonist), 1M glucose+placebo, or 0.9% saline (control)+placebo, in a single-blind, randomised fashion. Gallbladder volume, blood glucose, insulin, and GLP-1 and CCK concentrations were determined. Hunger, fullness and nausea scores were also recorded. Intragastric glucose elevated plasma glucose, insulin, and GLP-1, and reduced gall bladder volume (an in vivo assay for CCK secretion). Glucose decreased BOLD signal, relative to saline, in the brainstem and hypothalamus as well as the cerebellum, right occipital cortex, putamen and thalamus. The timing of the BOLD signal decrease was negatively correlated with the rise in blood glucose and insulin levels. The glucose+dex arm highlighted a CCK1-receptor dependent increase in BOLD signal only in the motor cortex. Glucose induces site-specific differences in BOLD response in the human brain; the brainstem and hypothalamus show a CCK1 receptor-independent reduction which is likely to be mediated by a circulatory effect of glucose and insulin, whereas the motor cortex shows an early dexloxiglumide-reversible increase in signal, suggesting a CCK1 receptor-dependent neural pathway. Copyright © 2014. Published by Elsevier Inc.

  10. Brief Report: Anomalous Neural Deactivations and Functional Connectivity during Receptive Language in Autism Spectrum Disorder--A Functional MRI Study

    ERIC Educational Resources Information Center

    Karten, Ariel; Hirsch, Joy

    2015-01-01

    Neural mechanisms that underlie language disability in autism spectrum disorder (ASD) have been associated with reduced excitatory processes observed as positive blood oxygen level dependent (BOLD) responses. However, negative BOLD responses (NBR) associated with language and inhibitory processes have been less studied in ASD. In this study,…

  11. Spatiotemporal frequency tuning of BOLD and gamma band MEG responses compared in primary visual cortex.

    PubMed

    Muthukumaraswamy, Suresh D; Singh, Krish D

    2008-05-01

    In this study, the spatial and temporal frequency tuning characteristics of the MEG gamma (40-60 Hz) rhythm and the BOLD response in primary visual cortex were measured and compared. In an identical MEG/fMRI paradigm, 10 participants viewed reversing square wave gratings at 2 spatial frequencies [0.5 and 3 cycles per degree (cpd)] reversing at 5 temporal frequencies (0, 1 6, 10, 15 Hz). Three-dimensional images of MEG source power were generated with synthetic aperture magnetometry (SAM) and showed a high degree of spatial correspondence with BOLD responses in primary visual cortex with a mean spatial separation of 6.5 mm, but the two modalities showed different tuning characteristics. The gamma rhythm showed a clear increase in induced power for the high spatial frequency stimulus while BOLD showed no difference in activity for the two spatial frequencies used. Both imaging modalities showed a general increase of activity with temporal frequency, however, BOLD plateaued around 6-10 Hz while the MEG generally increased with a dip exhibited at 6 Hz. These results demonstrate that the two modalities may show activation in similar spatial locations but that the functional pattern of these activations may differ in a complex manner, suggesting that they may be tuned to different aspects of neuronal activity.

  12. Abnormal Striatal BOLD Responses to Reward Anticipation and Reward Delivery in ADHD

    PubMed Central

    Furukawa, Emi; Bado, Patricia; Tripp, Gail; Mattos, Paulo; Wickens, Jeff R.; Bramati, Ivanei E.; Alsop, Brent; Ferreira, Fernanda Meireles; Lima, Debora; Tovar-Moll, Fernanda; Sergeant, Joseph A.; Moll, Jorge

    2014-01-01

    Altered reward processing has been proposed to contribute to the symptoms of attention deficit hyperactivity disorder (ADHD). The neurobiological mechanism underlying this alteration remains unclear. We hypothesize that the transfer of dopamine release from reward to reward-predicting cues, as normally observed in animal studies, may be deficient in ADHD. Functional magnetic resonance imaging (fMRI) was used to investigate striatal responses to reward-predicting cues and reward delivery in a classical conditioning paradigm. Data from 14 high-functioning and stimulant-naïve young adults with elevated lifetime symptoms of ADHD (8 males, 6 females) and 15 well-matched controls (8 males, 7 females) were included in the analyses. During reward anticipation, increased blood-oxygen-level-dependent (BOLD) responses in the right ventral and left dorsal striatum were observed in controls, but not in the ADHD group. The opposite pattern was observed in response to reward delivery; the ADHD group demonstrated significantly greater BOLD responses in the ventral striatum bilaterally and the left dorsal striatum relative to controls. In the ADHD group, the number of current hyperactivity/impulsivity symptoms was inversely related to ventral striatal responses during reward anticipation and positively associated with responses to reward. The BOLD response patterns observed in the striatum are consistent with impaired predictive dopamine signaling in ADHD, which may explain altered reward-contingent behaviors and symptoms of ADHD. PMID:24586543

  13. Comparison of CO2 in air versus carbogen for the measurement of cerebrovascular reactivity with magnetic resonance imaging.

    PubMed

    Hare, Hannah V; Germuska, Michael; Kelly, Michael E; Bulte, Daniel P

    2013-11-01

    Measurement of cerebrovascular reactivity (CVR) can give valuable information about existing pathology and the risk of adverse events, such as stroke. A common method of obtaining regional CVR values is by measuring the blood flow response to carbon dioxide (CO2)-enriched air using arterial spin labeling (ASL) or blood oxygen level-dependent (BOLD) imaging. Recently, several studies have used carbogen gas (containing only CO2 and oxygen) as an alternative stimulus. A direct comparison was performed between CVR values acquired by ASL and BOLD imaging using stimuli of (1) 5% CO2 in air and (2) 5% CO2 in oxygen (carbogen-5). Although BOLD and ASL CVR values are shown to be correlated for CO2 in air (mean response 0.11±0.03% BOLD, 4.46±1.80% ASL, n=16 hemispheres), this correlation disappears during a carbogen stimulus (0.36±0.06% BOLD, 4.97±1.30% ASL). It is concluded that BOLD imaging should generally not be used in conjunction with a carbogen stimulus when measuring CVR, and that care must be taken when interpreting CVR as measured by ASL, as values obtained from different stimuli (CO2 in air versus carbogen) are not directly comparable.

  14. Grouping individual independent BOLD effects: a new way to ICA group analysis

    NASA Astrophysics Data System (ADS)

    Duann, Jeng-Ren; Jung, Tzyy-Ping; Sejnowski, Terrence J.; Makeig, Scott

    2009-04-01

    A new group analysis method to summarize the task-related BOLD responses based on independent component analysis (ICA) was presented. As opposite to the previously proposed group ICA (gICA) method, which first combined multi-subject fMRI data in either temporal or spatial domain and applied ICA decomposition only once to the combined fMRI data to extract the task-related BOLD effects, the method presented here applied ICA decomposition to the individual subjects' fMRI data to first find the independent BOLD effects specifically for each individual subject. Then, the task-related independent BOLD component was selected among the resulting independent components from the single-subject ICA decomposition and hence grouped across subjects to derive the group inference. In this new ICA group analysis (ICAga) method, one does not need to assume that the task-related BOLD time courses are identical across brain areas and subjects as used in the grand ICA decomposition on the spatially concatenated fMRI data. Neither does one need to assume that after spatial normalization, the voxels at the same coordinates represent exactly the same functional or structural brain anatomies across different subjects. These two assumptions have been problematic given the recent BOLD activation evidences. Further, since the independent BOLD effects were obtained from each individual subject, the ICAga method can better account for the individual differences in the task-related BOLD effects. Unlike the gICA approach whereby the task-related BOLD effects could only be accounted for by a single unified BOLD model across multiple subjects. As a result, the newly proposed method, ICAga, was able to better fit the task-related BOLD effects at individual level and thus allow grouping more appropriate multisubject BOLD effects in the group analysis.

  15. From blood oxygenation level dependent (BOLD) signals to brain temperature maps.

    PubMed

    Sotero, Roberto C; Iturria-Medina, Yasser

    2011-11-01

    A theoretical framework is presented for converting Blood Oxygenation Level Dependent (BOLD) images to brain temperature maps, based on the idea that disproportional local changes in cerebral blood flow (CBF) as compared with cerebral metabolic rate of oxygen consumption (CMRO₂) during functional brain activity, lead to both brain temperature changes and the BOLD effect. Using an oxygen limitation model and a BOLD signal model, we obtain a transcendental equation relating CBF and CMRO₂ changes with the corresponding BOLD signal, which is solved in terms of the Lambert W function. Inserting this result in the dynamic bioheat equation describing the rate of temperature changes in the brain, we obtain a nonautonomous ordinary differential equation that depends on the BOLD response, which is solved numerically for each brain voxel. Temperature maps obtained from a real BOLD dataset registered in an attention to visual motion experiment were calculated, obtaining temperature variations in the range: (-0.15, 0.1) which is consistent with experimental results. The statistical analysis revealed that significant temperature activations have a similar distribution pattern than BOLD activations. An interesting difference was the activation of the precuneus in temperature maps, a region involved in visuospatial processing, an effect that was not observed on BOLD maps. Furthermore, temperature maps were more localized to gray matter regions than the original BOLD maps, showing less activated voxels in white matter and cerebrospinal fluid.

  16. High-resolution maps of real and illusory tactile activation in primary somatosensory cortex in individual monkeys with functional magnetic resonance imaging and optical imaging.

    PubMed

    Chen, Li M; Turner, Gregory H; Friedman, Robert M; Zhang, Na; Gore, John C; Roe, Anna W; Avison, Malcolm J

    2007-08-22

    Although blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) has been widely used to explore human brain function, questions remain regarding the ultimate spatial resolution of positive BOLD fMRI, and indeed the extent to which functional maps revealed by positive BOLD correlate spatially with maps obtained with other high-spatial-resolution mapping techniques commonly used in animals, such as optical imaging of intrinsic signal (OIS) and single-unit electrophysiology. Here, we demonstrate that the positive BOLD signal at 9.4T can reveal the fine topography of individual fingerpads in single-condition activation maps in nonhuman primates. These digit maps are similar to maps obtained from the same animal using intrinsic optical imaging. Furthermore, BOLD fMRI reliably resolved submillimeter spatial shifts in activation in area 3b previously identified with OIS (Chen et al., 2003) as neural correlates of the "funneling illusion." These data demonstrate that at high field, high-spatial-resolution topographic maps can be achieved using the positive BOLD signal, weakening previous notions regarding the spatial specificity of the positive BOLD signal.

  17. Insulin sensitivity affects corticolimbic brain responses to visual food cues in polycystic ovary syndrome patients.

    PubMed

    Alsaadi, Hanin M; Van Vugt, Dean A

    2015-11-01

    This study examined the effect of insulin sensitivity on the responsiveness of appetite regulatory brain regions to visual food cues. Nineteen participants diagnosed with polycystic ovary syndrome (PCOS) were divided into insulin-sensitive (n=8) and insulin-resistant (n=11) groups based on the homeostatic model assessment of insulin resistance (HOMA2-IR). Subjects underwent functional magnetic resonance imaging (fMRI) while viewing food pictures following water or dextrose consumption. The corticolimbic blood oxygen level dependent (BOLD) responses to high-calorie (HC) or low-calorie (LC) food pictures were compared within and between groups. BOLD responses to food pictures were reduced during a glucose challenge in numerous corticolimbic brain regions in insulin-sensitive but not insulin-resistant subjects. Furthermore, the degree of insulin resistance positively correlated with the corticolimbic BOLD response in the medial prefrontal cortex (mPFC), orbitofrontal cortex (OFC), anterior cingulate and ventral tegmental area (VTA) in response to HC pictures, and in the dorsolateral prefrontal cortex (DLPFC), mPFC, anterior cingulate, and insula in response to LC pictures following a glucose challenge. BOLD signal in the OFC, midbrain, hippocampus, and amygdala following a glucose challenge correlated with HOMA2-IR in response to HC-LC pictures. We conclude that the normal inhibition of corticolimbic brain responses to food pictures during a glucose challenge is compromised in insulin-resistant subjects. The increase in brain responsiveness to food pictures during postprandial hyperinsulinemia may lead to greater non-homeostatic eating and perpetuate obesity in insulin-resistant subjects.

  18. Differences in aggression, activity and boldness between native and introduced populations of an invasive crayfish

    USGS Publications Warehouse

    Pintor, L.M.; Sih, A.; Bauer, M.L.

    2008-01-01

    Aggressiveness, along with foraging voracity and boldness, are key behavioral mechanisms underlying the competitive displacement and invasion success of exotic species. However, do aggressiveness, voracity and boldness of the invader depend on the presence of an ecologically similar native competitor in the invaded community? We conducted four behavioral assays to compare aggression, foraging voracity, threat response and boldness to forage under predation risk of multiple populations of exotic signal crayfish Pacifastacus leniusculus across its native and invaded range with and without a native congener, the Shasta crayfish P. fortis. We predicted that signal crayfish from the invaded range and sympatric with a native congener (IRS) should be more aggressive to outcompete a close competitor than populations from the native range (NR) or invaded range and allopatric to a native congener (IRA). Furthermore, we predicted that IRS populations of signal crayfish should be more voracious, but less bold to forage under predation risk since native predators and prey likely possess appropriate behavioral responses to the invader. Contrary to our predictions, results indicated that IRA signal crayfish were more aggressive towards conspecifics and more voracious and active foragers, yet also bolder to forage under predation risk in comparison to NR and IRS populations, which did not differ in behavior. Higher aggression/voracity/ boldness was positively correlated with prey consumption rates, and hence potential impacts on prey. We suggest that the positive correlations between aggression/voracity/boldness are the result of an overall aggression syndrome. Results of stream surveys indicated that IRA streams have significantly lower prey biomass than in IRS streams, which may drive invading signal crayfish to be more aggressive/voracious/bold to acquire resources to establish a population. ?? 2008 The Authors.

  19. Stimulus-induced dissociation of neuronal firing rates and local field potential gamma power and its relationship to the blood oxygen level-dependent signal in macaque primary visual cortex

    PubMed Central

    Bartolo, M J; Gieselmann, M A; Vuksanovic, V; Hunter, D; Sun, L; Chen, X; Delicato, L S; Thiele, A

    2011-01-01

    The functional magnetic resonance imaging (fMRI) blood oxygenation level-dependent (BOLD) signal is regularly used to assign neuronal activity to cognitive function. Recent analyses have shown that the local field potential (LFP) gamma power is a better predictor of the fMRI BOLD signal than spiking activity. However, LFP gamma power and spiking activity are usually correlated, clouding the analysis of the neural basis of the BOLD signal. We show that changes in LFP gamma power and spiking activity in the primary visual cortex (V1) of the awake primate can be dissociated by using grating and plaid pattern stimuli, which differentially engage surround suppression and cross-orientation inhibition/facilitation within and between cortical columns. Grating presentation yielded substantial V1 LFP gamma frequency oscillations and significant multi-unit activity. Plaid pattern presentation significantly reduced the LFP gamma power while increasing population multi-unit activity. The fMRI BOLD activity followed the LFP gamma power changes, not the multi-unit activity. Inference of neuronal activity from the fMRI BOLD signal thus requires detailed a priori knowledge of how different stimuli or tasks activate the cortical network. PMID:22081989

  20. Functional magnetic resonance imaging in awake transgenic fragile X rats: evidence of dysregulation in reward processing in the mesolimbic/habenular neural circuit.

    PubMed

    Kenkel, W M; Yee, J R; Moore, K; Madularu, D; Kulkarni, P; Gamber, K; Nedelman, M; Ferris, C F

    2016-03-22

    Anxiety and social deficits, often involving communication impairment, are fundamental clinical features of fragile X syndrome. There is growing evidence that dysregulation in reward processing is a contributing factor to the social deficits observed in many psychiatric disorders. Hence, we hypothesized that transgenic fragile X mental retardation 1 gene (fmr1) KO (FX) rats would display alterations in reward processing. To this end, awake control and FX rats were imaged for changes in blood oxygen level dependent (BOLD) signal intensity in response to the odor of almond, a stimulus to elicit the innate reward response. Subjects were 'odor naive' to this evolutionarily conserved stimulus. The resulting changes in brain activity were registered to a three-dimensional segmented, annotated rat atlas delineating 171 brain regions. Both wild-type (WT) and FX rats showed robust brain activation to a rewarding almond odor, though FX rats showed an altered temporal pattern and tended to have a higher number of voxels with negative BOLD signal change from baseline. This pattern of greater negative BOLD was especially apparent in the Papez circuit, critical to emotional processing and the mesolimbic/habenular reward circuit. WT rats showed greater positive BOLD response in the supramammillary area, whereas FX rats showed greater positive BOLD response in the dorsal lateral striatum, and greater negative BOLD response in the retrosplenial cortices, the core of the accumbens and the lateral preoptic area. When tested in a freely behaving odor-investigation paradigm, FX rats failed to show the preference for almond odor which typifies WT rats. However, FX rats showed investigation profiles similar to WT when presented with social odors. These data speak to an altered processing of this highly salient novel odor in the FX phenotype and lend further support to the notion that altered reward systems in the brain may contribute to fragile X syndrome symptomology.

  1. Association Between Brain Activation and Functional Connectivity.

    PubMed

    Tomasi, Dardo; Volkow, Nora D

    2018-04-13

    The origin of the "resting-state" brain activity recorded with functional magnetic resonance imaging (fMRI) is still uncertain. Here we provide evidence for the neurovascular origins of the amplitude of the low-frequency fluctuations (ALFF) and the local functional connectivity density (lFCD) by comparing them with task-induced blood-oxygen level dependent (BOLD) responses, which are considered a proxy for neuronal activation. Using fMRI data for 2 different tasks (Relational and Social) collected by the Human Connectome Project in 426 healthy adults, we show that ALFF and lFCD have linear associations with the BOLD response. This association was significantly attenuated by a novel task signal regression (TSR) procedure, indicating that task performance enhances lFCD and ALFF in activated regions. We also show that lFCD predicts BOLD activation patterns, as was recently shown for other functional connectivity metrics, which corroborates that resting functional connectivity architecture impacts brain activation responses. Thus, our findings indicate a common source for BOLD responses, ALFF and lFCD, which is consistent with the neurovascular origin of local hemodynamic synchrony presumably reflecting coordinated fluctuations in neuronal activity. This study also supports the development of task-evoked functional connectivity density mapping.

  2. BOLD response to semantic and syntactic processing during hypoglycemia is load-dependent.

    PubMed

    Schafer, Robin J; Page, Kathleen A; Arora, Jagriti; Sherwin, Robert; Constable, R Todd

    2012-01-01

    This study investigates how syntactic and semantic load factors impact sentence comprehension and BOLD signal under moderate hypoglycemia. A dual session, whole brain fMRI study was conducted on 16 healthy participants using the glucose clamp technique. In one session, they experienced insulin-induced hypoglycemia (plasma glucose at ∼50mg/dL); in the other, plasma glucose was maintained at euglycemic levels (∼100mg/dL). During scans subjects were presented with sentences of contrasting syntactic (embedding vs. conjunction) and semantic (reversibility vs. irreversibility) load. Semantic factors dominated the overall load effects on both performance (p<0.001) and BOLD response (p<0.01, corrected). Differential BOLD signal was observed in frontal, temporal, temporo-parietal and medio-temporal regions. Hypoglycemia and syntactic factors significantly impacted performance (p=0.002) and BOLD response (p<0.01, corrected) in the reversible clause conditions, more extensively in reversible-embedded than in reversible-conjoined clauses. Hypoglycemia resulted in a robust decrease in performance on reversible clauses and exerted attenuating effects on BOLD unselectively across cortical circuits. The dominance of reversibility in all measures underscores the distinction between the syntactic and semantic contrasts. The syntactic is based in a quantitative difference in algorithms interpreting embedded and conjoined structures. We suggest that the semantic is based in a qualitative difference between algorithmic mapping of arguments in reversible clauses and heuristic linking in irreversible clauses. Because heuristics drastically reduce resource demand, the operations they support would resist the load-dependent cognitive consequences of hypoglycemia. © 2011 Elsevier Inc. All rights reserved.

  3. Does boldness explain vulnerability to angling in Eurasian perch Perca fluviatilis?

    PubMed

    Vainikka, Anssi; Tammela, Ilkka; Hyvärinen, Pekka

    2016-04-01

    Consistent individual differences (CIDs) in behavior are of interest to both basic and applied research, because any selection acting on them could induce evolution of animal behavior. It has been suggested that CIDs in the behavior of fish might explain individual differences in vulnerability to fishing. If so, fishing could impose selection on fish behavior. In this study, we assessed boldness-indicating behaviors of Eurasian perch Perca fluviatilis using individually conducted experiments measuring the time taken to explore a novel arena containing predator (burbot, Lota lota ) cues. We studied if individual differences in boldness would explain vulnerability of individually tagged perch to experimental angling in outdoor ponds, or if fishing would impose selection on boldness-indicating behavior. Perch expressed repeatable individual differences in boldness-indicating behavior but the individual boldness-score (the first principal component) obtained using principal component analysis combining all the measured behavioral responses did not explain vulnerability to experimental angling. Instead, large body size appeared as the only statistically significant predictor of capture probability. Our results suggest that angling is selective for large size, but not always selective for high boldness.

  4. Does boldness explain vulnerability to angling in Eurasian perch Perca fluviatilis?

    PubMed Central

    Vainikka, Anssi; Tammela, Ilkka; Hyvärinen, Pekka

    2016-01-01

    Abstract Consistent individual differences (CIDs) in behavior are of interest to both basic and applied research, because any selection acting on them could induce evolution of animal behavior. It has been suggested that CIDs in the behavior of fish might explain individual differences in vulnerability to fishing. If so, fishing could impose selection on fish behavior. In this study, we assessed boldness-indicating behaviors of Eurasian perch Perca fluviatilis using individually conducted experiments measuring the time taken to explore a novel arena containing predator (burbot, Lota lota) cues. We studied if individual differences in boldness would explain vulnerability of individually tagged perch to experimental angling in outdoor ponds, or if fishing would impose selection on boldness-indicating behavior. Perch expressed repeatable individual differences in boldness-indicating behavior but the individual boldness-score (the first principal component) obtained using principal component analysis combining all the measured behavioral responses did not explain vulnerability to experimental angling. Instead, large body size appeared as the only statistically significant predictor of capture probability. Our results suggest that angling is selective for large size, but not always selective for high boldness. PMID:29491897

  5. Altered reward expectancy in individuals with recent methamphetamine dependence.

    PubMed

    Bischoff-Grethe, Amanda; Connolly, Colm G; Jordan, Stephan J; Brown, Gregory G; Paulus, Martin P; Tapert, Susan F; Heaton, Robert K; Woods, Steven P; Grant, Igor

    2017-01-01

    Chronic methamphetamine use may lead to changes in reward-related function of the ventral striatum and caudate nucleus. Whether methamphetamine-dependent individuals show heightened reactivity to positively valenced stimuli (i.e. positive reinforcement mechanisms), or an exaggerated response to negatively valenced stimuli (i.e. driven by negative reinforcement mechanisms) remains unclear. This study investigated neural functioning of expectancy and receipt for gains and losses in adults with (METH+) and without (METH-) histories of methamphetamine dependence. Participants (17 METH+; 23 METH-) performed a probabilistic feedback expectancy task during blood-oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI). Participants were given visual cues probabilistically associated with monetary gain, loss, or neutral outcomes. General linear models examined the BOLD response to: (1) anticipation of gains and losses, and (2) gain and loss monetary outcomes. METH+ had less BOLD response to loss anticipation than METH- in the ventral striatum and posterior caudate. METH+ also showed more BOLD response to loss outcomes than to gain outcomes in the anterior and posterior caudate, whereas METH- did not show differential responses to the valence of outcomes. METH+ individuals showed attenuated neural response to anticipated gains and losses, but their response to loss outcomes was greater than to gain outcomes. A decreased response to loss anticipation, along with a greater response to loss outcomes, suggests an altered ability to evaluate future risks and benefits based upon prior experience, which may underlie suboptimal decision-making in METH+ individuals that increases the likelihood of risky behavior.

  6. Altered reward expectancy in individuals with recent methamphetamine dependence

    PubMed Central

    Bischoff-Grethe, Amanda; Connolly, Colm G; Jordan, Stephan J; Brown, Gregory G; Paulus, Martin P; Tapert, Susan F; Heaton, Robert K; Woods, Steven P; Grant, Igor

    2016-01-01

    Background Chronic methamphetamine use may lead to changes in reward-related function of the ventral striatum and caudate nucleus. Whether methamphetamine dependent individuals show heightened reactivity to positively valenced stimuli (i.e., positive reinforcement mechanisms), or an exaggerated response to negatively valenced stimuli (i.e., driven by negative reinforcement mechanisms) remains unclear. This study investigated neural functioning of expectancy and receipt for gains and losses in adults with (METH+) and without (METH−) histories of methamphetamine dependence. Methods Participants (17 METH+; 23 METH−) performed a probabilistic feedback expectancy task during blood-oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI). Participants were given visual cues probabilistically associated with monetary gain, loss, or neutral outcomes. General linear models examined the BOLD response to: (1) anticipation of gains and losses, and (2) gain and loss monetary outcomes. Results METH+ had less BOLD response to loss anticipation than METH− in the ventral striatum and posterior caudate. METH+ also showed more BOLD response to loss outcomes than to gain outcomes in the anterior and posterior caudate, whereas METH− did not show differential responses to the valence of outcomes. Discussion METH+ individuals showed attenuated neural response to anticipated gains and losses, but their response to loss outcomes was greater than to gain outcomes. A decreased response to loss anticipation, along with a greater response to loss outcomes, suggests an altered ability to evaluate future risks and benefits based upon prior experience, which may underlie suboptimal decision-making in METH+ individuals that increases the likelihood of risky behavior. PMID:27649775

  7. The Effect of Letter-stroke Boldness on Reading Speed in Central and Peripheral Vision

    PubMed Central

    Bernard, Jean-Baptiste; Kumar, Girish; Junge, Jasmine; Chung, Susana T.L.

    2013-01-01

    People with central vision loss often prefer boldface print over normal print for reading. However, little is known about how reading speed is influenced by the letter-stroke boldness of font. In this study, we examined the reliance of reading speed on stroke boldness, and determined whether this reliance differs between the normal central and peripheral vision. Reading speed was measured using the rapid serial visual presentation paradigm, where observers with normal vision read aloud short single sentences presented on a computer monitor, one word at a time. Text was rendered in Courier at six levels of boldness, defined as the stroke-width normalized to that of the standard Courier font: 0.27, 0.72, 1, 1.48, 1.89 and 3.04× the standard. Testings were conducted at the fovea and 10° in the inferior visual field. Print sizes used were 0.8× and 1.4× the critical print size (smallest print size that can be read at the maximum reading speed). At the fovea, reading speed was invariant for the middle four levels of boldness, but dropped by 23.3% for the least and the most bold text. At 10° eccentricity, reading speed was virtually the same for all boldness <1, but showed a poorer tolerance to bolder text, dropping by 21.5% for 1.89x boldness and 51% for the most bold (3.04x) text. These results could not be accounted for by the changes in print size or the RMS contrast of text associated with changes in stroke boldness. Our results suggest that contrary to the popular belief, reading speed does not benefit from bold text in the normal fovea and periphery. Excessive increase in stroke boldness may even impair reading speed, especially in the periphery. PMID:23523572

  8. The effect of letter-stroke boldness on reading speed in central and peripheral vision.

    PubMed

    Bernard, Jean-Baptiste; Kumar, Girish; Junge, Jasmine; Chung, Susana T L

    2013-05-24

    People with central vision loss often prefer boldface print over normal print for reading. However, little is known about how reading speed is influenced by the letter-stroke boldness of font. In this study, we examined the reliance of reading speed on stroke boldness, and determined whether this reliance differs between the normal central and peripheral vision. Reading speed was measured using the rapid serial visual presentation paradigm, where observers with normal vision read aloud short single sentences presented on a computer monitor, one word at a time. Text was rendered in Courier at six levels of boldness, defined as the stroke-width normalized to that of the standard Courier font: 0.27, 0.72, 1, 1.48, 1.89 and 3.04× the standard. Testings were conducted at the fovea and 10° in the inferior visual field. Print sizes used were 0.8× and 1.4× the critical print size (smallest print size that can be read at the maximum reading speed). At the fovea, reading speed was invariant for the middle four levels of boldness, but dropped by 23.3% for the least and the most bold text. At 10° eccentricity, reading speed was virtually the same for all boldness <1, but showed a poorer tolerance to bolder text, dropping by 21.5% for 1.89× boldness and 51% for the most bold (3.04×) text. These results could not be accounted for by the changes in print size or the RMS contrast of text associated with changes in stroke boldness. Our results suggest that contrary to the popular belief, reading speed does not benefit from bold text in the normal fovea and periphery. Excessive increase in stroke boldness may even impair reading speed, especially in the periphery. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Development of visual cortical function in infant macaques: A BOLD fMRI study

    PubMed Central

    Meeson, Alan; Munk, Matthias H. J.; Kourtzi, Zoe; Movshon, J. Anthony; Logothetis, Nikos K.; Kiorpes, Lynne

    2017-01-01

    Functional brain development is not well understood. In the visual system, neurophysiological studies in nonhuman primates show quite mature neuronal properties near birth although visual function is itself quite immature and continues to develop over many months or years after birth. Our goal was to assess the relative development of two main visual processing streams, dorsal and ventral, using BOLD fMRI in an attempt to understand the global mechanisms that support the maturation of visual behavior. Seven infant macaque monkeys (Macaca mulatta) were repeatedly scanned, while anesthetized, over an age range of 102 to 1431 days. Large rotating checkerboard stimuli induced BOLD activation in visual cortices at early ages. Additionally we used static and dynamic Glass pattern stimuli to probe BOLD responses in primary visual cortex and two extrastriate areas: V4 and MT-V5. The resulting activations were analyzed with standard GLM and multivoxel pattern analysis (MVPA) approaches. We analyzed three contrasts: Glass pattern present/absent, static/dynamic Glass pattern presentation, and structured/random Glass pattern form. For both GLM and MVPA approaches, robust coherent BOLD activation appeared relatively late in comparison to the maturation of known neuronal properties and the development of behavioral sensitivity to Glass patterns. Robust differential activity to Glass pattern present/absent and dynamic/static stimulus presentation appeared first in V1, followed by V4 and MT-V5 at older ages; there was no reliable distinction between the two extrastriate areas. A similar pattern of results was obtained with the two analysis methods, although MVPA analysis showed reliable differential responses emerging at later ages than GLM. Although BOLD responses to large visual stimuli are detectable, our results with more refined stimuli indicate that global BOLD activity changes as behavioral performance matures. This reflects an hierarchical development of the visual pathways. Since fMRI BOLD reflects neural activity on a population level, our results indicate that, although individual neurons might be adult-like, a longer maturation process takes place on a population level. PMID:29145469

  10. Dependence of chromatic responses in V1 on visual field eccentricity and spatial frequency: an fMRI study.

    PubMed

    D'Souza, Dany V; Auer, Tibor; Frahm, Jens; Strasburger, Hans; Lee, Barry B

    2016-03-01

    Psychophysical sensitivity to red-green chromatic modulation decreases with visual eccentricity, compared to sensitivity to luminance modulation, even after appropriate stimulus scaling. This is likely to occur at a central, rather than a retinal, site. Blood-oxygenation-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) responses to stimuli designed to separately stimulate different afferent channels' [red-green, luminance, and short-wavelength (S)-cone] circular gratings were recorded as a function of visual eccentricity (±10  deg) and spatial frequency (SF) in human primary visual cortex (V1) and further visual areas (V2v, V3v). In V1, the SF tuning of BOLD fMRI responses became coarser with eccentricity. For red-green and luminance gratings, similar SF tuning curves were found at all eccentricities. The pattern for S-cone modulation differed, with SF tuning changing more slowly with eccentricity than for the other two modalities. This may be due to the different retinal distribution with eccentricity of this receptor type. A similar pattern held in V2v and V3v. This would suggest that transformation or spatial filtering of the chromatic (red-green) signal occurs beyond these areas.

  11. SU-E-J-223: A BOLD Contrast Imaging Sequence to Evaluate Oxygenation Changes Due to Breath Holding for Breast Radiotherapy: A Pilot Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adamson, J; Chang, Z; Cai, J

    Purpose: To develop a robust MRI sequence to measure BOLD breath hold induced contrast in context of breast radiotherapy. Methods: Two sequences were selected from prior studies as candidates to measure BOLD contrast attributable to breath holding within the breast: (1) T2* based Gradient Echo EPI (TR/TE = 500/41ms, flip angle = 60°), and (2) T2 based Single Shot Fast Spin Echo (SSFSE) (TR/TE = 3000/60ms). We enrolled ten women post-lumpectomy for breast cancer who were undergoing treatment planning for whole breast radiotherapy. Each session utilized a 1.5T GE MRI and 4 channel breast coil with the subject immobilized pronemore » on a custom board. For each sequence, 1–3 planes of the lumpectomy breast were imaged continuously during a background measurement (1min) and intermittent breath holds (20–40s per breath hold, 3–5 holds per sequence). BOLD contrast was quantified as correlation of changes in per-pixel intensity with the breath hold schedule convolved with a hemodynamic response function. Subtle motion was corrected using a deformable registration algorithm. Correlation with breath-holding was considered significant if p<0.001. Results: The percentage of the breast ROI with positive BOLD contrast measured by the two sequences were in agreement with a correlation coefficient of R=0.72 (p=0.02). While both sequences demonstrated areas with strong BOLD response, the response was more systematic throughout the breast for the SSFSE (T2) sequence (% breast with response in the same direction: 51.2%±0.7% for T2* vs. 68.1%±16% for T2). In addition, the T2 sequence was less prone to magnetic susceptibility artifacts, especially in presence of seroma, and provided a more robust image with little distortion or artifacts. Conclusion: A T2 SSFSE sequence shows promise for measuring BOLD contrast in the context of breast radiotherapy utilizing a breath hold technique. Further study in a larger patient cohort is warranted to better refine this novel technique.« less

  12. A possible mechanism of current termination in a reversed field pinch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagata, A.; Masamune, S.; Arimoto, H.

    1989-10-01

    A rapid growth of magnetic fluctuations resulting from the {ital m}=1 and {ital m}=2 modes and succeeding stop of rotation of these modes have been found as the precursor phenomena of current termination in the STP-3(M) (Trans. Inst. Elec. Eng. Jpn. {bold 107}-{bold B}, 469 (1987)) reversed field pinch. By deepening the field reversal at the wall, these precursors disappear and the current duration becomes much longer. It is found that sudden current termination is caused by a rapid growth of resistive tearing modes mainly because of nonlinear coupling of the {ital m}=1 mode.

  13. Association between glutamate/glutamine and blood oxygen level dependent signal in the left dorsolateral prefrontal region during verbal working memory.

    PubMed

    Vijayakumari, Anupa A; Thomas, Bejoy; Menon, Ramshekhar N; Kesavadas, Chandrasekharan

    2018-04-11

    Functional MRI (fMRI) has provided much insight into the changes in the neuronal activity on the basis of blood oxygen level dependent (BOLD) phenomenon. The dynamic changes in the metabolites can be detected using functional proton magnetic resonance spectroscopy (H-fMRS). The strategy of combining fMRI and H-fMRS would facilitate the understanding of the neurochemical interpretation of the BOLD signal. The dorsolateral prefrontal region is critically involved in the processing of working memory (WM), as demonstrated by the studies involving the neuroimaging, neuropsychological, and electrophysiological experiments. In this study, we tested the association between BOLD signal and changes in brain metabolites in the left dorsolateral prefrontal region using N-back verbal WM task. We used single-voxel task-based H-MRS acquired in the left dorsolateral prefrontal region and fMRI during the performance of N-back verbal WM task to investigate the association between changes in metabolites and BOLD response in 10 healthy participants. The correlation between changes in metabolites and percent signal change was examined by the Pearson correlation. The Pearson correlation analysis revealed a significant positive correlation between the BOLD signal and glutamate/glutamine in the left dorsolateral prefrontal region during the verbal WM. Our finding suggests that glutamate/glutamine cycle plays a critical role in the neuronal activation as reflected by the changes in the BOLD response.

  14. Physiologic underpinnings of negative BOLD cerebrovascular reactivity in brain ventricles.

    PubMed

    Thomas, Binu P; Liu, Peiying; Aslan, Sina; King, Kevin S; van Osch, Matthias J P; Lu, Hanzhang

    2013-12-01

    With a growing need for specific biomarkers in vascular diseases, there has been a surging interest in mapping cerebrovascular reactivity (CVR) of the brain. This index can be measured by conducting a hypercapnia challenge while acquiring blood-oxygenation-level-dependent (BOLD) signals. A BOLD signal increase with hypercapnia is the expected outcome and represents the majority of literature reports; in this work we report an intriguing observation of an apparently negative BOLD CVR response at 3T, during inhalation of 5% CO2 with balance medical air. These "negative-CVR" clusters were specifically located in the ventricular regions of the brain, where CSF is abundant and results in an intense baseline signal. The amplitude of the CVR response was -0.51±0.44% (N=14, age 26±4 years). We hypothesized that this observation might not be due to a decrease in oxygenation but rather a volume effect in which bright CSF signal is replaced by a less intensive blood signal as a result of vasodilation. To test this, we performed an inversion-recovery (IR) experiment to suppress the CSF signal (N=10, age 27±5 years). This maneuver in imaging sequence reversed the sign of the signal response (to 0.66±0.25%), suggesting that the volume change was the predominant reason for the apparently negative CVR in the BOLD experiment. Further support of this hypothesis was provided by a BOLD hyperoxia experiment, in which no voxels showed a negative response, presumably because vasodilation is not usually associated with this challenge. Absolute CBF response to hypercapnia was measured in a new group of subjects (N=8, age 29±7 years) and it was found that CBF in ventricular regions increased by 48% upon CO2 inhalation, suggesting that blood oxygenation most likely increased rather than decreased. The findings from this study suggest that CO2 inhalation results in the dilation of ventricular vessels accompanied by shrinkage in CSF space, which is responsible for the apparently negative CVR in brain ventricles. © 2013.

  15. Evolutionary Dynamics of Fearfulness and Boldness: A Stochastic Simulation Model

    PubMed Central

    Lu, Nan; Ji, Ting; Zhang, Jia-Hua; Sun, Yue-Hua; Tao, Yi

    2012-01-01

    A stochastic simulation model is investigated for the evolution of anti-predator behavior in birds. The main goal is to reveal the effects of population size, predation threats, and energy lost per escape on the evolutionary dynamics of fearfulness and boldness. Two pure strategies, fearfulness and boldness, are assumed to have different responses for the predator attacks and nonlethal disturbance. On the other hand, the co-existence mechanism of fearfulness and boldness is also considered. For the effects of total population size, predation threats, and energy lost per escape, our main results show that: (i) the fearful (bold) individuals will be favored in a small (large) population, i.e. in a small (large) population, the fearfulness (boldness) can be considered to be an ESS; (ii) in a population with moderate size, fearfulness would be favored under moderate predator attacks; and (iii) although the total population size is the most important factor for the evolutionary dynamics of both fearful and bold individuals, the small energy lost per escape enables the fearful individuals to have the ability to win the advantage even in a relatively large population. Finally, we show also that the co-existence of fearful and bold individuals is possible when the competitive interactions between individuals are introduced. PMID:22412859

  16. Evolutionary dynamics of fearfulness and boldness: a stochastic simulation model.

    PubMed

    Lu, Nan; Ji, Ting; Zhang, Jia-Hua; Sun, Yue-Hua; Tao, Yi

    2012-01-01

    A stochastic simulation model is investigated for the evolution of anti-predator behavior in birds. The main goal is to reveal the effects of population size, predation threats, and energy lost per escape on the evolutionary dynamics of fearfulness and boldness. Two pure strategies, fearfulness and boldness, are assumed to have different responses for the predator attacks and nonlethal disturbance. On the other hand, the co-existence mechanism of fearfulness and boldness is also considered. For the effects of total population size, predation threats, and energy lost per escape, our main results show that: (i) the fearful (bold) individuals will be favored in a small (large) population, i.e. in a small (large) population, the fearfulness (boldness) can be considered to be an ESS; (ii) in a population with moderate size, fearfulness would be favored under moderate predator attacks; and (iii) although the total population size is the most important factor for the evolutionary dynamics of both fearful and bold individuals, the small energy lost per escape enables the fearful individuals to have the ability to win the advantage even in a relatively large population. Finally, we show also that the co-existence of fearful and bold individuals is possible when the competitive interactions between individuals are introduced.

  17. Relationship between BOLD amplitude and pattern classification of orientation-selective activity in the human visual cortex.

    PubMed

    Tong, Frank; Harrison, Stephenie A; Dewey, John A; Kamitani, Yukiyasu

    2012-11-15

    Orientation-selective responses can be decoded from fMRI activity patterns in the human visual cortex, using multivariate pattern analysis (MVPA). To what extent do these feature-selective activity patterns depend on the strength and quality of the sensory input, and might the reliability of these activity patterns be predicted by the gross amplitude of the stimulus-driven BOLD response? Observers viewed oriented gratings that varied in luminance contrast (4, 20 or 100%) or spatial frequency (0.25, 1.0 or 4.0 cpd). As predicted, activity patterns in early visual areas led to better discrimination of orientations presented at high than low contrast, with greater effects of contrast found in area V1 than in V3. A second experiment revealed generally better decoding of orientations at low or moderate as compared to high spatial frequencies. Interestingly however, V1 exhibited a relative advantage at discriminating high spatial frequency orientations, consistent with the finer scale of representation in the primary visual cortex. In both experiments, the reliability of these orientation-selective activity patterns was well predicted by the average BOLD amplitude in each region of interest, as indicated by correlation analyses, as well as decoding applied to a simple model of voxel responses to simulated orientation columns. Moreover, individual differences in decoding accuracy could be predicted by the signal-to-noise ratio of an individual's BOLD response. Our results indicate that decoding accuracy can be well predicted by incorporating the amplitude of the BOLD response into simple simulation models of cortical selectivity; such models could prove useful in future applications of fMRI pattern classification. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Relationship between BOLD amplitude and pattern classification of orientation-selective activity in the human visual cortex

    PubMed Central

    Tong, Frank; Harrison, Stephenie A.; Dewey, John A.; Kamitani, Yukiyasu

    2012-01-01

    Orientation-selective responses can be decoded from fMRI activity patterns in the human visual cortex, using multivariate pattern analysis (MVPA). To what extent do these feature-selective activity patterns depend on the strength and quality of the sensory input, and might the reliability of these activity patterns be predicted by the gross amplitude of the stimulus-driven BOLD response? Observers viewed oriented gratings that varied in luminance contrast (4, 20 or 100%) or spatial frequency (0.25, 1.0 or 4.0 cpd). As predicted, activity patterns in early visual areas led to better discrimination of orientations presented at high than low contrast, with greater effects of contrast found in area V1 than in V3. A second experiment revealed generally better decoding of orientations at low or moderate as compared to high spatial frequencies. Interestingly however, V1 exhibited a relative advantage at discriminating high spatial frequency orientations, consistent with the finer scale of representation in the primary visual cortex. In both experiments, the reliability of these orientation-selective activity patterns was well predicted by the average BOLD amplitude in each region of interest, as indicated by correlation analyses, as well as decoding applied to a simple model of voxel responses to simulated orientation columns. Moreover, individual differences in decoding accuracy could be predicted by the signal-to-noise ratio of an individual's BOLD response. Our results indicate that decoding accuracy can be well predicted by incorporating the amplitude of the BOLD response into simple simulation models of cortical selectivity; such models could prove useful in future applications of fMRI pattern classification. PMID:22917989

  19. Increased ventral striatal BOLD activity during non-drug reward anticipation in cannabis users.

    PubMed

    Nestor, Liam; Hester, Robert; Garavan, Hugh

    2010-01-01

    Despite an increased understanding of the pharmacology and long-term cognitive effects of cannabis in humans, there has been no research to date examining its chronic effects upon reward processing in the brain. Motivational theories regarding long-term drug use posit contrasting predictions with respect to how drug users are likely to process non-drug incentives. The reward deficiency syndrome (RDS) of addiction posits that there are deficits in dopamine (DA) motivational circuitry for non-drug rewards, such that only drugs of abuse are capable of normalizing DA in the ventral striatum (VS). Alternatively, the opponent process theory (OPT) holds that in individuals prone to drug use, there exists some form of mesolimbic hyperactivity, in which there is a bias towards reward-centred behaviour concomitant with impulsivity. The current study examined BOLD responses during reward and loss anticipation and their outcome deliveries in 14 chronic cannabis users and 14 drug-naive controls during a monetary incentive delay (MID) task. Despite no significant behavioural differences between the two groups, cannabis users had significantly more right VS BOLD activity during reward anticipation. Correlation analyses demonstrated that this right VS BOLD response was significantly correlated with life-time use and reported life-time cannabis joints consumed. No correlations between cannabis abstinence and BOLD responses were observed. We also observed a number of group differences following outcome deliveries, most notably hypoactivity in the left insula cortex in response to loss and loss avoidance outcome notifications in the cannabis group. These results may suggest hypersensitivity during instrumental response anticipation for non-drug rewards and a hyposensitivity to loss outcomes in chronic cannabis users; the implications of which are discussed with respect to the potentially sensitizing effects of cannabis for other rewards.

  20. Internal representations for face detection: an application of noise-based image classification to BOLD responses.

    PubMed

    Nestor, Adrian; Vettel, Jean M; Tarr, Michael J

    2013-11-01

    What basic visual structures underlie human face detection and how can we extract such structures directly from the amplitude of neural responses elicited by face processing? Here, we address these issues by investigating an extension of noise-based image classification to BOLD responses recorded in high-level visual areas. First, we assess the applicability of this classification method to such data and, second, we explore its results in connection with the neural processing of faces. To this end, we construct luminance templates from white noise fields based on the response of face-selective areas in the human ventral cortex. Using behaviorally and neurally-derived classification images, our results reveal a family of simple but robust image structures subserving face representation and detection. Thus, we confirm the role played by classical face selective regions in face detection and we help clarify the representational basis of this perceptual function. From a theory standpoint, our findings support the idea of simple but highly diagnostic neurally-coded features for face detection. At the same time, from a methodological perspective, our work demonstrates the ability of noise-based image classification in conjunction with fMRI to help uncover the structure of high-level perceptual representations. Copyright © 2012 Wiley Periodicals, Inc.

  1. Mapping glucose-mediated gut-to-brain signalling pathways in humans☆

    PubMed Central

    Little, Tanya J.; McKie, Shane; Jones, Richard B.; D'Amato, Massimo; Smith, Craig; Kiss, Orsolya; Thompson, David G.; McLaughlin, John T.

    2014-01-01

    Objectives Previous fMRI studies have demonstrated that glucose decreases the hypothalamic BOLD response in humans. However, the mechanisms underlying the CNS response to glucose have not been defined. We recently demonstrated that the slowing of gastric emptying by glucose is dependent on activation of the gut peptide cholecystokinin (CCK1) receptor. Using physiological functional magnetic resonance imaging this study aimed to determine the whole brain response to glucose, and whether CCK plays a central role. Experimental design Changes in blood oxygenation level-dependent (BOLD) signal were monitored using fMRI in 12 healthy subjects following intragastric infusion (250 ml) of: 1 M glucose + predosing with dexloxiglumide (CCK1 receptor antagonist), 1 M glucose + placebo, or 0.9% saline (control) + placebo, in a single-blind, randomised fashion. Gallbladder volume, blood glucose, insulin, and GLP-1 and CCK concentrations were determined. Hunger, fullness and nausea scores were also recorded. Principal observations Intragastric glucose elevated plasma glucose, insulin, and GLP-1, and reduced gall bladder volume (an in vivo assay for CCK secretion). Glucose decreased BOLD signal, relative to saline, in the brainstem and hypothalamus as well as the cerebellum, right occipital cortex, putamen and thalamus. The timing of the BOLD signal decrease was negatively correlated with the rise in blood glucose and insulin levels. The glucose + dex arm highlighted a CCK1-receptor dependent increase in BOLD signal only in the motor cortex. Conclusions Glucose induces site-specific differences in BOLD response in the human brain; the brainstem and hypothalamus show a CCK1 receptor-independent reduction which is likely to be mediated by a circulatory effect of glucose and insulin, whereas the motor cortex shows an early dexloxiglumide-reversible increase in signal, suggesting a CCK1 receptor-dependent neural pathway. PMID:24685436

  2. To boldly go: individual differences in boldness influence migratory tendency.

    PubMed

    Chapman, Ben B; Hulthén, Kaj; Blomqvist, David R; Hansson, Lars-Anders; Nilsson, Jan-Åke; Brodersen, Jakob; Anders Nilsson, P; Skov, Christian; Brönmark, Christer

    2011-09-01

    Partial migration, whereby only a fraction of the population migrates, is thought to be the most common type of migration in the animal kingdom, and can have important ecological and evolutionary consequences. Despite this, the factors that influence which individuals migrate and which remain resident are poorly understood. Recent work has shown that consistent individual differences in personality traits in animals can be ecologically important, but field studies integrating personality traits with migratory behaviour are extremely rare. In this study, we investigate the influence of individual boldness, an important personality trait, upon the migratory propensity of roach, a freshwater fish, over two consecutive migration seasons. We assay and individually tag 460 roach and show that boldness influences migratory propensity, with bold individuals being more likely to migrate than shy fish. Our data suggest that an extremely widespread personality trait in animals can have significant ecological consequences via influencing individual-level migratory behaviour. © 2011 Blackwell Publishing Ltd/CNRS.

  3. Anatomical and functional assemblies of brain BOLD oscillations

    PubMed Central

    Baria, Alexis T.; Baliki, Marwan N.; Parrish, Todd; Apkarian, A. Vania

    2011-01-01

    Brain oscillatory activity has long been thought to have spatial properties, the details of which are unresolved. Here we examine spatial organizational rules for the human brain oscillatory activity as measured by blood oxygen level-dependent (BOLD). Resting state BOLD signal was transformed into frequency space (Welch’s method), averaged across subjects, and its spatial distribution studied as a function of four frequency bands, spanning the full bandwidth of BOLD. The brain showed anatomically constrained distribution of power for each frequency band. This result was replicated on a repository dataset of 195 subjects. Next, we examined larger-scale organization by parceling the neocortex into regions approximating Brodmann Areas (BAs). This indicated that BAs of simple function/connectivity (unimodal), vs. complex properties (transmodal), are dominated by low frequency BOLD oscillations, and within the visual ventral stream we observe a graded shift of power to higher frequency bands for BAs further removed from the primary visual cortex (increased complexity), linking frequency properties of BOLD to hodology. Additionally, BOLD oscillation properties for the default mode network demonstrated that it is composed of distinct frequency dependent regions. When the same analysis was performed on a visual-motor task, frequency-dependent global and voxel-wise shifts in BOLD oscillations could be detected at brain sites mostly outside those identified with general linear modeling. Thus, analysis of BOLD oscillations in full bandwidth uncovers novel brain organizational rules, linking anatomical structures and functional networks to characteristic BOLD oscillations. The approach also identifies changes in brain intrinsic properties in relation to responses to external inputs. PMID:21613505

  4. Fourier modeling of the BOLD response to a breath-hold task: Optimization and reproducibility.

    PubMed

    Pinto, Joana; Jorge, João; Sousa, Inês; Vilela, Pedro; Figueiredo, Patrícia

    2016-07-15

    Cerebrovascular reactivity (CVR) reflects the capacity of blood vessels to adjust their caliber in order to maintain a steady supply of brain perfusion, and it may provide a sensitive disease biomarker. Measurement of the blood oxygen level dependent (BOLD) response to a hypercapnia-inducing breath-hold (BH) task has been frequently used to map CVR noninvasively using functional magnetic resonance imaging (fMRI). However, the best modeling approach for the accurate quantification of CVR maps remains an open issue. Here, we compare and optimize Fourier models of the BOLD response to a BH task with a preparatory inspiration, and assess the test-retest reproducibility of the associated CVR measurements, in a group of 10 healthy volunteers studied over two fMRI sessions. Linear combinations of sine-cosine pairs at the BH task frequency and its successive harmonics were added sequentially in a nested models approach, and were compared in terms of the adjusted coefficient of determination and corresponding variance explained (VE) of the BOLD signal, as well as the number of voxels exhibiting significant BOLD responses, the estimated CVR values, and their test-retest reproducibility. The brain average VE increased significantly with the Fourier model order, up to the 3rd order. However, the number of responsive voxels increased significantly only up to the 2nd order, and started to decrease from the 3rd order onwards. Moreover, no significant relative underestimation of CVR values was observed beyond the 2nd order. Hence, the 2nd order model was concluded to be the optimal choice for the studied paradigm. This model also yielded the best test-retest reproducibility results, with intra-subject coefficients of variation of 12 and 16% and an intra-class correlation coefficient of 0.74. In conclusion, our results indicate that a Fourier series set consisting of a sine-cosine pair at the BH task frequency and its two harmonics is a suitable model for BOLD-fMRI CVR measurements based on a BH task with preparatory inspiration, yielding robust estimates of this important physiological parameter. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Neurochemical and BOLD responses during neuronal activation measured in the human visual cortex at 7 Tesla.

    PubMed

    Bednařík, Petr; Tkáč, Ivan; Giove, Federico; DiNuzzo, Mauro; Deelchand, Dinesh K; Emir, Uzay E; Eberly, Lynn E; Mangia, Silvia

    2015-03-31

    Several laboratories have consistently reported small concentration changes in lactate, glutamate, aspartate, and glucose in the human cortex during prolonged stimuli. However, whether such changes correlate with blood oxygenation level-dependent functional magnetic resonance imaging (BOLD-fMRI) signals have not been determined. The present study aimed at characterizing the relationship between metabolite concentrations and BOLD-fMRI signals during a block-designed paradigm of visual stimulation. Functional magnetic resonance spectroscopy (fMRS) and fMRI data were acquired from 12 volunteers. A short echo-time semi-LASER localization sequence optimized for 7 Tesla was used to achieve full signal-intensity MRS data. The group analysis confirmed that during stimulation lactate and glutamate increased by 0.26 ± 0.06 μmol/g (~30%) and 0.28 ± 0.03 μmol/g (~3%), respectively, while aspartate and glucose decreased by 0.20 ± 0.04 μmol/g (~5%) and 0.19 ± 0.03 μmol/g (~16%), respectively. The single-subject analysis revealed that BOLD-fMRI signals were positively correlated with glutamate and lactate concentration changes. The results show a linear relationship between metabolic and BOLD responses in the presence of strong excitatory sensory inputs, and support the notion that increased functional energy demands are sustained by oxidative metabolism. In addition, BOLD signals were inversely correlated with baseline γ-aminobutyric acid concentration. Finally, we discussed the critical importance of taking into account linewidth effects on metabolite quantification in fMRS paradigms.

  6. Accounting for the role of hematocrit in between-subject variations of MRI-derived baseline cerebral hemodynamic parameters and functional BOLD responses.

    PubMed

    Xu, Feng; Li, Wenbo; Liu, Peiying; Hua, Jun; Strouse, John J; Pekar, James J; Lu, Hanzhang; van Zijl, Peter C M; Qin, Qin

    2018-01-01

    Baseline hematocrit fraction (Hct) is a determinant for baseline cerebral blood flow (CBF) and between-subject variation of Hct thus causes variation in task-based BOLD fMRI signal changes. We first verified in healthy volunteers (n = 12) that Hct values can be derived reliably from venous blood T 1 values by comparison with the conventional lab test. Together with CBF measured using phase-contrast MRI, this noninvasive estimation of Hct, instead of using a population-averaged Hct value, enabled more individual determination of oxygen delivery (DO 2 ), oxygen extraction fraction (OEF), and cerebral metabolic rate of oxygen (CMRO 2 ). The inverse correlation of CBF and Hct explained about 80% of between-subject variation of CBF in this relatively uniform cohort of subjects, as expected based on the regulation of DO 2 to maintain constant CMRO 2 . Furthermore, we compared the relationships of visual task-evoked BOLD response with Hct and CBF. We showed that Hct and CBF contributed 22%-33% of variance in BOLD signal and removing the positive correlation with Hct and negative correlation with CBF allowed normalization of BOLD signal with 16%-22% lower variability. The results of this study suggest that adjustment for Hct effects is useful for studies of MRI perfusion and BOLD fMRI. Hum Brain Mapp 39:344-353, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  7. A Comparison of Measures of Boldness and Their Relationships to Survival in Young Fish

    PubMed Central

    White, James R.; Meekan, Mark G.; McCormick, Mark I.; Ferrari, Maud C. O.

    2013-01-01

    Boldness is the propensity of an animal to engage in risky behavior. Many variations of novel-object or novel-environment tests have been used to quantify the boldness of animals, although the relationship between test outcomes has rarely been investigated. Furthermore, the relationship of outcomes to any ecological aspect of fitness is generally assumed, rather than measured directly. Our study is the first to compare how the outcomes of the same test of boldness differ among observers and how different tests of boldness relate to the survival of individuals in the field. Newly-metamorphosed lemon damselfish, Pomacentrus moluccensis, were placed onto replicate patches of natural habitat. Individual behavior was quantified using four tests (composed of a total of 12 different measures of behavior): latency to enter a novel environment, activity in a novel environment, and reactions to threatening and benign novel objects. After behavior was quantified, survival was monitored for two days during which time fish were exposed to natural predators. Variation among observers was low for most of the 12 measures, except distance moved and the threat test (reaction to probe thrust), which displayed unacceptable amounts of inter-observer variation. Overall, the results of the behavioral tests suggested that novel environment and novel object tests quantified similar behaviors, yet these behavioral measures were not interchangeable. Multiple measures of behavior within the context of novel environment or object tests were the most robust way to assess boldness and these measures have a complex relationship with survivorship of young fish in the field. Body size and distance ventured from shelter were the only variables that had a direct and positive relationship with survival. PMID:23874804

  8. A comparison of measures of boldness and their relationships to survival in young fish.

    PubMed

    White, James R; Meekan, Mark G; McCormick, Mark I; Ferrari, Maud C O

    2013-01-01

    Boldness is the propensity of an animal to engage in risky behavior. Many variations of novel-object or novel-environment tests have been used to quantify the boldness of animals, although the relationship between test outcomes has rarely been investigated. Furthermore, the relationship of outcomes to any ecological aspect of fitness is generally assumed, rather than measured directly. Our study is the first to compare how the outcomes of the same test of boldness differ among observers and how different tests of boldness relate to the survival of individuals in the field. Newly-metamorphosed lemon damselfish, Pomacentrus moluccensis, were placed onto replicate patches of natural habitat. Individual behavior was quantified using four tests (composed of a total of 12 different measures of behavior): latency to enter a novel environment, activity in a novel environment, and reactions to threatening and benign novel objects. After behavior was quantified, survival was monitored for two days during which time fish were exposed to natural predators. Variation among observers was low for most of the 12 measures, except distance moved and the threat test (reaction to probe thrust), which displayed unacceptable amounts of inter-observer variation. Overall, the results of the behavioral tests suggested that novel environment and novel object tests quantified similar behaviors, yet these behavioral measures were not interchangeable. Multiple measures of behavior within the context of novel environment or object tests were the most robust way to assess boldness and these measures have a complex relationship with survivorship of young fish in the field. Body size and distance ventured from shelter were the only variables that had a direct and positive relationship with survival.

  9. Functional magnetic resonance imaging (fMRI) response to alcohol pictures predicts subsequent transition to heavy drinking in college students.

    PubMed

    Dager, Alecia D; Anderson, Beth M; Rosen, Rivkah; Khadka, Sabin; Sawyer, Broderick; Jiantonio-Kelly, Rachel E; Austad, Carol S; Raskin, Sarah A; Tennen, Howard; Wood, Rebecca M; Fallahi, Carolyn R; Pearlson, Godfrey D

    2014-04-01

    Young adults show the highest rates of escalating drinking, yet the neural risk mechanisms remain unclear. Heavy drinkers show variant functional magnetic resonance imaging (fMRI) blood oxygen level-dependent (BOLD) response to alcohol cues, which may presage increasing drinking. In this longitudinal study, we ascertained whether BOLD response to alcohol pictures predicted subsequent heavy drinking among college students. Participants were 43 18-21-year-olds in the United States who underwent BOLD scanning and completed monthly substance use surveys over the following year. Participants were categorized according to baseline and follow-up drinking into 13 continuously moderate drinkers, 16 continuously heavy drinkers and 14 transitioners who drank moderately at baseline but heavily by follow-up. During fMRI scanning at baseline, participants viewed alcohol and matched non-alcohol beverage images. We observed group differences in alcohol cue-elicited BOLD response in bilateral caudate, orbitofrontal cortex, medial frontal cortex/anterior cingulate and left insula (clusters > 2619 ml, voxelwise F(2,40)  > 3.23, P < 0.05, whole-brain corrected P < 0.05), where transitioners hyperactivated compared with moderate and heavy drinkers (all Tukey P < 0.05). Exploratory factor analysis revealed a single brain network differentiating those who subsequently increased drinking. Exploratory regressions showed that, compared with other risk factors (e.g., alcoholism family history, impulsivity), BOLD response best predicted escalating drinking amount and alcohol-related problems. Neural response to pictures of alcohol is substantially enhanced among United States college students who subsequently escalate drinking. Greater cue-reactivity is associated with larger increases in drinking and alcohol-related problems, regardless of other baseline factors. Thus, neural cue-reactivity could uniquely facilitate identifying individuals at greatest risk for future problematic drinking. © 2013 Society for the Study of Addiction.

  10. Increased BOLD Activation to Predator Stressor in Subiculum and Midbrain of Amphetamine-Sensitized Maternal Rats

    PubMed Central

    Febo, Marcelo; Pira, Ashley S.

    2011-01-01

    Amphetamine, which is known to cause sensitization, potentiates the hormonal and neurobiological signatures of stress and may also increase sensitivity to stress-inducing stimuli in limbic areas. Trimethylthiazoline (5 μL TMT) is a chemical constituent of fox feces that evokes innate fear and activates the neuronal and hormonal signatures of stress in rats. We used blood oxygen level dependent (BOLD) MRI to test whether amphetamine sensitization (1 mg/kg, i.p. X 3 days) in female rats has a lasting effect on the neural response to a stress-evoking stimulus, the scent of a predator, during the postpartum period. The subiculum and dopamine-enriched midbrain VTA/SN of amphetamine-sensitized, but not control mothers showed a greater BOLD signal response to predator odor than a control putrid scent. The greater responsiveness of these two brain regions following stimulant sensitization might impact neural processing in response to stressors in the maternal brain. PMID:21134359

  11. Increased BOLD activation to predator stressor in subiculum and midbrain of amphetamine-sensitized maternal rats.

    PubMed

    Febo, Marcelo; Pira, Ashley S

    2011-03-25

    Amphetamine, which is known to cause sensitization, potentiates the hormonal and neurobiological signatures of stress and may also increase sensitivity to stress-inducing stimuli in limbic areas. Trimethylthiazoline (5μL TMT) is a chemical constituent of fox feces that evokes innate fear and activates the neuronal and hormonal signatures of stress in rats. We used blood oxygen level dependent (BOLD) MRI to test whether amphetamine sensitization (1mg/kg, i.p. ×3days) in female rats has a lasting effect on the neural response to a stress-evoking stimulus, the scent of a predator, during the postpartum period. The subiculum and dopamine-enriched midbrain VTA/SN of amphetamine-sensitized but not control mothers showed a greater BOLD signal response to predator odor than a control putrid scent. The greater responsiveness of these two brain regions following stimulant sensitization might impact neural processing in response to stressors in the maternal brain. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. High Field Small Animal Magnetic Resonance Oncology Studies

    PubMed Central

    Bokacheva, Louisa; Ackerstaff, Ellen; LeKaye, H. Carl; Zakian, Kristen; Koutcher, Jason A.

    2014-01-01

    This review focuses on the applications of high magnetic field magnetic resonance imaging (MRI) and spectroscopy (MRS) to cancer studies in small animals. High field MRI can provide information about tumor physiology, the microenvironment, metabolism, vascularity and cellularity. Such studies are invaluable for understanding tumor growth and proliferation, response to treatment and drug development. The MR techniques reviewed here include 1H, 31P, Chemical Exchange Saturation Transfer (CEST) imaging, and hyperpolarized 13C MR spectroscopy as well as diffusion-weighted, Blood Oxygen Level Dependent (BOLD) contrast imaging, and dynamic contrast-enhanced MR imaging. These methods have been proven effective in animal studies and are highly relevant to human clinical studies. PMID:24374985

  13. Oxygen-induced frequency shifts in hyperoxia: a significant component of BOLD signal.

    PubMed

    Song, Youngkyu; Cho, Gyunggoo; Chun, Song-I; Baek, Jin Hee; Cho, HyungJoon; Kim, Young Ro; Park, Sung Bin; Kim, Jeong Kon

    2014-07-01

    In comparison to the well-documented significance of intravascular deoxyhemoglobin (deoxyHgb), the effects of dissolved oxygen on the blood-oxygen-level-dependent (BOLD) signal have not been widely reported. Based on the fact that the prolonged inspiration of high oxygen fraction gas can result in up to a sixfold increase of the baseline tissue oxygenation, the current study focused on the influence of dissolved oxygen on the BOLD signal during hyperoxia. As results, our in vitro study revealed that the r1 and r2 (relaxivities) of the oxygen-treated serum were 0.22 mM(-1) · s(-1) and 0.19 mM(-1) · s(-1) , respectively. In an in vivo experiment, hyperoxic respiration induced negative BOLD contrast (i.e. signal decrease) in 18-42% of measured brain regions, voxels with accompanying significant decreases in both the T(*)2 (-12.1% to -19.4%) and T1 (-5.8% to -3.3%) relaxation times. In contrast, the T(*)2 relaxation time significantly increased (11.2% to 14.0%) for the voxels displaying positive BOLD contrast (in 41-50% of the measured brain), which reflected a hyperoxygenation-induced reduction in tissue deoxyHgb concentration. These data imply that hyperoxia-driven BOLD signal changes are primarily determined by the counteracting effects of extravascular oxygen and intravascular deoxyHgb. Oxygen-induced magnetic susceptibility was further demonstrated by the study of 1 min hypoxia, which induced BOLD signal changes opposite to those under hyperoxia. Vasoconstriction was more common in voxels with negative BOLD contrast than in voxels with positive contrast (% change of blood volume, -9.8% to -12.8% versus 2.0% to 2.2%), which further suggests that negative BOLD contrast is mainly evoked by an increase in extravascular oxygen concentration. Conclusively, frequency shifts, which are induced by the accumulation of oxygen molecules and associated magnetic field inhomogeneity, are a significant source of the negative BOLD contrast during hyperoxia. Copyright © 2014 John Wiley & Sons, Ltd.

  14. Spatial Nonuniformity of the Resting CBF and BOLD Responses to Sevoflurane: In Vivo Study of Normal Human Subjects With Magnetic Resonance Imaging

    PubMed Central

    Qiu, Maolin; Ramani, Ramachandran; Swetye, Michael; Constable, Robert Todd

    2009-01-01

    Pulsed arterial spin labeling magnetic resonance imaging (MRI) was performed to investigate the local coupling between resting regional cerebral blood flow (rCBF) and BOLD (blood oxygen level dependent) signal changes in 22 normal human subjects during the administration of 0.25 MAC (minimum alveolar concentration) sevoflurane. Two states were compared with subjects at rest: anesthesia and no-anesthesia. Regions of both significantly increased and decreased resting-state rCBF were observed. Increases were limited primarily to subcortical structures and insula, whereas, decreases were observed primarily in neocortical regions. No significant change was found in global CBF (gCBF). By simultaneously measuring rCBF and BOLD, region-specific anesthetic effects on the coupling between rCBF and BOLD were identified. Multiple comparisons of the agent-induced rCBF and BOLD changes demonstrated significant (P < 0.05) spatial variability in rCBF–BOLD coupling. The slope of the linear regression line for AC, where rCBF was increased by sevoflurane, was markedly smaller than the slope for those ROIs where rCBF was decreased by sevoflurane, indicating a bigger change in BOLD per unit change in rCBF in regions where rCBF was increased by sevoflurane. These results suggest that it would be inaccurate to use a global quantitative model to describe coupling across all brain regions and in all anesthesia conditions. The observed spatial nonuniformity of rCBF and BOLD signal changes suggests that any interpretation of BOLD fMRI data in the presence of an anesthetic requires consideration of these insights. PMID:17948882

  15. Noncanonical spike-related BOLD responses in focal epilepsy

    PubMed Central

    Lemieux, Louis; Laufs, Helmut; Carmichael, David; Paul, Joseph Suresh; Walker, Matthew C; Duncan, John S

    2008-01-01

    Till now, most studies of the Blood Oxygen Level-Dependent (BOLD) response to interictal epileptic discharges (IED) have assumed that its time course matches closely to that of brief physiological stimuli, commonly called the canonical event-related haemodynamic response function (canonical HRF). Analyses based on that assumption have produced significant response patterns that are generally concordant with prior electroclinical data. In this work, we used a more flexible model of the event-related response, a Fourier basis set, to investigate the presence of other responses in relation to individual IED in 30 experiments in patients with focal epilepsy. We found significant responses that had a noncanonical time course in 37% of cases, compared with 40% for the conventional, canonical HRF-based approach. In two cases, the Fourier analysis suggested activations where the conventional model did not. The noncanonical activations were almost always remote from the presumed generator of epileptiform activity. In the majority of cases with noncanonical responses, the noncanonical responses in single-voxel clusters were suggestive of artifacts. We did not find evidence for IED-related noncanonical HRFs arising from areas of pathology, suggesting that the BOLD response to IED is primarily canonical. Noncanonical responses may represent a number of phenomena, including artefacts and propagated epileptiform activity. Hum Brain Mapp 2008. © 2007 Wiley-Liss, Inc. PMID:17510926

  16. Comparison of BOLD, diffusion-weighted fMRI and ADC-fMRI for stimulation of the primary visual system with a block paradigm.

    PubMed

    Nicolas, R; Gros-Dagnac, H; Aubry, F; Celsis, P

    2017-06-01

    The blood oxygen level-dependent (BOLD) effect is extensively used for functional MRI (fMRI) but presents some limitations. Diffusion-weighted fMRI (DfMRI) has been proposed as a method more tightly linked to neuronal activity. This work proposes a protocol of DfMRI acquired for several b-values and diffusion directions that is compared to gradient-echo BOLD (GE-BOLD) and to repeated spin-echo BOLD (SE-BOLD, acquisitions performed with b=0s/mm 2 ), which was also used to ensure the reproducibility of the response. A block stimulation paradigm of the primary visual system (V1) was performed in 12 healthy subjects with checkerboard alternations (2Hz frequency). DfMRI was performed at 3T with 5 b-values (b=1500, 1000, 500, 250, 0s/mm 2 ) with TR/TE=1004/93ms, Δ/δ=45.4ms/30ms, and 6 spatial directions for diffusion measures. GE-BOLD was performed with a similar block stimulation design timing. Apparent Diffusion Coefficient (ADC)-fMRI was computed with all b-values used. An identical Z-score level was used for all fMRI modalities for the comparison of volumes of activation. ADC-fMRI and SE-BOLD fMRI activation locations were compared in a voxel-based analysis to a cytoarchitectural probability map of V1. SE-BOLD activation volumes represented only 55% of the GE-BOLD activation volumes (P<0.0001). DfMRI activation volumes averaged for all b-values acquired represented only 12% of GE-BOLD (P<0.0001) and only 22% of SE-BOLD activation volumes (P<0.005). Compared to SE-BOLD-fMRI, ADC-fMRI activations showed fewer pixels outside of V1 and a higher average probability of belonging to V1. DfMRI and ADC-fMRI acquisition at 3T could be easily post-processed with common neuro-imaging software. DfMRI and ADC-fMRI activation volumes were significantly smaller than those obtained with SE-BOLD. ADC-fMRI activations were more precisely localized in V1 than those of SE-BOLD-fMRI. This validated the increased capability of ADC-fMRI compared to BOLD to enhance the precision of localizing an fMRI activation in the cyto-architectural zone V1, thereby justifying the use of ADC-fMRI for neuro-scientific studies. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. The apéritif effect: alcohol's effects on the brain's response to food aromas in women

    PubMed Central

    Eiler, William J.A.; Džemidžić, Mario; Case, K. Rose; Soeurt, Christina M.; Armstrong, Cheryl L.H.; Mattes, Richard D.; O'Connor, Sean J.; Harezlak, Jaroslaw; Acton, Anthony J.; Considine, Robert V.; Kareken, David A.

    2015-01-01

    Objective Consuming alcohol prior to a meal (an apéritif) increases food consumption. This greater food consumption may result from increased activity in brain regions that mediate reward and regulate feeding behavior. Using functional magnetic resonance imaging, we evaluated the blood oxygenation level dependent (BOLD) response to the food aromas of either roast beef or Italian meat sauce following pharmacokinetically controlled intravenous infusion of alcohol. Methods BOLD activation to food aromas in non-obese women (n=35) was evaluated once during intravenous infusion of 6% v/v EtOH, clamped at a steady-state breath alcohol concentration of 50 mg/dL, and once during infusion of saline using matching pump rates. Ad libitum intake of roast beef with noodles or Italian meat sauce with pasta following imaging was recorded. Results BOLD activation to food relative to non-food odors in the hypothalamic area was increased during alcohol pre-load when compared to saline. Food consumption was significantly greater, and levels of ghrelin were reduced, following alcohol. Conclusions An alcohol pre-load increased food consumption and potentiated differences between food and non-food BOLD responses in the region of the hypothalamus. The hypothalamus may mediate the interplay of alcohol and responses to food cues, thus playing a role in the apéritif phenomenon. PMID:26110891

  18. Do brain responses to emotional images and cigarette cues differ? An fMRI study in smokers

    PubMed Central

    Versace, Francesco; Engelmann, Jeffrey M.; Jackson, Edward F.; Costa, Vincent D.; Robinson, Jason D.; Lam, Cho Y.; Minnix, Jennifer A.; Brown, Victoria L.; Cinciripini, Paul M.

    2011-01-01

    Chronic smoking is thought to cause changes in brain reward systems that result in overvaluation of cigarette-related stimuli and undervaluation of natural rewards. We tested the hypotheses that, in smokers, brain circuits involved in emotional processing 1) would be more active during exposure to cigarette-related than neutral pictures, and 2) would be less active to pleasant compared to cigarette-related pictures, suggesting a devaluation of intrinsically pleasant stimuli. We obtained whole brain blood-oxygenation-level-dependent functional magnetic resonance imaging (BOLD fMRI) data from 35 smokers during the presentation of pleasant (erotica and romance), unpleasant (mutilations and sad), neutral, and cigarette-related pictures. Whole brain analyses showed significantly larger BOLD responses during presentation of cigarette-related pictures relative to neutral ones within the secondary visual areas, the cingulate gyrus, the frontal gyrus, the dorsal striatum, and the left insula. BOLD responses to erotic pictures exceeded responses to cigarette-related pictures in all clusters except the insula. Within the left insula we observed larger BOLD responses to cigarette-related pictures than to all other picture categories. By including intrinsically pleasant and unpleasant pictures in addition to neutral ones, we were able to conclude that the presentation of cigarette-related pictures activates brain areas supporting emotional processes, but we did not find evidence of overall reduced activation of the brain reward systems in the presence of intrinsically pleasant stimuli. PMID:22097928

  19. Is brain response to food rewards related to overeating? A test of the reward surfeit model of overeating in children.

