The role of magnetic loops in particle acceleration at nearly perpendicular shocks
NASA Technical Reports Server (NTRS)
Decker, R. B.
1993-01-01
The acceleration of superthermal ions is investigated when a planar shock that is on average nearly perpendicular propagates through a plasma in which the magnetic field is the superposition of a constant uniform component plus a random field of transverse hydromagnetic fluctuations. The importance of the broadband nature of the transverse magnetic fluctuations in mediating ion acceleration at nearly perpendicular shocks is pointed out. Specifically, the fluctuations are composed of short-wavelength components which scatter ions in pitch angle and long-wavelength components which are responsible for a spatial meandering of field lines about the mean field. At nearly perpendicular shocks the field line meandering produces a distribution of transient loops along the shock. As an application of this model, the acceleration of a superthermal monoenergetic population of seed protons at a perpendicular shock is investigated by integrating along the exact phase-space orbits.
NASA Astrophysics Data System (ADS)
Sheykina, Nadiia; Bogatina, Nina
The following variants of roots location relatively to static and alternative components of magnetic field were studied. At first variant the static magnetic field was directed parallel to the gravitation vector, the alternative magnetic field was directed perpendicular to static one; roots were directed perpendicular to both two fields’ components and gravitation vector. At the variant the negative gravitropysm for cress roots was observed. At second variant the static magnetic field was directed parallel to the gravitation vector, the alternative magnetic field was directed perpendicular to static one; roots were directed parallel to alternative magnetic field. At third variant the alternative magnetic field was directed parallel to the gravitation vector, the static magnetic field was directed perpendicular to the gravitation vector, roots were directed perpendicular to both two fields components and gravitation vector; At forth variant the alternative magnetic field was directed parallel to the gravitation vector, the static magnetic field was directed perpendicular to the gravitation vector, roots were directed parallel to static magnetic field. In all cases studied the alternative magnetic field frequency was equal to Ca ions cyclotron frequency. In 2, 3 and 4 variants gravitropism was positive. But the gravitropic reaction speeds were different. In second and forth variants the gravitropic reaction speed in error limits coincided with the gravitropic reaction speed under Earth’s conditions. At third variant the gravitropic reaction speed was slowed essentially.
2010-08-09
44 9 A photograph of a goniophotometer used by Bell and a schematic of a goniophotometer used by Mian et al...plane is called the parallel field component because it lies parallel to the specular plane. The incident electric field vector component which...resides in the plane or- thogonal to the specular plane is called the perpendicular field component because it lies perpendicular to the specular plane. If
Analytical models for coupling reliability in identical two-magnet systems during slow reversals
NASA Astrophysics Data System (ADS)
Kani, Nickvash; Naeemi, Azad
2017-12-01
This paper follows previous works which investigated the strength of dipolar coupling in two-magnet systems. While those works focused on qualitative analyses, this manuscript elucidates reversal through dipolar coupling culminating in analytical expressions for reversal reliability in identical two-magnet systems. The dipolar field generated by a mono-domain magnetic body can be represented by a tensor containing both longitudinal and perpendicular field components; this field changes orientation and magnitude based on the magnetization of neighboring nanomagnets. While the dipolar field does reduce to its longitudinal component at short time-scales, for slow magnetization reversals, the simple longitudinal field representation greatly underestimates the scope of parameters that ensure reliable coupling. For the first time, analytical models that map the geometric and material parameters required for reliable coupling in two-magnet systems are developed. It is shown that in biaxial nanomagnets, the x ̂ and y ̂ components of the dipolar field contribute to the coupling, while all three dimensions contribute to the coupling between a pair of uniaxial magnets. Additionally, the ratio of the longitudinal and perpendicular components of the dipolar field is also very important. If the perpendicular components in the dipolar tensor are too large, the nanomagnet pair may come to rest in an undesirable meta-stable state away from the free axis. The analytical models formulated in this manuscript map the minimum and maximum parameters for reliable coupling. Using these models, it is shown that there is a very small range of material parameters which can facilitate reliable coupling between perpendicular-magnetic-anisotropy nanomagnets; hence, in-plane nanomagnets are more suitable for coupled systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shalchi, A., E-mail: andreasm4@yahoo.com
2016-10-20
We explore the transport of energetic particles in two-component turbulence in which the stochastic magnetic field is assumed to be a superposition of slab and two-dimensional modes. It is known that in magnetostatic slab turbulence, the motion of particles across the mean magnetic field is subdiffusive. If a two-dimensional component is added, diffusion is recovered. It was also shown before that in two-component turbulence, the slab modes do not explicitly contribute to the perpendicular diffusion coefficient. In the current paper, the implicit contribution of slab modes is explored and it is shown that this contribution leads to a reduction ofmore » the perpendicular diffusion coefficient. This effect improves the agreement between simulations and analytical theory. Furthermore, the obtained results are relevant for investigations of diffusive shock acceleration.« less
Ion acceleration by multiple reflections at Martian bow shock
NASA Astrophysics Data System (ADS)
Yamauchi, M.; Futaana, Y.; Fedorov, A.; Frahm, R. A.; Dubinin, E.; Lundin, R.; Sauvaud, J.-A.; Winningham, J. D.; Barabash, S.; Holmström, M.
2012-02-01
The ion mass analyzer (IMA) on board Mars Express revealed bundled structures of ions in the energy domain within a distance of a proton gyroradius from the Martian bow shock. Seven prominent traversals during 2005 were examined when the energy-bunched structure was observed together with pick-up ions of exospheric origin, the latter of which is used to determine the local magnetic field orientation from its circular trajectory in velocity space. These seven traversals include different bow shock configurations: (a) quasi-perpendicular shock with its specular direction of the solar wind more perpendicular to the magnetic field (QT), (b) quasi-perpendicular shock with its specular reflection direction of the solar wind more along the magnetic field (FS), and (c) quasi-parallel (QL) shock. In all seven cases, the velocity components of the energy-bunched structure are consistent with multiple specular reflections of the solar wind at the bow shock up to at least two reflections. The accelerated solar wind ions after two specular reflections have large parallel components with respect to the magnetic field for both QL cases whereas the field-aligned speed is much smaller than the perpendicular speed for all QT cases.
Ion Acceleration by Multiple Reflections at Martian Bow Shock
NASA Astrophysics Data System (ADS)
Yamauchi, M.; Futaana, Y.; Fedorov, A.; Frahm, R. A.; Dubinin, E.; Lundin, R.; Sauvaud, J.-A.; Winningham, J. D.; Barabash, S.; Holmström, H.
2012-04-01
The ion mass analyzer (IMA) on board Mars Express revealed bundled structures of ions in the energy domain within a distance of a proton gyroradius from the Martian bow shock. Seven prominent traversals during 2005 were examined when the energy-bunched structure was observed together with pick-up ions of exospheric origin, the latter of which is used to determine the local magnetic field orientation from its circular trajectory in velocity space. These seven traversals include different bow shock configurations: (a) quasi-perpendicular shock with its specular direction of the solar wind more perpendicular to the magnetic field (QT), (b) quasi-perpendicular shock with its specular reflection direction of the solar wind more along the magnetic field (FS), and (c) quasi-parallel (QL) shock. In all seven cases, the velocity components of the energy-bunched structure are consistent with multiple specular reflections of the solar wind at the bow shock up to at least two reflections. The accelerated solar wind ions after two specular reflections have large parallel components with respect to the magnetic field for the QL shock whereas the field-aligned speed is much smaller than the perpendicular speed for the QT shock. The reflected ions escape into the solar wind when and only when the reflection is in the field-aligned direction.
Charged particle beam scanning using deformed high gradient insulator
Chen, Yu -Jiuan
2015-10-06
Devices and methods are provided to allow rapid deflection of a charged particle beam. The disclosed devices can, for example, be used as part of a hadron therapy system to allow scanning of a target area within a patient's body. The disclosed charged particle beam deflectors include a dielectric wall accelerator (DWA) with a hollow center and a dielectric wall that is substantially parallel to a z-axis that runs through the hollow center. The dielectric wall includes one or more deformed high gradient insulators (HGIs) that are configured to produce an electric field with an component in a direction perpendicular to the z-axis. A control component is also provided to establish the electric field component in the direction perpendicular to the z-axis and to control deflection of a charged particle beam in the direction perpendicular to the z-axis as the charged particle beam travels through the hollow center of the DWA.
Determination of crack depth in aluminum using eddy currents and GMR sensors
NASA Astrophysics Data System (ADS)
Lopes Ribeiro, A.; Pasadas, D.; Ramos, H. G.; Rocha, T.
2015-03-01
In this paper we use eddy currents to determine the depth of linear cracks in aluminum plates. A constant field probe is used to generate the spatially uniform excitation field and a single axis giant magneto-resistor (GMR) sensor is used to measure the eddy currents magnetic field. Different depths were machined in one aluminum plate with 4 mm of thickness. By scanning those cracks the magnetic field components parallel and perpendicular to the crack's line were measured when the eddy currents were launched perpendicularly to the crack's line. To characterize one crack in a plate of a given thickness and material, the experimental procedure was defined. The plate surface is scanned to detect and locate one crack. The acquired data enables the determination of the crack's length and orientation. A second scanning is performed with the excitation current perpendicular to the crack and the GMR sensing axis perpendicular and parallel to the crack's line.
NASA Astrophysics Data System (ADS)
Lee, Dukhyung; Kim, Dai-Sik
2016-01-01
We study light scattering off rectangular slot nano antennas on a metal film varying incident polarization and incident angle, to examine which field vector of light is more important: electric vector perpendicular to, versus magnetic vector parallel to the long axis of the rectangle. While vector Babinet’s principle would prefer magnetic field along the long axis for optimizing slot antenna function, convention and intuition most often refer to the electric field perpendicular to it. Here, we demonstrate experimentally that in accordance with vector Babinet’s principle, the incident magnetic vector parallel to the long axis is the dominant component, with the perpendicular incident electric field making a small contribution of the factor of 1/|ε|, the reciprocal of the absolute value of the dielectric constant of the metal, owing to the non-perfectness of metals at optical frequencies.
Transport in sheared stochastic magnetic fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vanden Eijnden, E.; Balescu, R.
1997-02-01
The transport of test particles in a stochastic magnetic field with a sheared component is studied. Two stages in the particle dynamics are distinguished depending on whether the collisional effects perpendicular to the main field are negligible or not. Whenever the perpendicular collisions are unimportant, the particles show a subdiffusive behavior which is slower in the presence of shear. The particle dynamics is then inhomogeneous and non-Markovian and no diffusion coefficient may be properly defined. When the perpendicular collision frequency is small, this subdiffusive stage may be very long. In the truly asymptotic stage, however, the perpendicular collisions must bemore » accounted for and the particle motion eventually becomes diffusive. Here again, however, the shear is shown to reduce the anomalous diffusion coefficient of the system. {copyright} {ital 1997 American Institute of Physics.}« less
Perpendicular Diffusion Coefficient of Comic Rays: The Presence of Weak Adiabatic Focusing
NASA Astrophysics Data System (ADS)
Wang, J. F.; Qin, G.; Ma, Q. M.; Song, T.; Yuan, S. B.
2017-08-01
The influence of adiabatic focusing on particle diffusion is an important topic in astrophysics and plasma physics. In the past, several authors have explored the influence of along-field adiabatic focusing on the parallel diffusion of charged energetic particles. In this paper, using the unified nonlinear transport theory developed by Shalchi and the method of He and Schlickeiser, we derive a new nonlinear perpendicular diffusion coefficient for a non-uniform background magnetic field. This formula demonstrates that the particle perpendicular diffusion coefficient is modified by along-field adiabatic focusing. For isotropic pitch-angle scattering and the weak adiabatic focusing limit, the derived perpendicular diffusion coefficient is independent of the sign of adiabatic focusing characteristic length. For the two-component model, we simplify the perpendicular diffusion coefficient up to the second order of the power series of the adiabatic focusing characteristic quantity. We find that the first-order modifying factor is equal to zero and that the sign of the second order is determined by the energy of the particles.
NASA Astrophysics Data System (ADS)
Honkura, Y.; Watanabe, N.; Kaneko, Y.; Oshima, S.
1989-03-01
Two-dimensional analyses of magnetotelluric data provide information on anisotropic response for two different polarization cases; the so-called B-polarization and E-polarization cases. Similar anisotropy should also be observed in the horizontal components of magnetic field variations. On the assumption that a reference station provides the normal magnetic field, transfer functions for the horizontal magnetic fields can be derived in a fashion similar to the impedance analysis for magnetotelluric data. We applied this method to magnetic data obtained at some observation sites in a geothermal area in Japan. Transfer functions for the horizontal magnetic fields exhibit a strong anisotropy with the preferred direction nearly perpendicular to that for the electric field. This result implies the existence of strong electric currents flowing in the direction perpendicular to the above preferred direction for the magnetic field. The present method was also applied to the horizontal components of magnetic field variations observed at the seafloor. In this case, a magnetic observatory on land was taken as the reference station, and attenuation of the amplitude of horizontal magnetic field variation was examined. Anisotropy in attenuation was then found with the preferred direction perpendicular to the axis of the Okinawa trough where the seafloor measurement was undertaken.
NASA Astrophysics Data System (ADS)
Van der Donck, M.; Zarenia, M.; Peeters, F. M.
2018-02-01
The dependence of the excitonic photoluminescence (PL) spectrum of monolayer transition metal dichalcogenides (TMDs) on the tilt angle of an applied magnetic field is studied. Starting from a four-band Hamiltonian we construct a theory which quantitatively reproduces the available experimental PL spectra for perpendicular and in-plane magnetic fields. In the presence of a tilted magnetic field, we demonstrate that the dark exciton PL peaks brighten due to the in-plane component of the magnetic field and split for light with different circular polarizations as a consequence of the perpendicular component of the magnetic field. This splitting is more than twice as large as the splitting of the bright exciton peaks in tungsten-based TMDs. We propose an experimental setup that will allow for accessing the predicted splitting of the dark exciton peaks in the PL spectrum.
Perpendicular Diffusion Coefficient of Comic Rays: The Presence of Weak Adiabatic Focusing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, J. F.; Ma, Q. M.; Song, T.
The influence of adiabatic focusing on particle diffusion is an important topic in astrophysics and plasma physics. In the past, several authors have explored the influence of along-field adiabatic focusing on the parallel diffusion of charged energetic particles. In this paper, using the unified nonlinear transport theory developed by Shalchi and the method of He and Schlickeiser, we derive a new nonlinear perpendicular diffusion coefficient for a non-uniform background magnetic field. This formula demonstrates that the particle perpendicular diffusion coefficient is modified by along-field adiabatic focusing. For isotropic pitch-angle scattering and the weak adiabatic focusing limit, the derived perpendicular diffusionmore » coefficient is independent of the sign of adiabatic focusing characteristic length. For the two-component model, we simplify the perpendicular diffusion coefficient up to the second order of the power series of the adiabatic focusing characteristic quantity. We find that the first-order modifying factor is equal to zero and that the sign of the second order is determined by the energy of the particles.« less
NASA Astrophysics Data System (ADS)
Negrea, M.; Petrisor, I.; Shalchi, A.
2017-11-01
We study the diffusion of magnetic field lines in turbulence with magnetic shear. In the first part of the series, we developed a quasi-linear theory for this type of scenario. In this article, we employ the so-called DeCorrelation Trajectory method in order to compute the diffusion coefficients of stochastic magnetic field lines. The magnetic field configuration used here contains fluctuating terms which are described by the dimensionless functions bi(X, Y, Z), i = (x, y) and they are assumed to be Gaussian processes and are perpendicular with respect to the main magnetic field B0. Furthermore, there is also a z-component of the magnetic field depending on radial coordinate x (representing the gradient of the magnetic field) and a poloidal average component. We calculate the diffusion coefficients for magnetic field lines for different values of the magnetic Kubo number K, the dimensionless inhomogeneous magnetic parallel and perpendicular Kubo numbers KB∥, KB⊥ , as well as Ka v=bya vKB∥/KB⊥ .
NASA Technical Reports Server (NTRS)
Cole, K. D.
1982-01-01
Using the unabridged Maxwell equations (including vectors D, E and H) new effects in collisionless plasmas are uncovered. In a steady state, it is found that spatially varying energy density of the electric field (E perpendicular) orthogonal to B produces electric current leading, under certain conditions, to the relationship P perpendicular+B(2)/8 pi-epsilon E perpendicular(2)/8 pi = constant, where epsilon is the dielectric constant of the plasma for fields orthogonal to B. In steady state quasi-two-dimensional flows in plasmas, a general relationship between the components of electric field parallel and perpendicular to B is found. These effects are significant in goephysical and astrophysical plasmas. The general conditions for a steady state in collisionless plasma are deduced. With time variations in a plasma, slow compared to ion-gyroperiod, there is a general current, (j*), which includes the well-known polarisation current, given by J*=d/dt (ExM)+(PxB)xB B(-2) where M and P are the magnetization and polarization vectors respectively.
NASA Technical Reports Server (NTRS)
Greenstadt, E. W.; Moses, S. L.; Coroniti, F. V.; Farris, M. H.; Russell, C. T.
1993-01-01
ULF waves in Earth's foreshock cause the instantaneous angle theta-B(n) between the upstream magnetic field and the shock normal to deviate from its average value. Close to the quasi-parallel (Q-parallel) shock, the transverse components of the waves become so large that the orientation of the field to the normal becomes quasi-perpendicular (Q-perpendicular) during applicable phases of each wave cycle. Large upstream pulses of B were observed completely enclosed in excursions of Theta-B(n) into the Q-perpendicular range. A recent numerical simulation included Theta-B(n) among the parameters examined in Q-parallel runs, and described a similar coincidence as intrinsic to a stage in development of the reformation process of such shocks. Thus, the natural environment of the Q-perpendicular section of Earth's bow shock seems to include an identifiable class of enlarged magnetic pulses for which local Q-perpendicular geometry is a necessary association.
Size and Shape of the Distant Magnetotail
NASA Technical Reports Server (NTRS)
Sibeck, D.G.; Lin, R.-Q.
2014-01-01
We employ a global magnetohydrodynamic model to study the effects of the interplanetary magnetic field (IMF) strength and direction upon the cross-section of the magnetotail at lunar distances. The anisotropic pressure of draped magnetosheath magnetic field lines and the inclusion of a reconnection-generated standing slow mode wave fan bounded by a rotational discontinuity within the definition of the magnetotail result in cross-sections elongated in the direction parallel to the component of the IMF in the plane perpendicular to the Sun-Earth line. Tilted cross-tail plasma sheets separate the northern and southern lobes within these cross-sections. Greater fast mode speeds perpendicular than parallel to the draped magnetos heath magnetic field lines result in greater distances to the bow shock in the direction perpendicular than parallel to the component of the IMF in the plane transverse to the Sun-Earth line. The magnetotail cross-section responds rapidly to reconnected magnetic field lines requires no more than the magnetosheath convection time to appear at any distance downstream, and further adjustments of the cross-section in response to the anisotropic pressures of the draped magnetic field lines require no more than 10-20 minutes. Consequently for typical ecliptic IMF orientations and strengths, the magnetotail cross-section is oblate while the bow shock is prolate.
A reexamination of pitch angle diffusion of electrons at the boundary of the lunar wake
NASA Astrophysics Data System (ADS)
Nakagawa, T.; Iizima, M.
2006-05-01
Velocity distribution of the solar wind electrons injected into the lunar wake boundary is re-examined by using a simple model structure of inward electric field. The electrons that were flowing along the magnetic field lines undergo pitch angle scattering due to the electric field component perpendicular to the magnetic field. The electrons obtain perpendicular speeds twice as much as the drift speed. On the basis of the GEOTAIL observations of the whistler mode waves and strahl electrons, the intensity of the electric field and the thickness of the wake structure are estimated to be 28-40 mVm-1 and less than 20 km, respectively.
NASA Astrophysics Data System (ADS)
Kanai, Shun; Gajek, Martin; Worledge, D. C.; Matsukura, Fumihiro; Ohno, Hideo
2014-12-01
We measure homodyne-detected ferromagnetic resonance (FMR) induced by the electric-field effect in a CoFeB/MgO/CoFeB magnetic tunnel junction (MTJ) with perpendicular magnetic easy axis under dc bias voltages up to 0.1 V. From the bias dependence of the resonant frequency, we find that the first order perpendicular magnetic anisotropy is modulated by the applied electric field, whereas the second order component is virtually independent of the electric field. The lineshapes of the FMR spectra are bias dependent, which are explained by the combination of electric-field effect and reflection of the bias voltage from the MTJ.
Tailoring of the Perpendicular Magnetization Component in Ferromagnetic Films on a Vicinal Substrate
NASA Astrophysics Data System (ADS)
Stupakiewicz, A.; Maziewski, A.; Matlak, K.; Spiridis, N.; Ślęzak, M.; Ślęzak, T.; Zajac, M.; Korecki, J.
2008-11-01
We have engineered the magnetic properties of 1 8 nm Co films epitaxially grown on an Au-buffered bifacial W(110)/W(540) single crystal. The surface of Au/W(110) was atomically flat, whereas the Au/W(540) followed the morphology of the vicinal W surface, showing a regular array of monoatomic steps. For Co grown on Au/W(540), the existence of the out-of-plane magnetization component extended strongly to a thickness d of about 8 nm, which was accompanied by an anomalous increase of the out-of-plane switching field with increasing d. In addition, the process of up-down magnetization switching could be realized with both a perpendicular and in-plane external magnetic field.
Jackson, Jasper A.; Cooper, Richard K.
1982-01-01
Means for producing a region of homogeneous magnetic field remote from the source of the field, wherein two equal field sources are arranged axially so their fields oppose, producing a region near the plane perpendicular to the axis midway between the sources where the radial component of the field goes through a maximum. Near the maximum, the field is homogeneous over prescribed regions.
Distance-limited perpendicular distance sampling for coarse woody debris: theory and field results
Mark J. Ducey; Micheal S. Williams; Jeffrey H. Gove; Steven Roberge; Robert S. Kenning
2013-01-01
Coarse woody debris (CWD) has been identified as an important component in many forest ecosystem processes. Perpendicular distance sampling (PDS) is one of the several efficient new methods that have been proposed for CWD inventory. One drawback of PDS is that the maximum search distance can be very large, especially if CWD diameters are large or the volume factor...
Using a constraint on the parallel velocity when determining electric fields with EISCAT
NASA Technical Reports Server (NTRS)
Caudal, G.; Blanc, M.
1988-01-01
A method is proposed to determine the perpendicular components of the ion velocity vector (and hence the perpendicular electric field) from EISCAT tristatic measurements, in which one introduces an additional constraint on the parallel velocity, in order to take account of our knowledge that the parallel velocity of ions is small. This procedure removes some artificial features introduced when the tristatic geometry becomes too unfavorable. It is particularly well suited for the southernmost or northernmost positions of the tristatic measurements performed by meridian scan experiments (CP3 mode).
Gruen, Dieter M.; Young, Charles E.; Pellin, Michael J.
1989-01-01
A method and apparatus for extracting for quantitative analysis ions of selected atomic components of a sample. A lens system is configured to provide a slowly diminishing field region for a volume containing the selected atomic components, enabling accurate energy analysis of ions generated in the slowly diminishing field region. The lens system also enables focusing on a sample of a charged particle beam, such as an ion beam, along a path length perpendicular to the sample and extraction of the charged particles along a path length also perpendicular to the sample. Improvement of signal to noise ratio is achieved by laser excitation of ions to selected autoionization states before carrying out quantitative analysis. Accurate energy analysis of energetic charged particles is assured by using a preselected resistive thick film configuration disposed on an insulator substrate for generating predetermined electric field boundary conditions to achieve for analysis the required electric field potential. The spectrometer also is applicable in the fields of SIMS, ISS and electron spectroscopy.
Gruen, D.M.; Young, C.E.; Pellin, M.J.
1989-08-08
A method and apparatus are described for extracting for quantitative analysis ions of selected atomic components of a sample. A lens system is configured to provide a slowly diminishing field region for a volume containing the selected atomic components, enabling accurate energy analysis of ions generated in the slowly diminishing field region. The lens system also enables focusing on a sample of a charged particle beam, such as an ion beam, along a path length perpendicular to the sample and extraction of the charged particles along a path length also perpendicular to the sample. Improvement of signal to noise ratio is achieved by laser excitation of ions to selected auto-ionization states before carrying out quantitative analysis. Accurate energy analysis of energetic charged particles is assured by using a preselected resistive thick film configuration disposed on an insulator substrate for generating predetermined electric field boundary conditions to achieve for analysis the required electric field potential. The spectrometer also is applicable in the fields of SIMS, ISS and electron spectroscopy. 8 figs.
Non-elliptic wavevector anisotropy for magnetohydrodynamic turbulence
NASA Astrophysics Data System (ADS)
Narita, Y.
2015-11-01
A model of non-elliptic wavevector anisotropy is developed for the inertial-range spectrum of magnetohydrodynamic turbulence and is presented in the two-dimensional wavevector domain spanning the directions parallel and perpendicular to the mean magnetic field. The non-elliptic model is a variation of the elliptic model with different scalings along the parallel and the perpendicular components of the wavevectors to the mean magnetic field. The non-elliptic anisotropy model reproduces the smooth transition of the power-law spectra from an index of -2 in the parallel projection with respect to the mean magnetic field to an index of -5/3 in the perpendicular projection observed in solar wind turbulence, and is as competitive as the critical balance model to explain the measured frequency spectra in the solar wind. The parameters in the non-elliptic spectrum model are compared with the solar wind observations.
Effects of Shock and Turbulence Properties on Electron Acceleration
NASA Astrophysics Data System (ADS)
Qin, G.; Kong, F.-J.; Zhang, L.-H.
2018-06-01
Using test particle simulations, we study electron acceleration at collisionless shocks with a two-component model turbulent magnetic field with slab component including dissipation range. We investigate the importance of the shock-normal angle θ Bn, magnetic turbulence level {(b/{B}0)}2, and shock thickness on the acceleration efficiency of electrons. It is shown that at perpendicular shocks the electron acceleration efficiency is enhanced with the decrease of {(b/{B}0)}2, and at {(b/{B}0)}2=0.01 the acceleration becomes significant due to a strong drift electric field with long time particles staying near the shock front for shock drift acceleration (SDA). In addition, at parallel shocks the electron acceleration efficiency is increasing with the increase of {(b/{B}0)}2, and at {(b/{B}0)}2=10.0 the acceleration is very strong due to sufficient pitch-angle scattering for first-order Fermi acceleration, as well as due to the large local component of the magnetic field perpendicular to the shock-normal angle for SDA. On the other hand, the high perpendicular shock acceleration with {(b/{B}0)}2=0.01 is stronger than the high parallel shock acceleration with {(b/{B}0)}2=10.0, the reason might be the assumption that SDA is more efficient than first-order Fermi acceleration. Furthermore, for oblique shocks, the acceleration efficiency is small no matter whether the turbulence level is low or high. Moreover, for the effect of shock thickness on electron acceleration at perpendicular shocks, we show that there exists the bendover thickness, L diff,b. The acceleration efficiency does not noticeably change if the shock thickness is much smaller than L diff,b. However, if the shock thickness is much larger than L diff,b, the acceleration efficiency starts to drop abruptly.
Determination of domain wall chirality using in situ Lorentz transmission electron microscopy
Chess, Jordan J.; Montoya, Sergio A.; Fullerton, Eric E.; ...
2017-02-23
Controlling domain wall chirality is increasingly seen in non-centrosymmetric materials. Mapping chiral magnetic domains requires knowledge about all the vector components of the magnetization, which poses a problem for conventional Lorentz transmission electron microscopy (LTEM) that is only sensitive to magnetic fields perpendicular to the electron beams direction of travel. The standard approach in LTEM for determining the third component of the magnetization is to tilt the sample to some angle and record a second image. Furthermore, this presents a problem for any domain structures that are stabilized by an applied external magnetic field (e.g. skyrmions), because the standard LTEMmore » setup does not allow independent control of the angle of an applied magnetic field, and sample tilt angle. Here we show that applying a modified transport of intensity equation analysis to LTEM images collected during an applied field sweep, we can determine the domain wall chirality of labyrinth domains in a perpendicularly magnetized material, avoiding the need to tilt the sample.« less
Determination of domain wall chirality using in situ Lorentz transmission electron microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chess, Jordan J.; Montoya, Sergio A.; Fullerton, Eric E.
Controlling domain wall chirality is increasingly seen in non-centrosymmetric materials. Mapping chiral magnetic domains requires knowledge about all the vector components of the magnetization, which poses a problem for conventional Lorentz transmission electron microscopy (LTEM) that is only sensitive to magnetic fields perpendicular to the electron beams direction of travel. The standard approach in LTEM for determining the third component of the magnetization is to tilt the sample to some angle and record a second image. Furthermore, this presents a problem for any domain structures that are stabilized by an applied external magnetic field (e.g. skyrmions), because the standard LTEMmore » setup does not allow independent control of the angle of an applied magnetic field, and sample tilt angle. Here we show that applying a modified transport of intensity equation analysis to LTEM images collected during an applied field sweep, we can determine the domain wall chirality of labyrinth domains in a perpendicularly magnetized material, avoiding the need to tilt the sample.« less
The formation flare loops by magnetic reconnection and chromospheric ablation
NASA Technical Reports Server (NTRS)
Forbes, T. G.; Malherbe, J. M.; Priest, E. R.
1989-01-01
Noncoplanar compressible reconnection theory is combined here with simple scaling arguments for ablation and radiative cooling to predict average properties of hot and cool flare loops as a function of the coronal vector magnetic field. For a coronal field strength of 100 G, the temperature of the hot flare loops decreases from 1.2 x 10 to the 7th K to 4.0 x 10 to the 6th K as the component of the coronal magnetic field perpendicular to the plane of the loops increases from 0 percent to 86 percent of the total field. When the perpendicular component exceeds 86 percent of the total field or when the altitude of the reconnection site exceeds 10 to the 6th km, flare loops no longer occur. Shock-enhanced radiative cooling triggers the formation of cool H-alpha flare loops with predicted densities of roughly 10 to the 13th/cu cm, and a small gap of roughly 1000 km is predicted to exist between the footpoints of the cool flare loops and the inner edges of the flare ribbons.
The properties and causes of rippling in quasi-perpendicular collisionless shock fronts
NASA Astrophysics Data System (ADS)
Lowe, R. E.; Burgess, D.
2003-03-01
The overall structure of quasi-perpendicular, high Mach number collisionless shocks is controlled to a large extent by ion reflection at the shock ramp. Departure from a strictly one-dimensional structure is indicated by simulation results showing that the surface of such shocks is rippled, with variations in the density and all field components. We present a detailed analysis of these shock ripples, using results from a two-dimensional hybrid (particle ions, electron fluid) simulation. The process that generates the ripples is poorly understood, because the large gradients at the shock ramp make it difficult to identify instabilities. Our analysis reveals new features of the shock ripples, which suggest the presence of a surface wave mode dominating the shock normal magnetic field component of the ripples, as well as whistler waves excited by reflected ions.
Vectorial magnetometry with the magneto-optic Kerr effect applied to Co/Cu/Co trilayer structures
NASA Astrophysics Data System (ADS)
Daboo, C.; Bland, J. A. C.; Hicken, R. J.; Ives, A. J. R.; Baird, M. J.; Walker, M. J.
1993-05-01
We describe an arrangement in which the magnetization components parallel and perpendicular to the applied field are both determined from longitudinal magneto-optic Kerr effect measurements. This arrangement differs from the usual procedures in that the same optical geometry is used but the magnet geometry altered. This leads to two magneto-optic signals which are directly comparable in magnitude thereby giving the in-plane magnetization vector directly. We show that it is of great value to study both in-plane magnetization vector components when studying coupled structures where significant anisotropies are also present. We discuss simulations which show that it is possible to accurately determine the coupling strength in such structures by examining the behavior of the component of magnetization perpendicular to the applied field in the vicinity of the hard in-plane anisotropy axis. We illustrate this technique by examining the magnetization and magnetic anisotropy behavior of ultrathin Co/Cu(111)/Co (dCu=20 Å and 27 Å) trilayer structures prepared by molecular beam epitaxy, in which coherent rotation of the magnetization vector is observed when the magnetic field B is applied along the hard in-plane anisotropy axis, with the magnitude of the magnetization vector constant and close to its bulk value. Results of micromagnetic calculations closely reproduce the observed parallel and perpendicular magnetization loops, and yield strong uniaxial magnetic anisotropies in both layers, while the interlayer coupling appears to be absent or negligible in comparison with the anisotropy strengths.
Electrodynamics in One Dimension: Radiation and Reflection
ERIC Educational Resources Information Center
Asti, G.; Coisson, R.
2011-01-01
Problems involving polarized plane waves and currents on sheets perpendicular to the wavevector involve only one component of the fields, so it is possible to discuss electrodynamics in one dimension. Taking for simplicity linearly polarized sinusoidal waves, we can derive the field emitted by currents (analogous to dipole radiation in three…
Diffusive shock acceleration - Acceleration rate, magnetic-field direction and the diffusion limit
NASA Technical Reports Server (NTRS)
Jokipii, J. R.
1992-01-01
This paper reviews the concept of diffusive shock acceleration, showing that the acceleration of charged particles at a collisionless shock is a straightforward consequence of the standard cosmic-ray transport equation, provided that one treats the discontinuity at the shock correctly. This is true for arbitrary direction of the upstream magnetic field. Within this framework, it is shown that acceleration at perpendicular or quasi-perpendicular shocks is generally much faster than for parallel shocks. Paradoxically, it follows also that, for a simple scattering law, the acceleration is faster for less scattering or larger mean free path. Obviously, the mean free path can not become too large or the diffusion limit becomes inapplicable. Gradient and curvature drifts caused by the magnetic-field change at the shock play a major role in the acceleration process in most cases. Recent observations of the charge state of the anomalous component are shown to require the faster acceleration at the quasi-perpendicular solar-wind termination shock.