    PubMed

    Adise, Shana; Geier, Charles F; Roberts, Nicole J; White, Corey N; Keller, Kathleen L

    2018-06-08

    The reward surfeit model of overeating suggests that heightened brain response to rewards contributes to overeating and subsequent weight gain. However, previous studies have not tested whether brain response to reward is associated with food intake, particularly during childhood, a period of dynamic development in reward and inhibitory control neurocircuitry. We conducted functional magnetic resonance imaging (fMRI) with 7-11-year-old children (n = 59; healthy weight, n = 31; overweight, n = 28; 54% female) while they played a modified card-guessing paradigm to examine blood-oxygen-level-dependent (BOLD) response to anticipating and winning rewards (food, money, neutral). Food intake was assessed at three separate meals that measured different facets of eating behavior: 1) typical consumption (baseline), 2) overindulgence (palatable buffet), and 3) eating in the absence of hunger (EAH). A priori regions of interest included regions implicated in both reward processing and inhibitory control. Multiple stepwise regressions were conducted to examine the relationship between intake and BOLD response to rewards. Corrected results showed that a greater BOLD response in the medial prefrontal cortex for anticipating food compared to money positively correlated with how much children ate at the baseline and palatable buffet meals. BOLD response in the dorsolateral prefrontal cortex for winning food compared to money was positively correlated with intake at the palatable buffet meal and EAH. All aforementioned relationships were independent of child weight status. Findings support the reward surfeit model by showing that increased brain response to food compared to money rewards positively correlates with laboratory measures of food intake in children. Copyright © 2018. Published by Elsevier Ltd.

  20. BOLD Response to Semantic and Syntactic Processing during Hypoglycemia Is Load-Dependent

    ERIC Educational Resources Information Center

    Schafer, Robin J.; Page, Kathleen A.; Arora, Jagriti; Sherwin, Robert; Constable, R. Todd

    2012-01-01

    This study investigates how syntactic and semantic load factors impact sentence comprehension and BOLD signal under moderate hypoglycemia. A dual session, whole brain fMRI study was conducted on 16 healthy participants using the glucose clamp technique. In one session, they experienced insulin-induced hypoglycemia (plasma glucose at [image…

  1. Neurochemical and BOLD responses during neuronal activation measured in the human visual cortex at 7 Tesla

    PubMed Central

    Bednařík, Petr; Tkáč, Ivan; Giove, Federico; DiNuzzo, Mauro; Deelchand, Dinesh K; Emir, Uzay E; Eberly, Lynn E; Mangia, Silvia

    2015-01-01

    Several laboratories have consistently reported small concentration changes in lactate, glutamate, aspartate, and glucose in the human cortex during prolonged stimuli. However, whether such changes correlate with blood oxygenation level–dependent functional magnetic resonance imaging (BOLD-fMRI) signals have not been determined. The present study aimed at characterizing the relationship between metabolite concentrations and BOLD-fMRI signals during a block-designed paradigm of visual stimulation. Functional magnetic resonance spectroscopy (fMRS) and fMRI data were acquired from 12 volunteers. A short echo-time semi-LASER localization sequence optimized for 7 Tesla was used to achieve full signal-intensity MRS data. The group analysis confirmed that during stimulation lactate and glutamate increased by 0.26±0.06 μmol/g (~30%) and 0.28±0.03 μmol/g (~3%), respectively, while aspartate and glucose decreased by 0.20±0.04 μmol/g (~5%) and 0.19±0.03 μmol/g (~16%), respectively. The single-subject analysis revealed that BOLD-fMRI signals were positively correlated with glutamate and lactate concentration changes. The results show a linear relationship between metabolic and BOLD responses in the presence of strong excitatory sensory inputs, and support the notion that increased functional energy demands are sustained by oxidative metabolism. In addition, BOLD signals were inversely correlated with baseline γ-aminobutyric acid concentration. Finally, we discussed the critical importance of taking into account linewidth effects on metabolite quantification in fMRS paradigms. PMID:25564236

  2. Calibrated FMRI.

    PubMed

    Hoge, Richard D

    2012-08-15

    Functional magnetic resonance imaging with blood oxygenation level-dependent (BOLD) contrast has had a tremendous influence on human neuroscience in the last twenty years, providing a non-invasive means of mapping human brain function with often exquisite sensitivity and detail. However the BOLD method remains a largely qualitative approach. While the same can be said of anatomic MRI techniques, whose clinical and research impact has not been diminished in the slightest by the lack of a quantitative interpretation of their image intensity, the quantitative expression of BOLD responses as a percent of the baseline T2*- weighted signal has been viewed as necessary since the earliest days of fMRI. Calibrated MRI attempts to dissociate changes in oxygen metabolism from changes in blood flow and volume, the latter three quantities contributing jointly to determine the physiologically ambiguous percent BOLD change. This dissociation is typically performed using a "calibration" procedure in which subjects inhale a gas mixture containing small amounts of carbon dioxide or enriched oxygen to produce changes in blood flow and BOLD signal which can be measured under well-defined hemodynamic conditions. The outcome is a calibration parameter M which can then be substituted into an expression providing the fractional change in oxygen metabolism given changes in blood flow and BOLD signal during a task. The latest generation of calibrated MRI methods goes beyond fractional changes to provide absolute quantification of resting-state oxygen consumption in micromolar units, in addition to absolute measures of evoked metabolic response. This review discusses the history, challenges, and advances in calibrated MRI, from the personal perspective of the author. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Increasing measurement accuracy of age-related BOLD signal change: minimizing vascular contributions by resting-state-fluctuation-of-amplitude scaling.

    PubMed

    Kannurpatti, Sridhar S; Motes, Michael A; Rypma, Bart; Biswal, Bharat B

    2011-07-01

    In this report we demonstrate a hemodynamic scaling method with resting-state fluctuation of amplitude (RSFA) in healthy adult younger and older subject groups. We show that RSFA correlated with breath hold (BH) responses throughout the brain in groups of younger and older subjects which RSFA and BH performed comparably in accounting for age-related hemodynamic coupling changes, and yielded more veridical estimates of age-related differences in task-related neural activity. BOLD data from younger and older adults performing motor and cognitive tasks were scaled using RSFA and BH related signal changes. Scaling with RSFA and BH reduced the skew of the BOLD response amplitude distribution in each subject and reduced mean BOLD amplitude and variability in both age groups. Statistically significant differences in intrasubject amplitude variation across regions of activated cortex, and intersubject amplitude variation in regions of activated cortex were observed between younger and older subject groups. Intra- and intersubject variability differences were mitigated after scaling. RSFA, though similar to BH in minimizing skew in the unscaled BOLD amplitude distribution, attenuated the neural activity-related BOLD amplitude significantly less than BH. The amplitude and spatial extent of group activation were lower in the older than in the younger group before and after scaling. After accounting for vascular variability differences through scaling, age-related decreases in activation volume were observed during the motor and cognitive tasks. The results suggest that RSFA-scaled data yield age-related neural activity differences during task performance with negligible effects from non-neural (i.e., vascular) sources. Copyright © 2010 Wiley-Liss, Inc.

  4. Comparison of block and event-related experimental designs in diffusion-weighted functional MRI.

    PubMed

    Williams, Rebecca J; McMahon, Katie L; Hocking, Julia; Reutens, David C

    2014-08-01

    To compare diffusion-weighted functional magnetic resonance imaging (DfMRI), a novel alternative to the blood oxygenation level-dependent (BOLD) contrast, in a functional MRI experiment. Nine participants viewed contrast reversing (7.5 Hz) black-and-white checkerboard stimuli using block and event-related paradigms. DfMRI (b = 1800 mm/s(2)) and BOLD sequences were acquired. Four parameters describing the observed signal were assessed: percent signal change, spatial extent of the activation, the Euclidean distance between peak voxel locations, and the time-to-peak of the best fitting impulse response for different paradigms and sequences. The BOLD conditions showed a higher percent signal change relative to DfMRI; however, event-related DfMRI showed the strongest group activation (t = 21.23, P < 0.0005). Activation was more diffuse and spatially closer to the BOLD response for DfMRI when the block design was used. DfMRIevent showed the shortest TTP (4.4 ± 0.88 sec). The hemodynamic contribution to DfMRI may increase with the use of block designs. © 2013 Wiley Periodicals, Inc.

  5. Infraslow Electroencephalographic and Dynamic Resting State Network Activity.

    PubMed

    Grooms, Joshua K; Thompson, Garth J; Pan, Wen-Ju; Billings, Jacob; Schumacher, Eric H; Epstein, Charles M; Keilholz, Shella D

    2017-06-01

    A number of studies have linked the blood oxygenation level dependent (BOLD) signal to electroencephalographic (EEG) signals in traditional frequency bands (δ, θ, α, β, and γ), but the relationship between BOLD and its direct frequency correlates in the infraslow band (<1 Hz) has been little studied. Previously, work in rodents showed that infraslow local field potentials play a role in functional connectivity, particularly in the dynamic organization of large-scale networks. To examine the relationship between infraslow activity and network dynamics in humans, direct current (DC) EEG and resting state magnetic resonance imaging data were acquired simultaneously. The DC EEG signals were correlated with the BOLD signal in patterns that resembled resting state networks. Subsequent dynamic analysis showed that the correlation between DC EEG and the BOLD signal varied substantially over time, even within individual subjects. The variation in DC EEG appears to reflect the time-varying contribution of different resting state networks. Furthermore, some of the patterns of DC EEG and BOLD correlation are consistent with previous work demonstrating quasiperiodic spatiotemporal patterns of large-scale network activity in resting state. These findings demonstrate that infraslow electrical activity is linked to BOLD fluctuations in humans and that it may provide a basis for large-scale organization comparable to that observed in animal studies.

  6. Infraslow Electroencephalographic and Dynamic Resting State Network Activity

    PubMed Central

    Grooms, Joshua K.; Thompson, Garth J.; Pan, Wen-Ju; Billings, Jacob; Schumacher, Eric H.; Epstein, Charles M.

    2017-01-01

    Abstract A number of studies have linked the blood oxygenation level dependent (BOLD) signal to electroencephalographic (EEG) signals in traditional frequency bands (δ, θ, α, β, and γ), but the relationship between BOLD and its direct frequency correlates in the infraslow band (<1 Hz) has been little studied. Previously, work in rodents showed that infraslow local field potentials play a role in functional connectivity, particularly in the dynamic organization of large-scale networks. To examine the relationship between infraslow activity and network dynamics in humans, direct current (DC) EEG and resting state magnetic resonance imaging data were acquired simultaneously. The DC EEG signals were correlated with the BOLD signal in patterns that resembled resting state networks. Subsequent dynamic analysis showed that the correlation between DC EEG and the BOLD signal varied substantially over time, even within individual subjects. The variation in DC EEG appears to reflect the time-varying contribution of different resting state networks. Furthermore, some of the patterns of DC EEG and BOLD correlation are consistent with previous work demonstrating quasiperiodic spatiotemporal patterns of large-scale network activity in resting state. These findings demonstrate that infraslow electrical activity is linked to BOLD fluctuations in humans and that it may provide a basis for large-scale organization comparable to that observed in animal studies. PMID:28462586

  7. Are personality differences in a small iteroparous mammal maintained by a life-history trade-off?

    PubMed Central

    Dammhahn, Melanie

    2012-01-01

    Despite increasing interest, animal personality is still a puzzling phenomenon. Several theoretical models have been proposed to explain intraindividual consistency and interindividual variation in behaviour, which have been primarily supported by qualitative data and simulations. Using an empirical approach, I tested predictions of one main life-history hypothesis, which posits that consistent individual differences in behaviour are favoured by a trade-off between current and future reproduction. Data on life-history were collected for individuals of a natural population of grey mouse lemurs (Microcebus murinus). Using open-field and novel-object tests, I quantified variation in activity, exploration and boldness for 117 individuals over 3 years. I found systematic variation in boldness between individuals of different residual reproductive value. Young males with low current but high expected future fitness were less bold than older males with high current fecundity, and males might increase in boldness with age. Females have low variation in assets and in boldness with age. Body condition was not related to boldness and only explained marginal variation in exploration. Overall, these data indicate that a trade-off between current and future reproduction might maintain personality variation in mouse lemurs, and thus provide empirical support of this life-history trade-off hypothesis. PMID:22398164

  8. Comparing cerebrovascular reactivity measured using BOLD and cerebral blood flow MRI: The effect of basal vascular tension on vasodilatory and vasoconstrictive reactivity

    PubMed Central

    Halani, Sheliza; Kwinta, Jonathan B.; Golestani, Ali M.; Khatamian, Yasha B.; Chen, J. Jean

    2016-01-01

    Cerebrovascular reactivity (CVR) is an important metric of cerebrovascular health. While the BOLD fMRI method in conjunction with carbon-dioxide (CO2) based vascular manipulation has been the most commonly used, the BOLD signal is not a direct measure of vascular changes, and the use of arterial-spin labeling (ASL) cerebral blood flow (CBF) imaging is increasingly advocated. Nonetheless, given the differing dependencies of BOLD and CBF on vascular baseline conditions and the diverse CO2 manipulation types currently used in the literature, knowledge of potential biases introduced by each technique is critical for the interpretation of CVR measurements. In this work, we use simultaneous BOLD-CBF acquisitions during both vasodilatory (hypercapnic) and vasoconstrictive (hypocapnic) stimuli to measure CVR. We further imposed different levels of baseline vascular tension by inducing hypercapnic and hypocapnic baselines, separately from normocapnia by 4 mm Hg. We saw significant and diverse dependencies on vascular stimulus and baseline condition in both BOLD and CBF CVR measurements: (i) BOLD-based CVR is more sensitive to basal vascular tension than CBF-based CVR; (ii) the use of a combination of vasodilatory and vasoconstrictive stimuli maximizes the sensitivity of CBF-based CVR to vascular tension changes; (iii) the BOLD and CBF vascular response delays are both significantly lengthened at predilated baseline. As vascular tension can often be altered by potential pathology, our findings are important considerations when interpreting CVR measurements in health and disease. PMID:25655446

  9. A functional MRI study of happy and sad affective states induced by classical music.

    PubMed

    Mitterschiffthaler, Martina T; Fu, Cynthia H Y; Dalton, Jeffrey A; Andrew, Christopher M; Williams, Steven C R

    2007-11-01

    The present study investigated the functional neuroanatomy of transient mood changes in response to Western classical music. In a pilot experiment, 53 healthy volunteers (mean age: 32.0; SD = 9.6) evaluated their emotional responses to 60 classical musical pieces using a visual analogue scale (VAS) ranging from 0 (sad) through 50 (neutral) to 100 (happy). Twenty pieces were found to accurately induce the intended emotional states with good reliability, consisting of 5 happy, 5 sad, and 10 emotionally unevocative, neutral musical pieces. In a subsequent functional magnetic resonance imaging (fMRI) study, the blood oxygenation level dependent (BOLD) signal contrast was measured in response to the mood state induced by each musical stimulus in a separate group of 16 healthy participants (mean age: 29.5; SD = 5.5). Mood state ratings during scanning were made by a VAS, which confirmed the emotional valence of the selected stimuli. Increased BOLD signal contrast during presentation of happy music was found in the ventral and dorsal striatum, anterior cingulate, parahippocampal gyrus, and auditory association areas. With sad music, increased BOLD signal responses were noted in the hippocampus/amygdala and auditory association areas. Presentation of neutral music was associated with increased BOLD signal responses in the insula and auditory association areas. Our findings suggest that an emotion processing network in response to music integrates the ventral and dorsal striatum, areas involved in reward experience and movement; the anterior cingulate, which is important for targeting attention; and medial temporal areas, traditionally found in the appraisal and processing of emotions. Copyright 2006 Wiley-Liss, Inc.

  10. Cortex-wide BOLD fMRI activity reflects locally-recorded slow oscillation-associated calcium waves.

    PubMed

    Schwalm, Miriam; Schmid, Florian; Wachsmuth, Lydia; Backhaus, Hendrik; Kronfeld, Andrea; Aedo Jury, Felipe; Prouvot, Pierre-Hugues; Fois, Consuelo; Albers, Franziska; van Alst, Timo; Faber, Cornelius; Stroh, Albrecht

    2017-09-15

    Spontaneous slow oscillation-associated slow wave activity represents an internally generated state which is characterized by alternations of network quiescence and stereotypical episodes of neuronal activity - slow wave events. However, it remains unclear which macroscopic signal is related to these active periods of the slow wave rhythm. We used optic fiber-based calcium recordings of local neural populations in cortex and thalamus to detect neurophysiologically defined slow calcium waves in isoflurane anesthetized rats. The individual slow wave events were used for an event-related analysis of simultaneously acquired whole-brain BOLD fMRI. We identified BOLD responses directly related to onsets of slow calcium waves, revealing a cortex-wide BOLD correlate: the entire cortex was engaged in this specific type of slow wave activity. These findings demonstrate a direct relation of defined neurophysiological events to a specific BOLD activity pattern and were confirmed for ongoing slow wave activity by independent component and seed-based analyses.

  11. Cortex-wide BOLD fMRI activity reflects locally-recorded slow oscillation-associated calcium waves

    PubMed Central

    Backhaus, Hendrik; Kronfeld, Andrea; Aedo Jury, Felipe; Prouvot, Pierre-Hugues; Fois, Consuelo; Albers, Franziska; van Alst, Timo

    2017-01-01

    Spontaneous slow oscillation-associated slow wave activity represents an internally generated state which is characterized by alternations of network quiescence and stereotypical episodes of neuronal activity - slow wave events. However, it remains unclear which macroscopic signal is related to these active periods of the slow wave rhythm. We used optic fiber-based calcium recordings of local neural populations in cortex and thalamus to detect neurophysiologically defined slow calcium waves in isoflurane anesthetized rats. The individual slow wave events were used for an event-related analysis of simultaneously acquired whole-brain BOLD fMRI. We identified BOLD responses directly related to onsets of slow calcium waves, revealing a cortex-wide BOLD correlate: the entire cortex was engaged in this specific type of slow wave activity. These findings demonstrate a direct relation of defined neurophysiological events to a specific BOLD activity pattern and were confirmed for ongoing slow wave activity by independent component and seed-based analyses. PMID:28914607

  12. Brain magnetic resonance imaging CO2 stress testing in adolescent postconcussion syndrome.

    PubMed

    Mutch, W Alan C; Ellis, Michael J; Ryner, Lawrence N; Ruth Graham, M; Dufault, Brenden; Gregson, Brian; Hall, Thomas; Bunge, Martin; Essig, Marco; Fisher, Joseph A; Duffin, James; Mikulis, David J

    2016-09-01

    OBJECT A neuroimaging assessment tool to visualize global and regional impairments in cerebral blood flow (CBF) and cerebrovascular responsiveness in individual patients with concussion remains elusive. Here the authors summarize the safety, feasibility, and results of brain CO2 stress testing in adolescents with postconcussion syndrome (PCS) and healthy controls. METHODS This study was approved by the Biomedical Research Ethics Board at the University of Manitoba. Fifteen adolescents with PCS and 17 healthy control subjects underwent anatomical MRI, pseudo-continuous arterial spin labeling MRI, and brain stress testing using controlled CO2 challenge and blood oxygen level-dependent (BOLD) MRI. Post hoc processing was performed using statistical parametric mapping to determine voxel-by-voxel regional resting CBF and cerebrovascular responsiveness of the brain to the CO2 stimulus (increase in BOLD signal) or the inverse (decrease in BOLD signal). Receiver operating characteristic (ROC) curves were generated to compare voxel counts categorized by control (0) or PCS (1). RESULTS Studies were well tolerated without any serious adverse events. Anatomical MRI was normal in all study participants. No differences in CO2 stimuli were seen between the 2 participant groups. No group differences in global mean CBF were detected between PCS patients and healthy controls. Patient-specific differences in mean regional CBF and CO2 BOLD responsiveness were observed in all PCS patients. The ROC curve analysis for brain regions manifesting a voxel response greater than and less than the control atlas (that is, abnormal voxel counts) produced an area under the curve of 0.87 (p < 0.0001) and 0.80 (p = 0.0003), respectively, consistent with a clinically useful predictive model. CONCLUSIONS Adolescent PCS is associated with patient-specific abnormalities in regional mean CBF and BOLD cerebrovascular responsiveness that occur in the setting of normal global resting CBF. Future prospective studies are warranted to examine the utility of brain MRI CO2 stress testing in the longitudinal assessment of acute sports-related concussion and PCS.

  13. Quantitative phenomenological model of the BOLD contrast mechanism

    NASA Astrophysics Data System (ADS)

    Dickson, John D.; Ash, Tom W. J.; Williams, Guy B.; Sukstanskii, Alexander L.; Ansorge, Richard E.; Yablonskiy, Dmitriy A.

    2011-09-01

    Different theoretical models of the BOLD contrast mechanism are used for many applications including BOLD quantification (qBOLD) and vessel size imaging, both in health and disease. Each model simplifies the system under consideration, making approximations about the structure of the blood vessel network and diffusion of water molecules through inhomogeneities in the magnetic field created by deoxyhemoglobin-containing blood vessels. In this study, Monte-Carlo methods are used to simulate the BOLD MR signal generated by diffusing water molecules in the presence of long, cylindrical blood vessels. Using these simulations we introduce a new, phenomenological model that is far more accurate over a range of blood oxygenation levels and blood vessel radii than existing models. This model could be used to extract physiological parameters of the blood vessel network from experimental data in BOLD-based experiments. We use our model to establish ranges of validity for the existing analytical models of Yablonskiy and Haacke, Kiselev and Posse, Sukstanskii and Yablonskiy (extended to the case of arbitrary time in the spin echo sequence) and Bauer et al. (extended to the case of randomly oriented cylinders). Although these models are shown to be accurate in the limits of diffusion under which they were derived, none of them is accurate for the whole physiological range of blood vessels radii and blood oxygenation levels. We also show the extent of systematic errors that are introduced due to the approximations of these models when used for BOLD signal quantification.

  14. The effect of consumption temperature on the homeostatic and hedonic responses to glucose ingestion in the hypothalamus and the reward system.

    PubMed

    van Opstal, Anna M; van den Berg-Huysmans, Annette A; Hoeksma, Marco; Blonk, Cor; Pijl, Hanno; Rombouts, Serge A R B; van der Grond, Jeroen

    2018-01-01

    Excessive consumption of sugar-sweetened beverages (SSBs) has been associated with obesity and related diseases. SSBs are often consumed cold, and both the energy content and temperature might influence the consumption behavior for SSBs. The main aim of this study was to elucidate whether consumption temperature and energy (i.e., glucose) content modulate homeostatic (hypothalamus) and reward [ventral tegmental area (VTA)] responses. Sixteen healthy men participated in our study [aged 18-25 y; body mass index (kg/m2): 20-23]. High-resolution functional magnetic resonance imaging data were collected after ingestion of 4 different study stimuli: plain tap water at room temperature (22°C), plain tap water at 0°C, a glucose-containing beverage (75 g glucose dissolved in 300 mL water) at 22°C, and a similar glucose drink at 0°C. Blood oxygen level-dependent (BOLD) changes from baseline (7 min preingestion) were analyzed over time in the hypothalamus and VTA for individual stimulus effects and for effects between stimuli. In the hypothalamus, water at 22°C led to a significantly increased BOLD response; all other stimuli resulted in a direct, significant decrease in BOLD response compared with baseline. In the VTA, a significantly decreased BOLD response compared with baseline was found after the ingestion of stimuli containing glucose at 0°C and 22°C. These responses were not significantly modulated by consumption temperature. The consumption of plain water did not have a significant VTA BOLD effect. Our data show that glucose at 22°C, glucose at 0°C, and water at 0°C lowered hypothalamic activity, which is associated with increased satiation. On the contrary, the consumption of water at room temperature increased activity. All stimuli led to a similar VTA response, which suggests that all drinks elicited a similar hedonic response. Our results indicate that, in addition to glucose, the low temperature at which SSBs are often consumed also leads to a response from the hypothalamus and might strengthen the response of the VTA. This trial was registered at www.clinicaltrials.gov as NCT03181217. © 2018 American Society for Nutrition. All rights reserved.

  15. Spatial nonuniformity of the resting CBF and BOLD responses to sevoflurane: in vivo study of normal human subjects with magnetic resonance imaging.

    PubMed

    Qiu, Maolin; Ramani, Ramachandran; Swetye, Michael; Constable, Robert Todd

    2008-12-01

    Pulsed arterial spin labeling magnetic resonance imaging (MRI) was performed to investigate the local coupling between resting regional cerebral blood flow (rCBF) and BOLD (blood oxygen level dependent) signal changes in 22 normal human subjects during the administration of 0.25 MAC (minimum alveolar concentration) sevoflurane. Two states were compared with subjects at rest: anesthesia and no-anesthesia. Regions of both significantly increased and decreased resting-state rCBF were observed. Increases were limited primarily to subcortical structures and insula, whereas, decreases were observed primarily in neocortical regions. No significant change was found in global CBF (gCBF). By simultaneously measuring rCBF and BOLD, region-specific anesthetic effects on the coupling between rCBF and BOLD were identified. Multiple comparisons of the agent-induced rCBF and BOLD changes demonstrated significant (P < 0.05) spatial variability in rCBF-BOLD coupling. The slope of the linear regression line for AC, where rCBF was increased by sevoflurane, was markedly smaller than the slope for those ROIs where rCBF was decreased by sevoflurane, indicating a bigger change in BOLD per unit change in rCBF in regions where rCBF was increased by sevoflurane. These results suggest that it would be inaccurate to use a global quantitative model to describe coupling across all brain regions and in all anesthesia conditions. The observed spatial nonuniformity of rCBF and BOLD signal changes suggests that any interpretation of BOLD fMRI data in the presence of an anesthetic requires consideration of these insights. Copyright 2007 Wiley-Liss, Inc.

  16. Magnetic susceptibility induced echo time shifts: Is there a bias in age-related fMRI studies?

    PubMed Central

    Ngo, Giang-Chau; Wong, Chelsea N.; Guo, Steve; Paine, Thomas; Kramer, Arthur F.; Sutton, Bradley P.

    2016-01-01

    Purpose To evaluate the potential for bias in functional MRI (fMRI) aging studies resulting from age-related differences in magnetic field distributions which can impact echo time and functional contrast. Materials and Methods Magnetic field maps were taken on 31 younger adults (age: 22 ± 2.9 years) and 46 older adults (age: 66 ± 4.5 years) on a 3 T scanner. Using the spatial gradients of the magnetic field map for each participant, an echo planar imaging (EPI) trajectory was simulated. The effective echo time, time at which the k-space trajectory is the closest to the center of k-space, was calculated. This was used to examine both within-subject and across-age-group differences in the effective echo time maps. The Blood Oxygenation Level Dependent (BOLD) percent signal change resulting from those echo time shifts was also calculated to determine their impact on fMRI aging studies. Result For a single subject, the effective echo time varied as much as ± 5 ms across the brain. An unpaired t-test between the effective echo time across age group resulted in significant differences in several regions of the brain (p<0.01). The difference in echo time was only approximately 1 ms, however which is not expected to have an important impact on BOLD fMRI percent signal change (< 4%). Conclusion Susceptibility-induced magnetic field gradients induce local echo time shifts in gradient echo fMRI images, which can cause variable BOLD sensitivity across the brain. However, the age-related differences in BOLD signal are expected to be small for an fMRI study at 3 T. PMID:27299727

  17. Neural correlates of value, risk, and risk aversion contributing to decision making under risk.

    PubMed

    Christopoulos, George I; Tobler, Philippe N; Bossaerts, Peter; Dolan, Raymond J; Schultz, Wolfram

    2009-10-07

    Decision making under risk is central to human behavior. Economic decision theory suggests that value, risk, and risk aversion influence choice behavior. Although previous studies identified neural correlates of decision parameters, the contribution of these correlates to actual choices is unknown. In two different experiments, participants chose between risky and safe options. We identified discrete blood oxygen level-dependent (BOLD) correlates of value and risk in the ventral striatum and anterior cingulate, respectively. Notably, increasing inferior frontal gyrus activity to low risk and safe options correlated with higher risk aversion. Importantly, the combination of these BOLD responses effectively decoded the behavioral choice. Striatal value and cingulate risk responses increased the probability of a risky choice, whereas inferior frontal gyrus responses showed the inverse relationship. These findings suggest that the BOLD correlates of decision factors are appropriate for an ideal observer to detect behavioral choices. More generally, these biological data contribute to the validity of the theoretical decision parameters for actual decisions under risk.

  18. To be so bold: boldness is repeatable and related to within individual behavioural variability in North Island robins.

    PubMed

    He, Ruchuan; Pagani-Núñez, Emilio; Chevallier, Clément; Barnett, Craig R A

    2017-07-01

    Behavioural research traditionally focusses on the mean responses of a group of individuals rather than variation in behaviour around the mean or among individuals. However, examining the variation in behaviour among and within individuals may also yield important insights into the evolution and maintenance of behaviour. Repeatability is the most commonly used measure of variability among individuals in behavioural research. However, there are other forms of variation within populations that have received less attention. One such measure is intraindividual variation in behaviour (IIV), which is a short-term fluctuation of within-individual behaviour. Such variation in behaviour might be important during interactions because it could decrease the ability of conspecific and heterospecific individuals to predict the behaviour of the subject, thus increasing the cost of the interaction. In this experiment, we made repeated measures of the latency of North Island robins to attack a prey in a novel situation (a form of boldness) and examined (i) repeatability of boldness (the propensity to take a risk), (ii) IIV of boldness, and (iii) whether there was a significant relationship between these two traits (a behavioural syndrome). We found that boldness was highly repeatable, that there were high levels of IIV in boldness, and that there was a negative relationship between boldness and IIV in boldness. This suggests that despite high levels of repeatability for this behaviour, there were also still significant differences in IIV among different individuals within the population. Moreover, bolder individuals had significantly less IIV in their boldness, which suggests that they were forming routines (which reduces behavioural variability) compared to shyer individuals. Our results definitively demonstrate that IIV itself varies across individuals and is linked with key behavioural traits, and we argue for the importance of future studies aimed at understanding its causes and consequences for behavioural interactions. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Individual-level behavioral responses of immature green turtles to snorkeler disturbance.

    PubMed

    Griffin, Lucas P; Brownscombe, Jacob W; Gagné, Tyler O; Wilson, Alexander D M; Cooke, Steven J; Danylchuk, Andy J

    2017-03-01

    Despite many positive benefits of ecotourism, increased human encounters with wildlife may have detrimental effects on wild animals. As charismatic megafauna, nesting and foraging sea turtles are increasingly the focus of ecotourism activities. The purpose of our study was to quantify the behavioral responses of immature green turtles (Chelonia mydas) to disturbance by snorkelers, and to investigate whether turtles have individual-level responses to snorkeler disturbance. Using a standardized disturbance stimulus in the field, we recorded turtle behaviors pre- and post-disturbance by snorkelers. Ninety percent of turtles disturbed by snorkeler (n = 192) initiated their flights at distances of ≤3 m. Using principal component analysis, we identified two distinct turtle personality types, 'bold' and 'timid', based upon 145 encounters of 19 individually identified turtles and five disturbance response variables. There was significant intra-individual repeatability in behavioral responses to disturbance, but bolder turtles had more behavioral plasticity and less consistent responses than more timid individuals. Bolder individuals with reduced evasion responses might be at a higher risk of shark predation, while more timid turtles might have greater energetic consequences due to non-lethal predator effects and repeated snorkeler disturbance. Over the longer term, a turtle population with a mix of bold and timid individuals may promote more resilient populations. We recommend that snorkelers maintain >3 m distance from immature green turtles when snorkeling, and that ecotourism activities be temporally and spatially stratified. Further, turtle watching guidelines need to be communicated to both tour operators and independent snorkelers to reduce the disturbance of turtles.

  20. How does experience modulate auditory spatial processing in individuals with blindness?

    PubMed

    Tao, Qian; Chan, Chetwyn C H; Luo, Yue-jia; Li, Jian-jun; Ting, Kin-hung; Wang, Jun; Lee, Tatia M C

    2015-05-01

    Comparing early- and late-onset blindness in individuals offers a unique model for studying the influence of visual experience on neural processing. This study investigated how prior visual experience would modulate auditory spatial processing among blind individuals. BOLD responses of early- and late-onset blind participants were captured while performing a sound localization task. The task required participants to listen to novel "Bat-ears" sounds, analyze the spatial information embedded in the sounds, and specify out of 15 locations where the sound would have been emitted. In addition to sound localization, participants were assessed on visuospatial working memory and general intellectual abilities. The results revealed common increases in BOLD responses in the middle occipital gyrus, superior frontal gyrus, precuneus, and precentral gyrus during sound localization for both groups. Between-group dissociations, however, were found in the right middle occipital gyrus and left superior frontal gyrus. The BOLD responses in the left superior frontal gyrus were significantly correlated with accuracy on sound localization and visuospatial working memory abilities among the late-onset blind participants. In contrast, the accuracy on sound localization only correlated with BOLD responses in the right middle occipital gyrus among the early-onset counterpart. The findings support the notion that early-onset blind individuals rely more on the occipital areas as a result of cross-modal plasticity for auditory spatial processing, while late-onset blind individuals rely more on the prefrontal areas which subserve visuospatial working memory.

  1. The time-course of cortico-limbic neural responses to air hunger.

    PubMed

    Binks, Andrew P; Evans, Karleyton C; Reed, Jeffrey D; Moosavi, Shakeeb H; Banzett, Robert B

    2014-12-01

    Several studies have mapped brain regions associated with acute dyspnea perception. However, the time-course of brain activity during sustained dyspnea is unknown. Our objective was to determine the time-course of neural activity when dyspnea is sustained. Eight healthy subjects underwent brain blood oxygen level dependent functional magnetic imaging (BOLD-fMRI) during mechanical ventilation with constant mild hypercapnia (∼ 45 mm Hg). Subjects rated dyspnea (air hunger) via visual analog scale (VAS). Tidal volume (V(T)) was alternated every 90 s between high VT (0.96 ± 0.23 L) that provided respiratory comfort (12 ± 6% full scale) and low V(T) (0.48 ± 0.08 L) which evoked air hunger (56 ± 11% full scale). BOLD signal was extracted from a priori brain regions and combined with VAS data to determine air hunger related neural time-course. Air hunger onset was associated with BOLD signal increases that followed two distinct temporal profiles within sub-regions of the anterior insula, anterior cingulate and prefrontal cortices (cortico-limbic circuitry): (1) fast, BOLD signal peak <30s and (2) slow, BOLD signal peak >40s. BOLD signal during air hunger offset followed fast and slow temporal profiles symmetrical, but inverse (signal decreases) to the time-courses of air hunger onset. We conclude that differential cortico-limbic circuit elements have unique contributions to dyspnea sensation over time. We suggest that previously unidentified sub-regions are responsible for either the acute awareness or maintenance of dyspnea. These data enhance interpretation of previous studies and inform hypotheses for future dyspnea research. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Increasing measurement accuracy of age-related BOLD signal change: Minimizing vascular contributions by resting-state-fluctuation-of-amplitude scaling

    PubMed Central

    Kannurpatti, Sridhar S.; Motes, Michael A.; Rypma, Bart; Biswal, Bharat B.

    2012-01-01

    In this report we demonstrate a hemodynamic scaling method with resting-state fluctuation of amplitude (RSFA) in healthy adult younger and older subject groups. We show that RSFA correlated with breath hold (BH) responses throughout the brain in groups of younger and older subjects, that RSFA and BH performed comparably in accounting for age-related hemodynamic coupling changes, and yielded more veridical estimates of age-related differences in task-related neural activity. BOLD data from younger and older adults performing motor and cognitive tasks were scaled using RSFA and BH related signal changes. Scaling with RSFA and BH reduced the skew of the BOLD response amplitude distribution in each subject and reduced mean BOLD amplitude and variability in both age groups. Statistically significant differences in intra-subject amplitude variation across regions of activated cortex, and inter-subject amplitude variation in regions of activated cortex were observed between younger and older subject groups. Intra- and inter-subject variability differences were mitigated after scaling. RSFA, though similar to BH in minimizing skew in the un-scaled BOLD amplitude distribution, attenuated the neural activity related BOLD amplitude significantly less than BH. The amplitude and spatial extent of group activation were lower in the older than in the younger group prior to and after scaling. After accounting for vascular variability differences through scaling, age-related decreases in activation volume were observed during the motor and cognitive tasks. The results suggest that RSFA-scaled data yield age-related neural activity differences during task performance with negligible effects from non-neural (i.e., vascular) sources. PMID:20665721

  3. Cerebral responses and role of the prefrontal cortex in conditioned pain modulation: an fMRI study in healthy subjects

    PubMed Central

    Bogdanov, Volodymyr B.; Viganò, Alessandro; Noirhomme, Quentin; Bogdanova, Olena V.; Guy, Nathalie; Laureys, Steven; Renshaw, Perry F.; Dallel, Radhouane; Phillips, Christophe; Schoenen, Jean

    2017-01-01

    The mechanisms underlying conditioned pain modulation (CPM) are multifaceted. We searched for a link between individual differences in prefrontal cortex activity during multi-trial heterotopic noxious cold conditioning and modulation of the cerebral response to phasic heat pain. In 24 healthy female subjects, we conditioned laser heat stimuli to the left hand by applying alternatively ice-cold or lukewarm compresses to the right foot. We compared pain ratings with cerebral fMRI BOLD responses. We also analyzed the relation between CPM and BOLD changes produced by the heterotopic cold conditioning itself, as well as the impact of anxiety and habituation of cold-pain ratings. Specific cerebral activation was identified in precuneus and left posterior insula/SII, respectively, during early and sustained phases of cold application. During cold conditioning, laser pain decreased (n = 7), increased (n = 10) or stayed unchanged (n = 7). At the individual level, the psychophysical effect was directly proportional to the cold-induced modulation of the laser-induced BOLD response in left posterior insula/SII. The latter correlated with the BOLD response recorded 80 s earlier during the initial 10-s phase of cold application in anterior cingulate, orbitofrontal and lateral prefrontal cortices. High anxiety and habituation of cold pain were associated with greater laser heat-induced pain during heterotopic cold stimulation. The habituation was also linked to the early cold-induced orbitofrontal responses. We conclude that individual differences in conditioned pain modulation are related to different levels of prefrontal cortical activation by the early part of the conditioning stimulus, possibly due to different levels in trait anxiety. PMID:25461267

  4. Is boldness a resource-holding potential trait? Fighting prowess and changes in startle response in the sea anemone, Actinia equina.

    PubMed

    Rudin, Fabian S; Briffa, Mark

    2012-05-22

    Contest theory predicts the evolution of a stable mixture of different strategies for fighting. Here, we investigate the possibility that stable between-individual differences in startle-response durations influence fighting ability or 'resource-holding potential' (RHP) in the beadlet sea anemone, Actinia equina. Both winners and losers showed significant repeatability of pre-fight startle-response durations but mean pre-fight startle-response durations were greater for eventual losers than for eventual winners, indicating that RHP varies with boldness. In particular, individuals with short startle responses inflicted more attacks on their opponent. Both repeatability and mean-level responses were changed by the experience of fighting, and these changes varied with outcome. In losers, repeatability was disrupted to a greater extent and the mean startle-response durations were subject to a greater increase than in winners. Thus, following a fight, this behavioural correlate of RHP behaves in a way similar to post-fight changes in physiological status, which can also vary between winners and losers. Understanding the links between aggression and boldness therefore has the potential to enhance our understanding of both the evolution of animal personality and the 'winner and loser effects' of post-fight changes in RHP.

  5. Oxygen Level and LFP in Task-Positive and Task-Negative Areas: Bridging BOLD fMRI and Electrophysiology

    PubMed Central

    Bentley, William J.; Li, Jingfeng M.; Snyder, Abraham Z.; Raichle, Marcus E.; Snyder, Lawrence H.

    2016-01-01

    The human default mode network (DMN) shows decreased blood oxygen level dependent (BOLD) signals in response to a wide range of attention-demanding tasks. Our understanding of the specifics regarding the neural activity underlying these “task-negative” BOLD responses remains incomplete. We paired oxygen polarography, an electrode-based oxygen measurement technique, with standard electrophysiological recording to assess the relationship of oxygen and neural activity in task-negative posterior cingulate cortex (PCC), a hub of the DMN, and visually responsive task-positive area V3 in the awake macaque. In response to engaging visual stimulation, oxygen, LFP power, and multi-unit activity in PCC showed transient activation followed by sustained suppression. In V3, oxygen, LFP power, and multi-unit activity showed an initial phasic response to the stimulus followed by sustained activation. Oxygen responses were correlated with LFP power in both areas, although the apparent hemodynamic coupling between oxygen level and electrophysiology differed across areas. Our results suggest that oxygen responses reflect changes in LFP power and multi-unit activity and that either the coupling of neural activity to blood flow and metabolism differs between PCC and V3 or computing a linear transformation from a single LFP band to oxygen level does not capture the true physiological process. PMID:25385710

  6. Neuronal current magnetic resonance imaging of evoked potentials and neural oscillations

    NASA Astrophysics Data System (ADS)

    Jiang, Xia

    Despite its great success, the current functional magnetic resonance imaging (MRI) technique relies on changes in cerebral hemodynamic parameters to infer the underlying neural activities, and as a result is limited in its spatial and temporal resolutions. In this dissertation, we discuss the feasibility of neuronal current MRI (nc-MRI), a novel technique in which the small magnetic field changes caused by neuronal electrical activities are directly measured by MRI. Two studies are described. In the first study, we investigated the feasibility of detecting the magnetic field produced by sensory evoked potentials. To eliminate the blood-oxygen-level-dependent (BOLD) effect on the MRI signal, which confounded most previous studies, an octopus visual system model was developed, which, for the first time, allowed for an in vivo investigation of nc-MRI in a BOLD-free environment. Electrophysiological responses were measured in the octopus retina and optical lobe to guide the nc-MRI acquisition. Our results indicated that no nc-MRI signal change related to neuronal activation could be detected at 0.2°/0.2% threshold for signal phase/magnitude respectively, while robust electrophysiological responses were recorded. In the second study, we discuss the feasibility of detecting neural oscillations with MRI, Based on previous studies, a novel approach was proposed in which an external oscillatory field was exploited as the excitation pulse under a spin-locked condition. This approach has the advantages of increased sensitivity and lowered physiological noise. Successful detection of sub-nanotesla field was demonstrated in phantom. Our results suggest that evoked potentials are too weak for nc-MRI detection with the current hardware, and that previous positive findings were likely due to hemodynamic confounders. On the other hand, oscillatory magnetic field can be efficiently detected in phantom. Given the stronger equivalent current dipoles produced by neural oscillations compared to evoked potentials, they might be a more promising candidate for future nc-MRI studies.

  7. fMRI: blood oxygen level-dependent activation during a working memory-selective attention task in children born extremely preterm.

    PubMed

    Griffiths, Silja Torvik; Gundersen, Hilde; Neto, Emanuel; Elgen, Irene; Markestad, Trond; Aukland, Stein M; Hugdahl, Kenneth

    2013-08-01

    Extremely preterm (EPT)/extremely low-birth-weight (ELBW) children attaining school age and adolescence often have problems with executive functions such as working memory and selective attention. Our aim was to investigate a hypothesized difference in blood oxygen level-dependent (BOLD) activation during a selective attention-working memory task in EPT/ELBW children as compared with term-born controls. A regional cohort of 28 EPT/ELBW children and 28 term-born controls underwent functional magnetic resonance imaging (fMRI) scanning at 11 y of age while performing a combined Stroop n-back task. Group differences in BOLD activation were analyzed with Statistical Parametric Mapping 8 analysis software package, and reaction times (RTs) and response accuracy (RA) were compared in a multifactorial ANOVA test. The BOLD activation pattern in the preterm group involved the same areas (cingulate, prefrontal, and parietal cortexes), but all areas displayed significantly less activation than those in the control group, particularly when the cognitive load was increased. The RA results corresponded with the activation data in that the preterm group had significantly fewer correct responses. No group difference was found regarding RTs. Children born EPT/ELBW displayed reduced working memory and selective attention capacity as compared with term-born controls. These impairments had neuronal correlates with reduced BOLD activation in areas responsible for online stimulus monitoring, working memory, and cognitive control.

  8. Characterizing “fibrofog”: Subjective appraisal, objective performance, and task-related brain activity during a working memory task

    PubMed Central

    Walitt, Brian; Čeko, Marta; Khatiwada, Manish; Gracely, John L.; Rayhan, Rakib; VanMeter, John W.; Gracely, Richard H.

    2016-01-01

    The subjective experience of cognitive dysfunction (“fibrofog”) is common in fibromyalgia. This study investigated the relation between subjective appraisal of cognitive function, objective cognitive task performance, and brain activity during a cognitive task using functional magnetic resonance imaging (fMRI). Sixteen fibromyalgia patients and 13 healthy pain-free controls completed a battery of questionnaires, including the Multiple Ability Self-Report Questionnaire (MASQ), a measure of self-perceived cognitive difficulties. Participants were evaluated for working memory performance using a modified N-back working memory task while undergoing Blood Oxygen Level Dependent (BOLD) fMRI measurements. Fibromyalgia patients and controls did not differ in working memory performance. Subjective appraisal of cognitive function was associated with better performance (accuracy) on the working memory task in healthy controls but not in fibromyalgia patients. In fibromyalgia patients, increased perceived cognitive difficulty was positively correlated with the severity of their symptoms. BOLD response during the working memory task did not differ between the groups. BOLD response correlated with task accuracy in control subjects but not in fibromyalgia patients. Increased subjective cognitive impairment correlated with decreased BOLD response in both groups but in different anatomic regions. In conclusion, “fibrofog” appears to be better characterized by subjective rather than objective impairment. Neurologic correlates of this subjective experience of impairment might be separate from those involved in the performance of cognitive tasks. PMID:26955513

  9. Characterizing "fibrofog": Subjective appraisal, objective performance, and task-related brain activity during a working memory task.

    PubMed

    Walitt, Brian; Čeko, Marta; Khatiwada, Manish; Gracely, John L; Rayhan, Rakib; VanMeter, John W; Gracely, Richard H

    2016-01-01

    The subjective experience of cognitive dysfunction ("fibrofog") is common in fibromyalgia. This study investigated the relation between subjective appraisal of cognitive function, objective cognitive task performance, and brain activity during a cognitive task using functional magnetic resonance imaging (fMRI). Sixteen fibromyalgia patients and 13 healthy pain-free controls completed a battery of questionnaires, including the Multiple Ability Self-Report Questionnaire (MASQ), a measure of self-perceived cognitive difficulties. Participants were evaluated for working memory performance using a modified N-back working memory task while undergoing Blood Oxygen Level Dependent (BOLD) fMRI measurements. Fibromyalgia patients and controls did not differ in working memory performance. Subjective appraisal of cognitive function was associated with better performance (accuracy) on the working memory task in healthy controls but not in fibromyalgia patients. In fibromyalgia patients, increased perceived cognitive difficulty was positively correlated with the severity of their symptoms. BOLD response during the working memory task did not differ between the groups. BOLD response correlated with task accuracy in control subjects but not in fibromyalgia patients. Increased subjective cognitive impairment correlated with decreased BOLD response in both groups but in different anatomic regions. In conclusion, "fibrofog" appears to be better characterized by subjective rather than objective impairment. Neurologic correlates of this subjective experience of impairment might be separate from those involved in the performance of cognitive tasks.

  10. Heritability of boldness and aggressiveness in the zebrafish.

    PubMed

    Ariyomo, Tolulope O; Carter, Mauricio; Watt, Penelope J

    2013-03-01

    Behavioural traits that are consistent over time and in different contexts are often referred to as personality traits. These traits influence fitness because they play a major role in foraging, reproduction and survival, and so it is assumed that they have little or no additive genetic variance and, consequently, low heritability because, theoretically, they are under strong selection. Boldness and aggressiveness are two personality traits that have been shown to affect fitness. By crossing single males to multiple females, we estimated the heritability of boldness and aggressiveness in the zebrafish, Danio rerio. The additive genetic variance was statistically significant for both traits and the heritability estimates (95 % confidence intervals) for boldness and aggressiveness were 0.76 (0.49, 0.90) and 0.36 (0.10, 0.72) respectively. Furthermore, there were significant maternal effects accounting for 18 and 9 % of the proportion of phenotypic variance in boldness and aggressiveness respectively. This study shows that there is a significant level of genetic variation in this population that would allow these traits to evolve in response to selection.

  11. Individual personality differences in Port Jackson sharks Heterodontus portusjacksoni.

    PubMed

    Byrnes, E E; Brown, C

    2016-08-01

    This study examined interindividual personality differences between Port Jackson sharks Heterodontus portusjacksoni utilizing a standard boldness assay. Additionally, the correlation between differences in individual boldness and stress reactivity was examined, exploring indications of individual coping styles. Heterodontus portusjacksoni demonstrated highly repeatable individual differences in boldness and stress reactivity. Individual boldness scores were highly repeatable across four trials such that individuals that were the fastest to emerge in the first trial were also the fastest to emerge in subsequent trials. Additionally, individuals that were the most reactive to a handling stressor in the first trial were also the most reactive in a second trial. The strong link between boldness and stress response commonly found in teleosts was also evident in this study, providing evidence of proactive-reactive coping styles in H. portusjacksoni. These results demonstrate the presence of individual personality differences in sharks for the first time. Understanding how personality influences variation in elasmobranch behaviour such as prey choice, habitat use and activity levels is critical to better managing these top predators which play important ecological roles in marine ecosystems. © 2016 The Fisheries Society of the British Isles.

  12. Shock-like haemodynamic responses induced in the primary visual cortex by moving visual stimuli

    PubMed Central

    Robinson, P. A.

    2016-01-01

    It is shown that recently discovered haemodynamic waves can form shock-like fronts when driven by stimuli that excite the cortex in a patch that moves faster than the haemodynamic wave velocity. If stimuli are chosen in order to induce shock-like behaviour, the resulting blood oxygen level-dependent (BOLD) response is enhanced, thereby improving the signal to noise ratio of measurements made with functional magnetic resonance imaging. A spatio-temporal haemodynamic model is extended to calculate the BOLD response and determine the main properties of waves induced by moving stimuli. From this, the optimal conditions for stimulating shock-like responses are determined, and ways of inducing these responses in experiments are demonstrated in a pilot study. PMID:27974572

  13. Cortical lamina-dependent blood volume changes in human brain at 7 T.

    PubMed

    Huber, Laurentius; Goense, Jozien; Kennerley, Aneurin J; Trampel, Robert; Guidi, Maria; Reimer, Enrico; Ivanov, Dimo; Neef, Nicole; Gauthier, Claudine J; Turner, Robert; Möller, Harald E

    2015-02-15

    Cortical layer-dependent high (sub-millimeter) resolution functional magnetic resonance imaging (fMRI) in human or animal brain can be used to address questions regarding the functioning of cortical circuits, such as the effect of different afferent and efferent connectivities on activity in specific cortical layers. The sensitivity of gradient echo (GE) blood oxygenation level-dependent (BOLD) responses to large draining veins reduces its local specificity and can render the interpretation of the underlying laminar neural activity impossible. The application of the more spatially specific cerebral blood volume (CBV)-based fMRI in humans has been hindered by the low sensitivity of the noninvasive modalities available. Here, a vascular space occupancy (VASO) variant, adapted for use at high field, is further optimized to capture layer-dependent activity changes in human motor cortex at sub-millimeter resolution. Acquired activation maps and cortical profiles show that the VASO signal peaks in gray matter at 0.8-1.6mm depth, and deeper compared to the superficial and vein-dominated GE-BOLD responses. Validation of the VASO signal change versus well-established iron-oxide contrast agent based fMRI methods in animals showed the same cortical profiles of CBV change, after normalization for lamina-dependent baseline CBV. In order to evaluate its potential of revealing small lamina-dependent signal differences due to modulations of the input-output characteristics, layer-dependent VASO responses were investigated in the ipsilateral hemisphere during unilateral finger tapping. Positive activation in ipsilateral primary motor cortex and negative activation in ipsilateral primary sensory cortex were observed. This feature is only visible in high-resolution fMRI where opposing sides of a sulcus can be investigated independently because of a lack of partial volume effects. Based on the results presented here, we conclude that VASO offers good reproducibility, high sensitivity and lower sensitivity than GE-BOLD to changes in larger vessels, making it a valuable tool for layer-dependent fMRI studies in humans. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Bold-line Monte Carlo and the nonequilibrium physics of strongly correlated many-body systems

    NASA Astrophysics Data System (ADS)

    Cohen, Guy

    2015-03-01

    This talk summarizes real time bold-line diagrammatic Monte-Carlo approaches to quantum impurity models, which make significant headway against the sign problem by summing over corrections to self-consistent diagrammatic expansions rather than a bare diagrammatic series. When the bold-line method is combined with reduced dynamics techniques both local single-time properties and two time correlators such as Green functions can be computed at very long timescales, enabling studies of nonequilibrium steady state behavior of quantum impurity models and creating new solvers for nonequilibrium dynamical mean field theory. This work is supported by NSF DMR 1006282, NSF CHE-1213247, DOE ER 46932, TG-DMR120085 and TG-DMR130036, and the Yad Hanadiv-Rothschild Foundation.

  15. Agreement and repeatability of vascular reactivity estimates based on a breath-hold task and a resting state scan.

    PubMed

    Lipp, Ilona; Murphy, Kevin; Caseras, Xavier; Wise, Richard G

    2015-06-01

    FMRI BOLD responses to changes in neural activity are influenced by the reactivity of the vasculature. By complementing a task-related BOLD acquisition with a vascular reactivity measure obtained through breath-holding or hypercapnia, this unwanted variance can be statistically reduced in the BOLD responses of interest. Recently, it has been suggested that vascular reactivity can also be estimated using a resting state scan. This study aimed to compare three breath-hold based analysis approaches (block design, sine-cosine regressor and CO2 regressor) and a resting state approach (CO2 regressor) to measure vascular reactivity. We tested BOLD variance explained by the model and repeatability of the measures. Fifteen healthy participants underwent a breath-hold task and a resting state scan with end-tidal CO2 being recorded during both. Vascular reactivity was defined as CO2-related BOLD percent signal change/mmHg change in CO2. Maps and regional vascular reactivity estimates showed high repeatability when the breath-hold task was used. Repeatability and variance explained by the CO2 trace regressor were lower for the resting state data based approach, which resulted in highly variable measures of vascular reactivity. We conclude that breath-hold based vascular reactivity estimations are more repeatable than resting-based estimates, and that there are limitations with replacing breath-hold scans by resting state scans for vascular reactivity assessment. Copyright © 2015. Published by Elsevier Inc.

  16. Activation of Neural Pathways Associated with Sexual Arousal in Non-Human Primates

    PubMed Central

    Ferris, Craig F.; Snowdon, Charles T.; King, Jean A.; Sullivan, John M.; Ziegler, Toni E.; Olson, David P.; Schultz-Darken, Nancy J.; Tannenbaum, Pamela L.; Ludwig, Reinhold; Wu, Ziji; Einspanier, Almuth; Vaughan, J. Thomas; Duong, Timothy Q.

    2006-01-01

    Purpose To evaluate brain activity associated with sexual arousal, fully conscious male marmoset monkeys were imaged during presentation of odors that naturally elicit high levels of sexual activity and sexual motivation. Material and Methods Male monkeys were lightly anesthetized, secured in a head and body restrainer with a built-in birdcage resonator and positioned in a 9.4-Tesla spectrometer. When fully conscious, monkeys were presented with the odors of a novel receptive female or an ovariectomized monkey. Both odors were presented during an imaging trial and the presentation of odors was counterbalanced. Significant changes in both positive and negative BOLD signal were mapped and averaged. Results Periovulatory odors significantly increased positive BOLD signal in several cortical areas: the striatum, hippocampus, septum, periaqueductal gray, and cerebellum, in comparison with odors from ovariectomized monkeys. Conversely, negative BOLD signal was significantly increased in the temporal cortex, cingulate cortex, putamen, hippocampus, substantia nigra, medial preoptic area, and cerebellum with presentation of odors from ovariectomized marmosets as compared to periovulatory odors. A common neural circuit comprising the temporal and cingulate cortices, putamen, hippocampus, medial preoptic area, and cerebellum shared both the positive BOLD response to periovulatory odors and the negative BOLD response to odors of ovariectomized females. Conclusion These data suggest the odor-driven enhancement and suppression of sexual arousal affect neuronal activity in many of the same general brain areas. These areas included not only those associated with sexual activity, but also areas involved in emotional processing and reward. PMID:14745749

  17. Agreement and repeatability of vascular reactivity estimates based on a breath-hold task and a resting state scan

    PubMed Central

    Lipp, Ilona; Murphy, Kevin; Caseras, Xavier; Wise, Richard G.

    2015-01-01

    FMRI BOLD responses to changes in neural activity are influenced by the reactivity of the vasculature. By complementing a task-related BOLD acquisition with a vascular reactivity measure obtained through breath-holding or hypercapnia, this unwanted variance can be statistically reduced in the BOLD responses of interest. Recently, it has been suggested that vascular reactivity can also be estimated using a resting state scan. This study aimed to compare three breath-hold based analysis approaches (block design, sine–cosine regressor and CO2 regressor) and a resting state approach (CO2 regressor) to measure vascular reactivity. We tested BOLD variance explained by the model and repeatability of the measures. Fifteen healthy participants underwent a breath-hold task and a resting state scan with end-tidal CO2 being recorded during both. Vascular reactivity was defined as CO2-related BOLD percent signal change/mm Hg change in CO2. Maps and regional vascular reactivity estimates showed high repeatability when the breath-hold task was used. Repeatability and variance explained by the CO2 trace regressor were lower for the resting state data based approach, which resulted in highly variable measures of vascular reactivity. We conclude that breath-hold based vascular reactivity estimations are more repeatable than resting-based estimates, and that there are limitations with replacing breath-hold scans by resting state scans for vascular reactivity assessment. PMID:25795342

  18. Express yourself: bold individuals induce enhanced morphological defences

    PubMed Central

    Hulthén, Kaj; Chapman, Ben B.; Nilsson, P. Anders; Hollander, Johan; Brönmark, Christer

    2014-01-01

    Organisms display an impressive array of defence strategies in nature. Inducible defences (changes in morphology and/or behaviour within a prey's lifetime) allow prey to decrease vulnerability to predators and avoid unnecessary costs of expression. Many studies report considerable interindividual variation in the degree to which inducible defences are expressed, yet what underlies this variation is poorly understood. Here, we show that individuals differing in a key personality trait also differ in the magnitude of morphological defence expression. Crucian carp showing risky behaviours (bold individuals) expressed a significantly greater morphological defence response when exposed to a natural enemy when compared with shy individuals. Furthermore, we show that fish of different personality types differ in their behavioural plasticity, with shy fish exhibiting greater absolute plasticity than bold fish. Our data suggest that individuals with bold personalities may be able to compensate for their risk-prone behavioural type by expressing enhanced morphological defences. PMID:24335987

  19. Using novel control groups to dissect the amygdala's role in Williams syndrome.

    PubMed

    Thornton-Wells, Tricia A; Avery, Suzanne N; Blackford, Jennifer Urbano

    2011-07-01

    Williams syndrome is a neurodevelopmental disorder with an intriguing behavioral phenotype-hypersociability combined with significant non-social fears. Previous studies have demonstrated abnormalities in amygdala function in individuals with Williams syndrome compared to typically-developing controls. However, it remains unclear whether the findings are related to the atypical neurodevelopment of Williams syndrome, or are also associated with behavioral traits at the extreme end of a normal continuum. We used functional magnetic resonance imaging (fMRI) to compare amygdala blood-oxygenation-level-dependent (BOLD) responses to non-social and social images in individuals with Williams syndrome compared to either individuals with inhibited temperament (high non-social fear) or individuals with uninhibited temperament (high sociability). Individuals with Williams syndrome had larger amygdala BOLD responses when viewing the non-social fear images than the inhibited temperament control group. In contrast, when viewing both fear and neutral social images, individuals with Williams syndrome did not show smaller amygdala BOLD responses relative to the uninhibited temperament control group, but instead had amygdala responses proportionate to their sociability. These results suggest heightened amygdala response to non-social fear images is characteristic of WS, whereas, variability in amygdala response to social fear images is proportionate to, and might be explained by, levels of trait sociability.

  20. Functional MRI of Auditory Responses in the Zebra Finch Forebrain Reveals a Hierarchical Organisation Based on Signal Strength but Not Selectivity

    PubMed Central

    Boumans, Tiny; Gobes, Sharon M. H.; Poirier, Colline; Theunissen, Frederic E.; Vandersmissen, Liesbeth; Pintjens, Wouter; Verhoye, Marleen; Bolhuis, Johan J.; Van der Linden, Annemie

    2008-01-01

    Background Male songbirds learn their songs from an adult tutor when they are young. A network of brain nuclei known as the ‘song system’ is the likely neural substrate for sensorimotor learning and production of song, but the neural networks involved in processing the auditory feedback signals necessary for song learning and maintenance remain unknown. Determining which regions show preferential responsiveness to the bird's own song (BOS) is of great importance because neurons sensitive to self-generated vocalisations could mediate this auditory feedback process. Neurons in the song nuclei and in a secondary auditory area, the caudal medial mesopallium (CMM), show selective responses to the BOS. The aim of the present study is to investigate the emergence of BOS selectivity within the network of primary auditory sub-regions in the avian pallium. Methods and Findings Using blood oxygen level-dependent (BOLD) fMRI, we investigated neural responsiveness to natural and manipulated self-generated vocalisations and compared the selectivity for BOS and conspecific song in different sub-regions of the thalamo-recipient area Field L. Zebra finch males were exposed to conspecific song, BOS and to synthetic variations on BOS that differed in spectro-temporal and/or modulation phase structure. We found significant differences in the strength of BOLD responses between regions L2a, L2b and CMM, but no inter-stimuli differences within regions. In particular, we have shown that the overall signal strength to song and synthetic variations thereof was different within two sub-regions of Field L2: zone L2a was significantly more activated compared to the adjacent sub-region L2b. Conclusions Based on our results we suggest that unlike nuclei in the song system, sub-regions in the primary auditory pallium do not show selectivity for the BOS, but appear to show different levels of activity with exposure to any sound according to their place in the auditory processing stream. PMID:18781203

  1. Semantic processing and response inhibition.

    PubMed

    Chiang, Hsueh-Sheng; Motes, Michael A; Mudar, Raksha A; Rao, Neena K; Mansinghani, Sethesh; Brier, Matthew R; Maguire, Mandy J; Kraut, Michael A; Hart, John

    2013-11-13

    The present study examined functional MRI (fMRI) BOLD signal changes in response to object categorization during response selection and inhibition. Young adults (N=16) completed a Go/NoGo task with varying object categorization requirements while fMRI data were recorded. Response inhibition elicited increased signal change in various brain regions, including medial frontal areas, compared with response selection. BOLD signal in an area within the right angular gyrus was increased when higher-order categorization was mandated. In addition, signal change during response inhibition varied with categorization requirements in the left inferior temporal gyrus (lIT). lIT-mediated response inhibition when inhibiting the response only required lower-order categorization, but lIT mediated both response selection and inhibition when selecting and inhibiting the response required higher-order categorization. The findings characterized mechanisms mediating response inhibition associated with semantic object categorization in the 'what' visual object memory system.

  2. Augmentation of sensory-evoked hemodynamic response in an early Alzheimer's disease mouse model.

    PubMed

    Kim, Jinho; Jeong, Yong

    2013-01-01

    Based on enlarged blood oxygen level-dependent (BOLD) responses in cognitively normal subjects at risk for Alzheimer's disease (AD), compensatory neuronal hyperactivation has been proposed as an early marker for diagnosis of AD. The BOLD response results from neurovascular coupling, i.e., hemodynamic response induced by neuronal activity. However, there has been no evidence of task-induced increases in hemodynamic response in animal models of AD. Here, we observed an augmented hemodynamic response pattern in a transgenic AβPP(SWE)/PS1ΔE9 mouse model of AD using three in vivo imaging methods: intrinsic optical signal imaging, multi-photon laser scanning microscopy, and laser Doppler flowmetry. Sensory stimulation resulted in augmented and prolonged hemodynamic responses in transgenic mice evidenced by changes in total, oxygenated, and deoxygenated hemoglobin concentration. This difference between transgenic and wild-type mice was significant at 7 months of age when amyloid plaques and cerebral amyloid angiopathy had developed but not at younger or older ages. Correspondingly, sensory stimulation-induced pial arteriole diameter was also augmented and prolonged in transgenic mice at 7 months of age. Cerebral blood flow response in transgenic mice was augmented but not prolonged. These results are consistent with the existence of BOLD signal hyperactivation in non-demented AD-risk human subjects, supporting its potential use as an early diagnostic marker of AD.

  3. Global Brain Blood-Oxygen Level Responses to Autonomic Challenges in Obstructive Sleep Apnea

    PubMed Central

    Macey, Paul M.; Kumar, Rajesh; Ogren, Jennifer A.; Woo, Mary A.; Harper, Ronald M.

    2014-01-01

    Obstructive sleep apnea (OSA) is accompanied by brain injury, perhaps resulting from apnea-related hypoxia or periods of impaired cerebral perfusion. Perfusion changes can be determined indirectly by evaluation of cerebral blood volume and oxygenation alterations, which can be measured rapidly and non-invasively with the global blood oxygen level dependent (BOLD) signal, a magnetic resonance imaging procedure. We assessed acute BOLD responses in OSA subjects to pressor challenges that elicit cerebral blood flow changes, using a two-group comparative design with healthy subjects as a reference. We separately assessed female and male patterns, since OSA characteristics and brain injury differ between sexes. We studied 94 subjects, 37 with newly-diagnosed, untreated OSA (6 female (age mean ± std: 52.1±8.1 yrs; apnea/hypopnea index [AHI]: 27.7±15.6 events/hr and 31 male 54.3±8.4 yrs; AHI: 37.4±19.6 events/hr), and 20 female (age 50.5±8.1 yrs) and 37 male (age 45.6±9.2 yrs) healthy control subjects. We measured brain BOLD responses every 2 s while subjects underwent cold pressor, hand grip, and Valsalva maneuver challenges. The global BOLD signal rapidly changed after the first 2 s of each challenge, and differed in magnitude between groups to two challenges (cold pressor, hand grip), but not to the Valsalva maneuver (repeated measures ANOVA, p<0.05). OSA females showed greater differences from males in response magnitude and pattern, relative to healthy counterparts. Cold pressor BOLD signal increases (mean ± adjusted standard error) at the 8 s peak were: OSA 0.14±0.08% vs. Control 0.31±0.06%, and hand grip at 6 s were: OSA 0.08±0.03% vs. Control at 0.30±0.02%. These findings, indicative of reduced cerebral blood flow changes to autonomic challenges in OSA, complement earlier reports of altered resting blood flow and reduced cerebral artery responsiveness. Females are more affected than males, an outcome which may contribute to the sex-specific brain injury in the syndrome. PMID:25166862

  4. Boldness in two perch populations - long-term differences and the effect of predation pressure.

    PubMed

    Magnhagen, Carin; Hellström, Gustav; Borcherding, Jost; Heynen, Martina

    2012-11-01

    1. Populations of the same species often display different behaviours, for example, in their response to predators. The question is whether this difference is developed as part of a divergent selection caused by differences in predation pressure, or as a result of phenotypic responses to current environmental conditions. 2. Two populations of Eurasian perch were investigated over a time span of 6 years to see whether risk-taking behaviour in young-of-the-year perch were consistent across cohorts, or if behaviour varied over time with changes in predation regime. 3. Boldness was estimated in aquarium studies by looking at how the fish made trade-offs between foraging in a risky area and staying in shelter. Predation risk of each year and lake was estimated from fishing surveys, using an individual-based model calculating attack rates for cannibalistic perch. 4. The average boldness scores were consistently lower in perch from Fisksjön compared with those in Ängersjön, although the magnitude of the difference varied among years. Variance component analyses showed that differences between lakes in boldness scores only explained 12 per cent of the total variation. Differences between years were contributing at least similarly or more to the total variance, and the variation was higher in Fisksjön than in Ängersjön. 5. The observed risk-taking behaviour of young-of-the-year perch, compared across cohorts, was significantly correlated with the year-specific estimates of cannibalistic attack rates, with lower boldness scores in years with higher predation pressure. In Fisksjön, with significant changes over the years in population structure, the range of both predation risk and boldness scores was wider than in Ängersjön. 6. By following the two perch populations over several years, we have been able to show that the differences in risk-taking behaviour mainly are due to direct phenotypic responses to recent experience of predation risk. Long-term differences in behaviour among perch populations thus reflect consistent differences in predation regime rather than diverging inherent traits. © 2012 The Authors. Journal of Animal Ecology © 2012 British Ecological Society.

  5. Quasi-periodic patterns (QPP): large-scale dynamics in resting state fMRI that correlate with local infraslow electrical activity.

    PubMed

    Thompson, Garth John; Pan, Wen-Ju; Magnuson, Matthew Evan; Jaeger, Dieter; Keilholz, Shella Dawn

    2014-01-01

    Functional connectivity measurements from resting state blood-oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) are proving a powerful tool to probe both normal brain function and neuropsychiatric disorders. However, the neural mechanisms that coordinate these large networks are poorly understood, particularly in the context of the growing interest in network dynamics. Recent work in anesthetized rats has shown that the spontaneous BOLD fluctuations are tightly linked to infraslow local field potentials (LFPs) that are seldom recorded but comparable in frequency to the slow BOLD fluctuations. These findings support the hypothesis that long-range coordination involves low frequency neural oscillations and establishes infraslow LFPs as an excellent candidate for probing the neural underpinnings of the BOLD spatiotemporal patterns observed in both rats and humans. To further examine the link between large-scale network dynamics and infraslow LFPs, simultaneous fMRI and microelectrode recording were performed in anesthetized rats. Using an optimized filter to isolate shared components of the signals, we found that time-lagged correlation between infraslow LFPs and BOLD is comparable in spatial extent and timing to a quasi-periodic pattern (QPP) found from BOLD alone, suggesting that fMRI-measured QPPs and the infraslow LFPs share a common mechanism. As fMRI allows spatial resolution and whole brain coverage not available with electroencephalography, QPPs can be used to better understand the role of infraslow oscillations in normal brain function and neurological or psychiatric disorders. © 2013.

  6. Quasi-periodic patterns (QPP): large-scale dynamics in resting state fMRI that correlate with local infraslow electrical activity

    PubMed Central

    Thompson, Garth John; Pan, Wen-Ju; Magnuson, Matthew Evan; Jaeger, Dieter; Keilholz, Shella Dawn

    2013-01-01

    Functional connectivity measurements from resting state blood-oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) are proving a powerful tool to probe both normal brain function and neuropsychiatric disorders. However, the neural mechanisms that coordinate these large networks are poorly understood, particularly in the context of the growing interest in network dynamics. Recent work in anesthetized rats has shown that the spontaneous BOLD fluctuations are tightly linked to infraslow local field potentials (LFPs) that are seldom recorded but comparable in frequency to the slow BOLD fluctuations. These findings support the hypothesis that long-range coordination involves low frequency neural oscillations and establishes infraslow LFPs as an excellent candidate for probing the neural underpinnings of the BOLD spatiotemporal patterns observed in both rats and humans. To further examine the link between large-scale network dynamics and infraslow LFPs, simultaneous fMRI and microelectrode recording were performed in anesthetized rats. Using an optimized filter to isolate shared components of the signals, we found that time-lagged correlation between infraslow LFPs and BOLD is comparable in spatial extent and timing to a quasi-periodic pattern (QPP) found from BOLD alone, suggesting that fMRI-measured QPPs and the infraslow LFPs share a common mechanism. As fMRI allows spatial resolution and whole brain coverage not available with electroencephalography, QPPs can be used to better understand the role of infraslow oscillations in normal brain function and neurological or psychiatric disorders. PMID:24071524

  7. The cerebral control of speech tempo: opposite relationship between speaking rate and BOLD signal changes at striatal and cerebellar structures.

    PubMed

    Riecker, Axel; Kassubek, Jan; Gröschel, Klaus; Grodd, Wolfgang; Ackermann, Hermann

    2006-01-01

    So far, only sparse data on the cerebral organization of speech motor control are available. In order to further delineate the neural basis of articulatory functions, fMRI measurements were performed during self-paced syllable repetitions at six different frequencies (2-6 Hz). Bilateral hemodynamic main effects, calculated across all syllable rates considered, emerged within sensorimotor cortex, putamen, thalamus and cerebellum. At the level of the caudatum and the anterior insula, activation was found restricted to the left side. The computation of rate-to-response functions of the BOLD signal revealed a negative linear relationship between syllable frequency and response magnitude within the striatum whereas cortical areas and cerebellar hemispheres exhibited an opposite activation pattern. Dysarthric patients with basal ganglia disorders show unimpaired or even accelerated speaking rate whereas, in contrast, cerebellar dysfunctions give rise to slowed speech tempo which does not fall below a rate of about 3 Hz. The observed rate-to-response profiles of the BOLD signal thus might help to elucidate the pathophysiological mechanisms of dysarthric deficits in central motor disorders.

  8. Oxygen Level and LFP in Task-Positive and Task-Negative Areas: Bridging BOLD fMRI and Electrophysiology.

    PubMed

    Bentley, William J; Li, Jingfeng M; Snyder, Abraham Z; Raichle, Marcus E; Snyder, Lawrence H

    2016-01-01

    The human default mode network (DMN) shows decreased blood oxygen level dependent (BOLD) signals in response to a wide range of attention-demanding tasks. Our understanding of the specifics regarding the neural activity underlying these "task-negative" BOLD responses remains incomplete. We paired oxygen polarography, an electrode-based oxygen measurement technique, with standard electrophysiological recording to assess the relationship of oxygen and neural activity in task-negative posterior cingulate cortex (PCC), a hub of the DMN, and visually responsive task-positive area V3 in the awake macaque. In response to engaging visual stimulation, oxygen, LFP power, and multi-unit activity in PCC showed transient activation followed by sustained suppression. In V3, oxygen, LFP power, and multi-unit activity showed an initial phasic response to the stimulus followed by sustained activation. Oxygen responses were correlated with LFP power in both areas, although the apparent hemodynamic coupling between oxygen level and electrophysiology differed across areas. Our results suggest that oxygen responses reflect changes in LFP power and multi-unit activity and that either the coupling of neural activity to blood flow and metabolism differs between PCC and V3 or computing a linear transformation from a single LFP band to oxygen level does not capture the true physiological process. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Neural correlates of human body perception.

    PubMed

    Aleong, Rosanne; Paus, Tomás

    2010-03-01

    The objective of this study was to investigate potential sex differences in the neural response to human bodies using fMRI carried out in healthy young adults. We presented human bodies in a block-design experiment to identify body-responsive regions of the brain, namely, extrastriate body area (EBA) and fusiform body area (FBA). In a separate event-related "adaptation" experiment, carried out in the same group of subjects, we presented sets of four human bodies of varying body size and shape. Varying levels of body morphing were introduced to assess the degree of morphing required for adaptation release. Analysis of BOLD signal in the block-design experiment revealed significant Sex x Hemisphere interactions in the EBA and the FBA responses to human bodies. Only women showed greater BOLD response to bodies in the right hemisphere compared with the left hemisphere for both EBA and FBA. The BOLD response in right EBA was higher in women compared with men. In the adaptation experiment, greater right versus left hemisphere response for EBA and FBA was also identified among women but not men. These findings are particularly novel in that they address potential sex differences in the lateralization of EBA and FBA responses to human body images. Although previous studies have found some degree of right hemisphere dominance in body perception, our results suggest that such a functional lateralization may differ between men and women.

  10. A novel Bayesian approach to accounting for uncertainty in fMRI-derived estimates of cerebral oxygen metabolism fluctuations

    PubMed Central

    Simon, Aaron B.; Dubowitz, David J.; Blockley, Nicholas P.; Buxton, Richard B.

    2016-01-01

    Calibrated blood oxygenation level dependent (BOLD) imaging is a multimodal functional MRI technique designed to estimate changes in cerebral oxygen metabolism from measured changes in cerebral blood flow and the BOLD signal. This technique addresses fundamental ambiguities associated with quantitative BOLD signal analysis; however, its dependence on biophysical modeling creates uncertainty in the resulting oxygen metabolism estimates. In this work, we developed a Bayesian approach to estimating the oxygen metabolism response to a neural stimulus and used it to examine the uncertainty that arises in calibrated BOLD estimation due to the presence of unmeasured model parameters. We applied our approach to estimate the CMRO2 response to a visual task using the traditional hypercapnia calibration experiment as well as to estimate the metabolic response to both a visual task and hypercapnia using the measurement of baseline apparent R2′ as a calibration technique. Further, in order to examine the effects of cerebral spinal fluid (CSF) signal contamination on the measurement of apparent R2′, we examined the effects of measuring this parameter with and without CSF-nulling. We found that the two calibration techniques provided consistent estimates of the metabolic response on average, with a median R2′-based estimate of the metabolic response to CO2 of 1.4%, and R2′- and hypercapnia-calibrated estimates of the visual response of 27% and 24%, respectively. However, these estimates were sensitive to different sources of estimation uncertainty. The R2′-calibrated estimate was highly sensitive to CSF contamination and to uncertainty in unmeasured model parameters describing flow-volume coupling, capillary bed characteristics, and the iso-susceptibility saturation of blood. The hypercapnia-calibrated estimate was relatively insensitive to these parameters but highly sensitive to the assumed metabolic response to CO2. PMID:26790354

  11. The neural basis of humour comprehension and humour appreciation: The roles of the temporoparietal junction and superior frontal gyrus.

    PubMed

    Campbell, Darren W; Wallace, Marc G; Modirrousta, Mandana; Polimeni, Joseph O; McKeen, Nancy A; Reiss, Jeffrey P

    2015-12-01

    Psychological well-being and social acumen benefit from the recognition of humourous intent and its enjoyment. The enjoyment of humour requires recognition, but humour recognition is not necessarily accompanied by humour enjoyment. Humour recognition is crucial during social interactions, while the associated enjoyment is less critical. Few neuroimaging studies have explicitly differentiated between the neural foundations of humour comprehension and humour appreciation. Among such studies, design limitations have obscured the specification of neural correlates to humour comprehension or appreciation. We implemented a trichotomous response option to address these design limitations. Twenty-four participants rated 120 comics (90 unaltered with humourous intent and 30 caption-altered without humourous intent) as either funny jokes (FJ), not funny jokes but intended to be funny (NFJ), or not intended to be funny or non-jokes (NJ). We defined humour comprehension by NFJ minus NJ and humour appreciation by FJ minus NFJ. We measured localized blood oxygen level dependent (BOLD) neural responses with a 3T MRI scanner. We tested for BOLD responses in humour comprehension brain regions of interest (ROIs), humour appreciation ROIs, and across the whole-brain. We found significant NFJ-NJ BOLD responses in our humour comprehension ROIs and significant FJ-NFJ BOLD responses in select humour appreciation ROIs. One key finding is that comprehension accuracy levels correlated with humour-comprehension responses in the left temporo-parietal junction (TPJ). This finding represents a novel and precise neural linkage to humour comprehension. A second key finding is that the superior frontal gyrus (SFG) was uniquely associated with humour-appreciation. The SFG response suggests that complex cognitive processing underlies humour appreciation and that current models of humour appreciation be revised. Finally, our research design provides an operational distinction between humour comprehension and appreciation and a sensitive measure of individual differences in humour comprehension accuracy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. A novel Bayesian approach to accounting for uncertainty in fMRI-derived estimates of cerebral oxygen metabolism fluctuations.

    PubMed

    Simon, Aaron B; Dubowitz, David J; Blockley, Nicholas P; Buxton, Richard B

    2016-04-01

    Calibrated blood oxygenation level dependent (BOLD) imaging is a multimodal functional MRI technique designed to estimate changes in cerebral oxygen metabolism from measured changes in cerebral blood flow and the BOLD signal. This technique addresses fundamental ambiguities associated with quantitative BOLD signal analysis; however, its dependence on biophysical modeling creates uncertainty in the resulting oxygen metabolism estimates. In this work, we developed a Bayesian approach to estimating the oxygen metabolism response to a neural stimulus and used it to examine the uncertainty that arises in calibrated BOLD estimation due to the presence of unmeasured model parameters. We applied our approach to estimate the CMRO2 response to a visual task using the traditional hypercapnia calibration experiment as well as to estimate the metabolic response to both a visual task and hypercapnia using the measurement of baseline apparent R2' as a calibration technique. Further, in order to examine the effects of cerebral spinal fluid (CSF) signal contamination on the measurement of apparent R2', we examined the effects of measuring this parameter with and without CSF-nulling. We found that the two calibration techniques provided consistent estimates of the metabolic response on average, with a median R2'-based estimate of the metabolic response to CO2 of 1.4%, and R2'- and hypercapnia-calibrated estimates of the visual response of 27% and 24%, respectively. However, these estimates were sensitive to different sources of estimation uncertainty. The R2'-calibrated estimate was highly sensitive to CSF contamination and to uncertainty in unmeasured model parameters describing flow-volume coupling, capillary bed characteristics, and the iso-susceptibility saturation of blood. The hypercapnia-calibrated estimate was relatively insensitive to these parameters but highly sensitive to the assumed metabolic response to CO2. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Associations between regional brain physiology and trait impulsivity, motor inhibition, and impaired control over drinking

    PubMed Central

    Weafer, Jessica; Dzemidzic, Mario; Eiler, William; Oberlin, Brandon G.; Wang, Yang; Kareken, David A.

    2015-01-01

    Trait impulsivity and poor inhibitory control are well-established risk factors for alcohol misuse, yet little is known about the associated neurobiological endophenotypes. Here we examined correlations among brain physiology and self-reported trait impulsive behavior, impaired control over drinking, and a behavioral measure of response inhibition. A sample of healthy drinkers (n=117) completed a pulsed arterial spin labeling (PASL) scan to quantify resting regional cerebral blood flow (rCBF), and measures of self-reported impulsivity (Eysenck I7 Impulsivity scale) and impaired control over drinking. A subset of subjects (n=40) performed a stop signal task during blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging to assess brain regions involved in response inhibition. Eysenck I7 scores were inversely related to blood flow in the right precentral gyrus. Significant BOLD activation during response inhibition occurred in an overlapping right frontal motor/premotor region. Moreover, impaired control over drinking was associated with reduced BOLD response in the same region. These findings suggest that impulsive personality and impaired control over drinking are associated with brain physiology in areas implicated in response inhibition. This is consistent with the idea that difficulty controlling behavior is due in part to impairment in motor restraint systems. PMID:26065376

  14. Impact of physiological noise correction on detecting blood oxygenation level-dependent contrast in the breast

    NASA Astrophysics Data System (ADS)

    Wallace, Tess E.; Manavaki, Roido; Graves, Martin J.; Patterson, Andrew J.; Gilbert, Fiona J.

    2017-01-01

    Physiological fluctuations are expected to be a dominant source of noise in blood oxygenation level-dependent (BOLD) magnetic resonance imaging (MRI) experiments to assess tumour oxygenation and angiogenesis. This work investigates the impact of various physiological noise regressors: retrospective image correction (RETROICOR), heart rate (HR) and respiratory volume per unit time (RVT), on signal variance and the detection of BOLD contrast in the breast in response to a modulated respiratory stimulus. BOLD MRI was performed at 3 T in ten volunteers at rest and during cycles of oxygen and carbogen gas breathing. RETROICOR was optimized using F-tests to determine which cardiac and respiratory phase terms accounted for a significant amount of signal variance. A nested regression analysis was performed to assess the effect of RETROICOR, HR and RVT on the model fit residuals, temporal signal-to-noise ratio, and BOLD activation parameters. The optimized RETROICOR model accounted for the largest amount of signal variance ( Δ R\\text{adj}2   =  3.3  ±  2.1%) and improved the detection of BOLD activation (P  =  0.002). Inclusion of HR and RVT regressors explained additional signal variance, but had a negative impact on activation parameter estimation (P  <  0.001). Fluctuations in HR and RVT appeared to be correlated with the stimulus and may contribute to apparent BOLD signal reactivity.

  15. Reproducing the Hemoglobin Saturation Profile, a Marker of the Blood Oxygenation Level Dependent (BOLD) fMRI Effect, at the Microscopic Level.

    PubMed

    Hadjistassou, Constantinos; Moyle, Keri; Ventikos, Yiannis

    2016-01-01

    The advent of functional MRI in the mid-1990s has catalyzed progress pertaining to scientific discoveries in neuroscience. With the prospect of elucidating the physiological aspect of the Blood Oxygenation Level Dependent (BOLD) effect we present a computational capillary-tissue system capable of mapping venous hemoglobin saturation- a marker of the BOLD hemodynamic response. Free and facilitated diffusion and convection for hemoglobin and oxygen are considered in the radial and axial directions. Hemoglobin reaction kinetics are governed by the oxyhemoglobin dissociation curve. Brain activation, mimicked by dynamic transitions in cerebral blood velocity (CBv) and oxidative metabolism (CMRO2), is simulated by normalized changes in m = (ΔCBv/CBv)/(ΔCMRO2/CMRO2) of values 2, 3 and 4. Venous hemoglobin saturation profiles and peak oxygenation results, for m = 2, based upon a 50% and a 25% increase in CBv and CMRO2, respectively, lie within physiological limits exhibiting excellent correlation with the BOLD signal, for short-duration stimuli. Our analysis suggests basal CBv and CMRO2 values of 0.6 mm/s and 200 μmol/100g/min. Coupled CBv and CMRO2 responses, for m = 3 and m = 4, overestimate peak hemoglobin saturation, confirming the system's responsiveness to changes in hematocrit, CBv and CMRO2. Finally, factoring in neurovascular effects, we show that no initial dip will be observed unless there is a time delay in the onset of increased CBv relative to CMRO2.

  16. Reproducing the Hemoglobin Saturation Profile, a Marker of the Blood Oxygenation Level Dependent (BOLD) fMRI Effect, at the Microscopic Level

    PubMed Central

    Hadjistassou, Constantinos; Moyle, Keri; Ventikos, Yiannis

    2016-01-01

    The advent of functional MRI in the mid-1990s has catalyzed progress pertaining to scientific discoveries in neuroscience. With the prospect of elucidating the physiological aspect of the Blood Oxygenation Level Dependent (BOLD) effect we present a computational capillary-tissue system capable of mapping venous hemoglobin saturation— a marker of the BOLD hemodynamic response. Free and facilitated diffusion and convection for hemoglobin and oxygen are considered in the radial and axial directions. Hemoglobin reaction kinetics are governed by the oxyhemoglobin dissociation curve. Brain activation, mimicked by dynamic transitions in cerebral blood velocity (CBv) and oxidative metabolism (CMRO2), is simulated by normalized changes in m = (ΔCBv/CBv)/(ΔCMRO2/CMRO2) of values 2, 3 and 4. Venous hemoglobin saturation profiles and peak oxygenation results, for m = 2, based upon a 50% and a 25% increase in CBv and CMRO2, respectively, lie within physiological limits exhibiting excellent correlation with the BOLD signal, for short-duration stimuli. Our analysis suggests basal CBv and CMRO2 values of 0.6 mm/s and 200 μmol/100g/min. Coupled CBv and CMRO2 responses, for m = 3 and m = 4, overestimate peak hemoglobin saturation, confirming the system’s responsiveness to changes in hematocrit, CBv and CMRO2. Finally, factoring in neurovascular effects, we show that no initial dip will be observed unless there is a time delay in the onset of increased CBv relative to CMRO2. PMID:26939128

  17. Habitat quality mediates personality through differences in social context.

    PubMed

    Belgrad, Benjamin A; Griffen, Blaine D

    2017-06-01

    Assessing the stability of animal personalities has become a major goal of behavioral ecologists. Most personality studies have utilized solitary individuals, but little is known on the extent that individuals retain their personality across ecologically relevant group settings. We conducted a field survey which determined that mud crabs, Panopeus herbstii, remain scattered as isolated individuals on degraded oyster reefs while high quality reefs can sustain high crab densities (>10 m -2 ). We examined the impact of these differences in social context on personality by quantifying the boldness of the same individual crabs when in isolation and in natural cohorts. Crabs were also exposed to either a treatment of predator cues or a control of no cue throughout the experiment to assess the strength of this behavioral reaction norm. Crabs were significantly bolder when in groups than as solitary individuals with predator cue treatments exhibiting severally reduced crab activity levels in comparison to corresponding treatments with no predator cues. Behavioral plasticity depended on the individual and was strongest in the presence of predator cues. While bold crabs largely maintained their personality in isolation and group settings, shy crabs would become substantially bolder when among conspecifics. These results imply that the shifts in crab boldness were a response to changes in perceived predation risk, and provide a mechanism for explaining variation in behavioral plasticity. Such findings suggest that habitat degradation may produce subpopulations with different behavioral patterns because of differing social interactions between individual animals.

  18. Individual boldness traits influenced by temperature in male Siamese fighting fish.

    PubMed

    Forsatkar, Mohammad Navid; Nematollahi, Mohammad Ali; Biro, Peter A; Beckmann, Christa

    2016-10-15

    Temperature has profound effects on physiology of ectothermic animals. However, the effects on temperature variation on behavioral traits are poorly studied in contrast to physiological endpoints. This may be important as even small differences in temperatures have large effects on physiological rates including overall metabolism, and behavior is known to be linked to metabolism at least in part. The primary aim of this study was to determine the effects of ambient temperature on boldness responses of a species of fish commonly used in behavioral experiments, the Siamese fighting fish (Betta splendens). At 26°C, subjects were first examined for baseline behaviors over three days, using three different (but complementary) 'open field' type assays tested in a fixed order. Those same fish were next exposed to either the same temperature (26°C) or a higher temperature (30°C) for 10days, and then the same behavioral assays were repeated. Those individuals exposed to increased temperatures reduced their latency to leave the release area (area I), spent more time in area III (farthest from release area), and were more active overall; together we infer these behaviors to reflect an increase in general 'boldness' with increased temperature. Our results add to a limited number of studies of temperature effects on behavioral tendencies in ectotherms that are evident even after some considerable acclimation. From a methodological perspective, our results indicate careful temperature control is needed when studying behavior in this and other species of fish. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Evaluation of preprocessing steps to compensate for magnetic field distortions due to body movements in BOLD fMRI

    PubMed Central

    Barry, Robert L.; Williams, Joy M.; Klassen, L. Martyn; Gallivan, Jason P.; Culham, Jody C.

    2009-01-01

    Blood-oxygenation-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) is currently the dominant technique for non-invasive investigation of brain functions. One of the challenges with BOLD fMRI, particularly at high fields, is compensation for the effects of spatiotemporally varying magnetic field inhomogeneities (ΔB0) caused by normal subject respiration, and in some studies, movement of the subject during the scan to perform tasks related to the functional paradigm. The presence of ΔB0 during data acquisition distorts reconstructed images and introduces extraneous fluctuations in the fMRI time series that decrease the BOLD contrast-to-noise ratio. Optimization of the fMRI data-processing pipeline to compensate for geometric distortions is of paramount importance to ensure high quality of fMRI data. To investigate ΔB0 caused by subject movement, echo-planar imaging scans were collected with and without concurrent motion of a phantom arm. The phantom arm was constructed and moved by the experimenter to emulate forearm motions while subjects remained still and observed a visual stimulation paradigm. These data were then subjected to eight different combinations of preprocessing steps. The best preprocessing pipeline included navigator correction, a complex phase regressor, and spatial smoothing. The synergy between navigator correction and phase regression reduced geometric distortions better than either step in isolation, and preconditioned the data to make them more amenable to the benefits of spatial smoothing. The combination of these steps provided a 10% increase in t-statistics compared to only navigator correction and spatial smoothing, and reduced the noise and false activations in regions where no legitimate effects would occur. PMID:19695810

  20. fMRI mapping of the visual system in the mouse brain with interleaved snapshot GE-EPI.

    PubMed

    Niranjan, Arun; Christie, Isabel N; Solomon, Samuel G; Wells, Jack A; Lythgoe, Mark F

    2016-10-01

    The use of functional magnetic resonance imaging (fMRI) in mice is increasingly prevalent, providing a means to non-invasively characterise functional abnormalities associated with genetic models of human diseases. The predominant stimulus used in task-based fMRI in the mouse is electrical stimulation of the paw. Task-based fMRI in mice using visual stimuli remains underexplored, despite visual stimuli being common in human fMRI studies. In this study, we map the mouse brain visual system with BOLD measurements at 9.4T using flashing light stimuli with medetomidine anaesthesia. BOLD responses were observed in the lateral geniculate nucleus, the superior colliculus and the primary visual area of the cortex, and were modulated by the flashing frequency, diffuse vs focussed light and stimulus context. Negative BOLD responses were measured in the visual cortex at 10Hz flashing frequency; but turned positive below 5Hz. In addition, the use of interleaved snapshot GE-EPI improved fMRI image quality without diminishing the temporal contrast-noise-ratio. Taken together, this work demonstrates a novel methodological protocol in which the mouse brain visual system can be non-invasively investigated using BOLD fMRI. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Functional localization of the human color center by decreased water displacement using diffusion-weighted fMRI.

    PubMed

    Williams, Rebecca J; Reutens, David C; Hocking, Julia

    2015-11-01

    Decreased water displacement following increased neural activity has been observed using diffusion-weighted functional MRI (DfMRI) at high b-values. The physiological mechanisms underlying the diffusion signal change may be unique from the standard blood oxygenation level-dependent (BOLD) contrast and closer to the source of neural activity. Whether DfMRI reflects neural activity more directly than BOLD outside the primary cerebral regions remains unclear. Colored and achromatic Mondrian visual stimuli were statistically contrasted to functionally localize the human color center Area V4 in neurologically intact adults. Spatial and temporal properties of DfMRI and BOLD activation were examined across regions of the visual cortex. At the individual level, DfMRI activation patterns showed greater spatial specificity to V4 than BOLD. The BOLD activation patterns were more prominent in the primary visual cortex than DfMRI, where activation was localized to the ventral temporal lobe. Temporally, the diffusion signal change in V4 and V1 both preceded the corresponding hemodynamic response, however the early diffusion signal change was more evident in V1. DfMRI may be of use in imaging applications implementing cognitive subtraction paradigms, and where highly precise individual functional localization is required.

  2. Differences in boldness are repeatable and heritable in a long-lived marine predator

    PubMed Central

    Patrick, Samantha C; Charmantier, Anne; Weimerskirch, Henri

    2013-01-01

    Animal personalities, composed of axes of consistent individual behaviors, are widely reported and can have important fitness consequences. However, despite theoretical predictions that life-history trade-offs may cause and maintain personality differences, our understanding of the evolutionary ecology of personality remains poor, especially in long-lived species where trade-offs and senescence have been shown to be stronger. Furthermore, although much theoretical and empirical work assumes selection shapes variation in personalities, studies exploring the genetic underpinnings of personality traits are rare. Here we study one standard axis of personality, the shy–bold continuum, in a long-lived marine species, the wandering albatross from Possession Island, Crozet, by measuring the behavioral response to a human approach. Using generalized linear mixed models in a Bayesian framework, we show that boldness is highly repeatable and heritable. We also find strong differences in boldness between breeding colonies, which vary in size and density, suggesting birds are shyer in more dense colonies. These results demonstrate that in this seabird population, boldness is both heritable and repeatable and highlights the potential for ecological and evolutionary processes to shape personality traits in species with varying life-history strategies. PMID:24340172

  3. Differences in boldness are repeatable and heritable in a long-lived marine predator.

    PubMed

    Patrick, Samantha C; Charmantier, Anne; Weimerskirch, Henri

    2013-11-01

    Animal personalities, composed of axes of consistent individual behaviors, are widely reported and can have important fitness consequences. However, despite theoretical predictions that life-history trade-offs may cause and maintain personality differences, our understanding of the evolutionary ecology of personality remains poor, especially in long-lived species where trade-offs and senescence have been shown to be stronger. Furthermore, although much theoretical and empirical work assumes selection shapes variation in personalities, studies exploring the genetic underpinnings of personality traits are rare. Here we study one standard axis of personality, the shy-bold continuum, in a long-lived marine species, the wandering albatross from Possession Island, Crozet, by measuring the behavioral response to a human approach. Using generalized linear mixed models in a Bayesian framework, we show that boldness is highly repeatable and heritable. We also find strong differences in boldness between breeding colonies, which vary in size and density, suggesting birds are shyer in more dense colonies. These results demonstrate that in this seabird population, boldness is both heritable and repeatable and highlights the potential for ecological and evolutionary processes to shape personality traits in species with varying life-history strategies.

  4. The study of pain with blood oxygen level dependent functional magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Ibinson, James W.

    Using blood oxygen level dependent functional magnetic resonance imaging (BOLD FMRI), the brain areas activated by pain were studied. These initial studies led to interesting new findings about the body's response to pain and to the refinement of one method used in FMRI analysis for correction of physiologic noise (signal fluctuations caused by the cyclic and non-cyclic changes in the cardiovascular and respiratory status of the body). In the first study, evidence was provided suggesting that the multiple painful stimulations used in typical pain FMRI block designs may cause attenuation over time of the BOLD signal within activated areas. The effect this may have on pain investigations using multiple tasks has not been previously investigated. The demonstrated BOLD attenuation seems unique to pain studies. Several possible explanations exist, but two of the most likely are neural activity modulation by descending pain inhibitory mechanisms and changing hemodynamics caused by a physiologic response to pain. The second study began the investigation of hemodynamics by monitoring the physiologic response to pain for eight subjects in two phases. Phase one used a combination of standard operating suite monitors and research equipment to characterizing the physiologic response to pain. Phase two collected magnetic resonance quantitative flow images during painful nerve stimulation to test for changes in global cerebral blood flow. It is well established that changes in respiration and global blood flow can affect the BOLD response, leading to the final investigation of this dissertation. The brain activation induced by pain for the same eight subjects used in the physiologic response experiments described above was then studied by BOLD FMRI. By including the respiration signal and end-tidal carbon dioxide levels in the analysis of the images, the quantification and removal of image intensity variations correlated to breathing and end-tidal carbon dioxide changes could be performed. The technique generally accepted for this analysis, however, uses respiration signals averaged over a 3 second period. Because normal respiratory rate is approximately one breath every 3 to 5 seconds, it was hypothesized that performing the correction using the average breathing data set would miss much of the actual respiration induced variation in each image. Therefore, a new technique for removing signal that covaries with the actual breathing values present during the collection of each image was introduced. (Abstract shortened by UMI.)

  5. The cumulative influence of hyperoxia and hypercapnia on blood oxygenation and R2*

    PubMed Central

    Faraco, Carlos C; Strother, Megan K; Siero, Jeroen CW; Arteaga, Daniel F; Scott, Allison O; Jordan, Lori C; Donahue, Manus J

    2015-01-01

    Cerebrovascular reactivity (CVR)-weighted blood-oxygenation-level-dependent magnetic resonance imaging (BOLD-MRI) experiments are frequently used in conjunction with hyperoxia. Owing to complex interactions between hyperoxia and hypercapnia, quantitative effects of these gas mixtures on BOLD responses, blood and tissue R2*, and blood oxygenation are incompletely understood. Here we performed BOLD imaging (3 T; TE/TR=35/2,000 ms; spatial resolution=3 × 3 × 3.5 mm3) in healthy volunteers (n=12; age=29±4.1 years) breathing (i) room air (RA), (ii) normocapnic–hyperoxia (95% O2/5% N2, HO), (iii) hypercapnic–normoxia (5% CO2/21% O2/74% N2, HC-NO), and (iv) hypercapnic–hyperoxia (5% CO2/95% O2, HC-HO). For HC-HO, experiments were performed with separate RA and HO baselines to control for changes in O2. T2-relaxation-under-spin-tagging MRI was used to calculate basal venous oxygenation. Signal changes were quantified and established hemodynamic models were applied to quantify vasoactive blood oxygenation, blood–water R2*, and tissue–water R2*. In the cortex, fractional BOLD changes (stimulus/baseline) were HO/RA=0.011±0.007; HC-NO/RA=0.014±0.004; HC-HO/HO=0.020±0.008; and HC-HO/RA=0.035±0.010; for the measured basal venous oxygenation level of 0.632, this led to venous blood oxygenation levels of 0.660 (HO), 0.665 (HC-NO), and 0.712 (HC-HO). Interleaving a HC-HO stimulus with HO baseline provided a smaller but significantly elevated BOLD response compared with a HC-NO stimulus. Results provide an outline for how blood oxygenation differs for several gas stimuli and provides quantitative information on how hypercapnic BOLD CVR and R2* are altered during hyperoxia. PMID:26174329

  6. Effects of density gradient caused by multi-pulsing CHI on two-fluid flowing equilibria of spherical torus plasmas

    NASA Astrophysics Data System (ADS)

    Kanki, T.; Nagata, M.

    2014-10-01

    Two-fluid dynamo relaxation is examined to understand sustainment mechanism of spherical torus (ST) plasmas by multi-pulsing CHI (M-CHI) in the HIST device. The steeper density gradient between the central open flux column (OFC) and closed flux regions by applying the second CHI pulse is observed to cause not only the E × B drift but also the ion diamagnetic drift, leading the two-fluid dynamo. The purpose of this study is to investigate the effects of the steep change in the density gradient on the ST equilibria by using the two-fluid equilibrium calculations. The toroidal magnetic field becomes from a diamagnetic to a paramagnetic profile in the closed flux region while it remains a diamagnetic profile in the OFC region. The toroidal ion flow velocity is increased from negative to positive values in the closed flux region. Here, the negative ion flow velocity is the opposite direction to the toroidal current. The poloidal ion flow velocity between the OFC and closed flux regions is increased, because the ion diamagnetic drift velocity is changed in the same direction as the E × B drift velocity through the steeper ion pressure gradient. As a result, the strong shear flow and the paramagnetic toroidal field are generated in the closed flux region. Here, the ion flow velocity is the same direction as the poloidal current. The radial electric field shear between the OFC and closed flux regions is enhanced due to the strong dependence on the magnetic force through the interaction of toroidal ion flow velocity and axial magnetic field. The two-fluid effect is significant there due to the ion diamagnetic effect.

  7. Estimating neural response functions from fMRI

    PubMed Central

    Kumar, Sukhbinder; Penny, William

    2014-01-01

    This paper proposes a methodology for estimating Neural Response Functions (NRFs) from fMRI data. These NRFs describe non-linear relationships between experimental stimuli and neuronal population responses. The method is based on a two-stage model comprising an NRF and a Hemodynamic Response Function (HRF) that are simultaneously fitted to fMRI data using a Bayesian optimization algorithm. This algorithm also produces a model evidence score, providing a formal model comparison method for evaluating alternative NRFs. The HRF is characterized using previously established “Balloon” and BOLD signal models. We illustrate the method with two example applications based on fMRI studies of the auditory system. In the first, we estimate the time constants of repetition suppression and facilitation, and in the second we estimate the parameters of population receptive fields in a tonotopic mapping study. PMID:24847246

  8. One loop back reaction on power law inflation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abramo, L.R.; Woodard, R.P.

    1999-08-01

    We consider quantum-mechanical corrections to a homogeneous, isotropic, and spatially flat geometry whose scale factor expands classically as a general power of the comoving time. The effects of both gravitons and the scalar inflaton are computed at one loop using the manifestly causal formalism of Schwinger [J. Math. Phys. {bold 2}, 407 (1961); {ital Particles, Sources and Fields} (Addison, Wesley, Reading, MA, 1970)] with the Feynman rules recently developed by Iliopoulos {ital et al.} [Nucl. Phys. B {bold 534}, 419 (1998)]. We find no significant effect, in marked contrast to the result obtained by Mukhanov and co-workers [Phys. Rev. Lett.more » {bold 78}, 1624 (1998); Phys. Rev. D {bold 56}, 3248 (1997)] for chaotic inflation based on a quadratic potential. By applying the canonical technique of Mukhanov and co-workers to the exponential potentials of power law inflation, we show that the two methods produce the same results, within the approximations employed, for these backgrounds. We therefore conclude that the shape of the inflaton potential can have an enormous impact on the one loop back reaction. {copyright} {ital 1999} {ital The American Physical Society}« less

  9. Spatial band-pass filtering aids decoding musical genres from auditory cortex 7T fMRI.

    PubMed

    Sengupta, Ayan; Pollmann, Stefan; Hanke, Michael

    2018-01-01

    Spatial filtering strategies, combined with multivariate decoding analysis of BOLD images, have been used to investigate the nature of the neural signal underlying the discriminability of brain activity patterns evoked by sensory stimulation -- primarily in the visual cortex. Reported evidence indicates that such signals are spatially broadband in nature, and are not primarily comprised of fine-grained activation patterns. However, it is unclear whether this is a general property of the BOLD signal, or whether it is specific to the details of employed analyses and stimuli. Here we performed an analysis of publicly available, high-resolution 7T fMRI on the response BOLD response to musical genres in primary auditory cortex that matches a previously conducted study on decoding visual orientation from V1.  The results show that the pattern of decoding accuracies with respect to different types and levels of spatial filtering is comparable to that obtained from V1, despite considerable differences in the respective cortical circuitry.

  10. Deficient aversive-potentiated startle and the triarchic model of psychopathy: The role of boldness.

    PubMed

    Esteller, Àngels; Poy, Rosario; Moltó, Javier

    2016-05-01

    This study examined the contribution of the phenotypic domains of boldness, meanness, and disinhibition of the triarchic conceptualization of psychopathy (Patrick, Fowles, & Krueger, 2009) to deficient aversive-potentiated startle in a mixed-gender sample of 180 undergraduates. Eyeblink responses to noise probes were recorded during a passive picture-viewing task (erotica, neutral, threat, and mutilation). Deficient threat vs. neutral potentiation was uniquely related to increased boldness scores, thus suggesting that the diminished defensive reaction to aversive stimulation is specifically linked to the charm, social potency and venturesomeness features of psychopathy (boldness), but not to features such as callousness, coldheartedness and cruelty traits (meanness), even though both phenotypes theoretically share the same underlying low-fear disposition. Our findings provide further evidence of the differential association between distinct psychopathy components and deficits in defensive reactivity and strongly support the validity of the triarchic model of psychopathy in disentangling the etiology of this personality disorder. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Fluoxetine exposure impacts boldness in female Siamese fighting fish, Betta splendens.

    PubMed

    Dzieweczynski, Teresa L; Kane, Jessica L; Campbell, Brennah A; Lavin, Lindsey E

    2016-01-01

    The present study examined the effects of the selective serotonin reuptake inhibitor, fluoxetine, on the behavior of female Siamese fighting fish, Betta splendens, in three different boldness assays (Empty Tank, Novel Environment, Social Tendency). When females were unexposed to fluoxetine, boldness was consistent within a context and correlated across assays. Fluoxetine exposure affected behavior within and among individuals on multiple levels. Exposure reduced overall boldness levels, made females behave in a less consistent manner, and significantly reduced correlations over time and across contexts. Fluoxetine exerted its effects on female Betta splendens behavior in a dose-dependent fashion and these effects persisted even after females were housed in clean water. If fluoxetine exposure impacts behaviors such as exploration that are necessary to an individual’s success, this may yield evolutionary consequences. In conclusion, the results show that fluoxetine exposure alters behavior beyond the level of overall response and highlights the importance of studying the behavioral effects of inadvertent pharmaceutical exposure in multiple contexts and with different dosing regimes.

  12. Amnestic mild cognitive impairment: functional MR imaging study of response in posterior cingulate cortex and adjacent precuneus during problem-solving tasks.

    PubMed

    Jin, Guangwei; Li, Kuncheng; Hu, Yingying; Qin, Yulin; Wang, Xiangqing; Xiang, Jie; Yang, Yanhui; Lu, Jie; Zhong, Ning

    2011-11-01

    To compare the blood oxygen level-dependent (BOLD) response, measured with functional magnetic resonance (MR) imaging, in the posterior cingulate cortex (PCC) and adjacent precuneus regions between healthy control subjects and patients with amnestic mild cognitive impairment (MCI) during problem-solving tasks. This study was approved by the institutional review board. Each subject provided written informed consent. Thirteen patients with amnestic MCI and 13 age- and sex-matched healthy control subjects participated in the study. The functional magnetic resonance (MR) imaging tasks were simplified 4 × 4-grid number placement puzzles that were divided into a simple task (using the row rule or the column rule to solve the puzzle) and a complex task (using both the row and column rules to solve the puzzle). Behavioral results and functional imaging results between the healthy control group and the amnestic MCI group were analyzed. The accuracy for the complex task in the healthy control group was significantly higher than that in the amnestic MCI group (P < .05). The healthy control group exhibited a deactivated BOLD signal intensity (SI) change in the bilateral PCC and adjacent precuneus regions during the complex task, whereas the amnestic MCI group showed activation. The positive linear correlations between the BOLD SI change in bilateral PCC and adjacent precuneus regions and in bilateral hippocampi in the amnestic MCI group were significant (P < .001), while in the healthy control group, they were not (P ≥ .23). These findings suggest that an altered BOLD response in amnestic MCI patients during complex tasks might be related to a decline in problem-solving ability and to memory impairment and, thus, may indicate a compensatory response to memory impairment. RSNA, 2011

  13. Enhancement of Temporal Resolution and BOLD Sensitivity in Real-Time fMRI using Multi-Slab Echo-Volumar Imaging

    PubMed Central

    Posse, Stefan; Ackley, Elena; Mutihac, Radu; Rick, Jochen; Shane, Matthew; Murray-Krezan, Cristina; Zaitsev, Maxim; Speck, Oliver

    2012-01-01

    In this study, a new approach to high-speed fMRI using multi-slab echo-volumar imaging (EVI) is developed that minimizes geometrical image distortion and spatial blurring, and enables nonaliased sampling of physiological signal fluctuation to increase BOLD sensitivity compared to conventional echo-planar imaging (EPI). Real-time fMRI using whole brain 4-slab EVI with 286 ms temporal resolution (4 mm isotropic voxel size) and partial brain 2-slab EVI with 136 ms temporal resolution (4×4×6 mm3 voxel size) was performed on a clinical 3 Tesla MRI scanner equipped with 12-channel head coil. Four-slab EVI of visual and motor tasks significantly increased mean (visual: 96%, motor: 66%) and maximum t-score (visual: 263%, motor: 124%) and mean (visual: 59%, motor: 131%) and maximum (visual: 29%, motor: 67%) BOLD signal amplitude compared with EPI. Time domain moving average filtering (2 s width) to suppress physiological noise from cardiac and respiratory fluctuations further improved mean (visual: 196%, motor: 140%) and maximum (visual: 384%, motor: 200%) t-scores and increased extents of activation (visual: 73%, motor: 70%) compared to EPI. Similar sensitivity enhancement, which is attributed to high sampling rate at only moderately reduced temporal signal-to-noise ratio (mean: − 52%) and longer sampling of the BOLD effect in the echo-time domain compared to EPI, was measured in auditory cortex. Two-slab EVI further improved temporal resolution for measuring task-related activation and enabled mapping of five major resting state networks (RSNs) in individual subjects in 5 min scans. The bilateral sensorimotor, the default mode and the occipital RSNs were detectable in time frames as short as 75 s. In conclusion, the high sampling rate of real-time multi-slab EVI significantly improves sensitivity for studying the temporal dynamics of hemodynamic responses and for characterizing functional networks at high field strength in short measurement times. PMID:22398395

  14. Brain Magnetic Resonance Imaging with Contrast Dependent on Blood Oxygenation

    NASA Astrophysics Data System (ADS)

    Ogawa, S.; Lee, T. M.; Kay, A. R.; Tank, D. W.

    1990-12-01

    Paramagnetic deoxyhemoglobin in venous blood is a naturally occurring contrast agent for magnetic resonance imaging (MRI). By accentuating the effects of this agent through the use of gradient-echo techniques in high fields, we demonstrate in vivo images of brain microvasculature with image contrast reflecting the blood oxygen level. This blood oxygenation level-dependent (BOLD) contrast follows blood oxygen changes induced by anesthetics, by insulin-induced hypoglycemia, and by inhaled gas mixtures that alter metabolic demand or blood flow. The results suggest that BOLD contrast can be used to provide in vivo real-time maps of blood oxygenation in the brain under normal physiological conditions. BOLD contrast adds an additional feature to magnetic resonance imaging and complements other techniques that are attempting to provide positron emission tomography-like measurements related to regional neural activity.

  15. Larviculture of a carnivorous freshwater catfish, Lophiosilurus alexandri, screened by personality type.

    PubMed

    Torres, Isabela F Araújo; Júlio, Gustavo S da C; Figueiredo, Luis Gustavo; de Lima, Natália L C; Soares, Ana Paula N; Luz, Ronald K

    2017-12-01

    Considering that each personality type in animals presents distinct physiological and behavioural responses, this study evaluated the efficiency of the Novel Environment test to classify larvae of Lophiosilurus alexandri into bold and shy individuals, which were then investigated for growth, cannibalism and mortality in larviculture of pure and mixed groups. Larvae with an average weight of 24.0±1.7mg and length of 14.1±0.4mm, were subjected to a Novel Environment test to classify their personality type (bold and shy larvae). After the larvae were classified according to personality type, they were subjected to larviculture for 15days. Three treatments were tested: only bold larvae, only shy larvae, and a mixed treatment (bold larvae+shy larvae) at a density for 16 larvae/L, which were fed 3 times a day with Artemia nauplii. After larviculture, there were no differences in the final lengths of larvae of the bold, shy, and mixed treatments (26.9±0.76mm, 26.7±1.00mm, and 26.8±1.24mm, respectively); however, shy larvae possessed weighed less (0.22±0.01g) than the bold and mixed treatments, which did not differ significantly (0.25±0.02g and 0.27±0.02g, respectively). The bold and mixed treatments had the highest cannibalism rate (11.2±5.1% and 23.1±12.3%, respectively). Overall survival was lowest in the mixed treatment (62.5±13.0%), while that of the bold and shy treatments were similar (82.5±9.2% and 86.2±9.2%, respectively). The separation of L. alexandri larvae by traits can ensure a decrease in cannibalism and hence, more productive larviculture. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Toward a mechanistic understanding of vulnerability to hook-and-line fishing: Boldness as the basic target of angling-induced selection.

    PubMed

    Klefoth, Thomas; Skov, Christian; Kuparinen, Anna; Arlinghaus, Robert

    2017-12-01

    In passively operated fishing gear, boldness-related behaviors should fundamentally affect the vulnerability of individual fish and thus be under fisheries selection. To test this hypothesis, we used juvenile common-garden reared carp ( Cyprinus carpio ) within a narrow size range to investigate the mechanistic basis of behavioral selection caused by angling. We focused on one key personality trait (i.e., boldness), measured in groups within ponds, two morphological traits (body shape and head shape), and one life-history trait (juvenile growth capacity) and studied mean standardized selection gradients caused by angling. Carp behavior was highly repeatable within ponds. In the short term, over seven days of fishing, total length, not boldness, was the main predictor of angling vulnerability. However, after 20 days of fishing, boldness turned out to be the main trait under selection, followed by juvenile growth rate, while morphological traits were only weakly related to angling vulnerability. In addition, we found juvenile growth rate to be moderately correlated with boldness. Hence, direct selection on boldness will also induce indirect selection on juvenile growth and vice versa, but given that the two traits are not perfectly correlated, independent evolution of both traits is also possible. Our study is among the first to mechanistically reveal that energy-acquisition-related behaviors, and not growth rate per se, are key factors determining the probability of capture, and hence, behavioral traits appear to be the prime targets of angling selection. We predict an evolutionary response toward increased shyness in intensively angling-exploited fish stocks, possibly causing the emergence of a timidity syndrome.

  17. Adolescent heavy drinkers' amplified brain responses to alcohol cues decrease over one month of abstinence.

    PubMed

    Brumback, Ty; Squeglia, Lindsay M; Jacobus, Joanna; Pulido, Carmen; Tapert, Susan F; Brown, Sandra A

    2015-07-01

    Heavy drinking during adolescence is associated with increased reactivity to alcohol related stimuli and to differential neural development. Alcohol cue reactivity has been widely studied among adults with alcohol use disorders, but little is known about the neural substrates of cue reactivity in adolescent drinkers. The current study aimed to identify changes in blood-oxygen level dependent (BOLD) signal during a cue reactivity task pre- and post-monitored abstinence from alcohol. Demographically matched adolescents (16.0-18.9 years, 54% female) with histories of heavy episodic drinking (HD; n=22) and light or non-drinking control teens (CON; n=16) were recruited to participate in a month-long study. All participants completed a functional Magnetic Resonance Imaging (fMRI) scan with an alcohol cue reactivity task and substance use assessments at baseline and after 28 days of monitored abstinence from alcohol and drugs (i.e., urine toxicology testing every 48-72 h). Repeated-measure analysis of variance (ANOVA) examined main effects of group, time, and group×time interactions on BOLD signal response in regions of interest defined by functional differences at baseline. The HD group exhibited greater (p<.01) BOLD activation than CON to alcohol cues relative to neutral cues in all regions of interest (ROIs; bilateral striatum/globus pallidus, left anterior cingulate, bilateral cerebellum, and parahippocampal gyrus extending to the thalamus/substantia nigra) across time points. Group×time effects showed that HD exhibited greater BOLD activation to alcohol cues than CON at baseline in left anterior cingulate cortex and in the right cerebellar region, but these decreased to non-significance after one month of monitored abstinence. In all ROIs examined, HD exhibited greater BOLD response than CON to alcohol relative to neutral beverage picture cues at baseline, indicating heightened cue reactivity to alcohol cues in heavy drinking adolescents prior to the onset of any alcohol use diagnosis. Across the majority of these brain regions, differences in BOLD response were no longer apparent following a month of abstinence, suggesting a decrease in alcohol cue reactivity among adolescent non-dependent heavy drinkers as a consequence of abstaining from alcohol. These results highlight the malleability of adolescent brain function despite no formal intervention targeting cue reactivity. Increased understanding of the neural underpinnings of cue reactivity could have implications for prevention and intervention strategies in adolescent heavy alcohol users. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Evidence for unlimited capacity processing of simple features in visual cortex

    PubMed Central

    White, Alex L.; Runeson, Erik; Palmer, John; Ernst, Zachary R.; Boynton, Geoffrey M.

    2017-01-01

    Performance in many visual tasks is impaired when observers attempt to divide spatial attention across multiple visual field locations. Correspondingly, neuronal response magnitudes in visual cortex are often reduced during divided compared with focused spatial attention. This suggests that early visual cortex is the site of capacity limits, where finite processing resources must be divided among attended stimuli. However, behavioral research demonstrates that not all visual tasks suffer such capacity limits: The costs of divided attention are minimal when the task and stimulus are simple, such as when searching for a target defined by orientation or contrast. To date, however, every neuroimaging study of divided attention has used more complex tasks and found large reductions in response magnitude. We bridged that gap by using functional magnetic resonance imaging to measure responses in the human visual cortex during simple feature detection. The first experiment used a visual search task: Observers detected a low-contrast Gabor patch within one or four potentially relevant locations. The second experiment used a dual-task design, in which observers made independent judgments of Gabor presence in patches of dynamic noise at two locations. In both experiments, blood-oxygen level–dependent (BOLD) signals in the retinotopic cortex were significantly lower for ignored than attended stimuli. However, when observers divided attention between multiple stimuli, BOLD signals were not reliably reduced and behavioral performance was unimpaired. These results suggest that processing of simple features in early visual cortex has unlimited capacity. PMID:28654964

  19. Spatiotemporal characteristics and vascular sources of neural-specific and -nonspecific fMRI signals at submillimeter columnar resolution

    PubMed Central

    Moon, Chan Hong; Fukuda, Mitsuhiro; Kim, Seong-Gi

    2012-01-01

    The neural specificity of hemodynamic-based functional magnetic resonance imaging (fMRI) signals are dependent on both the vascular regulation and the sensitivity of the applied fMRI technique to different types and sizes of blood vessels. In order to examine the specificity of MRI-detectable hemodynamic responses, submillimeter blood oxygenation-level dependent (BOLD) and cerebral blood volume (CBV) fMRI studies were performed in a well-established cat orientation column model at 9.4 Tesla. Neural-nonspecific and -specific signals were separated by comparing the fMRI responses of orthogonal orientation stimuli. The BOLD response was dominantly neural-nonspecific, mostly originating from pial and intracortical emerging veins, and thus was highly correlated with baseline blood volume. Uneven baseline CBV may displace or distort small functional domains in high-resolution BOLD maps. The CBV response in the parenchyma exhibited dual spatiotemporal characteristics, a fast and early neural-nonspecific response (with 4.3-s time constant) and a slightly slower and delayed neural-specific response (with 9.4-s time constant). The nonspecific CBV signal originates from early-responding arteries and arterioles, while the specific CBV response, which is not correlated with baseline blood volume, arises from late-responding microvessels including small pre-capillary arterioles and capillaries. Our data indicate that although the neural specificity of CBV fMRI signals is dependent on stimulation duration, high-resolution functional maps can be obtained from steady-state CBV studies. PMID:22960251

  20. Development of the Complex General Linear Model in the Fourier Domain: Application to fMRI Multiple Input-Output Evoked Responses for Single Subjects

    PubMed Central

    Rio, Daniel E.; Rawlings, Robert R.; Woltz, Lawrence A.; Gilman, Jodi; Hommer, Daniel W.

    2013-01-01

    A linear time-invariant model based on statistical time series analysis in the Fourier domain for single subjects is further developed and applied to functional MRI (fMRI) blood-oxygen level-dependent (BOLD) multivariate data. This methodology was originally developed to analyze multiple stimulus input evoked response BOLD data. However, to analyze clinical data generated using a repeated measures experimental design, the model has been extended to handle multivariate time series data and demonstrated on control and alcoholic subjects taken from data previously analyzed in the temporal domain. Analysis of BOLD data is typically carried out in the time domain where the data has a high temporal correlation. These analyses generally employ parametric models of the hemodynamic response function (HRF) where prewhitening of the data is attempted using autoregressive (AR) models for the noise. However, this data can be analyzed in the Fourier domain. Here, assumptions made on the noise structure are less restrictive, and hypothesis tests can be constructed based on voxel-specific nonparametric estimates of the hemodynamic transfer function (HRF in the Fourier domain). This is especially important for experimental designs involving multiple states (either stimulus or drug induced) that may alter the form of the response function. PMID:23840281

  1. Development of the complex general linear model in the Fourier domain: application to fMRI multiple input-output evoked responses for single subjects.

    PubMed

    Rio, Daniel E; Rawlings, Robert R; Woltz, Lawrence A; Gilman, Jodi; Hommer, Daniel W

    2013-01-01

    A linear time-invariant model based on statistical time series analysis in the Fourier domain for single subjects is further developed and applied to functional MRI (fMRI) blood-oxygen level-dependent (BOLD) multivariate data. This methodology was originally developed to analyze multiple stimulus input evoked response BOLD data. However, to analyze clinical data generated using a repeated measures experimental design, the model has been extended to handle multivariate time series data and demonstrated on control and alcoholic subjects taken from data previously analyzed in the temporal domain. Analysis of BOLD data is typically carried out in the time domain where the data has a high temporal correlation. These analyses generally employ parametric models of the hemodynamic response function (HRF) where prewhitening of the data is attempted using autoregressive (AR) models for the noise. However, this data can be analyzed in the Fourier domain. Here, assumptions made on the noise structure are less restrictive, and hypothesis tests can be constructed based on voxel-specific nonparametric estimates of the hemodynamic transfer function (HRF in the Fourier domain). This is especially important for experimental designs involving multiple states (either stimulus or drug induced) that may alter the form of the response function.

  2. Emotional reactivity and regulation in individuals with psychopathic traits: Evidence for a disconnect between neurophysiology and self-report.

    PubMed

    Ellis, Jennifer D; Schroder, Hans S; Patrick, Christopher J; Moser, Jason S

    2017-10-01

    Individuals with psychopathic traits often demonstrate blunted reactivity to negative emotional stimuli. However, it is not yet clear whether these individuals also have difficulty regulating their emotional responses to negative stimuli. To address this question, participants with varying levels of psychopathic traits (indexed by the Triarchic Measure of Psychopathy; Patrick, 2010) completed a task in which they passively viewed, increased, or decreased their emotions to negative picture stimuli while electrocortical activity was recorded. During passive viewing of negative images, higher boldness, but not higher disinhibition or meanness, was associated with reduced amplitude of the late positive potential (LPP), an ERP that indexes reactivity to emotionally relevant stimuli. However, all participants demonstrated expected enhancement of the LPP when asked to increase their emotional response. Participants did not show expected suppression of the LPP when asked to decrease their emotional response. Contrary to the electrophysiological data, individuals with higher boldness did not self-report experiencing blunted emotional response during passive viewing trials, and they reported experiencing greater emotional reactivity relative to other participants when regulating (e.g., both increasing and decreasing) their emotions. Results suggest inconsistency between physiological and self-report indices of emotion among high-bold individuals during both affective processing and regulation. © 2017 Society for Psychophysiological Research.

  3. Temporal information entropy of the Blood-Oxygenation Level-Dependent signals increases in the activated human primary visual cortex

    NASA Astrophysics Data System (ADS)

    DiNuzzo, Mauro; Mascali, Daniele; Moraschi, Marta; Bussu, Giorgia; Maraviglia, Bruno; Mangia, Silvia; Giove, Federico

    2017-02-01

    Time-domain analysis of blood-oxygenation level-dependent (BOLD) signals allows the identification of clusters of voxels responding to photic stimulation in primary visual cortex (V1). However, the characterization of information encoding into temporal properties of the BOLD signals of an activated cluster is poorly investigated. Here, we used Shannon entropy to determine spatial and temporal information encoding in the BOLD signal within the most strongly activated area of the human visual cortex during a hemifield photic stimulation. We determined the distribution profile of BOLD signals during epochs at rest and under stimulation within small (19-121 voxels) clusters designed to include only voxels driven by the stimulus as highly and uniformly as possible. We found consistent and significant increases (2-4% on average) in temporal information entropy during activation in contralateral but not ipsilateral V1, which was mirrored by an expected loss of spatial information entropy. These opposite changes coexisted with increases in both spatial and temporal mutual information (i.e. dependence) in contralateral V1. Thus, we showed that the first cortical stage of visual processing is characterized by a specific spatiotemporal rearrangement of intracluster BOLD responses. Our results indicate that while in the space domain BOLD maps may be incapable of capturing the functional specialization of small neuronal populations due to relatively low spatial resolution, some information encoding may still be revealed in the temporal domain by an increase of temporal information entropy.

  4. Exploring structure and function of sensory cortex with 7T MRI.

    PubMed

    Schluppeck, Denis; Sanchez-Panchuelo, Rosa-Maria; Francis, Susan T

    2018-01-01

    In this paper, we present an overview of 7T magnetic resonance imaging (MRI) studies of the detailed function and anatomy of sensory areas of the human brain. We discuss the motivation for the studies, with particular emphasis on increasing the spatial resolution of functional MRI (fMRI) using reduced field-of-view (FOV) data acquisitions. MRI at ultra-high-field (UHF) - defined here as 7T and above - has several advantages over lower field strengths. The intrinsic signal-to-noise ratio (SNR) of images is higher at UHF, and coupled with the increased blood-oxygen-level-dependent (BOLD) signal change, this results in increased BOLD contrast-to-noise ratio (CNR), which can be exploited to improve spatial resolution or detect weaker signals. Additionally, the BOLD signal from the intra-vascular (IV) compartment is relatively diminished compared to lower field strengths. Together, these properties make 7T functional MRI an attractive proposition for high spatial specificity measures. But with the advantages come some challenges. For example, increased vulnerability to susceptibility-induced geometric distortions and signal loss in EPI acquisitions tend to be much larger. Some of these technical issues can be addressed with currently available tools and will be discussed. We highlight the key methodological considerations for high resolution functional and structural imaging at 7 T. We then present recent data using the high spatial resolution available at UHF in studies of the visual and somatosensory cortex to highlight promising developments in this area. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Differentiating psychopathy from antisocial personality disorder: a triarchic model perspective.

    PubMed

    Venables, N C; Hall, J R; Patrick, C J

    2014-04-01

    The triarchic model of psychopathy characterizes the disorder in terms of three distinguishable phenotypic facets: disinhibition, meanness and boldness. The present study sought to (1) inform current debates regarding the role of boldness in the definition of psychopathy and (2) clarify boundaries between psychopathy and antisocial personality disorder (ASPD). This study evaluated the degree to which facets of the triarchic model are represented in the most widely used clinical inventory for psychopathy, the Psychopathy Checklist - Revised (PCL-R), in comparison with ASPD as defined by DSM-IV criteria. Adult male offenders from two distinct correctional settings (n = 157 and 169) were investigated to ensure replicability of findings across samples exhibiting high base rates of psychopathy and antisocial behavior. We found evidence for convergent and discriminant validity of the three triarchic facets in predicting symptomatic components of psychopathy as assessed by the PCL-R. Additionally, and crucially vis-à-vis current debates in the field, we found that boldness contributed incrementally (over and above disinhibition and meanness) to prediction of PCL-R psychopathy, in particular its interpersonal style component, but not ASPD. The three distinct facets of the triarchic model of psychopathy are represented clearly and distinctly in the PCL-R, with boldness through its interpersonal facet, but not in DSM-defined ASPD. Our findings suggest that boldness is central to diagnostic conceptions of psychopathy and distinguishes psychopathy from the more prevalent diagnosis of ASPD.

  6. The fMRI BOLD response to unisensory and multisensory smoking cues in nicotine-dependent adults

    PubMed Central

    Cortese, Bernadette M.; Uhde, Thomas W.; Brady, Kathleen T.; McClernon, F. Joseph; Yang, Qing X.; Collins, Heather R.; LeMatty, Todd; Hartwell, Karen J.

    2015-01-01

    Given that the vast majority of functional magnetic resonance imaging (fMRI) studies of drug cue reactivity use unisensory visual cues, but that multisensory cues may elicit greater craving-related brain responses, the current study sought to compare the fMRI BOLD response to unisensory visual and multisensory, visual plus odor, smoking cues in 17 nicotine-dependent adult cigarette smokers. Brain activation to smoking-related, compared to neutral, pictures was assessed under cigarette smoke and odorless odor conditions. While smoking pictures elicited a pattern of activation consistent with the addiction literature, the multisensory (odor + picture) smoking cues elicited significantly greater and more widespread activation in mainly frontal and temporal regions. BOLD signal elicited by the multi-sensory, but not unisensory cues, was significantly related to participants’ level of control over craving as well. Results demonstrated that the co-presentation of cigarette smoke odor with smoking-related visual cues, compared to the visual cues alone, elicited greater levels of craving-related brain activation in key regions implicated in reward. These preliminary findings support future research aimed at a better understanding of multisensory integration of drug cues and craving. PMID:26475784

  7. The fMRI BOLD response to unisensory and multisensory smoking cues in nicotine-dependent adults.

    PubMed

    Cortese, Bernadette M; Uhde, Thomas W; Brady, Kathleen T; McClernon, F Joseph; Yang, Qing X; Collins, Heather R; LeMatty, Todd; Hartwell, Karen J

    2015-12-30

    Given that the vast majority of functional magnetic resonance imaging (fMRI) studies of drug cue reactivity use unisensory visual cues, but that multisensory cues may elicit greater craving-related brain responses, the current study sought to compare the fMRI BOLD response to unisensory visual and multisensory, visual plus odor, smoking cues in 17 nicotine-dependent adult cigarette smokers. Brain activation to smoking-related, compared to neutral, pictures was assessed under cigarette smoke and odorless odor conditions. While smoking pictures elicited a pattern of activation consistent with the addiction literature, the multisensory (odor+picture) smoking cues elicited significantly greater and more widespread activation in mainly frontal and temporal regions. BOLD signal elicited by the multisensory, but not unisensory cues, was significantly related to participants' level of control over craving as well. Results demonstrated that the co-presentation of cigarette smoke odor with smoking-related visual cues, compared to the visual cues alone, elicited greater levels of craving-related brain activation in key regions implicated in reward. These preliminary findings support future research aimed at a better understanding of multisensory integration of drug cues and craving. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. Test-retest reliability of evoked heat stimulation BOLD fMRI.

    PubMed

    Upadhyay, Jaymin; Lemme, Jordan; Anderson, Julie; Bleakman, David; Large, Thomas; Evelhoch, Jeffrey L; Hargreaves, Richard; Borsook, David; Becerra, Lino

    2015-09-30

    To date, the blood oxygenated-level dependent (BOLD) functional magnetic resonance imaging (fMRI) technique has enabled an objective and deeper understanding of pain processing mechanisms embedded within the human central nervous system (CNS). In order to further comprehend the benefits and limitations of BOLD fMRI in the context of pain as well as the corresponding subjective pain ratings, we evaluated the univariate response, test-retest reliability and confidence intervals (CIs) at the 95% level of both data types collected during evoked stimulation of 40°C (non-noxious), 44°C (mildly noxious) and a subject-specific temperature eliciting a 7/10 pain rating. The test-retest reliability between two scanning sessions was determined by calculating group-level interclass correlation coefficients (ICCs) and at the single-subject level. Across the three stimuli, we initially observed a graded response of increasing magnitude for both VAS (visual analog score) pain ratings and fMRI data. Test-retest reliability was observed to be highest for VAS pain ratings obtained during the 7/10 pain stimulation (ICC=0.938), while ICC values of pain fMRI data for a distribution of CNS structures ranged from 0.5 to 0.859 (p<0.05). Importantly, the upper and lower confidence interval CI bounds reported herein could be utilized in subsequent trials involving healthy volunteers to hypothesize the magnitude of effect required to overcome inherent variability of either VAS pain ratings or BOLD responses evoked during innocuous or noxious thermal stimulation. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Task Dependence, Tissue Specificity, and Spatial Distribution of Widespread Activations in Large Single-Subject Functional MRI Datasets at 7T

    PubMed Central

    Gonzalez-Castillo, Javier; Hoy, Colin W.; Handwerker, Daniel A.; Roopchansingh, Vinai; Inati, Souheil J.; Saad, Ziad S.; Cox, Robert W.; Bandettini, Peter A.

    2015-01-01

    It was recently shown that when large amounts of task-based blood oxygen level–dependent (BOLD) data are combined to increase contrast- and temporal signal-to-noise ratios, the majority of the brain shows significant hemodynamic responses time-locked with the experimental paradigm. Here, we investigate the biological significance of such widespread activations. First, the relationship between activation extent and task demands was investigated by varying cognitive load across participants. Second, the tissue specificity of responses was probed using the better BOLD signal localization capabilities of a 7T scanner. Finally, the spatial distribution of 3 primary response types—namely positively sustained (pSUS), negatively sustained (nSUS), and transient—was evaluated using a newly defined voxel-wise waveshape index that permits separation of responses based on their temporal signature. About 86% of gray matter (GM) became significantly active when all data entered the analysis for the most complex task. Activation extent scaled with task load and largely followed the GM contour. The most common response type was nSUS BOLD, irrespective of the task. Our results suggest that widespread activations associated with extremely large single-subject functional magnetic resonance imaging datasets can provide valuable information about the functional organization of the brain that goes undetected in smaller sample sizes. PMID:25405938

  10. An fMRI Investigation of Preparatory Set in the Human Cerebral Cortex and Superior Colliculus for Pro- and Anti-Saccades

    PubMed Central

    Furlan, Michele; Smith, Andrew T.; Walker, Robin

    2016-01-01

    Previous studies have identified several cortical regions that show larger BOLD responses during preparation and execution of anti-saccades than pro-saccades. We confirmed this finding with a greater BOLD response for anti-saccades than pro-saccades during the preparation phase in the FEF, IPS and DLPFC and in the FEF and IPS in the execution phase. We then applied multi-voxel pattern analysis (MVPA) to establish whether different neural populations are involved in the two types of saccade. Pro-saccades and anti-saccades were reliably decoded during saccade execution in all three cortical regions (FEF, DLPFC and IPS) and in IPS during saccade preparation. This indicates neural specialization, for programming the desired response depending on the task rule, in these regions. In a further study tailored for imaging the superior colliculus in the midbrain a similar magnitude BOLD response was observed for pro-saccades and anti-saccades and the two saccade types could not be decoded with MVPA. This was the case both for activity related to the preparation phase and also for that elicited during the execution phase. We conclude that separate cortical neural populations are involved in the task-specific programming of a saccade while in contrast, the SC has a role in response preparation but may be less involved in high-level, task-specific aspects of the control of saccades. PMID:27391390

  11. The Rule of Three for Prizes in Science and the Bold Triptychs of Francis Bacon.

    PubMed

    Goldstein, Joseph L

    2016-09-22

    For many scientific awards, such as Nobels and Laskers, the maximum number of recipients is three. This Rule of Three forces selection committees to make difficult decisions that increase the likelihood of singling out those individuals who open a new field and continue to lead it. The Rule of Three is reminiscent of art's three-panel triptych, a form that the modern master Francis Bacon used to distill complex stories in a bold way. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Removing the effect of response time on brain activity reveals developmental differences in conflict processing in the posterior medial prefrontal cortex.

    PubMed

    Carp, Joshua; Fitzgerald, Kate Dimond; Taylor, Stephan F; Weissman, Daniel H

    2012-01-02

    In functional magnetic resonance imaging (fMRI) studies, researchers often attempt to ensure that group differences in brain activity are not confounded with group differences in mean reaction time (RT). However, even when groups are matched for performance, they may differ in terms of the RT-BOLD relationship: the degree to which brain activity varies with RT on a trial-by-trial basis. Group activation differences might therefore be influenced by group differences in the relationship between brain activity and time on task. Here, we investigated whether correcting for this potential confound alters group differences in brain activity. Specifically, we reanalyzed data from a functional MRI study of response conflict in children and adults, in which conventional analyses indicated that conflict-related activity did not differ between groups. We found that the RT-BOLD relationship was weaker in children than in adults. Consequently, after removing the effect of RT on brain activity, children exhibited greater conflict-related activity than adults in both the posterior medial prefrontal cortex and the right dorsolateral prefrontal cortex. These results identify the RT-BOLD relationship as an important potential confound in fMRI studies of group differences. They also suggest that the magnitude of the RT-BOLD relationship may be a useful biomarker of brain maturity. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Simultaneous EEG/fMRI analysis of the resonance phenomena in steady-state visual evoked responses.

    PubMed

    Bayram, Ali; Bayraktaroglu, Zubeyir; Karahan, Esin; Erdogan, Basri; Bilgic, Basar; Ozker, Muge; Kasikci, Itir; Duru, Adil D; Ademoglu, Ahmet; Oztürk, Cengizhan; Arikan, Kemal; Tarhan, Nevzat; Demiralp, Tamer

    2011-04-01

    The stability of the steady-state visual evoked potentials (SSVEPs) across trials and subjects makes them a suitable tool for the investigation of the visual system. The reproducible pattern of the frequency characteristics of SSVEPs shows a global amplitude maximum around 10 Hz and additional local maxima around 20 and 40 Hz, which have been argued to represent resonant behavior of damped neuronal oscillators. Simultaneous electroencephalogram/functional magnetic resonance imaging (EEG/fMRI) measurement allows testing of the resonance hypothesis about the frequency-selective increases in SSVEP amplitudes in human subjects, because the total synaptic activity that is represented in the fMRI-Blood Oxygen Level Dependent (fMRI-BOLD) response would not increase but get synchronized at the resonance frequency. For this purpose, 40 healthy volunteers were visually stimulated with flickering light at systematically varying frequencies between 6 and 46 Hz, and the correlations between SSVEP amplitudes and the BOLD responses were computed. The SSVEP frequency characteristics of all subjects showed 3 frequency ranges with an amplitude maximum in each of them, which roughly correspond to alpha, beta and gamma bands of the EEG. The correlation maps between BOLD responses and SSVEP amplitude changes across the different stimulation frequencies within each frequency band showed no significant correlation in the alpha range, while significant correlations were obtained in the primary visual area for the beta and gamma bands. This non-linear relationship between the surface recorded SSVEP amplitudes and the BOLD responses of the visual cortex at stimulation frequencies around the alpha band supports the view that a resonance at the tuning frequency of the thalamo-cortical alpha oscillator in the visual system is responsible for the global amplitude maximum of the SSVEP around 10 Hz. Information gained from the SSVEP/fMRI analyses in the present study might be extrapolated to the EEG/fMRI analysis of the transient event-related potentials (ERPs) in terms of expecting more reliable and consistent correlations between EEG and fMRI responses, when the analyses are carried out on evoked or induced oscillations (spectral perturbations) in separate frequency bands instead of the time-domain ERP peaks.

  14. Automaticity and localisation of concurrents predicts colour area activity in grapheme-colour synaesthesia.

    PubMed

    Gould van Praag, Cassandra D; Garfinkel, Sarah; Ward, Jamie; Bor, Daniel; Seth, Anil K

    2016-07-29

    In grapheme-colour synaesthesia (GCS), the presentation of letters or numbers induces an additional 'concurrent' experience of colour. Early functional MRI (fMRI) investigations of GCS reported activation in colour-selective area V4 during the concurrent experience. However, others have failed to replicate this key finding. We reasoned that individual differences in synaesthetic phenomenology might explain this inconsistency in the literature. To test this hypothesis, we examined fMRI BOLD responses in a group of grapheme-colour synaesthetes (n=20) and matched controls (n=20) while characterising the individual phenomenology of the synaesthetes along dimensions of 'automaticity' and 'localisation'. We used an independent functional localiser to identify colour-selective areas in both groups. Activations in these areas were then assessed during achromatic synaesthesia-inducing, and non-inducing conditions; we also explored whole brain activations, where we sought to replicate the existing literature regarding synaesthesia effects. Controls showed no significant activations in the contrast of inducing > non-inducing synaesthetic stimuli, in colour-selective ROIs or at the whole brain level. In the synaesthete group, we correlated activation within colour-selective ROIs with individual differences in phenomenology using the Coloured Letters and Numbers (CLaN) questionnaire which measures, amongst other attributes, the subjective automaticity/attention in synaesthetic concurrents, and their spatial localisation. Supporting our hypothesis, we found significant correlations between individual measures of synaesthetic phenomenology and BOLD responses in colour-selective areas, when contrasting inducing against non-inducing stimuli. Specifically, left-hemisphere colour area responses were stronger for synaesthetes scoring high on phenomenological localisation and automaticity/attention, while right-hemisphere colour area responses showed a relationship with localisation only. In exploratory whole brain analyses, the BOLD response within several other areas was also correlated with these phenomenological factors, including the intra-parietal sulcus, insula, precentral and supplementary motor areas. Our findings reveal a network of regions underlying synaesthetic phenomenology and they help reconcile the diversity of previous results regarding colour-selective BOLD responses during synaesthesia, by establishing a bridge between neural responses and individual synaesthetic phenomenology. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. GPS baseline configuration design based on robustness analysis

    NASA Astrophysics Data System (ADS)

    Yetkin, M.; Berber, M.

    2012-11-01

    The robustness analysis results obtained from a Global Positioning System (GPS) network are dramatically influenced by the configurationof the observed baselines. The selection of optimal GPS baselines may allow for a cost effective survey campaign and a sufficiently robustnetwork. Furthermore, using the approach described in this paper, the required number of sessions, the baselines to be observed, and thesignificance levels for statistical testing and robustness analysis can be determined even before the GPS campaign starts. In this study, wepropose a robustness criterion for the optimal design of geodetic networks, and present a very simple and efficient algorithm based on thiscriterion for the selection of optimal GPS baselines. We also show the relationship between the number of sessions and the non-centralityparameter. Finally, a numerical example is given to verify the efficacy of the proposed approach.

  16. Digital Base Band Converter As Radar Vlbi Backend / Dbbc Kā Ciparošanas Sistēma Radara Vlbi Novērojumiem

    NASA Astrophysics Data System (ADS)

    Tuccari, G.; Bezrukovs, Vl.; Nechaeva, M.

    2012-12-01

    A digital base band converter (DBBC) system has been developed by the Istituto di Radioastronomia (Noto, Italy) for increasing the sensitivity of European VLBI Network (EVN) by expanding the full observed bandwidth using numerical methods. The output data rate of this VLBI-backend is raised from 1 to 4 Gbps for each radiotelescope. All operations related to the signal processing (frequency translation, amplification, frequency generation with local oscillators, etc.) are transferred to the digital domain, which allows - in addition to well-known advantages coming from digital technologies - achieving better repeatability, precision, simplicity, etc. The maximum input band of DBBC system is 3.5 GHz, and the instantaneous bandwidth is up to 1 GHz for each radio frequency/intermediate frequency (RF/IF) out of the eight possible. This backend is a highly powerful platform for other radioastronomy applications, and a number of additional so-called personalities have been developed and used. This includes PFB (polyphase filter bank) receivers and Spectra for high resolution spectroscopy. An additional new development with the same aim - to use the DBBC system as a multi-purpose backend - is related to the bi-static radar observations including Radar VLBI. In such observations it is possible to study the population of space debris, with detection of even centimetre class fragments. A powerful transmitter is used to illuminate the sky region to be analyzed, and the echoes coming from known or unknown objects are reflected to one or more groundbased telescopes thus producing a single-dish or interferometric detection. The DBBC Radar VLBI personality is able to realize a high-resolution spectrum analysis, maintaining in the central area the echo signal at the expected frequency including the Doppler shift of frequency. For extremely weak signals a very large integration time is needed, so for this personality different input parameters are provided. The realtime information can then allow exploring easily the desired range of search for unknown or not fully determined orbit objects. These features make Radar VLBI personality most useful in the space debris measurements. DBBC sistēma izstrādāta Noto Radioastronomijas institūtā. Sistēmas galvenaisuzdevums - palielināt visa Eiropas VLBI tīkla jutību - realizēts, palielinotvisas novērojamās joslas platumu un pielietojot ciparu signālu apstrādes metodes.Izejas datu plūsma palielināta no 1 līdz 4 Gbps katram radioteleskopam un visasoperācijas, kas saistītas ar signālu apstrādi (frekvences pārveidošana, pastiprinājums,iekšējie ģeneratori, utt.), realizētas digitālā formā, kas ļauj iegūt nozīmīgusuzlabojumus atkārtojamībā, precizitātē, vienkāršībā, nemaz neminot vispārzināmāspriekšrocības, ko nodrošina digitālo tehnoloģiju izmantošana. Maksimālā ieejassignāla frekvenču josla ir 3.5 GHz, un momentānais joslas platums ir līdz 1 GHz uzkatru no astoņiem iespējamajiem RF/IF kanāliem. Šī datu reģistrācijas sistēma irļoti veiktspējīga platforma ne tikai EVN, bet arī citiem radioastronomijas pielietojumiem,un papildus tiek izstrādāta vesela virkne programmatūras pakotņu, kasvēl vairāk paplašina sistēmas funkcionalitāti. Tas ietver PFB (Polifāzes FiltruBanka) uztvērējus "Spectra”, kas piemēroti augstas izšķirtspējas spektroskopijasvajadzībām. Papildus realizēts jaunas programmatūras risinājums, ar mērķiizmantot DBBC sistēmu kā daudzfunkcionālu datu ciparošanas iekārtu, kasizmantojama bistatiskiem radara novērojumiem, tai skaitā arī radara VLBInovērojumiem. Šāda veida novērojumos tiek pētīta kosmisko atlūzu populācija,nodrošinot iespēju detektēt pat centimetra izmēru objektus. Debess apgabalaapstarošanai tiek izmantots jaudīgs raidītājs, un tiek analizēts atbalss signāls, kasatstarojas no zināmiem vai nezināmiem objektiem un tiek uztverts ar vienu vaivairākiem teleskopiem uz Zemes, tādējādi realizējot vienas antenas vai interferometrisku signāla detektēšanu. DBBC sistēma ar radara VLBI programmatūruspēj realizēt augstas izšķirtspējas spektra analīzi, saglabājot atbalss signālu arsagaidāmo frekvenci centrālajā zonā un ieskaitot nepieciešamās Doplera frekvencesnobīdes korekcijas. Tālāk, izmantojot dažādus ievadparametrus, iespējamspielietot ļoti ilgu integrācijas laiku ārkārtīgi vāju signālu detektēšanai. Izmantojotreālā laika informāciju, turpmāk ir iespējams viegli analizēt nepieciešamo apgabaluun detektēt nezināmus objektus vai objektus ar neprecīzi zināmiem orbītu parametriem.Rakstā izklāstītas paredzamās minētās programmatūras funkcijas un tāsizmantošanas plāni pirmajos novērojumos.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatakeyama, R.; Hershkowitz, N.; Majeski, R.

    A comparison of phenomenological features of plasmas is made with a special emphasis on radio-frequency induced transport, which are maintained when a set of two closely spaced dual half-turn antennas in a central cell of the Phaedrus-B axisymmetric tandem mirror [J. J. Browning {ital et al.}, Phys. Fluids B {bold 1}, 1692 (1989)] is phased to excite electromagnetic fields in the ion cyclotron range of frequencies (ICRF) with m={minus}1 (rotating with ions) and m=+1 (rotating with electrons) azimuthal modes. Positive and negative electric currents are measured to flow axially to the end walls in the cases of m={minus}1 and m=+1more » excitations, respectively. These parallel nonambipolar ion and electron fluxes are observed to be accompanied by azimuthal ion flows in the same directions as the antenna-excitation modes m. The phenomena are argued in terms of radial particle fluxes due to a nonambipolar transport mechanism [Hojo and Hatori, J. Phys. Soc. Jpn. {bold 60}, 2510 (1991); Hatakeyama {ital et al.}, J. Phys. Soc. Jpn. {bold 60}, 2815 (1991), and Phys. Rev. E {bold 52}, 6664 (1995)], which are induced when azimuthally traveling ICRF waves are absorbed in the magnetized plasma column. {copyright} {ital 1997 American Institute of Physics.}« less

  18. Predation environment affects boldness temperament of neotropical livebearers.

    PubMed

    Rasmussen, Josh E; Belk, Mark C

    2017-05-01

    Behavioral traits of individuals are important phenotypes that potentially interact with many other traits, an understanding of which may illuminate the evolutionary forces affecting populations and species. Among the five axes of temperament is the propensity to behave boldly in the presence of a perceived risk. To determine the effect of different predatorial regimes on boldness and fearfulness, we assessed the behavior of individuals in a novel portable swim chamber (i.e., forced open-field test) by Brachyrhaphis rhabdophora ( n  = 633). We used an information theoretic framework to compare generalized (logistic) linear fixed-effects models of predatorial regime (predator-free [ n  = 6] and predator [ n  = 4] sites), sex, and standard length (SL). Fish from predator sites were much more fearful in the novel arena than fish from nonpredator sites. This varied by length, but not by sex. At 48 mm SL, fish from nonpredator sites were 4.9 times more likely to express bold behavior (ambulation) in the novel swim chamber as fish from predator sites. Probabilities of "ambulating" within the swim chamber increased with size for nonpredator sites and decreased with size for predator sites.