A new RF window designed for high-power operation in an S-band LINAC RF system
NASA Astrophysics Data System (ADS)
Joo, Youngdo; Kim, Seung-Hwan; Hwang, Woonha; Ryu, Jiwan; Roh, Sungjoo
2016-09-01
A new RF window is designed for high-power operation at the Pohang Light Source-II (PLSII) S-band linear accelerator (LINAC) RF system. In order to reduce the strength of the electric field component perpendicular to the ceramic disk, which is commonly known as the main cause of most discharge breakdowns in ceramic disk, we replace the pill-box type cavity in the conventional RF window with an overmoded cavity. The overmoded cavity is coupled with input and output waveguides through dual side-wall coupling irises to reduce the electric field strength at the iris and the number of possible mode competitions. The finite-difference time-domain (FDTD) simulation, CST MWS, was used in the design process. The simulated maximum electric field component perpendicular to the ceramic for the new RF window is reduced by an order of magnitude compared with taht for the conventional RF window, which holds promise for stable high-power operation.
Two interacting current model of holographic Dirac fluid in graphene
NASA Astrophysics Data System (ADS)
Rogatko, Marek; Wysokinski, Karol I.
2018-02-01
The electrons in graphene for energies close to the Dirac point have been found to form strongly interacting fluid. Taking this fact into account we have extended previous work on the transport properties of graphene by taking into account possible interactions between the currents and adding the external magnetic field directed perpendicularly to the graphene sheet. The perpendicular magnetic field B severely modifies the transport parameters. In the present approach the quantization of the spectrum and formation of Landau levels is ignored. Gauge/gravity duality has been used in the probe limit. The dependence on the charge density of the Seebeck coefficient and thermoelectric parameters αi j nicely agree with recent experimental data for graphene. The holographic model allows for the interpretation of one of the fields representing the currents as resulting from the dark matter sector. For the studied geometry with electric field perpendicular to the thermal gradient the effect of the dark sector has been found to modify the transport parameters but mostly in a quantitative way only. This makes difficult the detection of this elusive component of the Universe by studying transport properties of graphene.
Asymmetry in the Farley-Buneman dispersion relation caused by parallel electric fields
NASA Astrophysics Data System (ADS)
Forsythe, Victoriya V.; Makarevich, Roman A.
2016-11-01
An implicit assumption utilized in studies of E region plasma waves generated by the Farley-Buneman instability (FBI) is that the FBI dispersion relation and its solutions for the growth rate and phase velocity are perfectly symmetric with respect to the reversal of the wave propagation component parallel to the magnetic field. In the present study, a recently derived general dispersion relation that describes fundamental plasma instabilities in the lower ionosphere including FBI is considered and it is demonstrated that the dispersion relation is symmetric only for background electric fields that are perfectly perpendicular to the magnetic field. It is shown that parallel electric fields result in significant differences between the growth rates and phase velocities for propagation of parallel components of opposite signs. These differences are evaluated using numerical solutions of the general dispersion relation and shown to exhibit an approximately linear relationship with the parallel electric field near the E region peak altitude of 110 km. An analytic expression for the differences is also derived from an approximate version of the dispersion relation, with comparisons between numerical and analytic results agreeing near 110 km. It is further demonstrated that parallel electric fields do not change the overall symmetry when the full 3-D wave propagation vector is reversed, with no symmetry seen when either the perpendicular or parallel component is reversed. The present results indicate that moderate-to-strong parallel electric fields of 0.1-1.0 mV/m can result in experimentally measurable differences between the characteristics of plasma waves with parallel propagation components of opposite polarity.
Ionospheric Disturbances during the Period 30 April to 5 May 1976.
1979-05-01
Data 1977, IUGG Publications Office, 39 Ter Rue Gay, Lussac , Paris, 1977. Ichinose, T., and T. Oagawa, HF Doppler observations associated with McMath...electric field E can be separated into components parallel and perpendicular to the magnetic field, E and E . Ohm’s law , relating current density i to the
The leap-frog effect of ring currents in benzene.
Ligabue, Andrea; Soncini, Alessandro; Lazzeretti, Paolo
2002-03-06
Symmetry arguments show that the ring-current model proposed by Pauling, Lonsdale, and London to explain the enhanced diamagnetism of benzene is flawed by an intrinsic drawback. The minimal basis set of six atomic 2p orbitals taken into account to develop such a model is inherently insufficient to predict a paramagnetic contribution to the perpendicular component of magnetic susceptibility in planar ring systems such as benzene. Analogous considerations can be made for the hypothetical H(6) cyclic molecule. A model allowing for extended basis sets is necessary to rationalize the magnetism of aromatics. According to high-quality coupled Hartree-Fock calculations, the trajectories of the current density vector field induced by a magnetic field perpendicular to the skeletal plane of benzene in the pi electrons are noticeably different from those typical of a Larmor diamagnetic circulation, in that (i) significant deformation of the orbits from circular to hexagonal symmetry occurs, which is responsible for a paramagnetic contribution of pi electrons to the out-of-plane component of susceptibility, and (ii) a sizable component of the pi current density vector parallel to the inducing field is predicted. This causes a waving motion of pi electrons; streamlines are characterized by a "leap-frog effect".
Three-dimensional Hybrid Simulation Study of Anisotropic Turbulence in the Proton Kinetic Regime
NASA Astrophysics Data System (ADS)
Vasquez, Bernard J.; Markovskii, Sergei A.; Chandran, Benjamin D. G.
2014-06-01
Three-dimensional numerical hybrid simulations with particle protons and quasi-neutralizing fluid electrons are conducted for a freely decaying turbulence that is anisotropic with respect to the background magnetic field. The turbulence evolution is determined by both the combined root-mean-square (rms) amplitude for fluctuating proton bulk velocity and magnetic field and by the ratio of perpendicular to parallel wavenumbers. This kind of relationship had been considered in the past with regard to interplanetary turbulence. The fluctuations nonlinearly evolve to a turbulent phase whose net wave vector anisotropy is usually more perpendicular than the initial one, irrespective of the initial ratio of perpendicular to parallel wavenumbers. Self-similar anisotropy evolution is found as a function of the rms amplitude and parallel wavenumber. Proton heating rates in the turbulent phase vary strongly with the rms amplitude but only weakly with the initial wave vector anisotropy. Even in the limit where wave vectors are confined to the plane perpendicular to the background magnetic field, the heating rate remains close to the corresponding case with finite parallel wave vector components. Simulation results obtained as a function of proton plasma to background magnetic pressure ratio β p in the range 0.1-0.5 show that the wave vector anisotropy also weakly depends on β p .
Remanent-magnetization decay in CoCr films
NASA Astrophysics Data System (ADS)
Skorjanec, J.; Cottles, V.; Close, J.; Iverson, P.; Edwards, J.; Dahlberg, E. Dan
1990-05-01
The decay of the remanent magnetization of several thin films of CoCr has been studied using the extraordinary Hall effect as a probe of the component of the magnetization perpendicular to the plane of the films. Consistent with previous measurements of CoCr, the remanent magnetization decays quasilogarithmically with time after the removal of a saturating magnetic field. In the present work the effect of a magnetically soft keeper layer on the decay of the magnetization has been investigated. It is found that the keeper layer does not affect the remanent magnetization nor does it decrease the decay rate of the perpendicular magnetization. This result indicates that the soft keeper layer is not effective at screening the demagnetization field on a length scale relevant to the decay-producing fields.
Temperature dependence of spin-orbit torques in W/CoFeB bilayers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skowroński, Witold, E-mail: skowron@agh.edu.pl; Cecot, Monika; Kanak, Jarosław
We report on the temperature variation of spin-orbit torques in perpendicularly magnetized W/CoFeB bilayers. Harmonic Hall voltage measurements in perpendicularly magnetized CoFeB reveal increased longitudinal and transverse effective magnetic field components at low temperatures. The damping-like spin-orbit torque reaches an efficiency of 0.55 at 19 K. Scanning transmission electron microscopy and X-ray reflectivity measurements indicate that considerable interface mixing between W and CoFeB may be responsible for strong spin-orbit interactions.
Designing a Wien Filter Model with General Particle Tracer
NASA Astrophysics Data System (ADS)
Mitchell, John; Hofler, Alicia
2017-09-01
The Continuous Electron Beam Accelerator Facility injector employs a beamline component called a Wien filter which is typically used to select charged particles of a certain velocity. The Wien filter is also used to rotate the polarization of a beam for parity violation experiments. The Wien filter consists of perpendicular electric and magnetic fields. The electric field changes the spin orientation, but also imposes a transverse kick which is compensated for by the magnetic field. The focus of this project was to create a simulation of the Wien filter using General Particle Tracer. The results from these simulations were vetted against machine data to analyze the accuracy of the Wien model. Due to the close agreement between simulation and experiment, the data suggest that the Wien filter model is accurate. The model allows a user to input either the desired electric or magnetic field of the Wien filter along with the beam energy as parameters, and is able to calculate the perpendicular field strength required to keep the beam on axis. The updated model will aid in future diagnostic tests of any beamline component downstream of the Wien filter, and allow users to easily calculate the electric and magnetic fields needed for the filter to function properly. Funding support provided by DOE Office of Science's Student Undergraduate Laboratory Internship program.
NASA Astrophysics Data System (ADS)
Sun, Jicheng; Gao, Xinliang; Lu, Quanming; Chen, Lunjin; Liu, Xu; Wang, Xueyi; Tao, Xin; Wang, Shui
2017-05-01
In this paper, we perform a 1-D particle-in-cell (PIC) simulation model consisting of three species, cold electrons, cold ions, and energetic ion ring, to investigate spectral structures of magnetosonic waves excited by ring distribution protons in the Earth's magnetosphere, and dynamics of charged particles during the excitation of magnetosonic waves. As the wave normal angle decreases, the spectral range of excited magnetosonic waves becomes broader with upper frequency limit extending beyond the lower hybrid resonant frequency, and the discrete spectra tends to merge into a continuous one. This dependence on wave normal angle is consistent with the linear theory. The effects of magnetosonic waves on the background cold plasma populations also vary with wave normal angle. For exactly perpendicular magnetosonic waves (parallel wave number k|| = 0), there is no energization in the parallel direction for both background cold protons and electrons due to the negligible fluctuating electric field component in the parallel direction. In contrast, the perpendicular energization of background plasmas is rather significant, where cold protons follow unmagnetized motion while cold electrons follow drift motion due to wave electric fields. For magnetosonic waves with a finite k||, there exists a nonnegligible parallel fluctuating electric field, leading to a significant and rapid energization in the parallel direction for cold electrons. These cold electrons can also be efficiently energized in the perpendicular direction due to the interaction with the magnetosonic wave fields in the perpendicular direction. However, cold protons can be only heated in the perpendicular direction, which is likely caused by the higher-order resonances with magnetosonic waves. The potential impacts of magnetosonic waves on the energization of the background cold plasmas in the Earth's inner magnetosphere are also discussed in this paper.
Shocklets, SLAMS, and Field-Aligned Ion Beams in the Terrestrial Foreshock
NASA Technical Reports Server (NTRS)
Wilson, L. B.; Koval, A.; Sibeck, D. G.; Szabo, A.; Cattell, C. A.; Kasper, J. C.; Maruca, B. A.; Pulupa, M.; Salem, C. S.; Wilber, M.
2012-01-01
We present Wind spacecraft observations of ion distributions showing field- aligned beams (FABs) and large-amplitude magnetic fluctuations composed of a series of shocklets and short large-amplitude magnetic structures (SLAMS). The FABs are found to have T(sub k) approx 80-850 eV, V(sub b)/V(sub sw) approx 1.3-2.4, T(sub perpendicular,b)/T(sub paralell,b) approx 1-8, and n(sub b)/n(sub o) approx 0.2-11%. Saturation amplitudes for ion/ion resonant and non-resonant instabilities are too small to explain the observed SLAMS amplitudes. We show two examples where groups of SLAMS can act like a local quasi-perpendicular shock reflecting ions to produce the FABs, a scenario distinct from the more-common production at the quasi-perpendicular bow shock. The SLAMS exhibit a foot-like magnetic enhancement with a leading magnetosonic whistler train, consistent with previous observations. Strong ion and electron heating are observed within the series of shocklets and SLAMS with temperatures increasing by factors approx > 5 and approx >3, respectively. Both the core and halo electron components show strong perpendicular heating inside the feature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo Zehua; Tang Xianzhu
Parallel transport of long mean-free-path plasma along an open magnetic field line is characterized by strong temperature anisotropy, which is driven by two effects. The first is magnetic moment conservation in a non-uniform magnetic field, which can transfer energy between parallel and perpendicular degrees of freedom. The second is decompressional cooling of the parallel temperature due to parallel flow acceleration by conventional presheath electric field which is associated with the sheath condition near the wall surface where the open magnetic field line intercepts the discharge chamber. To the leading order in gyroradius to system gradient length scale expansion, the parallelmore » transport can be understood via the Chew-Goldbeger-Low (CGL) model which retains two components of the parallel heat flux, i.e., q{sub n} associated with the parallel thermal energy and q{sub s} related to perpendicular thermal energy. It is shown that in addition to the effect of magnetic field strength (B) modulation, the two components (q{sub n} and q{sub s}) of the parallel heat flux play decisive roles in the parallel variation of the plasma profile, which includes the plasma density (n), parallel flow (u), parallel and perpendicular temperatures (T{sub Parallel-To} and T{sub Up-Tack }), and the ambipolar potential ({phi}). Both their profile (q{sub n}/B and q{sub s}/B{sup 2}) and the upstream values of the ratio of the conductive and convective thermal flux (q{sub n}/nuT{sub Parallel-To} and q{sub s}/nuT{sub Up-Tack }) provide the controlling physics, in addition to B modulation. The physics described by the CGL model are contrasted with those of the double-adiabatic laws and further elucidated by comparison with the first-principles kinetic simulation for a specific but representative flux expander case.« less
Ion componsition of zipper events
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaye, S.M.; Shelley, E.G.; Sharp, R.D.
1981-05-01
A class of ion distributions has recently been identified by Fennell et al. (this issue). The distributions are composed of two components, a low-energy component with peak fluxes directed along the field line and a high-energy component with peak fluxes in the perpendicular direction. The transiton between the two components occur over a very narrow range of energies but can occur anywhere between approximately several hundred electron volts and 20 keV. Because of the appearance of this distribution on an energy versus time spectrogram, the ion events have been called zippers. The purpose of this report is to examine themore » mass composition of the zipper events. We find that the low-energy and parallel component is composed primarily of O/sup +/, with, to a lesser degree, H/sup +/ and a trace of He/sup +/. The high-energy and perpendicular component is predominantly H/sup +/, with the relative abundances of O/sup +/ and He/sup +/ down from those of the low-energy component by a factor of approx.10. These results suggest that whereas the low-energy component is probably ionospheric in origin, the source of the high-energy components is most probably the plsamasheet.« less
NASA Technical Reports Server (NTRS)
Breneman, A. W.; Cattell, C.
2013-01-01
We present the first observations of electron cyclotron harmonic waves at the Earth's bow shock from STEREO and Wind burst waveform captures. These waves are observed at magnetic field gradients at a variety of shock geometries ranging from quasi-parallel to nearly perpendicular along with whistler mode waves, ion acoustic waves, and electrostatic solitary waves. Large amplitude cyclotron harmonic waveforms are also observed in the magnetosheath in association with magnetic field gradients convected past the bow shock. Amplitudes of the cyclotron harmonic waves range from a few tens to more than 500 millivolts/meter peak-peak. A comparison between the short (15 meters) and long (100 meters) Wind spin plane antennas shows a similar response at low harmonics and a stronger response on the short antenna at higher harmonics. This indicates that wavelengths are not significantly larger than 100 meters, consistent with the electron cyclotron radius. Waveforms are broadband and polarizations are distinctively comma-shaped with significant power both perpendicular and parallel to the magnetic field. Harmonics tend to be more prominent in the perpendicular directions. These observations indicate that the waves consist of a combination of perpendicular Bernstein waves and field-aligned waves without harmonics. A likely source is the electron cyclotron drift instability which is a coupling between Bernstein and ion acoustic waves. These waves are the most common type of high-frequency wave seen by STEREO during bow shock crossings and magnetosheath traversals and our observations suggest that they are an important component of the high-frequency turbulent spectrum in these regions.
Ion velocity distributions in dipolarization events: Distributions in the central plasma sheet
NASA Astrophysics Data System (ADS)
Birn, J.; Runov, A.; Zhou, X.-Z.
2017-08-01
Using combined MHD/test particle simulations, we further explore characteristic ion velocity distributions in the central plasma sheet (CPS) in relation to dipolarization events. Distributions in the CPS within the dipolarized flux bundle (DFB) that follows the passage of a dipolarization front typically show two opposing low subthermal-energy beams with a ring-like component perpendicular to the magnetic field at about twice the thermal energy. The dominance of the perpendicular anisotropy and a field-aligned peak at lower energy agree qualitatively with ion distribution functions derived from "Time History of Events and Macroscale Interactions during Substorms" observations. At locations somewhat off the equatorial plane the field-aligned peaks are shifted by a field-aligned component of the bulk flow, such that one peak becomes centered near zero net velocity, which makes it less likely to be observed. The origins of the field-aligned peaks are low-energy lobe (or near plasma sheet boundary layer) regions, while the ring distribution originates mostly from thermal plasma sheet particles on extended field lines. The acceleration mechanisms are also quite different: the beam ions are accelerated first by the E × B drift motion of the DFB and then by a slingshot effect of the earthward convecting DFB (akin to first-order Fermi, type B, acceleration), which causes an increase in field-aligned speed. In contrast, the ring particles are accelerated by successive, betatron-like acceleration after entering the high electric field region of an earthward propagating DFB.
An S3-3 search for confined regions of large parallel electric fields
NASA Astrophysics Data System (ADS)
Boehm, M. H.; Mozer, F. S.
1981-06-01
S3-3 satellite passes through several hundred perpendicular shocks are searched for evidence of large, mostly parallel electric fields (several hundred millivolts per meter, total potential of several kilo-volts) in the auroral zone magnetosphere at altitudes of several thousand kilometers. The actual search criteria are that one or more E-field data points have a parallel component E sub z greater than 350 mV/m in general, or 100 mV/m for data within 10 seconds of a perpendicular shock, since double layers might be likely, in such regions. Only a few marginally convincing examples of the electric fields are found, none of which fits a double layer model well. From statistics done with the most unbiased part of the data set, upper limits are obtained on the number and size of double layers occurring in the auroral zone magnetosphere, and it is concluded that the double layers most probably cannot be responsible for the production of diffuse aurora or inverted-V events.
Westerdale, John; Belohlavek, Marek; McMahon, Eileen M; Jiamsripong, Panupong; Heys, Jeffrey J; Milano, Michele
2011-02-01
We performed an in vitro study to assess the precision and accuracy of particle imaging velocimetry (PIV) data acquired using a clinically available portable ultrasound system via comparison with stereo optical PIV. The performance of ultrasound PIV was compared with optical PIV on a benchmark problem involving vortical flow with a substantial out-of-plane velocity component. Optical PIV is capable of stereo image acquisition, thus measuring out-of-plane velocity components. This allowed us to quantify the accuracy of ultrasound PIV, which is limited to in-plane acquisition. The system performance was assessed by considering the instantaneous velocity fields without extracting velocity profiles by spatial averaging. Within the 2-dimensional correlation window, using 7 time-averaged frames, the vector fields were found to have correlations of 0.867 in the direction along the ultrasound beam and 0.738 in the perpendicular direction. Out-of-plane motion of greater than 20% of the in-plane vector magnitude was found to increase the SD by 11% for the vectors parallel to the ultrasound beam direction and 8.6% for the vectors perpendicular to the beam. The results show a close correlation and agreement of individual velocity vectors generated by ultrasound PIV compared with optical PIV. Most of the measurement distortions were caused by out-of-plane velocity components.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aceves, Salvador M.; Ledesma-Orozco, Elias Rigoberto; Espinosa-Loza, Francisco
A pressure vessel apparatus for cryogenic capable storage of hydrogen or other cryogenic gases at high pressure includes an insert with a parallel inlet duct, a perpendicular inlet duct connected to the parallel inlet. The perpendicular inlet duct and the parallel inlet duct connect the interior cavity with the external components. The insert also includes a parallel outlet duct and a perpendicular outlet duct connected to the parallel outlet duct. The perpendicular outlet duct and the parallel outlet duct connect the interior cavity with the external components.
Noncoplanar component of the magnetic field at low Mach number shocks
NASA Technical Reports Server (NTRS)
Friedman, M. A.; Russell, C. T.; Gosling, J. T.; Thomsen, M. F.
1990-01-01
The component of the magnetic field that deviates from the plane defined by the shock normal and the upstream magnetic field is examined for low Mach number bow shocks. The integrated value of this noncoplanar component is compared to the predictions of Jones and Ellison (1987). A test of this relationship was first reported by Gosling et al. (1988) who found good agreement only at the two low Mach number shocks that were included in their study. Analysis of a more extensive collection of low Mach number shocks confirms the Jones and Ellison relationship at very low Mach numbers as well as its deterioration for higher Mach numbers. However, there also is an indication that the relationship may break down for shocks that are nearly perpendicular.
Bouchard, Louis-Serge; Pines, Alexander; Demas, Vasiliki
2014-01-21
A system and method for Fourier encoding a nuclear magnetic resonance (NMR) signal is disclosed. A static magnetic field B.sub.0 is provided along a first direction. An NMR signal from the sample is Fourier encoded by applying a rotating-frame gradient field B.sub.G superimposed on the B.sub.0, where the B.sub.G comprises a vector component rotating in a plane perpendicular to the first direction at an angular frequency .omega.in a laboratory frame. The Fourier-encoded NMR signal is detected.
Motley, R.W.; Glanz, J.
1982-10-25
A device is described for coupling RF power (a plasma sweeper) from RF power introducing means to a plasma having a magnetic field associated therewith comprises at least one electrode positioned near the plasma and near the RF power introducing means. Means are described for generating a static electric field at the electrode directed into the plasma and having a component substantially perpendicular to the plasma magnetic field such that a non-zero vector cross-product of the electric and magnetic fields exerts a force on the plasma causing the plasma to drift.
High-Resolution Study of the First Stretching Overtones of H3Si79Br.
Ceausu; Graner; Bürger; Mkadmi; Pracna; Lafferty
1998-11-01
The Fourier transform infrared spectrum of monoisotopic H3Si79Br (resolution 7.7 x 10(-3) cm-1) was studied from 4200 to 4520 cm-1, in the region of the first overtones of the Si-H stretching vibration. The investigation of the spectrum revealed the presence of two band systems, the first consisting of one parallel (nu0 = 4340.2002 cm-1) and one perpendicular (nu0 = 4342.1432 cm-1) strong component, and the second of one parallel (nu0 = 4405.789 cm-1) and one perpendicular (nu0 = 4416.233 cm-1) weak component. The rovibrational analysis shows strong local perturbations for both strong and weak systems. Seven hundred eighty-one nonzero-weighted transitions belonging to the strong system [the (200) manifold in the local mode picture] were fitted to a simple model involving a perpendicular component interacting by a weak Coriolis resonance with a parallel component. The most severely perturbed transitions (whose ||obs-calc || values exceeded 3 x 10(-3) cm-1) were given zero weights. The standard deviations of the fit were 1.0 x 10(-3) and 0.69 x 10(-3) cm-1 for the parallel and the perpendicular components, respectively. The weak band system, severely perturbed by many "dark" perturbers, was fitted to a model involving one parallel and one perpendicular band, connected by a Coriolis-type resonance. The K" . DeltaK = +10 to +18 subbands of the perpendicular component, which showed very high observed - calculated values ( approximately 0.5 cm-1), were excluded from this calculation. The standard deviations of the fit were 11 x 10(-3) and 13 x 10(-3) cm-1 for the parallel and the perpendicular components, respectively. Copyright 1998 Academic Press.
Impact of the MLC on the MRI field distortion of a prototype MRI-linac
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolling, Stefan; Keall, Paul; Oborn, Brad
2013-12-15
Purpose: To cope with intrafraction tumor motion, integrated MRI-linac systems for real-time image guidance are currently under development. The multileaf collimator (MLC) is a key component in every state-of-the-art radiotherapy treatment system, allowing for accurate field shaping and tumor tracking. This work quantifies the magnetic impact of a widely used MLC on the MRI field homogeneity for such a modality.Methods: The finite element method was employed to model a MRI-linac assembly comprised of a 1.0 T split-bore MRI magnet and the key ferromagnetic components of a Varian Millennium 120 MLC, namely, the leaves and motors. Full 3D magnetic field maps ofmore » the system were generated. From these field maps, the peak-to-peak distortion within the MRI imaging volume was evaluated over a 30 cm diameter sphere volume (DSV) around the isocenter and compared to a maximum preshim inhomogeneity of 300 μT. Five parametric studies were performed: (1) The source-to-isocenter distance (SID) was varied from 100 to 200 cm, to span the range of a compact system to that with lower magnetic coupling. (2) The MLC model was changed from leaves only to leaves with motors, to determine the contribution to the total distortion caused by MLC leaves and motors separately. (3) The system was configured in the inline or perpendicular orientation, i.e., the linac treatment beam was oriented parallel or perpendicular to the magnetic field direction. (4) The treatment field size was varied from 0 × 0 to 20×20 cm{sup 2}, to span the range of clinical treatment fields. (5) The coil currents were scaled linearly to produce magnetic field strengths B{sub 0} of 0.5, 1.0, and 1.5 T, to estimate how the MLC impact changes with B{sub 0}.Results: (1) The MLC-induced MRI field distortion fell continuously with increasing SID. (2) MLC leaves and motors were found to contribute to the distortion in approximately equal measure. (3) Due to faster falloff of the fringe field, the field distortion was generally smaller in the perpendicular beam orientation. The peak-to-peak DSV distortion was below 300 μT at SID≥130 cm (perpendicular) and SID≥140 cm (inline) for the 1.0 T design. (4) The simulation of different treatment fields was identified to cause dynamic changes in the field distribution. However, the estimated residual distortion was below 1.2 mm geometric distortion at SID≥120 cm (perpendicular) and SID≥130 cm (inline) for a 10 mT/m frequency-encoding gradient. (5) Due to magnetic saturation of the MLC materials, the field distortion remained constant at B{sub 0}>1.0 T.Conclusions: This work shows that the MRI field distortions caused by the MLC cannot be ignored and must be thoroughly investigated for any MRI-linac system. The numeric distortion values obtained for our 1.0 T magnet may vary for other magnet designs with substantially different fringe fields, however the concept of modest increases in the SID to reduce the distortion to a shimmable level is generally applicable.« less
NASA Astrophysics Data System (ADS)
Jiang, Zhenan; Zhou, Wei; Li, Quan; Yao, Min; Fang, Jin; Amemiya, Naoyuki; Bumby, Chris W.
2018-07-01
Dynamic resistance, which occurs when a HTS coated conductor carries a DC current under an AC magnetic field, can have critical implications for the design of HTS machines. Here, we report measurements of dynamic resistance in a commercially available SuperPower 4 mm-wide YBCO coated conductor, carrying a DC current under an applied AC magnetic field of arbitrary orientation. The reduced DC current, I t/I c0, ranged from 0.01 to 0.9, where I t is the DC current level and I c0 is the self-field critical current of the conductor. The field angle (the angle between the magnetic field and the normal vector of the conductor wide-face) was varied between 0° and 90° at intervals of 10°. We show that the effective width of the conductor under study is ˜12% less than the physical wire width, and we attribute this difference to edge damage of the wire during or after manufacture. We then examine the measured dynamic resistance of this wire under perpendicular applied fields at very low DC current levels. In this regime we find that the threshold field, B th, of the conductor is well described by the nonlinear equation of Mikitik and Brandt. However, this model consistently underestimates the threshold field at higher current levels. As such, the dynamic resistance in a coated conductor under perpendicular magnetic fields is best described using two different equations for each of the low and high DC current regimes, respectively. At low DC currents where I t/I c0 ≤ 0.1, the nonlinear relationship of Mikitik and Brandt provides the closest agreement with experimental data. However, in the higher current regime where I t/I c0 ≥ 0.2, closer agreement is obtained using a simple linear expression which assumes a current-independent penetration field. We further show that for the conductor studied here, the measured dynamic resistance at different field angles is dominated by the perpendicular magnetic field component, with negligible contribution from the parallel component. Our findings now enable the dynamic resistance of a single conductor to be analytically determined for a very wide range of DC currents and at all applied field angles.
An optical probe for local measurements of fast plasma ion dynamics
NASA Astrophysics Data System (ADS)
Fiksel, G.; Den Hartog, D. J.; Fontana, P. W.
1998-05-01
A novel insertable probe for local measurements of equilibrium and fluctuating plasma ion flow velocity and temperature via Doppler spectroscopy is described. Optical radiation is collected by two fused silica fiber optic bundles with perpendicular viewlines. Spatial resolution of about 5 cm is achieved by terminating each view with an optical dump. The collected light is transported by the fiber bundles to a high-resolution spectrometer. Two components of the velocity are measured simultaneously—the radial along the insertion of the probe and a perpendicular component (which can be varied by simply rotating the probe by 90°). The accuracy of the velocity measurements is better than 1 km/s. The probe is armored by a boron nitride enclosure and is inserted into a high temperature plasma to obtain radial profiles of the equilibrium and fluctuating plasma velocity. Initial measurements have been done in Madison Symmetric Torus reversed field pinch.
Two-Fluid Description of Collisionless Perpendicular Shocks
NASA Astrophysics Data System (ADS)
Gomez, D. O.; Morales, L. F.; Dmitruk, P.; Bertucci, C.
2017-12-01
Collisionless shocks are ubiquitous in space physics and astrophysics, such as the bow shocks formed by the solar wind in front of planets, the termination shock at the heliospheric boundary or the supernova shock fronts expanding in the interstellar plasma. Although the one-fluid magnetohydrodynamic framework provides a reasonable description of the large scale structures of the upstream and downstream plasmas, it falls short of providing an adequate description of the internal structure of the shock. A more comprehensive description of the inner and outer features of collisionless shocks would require the use of kinetic theory. Nonetheless, in the present work we show that a complete two-fluid framework (considering the role of both ions and electrons in the dynamics) can properly capture some of the features observed in real shocks. For the specific case of perpendicular shocks, i.e. cases in which the magnetic field is perpendicular to the shock normal, we integrate the one-dimensional two-fluid MHD equations numerically, to describe the generation of shocks and their spatial structure along the shock normal. Starting from finite amplitude fast-magnetosonic waves, our simulations show the generation of a stationary fast-magnetosonic shock. More importantly, we show that the ramp thickness is of the order of a few electron inertial lengths. The parallel and perpendicular components of the self-consistent electric field are derived, and their role in accelerating particles is discussed.
TESTING THE EFFECTS OF EXPANSION ON SOLAR WIND TURBULENCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vech, Daniel; Chen, Christopher H K, E-mail: dvech@umich.edu
2016-11-20
We present a multi-spacecraft approach to test the predictions of recent studies on the effect of solar wind expansion on the radial spectral, variance, and local 3D anisotropies of the turbulence. We found that on small scales (5000–10,000 km) the power levels of the B-trace structure functions do not depend on the sampling direction with respect to the radial suggesting that on this scale the effect of expansion is small possibly due to fast turbulent timescales. On larger scales (110–135 R{sub E}), the fluctuations of the radial magnetic field component are reduced by ∼20% compared to the transverse (perpendicular tomore » radial) ones, which could be due to expansion confining the fluctuations into the plane perpendicular to radial. For the local 3D spectral anisotropy, the B-trace structure functions showed dependence on the sampling direction with respect to radial. The anisotropy in the perpendicular plane is reduced when the increments are taken perpendicular with respect to radial, which could be an effect of expansion.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le Roux, J. A.
Earlier work based on nonlinear guiding center (NLGC) theory suggested that perpendicular cosmic-ray transport is diffusive when cosmic rays encounter random three-dimensional magnetohydrodynamic turbulence dominated by uniform two-dimensional (2D) turbulence with a minor uniform slab turbulence component. In this approach large-scale perpendicular cosmic-ray transport is due to cosmic rays microscopically diffusing along the meandering magnetic field dominated by 2D turbulence because of gyroresonant interactions with slab turbulence. However, turbulence in the solar wind is intermittent and it has been suggested that intermittent turbulence might be responsible for the observation of 'dropout' events in solar energetic particle fluxes on small scales.more » In a previous paper le Roux et al. suggested, using NLGC theory as a basis, that if gyro-scale slab turbulence is intermittent, large-scale perpendicular cosmic-ray transport in weak uniform 2D turbulence will be superdiffusive or subdiffusive depending on the statistical characteristics of the intermittent slab turbulence. In this paper we expand and refine our previous work further by investigating how both parallel and perpendicular transport are affected by intermittent slab turbulence for weak as well as strong uniform 2D turbulence. The main new finding is that both parallel and perpendicular transport are the net effect of an interplay between diffusive and nondiffusive (superdiffusive or subdiffusive) transport effects as a consequence of this intermittency.« less
Crossed-field divertor for a plasma device
Kerst, Donald W.; Strait, Edward J.
1981-01-01
A divertor for removal of unwanted materials from the interior of a magnetic plasma confinement device includes the division of the wall of the device into segments insulated from each other in order to apply an electric field having a component perpendicular to the confining magnetic field. The resulting crossed-field drift causes electrically charged particles to be removed from the outer part of the confinement chamber to a pumping chamber. This method moves the particles quickly past the saddle point in the poloidal magnetic field where they would otherwise tend to stall, and provides external control over the rate of removal by controlling the magnitude of the electric field.
Delta-configurations - Flare activity and magnetic-field structure
NASA Technical Reports Server (NTRS)
Patty, S. R.; Hagyard, M. J.
1986-01-01
Complex sunspots in four active regions of April and May 1980, all exhibiting regions of magnetic classification delta, were studied using data from the NASA Marshall Space Flight Center vector magnetograph. The vector magnetic field structure in the vicinity of each delta was determined, and the location of the deltas in each active region was correlated with the locations and types of flare activity for the regions. Two types of delta-configuration were found to exist, active and inactive, as defined by the relationships between magnetic field structure and activity. The active delta exhibited high flare activity, strong horizontal gradients of the longitudinal (line-of-sight) magnetic field component, a strong transverse (perpendicular to line-of-sight) component, and a highly nonpotential orientation of the photospheric magnetic field, all indications of a highly sheared magnetic field. The inactive delta, on the other hand, exhibited little or no flare production, weaker horizontal gradients of the longitudinal component, weaker transverse components, and a nearly potential, nonsheared orientation of the magnetic field. It is concluded that the presence of such sheared fields is the primary signature by which the active delta may be distinguished, and that it is this shear which produces the flare activity of the active delta.