  19. The Shape of Things to Come: The Military Benefits of the Brain-Computer Interface in 2040

    DTIC Science & Technology

    2015-04-01

    blood flow using a method referred to as blood-oxygen-level contrast (BOLD).20, 21 The hemodynamic responses are an indication of increased demand...both human and animal studies. One key disadvantage to fMRI/BOLD is that since the basis of measurement is the indirect detection of blood flow ...analytical tool to assess brain injury, BCIs enhance a patient’s quality of life. For example, the cochlear implant, developed in 1976, can be seen as an

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilmore, R.; Pei, X.; Moss, F.

    We show how a topological model which describes the stretching and squeezing mechanisms responsible for creating chaotic behavior can be extracted from the neural spike train data. The mechanism we have identified is the same one ([open quotes]gateau roul[acute e],[close quotes] or jelly-roll) which has previously been identified in the Duffing oscillator [Gilmore and McCallum, Phys. Rev. E [bold 51], 935 (1995)] and in a YAG laser [Boulant [ital et al.], Phys. Rev. E [bold 55], 5082 (1997)]. [copyright] [ital 1999 American Institute of Physics.

  1. Simultaneous GCaMP6-based fiber photometry and fMRI in rats.

    PubMed

    Liang, Zhifeng; Ma, Yuncong; Watson, Glenn D R; Zhang, Nanyin

    2017-09-01

    Understanding the relationship between neural and vascular signals is essential for interpretation of functional MRI (fMRI) results with respect to underlying neuronal activity. Simultaneously measuring neural activity using electrophysiology with fMRI has been highly valuable in elucidating the neural basis of the blood oxygenation-level dependent (BOLD) signal. However, this approach is also technically challenging due to the electromagnetic interference that is observed in electrophysiological recordings during MRI scanning. Recording optical correlates of neural activity, such as calcium signals, avoids this issue, and has opened a new avenue to simultaneously acquire neural and BOLD signals. The present study is the first to demonstrate the feasibility of simultaneously and repeatedly acquiring calcium and BOLD signals in animals using a genetically encoded calcium indicator, GCaMP6. This approach was validated with a visual stimulation experiment, during which robust increases of both calcium and BOLD signals in the superior colliculus were observed. In addition, repeated measurement in the same animal demonstrated reproducible calcium and BOLD responses to the same stimuli. Taken together, simultaneous GCaMP6-based fiber photometry and fMRI recording presents a novel, artifact-free approach to simultaneously measuring neural and fMRI signals. Furthermore, given the cell-type specificity of GCaMP6, this approach has the potential to mechanistically dissect the contributions of individual neuron populations to BOLD signal, and ultimately reveal its underlying neural mechanisms. The current study established the method for simultaneous GCaMP6-based fiber photometry and fMRI in rats. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Visual BOLD Response in Late Blind Subjects with Argus II Retinal Prosthesis

    PubMed Central

    Castaldi, E.; Cicchini, G. M.; Cinelli, L.; Rizzo, S.; Morrone, M. C.

    2016-01-01

    Retinal prosthesis technologies require that the visual system downstream of the retinal circuitry be capable of transmitting and elaborating visual signals. We studied the capability of plastic remodeling in late blind subjects implanted with the Argus II Retinal Prosthesis with psychophysics and functional MRI (fMRI). After surgery, six out of seven retinitis pigmentosa (RP) blind subjects were able to detect high-contrast stimuli using the prosthetic implant. However, direction discrimination to contrast modulated stimuli remained at chance level in all of them. No subject showed any improvement of contrast sensitivity in either eye when not using the Argus II. Before the implant, the Blood Oxygenation Level Dependent (BOLD) activity in V1 and the lateral geniculate nucleus (LGN) was very weak or absent. Surprisingly, after prolonged use of Argus II, BOLD responses to visual input were enhanced. This is, to our knowledge, the first study tracking the neural changes of visual areas in patients after retinal implant, revealing a capacity to respond to restored visual input even after years of deprivation. PMID:27780207

  3. Investigation of BOLD fMRI Resonance Frequency Shifts and Quantitative Susceptibility Changes at 7 T

    PubMed Central

    Bianciardi, Marta; van Gelderen, Peter; Duyn, Jeff H.

    2013-01-01

    Although blood oxygenation level dependent (BOLD) functional magnetic resonance imaging (fMRI) experiments of brain activity generally rely on the magnitude of the signal, they also provide frequency information that can be derived from the phase of the signal. However, because of confounding effects of instrumental and physiological origin, BOLD related frequency information is difficult to extract and therefore rarely used. Here, we explored the use of high field (7 T) and dedicated signal processing methods to extract frequency information and use it to quantify and interpret blood oxygenation and blood volume changes. We found that optimized preprocessing improves detection of task-evoked and spontaneous changes in phase signals and resonance frequency shifts over large areas of the cortex with sensitivity comparable to that of magnitude signals. Moreover, our results suggest the feasibility of mapping BOLD quantitative susceptibility changes in at least part of the activated area and its largest draining veins. Comparison with magnitude data suggests that the observed susceptibility changes originate from neuronal activity through induced blood volume and oxygenation changes in pial and intracortical veins. Further, from frequency shifts and susceptibility values, we estimated that, relative to baseline, the fractional oxygen saturation in large vessels increased by 0.02–0.05 during stimulation, which is consistent to previously published estimates. Together, these findings demonstrate that valuable information can be derived from fMRI imaging of BOLD frequency shifts and quantitative susceptibility changes. PMID:23897623

  4. Effect of hypnotherapy and educational intervention on brain response to visceral stimulusin the irritable bowel syndrome

    PubMed Central

    Lowén, Mats B.O.; Mayer, Emeran A.; Sjöberg, Martha; Tillisch, Kirsten; Naliboff, Bruce; Labus, Jennifer; Lundberg, Peter; Ström, Magnus; Engström, Maria; Walter, Susanna A.

    2013-01-01

    SUMMARY Background Gut directed hypnotherapy can reduce IBS symptoms but the mechanisms underlying this therapeutic effect remain unknown. Aim We determined the effect of hypnotherapy and educational intervention on brain responses to cued rectal distensions in IBS patients. Methods 44 women with moderate to severe IBS and 20 healthy controls (HCs) were included. Blood oxygen level dependent (BOLD) signals were measured by functional Magnetic Resonance Imaging (fMRI) during expectation and delivery of high (45 mmHg) and low (15 mmHg) intensity rectal distensions. Twenty-five patients were assigned to hypnotherapy (HYP) and 16 to educational intervention (EDU). 31 patients completed treatments and post treatment fMRI. Results Similar symptom reduction was achieved in both groups. Clinically successful treatment (all responders) was associated with significant BOLD attenuation during high intensity distension in the dorsal and ventral anterior insula (cluster size 142, p=0.006, and cluster size 101, p=0.005, respectively). Moreover HYP responders demonstrated a pre-post treatment BOLD attenuation in posterior insula (cluster sizes 59, p=0.05) while EDU responders had a BOLD attenuation in prefrontal cortex (cluster size 60, p=0.05). Pre-post differences for expectation conditions were almost exclusively seen in the HYP group. Following treatment, the brain response to distension was similar to that observed in HCs, suggesting that the treatment had a normalizing effect on the central processing abnormality of visceral signals in IBS. Conclusions The abnormal processing and enhanced perception of visceral stimuli in IBS can be normalized by psychological interventions. Symptom improvement in the treatment groups may be mediated by different brain mechanisms. PMID:23617618

  5. Effect of hypnotherapy and educational intervention on brain response to visceral stimulus in the irritable bowel syndrome.

    PubMed

    Lowén, M B O; Mayer, E A; Sjöberg, M; Tillisch, K; Naliboff, B; Labus, J; Lundberg, P; Ström, M; Engström, M; Walter, S A

    2013-06-01

    Gut-directed hypnotherapy can reduce IBS symptoms, but the mechanisms underlying this therapeutic effect remain unknown. To determine the effect of hypnotherapy and educational intervention on brain responses to cued rectal distensions in IBS patients. Forty-four women with moderate-to-severe IBS and 20 healthy controls (HCs) were included. Blood oxygen level dependent (BOLD) signals were measured by functional Magnetic Resonance Imaging (fMRI) during expectation and delivery of high- (45 mmHg) and low-intensity (15 mmHg) rectal distensions. Twenty-five patients were assigned to hypnotherapy (HYP) and 16 to educational intervention (EDU). Thirty-one patients completed treatments and posttreatment fMRI. Similar symptom reduction was achieved in both groups. Clinically successful treatment (all responders) was associated with significant BOLD attenuation during high-intensity distension in the dorsal and ventral anterior insula (cluster size 142, P = 0.006, and cluster size 101, P = 0.005 respectively). Moreover HYP responders demonstrated a pre-post treatment BOLD attenuation in posterior insula (cluster sizes 59, P = 0.05) while EDU responders had a BOLD attenuation in prefrontal cortex (cluster size 60, P = 0.05). Pre-post differences for expectation conditions were almost exclusively seen in the HYP group. Following treatment, the brain response to distension was similar to that observed in HCs, suggesting that the treatment had a normalising effect on the central processing abnormality of visceral signals in IBS. The abnormal processing and enhanced perception of visceral stimuli in IBS can be normalised by psychological interventions. Symptom improvement in the treatment groups may be mediated by different brain mechanisms. NCT01815164. © 2013 John Wiley & Sons Ltd.

  6. Enhanced Visual Cortical Activation for Emotional Stimuli is Preserved in Patients with Unilateral Amygdala Resection

    PubMed Central

    Edmiston, E. Kale; McHugo, Maureen; Dukic, Mildred S.; Smith, Stephen D.; Abou-Khalil, Bassel; Eggers, Erica

    2013-01-01

    Emotionally arousing pictures induce increased activation of visual pathways relative to emotionally neutral images. A predominant model for the preferential processing and attention to emotional stimuli posits that the amygdala modulates sensory pathways through its projections to visual cortices. However, recent behavioral studies have found intact perceptual facilitation of emotional stimuli in individuals with amygdala damage. To determine the importance of the amygdala to modulations in visual processing, we used functional magnetic resonance imaging to examine visual cortical blood oxygenation level-dependent (BOLD) signal in response to emotionally salient and neutral images in a sample of human patients with unilateral medial temporal lobe resection that included the amygdala. Adults with right (n = 13) or left (n = 5) medial temporal lobe resections were compared with demographically matched healthy control participants (n = 16). In the control participants, both aversive and erotic images produced robust BOLD signal increases in bilateral primary and secondary visual cortices relative to neutral images. Similarly, all patients with amygdala resections showed enhanced visual cortical activations to erotic images both ipsilateral and contralateral to the lesion site. All but one of the amygdala resection patients showed similar enhancements to aversive stimuli and there were no significant group differences in visual cortex BOLD responses in patients compared with controls for either aversive or erotic images. Our results indicate that neither the right nor left amygdala is necessary for the heightened visual cortex BOLD responses observed during emotional stimulus presentation. These data challenge an amygdalo-centric model of emotional modulation and suggest that non-amygdalar processes contribute to the emotional modulation of sensory pathways. PMID:23825407

  7. Turning on the alarm: the neural mechanisms of the transition from innocuous to painful sensation.

    PubMed

    Johnstone, Tom; Salomons, Tim V; Backonja, Miroslav Misha; Davidson, Richard J

    2012-01-16

    The experience of pain occurs when the level of a stimulus is sufficient to elicit a marked affective response, putatively to warn the organism of potential danger and motivate appropriate behavioral responses. Understanding the biological mechanisms of the transition from innocuous to painful levels of sensation is essential to understanding pain perception as well as clinical conditions characterized by abnormal relationships between stimulation and pain response. Thus, the primary objective of this study was to characterize the neural response associated with this transition and the correspondence between that response and subjective reports of pain. Towards this goal, this study examined BOLD response profiles across a range of temperatures spanning the pain threshold. 14 healthy adults underwent functional magnetic resonance imaging (fMRI) while a range of thermal stimuli (44-49°C) were applied. BOLD responses showed a sigmoidal profile along the range of temperatures in a network of brain regions including insula and mid-cingulate, as well as a number of regions associated with motor responses including ventral lateral nuclei of the thalamus, globus pallidus and premotor cortex. A sigmoid function fit to the BOLD responses in these regions explained up to 85% of the variance in individual pain ratings, and yielded an estimate of the temperature of steepest transition from non-painful to painful heat that was nearly identical to that generated by subjective ratings. These results demonstrate a precise characterization of the relationship between objective levels of stimulation, resulting neural activation, and subjective experience of pain and provide direct evidence for a neural mechanism supporting the nonlinear transition from innocuous to painful levels along the sensory continuum. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. CNS BOLD fMRI effects of sham-controlled transcutaneous electrical nerve stimulation in the left outer auditory canal - a pilot study.

    PubMed

    Kraus, Thomas; Kiess, Olga; Hösl, Katharina; Terekhin, Pavel; Kornhuber, Johannes; Forster, Clemens

    2013-09-01

    It has recently been shown that electrical stimulation of sensory afferents within the outer auditory canal may facilitate a transcutaneous form of central nervous system stimulation. Functional magnetic resonance imaging (fMRI) blood oxygenation level dependent (BOLD) effects in limbic and temporal structures have been detected in two independent studies. In the present study, we investigated BOLD fMRI effects in response to transcutaneous electrical stimulation of two different zones in the left outer auditory canal. It is hypothesized that different central nervous system (CNS) activation patterns might help to localize and specifically stimulate auricular cutaneous vagal afferents. 16 healthy subjects aged between 20 and 37 years were divided into two groups. 8 subjects were stimulated in the anterior wall, the other 8 persons received transcutaneous vagus nervous stimulation (tVNS) at the posterior side of their left outer auditory canal. For sham control, both groups were also stimulated in an alternating manner on their corresponding ear lobe, which is generally known to be free of cutaneous vagal innervation. Functional MR data from the cortex and brain stem level were collected and a group analysis was performed. In most cortical areas, BOLD changes were in the opposite direction when comparing anterior vs. posterior stimulation of the left auditory canal. The only exception was in the insular cortex, where both stimulation types evoked positive BOLD changes. Prominent decreases of the BOLD signals were detected in the parahippocampal gyrus, posterior cingulate cortex and right thalamus (pulvinar) following anterior stimulation. In subcortical areas at brain stem level, a stronger BOLD decrease as compared with sham stimulation was found in the locus coeruleus and the solitary tract only during stimulation of the anterior part of the auditory canal. The results of the study are in line with previous fMRI studies showing robust BOLD signal decreases in limbic structures and the brain stem during electrical stimulation of the left anterior auditory canal. BOLD signal decreases in the area of the nuclei of the vagus nerve may indicate an effective stimulation of vagal afferences. In contrast, stimulation at the posterior wall seems to lead to unspecific changes of the BOLD signal within the solitary tract, which is a key relay station of vagal neurotransmission. The results of the study show promise for a specific novel method of cranial nerve stimulation and provide a basis for further developments and applications of non-invasive transcutaneous vagus stimulation in psychiatric patients. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Anosognosia in mild cognitive impairment: Relationship to activation of cortical midline structures involved in self-appraisal

    PubMed Central

    Ries, Michele L.; Jabbar, Britta M.; Schmitz, Taylor W.; Trivedi, Mehul A.; Gleason, Carey E.; Carlsson, Cynthia M.; Rowley, Howard A.; Asthana, Sanjay; Johnson, Sterling C.

    2009-01-01

    Awareness of cognitive dysfunction shown by individuals with Mild Cognitive Impairment (MCI), a condition conferring risk for Alzheimer’s disease (AD), is variable. Anosognosia, or unawareness of loss of function, is beginning to be recognized as an important clinical symptom of MCI. However, little is known about the brain substrates underlying this symptom. We hypothesized that MCI participants’ activation of cortical midline structures (CMS) during self-appraisal would covary with level of insight into cognitive difficulties (indexed by a discrepancy score between patient and informant ratings of cognitive decline in each MCI participant). To address this hypothesis, we first compared 16 MCI participants and 16 age-matched controls, examining brain regions showing conjoint or differential BOLD response during self-appraisal. Second, we used regression to investigate the relationship between awareness of deficit in MCI and BOLD activity during self-appraisal, controlling for extent of memory impairment. Between-group comparisons indicated that MCI participants show subtly attenuated CMS activity during self-appraisal. Regression analysis revealed a highly-significant relationship between BOLD response during self-appraisal and self-awareness of deficit in MCI. This finding highlights the level of anosognosia in MCI as an important predictor of response to self-appraisal in cortical midline structures, brain regions vulnerable to changes in early AD. PMID:17445294

  10. fMRI BOLD response to the eyes task in offspring from multiplex alcohol dependence families.

    PubMed

    Hill, Shirley Y; Kostelnik, Bryan; Holmes, Brian; Goradia, Dhruman; McDermott, Michael; Diwadkar, Vaibhav; Keshavan, Matcheri

    2007-12-01

    Increased susceptibility for developing alcohol dependence (AD) may be related to structural and functional differences in brain circuits that influence social cognition and more specifically, theory of mind (ToM). Alcohol dependent individuals have a greater likelihood of having deficits in social skills and greater social alienation. These characteristics may be related to inherited differences in the neuroanatomical network that comprises the social brain. Adolescent/young adult participants from multiplex AD families and controls (n = 16) were matched for gender, age, IQ, education, and handedness and administered the Eyes Task of Baron-Cohen during functional magnetic resonance imaging (fMRI). High-risk (HR) subjects showed significantly diminished blood oxygen level dependent (BOLD) response in comparison with low-risk control young adults in the right middle temporal gyrus (RMTG) and the left inferior frontal gyrus (LIFG), areas that have previously been implicated in ToM tasks. Offspring from multiplex families for AD may manifest one aspect of their genetic susceptibility by having a diminished BOLD response in brain regions associated with performance of ToM tasks. These results suggest that those at risk for developing AD may have reduced ability to empathize with others' state of mind, possibly resulting in diminished social skill.

  11. Using High Spatial Resolution to Improve BOLD fMRI Detection at 3T

    PubMed Central

    Claise, Béatrice; Jean, Betty

    2015-01-01

    For different functional magnetic resonance imaging experiments using blood oxygenation level-dependent (BOLD) contrast, the acquisition of T 2*-weighted scans at a high spatial resolution may be advantageous in terms of time-course signal-to-noise ratio and of BOLD sensitivity when the regions are prone to susceptibility artifacts. In this study, we explore this solution by examining how spatial resolution influences activations elicited when appetizing food pictures are viewed. Twenty subjects were imaged at 3 T with two different voxel volumes, 3.4 μl and 27 μl. Despite the diminution of brain coverage, we found that high-resolution acquisition led to a better detection of activations. Though known to suffer to different degrees from susceptibility artifacts, the activations detected by high spatial resolution were notably consistent with those reported in published activation likelihood estimation meta-analyses, corresponding to taste-responsive regions. Furthermore, these regions were found activated bilaterally, in contrast with previous findings. Both the reduction of partial volume effect, which improves BOLD contrast, and the mitigation of susceptibility artifact, which boosts the signal to noise ratio in certain regions, explained the better detection noted with high resolution. The present study provides further evidences that high spatial resolution is a valuable solution for human BOLD fMRI, especially for studying food-related stimuli. PMID:26550990

  12. Large enhancement of perfusion contribution on fMRI signal

    PubMed Central

    Wang, Xiao; Zhu, Xiao-Hong; Zhang, Yi; Chen, Wei

    2012-01-01

    The perfusion contribution to the total functional magnetic resonance imaging (fMRI) signal was investigated using a rat model with mild hypercapnia at 9.4 T, and human subjects with visual stimulation at 4 T. It was found that the total fMRI signal change could be approximated as a linear superposition of ‘true' blood oxygenation level-dependent (BOLD; T2/T2*) effect and the blood flow-related (T1) effect. The latter effect was significantly enhanced by using short repetition time and large radiofrequency pulse flip angle and became comparable to the ‘true' BOLD signal in response to a mild hypercapnia in the rat brain, resulting in an improved contrast-to-noise ratio (CNR). Bipolar diffusion gradients suppressed the intravascular signals but had no significant effect on the flow-related signal. Similar results of enhanced fMRI signal were observed in the human study. The overall results suggest that the observed flow-related signal enhancement is likely originated from perfusion, and this enhancement can improve CNR and the spatial specificity for mapping brain activity and physiology changes. The nature of mixed BOLD and perfusion-related contributions in the total fMRI signal also has implication on BOLD quantification, in particular, the BOLD calibration model commonly used to estimate the change of cerebral metabolic rate of oxygen. PMID:22395206

  13. Orientation-specific contextual modulation of the fMRI BOLD response to luminance and chromatic gratings in human visual cortex.

    PubMed

    McDonald, J Scott; Seymour, Kiley J; Schira, Mark M; Spehar, Branka; Clifford, Colin W G

    2009-05-01

    The responses of orientation-selective neurons in primate visual cortex can be profoundly affected by the presence and orientation of stimuli falling outside the classical receptive field. Our perception of the orientation of a line or grating also depends upon the context in which it is presented. For example, the perceived orientation of a grating embedded in a surround tends to be repelled from the predominant orientation of the surround. Here, we used fMRI to investigate the basis of orientation-specific surround effects in five functionally-defined regions of visual cortex: V1, V2, V3, V3A/LO1 and hV4. Test stimuli were luminance-modulated and isoluminant gratings that produced responses similar in magnitude. Less BOLD activation was evident in response to gratings with parallel versus orthogonal surrounds across all the regions of visual cortex investigated. When an isoluminant test grating was surrounded by a luminance-modulated inducer, the degree of orientation-specific contextual modulation was no larger for extrastriate areas than for V1, suggesting that the observed effects might originate entirely in V1. However, more orientation-specific modulation was evident in extrastriate cortex when both test and inducer were luminance-modulated gratings than when the test was isoluminant; this difference was significant in area V3. We suggest that the pattern of results in extrastriate cortex may reflect a refinement of the orientation-selectivity of surround suppression specific to the colour of the surround or, alternatively, processes underlying the segmentation of test and inducer by spatial phase or orientation when no colour cue is available.

  14. Attention improves encoding of task-relevant features in the human visual cortex

    PubMed Central

    Jehee, Janneke F.M.; Brady, Devin K.; Tong, Frank

    2011-01-01

    When spatial attention is directed towards a particular stimulus, increased activity is commonly observed in corresponding locations of the visual cortex. Does this attentional increase in activity indicate improved processing of all features contained within the attended stimulus, or might spatial attention selectively enhance the features relevant to the observer’s task? We used fMRI decoding methods to measure the strength of orientation-selective activity patterns in the human visual cortex while subjects performed either an orientation or contrast discrimination task, involving one of two laterally presented gratings. Greater overall BOLD activation with spatial attention was observed in areas V1-V4 for both tasks. However, multivariate pattern analysis revealed that orientation-selective responses were enhanced by attention only when orientation was the task-relevant feature, and not when the grating’s contrast had to be attended. In a second experiment, observers discriminated the orientation or color of a specific lateral grating. Here, orientation-selective responses were enhanced in both tasks but color-selective responses were enhanced only when color was task-relevant. In both experiments, task-specific enhancement of feature-selective activity was not confined to the attended stimulus location, but instead spread to other locations in the visual field, suggesting the concurrent involvement of a global feature-based attentional mechanism. These results suggest that attention can be remarkably selective in its ability to enhance particular task-relevant features, and further reveal that increases in overall BOLD amplitude are not necessarily accompanied by improved processing of stimulus information. PMID:21632942

  15. Intracranial microprobe for evaluating neuro-hemodynamic coupling in unanesthetized human neocortex

    PubMed Central

    Keller, Corey J.; Cash, Sydney S.; Narayanan, Suresh; Wang, Chunmao; Kuzniecky, Ruben; Carlson, Chad; Devinsky, Orrin; Thesen, Thomas; Doyle, Werner; Sassaroli, Angelo; Boas, David A.; Ulbert, Istvan; Halgren, Eric

    2009-01-01

    Measurement of the blood-oxygen-level dependent (BOLD) response with fMRI has revolutionized cognitive neuroscience and is increasingly important in clinical care. The BOLD response reflects changes in deoxy-hemoglobin concentration, blood volume, and blood flow. These hemodynamic changes ultimately result from neuronal firing and synaptic activity, but the linkage between these domains is complex, poorly understood, and may differ across species, cortical areas, diseases, and cognitive states. We describe here a technique that can measure neural and hemodynamic changes simultaneously from cortical microdomains in waking humans. We utilize a “laminar optode,” a linear array of microelectrodes for electrophysiological measures paired with a micro-optical device for hemodynamic measurements. Optical measurements include laser Doppler to estimate cerebral blood flow as well as point spectroscopy to estimate oxy- and deoxy-hemoglobin concentrations. The microelectrode array records local field potential gradients (PG) and multi-unit activity (MUA) at 24 locations spanning the cortical depth, permitting estimation of population trans-membrane current flows (Current Source Density, CSD) and population cell firing in each cortical lamina. Comparison of the laminar CSD/MUA profile with the origins and terminations of cortical circuits allows activity in specific neuronal circuits to be inferred and then directly compared to hemodynamics. Access is obtained in epileptic patients during diagnostic evaluation for surgical therapy. Validation tests with relatively well-understood manipulations (EKG, breath-holding, cortical electrical stimulation) demonstrate the expected responses. This device can provide a new and robust means for obtaining detailed, quantitative data for defining neurovascular coupling in awake humans. PMID:19428529

  16. Intracranial microprobe for evaluating neuro-hemodynamic coupling in unanesthetized human neocortex.

    PubMed

    Keller, Corey J; Cash, Sydney S; Narayanan, Suresh; Wang, Chunmao; Kuzniecky, Ruben; Carlson, Chad; Devinsky, Orrin; Thesen, Thomas; Doyle, Werner; Sassaroli, Angelo; Boas, David A; Ulbert, Istvan; Halgren, Eric

    2009-05-15

    Measurement of the blood-oxygen-level dependent (BOLD) response with fMRI has revolutionized cognitive neuroscience and is increasingly important in clinical care. The BOLD response reflects changes in deoxy-hemoglobin concentration, blood volume, and blood flow. These hemodynamic changes ultimately result from neuronal firing and synaptic activity, but the linkage between these domains is complex, poorly understood, and may differ across species, cortical areas, diseases, and cognitive states. We describe here a technique that can measure neural and hemodynamic changes simultaneously from cortical microdomains in waking humans. We utilize a "laminar optode," a linear array of microelectrodes for electrophysiological measures paired with a micro-optical device for hemodynamic measurements. Optical measurements include laser Doppler to estimate cerebral blood flow as well as point spectroscopy to estimate oxy- and deoxy-hemoglobin concentrations. The microelectrode array records local field potential gradients (PG) and multi-unit activity (MUA) at 24 locations spanning the cortical depth, permitting estimation of population trans-membrane current flows (Current Source Density, CSD) and population cell firing in each cortical lamina. Comparison of the laminar CSD/MUA profile with the origins and terminations of cortical circuits allows activity in specific neuronal circuits to be inferred and then directly compared to hemodynamics. Access is obtained in epileptic patients during diagnostic evaluation for surgical therapy. Validation tests with relatively well-understood manipulations (EKG, breath-holding, cortical electrical stimulation) demonstrate the expected responses. This device can provide a new and robust means for obtaining detailed, quantitative data for defining neurovascular coupling in awake humans.

  17. Attention improves encoding of task-relevant features in the human visual cortex.

    PubMed

    Jehee, Janneke F M; Brady, Devin K; Tong, Frank

    2011-06-01

    When spatial attention is directed toward a particular stimulus, increased activity is commonly observed in corresponding locations of the visual cortex. Does this attentional increase in activity indicate improved processing of all features contained within the attended stimulus, or might spatial attention selectively enhance the features relevant to the observer's task? We used fMRI decoding methods to measure the strength of orientation-selective activity patterns in the human visual cortex while subjects performed either an orientation or contrast discrimination task, involving one of two laterally presented gratings. Greater overall BOLD activation with spatial attention was observed in visual cortical areas V1-V4 for both tasks. However, multivariate pattern analysis revealed that orientation-selective responses were enhanced by attention only when orientation was the task-relevant feature and not when the contrast of the grating had to be attended. In a second experiment, observers discriminated the orientation or color of a specific lateral grating. Here, orientation-selective responses were enhanced in both tasks, but color-selective responses were enhanced only when color was task relevant. In both experiments, task-specific enhancement of feature-selective activity was not confined to the attended stimulus location but instead spread to other locations in the visual field, suggesting the concurrent involvement of a global feature-based attentional mechanism. These results suggest that attention can be remarkably selective in its ability to enhance particular task-relevant features and further reveal that increases in overall BOLD amplitude are not necessarily accompanied by improved processing of stimulus information.

  18. Effects of reduced oxygen availability on the vascular response and oxygen consumption of the activated human visual cortex.

    PubMed

    Rodrigues Barreto, Felipe; Mangia, Silvia; Garrido Salmon, Carlos Ernesto

    2017-07-01

    To identify the impact of reduced oxygen availability on the evoked vascular response upon visual stimulation in the healthy human brain by magnetic resonance imaging (MRI). Functional MRI techniques based on arterial spin labeling (ASL), blood oxygenation level-dependent (BOLD), and vascular space occupancy (VASO)-dependent contrasts were utilized to quantify the BOLD signal, cerebral blood flow (CBF), and volume (CBV) from nine subjects at 3T (7M/2F, 27.3 ± 3.6 years old) during normoxia and mild hypoxia. Changes in visual stimulus-induced oxygen consumption rates were also estimated with mathematical modeling. Significant reductions in the extension of activated areas during mild hypoxia were observed in all three imaging contrasts: by 42.7 ± 25.2% for BOLD (n = 9, P = 0.002), 33.1 ± 24.0% for ASL (n = 9, P = 0.01), and 31.9 ± 15.6% for VASO images (n = 7, P = 0.02). Activated areas during mild hypoxia showed responses with similar amplitude for CBF (58.4 ± 18.7% hypoxia vs. 61.7 ± 16.1% normoxia, P = 0.61) and CBV (33.5 ± 17.5% vs. 25.2 ± 13.0%, P = 0.27), but not for BOLD (2.5 ± 0.8% vs. 4.1 ± 0.6%, P = 0.009). The estimated stimulus-induced increases of oxygen consumption were smaller during mild hypoxia as compared to normoxia (3.1 ± 5.0% vs. 15.5 ± 15.1%, P = 0.04). Our results demonstrate an altered vascular and metabolic response during mild hypoxia upon visual stimulation. 2 Technical Efficacy: Stage 2 J. MAGN. RESON. IMAGING 2017;46:142-149. © 2016 International Society for Magnetic Resonance in Medicine.

  19. Emotion regulation in social anxiety disorder: behavioral and neural responses to three socio-emotional tasks

    PubMed Central

    2013-01-01

    Background Social anxiety disorder (SAD) is thought to involve deficits in emotion regulation, and more specifically, deficits in cognitive reappraisal. However, evidence for such deficits is mixed. Methods Using functional magnetic resonance imaging (fMRI) of blood oxygen-level dependent (BOLD) signal, we examined reappraisal-related behavioral and neural responses in 27 participants with generalized SAD and 27 healthy controls (HC) during three socio-emotional tasks: (1) looming harsh faces (Faces); (2) videotaped actors delivering social criticism (Criticism); and (3) written autobiographical negative self-beliefs (Beliefs). Results Behaviorally, compared to HC, participants with SAD had lesser reappraisal-related reduction in negative emotion in the Beliefs task. Neurally, compared to HC, participants with SAD had lesser BOLD responses in reappraisal-related brain regions when reappraising faces, in visual and attention related regions when reappraising criticism, and in the left superior temporal gyrus when reappraising beliefs. Examination of the temporal dynamics of BOLD responses revealed late reappraisal-related increased responses in HC, compared to SAD. In addition, the dorsomedial prefrontal cortex (DMPFC), which showed reappraisal-related increased activity in both groups, had similar temporal dynamics in SAD and HC during the Faces and Criticism tasks, but greater late response increases in HC, compared to SAD, during the Beliefs task. Reappraisal-related greater late DMPFC responses were associated with greater percent reduction in negative emotion ratings in SAD patients. Conclusions These results suggest a dysfunction of cognitive reappraisal in SAD patients, with overall reduced late brain responses in prefrontal regions, particularly when reappraising faces. Decreased late activity in the DMPFC might be associated with deficient reappraisal and greater negative reactivity. Trial registration ClinicalTrials.gov identifier: NCT00380731 PMID:24517388

  20. Overweight adolescents' brain response to sweetened beverages mirrors addiction pathways.

    PubMed

    Feldstein Ewing, Sarah W; Claus, Eric D; Hudson, Karen A; Filbey, Francesca M; Yakes Jimenez, Elizabeth; Lisdahl, Krista M; Kong, Alberta S

    2017-08-01

    Many adolescents struggle with overweight/obesity, which exponentially increases in the transition to adulthood. Overweight/obesity places youth at risk for serious health conditions, including type 2 diabetes. In adults, neural substrates implicated in addiction (e.g., orbitofrontal cortex (OFC), striatum, amygdala, and ventral tegmental area) have been found to be relevant to risk for overweight/obesity. In this study, we examined three hypotheses to disentangle the potential overlap between addiction and overweight/obesity processing by examining (1) brain response to high vs. low calorie beverages, (2) the strength of correspondence between biometrics, including body mass index (BMI) and insulin resistance, and brain response and (3) the relationship between a measure of food addiction and brain response using an established fMRI gustatory cue exposure task with a sample of overweight/obese youth (M age = 16.46; M BMI = 33.1). Greater BOLD response was observed across the OFC, inferior frontal gyrus (IFG), nucleus accumbens, right amygdala, and additional frontoparietal and temporal regions in neural processing of high vs. low calorie beverages. Further, BMI scores positively correlated with BOLD activation in the high calorie > low calorie contrast in the right postcentral gyrus and central operculum. Insulin resistance positively correlated with BOLD activation across the bilateral middle/superior temporal gyrus, left OFC, and superior parietal lobe. No relationships were observed between measures of food addiction and brain response. These findings support the activation of parallel addiction-related neural pathways in adolescents' high calorie processing, while also suggesting the importance of refining conceptual and neurocognitive models to fit this developmental period.

  1. Response of neural reward regions to food cues in autism spectrum disorders

    PubMed Central

    2012-01-01

    Background One hypothesis for the social deficits that characterize autism spectrum disorders (ASD) is diminished neural reward response to social interaction and attachment. Prior research using established monetary reward paradigms as a test of non-social reward to compare with social reward may involve confounds in the ability of individuals with ASD to utilize symbolic representation of money and the abstraction required to interpret monetary gains. Thus, a useful addition to our understanding of neural reward circuitry in ASD includes a characterization of the neural response to primary rewards. Method We asked 17 children with ASD and 18 children without ASD to abstain from eating for at least four hours before an MRI scan in which they viewed images of high-calorie foods. We assessed the neural reward network for increases in the blood oxygenation level dependent (BOLD) signal in response to the food images Results We found very similar patterns of increased BOLD signal to these images in the two groups; both groups showed increased BOLD signal in the bilateral amygdala, as well as in the nucleus accumbens, orbitofrontal cortex, and insula. Direct group comparisons revealed that the ASD group showed a stronger response to food cues in bilateral insula along the anterior-posterior gradient and in the anterior cingulate cortex than the control group, whereas there were no neural reward regions that showed higher activation for controls than for ASD. Conclusion These results suggest that neural response to primary rewards is not diminished but in fact shows an aberrant enhancement in children with ASD. PMID:22958533

  2. Metabolism study of boldenone in human urine by gas chromatography-tandem mass spectrometry.

    PubMed

    Wu, Xinchen; Gao, Feng; Zhang, Wenxin; Ni, Jian

    2015-11-10

    Boldenone (BOLD), an anabolic steroid, is likely to be abused in livestock breeding and in sports. Although some of BOLD metabolites in human urine, such as 5β-adrost-1-en-17β-ol-3-one (BM1), have been detected, investigations on their excretion patterns for both genders are insufficient. Moreover, little research on 17α-BOLD glucuronide as a metabolite in human urine has been reported. The aim of this study is to make a contribution to the knowledge of 17β-BOLD metabolism in humans. Three male and three female volunteers were orally administrated with 30mg 17β-BOLD. Urine samples were collected and analyzed with gas chromatography-tandem mass spectrometry. The data proved that 17β-BOLD, BM1, and 17α-BOLD were excreted in urine in both free and glucuronic conjugated forms after administration of 17β-BOLD. For most subjects, the urinary concentrations of BM1 were higher than that of 17β-BOLD. 17α-BOLD was excreted in small amounts. 17α-BOLD, 17β-BOLD, and BM1 were present naturally in urine with low concentrations. Administration of 30mg 17β-BOLD could not influence the excretion profiles of urinary androsterone, etiocholanolone, and testosterone/epitestosterone ratio. There were no differences in BOLD metabolic patterns between man and woman. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Explaining leptokurtic movement distributions: intrapopulation variation in boldness and exploration.

    PubMed

    Fraser, D F; Gilliam, J F; Daley, M J; Le, A N; Skalski, G T

    2001-08-01

    Leptokurtic distributions of movement distances observed in field-release studies, in which some individuals move long distances while most remain at or near their release point, are a common feature of mobile animals. However, because leptokurtosis is predicted to be transient in homogeneous populations, persistent leptokurtosis suggests a population heterogeneity. We found evidence for a heterogeneity that may generate persistent leptokurtosis. We tested individuals of the Trinidad killifish Rivulus hartii for boldness in a tank test and released them back into their native stream. Boldness in the tank test predicted distance moved in the field releases, even after effects of size and sex were removed. Further, data from a 19-mo mark-recapture study showed that individual growth correlated positively with movement in a predator-threatened river zone where the Rivulus population is spatially fragmented and dispersal is likely to be a hazardous activity. In contrast, no such correlation existed in a predator-absent zone where the population is unfragmented. These results show that a behavioral trait, not discernible from body size or sex, contributes to dispersal and that a component of fitness of surviving "dispersers" is elevated above that of "stayers," a fundamental assumption or prediction of many models of the evolution of dispersal through hazardous habitat.

  4. Human exposure to power frequency magnetic fields up to 7.6 mT: An integrated EEG/fMRI study.

    PubMed

    Modolo, Julien; Thomas, Alex W; Legros, Alexandre

    2017-09-01

    We assessed the effects of power-line frequency (60 Hz in North America) magnetic fields (MF) in humans using simultaneous electroencephalography (EEG) and functional magnetic resonance imaging (fMRI). Twenty-five participants were enrolled in a pseudo-double-blind experiment involving "real" or "sham" exposure to sinusoidal 60 Hz MF exposures delivered using the gradient coil of an MRI scanner following two conditions: (i) 10 s exposures at 3 mT (10 repetitions); (ii) 2 s exposures at 7.6 mT (100 repetitions). Occipital EEG spectral power was computed in the alpha range (8-12 Hz, reportedly the most sensitive to MF exposure in the literature) with/without exposure. Brain functional activation was studied using fMRI blood oxygen level-dependent (BOLD, inversely correlated with EEG alpha power) maps. No significant effects were detected on occipital EEG alpha power during or post-exposure for any exposure condition. Consistent with EEG results, no effects were observed on fMRI BOLD maps in any brain region. Our results suggest that acute exposure (2-10 s) to 60 Hz MF from 3 to 7.6 mT (30,000 to 76,000 times higher than average public exposure levels for 60 Hz MF) does not induce detectable changes in EEG or BOLD signals. Combined with previous findings in which effects were observed on the BOLD signal after 1 h exposure to 3 mT, 60 Hz MF, this suggests that MF exposure in the low mT range (<10 mT) might require prolonged durations of exposure to induce detectable effects. Bioelectromagnetics. 38:425-435, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  5. Investigating the neural bases for intra-subject cognitive efficiency changes using functional magnetic resonance imaging

    PubMed Central

    Rao, Neena K.; Motes, Michael A.; Rypma, Bart

    2014-01-01

    Several fMRI studies have examined brain regions mediating inter-subject variability in cognitive efficiency, but none have examined regions mediating intra-subject variability in efficiency. Thus, the present study was designed to identify brain regions involved in intra-subject variability in cognitive efficiency via participant-level correlations between trial-level reaction time (RT) and trial-level fMRI BOLD percent signal change on a processing speed task. On each trial, participants indicated whether a digit-symbol probe-pair was present or absent in an array of nine digit-symbol probe-pairs while fMRI data were collected. Deconvolution analyses, using RT time-series models (derived from the proportional scaling of an event-related hemodynamic response function model by trial-level RT), were used to evaluate relationships between trial-level RTs and BOLD percent signal change. Although task-related patterns of activation and deactivation were observed in regions including bilateral occipital, bilateral parietal, portions of the medial wall such as the precuneus, default mode network regions including anterior cingulate, posterior cingulate, bilateral temporal, right cerebellum, and right cuneus, RT-BOLD correlations were observed in a more circumscribed set of regions. Positive RT-BOLD correlations, where fast RTs were associated with lower BOLD percent signal change, were observed in regions including bilateral occipital, bilateral parietal, and the precuneus. RT-BOLD correlations were not observed in the default mode network indicating a smaller set of regions associated with intra-subject variability in cognitive efficiency. The results are discussed in terms of a distributed area of regions that mediate variability in the cognitive efficiency that might underlie processing speed differences between individuals. PMID:25374527

  6. Investigating the neural bases for intra-subject cognitive efficiency changes using functional magnetic resonance imaging.

    PubMed

    Rao, Neena K; Motes, Michael A; Rypma, Bart

    2014-01-01

    Several fMRI studies have examined brain regions mediating inter-subject variability in cognitive efficiency, but none have examined regions mediating intra-subject variability in efficiency. Thus, the present study was designed to identify brain regions involved in intra-subject variability in cognitive efficiency via participant-level correlations between trial-level reaction time (RT) and trial-level fMRI BOLD percent signal change on a processing speed task. On each trial, participants indicated whether a digit-symbol probe-pair was present or absent in an array of nine digit-symbol probe-pairs while fMRI data were collected. Deconvolution analyses, using RT time-series models (derived from the proportional scaling of an event-related hemodynamic response function model by trial-level RT), were used to evaluate relationships between trial-level RTs and BOLD percent signal change. Although task-related patterns of activation and deactivation were observed in regions including bilateral occipital, bilateral parietal, portions of the medial wall such as the precuneus, default mode network regions including anterior cingulate, posterior cingulate, bilateral temporal, right cerebellum, and right cuneus, RT-BOLD correlations were observed in a more circumscribed set of regions. Positive RT-BOLD correlations, where fast RTs were associated with lower BOLD percent signal change, were observed in regions including bilateral occipital, bilateral parietal, and the precuneus. RT-BOLD correlations were not observed in the default mode network indicating a smaller set of regions associated with intra-subject variability in cognitive efficiency. The results are discussed in terms of a distributed area of regions that mediate variability in the cognitive efficiency that might underlie processing speed differences between individuals.

  7. Visualizing Transcranial Direct Current Stimulation (tDCS) in vivo using Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Jog, Mayank Anant

    Transcranial Direct Current Stimulation (tDCS) is a low-cost, non-invasive neuromodulation technique that has been shown to treat clinical symptoms as well as improve cognition. However, no techniques exist at the time of research to visualize tDCS currents in vivo. This dissertation presents the theoretical framework and experimental implementations of a novel MRI technique that enables non-invasive visualization of the tDCS electric current using magnetic field mapping. The first chapter establishes the feasibility of measuring magnetic fields induced by tDCS currents. The following chapter discusses the state of the art implementation that can measure magnetic field changes in individual subjects undergoing concurrent tDCS/MRI. The final chapter discusses how the developed technique was integrated with BOLD fMRI-an established MRI technique for measuring brain function. By enabling a concurrent measurement of the tDCS current induced magnetic field as well as the brain's hemodynamic response to tDCS, our technique opens a new avenue to investigate tDCS mechanisms and improve targeting.

  8. Preliminary evidence for genetic overlap between body mass index and striatal reward response.

    PubMed

    Lancaster, T M; Ihssen, I; Brindley, L M; Linden, D E

    2018-01-10

    The reward-processing network is implicated in the aetiology of obesity. Several lines of evidence suggest obesity-linked genetic risk loci (such as DRD2 and FTO) may influence individual variation in body mass index (BMI) through neuropsychological processes reflected in alterations in activation of the striatum during reward processing. However, no study has tested the broader hypotheses that (a) the relationship between BMI and reward-related brain activation (measured through the blood oxygenation-dependent (BOLD) signal) may be observed in a large population study and (b) the overall genetic architecture of these phenotypes overlap, an assumption critical for the progression of imaging genetic studies in obesity research. Using data from the Human Connectome Project (N = 1055 healthy, young individuals: average BMI = 26.4), we first establish a phenotypic relationship between BMI and ventral striatal (VS) BOLD during the processing of rewarding (monetary) stimuli (β = 0.44, P = 0.013), accounting for potential confounds. BMI and VS BOLD were both significantly influenced by additive genetic factors (H2r = 0.57; 0.12, respectively). Further decomposition of this variance suggested that the relationship was driven by shared genetic (ρ g  = 0.47, P = 0.011), but not environmental (ρ E  = -0.07, P = 0.29) factors. To validate the assumption of genetic pleiotropy between BMI and VS BOLD, we further show that polygenic risk for higher BMI is also associated with increased VS BOLD response to appetitive stimuli (calorically high food images), in an independent sample (N = 81; P FWE-ROI  < 0.005). Together, these observations suggest that the genetic factors link risk to obesity to alterations within key nodes of the brain's reward circuity. These observations provide a basis for future work exploring the mechanistic role of genetic loci that confer risk for obesity using the imaging genetics approach.

  9. Distinct BOLD Activation Profiles Following Central and Peripheral Oxytocin Administration in Awake Rats.

    PubMed

    Ferris, Craig F; Yee, Jason R; Kenkel, William M; Dumais, Kelly Marie; Moore, Kelsey; Veenema, Alexa H; Kulkarni, Praveen; Perkybile, Allison M; Carter, C Sue

    2015-01-01

    A growing body of literature has suggested that intranasal oxytocin (OT) or other systemic routes of administration can alter prosocial behavior, presumably by directly activating OT sensitive neural circuits in the brain. Yet there is no clear evidence that OT given peripherally can cross the blood-brain barrier at levels sufficient to engage the OT receptor. To address this issue we examined changes in blood oxygen level-dependent (BOLD) signal intensity in response to peripheral OT injections (0.1, 0.5, or 2.5 mg/kg) during functional magnetic resonance imaging (fMRI) in awake rats imaged at 7.0 T. These data were compared to OT (1 μg/5 μl) given directly to the brain via the lateral cerebroventricle. Using a 3D annotated MRI atlas of the rat brain segmented into 171 brain areas and computational analysis, we reconstructed the distributed integrated neural circuits identified with BOLD fMRI following central and peripheral OT. Both routes of administration caused significant changes in BOLD signal within the first 10 min of administration. As expected, central OT activated a majority of brain areas known to express a high density of OT receptors, e.g., lateral septum, subiculum, shell of the accumbens, bed nucleus of the stria terminalis. This profile of activation was not matched by peripheral OT. The change in BOLD signal to peripheral OT did not show any discernible dose-response. Interestingly, peripheral OT affected all subdivisions of the olfactory bulb, in addition to the cerebellum and several brainstem areas relevant to the autonomic nervous system, including the solitary tract nucleus. The results from this imaging study do not support a direct central action of peripheral OT on the brain. Instead, the patterns of brain activity suggest that peripheral OT may interact at the level of the olfactory bulb and through sensory afferents from the autonomic nervous system to influence brain activity.

  10. Modulation of cognitive control levels via manipulation of saccade trial-type probability assessed with event-related BOLD fMRI.

    PubMed

    Pierce, Jordan E; McDowell, Jennifer E

    2016-02-01

    Cognitive control supports flexible behavior adapted to meet current goals and can be modeled through investigation of saccade tasks with varying cognitive demands. Basic prosaccades (rapid glances toward a newly appearing stimulus) are supported by neural circuitry, including occipital and posterior parietal cortex, frontal and supplementary eye fields, and basal ganglia. These trials can be contrasted with complex antisaccades (glances toward the mirror image location of a stimulus), which are characterized by greater functional magnetic resonance imaging (MRI) blood oxygenation level-dependent (BOLD) signal in the aforementioned regions and recruitment of additional regions such as dorsolateral prefrontal cortex. The current study manipulated the cognitive demands of these saccade tasks by presenting three rapid event-related runs of mixed saccades with a varying probability of antisaccade vs. prosaccade trials (25, 50, or 75%). Behavioral results showed an effect of trial-type probability on reaction time, with slower responses in runs with a high antisaccade probability. Imaging results exhibited an effect of probability in bilateral pre- and postcentral gyrus, bilateral superior temporal gyrus, and medial frontal gyrus. Additionally, the interaction between saccade trial type and probability revealed a strong probability effect for prosaccade trials, showing a linear increase in activation parallel to antisaccade probability in bilateral temporal/occipital, posterior parietal, medial frontal, and lateral prefrontal cortex. In contrast, antisaccade trials showed elevated activation across all runs. Overall, this study demonstrated that improbable performance of a typically simple prosaccade task led to augmented BOLD signal to support changing cognitive control demands, resulting in activation levels similar to the more complex antisaccade task. Copyright © 2016 the American Physiological Society.

  11. Affective neural response to restricted interests in Autism Spectrum Disorders

    PubMed Central

    Cascio, Carissa J.; Foss-Feig, Jennifer H.; Heacock, Jessica; Schauder, Kimberly B.; Loring, Whitney A.; Rogers, Baxter P.; Pryweller, Jennifer R.; Newsom, Cassandra R.; Cockhren, Jurnell; Cao, Aize; Bolton, Scott

    2013-01-01

    Background Restricted interests are a class of repetitive behavior in autism spectrum disorders (ASD) whose intensity and narrow focus often contribute to significant interference with daily functioning. While numerous neuroimaging studies have investigated executive circuits as putative neural substrates of repetitive behavior, recent work implicates affective neural circuits in restricted interests. We sought to explore the role of affective neural circuits and determine how restricted interests are distinguished from hobbies or interests in typical development. Methods We compared a group of children with ASD to a typically developing (TD) group of children with strong interests or hobbies, employing parent report, an operant behavioral task, and functional imaging with personalized stimuli based on individual interests. Results While performance on the operant task was similar between the two groups, parent report of intensity and interference of interests was significantly higher in the ASD group. Both the ASD and TD groups showed increased BOLD response in widespread affective neural regions to pictures of their own interest. When viewing pictures of other children's interests, the TD group showed a similar pattern, whereas BOLD response in the ASD group was much more limited. Increased BOLD response in the insula and anterior cingulate cortex distinguished the ASD from the TD group, and parent report of the intensity and interference with daily life of the child's restricted interest predicted insula response. Conclusions While affective neural network response and operant behavior are comparable in typical and restricted interests, the narrowness of focus that clinically distinguishes restricted interests in ASD is reflected in more interference in daily life and aberrantly enhanced insula and anterior cingulate response to individuals’ own interests in the ASD group. These results further support the involvement of affective neural networks in repetitive behaviors in ASD. PMID:24117668

  12. Radar studies of midlatitude ionospheric plasma drifts

    NASA Astrophysics Data System (ADS)

    Scherliess, L.; Fejer, B. G.; Holt, J.; Goncharenko, L.; Amory-Mazaudier, C.; Buonsanto, M. J.

    2001-02-01

    We use incoherent scatter radar measurements from Millstone Hill and Saint Santin to study the midlatitude F region electrodynamic plasma drifts during geomagnetically quiet and active periods. We present initially a local time, season, and solar flux dependent analytical model of the quiet time zonal and meridional E×B drifts over these stations. We discuss, for the first time, the Saint Santin drift patterns during solar maximum. We have used these quiet time models to extract the geomagnetic perturbation drifts which were modeled as a function of the time history of the auroral electrojet indices. Our results illustrate the evolution of the disturbance drifts driven by the combined effects of prompt penetration and longer lasting perturbation electric fields. The meridional electrodynamic disturbance drifts have largest amplitudes in the midnight-noon sector. The zonal drifts are predominantly westward, with largest amplitudes in the dusk-midnight sector and, following a decrease in the high-latitude convection, they decay more slowly than the meridional drifts. The prompt penetration and steady state zonal disturbance drifts derived from radar measurements are in good agreement with results obtained from both the ion drift meter data on board the Dynamics Explorer 2 (DE 2) satellite and from the Rice Convection Model.

  13. Transcranial electrical stimulation of the occipital cortex during visual perception modifies the magnitude of BOLD activity: A combined tES-fMRI approach.

    PubMed

    Alekseichuk, Ivan; Diers, Kersten; Paulus, Walter; Antal, Andrea

    2016-10-15

    The aim of this study was to investigate if the blood oxygenation level-dependent (BOLD) changes in the visual cortex can be used as biomarkers reflecting the online and offline effects of transcranial electrical stimulation (tES). Anodal transcranial direct current stimulation (tDCS) and 10Hz transcranial alternating current stimulation (tACS) were applied for 10min duration over the occipital cortex of healthy adults during the presentation of different visual stimuli, using a crossover, double-blinded design. Control experiments were also performed, in which sham stimulation as well as another electrode montage were used. Anodal tDCS over the visual cortex induced a small but significant further increase in BOLD response evoked by a visual stimulus; however, no aftereffect was observed. Ten hertz of tACS did not result in an online effect, but in a widespread offline BOLD decrease over the occipital, temporal, and frontal areas. These findings demonstrate that tES during visual perception affects the neuronal metabolism, which can be detected with functional magnetic resonance imaging (fMRI). Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Population, sex and body size: determinants of behavioural variations and behavioural correlations among wild zebrafish Danio rerio.

    PubMed

    Roy, Tamal; Bhat, Anuradha

    2018-01-01

    This study (1) investigated variation among populations and the effects of sex and body size on boldness, activity and shoal-association tendency among wild zebrafish, and (2) tested for existence of correlations between behaviours, controlling for sex and body size. Individuals across four natural populations were tested for general activity in a novel situation, number of predator inspections undertaken and tendency to associate with a conspecific shoal in the presence of predators. Results showed a significant effect of population on boldness with a population from high-predation habitat being bolder than populations from low-predation habitats. Males showed significantly higher tendencies than females to associate with a conspecific shoal in the presence of predators. Further, a negative relationship was found between activity and boldness only within two low-predation populations. Individual body size had a strong effect on the activity-boldness relationship within the low-predation population from flowing water habitat. Smaller fish were bolder and less active while larger fish were more cautious and active. Overall, the results indicated that while population-level behavioural responses might be shaped by predation pressure, state-dependent factors could determine behavioural correlations among individuals within populations.

  15. Small within-day increases in temperature affects boldness and alters personality in coral reef fish.

    PubMed

    Biro, Peter A; Beckmann, Christa; Stamps, Judy A

    2010-01-07

    Consistent individual differences in behaviour, termed personality, are common in animal populations and can constrain their responses to ecological and environmental variation, such as temperature. Here, we show for the first time that normal within-daytime fluctuations in temperature of less than 3 degrees C have large effects on personality for two species of juvenile coral reef fish in both observational and manipulative experiments. On average, individual scores on three personality traits (PTs), activity, boldness and aggressiveness, increased from 2.5- to sixfold as a function of temperature. However, whereas most individuals became more active, aggressive and bold across temperature contexts (were plastic), others did not; this changed the individual rank order across temperatures and thus altered personality. In addition, correlations between PTs were consistent across temperature contexts, e.g. fish that were active at a given temperature also tended to be both bold and aggressive. These results (i) highlight the importance of very carefully controlling for temperature when studying behavioural variation among and within individuals and (ii) suggest that individual differences in energy metabolism may contribute to animal personality, given that temperature has large direct effects on metabolic rates in ectotherms.

  16. Population, sex and body size: determinants of behavioural variations and behavioural correlations among wild zebrafish Danio rerio

    PubMed Central

    Roy, Tamal

    2018-01-01

    This study (1) investigated variation among populations and the effects of sex and body size on boldness, activity and shoal-association tendency among wild zebrafish, and (2) tested for existence of correlations between behaviours, controlling for sex and body size. Individuals across four natural populations were tested for general activity in a novel situation, number of predator inspections undertaken and tendency to associate with a conspecific shoal in the presence of predators. Results showed a significant effect of population on boldness with a population from high-predation habitat being bolder than populations from low-predation habitats. Males showed significantly higher tendencies than females to associate with a conspecific shoal in the presence of predators. Further, a negative relationship was found between activity and boldness only within two low-predation populations. Individual body size had a strong effect on the activity–boldness relationship within the low-predation population from flowing water habitat. Smaller fish were bolder and less active while larger fish were more cautious and active. Overall, the results indicated that while population-level behavioural responses might be shaped by predation pressure, state-dependent factors could determine behavioural correlations among individuals within populations. PMID:29410809

  17. Food portion size and energy density evoke different patterns of brain activation in children12

    PubMed Central

    Fearnbach, S Nicole; Wilson, Stephen J; Fisher, Jennifer O; Savage, Jennifer S; Rolls, Barbara J; Keller, Kathleen L

    2017-01-01

    Background: Large portions of food promote intake, but the mechanisms that drive this effect are unclear. Previous neuroimaging studies have identified the brain-reward and decision-making systems that are involved in the response to the energy density (ED) (kilocalories per gram) of foods, but few studies have examined the brain response to the food portion size (PS). Objective: We used functional MRI (fMRI) to determine the brain response to food images that differed in PSs (large and small) and ED (high and low). Design: Block-design fMRI was used to assess the blood oxygen level–dependent (BOLD) response to images in 36 children (7–10 y old; girls: 50%), which was tested after a 2-h fast. Pre-fMRI fullness and liking were rated on visual analog scales. A whole-brain cluster-corrected analysis was used to compare BOLD activation for main effects of the PS, ED, and their interaction. Secondary analyses were used to associate BOLD contrast values with appetitive traits and laboratory intake from meals for which the portions of all foods were increased. Results: Compared with small-PS cues, large-PS cues were associated with decreased activation in the inferior frontal gyrus (P < 0.01). Compared with low-ED cues, high-ED cues were associated with increased activation in multiple regions (e.g., in the caudate, cingulate, and precentral gyrus) and decreased activation in the insula and superior temporal gyrus (P < 0.01 for all). A PS × ED interaction was shown in the superior temporal gyrus (P < 0.01). BOLD contrast values for high-ED cues compared with low-ED cues in the insula, declive, and precentral gyrus were negatively related to appetitive traits (P < 0.05). There were no associations between the brain response to the PS and either appetitive traits or intake. Conclusions: Cues regarding food PS may be processed in the lateral prefrontal cortex, which is a region that is implicated in cognitive control, whereas ED activates multiple areas involved in sensory and reward processing. Possible implications include the development of interventions that target decision-making and reward systems differently to moderate overeating. PMID:27881393

  18. Human protein status modulates brain reward responses to food cues.

    PubMed

    Griffioen-Roose, Sanne; Smeets, Paul Am; van den Heuvel, Emmy; Boesveldt, Sanne; Finlayson, Graham; de Graaf, Cees

    2014-07-01

    Protein is indispensable in the human diet, and its intake appears tightly regulated. The role of sensory attributes of foods in protein intake regulation is far from clear. We investigated the effect of human protein status on neural responses to different food cues with the use of functional magnetic resonance imaging (fMRI). The food cues varied by taste category (sweet compared with savory) and protein content (low compared with high). In addition, food preferences and intakes were measured. We used a randomized crossover design whereby 23 healthy women [mean ± SD age: 22 ± 2 y; mean ± SD body mass index (in kg/m(2)): 22.5 ± 1.8] followed two 16-d fully controlled dietary interventions involving consumption of either a low-protein diet (0.6 g protein · kg body weight(-1) · d(-1), ~7% of energy derived from protein, approximately half the normal protein intake) or a high-protein diet (2.2 g protein · kg body weight(-1) · d(-1), ~25% of energy, approximately twice the normal intake). On the last day of the interventions, blood oxygen level-dependent (BOLD) responses to odor and visual food cues were measured by using fMRI. The 2 interventions were followed by a 1-d ad libitum phase, during which a large array of food items was available and preference and intake were measured. When exposed to food cues (relative to the control condition), the BOLD response was higher in reward-related areas (orbitofrontal cortex, striatum) in a low-protein state than in a high-protein state. Specifically, BOLD was higher in the inferior orbitofrontal cortex in response to savory food cues. In contrast, the protein content of the food cues did not modulate the BOLD response. A low protein state also increased preferences for savory food cues and increased protein intake in the ad libitum phase as compared with a high-protein state. Protein status modulates brain responses in reward regions to savory food cues. These novel findings suggest that dietary protein status affects taste category preferences, which could play an important role in the regulation of protein intake in humans. This trial was registered at www.trialregister.nl/trialreg/admin/rctview.asp?TC=3288 as NTR3288. © 2014 American Society for Nutrition.

  19. Anticipatory reward processing among cocaine-dependent individuals with and without concurrent methadone-maintenance treatment: Relationship to treatment response*

    PubMed Central

    Yip, Sarah W.; DeVito, Elise E.; Kober, Hedy; Worhunsky, Patrick D.; Carroll, Kathleen M.; Potenza, Marc N.

    2016-01-01

    Background Cocaine dependence among opioid-dependent methadone-maintained individuals is a significant public health problem and is particularly challenging to treat. The neurobiology of this clinically complex population has not been previously assessed using fMRI. Methods fMRI data from cocaine-dependent, methadone-maintained (CD-MM) patients (n=24), cocaine-dependent (CD) patients (n=20) and healthy comparison (HC; n=21) participants were acquired during monetary incentive delay task performance. All patients were scanned prior to treatment for cocaine dependence. Between-group differences in anticipatory reward and loss processing were assessed using whole-brain ANOVAs in SPM12 (pFWE<.05). Correlations between durations of abstinence during treatment and BOLD responses within the insula and caudate were also explored. Results Main effects of diagnostic group, primarily involving decreased BOLD responses among CD-MM patients in comparison to HCs, were observed during anticipatory reward and loss processing within regions of posterior cingulate cortex, precuneus, inferior frontal gyrus and dorsolateral prefrontal cortex. BOLD responses within the right caudate were negatively associated with percentage of cocaine-negative urines during treatment among CD-MM patients, but not among non-methadone-maintained CD patients. Conclusions These data suggest neurofunctional differences that may be related to treatment outcomes for behavioral therapies between cocaine-dependent individuals with and without methadone-maintenance treatment. These findings may relate to differences in treatment efficacies and to the elevated relapse rates observed in methadone-maintained populations. PMID:27430401

  20. Evidence accumulation detected in BOLD signal using slow perceptual decision making.

    PubMed

    Krueger, Paul M; van Vugt, Marieke K; Simen, Patrick; Nystrom, Leigh; Holmes, Philip; Cohen, Jonathan D

    2017-04-01

    We assessed whether evidence accumulation could be observed in the BOLD signal during perceptual decision making. This presents a challenge since the hemodynamic response is slow, while perceptual decisions are typically fast. Guided by theoretical predictions of the drift diffusion model, we slowed down decisions by penalizing participants for incorrect responses. Second, we distinguished BOLD activity related to stimulus detection (modeled using a boxcar) from activity related to integration (modeled using a ramp) by minimizing the collinearity of GLM regressors. This was achieved by dissecting a boxcar into its two most orthogonal components: an "up-ramp" and a "down-ramp." Third, we used a control condition in which stimuli and responses were similar to the experimental condition, but that did not engage evidence accumulation of the stimuli. The results revealed an absence of areas in parietal cortex that have been proposed to drive perceptual decision making but have recently come into question; and newly identified regions that are candidates for involvement in evidence accumulation. Previous fMRI studies have either used fast perceptual decision making, which precludes the measurement of evidence accumulation, or slowed down responses by gradually revealing stimuli. The latter approach confounds perceptual detection with evidence accumulation because accumulation is constrained by perceptual input. We slowed down the decision making process itself while leaving perceptual information intact. This provided a more sensitive and selective observation of brain regions associated with the evidence accumulation processes underlying perceptual decision making than previous methods. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. MEG and fMRI Fusion for Non-Linear Estimation of Neural and BOLD Signal Changes

    PubMed Central

    Plis, Sergey M.; Calhoun, Vince D.; Weisend, Michael P.; Eichele, Tom; Lane, Terran

    2010-01-01

    The combined analysis of magnetoencephalography (MEG)/electroencephalography and functional magnetic resonance imaging (fMRI) measurements can lead to improvement in the description of the dynamical and spatial properties of brain activity. In this paper we empirically demonstrate this improvement using simulated and recorded task related MEG and fMRI activity. Neural activity estimates were derived using a dynamic Bayesian network with continuous real valued parameters by means of a sequential Monte Carlo technique. In synthetic data, we show that MEG and fMRI fusion improves estimation of the indirectly observed neural activity and smooths tracking of the blood oxygenation level dependent (BOLD) response. In recordings of task related neural activity the combination of MEG and fMRI produces a result with greater signal-to-noise ratio, that confirms the expectation arising from the nature of the experiment. The highly non-linear model of the BOLD response poses a difficult inference problem for neural activity estimation; computational requirements are also high due to the time and space complexity. We show that joint analysis of the data improves the system's behavior by stabilizing the differential equations system and by requiring fewer computational resources. PMID:21120141

  2. Enhanced activation of reward mediating prefrontal regions in response to food stimuli in Prader-Willi syndrome.

    PubMed

    Miller, Jennifer L; James, G Andrew; Goldstone, Anthony P; Couch, Jessica A; He, Guojun; Driscoll, Daniel J; Liu, Yijun

    2007-06-01

    Individuals with Prader-Willi syndrome (PWS) exhibit severe disturbances in appetite regulation, including delayed meal termination, early return of hunger after a meal, seeking and hoarding food and eating of non-food substances. Brain pathways involved in the control of appetite in humans are thought to include the hypothalamus, frontal cortex (including the orbitofrontal, ventromedial prefrontal, dorsolateral prefrontal and anterior cingulate areas), insula, and limbic and paralimbic areas. We hypothesised that the abnormal appetite in PWS results from aberrant reward processing of food stimuli in these neural pathways. We compared functional MRI blood oxygen level dependent (BOLD) responses while viewing pictures of food in eight adults with PWS and eight normal weight adults after ingestion of an oral glucose load. Subjects with PWS demonstrated significantly greater BOLD activation in the ventromedial prefrontal cortex than controls when viewing food pictures. No significant differences were found in serum insulin, glucose or triglyceride levels between the groups at the time of the scan. Individuals with PWS had an increased BOLD response in the ventromedial prefrontal cortex compared with normal weight controls when viewing pictures of food after an oral glucose load. These findings suggest that an increased reward value for food may underlie the excessive hunger in PWS, and support the significance of the frontal cortex in modulating the response to food in humans. Our findings in the extreme appetite phenotype of PWS support the importance of the neural pathways that guide reward related behaviour in modulating the response to food in humans.

  3. Complex motor task associated with non-linear BOLD responses in cerebro-cortical areas and cerebellum.

    PubMed

    Alahmadi, Adnan A S; Samson, Rebecca S; Gasston, David; Pardini, Matteo; Friston, Karl J; D'Angelo, Egidio; Toosy, Ahmed T; Wheeler-Kingshott, Claudia A M

    2016-06-01

    Previous studies have used fMRI to address the relationship between grip force (GF) applied to an object and BOLD response. However, whilst the majority of these studies showed a linear relationship between GF and neural activity in the contralateral M1 and ipsilateral cerebellum, animal studies have suggested the presence of non-linear components in the GF-neural activity relationship. Here, we present a methodology for assessing non-linearities in the BOLD response to different GF levels, within primary motor as well as sensory and cognitive areas and the cerebellum. To be sensitive to complex forms, we designed a feasible grip task with five GF targets using an event-related visually guided paradigm and studied a cohort of 13 healthy volunteers. Polynomial functions of increasing order were fitted to the data. (1) activated motor areas irrespective of GF; (2) positive higher-order responses in and outside M1, involving premotor, sensory and visual areas and cerebellum; (3) negative correlations with GF, predominantly involving the visual domain. Overall, our results suggest that there are physiologically consistent behaviour patterns in cerebral and cerebellar cortices; for example, we observed the presence of a second-order effect in sensorimotor areas, consistent with an optimum metabolic response at intermediate GF levels, while higher-order behaviour was found in associative and cognitive areas. At higher GF levels, sensory-related cortical areas showed reduced activation, interpretable as a redistribution of the neural activity for more demanding tasks. These results have the potential of opening new avenues for investigating pathological mechanisms of neurological diseases.

  4. Edge-Related Activity Is Not Necessary to Explain Orientation Decoding in Human Visual Cortex.

    PubMed

    Wardle, Susan G; Ritchie, J Brendan; Seymour, Kiley; Carlson, Thomas A

    2017-02-01

    Multivariate pattern analysis is a powerful technique; however, a significant theoretical limitation in neuroscience is the ambiguity in interpreting the source of decodable information used by classifiers. This is exemplified by the continued controversy over the source of orientation decoding from fMRI responses in human V1. Recently Carlson (2014) identified a potential source of decodable information by modeling voxel responses based on the Hubel and Wiesel (1972) ice-cube model of visual cortex. The model revealed that activity associated with the edges of gratings covaries with orientation and could potentially be used to discriminate orientation. Here we empirically evaluate whether "edge-related activity" underlies orientation decoding from patterns of BOLD response in human V1. First, we systematically mapped classifier performance as a function of stimulus location using population receptive field modeling to isolate each voxel's overlap with a large annular grating stimulus. Orientation was decodable across the stimulus; however, peak decoding performance occurred for voxels with receptive fields closer to the fovea and overlapping with the inner edge. Critically, we did not observe the expected second peak in decoding performance at the outer stimulus edge as predicted by the edge account. Second, we evaluated whether voxels that contribute most to classifier performance have receptive fields that cluster in cortical regions corresponding to the retinotopic location of the stimulus edge. Instead, we find the distribution of highly weighted voxels to be approximately random, with a modest bias toward more foveal voxels. Our results demonstrate that edge-related activity is likely not necessary for orientation decoding. A significant theoretical limitation of multivariate pattern analysis in neuroscience is the ambiguity in interpreting the source of decodable information used by classifiers. For example, orientation can be decoded from BOLD activation patterns in human V1, even though orientation columns are at a finer spatial scale than 3T fMRI. Consequently, the source of decodable information remains controversial. Here we test the proposal that information related to the stimulus edges underlies orientation decoding. We map voxel population receptive fields in V1 and evaluate orientation decoding performance as a function of stimulus location in retinotopic cortex. We find orientation is decodable from voxels whose receptive fields do not overlap with the stimulus edges, suggesting edge-related activity does not substantially drive orientation decoding. Copyright © 2017 the authors 0270-6474/17/371187-10$15.00/0.

  5. Divergent predation environment between two sister species of livebearing fishes (Cyprinodontiformes: Poeciliidae) predicts boldness, activity, and exploration behavior.

    PubMed

    Money, David A; Ingley, Spencer J; Johnson, Jerald B

    2017-03-01

    Predators can influence a variety of prey traits, including behavior. Traits such as boldness, activity rate, and tendency to explore can all be shaped by predation risk. Our study examines the effects of predation on these behaviors by considering a natural system in which two sister species of livebearing fishes, Brachyrhaphis roseni and B. terrabensis, experience divergent predation environments. In February of 2013, we collected fish in the Río Chiriquí Nuevo drainage, Chiriquí, Panama, and conducted behavioral assays. Using open-field behavioral assays, we evaluated both juveniles and adults, and males and females, to determine if there were differences in behavior between ontogenetic stages or between sexes. We assessed boldness as ‘time to emerge’ from a shelter into a novel environment, and subsequently measured activity and exploration within that novel environment. We predicted that B. roseni (a species that co-occurs with predators) would be more bold, more active, and more prone to explore, than B. terrabensis (a species that does not co-occur with predators). In total, we tested 17 juveniles, 21 adult males, and 20 adult females of B. roseni, and 19 juveniles, 19 adult males, and 18 adult females of B. terrabensis. We collected all animals from streams in Chiriquí, Panama in February 2013, and tested them following a short acclimation period to laboratory conditions. As predicted, we found that predation environment was associated with several differences in behavior. Both adult and juvenile B. roseni were more active and more prone to explore than B. terrabensis. However, we found no differences in boldness in either adults or juveniles. We also found a significant interaction between ‘sex’ and ‘species’ as predictors of boldness and exploration, indicating that predation environment can affect behaviors of males and females differently in each species. Our work demonstrates the importance of considering sex and life history stage when evaluating the evolution of behavior.

  6. Dopamine modulates striatal response to reward and punishment in patients with Parkinson's disease: a pharmacological challenge fMRI study.

    PubMed

    Argyelan, Miklos; Herzallah, Mohammad; Sako, Wataru; DeLucia, Ivana; Sarpal, Deepak; Vo, An; Fitzpatrick, Toni; Moustafa, Ahmed A; Eidelberg, David; Gluck, Mark

    2018-05-02

    It is well established that Parkinson's disease leads to impaired learning from reward and enhanced learning from punishment. The administration of dopaminergic medications reverses this learning pattern. However, few studies have investigated the neural underpinnings of these cognitive processes. In this study, using fMRI, we tested a group of Parkinson's disease patients on and off dopaminergic medications and matched healthy individuals. All individuals completed an fMRI cognitive task that dissociates feedback learning from reward versus punishment. The administration of dopaminergic medications attenuated blood oxygen level dependent (BOLD) responses to punishment in the bilateral putamen, in bilateral dorsolateral prefrontal cortex and the left premotor cortex. Further, the administration of dopaminergic medications resulted in a higher ratio of BOLD activity between reward and punishment trials in these brain areas. BOLD activity in these brain areas was significantly correlated with learning from punishment, but not from reward trials. Furthermore, the administration of dopaminergic medications altered BOLD activity in the right insula and ventromedial prefrontal cortex when Parkinson's disease patients were anticipating feedback. These findings are in agreement with a large body of literature indicating that Parkinson's disease is associated with enhanced learning from punishment. However, it was surprising that dopaminergic medications modulated punishment learning as opposed to reward learning, although reward learning has been directly linked to dopaminergic function. We argue that these results might be attributed to both a change in the balance between direct and indirect pathway activation in the basal ganglia as well as the differential activity of D1 versus D2 dopamine receptors.

  7. Trial-Level Regressor Modulation for Functional Magnetic Resonance Imaging Designs Requiring Strict Periodicity of Stimulus Presentations: Illustrated Using a Go/No-Go Task

    PubMed Central

    Motes, Michael A; Rao, Neena K; Shokri-Kojori, Ehsan; Chiang, Hsueh-Sheng; Kraut, Michael A; Hart, John

    2017-01-01

    Computer-based assessment of many cognitive processes (eg, anticipatory and response readiness processes) requires the use of invariant stimulus display times (SDT) and intertrial intervals (ITI). Although designs with invariant SDTs and ITIs have been used in functional magnetic resonance imaging (fMRI) research, such designs are problematic for fMRI studies because of collinearity issues. This study examined regressor modulation with trial-level reaction times (RT) as a method for improving signal detection in a go/no-go task with invariant SDTs and ITIs. The effects of modulating the go regressor were evaluated with respect to the detection of BOLD signal-change for the no-go condition. BOLD signal-change to no-go stimuli was examined when the go regressor was based on a (a) canonical hemodynamic response function (HRF), (b) RT-based amplitude-modulated (AM) HRF, and (c) RT-based amplitude and duration modulated (A&DM) HRF. Reaction time–based modulation reduced the collinearity between the go and no-go regressors, with A&DM producing the greatest reductions in correlations between the regressors, and greater reductions in the correlations between regressors were associated with longer mean RTs and greater RT variability. Reaction time–based modulation increased statistical power for detecting group-level no-go BOLD signal-change across a broad set of brain regions. The findings show the efficacy of using regressor modulation to increase power in detecting BOLD signal-change in fMRI studies in which circumstances dictate the use of temporally invariant stimulus presentations. PMID:29276390

  8. Trial-Level Regressor Modulation for Functional Magnetic Resonance Imaging Designs Requiring Strict Periodicity of Stimulus Presentations: Illustrated Using a Go/No-Go Task.

    PubMed

    Motes, Michael A; Rao, Neena K; Shokri-Kojori, Ehsan; Chiang, Hsueh-Sheng; Kraut, Michael A; Hart, John

    2017-01-01

    Computer-based assessment of many cognitive processes (eg, anticipatory and response readiness processes) requires the use of invariant stimulus display times (SDT) and intertrial intervals (ITI). Although designs with invariant SDTs and ITIs have been used in functional magnetic resonance imaging (fMRI) research, such designs are problematic for fMRI studies because of collinearity issues. This study examined regressor modulation with trial-level reaction times (RT) as a method for improving signal detection in a go / no-go task with invariant SDTs and ITIs. The effects of modulating the go regressor were evaluated with respect to the detection of BOLD signal-change for the no-go condition. BOLD signal-change to no-go stimuli was examined when the go regressor was based on a (a) canonical hemodynamic response function (HRF), (b) RT-based amplitude-modulated (AM) HRF, and (c) RT-based amplitude and duration modulated (A&DM) HRF. Reaction time-based modulation reduced the collinearity between the go and no-go regressors, with A&DM producing the greatest reductions in correlations between the regressors, and greater reductions in the correlations between regressors were associated with longer mean RTs and greater RT variability. Reaction time-based modulation increased statistical power for detecting group-level no-go BOLD signal-change across a broad set of brain regions. The findings show the efficacy of using regressor modulation to increase power in detecting BOLD signal-change in fMRI studies in which circumstances dictate the use of temporally invariant stimulus presentations.

  9. Nalmefene Reduces Reward Anticipation in Alcohol Dependence: An Experimental Functional Magnetic Resonance Imaging Study.

    PubMed

    Quelch, Darren R; Mick, Inge; McGonigle, John; Ramos, Anna C; Flechais, Remy S A; Bolstridge, Mark; Rabiner, Eugenii; Wall, Matthew B; Newbould, Rexford D; Steiniger-Brach, Björn; van den Berg, Franz; Boyce, Malcolm; Østergaard Nilausen, Dorrit; Breuning Sluth, Lasse; Meulien, Didier; von der Goltz, Christoph; Nutt, David; Lingford-Hughes, Anne

    2017-06-01

    Nalmefene is a µ and δ opioid receptor antagonist, κ opioid receptor partial agonist that has recently been approved in Europe for treating alcohol dependence. It offers a treatment approach for alcohol-dependent individuals with "high-risk drinking levels" to reduce their alcohol consumption. However, the neurobiological mechanism underpinning its effects on alcohol consumption remains to be determined. Using a randomized, double-blind, placebo-controlled, within-subject crossover design we aimed to determine the effect of a single dose of nalmefene on striatal blood oxygen level-dependent (BOLD) signal change during anticipation of monetary reward using the monetary incentive delay task following alcohol challenge. Twenty-two currently heavy-drinking, non-treatment-seeking alcohol-dependent males were recruited. The effect of single dose nalmefene (18 mg) on changes in a priori defined striatal region of interest BOLD signal change during reward anticipation compared with placebo was investigated using functional magnetic resonance imaging. Both conditions were performed under intravenous alcohol administration (6% vol/vol infusion to achieve a target level of 80 mg/dL). Datasets from 18 participants were available and showed that in the presence of the alcohol infusion, nalmefene significantly reduced the BOLD response in the striatal region of interest compared with placebo. Nalmefene did not alter brain perfusion. Nalmefene blunts BOLD response in the mesolimbic system during anticipation of monetary reward and an alcohol infusion. This is consistent with nalmefene's actions on opioid receptors, which modulate the mesolimbic dopaminergic system, and provides a neurobiological basis for its efficacy. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  10. Fast fMRI provides high statistical power in the analysis of epileptic networks.

    PubMed

    Jacobs, Julia; Stich, Julia; Zahneisen, Benjamin; Assländer, Jakob; Ramantani, Georgia; Schulze-Bonhage, Andreas; Korinthenberg, Rudolph; Hennig, Jürgen; LeVan, Pierre

    2014-03-01

    EEG-fMRI is a unique method to combine the high temporal resolution of EEG with the high spatial resolution of MRI to study generators of intrinsic brain signals such as sleep grapho-elements or epileptic spikes. While the standard EPI sequence in fMRI experiments has a temporal resolution of around 2.5-3s a newly established fast fMRI sequence called MREG (Magnetic-Resonance-Encephalography) provides a temporal resolution of around 100ms. This technical novelty promises to improve statistics, facilitate correction of physiological artifacts and improve the understanding of epileptic networks in fMRI. The present study compares simultaneous EEG-EPI and EEG-MREG analyzing epileptic spikes to determine the yield of fast MRI in the analysis of intrinsic brain signals. Patients with frequent interictal spikes (>3/20min) underwent EEG-MREG and EEG-EPI (3T, 20min each, voxel size 3×3×3mm, EPI TR=2.61s, MREG TR=0.1s). Timings of the spikes were used in an event-related analysis to generate activation maps of t-statistics. (FMRISTAT, |t|>3.5, cluster size: 7 voxels, p<0.05 corrected). For both sequences, the amplitude and location of significant BOLD activations were compared with the spike topography. 13 patients were recorded and 33 different spike types could be analyzed. Peak T-values were significantly higher in MREG than in EPI (p<0.0001). Positive BOLD effects correlating with the spike topography were found in 8/29 spike types using the EPI and in 22/33 spikes types using the MREG sequence. Negative BOLD responses in the default mode network could be observed in 3/29 spike types with the EPI and in 19/33 with the MREG sequence. With the latter method, BOLD changes were observed even when few spikes occurred during the investigation. Simultaneous EEG-MREG thus is possible with good EEG quality and shows higher sensitivity in regard to the localization of spike-related BOLD responses than EEG-EPI. The development of new methods of analysis for this sequence such as modeling of physiological noise, temporal analysis of the BOLD signal and defining appropriate thresholds is required to fully profit from its high temporal resolution. © 2013.

  11. Frequency-Selective Attention in Auditory Scenes Recruits Frequency Representations Throughout Human Superior Temporal Cortex.

    PubMed

    Riecke, Lars; Peters, Judith C; Valente, Giancarlo; Kemper, Valentin G; Formisano, Elia; Sorger, Bettina

    2017-05-01

    A sound of interest may be tracked amid other salient sounds by focusing attention on its characteristic features including its frequency. Functional magnetic resonance imaging findings have indicated that frequency representations in human primary auditory cortex (AC) contribute to this feat. However, attentional modulations were examined at relatively low spatial and spectral resolutions, and frequency-selective contributions outside the primary AC could not be established. To address these issues, we compared blood oxygenation level-dependent (BOLD) responses in the superior temporal cortex of human listeners while they identified single frequencies versus listened selectively for various frequencies within a multifrequency scene. Using best-frequency mapping, we observed that the detailed spatial layout of attention-induced BOLD response enhancements in primary AC follows the tonotopy of stimulus-driven frequency representations-analogous to the "spotlight" of attention enhancing visuospatial representations in retinotopic visual cortex. Moreover, using an algorithm trained to discriminate stimulus-driven frequency representations, we could successfully decode the focus of frequency-selective attention from listeners' BOLD response patterns in nonprimary AC. Our results indicate that the human brain facilitates selective listening to a frequency of interest in a scene by reinforcing the fine-grained activity pattern throughout the entire superior temporal cortex that would be evoked if that frequency was present alone. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. Striatal-Limbic Activation is Associated with Intensity of Anticipatory Anxiety

    PubMed Central

    Yang, Hongyu; Spence, Jeffrey S.; Devous, Michael D.; Briggs, Richard W.; Goyal, Aman; Xiao, Hong; Yadav, Hardik; Adinoff, Bryon

    2013-01-01

    Anxiety experienced in anticipation of impending aversive events induces striatal-limbic activation. However, previous functional magnetic imaging (fMRI) studies of anticipatory anxiety have utilized post-test measures of anxiety, making a direct association between neural activation and distress problematic. This paradigm was designed to assess the BOLD response to an aversive conditioned stimulus while simultaneously measuring subjective anxiety. Fifteen male healthy subjects (45.5±8.5 years old) were studied. A high threat conditioned stimulus (CS) was paired with either an unpredictable, highly aversive (painful) or a non-aversive (non-painful) unconditioned stimulus and compared to a low threat CS paired with a predictable, non-aversive stimulus. Neural response was assessed with fMRI, and subjective anxiety (1 to 4) was recorded upon the presentation of each CS. High subjective ratings of real-time anticipatory anxiety (2, 3, and 4), relative to low anticipatory anxiety (1), elicited increased activation in the bilateral striatum, bilateral orbital frontal cortex, left anterior insula, and anterior cingulate cortex (ACC) and decreased activation in the posterior cingulate cortex (PCC). The amplitude of BOLD signal change generally paralleled the subjective rating of anxiety. Real-time measures of anticipatory anxiety confirm previous reports, using post-test measures of anxiety, of striatal-limbic activation during anticipatory anxiety while simultaneously demonstrating an increase in BOLD response in parallel with heightened anxiety. PMID:23137803

  13. Altered intraoperative cerebrovascular reactivity in brain areas of high-grade glioma recurrence.

    PubMed

    Fierstra, Jorn; van Niftrik, Bas; Piccirelli, Marco; Burkhardt, Jan Karl; Pangalu, Athina; Kocian, Roman; Valavanis, Antonios; Weller, Michael; Regli, Luca; Bozinov, Oliver

    2016-07-01

    Current MRI sequences are limited in identifying brain areas at risk for high grade glioma recurrence. We employed intraoperative 3-Tesla functional MRI to assess cerebrovascular reactivity (CVR) after high-grade glioma resection and analyzed regional CVR responses in areas of tumor recurrence on clinical follow-up imaging. Five subjects with high-grade glioma that underwent an intraoperative Blood Oxygen-Level Dependent (BOLD) MRI CVR examination and had a clinical follow-up of at least 18months were selected from a prospective database. For this study, location of tumor recurrence was spatially matched to the intraoperative imaging to assess CVR response in that particular area. CVR is defined as the percent BOLD signal change during repeated cycles of apnea. Of the 5 subjects (mean age 44, 2 females), 4 were diagnosed with a WHO grade III and 1 subject with a WHO grade IV glioma. Three subjects exhibited a tumor recurrence on clinical follow-up MRI (mean: 15months). BOLD CVR measured in the spatially matched area of tumor recurrence was on average 94% increased (range-32% to 183%) as compared to contralateral hemisphere CVR response, 1.50±0.81 versus 1.03±0.46 respectively (p=0.31). For this first analysis in a small cohort, we found altered intraoperative CVR in brain areas exhibiting high grade glioma recurrence on clinical follow-up imaging. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. BOLD data representing activation and connectivity for rare no-go versus frequent go cues

    PubMed Central

    Meffert, Harma; Hwang, Soonjo; Nolan, Zachary T.; Chen, Gang; Blair, James R.

    2016-01-01

    The neural circuitry underlying response control is often studied using go/no-go tasks, in which participants are required to respond as fast as possible to go cues and withhold from responding to no-go stimuli. In the current task, response control was studied using a fully counterbalanced design in which blocks with a low frequency of no-go cues (75% go, 25% no-go) were alternated with blocks with a low frequency of go cues (25% go, 75% no-go); see also “Segregating attention from response control when performing a motor inhibition task: Segregating attention from response control” [1]. We applied a whole brain corrected, paired t-test to the data assessing for regions differentially activated by low frequency no-go cues relative to high frequency go cues. In addition, we conducted a generalized psychophysiological interaction analysis on the data using a right inferior frontal gyrus seed region. This region was identified through the BOLD response t-test and was chosen because right inferior gyrus is highly implicated in response inhibition. PMID:26955650

  15. How Hot Are They? Neural Correlates of Genital Arousal: An Infrared Thermographic and Functional Magnetic Resonance Imaging Study of Sexual Arousal in Men and Women.

    PubMed

    Parada, Mayte; Gérard, Marina; Larcher, Kevin; Dagher, Alain; Binik, Yitzchak M

    2018-02-01

    The few studies that have examined the neural correlates of genital arousal have focused on men and are methodologically hard to compare. To investigate the neural correlates of peripheral physiologic sexual arousal using identical methodology for men and women. 2 groups (20 men, 20 women) viewed movie clips (erotic, humor) while genital temperature was continuously measured using infrared thermal imaging. Participants also continuously evaluated changes in their subjective arousal and answered discrete questions about liking the movies and wanting sexual stimulation. Brain activity, indicated by blood oxygen level-dependent (BOLD) response, was measured using functional magnetic resonance imaging. BOLD responses, genital temperature, and subjective sexual arousal. BOLD activity in a number of brain regions was correlated with changes in genital temperature in men and women; however, activation in women appeared to be more extensive than in men, including the anterior and posterior cingulate cortex, right cerebellum, insula, frontal operculum, and paracingulate gyrus. Examination of the strength of the correlation between BOLD response and genital temperature showed that women had a stronger brain-genital relation compared with men in a number of regions. There were no brain regions in men with stronger brain-genital correlations than in women. Our findings shed light on the neurophysiologic processes involved in genital arousal for men and women. Further research examining the specific brain regions that mediate our findings is necessary to pave the way for clinical application. A strength of the study is the use of thermography, which allows for a direct comparison of the neural correlates of genital arousal in men and women. This study has the common limitations of most laboratory-based sexual arousal research, including sampling bias, lack of ecologic validity, and equipment limitations, and those common to neuroimaging research, including BOLD signal interpretation and neuroimaging analysis issues. Our findings provide direct sex comparisons of the neural correlates of genital arousal in men and women and suggest that brain-genital correlations could be stronger in women. Parada M, Gérard M, Larcher K, et al. How Hot Are They? Neural Correlates of Genital Arousal: An Infrared Thermographic and Functional Magnetic Resonance Imaging Study of Sexual Arousal in Men and Women. J Sex Med 2018;15:217-229. Copyright © 2017 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.

  16. The Default Mode Network and EEG Regional Spectral Power: A Simultaneous fMRI-EEG Study

    PubMed Central

    Werner, Cornelius J.; Hitz, Konrad; Boers, Frank; Kawohl, Wolfram; Shah, N. Jon

    2014-01-01

    Electroencephalography (EEG) frequencies have been linked to specific functions as an “electrophysiological signature” of a function. A combination of oscillatory rhythms has also been described for specific functions, with or without predominance of one specific frequency-band. In a simultaneous fMRI-EEG study at 3 T we studied the relationship between the default mode network (DMN) and the power of EEG frequency bands. As a methodological approach, we applied Multivariate Exploratory Linear Optimized Decomposition into Independent Components (MELODIC) and dual regression analysis for fMRI resting state data. EEG power for the alpha, beta, delta and theta-bands were extracted from the structures forming the DMN in a region-of-interest approach by applying Low Resolution Electromagnetic Tomography (LORETA). A strong link between the spontaneous BOLD response of the left parahippocampal gyrus and the delta-band extracted from the anterior cingulate cortex was found. A positive correlation between the beta-1 frequency power extracted from the posterior cingulate cortex (PCC) and the spontaneous BOLD response of the right supplementary motor cortex was also established. The beta-2 frequency power extracted from the PCC and the precuneus showed a positive correlation with the BOLD response of the right frontal cortex. Our results support the notion of beta-band activity governing the “status quo” in cognitive and motor setup. The highly significant correlation found between the delta power within the DMN and the parahippocampal gyrus is in line with the association of delta frequencies with memory processes. We assumed “ongoing activity” during “resting state” in bringing events from the past to the mind, in which the parahippocampal gyrus is a relevant structure. Our data demonstrate that spontaneous BOLD fluctuations within the DMN are associated with different EEG-bands and strengthen the conclusion that this network is characterized by a specific electrophysiological signature created by combination of different brain rhythms subserving different putative functions. PMID:24505434

  17. Intersession reliability of fMRI activation for heat pain and motor tasks

    PubMed Central

    Quiton, Raimi L.; Keaser, Michael L.; Zhuo, Jiachen; Gullapalli, Rao P.; Greenspan, Joel D.

    2014-01-01

    As the practice of conducting longitudinal fMRI studies to assess mechanisms of pain-reducing interventions becomes more common, there is a great need to assess the test–retest reliability of the pain-related BOLD fMRI signal across repeated sessions. This study quantitatively evaluated the reliability of heat pain-related BOLD fMRI brain responses in healthy volunteers across 3 sessions conducted on separate days using two measures: (1) intraclass correlation coefficients (ICC) calculated based on signal amplitude and (2) spatial overlap. The ICC analysis of pain-related BOLD fMRI responses showed fair-to-moderate intersession reliability in brain areas regarded as part of the cortical pain network. Areas with the highest intersession reliability based on the ICC analysis included the anterior midcingulate cortex, anterior insula, and second somatosensory cortex. Areas with the lowest intersession reliability based on the ICC analysis also showed low spatial reliability; these regions included pregenual anterior cingulate cortex, primary somatosensory cortex, and posterior insula. Thus, this study found regional differences in pain-related BOLD fMRI response reliability, which may provide useful information to guide longitudinal pain studies. A simple motor task (finger-thumb opposition) was performed by the same subjects in the same sessions as the painful heat stimuli were delivered. Intersession reliability of fMRI activation in cortical motor areas was comparable to previously published findings for both spatial overlap and ICC measures, providing support for the validity of the analytical approach used to assess intersession reliability of pain-related fMRI activation. A secondary finding of this study is that the use of standard ICC alone as a measure of reliability may not be sufficient, as the underlying variance structure of an fMRI dataset can result in inappropriately high ICC values; a method to eliminate these false positive results was used in this study and is recommended for future studies of test–retest reliability. PMID:25161897

  18. Blood oxygen-level dependent functional assessment of cerebrovascular reactivity: Feasibility for intraoperative 3 Tesla MRI.

    PubMed

    Fierstra, Jorn; Burkhardt, Jan-Karl; van Niftrik, Christiaan Hendrik Bas; Piccirelli, Marco; Pangalu, Athina; Kocian, Roman; Neidert, Marian Christoph; Valavanis, Antonios; Regli, Luca; Bozinov, Oliver

    2017-02-01

    To assess the feasibility of functional blood oxygen-level dependent (BOLD) MRI to evaluate intraoperative cerebrovascular reactivity (CVR) at 3 Tesla field strength. Ten consecutive neurosurgical subjects scheduled for a clinical intraoperative MRI examination were enrolled in this study. In addition to the clinical protocol a BOLD sequence was implemented with three cycles of 44 s apnea to calculate CVR values on a voxel-by-voxel basis throughout the brain. The CVR range was then color-coded and superimposed on an anatomical volume to create high spatial resolution CVR maps. Ten subjects (mean age 34.8 ± 13.4; 2 females) uneventfully underwent the intraoperative BOLD protocol, with no complications occurring. Whole-brain CVR for all subjects was (mean ± SD) 0.69 ± 0.42, whereas CVR was markedly higher for tumor subjects as compared to vascular subjects, 0.81 ± 0.44 versus 0.33 ± 0.10, respectively. Furthermore, color-coded functional maps could be robustly interpreted for a whole-brain assessment of CVR. We demonstrate that intraoperative BOLD MRI is feasible in creating functional maps to assess cerebrovascular reactivity throughout the brain in subjects undergoing a neurosurgical procedure. Magn Reson Med 77:806-813, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  19. Adult wheel access interaction with activity and boldness personality in Siberian dwarf hamsters (Phodopus sungorus).

    PubMed

    Kanda, L Leann; Abdulhay, Amir; Erickson, Caitlin

    2017-05-01

    Individual animal personalities interact with environmental conditions to generate differences in behavior, a phenomenon of growing interest for understanding the effects of environmental enrichment on captive animals. Wheels are common environmental enrichment for laboratory rodents, but studies conflict on how this influences behavior, and interaction of wheels with individual personalities has rarely been examined. We examined whether wheel access altered personality profiles in adult Siberian dwarf hamsters. We assayed animals in a tunnel maze twice for baseline personality, then again at two and at seven weeks after the experimental group was provisioned with wheels in their home cages. Linear mixed model selection was used to assess changes in behavior over time and across environmental gradient of wheel exposure. While animals showed consistent inter-individual differences in activity, activity personality did not change upon exposure to a wheel. Boldness also varies among individuals, and there is evidence for female boldness scores converging after wheel exposure, that is, opposite shifts in behavior by high and low boldness individuals, although sample size is too small for the mixed model results to be robust. In general, Siberian dwarf hamsters appear to show low behavioral plasticity, particularly in general activity, in response to running wheels. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Synthetic Generation of Myocardial Blood-Oxygen-Level-Dependent MRI Time Series via Structural Sparse Decomposition Modeling

    PubMed Central

    Rusu, Cristian; Morisi, Rita; Boschetto, Davide; Dharmakumar, Rohan; Tsaftaris, Sotirios A.

    2014-01-01

    This paper aims to identify approaches that generate appropriate synthetic data (computer generated) for Cardiac Phase-resolved Blood-Oxygen-Level-Dependent (CP–BOLD) MRI. CP–BOLD MRI is a new contrast agent- and stress-free approach for examining changes in myocardial oxygenation in response to coronary artery disease. However, since signal intensity changes are subtle, rapid visualization is not possible with the naked eye. Quantifying and visualizing the extent of disease relies on myocardial segmentation and registration to isolate the myocardium and establish temporal correspondences and ischemia detection algorithms to identify temporal differences in BOLD signal intensity patterns. If transmurality of the defect is of interest pixel-level analysis is necessary and thus a higher precision in registration is required. Such precision is currently not available affecting the design and performance of the ischemia detection algorithms. In this work, to enable algorithmic developments of ischemia detection irrespective to registration accuracy, we propose an approach that generates synthetic pixel-level myocardial time series. We do this by (a) modeling the temporal changes in BOLD signal intensity based on sparse multi-component dictionary learning, whereby segmentally derived myocardial time series are extracted from canine experimental data to learn the model; and (b) demonstrating the resemblance between real and synthetic time series for validation purposes. We envision that the proposed approach has the capacity to accelerate development of tools for ischemia detection while markedly reducing experimental costs so that cardiac BOLD MRI can be rapidly translated into the clinical arena for the noninvasive assessment of ischemic heart disease. PMID:24691119

  1. Lower Working Memory Performance in Overweight and Obese Adolescents Is Mediated by White Matter Microstructure

    PubMed Central

    Alarcón, Gabriela; Ray, Siddharth; Nagel, Bonnie J.

    2017-01-01

    Objectives Elevated body mass index (BMI) is associated with deficits in working memory, reduced gray matter volume in frontal and parietal lobes, as well as changes in white matter (WM) microstructure. The current study examined whether BMI was related to working memory performance and blood oxygen level dependent (BOLD) activity, as well as WM microstructure during adolescence. Methods Linear regressions with BMI and (1) verbal working memory BOLD signal, (2) spatial working memory BOLD signal, and (3) fractional anisotropy (FA), a measure of WM microstructure, were conducted in a sample of 152 healthy adolescents ranging in BMI. Results BMI was inversely related to IQ and verbal and spatial working memory accuracy; however, there was no significant relationship between BMI and BOLD response for either verbal or spatial working memory. Furthermore, BMI was negatively correlated with FA in the left superior longitudinal fasciculus (SLF) and left inferior longitudinal fasciculus (ILF). ILF FA and IQ significantly mediated the relationship between BMI and verbal working memory performance, whereas SLF FA, but not IQ, significantly mediated the relationship between BMI and accuracy of both verbal and spatial working memory. Conclusions These findings indicate that higher BMI is associated with decreased FA in WM fibers connecting brain regions that support working memory, and that WM microstructural deficits may underlie inferior working memory performance in youth with higher BMI. Of interest, BMI did not show the same relationship with working memory BOLD activity, which may indicate that changes in brain structure precede changes in function. PMID:26708324

  2. Synthetic generation of myocardial blood-oxygen-level-dependent MRI time series via structural sparse decomposition modeling.

    PubMed

    Rusu, Cristian; Morisi, Rita; Boschetto, Davide; Dharmakumar, Rohan; Tsaftaris, Sotirios A

    2014-07-01

    This paper aims to identify approaches that generate appropriate synthetic data (computer generated) for cardiac phase-resolved blood-oxygen-level-dependent (CP-BOLD) MRI. CP-BOLD MRI is a new contrast agent- and stress-free approach for examining changes in myocardial oxygenation in response to coronary artery disease. However, since signal intensity changes are subtle, rapid visualization is not possible with the naked eye. Quantifying and visualizing the extent of disease relies on myocardial segmentation and registration to isolate the myocardium and establish temporal correspondences and ischemia detection algorithms to identify temporal differences in BOLD signal intensity patterns. If transmurality of the defect is of interest pixel-level analysis is necessary and thus a higher precision in registration is required. Such precision is currently not available affecting the design and performance of the ischemia detection algorithms. In this work, to enable algorithmic developments of ischemia detection irrespective to registration accuracy, we propose an approach that generates synthetic pixel-level myocardial time series. We do this by 1) modeling the temporal changes in BOLD signal intensity based on sparse multi-component dictionary learning, whereby segmentally derived myocardial time series are extracted from canine experimental data to learn the model; and 2) demonstrating the resemblance between real and synthetic time series for validation purposes. We envision that the proposed approach has the capacity to accelerate development of tools for ischemia detection while markedly reducing experimental costs so that cardiac BOLD MRI can be rapidly translated into the clinical arena for the noninvasive assessment of ischemic heart disease.

  3. Cocaine and methamphetamine induce opposing changes in BOLD signal response in rats.

    PubMed

    Taheri, Saeid; Xun, Zhu; See, Ronald E; Joseph, Jane E; Reichel, Carmela M

    2016-07-01

    Neuroimaging studies in psychostimulant addicts have reported functional neural activity changes in brain regions involved in relapse. However, the difference between the effects of the psychostimulants methamphetamine and cocaine on neuronal activity in a similar setting not been clarified. Since studies in humans are limited by the inability to study the initial impact of psychostimulant drugs, we addressed this issue in a rat model. Here, we report methamphetamine and cocaine-induced blood-oxygen-level dependent (BOLD) signal change using functional magnetic resonance imaging (fMRI) in rats receiving drug for the first time during the imaging session. Twenty-three male Long Evans rats underwent fMRI imaging and received an intravenous infusion of methamphetamine, cocaine, or saline. Anatomical and pharmacological fMRI (pfMRI) were performed on a 7T BioSpec dedicated research MR scanner under isoflurane gas (1.5-2%). After collecting baseline data for 10min, rats received drug over the next 10min for a total 40min scan time. Data were then preprocessed and statistically analyzed in anatomically defined regions of interest (ROIs) that have been implicated in persistent drug seeking and relapse. Methamphetamine during the imaging session resulted in a sustained negative BOLD signal change in key regions of the relapse circuit, except for the prefrontal cortex. In contrast, cocaine evoked a positive or unchanged BOLD signal in these same regions. In all of the investigated ROIs, there were no changes in BOLD signal following saline. Acute methamphetamine and cocaine have distinct patterns of functional activity as measured by pfMRI. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Audiovisual synchrony enhances BOLD responses in a brain network including multisensory STS while also enhancing target-detection performance for both modalities

    PubMed Central

    Marchant, Jennifer L; Ruff, Christian C; Driver, Jon

    2012-01-01

    The brain seeks to combine related inputs from different senses (e.g., hearing and vision), via multisensory integration. Temporal information can indicate whether stimuli in different senses are related or not. A recent human fMRI study (Noesselt et al. [2007]: J Neurosci 27:11431–11441) used auditory and visual trains of beeps and flashes with erratic timing, manipulating whether auditory and visual trains were synchronous or unrelated in temporal pattern. A region of superior temporal sulcus (STS) showed higher BOLD signal for the synchronous condition. But this could not be related to performance, and it remained unclear if the erratic, unpredictable nature of the stimulus trains was important. Here we compared synchronous audiovisual trains to asynchronous trains, while using a behavioral task requiring detection of higher-intensity target events in either modality. We further varied whether the stimulus trains had predictable temporal pattern or not. Synchrony (versus lag) between auditory and visual trains enhanced behavioral sensitivity (d') to intensity targets in either modality, regardless of predictable versus unpredictable patterning. The analogous contrast in fMRI revealed BOLD increases in several brain areas, including the left STS region reported by Noesselt et al. [2007: J Neurosci 27:11431–11441]. The synchrony effect on BOLD here correlated with the subject-by-subject impact on performance. Predictability of temporal pattern did not affect target detection performance or STS activity, but did lead to an interaction with audiovisual synchrony for BOLD in inferior parietal cortex. PMID:21953980

  5. Cocaine and methamphetamine induce opposing changes in BOLD signal response in rats

    PubMed Central

    See, Ronald E.; Joseph, Jane E.; Reichel, Carmela M.

    2016-01-01

    Background Neuroimaging studies in psychostimulant addicts have reported functional neural activity changes in brain regions involved in relapse. However, the difference between the effects of the psychostimulants methamphetamine and cocaine on neuronal activity in a similar setting not been clarified. Since studies in humans are limited by the inability to study the initial impact of psychostimulant drugs, we addressed this issue in a rat model. Objective Here, we report methamphetamine and cocaine-induced blood-oxygen-level dependent (BOLD) signal change using functional magnetic resonance imaging (fMRI) in rats receiving drug for the first time during the imaging session. Methods Twenty-three male Long Evans rats underwent fMRI imaging and received an intravenous infusion of methamphetamine, cocaine, or saline. Anatomical and pharmacological fMRI (pfMRI) were performed on a 7T BioSpec dedicated research MR scanner under isoflurane gas (1.5-2%). After collecting baseline data for 10 min, rats received drug over the next 10 min for a total 40 min scan time. Data were then preprocessed and statistically analyzed in anatomically defined regions of interest (ROIs) that have been implicated in persistent drug seeking and relapse. Results Methamphetamine during the imaging session resulted in a sustained negative BOLD signal change in key regions of the relapse circuit, except for the prefrontal cortex. In contrast, cocaine evoked a positive or unchanged BOLD signal in these same regions. In all of the investigated ROIs, there were no changes in BOLD signal following saline. Conclusion Acute methamphetamine and cocaine have distinct patterns of functional activity as measured by pfMRI. PMID:27103569

  6. Variability of the hemodynamic response as a function of age and frequency of epileptic discharge in children with epilepsy.

    PubMed

    Jacobs, Julia; Hawco, Colin; Kobayashi, Eliane; Boor, Rainer; LeVan, Pierre; Stephani, Ulrich; Siniatchkin, Michael; Gotman, Jean

    2008-04-01

    EEG-fMRI is a non-invasive tool to investigate epileptogenic networks in patients with epilepsy. Different patterns of BOLD responses have been observed in children as compared to adults. A high intra- and intersubject variability of the hemodynamic response function (HRF) to epileptic discharges has been observed in adults. The actual HRF to epileptic discharges in children and its dependence on age are unknown. We analyzed 64 EEG-fMRI event types in 37 children (3 months to 18 years), 92% showing a significant BOLD response. HRFs were calculated for each BOLD cluster using a Fourier basis set. After excluding HRFs with a low signal-to-noise ratio, 126 positive and 98 negative HRFs were analyzed. We evaluated age-dependent changes as well as the effect of increasing numbers of spikes. Peak time, amplitude and signal-to-noise ratio of the HRF and the t-statistic score of the cluster were used as dependent variables. We observed significantly longer peak times of the HRF in the youngest children (0 to 2 years), suggesting that the use of multiple HRFs might be important in this group. A different coupling between neuronal activity and metabolism or blood flow in young children may cause this phenomenon. Even if the t-value increased with frequent spikes, the amplitude of the HRF decreased significantly with spike frequency. This reflects a violation of the assumptions of the General Linear Model and therefore the use of alternative analysis techniques may be more appropriate with high spiking rates, a common situation in children.

  7. Variability of the hemodynamic response as a function of age and frequency of epileptic discharge in children with epilepsy

    PubMed Central

    Jacobs, Julia; Hawco, Colin; Kobayashi, Eliane; Boor, Rainer; LeVan, Pierre; Stephani, Ulrich; Siniatchkin, Michael; Gotman, Jean

    2013-01-01

    EEG-fMRI is a non-invasive tool to investigate epileptogenic networks in patients with epilepsy. Different patterns of BOLD responses have been observed in children as compared to adults. A high intra- and intersubject variability of the hemodynamic response function (HRF) to epileptic discharges has been observed in adults. The actual HRF to epileptic discharges in children and its dependence on age are unknown. We analyzed 64 EEG-fMRI event types in 37 children (3 months to 18 years), 92% showing a significant BOLD response. HRFs were calculated for each BOLD cluster using a Fourier basis set. After excluding HRFs with a low signal-to-noise ratio, 126 positive and 98 negative HRFs were analyzed. We evaluated age-dependent changes as well as the effect of increasing numbers of spikes. Peak time, amplitude and signal-to-noise ratio of the HRF and the t-statistic score of the cluster were used as dependent variables. We observed significantly longer peak times of the HRF in the youngest children (0 to 2 years), suggesting that the use of multiple HRFs might be important in this group. A different coupling between neuronal activity and metabolism or blood flow in young children may cause this phenomenon. Even if the t-value increased with frequent spikes, the amplitude of the HRF decreased significantly with spike frequency. This reflects a violation of the assumptions of the General Linear Model and therefore the use of alternative analysis techniques may be more appropriate with high spiking rates, a common situation in children. PMID:18221891

  8. Boldness towards novelty and translocation success in captive-raised, orphaned Tasmanian devils.

    PubMed

    Sinn, David L; Cawthen, Lisa; Jones, Susan M; Pukk, Chrissy; Jones, Menna E

    2014-01-01

    Translocation of endangered animals is common, but success is often variable and/or poor. Despite its intuitive appeal, little is known with regards to how individual differences amongst translocated animals influence their post-release survival, growth, and reproduction. We measured consistent pre-release responses to novelty in a familiar environment (boldness; repeatability=0.55) and cortisol response in a group of captive-reared Tasmanian devils, currently listed as "Endangered" by the IUCN. The devils were then released at either a hard- or soft-release site within their mothers' population of origin, and individual growth, movement, reproduction (females only), and survival across 2-8 months post-release was measured. Sex, release method, cohort, behavior, and cortisol response did not affect post-release growth, nor did these factors influence the home range size of orphan devils. Final linear distances moved from the release site were impacted heavily by the release cohort, but translocated devils' movement overall was not different from that in the same-age wild devils. All orphan females of reproductive age were subsequently captured with offspring. Overall survival rates in translocated devils were moderate (∼42%), and were not affected by devil sex, release method, cohort, release weight, or pre-release cortisol response. Devils that survived during the study period were, however, 3.5 times more bold than those that did not (effect size r=0.76). Our results suggest that conservation managers may need to provide developmental conditions in captivity that promote a wide range of behaviors across individuals slated for wild release. © 2013 Wiley Periodicals, Inc.

  9. Cocaine-associated odor cue re-exposure increases blood oxygenation level dependent signal in memory and reward regions of the maternal rat brain.

    PubMed

    Caffrey, Martha K; Febo, Marcelo

    2014-01-01

    Cue triggered relapse during the postpartum period can negatively impact maternal care. Given the high reward value of pups in maternal rats, we designed an fMRI experiment to test whether offspring presence reduces the neural response to a cocaine associated olfactory cue. Cocaine conditioned place preference was carried out before pregnancy in the presence of two distinct odors that were paired with cocaine or saline (+Cue and -Cue). The BOLD response to +Cue and -Cue was measured in dams on postpartum days 2-4. Odor cues were delivered to dams in the absence and then the presence of pups. Our data indicate that several limbic and cognitive regions of the maternal rat brain show a greater BOLD signal response to a +Cue versus -Cue. These include dorsal striatum, prelimbic cortex, parietal cortex, habenula, bed nucleus of stria terminalis, lateral septum and the mediodorsal and the anterior thalamic nucleus. Of the aforementioned brain regions, only the parietal cortex of cocaine treated dams showed a significant modulatory effect of pup presence. In this area of the cortex, cocaine exposed maternal rats showed a greater BOLD activation in response to the +Cue in the presence than in the absence of pups. Specific regions of the cocaine exposed maternal rat brain are strongly reactive to drug associated cues. The regions implicated in cue reactivity have been previously reported in clinical imaging work, and previous work supports their role in various motivational and cognitive functions. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  10. COCAINE-ASSOCIATED ODOR CUE RE-EXPOSURE INCREASES BLOOD OXYGENATION LEVEL DEPENDENT SIGNAL IN MEMORY AND REWARD REGIONS OF THE MATERNAL RAT BRAIN*

    PubMed Central

    Caffrey, Martha K.; Febo, Marcelo

    2013-01-01

    BACKGROUND Cue triggered relapse during the postpartum period can negatively impact maternal care. Given the high reward value of pups in maternal rats, we designed an fMRI experiment to test whether offspring presence reduces the neural response to a cocaine associated olfactory cue. METHODS Cocaine conditioned place preference was carried out before pregnancy in the presence of two distinct odors that were paired with cocaine or saline (+Cue and −Cue). The BOLD response to +Cue and −Cue was measured in dams on postpartum days 2–4. Odor cues were delivered to dams in the absence and then the presence of pups. RESULTS Our data indicate that several limbic and cognitive regions of the maternal rat brain show a greater BOLD signal response to a +Cue versus −Cue. These include dorsal striatum, prelimbic cortex, parietal cortex, habenula, bed nucleus of stria terminalis, lateral septum and the mediodorsal and the anterior thalamic nucleus. Of the aforementioned brain regions, only the parietal cortex of cocaine treated dams showed a significant modulatory effect of pup presence. In this area of the cortex, cocaine exposed maternal rats showed a greater BOLD activation in response to the +Cue in the presence than in the absence of pups. CONCLUSIONS Specific regions of the cocaine exposed maternal rat brain are strongly reactive to drug associated cues. The regions implicated in cue reactivity have been previously reported in clinical imaging work, and previous work supports their role in various motivational and cognitive functions. PMID:24183499

  11. Error processing in current and former cocaine users

    PubMed Central

    Castelluccio, Brian C.; Meda, Shashwath A.; Muska, Christine E.; Stevens, Michael C.; Pearlson, Godfrey D.

    2013-01-01

    Deficits in response inhibition and error processing can result in maladaptive behavior, including failure to use past mistakes to inform present decisions. A specific deficit in inhibiting a prepotent response represents one aspect of impulsivity and is a prominent feature of addictive behaviors in general, including cocaine abuse/dependence. Brain regions implicated in cognitive control exhibit reduced activation in cocaine abusers. The purposes of the present investigation were (1) to identify neural differences associated with error processing in current and former cocaine-dependent individuals compared to healthy controls and (2) to determine whether former, long-term abstinent cocaine users showed similar differences compared with current users. The present study used an fMRI Go/No-Go task to investigate differences in BOLD response to correct rejections and false alarms between current cocaine users (n=30), former cocaine users (n=29), and healthy controls (n=35). Impulsivity trait measures were also assessed and compared with BOLD activity. Nineteen regions of interest previously implicated in errors of disinhibition were queried. There were no group differences in the correct rejections condition, but both current and former users exhibited increased BOLD response relative to controls for false alarms. In current users, the pregenual cingulate gyrus and left angular/supramarginal gyri overactivated. In former users, the right middle frontal/precentral gyri, right inferior parietal lobule, and left angular/supramarginal gyri overactivated. Overall, our results support a hypothesis that neural activity in former users differs more from healthy controls than that of current users due to cognitive compensation that facilitates abstinence. PMID:23949893

  12. Prefrontal cholinergic mechanisms instigating shifts from monitoring for cues to cue-guided performance: Converging electrochemical and fMRI evidence from rats and humans

    PubMed Central

    Howe, William M.; Berry, Anne S.; Francois, Jennifer; Gilmour, Gary; Carp, Joshua M.; Tricklebank, Mark; Lustig, Cindy; Sarter, Martin

    2013-01-01

    We previously reported involvement of right prefrontal cholinergic activity in veridical signal detection. Here, we first recorded real-time acetylcholine release in prefrontal cortex during specific trial sequences in rats performing a task requiring signal detection as well as rejection of non-signal events. Cholinergic release events recorded with sub-second resolution (“transients”) were observed only during signal-hit trials, not during signal-miss trials or non-signal events. Moreover, cholinergic transients were not observed for consecutive hits; instead they were limited to signal-hit trials that were preceded by factual or perceived non-signal events (“incongruent hits”). This finding suggests that these transients mediate shifts from a state of perceptual attention, or monitoring for cues, to cue-evoked activation of response rules and the generation of a cue-directed response. Next, to determine the translational significance of the cognitive operations supporting incongruent hits we employed a version of the task previously validated for use in research in humans and BOLD-fMRI. Incongruent hits activated a region in the right rostral prefrontal cortex (BA 10). Furthermore, greater prefrontal activation was correlated with faster response times for incongruent hits. Finally, we measured tissue oxygen in rats, as a proxy for BOLD, and found prefrontal increases in oxygen levels solely during incongruent hits. These cross-species studies link a cholinergic response to a prefrontal BOLD activation and indicate that these interrelated mechanisms mediate the integration of external cues with internal representations to initiate and guide behavior. PMID:23678117

  13. Interactions between auditory and visual semantic stimulus classes: evidence for common processing networks for speech and body actions.

    PubMed

    Meyer, Georg F; Greenlee, Mark; Wuerger, Sophie

    2011-09-01

    Incongruencies between auditory and visual signals negatively affect human performance and cause selective activation in neuroimaging studies; therefore, they are increasingly used to probe audiovisual integration mechanisms. An open question is whether the increased BOLD response reflects computational demands in integrating mismatching low-level signals or reflects simultaneous unimodal conceptual representations of the competing signals. To address this question, we explore the effect of semantic congruency within and across three signal categories (speech, body actions, and unfamiliar patterns) for signals with matched low-level statistics. In a localizer experiment, unimodal (auditory and visual) and bimodal stimuli were used to identify ROIs. All three semantic categories cause overlapping activation patterns. We find no evidence for areas that show greater BOLD response to bimodal stimuli than predicted by the sum of the two unimodal responses. Conjunction analysis of the unimodal responses in each category identifies a network including posterior temporal, inferior frontal, and premotor areas. Semantic congruency effects are measured in the main experiment. We find that incongruent combinations of two meaningful stimuli (speech and body actions) but not combinations of meaningful with meaningless stimuli lead to increased BOLD response in the posterior STS (pSTS) bilaterally, the left SMA, the inferior frontal gyrus, the inferior parietal lobule, and the anterior insula. These interactions are not seen in premotor areas. Our findings are consistent with the hypothesis that pSTS and frontal areas form a recognition network that combines sensory categorical representations (in pSTS) with action hypothesis generation in inferior frontal gyrus/premotor areas. We argue that the same neural networks process speech and body actions.

  14. Individual consistency in the behaviors of newly-settled reef fish

    PubMed Central

    Meekan, Mark G.; McCormick, Mark I.

    2015-01-01

    Flexibility in behavior is advantageous for organisms that transition between stages of a complex life history. However, various constraints can set limits on plasticity, giving rise to the existence of personalities that have associated costs and benefits. Here, we document a field and laboratory experiment that examines the consistency of measures of boldness, activity, and aggressive behavior in the young of a tropical reef fish, Pomacentrus amboinensis (Pomacentridae) immediately following their transition between pelagic larval and benthic juvenile habitats. Newly-settled fish were observed in aquaria and in the field on replicated patches of natural habitat cleared of resident fishes. Seven behavioral traits representing aspects of boldness, activity and aggression were monitored directly and via video camera over short (minutes), medium (hours), and long (3 days) time scales. With the exception of aggression, these behaviors were found to be moderately or highly consistent over all time scales in both laboratory and field settings, implying that these fish show stable personalities within various settings. Our study is the first to examine the temporal constancy of behaviors in both field and laboratory settings in over various time scales at a critically important phase during the life cycle of a reef fish. PMID:26020013

  15. Individual consistency in the behaviors of newly-settled reef fish.

    PubMed

    White, James R; Meekan, Mark G; McCormick, Mark I

    2015-01-01

    Flexibility in behavior is advantageous for organisms that transition between stages of a complex life history. However, various constraints can set limits on plasticity, giving rise to the existence of personalities that have associated costs and benefits. Here, we document a field and laboratory experiment that examines the consistency of measures of boldness, activity, and aggressive behavior in the young of a tropical reef fish, Pomacentrus amboinensis (Pomacentridae) immediately following their transition between pelagic larval and benthic juvenile habitats. Newly-settled fish were observed in aquaria and in the field on replicated patches of natural habitat cleared of resident fishes. Seven behavioral traits representing aspects of boldness, activity and aggression were monitored directly and via video camera over short (minutes), medium (hours), and long (3 days) time scales. With the exception of aggression, these behaviors were found to be moderately or highly consistent over all time scales in both laboratory and field settings, implying that these fish show stable personalities within various settings. Our study is the first to examine the temporal constancy of behaviors in both field and laboratory settings in over various time scales at a critically important phase during the life cycle of a reef fish.

  16. Examining the incremental and interactive effects of boldness with meanness and disinhibition within the triarchic model of psychopathy.

    PubMed

    Gatner, Dylan T; Douglas, Kevin S; Hart, Stephen D

    2016-07-01

    The triarchic model of psychopathy (Patrick, Fowles, & Krueger, 2009) comprises 3 phenotypic domains: Meanness, Disinhibition, and Boldness. Ongoing controversy surrounds the relevance of Boldness in the conceptualization and assessment of psychopathy. In the current study, undergraduate students (N = 439) completed the Triarchic Psychopathy Measure (Patrick, 2010) to examine the association between Boldness and a host of theoretically relevant external criteria. Boldness was generally unrelated to either prosocial or harmful criteria. Boldness rarely provided incremental value above or interacted with Meanness and Disinhibition with respect to external criteria. Curvilinear effects of Boldness rarely emerged. The findings suggest that Boldness might not be a central construct in the definition of psychopathic personality disorder. Implications for the 5th edition of the Diagnostic and Statistical Manual of Mental Disorders (American Psychiatric Association, 2013) psychopathic specifier are discussed. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  17. Familiarity and Recollection Produce Distinct Eye Movement, Pupil and Medial Temporal Lobe Responses when Memory Strength Is Matched

    ERIC Educational Resources Information Center

    Kafkas, Alexandros; Montaldi, Daniela

    2012-01-01

    Two experiments explored eye measures (fixations and pupil response patterns) and brain responses (BOLD) accompanying the recognition of visual object stimuli based on familiarity and recollection. In both experiments, the use of a modified remember/know procedure led to high confidence and matched accuracy levels characterising strong familiarity…

  18. Functional cross‐hemispheric shift between object‐place paired associate memory and spatial memory in the human hippocampus

    PubMed Central

    Lee, Choong‐Hee; Ryu, Jungwon; Lee, Sang‐Hun; Kim, Hakjin

    2016-01-01

    ABSTRACT The hippocampus plays critical roles in both object‐based event memory and spatial navigation, but it is largely unknown whether the left and right hippocampi play functionally equivalent roles in these cognitive domains. To examine the hemispheric symmetry of human hippocampal functions, we used an fMRI scanner to measure BOLD activity while subjects performed tasks requiring both object‐based event memory and spatial navigation in a virtual environment. Specifically, the subjects were required to form object‐place paired associate memory after visiting four buildings containing discrete objects in a virtual plus maze. The four buildings were visually identical, and the subjects used distal visual cues (i.e., scenes) to differentiate the buildings. During testing, the subjects were required to identify one of the buildings when cued with a previously associated object, and when shifted to a random place, the subject was expected to navigate to the previously chosen building. We observed that the BOLD activity foci changed from the left hippocampus to the right hippocampus as task demand changed from identifying a previously seen object (object‐cueing period) to searching for its paired‐associate place (object‐cued place recognition period). Furthermore, the efficient retrieval of object‐place paired associate memory (object‐cued place recognition period) was correlated with the BOLD response of the left hippocampus, whereas the efficient retrieval of relatively pure spatial memory (spatial memory period) was correlated with the right hippocampal BOLD response. These findings suggest that the left and right hippocampi in humans might process qualitatively different information for remembering episodic events in space. © 2016 The Authors Hippocampus Published by Wiley Periodicals, Inc. PMID:27009679

  19. Synaesthetic colour in the brain: beyond colour areas. A functional magnetic resonance imaging study of synaesthetes and matched controls.

    PubMed

    van Leeuwen, Tessa M; Petersson, Karl Magnus; Hagoort, Peter

    2010-08-10

    In synaesthesia, sensations in a particular modality cause additional experiences in a second, unstimulated modality (e.g., letters elicit colour). Understanding how synaesthesia is mediated in the brain can help to understand normal processes of perceptual awareness and multisensory integration. In several neuroimaging studies, enhanced brain activity for grapheme-colour synaesthesia has been found in ventral-occipital areas that are also involved in real colour processing. Our question was whether the neural correlates of synaesthetically induced colour and real colour experience are truly shared. First, in a free viewing functional magnetic resonance imaging (fMRI) experiment, we located main effects of synaesthesia in left superior parietal lobule and in colour related areas. In the left superior parietal lobe, individual differences between synaesthetes (projector-associator distinction) also influenced brain activity, confirming the importance of the left superior parietal lobe for synaesthesia. Next, we applied a repetition suppression paradigm in fMRI, in which a decrease in the BOLD (blood-oxygenated-level-dependent) response is generally observed for repeated stimuli. We hypothesized that synaesthetically induced colours would lead to a reduction in BOLD response for subsequently presented real colours, if the neural correlates were overlapping. We did find BOLD suppression effects induced by synaesthesia, but not within the colour areas. Because synaesthetically induced colours were not able to suppress BOLD effects for real colour, we conclude that the neural correlates of synaesthetic colour experience and real colour experience are not fully shared. We propose that synaesthetic colour experiences are mediated by higher-order visual pathways that lie beyond the scope of classical, ventral-occipital visual areas. Feedback from these areas, in which the left parietal cortex is likely to play an important role, may induce V4 activation and the percept of synaesthetic colour.

  20. Probing the frontostriatal loops involved in executive and limbic processing via interleaved TMS and functional MRI at two prefrontal locations: a pilot study.

    PubMed

    Hanlon, Colleen A; Canterberry, Melanie; Taylor, Joseph J; DeVries, William; Li, Xingbao; Brown, Truman R; George, Mark S

    2013-01-01

    The prefrontal cortex (PFC) is an anatomically and functionally heterogeneous area which influences cognitive and limbic processing through connectivity to subcortical targets. As proposed by Alexander et al. (1986) the lateral and medial aspects of the PFC project to distinct areas of the striatum in parallel but functionally distinct circuits. The purpose of this preliminary study was to determine if we could differentially and consistently activate these lateral and medial cortical-subcortical circuits involved in executive and limbic processing though interleaved transcranial magnetic stimulation (TMS) in the MR environment. Seventeen healthy individuals received interleaved TMS-BOLD imaging with the coil positioned over the dorsolateral (EEG: F3) and ventromedial PFC (EEG: FP1). BOLD signal change was calculated in the areas directly stimulated by the coil and in subcortical regions with afferent and efferent connectivity to the TMS target areas. Additionally, five individuals were tested on two occasions to determine test-retest reliability. Region of interest analysis revealed that TMS at both prefrontal sites led to significant BOLD signal increases in the cortex under the coil, in the striatum, and the thalamus, but not in the visual cortex (negative control region). There was a significantly larger BOLD signal change in the caudate following medial PFC TMS, relative to lateral TMS. The hippocampus in contrast was significantly more activated by lateral TMS. Post-hoc voxel-based analysis revealed that within the caudate the location of peak activity was in the ventral caudate following medial TMS and the dorsal caudate following lateral TMS. Test-retest reliability data revealed consistent BOLD responses to TMS within each individual but a large variation between individuals. These data demonstrate that, through an optimized TMS/BOLD sequence over two unique prefrontal targets, it is possible to selectively interrogate the patency of these established cortical-subcortical networks in healthy individuals, and potentially patient populations.

  1. Modulating the focus of attention for spoken words at encoding affects frontoparietal activation for incidental verbal memory.

    PubMed

    Christensen, Thomas A; Almryde, Kyle R; Fidler, Lesley J; Lockwood, Julie L; Antonucci, Sharon M; Plante, Elena

    2012-01-01

    Attention is crucial for encoding information into memory, and current dual-process models seek to explain the roles of attention in both recollection memory and incidental-perceptual memory processes. The present study combined an incidental memory paradigm with event-related functional MRI to examine the effect of attention at encoding on the subsequent neural activation associated with unintended perceptual memory for spoken words. At encoding, we systematically varied attention levels as listeners heard a list of single English nouns. We then presented these words again in the context of a recognition task and assessed the effect of modulating attention at encoding on the BOLD responses to words that were either attended strongly, weakly, or not heard previously. MRI revealed activity in right-lateralized inferior parietal and prefrontal regions, and positive BOLD signals varied with the relative level of attention present at encoding. Temporal analysis of hemodynamic responses further showed that the time course of BOLD activity was modulated differentially by unintentionally encoded words compared to novel items. Our findings largely support current models of memory consolidation and retrieval, but they also provide fresh evidence for hemispheric differences and functional subdivisions in right frontoparietal attention networks that help shape auditory episodic recall.

  2. Modulating the Focus of Attention for Spoken Words at Encoding Affects Frontoparietal Activation for Incidental Verbal Memory

    PubMed Central

    Christensen, Thomas A.; Almryde, Kyle R.; Fidler, Lesley J.; Lockwood, Julie L.; Antonucci, Sharon M.; Plante, Elena

    2012-01-01

    Attention is crucial for encoding information into memory, and current dual-process models seek to explain the roles of attention in both recollection memory and incidental-perceptual memory processes. The present study combined an incidental memory paradigm with event-related functional MRI to examine the effect of attention at encoding on the subsequent neural activation associated with unintended perceptual memory for spoken words. At encoding, we systematically varied attention levels as listeners heard a list of single English nouns. We then presented these words again in the context of a recognition task and assessed the effect of modulating attention at encoding on the BOLD responses to words that were either attended strongly, weakly, or not heard previously. MRI revealed activity in right-lateralized inferior parietal and prefrontal regions, and positive BOLD signals varied with the relative level of attention present at encoding. Temporal analysis of hemodynamic responses further showed that the time course of BOLD activity was modulated differentially by unintentionally encoded words compared to novel items. Our findings largely support current models of memory consolidation and retrieval, but they also provide fresh evidence for hemispheric differences and functional subdivisions in right frontoparietal attention networks that help shape auditory episodic recall. PMID:22144982

  3. Neural Correlates Associated with Successful Working Memory Performance in Older Adults as Revealed by Spatial ICA

    PubMed Central

    Saliasi, Emi; Geerligs, Linda; Lorist, Monicque M.; Maurits, Natasha M.

    2014-01-01

    To investigate which neural correlates are associated with successful working memory performance, fMRI was recorded in healthy younger and older adults during performance on an n-back task with varying task demands. To identify functional networks supporting working memory processes, we used independent component analysis (ICA) decomposition of the fMRI data. Compared to younger adults, older adults showed a larger neural (BOLD) response in the more complex (2-back) than in the baseline (0-back) task condition, in the ventral lateral prefrontal cortex (VLPFC) and in the right fronto-parietal network (FPN). Our results indicated that a higher BOLD response in the VLPFC was associated with increased performance accuracy in older adults, in both the baseline and the more complex task condition. This ‘BOLD-performance’ relationship suggests that the neural correlates linked with successful performance in the older adults are not uniquely related to specific working memory processes present in the complex but not in the baseline task condition. Furthermore, the selective presence of this relationship in older but not in younger adults suggests that increased neural activity in the VLPFC serves a compensatory role in the aging brain which benefits task performance in the elderly. PMID:24911016

  4. Improved sensitivity and specificity for resting state and task fMRI with multiband multi-echo EPI compared to multi-echo EPI at 7 T.

    PubMed

    Boyacioğlu, Rasim; Schulz, Jenni; Koopmans, Peter J; Barth, Markus; Norris, David G

    2015-10-01

    A multiband multi-echo (MBME) sequence is implemented and compared to a matched standard multi-echo (ME) protocol to investigate the potential improvement in sensitivity and spatial specificity at 7 T for resting state and task fMRI. ME acquisition is attractive because BOLD sensitivity is less affected by variation in T2*, and because of the potential for separating BOLD and non-BOLD signal components. MBME further reduces TR thus increasing the potential reduction in physiological noise. In this study we used FSL-FIX to clean ME and MBME resting state and task fMRI data (both 3.5mm isotropic). After noise correction, the detection of resting state networks improves with more non-artifactual independent components being observed. Additional activation clusters for task data are discovered for MBME data (increased sensitivity) whereas existing clusters become more localized for resting state (improved spatial specificity). The results obtained indicate that MBME is superior to ME at high field strengths. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Sustained negative BOLD response in human fMRI finger tapping task.

    PubMed

    Liu, Yadong; Shen, Hui; Zhou, Zongtan; Hu, Dewen

    2011-01-01

    In this work, we investigated the sustained negative blood oxygen level-dependent (BOLD) response (sNBR) using functional magnetic resonance imaging during a finger tapping task. We observed that the sNBR for this task was more extensive than has previously been reported. The cortical regions involved in sNBR are divided into the following three groups: frontal, somatosensory and occipital. By investigating the spatial structure, area, amplitude, and dynamics of the sNBR in comparison with those of its positive BOLD response (PBR) counterpart, we made the following observations. First, among the three groups, the somatosensory group contained the greatest number of activated voxels and the fewest deactivated voxels. In addition, the amplitude of the sNBR in this group was the smallest among the three groups. Second, the onset and peak time of the sNBR are both larger than those of the PBR, whereas the falling edge time of the sNBR is less than that of the PBR. Third, the long distance between most sNBR foci and their corresponding PBR foci makes it unlikely that they share the same blood supply artery. Fourth, the couplings between the sNBR and its PBR counterpart are distinct among different regions and thus should be investigated separately. These findings imply that the origin of most sNBR foci in the finger-tapping task is much more likely to be neuronal activity suppression rather than "blood steal."

  6. Impact of task-related changes in heart rate on estimation of hemodynamic response and model fit.

    PubMed

    Hillenbrand, Sarah F; Ivry, Richard B; Schlerf, John E

    2016-05-15

    The blood oxygen level dependent (BOLD) signal, as measured using functional magnetic resonance imaging (fMRI), is widely used as a proxy for changes in neural activity in the brain. Physiological variables such as heart rate (HR) and respiratory variation (RV) affect the BOLD signal in a way that may interfere with the estimation and detection of true task-related neural activity. This interference is of particular concern when these variables themselves show task-related modulations. We first establish that a simple movement task reliably induces a change in HR but not RV. In group data, the effect of HR on the BOLD response was larger and more widespread throughout the brain than were the effects of RV or phase regressors. The inclusion of HR regressors, but not RV or phase regressors, had a small but reliable effect on the estimated hemodynamic response function (HRF) in M1 and the cerebellum. We next asked whether the inclusion of a nested set of physiological regressors combining phase, RV, and HR significantly improved the model fit in individual participants' data sets. There was a significant improvement from HR correction in M1 for the greatest number of participants, followed by RV and phase correction. These improvements were more modest in the cerebellum. These results indicate that accounting for task-related modulation of physiological variables can improve the detection and estimation of true neural effects of interest. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Separating neural and vascular effects of caffeine using simultaneous EEG–FMRI: Differential effects of caffeine on cognitive and sensorimotor brain responses

    PubMed Central

    Diukova, Ana; Ware, Jennifer; Smith, Jessica E.; Evans, C. John; Murphy, Kevin; Rogers, Peter J.; Wise, Richard G.

    2012-01-01

    The effects of caffeine are mediated through its non-selective antagonistic effects on adenosine A1 and A2A adenosine receptors resulting in increased neuronal activity but also vasoconstriction in the brain. Caffeine, therefore, can modify BOLD FMRI signal responses through both its neural and its vascular effects depending on receptor distributions in different brain regions. In this study we aim to distinguish neural and vascular influences of a single dose of caffeine in measurements of task-related brain activity using simultaneous EEG–FMRI. We chose to compare low-level visual and motor (paced finger tapping) tasks with a cognitive (auditory oddball) task, with the expectation that caffeine would differentially affect brain responses in relation to these tasks. To avoid the influence of chronic caffeine intake, we examined the effect of 250 mg of oral caffeine on 14 non and infrequent caffeine consumers in a double-blind placebo-controlled cross-over study. Our results show that the task-related BOLD signal change in visual and primary motor cortex was significantly reduced by caffeine, while the amplitude and latency of visual evoked potentials over occipital cortex remained unaltered. However, during the auditory oddball task (target versus non-target stimuli) caffeine significantly increased the BOLD signal in frontal cortex. Correspondingly, there was also a significant effect of caffeine in reducing the target evoked response potential (P300) latency in the oddball task and this was associated with a positive potential over frontal cortex. Behavioural data showed that caffeine also improved performance in the oddball task with a significantly reduced number of missed responses. Our results are consistent with earlier studies demonstrating altered flow-metabolism coupling after caffeine administration in the context of our observation of a generalised caffeine-induced reduction in cerebral blood flow demonstrated by arterial spin labelling (19% reduction over grey matter). We were able to identify vascular effects and hence altered neurovascular coupling through the alteration of low-level task FMRI responses in the face of a preserved visual evoked potential. However, our data also suggest a cognitive effect of caffeine through its positive effect on the frontal BOLD signal consistent with the shortening of oddball EEG response latency. The combined use of EEG–FMRI is a promising methodology for investigating alterations in brain function in drug and disease studies where neurovascular coupling may be altered on a regional basis. PMID:22561357

  8. A Functional Magnetic Resonance Imaging Study to Investigate the Utility of a Picture Imagination Task in Investigating Neural Responses in Patients with Chronic Musculoskeletal Pain to Daily Physical Activity Photographs

    PubMed Central

    2015-01-01

    Pain-related anxiety and fear are associated with increased difficulties in attention, increased awareness of pain, impaired disengagement from pain, and can moderate the effects of attentional coping attempts. Accurately assessing the direct impact of pain-related anxiety and fear on pain behavior has proved difficult. Studies have demonstrated no or limited influence of pain-related fear and anxiety on behavior but this may be due to inherent problems with the scales used. Neuroimaging has improved the understanding of neural processes underlying the factors that influence pain perception. This study aimed to establish if a Picture and Imagination Task (PIT), largely developed from the Photographs of Daily Activity (PHODA) assessment tool, could help explore how people living with chronic pain process information about daily activities. Blood oxygenation level dependent (BOLD) functional magnetic resonance imaging (fMRI) was used to compare brain responses in patients with chronic musculoskeletal pain (CMSKP) (n = 15) and healthy controls (n = 15). Subjects were asked to imagine how they would feel mentally and physically if asked to perform daily activities illustrated in PIT. The results found that a number of regions involved in pain processing saw increased BOLD activation in patients compared with controls when undertaking the task and included the insula, anterior cingulate cortex, thalamus and inferior and superior parietal cortices. Similarly, increased BOLD responses in patients compared to controls in the frontal pole, paracingulate and the supplementary motor cortex may be suggestive of a memory component to the responses The amygdala, orbitofrontal cortex, substantia nigra/ventral tegmentum, putamen, thalamus, pallidum, inferior parietal (supramarginal and angular gyrus) and cingulate cortex were also seen to have greater differences in BOLD signal changes in patients compared with controls and many of these regions are also associated with general phobic responses. Therefore, we suggest that PIT is a useful task to explore pain- and movement-related anxiety and fear in fMRI studies. Regions in the Default Mode Network remained active or were less deactivated during the PIT task in patients with CMSKP compared to healthy controls supporting the contention that the DMN is abnormal in patients with CMSKP. PMID:26496709

  9. Predicting long-term outcome of Internet-delivered cognitive behavior therapy for social anxiety disorder using fMRI and support vector machine learning.

    PubMed

    Månsson, K N T; Frick, A; Boraxbekk, C-J; Marquand, A F; Williams, S C R; Carlbring, P; Andersson, G; Furmark, T

    2015-03-17

    Cognitive behavior therapy (CBT) is an effective treatment for social anxiety disorder (SAD), but many patients do not respond sufficiently and a substantial proportion relapse after treatment has ended. Predicting an individual's long-term clinical response therefore remains an important challenge. This study aimed at assessing neural predictors of long-term treatment outcome in participants with SAD 1 year after completion of Internet-delivered CBT (iCBT). Twenty-six participants diagnosed with SAD underwent iCBT including attention bias modification for a total of 13 weeks. Support vector machines (SVMs), a supervised pattern recognition method allowing predictions at the individual level, were trained to separate long-term treatment responders from nonresponders based on blood oxygen level-dependent (BOLD) responses to self-referential criticism. The Clinical Global Impression-Improvement scale was the main instrument to determine treatment response at the 1-year follow-up. Results showed that the proportion of long-term responders was 52% (12/23). From multivariate BOLD responses in the dorsal anterior cingulate cortex (dACC) together with the amygdala, we were able to predict long-term response rate of iCBT with an accuracy of 92% (confidence interval 95% 73.2-97.6). This activation pattern was, however, not predictive of improvement in the continuous Liebowitz Social Anxiety Scale-Self-report version. Follow-up psychophysiological interaction analyses revealed that lower dACC-amygdala coupling was associated with better long-term treatment response. Thus, BOLD response patterns in the fear-expressing dACC-amygdala regions were highly predictive of long-term treatment outcome of iCBT, and the initial coupling between these regions differentiated long-term responders from nonresponders. The SVM-neuroimaging approach could be of particular clinical value as it allows for accurate prediction of treatment outcome at the level of the individual.

  10. Affective neural response to restricted interests in autism spectrum disorders.

    PubMed

    Cascio, Carissa J; Foss-Feig, Jennifer H; Heacock, Jessica; Schauder, Kimberly B; Loring, Whitney A; Rogers, Baxter P; Pryweller, Jennifer R; Newsom, Cassandra R; Cockhren, Jurnell; Cao, Aize; Bolton, Scott

    2014-01-01

    Restricted interests are a class of repetitive behavior in autism spectrum disorders (ASD) whose intensity and narrow focus often contribute to significant interference with daily functioning. While numerous neuroimaging studies have investigated executive circuits as putative neural substrates of repetitive behavior, recent work implicates affective neural circuits in restricted interests. We sought to explore the role of affective neural circuits and determine how restricted interests are distinguished from hobbies or interests in typical development. We compared a group of children with ASD to a typically developing (TD) group of children with strong interests or hobbies, employing parent report, an operant behavioral task, and functional imaging with personalized stimuli based on individual interests. While performance on the operant task was similar between the two groups, parent report of intensity and interference of interests was significantly higher in the ASD group. Both the ASD and TD groups showed increased BOLD response in widespread affective neural regions to the pictures of their own interest. When viewing pictures of other children's interests, the TD group showed a similar pattern, whereas BOLD response in the ASD group was much more limited. Increased BOLD response in the insula and anterior cingulate cortex distinguished the ASD from the TD group, and parent report of the intensity and interference with daily life of the child's restricted interest predicted insula response. While affective neural network response and operant behavior are comparable in typical and restricted interests, the narrowness of focus that clinically distinguishes restricted interests in ASD is reflected in more interference in daily life and aberrantly enhanced insula and anterior cingulate response to individuals' own interests in the ASD group. These results further support the involvement of affective neural networks in repetitive behaviors in ASD. © 2013 The Authors. Journal of Child Psychology and Psychiatry © 2013 Association for Child and Adolescent Mental Health.

  11. Three-dimensional particle simulation of heavy-ion fusion beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedman, A.; Grote, D.P.; Haber, I.

    1992-07-01

    The beams in a heavy-ion-beam-driven inertial fusion (HIF) accelerator are collisionless, nonneutral plasmas, confined by applied magnetic and electric fields. These space-charge-dominated beams must be focused onto small (few mm) spots at the fusion target, and so preservation of a small emittance is crucial. The nonlinear beam self-fields can lead to emittance growth, and so a self-consistent field description is needed. To this end, a multidimensional particle simulation code, WARP (Friedman {ital et} {ital al}., Part. Accel. {bold 37}-{bold 38}, 131 (1992)), has been developed and is being used to study the transport of HIF beams. The code's three-dimensional (3-D)more » package combines features of an accelerator code and a particle-in-cell plasma simulation. Novel techniques allow it to follow beams through many accelerator elements over long distances and around bends. This paper first outlines the algorithms employed in WARP. A number of applications and corresponding results are then presented. These applications include studies of: beam drift-compression in a misaligned lattice of quadrupole focusing magnets; beam equilibria, and the approach to equilibrium; and the MBE-4 experiment ({ital AIP} {ital Conference} {ital Proceedings} 152 (AIP, New York, 1986), p. 145) recently concluded at Lawrence Berkeley Laboratory (LBL). Finally, 3-D simulations of bent-beam dynamics relevant to the planned Induction Linac Systems Experiments (ILSE) (Fessenden, Nucl. Instrum. Methods Plasma Res. A {bold 278}, 13 (1989)) at LBL are described. Axially cold beams are observed to exhibit little or no root-mean-square emittance growth at midpulse in transiting a (sharp) bend. Axially hot beams, in contrast, do exhibit some emittance growth.« less

  12. Sex differences in a shoaling-boldness behavioral syndrome, but no link with aggression.

    PubMed

    Way, Gregory P; Kiesel, Alexis L; Ruhl, Nathan; Snekser, Jennifer L; McRobert, Scott P

    2015-04-01

    A behavioral syndrome is observed in a population when specific behaviors overlap at the individual level in different contexts. Here, we explore boldness and aggression personality spectra, the repeatability of shoaling, and possible associated correlations between the behaviors in a population of lab-reared zebrafish (Danio rerio). Our findings describe a sex-specific boldness-shoaling behavioral syndrome, as a link between boldness and shoaling behaviors is detected. The results indicate that bold males are likely to have a stronger shoaling propensity than shy males for unfamiliar conspecifics. Conversely, bold females are more likely to shoal than shy females, but only when presented with heterospecific individuals. Additionally, aggression does not correlate with boldness or shoaling propensity for either sex. A positive relationship between boldness and shoaling that differs by sex is contrary to most of the present literature, but could help to explain population dynamics and may also have evolutionary implications. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Validation of oxygen extraction fraction measurement by qBOLD technique.

    PubMed

    He, Xiang; Zhu, Mingming; Yablonskiy, Dmitriy A

    2008-10-01

    Measurement of brain tissue oxygen extraction fraction (OEF) in both baseline and functionally activated states can provide important information on brain functioning in health and disease. The recently proposed quantitative BOLD (qBOLD) technique is MRI-based and provides a regional in vivo OEF measurement (He and Yablonskiy, MRM 2007, 57:115-126). It is based on a previously developed analytical BOLD model and incorporates prior knowledge about the brain tissue composition including the contributions from grey matter, white matter, cerebrospinal fluid, interstitial fluid and intravascular blood. The qBOLD model also allows for the separation of contributions to the BOLD signal from OEF and the deoxyhemoglobin containing blood volume (DBV). The objective of this study is to validate OEF measurements provided by the qBOLD approach. To this end we use a rat model and compare qBOLD OEF measurements against direct measurements of the blood oxygenation level obtained from venous blood drawn directly from the superior sagittal sinus. The cerebral venous oxygenation level of the rat was manipulated by utilizing different anestheisa methods. The study demonstrates a very good agreement between qBOLD approach and direct measurements. (c) 2008 Wiley-Liss, Inc.

  14. The BOLD Response during Stroop Task-Like Inhibition Paradigms: Effects of Task Difficulty and Task-Relevant Modality

    ERIC Educational Resources Information Center

    Mitchell, Rachel L. C.

    2005-01-01

    Previous studies of the Stroop task propose two key mediators: the prefrontal and cingulate cortices but hints exist of functional specialization within these regions. This study aimed to examine the effect of task modality upon the prefrontal and cingulate response by examining the response to colour, number, and shape Stroop tasks whilst BOLD…

  15. Functional connectivity: integrating behavioral, diffusion tensor imaging, and functional magnetic resonance imaging data sets.

    PubMed

    Baird, Abigail A; Colvin, Mary K; Vanhorn, John D; Inati, Souheil; Gazzaniga, Michael S

    2005-04-01

    In the present study, we combined 2 types of magnetic resonance technology to explore individual differences on a task that required the recognition of objects presented from unusual viewpoints. This task was chosen based on previous work that has established the necessity of information transfer from the right parietal cortex to the left inferior cortex for its successful completion. We used reaction times (RTs) to localize regions of cortical activity in the superior parietal and inferior frontal regions (blood oxygen level-dependent [BOLD] response) that were more active with longer response times. These regions were then sampled, and their signal change used to predict individual differences in structural integrity of white matter in the corpus callosum (using diffusion tensor imaging). Results show that shorter RTs (and associated increases in BOLD response) are associated with increased organization in the splenium of the corpus callosum, whereas longer RTs are associated with increased organization in the genu.

  16. Linear increases in BOLD response associated with increasing proportion of incongruent trials across time in a colour Stroop task.

    PubMed

    Mitchell, Rachel L C

    2010-05-01

    Selective attention is popularly assessed with colour Stroop tasks in which participants name the ink colour of colour words, whilst resisting interference from the natural tendency to read the words. Prior studies hinted that the key brain regions (dorsolateral prefrontal (dlPFC) and anterior cingulate cortex (ACC)) may vary their degree of involvement, dependent on attentional demand. This study aimed to determine whether a parametrically varied increase in attentional demand resulted in linearly increased activity in these regions, and/or whether additional regions would be recruited during high attentional demand. Twenty-eight healthy young adults underwent fMRI whilst naming the font colour of colour words. Linear increases in BOLD response were assessed with increasing percentage incongruent trials per block (0, 20, 40, 60, 80, and 100%). Whilst ACC activation increased linearly according to incongruity level, dlPFC activity appeared constant. Together with behavioural evidence of reduced Stroop interference, these data support a load-dependent conflict-related response in ACC, but not dlPFC.

  17. Mathematics anxiety reduces default mode network deactivation in response to numerical tasks.

    PubMed

    Pletzer, Belinda; Kronbichler, Martin; Nuerk, Hans-Christoph; Kerschbaum, Hubert H

    2015-01-01

    Mathematics anxiety is negatively related to mathematics performance, thereby threatening the professional success. Preoccupation with the emotional content of the stimuli may consume working memory resources, which may be reflected in decreased deactivation of areas associated with the default mode network (DMN) activated during self-referential and emotional processing. The common problem is that math anxiety is usually associated with poor math performance, so that any group differences are difficult to interpret. Here we compared the BOLD-response of 18 participants with high (HMAs) and 18 participants with low mathematics anxiety (LMAs) matched for their mathematical performance to two numerical tasks (number comparison, number bisection). During both tasks, we found stronger deactivation within the DMN in LMAs compared to HMAs, while BOLD-response in task-related activation areas did not differ between HMAs and LMAs. The difference in DMN deactivation between the HMA and LMA group was more pronounced in stimuli with additional requirement on inhibitory functions, but did not differ between number magnitude processing and arithmetic fact retrieval.

  18. Mathematics anxiety reduces default mode network deactivation in response to numerical tasks

    PubMed Central

    Pletzer, Belinda; Kronbichler, Martin; Nuerk, Hans-Christoph; Kerschbaum, Hubert H.