Peculiarities of field penetration in the presence of cross-flux interaction
NASA Astrophysics Data System (ADS)
Berseth, V.; Buzdin, A. I.; Indenbom, M. V.; Benoit, W.
1996-02-01
The attractive core interaction between two orthogonal vortex lattices in alayered superconductor is calculated. When one of these lattices is moving, this interaction gives rise to a drag force acting on the other one. Considering a moving in-plane flux lattice, the effect of the drag force on the perpendicular flux is modelled through a modification of the bulk critical current for this field component. The new critical current depends on the direction of motion of both parallel and perpendicular vortices. The results are derived within the critical-state model for the infinite slab and for the thin strip. For this latter geometry, computations are made with the help of a new numerical method simulating flux penetration in the critical state. The new predicted qualitative phenomena (like the formation of a vortex-free region between two zones of opposite flux in the flat geometry) can be directly verified by the magneto-optic technique.
Polarization-Resolved Study of High Harmonics from Bulk Semiconductors
NASA Astrophysics Data System (ADS)
Kaneshima, Keisuke; Shinohara, Yasushi; Takeuchi, Kengo; Ishii, Nobuhisa; Imasaka, Kotaro; Kaji, Tomohiro; Ashihara, Satoshi; Ishikawa, Kenichi L.; Itatani, Jiro
2018-06-01
The polarization property of high harmonics from gallium selenide is investigated using linearly polarized midinfrared laser pulses. With a high electric field, the perpendicular polarization component of the odd harmonics emerges, which is not present with a low electric field and cannot be explained by the perturbative nonlinear optics. A two-dimensional single-band model is developed to show that the anisotropic curvature of an energy band of solids, which is pronounced in an outer part of the Brillouin zone, induces the generation of the perpendicular odd harmonics. This model is validated by three-dimensional quantum mechanical simulations, which reproduce the orientation dependence of the odd-order harmonics. The quantum mechanical simulations also reveal that the odd- and even-order harmonics are produced predominantly by the intraband current and interband polarization, respectively. These experimental and theoretical demonstrations clearly show a strong link between the band structure of a solid and the polarization property of the odd-order harmonics.
Measurements of the time constant for steady ionization in shaped-charge barium releases
NASA Technical Reports Server (NTRS)
Hoch, Edward L.; Hallinan, Thomas J.
1993-01-01
Quantitative measurements of three solar illuminated shaped-charge barium releases injected at small angles to the magnetic field were made using a calibrated color television camera. Two of the releases were from 1989. The third release, a reanalysis of an event included in Hallinan's 1988 study of three 1986 releases, was included to provide continuity between the two studies. Time constants for ionization, measured during the first 25 s of each release, were found to vary considerably. The two 1989 time constants differed substantially, and both were significantly less than any of the 1986 time constants. On the basis of this variability, we conclude that the two 1989 releases showed evidence of continuous nonsolar ionization. One release showed nonsolar ionization which could not he attributed to Alfven's critical ionization velocity process, which requires a component of velocity perpendicular to the magnetic field providing a perpendicular energy greater than the ionization potential.
A critical comparison of electrical methods for measuring spin-orbit torques
NASA Astrophysics Data System (ADS)
Zhang, Xuanzi; Hung, Yu-Ming; Rehm, Laura; Kent, Andrew D.
Direct (DC) and alternating current (AC) transport measurements of spin-orbit torques (SOTs) in heavy metal-ferromagnet heterostructure with perpendicular magnetic anisotropy have been proposed and demonstrated. A DC method measures the change of perpendicular magnetization component while an AC method probes the first and second harmonic magnetization oscillation in responses to an AC current (~1 kHz). Here we conduct both types of measurements on β-Ta/CoFeB/MgO in the form of patterned Hall bars (20 μm linewidth) and compare the results. Experiments results are qualitatively in agreement with a macro spin model including Slonzewski-like and a field-like SOTs. However, the effective field from the ac method is larger than that obtained from the DC method. We discuss the possible origins of the discrepancy and its implications for quantitatively determining SOTs. Research supported by the SRC-INDEX program, NSF-DMR-1309202 and NYU-DURF award.
Properties of large electric fields in the plasma sheet at 4-7RE measured with Polar
NASA Astrophysics Data System (ADS)
Keiling, A.; Wygant, J. R.; Cattell, C.; Johnson, M.; Temerin, M.; Mozer, F. S.; Kletzing, C. A.; Scudder, J.; Russell, C. T.
2001-04-01
Measurements from the Polar satellite provide evidence for large electric field structures in the plasma sheet at geocentric distances of 4-7RE. These structures had amplitudes perpendicular to the ambient magnetic field that can exceed 100 mV m-1 (6 s averaged). Two years (from May 1, 1996, to April 30, 1998) of electric field data (EZ component, approximately along GSE z) were surveyed. The distribution in invariant latitude (ILAT) and magnetic local time (MLT) of large perpendicular electric field events (defined as >=20 mV m-1 for a 6-s average) delineates the statistical auroral oval with the majority of events occurring in the nightside centered around midnight and a smaller concentration around 1500 MLT. The magnitude-versus-altitude distribution of the electric fields between 4 and 7RE in the nightside could be explained by models which assume either shear Alfvén waves propagating into regions of larger background magnetic fields or electrostatic structures being mapped quasi-statically along equipotential magnetic field lines. In addition, this survey yielded 24 very large amplitude events with |E⊥|>=100mVm-1 (6 s averaged), all of which occurred in the nightside. In the spacecraft frame, the electric field structures occurred on timescales ranging from 10 to 60 s. About 85% of these events occurred in the vicinity of the outer boundary of the plasma sheet; the rest occurred in the central plasma sheet. The polarity of the electric fields was dominantly perpendicular to the nominal plasma sheet boundary. For a large fraction of events (<=50%) the ratios of electric and magnetic fields in the period range from 10 to 60 s were consistent with Alfvén waves. Large Poynting flux (up to 2.5 ergs cm-2s-1) dominantly directed downward along the background magnetic field was associated with 21 events. All 24 events occurred during geomagnetic disturbances such as magnetic substorms. A conjugate study with ground stations for 14 events (out of the 24 events) showed that these structures occurred during times of rapid changes in the H component (or X component) of magnetometer data. For most events this time corresponded to the expansion phase; two events occurred during a quick recovery of the negative H bay signature. Thus there is evidence that large electromagnetic energy transfer processes in the plasma sheet occur during the most dynamic phase of geomagnetic disturbances. From the statistical analysis it was found that Polar observed events larger than 100 mV m-1 (50 mV m-1) in the plasma sheet between 2100 and 0300 MLT with a 2-4% (15%) probability per crossing. These probabilities will be compared to the probability of substorm occurrence during Polar plasma sheet crossings.
Plasma waves downstream of weak collisionless shocks
NASA Technical Reports Server (NTRS)
Coroniti, F. V.; Greenstadt, E. W.; Moses, S. L.; Smith, E. J.; Tsurutani, B. T.
1993-01-01
In September 1983 the International Sun Earth Explorer 3 (ISEE 3) International Cometary Explorer (ICE) spacecraft made a long traversal of the distant dawnside flank region of the Earth's magnetosphere and had many encounters with the low Mach number bow shock. These weak shocks excite plasma wave electric field turbulence with amplitudes comparable to those detected in the much stronger bow shock near the nose region. Downstream of quasi-perpendicular (quasi-parallel) shocks, the E field spectra exhibit a strong peak (plateau) at midfrequencies (1 - 3 kHz); the plateau shape is produced by a low-frequency (100 - 300 Hz) emission which is more intense behind downstream of two quasi-perpendicular shocks show that the low frequency signals are polarized parallel to the magnetic field, whereas the midfrequency emissions are unpolarized or only weakly polarized. A new high frequency (10 - 30 kHz) emission which is above the maximum Doppler shift exhibit a distinct peak at high frequencies; this peak is often blurred by the large amplitude fluctuations of the midfrequency waves. The high-frequency component is strongly polarized along the magnetic field and varies independently of the lower-frequency waves.
Bale, S D; Mozer, F S
2007-05-18
Large parallel (
Magnetic fields, stellar feedback, and the geometry of H II regions
NASA Astrophysics Data System (ADS)
Ferland, Gary J.
2009-04-01
Magnetic pressure has long been known to dominate over gas pressure in atomic and molecular regions of the interstellar medium. Here I review several recent observational studies of the relationships between the H+, H0 and H2 regions in M42 (the Orion complex) and M17. A simple picture results. When stars form they push back surrounding material, mainly through the outward momentum of starlight acting on grains, and field lines are dragged with the gas due to flux freezing. The magnetic field is compressed and the magnetic pressure increases until it is able to resist further expansion and the system comes into approximate magnetostatic equilibrium. Magnetic field lines can be preferentially aligned perpendicular to the long axis of quiescent cloud before stars form. After star formation and pushback occurs ionized gas will be constrained to flow along field lines and escape from the system along directions perpendicular to the long axis. The magnetic field may play other roles in the physics of the H II region and associated PDR. Cosmic rays may be enhanced along with the field and provide additional heating of atomic and molecular material. Wave motions may be associated with the field and contribute a component of turbulence to observed line profiles.
Ion Velocity Measurements for the Ionospheric Connections Explorer
NASA Astrophysics Data System (ADS)
Heelis, R. A.; Stoneback, R. A.; Perdue, M. D.; Depew, M. D.; Morgan, W. A.; Mankey, M. W.; Lippincott, C. R.; Harmon, L. L.; Holt, B. J.
2017-10-01
The Ionospheric Connections Explorer (ICON) payload includes an Ion Velocity Meter (IVM) to provide measurements of the ion drift motions, density, temperature and major ion composition at the satellite altitude near 575 km. The primary measurement goal for the IVM is to provide the meridional ion drift perpendicular to the magnetic field with an accuracy of 7.5 m s-1 for all daytime conditions encountered by the spacecraft within 15° of the magnetic equator. The IVM will derive this parameter utilizing two sensors, a retarding potential analyzer (RPA) and an ion drift meter (IDM) that have a robust and successful flight heritage. The IVM described here incorporates improvements in the design and operation to produce the most sensitive device that has been fielded to date. It will specify the ion drift vector, from which the component perpendicular to the magnetic field will be derived. In addition it will specify the total ion density, the ion temperature and the fractional ion composition. These data will be used in conjunction with measurements from the other ICON instruments to uncover the important connections between the dynamics of the neutral atmosphere and the ionosphere through the generation of dynamo currents perpendicular to the magnetic field and collisional forces parallel to the magnetic field. Here the configuration and operation of the IVM instrument are described, as well as the procedures by which the ion drift velocity is determined. A description of the subsystem characteristics, which allow a determination of the expected uncertainties in the derived parameters, is also given.
The influence of electric field and confinement on cell motility.
Huang, Yu-Ja; Samorajski, Justin; Kreimer, Rachel; Searson, Peter C
2013-01-01
The ability of cells to sense and respond to endogenous electric fields is important in processes such as wound healing, development, and nerve regeneration. In cell culture, many epithelial and endothelial cell types respond to an electric field of magnitude similar to endogenous electric fields by moving preferentially either parallel or antiparallel to the field vector, a process known as galvanotaxis. Here we report on the influence of dc electric field and confinement on the motility of fibroblast cells using a chip-based platform. From analysis of cell paths we show that the influence of electric field on motility is much more complex than simply imposing a directional bias towards the cathode or anode. The cell velocity, directedness, as well as the parallel and perpendicular components of the segments along the cell path are dependent on the magnitude of the electric field. Forces in the directions perpendicular and parallel to the electric field are in competition with one another in a voltage-dependent manner, which ultimately govern the trajectories of the cells in the presence of an electric field. To further investigate the effects of cell reorientation in the presence of a field, cells are confined within microchannels to physically prohibit the alignment seen in 2D environment. Interestingly, we found that confinement results in an increase in cell velocity both in the absence and presence of an electric field compared to migration in 2D.
Ordering and Excitations in the Field-Induced Magnetic Phase of Cs3Cr2Br9
NASA Astrophysics Data System (ADS)
Grenier, Beatrice
2006-03-01
Cs3Cr2Br9 is an interesting example of interacting spin-dimer system. As in other isotropic antiferromagnets such as Haldane or alternating chains and ladders, the ground state in zero field is a total spin singlet separated from the excited triplet by an energy gap. In a magnetic field H, a phase transition occurs at a critical field Hc1, where the gap to the lowest component of the Zeeman-split triplet closes. Above Hc1, field-induced magnetic order (FIMO) for spin components perpendicular to H is induced by inter-dimer or inter-chain couplings. The FIMO transition may be considered as a Bose-Einstein Condensation. Cs3Cr2Br9 differs from other dimer systems currently studied (e.g. PHCC, TlCuCl3) in two main ways: each Cr^3+ ion of the dimer has spin 3/2 rather than 1/2 for Cu-based systems and the arrangement of the dimers is hexagonal. This gives rise to anisotropy and frustration in a 3D lattice, respectively. The possibility of studying the magnetic ordering and the spin dynamics in a FIMO with sufficient detail to bring out features of frustration and anisotropy motivated the present neutron scattering study in Cs3Cr2Br9*. Two field orientations have been exploited, perpendicular and parallel to the easy axis c (direction of the dimers). First, I present the diffraction study: the FIMO displays large hysteresis incommensurability, showing the importance of frustration. The impact of anisotropy is seen in the magnetic structure, whose nature strongly depends on the field direction. Second, I focus on spin dynamics: it quantifies the presence of anisotropy and shows its crucial role on the energy gap at Hc1, which is measurably open or not, depending on whether H is perpendicular or parallel to c. Third, an explanation is proposed for the large value of the gap at higher field: it involves the mixing of higher order states (extended-FIMO), reflected by the absence of magnetization plateaus. Comparison with the sister Cs3Cr2Cl9 compound provides a test of this hypothesis. *B. Grenier et al., Phys. Rev. Lett. 92, 177202 (2004)
Amplification of a high-frequency electromagnetic wave by a relativistic plasma
NASA Technical Reports Server (NTRS)
Yoon, Peter H.
1990-01-01
The amplification of a high-frequency transverse electromagnetic wave by a relativistic plasma component, via the synchrotron maser process, is studied. The background plasma that supports the transverse wave is considered to be cold, and the energetic component whose density is much smaller than that of the background component has a loss-cone feature in the perpendicular momentum space and a finite field-aligned drift speed. The ratio of the background plasma frequency squared to the electron gyrofrequency squared is taken to be sufficiently larger than unity. Such a parameter regime is relevant to many space and astrophysical situations. A detailed study of the amplification process is carried out over a wide range of physical parameters including the loss-cone index, the ratio of the electron mass energy to the temperature of the energetic component, the field-aligned drift speed, the normalized density, and the wave propagation angle.
Dynamical properties of magnetized two-dimensional one-component plasma
NASA Astrophysics Data System (ADS)
Dubey, Girija S.; Gumbs, Godfrey; Fessatidis, Vassilios
2018-05-01
Molecular dynamics simulation are used to examine the effect of a uniform perpendicular magnetic field on a two-dimensional interacting electron system. In this simulation we include the effect of the magnetic field classically through the Lorentz force. Both the Coulomb and the magnetic forces are included directly in the electron dynamics to study their combined effect on the dynamical properties of the 2D system. Results are presented for the velocity autocorrelation function and the diffusion constants in the presence and absence of an external magnetic field. Our simulation results clearly show that the external magnetic field has an effect on the dynamical properties of the system.
Plasma sweeper to control the coupling of RF power to a magnetically confined plasma
Motley, Robert W.; Glanz, James
1985-01-01
A device for coupling RF power (a plasma sweeper) from a phased waveguide array for introducing RF power to a plasma having a magnetic field associated therewith comprises at least one electrode positioned near the plasma and near the phased waveguide array; and a potential source coupled to the electrode for generating a static electric field at the electrode directed into the plasma and having a component substantially perpendicular to the plasma magnetic field such that a non-zero vector cross-product of the electric and magnetic fields exerts a force on the plasma causing the plasma to drift.
NASA Astrophysics Data System (ADS)
Stegemann, Robert; Cabeza, Sandra; Lyamkin, Viktor; Bruno, Giovanni; Pittner, Andreas; Wimpory, Robert; Boin, Mirko; Kreutzbruck, Marc
2017-03-01
The residual stress distribution of tungsten inert gas welded S235JRC+C plates was determined by means of neutron diffraction (ND). Large longitudinal residual stresses with maxima around 600 MPa were found. With these results as reference, the evaluation of residual stress with high spatial resolution GMR (giant magneto resistance) sensors was discussed. The experiments performed indicate a correlation between changes in residual stresses (ND) and the normal component of local residual magnetic stray fields (GMR). Spatial variations in the magnetic field strength perpendicular to the welds are in the order of the magnetic field of the earth.
Fluctuations of local electric field and dipole moments in water between metal walls.
Takae, Kyohei; Onuki, Akira
2015-10-21
We examine the thermal fluctuations of the local electric field Ek (loc) and the dipole moment μk in liquid water at T = 298 K between metal walls in electric field applied in the perpendicular direction. We use analytic theory and molecular dynamics simulation. In this situation, there is a global electrostatic coupling between the surface charges on the walls and the polarization in the bulk. Then, the correlation function of the polarization density pz(r) along the applied field contains a homogeneous part inversely proportional to the cell volume V. Accounting for the long-range dipolar interaction, we derive the Kirkwood-Fröhlich formula for the polarization fluctuations when the specimen volume v is much smaller than V. However, for not small v/V, the homogeneous part comes into play in dielectric relations. We also calculate the distribution of Ek (loc) in applied field. As a unique feature of water, its magnitude |Ek (loc)| obeys a Gaussian distribution with a large mean value E0 ≅ 17 V/nm, which arises mainly from the surrounding hydrogen-bonded molecules. Since |μk|E0 ∼ 30kBT, μk becomes mostly parallel to Ek (loc). As a result, the orientation distributions of these two vectors nearly coincide, assuming the classical exponential form. In dynamics, the component of μk(t) parallel to Ek (loc)(t) changes on the time scale of the hydrogen bonds ∼5 ps, while its smaller perpendicular component undergoes librational motions on time scales of 0.01 ps.
Measures of three-dimensional anisotropy and intermittency in strong Alfvénic turbulence
NASA Astrophysics Data System (ADS)
Mallet, A.; Schekochihin, A. A.; Chandran, B. D. G.; Chen, C. H. K.; Horbury, T. S.; Wicks, R. T.; Greenan, C. C.
2016-06-01
We measure the local anisotropy of numerically simulated strong Alfvénic turbulence with respect to two local, physically relevant directions: along the local mean magnetic field and along the local direction of one of the fluctuating Elsasser fields. We find significant scaling anisotropy with respect to both these directions: the fluctuations are `ribbon-like' - statistically, they are elongated along both the mean magnetic field and the fluctuating field. The latter form of anisotropy is due to scale-dependent alignment of the fluctuating fields. The intermittent scalings of the nth-order conditional structure functions in the direction perpendicular to both the local mean field and the fluctuations agree well with the theory of Chandran, Schekochihin & Mallet, while the parallel scalings are consistent with those implied by the critical-balance conjecture. We quantify the relationship between the perpendicular scalings and those in the fluctuation and parallel directions, and find that the scaling exponent of the perpendicular anisotropy (I.e. of the aspect ratio of the Alfvénic structures in the plane perpendicular to the mean magnetic field) depends on the amplitude of the fluctuations. This is shown to be equivalent to the anticorrelation of fluctuation amplitude and alignment at each scale. The dependence of the anisotropy on amplitude is shown to be more significant for the anisotropy between the perpendicular and fluctuation-direction scales than it is between the perpendicular and parallel scales.
Adiabatic theory in regions of strong field gradients. [in magnetosphere
NASA Technical Reports Server (NTRS)
Whipple, E. C.; Northrop, T. G.; Birmingham, T. J.
1986-01-01
The theory for the generalized first invariant for adiabatic motion of charged particles in regions where there are large gradients in magnetic or electric fields is developed. The general condition for an invariant to exist in such regions is that the potential well in which the particle oscillates change its shape slowly as the particle drifts. It is shown how the Kruskal (1962) procedure can be applied to obtain expressions for the invariant and for drift velocities that are asymptotic in a smallness parameter epsilon. The procedure is illustrated by obtaining the invariant and drift velocities for particles traversing a perpendicular shock, and the generalized invariant is compared with the magnetic moment, and the drift orbits with the actual orbits, for a particular case. In contrast to the magnetic moment, the generalized first invariant is better for large gyroradii (large kinetic energies) than for small gyroradii. Expressions for the invariant when an electrostatic potential jump is imposed across the perpendicular shock, and when the particle traverses a rotational shear layer with a small normal component of the magnetic field are given.
Stability of the magnetosonic wave in a cometary multi-ion plasma
NASA Astrophysics Data System (ADS)
Sreekala, G.; Varghese, Anu; Jayakumar, Neethu; Michael, Manesh; Sebastian, Sijo; Venugopal, Chandu
2017-05-01
A generalized dispersion relation of the magnetosonic wave in a four component plasma consisting of electrons and hydrogen ions of solar origin and positively and negatively charged oxygen ions of cometary origin has been derived by using the Vlasov-Maxwell kinetic model. Parallel to the magnetic field, the hydrogen and electron components are modeled by a drifting Maxwellian distribution; perpendicular to the magnetic field, we use a loss cone type distribution obtained by the subtraction of two Maxwellian distributions having different temperatures. The effect of change in the drift velocity of streaming components and number densities and temperatures of each species in driving the instability has been analyzed both analytically and numerically. For typical parameters at comet Halley, we find that both positively and negatively charged oxygen ions can drive the wave unstable.
Accelerated ions from pulsed-power-driven fast plasma flow in perpendicular magnetic field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takezaki, Taichi, E-mail: ttakezaki@stn.nagaokaut.ac.jp; Takahashi, Kazumasa; Sasaki, Toru, E-mail: sasakit@vos.nagaokaut.ac.jp
2016-06-15
To understand the interaction between fast plasma flow and perpendicular magnetic field, we have investigated the behavior of a one-dimensional fast plasma flow in a perpendicular magnetic field by a laboratory-scale experiment using a pulsed-power discharge. The velocity of the plasma flow generated by a tapered cone plasma focus device is about 30 km/s, and the magnetic Reynolds number is estimated to be 8.8. After flow through the perpendicular magnetic field, the accelerated ions are measured by an ion collector. To clarify the behavior of the accelerated ions and the electromagnetic fields, numerical simulations based on an electromagnetic hybrid particle-in-cell methodmore » have been carried out. The results show that the behavior of the accelerated ions corresponds qualitatively to the experimental results. Faster ions in the plasma flow are accelerated by the induced electromagnetic fields modulated with the plasma flow.« less
Actuation method and apparatus, micropump, and PCR enhancement method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ullakko, Kari; Mullner, Peter; Hampikian, Greg
An actuation apparatus includes at least one magnetic shape memory (MSM) element containing a material configured to expand and/or contract in response to exposure to a magnetic field. Among other things, the MSM element may be configured to pump fluid through a micropump by expanding and/or contracting in response to the magnetic field. The magnetic field may rotate about an axis of rotation and exhibit a distribution having a component substantially perpendicular to the axis of rotation. Further, the magnetic field distribution may include at least two components substantially orthogonal to one another lying in one or more planes perpendicularmore » to the axis of rotation. The at least one MSM element may contain nickel, manganese, and gallium. A polymerase chain reaction (PCR) may be enhanced by contacting a PCR reagent and DNA material with the MSM element.« less
Collisionless slow shocks in magnetotail reconnection
NASA Astrophysics Data System (ADS)
Cremer, Michael; Scholer, Manfred
The kinetic structure of collisionless slow shocks in the magnetotail is studied by solving the Riemann problem of the collapse of a current sheet with a normal magnetic field component using 2-D hybrid simulations. The collapse results in a current layer with a hot isotropic distribution and backstreaming ions in a boundary layer. The lobe plasma outside and within the boundary layer exhibits a large perpendicular to parallel temperature anisotropy. Waves in both regions propagate parallel to the magnetic field. In a second experiment a spatially limited high density beam is injected into a low beta background plasma and the subsequent wave excitation is studied. A model for slow shocks bounding the reconnection layer in the magnetotail is proposed where backstreaming ions first excite obliquely propagating waves by the electromagnetic ion/ion cyclotron instability, which lead to perpendicular heating. The T⊥/T∥ temperature anisotropy subsequently excites parallel propagating Alfvén ion cyclotron waves, which are convected into the slow shock and are refracted in the downstream region.
Dependence of Interaction Free Energy between Solutes on an External Electrostatic Field
Yang, Pei-Kun
2013-01-01
To explore the athermal effect of an external electrostatic field on the stabilities of protein conformations and the binding affinities of protein-protein/ligand interactions, the dependences of the polar and hydrophobic interactions on the external electrostatic field, −Eext, were studied using molecular dynamics (MD) simulations. By decomposing Eext into, along, and perpendicular to the direction formed by the two solutes, the effect of Eext on the interactions between these two solutes can be estimated based on the effects from these two components. Eext was applied along the direction of the electric dipole formed by two solutes with opposite charges. The attractive interaction free energy between these two solutes decreased for solutes treated as point charges. In contrast, the attractive interaction free energy between these two solutes increased, as observed by MD simulations, for Eext = 40 or 60 MV/cm. Eext was applied perpendicular to the direction of the electric dipole formed by these two solutes. The attractive interaction free energy was increased for Eext = 100 MV/cm as a result of dielectric saturation. The force on the solutes along the direction of Eext computed from MD simulations was greater than that estimated from a continuum solvent in which the solutes were treated as point charges. To explore the hydrophobic interactions, Eext was applied to a water cluster containing two neutral solutes. The repulsive force between these solutes was decreased/increased for Eext along/perpendicular to the direction of the electric dipole formed by these two solutes. PMID:23852018
Microwave Power Combiners for Signals of Arbitrary Amplitude
NASA Technical Reports Server (NTRS)
Conroy, Bruce; Hoppe, Daniel
2009-01-01
Schemes for combining power from coherent microwave sources of arbitrary (unequal or equal) amplitude have been proposed. Most prior microwave-power-combining schemes are limited to sources of equal amplitude. The basic principle of the schemes now proposed is to use quasi-optical components to manipulate the polarizations and phases of two arbitrary-amplitude input signals in such a way as to combine them into one output signal having a specified, fixed polarization. To combine power from more than two sources, one could use multiple powercombining stages based on this principle, feeding the outputs of lower-power stages as inputs to higher-power stages. Quasi-optical components suitable for implementing these schemes include grids of parallel wires, vane polarizers, and a variety of waveguide structures. For the sake of brevity, the remainder of this article illustrates the basic principle by focusing on one scheme in which a wire grid and two vane polarizers would be used. Wire grids are the key quasi-optical elements in many prior equal-power combiners. In somewhat oversimplified terms, a wire grid reflects an incident beam having an electric field parallel to the wires and passes an incident beam having an electric field perpendicular to the wires. In a typical prior equal-power combining scheme, one provides for two properly phased, equal-amplitude signals having mutually perpendicular linear polarizations to impinge from two mutually perpendicular directions on a wire grid in a plane oriented at an angle of 45 with respect to both beam axes. The wires in the grid are oriented to pass one of the incident beams straight through onto the output path and to reflect the other incident beam onto the output path along with the first-mentioned beam.
2014-01-01
Co-doped SnO2 thin films were grown by sputtering technique on SiO2/Si(001) substrates at room temperature, and then, thermal treatments with and without an applied magnetic field (HTT) were performed in vacuum at 600°C for 20 min. HTT was applied parallel and perpendicular to the substrate surface. Magnetic M(H) measurements reveal the coexistence of a strong antiferromagnetic (AFM) signal and a ferromagnetic (FM) component. The AFM component has a Néel temperature higher than room temperature, the spin axis lies parallel to the substrate surface, and the highest magnetic moment m =7 μB/Co at. is obtained when HTT is applied parallel to the substrate surface. Our results show an enhancement of FM moment per Co+2 from 0.06 to 0.42 μB/Co at. for the sample on which HTT was applied perpendicular to the surface. The FM order is attributed to the coupling of Co+2 ions through electrons trapped at the site of oxygen vacancies, as described by the bound magnetic polaron model. Our results suggest that FM order is aligned along [101] direction of Co-doped SnO2 nanocrystals, which is proposed to be the easy magnetization axis. PMID:25489286
Particle-in-cell simulations of the lower-hybrid instability driven by an ion-ring distribution
NASA Astrophysics Data System (ADS)
Swanekamp, Stephen; Richardson, Steve; Mithaiwala, Manish; Crabtree, Chris
2013-10-01
Fully electromagnetic particle-in-cell simulations of the excitation of the lower-hybrid mode in a plasma driven by an ion-ring distribution using the Lsp code are presented. At early times the simulations agree with linear theory. The resulting wave evolution and non-linear plasma and ring-ion heating are compared with theoretical models [Mithaiwala et al. 2010; Crabtree et al., this meeting] and previous simulation results [Winske and Daughton, 2012]. 2D simulations show that when the magnetic field is perpendicular to the wave vector, k, the electrostatic potential fluctuations work in conjunction with the applied magnetic field causing a circular electron E ×B drift around a positively charged center. Similar phenomena are observed in 2D simulations of magnetic-field penetration into a spatially inhomogeneous unmagnetized plasma [Richardson et al., this meeting] where circular paramagnetic vortices are formed. These vortices are altered by the addition of a small, in-plane, component of magnetic field which allows electrons to stream along field lines effectively shorting out one component of the electric field. In this case, the vortex structures are no longer circular but elongated along the direction of the in-plane magnetic field component.
Measurement of magnetic fluctuation-induced heat transport in tokamaks and RFP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fiksel, G.; Hartog, D.D.; Cekic, M.
1996-08-01
It has long been recognized that fluctuations in the magnetic field are a potent mechanism for the anomalous transport of energy in confined plasmas. The energy transport process originates from particle motion along magnetic fields, which have a fluctuating component in the radial direction (perpendicular to the confining equilibrium magnetic surfaces). A key feature is that the transport can be large even if the fluctuation amplitude is small. If the fluctuations are resonant with the equilibrium magnetic field (i.e., the fluctuation amplitude is constant along an equilibrium field line) then a small fluctuation can introduce stochasticity to the field linemore » trajectories. Particles following the chaotically wandering field lines can rapidly carry energy across the plasma.« less
Characterization of rf-SSET in both in-plane and perpendicular magnetic fields
NASA Astrophysics Data System (ADS)
Tang, Chunyang; Yang, Zhen; Yuan, Mingyun; Rimberg, A. J.; Savage, D. E.; Eriksson, M. A.; Rimberg Team; Eriksson Collaboration
2013-03-01
Previous success in coupling an aluminum radio-frequency superconducting single electron transistor (rf-SSET) to quantum dots (QDs) has demonstrated use of the rf-SSET as an ultra-sensitive and fast charge sensor. Since a magnetic field is usually necessary for quantum dot qubit manipulation, it is important to understand the effect of magnetic fields, either in-plane or perpendicular, on the performance of any charge sensor near the QDs. Here we report characterization of rf-SSETs in both in-plane and perpendicular magnetic fields. The rf-SSET works well in an in-plane fields up to 1 Tesla at a temperature of 30 mK. At 0.3K, in a perpendicular field generated by a stripline located 700 nm away, the rf-SSET charge sensitivity even shows improvement for up to 2.1 mA current through the stripline (corresponding roughly to a field of 6 Gauss). This work was supported by NSA, LPS and ARO
Magnetic structures and excitations in a multiferroic Y-type hexaferrite BaSrCo 2 Fe 11 AlO 22
Nakajima, Taro; Tokunaga, Yusuke; Matsuda, Masaaki; ...
2016-11-30
Here, we have investigated magnetic orders and excitations in a Y-type hexaferrite BaSrCo 2Fe 11AlO 22 (BSCoFAO), which was reported to exhibit spin-driven ferroelectricity at room temperature. By means of magnetization, electric polarization, and neutron-diffraction measurements using single-crystal samples, we establish a H-T magnetic phase diagram for magnetic field perpendicular to the c axis (H ⟂c). This system exhibits an alternating longitudinal conical (ALC) magnetic structure in the ground state, and it turns into a non-co-planar commensurate magnetic order with spin-driven ferroelectricity under H ⟂c. The field-induced ferroelectric phase remains as a metastable state after removing magnetic field below 250more » K. This metastability is the key to understanding of magnetic field reversal of the spin-driven electric polarization in this system. Inelastic polarized neutron-scattering measurements in the ALC phase reveal a magnetic excitation at around 7.5 meV, which is attributed to spin components oscillating in a plane perpendicular to the cone axis. This phasonlike excitation is expected to be an electric-field active magnon, i.e., electromagnon excitation, in terms of the magnetostriction mechanism.« less
Magnetic structures and excitations in a multiferroic Y-type hexaferrite BaSrCo2Fe11AlO22
NASA Astrophysics Data System (ADS)
Nakajima, Taro; Tokunaga, Yusuke; Matsuda, Masaaki; Dissanayake, Sachith; Fernandez-Baca, Jaime; Kakurai, Kazuhisa; Taguchi, Yasujiro; Tokura, Yoshinori; Arima, Taka-hisa
2016-11-01
We have investigated magnetic orders and excitations in a Y-type hexaferrite BaSrCo2Fe11AlO22 (BSCoFAO), which was reported to exhibit spin-driven ferroelectricity at room temperature [S. Hirose, K. Haruki, A. Ando, and T. Kimura, Appl. Phys. Lett. 104, 022907 (2014), 10.1063/1.4862432]. By means of magnetization, electric polarization, and neutron-diffraction measurements using single-crystal samples, we establish a H -T magnetic phase diagram for magnetic field perpendicular to the c axis (H⊥c). This system exhibits an alternating longitudinal conical (ALC) magnetic structure in the ground state, and it turns into a non-co-planar commensurate magnetic order with spin-driven ferroelectricity under H⊥c. The field-induced ferroelectric phase remains as a metastable state after removing magnetic field below ˜250 K. This metastability is the key to understanding of magnetic field reversal of the spin-driven electric polarization in this system. Inelastic polarized neutron-scattering measurements in the ALC phase reveal a magnetic excitation at around 7.5 meV, which is attributed to spin components oscillating in a plane perpendicular to the cone axis. This phasonlike excitation is expected to be an electric-field active magnon, i.e., electromagnon excitation, in terms of the magnetostriction mechanism.