    2015-01-01

    Mathematics anxiety is negatively related to mathematics performance, thereby threatening the professional success. Preoccupation with the emotional content of the stimuli may consume working memory resources, which may be reflected in decreased deactivation of areas associated with the default mode network (DMN) activated during self-referential and emotional processing. The common problem is that math anxiety is usually associated with poor math performance, so that any group differences are difficult to interpret. Here we compared the BOLD-response of 18 participants with high (HMAs) and 18 participants with low mathematics anxiety (LMAs) matched for their mathematical performance to two numerical tasks (number comparison, number bisection). During both tasks, we found stronger deactivation within the DMN in LMAs compared to HMAs, while BOLD-response in task-related activation areas did not differ between HMAs and LMAs. The difference in DMN deactivation between the HMA and LMA group was more pronounced in stimuli with additional requirement on inhibitory functions, but did not differ between number magnitude processing and arithmetic fact retrieval. PMID:25954179

  19. Neural representations of relevant and irrelevant features in perceptual decision making

    PubMed Central

    Kayser, Andrew S.; Erickson, Drew T.; Buchsbaum, Bradley R.; D'Esposito, Mark

    2010-01-01

    Although perceptual decision-making activates a network of brain areas involved in sensory, integrative, and motor functions, circuit activity can clearly be modulated by factors beyond the stimulus. Of particular interest is to understand how the network is modulated by top-down factors such as attention. Here we demonstrate in a motion coherence task that selective attention produces marked changes in the BOLD response in a subset of regions within a human perceptual decision-making circuit. Specifically, when motion is attended, the BOLD response decreases with increasing motion coherence in many regions, including the motion-sensitive area MT+, the intraparietal sulcus (IPS), and the inferior frontal sulcus (IFS). However, when motion is ignored, the negative parametric response in a subset of this circuit becomes positive. Through both modeling and connectivity analyses, we demonstrate that this inversion both reflects a top-down influence and segregates attentional from accumulation regions, thereby permitting us to further delineate the contributions of different regions to the perceptual decision. PMID:21106817

  20. The effect of acute citalopram on face emotion processing in remitted depression: a pharmacoMRI study.

    PubMed

    Anderson, Ian M; Juhasz, Gabriella; Thomas, Emma; Downey, Darragh; McKie, Shane; Deakin, J F William; Elliott, Rebecca

    2011-01-01

    Both reduced serotonergic (5-HT) function and negative emotional biases have been associated with vulnerability to depression. In order to investigate whether these might be related we examined 5-HT modulation of affective processing in 14 remitted depressed subjects compared with 12 never depressed controls matched for age and sex. Participants underwent function magnetic resonance imaging (fMRI) during a covert face emotion task with and without intravenous citalopram (7.5mg) pretreatment. Compared with viewing neutral faces, and irrespective of group, citalopram enhanced left anterior cingulate blood oxygen level dependent (BOLD) response to happy faces, right posterior insula and right lateral orbitofrontal responses to sad faces, and reduced amygdala responses bilaterally to fearful faces. In controls, relative to remitted depressed subjects, citalopram increased bilateral hippocampal responses to happy faces and increased right anterior insula response to sad faces. These findings were not accounted for by changes in BOLD responses to viewing neutral faces. These results are consistent with previous findings showing 5-HT modulation of affective processing; differences found in previously depressed participants compared with controls may contribute to emotional processing biases underlying vulnerability to depressive relapse. Copyright © 2010 Elsevier B.V. and ECNP. All rights reserved.

  1. Metabolic and vascular origins of the BOLD effect: Implications for imaging pathology and resting-state brain function.

    PubMed

    Mark, Clarisse I; Mazerolle, Erin L; Chen, J Jean

    2015-08-01

    The blood oxygenation level-dependent (BOLD) phenomenon has profoundly revolutionized neuroscience, with applications ranging from normal brain development and aging, to brain disorders and diseases. While the BOLD effect represents an invaluable tool to map brain function, it does not measure neural activity directly; rather, it reflects changes in blood oxygenation resulting from the relative balance between cerebral oxygen metabolism (through neural activity) and oxygen supply (through cerebral blood flow and volume). As such, there are cases in which BOLD signals might be dissociated from neural activity, leading to misleading results. The emphasis of this review is to develop a critical perspective for interpreting BOLD results, through a comprehensive consideration of BOLD's metabolic and vascular underpinnings. We demonstrate that such an understanding is especially important under disease or resting conditions. We also describe state-of-the-art acquisition and analytical techniques to reveal physiological information on the mechanisms underlying measured BOLD signals. With these goals in mind, this review is structured to provide a fundamental understanding of: 1) the physiological and physical sources of the BOLD contrast; 2) the extraction of information regarding oxidative metabolism and cerebrovascular reactivity from the BOLD signal, critical to investigating neuropathology; and 3) the fundamental importance of metabolic and vascular mechanisms for interpreting resting-state BOLD measurements. © 2015 Wiley Periodicals, Inc.

  2. The translated conceptual survey of physics / stablization of the focal plane in two photon excitation fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Wada, Asma

    As a reflection of my career to be an effective college physics teacher, my thesis is in two parts. The first is in education research, the focus of this part is to have a tool to evaluate pedagogies I have learned at the school and plan to apply in my classrooms back home. Consequently, this resulted in the development of the translated conceptual survey of physics ( TCSP). (TCSP) was designed by combining some questions from the Force Conceptual Inventory (FCI), and the Conceptual Survey of Electricity and Magnetism (CSEM) to assess student's understanding of basic concepts of Newtonian mechanics and electricity and magnetism in introductory physics. The idea of developing this questionnaire is to use it in classrooms back home as a part of a long term objective to implement what has been realized in the area of education research to improve the quality of teaching physics there. The survey was initially written in English, validated with interviews with native English speakers, translated into Arabic, and then validated via an interview with a native Arabic speaker. We then administered the survey to two different English-speaking intro physics courses and analyzed the results for consistency. The objective of the second part in my thesis is to expand my knowledge in an area of physics that I have interest in, and getting involved in a scientific research to develop skills I need as a teacher. My research is in optical physics, in particular, I am working on one of the challenges in implementing two photon excitation luorescence (TPEF) microscopy in imaging living systems. (TPEF) microscopy has been shown to be an invaluable tool for investigating biological structure and function in living organisms. The utility of (TPEF) imaging for this application arises from several important factors including it's ability to image deep within tissue, and to do so without harming the organism. Both of these advantages arise from the fact that (TPEF) imaging is done with excitation wavelengths in the near infrared (NIR). The (NIR) wavelength regime, 750- 1100nm, penetrates deep (>100 μm) into tissue, and has been used to image to depths of up to 1 mm. Further, the longer excitation wavelengths are less absorbing than the traditional ultraviolet wavelengths used in confocal microscopy, and are consequently less damaging. As a result, (TPEF) is presently the preferred tool for visualizing dynamics by biologists. One important aspect of imaging living systems, however, is that they move! This adds to the challenge of trying to study some particular biological function(s). This thesis begins to address this issue by combining a simple micro controller circuit that can be linked to a remote focusing scheme that will make it possible to lock a focal plane to a specific depth inside a living, moving specimen.

  3. Mode conversion between Alfven wave eigenmodes in axially inhomogeneous two-ion-species plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, D.R.; Hershkowitz, N.; Tataronis, J.A.

    The uniform cylindrical plasma model of Litwin and Hershkowitz (Phys. Fluids {bold 30}, 1323 (1987)) is shown to predict mode conversion between the lowest radial order {ital m}=+1 fast magnetosonic surface and slow ion-cyclotron global eigenmodes of the Alfven wave at the light-ion species Alfven resonance of a cold two-ion plasma. A hydrogen ({ital h})--deuterium ({ital d}) plasma is examined in experiments. The fast mode is efficiently excited by a rotating field antenna array at {omega}{similar to}{Omega}{sub {ital h}} in the central cell of the Phaedrus-B tandem mirror (Phys. Rev. Lett. {bold 51}, 1955(1983)). Radially scanned magnetic probes observe themore » propagating eigenmode wave fields within a shallow central cell magnetic gradient in which the conversion zone is axially localized according to {ital n}{sub {ital d}}/{ital n}{sub {ital h}}. A low radial-order slow ion-cyclotron mode, observed in the vicinity of the conversion zone, gives evidence for the predicted mode conversion.« less

  4. Resting-State Retinotopic Organization in the Absence of Retinal Input and Visual Experience

    PubMed Central

    Binda, Paola; Benson, Noah C.; Bridge, Holly; Watkins, Kate E.

    2015-01-01

    Early visual areas have neuronal receptive fields that form a sampling mosaic of visual space, resulting in a series of retinotopic maps in which the same region of space is represented in multiple visual areas. It is not clear to what extent the development and maintenance of this retinotopic organization in humans depend on retinal waves and/or visual experience. We examined the corticocortical receptive field organization of resting-state BOLD data in normally sighted, early blind, and anophthalmic (in which both eyes fail to develop) individuals and found that resting-state correlations between V1 and V2/V3 were retinotopically organized for all subject groups. These results show that the gross retinotopic pattern of resting-state connectivity across V1-V3 requires neither retinal waves nor visual experience to develop and persist into adulthood. SIGNIFICANCE STATEMENT Evidence from resting-state BOLD data suggests that the connections between early visual areas develop and are maintained even in the absence of retinal waves and visual experience. PMID:26354906

  5. The physics of functional magnetic resonance imaging (fMRI)

    NASA Astrophysics Data System (ADS)

    Buxton, Richard B.

    2013-09-01

    Functional magnetic resonance imaging (fMRI) is a methodology for detecting dynamic patterns of activity in the working human brain. Although the initial discoveries that led to fMRI are only about 20 years old, this new field has revolutionized the study of brain function. The ability to detect changes in brain activity has a biophysical basis in the magnetic properties of deoxyhemoglobin, and a physiological basis in the way blood flow increases more than oxygen metabolism when local neural activity increases. These effects translate to a subtle increase in the local magnetic resonance signal, the blood oxygenation level dependent (BOLD) effect, when neural activity increases. With current techniques, this pattern of activation can be measured with resolution approaching 1 mm3 spatially and 1 s temporally. This review focuses on the physical basis of the BOLD effect, the imaging methods used to measure it, the possible origins of the physiological effects that produce a mismatch of blood flow and oxygen metabolism during neural activation, and the mathematical models that have been developed to understand the measured signals. An overarching theme is the growing field of quantitative fMRI, in which other MRI methods are combined with BOLD methods and analyzed within a theoretical modeling framework to derive quantitative estimates of oxygen metabolism and other physiological variables. That goal is the current challenge for fMRI: to move fMRI from a mapping tool to a quantitative probe of brain physiology.

  6. The physics of functional magnetic resonance imaging (fMRI)

    PubMed Central

    Buxton, Richard B

    2015-01-01

    Functional magnetic resonance imaging (fMRI) is a methodology for detecting dynamic patterns of activity in the working human brain. Although the initial discoveries that led to fMRI are only about 20 years old, this new field has revolutionized the study of brain function. The ability to detect changes in brain activity has a biophysical basis in the magnetic properties of deoxyhemoglobin, and a physiological basis in the way blood flow increases more than oxygen metabolism when local neural activity increases. These effects translate to a subtle increase in the local magnetic resonance signal, the blood oxygenation level dependent (BOLD) effect, when neural activity increases. With current techniques, this pattern of activation can be measured with resolution approaching 1 mm3 spatially and 1 s temporally. This review focuses on the physical basis of the BOLD effect, the imaging methods used to measure it, the possible origins of the physiological effects that produce a mismatch of blood flow and oxygen metabolism during neural activation, and the mathematical models that have been developed to understand the measured signals. An overarching theme is the growing field of quantitative fMRI, in which other MRI methods are combined with BOLD methods and analyzed within a theoretical modeling framework to derive quantitative estimates of oxygen metabolism and other physiological variables. That goal is the current challenge for fMRI: to move fMRI from a mapping tool to a quantitative probe of brain physiology. PMID:24006360

  7. The physics of functional magnetic resonance imaging (fMRI).

    PubMed

    Buxton, Richard B

    2013-09-01

    Functional magnetic resonance imaging (fMRI) is a methodology for detecting dynamic patterns of activity in the working human brain. Although the initial discoveries that led to fMRI are only about 20 years old, this new field has revolutionized the study of brain function. The ability to detect changes in brain activity has a biophysical basis in the magnetic properties of deoxyhemoglobin, and a physiological basis in the way blood flow increases more than oxygen metabolism when local neural activity increases. These effects translate to a subtle increase in the local magnetic resonance signal, the blood oxygenation level dependent (BOLD) effect, when neural activity increases. With current techniques, this pattern of activation can be measured with resolution approaching 1 mm(3) spatially and 1 s temporally. This review focuses on the physical basis of the BOLD effect, the imaging methods used to measure it, the possible origins of the physiological effects that produce a mismatch of blood flow and oxygen metabolism during neural activation, and the mathematical models that have been developed to understand the measured signals. An overarching theme is the growing field of quantitative fMRI, in which other MRI methods are combined with BOLD methods and analyzed within a theoretical modeling framework to derive quantitative estimates of oxygen metabolism and other physiological variables. That goal is the current challenge for fMRI: to move fMRI from a mapping tool to a quantitative probe of brain physiology.

  8. Area-specific modulation of neural activation comparing escitalopram and citalopram revealed by pharmaco-fMRI: a randomized cross-over study.

    PubMed

    Windischberger, Christian; Lanzenberger, Rupert; Holik, Alexander; Spindelegger, Christoph; Stein, Patrycja; Moser, Ulrike; Gerstl, Florian; Fink, Martin; Moser, Ewald; Kasper, Siegfried

    2010-01-15

    Area-specific and stimulation-dependent changes of human brain activation by selective serotonin reuptake inhibitors (SSRI) are an important issue for improved understanding of treatment mechanisms, given the frequent prescription of these drugs in depression and anxiety disorders. The aim of this neuroimaging study was to investigate differences in BOLD-signal caused by administration of the SSRIs escitalopram and citalopram using pharmacological functional magnetic resonance imaging (pharmaco-fMRI). Eighteen healthy subjects participated in a placebo-controlled, randomized, double-blind study in cross-over repeated measures design. Each volunteer performed facial emotional discrimination and a sensorimotor control paradigm during three scanning sessions. Citalopram (20 mg/d), escitalopram (10 mg/d) and placebo were administered for 10 days each with a drug-free period of at least 21 days. Significant pharmacological effects on BOLD-signal were found in the amygdala, medial frontal gyrus, parahippocampal, fusiform and middle temporal gyri. Post-hoc t-tests revealed decreased BOLD-signal in the right amygdala and left parahippocampal gyrus in both pharmacological conditions, compared to placebo. Escitalopram, compared to citalopram, induced a decrease of BOLD-signal in the medial frontal gyrus and an increase in the right fusiform and left parahippocampal gyri. Drug effects were concentrated in brain regions with dense serotonergic projections. Both escitalopram and citalopram attenuated BOLD-signal in the amygdala and parahippocampal cortex to emotionally significant stimuli compared to control stimuli. We believe that reduced reactivity in the medial frontal gyrus found for escitalopram compared to citalopram administration might explain the response differences between study drugs as demonstrated in previous clinical trials.

  9. Functional magnetic resonance imaging of working memory in Huntington's disease: cross-sectional data from the IMAGE-HD study.

    PubMed

    Georgiou-Karistianis, Nellie; Stout, Julie C; Domínguez D, Juan F; Carron, Sarah P; Ando, Ayaka; Churchyard, Andrew; Chua, Phyllis; Bohanna, India; Dymowski, Alicia R; Poudel, Govinda; Egan, Gary F

    2014-05-01

    We used functional magnetic resonance imaging (fMRI) to investigate spatial working memory (WM) in an N-BACK task (0, 1, and 2-BACK) in premanifest Huntington's disease (pre-HD, n = 35), early symptomatic Huntington's disease (symp-HD, n = 23), and control (n = 32) individuals. Overall, both WM conditions (1-BACK and 2-BACK) activated a large network of regions throughout the brain, common to all groups. However, voxel-wise and time-course analyses revealed significant functional group differences, despite no significant behavioral performance differences. During 1-BACK, voxel-wise blood-oxygen-level-dependent (BOLD) signal activity was significantly reduced in a number of regions from the WM network (inferior frontal gyrus, anterior insula, caudate, putamen, and cerebellum) in pre-HD and symp-HD groups, compared with controls; however, time-course analysis of the BOLD response in the dorsolateral prefrontal cortex (DLPFC) showed increased activation in symp-HD, compared with pre-HD and controls. The pattern of reduced voxel-wise BOLD activity in pre-HD and symp-HD, relative to controls, became more pervasive during 2-BACK affecting the same structures as in 1-BACK, but also incorporated further WM regions (anterior cingulate gyrus, parietal lobe and thalamus). The DLPFC BOLD time-course for 2-BACK showed a reversed pattern to that observed in 1-BACK, with a significantly diminished signal in symp-HD, relative to pre-HD and controls. Our findings provide support for functional brain reorganisation in cortical and subcortical regions in both pre-HD and symp-HD, which are modulated by task difficulty. Moreover, the lack of a robust striatal BOLD signal in pre-HD may represent a very early signature of change observed up to 15 years prior to clinical diagnosis. Copyright © 2013 Wiley Periodicals, Inc.

  10. Load Modulation of BOLD Response and Connectivity Predicts Working Memory Performance in Younger and Older Adults

    ERIC Educational Resources Information Center

    Nagel, Irene E.; Preuschhof, Claudia; Li, Shu-Chen; Nyberg, Lars; Backman, Lars; Lindenberger, Ulman; Heekeren, Hauke R.

    2011-01-01

    Individual differences in working memory (WM) performance have rarely been related to individual differences in the functional responsivity of the WM brain network. By neglecting person-to-person variation, comparisons of network activity between younger and older adults using functional imaging techniques often confound differences in activity…

  11. Parallel and nonparallel behavioural evolution in response to parasitism and predation in Trinidadian guppies.

    PubMed

    Jacquin, L; Reader, S M; Boniface, A; Mateluna, J; Patalas, I; Pérez-Jvostov, F; Hendry, A P

    2016-07-01

    Natural enemies such as predators and parasites are known to shape intraspecific variability of behaviour and personality in natural populations, yet several key questions remain: (i) What is the relative importance of predation vs. parasitism in shaping intraspecific variation of behaviour across generations? (ii) What are the contributions of genetic and plastic effects to this behavioural divergence? (iii) And to what extent are responses to predation and parasitism repeatable across independent evolutionary lineages? We addressed these questions using Trinidadian guppies (Poecilia reticulata) (i) varying in their exposure to dangerous fish predators and Gyrodactylus ectoparasites for (ii) both wild-caught F0 and laboratory-reared F2 individuals and coming from (iii) multiple independent evolutionary lineages (i.e. independent drainages). Several key findings emerged. First, a population's history of predation and parasitism influenced behavioural profiles, but to different extent depending on the behaviour considered (activity, shoaling or boldness). Second, we had evidence for some genetic effects of predation regime on behaviour, with differences in activity of F2 laboratory-reared individuals, but not for parasitism, which had only plastic effects on the boldness of wild-caught F0 individuals. Third, the two lineages showed a mixture of parallel and nonparallel responses to predation/parasitism, with parallel responses being stronger for predation than for parasitism and for activity and boldness than for shoaling. These findings suggest that different sets of behaviours provide different pay-offs in alternative predation/parasitism environments and that parasitism has more transient effects in shaping intraspecific variation of behaviour than does predation. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  12. Functional cortical and subcortical abnormalities in pedophilia: a combined study using a choice reaction time task and fMRI.

    PubMed

    Poeppl, Timm B; Nitschke, Joachim; Dombert, Beate; Santtila, Pekka; Greenlee, Mark W; Osterheider, Michael; Mokros, Andreas

    2011-06-01

    Pedophiles show sexual interest in prepubescent children but not in adults. Research into the neurofunctional mechanisms of paraphilias has gathered momentum over the last years. To elucidate the underlying neural processing of sexual interest among pedophiles and to highlight the differences in comparison with nonparaphilic sexual interest in adults. Nine pedophilic patients and 11 nonpedophilic control subjects underwent functional magnetic resonance imaging (fMRI) while viewing pictures of nude (prepubescents, pubescents, and adults) and neutral content, as well as performing a concomitant choice reaction time task (CRTT). Brain blood oxygen level-dependent (BOLD) signals and response latencies in the CRTT during exposure to each picture category. Analysis of behavioral data showed group differences in reaction times regarding prepubescent and adult but not pubescent stimuli. During stimulation with pictures displaying nude prepubescents, pedophiles showed increased BOLD response in brain areas known to be involved in processing of visual sexual stimuli. Comparison of pedophilic patients with the control group discovered differences in BOLD responses with respect to prepubescent and adult but not to pubescent stimuli. Differential effects in particular occurred in the cingulate gyrus and insular region. The brain response of pedophiles to visual sexual stimulation by images of nude prepubescents is comparable with previously described neural patterns of sexual processing in nonpedophilic human males evoked by visual stimuli depicting nude adults. Nevertheless, group differences found in the cingulate gyrus and the insular region suggest an important role of these brain areas in pedophilic sexual interest. Furthermore, combining attention-based methods like CRTT with fMRI may be a viable option for future diagnostic procedures regarding pedophilia. © 2011 International Society for Sexual Medicine.

  13. Effects of Sildenafil on Cerebrovascular Reactivity in Patients with Becker Muscular Dystrophy.

    PubMed

    Lindberg, Ulrich; Witting, Nanna; Jørgensen, Stine Lundgaard; Vissing, John; Rostrup, Egill; Larsson, Henrik Bo Wiberg; Kruuse, Christina

    2017-01-01

    Patients suffering from Becker muscular dystrophy (BMD) have dysfunctional dystrophin proteins and are deficient in neuronal nitric oxide synthase (nNOS) in muscles. This causes functional ischemia and contributes to muscle wasting. Similar functional ischemia may be present in brains of patients with BMD, who often have mild cognitive impairment, and nNOS may be important for the regulation of the microvascular circulation in the brain. We hypothesized that treatment with sildenafil, a phosphodiesterase type 5 inhibitor that potentiates nitric oxide responses, would augment both the blood oxygen level-dependent (BOLD) response and cerebral blood flow (CBF) in patients with BMD. Seventeen patients (mean ± SD age 38.5 ± 10.8 years) with BMD were included in this randomized, double-blind, placebo-controlled, crossover trial. Twelve patients completed the entire study. Effects of sildenafil were assessed by 3 T magnetic resonance (MR) scanning, evoked potentials, somatosensory task-induced BOLD functional MR imaging, regional and global perfusion, and angiography before and after 4 weeks of sildenafil, 20 mg (Revatio in gelatine capsules, oral, 3 times daily), or placebo treatment. Sildenafil increased the event-related sensory and visual BOLD response compared with placebo (p < 0.01). However, sildenafil did not alter CBF, measured by MR phase contrast mapping, or the arterial diameter of the middle cerebral artery, measured by MR angiography. We conclude that nNOS may play a role in event-related neurovascular responses. Further studies in patients with BMD may help clarify the roles of dystrophin and nNOS in neurovascular coupling in general, and in patients with BMD in particular.

  14. Connectivity Reveals Sources of Predictive Coding Signals in Early Visual Cortex During Processing of Visual Optic Flow.

    PubMed

    Schindler, Andreas; Bartels, Andreas

    2017-05-01

    Superimposed on the visual feed-forward pathway, feedback connections convey higher level information to cortical areas lower in the hierarchy. A prominent framework for these connections is the theory of predictive coding where high-level areas send stimulus interpretations to lower level areas that compare them with sensory input. Along these lines, a growing body of neuroimaging studies shows that predictable stimuli lead to reduced blood oxygen level-dependent (BOLD) responses compared with matched nonpredictable counterparts, especially in early visual cortex (EVC) including areas V1-V3. The sources of these modulatory feedback signals are largely unknown. Here, we re-examined the robust finding of relative BOLD suppression in EVC evident during processing of coherent compared with random motion. Using functional connectivity analysis, we show an optic flow-dependent increase of functional connectivity between BOLD suppressed EVC and a network of visual motion areas including MST, V3A, V6, the cingulate sulcus visual area (CSv), and precuneus (Pc). Connectivity decreased between EVC and 2 areas known to encode heading direction: entorhinal cortex (EC) and retrosplenial cortex (RSC). Our results provide first evidence that BOLD suppression in EVC for predictable stimuli is indeed mediated by specific high-level areas, in accord with the theory of predictive coding. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. Development and validation of a liquid chromatography-tandem mass spectrometry method for the separation of conjugated and unconjugated 17alpha- and 17beta-boldenone in urine sample.

    PubMed

    Gasparini, Mara; Assini, Walter; Bozzoni, Eros; Tognoli, Nadia; Dusi, Guglielmo

    2007-03-14

    Natural occurrence or illegal treatment of boldenone (BOLD) presence in cattle urine is under debate within the European Union. Separation of conjugated and unconjugated forms of 17alpha-boldenone (alpha-BOLD) and 17beta-boldenone (beta-BOLD) and presence of related molecules as androsta-1,4-diene-3,17-dione (ADD) appear critical points for the decision of an illegal use. The aim of this study is a new analytical approach of BOLD and ADD confirmation in cattle urine. The separation between conjugated and unconjugated forms of BOLD was obtained by a preliminary urine liquid-liquid extraction step with ethyl acetate. In this step the organic phase extracts only unconjugated BOLD and ADD, while BOLD in conjugated form remain in urine phase. Afterwards the urine phase, contains conjugated BOLD, was subjected to an enzymatic deconjugation. Solid-phase extraction (OASIS-HLB Waters) was used for the purification and concentration of analytes in organic and urine phases and liquid chromatography ion electrospray tandem mass spectrometry (LC-MS-MS) was applied for the confirmation of BOLD and ADD, using deuterium-labelled 17beta-boldenone (BOLD-d3) as internal standard. The method was validated as a quantitative confirmatory method according to the Commission Decision 2002/657/CE. The results obtained demonstrate that the developed method show very high specificity, precision, trueness and ruggedness. Decision limits (CCalpha) smaller than 0.5 ng mL(-1) were obtained for each analyte.

  16. Focal BOLD-fMRI changes in bicuculline-induced tonic-clonic seizures in the rat

    PubMed Central

    DeSalvo, Matthew N.; Schridde, Ulrich; Mishra, Asht M.; Motelow, Joshua E.; Purcaro, Michael J.; Danielson, Nathan; Bai, Xiaoxiao; Hyder, Fahmeed; Blumenfeld, Hal

    2010-01-01

    Generalized tonic-clonic seizures cause widespread physiological changes throughout the cerebral cortex and subcortical structures in the brain. Using combined blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) at 9.4 T and electroencephalography (EEG) these changes can be characterized with high spatiotemporal resolution. We studied BOLD changes in anesthetized Wistar rats during bicuculline-induced tonic-clonic seizures. Bicuculline, a GABAA receptor antagonist, was injected systemically and seizure activity was observed on EEG as high amplitude, high-frequency polyspike discharges followed by clonic paroxysmal activity of lower frequency, with mean electrographic seizure duration of 349 s. Our aim was to characterize the spatial localization, direction, and timing of BOLD signal changes during the pre-ictal, ictal and post-ictal periods. Group analysis was performed across seizures using paired t-maps of BOLD signal superimposed on high resolution anatomical images. Regional analysis was then performed using volumes of interest to quantify BOLD timecourses. In the pre-ictal period we found focal BOLD increases in specific areas of somatosensory cortex (S1, S2) and thalamus several seconds before seizure onset. During seizures we observed BOLD increases in cortex, brainstem and thalamus and BOLD decreases in the hippocampus. The largest ictal BOLD increases remained in the focal regions of somatosensory cortex showing pre-ictal increases. During the post-ictal period we observed widespread BOLD decreases. These findings support a model in which “generalized” tonic-clonic seizures begin with focal changes before electrographic seizure onset, which progress to non-uniform changes during seizures, possibly shedding light on the etiology and pathophysiology of similar seizures in humans. PMID:20079442

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaufman, H.R.

    Bohm diffusion has been found to be approximately valid for many plasmas in strong magnetic fields. Assuming Bohm diffusion describes electron diffusion directly (H. R. Kaufman, AIAA J. {bold 23}, 78 (1985)), with an equal ion loss possible from the ambipolar field that is generated (F. F. Chen, {ital Introduction} {ital to} {ital Plasma} {ital Physics} (Plenum, New York, 1974), p. 169), an order-of-magnitude analysis can show why such electron diffusion should be expected.

  18. Contrasting neural effects of aging on proactive and reactive response inhibition.

    PubMed

    Bloemendaal, Mirjam; Zandbelt, Bram; Wegman, Joost; van de Rest, Ondine; Cools, Roshan; Aarts, Esther

    2016-10-01

    Two distinct forms of response inhibition may underlie observed deficits in response inhibition in aging. We assessed whether age-related neurocognitive impairments in response inhibition reflect deficient reactive inhibition (outright stopping) or also deficient proactive inhibition (anticipatory response slowing), which might be particularly evident with high information load. We used functional magnetic resonance imaging in young (n = 25, age range 18-32) and older adults (n = 23, 61-74) with a stop-signal task. Relative to young adults, older adults exhibited impaired reactive inhibition (i.e., longer stop-signal reaction time) and increased blood oxygen level-dependent (BOLD) signal for successful versus unsuccessful inhibition in the left frontal cortex and cerebellum. Furthermore, older adults also exhibited impaired proactive slowing, but only as a function of information load. This load-dependent behavioral deficit was accompanied by a failure to increase blood oxygen level-dependent (BOLD) signal under high information load in lateral frontal cortex, presupplementary motor area and striatum. Our findings suggest that inhibitory deficits in older adults are caused both by reduced stopping abilities and by diminished preparation capacity during information overload. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Neurochemical responses to chromatic and achromatic stimuli in the human visual cortex.

    PubMed

    Bednařík, Petr; Tkáč, Ivan; Giove, Federico; Eberly, Lynn E; Deelchand, Dinesh K; Barreto, Felipe R; Mangia, Silvia

    2018-02-01

    In the present study, we aimed at determining the metabolic responses of the human visual cortex during the presentation of chromatic and achromatic stimuli, known to preferentially activate two separate clusters of neuronal populations (called "blobs" and "interblobs") with distinct sensitivity to color or luminance features. Since blobs and interblobs have different cytochrome-oxidase (COX) content and micro-vascularization level (i.e., different capacities for glucose oxidation), different functional metabolic responses during chromatic vs. achromatic stimuli may be expected. The stimuli were optimized to evoke a similar load of neuronal activation as measured by the bold oxygenation level dependent (BOLD) contrast. Metabolic responses were assessed using functional 1 H MRS at 7 T in 12 subjects. During both chromatic and achromatic stimuli, we observed the typical increases in glutamate and lactate concentration, and decreases in aspartate and glucose concentration, that are indicative of increased glucose oxidation. However, within the detection sensitivity limits, we did not observe any difference between metabolic responses elicited by chromatic and achromatic stimuli. We conclude that the higher energy demands of activated blobs and interblobs are supported by similar increases in oxidative metabolism despite the different capacities of these neuronal populations.

  20. Propofol attenuates low-frequency fluctuations of resting-state fMRI BOLD signal in the anterior frontal cortex upon loss of consciousness.

    PubMed

    Liu, Xiaolin; Lauer, Kathryn K; Douglas Ward, B; Roberts, Christopher; Liu, Suyan; Gollapudy, Suneeta; Rohloff, Robert; Gross, William; Chen, Guangyu; Xu, Zhan; Binder, Jeffrey R; Li, Shi-Jiang; Hudetz, Anthony G

    2017-02-15

    Recent studies indicate that spontaneous low-frequency fluctuations (LFFs) of resting-state functional magnetic resonance imaging (rs-fMRI) blood oxygen level-dependent (BOLD) signals are driven by the slow (<0.1Hz) modulation of ongoing neuronal activity synchronized locally and across remote brain regions. How regional LFFs of the BOLD fMRI signal are altered during anesthetic-induced alteration of consciousness is not well understood. Using rs-fMRI in 15 healthy participants, we show that during administration of propofol to achieve loss of behavioral responsiveness indexing unconsciousness, the fractional amplitude of LFF (fALFF index) was reduced in comparison to wakeful baseline in the anterior frontal regions, temporal pole, hippocampus, parahippocampal gyrus, and amygdala. Such changes were absent in large areas of the motor, parietal, and sensory cortices. During light sedation characterized by the preservation of overt responsiveness and therefore consciousness, fALFF was reduced in the subcortical areas, temporal pole, medial orbital frontal cortex, cingulate cortex, and cerebellum. Between light sedation and deep sedation, fALFF was reduced primarily in the medial and dorsolateral frontal areas. The preferential reduction of LFFs in the anterior frontal regions is consistent with frontal to sensory-motor cortical disconnection and may contribute to the suppression of consciousness during general anesthesia. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Propofol attenuates low-frequency fluctuations of resting-state fMRI BOLD signal in the anterior frontal cortex upon loss of consciousness

    PubMed Central

    Liu, Xiaolin; Lauer, Kathryn K.; Ward, B. Douglas; Roberts, Christopher; Liu, Suyan; Gollapudy, Suneeta; Rohloff, Robert; Gross, William; Chen, Guangyu; Xu, Zhan; Binder, Jeffrey R.; Li, Shi-Jiang; Hudetz, Anthony G.

    2017-01-01

    Recent studies indicate that spontaneous low-frequency fluctuations (LFFs) of resting-state functional magnetic resonance imaging (rs-fMRI) blood oxygen level-dependent (BOLD) signals are driven by the slow (<0.1 Hz) modulation of ongoing neuronal activity synchronized locally and across remote brain regions. How regional LFFs of the BOLD fMRI signal are altered during anesthetic-induced alteration of consciousness is not well understood. Using rs-fMRI in 15 healthy participants, we show that during administration of propofol to achieve loss of behavioral responsiveness indexing unconsciousness, the fractional amplitude of LFF (fALFF index) was reduced in comparison to wakeful baseline in the anterior frontal regions, temporal pole, hippocampus, parahippocampal gyrus, and amygdala. Such changes were absent in large areas of the motor, parietal, and sensory cortices. During light sedation characterized by the preservation of overt responsiveness and therefore consciousness, fALFF was reduced in the subcortical areas, temporal pole, medial orbital frontal cortex, cingulate cortex, and cerebellum. Between light sedation and deep sedation, fALFF was reduced primarily in the medial and dorsolateral frontal areas. The preferential reduction of LFFs in the anterior frontal regions is consistent with frontal to sensory-motor cortical disconnection and may contribute to the suppression of consciousness during general anesthesia. PMID:27993673

  2. Neural correlates of word production stages delineated by parametric modulation of psycholinguistic variables.

    PubMed

    Wilson, Stephen M; Isenberg, Anna Lisette; Hickok, Gregory

    2009-11-01

    Word production is a complex multistage process linking conceptual representations, lexical entries, phonological forms and articulation. Previous studies have revealed a network of predominantly left-lateralized brain regions supporting this process, but many details regarding the precise functions of different nodes in this network remain unclear. To better delineate the functions of regions involved in word production, we used event-related functional magnetic resonance imaging (fMRI) to identify brain areas where blood oxygen level-dependent (BOLD) responses to overt picture naming were modulated by three psycholinguistic variables: concept familiarity, word frequency, and word length, and one behavioral variable: reaction time. Each of these variables has been suggested by prior studies to be associated with different aspects of word production. Processing of less familiar concepts was associated with greater BOLD responses in bilateral occipitotemporal regions, reflecting visual processing and conceptual preparation. Lower frequency words produced greater BOLD signal in left inferior temporal cortex and the left temporoparietal junction, suggesting involvement of these regions in lexical selection and retrieval and encoding of phonological codes. Word length was positively correlated with signal intensity in Heschl's gyrus bilaterally, extending into the mid-superior temporal gyrus (STG) and sulcus (STS) in the left hemisphere. The left mid-STS site was also modulated by reaction time, suggesting a role in the storage of lexical phonological codes.

  3. Eccentricity mapping of the human visual cortex to evaluate temporal dynamics of functional T1ρ mapping.

    PubMed

    Heo, Hye-Young; Wemmie, John A; Johnson, Casey P; Thedens, Daniel R; Magnotta, Vincent A

    2015-07-01

    Recent experiments suggest that T1 relaxation in the rotating frame (T(1ρ)) is sensitive to metabolism and can detect localized activity-dependent changes in the human visual cortex. Current functional magnetic resonance imaging (fMRI) methods have poor temporal resolution due to delays in the hemodynamic response resulting from neurovascular coupling. Because T(1ρ) is sensitive to factors that can be derived from tissue metabolism, such as pH and glucose concentration via proton exchange, we hypothesized that activity-evoked T(1ρ) changes in visual cortex may occur before the hemodynamic response measured by blood oxygenation level-dependent (BOLD) and arterial spin labeling (ASL) contrast. To test this hypothesis, functional imaging was performed using T(1ρ), BOLD, and ASL in human participants viewing an expanding ring stimulus. We calculated eccentricity phase maps across the occipital cortex for each functional signal and compared the temporal dynamics of T(1ρ) versus BOLD and ASL. The results suggest that T(1ρ) changes precede changes in the two blood flow-dependent measures. These observations indicate that T(1ρ) detects a signal distinct from traditional fMRI contrast methods. In addition, these findings support previous evidence that T(1ρ) is sensitive to factors other than blood flow, volume, or oxygenation. Furthermore, they suggest that tissue metabolism may be driving activity-evoked T(1ρ) changes.

  4. Pitfalls in Fractal Time Series Analysis: fMRI BOLD as an Exemplary Case

    PubMed Central

    Eke, Andras; Herman, Peter; Sanganahalli, Basavaraju G.; Hyder, Fahmeed; Mukli, Peter; Nagy, Zoltan

    2012-01-01

    This article will be positioned on our previous work demonstrating the importance of adhering to a carefully selected set of criteria when choosing the suitable method from those available ensuring its adequate performance when applied to real temporal signals, such as fMRI BOLD, to evaluate one important facet of their behavior, fractality. Earlier, we have reviewed on a range of monofractal tools and evaluated their performance. Given the advance in the fractal field, in this article we will discuss the most widely used implementations of multifractal analyses, too. Our recommended flowchart for the fractal characterization of spontaneous, low frequency fluctuations in fMRI BOLD will be used as the framework for this article to make certain that it will provide a hands-on experience for the reader in handling the perplexed issues of fractal analysis. The reason why this particular signal modality and its fractal analysis has been chosen was due to its high impact on today’s neuroscience given it had powerfully emerged as a new way of interpreting the complex functioning of the brain (see “intrinsic activity”). The reader will first be presented with the basic concepts of mono and multifractal time series analyses, followed by some of the most relevant implementations, characterization by numerical approaches. The notion of the dichotomy of fractional Gaussian noise and fractional Brownian motion signal classes and their impact on fractal time series analyses will be thoroughly discussed as the central theme of our application strategy. Sources of pitfalls and way how to avoid them will be identified followed by a demonstration on fractal studies of fMRI BOLD taken from the literature and that of our own in an attempt to consolidate the best practice in fractal analysis of empirical fMRI BOLD signals mapped throughout the brain as an exemplary case of potentially wide interest. PMID:23227008

  5. Organization of area hV5/MT+ in subjects with homonymous visual field defects.

    PubMed

    Papanikolaou, Amalia; Keliris, Georgios A; Papageorgiou, T Dorina; Schiefer, Ulrich; Logothetis, Nikos K; Smirnakis, Stelios M

    2018-04-06

    Damage to the primary visual cortex (V1) leads to a visual field loss (scotoma) in the retinotopically corresponding part of the visual field. Nonetheless, a small amount of residual visual sensitivity persists within the blind field. This residual capacity has been linked to activity observed in the middle temporal area complex (V5/MT+). However, it remains unknown whether the organization of hV5/MT+ changes following early visual cortical lesions. We studied the organization of area hV5/MT+ of five patients with dense homonymous defects in a quadrant of the visual field as a result of partial V1+ or optic radiation lesions. To do so, we developed a new method, which models the boundaries of population receptive fields directly from the BOLD signal of each voxel in the visual cortex. We found responses in hV5/MT+ arising inside the scotoma for all patients and identified two possible sources of activation: 1) responses might originate from partially lesioned parts of area V1 corresponding to the scotoma, and 2) responses can also originate independent of area V1 input suggesting the existence of functional V1-bypassing pathways. Apparently, visually driven activity observed in hV5/MT+ is not sufficient to mediate conscious vision. More surprisingly, visually driven activity in corresponding regions of V1 and early extrastriate areas including hV5/MT+ did not guarantee visual perception in the group of patients with post-geniculate lesions that we examined. This suggests that the fine coordination of visual activity patterns across visual areas may be an important determinant of whether visual perception persists following visual cortical lesions. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. To boldly gulp: standard metabolic rate and boldness have context-dependent influences on risk-taking to breathe air in a catfish.

    PubMed

    McKenzie, David J; Belão, Thiago C; Killen, Shaun S; Rantin, F Tadeu

    2015-12-01

    The African sharptooth catfish Clarias gariepinus has bimodal respiration, it has a suprabranchial air-breathing organ alongside substantial gills. We used automated bimodal respirometry to reveal that undisturbed juvenile catfish (N=29) breathed air continuously in normoxia, with a marked diurnal cycle. Air breathing and routine metabolic rate (RMR) increased in darkness when, in the wild, this nocturnal predator forages. Aquatic hypoxia (20% air saturation) greatly increased overall reliance on air breathing. We investigated whether two measures of risk taking to breathe air, namely absolute rates of aerial O2 uptake (ṀO2,air) and the percentage of RMR obtained from air (%ṀO2,air), were influenced by individual standard metabolic rate (SMR) and boldness. In particular, whether any influence varied with resource availability (normoxia versus hypoxia) or relative fear of predation (day versus night). Individual SMR, derived from respirometry, had an overall positive influence on ṀO2,air across all contexts but a positive influence on %ṀO2,air only in hypoxia. Thus, a pervasive effect of SMR on air breathing became most acute in hypoxia, when individuals with higher O2 demand took proportionally more risks. Boldness was estimated as time required to resume air breathing after a fearful stimulus in daylight normoxia (Tres). Although Tres had no overall influence on ṀO2,air or %ṀO2,air, there was a negative relationship between Tres and %ṀO2,air in daylight, in normoxia and hypoxia. There were two Tres response groups, 'bold' phenotypes with Tres below 75 min (N=13) which, in daylight, breathed proportionally more air than 'shy' phenotypes with Tres above 115 min (N=16). Therefore, individual boldness influenced air breathing when fear of predation was high. Thus, individual energy demand and personality did not have parallel influences on the emergent tendency to take risks to obtain a resource; their influences varied in strength with context. © 2015. Published by The Company of Biologists Ltd.

  7. Normothermic Mouse Functional MRI of Acute Focal Thermostimulation for Probing Nociception

    PubMed Central

    Reimann, Henning Matthias; Hentschel, Jan; Marek, Jaroslav; Huelnhagen, Till; Todiras, Mihail; Kox, Stefanie; Waiczies, Sonia; Hodge, Russ; Bader, Michael; Pohlmann, Andreas; Niendorf, Thoralf

    2016-01-01

    Combining mouse genomics and functional magnetic resonance imaging (fMRI) provides a promising tool to unravel the molecular mechanisms of chronic pain. Probing murine nociception via the blood oxygenation level-dependent (BOLD) effect is still challenging due to methodological constraints. Here we report on the reproducible application of acute noxious heat stimuli to examine the feasibility and limitations of functional brain mapping for central pain processing in mice. Recent technical and procedural advances were applied for enhanced BOLD signal detection and a tight control of physiological parameters. The latter includes the development of a novel mouse cradle designed to maintain whole-body normothermia in anesthetized mice during fMRI in a way that reflects the thermal status of awake, resting mice. Applying mild noxious heat stimuli to wildtype mice resulted in highly significant BOLD patterns in anatomical brain structures forming the pain matrix, which comprise temporal signal intensity changes of up to 6% magnitude. We also observed sub-threshold correlation patterns in large areas of the brain, as well as alterations in mean arterial blood pressure (MABP) in response to the applied stimulus. PMID:26821826

  8. Normothermic Mouse Functional MRI of Acute Focal Thermostimulation for Probing Nociception

    NASA Astrophysics Data System (ADS)

    Reimann, Henning Matthias; Hentschel, Jan; Marek, Jaroslav; Huelnhagen, Till; Todiras, Mihail; Kox, Stefanie; Waiczies, Sonia; Hodge, Russ; Bader, Michael; Pohlmann, Andreas; Niendorf, Thoralf

    2016-01-01

    Combining mouse genomics and functional magnetic resonance imaging (fMRI) provides a promising tool to unravel the molecular mechanisms of chronic pain. Probing murine nociception via the blood oxygenation level-dependent (BOLD) effect is still challenging due to methodological constraints. Here we report on the reproducible application of acute noxious heat stimuli to examine the feasibility and limitations of functional brain mapping for central pain processing in mice. Recent technical and procedural advances were applied for enhanced BOLD signal detection and a tight control of physiological parameters. The latter includes the development of a novel mouse cradle designed to maintain whole-body normothermia in anesthetized mice during fMRI in a way that reflects the thermal status of awake, resting mice. Applying mild noxious heat stimuli to wildtype mice resulted in highly significant BOLD patterns in anatomical brain structures forming the pain matrix, which comprise temporal signal intensity changes of up to 6% magnitude. We also observed sub-threshold correlation patterns in large areas of the brain, as well as alterations in mean arterial blood pressure (MABP) in response to the applied stimulus.

  9. Boldness in a deep sea hermit crab to simulated tactile predator attacks is unaffected by ocean acidification

    NASA Astrophysics Data System (ADS)

    Kim, Tae Won; Barry, James P.

    2016-09-01

    Despite rapidly growing interest in the effects of ocean acidification on marine animals, the ability of deep-sea animals to acclimate or adapt to reduced pH conditions has received little attention. Deep-sea species are generally thought to be less tolerant of environmental variation than shallow-living species because they inhabit relatively stable conditions for nearly all environmental parameters. To explore whether deep-sea hermit crabs ( Pagurus tanneri) can acclimate to ocean acidification over several weeks, we compared behavioral "boldness," measured as time taken to re-emerge from shells after a simulated predatory attack by a toy octopus, under ambient (pH ˜7.6) and expected future (pH ˜7.1) conditions. The boldness measure for crab behavioral responses did not differ between different pH treatments, suggesting that future deep-sea acidification would not influence anti-predatory behavior. However, we did not examine the effects of olfactory cues released by predators that may affect hermit crab behavior and could be influenced by changes in the ocean carbonate system driven by increasing CO2 levels.

  10. Decoupling of reaction time-related default mode network activity with cognitive demand.

    PubMed

    Barber, Anita D; Caffo, Brian S; Pekar, James J; Mostofsky, Stewart H

    2017-06-01

    Reaction Time (RT) is associated with increased amplitude of the Blood Oxygen-Level Dependent (BOLD) response in task positive regions. Few studies have focused on whether opposing RT-related suppression of task activity also occurs. The current study used two Go/No-go tasks with different cognitive demands to examine regions that showed greater BOLD suppression for longer RT trials. These RT-related suppression effects occurred within the DMN and were task-specific, localizing to separate regions for the two tasks. In the task requiring working memory, RT-related de-coupling of the DMN occurred. This was reflected by opposing RT-BOLD effects for different DMN regions, as well as by reduced positive RT-related Psycho-Physiological Interaction (PPI) connectivity within the DMN and a lack of negative RT-related PPI connectivity between DMN and task positive regions. The results suggest that RT-related DMN suppression is task-specific. RT-related de-coupling of the DMN with more complex task demands may contribute to lapses of attention and performance decrements that occur during cognitively-demanding tasks.

  11. Fitness Consequences of Boldness in Juvenile and Adult Largemouth Bass.

    PubMed

    Ballew, Nicholas G; Mittelbach, Gary G; Scribner, Kim T

    2017-04-01

    To date, most studies investigating the relationship between personality traits and fitness have focused on a single measure of fitness (such as survival) at a specific life stage. However, many personality traits likely have multiple effects on fitness, potentially operating across different functional contexts and stages of development. Here, we address the fitness consequences of boldness, under seminatural conditions, across life stages and functional contexts in largemouth bass (Micropterus salmoides). Specifically, we report the effect of boldness on (1) juvenile survivorship in an outdoor pond containing natural prey and predators and (2) adult reproductive success in three outdoor ponds across three reproductive seasons (years). Juvenile survival was negatively affected by boldness, with bolder juveniles having a lower probability of survival than shyer juveniles. In contrast, bolder adult male bass had greater reproductive success than their shyer male counterparts. Female reproductive success was not affected by boldness. These findings demonstrate that boldness can affect fitness differently across life stages. Further, boldness was highly consistent across years and significantly heritable, which suggests that boldness has a genetic component. Thus, our results support theory suggesting that fitness trade-offs across life stages may contribute to the maintenance of personality variation within populations.

  12. Negative BOLD with Large Increases in Neuronal Activity

    PubMed Central

    Khubchandani, Manjula; Motelow, Joshua E.; Sanganahalli, Basavaraju G.; Hyder, Fahmeed

    2008-01-01

    Blood oxygen level–dependent (BOLD) functional magnetic resonance imaging (fMRI) is widely used in neuroscience to study brain activity. However, BOLD fMRI does not measure neuronal activity directly but depends on cerebral blood flow (CBF), cerebral blood volume (CBV), and cerebral metabolic rate of oxygen (CMRO2) consumption. Using fMRI, CBV, CBF, neuronal recordings, and CMRO2 modeling, we investigated how the signals are related during seizures in rats. We found that increases in hemodynamic, neuronal, and metabolic activity were associated with positive BOLD signals in the cortex, but with negative BOLD signals in hippocampus. Our data show that negative BOLD signals do not necessarily imply decreased neuronal activity or CBF, but can result from increased neuronal activity, depending on the interplay between hemodynamics and metabolism. Caution should be used in interpreting fMRI signals because the relationship between neuronal activity and BOLD signals may depend on brain region and state and can be different during normal and pathological conditions. PMID:18063563

  13. Mapping human preictal and ictal haemodynamic networks using simultaneous intracranial EEG-fMRI

    PubMed Central

    Chaudhary, Umair J.; Centeno, Maria; Thornton, Rachel C.; Rodionov, Roman; Vulliemoz, Serge; McEvoy, Andrew W.; Diehl, Beate; Walker, Matthew C.; Duncan, John S.; Carmichael, David W.; Lemieux, Louis

    2016-01-01

    Accurately characterising the brain networks involved in seizure activity may have important implications for our understanding of epilepsy. Intracranial EEG-fMRI can be used to capture focal epileptic events in humans with exquisite electrophysiological sensitivity and allows for identification of brain structures involved in this phenomenon over the entire brain. We investigated ictal BOLD networks using the simultaneous intracranial EEG-fMRI (icEEG-fMRI) in a 30 year-old male undergoing invasive presurgical evaluation with bilateral depth electrode implantations in amygdalae and hippocampi for refractory temporal lobe epilepsy. One spontaneous focal electrographic seizure was recorded. The aims of the data analysis were firstly to map BOLD changes related to the ictal activity identified on icEEG and secondly to compare different fMRI modelling approaches. Visual inspection of the icEEG showed an onset dominated by beta activity involving the right amygdala and hippocampus lasting 6.4 s (ictal onset phase), followed by gamma activity bilaterally lasting 14.8 s (late ictal phase). The fMRI data was analysed using SPM8 using two modelling approaches: firstly, purely based on the visually identified phases of the seizure and secondly, based on EEG spectral dynamics quantification. For the visual approach the two ictal phases were modelled as ‘ON’ blocks convolved with the haemodynamic response function; in addition the BOLD changes during the 30 s preceding the onset were modelled using a flexible basis set. For the quantitative fMRI modelling approach two models were evaluated: one consisting of the variations in beta and gamma bands power, thereby adding a quantitative element to the visually-derived models, and another based on principal components analysis of the entire spectrogram in attempt to reduce the bias associated with the visual appreciation of the icEEG. BOLD changes related to the visually defined ictal onset phase were revealed in the medial and lateral right temporal lobe. For the late ictal phase, the BOLD changes were remote from the SOZ and in deep brain areas (precuneus, posterior cingulate and others). The two quantitative models revealed BOLD changes involving the right hippocampus, amygdala and fusiform gyrus and in remote deep brain structures and the default mode network-related areas. In conclusion, icEEG-fMRI allowed us to reveal BOLD changes within and beyond the SOZ linked to very localised ictal fluctuations in beta and gamma activity measured in the amygdala and hippocampus. Furthermore, the BOLD changes within the SOZ structures were better captured by the quantitative models, highlighting the interest in considering seizure-related EEG fluctuations across the entire spectrum. PMID:27114897

  14. Mapping human preictal and ictal haemodynamic networks using simultaneous intracranial EEG-fMRI.

    PubMed

    Chaudhary, Umair J; Centeno, Maria; Thornton, Rachel C; Rodionov, Roman; Vulliemoz, Serge; McEvoy, Andrew W; Diehl, Beate; Walker, Matthew C; Duncan, John S; Carmichael, David W; Lemieux, Louis

    2016-01-01

    Accurately characterising the brain networks involved in seizure activity may have important implications for our understanding of epilepsy. Intracranial EEG-fMRI can be used to capture focal epileptic events in humans with exquisite electrophysiological sensitivity and allows for identification of brain structures involved in this phenomenon over the entire brain. We investigated ictal BOLD networks using the simultaneous intracranial EEG-fMRI (icEEG-fMRI) in a 30 year-old male undergoing invasive presurgical evaluation with bilateral depth electrode implantations in amygdalae and hippocampi for refractory temporal lobe epilepsy. One spontaneous focal electrographic seizure was recorded. The aims of the data analysis were firstly to map BOLD changes related to the ictal activity identified on icEEG and secondly to compare different fMRI modelling approaches. Visual inspection of the icEEG showed an onset dominated by beta activity involving the right amygdala and hippocampus lasting 6.4 s (ictal onset phase), followed by gamma activity bilaterally lasting 14.8 s (late ictal phase). The fMRI data was analysed using SPM8 using two modelling approaches: firstly, purely based on the visually identified phases of the seizure and secondly, based on EEG spectral dynamics quantification. For the visual approach the two ictal phases were modelled as 'ON' blocks convolved with the haemodynamic response function; in addition the BOLD changes during the 30 s preceding the onset were modelled using a flexible basis set. For the quantitative fMRI modelling approach two models were evaluated: one consisting of the variations in beta and gamma bands power, thereby adding a quantitative element to the visually-derived models, and another based on principal components analysis of the entire spectrogram in attempt to reduce the bias associated with the visual appreciation of the icEEG. BOLD changes related to the visually defined ictal onset phase were revealed in the medial and lateral right temporal lobe. For the late ictal phase, the BOLD changes were remote from the SOZ and in deep brain areas (precuneus, posterior cingulate and others). The two quantitative models revealed BOLD changes involving the right hippocampus, amygdala and fusiform gyrus and in remote deep brain structures and the default mode network-related areas. In conclusion, icEEG-fMRI allowed us to reveal BOLD changes within and beyond the SOZ linked to very localised ictal fluctuations in beta and gamma activity measured in the amygdala and hippocampus. Furthermore, the BOLD changes within the SOZ structures were better captured by the quantitative models, highlighting the interest in considering seizure-related EEG fluctuations across the entire spectrum.

  15. Causal Inference for fMRI Time Series Data with Systematic Errors of Measurement in a Balanced On/Off Study of Social Evaluative Threat.

    PubMed

    Sobel, Michael E; Lindquist, Martin A

    2014-07-01

    Functional magnetic resonance imaging (fMRI) has facilitated major advances in understanding human brain function. Neuroscientists are interested in using fMRI to study the effects of external stimuli on brain activity and causal relationships among brain regions, but have not stated what is meant by causation or defined the effects they purport to estimate. Building on Rubin's causal model, we construct a framework for causal inference using blood oxygenation level dependent (BOLD) fMRI time series data. In the usual statistical literature on causal inference, potential outcomes, assumed to be measured without systematic error, are used to define unit and average causal effects. However, in general the potential BOLD responses are measured with stimulus dependent systematic error. Thus we define unit and average causal effects that are free of systematic error. In contrast to the usual case of a randomized experiment where adjustment for intermediate outcomes leads to biased estimates of treatment effects (Rosenbaum, 1984), here the failure to adjust for task dependent systematic error leads to biased estimates. We therefore adjust for systematic error using measured "noise covariates" , using a linear mixed model to estimate the effects and the systematic error. Our results are important for neuroscientists, who typically do not adjust for systematic error. They should also prove useful to researchers in other areas where responses are measured with error and in fields where large amounts of data are collected on relatively few subjects. To illustrate our approach, we re-analyze data from a social evaluative threat task, comparing the findings with results that ignore systematic error.

  16. The possibility of left dominant activation of the sensorimotor cortex during lip protrusion in men.

    PubMed

    Fukunaga, Atsushi; Ohira, Takayuki; Kamba, Masayuki; Ogawa, Seiji; Akiyama, Takenori; Kawase, Takeshi

    2009-09-01

    Lip protrusion requires bilateral symmetrical movements of the facial muscles, but the laterality of the activated sensorimotor cortex corresponding to the area of the face activated during lip protrusion remains under discussion. In this study, blood-oxygenation-level-dependent (BOLD) responses in the sensorimotor cortex during non-verbal lip protrusion were evaluated in a 3T magnetic field in twenty healthy right-handed subjects. The results showed that the activated sensorimotor area on the left side was larger than that on the right side, and there was a statistically significant difference in the number of activated voxels between the left and right sensorimotor cortex in an individual study of the male group, although approximately symmetrical motor action potentials of facial muscles were recorded during lip protrusion. There was a statistically significant difference in interaction between the hemisphere (right and left) and sex (men and women) and multiple comparison test showed statistical significant differences between "men and right" and "men and left", and between "men and left" and "women and left". The peak value of the percent changes in BOLD signal responses on the left side was approximately twice as high as that on the right side in the males of the group, though the bilateral sensorimotor cortex was almost equally activated in the females in the group. In addition, the left primary sensory area related to the face area was significantly activated as a region where Male was more active than Female in a general linear model (multi-study, multisubject) analysis. This study revealed the possibility that the left sensorimotor cortex was more closely involved in non-verbal mouth movement in men, suggesting sex-related differences in sensorimotor cortex activation.

  17. Understanding How the "Open" of Open Source Software (OSS) Will Improve Global Health Security.

    PubMed

    Hahn, Erin; Blazes, David; Lewis, Sheri

    2016-01-01

    Improving global health security will require bold action in all corners of the world, particularly in developing settings, where poverty often contributes to an increase in emerging infectious diseases. In order to mitigate the impact of emerging pandemic threats, enhanced disease surveillance is needed to improve early detection and rapid response to outbreaks. However, the technology to facilitate this surveillance is often unattainable because of high costs, software and hardware maintenance needs, limited technical competence among public health officials, and internet connectivity challenges experienced in the field. One potential solution is to leverage open source software, a concept that is unfortunately often misunderstood. This article describes the principles and characteristics of open source software and how it may be applied to solve global health security challenges.

  18. Generalization of value in reinforcement learning by humans

    PubMed Central

    Wimmer, G. Elliott; Daw, Nathaniel D.; Shohamy, Daphna

    2012-01-01

    Research in decision making has focused on the role of dopamine and its striatal targets in guiding choices via learned stimulus-reward or stimulus-response associations, behavior that is well-described by reinforcement learning (RL) theories. However, basic RL is relatively limited in scope and does not explain how learning about stimulus regularities or relations may guide decision making. A candidate mechanism for this type of learning comes from the domain of memory, which has highlighted a role for the hippocampus in learning of stimulus-stimulus relations, typically dissociated from the role of the striatum in stimulus-response learning. Here, we used fMRI and computational model-based analyses to examine the joint contributions of these mechanisms to RL. Humans performed an RL task with added relational structure, modeled after tasks used to isolate hippocampal contributions to memory. On each trial participants chose one of four options, but the reward probabilities for pairs of options were correlated across trials. This (uninstructed) relationship between pairs of options potentially enabled an observer to learn about options’ values based on experience with the other options and to generalize across them. We observed BOLD activity related to learning in the striatum and also in the hippocampus. By comparing a basic RL model to one augmented to allow feedback to generalize between correlated options, we tested whether choice behavior and BOLD activity were influenced by the opportunity to generalize across correlated options. Although such generalization goes beyond standard computational accounts of RL and striatal BOLD, both choices and striatal BOLD were better explained by the augmented model. Consistent with the hypothesized role for the hippocampus in this generalization, functional connectivity between the ventral striatum and hippocampus was modulated, across participants, by the ability of the augmented model to capture participants’ choice. Our results thus point toward an interactive model in which striatal RL systems may employ relational representations typically associated with the hippocampus. PMID:22487039

  19. Cholinergic enhancement reduces functional connectivity and BOLD variability in visual extrastriate cortex during selective attention.

    PubMed

    Ricciardi, Emiliano; Handjaras, Giacomo; Bernardi, Giulio; Pietrini, Pietro; Furey, Maura L

    2013-01-01

    Enhancing cholinergic function improves performance on various cognitive tasks and alters neural responses in task specific brain regions. We have hypothesized that the changes in neural activity observed during increased cholinergic function reflect an increase in neural efficiency that leads to improved task performance. The current study tested this hypothesis by assessing neural efficiency based on cholinergically-mediated effects on regional brain connectivity and BOLD signal variability. Nine subjects participated in a double-blind, placebo-controlled crossover fMRI study. Following an infusion of physostigmine (1 mg/h) or placebo, echo-planar imaging (EPI) was conducted as participants performed a selective attention task. During the task, two images comprised of superimposed pictures of faces and houses were presented. Subjects were instructed periodically to shift their attention from one stimulus component to the other and to perform a matching task using hand held response buttons. A control condition included phase-scrambled images of superimposed faces and houses that were presented in the same temporal and spatial manner as the attention task; participants were instructed to perform a matching task. Cholinergic enhancement improved performance during the selective attention task, with no change during the control task. Functional connectivity analyses showed that the strength of connectivity between ventral visual processing areas and task-related occipital, parietal and prefrontal regions reduced significantly during cholinergic enhancement, exclusively during the selective attention task. Physostigmine administration also reduced BOLD signal temporal variability relative to placebo throughout temporal and occipital visual processing areas, again during the selective attention task only. Together with the observed behavioral improvement, the decreases in connectivity strength throughout task-relevant regions and BOLD variability within stimulus processing regions support the hypothesis that cholinergic augmentation results in enhanced neural efficiency. This article is part of a Special Issue entitled 'Cognitive Enhancers'. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Cholinergic enhancement reduces functional connectivity and BOLD variability in visual extrastriate cortex during selective attention

    PubMed Central

    Ricciardi, Emiliano; Handjaras, Giacomo; Bernardi, Giulio; Pietrini, Pietro; Furey, Maura L.

    2012-01-01

    Enhancing cholinergic function improves performance on various cognitive tasks and alters neural responses in task specific brain regions. Previous findings by our group strongly suggested that the changes in neural activity observed during increased cholinergic function may reflect an increase in neural efficiency that leads to improved task performance. The current study was designed to assess the effects of cholinergic enhancement on regional brain connectivity and BOLD signal variability. Nine subjects participated in a double-blind, placebo-controlled crossover functional magnetic resonance imaging (fMRI) study. Following an infusion of physostigmine (1mg/hr) or placebo, echo-planar imaging (EPI) was conducted as participants performed a selective attention task. During the task, two images comprised of superimposed pictures of faces and houses were presented. Subjects were instructed periodically to shift their attention from one stimulus component to the other and to perform a matching task using hand held response buttons. A control condition included phase-scrambled images of superimposed faces and houses that were presented in the same temporal and spatial manner as the attention task; participants were instructed to perform a matching task. Cholinergic enhancement improved performance during the selective attention task, with no change during the control task. Functional connectivity analyses showed that the strength of connectivity between ventral visual processing areas and task-related occipital, parietal and prefrontal regions was reduced significantly during cholinergic enhancement, exclusively during the selective attention task. Cholinergic enhancement also reduced BOLD signal temporal variability relative to placebo throughout temporal and occipital visual processing areas, again during the selective attention task only. Together with the observed behavioral improvement, the decreases in connectivity strength throughout task-relevant regions and BOLD variability within stimulus processing regions provide further support to the hypothesis that cholinergic augmentation results in enhanced neural efficiency. PMID:22906685

  1. An in vitro study on metabolism of 17beta-boldenone and boldione using cattle liver and kidney subcellular fractions.

    PubMed

    Merlanti, R; Gallina, G; Capolongo, F; Contiero, L; Biancotto, G; Dacasto, M; Montesissa, C

    2007-03-14

    17Beta-boldenone (17beta-BOLD) and Boldione (ADD) are steroid compounds with androgenic activity, likely to be used as growth promoters in cattle. Different studies still on-going aiming to distinguish between "natural" occurrence or illegal BOLD source had already indicated that their metabolism in cattle is of relevant significance. To identify metabolites as in vivo markers to support the thesis of exogenous administration, a further approach to the in vitro biotransformation of 17beta-BOLD and ADD was performed using different subcellular fractions obtained from both liver and kidney of untreated cattle. Polar and non-polar metabolites obtained from incubated parent compounds were formerly separated by high performance liquid chromatography (HPLC) elution and successively identified by liquid chromatography tandem mass spectrometry (LC-MS/MS) detection. The bovine liver was the target tissue of the main metabolic reaction transforming 17beta-BOLD to ADD and vice versa. The presence of 6beta-hydroxy-17beta-BOLD, produced from both compounds when NADPH was added as cofactors to liver post mitochondrial and microsomal fractions suggests that cytochrome P450-dependent enzymes could be involved in the biotransformation, as it occurs for 6beta-hydroxylation of 17beta-testosterone. The results indicated that the urinary excretion profile in vivo of 6beta-hydroxy-17beta-BOLD and 16alpha-hydroxy-17beta-BOLD could be studied together with 17alpha- and 17beta-BOLD as putative markers of BOLD treatment in cattle.

  2. Dose-dependent fluoxetine effects on boldness in male Siamese fighting fish.

    PubMed

    Dzieweczynski, Teresa L; Campbell, Brennah A; Kane, Jessica L

    2016-03-01

    As the use of pharmaceuticals and personal care products (PPCPs) continues to rise, these compounds enter the environment in increasing frequency. One such PPCP, fluoxetine, has been found in detectable amounts in aquatic ecosystems worldwide, where it may interfere with the behavior of exposed organisms. Fluoxetine exposure has been found to influence boldness and exploration in a range of fish species; however, how it might alter behavior in multiple contexts or over time is rarely examined. To this end, the effects of fluoxetine on boldness over time were studied in male Siamese fighting fish. Three different groups of males (0, 0.5 and 5 µg l(-1) fluoxetine) were tested in multiple boldness assays (empty tank, novel environment and shoal) once a week for 3 weeks to collect baseline measures and then at three different time points post-exposure. The effects of these varying exposure amounts on behavior were then examined for overall response, consistency and across-context correlations. Unexposed males were bolder in all contexts, were more consistent within a context, and had stronger between-context correlations than exposed males. Fluoxetine had dose-dependent effects on behavior, as males that received the higher dose exhibited greater behavioral effects. This study stresses the potential fitness consequences of fluoxetine exposure and suggests that examining behavioral effects of PPCPs under different dosing regimens and in multiple contexts is important to gain an increased understanding of how exposure affects behavior. © 2016. Published by The Company of Biologists Ltd.

  3. Amphetamine sensitization alters reward processing in the human striatum and amygdala.

    PubMed

    O'Daly, Owen G; Joyce, Daniel; Tracy, Derek K; Azim, Adnan; Stephan, Klaas E; Murray, Robin M; Shergill, Sukhwinder S

    2014-01-01

    Dysregulation of mesolimbic dopamine transmission is implicated in a number of psychiatric illnesses characterised by disruption of reward processing and goal-directed behaviour, including schizophrenia, drug addiction and impulse control disorders associated with chronic use of dopamine agonists. Amphetamine sensitization (AS) has been proposed to model the development of this aberrant dopamine signalling and the subsequent dysregulation of incentive motivational processes. However, in humans the effects of AS on the dopamine-sensitive neural circuitry associated with reward processing remains unclear. Here we describe the effects of acute amphetamine administration, following a sensitising dosage regime, on blood oxygen level dependent (BOLD) signal in dopaminoceptive brain regions during a rewarded gambling task performed by healthy volunteers. Using a randomised, double-blind, parallel-groups design, we found clear evidence for sensitization to the subjective effects of the drug, while rewarded reaction times were unchanged. Repeated amphetamine exposure was associated with reduced dorsal striatal BOLD signal during decision making, but enhanced ventromedial caudate activity during reward anticipation. The amygdala BOLD response to reward outcomes was blunted following repeated amphetamine exposure. Positive correlations between subjective sensitization and changes in anticipation- and outcome-related BOLD signal were seen for the caudate nucleus and amygdala, respectively. These data show for the first time in humans that AS changes the functional impact of acute stimulant exposure on the processing of reward-related information within dopaminoceptive regions. Our findings accord with pathophysiological models which implicate aberrant dopaminergic modulation of striatal and amygdala activity in psychosis and drug-related compulsive disorders.

  4. Detecting agency from the biological motion of veridical vs animated agents

    PubMed Central

    Kelley, William M.; Heatherton, Todd F.; Macrae, C. Neil

    2007-01-01

    The ability to detect agency is fundamental for understanding the social world. Underlying this capacity are neural circuits that respond to patterns of intentional biological motion in the superior temporal sulcus and temporoparietal junction. Here we show that the brain's blood oxygenation level dependent (BOLD) response to such motion is modulated by the representation of the actor. Dynamic social interactions were portrayed by either live-action agents or computer-animated agents, enacting the exact same patterns of biological motion. Using an event-related design, we found that the BOLD response associated with the perception and interpretation of agency was greater when identical physical movements were performed by real rather than animated agents. This finding has important implications for previous work on biological motion that has relied upon computer-animated stimuli and demonstrates that the neural substrates of social perception are finely tuned toward real-world agents. In addition, the response in lateral temporal areas was observed in the absence of instructions to make mental inferences, thus demonstrating the spontaneous implementation of the intentional stance. PMID:18985141

  5. Anticipated improvement in laser beam uniformity using distributed phase plates with quasirandom patterns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Epstein, R.; Skupsky, S.

    1990-08-01

    The uniformity of focused laser beams, that has been modified with randomly phased distributed phase plates (C. B. Burckhardt, Appl. Opt. {bold 9}, 695 (1970); Kato and Mima, Appl. Phys. B {bold 29}, 186 (1982); Kato {ital et} {ital al}., Phys. Rev. Lett. {bold 53}, 1057 (1984); LLE Rev. {bold 33}, 1 (1987)), can be improved further by constructing patterns of phase elements which minimize phase correlations over small separations. Long-wavelength nonuniformities in the intensity distribution, which are relatively difficult to overcome in the target by thermal smoothing and in the laser by, e.g., spectral dispersion (Skupsky {ital et} {italmore » al}., J. Appl. Phys. {bold 66}, 3456 (1989); LLE Rev. {bold 36}, 158 (1989); {bold 37}, 29 (1989); {bold 37}, 40 (1989)), result largely from short-range phase correlations between phase plate elements. To reduce the long-wavelength structure, we have constructed phase patterns with smaller short-range correlations than would occur randomly. Calculations show that long-wavelength nonuniformities in single-beam intensity patterns can be reduced with these masks when the intrinsic phase error of the beam falls below certain limits. We show the effect of this improvement on uniformity for spherical irradiation by a multibeam system.« less

  6. Evolutionary dynamics of fearfulness and boldness.

    PubMed

    Ji, Ting; Zhang, Boyu; Sun, Yuehua; Tao, Yi

    2009-02-21

    A negative relationship between reproductive effort and survival is consistent with life-history. Evolutionary dynamics and evolutionarily stable strategy (ESS) for the trade-off between survival and reproduction are investigated using a simple model with two phenotypes, fearfulness and boldness. The dynamical stability of the pure strategy model and analysis of ESS conditions reveal that: (i) the simple coexistence of fearfulness and boldness is impossible; (ii) a small population size is favorable to fearfulness, but a large population size is favorable to boldness, i.e., neither fearfulness, nor boldness is always favored by natural selection; and (iii) the dynamics of population density is crucial for a proper understanding of the strategy dynamics.

  7. Sustaining the Dream: A Response to Excessive Positivism in Person-Centered Planning

    ERIC Educational Resources Information Center

    Michaels, Craig A.

    2007-01-01

    This article presents the author's response to "Excessive Positivism in Person-Centered Planning," by Steve Holburn and Christine D. Cea. The author begins by complementing Holburn and Cea on their courage to voice concerns that perhaps may not appear to be politically correct or perhaps too bold to express in the context of a journal like…

  8. Early Blindness Results in Developmental Plasticity for Auditory Motion Processing within Auditory and Occipital Cortex

    PubMed Central

    Jiang, Fang; Stecker, G. Christopher; Boynton, Geoffrey M.; Fine, Ione

    2016-01-01

    Early blind subjects exhibit superior abilities for processing auditory motion, which are accompanied by enhanced BOLD responses to auditory motion within hMT+ and reduced responses within right planum temporale (rPT). Here, by comparing BOLD responses to auditory motion in hMT+ and rPT within sighted controls, early blind, late blind, and sight-recovery individuals, we were able to separately examine the effects of developmental and adult visual deprivation on cortical plasticity within these two areas. We find that both the enhanced auditory motion responses in hMT+ and the reduced functionality in rPT are driven by the absence of visual experience early in life; neither loss nor recovery of vision later in life had a discernable influence on plasticity within these areas. Cortical plasticity as a result of blindness has generally be presumed to be mediated by competition across modalities within a given cortical region. The reduced functionality within rPT as a result of early visual loss implicates an additional mechanism for cross modal plasticity as a result of early blindness—competition across different cortical areas for functional role. PMID:27458357

  9. Visual Working Memory Enhances the Neural Response to Matching Visual Input.

    PubMed

    Gayet, Surya; Guggenmos, Matthias; Christophel, Thomas B; Haynes, John-Dylan; Paffen, Chris L E; Van der Stigchel, Stefan; Sterzer, Philipp

    2017-07-12

    Visual working memory (VWM) is used to maintain visual information available for subsequent goal-directed behavior. The content of VWM has been shown to affect the behavioral response to concurrent visual input, suggesting that visual representations originating from VWM and from sensory input draw upon a shared neural substrate (i.e., a sensory recruitment stance on VWM storage). Here, we hypothesized that visual information maintained in VWM would enhance the neural response to concurrent visual input that matches the content of VWM. To test this hypothesis, we measured fMRI BOLD responses to task-irrelevant stimuli acquired from 15 human participants (three males) performing a concurrent delayed match-to-sample task. In this task, observers were sequentially presented with two shape stimuli and a retro-cue indicating which of the two shapes should be memorized for subsequent recognition. During the retention interval, a task-irrelevant shape (the probe) was briefly presented in the peripheral visual field, which could either match or mismatch the shape category of the memorized stimulus. We show that this probe stimulus elicited a stronger BOLD response, and allowed for increased shape-classification performance, when it matched rather than mismatched the concurrently memorized content, despite identical visual stimulation. Our results demonstrate that VWM enhances the neural response to concurrent visual input in a content-specific way. This finding is consistent with the view that neural populations involved in sensory processing are recruited for VWM storage, and it provides a common explanation for a plethora of behavioral studies in which VWM-matching visual input elicits a stronger behavioral and perceptual response. SIGNIFICANCE STATEMENT Humans heavily rely on visual information to interact with their environment and frequently must memorize such information for later use. Visual working memory allows for maintaining such visual information in the mind's eye after termination of its retinal input. It is hypothesized that information maintained in visual working memory relies on the same neural populations that process visual input. Accordingly, the content of visual working memory is known to affect our conscious perception of concurrent visual input. Here, we demonstrate for the first time that visual input elicits an enhanced neural response when it matches the content of visual working memory, both in terms of signal strength and information content. Copyright © 2017 the authors 0270-6474/17/376638-10$15.00/0.

  10. Influences of Dietary Added Sugar Consumption on Striatal Food-Cue Reactivity and Postprandial GLP-1 Response

    PubMed Central

    Dorton, Hilary M.; Luo, Shan; Monterosso, John R.; Page, Kathleen A.

    2018-01-01

    Sugar consumption in the United States exceeds recommendations from the American Heart Association. Overconsumption of sugar is linked to risk for obesity and metabolic disease. Animal studies suggest that high-sugar diets alter functions in brain regions associated with reward processing, including the dorsal and ventral striatum. Human neuroimaging studies have shown that these regions are responsive to food cues, and that the gut-derived satiety hormones, glucagon-like peptide-1 (GLP-1), and peptide YY (PYY), suppress striatal food-cue responsivity. We aimed to determine the associations between dietary added sugar intake, striatal responsivity to food cues, and postprandial GLP-1 and PYY levels. Twenty-two lean volunteers underwent a functional magnetic resonance imaging (fMRI) scan during which they viewed pictures of food and non-food items after a 12-h fast. Before scanning, participants consumed a glucose drink. A subset of 19 participants underwent an additional fMRI session in which they consumed water as a control condition. Blood was sampled for GLP-1, and PYY levels and hunger ratings were assessed before and ~75 min after drink consumption. In-person 24-h dietary recalls were collected from each participant on three to six separate occasions over a 2-month period. Average percent calories from added sugar were calculated using information from 24-h dietary recalls. A region-of-interest analysis was performed to compare the blood oxygen level-dependent (BOLD) response to food vs. non-food cues in the bilateral dorsal striatum (caudate/putamen) and ventral striatum (nucleus accumbens). The relationships between added sugar, striatal responses, and hormone changes after drink consumption were assessed using Spearman’s correlations. We observed a positive correlation between added sugar intake and BOLD response to food cues in the dorsal striatum and a similar trend in the nucleus accumbens after glucose, but not water, consumption. Added sugar intake was negatively associated with GLP-1 response to glucose. Post hoc analysis revealed a negative correlation between GLP-1 response to glucose and BOLD response to food cues in the dorsal striatum. Our findings suggest that habitual added sugar intake is related to increased striatal response to food cues and decreased GLP-1 release following glucose intake, which could contribute to susceptibility to overeating. PMID:29403396

  11. Influences of Dietary Added Sugar Consumption on Striatal Food-Cue Reactivity and Postprandial GLP-1 Response.

    PubMed

    Dorton, Hilary M; Luo, Shan; Monterosso, John R; Page, Kathleen A

    2017-01-01

    Sugar consumption in the United States exceeds recommendations from the American Heart Association. Overconsumption of sugar is linked to risk for obesity and metabolic disease. Animal studies suggest that high-sugar diets alter functions in brain regions associated with reward processing, including the dorsal and ventral striatum. Human neuroimaging studies have shown that these regions are responsive to food cues, and that the gut-derived satiety hormones, glucagon-like peptide-1 (GLP-1), and peptide YY (PYY), suppress striatal food-cue responsivity. We aimed to determine the associations between dietary added sugar intake, striatal responsivity to food cues, and postprandial GLP-1 and PYY levels. Twenty-two lean volunteers underwent a functional magnetic resonance imaging (fMRI) scan during which they viewed pictures of food and non-food items after a 12-h fast. Before scanning, participants consumed a glucose drink. A subset of 19 participants underwent an additional fMRI session in which they consumed water as a control condition. Blood was sampled for GLP-1, and PYY levels and hunger ratings were assessed before and ~75 min after drink consumption. In-person 24-h dietary recalls were collected from each participant on three to six separate occasions over a 2-month period. Average percent calories from added sugar were calculated using information from 24-h dietary recalls. A region-of-interest analysis was performed to compare the blood oxygen level-dependent (BOLD) response to food vs. non-food cues in the bilateral dorsal striatum (caudate/putamen) and ventral striatum (nucleus accumbens). The relationships between added sugar, striatal responses, and hormone changes after drink consumption were assessed using Spearman's correlations. We observed a positive correlation between added sugar intake and BOLD response to food cues in the dorsal striatum and a similar trend in the nucleus accumbens after glucose, but not water, consumption. Added sugar intake was negatively associated with GLP-1 response to glucose. Post hoc analysis revealed a negative correlation between GLP-1 response to glucose and BOLD response to food cues in the dorsal striatum. Our findings suggest that habitual added sugar intake is related to increased striatal response to food cues and decreased GLP-1 release following glucose intake, which could contribute to susceptibility to overeating.

  12. Age, sex and reproductive status affect boldness in dogs.

    PubMed

    Starling, Melissa J; Branson, Nicholas; Thomson, Peter C; McGreevy, Paul D

    2013-09-01

    Boldness in dogs is believed to be one end of the shy-bold axis, representing a super-trait. Several personality traits fall under the influence of this super-trait. Previous studies have found that boldness is affected by breed and breed groups, influences performance in sporting dogs, and is affected in some cases by the sex of the dogs. This study investigated the effects of dog age, sex and reproductive status on boldness in dogs by way of a dog personality survey circulated amongst Australian dog owners. Age had a significant effect on boldness (F=4.476; DF=16,758; P<0.001), with boldness decreasing with age in years. Males were bolder than females (F=19.219; DF=1,758; P<0.001) and entire dogs were bolder than neutered dogs (F=4.330; DF=1,758; P<0.038). The study indicates how behaviour may change in adult dogs as they age and adds to the literature on how sex and reproductive status may affect personality in dogs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Modulation of Fgfr1a signaling in zebrafish reveals a genetic basis for the aggression-boldness syndrome.

    PubMed

    Norton, William H J; Stumpenhorst, Katharina; Faus-Kessler, Theresa; Folchert, Anja; Rohner, Nicolas; Harris, Matthew P; Callebert, Jacques; Bally-Cuif, Laure

    2011-09-28

    Behavioral syndromes are suites of two or more behaviors that correlate across environmental contexts. The aggression-boldness syndrome links aggression, boldness, and exploratory activity in a novel environment. Although aggression-boldness has been described in many animals, the mechanism linking its behavioral components is not known. Here we show that mutation of the gene encoding fibroblast growth factor receptor 1a (fgfr1a) simultaneously increases aggression, boldness, and exploration in adult zebrafish. We demonstrate that altered Fgf signaling also results in reduced brain histamine levels in mutants. Pharmacological increase of histamine signaling is sufficient to rescue the behavioral phenotype of fgfr1a mutants. Together, we show that a single genetic locus can underlie the aggression-boldness behavioral syndrome. We also identify one of the neurotransmitter pathways that may mediate clustering of these behaviors.

  14. Altered brain activation in a reversal learning task unmasks adaptive changes in cognitive control in writer's cramp.

    PubMed

    Zeuner, Kirsten E; Knutzen, Arne; Granert, Oliver; Sablowsky, Simone; Götz, Julia; Wolff, Stephan; Jansen, Olav; Dressler, Dirk; Schneider, Susanne A; Klein, Christine; Deuschl, Günther; van Eimeren, Thilo; Witt, Karsten

    2016-01-01

    Previous receptor binding studies suggest dopamine function is altered in the basal ganglia circuitry in task-specific dystonia, a condition characterized by contraction of agonist and antagonist muscles while performing specific tasks. Dopamine plays a role in reward-based learning. Using fMRI, this study compared 31 right-handed writer's cramp patients to 35 controls in reward-based learning of a probabilistic reversal-learning task. All subjects chose between two stimuli and indicated their response with their left or right index finger. One stimulus response was rewarded 80%, the other 20%. After contingencies reversal, the second stimulus response was rewarded in 80%. We further linked the DRD2/ANKK1-TaqIa polymorphism, which is associated with 30% reduction of the striatal dopamine receptor density with reward-based learning and assumed impaired reversal learning in A + subjects. Feedback learning in patients was normal. Blood-oxygen level dependent (BOLD) signal in controls increased with negative feedback in the insula, rostral cingulate cortex, middle frontal gyrus and parietal cortex (pFWE < 0.05). In comparison to controls, patients showed greater increase in BOLD activity following negative feedback in the dorsal anterior cingulate cortex (BA32). The genetic status was not correlated with the BOLD activity. The Brodmann area 32 (BA32) is part of the dorsal anterior cingulate cortex (dACC) that plays an important role in coordinating and integrating information to guide behavior and in reward-based learning. The dACC is connected with the basal ganglia-thalamo-loop modulated by dopaminergic signaling. This finding suggests disturbed integration of reinforcement history in decision making and implicate that the reward system might contribute to the pathogenesis in writer's cramp.

  15. Implicit sequence-specific motor learning after sub-cortical stroke is associated with increased prefrontal brain activations: An fMRI study

    PubMed Central

    Meehan, Sean K.; Randhawa, Bubblepreet; Wessel, Brenda; Boyd, Lara A.

    2010-01-01

    Implicit motor learning is preserved after stroke, but how the brain compensates for damage to facilitate learning is unclear. We used a random effects analysis to determine how stroke alters patterns of brain activity during implicit sequence-specific motor learning as compared to general improvements in motor control. Nine healthy participants and 9 individuals with chronic, right focal sub-cortical stroke performed a continuous joystick-based tracking task during an initial fMRI session, over 5 days of practice, and a retention test during a separate fMRI session. Sequence-specific implicit motor learning was differentiated from general improvements in motor control by comparing tracking performance on a novel, repeated tracking sequences during early practice and again at the retention test. Both groups demonstrated implicit sequence-specific motor learning at the retention test, yet substantial differences were apparent. At retention, healthy control participants demonstrated increased BOLD response in left dorsal premotor cortex (BA 6) but decreased BOLD response left dorsolateral prefrontal cortex (DLPFC; BA 9) during repeated sequence tracking. In contrast, at retention individuals with stroke did not show this reduction in DLPFC during repeated tracking. Instead implicit sequence-specific motor learning and general improvements in motor control were associated with increased BOLD response in the left middle frontal gyrus BA 8, regardless of sequence type after stroke. These data emphasize the potential importance of a prefrontal-based attentional network for implicit motor learning after stroke. The present study is the first to highlight the importance of the prefrontal cortex for implicit sequence-specific motor learning after stroke. PMID:20725908

  16. The balanced mind: the variability of task-unrelated thoughts predicts error monitoring

    PubMed Central

    Allen, Micah; Smallwood, Jonathan; Christensen, Joanna; Gramm, Daniel; Rasmussen, Beinta; Jensen, Christian Gaden; Roepstorff, Andreas; Lutz, Antoine

    2013-01-01

    Self-generated thoughts unrelated to ongoing activities, also known as “mind-wandering,” make up a substantial portion of our daily lives. Reports of such task-unrelated thoughts (TUTs) predict both poor performance on demanding cognitive tasks and blood-oxygen-level-dependent (BOLD) activity in the default mode network (DMN). However, recent findings suggest that TUTs and the DMN can also facilitate metacognitive abilities and related behaviors. To further understand these relationships, we examined the influence of subjective intensity, ruminative quality, and variability of mind-wandering on response inhibition and monitoring, using the Error Awareness Task (EAT). We expected to replicate links between TUT and reduced inhibition, and explored whether variance in TUT would predict improved error monitoring, reflecting a capacity to balance between internal and external cognition. By analyzing BOLD responses to subjective probes and the EAT, we dissociated contributions of the DMN, executive, and salience networks to task performance. While both response inhibition and online TUT ratings modulated BOLD activity in the medial prefrontal cortex (mPFC) of the DMN, the former recruited a more dorsal area implying functional segregation. We further found that individual differences in mean TUTs strongly predicted EAT stop accuracy, while TUT variability specifically predicted levels of error awareness. Interestingly, we also observed co-activation of salience and default mode regions during error awareness, supporting a link between monitoring and TUTs. Altogether our results suggest that although TUT is detrimental to task performance, fluctuations in attention between self-generated and external task-related thought is a characteristic of individuals with greater metacognitive monitoring capacity. Achieving a balance between internally and externally oriented thought may thus aid individuals in optimizing their task performance. PMID:24223545

  17. N1 Magnitude of Auditory Evoked Potentials and Spontaneous Functional Connectivity Between Bilateral Heschl's Gyrus Are Coupled at Interindividual Level.

    PubMed

    Tan, Ao; Hu, Li; Tu, Yiheng; Chen, Rui; Hung, Yeung Sam; Zhang, Zhiguo

    2016-07-01

    N1 component of auditory evoked potentials is extensively used to investigate the propagation and processing of auditory inputs. However, the substantial interindividual variability of N1 could be a possible confounding factor when comparing different individuals or groups. Therefore, identifying the neuronal mechanism and origin of the interindividual variability of N1 is crucial in basic research and clinical applications. This study is aimed to use simultaneously recorded electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) data to investigate the coupling between N1 and spontaneous functional connectivity (FC). EEG and fMRI data were simultaneously collected from a group of healthy individuals during a pure-tone listening task. Spontaneous FC was estimated from spontaneous blood oxygenation level-dependent (BOLD) signals that were isolated by regressing out task evoked BOLD signals from raw BOLD signals and then was correlated to N1 magnitude across individuals. It was observed that spontaneous FC between bilateral Heschl's gyrus was significantly and positively correlated with N1 magnitude across individuals (Spearman's R = 0.829, p < 0.001). The specificity of this observation was further confirmed by two whole-brain voxelwise analyses (voxel-mirrored homotopic connectivity analysis and seed-based connectivity analysis). These results enriched our understanding of the functional significance of the coupling between event-related brain responses and spontaneous brain connectivity, and hold the potential to increase the applicability of brain responses as a probe to the mechanism underlying pathophysiological conditions.

  18. Brain activity and connectivity changes in response to glucose ingestion.

    PubMed

    van Opstal, A M; Hafkemeijer, A; van den Berg-Huysmans, A A; Hoeksma, M; Blonk, C; Pijl, H; Rombouts, S A R B; van der Grond, J

    2018-05-27

    The regulatory role of the brain in directing eating behavior becomes increasingly recognized. Although many areas in the brain have been found to respond to food cues, very little data is available after actual caloric intake. The aim of this study was to determine normal whole brain functional responses to ingestion of glucose after an overnight fast. Twenty-five normal weight, adult males underwent functional MRI on two separate visits. In a single-blind randomized study setup, participants received either glucose solution (50 g/300 ml of water) or plain water. We studied changes in Blood Oxygen Level Dependent (BOLD) signal, voxel-based connectivity by Eigenvector Centrality Mapping, and functional network connectivity. Ingestion of glucose led to increased centrality in the thalamus and to decreases in BOLD signal in various brain areas. Decreases in connectivity in the sensory-motor and dorsal visual stream networks were found. Ingestion of water resulted in increased centrality across the brain, and increases in connectivity in the medial and lateral visual cortex network. Increased BOLD intensity was found in the intracalcarine and cingulate cortex. Our data show that ingestion of glucose leads to decreased activity and connectivity in brain areas and networks linked to energy seeking and satiation. In contrast, drinking plain water leads to increased connectivity probably associated with continued food seeking and unfulfilled reward. Trail registration: This study combines data of two studies registered at clinicaltrails.gov under numbers NCT03202342 and NCT03247114.

  19. Different roles of the posterior inferior frontal gyrus in Chinese character form judgment differences between literate and illiterate individuals.

    PubMed

    Wu, Jinglong; Wang, Bin; Yan, Tianyi; Li, Xiujun; Bao, Xuexiang; Guo, Qiyong

    2012-01-11

    In the present study, we used event-related functional magnetic resonance imaging (fMRI) to explore the different roles of the posterior inferior frontal gyrus (pIFG) in Chinese character form judgment between literate and illiterate subjects. Using event-related fMRI, 24 healthy right-handed Chinese subjects (12 literates and 12 illiterates) were asked to perform Chinese character and figure form judgment tasks. The blood oxygen level-dependent (BOLD) differences in pIFG were examined with general linear modeling (GLM). We found differences in reaction times and accuracy between subjects as they performed these tasks. These behavioral differences reflect the different cognitive demands of character form judgment for literate and illiterate individuals. The results showed differences in the BOLD response patterns in the pIFG between the two discrimination tasks and the two subject groups. A comparison of the character and figure tasks showed that literate and illiterate subjects had similar BOLD responses in the inferior frontal gyrus. However, differences in behavioral performance suggest that the pIFG plays a different role in Chinese character form judgment for each subject group. In literate subjects, the left pIFG mediated access to phonology in achieving Chinese character form judgment, whereas the right pIFG participated in the processing of the orthography of Chinese characters. In illiterate subjects, the bilateral frontal gyrus participated in the visual-spatial processing of Chinese characters to achieve form judgment. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Functional magnetic resonance imaging in chronic ischaemic stroke.

    PubMed

    Lake, Evelyn M R; Bazzigaluppi, Paolo; Stefanovic, Bojana

    2016-10-05

    Ischaemic stroke is the leading cause of adult disability worldwide. Effective rehabilitation is hindered by uncertainty surrounding the underlying mechanisms that govern long-term ischaemic injury progression. Despite its potential as a sensitive non-invasive in vivo marker of brain function that may aid in the development of new treatments, blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) has found limited application in the clinical research on chronic stage stroke progression. Stroke affects each of the physiological parameters underlying the BOLD contrast, markedly complicating the interpretation of BOLD fMRI data. This review summarizes current progress on application of BOLD fMRI in the chronic stage of ischaemic injury progression and discusses means by which more information may be gained from such BOLD fMRI measurements. Concomitant measurements of vascular reactivity, neuronal activity and metabolism in preclinical models of stroke are reviewed along with illustrative examples of post-ischaemic evolution in neuronal, glial and vascular function. The realization of the BOLD fMRI potential to propel stroke research is predicated on the carefully designed preclinical research establishing an ischaemia-specific quantitative model of BOLD signal contrast to provide the framework for interpretation of fMRI findings in clinical populations.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'. © 2016 The Author(s).

  1. Individual boldness is linked to protective shell shape in aquatic snails.

    PubMed

    Ahlgren, Johan; Chapman, Ben B; Nilsson, P Anders; Brönmark, Christer

    2015-04-01

    The existence of consistent individual differences in behaviour ('animal personality') has been well documented in recent years. However, how such individual variation in behaviour is maintained over evolutionary time is an ongoing conundrum. A well-studied axis of animal personality is individual variation along a bold-shy continuum, where individuals differ consistently in their propensity to take risks. A predation-risk cost to boldness is often assumed, but also that the reproductive benefits associated with boldness lead to equivalent fitness outcomes between bold and shy individuals over a lifetime. However, an alternative or complementary explanation may be that bold individuals phenotypically compensate for their risky lifestyle to reduce predation costs, for instance by investing in more pronounced morphological defences. Here, we investigate the 'phenotypic compensation' hypothesis, i.e. that bold individuals exhibit more pronounced anti-predator defences than shy individuals, by relating shell shape in the aquatic snail Radix balthica to an index of individual boldness. Our analyses find a strong relationship between risk-taking propensity and shell shape in this species, with bolder individuals exhibiting a more defended shell shape than shy individuals. We suggest that this supports the 'phenotypic compensation' hypothesis and sheds light on a previously poorly studied mechanism to promote the maintenance of personality variation among animals. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  2. Functional MRI Detection of Hemodynamic Response of Repeated Median Nerve Stimulation

    PubMed Central

    Ai, Leo; Oya, Hiroyuki; Howard, Matthew; Xiong, Jinhu

    2012-01-01

    Median nerve stimulation is a commonly used technique in the clinical setting to determine areas of neuronal function in the brain. Neuronal activity of repeated median nerve stimulation is well studied. The cerebral hemodynamic response of the stimulation, on the other hand, is not very clear. In this study, we investigate how cerebral hemodynamics behaves over time using the same repeated median nerve stimulation. Ten subjects received constant repeated electrical stimulation to the right median nerve. Each subject had fMRI scans while receiving said stimulations for seven runs. Our results show that the BOLD signal significantly decreases across each run. Significant BOLD signal decreases can also be seen within runs. These results are consistent with studies that have studied the hemodynamic habituation effect with other forms of stimulation. However, the results do not completely agree with the findings of studies where evoked potentials were examined. Thus, further inquiry of how evoked potentials and cerebral hemodynamics are coupled when using constant stimulations is needed. PMID:23228312

  3. Neural correlates of audiovisual speech processing in a second language.

    PubMed

    Barrós-Loscertales, Alfonso; Ventura-Campos, Noelia; Visser, Maya; Alsius, Agnès; Pallier, Christophe; Avila Rivera, César; Soto-Faraco, Salvador

    2013-09-01

    Neuroimaging studies of audiovisual speech processing have exclusively addressed listeners' native language (L1). Yet, several behavioural studies now show that AV processing plays an important role in non-native (L2) speech perception. The current fMRI study measured brain activity during auditory, visual, audiovisual congruent and audiovisual incongruent utterances in L1 and L2. BOLD responses to congruent AV speech in the pSTS were stronger than in either unimodal condition in both L1 and L2. Yet no differences in AV processing were expressed according to the language background in this area. Instead, the regions in the bilateral occipital lobe had a stronger congruency effect on the BOLD response (congruent higher than incongruent) in L2 as compared to L1. According to these results, language background differences are predominantly expressed in these unimodal regions, whereas the pSTS is similarly involved in AV integration regardless of language dominance. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Is domestication driven by reduced fear of humans? Boldness, metabolism and serotonin levels in divergently selected red junglefowl (Gallus gallus).

    PubMed

    Agnvall, Beatrix; Katajamaa, Rebecca; Altimiras, Jordi; Jensen, Per

    2015-09-01

    Domesticated animals tend to develop a coherent set of phenotypic traits. Tameness could be a central underlying factor driving this, and we therefore selected red junglefowl, ancestors of all domestic chickens, for high or low fear of humans during six generations. We measured basal metabolic rate (BMR), feed efficiency, boldness in a novel object (NO) test, corticosterone reactivity and basal serotonin levels (related to fearfulness) in birds from the fifth and sixth generation of the high- and low-fear lines, respectively (44-48 individuals). Corticosterone response to physical restraint did not differ between selection lines. However, BMR was higher in low-fear birds, as was feed efficiency. Low-fear males had higher plasma levels of serotonin and both low-fear males and females were bolder in an NO test. The results show that many aspects of the domesticated phenotype may have developed as correlated responses to reduced fear of humans, an essential trait for successful domestication. © 2015 The Author(s).

  5. Resting-state functional magnetic resonance imaging in hepatic encephalopathy: current status and perspectives.

    PubMed

    Zhang, Long Jiang; Wu, Shengyong; Ren, Jiaqian; Lu, Guang Ming

    2014-09-01

    Hepatic encephalopathy (HE) is a neuropsychiatric syndrome which develops in patients with severe liver diseases and/or portal-systemic shunting. Minimal HE, the earliest manifestation of HE, has drawn increasing attention in the last decade. Minimal HE is associated with a series of brain functional changes, such as attention, working memory, and so on. Blood oxygen level dependent (BOLD) functional MRI (fMRI), especially resting-state fMRI has been used to explore the brain functional changes of HE, yielding important insights for understanding pathophysiological mechanisms and functional reorganization of HE. This paper briefly reviews the principles of BOLD fMRI, potential applications of resting-state fMRI with advanced post-processing algorithms such as regional homogeneity, amplitude of low frequency fluctuation, functional connectivity and future research perspective in this field.

  6. Task-Related Modulations of BOLD Low-Frequency Fluctuations within the Default Mode Network

    PubMed Central

    Tommasin, Silvia; Mascali, Daniele; Gili, Tommaso; Assan, Ibrahim Eid; Moraschi, Marta; Fratini, Michela; Wise, Richard G.; Macaluso, Emiliano; Mangia, Silvia; Giove, Federico

    2017-01-01

    Spontaneous low-frequency Blood-Oxygenation Level-Dependent (BOLD) signals acquired during resting state are characterized by spatial patterns of synchronous fluctuations, ultimately leading to the identification of robust brain networks. The resting-state brain networks, including the Default Mode Network (DMN), are demonstrated to persist during sustained task execution, but the exact features of task-related changes of network properties are still not well characterized. In this work we sought to examine in a group of 20 healthy volunteers (age 33 ± 6 years, 8 F/12 M) the relationship between changes of spectral and spatiotemporal features of one prominent resting-state network, namely the DMN, during the continuous execution of a working memory n-back task. We found that task execution impacted on both functional connectivity and amplitude of BOLD fluctuations within large parts of the DMN, but these changes correlated between each other only in a small area of the posterior cingulate. We conclude that combined analysis of multiple parameters related to connectivity, and their changes during the transition from resting state to continuous task execution, can contribute to a better understanding of how brain networks rearrange themselves in response to a task. PMID:28845420

  7. Increased colonic propionate reduces anticipatory reward responses in the human striatum to high-energy foods.

    PubMed

    Byrne, Claire S; Chambers, Edward S; Alhabeeb, Habeeb; Chhina, Navpreet; Morrison, Douglas J; Preston, Tom; Tedford, Catriona; Fitzpatrick, Julie; Irani, Cherag; Busza, Albert; Garcia-Perez, Isabel; Fountana, Sofia; Holmes, Elaine; Goldstone, Anthony P; Frost, Gary S

    2016-07-01

    Short-chain fatty acids (SCFAs), metabolites produced through the microbial fermentation of nondigestible dietary components, have key roles in energy homeostasis. Animal research suggests that colon-derived SCFAs modulate feeding behavior via central mechanisms. In humans, increased colonic production of the SCFA propionate acutely reduces energy intake. However, evidence of an effect of colonic propionate on the human brain or reward-based eating behavior is currently unavailable. We investigated the effect of increased colonic propionate production on brain anticipatory reward responses during food picture evaluation. We hypothesized that elevated colonic propionate would reduce both reward responses and ad libitum energy intake via stimulation of anorexigenic gut hormone secretion. In a randomized crossover design, 20 healthy nonobese men completed a functional magnetic resonance imaging (fMRI) food picture evaluation task after consumption of control inulin or inulin-propionate ester, a unique dietary compound that selectively augments colonic propionate production. The blood oxygen level-dependent (BOLD) signal was measured in a priori brain regions involved in reward processing, including the caudate, nucleus accumbens, amygdala, anterior insula, and orbitofrontal cortex (n = 18 had analyzable fMRI data). Increasing colonic propionate production reduced BOLD signal during food picture evaluation in the caudate and nucleus accumbens. In the caudate, the reduction in BOLD signal was driven specifically by a lowering of the response to high-energy food. These central effects were partnered with a decrease in subjective appeal of high-energy food pictures and reduced energy intake during an ad libitum meal. These observations were not related to changes in blood peptide YY (PYY), glucagon-like peptide 1 (GLP-1), glucose, or insulin concentrations. Our results suggest that colonic propionate production may play an important role in attenuating reward-based eating behavior via striatal pathways, independent of changes in plasma PYY and GLP-1. This trial was registered at clinicaltrials.gov as NCT00750438.

  8. The neural basis of parallel saccade programming: an fMRI study.

    PubMed

    Hu, Yanbo; Walker, Robin

    2011-11-01

    The neural basis of parallel saccade programming was examined in an event-related fMRI study using a variation of the double-step saccade paradigm. Two double-step conditions were used: one enabled the second saccade to be partially programmed in parallel with the first saccade while in a second condition both saccades had to be prepared serially. The intersaccadic interval, observed in the parallel programming (PP) condition, was significantly reduced compared with latency in the serial programming (SP) condition and also to the latency of single saccades in control conditions. The fMRI analysis revealed greater activity (BOLD response) in the frontal and parietal eye fields for the PP condition compared with the SP double-step condition and when compared with the single-saccade control conditions. By contrast, activity in the supplementary eye fields was greater for the double-step condition than the single-step condition but did not distinguish between the PP and SP requirements. The role of the frontal eye fields in PP may be related to the advanced temporal preparation and increased salience of the second saccade goal that may mediate activity in other downstream structures, such as the superior colliculus. The parietal lobes may be involved in the preparation for spatial remapping, which is required in double-step conditions. The supplementary eye fields appear to have a more general role in planning saccade sequences that may be related to error monitoring and the control over the execution of the correct sequence of responses.

  9. 49 CFR 375.213 - What information must I provide to a prospective individual shipper?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... type font size is 10 points or larger and the size of the booklet is at least as large as 36 square... cover in 12-point or larger bold or full-faced type: “Your Rights and Responsibilities When You Move...

  10. MRI measurement of the temporal evolution of relative CMRO(2) during rat forepaw stimulation.

    PubMed

    Mandeville, J B; Marota, J J; Ayata, C; Moskowitz, M A; Weisskoff, R M; Rosen, B R

    1999-11-01

    This study reports the first measurement of the relative cerebral metabolic rate of oxygen utilization (rCMRO(2)) during functional brain activation with sufficient temporal resolution to address the dynamics of blood oxygen level-dependent (BOLD) MRI signal. During rat forepaw stimulation, rCMRO(2) was determined in somatosensory cortex at 3-sec intervals, using a model of BOLD signal and measurements of the change in BOLD transverse relaxation rate, the resting state BOLD transverse relaxation rate, relative cerebral blood flow (rCBF), and relative cerebral blood volume (rCBV). Average percentage changes from 10 to 30 sec after onset of forepaw stimulation for rCBF, rCBV, rCMRO(2), and BOLD relaxation rate were 62 +/- 16, 17 +/- 2, 19 +/- 17, and -26 +/- 12, respectively. A poststimulus undershoot in BOLD signal was quantitatively attributed to the temporal mismatch between changes in blood flow and volume, and not to the role of oxygen metabolism. Magn Reson Med 42:944-951, 1999. Copyright 1999 Wiley-Liss, Inc.

  11. Effect of Time on Gypsum-Impression Material Compatibility

    NASA Astrophysics Data System (ADS)

    Won, John Boram

    The purpose of this study was to evaluate the compatibility of dental gypsum with three recently introduced irreversible hydrocolloid (alginate) alternatives. The test materials were Alginot® (Kerr™), Position Penta Quick® (3M ESPE™) and Silgimix ® (Sultan Dental™). The irreversible hydrocolloid impression material, Jeltrate Plus antimicrobial® (Dentsply Caulk™) served as the control. Materials and Methods: Testing of materials was conducted in accordance with ANSI/ADA Specification No. 18 for Alginate Impression Materials. Statistical Analysis: The 3-Way ANOVA test was used to analyze measurements between different time points at a significance level of (p < 0.05). Outcome: It was found that there was greater compatibility between gypsum and the alternative materials over time than the traditional irreversible hydrocolloid material that was tested. A statistically significant amount of surface change/incompatibility was found over time with the combination of the dental gypsum products and the control impression material (Jeltrate Plus antimicrobial®).

  12. Applying Neuroscientific Findings to Education: The Good, the Tough, and the Hopeful

    ERIC Educational Resources Information Center

    Christoff, Kalina

    2008-01-01

    Advances in neuroscience during the past century have yielded important insights into mental functioning, but their implications for the field of education have remained largely unexplored. In a bold attempt to bridge this gap, Immordino-Yang presents findings from 2 boys, Nico and Brooke, each of whom lost half of his brain. The remarkable…

  13. From Metaphorically Speaking to Acting Boldly: A Commentary on the Special Issue

    ERIC Educational Resources Information Center

    Rock, Marcia L.; Billingsley, Bonnie

    2014-01-01

    Casting special education teacher development as an avatar living in a virtual and changing landscape is a creative way to consider the current state of the field and project possible futures. In this commentary, the authors consider areas that may help strengthen the Avatar, including conceptualizing and identifying the outcomes of teacher…

  14. Multisite Reliability of Cognitive BOLD Data

    PubMed Central

    Brown, Gregory G.; Mathalon, Daniel H.; Stern, Hal; Ford, Judith; Mueller, Bryon; Greve, Douglas N.; McCarthy, Gregory; Voyvodic, Jim; Glover, Gary; Diaz, Michele; Yetter, Elizabeth; Burak Ozyurt, I.; Jorgensen, Kasper W.; Wible, Cynthia G.; Turner, Jessica A.; Thompson, Wesley K.; Potkin, Steven G.

    2010-01-01

    Investigators perform multi-site functional magnetic resonance imaging studies to increase statistical power, to enhance generalizability, and to improve the likelihood of sampling relevant subgroups. Yet undesired site variation in imaging methods could off-set these potential advantages. We used variance components analysis to investigate sources of variation in the blood oxygen level dependent (BOLD) signal across four 3T magnets in voxelwise and region of interest (ROI) analyses. Eighteen participants traveled to four magnet sites to complete eight runs of a working memory task involving emotional or neutral distraction. Person variance was more than 10 times larger than site variance for five of six ROIs studied. Person-by-site interactions, however, contributed sizable unwanted variance to the total. Averaging over runs increased between-site reliability, with many voxels showing good to excellent between-site reliability when eight runs were averaged and regions of interest showing fair to good reliability. Between-site reliability depended on the specific functional contrast analyzed in addition to the number of runs averaged. Although median effect size was correlated with between-site reliability, dissociations were observed for many voxels. Brain regions where the pooled effect size was large but between-site reliability was poor were associated with reduced individual differences. Brain regions where the pooled effect size was small but between-site reliability was excellent were associated with a balance of participants who displayed consistently positive or consistently negative BOLD responses. Although between-site reliability of BOLD data can be good to excellent, acquiring highly reliable data requires robust activation paradigms, ongoing quality assurance, and careful experimental control. PMID:20932915

  15. Posteromedial hyperactivation during episodic recognition among people with memory decline: findings from the WRAP study

    PubMed Central

    Nicholas, Christopher R.; Okonkwo, Ozioma C.; Bendlin, Barbara B.; Oh, Jennifer M.; Asthana, Sanjay; Rowley, Howard A.; Hermann, Bruce; Sager, Mark A.

    2014-01-01

    Episodic memory decline is one of the earliest preclinical symptoms of AD, and has been associated with an upregulation in the BOLD response in the prodromal stage (e.g. MCI) of AD. In a previous study, we observed upregulation in cognitively normal (CN) subjects with subclinical episodic memory decline compared to non-decliners. In light of this finding, we sought to determine if a separate cohort of Decliners will show increased brain activation compared to Stable subjects during episodic memory processing, and determine whether the BOLD effect was influenced by cerebral blood flow (CBF) or gray matter volume (GMV). Individuals were classified as a “Decliner” if scores on the Rey Auditory Verbal Learning Test (RAVLT) consistently fell≥1.5 SD below expected intra- or inter-individual levels. FMRI was used to compare activation during a facial recognition memory task in 90 Stable (age=59.1) and 34 Decliner (age=62.1, SD=5.9) CN middle-aged adults and 10 MCI patients (age=72.1, SD= 9.4). Arterial spin labeling and anatomical T1 MRI were used to measure resting CBF and GMV, respectively. Stables and Decliners performed similarly on the episodic recognition memory task and significantly better than MCI patients. Compared to Stables, Decliners showed increased BOLD signal in the left precuneus on the episodic memory task that was not explained by CBF or GMV, familial AD risk factors, or neuropsychological measures. These findings suggest that subtle changes in the BOLD signal reflecting altered neural function may be a relatively early phenomenon associated with memory decline. PMID:25332108

  16. "Boldness" in the domestic dog differs among breeds and breed groups.

    PubMed

    Starling, Melissa J; Branson, Nicholas; Thomson, Peter C; McGreevy, Paul D

    2013-07-01

    "Boldness" in dogs is believed to be one end of the shy-bold axis, representing a super-trait. Several personality traits fall under the influence of this super-trait. Previous studies on boldness in dogs have found differences among breeds, but grouping breeds on the basis of behavioural similarities has been elusive. This study investigated differences in the expression of boldness among dog breeds, kennel club breed groups, and sub-groups of kennel club breed groups by way of a survey on dog personality circulated among Australian dog-training clubs and internet forums and lists. Breed had a significant effect on boldness (F=1.63, numDF=111, denDF=272, p<0.001), as did breed group (F=10.66, numDF=8, denDF=772, p<0.001). Herding and gundog groups were broken into sub-groups based on historic breed purpose. Retrievers were significantly bolder than flushing and pointing breeds (Reg. Coef.=2.148; S.E.=0.593; p<0.001), and tending and loose-eyed herding breeds were bolder than heading and cattle-herding breeds (Reg. Coef.=1.744; S.E.=0.866; p=0.045 and Reg. Coef.=1.842; S.E.=0.693; p=0.0084, respectively). This study supports the existence of the shy-bold continuum in dogs. Differences in boldness among groups and sub-groups suggest that behavioural tendencies may be influenced by historical purpose regardless of whether that purpose still factors in selective breeding. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Cerebral Metabolic Rate of Oxygen (CMRO2 ) Mapping by Combining Quantitative Susceptibility Mapping (QSM) and Quantitative Blood Oxygenation Level-Dependent Imaging (qBOLD).

    PubMed

    Cho, Junghun; Kee, Youngwook; Spincemaille, Pascal; Nguyen, Thanh D; Zhang, Jingwei; Gupta, Ajay; Zhang, Shun; Wang, Yi

    2018-03-07

    To map the cerebral metabolic rate of oxygen (CMRO 2 ) by estimating the oxygen extraction fraction (OEF) from gradient echo imaging (GRE) using phase and magnitude of the GRE data. 3D multi-echo gradient echo imaging and perfusion imaging with arterial spin labeling were performed in 11 healthy subjects. CMRO 2 and OEF maps were reconstructed by joint quantitative susceptibility mapping (QSM) to process GRE phases and quantitative blood oxygen level-dependent (qBOLD) modeling to process GRE magnitudes. Comparisons with QSM and qBOLD alone were performed using ROI analysis, paired t-tests, and Bland-Altman plot. The average CMRO 2 value in cortical gray matter across subjects were 140.4 ± 14.9, 134.1 ± 12.5, and 184.6 ± 17.9 μmol/100 g/min, with corresponding OEFs of 30.9 ± 3.4%, 30.0 ± 1.8%, and 40.9 ± 2.4% for methods based on QSM, qBOLD, and QSM+qBOLD, respectively. QSM+qBOLD provided the highest CMRO 2 contrast between gray and white matter, more uniform OEF than QSM, and less noisy OEF than qBOLD. Quantitative CMRO 2 mapping that fits the entire complex GRE data is feasible by combining QSM analysis of phase and qBOLD analysis of magnitude. © 2018 International Society for Magnetic Resonance in Medicine.

  18. Boldness and its relation to psychopathic personality: Prototypicality analyses among forensic mental health, criminal justice, and layperson raters.

    PubMed

    Sörman, Karolina; Edens, John F; Smith, Shannon Toney; Clark, John W; Kristiansson, Marianne; Svensson, Olof

    2016-06-01

    Research on psychopathic personality has been dominated by a focus on criminality and social deviance, but some theoretical models argue that certain putatively adaptive features are important components of this construct. In 3 samples (forensic mental health practitioners, probation officers and a layperson community sample), we investigated adaptive traits as conceptualized in the Triarchic model of psychopathy (Patrick et al., 2009), specifically the relevance of boldness to construals of psychopathic personality. Participants completed prototypicality ratings of psychopathic traits, including 3 items created to tap components of boldness (Socially bold, Adventurous, Emotionally stable), and they also rated a series of attitudinal statements (e.g., perceived correlates of being psychopathic, moral judgments about psychopaths). The composite Boldness scale was rated as moderately to highly prototypical among forensic mental health practitioners and probation officers and positively associated with other theoretically relevant domains of psychopathy. Across samples, higher composite Boldness ratings predicted greater endorsement of adaptive traits (e.g., social skills) as characteristic of psychopathy. For the individual items, Socially bold was rated as highly prototypical and was associated with theoretically relevant correlates. Adventurous also was seen as prototypical, though to a lesser degree. Only forensic mental health practitioners endorsed Emotionally stable as characteristic of psychopathy. Our results provide partial support for the contention that the boldness concept is viewed as an important component of psychopathy, particularly among professionals who work directly with offender populations. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  19. Prospective MR image alignment between breath-holds: Application to renal BOLD MRI.

    PubMed

    Kalis, Inge M; Pilutti, David; Krafft, Axel J; Hennig, Jürgen; Bock, Michael

    2017-04-01

    To present an image registration method for renal blood oxygen level-dependent (BOLD) measurements that enables semiautomatic assessment of parenchymal and medullary R2* changes under a functional challenge. In a series of breath-hold acquisitions, three-dimensional data were acquired initially for prospective image registration of subsequent BOLD measurements. An algorithm for kidney alignment for BOLD renal imaging (KALIBRI) was implemented to detect the positions of the left and right kidney so that the kidneys were acquired in the subsequent BOLD measurement at consistent anatomical locations. Residual in-plane distortions were corrected retrospectively so that semiautomatic dynamic R2* measurements of the renal cortex and medulla become feasible. KALIBRI was tested in six healthy volunteers during a series of BOLD experiments, which included a 600- to 1000-mL water challenge. Prospective image registration and BOLD imaging of each kidney was achieved within a total measurement time of about 17 s, enabling its execution within a single breath-hold. KALIBRI improved the registration by up to 35% as found with mutual information measures. In four volunteers, a medullary R2* decrease of up to 40% was observed after water ingestion. KALIBRI improves the quality of two-dimensional time-resolved renal BOLD MRI by aligning local renal anatomy, which allows for consistent R2* measurements over many breath-holds. Magn Reson Med 77:1573-1582, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  20. 17 CFR 232.307 - Bold face type.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 17 Commodity and Securities Exchanges 2 2012-04-01 2012-04-01 false Bold face type. 232.307 Section 232.307 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION REGULATION S-T... face type. (a) Provisions requiring presentation of information in bold face type shall be satisfied in...

  1. 17 CFR 232.307 - Bold face type.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 2 2010-04-01 2010-04-01 false Bold face type. 232.307 Section 232.307 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION REGULATION S-T... face type. (a) Provisions requiring presentation of information in bold face type shall be satisfied in...

  2. 17 CFR 232.307 - Bold face type.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 17 Commodity and Securities Exchanges 3 2014-04-01 2014-04-01 false Bold face type. 232.307 Section 232.307 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION REGULATION S-T... face type. (a) Provisions requiring presentation of information in bold face type shall be satisfied in...

  3. 17 CFR 232.307 - Bold face type.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 17 Commodity and Securities Exchanges 2 2013-04-01 2013-04-01 false Bold face type. 232.307 Section 232.307 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION REGULATION S-T... face type. (a) Provisions requiring presentation of information in bold face type shall be satisfied in...

  4. 17 CFR 232.307 - Bold face type.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 17 Commodity and Securities Exchanges 2 2011-04-01 2011-04-01 false Bold face type. 232.307 Section 232.307 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION REGULATION S-T... face type. (a) Provisions requiring presentation of information in bold face type shall be satisfied in...

  5. Soil CO2 flux from three ecosystems in tropical peatland of Sarawak, Malaysia

    NASA Astrophysics Data System (ADS)

    Melling, Lulie; Hatano, Ryusuke; Goh, Kah Joo

    2005-02-01

    Soil CO2 flux was measured monthly over a year from tropical peatland of Sarawak, Malaysia using a closed-chamber technique. The soil CO2 flux ranged from 100 to 533 mg C m-2 h-1 for the forest ecosystem, 63 to 245 mg C m-2 h-1 for the sago and 46 to 335 mg C m-2 h-1 for the oil palm. Based on principal component analysis (PCA), the environmental variables over all sites could be classified into three components, namely, climate, soil moisture and soil bulk density, which accounted for 86% of the seasonal variability. A regression tree approach showed that CO2 flux in each ecosystem was related to different underlying environmental factors. They were relative humidity for forest, soil temperature at 5 cm for sago and water-filled pore space for oil palm. On an annual basis, the soil CO2 flux was highest in the forest ecosystem with an estimated production of 2.1 kg C m-2 yr-1 followed by oil palm at 1.5 kg C m-2 yr-1 and sago at 1.1 kg C m-2 yr-1. The different dominant controlling factors in CO2 flux among the studied ecosystems suggested that land use affected the exchange of CO2 between tropical peatland and the atmosphere.

  6. Effects of Tasks on BOLD Signal Responses to Sentence Contrasts: Review and Commentary

    ERIC Educational Resources Information Center

    Caplan, David; Gow, David

    2012-01-01

    Functional neuroimaging studies of syntactic processing have been interpreted as identifying the neural locations of parsing and interpretive operations. However, current behavioral studies of sentence processing indicate that many operations occur simultaneously with parsing and interpretation. In this review, we point to issues that arise in…

  7. Strategies for memory-based decision making: Modeling behavioral and neural signatures within a cognitive architecture.

    PubMed

    Fechner, Hanna B; Pachur, Thorsten; Schooler, Lael J; Mehlhorn, Katja; Battal, Ceren; Volz, Kirsten G; Borst, Jelmer P

    2016-12-01

    How do people use memories to make inferences about real-world objects? We tested three strategies based on predicted patterns of response times and blood-oxygen-level-dependent (BOLD) responses: one strategy that relies solely on recognition memory, a second that retrieves additional knowledge, and a third, lexicographic (i.e., sequential) strategy, that considers knowledge conditionally on the evidence obtained from recognition memory. We implemented the strategies as computational models within the Adaptive Control of Thought-Rational (ACT-R) cognitive architecture, which allowed us to derive behavioral and neural predictions that we then compared to the results of a functional magnetic resonance imaging (fMRI) study in which participants inferred which of two cities is larger. Overall, versions of the lexicographic strategy, according to which knowledge about many but not all alternatives is searched, provided the best account of the joint patterns of response times and BOLD responses. These results provide insights into the interplay between recognition and additional knowledge in memory, hinting at an adaptive use of these two sources of information in decision making. The results highlight the usefulness of implementing models of decision making within a cognitive architecture to derive predictions on the behavioral and neural level. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. The Target Selective Neural Response — Similarity, Ambiguity, and Learning Effects

    PubMed Central

    Hampshire, Adam; Thompson, Russell; Duncan, John; Owen, Adrian M.

    2008-01-01

    A network of frontal and parietal brain regions is commonly recruited during tasks that require the deliberate ‘top-down’ control of thought and action. Previously, using simple target detection, we have demonstrated that within this frontoparietal network, the right ventrolateral prefrontal cortex (VLPFC) in particular is sensitive to the presentation of target objects. Here, we use a range of target/non-target morphs to plot the target selective response within distinct frontoparietal sub-regions in greater detail. The increased resolution allows us to examine the extent to which different cognitive factors can predict the blood oxygenation level dependent (BOLD) response to targets. Our results reveal that both probability of positive identification (similarity to target) and proximity to the 50% decision boundary (ambiguity) are significant predictors of BOLD signal change, particularly in the right VLPFC. Furthermore, the profile of target related signal change is not static, with the degree of selectivity increasing as the task becomes familiar. These findings demonstrate that frontoparietal sub-regions are recruited under increased cognitive demand and that when recruited, they adapt, using both fast and slow mechanisms, to selectively respond to those items that are of the most relevance to current intentions. PMID:18575585

  9. Relational vs. attributive interpretation of nominal compounds differentially engages angular gyrus and anterior temporal lobe

    PubMed Central

    Boylan, Christine; Trueswell, John C.; Thompson-Schill, Sharon L.

    2018-01-01

    The angular gyrus (AG) and anterior temporal lobe (ATL) have been found to respond to a number of tasks involving combinatorial processing. In this study, we investigate the conceptual combination of nominal compounds, and ask whether ATL/AG activity is modulated by the type of combinatorial operation applied to a nominal compound. We compare relational and attributive interpretations of nominal compounds and find that ATL and AG both discriminate these two types, but in distinct ways. While right AG demonstrated greater positive task-responsive activity for relational compounds, there was a greater negative deflection in the BOLD response in left AG for relational compounds. In left ATL, we found an earlier peak in subjects’ BOLD response curves for attributive interpretations. In other words, we observed dissociations in both AG and ATL between relational and attributive nominal compounds, with regard to magnitude in the former and to timing in the latter. These findings expand on prior studies that posit roles for both AG and ATL in conceptual processing generally, and in conceptual combination specifically, by indicating possible functional specializations of these two regions within a larger conceptual knowledge network. PMID:28236762

  10. Banana fluxes in the plateau regime for a nonaxisymmetrically confined plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balescu, R.; Fantechi, S.

    1990-09-01

    The banana (or banana-plateau) fluxes, related to the generalized stresses {l angle}{bold B}{center dot}{del}{center dot}{pi}{sup {alpha}({ital n})}{r angle}, {l angle}{bold B}{sub {ital T}}{center dot}{del}{center dot}{pi}{sup {alpha}({ital n})}{r angle} have been determined in the plateau regime, for a plasma confined by a toroidal magnetic field of arbitrary geometry. The complete set of transport coefficients for both the parallel'' (ambipolar) and toroidal'' (nonambipolar) banana fluxes was obtained in the 13-moment (13M) approximation, going beyond the previously known expressions in the nonaxisymmetric case. The main emphasis is laid on the structure of the transport matrix and of its coefficients. It is shown thatmore » the Onsager symmetry of this matrix partly breaks down (for the mixed electron--ion coefficients) in a nonaxisymmetrically confined plasma.« less

  11. Interactions between boldness, foraging performance and behavioural plasticity across social contexts.

    PubMed

    Ólafsdóttir, Guðbjörg Ásta; Magellan, Kit

    2016-01-01

    Boldness, the tendency to be explorative, risk prone and proactive, often varies consistently between individuals. An individual's position on the boldness-shyness continuum has many implications. Bold individuals may outperform shyer conspecifics during foraging as they cover more ground, accumulate information more rapidly and make more frequent food discoveries. Individual variation in boldness may also affect behavioural plasticity across environmental contexts, as the time to process new information, the ability to locate and memorise resources and the time and ability to apply prior information in a novel context all differ between individuals. The primary aim of the current study was to examine plasticity in, and covariation between, boldness, foraging speed and foraging accuracy across social foraging contexts. We showed that the stickleback that were shyest when foraging alone became relatively boldest when foraging in a social context and also delayed their entry to a known food patch the most in the presence of conspecifics. These results support the assertion that shyer foragers are more reactive to social cues and add to current knowledge of how an individual's position on the boldness-shyness continuum may correlate to foraging task performance and behavioural plasticity. We conclude that the correlation between boldness and behavioural plasticity may have broad relevance as the ability to adjust or retain behaviours in changing social environments could often have consequences for fitness. Animal personality may affect how much individuals change their behaviour to suit different environments. We studied the link between threespine stickleback personality (boldness or shyness), foraging performance and change in foraging performance when either alone or in the presence of other stickleback. We found that shyer threespine stickleback were more reactive to the presence of other fish when foraging. When observed or joined by other fish, shy stickleback started exploring earlier, but entered a known food patch later, than when alone. Bolder stickleback changed their foraging behaviour much less in the presence of other fish. Our results suggest that how bold or shy individuals are may have important consequences on how well they adjust their foraging behaviour to environmental change.

  12. Extent of BOLD Vascular Dysregulation Is Greater in Diffuse Gliomas without Isocitrate Dehydrogenase 1 R132H Mutation.

    PubMed

    Englander, Zachary K; Horenstein, Craig I; Bowden, Stephen G; Chow, Daniel S; Otten, Marc L; Lignelli, Angela; Bruce, Jeffrey N; Canoll, Peter; Grinband, Jack

    2018-06-01

    Purpose To determine the effect that R132H mutation status of diffuse glioma has on extent of vascular dysregulation and extent of residual blood oxygen level-dependent (BOLD) abnormality after surgical resection. Materials and Methods This study was an institutional review board-approved retrospective analysis of an institutional database of patients, and informed consent was waived. From 2010 to 2017, 39 treatment-naïve patients with diffuse glioma underwent preoperative echo-planar imaging and BOLD functional magnetic resonance imaging. BOLD vascular dysregulation maps were made by identifying voxels with time series similar to tumor and dissimilar to healthy brain. The spatial overlap between tumor and vascular dysregulation was characterized by using the Dice coefficient, and areas of BOLD abnormality outside the tumor margins were quantified as BOLD-only fraction (BOF). Linear regression was used to assess effects of R132H status on the Dice coefficient, BOF, and residual BOLD abnormality after surgical resection. Results When compared with R132H wild-type (R132H-) gliomas, R132H-mutated (R132H+) gliomas showed greater spatial overlap between BOLD abnormality and tumor (mean Dice coefficient, 0.659 ± 0.02 [standard error] for R132H+ and 0.327 ± 0.04 for R132H-; P < .001), less BOLD abnormality beyond the tumor margin (mean BOF, 0.255 ± 0.03 for R132H+ and 0.728 ± 0.04 for R132H-; P < .001), and less postoperative BOLD abnormality (residual fraction, 0.046 ± 0.0047 for R132H+ and 0.397 ± 0.045 for R132H-; P < .001). Receiver operating characteristic curve analysis showed high sensitivity and specificity in the discrimination of R132H+ tumors from R132H- tumors with calculation of both Dice coefficient and BOF (area under the receiver operating characteristic curve, 0.967 and 0.977, respectively). Conclusion R132H mutation status is an important variable affecting the extent of tumor-associated vascular dysregulation and the residual vascular dysregulation after surgical resection. © RSNA, 2018 Online supplemental material is available for this article.

  13. Sex differences in the neural substrates of spatial working memory during adolescence are not mediated by endogenous testosterone

    PubMed Central

    Alarcón, Gabriela; Cservenka, Anita; Fair, Damien A.; Nagel, Bonnie J.

    2014-01-01

    Adolescence is a developmental period characterized by notable changes in behavior, physical attributes, and an increase in endogenous sex steroid hormones, which may impact cognitive functioning. Moreover, sex differences in brain structure are present, leading to differences in neural function and cognition. Here, we examine sex differences in performance and blood oxygen level-dependent (BOLD) activation in a sample of adolescents during a spatial working memory (SWM) task. We also examine whether endogenous testosterone levels mediate differential brain activity between the sexes. Adolescents between ages 10 and 16 completed a SWM functional magnetic resonance imaging (fMRI) task, and serum hormone levels were assessed within seven days of scanning. While there were no sex differences in task performance (accuracy and reaction time), differences in BOLD response between girls and boys emerged, with girls deactivating brain regions in the default mode network and boys showing increased response in SWM-related brain regions of the frontal cortex. These results suggest that adolescent boys and girls adopted distinct neural strategies, while maintaining spatial cognitive strategies that facilitated comparable cognitive performance of a SWM task. A nonparametric bootstrapping procedure revealed that testosterone did not mediate sex-specific brain activity, suggesting that sex differences in BOLD activation during SWM may be better explained by other factors, such as early organizational effects of sex steroids or environmental influences. Elucidating sex differences in neural function and the influence of gonadal hormones can serve as a basis of comparison for understanding sexually dimorphic neurodevelopment and inform sex-specific psychopathology that emerges in adolescence. PMID:25312831

  14. Frequency-dependent tACS modulation of BOLD signal during rhythmic visual stimulation.

    PubMed

    Chai, Yuhui; Sheng, Jingwei; Bandettini, Peter A; Gao, Jia-Hong

    2018-05-01

    Transcranial alternating current stimulation (tACS) has emerged as a promising tool for modulating cortical oscillations. In previous electroencephalogram (EEG) studies, tACS has been found to modulate brain oscillatory activity in a frequency-specific manner. However, the spatial distribution and hemodynamic response for this modulation remains poorly understood. Functional magnetic resonance imaging (fMRI) has the advantage of measuring neuronal activity in regions not only below the tACS electrodes but also across the whole brain with high spatial resolution. Here, we measured fMRI signal while applying tACS to modulate rhythmic visual activity. During fMRI acquisition, tACS at different frequencies (4, 8, 16, and 32 Hz) was applied along with visual flicker stimulation at 8 and 16 Hz. We analyzed the blood-oxygen-level-dependent (BOLD) signal difference between tACS-ON vs tACS-OFF, and different frequency combinations (e.g., 4 Hz tACS, 8 Hz flicker vs 8 Hz tACS, 8 Hz flicker). We observed significant tACS modulation effects on BOLD responses when the tACS frequency matched the visual flicker frequency or the second harmonic frequency. The main effects were predominantly seen in regions that were activated by the visual task and targeted by the tACS current distribution. These findings bridge different scientific domains of tACS research and demonstrate that fMRI could localize the tACS effect on stimulus-induced brain rhythms, which could lead to a new approach for understanding the high-level cognitive process shaped by the ongoing oscillatory signal. © 2018 Wiley Periodicals, Inc.

  15. Abnormal GABAergic function and face processing in schizophrenia: A pharmacologic-fMRI study.

    PubMed

    Tso, Ivy F; Fang, Yu; Phan, K Luan; Welsh, Robert C; Taylor, Stephan F

    2015-10-01

    The involvement of the gamma-aminobutyric acid (GABA) system in schizophrenia is suggested by postmortem studies and the common use of GABA receptor-potentiating agents in treatment. In a recent study, we used a benzodiazepine challenge to demonstrate abnormal GABAergic function during processing of negative visual stimuli in schizophrenia. This study extended this investigation by mapping GABAergic mechanisms associated with face processing and social appraisal in schizophrenia using a benzodiazepine challenge. Fourteen stable, medicated schizophrenia/schizoaffective patients (SZ) and 13 healthy controls (HC) underwent functional MRI using the blood oxygenation level-dependent (BOLD) technique while they performed the Socio-emotional Preference Task (SePT) on emotional face stimuli ("Do you like this face?"). Participants received single-blinded intravenous saline and lorazepam (LRZ) in two separate sessions separated by 1-3weeks. Both SZ and HC recruited medial prefrontal cortex/anterior cingulate during the SePT, relative to gender identification. A significant drug by group interaction was observed in the medial occipital cortex, such that SZ showed increased BOLD signal to LRZ challenge, while HC showed an expected decrease of signal; the interaction did not vary by task. The altered BOLD response to LRZ challenge in SZ was significantly correlated with increased negative affect across multiple measures. The altered response to LRZ challenge suggests that abnormal face processing and negative affect in SZ are associated with altered GABAergic function in the visual cortex, underscoring the role of impaired visual processing in socio-emotional deficits in schizophrenia. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Abnormal GABAergic function and negative affect in schizophrenia.

    PubMed

    Taylor, Stephan F; Demeter, Elise; Phan, K Luan; Tso, Ivy F; Welsh, Robert C

    2014-03-01

    Deficits in the γ-aminobutyric acid (GABA) system have been reported in postmortem studies of schizophrenia, and therapeutic interventions in schizophrenia often involve potentiation of GABA receptors (GABAR) to augment antipsychotic therapy and treat negative affect such as anxiety. To map GABAergic mechanisms associated with processing affect, we used a benzodiazepine challenge while subjects viewed salient visual stimuli. Fourteen stable, medicated schizophrenia/schizoaffective patients and 13 healthy comparison subjects underwent functional magnetic resonance imaging using the blood oxygenation level-dependent (BOLD) technique while they viewed salient emotional images. Subjects received intravenous lorazepam (LRZ; 0.01 mg/kg) or saline in a single-blinded, cross-over design (two sessions separated by 1-3 weeks). A predicted group by drug interaction was noted in the dorsal medial prefrontal cortex (dmPFC) as well as right superior frontal gyrus and left and right occipital regions, such that psychosis patients showed an increased BOLD signal to LRZ challenge, rather than the decreased signal exhibited by the comparison group. A main effect of reduced BOLD signal in bilateral occipital areas was noted across groups. Consistent with the role of the dmPFC in processing emotion, state negative affect positively correlated with the response to the LRZ challenge in the dmPFC for the patients and comparison subjects. The altered response to LRZ challenge is consistent with altered inhibition predicted by postmortem findings of altered GABAR in schizophrenia. These results also suggest that negative affect in schizophrenia/schizoaffective disorder is associated-directly or indirectly-with GABAergic function on a continuum with normal behavior.

  17. The Temporal Lobes Differentiate between the Voices of Famous and Unknown People: An Event-Related fMRI Study on Speaker Recognition

    PubMed Central

    Bethmann, Anja; Scheich, Henning; Brechmann, André

    2012-01-01

    It is widely accepted that the perception of human voices is supported by neural structures located along the superior temporal sulci. However, there is an ongoing discussion to what extent the activations found in fMRI studies are evoked by the vocal features themselves or are the result of phonetic processing. To show that the temporal lobes are indeed engaged in voice processing, short utterances spoken by famous and unknown people were presented to healthy young participants whose task it was to identify the familiar speakers. In two event-related fMRI experiments, the temporal lobes were found to differentiate between familiar and unfamiliar voices such that named voices elicited higher BOLD signal intensities than unfamiliar voices. Yet, the temporal cortices did not only discriminate between familiar and unfamiliar voices. Experiment 2, which required overtly spoken responses and allowed to distinguish between four familiarity grades, revealed that there was a fine-grained differentiation between all of these familiarity levels with higher familiarity being associated with larger BOLD signal amplitudes. Finally, we observed a gradual response change such that the BOLD signal differences between unfamiliar and highly familiar voices increased with the distance of an area from the transverse temporal gyri, especially towards the anterior temporal cortex and the middle temporal gyri. Therefore, the results suggest that (the anterior and non-superior portions of) the temporal lobes participate in voice-specific processing independent from phonetic components also involved in spoken speech material. PMID:23112826

  18. Primary hepatocytes as an useful bioassay to characterize metabolism and bioactivity of illicit steroids in cattle.

    PubMed

    Giantin, Mery; Gallina, Guglielmo; Pegolo, Sara; Lopparelli, Rosa Maria; Sandron, Clara; Zancanella, Vanessa; Nebbia, Carlo; Favretto, Donata; Capolongo, Francesca; Montesissa, Clara; Dacasto, Mauro

    2012-10-01

    Cattle hepatocytes have already been used in veterinary in vitro toxicology, but their usefulness as a multi-parametric screening bioassay has never been investigated so far. In this study, cattle hepatocytes were incubated with illicit steroids/prohormones (boldenone, BOLD; its precursor boldione, ADD; dehydroepiandrosterone, DHEA; an association of ADD:BOLD), to characterize their transcriptional effects on drug metabolizing enzymes (DMEs) and related nuclear receptors (NRs), on cytochrome P450 3A (CYP3A) apoprotein and catalytic activity as well as to determine ADD and BOLD metabolite profiling. DHEA-exposed cells showed an up-regulation (higher than 2.5-fold changes) of three out of six NRs, CYP2B22 and CYP2C87; likewise, ADD:BOLD increased CYP4A11 mRNA levels. In contrast, a reduction of CYP1A1 and CYP2E1 mRNAs (lower than 2.5(-1)-fold changes) was noticed in ADD- and DHEA-incubated cells. No effect was noticed on CYP3A gene and protein expression, though an inhibition of 6β-, 2β- and 16β-hydroxylation of testosterone (higher than 60% of control cells) was observed in ADD- and BOLD-exposed cells. Finally, 17α-BOLD was the main metabolite extracted from hepatocyte media incubated with ADD and BOLD, but several mono-hydroxylated BOLD and ADD derivatives were detected, too. Collectively, cattle hepatocytes can represent a complementary screening bioassay, useful to characterize growth promoters metabolite profiling and their effects upon DMEs expression, regulation and function. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Decreased resting-state brain activity complexity in schizophrenia characterized by both increased regularity and randomness.

    PubMed

    Yang, Albert C; Hong, Chen-Jee; Liou, Yin-Jay; Huang, Kai-Lin; Huang, Chu-Chung; Liu, Mu-En; Lo, Men-Tzung; Huang, Norden E; Peng, Chung-Kang; Lin, Ching-Po; Tsai, Shih-Jen

    2015-06-01

    Schizophrenia is characterized by heterogeneous pathophysiology. Using multiscale entropy (MSE) analysis, which enables capturing complex dynamics of time series, we characterized MSE patterns of blood-oxygen-level-dependent (BOLD) signals across different time scales and determined whether BOLD activity in patients with schizophrenia exhibits increased complexity (increased entropy in all time scales), decreased complexity toward regularity (decreased entropy in all time scales), or decreased complexity toward uncorrelated randomness (high entropy in short time scales followed by decayed entropy as the time scale increases). We recruited 105 patients with schizophrenia with an age of onset between 18 and 35 years and 210 age- and sex-matched healthy volunteers. Results showed that MSE of BOLD signals in patients with schizophrenia exhibited two routes of decreased BOLD complexity toward either regular or random patterns. Reduced BOLD complexity toward regular patterns was observed in the cerebellum and temporal, middle, and superior frontal regions, and reduced BOLD complexity toward randomness was observed extensively in the inferior frontal, occipital, and postcentral cortices as well as in the insula and middle cingulum. Furthermore, we determined that the two types of complexity change were associated differently with psychopathology; specifically, the regular type of BOLD complexity change was associated with positive symptoms of schizophrenia, whereas the randomness type of BOLD complexity was associated with negative symptoms of the illness. These results collectively suggested that resting-state dynamics in schizophrenia exhibit two routes of pathologic change toward regular or random patterns, which contribute to the differences in syndrome domains of psychosis in patients with schizophrenia. © 2015 Wiley Periodicals, Inc.

  20. The cortical response to the oral perception of fat emulsions and the effect of taster status

    PubMed Central

    Eldeghaidy, Sally; Marciani, Luca; McGlone, Francis; Hollowood, Tracey; Hort, Joanne; Head, Kay; Taylor, Andrew J.; Busch, Johanneke; Spiller, Robin C.; Gowland, Penny A.

    2011-01-01

    The rewarding attributes of foods containing fat are associated with the increase in fat consumption, but little is known of how the complex physical and chemical properties of orally ingested fats are represented and decoded in the brain nor how this impacts feeding behavior within the population. Here, functional MRI (fMRI) is used to assess the brain response to isoviscous, isosweet fat emulsions of increasing fat concentration and to investigate the correlation of behavioral and neuroimaging responses with taster status (TS). Cortical areas activated in response to fat, and those areas positively correlated with fat concentration, were identified. Significant responses that positively correlated with increasing fat concentration were found in the anterior insula, frontal operculum and secondary somatosensory cortex (SII), anterior cingulate cortex, and amygdala. Assessing the effect of TS revealed a strong correlation with self-reported preference of the samples and with cortical response in somatosensory areas [primary somatosensory cortex (SI), SII, and midinsula] and the primary taste area (anterior insula) and a trend in reward areas (amygdala and orbitofrontal cortex). This finding of a strong correlation with TS in somatosensory areas supports the theory of increased mechanosensory trigeminal innervation in high 6-n-propyl-2-thiouracil (PROP) tasters and has been linked to a higher risk of obesity. The interindividual differences in blood oxygenation level-dependent (BOLD) amplitude with TS indicates that segmenting populations by TS will reduce the heterogeneity of BOLD responses, improving signal detection power. PMID:21389303

  1. "Extreme Bold" in the Faculty Ranks

    ERIC Educational Resources Information Center

    Kuusisto, Stephen

    2013-01-01

    Boldness, defense, and the necessity of talking back remain as central to life with disability in one's time as in Francis Bacon's age. "Therefore all deformed persons are extreme bold," Bacon wrote, "first, as in their own defence, as being exposed to scorn, but in process of time, by a general habit." Perhaps no word carries…

  2. Correlating brain blood oxygenation level dependent (BOLD) fractal dimension mapping with magnetic resonance spectroscopy (MRS) in Alzheimer's disease.

    PubMed

    Warsi, Mohammed A; Molloy, William; Noseworthy, Michael D

    2012-10-01

    To correlate temporal fractal structure of resting state blood oxygen level dependent (rsBOLD) functional magnetic resonance imaging (fMRI) with in vivo proton magnetic resonance spectroscopy ((1)H-MRS), in Alzheimer's disease (AD) and healthy age-matched normal controls (NC). High temporal resolution (4 Hz) rsBOLD signal and single voxel (left putamen) magnetic resonance spectroscopy data was acquired in 33 AD patients and 13 NC. The rsBOLD data was analyzed using two types of fractal dimension (FD) analysis based on relative dispersion and frequency power spectrum. Comparisons in FD were performed between AD and NC, and FD measures were correlated with (1)H-MRS findings. Temporal fractal analysis of rsBOLD, was able to differentiate AD from NC subjects (P = 0.03). Low FD correlated with markers of AD severity including decreased concentrations of N-acetyl aspartate (R = 0.44, P = 0.015) and increased myoinositol (mI) (R = -0.45, P = 0.012). Based on these results we suggest fractal analysis of rsBOLD could provide an early marker of AD.

  3. Generalization of value in reinforcement learning by humans.

    PubMed

    Wimmer, G Elliott; Daw, Nathaniel D; Shohamy, Daphna

    2012-04-01

    Research in decision-making has focused on the role of dopamine and its striatal targets in guiding choices via learned stimulus-reward or stimulus-response associations, behavior that is well described by reinforcement learning theories. However, basic reinforcement learning is relatively limited in scope and does not explain how learning about stimulus regularities or relations may guide decision-making. A candidate mechanism for this type of learning comes from the domain of memory, which has highlighted a role for the hippocampus in learning of stimulus-stimulus relations, typically dissociated from the role of the striatum in stimulus-response learning. Here, we used functional magnetic resonance imaging and computational model-based analyses to examine the joint contributions of these mechanisms to reinforcement learning. Humans performed a reinforcement learning task with added relational structure, modeled after tasks used to isolate hippocampal contributions to memory. On each trial participants chose one of four options, but the reward probabilities for pairs of options were correlated across trials. This (uninstructed) relationship between pairs of options potentially enabled an observer to learn about option values based on experience with the other options and to generalize across them. We observed blood oxygen level-dependent (BOLD) activity related to learning in the striatum and also in the hippocampus. By comparing a basic reinforcement learning model to one augmented to allow feedback to generalize between correlated options, we tested whether choice behavior and BOLD activity were influenced by the opportunity to generalize across correlated options. Although such generalization goes beyond standard computational accounts of reinforcement learning and striatal BOLD, both choices and striatal BOLD activity were better explained by the augmented model. Consistent with the hypothesized role for the hippocampus in this generalization, functional connectivity between the ventral striatum and hippocampus was modulated, across participants, by the ability of the augmented model to capture participants' choice. Our results thus point toward an interactive model in which striatal reinforcement learning systems may employ relational representations typically associated with the hippocampus. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  4. Monitoring of the tumor response to nano-graphene oxide-mediated photothermal/photodynamic therapy by diffusion-weighted and BOLD MRI

    NASA Astrophysics Data System (ADS)

    Cao, Jianbo; An, Hengqing; Huang, Xinglu; Fu, Guifeng; Zhuang, Rongqiang; Zhu, Lei; Xie, Jin; Zhang, Fan

    2016-05-01

    Photothermal therapy (PTT) and photodynamic therapy (PDT) are promising cancer treatment modalities. Because each modality has its own set of advantages and limitations, there has been interest in developing methods that can co-deliver the two regimens for enhanced tumor treatment. Among the efforts, nano-graphene oxide-mediated phototherapies have recently attracted much attention. Nano-graphene oxide has a broad absorbance spectrum and can be loaded with photosensitizers, such as chlorin e6, with high efficiency. Chlorin e6-loaded and PEGylated nano-graphene (GO-PEG-Ce6) can be excited at 660 nm, 808 nm, or both, to induce PDT, PTT, or PDT/PTT combination. Despite the potential of the treatments, there is a lack of a diagnostic tool which can monitor their therapeutic response in a non-invasive and prognostic manner; such an ability is urgently needed for the transformation and translation of the technologies. In this study, we performed diffusion-weighted and blood oxygenation level dependent (BOLD) magnetic resonance imaging (MRI) after GO-PEG-Ce6-mediated PTT, PDT, or PTT/PDT. We found that after efficient PTT, there is a significant increase of the tumor apparent diffusion coefficient (ADC) value in diffusion-weighted imaging (DWI) maps; meanwhile, an efficient PDT led to an increase of in BOLD images. In both the cases, the amplitude of the increase was correlated with the treatment outcomes. More interestingly, a synergistic treatment efficacy was observed when the PTT/PDT combination was applied, and the combination was associated with a greater ADC and increase than when either modality was used alone. In particular, the PTT/PDT condition that induced the most dramatic short-term increase of the ADC value (>70%) caused the most effective tumor control in the long-run, with 60% of the treated animals being tumor-free after 60 days. These results suggest the great promise of the combination of DWI and BOLD MRI as a tool for accurate monitoring and prognosis of phototherapies, which is of great value to the future developments of the methodologies.

  5. fMRI evidence of compensatory mechanisms in older adults at genetic risk for Alzheimer disease

    PubMed Central

    Bondi, Mark W.; Houston, Wes S.; Eyler, Lisa T.; Brown, Gregory G.

    2006-01-01

    Objective To determine whether APOE genotype influences brain response and whether nonverbal stimuli generate findings comparable with those of previous studies that used verbal stimuli. The relationship between APOE genotype and blood oxygenation level dependent (BOLD) brain response was examined during a picture-encoding task in nondemented older adults. Methods Twenty nondemented participants with normal episodic memory function were divided into two groups based on the presence (n = 10) or absence (n = 10) of the APOE ε4 allele. Picture learning was completed during functional MRI in a blocked design alternating between experimental (novel pictures) and control (repeated picture) conditions. Results Nondemented older adults with an APOE ε4 allele showed greater magnitude and extent of BOLD brain response during learning of new pictures relative to their matched ε3 counterparts. Different patterns and directions of association between hippocampal activity and learning and memory performance were also demonstrated. Conclusions The results suggest that brain response differences are not due to poorer general memory abilities, differential atrophy, or brain response during control conditions, but instead appear to be directly influenced by APOE genotype. Results are consistent with a compensatory hypothesis wherein older adults at genetic risk for Alzheimer disease by virtue of the APOE ε4 allele appear to require additional cognitive effort to achieve comparable performance levels on tests of episodic memory encoding. PMID:15699382

  6. Early disrupted neurovascular coupling and changed event level hemodynamic response function in type 2 diabetes: an fMRI study.

    PubMed

    Duarte, João V; Pereira, João M S; Quendera, Bruno; Raimundo, Miguel; Moreno, Carolina; Gomes, Leonor; Carrilho, Francisco; Castelo-Branco, Miguel

    2015-10-01

    Type 2 diabetes (T2DM) patients develop vascular complications and have increased risk for neurophysiological impairment. Vascular pathophysiology may alter the blood flow regulation in cerebral microvasculature, affecting neurovascular coupling. Reduced fMRI signal can result from decreased neuronal activation or disrupted neurovascular coupling. The uncertainty about pathophysiological mechanisms (neurodegenerative, vascular, or both) underlying brain function impairments remains. In this cross-sectional study, we investigated if the hemodynamic response function (HRF) in lesion-free brains of patients is altered by measuring BOLD (Blood Oxygenation Level-Dependent) response to visual motion stimuli. We used a standard block design to examine the BOLD response and an event-related deconvolution approach. Importantly, the latter allowed for the first time to directly extract the true shape of HRF without any assumption and probe neurovascular coupling, using performance-matched stimuli. We discovered a change in HRF in early stages of diabetes. T2DM patients show significantly different fMRI response profiles. Our visual paradigm therefore demonstrated impaired neurovascular coupling in intact brain tissue. This implies that functional studies in T2DM require the definition of HRF, only achievable with deconvolution in event-related experiments. Further investigation of the mechanisms underlying impaired neurovascular coupling is needed to understand and potentially prevent the progression of brain function decrements in diabetes.