Controlling stray electric fields on an atom chip for experiments on Rydberg atoms
NASA Astrophysics Data System (ADS)
Davtyan, D.; Machluf, S.; Soudijn, M. L.; Naber, J. B.; van Druten, N. J.; van Linden van den Heuvell, H. B.; Spreeuw, R. J. C.
2018-02-01
Experiments handling Rydberg atoms near surfaces must necessarily deal with the high sensitivity of Rydberg atoms to (stray) electric fields that typically emanate from adsorbates on the surface. We demonstrate a method to modify and reduce the stray electric field by changing the adsorbate distribution. We use one of the Rydberg excitation lasers to locally affect the adsorbed dipole distribution. By adjusting the averaged exposure time we change the strength (with the minimal value less than 0.2 V /cm at 78 μ m from the chip) and even the sign of the perpendicular field component. This technique is a useful tool for experiments handling Rydberg atoms near surfaces, including atom chips.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghilea, M. C.; Ruffolo, D.; Sonsrettee, W.
2011-11-01
The magnetic field line random walk (FLRW) is important for the transport of energetic particles in many astrophysical situations. While all authors agree on the quasilinear diffusion of field lines for fluctuations that mainly vary parallel to a large-scale field, for the opposite case of fluctuations that mainly vary in the perpendicular directions, there has been an apparent conflict between concepts of Bohm diffusion and percolation/trapping effects. Here computer simulation and non-perturbative analytic techniques are used to re-examine the FLRW in magnetic turbulence with slab and two-dimensional (2D) components, in which 2D flux surfaces are disturbed by the slab fluctuations.more » Previous non-perturbative theories for D{sub perpendicular}, based on Corrsin's hypothesis, have identified a slab contribution with quasilinear behavior and a 2D contribution due to Bohm diffusion with diffusive decorrelation (DD), combined in a quadratic formula. Here we present analytic theories for other routes to Bohm diffusion, with random ballistic decorrelation (RBD) either due to the 2D component itself (for a weak slab contribution) or the total fluctuation field (for a strong slab contribution), combined in a direct sum with the slab contribution. Computer simulations confirm the applicability of RBD routes for weak or strong slab contributions, while the DD route applies for a moderate slab contribution. For a very low slab contribution, interesting trapping effects are found, including a depressed diffusion coefficient and subdiffusive behavior. Thus quasilinear, Bohm, and trapping behaviors are all found in the same system, together with an overall viewpoint to explain these behaviors.« less
Analysis of DE-1 PWI electric field data
NASA Technical Reports Server (NTRS)
Weimer, Daniel
1994-01-01
The measurement of low frequency electric field oscillations may be accomplished with the Plasma Wave Instrument (PWI) on DE 1. Oscillations at a frequency around 1 Hz are below the range of the conventional plasma wave receivers, but they can be detected by using a special processing of the quasi-static electric field data. With this processing it is also possible to determine if the electric field oscillations are predominately parallel or perpendicular to the ambient magnetic field. The quasi-static electric field in the DE 1 spin/orbit plane is measured with a long-wire 'double probe'. This antenna is perpendicular to the satellite spin axis, which in turn is approximately perpendicular to the geomagnetic field in the polar magnetosphere. The electric field data are digitally sampled at a frequency of 16 Hz. The measured electric field signal, which has had phase reversals introduced by the rotating antenna, is multiplied by the sine of the rotation angle between the antenna and the magnetic field. This is called the 'perpendicular' signal. The measured time series is also multiplied with the cosine of the angle to produce a separate 'parallel' signal. These two separate time series are then processed to determine the frequency power spectrum.
Amplification of perpendicular and parallel magnetic fields by cosmic ray currents
NASA Astrophysics Data System (ADS)
Matthews, J. H.; Bell, A. R.; Blundell, K. M.; Araudo, A. T.
2017-08-01
Cosmic ray (CR) currents through magnetized plasma drive strong instabilities producing amplification of the magnetic field. This amplification helps explain the CR energy spectrum as well as observations of supernova remnants and radio galaxy hotspots. Using magnetohydrodynamic simulations, we study the behaviour of the non-resonant hybrid (NRH) instability (also known as the Bell instability) in the case of CR currents perpendicular and parallel to the initial magnetic field. We demonstrate that extending simulations of the perpendicular case to 3D reveals a different character to the turbulence from that observed in 2D. Despite these differences, in 3D the perpendicular NRH instability still grows exponentially far into the non-linear regime with a similar growth rate to both the 2D perpendicular and 3D parallel situations. We introduce some simple analytical models to elucidate the physical behaviour, using them to demonstrate that the transition to the non-linear regime is governed by the growth of thermal pressure inside dense filaments at the edges of the expanding loops. We discuss our results in the context of supernova remnants and jets in radio galaxies. Our work shows that the NRH instability can amplify magnetic fields to many times their initial value in parallel and perpendicular shocks.
NASA Astrophysics Data System (ADS)
Takahashi, K.; Higbie, P. R.; Baker, D. N.
1985-02-01
Properties of compressional Pc 5 waves as deduced from multiple-satellite observations at geosynchronous orbit are presented. The occurrence characteristics of the waves are determined, and the relation between variations in particle fluxes and magnetic field is examined. The spatiotemporal structure of the waves is considered, including the propagation perpendicular to the ambient magnetic field and the relation of the frequency characteristics to harmonic waves. It is demonstrated that the waves have large azimuthal wave numbers from 40 to 120, westward propagation at a typical velocity of 10 km/s, frequency roughly 25 percent of the second harmonic of the poloidal wave, and phase lag of 180 deg between the parallel and radial components of the wave magnetic field and + or -90 deg between the parallel and azimuthal components. These features are discussed in the light of existing theories of instabilities in the ring current plasma.
NASA Astrophysics Data System (ADS)
Kumamoto, A.; Tsuchiya, F.; Kasahara, Y.; Kasaba, Y.; Kojima, H.; Yagitani, S.; Ishisaka, K.; Imachi, T.; Ozaki, M.; Matsuda, S.; Shoji, M.; Matsuoka, A.; Katoh, Y.; Miyoshi, Y.; Shinohara, I.; Obara, T.
2017-12-01
High Frequency Analyzer (HFA) is a subsystem of the Plasma Wave Experiment (PWE) onboard the ARASE (ERG, Exploration of energization and Radiation in Geospace) spacecraft for observation of radio and plasma waves in a frequency range from 0.01 to 10 MHz. In ARASE mission, HFA is expected to perform the following observations: (1) Upper hybrid resonance (UHR) waves in order to determine the electron number density around the spacecraft. (2) Magnetic field component of the chorus waves in a frequency range from 20 kHz to 100 kHz. (3) Radio and plasma waves excited via wave particle interactions and mode conversion processes in storm-time magnetosphere.HFA is operated in the following three observation modes: EE-mode, EB-mode, and PP-mode. In far-Earth region, HFA is operated in EE-mode. Spectrogram of two orthogonal or right and left-handed components of electric field in perpendicular directions to the spin axis of the spacecraft are obtained. In the near-Earth region, HFA is operated in EB-mode. Spectrogram of one components of electric field in perpendicular direction to the spin plane, and one component of the magnetic field in parallel direction to the spin axis are obtained. In EE and EB-modes, the frequency range from 0.01 to 10 MHz are covered with 480 frequency steps. The time resolution is 8 sec. We also prepared PP mode to measure the locations and structures of the plasmapause at higher resolution. In PP-mode, spectrogram of one electric field component in a frequency range from 0.01-0.4 MHz (PP1) or 0.1-1 MHz (PP2) can be obtained at time resolution of 1 sec.After the successful deployment of the wire antenna and search coils mast and initial checks, we could start routine observations and detect various radio and plasma wave phenomena such as upper hybrid resonance (UHR) waves, electrostatic electron cyclotron harmonic (ESCH) waves, auroral kilometric radiation (AKR), kilometric continuum (KC) and Type-III solar radio bursts. In the presentation, we will report the initial results based on the datasets obtained since January 2017 focusing on the analyses of plasmasphere evolution by semi-automatic identification of UHR frequency, and AKR from the both hemisphere based on polarization measurement.
Polarization control of terahertz waves generated by circularly polarized few-cycle laser pulses
NASA Astrophysics Data System (ADS)
Song, Liwei; Bai, Ya; Xu, Rongjie; Li, Chuang; Liu, Peng; Li, Ruxin; Xu, Zhizhan
2013-12-01
We demonstrate the generation and control of elliptically polarized terahertz (THz) waves from air plasma produced by circularly polarized few-cycle laser pulses. Experimental and calculated results reveal that electric field asymmetry in rotating directions of the circularly polarized few-cycle laser pulses produces the enhanced broadband transient currents, and the phase difference of perpendicular laser field components is partially inherited in the generation process of THz emission. The ellipticity of the THz emission and its major axis direction are all-optically controlled by the duration and carrier-envelope phase of the laser pulses.
Fast Magnetosonic Waves Observed by Van Allen Probes: Testing Local Wave Excitation Mechanism
NASA Astrophysics Data System (ADS)
Min, Kyungguk; Liu, Kaijun; Wang, Xueyi; Chen, Lunjin; Denton, Richard E.
2018-01-01
Linear Vlasov theory and particle-in-cell (PIC) simulations for electromagnetic fluctuations in a homogeneous, magnetized, and collisionless plasma are used to investigate a fast magnetosonic wave event observed by the Van Allen Probes. The fluctuating magnetic field observed exhibits a series of spectral peaks at harmonics of the proton cyclotron frequency Ωp and has a dominant compressional component, which can be classified as fast magnetosonic waves. Furthermore, the simultaneously observed proton phase space density exhibits positive slopes in the perpendicular velocity space, ∂fp/∂v⊥>0, which can be a source for these waves. Linear theory analyses and PIC simulations use plasma and field parameters measured in situ except that the modeled proton distribution is modified to have larger ∂fp/∂v⊥ under the assumption that the observed distribution corresponds to a marginally stable state when the distribution has already been scattered by the excited waves. The results show that the positive slope is the source of the proton cyclotron harmonic waves at propagation quasi-perpendicular to the background magnetic field, and as a result of interactions with the excited waves the evolving proton distribution progresses approximately toward the observed distribution.
The energy associated with MHD waves generation in the solar wind plasma
NASA Technical Reports Server (NTRS)
delaTorre, A.
1995-01-01
Gyrotropic symmetry is usually assumed in measurements of electron distribution functions in the heliosphere. This prevents the calculation of a net current perpendicular to the magnetic field lines. Previous theoretical results derived by one of the authors for a collisionless plasma with isotropic electrons in a strong magnetic field have shown that the excitation of MHD modes becomes possible when the external perpendicular current is non-zero. We consider then that any anisotropic electron population can be thought of as 'external', interacting with the remaining plasma through the self-consistent electromagnetic field. From this point of view any perpendicular current may be due to the anisotropic electrons, or to an external source like a stream, or to both. As perpendicular currents cannot be derived from the measured distribution functions, we resort to Ampere's law and experimental data of magnetic field fluctuations. The transfer of energy between MHD modes and external currents is then discussed.
The Morphology of the Solar Wind Magnetic Field Draping on the Dayside of Mars and Its Variability
NASA Astrophysics Data System (ADS)
Fang, Xiaohua; Ma, Yingjuan; Luhmann, Janet; Dong, Yaxue; Brain, David; Hurley, Dana; Dong, Chuanfei; Lee, Christina O.; Jakosky, Bruce
2018-04-01
The magnetic field draping pattern in the magnetosheath of Mars is of interest for what it tells us about both the solar wind interaction with the Mars obstacle and the use of the field measured there as a proxy for the upstream interplanetary magnetic field (IMF) clock angle. We apply a time-dependent, global magnetohydrodynamic model toward quantifying the spatial and temporal variations of the magnetic field draping direction on the Martian dayside above 500-km altitude. The magnetic field and plasma are self-consistently solved over one Mars rotation period, with the dynamics of the field morphology considered as the result of the rotation of the crustal field orientation. Our results show how the magnetic field direction on the plane perpendicular to the solar wind flow direction gradually departs from the IMF as the solar wind penetrates toward the obstacle and into the tail region. This clock angle departure occurs mainly inside the magnetic pileup region and tailward of the terminator plane, exhibiting significant dawn-dusk and north-south asymmetries. Inside the dayside sheath region, the field direction has the greatest departure from the IMF-perpendicular component direction downstream of the quasi-parallel bow shock, which for the nominal Parker spiral is over the dawn quadrant. Thus, the best region to obtain an IMF clock angle proxy is within the dayside magnetosheath at sufficiently high altitudes, particularly over subsolar and dusk sectors. Our results illustrate that the crustal field has only a mild influence on the magnetic field draping direction within the magnetosheath region.
Evidence for magnetic-field-induced decoupling of superconducting bilayers in La 2-xCa 1+xCu 2O 6
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Ruidan; Schneeloch, J. A.; Chi, Hang
We report a study of magnetic susceptibility and electrical resistivity as a function of temperature and magnetic field in superconducting crystals of La 2-xCa 1+xCu 2O 6 with x = 0.10 and 0.15 and transition temperature Tmore » $$m\\atop{c}$$ = 54 K (determined from the susceptibility). When an external magnetic field is applied perpendicular to the CuO 2 bilayers, the resistive superconducting transition measured with currents flowing perpendicular to the bilayers is substantially lower than that found with currents flowing parallel to the bilayers. Intriguingly, this anisotropic behavior is quite similar to that observed for the magnetic irreversibility points with the field applied either perpendicular or parallel to the bilayers. We discuss the results in the context of other studies that have found evidence for the decoupling of superconducting layers induced by a perpendicular magnetic field.« less
Evidence for magnetic-field-induced decoupling of superconducting bilayers in La 2-xCa 1+xCu 2O 6
Zhong, Ruidan; Schneeloch, J. A.; Chi, Hang; ...
2018-04-24
We report a study of magnetic susceptibility and electrical resistivity as a function of temperature and magnetic field in superconducting crystals of La 2-xCa 1+xCu 2O 6 with x = 0.10 and 0.15 and transition temperature Tmore » $$m\\atop{c}$$ = 54 K (determined from the susceptibility). When an external magnetic field is applied perpendicular to the CuO 2 bilayers, the resistive superconducting transition measured with currents flowing perpendicular to the bilayers is substantially lower than that found with currents flowing parallel to the bilayers. Intriguingly, this anisotropic behavior is quite similar to that observed for the magnetic irreversibility points with the field applied either perpendicular or parallel to the bilayers. We discuss the results in the context of other studies that have found evidence for the decoupling of superconducting layers induced by a perpendicular magnetic field.« less
Structure and Dynamics of Current Sheets in 3D Magnetic Fields with the X-line
NASA Astrophysics Data System (ADS)
Frank, Anna G.; Bogdanov, S. Yu.; Bugrov, S. G.; Markov, V. S.; Dreiden, G. V.; Ostrovskaya, G. V.
2004-11-01
Experimental results are presented on the structure of current sheets formed in 3D magnetic fields with singular lines of the X-type. Two basic diagnostics were used with the device CS - 3D: two-exposure holographic interferometry and magnetic measurements. Formation of extended current sheets and plasma compression were observed in the presence of the longitudinal magnetic field component aligned with the X-line. Plasma density decreased and the sheet thickness increased with an increase of the longitudinal component. We succeeded to reveal formation of the sheets taking unusual shape, namely tilted and asymmetric sheets, in plasmas with the heavy ions. These current sheets were obviously different from the planar sheets formed in 2D magnetic fields, i.e. without longitudinal component. Analysis of typical plasma parameters made it evident that plasma dynamics and current sheet evolution should be treated on the base of the two-fluid approach. Specifically it is necessary to take into account the Hall currents in the plane perpendicular to the X-line, and the dynamic effects resulting from interaction of the Hall currents and the 3D magnetic field. Supported by RFBR, grant 03-02-17282, and ISTC, project 2098.
Water liquid-vapor interface subjected to various electric fields: A molecular dynamics study.
Nikzad, Mohammadreza; Azimian, Ahmad Reza; Rezaei, Majid; Nikzad, Safoora
2017-11-28
Investigation of the effects of E-fields on the liquid-vapor interface is essential for the study of floating water bridge and wetting phenomena. The present study employs the molecular dynamics method to investigate the effects of parallel and perpendicular E-fields on the water liquid-vapor interface. For this purpose, density distribution, number of hydrogen bonds, molecular orientation, and surface tension are examined to gain a better understanding of the interface structure. Results indicate enhancements in parallel E-field decrease the interface width and number of hydrogen bonds, while the opposite holds true in the case of perpendicular E-fields. Moreover, perpendicular fields disturb the water structure at the interface. Given that water molecules tend to be parallel to the interface plane, it is observed that perpendicular E-fields fail to realign water molecules in the field direction while the parallel ones easily do so. It is also shown that surface tension rises with increasing strength of parallel E-fields, while it reduces in the case of perpendicular E-fields. Enhancement of surface tension in the parallel field direction demonstrates how the floating water bridge forms between the beakers. Finally, it is found that application of external E-fields to the liquid-vapor interface does not lead to uniform changes in surface tension and that the liquid-vapor interfacial tension term in Young's equation should be calculated near the triple-line of the droplet. This is attributed to the multi-directional nature of the droplet surface, indicating that no constant value can be assigned to a droplet's surface tension in the presence of large electric fields.
Giant perpendicular exchange bias with antiferromagnetic MnN
NASA Astrophysics Data System (ADS)
Zilske, P.; Graulich, D.; Dunz, M.; Meinert, M.
2017-05-01
We investigated an out-of-plane exchange bias system that is based on the antiferromagnet MnN. Polycrystalline, highly textured film stacks of Ta/MnN/CoFeB/MgO/Ta were grown on SiOx by (reactive) magnetron sputtering and studied by x-ray diffraction and Kerr magnetometry. Nontrivial modifications of the exchange bias and the perpendicular magnetic anisotropy were observed as functions of both film thicknesses and field cooling temperatures. In optimized film stacks, a giant perpendicular exchange bias of 3600 Oe and a coercive field of 350 Oe were observed at room temperature. The effective interfacial exchange energy is estimated to be Jeff = 0.24 mJ/m2 and the effective uniaxial anisotropy constant of the antiferromagnet is Keff = 24 kJ/m3. The maximum effective perpendicular anisotropy field of the CoFeB layer is Hani = 3400 Oe. These values are larger than any previously reported values. These results possibly open a route to magnetically stable, exchange biased perpendicularly magnetized spin valves.
Limits on plasma anisotropy in a tail-like magnetic field
NASA Technical Reports Server (NTRS)
Hill, T. W.; Voigt, G.-H.
1992-01-01
The condition of magnetohydrostatic equilibrium implies tight constraints on the degree of anisotropy that is supportable in a magnetotail field geometry. If the plasma pressure tensor is assumed to be gyrotropic at the tail midplane (z = 0), then equilibrium requires that it also be nearly isotropic there, with P-perpendicular sub 0/P-parallel sub 0 in the range 1 +/- delta square, where delta of about 0.1 is the ratio of the normal field component at the symmetry plane to the field strength in the tail lobe. The upper and the lower limits are essentially equivalent, respectively, to the marginal mirror and firehose stability conditions evaluated at z = 0, which have been invoked previously to limit the degree of anisotropy in the plasma sheet.
A Semi-analytical Line Transfer (SALT) Model. II: The Effects of a Bi-conical Geometry
NASA Astrophysics Data System (ADS)
Carr, Cody; Scarlata, Claudia; Panagia, Nino; Henry, Alaina
2018-06-01
We generalize the semi-analytical line transfer model recently introduced by Scarlata & Panagia for modeling galactic outflows, to account for bi-conical geometries of various opening angles and orientations with respect to the line of sight to the observer, as well as generalized velocity fields. We model the absorption and emission component of the line profile resulting from resonant absorption in the bi-conical outflow. We show how the outflow geometry impacts the resulting line profile. We use simulated spectra with different geometries and velocity fields to study how well the outflow parameters can be recovered. We find that geometrical parameters (including the opening angle and the orientation) are always well recovered. The density and velocity field parameters are reliably recovered when both an absorption and an emission component are visible in the spectra. This condition implies that the velocity and density fields for narrow cones oriented perpendicular to the line of sight will remain unconstrained.
NASA Astrophysics Data System (ADS)
Zhao, L.; Zank, G. P.; Adhikari, L.
2017-12-01
The radial and rigidity dependence of cosmic ray (CR) diffusion tensor is investigated on the basis of the recently developed 2D and slab turbulence transport model using nearly incompressible (NI) theory (Zank et al. 2017; Adhikari et al. 2017). We use the energy in forward propagating modes from 0.29 to 1 AU and in backward propagating modes from 1 to 75 AU. We employ the quasi-linear theory (QLT) and nonlinear guiding center (NLGC) theory, respectively, to determine the parallel and perpendicular elements of CR diffusion tensor. We also present the effect of both weak and moderately strong turbulence on the drift element of CR diffusion tensor. We find that (1) from 0.29 to 1 AU the radial mean free path (mfp) is dominated by the parallel component, both increase slowly after 0.4 AU; (2) from 1 to 75 AU the radial mfp starts with a rapid increase and then decreases after a peak at about 3.5 AU, mainly caused by pick-up ion sources of turbulence model; (3) after 20 AU the perpendicular mfp is nearly constant and begin to dominate the radial mfp; (4) the rigidity dependence of the parallel mfp is proportional to at 1 AU from 0.1 to 10 GV and the perpendicular mfp is weakly influenced by the rigidity; (5) turbulence does more than suppress the traditional drift element but introduces a new component normal to the magnetic field. This study shows that a proper two-component turbulence model is necessary to produce the complexity of diffusion coefficient for CR modulation throughout the heliosphere.
NASA Astrophysics Data System (ADS)
Risse, M. P.; Aikele, M. G.; Doettinger, S. G.; Huebener, R. P.; Tsuei, C. C.; Naito, M.
1997-06-01
We have studied the electric resistivity in superconducting amorphous Mo3Si films in a perpendicular magnetic field B0+B1 sin ωt with B1<
Transport of cosmic-ray protons in intermittent heliospheric turbulence: Model and simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alouani-Bibi, Fathallah; Le Roux, Jakobus A., E-mail: fb0006@uah.edu
The transport of charged energetic particles in the presence of strong intermittent heliospheric turbulence is computationally analyzed based on known properties of the interplanetary magnetic field and solar wind plasma at 1 astronomical unit. The turbulence is assumed to be static, composite, and quasi-three-dimensional with a varying energy distribution between a one-dimensional Alfvénic (slab) and a structured two-dimensional component. The spatial fluctuations of the turbulent magnetic field are modeled either as homogeneous with a Gaussian probability distribution function (PDF), or as intermittent on large and small scales with a q-Gaussian PDF. Simulations showed that energetic particle diffusion coefficients both parallelmore » and perpendicular to the background magnetic field are significantly affected by intermittency in the turbulence. This effect is especially strong for parallel transport where for large-scale intermittency results show an extended phase of subdiffusive parallel transport during which cross-field transport diffusion dominates. The effects of intermittency are found to depend on particle rigidity and the fraction of slab energy in the turbulence, yielding a perpendicular to parallel mean free path ratio close to 1 for large-scale intermittency. Investigation of higher order transport moments (kurtosis) indicates that non-Gaussian statistical properties of the intermittent turbulent magnetic field are present in the parallel transport, especially for low rigidity particles at all times.« less
PERPENDICULAR ION HEATING BY LOW-FREQUENCY ALFVEN-WAVE TURBULENCE IN THE SOLAR WIND
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chandran, Benjamin D. G.; Germaschewski, Kai; Li Bo
We consider ion heating by turbulent Alfven waves (AWs) and kinetic Alfven waves (KAWs) with wavelengths (measured perpendicular to the magnetic field) that are comparable to the ion gyroradius and frequencies {omega} smaller than the ion cyclotron frequency {Omega}. We focus on plasmas in which {beta} {approx}< 1, where {beta} is the ratio of plasma pressure to magnetic pressure. As in previous studies, we find that when the turbulence amplitude exceeds a certain threshold, an ion's orbit becomes chaotic. The ion then interacts stochastically with the time-varying electrostatic potential, and the ion's energy undergoes a random walk. Using phenomenological arguments,more » we derive an analytic expression for the rates at which different ion species are heated, which we test by simulating test particles interacting with a spectrum of randomly phased AWs and KAWs. We find that the stochastic heating rate depends sensitively on the quantity {epsilon} = {delta}v {sub {rho}/}v{sub perpendicular}, where v{sub perpendicular} (v {sub ||}) is the component of the ion velocity perpendicular (parallel) to the background magnetic field B {sub 0}, and {delta}v {sub {rho}} ({delta}B {sub {rho}}) is the rms amplitude of the velocity (magnetic-field) fluctuations at the gyroradius scale. In the case of thermal protons, when {epsilon} << {epsilon}{sub crit}, where {epsilon}{sub crit} is a constant, a proton's magnetic moment is nearly conserved and stochastic heating is extremely weak. However, when {epsilon}>{epsilon}{sub crit}, the proton heating rate exceeds half the cascade power that would be present in strong balanced KAW turbulence with the same value of {delta}v {sub {rho}}, and magnetic-moment conservation is violated even when {omega} << {Omega}. For the random-phase waves in our test-particle simulations, {epsilon}{sub crit} = 0.19. For protons in low-{beta} plasmas, {epsilon} {approx_equal} {beta}{sup -1/2{delta}}B{sub {rho}/}B {sub 0}, and {epsilon} can exceed {epsilon}{sub crit} even when {delta}B{sub {rho}/}B {sub 0} << {epsilon}{sub crit}. The heating is anisotropic, increasing v {sup 2}{sub perpendicular} much more than v {sup 2}{sub ||} when {beta} << 1. (In contrast, at {beta} {approx}> 1 Landau damping and transit-time damping of KAWs lead to strong parallel heating of protons.) At comparable temperatures, alpha particles and minor ions have larger values of {epsilon} than protons and are heated more efficiently as a result. We discuss the implications of our results for ion heating in coronal holes and the solar wind.« less
Electromagnetic coupling of spins and pseudospins in bilayer graphene
NASA Astrophysics Data System (ADS)
Winkler, R.; Zülicke, U.
2015-03-01
We present a theoretical study of bilayer-graphene's electronic properties in the presence of electric and magnetic fields. In contrast to known materials, including single-layer graphene, any possible coupling of physical quantities to components of the electric field has a counterpart where the analogous component of the magnetic field couples to exactly the same quantities. For example, a purely electric spin splitting appears as the magneto-electric analogue of the magnetic Zeeman spin splitting. The measurable thermodynamic response induced by magnetic and electric fields is thus completely symmetric. The Pauli magnetization induced by a magnetic field takes exactly the same functional form as the polarization induced by an electric field. Although they seem counterintuitive, our findings are consistent with fundamental principles such as time reversal symmetry. For example, only a magnetic field can give rise to a macroscopic spin polarization, whereas only a perpendicular electric field can induce a macroscopic polarization of the sublattice-related pseudospin in bilayer graphene. These rules enforced by symmetry for the matter-field interactions clarify the nature of spins versus pseudospins. We have obtained numerical values of prefactors for relevant terms. NSF Grant DMR-1310199 and Marsden Fund Contract No. VUW0719.
MEMS cantilever based magnetic field gradient sensor
NASA Astrophysics Data System (ADS)
Dabsch, Alexander; Rosenberg, Christoph; Stifter, Michael; Keplinger, Franz
2017-05-01
This paper describes major contributions to a MEMS magnetic field gradient sensor. An H-shaped structure supported by four arms with two circuit paths on the surface is designed for measuring two components of the magnetic flux density and one component of the gradient. The structure is produced from silicon wafers by a dry etching process. The gold leads on the surface carry the alternating current which interacts with the magnetic field component perpendicular to the direction of the current. If the excitation frequency is near to a mechanical resonance, vibrations with an amplitude within the range of 1-103 nm are expected. Both theoretical (simulations and analytic calculations) and experimental analysis have been carried out to optimize the structures for different strength of the magnetic gradient. In the same way the impact of the coupling structure on the resonance frequency and of different operating modes to simultaneously measure two components of the flux density were tested. For measuring the local gradient of the flux density the structure was operated at the first symmetrical and the first anti-symmetrical mode. Depending on the design, flux densities of approximately 2.5 µT and gradients starting from 1 µT mm-1 can be measured.
Electromagnetic radiation from beam-plasma instabilities
NASA Technical Reports Server (NTRS)
Pritchett, P. L.; Dawson, J. M.
1983-01-01
A computer simulation is developed for the generation of electromagnetic radiation in an electron beam-plasma interaction. The plasma is treated as a two-dimensional finite system, and effects of a continuous nonrelativistic beam input are accounted for. Three momentum and three field components are included in the simulation, and an external magnetic field is excluded. EM radiation generation is possible through interaction among Langmuir oscillations, ion-acoustic waves, and the electromagnetic wave, producing radiation perpendicular to the beam. The radiation is located near the plasma frequency, and polarized with the E component parallel to the beam. The scattering of Langmuir waves caused by ion-acoustic fluctuations generates the radiation. Comparison with laboratory data for the three-wave interactions shows good agreement in terms of the radiation levels produced, which are small relative to the plasma thermal energy.
NASA Astrophysics Data System (ADS)
Zhang, Changxin; Fang, Bin; Wang, Bochong; Zeng, Zhongming
2018-04-01
This paper presents a steady auto-oscillation in a spin-torque oscillator using MgO-based magnetic tunnel junction (MTJ) with a perpendicular polarizer and a perpendicular free layer. As the injected d.c. current varied from 1.5 to 3.0 mA under a weak magnetic field of 290 Oe, the oscillation frequency decreased from 1.85 to 1.3 GHz, and the integrated power increased from 0.1 to 74 pW. A narrow linewidth down to 7 MHz corresponding to a high Q factor of 220 was achieved at 2.7 mA, which was ascribed to the spatial coherent procession of the free layer magnetization. Moreover, the oscillation frequency was quite sensitive to the applied field, about 3.07 MHz/Oe, indicating the potential applications as a weak magnetic field detector. These results suggested that the MgO-based MTJ with perpendicular magnetic easy axis could be helpful for developing spin-torque oscillators with narrow-linewidth and high sensitive.
Snake states and their symmetries in graphene
NASA Astrophysics Data System (ADS)
Tiwari, Rakesh; Liu, Yang; Brada, Matej; Bruder, C.; Kusmartsev, F. V.; Mele, E. J.
Snake states are open trajectories for charged particles moving in two dimensions under the influence of a spatially varying perpendicular magnetic field. They can also occur in a constant perpendicular magnetic field when the particle density is made nonuniform as realized at a pn junction in a semiconductor, or in graphene. We examine the correspondence of such trajectories in monolayer graphene in the quantum limit for two families of domain walls: (a) a uniform doped carrier density in an antisymmetric perpendicular magnetic field and (b) antisymmetric carrier density distribution in a uniform perpendicular magnetic field. Although, these families support different internal symmetries, the pattern of the boundary and interface currents is the same in both cases. We demonstrate that these two physically different situations are gauge equivalent when rewritten in a Nambu doubled formulation of the two limiting problems. Using gauge transformations in particle-hole space to connect these two problems, we map the protected interfacial modes to the Bogoliubov quasiparticles of an interfacial one-dimensional p-wave paired state.
The role of local stress perturbation on the simultaneous opening of orthogonal fractures
NASA Astrophysics Data System (ADS)
Boersma, Quinten; Hardebol, Nico; Barnhoorn, Auke; Bertotti, Giovanni; Drury, Martyn
2016-04-01
Orthogonal fracture networks (ladder-like networks) are arrangements that are commonly observed in outcrop studies. They form a particularly dense and well connected network which can play an important role in the effective permeability of tight hydrocarbon or geothermal reservoirs. One issue is the extent to which both the long systematic and smaller cross fractures can be simultaneously critically stressed under a given stress condition. Fractures in an orthogonal network form by opening mode-I displacements in which the main component is separation of the two fracture walls. This opening is driven by effective tensile stresses as the smallest principle stress acting perpendicular to the fracture wall, which accords with linear elastic fracture mechanics. What has been well recognized in previous field and modelling studies is how both the systematic fractures and perpendicular cross fractures require the minimum principle stress to act perpendicular to the fracture wall. Thus, these networks either require a rotation of the regional stress field or local perturbations in stress field. Using a mechanical finite element modelling software, a geological case of layer perpendicular systematic mode I opening fractures is generated. New in our study is that we not only address tensile stresses at the boundary, but also address models using pore fluid pressure. The local stress in between systematic fractures is then assessed in order to derive the probability and orientation of micro crack propagation using the theory of sub critical crack growth and Griffith's theory. Under effective tensile conditions, the results indicate that in between critically spaced systematic fractures, local effective tensile stresses flip. Therefore the orientation of the least principle stress will rotate 90°, hence an orthogonal fracture is more likely to form. Our new findings for models with pore fluid pressures instead of boundary tension show that the magnitude of effective tension in between systematic fractures is reduced but does not remove the occurring stress flip. However, putting effective tension on the boundaries will give overestimates in the reduction of the local effective tensile stress perpendicular to the larger systematic fractures and therefore the magnitude of the stress flip. In conclusion, both model approaches indicate that orthogonal fractures can form while experiencing one regional stress regime. This also means that under these specific loading and locally perturbed stress conditions both sets of orthogonal fractures stay open and can provide a pathway for fluid circulation.
NASA Astrophysics Data System (ADS)
Hackett, S. L.; van Asselen, B.; Wolthaus, J. W. H.; Bluemink, J. J.; Ishakoglu, K.; Kok, J.; Lagendijk, J. J. W.; Raaymakers, B. W.