  7. Neuronal correlates of reward and loss in Cluster B personality disorders: a functional magnetic resonance imaging study.

    PubMed

    Völlm, Birgit; Richardson, Paul; McKie, Shane; Elliott, Rebecca; Dolan, Mairead; Deakin, Bill

    2007-11-15

    Decision making is guided by the likely consequences of behavioural choices. Neuronal correlates of financial reward have been described in a number of functional imaging studies in humans. Areas implicated in reward include ventral striatum, dopaminergic midbrain, amygdala and orbitofrontal cortex. Response to loss has not been as extensively studied but may involve prefrontal and medial temporal cortices. It has been proposed that increased sensitivity to reward and reduced sensitivity to punishment underlie some of the psychopathology in impulsive personality disordered individuals. However, few imaging studies using reinforcement tasks have been conducted in this group. In this fMRI study, we investigate the effects of positive (monetary reward) and negative (monetary loss) outcomes on BOLD responses in two target selection tasks. The experimental group comprised eight people with Cluster B (antisocial and borderline) personality disorder, whilst the control group contained fourteen healthy participants. A key finding was the absence of prefrontal responses and reduced BOLD signal in the subcortical reward system in the PD group during positive reinforcement. Impulsivity scores correlated negatively with prefrontal responses in the PD but not the control group during both, reward and loss. Our results suggest dysfunctional responses to rewarding and aversive stimuli in Cluster B personality disordered individuals but do not support the notion of hypersensitivity to reward and hyposensitivity to loss.

  8. A Bold and Promising Model with a Few Loose Ends

    ERIC Educational Resources Information Center

    Persson, Roland S.

    2012-01-01

    Without a doubt the authors' proposal of viewing gifted education in systemic terms is a promising one. In fact, it is most refreshing to read something eclectic like this with an aim to synthesize a field of research and practice which for too long has lacked consensus in both practice and theory. The author agrees with them that a mechanistic…

  9. Anti-correlated cortical networks of intrinsic connectivity in the rat brain.

    PubMed

    Schwarz, Adam J; Gass, Natalia; Sartorius, Alexander; Risterucci, Celine; Spedding, Michael; Schenker, Esther; Meyer-Lindenberg, Andreas; Weber-Fahr, Wolfgang

    2013-01-01

    In humans, resting-state blood oxygen level-dependent (BOLD) signals in the default mode network (DMN) are temporally anti-correlated with those from a lateral cortical network involving the frontal eye fields, secondary somatosensory and posterior insular cortices. Here, we demonstrate the existence of an analogous lateral cortical network in the rat brain, extending laterally from anterior secondary sensorimotor regions to the insular cortex and exhibiting low-frequency BOLD fluctuations that are temporally anti-correlated with a midline "DMN-like" network comprising posterior/anterior cingulate and prefrontal cortices. The primary nexus for this anti-correlation relationship was the anterior secondary motor cortex, close to regions that have been identified with frontal eye fields in the rat brain. The anti-correlation relationship was corroborated after global signal removal, underscoring this finding as a robust property of the functional connectivity signature in the rat brain. These anti-correlated networks demonstrate strong anatomical homology to networks identified in human and monkey connectivity studies, extend the known preserved functional connectivity relationships between rodent and primates, and support the use of resting-state functional magnetic resonance imaging as a translational imaging method between rat models and humans.

  10. Anti-Correlated Cortical Networks of Intrinsic Connectivity in the Rat Brain

    PubMed Central

    Gass, Natalia; Sartorius, Alexander; Risterucci, Celine; Spedding, Michael; Schenker, Esther; Meyer-Lindenberg, Andreas; Weber-Fahr, Wolfgang

    2013-01-01

    Abstract In humans, resting-state blood oxygen level-dependent (BOLD) signals in the default mode network (DMN) are temporally anti-correlated with those from a lateral cortical network involving the frontal eye fields, secondary somatosensory and posterior insular cortices. Here, we demonstrate the existence of an analogous lateral cortical network in the rat brain, extending laterally from anterior secondary sensorimotor regions to the insular cortex and exhibiting low-frequency BOLD fluctuations that are temporally anti-correlated with a midline “DMN-like” network comprising posterior/anterior cingulate and prefrontal cortices. The primary nexus for this anti-correlation relationship was the anterior secondary motor cortex, close to regions that have been identified with frontal eye fields in the rat brain. The anti-correlation relationship was corroborated after global signal removal, underscoring this finding as a robust property of the functional connectivity signature in the rat brain. These anti-correlated networks demonstrate strong anatomical homology to networks identified in human and monkey connectivity studies, extend the known preserved functional connectivity relationships between rodent and primates, and support the use of resting-state functional magnetic resonance imaging as a translational imaging method between rat models and humans. PMID:23919836

  11. Altered prefrontal function with aging: insights into age-associated performance decline.

    PubMed

    Solbakk, Anne-Kristin; Fuhrmann Alpert, Galit; Furst, Ansgar J; Hale, Laura A; Oga, Tatsuhide; Chetty, Sundari; Pickard, Natasha; Knight, Robert T

    2008-09-26

    We examined the effects of aging on visuo-spatial attention. Participants performed a bi-field visual selective attention task consisting of infrequent target and task-irrelevant novel stimuli randomly embedded among repeated standards in either attended or unattended visual fields. Blood oxygenation level dependent (BOLD) responses to the different classes of stimuli were measured using functional magnetic resonance imaging. The older group had slower reaction times to targets, and committed more false alarms but had comparable detection accuracy to young controls. Attended target and novel stimuli activated comparable widely distributed attention networks, including anterior and posterior association cortex, in both groups. The older group had reduced spatial extent of activation in several regions, including prefrontal, basal ganglia, and visual processing areas. In particular, the anterior cingulate and superior frontal gyrus showed more restricted activation in older compared with young adults across all attentional conditions and stimulus categories. The spatial extent of activations correlated with task performance in both age groups, but the regional pattern of association between hemodynamic responses and behavior differed between the groups. Whereas the young subjects relied on posterior regions, the older subjects engaged frontal areas. The results indicate that aging alters the functioning of neural networks subserving visual attention, and that these changes are related to cognitive performance.

  12. Size doesn't matter, sex does: a test for boldness in sister species of Brachyrhaphis fishes.

    PubMed

    Ingley, Spencer J; Rehm, Jeremy; Johnson, Jerald B

    2014-11-01

    The effect of divergent natural selection on the evolution of behavioral traits has long been a focus of behavioral ecologists. Predation, due to its ubiquity in nature and strength as a selective agent, has been considered an important environmental driver of behavior. Predation is often confounded with other environmental factors that could also play a role in behavioral evolution. For example, environments that contain predators are often more ecologically complex and "risky" (i.e., exposed and dangerous). Previous work shows that individuals from risky environments are often more bold, active, and explorative than those from low-risk environments. To date, most comparative studies of environmentally driven behavioral divergence are limited to comparisons among populations within species that occur in divergent selective environments but neglect comparisons between species following speciation. This limits our understanding of how behavior evolves post-speciation. The Central American live-bearing fish genus Brachyrhaphis provides an ideal system for examining the relationship between selective environments and behavior, within and between species. Here, we test for differences in boldness between sister species B. roseni and B. terrabensis that occur in streams with and without piscivorous predators, respectively. We found that species do differ in boldness, with species that occur with predators being bolder than those that do not. Within each species, we found that sexes differed in boldness, with males being bolder than females. We also tested for a relationship between size (a surrogate for metabolic rate) and boldness, but found no size effects. Therefore, sex, not size, affects boldness. These results are consistent with the hypothesis that complex and risky environments favor individuals with more bold behavioral traits, but they are not consistent with the hypothesis that size (and therefore metabolic rate) drives divergence in boldness. Finally, our results provide evidence that behavioral trait divergence continues even after speciation is complete.

  13. Size doesn't matter, sex does: a test for boldness in sister species of Brachyrhaphis fishes

    PubMed Central

    Ingley, Spencer J; Rehm, Jeremy; Johnson, Jerald B

    2014-01-01

    The effect of divergent natural selection on the evolution of behavioral traits has long been a focus of behavioral ecologists. Predation, due to its ubiquity in nature and strength as a selective agent, has been considered an important environmental driver of behavior. Predation is often confounded with other environmental factors that could also play a role in behavioral evolution. For example, environments that contain predators are often more ecologically complex and “risky” (i.e., exposed and dangerous). Previous work shows that individuals from risky environments are often more bold, active, and explorative than those from low-risk environments. To date, most comparative studies of environmentally driven behavioral divergence are limited to comparisons among populations within species that occur in divergent selective environments but neglect comparisons between species following speciation. This limits our understanding of how behavior evolves post-speciation. The Central American live-bearing fish genus Brachyrhaphis provides an ideal system for examining the relationship between selective environments and behavior, within and between species. Here, we test for differences in boldness between sister species B. roseni and B. terrabensis that occur in streams with and without piscivorous predators, respectively. We found that species do differ in boldness, with species that occur with predators being bolder than those that do not. Within each species, we found that sexes differed in boldness, with males being bolder than females. We also tested for a relationship between size (a surrogate for metabolic rate) and boldness, but found no size effects. Therefore, sex, not size, affects boldness. These results are consistent with the hypothesis that complex and risky environments favor individuals with more bold behavioral traits, but they are not consistent with the hypothesis that size (and therefore metabolic rate) drives divergence in boldness. Finally, our results provide evidence that behavioral trait divergence continues even after speciation is complete. PMID:25540696

  14. Dual-echo ASL based assessment of motor networks: a feasibility study

    NASA Astrophysics Data System (ADS)

    Storti, Silvia Francesca; Boscolo Galazzo, Ilaria; Pizzini, Francesca B.; Menegaz, Gloria

    2018-04-01

    Objective. Dual-echo arterial spin labeling (DE-ASL) technique has been recently proposed for the simultaneous acquisition of ASL and blood-oxygenation-level-dependent (BOLD)-functional magnetic resonance imaging (fMRI) data. The assessment of this technique in detecting functional connectivity at rest or during motor and motor imagery tasks is still unexplored both per-se and in comparison with conventional methods. The purpose is to quantify the sensitivity of the DE-ASL sequence with respect to the conventional fMRI sequence (cvBOLD) in detecting brain activations, and to assess and compare the relevance of node features in decoding the network structure. Approach. Thirteen volunteers were scanned acquiring a pseudo-continuous DE-ASL sequence from which the concomitant BOLD (ccBOLD) simultaneously to the ASL can be extracted. The approach consists of two steps: (i) model-based analyses for assessing brain activations at individual and group levels, followed by statistical analysis for comparing the activation elicited by the three sequences under two conditions (motor and motor imagery), respectively; (ii) brain connectivity graph-theoretical analysis for assessing and comparing the network models properties. Main results. Our results suggest that cvBOLD and ccBOLD have comparable sensitivity in detecting the regions involved in the active task, whereas ASL offers a higher degree of co-localization with smaller activation volumes. The connectivity results and the comparative analysis of node features across sequences revealed that there are no strong changes between rest and tasks and that the differences between the sequences are limited to few connections. Significance. Considering the comparable sensitivity of the ccBOLD and cvBOLD sequences in detecting activated brain regions, the results demonstrate that DE-ASL can be successfully applied in functional studies allowing to obtain both ASL and BOLD information within a single sequence. Further, DE-ASL is a powerful technique for research and clinical applications allowing to perform quantitative comparisons as well as to characterize functional connectivity.

  15. Reduced Dynamic Coupling Between Spontaneous BOLD-CBF Fluctuations in Older Adults: A Dual-Echo pCASL Study.

    PubMed

    Chiacchiaretta, Piero; Cerritelli, Francesco; Bubbico, Giovanna; Perrucci, Mauro Gianni; Ferretti, Antonio

    2018-01-01

    Measurement of the dynamic coupling between spontaneous Blood Oxygenation Level Dependent (BOLD) and cerebral blood flow (CBF) fluctuations has been recently proposed as a method to probe resting-state brain physiology. Here we investigated how the dynamic BOLD-CBF coupling during resting-state is affected by aging. Fifteen young subjects and 17 healthy elderlies were studied using a dual-echo pCASL sequence. We found that the dynamic BOLD-CBF coupling was markedly reduced in elderlies, in particular in the left supramarginal gyrus, an area known to be involved in verbal working memory and episodic memory. Moreover, correcting for temporal shift between BOLD and CBF timecourses resulted in an increased correlation of the two signals for both groups, but with a larger increase for elderlies. However, even after temporal shift correction, a significantly decreased correlation was still observed for elderlies in the left supramarginal gyrus, indicating that the age-related dynamic BOLD-CBF uncoupling in this region is more pronounced and can be only partially explained with a simple time-shift between the two signals. Interestingly, these results were observed in a group of elderlies with normal cognitive functions, suggesting that the study of dynamic BOLD-CBF coupling during resting-state is a promising technique, potentially able to provide early biomarkers of functional changes in the aging brain.

  16. The role of boldness in psychopathy: A study of academic and clinical perceptions.

    PubMed

    Berg, Joanna M; Lilienfeld, Scott O; Sellbom, Martin

    2017-10-01

    The relevance of boldness to psychopathy has recently become a major flashpoint of scientific controversy. Although some authors have contended that boldness is a necessary (although insufficient) component of psychopathy, others have asserted that it is largely or entirely irrelevant to psychopathy. We addressed this issue by examining clinical perceptions of the relevance of the 3 triarchic dimensions (boldness, disinhibition, and meanness) to psychopathy among a sample of mental health professionals and graduate students (N = 228) using a vignette-based, person-centered methodology. A vignette comprising boldness descriptors afforded statistically significant and moderate to large (Cohen's ds ranged from .47 to .99) increases in perceived resemblance to overall psychopathy above and beyond the other triarchic dimensions, both singly and jointly; these findings extended largely to clinical perceptions of Factor 1 (i.e., interpersonal and affective aspects of psychopathy) but not Factor 2 (i.e., impulsive and antisocial aspects of psychopathy) resemblance. Contrary to the claims of some recent authors, boldness alone was perceived as being as relevant to psychopathy as was disinhibition, although both dimensions were perceived as less relevant to psychopathy than was meanness. These findings offer strong support for the contention that boldness is regarded as a key feature of classical psychopathy and are broadly consistent with interpersonal models of psychopathy. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  17. 12 CFR 192.255 - What must the form of proxy include?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... include? The form of proxy must include all of the following: (a) A statement in bold face type stating.... (d) The phrase “Revocable Proxy” in bold face type (at least 18 point). (e) A description of any... management will vote the proxy in accordance with the member's specifications. (j) A statement in bold face...

  18. Posteromedial hyperactivation during episodic recognition among people with memory decline: findings from the WRAP study.

    PubMed

    Nicholas, Christopher R; Okonkwo, Ozioma C; Bendlin, Barbara B; Oh, Jennifer M; Asthana, Sanjay; Rowley, Howard A; Hermann, Bruce; Sager, Mark A; Johnson, Sterling C

    2015-12-01

    Episodic memory decline is one of the earliest preclinical symptoms of AD, and has been associated with an upregulation in the BOLD response in the prodromal stage (e.g. MCI) of AD. In a previous study, we observed upregulation in cognitively normal (CN) subjects with subclinical episodic memory decline compared to non-decliners. In light of this finding, we sought to determine if a separate cohort of Decliners will show increased brain activation compared to Stable subjects during episodic memory processing, and determine whether the BOLD effect was influenced by cerebral blood flow (CBF) or gray matter volume (GMV). Individuals were classified as a "Decliner" if scores on the Rey Auditory Verbal Learning Test (RAVLT) consistently fell ≥ 1.5 SD below expected intra- or inter-individual levels. FMRI was used to compare activation during a facial recognition memory task in 90 Stable (age = 59.1) and 34 Decliner (age = 62.1, SD = 5.9) CN middle-aged adults and 10 MCI patients (age = 72.1, SD = 9.4). Arterial spin labeling and anatomical T1 MRI were used to measure resting CBF and GMV, respectively. Stables and Decliners performed similarly on the episodic recognition memory task and significantly better than MCI patients. Compared to Stables, Decliners showed increased BOLD signal in the left precuneus on the episodic memory task that was not explained by CBF or GMV, familial AD risk factors, or neuropsychological measures. These findings suggest that subtle changes in the BOLD signal reflecting altered neural function may be a relatively early phenomenon associated with memory decline.

  19. Moment-to-Moment BOLD Signal Variability Reflects Regional Changes in Neural Flexibility across the Lifespan.

    PubMed

    Nomi, Jason S; Bolt, Taylor S; Ezie, C E Chiemeka; Uddin, Lucina Q; Heller, Aaron S

    2017-05-31

    Variability of neuronal responses is thought to underlie flexible and optimal brain function. Because previous work investigating BOLD signal variability has been conducted within task-based fMRI contexts on adults and older individuals, very little is currently known regarding regional changes in spontaneous BOLD signal variability in the human brain across the lifespan. The current study used resting-state fMRI data from a large sample of male and female human participants covering a wide age range (6-85 years) across two different fMRI acquisition parameters (TR = 0.645 and 1.4 s). Variability in brain regions including a key node of the salience network (anterior insula) increased linearly across the lifespan across datasets. In contrast, variability in most other large-scale networks decreased linearly over the lifespan. These results demonstrate unique lifespan trajectories of BOLD variability related to specific regions of the brain and add to a growing literature demonstrating the importance of identifying normative trajectories of functional brain maturation. SIGNIFICANCE STATEMENT Although brain signal variability has traditionally been considered a source of unwanted noise, recent work demonstrates that variability in brain signals during task performance is related to brain maturation in old age as well as individual differences in behavioral performance. The current results demonstrate that intrinsic fluctuations in resting-state variability exhibit unique maturation trajectories in specific brain regions and systems, particularly those supporting salience detection. These results have implications for investigations of brain development and aging, as well as interpretations of brain function underlying behavioral changes across the lifespan. Copyright © 2017 the authors 0270-6474/17/375539-10$15.00/0.

  20. Dopaminergic modulation of hemodynamic signal variability and the functional connectome during cognitive performance.

    PubMed

    Alavash, Mohsen; Lim, Sung-Joo; Thiel, Christiane; Sehm, Bernhard; Deserno, Lorenz; Obleser, Jonas

    2018-05-15

    Dopamine underlies important aspects of cognition, and has been suggested to boost cognitive performance. However, how dopamine modulates the large-scale cortical dynamics during cognitive performance has remained elusive. Using functional MRI during a working memory task in healthy young human listeners, we investigated the effect of levodopa (l-dopa) on two aspects of cortical dynamics, blood oxygen-level-dependent (BOLD) signal variability and the functional connectome of large-scale cortical networks. We here show that enhanced dopaminergic signaling modulates the two potentially interrelated aspects of large-scale cortical dynamics during cognitive performance, and the degree of these modulations is able to explain inter-individual differences in l-dopa-induced behavioral benefits. Relative to placebo, l-dopa increased BOLD signal variability in task-relevant temporal, inferior frontal, parietal and cingulate regions. On the connectome level, however, l-dopa diminished functional integration across temporal and cingulo-opercular regions. This hypo-integration was expressed as a reduction in network efficiency and modularity in more than two thirds of the participants and to different degrees. Hypo-integration co-occurred with relative hyper-connectivity in paracentral lobule and precuneus, as well as posterior putamen. Both, l-dopa-induced BOLD signal variability modulation and functional connectome modulations proved predictive of an individual's l-dopa-induced benefits in behavioral performance, namely response speed and perceptual sensitivity. Lastly, l-dopa-induced modulations of BOLD signal variability were correlated with l-dopa-induced modulation of nodal connectivity and network efficiency. Our findings underline the role of dopamine in maintaining the dynamic range of, and communication between, cortical systems, and their explanatory power for inter-individual differences in benefits from dopamine during cognitive performance. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Sensitivity and Specificity of Interictal EEG-fMRI for Detecting the Ictal Onset Zone at Different Statistical Thresholds

    PubMed Central

    Tousseyn, Simon; Dupont, Patrick; Goffin, Karolien; Sunaert, Stefan; Van Paesschen, Wim

    2014-01-01

    There is currently a lack of knowledge about electroencephalography (EEG)-functional magnetic resonance imaging (fMRI) specificity. Our aim was to define sensitivity and specificity of blood oxygen level dependent (BOLD) responses to interictal epileptic spikes during EEG-fMRI for detecting the ictal onset zone (IOZ). We studied 21 refractory focal epilepsy patients who had a well-defined IOZ after a full presurgical evaluation and interictal spikes during EEG-fMRI. Areas of spike-related BOLD changes overlapping the IOZ in patients were considered as true positives; if no overlap was found, they were treated as false-negatives. Matched healthy case-controls had undergone similar EEG-fMRI in order to determine true-negative and false-positive fractions. The spike-related regressor of the patient was used in the design matrix of the healthy case-control. Suprathreshold BOLD changes in the brain of controls were considered as false positives, absence of these changes as true negatives. Sensitivity and specificity were calculated for different statistical thresholds at the voxel level combined with different cluster size thresholds and represented in receiver operating characteristic (ROC)-curves. Additionally, we calculated the ROC-curves based on the cluster containing the maximal significant activation. We achieved a combination of 100% specificity and 62% sensitivity, using a Z-threshold in the interval 3.4–3.5 and cluster size threshold of 350 voxels. We could obtain higher sensitivity at the expense of specificity. Similar performance was found when using the cluster containing the maximal significant activation. Our data provide a guideline for different EEG-fMRI settings with their respective sensitivity and specificity for detecting the IOZ. The unique cluster containing the maximal significant BOLD activation was a sensitive and specific marker of the IOZ. PMID:25101049

  2. Mitogenome metadata: current trends and proposed standards.

    PubMed

    Strohm, Jeff H T; Gwiazdowski, Rodger A; Hanner, Robert

    2016-09-01

    Mitogenome metadata are descriptive terms about the sequence, and its specimen description that allow both to be digitally discoverable and interoperable. Here, we review a sampling of mitogenome metadata published in the journal Mitochondrial DNA between 2005 and 2014. Specifically, we have focused on a subset of metadata fields that are available for GenBank records, and specified by the Genomics Standards Consortium (GSC) and other biodiversity metadata standards; and we assessed their presence across three main categories: collection, biological and taxonomic information. To do this we reviewed 146 mitogenome manuscripts, and their associated GenBank records, and scored them for 13 metadata fields. We also explored the potential for mitogenome misidentification using their sequence diversity, and taxonomic metadata on the Barcode of Life Datasystems (BOLD). For this, we focused on all Lepidoptera and Perciformes mitogenomes included in the review, along with additional mitogenome sequence data mined from Genbank. Overall, we found that none of 146 mitogenome projects provided all the metadata we looked for; and only 17 projects provided at least one category of metadata across the three main categories. Comparisons using mtDNA sequences from BOLD, suggest that some mitogenomes may be misidentified. Lastly, we appreciate the research potential of mitogenomes announced through this journal; and we conclude with a suggestion of 13 metadata fields, available on GenBank, that if provided in a mitogenomes's GenBank record, would increase their research value.

  3. Real-time fMRI neurofeedback of the mediodorsal and anterior thalamus enhances correlation between thalamic BOLD activity and alpha EEG rhythm.

    PubMed

    Zotev, Vadim; Misaki, Masaya; Phillips, Raquel; Wong, Chung Ki; Bodurka, Jerzy

    2018-02-01

    Real-time fMRI neurofeedback (rtfMRI-nf) with simultaneous EEG allows volitional modulation of BOLD activity of target brain regions and investigation of related electrophysiological activity. We applied this approach to study correlations between thalamic BOLD activity and alpha EEG rhythm. Healthy volunteers in the experimental group (EG, n = 15) learned to upregulate BOLD activity of the target region consisting of the mediodorsal (MD) and anterior (AN) thalamic nuclei using rtfMRI-nf during retrieval of happy autobiographical memories. Healthy subjects in the control group (CG, n = 14) were provided with a sham feedback. The EG participants were able to significantly increase BOLD activities of the MD and AN. Functional connectivity between the MD and the inferior precuneus was significantly enhanced during the rtfMRI-nf task. Average individual changes in the occipital alpha EEG power significantly correlated with the average MD BOLD activity levels for the EG. Temporal correlations between the occipital alpha EEG power and BOLD activities of the MD and AN were significantly enhanced, during the rtfMRI-nf task, for the EG compared to the CG. Temporal correlations with the alpha power were also significantly enhanced for the posterior nodes of the default mode network, including the precuneus/posterior cingulate, and for the dorsal striatum. Our findings suggest that the temporal correlation between the MD BOLD activity and posterior alpha EEG power is modulated by the interaction between the MD and the inferior precuneus, reflected in their functional connectivity. Our results demonstrate the potential of the rtfMRI-nf with simultaneous EEG for noninvasive neuromodulation studies of human brain function. © 2017 Wiley Periodicals, Inc.

  4. Plasticity varies with boldness in a weakly-electric fish.

    PubMed

    Kareklas, Kyriacos; Arnott, Gareth; Elwood, Robert W; Holland, Richard A

    2016-01-01

    The expression of animal personality is indicated by patterns of consistency in individual behaviour. Often, the differences exhibited between individuals are consistent across situations. However, between some situations, this can be biased by variable levels of individual plasticity. The interaction between individual plasticity and animal personality can be illustrated by examining situation-sensitive personality traits such as boldness (i.e. risk-taking and exploration tendency). For the weakly electric fish Gnathonemus petersii, light condition is a major factor influencing behaviour. Adapted to navigate in low-light conditions, this species chooses to be more active in dark environments where risk from visual predators is lower. However, G. petersii also exhibit individual differences in their degree of behavioural change from light to dark. The present study, therefore, aims to examine if an increase of motivation to explore in the safety of the dark, not only affects mean levels of boldness, but also the variation between individuals, as a result of differences in individual plasticity. Boldness was consistent between a novel-object and a novel-environment situation in bright light. However, no consistency in boldness was noted between a bright (risky) and a dark (safe) novel environment. Furthermore, there was a negative association between boldness and the degree of change across novel environments, with shier individuals exhibiting greater behavioural plasticity. This study highlights that individual plasticity can vary with personality. In addition, the effect of light suggests that variation in boldness is situation specific. Finally, there appears to be a trade-off between personality and individual plasticity with shy but plastic individuals minimizing costs when perceiving risk and bold but stable individuals consistently maximizing rewards, which can be maladaptive.

  5. Multiband multi-echo imaging of simultaneous oxygenation and flow timeseries for resting state connectivity.

    PubMed

    Cohen, Alexander D; Nencka, Andrew S; Lebel, R Marc; Wang, Yang

    2017-01-01

    A novel sequence has been introduced that combines multiband imaging with a multi-echo acquisition for simultaneous high spatial resolution pseudo-continuous arterial spin labeling (ASL) and blood-oxygenation-level dependent (BOLD) echo-planar imaging (MBME ASL/BOLD). Resting-state connectivity in healthy adult subjects was assessed using this sequence. Four echoes were acquired with a multiband acceleration of four, in order to increase spatial resolution, shorten repetition time, and reduce slice-timing effects on the ASL signal. In addition, by acquiring four echoes, advanced multi-echo independent component analysis (ME-ICA) denoising could be employed to increase the signal-to-noise ratio (SNR) and BOLD sensitivity. Seed-based and dual-regression approaches were utilized to analyze functional connectivity. Cerebral blood flow (CBF) and BOLD coupling was also evaluated by correlating the perfusion-weighted timeseries with the BOLD timeseries. These metrics were compared between single echo (E2), multi-echo combined (MEC), multi-echo combined and denoised (MECDN), and perfusion-weighted (PW) timeseries. Temporal SNR increased for the MECDN data compared to the MEC and E2 data. Connectivity also increased, in terms of correlation strength and network size, for the MECDN compared to the MEC and E2 datasets. CBF and BOLD coupling was increased in major resting-state networks, and that correlation was strongest for the MECDN datasets. These results indicate our novel MBME ASL/BOLD sequence, which collects simultaneous high-resolution ASL/BOLD data, could be a powerful tool for detecting functional connectivity and dynamic neurovascular coupling during the resting state. The collection of more than two echoes facilitates the use of ME-ICA denoising to greatly improve the quality of resting state functional connectivity MRI.

  6. Metal accumulation, growth, antioxidants and oil yield of Brassica juncea L. exposed to different metals.

    PubMed

    Sinha, Sarita; Sinam, Geetgovind; Mishra, Rohit Kumar; Mallick, Shekhar

    2010-09-01

    In agricultural fields, heavy metal contamination is responsible for limiting the crop productivity and quality. This study reports that the plants of Brassica juncea L. cv. Pusa bold grown on contaminated substrates [Cu, Cr(VI), As(III), As(V)] under simulated field conditions have shown translocation of metals to the upper part and its sequestration in the leaves without significantly affecting on oil yield, except for Cr and higher concentration of As(V), compared to control. Decrease in the oil content in As(V) treated plants was observed in a dose dependent manner; however, maximum decrease was recorded in Cr treated plants. Among all the metal treatments, Cr was the most toxic as evident from the decrease in oil content, growth parameters and antioxidants. The accumulation of metals was below the detection limit in the seeds grown on 10 and 30 mg kg(-1) As(III) and Cr(VI); 10 mg kg(-1) As(V)) and thus can be recommended only for oil cultivation. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  7. Task-dependent and task-independent neurovascular responses to syntactic processing⋆

    PubMed Central

    Caplan, David; Chen, Evan; Waters, Gloria

    2008-01-01

    The neural basis for syntactic processing was studied using event-related fMRI to determine the locations of BOLD signal increases in the contrast of syntactically complex sentences with center-embedded, object-extracted relative clauses and syntactically simple sentences with right-branching, subject-extracted relative clauses in a group of 15 participants in three tasks. In a sentence verification task, participants saw a target sentence in one of these two syntactic forms, followed by a probe in a simple active form, and determined whether the probe expressed a proposition in the target. In a plausibility judgment task, participants determined whether a sentence in one of these two syntactic forms was plausible or implausible. Finally, in a non-word detection task, participants determined whether a sentence in one of these two syntactic forms contained only real words or a non-word. BOLD signal associated with the syntactic contrast increased in the left posterior inferior frontal gyrus in non-word detection and in a widespread set of areas in the other two tasks. We conclude that the BOLD activity in the left posterior inferior frontal gyrus reflects syntactic processing independent of concurrent cognitive operations and the more widespread areas of activation reflect the use of strategies and the use of the products of syntactic processing to accomplish tasks. PMID:18387556

  8. Task-related modulations of BOLD low-frequency fluctuations within the default mode network

    NASA Astrophysics Data System (ADS)

    Tommasin, Silvia; Mascali, Daniele; Gili, Tommaso; Eid Assan, Ibrahim; Moraschi, Marta; Fratini, Michela; Wise, Richard G.; Macaluso, Emiliano; Mangia, Silvia; Giove, Federico

    2017-07-01

    Spontaneous low-frequency Blood-Oxygenation Level-Dependent (BOLD) signals acquired during resting state are characterized by spatial patterns of synchronous fluctuations, ultimately leading to the identification of robust brain networks. The resting-state brain networks, including the Default Mode Network (DMN), are demonstrated to persist during sustained task execution, but the exact features of task-related changes of network properties are still not well characterized. In this work we sought to examine in a group of 20 healthy volunteers (age 33±6 years, 8F/12M) the relationship between changes of spectral and spatiotemporal features of one prominent resting-state network, namely the DMN, during the steady-state execution of a sustained working memory n-back task. We found that the steady state execution of such a task impacted on both functional connectivity and amplitude of BOLD fluctuations within large parts of the DMN, but these changes correlated between each other only in a small area of the posterior cingulate. We conclude that combined analysis of multiple parameters related to connectivity, and their changes during the transition from resting state to steady-state task execution, can contribute to a better understanding of how brain networks rearrange themselves in response of a task.

  9. Inter-subject phase synchronization for exploratory analysis of task-fMRI.

    PubMed

    Bolt, Taylor; Nomi, Jason S; Vij, Shruti G; Chang, Catie; Uddin, Lucina Q

    2018-08-01

    Analysis of task-based fMRI data is conventionally carried out using a hypothesis-driven approach, where blood-oxygen-level dependent (BOLD) time courses are correlated with a hypothesized temporal structure. In some experimental designs, this temporal structure can be difficult to define. In other cases, experimenters may wish to take a more exploratory, data-driven approach to detecting task-driven BOLD activity. In this study, we demonstrate the efficiency and power of an inter-subject synchronization approach for exploratory analysis of task-based fMRI data. Combining the tools of instantaneous phase synchronization and independent component analysis, we characterize whole-brain task-driven responses in terms of group-wise similarity in temporal signal dynamics of brain networks. We applied this framework to fMRI data collected during performance of a simple motor task and a social cognitive task. Analyses using an inter-subject phase synchronization approach revealed a large number of brain networks that dynamically synchronized to various features of the task, often not predicted by the hypothesized temporal structure of the task. We suggest that this methodological framework, along with readily available tools in the fMRI community, provides a powerful exploratory, data-driven approach for analysis of task-driven BOLD activity. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Are Fearless Dominance Traits Superfluous in Operationalizing Psychopathy? Incremental Validity and Sex Differences

    PubMed Central

    Murphy, Brett; Lilienfeld, Scott; Skeem, Jennifer; Edens, John

    2016-01-01

    Researchers are vigorously debating whether psychopathic personality includes seemingly adaptive traits, especially social and physical boldness. In a large sample (N=1565) of adult offenders, we examined the incremental validity of two operationalizations of boldness (Fearless Dominance traits in the Psychopathy Personality Inventory, Lilienfeld & Andrews, 1996; Boldness traits in the Triarchic Model of Psychopathy, Patrick et al, 2009), above and beyond other characteristics of psychopathy, in statistically predicting scores on four psychopathy-related measures, including the Psychopathy Checklist-Revised (PCL-R). The incremental validity added by boldness traits in predicting the PCL-R’s representation of psychopathy was especially pronounced for interpersonal traits (e.g., superficial charm, deceitfulness). Our analyses, however, revealed unexpected sex differences in the relevance of these traits to psychopathy, with boldness traits exhibiting reduced importance for psychopathy in women. We discuss the implications of these findings for measurement models of psychopathy. PMID:26866795

  11. Opposite selection on behavioural types by active and passive fishing gears in a simulated guppy Poecilia reticulata fishery.

    PubMed

    Diaz Pauli, B; Wiech, M; Heino, M; Utne-Palm, A C

    2015-03-01

    This study assessed whether fishing gear was selective on behavioural traits, such as boldness and activity, and how this was related with a productivity trait, growth. Female guppies Poecilia reticulata were screened for their behaviour on the shy-bold axis and activity, and then tested whether they were captured differently by passive and active fishing gear, here represented by a trap and a trawl. Both gears were selective on boldness; bold individuals were caught faster by the trap, but escaped the trawl more often. Boldness and gear vulnerability showed weak correlations with activity and growth. The results draw attention to the importance of the behavioural dimension of fishing: selective fishing on behavioural traits will change the trait composition of the population, and might eventually affect resilience and fishery productivity. © 2015 The Fisheries Society of the British Isles.

  12. Question/statement judgments: an fMRI study of intonation processing.

    PubMed

    Doherty, Colin P; West, W Caroline; Dilley, Laura C; Shattuck-Hufnagel, Stefanie; Caplan, David

    2004-10-01

    We examined changes in fMRI BOLD signal associated with question/statement judgments in an event-related paradigm to investigate the neural basis of processing one aspect of intonation. Subjects made judgments about digitized recordings of three types of utterances: questions with rising intonation (RQ; e.g., "She was talking to her father?"), statements with a falling intonation (FS; e.g., "She was talking to her father."), and questions with a falling intonation and a word order change (FQ; e.g., "Was she talking to her father?"). Functional echo planar imaging (EPI) scans were collected from 11 normal subjects. There was increased BOLD activity in bilateral inferior frontal and temporal regions for RQ over either FQ or FS stimuli. The study provides data relevant to the location of regions responsive to intonationally marked illocutionary differences between questions and statements.

  13. The Economic Benefit of Postsecondary Degrees: A State and National Level Analysis

    ERIC Educational Resources Information Center

    Zaback, Katie; Carlson, Andy; Crellin, Matt

    2012-01-01

    In response to the declining international ranking in the percentage of young adults with a postsecondary credential, President Obama, philanthropic and policy organizations, and states have set bold goals essentially to double the number of postsecondary degrees and certificates produced in the next 8 to 13 years. Behind this commitment to…

  14. Smart, Bold Reform for Powerful Schools

    ERIC Educational Resources Information Center

    Cahill, Michelle

    2009-01-01

    Over the past 10 years, the author has spent time in hundreds of high schools reviewing data; observing classes; learning about interventions and whole-school reforms; and speaking with principals, teachers, counselors, and students. She has also been a district leader in New York City responsible for high school reform that has achieved promising…

  15. Going Green: A Comparative Case Study of How Three Higher Education Institutions Achieved Progressive Measures of Environmental Sustainability

    ERIC Educational Resources Information Center

    James, Matthew R.

    2009-01-01

    Leal Filho, MacDermot, and Padgam (1996) contended that post-secondary institutions are well suited to take on leadership responsibilities for society's environmental protection. Higher education has the unique academic freedom to engage in critical thinking and bold experimentation in environmental sustainability (Cortese, 2003). Although…

  16. Social network modulation of reward-related signals

    PubMed Central

    Fareri, Dominic S.; Niznikiewicz, Michael A.; Lee, Victoria K.; Delgado, Mauricio R.

    2012-01-01

    Everyday goals and experiences are often shared with others who may hold different places within our social networks. We investigated whether the experience of sharing a reward differs with respect to social network. Twenty human participants played a card guessing game for shared monetary outcomes with three partners: a computer, a confederate (out-of-network), and a friend (in-network). Participants subjectively rated the experience of sharing a reward more positively with their friend than the other partners. Neuroimaging results support participants’ subjective reports, as ventral striatal BOLD responses were more robust when sharing monetary gains with a friend, as compared to with the confederate or computer, suggesting a higher value for sharing with an in-network partner. Interestingly, ratings of social closeness co-varied with this activity, resulting in a significant partner × closeness interaction: exploratory analysis showed that only participants reporting higher levels of closeness demonstrated partner-related differences in striatal BOLD response. These results suggest that reward valuation in social contexts is sensitive to distinctions of social network, such that sharing positive experiences with in-network others may carry higher value. PMID:22745503

  17. Fractal Analysis of Brain Blood Oxygenation Level Dependent (BOLD) Signals from Children with Mild Traumatic Brain Injury (mTBI).

    PubMed

    Dona, Olga; Noseworthy, Michael D; DeMatteo, Carol; Connolly, John F

    2017-01-01

    Conventional imaging techniques are unable to detect abnormalities in the brain following mild traumatic brain injury (mTBI). Yet patients with mTBI typically show delayed response on neuropsychological evaluation. Because fractal geometry represents complexity, we explored its utility in measuring temporal fluctuations of brain resting state blood oxygen level dependent (rs-BOLD) signal. We hypothesized that there could be a detectable difference in rs-BOLD signal complexity between healthy subjects and mTBI patients based on previous studies that associated reduction in signal complexity with disease. Fifteen subjects (13.4 ± 2.3 y/o) and 56 age-matched (13.5 ± 2.34 y/o) healthy controls were scanned using a GE Discovery MR750 3T MRI and 32-channel RF-coil. Axial FSPGR-3D images were used to prescribe rs-BOLD (TE/TR = 35/2000ms), acquired over 6 minutes. Motion correction was performed and anatomical and functional images were aligned and spatially warped to the N27 standard atlas. Fractal analysis, performed on grey matter, was done by estimating the Hurst exponent using de-trended fluctuation analysis and signal summation conversion methods. Voxel-wise fractal dimension (FD) was calculated for every subject in the control group to generate mean and standard deviation maps for regional Z-score analysis. Voxel-wise validation of FD normality across controls was confirmed, and non-Gaussian voxels (3.05% over the brain) were eliminated from subsequent analysis. For each mTBI patient, regions where Z-score values were at least 2 standard deviations away from the mean (i.e. where |Z| > 2.0) were identified. In individual patients the frequently affected regions were amygdala (p = 0.02), vermis(p = 0.03), caudate head (p = 0.04), hippocampus(p = 0.03), and hypothalamus(p = 0.04), all previously reported as dysfunctional after mTBI, but based on group analysis. It is well known that the brain is best modeled as a complex system. Therefore a measure of complexity using rs-BOLD signal FD could provide an additional method to grade and monitor mTBI. Furthermore, this approach can be personalized thus providing unique patient specific assessment.

  18. The influence of monetary punishment on cognitive control in abstinent cocaine-users*

    PubMed Central

    Hester, Robert; Bell, Ryan P.; Foxe, John J.; Garavan, Hugh

    2013-01-01

    Background Dependent drug users show a diminished neural response to punishment, in both limbic and cortical regions, though it remains unclear how such changes influence cognitive processes critical to addiction. To assess this relationship, we examined the influence of monetary punishment on inhibitory control and adaptive post-error behaviour in abstinent cocaine dependent (CD) participants. Methods 15 abstinent CD and 15 matched control participants performed a Go/No-go response inhibition task, which administered monetary fines for failed response inhibition, during collection of fMRI data. Results CD participants showed reduced inhibitory control and significantly less adaptive post-error slowing in response to punishment, when compared to controls. The diminished behavioural punishment sensitivity shown by CD participants was associated with significant hypoactive error-related BOLD responses in the dorsal anterior cingulate cortex (ACC), right insula and right prefrontal regions. Specifically, CD participants’ error-related response in these regions was not modulated by the presence of punishment, whereas control participants’ response showed a significant BOLD increase during punished errors. Conclusions CD participants showed a blunted response to failed control (errors) that was not modulated by punishment. Consistent with previous findings of reduced sensitivity to monetary loss in cocaine users, we further demonstrate that such insensitivity is associated with an inability to increase cognitive control in the face of negative consequences, a core symptom of addiction. The pattern of deficits in the CD group may have implications for interventions that attempt to improve cognitive control in drug dependent groups via positive/negative incentives. PMID:23791040

  19. The influence of monetary punishment on cognitive control in abstinent cocaine-users.

    PubMed

    Hester, Robert; Bell, Ryan P; Foxe, John J; Garavan, Hugh

    2013-11-01

    Dependent drug users show a diminished neural response to punishment, in both limbic and cortical regions, though it remains unclear how such changes influence cognitive processes critical to addiction. To assess this relationship, we examined the influence of monetary punishment on inhibitory control and adaptive post-error behavior in abstinent cocaine dependent (CD) participants. 15 abstinent CD and 15 matched control participants performed a Go/No-go response inhibition task, which administered monetary fines for failed response inhibition, during collection of fMRI data. CD participants showed reduced inhibitory control and significantly less adaptive post-error slowing in response to punishment, when compared to controls. The diminished behavioral punishment sensitivity shown by CD participants was associated with significant hypoactive error-related BOLD responses in the dorsal anterior cingulate cortex (ACC), right insula and right prefrontal regions. Specifically, CD participants' error-related response in these regions was not modulated by the presence of punishment, whereas control participants' response showed a significant BOLD increase during punished errors. CD participants showed a blunted response to failed control (errors) that was not modulated by punishment. Consistent with previous findings of reduced sensitivity to monetary loss in cocaine users, we further demonstrate that such insensitivity is associated with an inability to increase cognitive control in the face of negative consequences, a core symptom of addiction. The pattern of deficits in the CD group may have implications for interventions that attempt to improve cognitive control in drug dependent groups via positive/negative incentives. Crown Copyright © 2013. Published by Elsevier Ireland Ltd. All rights reserved.

  20. 12 CFR 563b.255 - What must the form of proxy include?

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... proxy include? The form of proxy must include all of the following: (a) A statement in bold face type... separately. (d) The phrase “Revocable Proxy” in bold face type (at least 18 point). (e) A description of any... management will vote the proxy in accordance with the member's specifications. (j) A statement in bold face...

  1. 12 CFR 563b.255 - What must the form of proxy include?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... proxy include? The form of proxy must include all of the following: (a) A statement in bold face type... separately. (d) The phrase “Revocable Proxy” in bold face type (at least 18 point). (e) A description of any... management will vote the proxy in accordance with the member's specifications. (j) A statement in bold face...

  2. Trait and state anxiety is marked by increased working memory-related parietal BOLD signal.

    PubMed

    Ford, Talitha C; Simpson, Tamara; McPhee, Grace; Stough, Con; Downey, Luke A

    2018-05-16

    Anxiety is associated with compromised cognitive control functions, such as working memory. State and trait anxiety within the non-clinical population can be utilised to investigate potential neural markers for anxiety, which may help to elucidate potential prevention and intervention methods. Thirty-two healthy adults (20 female, 12 male), aged between 30 and 65 years, performed a 2-back task whilst fMRI BOLD signal was acquired using a 3T scanner. Mean BOLD signal was obtained in cognitive control network regions of interest of: left and right dorsolateral prefrontal cortex (DLPFC) and posterior parietal lobe (PPL), and medial prefrontal cortex (MPFC). State and trait anxiety levels were recorded. Higher overall anxiety was moderately associated with more left and right PPL BOLD signal; there was a weak relationship between anxiety and left DLPFC BOLD signal. MPFC BOLD signal and trait anxiety were moderately associated with overall 2-back task performance. These findings suggest that non-clinical anxiety affects the recruitment of cortical resources during working memory, but that anxiety does not impair performance during a 2-back task. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Ecological consequences of the bold-shy continuum: the effect of predator boldness on prey risk.

    PubMed

    Ioannou, C C; Payne, M; Krause, J

    2008-08-01

    Although the existence of different personality traits within and between animal populations has been relatively well established, the ecological implications of this variation remain neglected. In this study we tested whether differences in the boldness of pairs of three-spined sticklebacks led to differential predation risk in their prey, Chironomidae larvae. Bolder pairs, those that left a refuge and crossed the tank mid-line sooner, ate a greater proportion of prey in 10 min than less bold fish (therefore prey were at a greater per capita risk). Fish crossed the mid-line more rapidly when a larger number of prey were presented, suggesting they accepted greater risk in return for a larger foraging reward. Perception of predation risk also affected the differences between fish in boldness, as larger fish crossed the mid-line sooner after leaving the refuge (larger fish are less at risk from predation). Hence, an interesting trophic interaction occurs, where the risk experienced by the chironomid larvae is determined by the risk perceived by their predators. Through the variation generated by boldness, a form of behaviourally mediated trophic cascade can occur within (as well as between) communities.

  4. Distinct BOLD fMRI Responses of Capsaicin-Induced Thermal Sensation Reveal Pain-Related Brain Activation in Nonhuman Primates

    PubMed Central

    Asad, Abu Bakar Ali; Seah, Stephanie; Baumgartner, Richard; Feng, Dai; Jensen, Andres; Manigbas, Elaine; Henry, Brian; Houghton, Andrea; Evelhoch, Jeffrey L.; Derbyshire, Stuart W. G.; Chin, Chih-Liang

    2016-01-01

    Background Approximately 20% of the adult population suffer from chronic pain that is not adequately treated by current therapies, highlighting a great need for improved treatment options. To develop effective analgesics, experimental human and animal models of pain are critical. Topically/intra-dermally applied capsaicin induces hyperalgesia and allodynia to thermal and tactile stimuli that mimics chronic pain and is a useful translation from preclinical research to clinical investigation. Many behavioral and self-report studies of pain have exploited the use of the capsaicin pain model, but objective biomarker correlates of the capsaicin augmented nociceptive response in nonhuman primates remains to be explored. Methodology Here we establish an aversive capsaicin-induced fMRI model using non-noxious heat stimuli in Cynomolgus monkeys (n = 8). BOLD fMRI data were collected during thermal challenge (ON:20 s/42°C; OFF:40 s/35°C, 4-cycle) at baseline and 30 min post-capsaicin (0.1 mg, topical, forearm) application. Tail withdrawal behavioral studies were also conducted in the same animals using 42°C or 48°C water bath pre- and post- capsaicin application (0.1 mg, subcutaneous, tail). Principal Findings Group comparisons between pre- and post-capsaicin application revealed significant BOLD signal increases in brain regions associated with the ‘pain matrix’, including somatosensory, frontal, and cingulate cortices, as well as the cerebellum (paired t-test, p<0.02, n = 8), while no significant change was found after the vehicle application. The tail withdrawal behavioral study demonstrated a significant main effect of temperature and a trend towards capsaicin induced reduction of latency at both temperatures. Conclusions These findings provide insights into the specific brain regions involved with aversive, ‘pain-like’, responses in a nonhuman primate model. Future studies may employ both behavioral and fMRI measures as translational biomarkers to gain deeper understanding of pain processing and evaluate the preclinical efficacy of novel analgesics. PMID:27309348

  5. Integrating EEG and fMRI in epilepsy.

    PubMed

    Formaggio, Emanuela; Storti, Silvia Francesca; Bertoldo, Alessandra; Manganotti, Paolo; Fiaschi, Antonio; Toffolo, Gianna Maria

    2011-02-14

    Integrating electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) studies enables to non-invasively investigate human brain function and to find the direct correlation of these two important measures of brain activity. Presurgical evaluation of patients with epilepsy is one of the areas where EEG and fMRI integration has considerable clinical relevance for localizing the brain regions generating interictal epileptiform activity. The conventional analysis of EEG-fMRI data is based on the visual identification of the interictal epileptiform discharges (IEDs) on scalp EEG. The convolution of these EEG events, represented as stick functions, with a model of the fMRI response, i.e. the hemodynamic response function, provides the regressor for general linear model (GLM) analysis of fMRI data. However, the conventional analysis is not automatic and suffers of some subjectivity in IEDs classification. Here, we present an easy-to-use and automatic approach for combined EEG-fMRI analysis able to improve IEDs identification based on Independent Component Analysis and wavelet analysis. EEG signal due to IED is reconstructed and its wavelet power is used as a regressor in GLM. The method was validated on simulated data and then applied on real data set consisting of 2 normal subjects and 5 patients with partial epilepsy. In all continuous EEG-fMRI recording sessions a good quality EEG was obtained allowing the detection of spontaneous IEDs and the analysis of the related BOLD activation. The main clinical finding in EEG-fMRI studies of patients with partial epilepsy is that focal interictal slow-wave activity was invariably associated with increased focal BOLD responses in a spatially related brain area. Our study extends current knowledge on epileptic foci localization and confirms previous reports suggesting that BOLD activation associated with slow activity might have a role in localizing the epileptogenic region even in the absence of clear interictal spikes. Copyright © 2010 Elsevier Inc. All rights reserved.

  6. Bayesian spatiotemporal model of fMRI data using transfer functions.

    PubMed

    Quirós, Alicia; Diez, Raquel Montes; Wilson, Simon P

    2010-09-01

    This research describes a new Bayesian spatiotemporal model to analyse BOLD fMRI studies. In the temporal dimension, we describe the shape of the hemodynamic response function (HRF) with a transfer function model. The spatial continuity and local homogeneity of the evoked responses are modelled by a Gaussian Markov random field prior on the parameter indicating activations. The proposal constitutes an extension of the spatiotemporal model presented in a previous approach [Quirós, A., Montes Diez, R. and Gamerman, D., 2010. Bayesian spatiotemporal model of fMRI data, Neuroimage, 49: 442-456], offering more flexibility in the estimation of the HRF and computational advantages in the resulting MCMC algorithm. Simulations from the model are performed in order to ascertain the performance of the sampling scheme and the ability of the posterior to estimate model parameters, as well as to check the model sensitivity to signal to noise ratio. Results are shown on synthetic data and on a real data set from a block-design fMRI experiment. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  7. Multimodal imaging of repetition priming: Using fMRI, MEG, and intracranial EEG to reveal spatiotemporal profiles of word processing.

    PubMed

    McDonald, Carrie R; Thesen, Thomas; Carlson, Chad; Blumberg, Mark; Girard, Holly M; Trongnetrpunya, Amy; Sherfey, Jason S; Devinsky, Orrin; Kuzniecky, Rubin; Dolye, Werner K; Cash, Sydney S; Leonard, Matthew K; Hagler, Donald J; Dale, Anders M; Halgren, Eric

    2010-11-01

    Repetition priming is a core feature of memory processing whose anatomical correlates remain poorly understood. In this study, we use advanced multimodal imaging (functional magnetic resonance imaging (fMRI) and magnetoencephalography; MEG) to investigate the spatiotemporal profile of repetition priming. We use intracranial electroencephalography (iEEG) to validate our fMRI/MEG measurements. Twelve controls completed a semantic judgment task with fMRI and MEG that included words presented once (new, 'N') and words that repeated (old, 'O'). Six patients with epilepsy completed the same task during iEEG recordings. Blood-oxygen level dependent (BOLD) responses for N vs. O words were examined across the cortical surface and within regions of interest. MEG waveforms for N vs. O words were estimated using a noise-normalized minimum norm solution, and used to interpret the timecourse of fMRI. Spatial concordance was observed between fMRI and MEG repetition effects from 350 to 450 ms within bilateral occipitotemporal and medial temporal, left prefrontal, and left posterior temporal cortex. Additionally, MEG revealed widespread sources within left temporoparietal regions, whereas fMRI revealed bilateral reductions in occipitotemporal and left superior frontal, and increases in inferior parietal, precuneus, and dorsolateral prefrontal activity. BOLD suppression in left posterior temporal, left inferior prefrontal, and right occipitotemporal cortex correlated with MEG repetition-related reductions. IEEG responses from all three regions supported the timecourse of MEG and localization of fMRI. Furthermore, iEEG decreases to repeated words were associated with decreased gamma power in several regions, providing evidence that gamma oscillations are tightly coupled to cognitive phenomena and reflect regional activations seen in the BOLD signal. Copyright 2010 Elsevier Inc. All rights reserved.

  8. Multimodal imaging of repetition priming: Using fMRI, MEG, and intracranial EEG to reveal spatiotemporal profiles of word processing

    PubMed Central

    McDonald, Carrie R.; Thesen, Thomas; Carlson, Chad; Blumberg, Mark; Girard, Holly M.; Trongnetrpunya, Amy; Sherfey, Jason S.; Devinsky, Orrin; Kuzniecky, Rubin; Dolye, Werner K.; Cash, Sydney S.; Leonard, Matt K.; Hagler, Donald J.; Dale, Anders M.; Halgren, Eric

    2010-01-01

    Repetition priming is a core feature of memory processing whose anatomical correlates remain poorly understood. In this study, we use advanced multimodal imaging (functional magnetic resonance imaging (fMRI) and magnetoencephalography; MEG) to investigate the spatiotemporal profile of repetition priming. We use intracranial electroencephalography (iEEG) to validate our fMRI/MEG measurements. Twelve controls completed a semantic judgment task with fMRI and MEG that included words presented once (new, ‘N’) and words that repeated (old, ‘O’). Six patients with epilepsy completed the same task during iEEG recordings. Blood-oxygen level dependent (BOLD) responses for N vs O words were examined across the cortical surface and within regions of interest. MEG waveforms for N vs O words were estimated using a noise-normalized minimum norm solution, and used to interpret the timecourse of fMRI. Spatial concordance was observed between fMRI and MEG repetition effects from 350–450ms within bilateral occipitotemporal and medial temporal, left prefrontal, and left posterior temporal cortex. Additionally, MEG revealed widespread sources within left temporoparietal regions, whereas fMRI revealed bilateral reductions in occipitotemporal and left superior frontal, and increases in inferior parietal, precuneus, and dorsolateral prefrontal activity. BOLD suppression in left posterior temporal, left inferior prefrontal, and right occipitotemporal cortex correlated with MEG repetition-related reductions. IEEG responses from all three regions supported the timecourse of MEG and localization of fMRI. Furthermore, iEEG decreases to repeated words were associated with decreased gamma power in several regions, providing evidence that gamma oscillations are tightly coupled to cognitive phenomena and reflect regional activations seen in the BOLD signal. PMID:20620212

  9. The human brain representation of odor identification.

    PubMed

    Kjelvik, Grete; Evensmoen, Hallvard R; Brezova, Veronika; Håberg, Asta K

    2012-07-01

    Odor identification (OI) tests are increasingly used clinically as biomarkers for Alzheimer's disease and schizophrenia. The aim of this study was to directly compare the neuronal correlates to identified odors vs. nonidentified odors. Seventeen females with normal olfactory function underwent a functional magnetic resonance imaging (fMRI) experiment with postscanning assessment of spontaneous uncued OI. An event-related analysis was performed to compare within-subject activity to spontaneously identified vs. nonidentified odors at the whole brain level, and in anatomic and functional regions of interest (ROIs) in the medial temporal lobe (MTL). Parameter estimate values and blood oxygenated level-dependent (BOLD) signal curves for correctly identified and nonidentified odors were derived from functional ROIs in hippocampus, entorhinal, piriform, and orbitofrontal cortices. Number of activated voxels and max parameter estimate values were obtained from anatomic ROIs in the hippocampus and the entorhinal cortex. At the whole brain level the correct OI gave rise to increased activity in the left entorhinal cortex and secondary olfactory structures, including the orbitofrontal cortex. Increased activation was also observed in fusiform, primary visual, and auditory cortices, inferior frontal plus inferior temporal gyri. The anatomic MTL ROI analysis showed increased activation in the left entorhinal cortex, right hippocampus, and posterior parahippocampal gyri in correct OI. In the entorhinal cortex and hippocampus the BOLD signal increased specifically in response to identified odors and decreased for nonidentified odors. In orbitofrontal and piriform cortices both identified and nonidentified odors gave rise to an increased BOLD signal, but the response to identified odors was significantly greater than that for nonidentified odors. These results support a specific role for entorhinal cortex and hippocampus in OI, whereas piriform and orbitofrontal cortices are active in both smelling and OI. Moreover, episodic as well as semantic memory systems appeared to support OI.

  10. Sex differences in the neural substrates of spatial working memory during adolescence are not mediated by endogenous testosterone.

    PubMed

    Alarcón, Gabriela; Cservenka, Anita; Fair, Damien A; Nagel, Bonnie J

    2014-12-17

    Adolescence is a developmental period characterized by notable changes in behavior, physical attributes, and an increase in endogenous sex steroid hormones, which may impact cognitive functioning. Moreover, sex differences in brain structure are present, leading to differences in neural function and cognition. Here, we examine sex differences in performance and blood oxygen level-dependent (BOLD) activation in a sample of adolescents during a spatial working memory (SWM) task. We also examine whether endogenous testosterone levels mediate differential brain activity between the sexes. Adolescents between ages 10 and 16 years completed a SWM functional magnetic resonance imaging (fMRI) task, and serum hormone levels were assessed within seven days of scanning. While there were no sex differences in task performance (accuracy and reaction time), differences in BOLD response between girls and boys emerged, with girls deactivating brain regions in the default mode network and boys showing increased response in SWM-related brain regions of the frontal cortex. These results suggest that adolescent boys and girls adopted distinct neural strategies, while maintaining spatial cognitive strategies that facilitated comparable cognitive performance of a SWM task. A nonparametric bootstrapping procedure revealed that testosterone did not mediate sex-specific brain activity, suggesting that sex differences in BOLD activation during SWM may be better explained by other factors, such as early organizational effects of sex steroids or environmental influences. Elucidating sex differences in neural function and the influence of gonadal hormones can serve as a basis of comparison for understanding sexually dimorphic neurodevelopment and inform sex-specific psychopathology that emerges in adolescence. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Oxytocin modulates hemodynamic responses to monetary incentives in humans

    PubMed Central

    Mickey, Brian J.; Heffernan, Joseph; Heisel, Curtis; Peciña, Marta; Hsu, David T.; Zubieta, Jon-Kar; Love, Tiffany M.

    2016-01-01

    Oxytocin is a neuropeptide widely recognized for its role in regulating social and reproductive behavior. Increasing evidence from animal models suggests that oxytocin also modulates reward circuitry in non-social contexts, but evidence in humans is lacking. Here we examined the effects of oxytocin administration on reward circuit function in 18 healthy men as they performed a monetary incentive task. The blood oxygenation level dependent (BOLD) signal was measured using functional magnetic resonance imaging in the context of a randomized, double-blind, placebo-controlled, crossover trial of intranasal oxytocin. We found that oxytocin increases the BOLD signal in the midbrain (substantia nigra and ventral tegmental area) during the late phase of the hemodynamic response to incentive stimuli. Oxytocin’s effects on midbrain responses correlated positively with its effects on positive emotional state. We did not detect an effect of oxytocin on responses in the nucleus accumbens. Whole-brain analyses revealed that oxytocin attenuated medial prefrontal cortical deactivation specifically during anticipation of loss. Our findings demonstrate that intranasal administration of oxytocin modulates human midbrain and medial prefrontal function during motivated behavior. These findings suggest that endogenous oxytocin is a neurochemical mediator of reward behaviors in humans – even in a non-social context – and that the oxytocinergic system is a potential target of pharmacotherapy for psychiatric disorders that involve dysfunction of reward circuitry. PMID:27614896

  12. Computational advances towards linking BOLD and behavior.

    PubMed

    Serences, John T; Saproo, Sameer

    2012-03-01

    Traditionally, fMRI studies have focused on analyzing the mean response amplitude within a cortical area. However, the mean response is blind to many important patterns of cortical modulation, which severely limits the formulation and evaluation of linking hypotheses between neural activity, BOLD responses, and behavior. More recently, multivariate pattern classification analysis (MVPA) has been applied to fMRI data to evaluate the information content of spatially distributed activation patterns. This approach has been remarkably successful at detecting the presence of specific information in targeted brain regions, and provides an extremely flexible means of extracting that information without a precise generative model for the underlying neural activity. However, this flexibility comes at a cost: since MVPA relies on pooling information across voxels that are selective for many different stimulus attributes, it is difficult to infer how specific sub-sets of tuned neurons are modulated by an experimental manipulation. In contrast, recently developed encoding models can produce more precise estimates of feature-selective tuning functions, and can support the creation of explicit linking hypotheses between neural activity and behavior. Although these encoding models depend on strong - and often untested - assumptions about the response properties of underlying neural generators, they also provide a unique opportunity to evaluate population-level computational theories of perception and cognition that have previously been difficult to assess using either single-unit recording or conventional neuroimaging techniques. Copyright © 2011. Published by Elsevier Ltd.

  13. Serotonin 2A Receptor Signaling Underlies LSD-induced Alteration of the Neural Response to Dynamic Changes in Music.

    PubMed

    Barrett, Frederick S; Preller, Katrin H; Herdener, Marcus; Janata, Petr; Vollenweider, Franz X

    2017-09-28

    Classic psychedelic drugs (serotonin 2A, or 5HT2A, receptor agonists) have notable effects on music listening. In the current report, blood oxygen level-dependent (BOLD) signal was collected during music listening in 25 healthy adults after administration of placebo, lysergic acid diethylamide (LSD), and LSD pretreated with the 5HT2A antagonist ketanserin, to investigate the role of 5HT2A receptor signaling in the neural response to the time-varying tonal structure of music. Tonality-tracking analysis of BOLD data revealed that 5HT2A receptor signaling alters the neural response to music in brain regions supporting basic and higher-level musical and auditory processing, and areas involved in memory, emotion, and self-referential processing. This suggests a critical role of 5HT2A receptor signaling in supporting the neural tracking of dynamic tonal structure in music, as well as in supporting the associated increases in emotionality, connectedness, and meaningfulness in response to music that are commonly observed after the administration of LSD and other psychedelics. Together, these findings inform the neuropsychopharmacology of music perception and cognition, meaningful music listening experiences, and altered perception of music during psychedelic experiences. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. The Response of the Left Ventral Attentional System to Invalid Targets and its Implication for the Spatial Neglect Syndrome: a Multivariate fMRI Investigation.

    PubMed

    Silvetti, Massimo; Lasaponara, Stefano; Lecce, Francesca; Dragone, Alessio; Macaluso, Emiliano; Doricchi, Fabrizio

    2016-12-01

    In humans, invalid visual targets that mismatch spatial expectations induced by attentional cues are considered to selectively engage a right hemispheric "reorienting" network that includes the temporal parietal junction (TPJ), the inferior frontal gyrus (IFG), and the medial frontal gyrus (MFG). However, recent findings suggest that this hemispheric dominance is not absolute and that it is rather observed because the TPJ and IFG areas in the left hemisphere are engaged both by invalid and valid cued targets. Because of this, the BOLD response of the left hemisphere to invalid targets is usually cancelled out by the standard "invalid versus valid" contrast used in functional magnetic resonance imaging investigations of spatial attention. Here, we used multivariate pattern recognition analysis (MVPA) to gain finer insight into the role played by the left TPJ and IFG in reorienting to invalid targets. We found that in left TPJ and IFG blood oxygen level-dependent (BOLD) responses to invalid and valid targets were associated to different patterns of neural activity, possibly reflecting the presence of functionally distinct neuronal populations. Pattern segregation was significant at group level, it was present in almost all of the participants to the study and was observed both for targets in the left and right side of space. A control whole-brain MVPA ("Searchlight" analysis) confirmed the results obtained in predefined regions of interest and highlighted that also other areas, that is, superior parietal and frontal-polar cortex, show different patterns of BOLD response to valid and invalid targets. These results confirm and expand previous evidence highlighting the involvement of the left hemisphere in reorienting of visual attention (Doricchi et al. 2010; Dragone et al. 2015). These findings suggest that asymmetrical reorienting deficits suffered by right brain damaged patients with left spatial neglect, who have severe impairments in contralesional reorienting and less severe impairments in ipsilesional reorienting, are due to preserved reorienting abilities in the intact left hemisphere. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. Linear Discriminant Analysis Achieves High Classification Accuracy for the BOLD fMRI Response to Naturalistic Movie Stimuli

    PubMed Central

    Mandelkow, Hendrik; de Zwart, Jacco A.; Duyn, Jeff H.

    2016-01-01

    Naturalistic stimuli like movies evoke complex perceptual processes, which are of great interest in the study of human cognition by functional MRI (fMRI). However, conventional fMRI analysis based on statistical parametric mapping (SPM) and the general linear model (GLM) is hampered by a lack of accurate parametric models of the BOLD response to complex stimuli. In this situation, statistical machine-learning methods, a.k.a. multivariate pattern analysis (MVPA), have received growing attention for their ability to generate stimulus response models in a data-driven fashion. However, machine-learning methods typically require large amounts of training data as well as computational resources. In the past, this has largely limited their application to fMRI experiments involving small sets of stimulus categories and small regions of interest in the brain. By contrast, the present study compares several classification algorithms known as Nearest Neighbor (NN), Gaussian Naïve Bayes (GNB), and (regularized) Linear Discriminant Analysis (LDA) in terms of their classification accuracy in discriminating the global fMRI response patterns evoked by a large number of naturalistic visual stimuli presented as a movie. Results show that LDA regularized by principal component analysis (PCA) achieved high classification accuracies, above 90% on average for single fMRI volumes acquired 2 s apart during a 300 s movie (chance level 0.7% = 2 s/300 s). The largest source of classification errors were autocorrelations in the BOLD signal compounded by the similarity of consecutive stimuli. All classifiers performed best when given input features from a large region of interest comprising around 25% of the voxels that responded significantly to the visual stimulus. Consistent with this, the most informative principal components represented widespread distributions of co-activated brain regions that were similar between subjects and may represent functional networks. In light of these results, the combination of naturalistic movie stimuli and classification analysis in fMRI experiments may prove to be a sensitive tool for the assessment of changes in natural cognitive processes under experimental manipulation. PMID:27065832

  16. Advanced and amplified BOLD fluctuations in high-grade gliomas.

    PubMed

    Gupta, Lalit; Gupta, Rakesh K; Postma, Alida A; Sahoo, Prativa; Gupta, Pradeep K; Patir, Rana; Ahlawat, Sunita; Saha, Indrajit; Backes, Walter H

    2018-06-01

    Glioma grade along with patient's age and general health are used for treatment planning and prognosis. To characterize and quantify the spontaneous blood oxygen level-dependent (BOLD) fluctuations in gliomas using measures based on T2*-weighted signal time-series and to distinguish between high- and low-grade gliomas. Retrospective. Twenty-one patients with high-grade and 13 patients with low-grade gliomas confirmed on histology were investigated. Dynamic T2*-weighted (multislice single-shot echo-planar-imaging) magnetic resonance imaging (MRI) was performed on a 3T system with an 8-element receive-only head coil to measure the BOLD fluctuations. In addition, a dynamic T 1 -weighted (3D fast field echo) dynamic contrast-enhanced (DCE) perfusion scan was performed. Three BOLD measures were determined: the temporal shift (TS), amplitude of low frequency fluctuations (ALFF), and regional homogeneity (ReHo). DCE perfusion-based cerebral blood volume (CBV) and time-to-peak (TTP) maps were concurrently evaluated for comparison. An analysis-of-variance test was first used. When the test appeared significant, post-hoc analysis was performed using analysis-of-covariance with age as covariate. Logistic regression and receiver-operator characteristic curve analysis were also performed. TS was significantly advanced in high-grade gliomas compared to the contralateral cortex (P = 0.01) and low-grade gliomas (P = 0.009). In high-grade gliomas, ALFF and CBV were significantly higher than the contralateral cortex (P = 0.041 and P = 0.008, respectively) and low-grade gliomas (P = 0.036 and P = 0.01, respectively). ReHo and TTP did not show significant differences between high- and low-grade gliomas (P = 0.46 and P = 0.42, respectively). The area-under-curve was above 0.7 only for the TS, ALFF, and CBV measures. Advanced and amplified hemodynamic fluctuations manifest in high-grade gliomas, but not in low-grade gliomas, and can be assessed using BOLD measures. Preliminary results showed that quantification of spontaneous fluctuations has potential for hemodynamic characterization of gliomas and distinguishing between high- and low-grade gliomas. 4 Technical Efficacy: Stage 5 J. Magn. Reson. Imaging 2018;47:1616-1625. © 2017 International Society for Magnetic Resonance in Medicine.

  17. Differential reward responses during competition against in- and out-of-network others.

    PubMed

    Fareri, Dominic S; Delgado, Mauricio R

    2014-04-01

    Social interactions occur within a variety of different contexts--cooperative/competitive--and often involve members of our social network. Here, we investigated whether social network modulated the value placed on positive outcomes during a competitive context. Eighteen human participants played a simple card-guessing game with three different competitors: a close friend (in-network), a confederate (out-of-network) and a random number generator (non-social condition) while undergoing functional magnetic resonance imaging. Neuroimaging results at the time of outcome receipt demonstrated a significant main effect of competitor across multiple regions of medial prefrontal cortex, with Blood Oxygen Level Dependent (BOLD) responses strongest when competing against one's friend compared with all other conditions. Striatal BOLD responses demonstrated a more general sensitivity to positive compared with negative monetary outcomes, which an exploratory analysis revealed to be stronger when interacting with social, compared with non-social, competitors. Interestingly, a Granger causality analysis indicated directed influences sent from an medial prefrontal cortex (mPFC) region, which shows social network differentiation of outcomes, and the ventral striatum bilaterally. Our results suggest that when competing against others of varying degrees of social network, mPFC differentially values these outcomes, perhaps treating in-network outcomes as more informative, leaving the striatum to more general value computations.

  18. Domestication affects exploratory behaviour of pikeperch (Sander lucioperca L.) during the transition to pelleted food.

    PubMed

    Molnár, Tamás; Csuvár, Adrienn; Benedek, Ildikó; Molnár, Marcell; Kabai, Péter

    2018-01-01

    Genetic selection for body size during domestication of animal species can inadvertently affect a number of physiological and behavioural traits. The pace-of-life syndrome (POLS) hypothesis predicts that domestication in an artificial environment lacking predators and providing abundant resources prefers proactive individuals with strong feeding motivation, high levels of aggression and risk taking, with low hypothalamus-pituitary-adrenal (HPA) axis responsiveness. In the present experiment we weaned fingerling pike-perch from live feed and habituated them to formulated feed. We recorded the number of weeks needed for the fish to accept pellets, their body length at the age of 100 days, their boldness in a novel object test and their HPI axis responsiveness. Individuals accepting the artificial feed within the first week grew larger than fish habituating later; therefore early weaners would be kept and bred in routine aquaculture procedures. Contrary to predictions of POLS hypothesis, fish weaning earlier and thus growing faster were less bold and had higher HPI axis responsiveness than fish accepting the pellets later or never. As live feed is preferred to artificial pellets, less competitive individuals may switch to pellets earlier. Inadvertent selection for stress sensitive fish may have an effect on production in aquaculture as well as on natural population after intensive restocking.

  19. Nonlinear response of the anterior cingulate and prefrontal cortex in schizophrenia as a function of variable attentional control.

    PubMed

    Blasi, Giuseppe; Taurisano, Paolo; Papazacharias, Apostolos; Caforio, Grazia; Romano, Raffaella; Lobianco, Luciana; Fazio, Leonardo; Di Giorgio, Annabella; Latorre, Valeria; Sambataro, Fabio; Popolizio, Teresa; Nardini, Marcello; Mattay, Venkata S; Weinberger, Daniel R; Bertolino, Alessandro

    2010-04-01

    Previous studies have reported abnormal prefrontal and cingulate activity during attentional control processing in schizophrenia. However, it is not clear how variation in attentional control load modulates activity within these brain regions in this brain disorder. The aim of this study in schizophrenia is to investigate the impact of increasing levels of attentional control processing on prefrontal and cingulate activity. Blood oxygen level-dependent (BOLD) responses of 16 outpatients with schizophrenia were compared with those of 21 healthy subjects while performing a task eliciting increasing levels of attentional control during event-related functional magnetic resonance imaging at 3 T. Results showed reduced behavioral performance in patients at greater attentional control levels. Imaging data indicated greater prefrontal activity at intermediate attentional control levels in patients but greater prefrontal and cingulate responses at high attentional control demands in controls. The BOLD activity profile of these regions in controls increased linearly with increasing cognitive loads, whereas in patients, it was nonlinear. Correlation analysis consistently showed differential region and load-specific relationships between brain activity and behavior in the 2 groups. These results indicate that varying attentional control load is associated in schizophrenia with load- and region-specific modification of the relationship between behavior and brain activity, possibly suggesting earlier saturation of cognitive capacity.

  20. Boldness behavior and stress physiology in a novel urban environment suggest rapid correlated evolutionary adaptation

    PubMed Central

    Cardoso, Gonçalo C.; Whittaker, Danielle J.; Campbell-Nelson, Samuel; Robertson, Kyle W.; Ketterson, Ellen D.

    2012-01-01

    Novel or changing environments expose animals to diverse stressors that likely require coordinated hormonal and behavioral adaptations. Predicted adaptations to urban environments include attenuated physiological responses to stressors and bolder exploratory behaviors, but few studies to date have evaluated the impact of urban life on codivergence of these hormonal and behavioral traits in natural systems. Here, we demonstrate rapid adaptive shifts in both stress physiology and correlated boldness behaviors in a songbird, the dark-eyed junco, following its colonization of a novel urban environment. We compared elevation in corticosterone (CORT) in response to handling and flight initiation distances in birds from a recently established urban population in San Diego, California to birds from a nearby wildland population in the species' ancestral montane breeding range. We also measured CORT and exploratory behavior in birds raised from early life in a captive common garden study. We found persistent population differences for both reduced CORT responses and bolder exploratory behavior in birds from the colonist population, as well as significant negative covariation between maximum CORT and exploratory behavior. Although early developmental effects cannot be ruled out, these results suggest contemporary adaptive evolution of correlated hormonal and behavioral traits associated with colonization of an urban habitat. PMID:22936840

Top