2018-05-01
The transverse magnetic field of an MRI-linac sweeps contaminant electrons away from the radiation beam. Films oriented perpendicular to the magnetic field and 5 cm from the radiation beam edge show a projection of the divergent beam, indicating that contaminant electrons spiral along magnetic field lines and deposit dose on surfaces outside the primary beam perpendicular to the magnetic field. These spiraling contaminant electrons (SCE) could increase skin doses to protruding regions of the patient along the cranio-caudal axis. This study investigated doses from SCE for an MRI-linac comprising a 7 MV linac and a 1.5 T MRI scanner. Surface doses to films perpendicular to the magnetic field and 5 cm from the radiation beam edge showed increased dose within the projection of the primary beam, whereas films parallel to the magnetic field and 5 cm from the beam edge showed no region of increased dose. However, the dose from contaminant electrons is absorbed within a few millimeters. For large fields, the SCE dose is within the same order of magnitude as doses from scattered and leakage photons. Doses for both SCE and scattered photons decrease rapidly with decreasing beam size and increasing distance from the beam edge.
Thermal ripples in a resistive and radiative instability. [in solar corona
NASA Technical Reports Server (NTRS)
Steinolfson, R. S.
1984-01-01
The development of the resistive tearing instability in the case of sheared magnetic fields is considered, taking into account also the occurrence of a radiatively driven thermal instability. It is pointed out that thermal conduction has generally been neglected in theories similar to those discussed. The present investigation is concerned with a consideration of both parallel and perpendicular thermal conduction, in addition to finite resistivity and radiative loss. Attention is given to the equations and the model, the spatial singularity which arises with consideration of only the parallel heat conduction, the removal of this singularity and the formation of temperature oscillations (thermal ripples) by inclusion of the perpendicular heat-flux component, and details regarding the numerical procedure. A brief explanation is provided of the conditions required for the oscillations, and potential implications of the results with respect to the solar flare are discussed.
NASA Astrophysics Data System (ADS)
Yahagi, Y.; Miura, D.; Sakuma, A.
2018-05-01
We investigated the anisotropic magnetoresistance (AMR) effects in ferromagnetic-metal multi-layers stacked on non-magnetic insulators in the context of microscopic theory. We represented this situation with tight-binding models that included the exchange and Rashba fields, where the Rashba field was assumed to originate from spin-orbit interactions as junction effects with the insulator. To describe the AMR ratios, the DC conductivity was calculated based on the Kubo formula. As a result, we showed that the Rashba field induced both perpendicular and in-plane AMR effects and that the perpendicular AMR effect rapidly decayed with increasing film thickness.
Method and apparatus for atomization and spraying of molten metals
Hobson, David O.; Alexeff, Igor; Sikka, Vinod K.
1990-01-01
A method and device for dispersing molten metal into fine particulate spray, the method comprises applying an electric current through the molten metal and simultaneously applying a magnetic field to the molten metal in a plane perpendicular to the electric current, whereby the molten metal is caused to form into droplets at an angle perpendicular to both the electric current and the magnetic field. The device comprises a structure for providing a molten metal, appropriately arranged electrodes for applying an electric current through the molten metal, and a magnet for providing a magnetic field in a plane perpendicular to the electric current.
Method and apparatus for atomization and spraying of molten metals
Hobson, D.O.; Alexeff, I.; Sikka, V.K.
1988-07-19
A method and device for dispersing molten metal into fine particulate spray, the method comprises applying an electric current through the molten metal and simultaneously applying a magnetic field to the molten metal in a plane perpendicular to the electric current, whereby the molten metal is caused to form into droplets at an angle perpendicular to both the electric current and the magnetic field. The device comprises a structure for providing a molten metal, appropriately arranged electrodes for applying an electric current through the molten metal, and a magnet for providing a magnetic field in a plane perpendicular to the electric current. 11 figs.
Anisotropic mean-square displacements in two-dimensional colloidal crystals of tilted dipoles
NASA Astrophysics Data System (ADS)
Froltsov, V. A.; Likos, C. N.; Löwen, H.; Eisenmann, C.; Gasser, U.; Keim, P.; Maret, G.
2005-03-01
Superparamagnetic colloidal particles confined to a flat horizontal air-water interface in an external magnetic field, which is tilted relative to the interface, form anisotropic two-dimensional crystals resulting from their mutual dipole-dipole interactions. Using real-space experiments and harmonic lattice theory we explore the mean-square displacements of the particles in the directions parallel and perpendicular to the in-plane component of the external magnetic field as a function of the tilt angle. We find that the anisotropy of the mean-square displacement behaves nonmonotonically as a function of the tilt angle and does not correlate with the structural anisotropy of the crystal.
Gharekhan, Anita H; Arora, Siddharth; Oza, Ashok N; Sureshkumar, Mundan B; Pradhan, Asima; Panigrahi, Prasanta K
2011-08-01
Using the multiresolution ability of wavelets and effectiveness of singular value decomposition (SVD) to identify statistically robust parameters, we find a number of local and global features, capturing spectral correlations in the co- and cross-polarized channels, at different scales (of human breast tissues). The copolarized component, being sensitive to intrinsic fluorescence, shows different behavior for normal, benign, and cancerous tissues, in the emission domain of known fluorophores, whereas the perpendicular component, being more prone to the diffusive effect of scattering, points out differences in the Kernel-Smoother density estimate employed to the principal components, between malignant, normal, and benign tissues. The eigenvectors, corresponding to the dominant eigenvalues of the correlation matrix in SVD, also exhibit significant differences between the three tissue types, which clearly reflects the differences in the spectral correlation behavior. Interestingly, the most significant distinguishing feature manifests in the perpendicular component, corresponding to porphyrin emission range in the cancerous tissue. The fact that perpendicular component is strongly influenced by depolarization, and porphyrin emissions in cancerous tissue has been found to be strongly depolarized, may be the possible cause of the above observation.
Stokes' Parameters Compared to Astrophysical Magnetic Turbulence Parameters
NASA Astrophysics Data System (ADS)
Forman, Miriam; Wicks, Robert; Oughton, Sean; Horbury, Timothy
2015-04-01
Since the divergence of a magnetic field is zero, the Fourier transform of fluctuations δB(k) must be perpendicular to k, so δB(k) has components only in the plane perpendicular to k. When there is also a mean field B, the obvious choice of coordinates to describe δB(k) are the unit vectors tin the directionB x k and p in the direction (Bxk) x k, called the ``toroidal'' and ``poloidal'' directions, respectively. Oughton, et al. (1997) as elucidated by Wicks et al. (2012) showed that the power spectral tensor Pij(k) of magnetic fluctuations is described by four scalar functions of k, multiplying the tensors t:t, p:p, t:p +p:t, and t:p-p:t so that the Hermitian Pij(k) = Tor(k) t:t + Pol(k) p:p + C(k) [t:p +p:t] + i kH(k) [t:p-p:t]. Since the electromagnetic fluctuations δB(k) and δE(k) in a beam of light are also perpendicular to their k, the four scalar functions of magnetic turbulence in astrophysics which scatters cosmic rays and allows their acceleration, are analogs of the Stokes' parameters. Using Chandrasekhar's (1960) notation [I,Q,U,V]: I = Tor + Pol = Tr(Pij(k); Q = Tor-Pol; U = C; we speculate that V corresponds to magnetic helicity kH in turbulence. We are studying projections of Pij(k) observed by spacecraft in the solar wind.
Energy Conversion Mechanism for Electron Perpendicular Energy in High Guide-Field Reconnection
NASA Astrophysics Data System (ADS)
Guo, Xuehan; Horiuchi, Ritoku; Kaminou, Yasuhiro; Cheng, Frank; Ono, Yasushi
2016-10-01
The energy conversion mechanism for electron perpendicular energy, both the thermal and the kinetic energy, is investigated by means of two-dimensional, full-particle simulations in an open system. It is shown that electron perpendicular heating is mainly due to the breaking of magnetic moment conservation in separatrix region because the charge separation generates intense variation of electric field within the electron Larmor radius. Meanwhile, electron perpendicular acceleration takes place manly due to the polarization drift term as well as the curvature drift term of E . u⊥ in the downstream near the X-point. The enhanced electric field due to the charge separation there results in a significant effect of the polarization drift term on the dissipation of magnetic energy within the ion inertia length in the downstream. Japan Society for the Promotion of Science (JSPS) Fellows 15J03758.
Spin-orbit torque in a bulk perpendicular magnetic anisotropy Pd/FePd/MgO system
Lee, Hwang-Rae; Lee, Kyujoon; Cho, Jaehun; Choi, Young-Ha; You, Chun-Yeol; Jung, Myung-Hwa; Bonell, Frédéric; Shiota, Yoichi; Miwa, Shinji; Suzuki, Yoshishige
2014-01-01
Spin-orbit torques, including the Rashba and spin Hall effects, have been widely observed and investigated in various systems. Since interesting spin-orbit torque (SOT) arises at the interface between heavy nonmagnetic metals and ferromagnetic metals, most studies have focused on the ultra-thin ferromagnetic layer with interface perpendicular magnetic anisotropy. Here, we measured the effective longitudinal and transverse fields of bulk perpendicular magnetic anisotropy Pd/FePd (1.54 to 2.43 nm)/MgO systems using harmonic methods with careful correction procedures. We found that in our range of thicknesses, the effective longitudinal and transverse fields are five to ten times larger than those reported in interface perpendicular magnetic anisotropy systems. The observed magnitude and thickness dependence of the effective fields suggest that the SOT do not have a purely interfacial origin in our samples. PMID:25293693
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giacalone, J.
We investigate the physics of charged-particle acceleration at spherical shocks moving into a uniform plasma containing a turbulent magnetic field with a uniform mean. This has applications to particle acceleration at astrophysical shocks, most notably, to supernovae blast waves. We numerically integrate the equations of motion of a large number of test protons moving under the influence of electric and magnetic fields determined from a kinematically defined plasma flow associated with a radially propagating blast wave. Distribution functions are determined from the positions and velocities of the protons. The unshocked plasma contains a magnetic field with a uniform mean andmore » an irregular component having a Kolmogorov-like power spectrum. The field inside the blast wave is determined from Maxwell’s equations. The angle between the average magnetic field and unit normal to the shock varies with position along its surface. It is quasi-perpendicular to the unit normal near the sphere’s equator, and quasi-parallel to it near the poles. We find that the highest intensities of particles, accelerated by the shock, are at the poles of the blast wave. The particles “collect” at the poles as they approximately adhere to magnetic field lines that move poleward from their initial encounter with the shock at the equator, as the shock expands. The field lines at the poles have been connected to the shock the longest. We also find that the highest-energy protons are initially accelerated near the equator or near the quasi-perpendicular portion of the shock, where the acceleration is more rapid.« less
Evaluation of magnetic field's uniformity inside electromagnetic coils using graphene
NASA Astrophysics Data System (ADS)
Amanatiadis, Stamatios A.; Kantartzis, Nikolaos V.; Ohtani, Tadao; Kanai, Yasushii
2018-05-01
The distribution of the magnetic field in electromagnetic coils, such as those employed in magnetic resonance imaging (MRI), is evaluated in this paper, through graphene gyrotropic properties. Initially, the rotation of an incident linearly polarized plane wave, due to an infinite graphene layer, is studied theoretically via the extraction of the perpendicular, to the polarization, electric component of the transmitted wave. Moreover, the influence of the magnetic bias field strength on this component is, also, examined, indicating the eligibility of graphene to detect magnetostatic field variations. To this aim, a specific device is proposed, consisting of a high frequency source, an electric field detector, and a finite graphene sheet that differs from the infinite one of the analytical case. To quantify the distance that the gyrotropic effects are detectable, the effective region is introduced and extracted via a properly modified finite-difference time-domain (FDTD) algorithm. The featured device is verified through a setup comprising a uniform electromagnetic coil, where the generated magnetostatic field is calculated at several cross-sections of the coil and compared to actual field values. Results indicate the accuracy and sensitivity of the designed device for the unambiguous regions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawamata, S.; Okuda, K.; Sasaki, T.
The magnetic torque of [kappa]-(BEDT-TFF)[sub 2]Cu(NCS)[sub 2] was measured as a function of field direction [theta] with respect to the a*-axis under constant magnetic fields, H, up to 8 kOe in the temperature range from 1.3 to 8 K. A sharp cusp, C[sub 1], in the irreversible region was found at [theta][sub cl] near the H[parallel]bc-plane between 1.3 and 7 K. In addition, extra cusps, C[sub 2] and C[sub 3], were observed at [theta][sub c2] and [theta][sub c3], respectively, between 2.5 and 6 K. At each temperature, the perpendicular component of H giving each cusp is kept constant as Hmore » cos [theta][sub cm] = const [triple bond] H[sub cpm] (n = 1, 2, 3), i.e., cusps C[sub 1], C[sub 2], and C[sub 3] are ruled by the characteristic field perpendicular to the bc-plane H[sub cp1], H[sub cp2], and H[sub ep3], respectively. These behaviors are almost the same as those we found in the oxide superconductor Bi[sub 2]Sr[sub 2]CaCu[sub 2]O[sub 8]. These results suggest that the cusps are intrinsic for irreversible vortex states of these layered superconductors. 6 refs., 2 figs.« less
Molecular polarizability of water from local dielectric response theory
Ge, Xiaochuan; Lu, Deyu
2017-08-08
Here, we propose a fully ab initio theory to compute the electron density response under the perturbation in the local field. This method is based on our recently developed local dielectric response theory [Phys. Rev. B 92, 241107(R), 2015], which provides a rigorous theoretical framework to treat local electronic excitations in both nite and extended systems beyond the commonly employed dipole approximation. We have applied this method to study the electronic part of the molecular polarizability of water in ice Ih and liquid water. Our results reveal that the crystal field of the hydrogen-bond network has strong anisotropic effects, whichmore » significantly enhance the out-of-plane component and suppress the in-plane component perpendicular to the bisector direction. The contribution from the charge transfer is equally important, which increases the isotropic molecular polarizability by 5-6%. Our study provides new insights into the dielectric properties of water, which form the basis to understand electronic excitations in water and to develop accurate polarizable force fields of water.« less
Radiation reaction and pitch-angle changes for a charge undergoing synchrotron losses
NASA Astrophysics Data System (ADS)
Singal, Ashok K.
2016-05-01
In the derivation of synchrotron radiation formulae, it has been assumed that the pitch angle of a charge remains constant during the radiation process. However, from the radiation reaction formula, while the component of the velocity vector perpendicular to the magnetic field reduces in magnitude due to radiative losses, the parallel component does not undergo any change during radiation. Therefore, there is a change in the ratio of the two components, implying a change in the pitch angle. We derive the exact formula for the change in energy of radiating electrons by taking into account the change of the pitch angle due to radiative losses. From this, we derive the characteristic decay time of synchrotron electrons over which they turn from highly relativistic into mildly relativistic ones.
CASCADE AND DAMPING OF ALFVEN-CYCLOTRON FLUCTUATIONS: APPLICATION TO SOLAR WIND TURBULENCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang Yanwei; Petrosian, Vahe; Liu Siming
2009-06-10
It is well recognized that the presence of magnetic fields will lead to anisotropic energy cascade and dissipation of astrophysical turbulence. With the diffusion approximation and linear dissipation rates, we study the cascade and damping of Alfven-cyclotron fluctuations in solar plasmas numerically for two diagonal diffusion tensors, one (isotropic) with identical components for the parallel and perpendicular directions (with respect to the magnetic field) and one with different components (nonisotropic). It is found that for the isotropic case the steady-state turbulence spectra are nearly isotropic in the inertial range and can be fitted by a single power-law function with amore » spectral index of -3/2, similar to the Iroshnikov-Kraichnan phenomenology, while for the nonisotropic case the spectra vary greatly with the direction of propagation. The energy fluxes in both cases are much higher in the perpendicular direction than in the parallel direction due to the angular dependence (or inhomogeneity) of the components. In addition, beyond the MHD regime the kinetic effects make the spectrum softer at higher wavenumbers. In the dissipation range the turbulence spectrum cuts off at the wavenumber, where the damping rate becomes comparable to the cascade rate, and the cutoff wavenumber changes with the wave propagation direction. The angle-averaged turbulence spectrum of the isotropic model resembles a broken power law, which cuts off at the maximum of the cutoff wavenumbers or the {sup 4}He cyclotron frequency. Taking into account the Doppler effects, the model naturally reproduces the broken power-law turbulence spectra observed in the solar wind and predicts that a higher break frequency always comes along with a softer dissipation range spectrum that may be caused by the increase of the turbulence intensity, the reciprocal of the plasma {beta}{sub p}, and/or the angle between the solar wind velocity and the mean magnetic field. These predictions can be tested by detailed comparisons with more accurate observations.« less
Constantin, Dragoş E; Fahrig, Rebecca; Keall, Paul J
2011-07-01
Using magnetic resonance imaging (MRI) for real-time guidance during radiotherapy is an active area of research and development. One aspect of the problem is the influence of the MRI scanner, modeled here as an external magnetic field, on the medical linear accelerator (linac) components. The present work characterizes the behavior of two medical linac electron guns with external magnetic fields for in-line and perpendicular orientations of the linac with respect to the MRI scanner. Two electron guns, Litton L-2087 and Varian VTC6364, are considered as representative models for this study. Emphasis was placed on the in-line design approach in which case the MRI scanner and the linac axes of symmetry coincide and assumes no magnetic shielding of the linac. For the in-line case, the magnetic field from a 0.5 T open MRI (GE Signa SP) magnet with a 60 cm gap between its poles was computed and used in full three dimensional (3D) space charge simulations, whereas for the perpendicular case the magnetic field was constant. For the in-line configuration, it is shown that the electron beam is not deflected from the axis of symmetry of the gun and the primary beam current does not vanish even at very high values of the magnetic field, e.g., 0.16 T. As the field strength increases, the primary beam current has an initial plateau of constant value after which its value decreases to a minimum corresponding to a field strength of approximately 0.06 T. After the minimum is reached, the current starts to increase slowly. For the case when the beam current computation is performed at the beam waist position the initial plateau ends at 0.016 T for Litton L-2087 and at 0.012 T for Varian VTC6364. The minimum value of the primary beam current is 27.5% of the initial value for Litton L-2087 and 22.9% of the initial value for Varian VTC6364. The minimum current is reached at 0.06 and 0.062 T for Litton L-2087 and Varian VTC6364, respectively. At 0.16 T the beam current increases to 40.2 and 31.4% from the original value of the current for Litton L-2087 and Varian VTC6364, respectively. In contrast, for the case when the electron gun is perpendicular to the magnetic field, the electron beam is deflected from the axis of symmetry even at small values of the magnetic field. As the strength of the magnetic field increases, so does the beam deflection, leading to a sharp decrease of the primary beam current which vanishes at about 0.007 T for Litton L-2087 and at 0.006 T for Varian VTC6364, respectively. At zero external field, the beam rms emittance computed at beam waist is 1.54 and 1.29n-mm-mrad for Litton L-2087 and Varian VTC6364, respectively. For the inline configuration, there are two particular values of the external field where the beam rms emittance reaches a minimum. Litton L-2087 rms emittance reaches a minimum of 0.72n and 2.01 n-mm-mrad at 0.026 and 0.132 T, respectively. Varian VTC6364 rms emittance reaches a minimum of 0.34n and 0.35n-mm-mrad at 0.028 and 0.14 T, respectively. Beam radius dependence on the external field is shown for the in-line configuration for both electron guns. 3D space charge simulation of two electron guns, Litton L-2087 and Varian VTC6364, were performed for in-line and perpendicular external magnetic fields. A consistent behavior of Pierce guns in external magnetic fields was proven. For the in-line configuration, the primary beam current does not vanish but a large reduction of beam current (up to 77.1%) is observed at higher field strengths; the beam directionality remains unchanged. It was shown that for a perpendicular configuration the current vanishes due to beam bending under the action of the Lorentz force. For in-line configuration it was determined that the rms beam emittance reaches two minima for relatively high values of the external magnetic field.
Constantin, Dragoş E.; Fahrig, Rebecca; Keall, Paul J.
2011-01-01
Purpose: Using magnetic resonance imaging (MRI) for real-time guidance during radiotherapy is an active area of research and development. One aspect of the problem is the influence of the MRI scanner, modeled here as an external magnetic field, on the medical linear accelerator (linac) components. The present work characterizes the behavior of two medical linac electron guns with external magnetic fields for in-line and perpendicular orientations of the linac with respect to the MRI scanner. Methods: Two electron guns, Litton L-2087 and Varian VTC6364, are considered as representative models for this study. Emphasis was placed on the in-line design approach in which case the MRI scanner and the linac axes of symmetry coincide and assumes no magnetic shielding of the linac. For the in-line case, the magnetic field from a 0.5 T open MRI (GE Signa SP) magnet with a 60 cm gap between its poles was computed and used in full three dimensional (3D) space charge simulations, whereas for the perpendicular case the magnetic field was constant. Results: For the in-line configuration, it is shown that the electron beam is not deflected from the axis of symmetry of the gun and the primary beam current does not vanish even at very high values of the magnetic field, e.g., 0.16 T. As the field strength increases, the primary beam current has an initial plateau of constant value after which its value decreases to a minimum corresponding to a field strength of approximately 0.06 T. After the minimum is reached, the current starts to increase slowly. For the case when the beam current computation is performed at the beam waist position the initial plateau ends at 0.016 T for Litton L-2087 and at 0.012 T for Varian VTC6364. The minimum value of the primary beam current is 27.5% of the initial value for Litton L-2087 and 22.9% of the initial value for Varian VTC6364. The minimum current is reached at 0.06 and 0.062 T for Litton L-2087 and Varian VTC6364, respectively. At 0.16 T the beam current increases to 40.2 and 31.4% from the original value of the current for Litton L-2087 and Varian VTC6364, respectively. In contrast, for the case when the electron gun is perpendicular to the magnetic field, the electron beam is deflected from the axis of symmetry even at small values of the magnetic field. As the strength of the magnetic field increases, so does the beam deflection, leading to a sharp decrease of the primary beam current which vanishes at about 0.007 T for Litton L-2087 and at 0.006 T for Varian VTC6364, respectively. At zero external field, the beam rms emittance computed at beam waist is 1.54 and 1.29π-mm-mrad for Litton L-2087 and Varian VTC6364, respectively. For the in-line configuration, there are two particular values of the external field where the beam rms emittance reaches a minimum. Litton L-2087 rms emittance reaches a minimum of 0.72π and 2.01π-mm-mrad at 0.026 and 0.132 T, respectively. Varian VTC6364 rms emittance reaches a minimum of 0.34π and 0.35π-mm-mrad at 0.028 and 0.14 T, respectively. Beam radius dependence on the external field is shown for the in-line configuration for both electron guns. Conclusions: 3D space charge simulation of two electron guns, Litton L-2087 and Varian VTC6364, were performed for in-line and perpendicular external magnetic fields. A consistent behavior of Pierce guns in external magnetic fields was proven. For the in-line configuration, the primary beam current does not vanish but a large reduction of beam current (up to 77.1%) is observed at higher field strengths; the beam directionality remains unchanged. It was shown that for a perpendicular configuration the current vanishes due to beam bending under the action of the Lorentz force. For in-line configuration it was determined that the rms beam emittance reaches two minima for relatively high values of the external magnetic field. PMID:21859019
Structural modeling of carbonaceous mesophase amphotropic mixtures under uniaxial extensional flow.
Golmohammadi, Mojdeh; Rey, Alejandro D
2010-07-21
The extended Maier-Saupe model for binary mixtures of model carbonaceous mesophases (uniaxial discotic nematogens) under externally imposed flow, formulated in previous studies [M. Golmohammadi and A. D. Rey, Liquid Crystals 36, 75 (2009); M. Golmohammadi and A. D. Rey, Entropy 10, 183 (2008)], is used to characterize the effect of uniaxial extensional flow and concentration on phase behavior and structure of these mesogenic blends. The generic thermorheological phase diagram of the single-phase binary mixture, given in terms of temperature (T) and Deborah (De) number, shows the existence of four T-De transition lines that define regions that correspond to the following quadrupolar tensor order parameter structures: (i) oblate (perpendicular, parallel), (ii) prolate (perpendicular, parallel), (iii) scalene O(perpendicular, parallel), and (iv) scalene P(perpendicular, parallel), where the symbols (perpendicular, parallel) indicate alignment of the tensor order ellipsoid with respect to the extension axis. It is found that with increasing T the dominant component of the mixture exhibits weak deviations from the well-known pure species response to uniaxial extensional flow (uniaxial perpendicular nematic-->biaxial nematic-->uniaxial parallel paranematic). In contrast, the slaved component shows a strong deviation from the pure species response. This deviation is dictated by the asymmetric viscoelastic coupling effects emanating from the dominant component. Changes in conformation (oblate <==> prolate) and orientation (perpendicular <==> parallel) are effected through changes in pairs of eigenvalues of the quadrupolar tensor order parameter. The complexity of the structural sensitivity to temperature and extensional flow is a reflection of the dual lyotropic/thermotropic nature (amphotropic nature) of the mixture and their cooperation/competition. The analysis demonstrates that the simple structures (biaxial nematic and uniaxial paranematic) observed in pure discotic mesogens under uniaxial extensional flow are significantly enriched by the interaction of the lyotropic/thermotropic competition with the binary molecular architectures and with the quadrupolar nature of the flow.
NASA Astrophysics Data System (ADS)
Zhou, M.; Berchem, J.; Walker, R. J.; El-Alaoui, M.; Goldstein, M. L.; Lapenta, G.; Deng, X.; Li, J.; Le Contel, O.; Graham, D. B.; Lavraud, B.; Paterson, W. R.; Giles, B. L.; Burch, J. L.; Torbert, R. B.; Russell, C. T.; Strangeway, R. J.; Zhao, C.; Ergun, R. E.; Lindqvist, P.-A.; Marklund, G.
2018-03-01
We report Magnetospheric Multiscale (MMS) observations of a reconnecting current sheet in the presence of a weak density asymmetry with large guide field at the dayside magnetopause. An ion diffusion region (IDR) was detected associated with this current sheet. Parallel current dominated over the perpendicular current in the IDR, as found in previous studies of component reconnection. Electrons were preferentially heated parallel to the magnetic field within the IDR. The heating was manifested as a flattop distribution below 400 eV. Two types of electromagnetic electron whistler waves were observed within the regions where electrons were heated. One type of whistler wave was associated with nonlinear structures in E|| with amplitudes up to 20 mV/m. The other type was not associated with any structures in E||. Poynting fluxes of these two types of whistler waves were directed away from the X-line. We suggest that the nonlinear evolution of the oblique whistler waves gave rise to the solitary structures in E||. There was a perpendicular super-Alfvénic outflow jet that was carried by magnetized electrons. Intense electrostatic lower hybrid drift waves were localized in the current sheet center and were probably driven by the super-Alfvénic electron jet, the velocity of which was approximately equal to the diamagnetic drift of demagnetized ions. Our observations suggest that the guide field significantly modified the structures (Hall electromagnetic fields and current system) and wave properties in the IDR.
NASA Astrophysics Data System (ADS)
Maneva, Y. G.; Poedts, S.
2018-05-01
The power spectra of magnetic field fluctuations in the solar wind typically follow a power-law dependence with respect to the observed frequencies and wave-numbers. The background magnetic field often influences the plasma properties, setting a preferential direction for plasma heating and acceleration. At the same time the evolution of the solar-wind turbulence at the ion and electron scales is influenced by the plasma properties through local micro-instabilities and wave-particle interactions. The solar-wind-plasma temperature and the solar-wind turbulence at sub- and sup-ion scales simultaneously show anisotropic features, with different components and fluctuation power in parallel with and perpendicular to the orientation of the background magnetic field. The ratio between the power of the magnetic field fluctuations in parallel and perpendicular direction at the ion scales may vary with the heliospheric distance and depends on various parameters, including the local wave properties and nonthermal plasma features, such as temperature anisotropies and relative drift speeds. In this work we have performed two-and-a-half-dimensional hybrid simulations to study the generation and evolution of anisotropic turbulence in a drifting multi-ion species plasma. We investigate the evolution of the turbulent spectral slopes along and across the background magnetic field for the cases of initially isotropic and anisotropic turbulence. Finally, we show the effect of the various turbulent spectra for the local ion heating in the solar wind.
A model of the magnetosheath magnetic field during magnetic clouds
NASA Astrophysics Data System (ADS)
Turc, L.; Fontaine, D.; Savoini, P.; Kilpua, E. K. J.
2014-02-01
Magnetic clouds (MCs) are huge interplanetary structures which originate from the Sun and have a paramount importance in driving magnetospheric storms. Before reaching the magnetosphere, MCs interact with the Earth's bow shock. This may alter their structure and therefore modify their expected geoeffectivity. We develop a simple 3-D model of the magnetosheath adapted to MCs conditions. This model is the first to describe the interaction of MCs with the bow shock and their propagation inside the magnetosheath. We find that when the MC encounters the Earth centrally and with its axis perpendicular to the Sun-Earth line, the MC's magnetic structure remains mostly unchanged from the solar wind to the magnetosheath. In this case, the entire dayside magnetosheath is located downstream of a quasi-perpendicular bow shock. When the MC is encountered far from its centre, or when its axis has a large tilt towards the ecliptic plane, the MC's structure downstream of the bow shock differs significantly from that upstream. Moreover, the MC's structure also differs from one region of the magnetosheath to another and these differences vary with time and space as the MC passes by. In these cases, the bow shock configuration is mainly quasi-parallel. Strong magnetic field asymmetries arise in the magnetosheath; the sign of the magnetic field north-south component may change from the solar wind to some parts of the magnetosheath. We stress the importance of the Bx component. We estimate the regions where the magnetosheath and magnetospheric magnetic fields are anti-parallel at the magnetopause (i.e. favourable to reconnection). We find that the location of anti-parallel fields varies with time as the MCs move past Earth's environment, and that they may be situated near the subsolar region even for an initially northward magnetic field upstream of the bow shock. Our results point out the major role played by the bow shock configuration in modifying or keeping the structure of the MCs unchanged. Note that this model is not restricted to MCs, it can be used to describe the magnetosheath magnetic field under an arbitrary slowly varying interplanetary magnetic field.
NASA Technical Reports Server (NTRS)
Harper, L. L. (Inventor)
1983-01-01
An optical resonator cavity configuration has a unitary mirror with oppositely directed convex and concave reflective surfaces disposed into one fold and concertedly reversing both ends of a beam propagating from a laser rod disposed between two total internal reflection prisms. The optical components are rigidly positioned with perpendicularly crossed virtual rooflines by a compact optical bed. The rooflines of the internal reflection prisms, are arranged perpendicularly to the axis of the laser beam and to the optical axes of the optical resonator components.
Radial dependence of HF wave field strength in the BPD column. [Beam Plasma Discharge
NASA Technical Reports Server (NTRS)
Jost, R. J.; Anderson, H. R.; Bernstein, W.; Kellogg, P. J.
1982-01-01
The results of a recent set of RF frequency measurements of the beam plasma discharge (BPD) performed in order to determine a quantitative value for the field strength in the plasma frequency region of the spectrum are presented. The parallel and perpendicular components of the plasma wave electric fields inside the BPD column have comparable field strengths, on the order of 10 volts/m. The radial dependence of the field strength is very strong, decreasing by as much as 40 dB within one meter from the beam center, with the illumination or discharge column approximately one meter in diameter. The field strength inside the column increases as a function of distance along the beam at least for several meters from the gun aperture. The frequency and amplitude of the plasma wave increases with beam current. A particularly rapid increase in these parameters occurs as the beam current approaches the critical current.
NASA Technical Reports Server (NTRS)
Miura, A.; Pritchett, P. L.
1982-01-01
A general stability analysis is given of the Kevin-Helmholtz instability, for the case of sheared MHD flow of finite thickness in a compressible plasma which allows for the arbitrary orientation of the magnetic field, velocity flow, and wave vector in the plane perpendicular to the velocity gradient. The stability problem is reduced to the solution of a single second-order differential equation including a gravitational term to represent the coupling between the Kelvin-Helmholtz mode and the interchange mode. Compressibility and a magnetic field component parallel to the flow are found to be stabilizing effects, with destabilization of only the fast magnetosonic mode in the transverse case, and the presence of both Alfven and slow magnetosonic components in the parallel case. Analysis results are used in a discussion of the stability of sheared plasma flow at the magnetopause boundary and in the solar wind.
Fragmentation of a Filamentary Cloud Permeated by a Perpendicular Magnetic Field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanawa, Tomoyuki; Kudoh, Takahiro; Tomisaka, Kohji
We examine the linear stability of an isothermal filamentary cloud permeated by a perpendicular magnetic field. Our model cloud is assumed to be supported by gas pressure against self-gravity in the unperturbed state. For simplicity, the density distribution is assumed to be symmetric around the axis. Also for simplicity, the initial magnetic field is assumed to be uniform, and turbulence is not taken into account. The perturbation equation is formulated to be an eigenvalue problem. The growth rate is obtained as a function of the wavenumber for fragmentation along the axis and the magnetic field strength. The growth rate dependsmore » critically on the outer boundary. If the displacement vanishes in regions very far from the cloud axis (fixed boundary), cloud fragmentation is suppressed by a moderate magnetic field, which means the plasma beta is below 1.67 on the cloud axis. If the displacement is constant along the magnetic field in regions very far from the cloud, the cloud is unstable even when the magnetic field is infinitely strong. The cloud is deformed by circulation in the plane perpendicular to the magnetic field. The unstable mode is not likely to induce dynamical collapse, since it is excited even when the whole cloud is magnetically subcritical. For both boundary conditions, the magnetic field increases the wavelength of the most unstable mode. We find that the magnetic force suppresses compression perpendicular to the magnetic field especially in regions of low density.« less
Anisotropic upper critical magnetic fields in Rb 2 Cr 3 As 3 superconductor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Zhang-Tu; Liu, Yi; Bao, Jin-Ke
Rb2Cr3As3 is a structurally one-dimensional superconductor containing Cr3As3 chains with a superconducting transition temperature of T-c = 4.8 K. Here we report the electrical resistance measurements for Rb2Cr3As3 single crystals, under magnetic fields up to 29.5 T and at temperatures down to 0.36 K, from which the upper critical fields, H-c2(T), can be obtained in a broad temperature range. For field parallel to the Cr3As3 chains, H-c2(parallel to)(T) is paramagnetically limited with an initial slope of mu(0)dH(c2)(parallel to)/dT|T-c = - 16 T K-1 and a zero-temperature upper critical field of mu H-0(c2)parallel to(0) = 17.5 T. For field perpendicular tomore » the Cr3As3 chains, however, H-c2(perpendicular to)(T) is only limited by orbital pair-breaking effect with mu(0)dH(c2)(perpendicular to)/dT|(Tc) = - 3 T K-1. As a consequence, the anisotropy gamma H = H-c2(parallel to)/H-c2(perpendicular to) decreases sharply near T-c and reverses below 2 K. Remarkably, the low- temperature H-c2(perpendicular to)(T) down to 0.075 T-c remains to increase linearly up to over three times the Pauli paramagnetic limit, which strongly suggests dominant spin-triplet superconductivity in Rb2Cr3As3.« less
NASA Astrophysics Data System (ADS)
Gui Zeng, Ding; Lee, Kyoung-il; Chung, Kyung-Won; Bae, Seongtae
2012-05-01
Effects of magnetic stray field retrieved from both longitudinal and perpendicular magnetic recording media (denoted by "media stray field") on electromigration (EM) characteristics of current-perpendicular-to-plane (CPP) giant magnetoresistance spin-valve (GMR SV) read sensors have been numerically studied to explore the electrical and magnetic stability of the read sensor under real operation. The mean-time-to-failure (MTTF) of the CPP GMR SV read sensors was found to have a strong dependence on the physical parameters of the recording media and recorded information status, such as the pulse width of media stray field, the bit length, and the head moving velocity. According to the numerical calculation results, it was confirmed that in the longitudinal media, the shorter the stray field pulse width (i.e., the sharper the media transition) allows for the longer MTTF of the CPP GMR SV read sensors; while in the perpendicular media, the sharper the media transition gives rise to a shorter MTTF. Interestingly, it was also revealed that the MTTF could be improved by reducing the bit length as well as increasing the head velocity in both longitudinal and perpendicular media. Furthermore, the bit distribution patterns, especially the number of consecutive `0' bits strongly affected the MTTF of GMR SV read sensors. The strong dependences of MTTF on the media stray field during CPP GMR SV sensor operation are thought to be mainly attributed to the thermal cycling (temperature rise and fall) caused by the resistance change due to GMR effects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gammon, M.; Shalchi, A., E-mail: andreasm4@yahoo.com
2017-10-01
In several astrophysical applications one needs analytical forms of cosmic-ray diffusion parameters. Some examples are studies of diffusive shock acceleration and solar modulation. In the current article we explore perpendicular diffusion based on the unified nonlinear transport theory. While we focused on magnetostatic turbulence in Paper I, we included the effect of dynamical turbulence in Paper II of the series. In the latter paper we assumed that the temporal correlation time does not depend on the wavenumber. More realistic models have been proposed in the past, such as the so-called damping model of dynamical turbulence. In the present paper wemore » derive analytical forms for the perpendicular diffusion coefficient of energetic particles in two-component turbulence for this type of time-dependent turbulence. We present new formulas for the perpendicular diffusion coefficient and we derive a condition for which the magnetostatic result is recovered.« less
NASA Technical Reports Server (NTRS)
Farrugia, C. J.; Lavraud, B.; Torbert, R. B.; Argall, M.; Kacem, I.; Yu, W.; Alm, L.; Burch, J.; Russell, C. T.; Shuster, J.;
2016-01-01
We analyze plasma, magnetic field, and electric field data for a flux transfer event (FTE) to highlight improvements in our understanding of these transient reconnection signatures resulting from high-resolution data. The approximate 20 s long, reverse FTE, which occurred south of the geomagnetic equator near dusk, was immersed in super-Alfvnic flow. The field line twist is illustrated by the behavior of flows parallel perpendicular to the magnetic field. Four-spacecraft timing and energetic particle pitch angle anisotropies indicate a flux rope (FR) connected to the Northern Hemisphere and moving southeast. The flow forces evidently overcame the magnetic tension. The high-speed flows inside the FR were different from those outside. The external flows were perpendicular to the field as expected for draping of the external field around the FR. Modeling the FR analytically, we adopt a non-force free approach since the current perpendicular to the field is nonzero. It reproduces many features of the observations.
Spin correlations in quantum wires
NASA Astrophysics Data System (ADS)
Sun, Chen; Pokrovsky, Valery L.
2015-04-01
We consider theoretically spin correlations in a one-dimensional quantum wire with Rashba-Dresselhaus spin-orbit interaction (RDI). The correlations of noninteracting electrons display electron spin resonance at a frequency proportional to the RDI coupling. Interacting electrons, upon varying the direction of the external magnetic field, transit from the state of Luttinger liquid (LL) to the spin-density wave (SDW) state. We show that the two-time total-spin correlations of these states are significantly different. In the LL, the projection of total spin to the direction of the RDI-induced field is conserved and the corresponding correlator is equal to zero. The correlators of two components perpendicular to the RDI field display a sharp electron-spin resonance driven by the RDI-induced intrinsic field. In contrast, in the SDW state, the longitudinal projection of spin dominates, whereas the transverse components are suppressed. This prediction indicates a simple way for an experimental diagnostic of the SDW in a quantum wire. We point out that the Luttinger model does not respect the spin conservation since it assumes the infinite Fermi sea. We propose a proper cutoff to correct this failure.
NASA Astrophysics Data System (ADS)
Feng, Yan; Lin, Wei; Murillo, M. S.
2017-11-01
Transport properties of two-dimensional (2D) strongly coupled dusty plasmas have been investigated in detail, but never for viscosity with a strong perpendicular magnetic field; here, we examine this scenario using Langevin dynamics simulations of 2D liquids with a binary Yukawa interparticle interaction. The shear viscosity η of 2D liquid dusty plasma is estimated from the simulation data using the Green-Kubo relation, which is the integration of the shear stress autocorrelation function. It is found that, when a perpendicular magnetic field is applied, the shear viscosity of 2D liquid dusty plasma is modified substantially. When the magnetic field is increased, its viscosity increases at low temperatures, while at high temperatures its viscosity diminishes. It is determined that these different variational trends of η arise from the different behaviors of the kinetic and potential parts of the shear stress under external magnetic fields.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsuda, M.; Onishi, H.; Okutani, A.
Here, BaCo 2V 2O 8 consists of Co chains in which a Co 2+ ion carries a fictitious spin 1/2 with Ising anisotropy. We performed elastic and inelastic neutron scattering experiments in BaCo 2V 2O 8 in a magnetic field perpendicular to the c axis which is the chain direction. With applying magnetic field along the a axis at 3.5 K, the antiferromagnetic order with the easy axis along the c axis, observed in zero magnetic field, is completely suppressed at 8 T, while the magnetic field gradually induces an antiferromagnetic order with the spin component along the b axis.more » We also studied magnetic excitations as a function of transverse magnetic field. The lower boundary of the spinon excitations splits gradually with increasing magnetic field. The overall feature of the magnetic excitation spectra in the magnetic field is reproduced by the theoretical calculation based on the spin 1/2 XXZ antiferromagnetic chain model, which predicts that the dynamic magnetic structure factor of the spin component along the chain direction is enhanced and that along the field direction has clear incommensurate correlations.« less
Matsuda, M.; Onishi, H.; Okutani, A.; ...
2017-07-25
Here, BaCo 2V 2O 8 consists of Co chains in which a Co 2+ ion carries a fictitious spin 1/2 with Ising anisotropy. We performed elastic and inelastic neutron scattering experiments in BaCo 2V 2O 8 in a magnetic field perpendicular to the c axis which is the chain direction. With applying magnetic field along the a axis at 3.5 K, the antiferromagnetic order with the easy axis along the c axis, observed in zero magnetic field, is completely suppressed at 8 T, while the magnetic field gradually induces an antiferromagnetic order with the spin component along the b axis.more » We also studied magnetic excitations as a function of transverse magnetic field. The lower boundary of the spinon excitations splits gradually with increasing magnetic field. The overall feature of the magnetic excitation spectra in the magnetic field is reproduced by the theoretical calculation based on the spin 1/2 XXZ antiferromagnetic chain model, which predicts that the dynamic magnetic structure factor of the spin component along the chain direction is enhanced and that along the field direction has clear incommensurate correlations.« less
NASA Astrophysics Data System (ADS)
Matsuda, M.; Onishi, H.; Okutani, A.; Ma, J.; Agrawal, H.; Hong, T.; Pajerowski, D. M.; Copley, J. R. D.; Okunishi, K.; Mori, M.; Kimura, S.; Hagiwara, M.
2017-07-01
BaCo2V2O8 consists of Co chains in which a Co2 + ion carries a fictitious spin 1/2 with Ising anisotropy. We performed elastic and inelastic neutron scattering experiments in BaCo2V2O8 in a magnetic field perpendicular to the c axis which is the chain direction. With applying magnetic field along the a axis at 3.5 K, the antiferromagnetic order with the easy axis along the c axis, observed in zero magnetic field, is completely suppressed at 8 T, while the magnetic field gradually induces an antiferromagnetic order with the spin component along the b axis. We also studied magnetic excitations as a function of transverse magnetic field. The lower boundary of the spinon excitations splits gradually with increasing magnetic field. The overall feature of the magnetic excitation spectra in the magnetic field is reproduced by the theoretical calculation based on the spin 1/2 X X Z antiferromagnetic chain model, which predicts that the dynamic magnetic structure factor of the spin component along the chain direction is enhanced and that along the field direction has clear incommensurate correlations.
Are supernova remnants quasi-parallel or quasi-perpendicular accelerators
NASA Technical Reports Server (NTRS)
Spangler, S. R.; Leckband, J. A.; Cairns, I. H.
1989-01-01
Observations of shock waves in the solar system which show a pronounced difference in the plasma wave and particle environment depending on whether the shock is propagating along or perpendicular to the interplanetary magnetic field are discussed. Theories for particle acceleration developed for quasi-parallel and quasi-perpendicular shocks, when extended to the interstellar medium suggest that the relativistic electrons in radio supernova remnants are accelerated by either the Q parallel or Q perpendicular mechanisms. A model for the galactic magnetic field and published maps of supernova remnants were used to search for a dependence of structure on the angle Phi. Results show no tendency for the remnants as a whole to favor the relationship expected for either mechanism, although individual sources resemble model remnants of one or the other acceleration process.
The Influence of IMF By on the Bow Shock: Observation Result
NASA Astrophysics Data System (ADS)
Wang, M.; Lu, J. Y.; Kabin, K.; Yuan, H. Z.; Liu, Z.-Q.; Zhao, J. S.; Li, G.
2018-03-01
In this study we use the bow shock crossings contained in the Space Physics Data Facility database, collected by four spacecraft (IMP 8, Geotail, Magion-4, and Cluster1) to analyze the effect of the interplanetary magnetic field (IMF) By component on the bow shock position and shape. Although the IMF Bz component is usually considered much more geoeffective than By, we find that the dayside bow shock is more responsive to the eastward component of the IMF than the north-south one. We believe that the explanation lies in the changes that the Bz component induces on the magnetopause location and shape, which largely compensate the corresponding changes in the dayside bow shock location. In the tail, we find that the bow shock cross section is elongated roughly in the direction perpendicular to the IMF direction, which agrees with earlier modeling studies.
Electric-field control of spin waves in multiferroic BiFeO3: Theory
NASA Astrophysics Data System (ADS)
de Sousa, Rogério; Rovillain, P.; Gallais, Y.; Sacuto, A.; Méasson, M. A.; Colson, D.; Forget, A.; Bibes, M.; Barthélémy, A.; Cazayous, M.
2011-03-01
Our recent experiment demonstrated gigantic (30%) electric-field tuning of magnon frequencies in multiferroic BiFeO3. We demonstrate that the origin of this effect is related to two linear magnetoelectric interactions that couple the component of electric field perpendicular to the ferroelectric vector to a quadratic form of the Néel vector. We calculate the magnon spectra due to each of these interactions and show that only one of them is consistent with experimental data. At high electric fields, this interaction induces a phase transition to a homogeneous state, and the multi-magnon spectra will fuse into two magnon frequencies. We discuss the possible microscopic mechanisms responsible for this novel interaction and the prospect for applications in magnonics. We acknowledge support from NSERC-Discovery (Canada) and the Agence Nationale pour la Recherche (France).
A perfectly conducting surface in electrodynamics with Lorentz symmetry breaking
NASA Astrophysics Data System (ADS)
Borges, L. H. C.; Barone, F. A.
2017-10-01
In this paper we consider a model which exhibits explicit Lorentz symmetry breaking due to the presence of a single background vector v^{μ } coupled to the gauge field. We investigate such a theory in the vicinity of a perfectly conducting plate for different configurations of v^{μ }. First we consider no restrictions on the components of the background vector and we treat it perturbatively up to second order. Next, we treat v^{μ } exactly for two special cases: the first one is when it has only components parallel to the plate, and the second one when it has a single component perpendicular to the plate. For all these configurations, the propagator for the gauge field and the interaction force between the plate and a point-like electric charge are computed. Surprisingly, it is shown that the image method is valid in our model and we argue that it is a non-trivial result. We show there arises a torque on the mirror with respect to its positioning in the background field when it interacts with a point-like charge. It is a new effect with no counterpart in theories with Lorentz symmetry in the presence of a perfect mirror.
The Quantum Dynamics of Chemical Reactions.
1983-03-31
of the potential formed by taking a cut perpendicular to the minimum energy path (in Delves coordinates) V (s) = VmeP(s) + Ev(S) (5) ve sn where s is...current density and profiles of the component of jo normal to various straight-line cuts along the streamline field, for the H + H2(0) - H 2 + H...In order to visualize the nature of this topology, we display in Fig. 31 cuts of the equipotentials of V by the XZ. (y. - 0, x) and Y.Z, (’. - n/2, -x
NASA Astrophysics Data System (ADS)
Wood, R.; Monson, J.; Coughlin, T.
1999-03-01
The presence of a soft magnetic layer adjacent to a magnetic recording medium reduces the demagnetization of both perpendicular and longitudinal recording media. However, for perpendicular media, there is no reduction in the worst case, DC, demagnetizing field and no lessening of the decay. For longitudinal media, the highest demagnetizing fields occur at high densities. The soft layer or keeper can reduce these fields significantly and slow the initial decay. The soft underlayer also induces a small anisotropy field that assists the thermal stability of a perpendicular medium. A similar layer with a longitudinal medium, however, causes a small reduction in thermal stability, but only at low levels of demagnetizing field. For longitudinal recording media the overall effect of the keeper on thermal stability is quite complicated: the initial decay may be delayed significantly (a factor of ten in time) but the final decay to zero may still proceed more rapidly.
Brownian motion of electrons in time-dependent magnetic fields.
NASA Technical Reports Server (NTRS)
Iverson, G. J.; Williams, R. M.
1973-01-01
The behavior of a weakly ionized plasma in slowly varying time-dependent magnetic fields is studied through an extension of Williamson's stochastic theory. In particular, attention is focused on the properties of electron diffusion in the plane perpendicular to the direction of the magnetic field, when the field strength is large. It is shown that, in the strong field limit, the classical 1/B-squared dependence of the perpendicular diffusion coefficient is obtained for two models in which the field B(t) is monotonic in t and for two models in which B(t) possesses at least one turning point.
Chui, S T; Wang, Weihua; Zhou, L; Lin, Z F
2009-07-22
We study the propagation of plane electromagnetic waves through different systems consisting of arrays of split rings of different orientations. Many extraordinary EM phenomena were discovered in such systems, contributed by the off-diagonal magnetoelectric susceptibilities. We find a mode such that the electric field becomes elliptically polarized with a component in the longitudinal direction (i.e. parallel to the wavevector). Even though the group velocity [Formula: see text] and the wavevector k are parallel, in the presence of damping, the Poynting vector does not just get 'broadened', but can possess a component perpendicular to the wavevector. The speed of light can be real even when the product ϵμ is negative. Other novel properties are explored.
Perpendicular momentum input of lower hybrid waves and its influence on driving plasma rotation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guan, Xiaoyin
The mechanism of perpendicular momentum input of lower hybrid waves and its influence on plasma rotation are studied. Discussion for parallel momentum input of lower hybrid waves is presented for comparison. It is found out that both toroidal and poloidal projections of perpendicular momentum input of lower hybrid waves are stronger than those of parallel momentum input. The perpendicular momentum input of lower hybrid waves therefore plays a dominant role in forcing the changes of rotation velocity observed during lower hybrid current drive. Lower hybrid waves convert perpendicular momentum carried by the waves into the momentum of dc electromagnetic fieldmore » by inducing a resonant-electron flow across flux surfaces therefore charge separation and a radial dc electric field. The dc field releases its momentum into plasma through the Lorentz force acting on the radial return current driven by the radial electric field. Plasma is spun up by the Lorentz force. An improved quasilinear theory with gyro-phase dependent distribution function is developed to calculate the radial flux of resonant electrons. Rotations are determined by a set of fluid equations for bulk electrons and ions, which are solved numerically by applying a finite-difference method. Analytical expressions for toroidal and poloidal rotations are derived using the same hydrodynamic model.« less
NASA Technical Reports Server (NTRS)
Cartier, S. L.; Dangelo, N.; Merlino, R. L.
1986-01-01
A laboratory study related to energetic upstreaming ions in the ionosphere-magnetosphere system is described. The experiment was carried out in a cesium Q machine plasma with a region of nonuniform magnetic field. Electrostatic ion cyclotron waves were excited by drawing an electron current to a small biased exciter electrode. In the presence of the instability, ions are heated in the direction perpendicular to B. Using a gridded retarding potential ion energy analyzer, the evolution of the ion velocity distribution was followed as the ions passed through the heating region and subsequently flowed out along the diverging B field lines. As expected, the heated ions transfer their energy from perpendicular to parallel motion as they move through the region of diverging B field. Both their parallel thermal energy and the parallel drift energy increase at the expense of the perpendicular energy.
Mirror Instability in the Turbulent Solar Wind
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hellinger, Petr; Landi, Simone; Verdini, Andrea
2017-04-01
The relationship between a decaying strong turbulence and the mirror instability in a slowly expanding plasma is investigated using two-dimensional hybrid expanding box simulations. We impose an initial ambient magnetic field perpendicular to the simulation box, and we start with a spectrum of large-scale, linearly polarized, random-phase Alfvénic fluctuations that have energy equipartition between kinetic and magnetic fluctuations and a vanishing correlation between the two fields. A turbulent cascade rapidly develops, magnetic field fluctuations exhibit a Kolmogorov-like power-law spectrum at large scales and a steeper spectrum at sub-ion scales. The imposed expansion (taking a strictly transverse ambient magnetic field) leadsmore » to the generation of an important perpendicular proton temperature anisotropy that eventually drives the mirror instability. This instability generates large-amplitude, nonpropagating, compressible, pressure-balanced magnetic structures in a form of magnetic enhancements/humps that reduce the perpendicular temperature anisotropy.« less
NASA Technical Reports Server (NTRS)
Roth, R. J.
1973-01-01
The distribution function of ion energy parallel to the magnetic field of a modified Penning discharge has been measured with a retarding potential energy analyzer. These ions escaped through one of the throats of the magnetic mirror geometry. Simultaneous measurements of the ion energy distribution function perpendicular to the magnetic field have been made with a charge exchange neutral detector. The ion energy distribution functions are approximately Maxwellian, and the parallel and perpendicular kinetic temperatures are equal within experimental error. These results suggest that turbulent processes previously observed in this discharge Maxwellianize the velocity distribution along a radius in velocity space and cause an isotropic energy distribution. When the distributions depart from Maxwellian, they are enhanced above the Maxwellian tail.
ARCS 3 ionospheric artificial argon ion beam injections - Waves near the heavy ion gyrofrequencies
NASA Technical Reports Server (NTRS)
Erlandson, R. E.; Cahill, L. J., Jr.; Kaufmann, R. L.; Arnoldy, R. L.; Pollock, C. J.
1989-01-01
Low-frequency electric field data below the proton gyrofrequency are presented for the duration of the argon ion beam experiment conducted as part of the Argon Release for Controlled Studies (ARCS) program. An argon ion beam was injected from the subpayload antiparallel or perpendicular to the magnetic field at altitudes from 250 to 405 km. During the injections, the wave spectra were broadband near the subpayload and narrow-band near heavy ion gyrofrequencies at perpendicular separation distances between 42 and 254 m. It is suggested that the narrow-band waves are associated with both the perpendicular argon ion beam and an unexpected flux of low-energy ions which peaked in energy near 15 eV and pitch angle near 90 deg with respect to the magnetic field.
NASA Astrophysics Data System (ADS)
Gopman, D. B.; Dennis, C. L.; McMichael, R. D.; Hao, X.; Wang, Z.; Wang, X.; Gan, H.; Zhou, Y.; Zhang, J.; Huai, Y.
2017-05-01
We report the frequency dependence of the ferromagnetic resonance linewidth of the free layer in magnetic tunnel junctions with all perpendicular-to-the-plane magnetized layers. While the magnetic-field-swept linewidth nominally shows a linear growth with frequency in agreement with Gilbert damping, an additional frequency-dependent linewidth broadening occurs that shows a strong asymmetry between the absorption spectra for increasing and decreasing external magnetic field. Inhomogeneous magnetic fields produced during reversal of the reference and pinned layer complex is demonstrated to be at the origin of the symmetry breaking and the linewidth enhancement. Consequentially, this linewidth enhancement provides indirect information on the magnetic coercivity of the reference and pinned layers. These results have important implications for the characterization of perpendicular magnetized magnetic random access memory bit cells.
Capsize of polarization in dilute photonic crystals.
Gevorkian, Zhyrair; Hakhoumian, Arsen; Gasparian, Vladimir; Cuevas, Emilio
2017-11-29
We investigate, experimentally and theoretically, polarization rotation effects in dilute photonic crystals with transverse permittivity inhomogeneity perpendicular to the traveling direction of waves. A capsize, namely a drastic change of polarization to the perpendicular direction is observed in a one-dimensional photonic crystal in the frequency range 10 ÷ 140 GHz. To gain more insights into the rotational mechanism, we have developed a theoretical model of dilute photonic crystal, based on Maxwell's equations with a spatially dependent two dimensional inhomogeneous dielectric permittivity. We show that the polarization's rotation can be explained by an optical splitting parameter appearing naturally in Maxwell's equations for magnetic or electric fields components. This parameter is an optical analogous of Rashba like spin-orbit interaction parameter present in quantum waves, introduces a correction to the band structure of the two-dimensional Bloch states, creates the dynamical phase shift between the waves propagating in the orthogonal directions and finally leads to capsizing of the initial polarization. Excellent agreement between theory and experiment is found.
Particle Acceleration, Magnetic Field Generation in Relativistic Shocks
NASA Technical Reports Server (NTRS)
Nishikawa, Ken-Ichi; Hardee, P.; Hededal, C. B.; Richardson, G.; Sol, H.; Preece, R.; Fishman, G. J.
2005-01-01
Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic jet front propagating through an ambient plasma with and without initial magnetic fields. We find only small differences in the results between no ambient and weak ambient parallel magnetic fields. Simulations show that the Weibel instability created in the collisionless shock front accelerates particles perpendicular and parallel to the jet propagation direction. New simulations with an ambient perpendicular magnetic field show the strong interaction between the relativistic jet and the magnetic fields. The magnetic fields are piled up by the jet and the jet electrons are bent, which creates currents and displacement currents. At the nonlinear stage, the magnetic fields are reversed by the current and the reconnection may take place. Due to these dynamics the jet and ambient electron are strongly accelerated in both parallel and perpendicular directions.
Particle Acceleration, Magnetic Field Generation, and Emission in Relativistic Shocks
NASA Technical Reports Server (NTRS)
Nishikawa, Ken-IchiI.; Hededal, C.; Hardee, P.; Richardson, G.; Preece, R.; Sol, H.; Fishman, G.
2004-01-01
Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (m) code, we have investigated particle acceleration associated with a relativistic jet front propagating through an ambient plasma with and without initial magnetic fields. We find only small differences in the results between no ambient and weak ambient parallel magnetic fields. Simulations show that the Weibel instability created in the collisionless shock front accelerates particles perpendicular and parallel to the jet propagation direction. New simulations with an ambient perpendicular magnetic field show the strong interaction between the relativistic jet and the magnetic fields. The magnetic fields are piled up by the jet and the jet electrons are bent, which creates currents and displacement currents. At the nonlinear stage, the magnetic fields are reversed by the current and the reconnection may take place. Due to these dynamics the jet and ambient electron are strongly accelerated in both parallel and perpendicular directions.
VARIANCE ANISOTROPY IN KINETIC PLASMAS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parashar, Tulasi N.; Matthaeus, William H.; Oughton, Sean
Solar wind fluctuations admit well-documented anisotropies of the variance matrix, or polarization, related to the mean magnetic field direction. Typically, one finds a ratio of perpendicular variance to parallel variance of the order of 9:1 for the magnetic field. Here we study the question of whether a kinetic plasma spontaneously generates and sustains parallel variances when initiated with only perpendicular variance. We find that parallel variance grows and saturates at about 5% of the perpendicular variance in a few nonlinear times irrespective of the Reynolds number. For sufficiently large systems (Reynolds numbers) the variance approaches values consistent with the solarmore » wind observations.« less
High breakdown electric field in β-Ga2O3/graphene vertical barristor heterostructure
NASA Astrophysics Data System (ADS)
Yan, Xiaodong; Esqueda, Ivan S.; Ma, Jiahui; Tice, Jesse; Wang, Han
2018-01-01
In this work, we study the high critical breakdown field in β-Ga2O3 perpendicular to its (100) crystal plane using a β-Ga2O3/graphene vertical heterostructure. Measurements indicate a record breakdown field of 5.2 MV/cm perpendicular to the (100) plane that is significantly larger than the previously reported values on lateral β-Ga2O3 field-effect-transistors (FETs). This result is compared with the critical field typically measured within the (100) crystal plane, and the observed anisotropy is explained through a combined theoretical and experimental analysis.
Spin torque oscillator for microwave assisted magnetization reversal
NASA Astrophysics Data System (ADS)
Taniguchi, Tomohiro; Kubota, Hitoshi
2018-05-01
A theoretical study is given for the self-oscillation excited in a spin torque oscillator (STO) consisting of an in-plane magnetized free layer and a perpendicularly magnetized pinned layer in the presence of a perpendicular magnetic field. This type of STO is a potential candidate for a microwave source of microwave assisted magnetization reversal (MAMR). It is, however, found that the self-oscillation applicable to MAMR disappears when the perpendicular field is larger than a critical value, which is much smaller than a demagnetization field. This result provides a condition that the reversal field of a magnetic recording bit by MAMR in nanopillar structure should be smaller than the critical value. The analytical formulas of currents determining the critical field are obtained, which indicate that a material with a small damping is not preferable to acheive a wide range of the self-oscillation applicable to MAMR, although such a material is preferable from the viewpoint of the reduction of the power consumption.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loznikov, V. M., E-mail: loznikov@yandex.ru; Erokhin, N. S., E-mail: nerokhin@mx.iki.rssi.ru; Zol’nikova, N. N.
A three-component phenomenological model for the description of specific features of spectra of cosmic-ray protons and helium nuclei in the hardness range from 30 to 2 × 10{sup 5} GV is proposed. The first component corresponds to the constant background; the second component, to a variable “soft” (30–500 GV) heliospheric source; and the third component, to a variable “hard” (0.5–200 TV) galactic source inside a local bubble. The corresponding “surfatron accelerators” are responsible for the existence and variability of both sources. In order for such accelerators to operate, there should be an extended area with a nearly uniform and constantmore » (in both the magnitude and direction) magnetic field and electromagnetic waves propagating perpendicular (or obliquely) to it. The dimensions of each source determine the maximum energy to which cosmic rays can be accelerated. The soft source with a size of ∼100 au lies at the periphery of the heliosphere, beyond the terminal shock, while the hard source with a size of >0.1 pc is located near the boundary of a local interstellar cloud at a distance of ∼0.01 pc from the Sun. A kink in the hardness spectra of p and He (near the hardness of about 230 GV) is caused by the variability of physical conditions in the acceleration region and depends on the relation between the amplitudes and power-law indices of the background, the soft heliospheric source, and the nearby hard galactic source. Ultrarelativistic acceleration of p and He in space plasma by an electromagnetic wave propagating perpendicular to the external magnetic field is investigated using numerical calculations. The conditions for particle trapping by the wave, as well as the dynamics of the velocity and momentum components, are analyzed. The calculations show that, in contrast to electrons and positrons (e{sup +}), a trapped proton can escape from the effective potential well after a relatively short time, thereby terminating to accelerate. Such an effect gives rise to softer spectra of p and He sources as compared to those of e{sup +}. The possibility of deviation of the spectra of accelerated protons from standard power-law dependences due to the surfatron mechanism is discussed.« less
Effect of dc field on ac-loss peak in a commercial Bi:2223/Ag tape
NASA Astrophysics Data System (ADS)
Öztürk, Ali; Düzgün, İbrahim; Çelebi, Selahattin
2017-12-01
Measurements of the ac susceptibility in a commercial Bi:2223/Ag tape for some different ac magnetic field amplitudes, Hac, in the presence of bias magnetic field Hdc directed along Hac are reported. It is found that the peak values of the imaginary component of ac susceptibility χ″max versus Hac trace a valley for the orientation where applied field Ha perpendicular to wide face of the tape total. We note that the observation of the valley depends on various parameters such as field dependence parameter n in the critical current density, in the simple power law expression jc = α(T)/Bn, choice of the bias field Hdc together with selected ac field amplitudes Hac, and dimension and geometry of sample studied. Our calculations based on critical state model with jc = α(1 - T/Tcm)p/Bn using the fitting parameters of n = 0.25, p = 2.2, Tcm = 108 K gives quite good results to compare the experimental and calculated curves.
On the role of the quasi-parallel bow shock in ion pickup - A lesson from Venus?
NASA Technical Reports Server (NTRS)
Luhmann, J. G.; Russell, C. T.; Phillips, J. L.; Barnes, A.
1987-01-01
Previous observations at Venus show convincing evidence of planetary O(+) ion pickup by the largescale motional -V x B electric field in the magnetosheath when the interplanetary magnetic field is perpendicular to the solar wind flow. However, the presence of magnetic field fluctuations in the magnetosheath downstream from the quasi-parallel bow shock should allow pickup to occur even when the upstream magnetic field B and plasma velocity V are practically coaligned. Single-particle calculations are used to demonstrate the convecting magnetic field fluctuations similar to those observed in the Venus magnetosheath when the subsolar bow shock is quasi-parallel can efficiently accelerate cold planetary ions by means of the electric field associated with their transverse components. This ion pickup process, which is characterized by a spatial dependence determined by the bow shock shape and the orientation of the upstream magnetic field, is likely also to occur at Mars and may be effective at comets.
In-plane nuclear field formation investigated in single self-assembled quantum dots
NASA Astrophysics Data System (ADS)
Yamamoto, S.; Matsusaki, R.; Kaji, R.; Adachi, S.
2018-02-01
We studied the formation mechanism of the in-plane nuclear field in single self-assembled In0.75Al0.25As /Al0.3Ga0.7As quantum dots. The Hanle curves with an anomalously large width and hysteretic behavior at the critical transverse magnetic field were observed in many single quantum dots grown in the same sample. In order to explain the anomalies in the Hanle curve indicating the formation of a large nuclear field perpendicular to the photo-injected electron spin polarization, we propose a new model based on the current phenomenological model for dynamic nuclear spin polarization. The model includes the effects of the nuclear quadrupole interaction and the sign inversion between in-plane and out-of-plane components of nuclear g factors, and the model calculations reproduce successfully the characteristics of the observed anomalies in the Hanle curves.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Callori, S. J., E-mail: sara.callori@ansto.gov.au; Bertinshaw, J.; Bragg Institute, Australian Nuclear Science and Technology Organization, Lucas Heights, New South Wales 2234
2014-07-21
We have observed 90° magnetic coupling in a NiFe/FeMn/biased NiFe multilayer system using polarized neutron reflectometry. Magnetometry results show magnetic switching for both the biased and free NiFe layers, the latter of which reverses at low applied fields. As these measurements are only capable of providing information about the total magnetization within a sample, polarized neutron reflectometry was used to investigate the reversal behavior of the NiFe layers individually. Both the non-spin-flip and spin-flip neutron reflectometry signals were tracked around the free NiFe layer hysteresis loop and were used to detail the evolution of the magnetization during reversal. At lowmore » magnetic fields near the free NiFe coercive field, a large spin-flip signal was observed, indicating magnetization aligned perpendicular to both the applied field and pinned layer.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, E.J.; Tsurutani, B.T.
1976-05-01
Lion roars, which are intense packets of electromagnetic waves characteristically found in the magneosheath, have been studied. On the basis of these observations, several possible wave generation mechanisms are examined. Landau resonance is considered to be an unlikely source because this mechanism requires a substantial component of the wave electric field paralle to B, and the observation that the waves propagate along the ambient field is contrary to this requirement. It is not obvious that electron cyclotron resonance is responsible, because the field magnitude decreases should cause T/sub parallel//T/sub perpendicular/ to increase, and this rise could lead to wave dampingmore » rather than wave growth. A model which is consistent with all the observations of this study is a proton cyclotron overstability involving 10-keV protons streaming through the magnetosheath. It appears possible that the streaming protons could produce both the waves and the field decreases and that all three would be coincident. (AIP)« less
Transverse Dimensions of Chorus in the Source Region
NASA Technical Reports Server (NTRS)
Santolik, O.; Gurnett, D. A.
2003-01-01
We report measurement of whistler-mode chorus by the four Cluster spacecraft at close separations. We focus our analysis on the generation region close to the magnetic equatorial plane at a radial distance of 4.4 Earth's radii. We use both linear and rank correlation analysis to define perpendicular dimensions of the sources of chorus elements below one half of the electron cyclotron frequency. Correlation is significant throughout the range of separation distances of 60-260 km parallel to the field line and 7-100 km in the perpendicular plane. At these scales, the correlation coefficient is independent for parallel separations, and decreases with perpendicular separation. The observations are consistent with a statistical model of the source region assuming individual sources as gaussian peaks of radiated power with a common half-width of 35 km perpendicular to the magnetic field. This characteristic scale is comparable to the wavelength of observed waves.
A measurement of perpendicular current density in an aurora
NASA Technical Reports Server (NTRS)
Bering, E. A.; Mozer, F. S.
1975-01-01
A Nike Tomahawk sounding rocket was launched into a 400-gamma auroral substorm from Esrange, Kiruna, Sweden. The rocket instrumentation included a split Langmuir-probe plasma-velocity detector and a double-probe electric-field detector. Above 140-km altitude, the electric field deduced from the ion-flow velocity measurement and the electric field measured by the double probe agree to an accuracy within the uncertainties of the two measurements. The difference between the two measurements at altitudes below 140 km provides an in situ measurement of current density and conductivity. Alternatively, if values for the conductivity are assumed, the neutral-wind velocity can be deduced. The height-integrated current was 0.11 A/m flowing at an azimuth angle of 276 deg. The neutral winds were strong, exhibited substantial altitude variation in the east-west component, and were predominantly southward.
NASA Astrophysics Data System (ADS)
Prisiazhniuk, D.; Krämer-Flecken, A.; Conway, G. D.; Happel, T.; Lebschy, A.; Manz, P.; Nikolaeva, V.; Stroth, U.; the ASDEX Upgrade Team
2017-02-01
In fusion machines, turbulent eddies are expected to be aligned with the direction of the magnetic field lines and to propagate in the perpendicular direction. Time delay measurements of density fluctuations can be used to calculate the magnetic field pitch angle α and perpendicular velocity {{v}\\bot} profiles. The method is applied to poloidal correlation reflectometry installed at ASDEX Upgrade and TEXTOR, which measure density fluctuations from poloidally and toroidally separated antennas. Validation of the method is achieved by comparing the perpendicular velocity (composed of the E× B drift and the phase velocity of turbulence {{v}\\bot}={{v}E× B}+{{v}\\text{ph}} ) with Doppler reflectometry measurements and with neoclassical {{v}E× B} calculations. An important condition for the application of the method is the presence of turbulence with a sufficiently long decorrelation time. It is shown that at the shear layer the decorrelation time is reduced, limiting the application of the method. The magnetic field pitch angle measured by this method shows the expected dependence on the magnetic field, plasma current and radial position. The profile of the pitch angle reproduces the expected shape and values. However, comparison with the equilibrium reconstruction code cliste suggests an additional inclination of turbulent eddies at the pedestal position (2-3°). This additional angle decreases towards the core and at the edge.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Constantin, Dragos E.; Fahrig, Rebecca; Keall, Paul J.
Purpose: Using magnetic resonance imaging (MRI) for real-time guidance during radiotherapy is an active area of research and development. One aspect of the problem is the influence of the MRI scanner, modeled here as an external magnetic field, on the medical linear accelerator (linac) components. The present work characterizes the behavior of two medical linac electron guns with external magnetic fields for in-line and perpendicular orientations of the linac with respect to the MRI scanner. Methods: Two electron guns, Litton L-2087 and Varian VTC6364, are considered as representative models for this study. Emphasis was placed on the in-line design approachmore » in which case the MRI scanner and the linac axes of symmetry coincide and assumes no magnetic shielding of the linac. For the in-line case, the magnetic field from a 0.5 T open MRI (GE Signa SP) magnet with a 60 cm gap between its poles was computed and used in full three dimensional (3D) space charge simulations, whereas for the perpendicular case the magnetic field was constant. Results: For the in-line configuration, it is shown that the electron beam is not deflected from the axis of symmetry of the gun and the primary beam current does not vanish even at very high values of the magnetic field, e.g., 0.16 T. As the field strength increases, the primary beam current has an initial plateau of constant value after which its value decreases to a minimum corresponding to a field strength of approximately 0.06 T. After the minimum is reached, the current starts to increase slowly. For the case when the beam current computation is performed at the beam waist position the initial plateau ends at 0.016 T for Litton L-2087 and at 0.012 T for Varian VTC6364. The minimum value of the primary beam current is 27.5% of the initial value for Litton L-2087 and 22.9% of the initial value for Varian VTC6364. The minimum current is reached at 0.06 and 0.062 T for Litton L-2087 and Varian VTC6364, respectively. At 0.16 T the beam current increases to 40.2 and 31.4% from the original value of the current for Litton L-2087 and Varian VTC6364, respectively. In contrast, for the case when the electron gun is perpendicular to the magnetic field, the electron beam is deflected from the axis of symmetry even at small values of the magnetic field. As the strength of the magnetic field increases, so does the beam deflection, leading to a sharp decrease of the primary beam current which vanishes at about 0.007 T for Litton L-2087 and at 0.006 T for Varian VTC6364, respectively. At zero external field, the beam rms emittance computed at beam waist is 1.54 and 1.29{pi}-mm-mrad for Litton L-2087 and Varian VTC6364, respectively. For the in-line configuration, there are two particular values of the external field where the beam rms emittance reaches a minimum. Litton L-2087 rms emittance reaches a minimum of 0.72{pi} and 2.01{pi}-mm-mrad at 0.026 and 0.132 T, respectively. Varian VTC6364 rms emittance reaches a minimum of 0.34{pi} and 0.35{pi}-mm-mrad at 0.028 and 0.14 T, respectively. Beam radius dependence on the external field is shown for the in-line configuration for both electron guns. Conclusions: 3D space charge simulation of two electron guns, Litton L-2087 and Varian VTC6364, were performed for in-line and perpendicular external magnetic fields. A consistent behavior of Pierce guns in external magnetic fields was proven. For the in-line configuration, the primary beam current does not vanish but a large reduction of beam current (up to 77.1%) is observed at higher field strengths; the beam directionality remains unchanged. It was shown that for a perpendicular configuration the current vanishes due to beam bending under the action of the Lorentz force. For in-line configuration it was determined that the rms beam emittance reaches two minima for relatively high values of the external magnetic field.« less
Near-field spatial mapping of strongly interacting multiple plasmonic infrared antennas.
Grefe, Sarah E; Leiva, Daan; Mastel, Stefan; Dhuey, Scott D; Cabrini, Stefano; Schuck, P James; Abate, Yohannes
2013-11-21
Near-field dipolar plasmon interactions of multiple infrared antenna structures in the strong coupling limit are studied using scattering-type scanning near-field optical microscope (s-SNOM) and theoretical finite-difference time-domain (FDTD) calculations. We monitor in real-space the evolution of plasmon dipolar mode of a stationary antenna structure as multiple resonantly matched dipolar plasmon particles are closely approaching it. Interparticle separation, length and polarization dependent studies show that the cross geometry structure favors strong interparticle charge-charge, dipole-dipole and charge-dipole Coulomb interactions in the nanometer scale gap region, which results in strong field enhancement in cross-bowties and further allows these structures to be used as polarization filters. The nanoscale local field amplitude and phase maps show that due to strong interparticle Coulomb coupling, cross-bowtie structures redistribute and highly enhance the out-of-plane (perpendicular to the plane of the sample) plasmon near-field component at the gap region relative to ordinary bowties.
NASA Technical Reports Server (NTRS)
Earl, James A.
1992-01-01
When charged particles spiral along a large constant magnetic field, their trajectories are scattered by any random field components that are superposed on the guiding field. If the random field configuration embodies helicity, the scattering is asymmetrical with respect to a plane perpendicular to the guiding field, for particles moving into the forward hemisphere are scattered at different rates from those moving into the backward hemisphere. This asymmetry gives rise to new terms in the transport equations that describe propagation of charged particles. Helicity has virtually no impact on qualitative features of the diffusive mode of propagation. However, characteristic velocities of the coherent modes that appear after a highly anisotropic injection exhibit an asymmetry related to helicity. Explicit formulas, which embody the effects of helicity, are given for the anisotropies, the coefficient diffusion, and the coherent velocities. Predictions derived from these expressions are in good agreement with Monte Carlo simulations of particle transport, but the simulations reveal certain phenomena whose explanation calls for further analytical work.
Highly controlled orientation of CaBi4Ti4O15 using a strong magnetic field
NASA Astrophysics Data System (ADS)
Suzuki, Tohru S.; Kimura, Masahiko; Shiratsuyu, Kosuke; Ando, Akira; Sakka, Yoshio; Sakabe, Yukio
2006-09-01
The texture of feeble magnetic ceramics can be controlled by a strong magnetic field. When the magnetic susceptibility of the c axis is smaller than that of the other axes, the c axis aligns perpendicular to the magnetic field; however, the direction is randomly oriented on the plane perpendicular to the magnetic field. The authors demonstrate in this letter that a highly controlled texture in bismuth titanate, which has a c-axis susceptibility smaller than the other axes, can be achieved using a two-step magnetic field procedure. This highly controlled orientation is effective for improving the electromechanical coupling coefficient.
NASA Astrophysics Data System (ADS)
Maghsoodi, Elham; Kamani, Davoud
2017-05-01
We shall obtain the interaction of the Dp1- and Dp2-branes in the toroidal-orbifold space-time Tn × ℝ1,d-n-5 × ℂ2/ℤ 2. The configuration of the branes is nonintersecting, perpendicular, moving-rotating, wrapped-fractional with background fields. For this, we calculate the bosonic boundary state corresponding to a dynamical fractional-wrapped Dp-brane in the presence of the Kalb-Ramond field, a U1 gauge potential and an open string tachyon field. The long-range behavior of the interaction amplitude will be extracted.
Anisotropic Behaviour of Magnetic Power Spectra in Solar Wind Turbulence.
NASA Astrophysics Data System (ADS)
Banerjee, S.; Saur, J.; Gerick, F.; von Papen, M.
2017-12-01
Introduction:High altitude fast solar wind turbulence (SWT) shows different spectral properties as a function of the angle between the flow direction and the scale dependent mean magnetic field (Horbury et al., PRL, 2008). The average magnetic power contained in the near perpendicular direction (80º-90º) was found to be approximately 5 times larger than the average power in the parallel direction (0º- 10º). In addition, the parallel power spectra was found to give a steeper (-2) power law than the perpendicular power spectral density (PSD) which followed a near Kolmogorov slope (-5/3). Similar anisotropic behaviour has also been observed (Chen et al., MNRAS, 2011) for slow solar wind (SSW), but using a different method exploiting multi-spacecraft data of Cluster. Purpose:In the current study, using Ulysses data, we investigate (i) the anisotropic behaviour of near ecliptic slow solar wind using the same methodology (described below) as that of Horbury et al. (2008) and (ii) the dependence of the anisotropic behaviour of SWT as a function of the heliospheric latitude.Method:We apply the wavelet method to calculate the turbulent power spectra of the magnetic field fluctuations parallel and perpendicular to the local mean magnetic field (LMF). According to Horbury et al., LMF for a given scale (or size) is obtained using an envelope of the envelope of that size. Results:(i) SSW intervals always show near -5/3 perpendicular spectra. Unlike the fast solar wind (FSW) intervals, for SSW, we often find intervals where power parallel to the mean field is not observed. For a few intervals with sufficient power in parallel direction, slow wind turbulence also exhibit -2 parallel spectra similar to FSW.(ii) The behaviours of parallel and perpendicular power spectra are found to be independent of the heliospheric latitude. Conclusion:In the current study we do not find significant influence of the heliospheric latitude on the spectral slopes of parallel and perpendicular magnetic spectra. This indicates that the spectral anisotropy in parallel and perpendicular direction is governed by intrinsic properties of SWT.
The effects of incidence angle on film dosimetry and their consequences in IMRT dose verification.
Srivastava, R P; De Wagter, C
2012-10-01
The dosimetric accuracy of EDR2 radiographic film has been rigorously assessed in regular and intensity modulated beams for various incidence angles, including the parallel and perpendicular orientation. There clearly exists confusion in literature regarding the effect of film orientation. The primary aim is to clarify potential sources of the confusion and to gain physical insight into the film orientation effect with a link to radiochromic film as well. An inverse pyramid IMRT field, consisting of six regular and elongated 3 × 20 cm(2) field segments, was studied in perpendicular and parallel orientation. Assessment of film self-perturbation and intrinsic directional sensitivity were also included in the experiments. Finally, the authors investigated the orientational effect in composite beams in the two extreme orientations, i.e., perpendicular and parallel. The study of an inverse pyramid dose profile revealed good agreement between the perpendicular film and the diamond detector within 0.5% in the low-scatter regions for both 6 and 18 MV. The parallel oriented film demonstrated a 3% under-response at 5-cm (6 MV) depth against the perpendicular orientation, but both orientations over responded equally in the central region, which received only scattered dose, at both 5- and 20-cm depths. In a regular 6-MV 5 × 5 cm(2) field, a 4.1% lower film response was observed in the parallel orientation compared to perpendicular orientation. The under response gradually increased to 6% when reducing the field size to 0.5 × 5 cm(2). On the other hand, the film showed a 1.7% lower response in parallel orientation for the large field size of 20 × 20 cm(2) at 5-cm depth but the difference disappeared at 10 cm. At 18 MV, similar but somewhat lower differences were found between the two orientations. The directional sensitivity of the film diminishes with increasing field size and depth. Surprisingly a composite IMRT beam consisting of 20 adjacent strip segments also produced a significant orientational dependence of film response, notwithstanding the large total field size of 20 × 20 cm(2). This analysis allowed the development of a hypothesis about the physics behind the orientational dependence of film response in general and to formulate precautions when using film dosimetry in the dosimetric verification of multibeam treatments.
NASA Astrophysics Data System (ADS)
Milla, M. A.; Kudeki, E.; Chau, J. L.
2012-12-01
Coulomb collision effects on incoherent scatter radar signals become important when radar beams are pointed perpendicular to the Earth's magnetic field (B). To study these effects, Milla and Kudeki [2011] developed a procedure to estimate the spectrum of plasma density fluctuations (also known as incoherent scatter spectrum) based on simulations of collisional particle trajectories in single-ion component plasmas. In these simulations, collision effects on the particle motion are modeled using the standard Fokker-Planck model of Rosenbluth et al. [1957]. We have recently generalized the procedure of Milla and Kudeki to consider the case of multiple ion components in order to study the characteristics of the incoherent scatter spectrum in O+, H+, and He+ ionospheric plasmas, which is needed for the analysis of topside perpendicular-to-B observations at the Jicamarca Radio Observatory. In this presentation, we will report on the development of this new approach and on the characteristics of the spectrum models that were developed. The simulation results show that the ion collision process can be fairly well approximated as a Gaussian motion process, a model that has been previously studied in the literature by different authors. However, in the case of electron collisions, the process is not Gaussian having a complicated dependence on plasma parameters. As it will be discussed, electron collisions have a significant impact on the shape of the incoherent scatter spectrum. The ultimate application of the models that were developed is the simultaneous estimation of plasma drifts, densities, and temperatures of the topside equatorial ionosphere in perpendicular-to-B experiments at Jicamarca. This experimental evaluation will have a broader impact since the accuracy of the Fokker-Planck collision model will be tested. References: Milla, M. A., and E. Kudeki (2011), Incoherent scatter spectral theories-Part II: Modeling the spectrum for modes propagating perpendicular to B, IEEE Transactions on Geoscience and Remote Sensing, 49(1), 329-345, doi:10.1109/TGRS.2010.2057253. Rosenbluth, M. N., W. M. MacDonald, and D. L. Judd (1957), Fokker-Planck equation for an inverse-square force, Physical Review, 107(1), 1-6, doi:10.1103/PhysRev.107.1.
Driving and detecting ferromagnetic resonance in insulators with the spin Hall effect
Sklenar, Joseph; Zhang, Wei; Jungfleisch, Matthias B.; ...
2015-11-06
We demonstrate the generation and detection of spin-torque ferromagnetic resonance in Pt/Y 3Fe 5O 12 (YIG) bilayers. A unique attribute of this system is that the spin Hall effect lies at the heart of both the generation and detection processes and no charge current is passing through the insulating magnetic layer. When the YIG undergoes resonance, a dc voltage is detected longitudinally along the Pt that can be described by two components. One is the mixing of the spin Hall magnetoresistance with the microwave current. The other results from spin pumping into the Pt being converted to a dc currentmore » through the inverse spin Hall effect. The voltage is measured with applied magnetic field directions that range in-plane to nearly perpendicular. In conclusion, we find that for magnetic fields that are mostly out-of-plane, an imaginary component of the spin mixing conductance is required to model our data.« less
1982-02-01
function of both E, and an auto- correlation time :. We choose to replace E, by an expression containing v, the velocity spread of the beam...f’K or eEL ArGC - ’ (5) where E,_ is now the perpendicular component of the turbulent E field and , is the time int-erval for a coherent interaction...the auto-correlation time ). Equation (5) is the basis for our random walk model for wave particle interactions. It can also be derived using the tX
Dependence of Perpendicular Viscosity on Magnetic Fluctuations in a Stochastic Topology
NASA Astrophysics Data System (ADS)
Fridström, R.; Chapman, B. E.; Almagri, A. F.; Frassinetti, L.; Brunsell, P. R.; Nishizawa, T.; Sarff, J. S.
2018-06-01
In a magnetically confined plasma with a stochastic magnetic field, the dependence of the perpendicular viscosity on the magnetic fluctuation amplitude is measured for the first time. With a controlled, ˜ tenfold variation in the fluctuation amplitude, the viscosity increases ˜100 -fold, exhibiting the same fluctuation-amplitude-squared dependence as the predicted rate of stochastic field line diffusion. The absolute value of the viscosity is well predicted by a model based on momentum transport in a stochastic field, the first in-depth test of this model.
Collisionless dissipation in quasi-perpendicular shocks. [in terresrial bow waves
NASA Technical Reports Server (NTRS)
Forslund, D. W.; Quest, K. B.; Brackbill, J. U.; Lee, K.
1984-01-01
Microscopic dissipation processes in quasi-perpendicular shocks are studied by two-dimensional plasma simulations in which electrons and ions are treated as particles moving in self-consistent electric and magnetic fields. Cross-field currents induce substantial turbulence at the shock front reducing the reflected ion fraction, increasing the bulk ion temperature behind the shock, doubling the average magnetic ramp thickness, and enhancing the upstream field aligned electron heat flow. The short scale length magnetic fluctuations observed in the bow shock are probably associated with this turbulence.
FDTD simulation of radar cross section reduction by a collisional inhomogeneous magnetized plasma
NASA Astrophysics Data System (ADS)
Foroutan, V.; Azarmanesh, M. N.; Foroutan, G.
2018-02-01
The recursive convolution finite difference time domain method is addressed in the scattered field formulation and employed to investigate the bistatic radar cross-section (RCS) of a square conductive plate covered by a collisional inhomogeneous magnetized plasma. The RCS is calculated for two different configurations of the magnetic field, i.e., parallel and perpendicular to the plate. The results of numerical simulations show that, for a perpendicularly applied magnetic field, the backscattered RCS is significantly reduced when the magnetic field intensity coincides with the value corresponding to the electron cyclotron resonance. By increasing the collision frequency, the resonant absorption is suppressed, but due to enhanced wave penetration and bending, the reduction in the bistatic RCS is improved. At very high collision frequencies, the external magnetic field has no significant impact on the bistatic RCS reduction. Application of a parallel magnetic field has an adverse effect near the electron cyclotron resonance and results in a large and asymmetric RCS profile. But, the problem is resolved by increasing the magnetic field and/or the collision frequency. By choosing proper values of the collision frequency and the magnetic field intensity, a perpendicular magnetic field can be effectively used to reduce the bistatic RCS of a conductive plate.
Dynamics of a reconnection-driven runaway ion tail in a reversed field pinch plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, J. K., E-mail: jkanders@wisc.edu; Kim, J.; Bonofiglo, P. J.
2016-05-15
While reconnection-driven ion heating is common in laboratory and astrophysical plasmas, the underlying mechanisms for converting magnetic to kinetic energy remain not fully understood. Reversed field pinch discharges are often characterized by rapid ion heating during impulsive reconnection, generating an ion distribution with an enhanced bulk temperature, mainly perpendicular to magnetic field. In the Madison Symmetric Torus, a subset of discharges with the strongest reconnection events develop a very anisotropic, high energy tail parallel to magnetic field in addition to bulk perpendicular heating, which produces a fusion neutron flux orders of magnitude higher than that expected from a Maxwellian distribution.more » Here, we demonstrate that two factors in addition to a perpendicular bulk heating mechanism must be considered to explain this distribution. First, ion runaway can occur in the strong parallel-to-B electric field induced by a rapid equilibrium change triggered by reconnection-based relaxation; this effect is particularly strong on perpendicularly heated ions which experience a reduced frictional drag relative to bulk ions. Second, the confinement of ions varies dramatically as a function of velocity. Whereas thermal ions are governed by stochastic diffusion along tearing-altered field lines (and radial diffusion increases with parallel speed), sufficiently energetic ions are well confined, only weakly affected by a stochastic magnetic field. High energy ions traveling mainly in the direction of toroidal plasma current are nearly classically confined, while counter-propagating ions experience an intermediate confinement, greater than that of thermal ions but significantly less than classical expectations. The details of ion confinement tend to reinforce the asymmetric drive of the parallel electric field, resulting in a very asymmetric, anisotropic distribution.« less
Fixing Stellarator Magnetic Surfaces
NASA Astrophysics Data System (ADS)
Hanson, James D.
1999-11-01
Magnetic surfaces are a perennial issue for stellarators. The design heuristic of finding a magnetic field with zero perpendicular component on a specified outer surface often yields inner magnetic surfaces with very small resonant islands. However, magnetic fields in the laboratory are not design fields. Island-causing errors can arise from coil placement errors, stray external fields, and design inadequacies such as ignoring coil leads and incomplete characterization of current distributions within the coil pack. The problem addressed is how to eliminate such error-caused islands. I take a perturbation approach, where the zero order field is assumed to have good magnetic surfaces, and comes from a VMEC equilibrium. The perturbation field consists of error and correction pieces. The error correction method is to determine the correction field so that the sum of the error and correction fields gives zero island size at specified rational surfaces. It is particularly important to correctly calculate the island size for a given perturbation field. The method works well with many correction knobs, and a Singular Value Decomposition (SVD) technique is used to determine minimal corrections necessary to eliminate islands.
Ono, Masayuki; Furth, Harold
1993-01-01
An electron injection scheme for controlling transport in a tokamak plasma. Electrons with predominantly perpendicular energy are injected into a ripple field region created by a group of localized poloidal field bending magnets. The trapped electrons then grad-B drift vertically toward the plasma interior until they are detrapped, charging the plasma negative. Calculations indicate that the highly perpendicular velocity electrons can remain stable against kinetic instabilities in the regime of interest for tokamak experiments. The penetration distance can be controlled by controlling the "ripple mirror ratio", the energy of the injected electrons, and their v.sub..perp. /v.sub.51 ratio. In this scheme, the poloidal torque due to the injected radial current is taken by the magnets and not by the plasma. Injection is accomplished by the flat cathode containing an ECH cavity to pump electrons to high v.sub..perp..
Numerical modelling of dynamic resistance in high-temperature superconducting coated-conductor wires
NASA Astrophysics Data System (ADS)
Ainslie, Mark D.; Bumby, Chris W.; Jiang, Zhenan; Toyomoto, Ryuki; Amemiya, Naoyuki
2018-07-01
The use of superconducting wire within AC power systems is complicated by the dissipative interactions that occur when a superconductor is exposed to an alternating current and/or magnetic field, giving rise to a superconducting AC loss caused by the motion of vortices within the superconducting material. When a superconductor is exposed to an alternating field whilst carrying a constant DC transport current, a DC electrical resistance can be observed, commonly referred to as ‘dynamic resistance.’ Dynamic resistance is relevant to many potential high-temperature superconducting (HTS) applications and has been identified as critical to understanding the operating mechanism of HTS flux pump devices. In this paper, a 2D numerical model based on the finite-element method and implementing the H -formulation is used to calculate the dynamic resistance and total AC loss in a coated-conductor HTS wire carrying an arbitrary DC transport current and exposed to background AC magnetic fields up to 100 mT. The measured angular dependence of the superconducting properties of the wire are used as input data, and the model is validated using experimental data for magnetic fields perpendicular to the plane of the wire, as well as at angles of 30° and 60° to this axis. The model is used to obtain insights into the characteristics of such dynamic resistance, including its relationship with the applied current and field, the wire’s superconducting properties, the threshold field above which dynamic resistance is generated and the flux-flow resistance that arises when the total driven transport current exceeds the field-dependent critical current, I c( B ), of the wire. It is shown that the dynamic resistance can be mostly determined by the perpendicular field component with subtle differences determined by the angular dependence of the superconducting properties of the wire. The dynamic resistance in parallel fields is essentially negligible until J c is exceeded and flux-flow resistance occurs.
Yue, Chao; Li, Wen; Reeves, Geoffrey D.; ...
2016-07-01
Interactions between interplanetary (IP) shocks and the Earth's magnetosphere manifest many important space physics phenomena including low-energy ion flux enhancements and particle acceleration. In order to investigate the mechanisms driving shock-induced enhancement of low-energy ion flux, we have examined two IP shock events that occurred when the Van Allen Probes were located near the equator while ionospheric and ground observations were available around the spacecraft footprints. We have found that, associated with the shock arrival, electromagnetic fields intensified, and low-energy ion fluxes, including H +, He +, and O +, were enhanced dramatically in both the parallel and perpendicular directions.more » During the 2 October 2013 shock event, both parallel and perpendicular flux enhancements lasted more than 20 min with larger fluxes observed in the perpendicular direction. In contrast, for the 15 March 2013 shock event, the low-energy perpendicular ion fluxes increased only in the first 5 min during an impulse of electric field, while the parallel flux enhancement lasted more than 30 min. In addition, ionospheric outflows were observed after shock arrivals. From a simple particle motion calculation, we found that the rapid response of low-energy ions is due to drifts of plasmaspheric population by the enhanced electric field. Furthermore, the fast acceleration in the perpendicular direction cannot solely be explained by E × B drift but betatron acceleration also plays a role. Adiabatic acceleration may also explain the fast response of the enhanced parallel ion fluxes, while ion outflows may contribute to the enhanced parallel fluxes that last longer than the perpendicular fluxes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yue, Chao; Li, Wen; Reeves, Geoffrey D.
Interactions between interplanetary (IP) shocks and the Earth's magnetosphere manifest many important space physics phenomena including low-energy ion flux enhancements and particle acceleration. In order to investigate the mechanisms driving shock-induced enhancement of low-energy ion flux, we have examined two IP shock events that occurred when the Van Allen Probes were located near the equator while ionospheric and ground observations were available around the spacecraft footprints. We have found that, associated with the shock arrival, electromagnetic fields intensified, and low-energy ion fluxes, including H +, He +, and O +, were enhanced dramatically in both the parallel and perpendicular directions.more » During the 2 October 2013 shock event, both parallel and perpendicular flux enhancements lasted more than 20 min with larger fluxes observed in the perpendicular direction. In contrast, for the 15 March 2013 shock event, the low-energy perpendicular ion fluxes increased only in the first 5 min during an impulse of electric field, while the parallel flux enhancement lasted more than 30 min. In addition, ionospheric outflows were observed after shock arrivals. From a simple particle motion calculation, we found that the rapid response of low-energy ions is due to drifts of plasmaspheric population by the enhanced electric field. Furthermore, the fast acceleration in the perpendicular direction cannot solely be explained by E × B drift but betatron acceleration also plays a role. Adiabatic acceleration may also explain the fast response of the enhanced parallel ion fluxes, while ion outflows may contribute to the enhanced parallel fluxes that last longer than the perpendicular fluxes.« less
Micromagnetic Study of Perpendicular Magnetic Recording Media
NASA Astrophysics Data System (ADS)
Dong, Yan
With increasing areal density in magnetic recording systems, perpendicular recording has successfully replaced longitudinal recording to mitigate the superparamagnetic limit. The extensive theoretical and experimental research associated with perpendicular magnetic recording media has contributed significantly to improving magnetic recording performance. Micromagnetic studies on perpendicular recording media, including aspects of the design of hybrid soft underlayers, media noise properties, inter-grain exchange characterization and ultra-high density bit patterned media recording, are presented in this dissertation. To improve the writability of recording media, one needs to reduce the head-to-keeper spacing while maintaining a good texture growth for the recording layer. A hybrid soft underlayer, consisting of a thin crystalline soft underlayer stacked above a non-magnetic seed layer and a conventional amorphous soft underlayer, provides an alternative approach for reducing the effective head-to-keeper spacing in perpendicular recording. Micromagnetic simulations indicate that the media using a hybrid soft underlayer helps enhance the effective field and the field gradient in comparison with conventional media that uses only an amorphous soft underlayer. The hybrid soft underlayer can support a thicker non-magnetic seed layer yet achieve an equivalent or better effective field and field gradient. A noise plateau for intermediate recording densities is observed for a recording layer of typical magnetization. Medium noise characteristics and transition jitter in perpendicular magnetic recording are explored using micromagnetic simulation. The plateau is replaced by a normal linear dependence of noise on recording density for a low magnetization recording layer. We show analytically that a source of the plateau is similar to that producing the Non-Linear-Transition-Shift of signal. In particular, magnetostatic effects are predicted to produce positive correlation of jitter and thus negative correlation of noise at the densities associated with the plateau. One focus for developing perpendicular recording media is on how to extract intergranular exchange coupling and intrinsic anisotropy field dispersion. A micromagnetic numerical technique is developed to effectively separate the effects of intergranular exchange coupling and anisotropy dispersion by finding their correlation to differentiated M-H curves with different initial magnetization states, even in the presence of thermal fluctuation. The validity of this method is investigated with a series of intergranular exchange couplings and anisotropy dispersions for different media thickness. This characterization method allows for an experimental measurement employing a vibrating sample magnetometer (VSM). Bit patterned media have been suggested to extend areal density beyond 1 Tbit/in2. The feasibility of 4 Tbit/in2 bit patterned recording is determined by aspects of write head design and media fabrication, and is estimated by the bit error rate. Micromagnetic specifications including 2.3:1 BAR bit patterned exchange coupled composite media, trailing shield, and side shields are proposed to meet the requirement of 3x10 -4 bit error rate, 4 nm fly height, 5% switching field distribution, 5% timing and 5% jitter errors for 4 Tbit/in2 bit-patterned recording. Demagnetizing field distribution is examined by studying the shielding effect of the side shields on the stray field from the neighboring dots. For recording self-assembled bit-patterned media, the head design writes two staggered tracks in a single pass and has maximum perpendicular field gradients of 580 Oe/nm along the down-track direction and 476 Oe/nm along the cross-track direction. The geometry demanded by self-assembly reduces recording density to 2.9 Tbit/in 2.
NASA Astrophysics Data System (ADS)
Kheirabadi, Narjes; McCann, Edward; Fal'ko, Vladimir I.
2018-02-01
We model the magnetic ratchet effect in bilayer graphene in which a dc electric current is produced by an ac electric field of frequency ω in the presence of a steady in-plane magnetic field and inversion-symmetry breaking. In bilayer graphene, the ratchet effect is tunable by an external metallic gate which breaks inversion symmetry. For zero in-plane magnetic field, we show that trigonal warping and inversion-symmetry breaking are able to produce a large dc valley current, but not a nonzero total dc charge current. For the magnetic ratchet in a tilted magnetic field, the perpendicular field component induces cyclotron motion with frequency ωc and we find that the dc current displays cyclotron resonance at ωc=ω , although this peak in the current is actually smaller than its value at ωc=0 . Second harmonic generation, however, is greatly enhanced by resonances at ωc=ω and ωc=2 ω for which the current is generally much larger than at ωc=0 .
Spin pumping and inverse spin Hall voltages from dynamical antiferromagnets
NASA Astrophysics Data System (ADS)
Johansen, Øyvind; Brataas, Arne
2017-06-01
Dynamical antiferromagnets can pump spins into adjacent conductors. The high antiferromagnetic resonance frequencies represent a challenge for experimental detection, but magnetic fields can reduce these resonance frequencies. We compute the ac and dc inverse spin Hall voltages resulting from dynamical spin excitations as a function of a magnetic field along the easy axis and the polarization of the driving ac magnetic field perpendicular to the easy axis. We consider the insulating antiferromagnets MnF2,FeF2, and NiO. Near the spin-flop transition, there is a significant enhancement of the dc spin pumping and inverse spin Hall voltage for the uniaxial antiferromagnets MnF2 and FeF2. In the uniaxial antiferromagnets it is also found that the ac spin pumping is independent of the external magnetic field when the driving field has the optimal circular polarization. In the biaxial NiO, the voltages are much weaker, and there is no spin-flop enhancement of the dc component.
The temporal evolution of 3-m striations in the modified ionosphere
NASA Technical Reports Server (NTRS)
Coster, A. J.; Djuth, F. T.; Jost, R. J.; Gordon, W. E.
1985-01-01
Experiments were performed at Arecibo, Puerto Rico, to investigate the evolution times of 3-m field-aligned striations produced in the ionosphere by powerful high-frequency (HF) radio waves. The results of this investigation are now summarized. First, the striations' rise times are dependent on the HF electric field. The E region data suggest that this dependence is nonlinear. Second, the threshold value of the HF electric field required to produce detectable striations was experimentally determined. At threshold the component of the HF electric field perpendicular to the geomagnetic field is calculated to be 0.09 V/m in the F region and 0.37 V/m in the E region. Third, both the E and the F region data verify theoretical predictions that the striations' decay times are directly proportional to the electron diffusion across B. Finally, a one-to-one correspondence between the growth of the 3-m striations and the decline of the HF-enhanced plasma line during overshoot is sometimes observed.
Properties of the electrostatically driven helical plasma state
NASA Astrophysics Data System (ADS)
Akçay, Cihan; Finn, John M.; Nebel, Richard A.; Barnes, Daniel C.; Martin, Neal
2018-02-01
A novel plasma state has been found [Akçay et al., Phys. Plasmas 24, 052503 (2017)] in the presence of a uniform applied axial magnetic field in periodic cylindrical geometry. This state is driven by external electrostatic fields provided by helical electrodes with a (m =1 ,n =1 ) (helical) symmetry where m and n represent the poloidal and axial harmonics. The resulting plasma is a function of the cylinder radius r
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hau, L.-N.; Department of Physics, National Central University, Jhongli, Taiwan; Lai, Y.-T.
Harris-type current sheets with the magnetic field model of B-vector=B{sub x}(z)x-caret+B{sub y}(z)y-caret have many important applications to space, astrophysical, and laboratory plasmas for which the temperature or pressure usually exhibits the gyrotropic form of p{r_reversible}=p{sub Parallel-To }b-caretb-caret+p{sub Up-Tack }(I{r_reversible}-b-caretb-caret). Here, p{sub Parallel-To} and p{sub Up-Tack} are, respectively, to be the pressure component along and perpendicular to the local magnetic field, b-caret=B-vector/B. This study presents the general formulation for magnetohydrodynamic (MHD) wave propagation, fire-hose, and mirror instabilities in general Harris-type current sheets. The wave equations are expressed in terms of the four MHD characteristic speeds of fast, intermediate, slow, and cuspmore » waves, and in the local (k{sub Parallel-To },k{sub Up-Tack },z) coordinates. Here, k{sub Parallel-To} and k{sub Up-Tack} are, respectively, to be the wave vector along and perpendicular to the local magnetic field. The parameter regimes for the existence of discrete and resonant modes are identified, which may become unstable at the local fire-hose and mirror instability thresholds. Numerical solutions for discrete eigenmodes are shown for stable and unstable cases. The results have important implications for the anomalous heating and stability of thin current sheets.« less
Cation exchange in a temporally fluctuating thin freshwater lens on top of saline groundwater
NASA Astrophysics Data System (ADS)
Eeman, S.; De Louw, P. G. B.; Van der Zee, S. E. A. T. M.
2017-01-01
In coastal-zone fields with a high groundwater level and sufficient rainfall, freshwater lenses are formed on top of saline or brackish groundwater. The fresh and the saline water meet at shallow depth, where a transition zone is found. This study investigates the mixing zone that is characterized by this salinity change, as well as by cation exchange processes, and which is forced by seepage and by rainfall which varies as a function of time. The processes are first investigated for a one-dimensional (1D) stream tube perpendicular to the interface concerning salt and major cation composition changes. The complex sequence of changes is explained with basic cation exchange theory. It is also possible to show that the sequence of changes is maintained when a two-dimensional field is considered where the upward saline seepage flows to drains. This illustrates that for cation exchange, the horizontal component (dominant for flow of water) has a small impact on the chemical changes in the vertical direction. The flow's horizontal orientation, parallel to the interface, leads to changes in concentration that are insignificant compared with those that are found perpendicular to the interface, and are accounted for in the 1D flow tube. Near the drains, differences with the 1D considerations are visible, especially in the longer term, exceeding 100 years. The simulations are compared with field data from the Netherlands which reveal similar patterns.
A study of weak anisotropy in electron pressure in the tail current sheet
NASA Technical Reports Server (NTRS)
Lee, D.-Y.; Voigt, G.-H.
1995-01-01
We adopt a magnetotail model with stretched field lines where ion motions are generally nonadiabatic and where it is assumed that the pressure anisotropy resides only in the electron pressure tensor. We show that the magnetic field lines with p(perpendicular) greater than p(parallel) are less stretched than the corresponding field lines in the isotropic model. For p(parallel) greater than p(perpendicular), the magnetic field lines become more and more stretched as the anisotropy approaches the marginal firehose limit, p(parallel) = p(perpendicular) + B(exp 2)/mu(sub 0). We also show that the tail current density is highly enhanced at the firehose limit, a situation that might be subject to a microscopic instability. However, we emphasize that the enhancement in the current density is notable only near the center of the tail current sheet (z = 0). Thus it remains unclear whether any microscopic instability can significantly alter the global magnetic field configuration of the tail. By comparing the radius of the field-line curvature at z = 0 with the particle's gyroradius, we suspect that even the conventional adiabatic description of electrons may become questionable very close to the marginal firehose limit.
Interplanetary Circumstances of Quasi-Perpendicular Interplanetary Shocks in 1996-2005
NASA Technical Reports Server (NTRS)
Richardson, I. G.; Cane, H. V.
2010-01-01
The angle (theta(sub Bn)) between the normal to an interplanetary shock front and the upstream magnetic field direction, though often thought of as a property "of the shock," is also determined by the configuration of the magnetic field immediately upstream of the shock. We investigate the interplanetary circumstances of 105 near-Earth quasi-perpendicular shocks during 1996-2005 identified by theta(sub Bn) greater than or equal to 80 degrees and/or by evidence of shock drift particle acceleration. Around 87% of these shocks were driven by interplanetary coronal mass ejections (ICMEs); the remainder were probably the forward shocks of corotating interaction regions. For around half of the shocks, the upstream field was approximately perpendicular to the radial direction, either east-west or west-east or highly inclined to the ecliptic. Such field directions will give quasi-perpendicular configurations for radially propagating shocks. Around 30% of the shocks were propagating through, or closely followed, ICMEs at the time of observation. Another quarter were propagating through the heliospheric plasma sheet (HPS), and a further quarter occurred in slow solar wind that did not have characteristics of the HPS. Around 11% were observed in high-speed streams, and 7% in the sheaths following other shocks. The fraction of shocks found in high-speed streams is around a third of that expected based on the fraction of the time when such streams were observed at Earth. Quasi-perpendicular shocks are found traveling through ICMEs around 2-3 times more frequently than expected. In addition, shocks propagating through ICMEs are more likely to have larger values of theta(sub Bn) than shocks outside ICMEs.
Three-dimensional artificial spin ice in nanostructured Co on an inverse opal-like lattice
NASA Astrophysics Data System (ADS)
Mistonov, A. A.; Grigoryeva, N. A.; Chumakova, A. V.; Eckerlebe, H.; Sapoletova, N. A.; Napolskii, K. S.; Eliseev, A. A.; Menzel, D.; Grigoriev, S. V.
2013-06-01
The evolution of the magnetic structure for an inverse opal-like structure under an applied magnetic field is studied by small-angle neutron scattering. The samples were produced by filling the voids of an artificial opal film with Co. It is shown that the local configuration of magnetization is inhomogeneous over the basic element of the inverse opal-like lattice structure (IOLS) but follows its periodicity. Applying the “ice-rule” concept to the structure, we describe the local magnetization of this ferromagnetic three-dimensional lattice. We have developed a model of the remagnetization process predicting the occurrence of an unusual perpendicular component of the magnetization in the IOLS which is defined only by the direction and strength of the applied magnetic field.
Okamoto, Naoya; Yoshimatsu, Katsunori; Schneider, Kai; Farge, Marie
2014-03-01
Small-scale anisotropic intermittency is examined in three-dimensional incompressible magnetohydrodynamic turbulence subjected to a uniformly imposed magnetic field. Orthonormal wavelet analyses are applied to direct numerical simulation data at moderate Reynolds number and for different interaction parameters. The magnetic Reynolds number is sufficiently low such that the quasistatic approximation can be applied. Scale-dependent statistical measures are introduced to quantify anisotropy in terms of the flow components, either parallel or perpendicular to the imposed magnetic field, and in terms of the different directions. Moreover, the flow intermittency is shown to increase with increasing values of the interaction parameter, which is reflected in strongly growing flatness values when the scale decreases. The scale-dependent anisotropy of energy is found to be independent of scale for all considered values of the interaction parameter. The strength of the imposed magnetic field does amplify the anisotropy of the flow.
Induction logging device with a pair of mutually perpendicular bucking coils
Koelle, Alfred R.; Landt, Jeremy A.
1981-01-01
An instrument is disclosed for mapping vertical conductive fractures in a resistive bedrock, magnetically inducing eddy currents by a pair of vertically oriented, mutually perpendicular, coplanar coils. The eddy currents drive magnetic fields which are picked up by a second, similar pair of coils.
NASA Astrophysics Data System (ADS)
Imajo, S.; Yoshikawa, A.; Uozumi, T.; Ohtani, S.; Nakamizo, A.; Chi, P. J.
2017-12-01
Pi2 magnetic oscillations on the dayside are considered to be produced by the ionospheric current that is driven by Pi2-associated electric fields from the high-latitude region, but this idea has not been quantitatively tested. The present study numerically tested the magnetospheric-ionospheric current system for Pi2 consisting of field-aligned currents (FACs) localized in the nightside auroral region, the perpendicular magnetospheric current flowing in the azimuthal direction, and horizontal ionospheric currents driven by the FACs. We calculated the spatial distribution of the ground magnetic field produced by these currents using the Biot-Savart law in a stationary state. The calculated magnetic field reproduced the observational features reported by previous studies; (1) the sense of the H component does not change a wide range of local time sectors at low latitudes; (2) the amplitude of the H component on the dayside is enhanced at the equator; (3) The D component reverses its phase near the dawn and dusk terminators; (4) the meridian of the D-component phase reversal near the dusk terminator is shifted more sunward than that near the dawn terminator; (5) the amplitude of the D component in the morning is larger than that in the early evening. We also derived the global distributions of observed equivalent currents for two Pi2 events. The spatial patterns of dayside equivalent currents were similar to the spatial pattern of numerically derived equivalent currents. The results indicate that the oscillation of the magnetospheric-ionospheric current system is a plausible explanation of Pi2s on the dayside and near the terminator. These results are included in an accepted paper by Imajo et al. [2017JGR, DOI: 10.1002/2017JA024246].
Solar Wind Proton Temperature Anisotropy: Linear Theory and WIND/SWE Observations
NASA Technical Reports Server (NTRS)
Hellinger, P.; Travnicek, P.; Kasper, J. C.; Lazarus, A. J.
2006-01-01
We present a comparison between WIND/SWE observations (Kasper et al., 2006) of beta parallel to p and T perpendicular to p/T parallel to p (where beta parallel to p is the proton parallel beta and T perpendicular to p and T parallel to p are the perpendicular and parallel proton are the perpendicular and parallel proton temperatures, respectively; here parallel and perpendicular indicate directions with respect to the ambient magnetic field) and predictions of the Vlasov linear theory. In the slow solar wind, the observed proton temperature anisotropy seems to be constrained by oblique instabilities, by the mirror one and the oblique fire hose, contrary to the results of the linear theory which predicts a dominance of the proton cyclotron instability and the parallel fire hose. The fast solar wind core protons exhibit an anticorrelation between beta parallel to c and T perpendicular to c/T parallel to c (where beta parallel to c is the core proton parallel beta and T perpendicular to c and T parallel to c are the perpendicular and parallel core proton temperatures, respectively) similar to that observed in the HELIOS data (Marsch et al., 2004).
NASA Astrophysics Data System (ADS)
Drobitch, Justine L.; Ahsanul Abeed, Md; Bandyopadhyay, Supriyo
2017-10-01
We describe an approach to implement precessional switching of a perpendicular-magnetic-anisotropy magneto-tunneling-junction (p-MTJ) without using any magnetic field. The switching is accomplished with voltage-controlled-magnetic-anisotropy (VCMA), spin transfer torque (STT) and mechanical strain. The soft layer of the p-MTJ is magnetostrictive and the strain acts as an effective in-plane magnetic field around which the magnetization of the soft layer precesses to complete a flip. A two-terminal energy-efficient p-MTJ based memory cell, that is compatible with crossbar architecture and high cell density, is designed.
Ling, Biyun; Peng, Chunrong; Ren, Ren; Chu, Zhaozhi; Zhang, Zhouwei; Lei, Hucheng; Xia, Shanhong
2018-01-01
One of the major concerns in the development of three-dimensional (3D) electric field sensors (EFSs) is their susceptibility to cross-axis coupling interference. The output signal for each sensing axis of a 3D EFS is often coupled by electric field components from the two other orthogonal sensing axes. In this paper, a one-dimensional (1D) electric field sensor chip (EFSC) with low cross-axis coupling interference is presented. It is designed to be symmetrical, forming a pair of in-plane symmetrically-located sensing structures. Using a difference circuit, the 1D EFSC is capable of sensing parallel electric fields along symmetrical structures and eliminating cross-axis coupling interference, which is contrast to previously reported 1D EFSCs designed for perpendicular electric field component measurement. Thus, a 3D EFS with low cross-axis coupling interference can be realized using three proposed 1D EFSCs. This 3D EFS has the advantages of low cross-axis coupling interference, small size, and high integration. The testing and calibration systems of the proposed 3D EFS were developed. Experimental results show that in the range of 0–120 kV/m, cross-axis sensitivities are within 5.48%, and the total measurement errors of this 3D EFS are within 6.16%. PMID:29543744
Dual laser optical system and method for studying fluid flow
NASA Technical Reports Server (NTRS)
Owen, R. B.; Witherow, W. K. (Inventor)
1983-01-01
A dual laser optical system and method is disclosed for visualization of phenomena in transport substances which induce refractive index gradients such as fluid flow and pressure and temperature gradients in fluids and gases. Two images representing mutually perpendicular components of refractive index gradients may be viewed simultaneously on screen. Two lasers having wave lengths in the visible range but separated by about 1000 angstroms are utilized to provide beams which are collimated into a beam containing components of the different wave lengths. The collimated beam is passed through a test volume of the transparent substance. The collimated beam is then separated into components of the different wave lengths and focused onto a pair of knife edges arranged mutually perpendicular to produce and project images onto the screen.
ANALYTIC FORMS OF THE PERPENDICULAR DIFFUSION COEFFICIENT IN NRMHD TURBULENCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shalchi, A., E-mail: andreasm4@yahoo.com
2015-02-01
In the past different analytic limits for the perpendicular diffusion coefficient of energetic particles interacting with magnetic turbulence were discussed. These different limits or cases correspond to different transport modes describing how the particles are diffusing across the large-scale magnetic field. In the current paper we describe a new transport regime by considering the model of noisy reduced magnetohydrodynamic turbulence. We derive different analytic forms of the perpendicular diffusion coefficient, and while we do this, we focus on the aforementioned new transport mode. We show that for this turbulence model a small perpendicular diffusion coefficient can be obtained so thatmore » the latter diffusion coefficient is more than hundred times smaller than the parallel diffusion coefficient. This result is relevant to explain observations in the solar system where such small perpendicular diffusion coefficients have been reported.« less
Latitudinal Dependence of the Radial IMF Component - Interplanetary Imprint
NASA Technical Reports Server (NTRS)
Suess, S. T.; Smith, E. J.; Phillips, J.; Goldstein, B. E.; Nerney, S.
1996-01-01
Ulysses measurements have confirmed that there is no significant gradient with respect to heliomagnetic latitude in the radial component, B(sub r,), of the interplanetary magnetic field. There are two processes responsible for this observation. In the corona, the plasma beta is much less than 1, except directly above streamers, so both longitudinal and latitudinal (meridional) gradients in field strength will relax, due to the transverse magnetic pressure gradient force, as the solar wind carries magnetic flux away from the Sun. This happens so quickly that the field is essentially uniform by 5 solar radius. Beyond 10 solar radius, beta is greater than 1 and it is possible for a meridional thermal pressure gradient to redistribute magnetic flux - an effect apparently absent in Ulysses and earlier ICE and Interplanetary Magnetic Physics (IMP) data. We discuss this second effect here, showing that its absence is mainly due to the perpendicular part of the anisotropic thermal pressure gradient in the interplanetary medium being too small to drive significant meridional transport between the Sun and approx. 4 AU. This is done using a linear analytic estimate of meridional transport. The first effect was discussed in an earlier paper.
Hydrodynamic electron flow in a Weyl semimetal slab: Role of Chern-Simons terms
NASA Astrophysics Data System (ADS)
Gorbar, E. V.; Miransky, V. A.; Shovkovy, I. A.; Sukhachov, P. O.
2018-05-01
The hydrodynamic flow of the chiral electron fluid in a Weyl semimetal slab of finite thickness is studied by using the consistent hydrodynamic theory. The latter includes viscous, anomalous, and vortical effects, as well as accounts for dynamical electromagnetism. The energy and momentum separations between the Weyl nodes are taken into account via the topological Chern-Simons contributions in the electric current and charge densities in Maxwell's equations. When an external electric field is applied parallel to the slab, it is found that the electron fluid velocity has a nonuniform profile determined by the viscosity and the no-slip boundary conditions. Most remarkably, the fluid velocity field develops a nonzero component across the slab that gradually dissipates when approaching the surfaces. This abnormal component of the flow arises due to the anomalous Hall voltage induced by the topological Chern-Simons current. Another signature feature of the hydrodynamics in Weyl semimetals is a strong modification of the anomalous Hall current along the slab in the direction perpendicular to the applied electric field. Additionally, it is found that the topological current induces an electric potential difference between the surfaces of the slab that is strongly affected by the hydrodynamic flow.
On the propagation of hydromagnetic waves in a plasma of thermal and suprathermal components
NASA Astrophysics Data System (ADS)
Kumar, Nagendra; Sikka, Himanshu
2007-12-01
The propagation of MHD waves is studied when two ideal fluids, thermal and suprathermal gases, coupled by magnetic field are moving with the steady flow velocity. The fluids move independently in a direction perpendicular to the magnetic field but gets coupled along the field. Due to the presence of flow in suprathermal and thermal fluids there appears forward and backward waves. All the forward and backward modes propagate in such a way that their rate of change of phase speed with the thermal Mach number is same. It is also found that besides the usual hydromagnetic modes there appears a suprathermal mode which propagates with faster speed. Surface waves are also examined on an interface formed with composite plasma (suprathermal and thermal gases) on one side and the other is a non-magnetized plasma. In this case, the modes obtained are two or three depending on whether the sound velocity in thermal gas is equal to or greater than the sound velocity in suprathermal gas. The results lead to the conclusion that the interaction of thermal and suprathermal components may lead to the occurrence of an additional mode called suprathermal mode whose phase velocity is higher than all the other modes.
Observations of velocity shear driven plasma turbulence
NASA Technical Reports Server (NTRS)
Kintner, P. M., Jr.
1976-01-01
Electrostatic and magnetic turbulence observations from HAWKEYE-1 during the low altitude portion of its elliptical orbit over the Southern Hemisphere are presented. The magnetic turbulence is confined near the auroral zone and is similar to that seen at higher altitudes by HEOS-2 in the polar cusp. The electrostatic turbulence is composed of a background component with a power spectral index of 1.89 + or - .26 and an intense component with a power spectral index of 2.80 + or - .34. The intense electrostatic turbulence and the magnetic turbulence correlate with velocity shears in the convective plasma flow. Since velocity shear instabilities are most unstable to wave vectors perpendicular to the magnetic field, the shear correlated turbulence is anticipated to be two dimensional in character and to have a power spectral index of 3 which agrees with that observed in the intense electrostatic turbulence.
DC current distribution mapping system of the solar panels using a HTS-SQUID gradiometer
NASA Astrophysics Data System (ADS)
Miyazaki, Shingo; Kasuya, Syohei; Mawardi Saari, Mohd; Sakai, Kenji; Kiwa, Toshihiko; Tsukamoto, Akira; Adachi, Seiji; Tanabe, Keiichi; Tsukada, Keiji
2014-05-01
Solar panels are expected to play a major role as a source of sustainable energy. In order to evaluate solar panels, non-destructive tests, such as defect inspections and response property evaluations, are necessary. We developed a DC current distribution mapping system of the solar panels using a High Critical Temperature Superconductor Superconducting Quantum Interference Device (HTS-SQUID) gradiometer with ramp edge type Josephson junctions. Two independent components of the magnetic fields perpendicular to the panel surface (∂Bz/∂x, ∂Bz/∂y) were detected. The direct current of the solar panel is visualized by calculating the composition of the two signal components, the phase angle, and mapping the DC current vector. The developed system can evaluate the uniformity of DC current distributions precisely and may be applicable for defect detection of solar panels.
Optical imaging using spatial grating effects in ferrofluids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dave, Vishakha; Virpura, Hiral; Patel, Rajesh, E-mail: rjp@mkbhavuni.edu.in
2015-06-24
Under the effect of magnetic field the magnetic nanoparticles of the ferrofluid tend to align in the direction of the magnetic field. This alignment of the magnetic nanoparticles behaves as a spatial grating and diffract light, when light is propagating perpendicular to the direction of the applied magnetic field. The chains of the magnetic nanoparticles represents a linear series of fringes like those observed in a grating/wire. Under applied magnetic field the circular beam of light transforms into a prominent diffraction line in the direction perpendicular to the applied magnetic field. This diffracted light illuminates larger area on the screen.more » This behavior can be used as magneto controlled illumination of the object and image analysis.« less
Ising versus XY anisotropy in frustrated R(2)Ti(2)O(7) compounds as "Seen" by Polarized Neutrons.
Cao, H; Gukasov, A; Mirebeau, I; Bonville, P; Decorse, C; Dhalenne, G
2009-07-31
We studied the field induced magnetic order in R(2)Ti(2)O(7) pyrochlore compounds with either uniaxial (R=Ho, Tb) or planar (R=Er, Yb) anisotropy, by polarized neutron diffraction. The determination of the local susceptibility tensor {chi(parallel to),chi(perpendicular)} provides a universal description of the field induced structures in the paramagnetic phase (2-270 K), whatever the field value (1-7 T) and direction. Comparison of the thermal variations of chi(parallel to) and chi(perpendicular) with calculations using the rare earth crystal field shows that exchange and dipolar interactions must be taken into account. We determine the molecular field tensor in each case and show that it can be strongly anisotropic.
Wave scattering from a periodic dielectric surface for a general angle of incidence
NASA Technical Reports Server (NTRS)
Chuang, S. L.; Kong, J. A.
1982-01-01
Electromagnetic waves scattered from a periodic dielectric and perfectly conducting surface are studied for a general angle of incidence. It is shown that the one-dimensional corrugated surface can be solved by using two scalar functions: the components of the electric and magnetic fields along the row direction of the surface, and appropriate boundary conditions to obtain simple matrix equations. Results are compared to the case where the incident angle wave vector is perpendicular to the row direction. Numerical results demonstrate that energy conservation and reciprocity are obeyed for scattering by sinusoidal surfaces for the general case, which checks the consistency of the formalism.
Current flow instability and nonlinear structures in dissipative two-fluid plasmas
NASA Astrophysics Data System (ADS)
Koshkarov, O.; Smolyakov, A. I.; Romadanov, I. V.; Chapurin, O.; Umansky, M. V.; Raitses, Y.; Kaganovich, I. D.
2018-01-01
The current flow in two-fluid plasma is inherently unstable if plasma components (e.g., electrons and ions) are in different collisionality regimes. A typical example is a partially magnetized E ×B plasma discharge supported by the energy released from the dissipation of the current in the direction of the applied electric field (perpendicular to the magnetic field). Ions are not magnetized so they respond to the fluctuations of the electric field ballistically on the inertial time scale. In contrast, the electron current in the direction of the applied electric field is dissipatively supported either by classical collisions or anomalous processes. The instability occurs due to a positive feedback between the electron and ion current coupled by the quasi-neutrality condition. The theory of this instability is further developed taking into account the electron inertia, finite Larmor radius and nonlinear effects. It is shown that this instability results in highly nonlinear quasi-coherent structures resembling breathing mode oscillations in Hall thrusters.
NASA Astrophysics Data System (ADS)
Lee, Kwan Chul
2017-11-01
Three examples of electric field formation in the plasma are analyzed based on a new mechanism driven by ion-neutral collisions. The Gyro-Center Shift analysis uses the iteration of three equations including perpendicular current induced by the momentum exchange between ions and neutrals when there is asymmetry over the gyro-motion. This method includes non-zero divergence of current that leads the solution of time dependent state. The first example is radial electric field formation at the boundary of the nuclear fusion device, which is a key factor in the high-confinement mode operation of future fusion reactors. The second example is the reversed rotation of the arc discharge cathode spot, which has been a mysterious subject for more than one hundred years. The third example is electric field formations in the earth's ionosphere, which are important components of the equatorial electrojet and black aurora. The use of one method that explains various examples from different plasmas is reported, along with a discussion of the applications.
Logarithmic violation of scaling in anisotropic kinematic dynamo model
NASA Astrophysics Data System (ADS)
Antonov, N. V.; Gulitskiy, N. M.
2016-01-01
Inertial-range asymptotic behavior of a vector (e.g., magnetic) field, passively advected by a strongly anisotropic turbulent flow, is studied by means of the field theoretic renormalization group and the operator product expansion. The advecting velocity field is Gaussian, not correlated in time, with the pair correlation function of the form ∝δ (t -t')/k⊥d-1 +ξ , where k⊥ = |k⊥| and k⊥ is the component of the wave vector, perpendicular to the distinguished direction. The stochastic advection-diffusion equation for the transverse (divergence-free) vector field includes, as special cases, the kinematic dynamo model for magnetohydrodynamic turbulence and the linearized Navier-Stokes equation. In contrast to the well known isotropic Kraichnan's model, where various correlation functions exhibit anomalous scaling behavior with infinite sets of anomalous exponents, here the dependence on the integral turbulence scale L has a logarithmic behavior: instead of power-like corrections to ordinary scaling, determined by naive (canonical) dimensions, the anomalies manifest themselves as polynomials of logarithms of L.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akyol, Mustafa; Department of Physics, University of Çukurova, Adana 01330; Yu, Guoqiang
2015-04-20
We study the effect of the oxide layer on current-induced perpendicular magnetization switching properties in Hf|CoFeB|MgO and Hf|CoFeB|TaO{sub x} tri-layers. The studied structures exhibit broken in-plane inversion symmetry due to a wedged CoFeB layer, resulting in a field-like spin-orbit torque (SOT), which can be quantified by a perpendicular (out-of-plane) effective magnetic field. A clear difference in the magnitude of this effective magnetic field (H{sub z}{sup FL}) was observed between these two structures. In particular, while the current-driven deterministic perpendicular magnetic switching was observed at zero magnetic bias field in Hf|CoFeB|MgO, an external magnetic field is necessary to switch the CoFeBmore » layer deterministically in Hf|CoFeB|TaO{sub x}. Based on the experimental results, the SOT magnitude (H{sub z}{sup FL} per current density) in Hf|CoFeB|MgO (−14.12 Oe/10{sup 7} A cm{sup −2}) was found to be almost 13× larger than that in Hf|CoFeB|TaO{sub x} (−1.05 Oe/10{sup 7} A cm{sup −2}). The CoFeB thickness dependence of the magnetic switching behavior, and the resulting H{sub z}{sup FL} generated by in-plane currents are also investigated in this work.« less
NASA Astrophysics Data System (ADS)
Staff, J. E.; Koning, N.; Ouyed, R.; Thompson, A.; Pudritz, R. E.
2015-02-01
We present the results of large scale, three-dimensional magnetohydrodynamics simulations of disc winds for different initial magnetic field configurations. The jets are followed from the source to 90 au scale, which covers several pixels of Hubble Space Telescope images of nearby protostellar jets. Our simulations show that jets are heated along their length by many shocks. We compute the emission lines that are produced, and find excellent agreement with observations. The jet width is found to be between 20 and 30 au while the maximum velocities perpendicular to the jet are found to be up to above 100 km s-1. The initially less open magnetic field configuration simulations result in a wider, two-component jet; a cylindrically shaped outer jet surrounding a narrow and much faster, inner jet. These simulations preserve the underlying Keplerian rotation profile of the inner jet to large distances from the source. However, for the initially most open magnetic field configuration the kink mode creates a narrow corkscrew-like jet without a clear Keplerian rotation profile and even regions where we observe rotation opposite to the disc (counter-rotating). The RW Aur jet is narrow, indicating that the disc field in that case is very open meaning the jet can contain a counter-rotating component that we suggest explains why observations of rotation in this jet have given confusing results. Thus magnetized disc winds from underlying Keplerian discs can develop rotation profiles far down the jet that is not Keplerian.
NASA Astrophysics Data System (ADS)
Cheng, J. L.; Guo, C.
2018-05-01
Graphene exhibits extremely strong optical nonlinearity in a perpendicular magnetic field, the optical conductivities show complicated field dependence at a moderate light intensity, and the perturbation theory fails. The full optical currents induced by a periodic field are nonperturbatively investigated in an equation-of-motion framework based on the Floquet theorem, with the scattering described phenomenologically. The nonlinear responses are understood in terms of the dressed electronic states, or Floquet states, which could be characterized by a weak probe light field. The method is illustrated for a magnetic field at 5 T and a driving field with photon energy 0.05 eV. Our results show that the perturbation theory works for weak fields <3 kV/cm, confirming the unusual strong light-matter interaction for Landau levels of graphene. Our approach can be easily extended to other systems.
Star of Condor - A strontium critical velocity experiment, Peru, 1983
NASA Technical Reports Server (NTRS)
Wescott, E. M.; Stenbaek-Nielsen, H. C.; Hallinan, T.; Foeppl, H.; Valenzuela, A.
1986-01-01
'Star of Condor' was a critical velocity experiment using Sr vapor produced in a radial shaped charge, which was carried to 571.11 km altitude on a Taurus-Tomahawk rocket launched from Punto Lobos, Peru, and detonated in the plane of the magnetic field lines so that all ranges of pitch angles from parallel to B to perpendicular to B were covered. Sr has a critical velocity of 3.3 km/s, and from observation, 42.5 percent of the neutral Sr gas had a velocity component perpendicular to B exceeding that value. No Sr ion emissions were detected shortly after the burst with usual TV integration times. However, about 10 min after the detonation a faint field-aligned streak was discovered with long TV integration times. The brightness is estimated as 5 R, which, combined with the streak geometry, implies an ion production of 2.4 x 10 to the 19th ions. This is only 0.0036 percent ionization of the Sr vapor. All the ions could easily have been produced by thermal ionization from the original detonation thermal distribution. The breakup of the Sr gas into small bloblike structures may have allowed the high-energy electrons to escape before an ionization cascade could be produced. For whatever reason, the Alfven mechanism proposed for space plasmas in the absence of laboratory walls did not produce an ionization cascade in the experiment.
Isotropic transmission of magnon spin information without a magnetic field.
Haldar, Arabinda; Tian, Chang; Adeyeye, Adekunle Olusola
2017-07-01
Spin-wave devices (SWD), which use collective excitations of electronic spins as a carrier of information, are rapidly emerging as potential candidates for post-semiconductor non-charge-based technology. Isotropic in-plane propagating coherent spin waves (magnons), which require magnetization to be out of plane, is desirable in an SWD. However, because of lack of availability of low-damping perpendicular magnetic material, a usually well-known in-plane ferrimagnet yttrium iron garnet (YIG) is used with a large out-of-plane bias magnetic field, which tends to hinder the benefits of isotropic spin waves. We experimentally demonstrate an SWD that eliminates the requirement of external magnetic field to obtain perpendicular magnetization in an otherwise in-plane ferromagnet, Ni 80 Fe 20 or permalloy (Py), a typical choice for spin-wave microconduits. Perpendicular anisotropy in Py, as established by magnetic hysteresis measurements, was induced by the exchange-coupled Co/Pd multilayer. Isotropic propagation of magnon spin information has been experimentally shown in microconduits with three channels patterned at arbitrary angles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Hongguang, E-mail: chenghg7932@gmail.com; Deng, Ning
2013-12-15
We investigated the influence of thermal agitation on the electric field induced precessional magnetization switching probability with perpendicular easy axis by solving the Fokker-Planck equation numerically with finite difference method. The calculated results show that the thermal agitation during the reversal process crucially influences the switching probability. The switching probability can be achieved is only determined by the thermal stability factor Δ of the free layer, it is independent on the device dimension, which is important for the high density device application. Ultra-low error rate down to the order of 10{sup −9} can be achieved for the device of thermalmore » stability factor Δ of 40. Low damping factor α material should be used for the free layer for high reliability device applications. These results exhibit potential of electric field induced precessional magnetization switching with perpendicular easy axis for ultra-low power, high speed and high density magnetic random access memory (MRAM) applications.« less
Isotropic transmission of magnon spin information without a magnetic field
Haldar, Arabinda; Tian, Chang; Adeyeye, Adekunle Olusola
2017-01-01
Spin-wave devices (SWD), which use collective excitations of electronic spins as a carrier of information, are rapidly emerging as potential candidates for post-semiconductor non-charge-based technology. Isotropic in-plane propagating coherent spin waves (magnons), which require magnetization to be out of plane, is desirable in an SWD. However, because of lack of availability of low-damping perpendicular magnetic material, a usually well-known in-plane ferrimagnet yttrium iron garnet (YIG) is used with a large out-of-plane bias magnetic field, which tends to hinder the benefits of isotropic spin waves. We experimentally demonstrate an SWD that eliminates the requirement of external magnetic field to obtain perpendicular magnetization in an otherwise in-plane ferromagnet, Ni80Fe20 or permalloy (Py), a typical choice for spin-wave microconduits. Perpendicular anisotropy in Py, as established by magnetic hysteresis measurements, was induced by the exchange-coupled Co/Pd multilayer. Isotropic propagation of magnon spin information has been experimentally shown in microconduits with three channels patterned at arbitrary angles. PMID:28776033
Quantum oscillations and upper critical magnetic field of the iron-based superconductor FeSe
NASA Astrophysics Data System (ADS)
Audouard, Alain; Duc, Fabienne; Drigo, Loïc; Toulemonde, Pierre; Karlsson, Sandra; Strobel, Pierre; Sulpice, André
2015-01-01
Shubnikov-de Haas (SdH) oscillations and upper critical magnetic field (Hc2) of the iron-based superconductor FeSe (Tc = 8.6 \\text{K}) have been studied by tunnel diode oscillator-based measurements in magnetic fields of up to 55 T and temperatures down to 1.6 K. Several Fourier components enter the SdH oscillations spectrum with frequencies definitely smaller than predicted by band structure calculations indicating band renormalization and reconstruction of the Fermi surface at low temperature, in line with previous ARPES data. The Werthamer-Helfand-Hohenberg model accounts for the temperature dependence of (Hc2) for magnetic field applied both parallel (\\textbf{H} \\| ab) and perpendicular (\\textbf{H} \\| c) to the iron conducting plane, suggesting that one band mainly controls the superconducting properties in magnetic fields despite the multiband nature of the Fermi surface. Whereas Pauli pair breaking is negligible for \\textbf{H} \\| c , a Pauli paramagnetic contribution is evidenced for \\textbf{H} \\| ab with Maki parameter α = 2.1 , corresponding to Pauli field HP = 36.5 \\text{T} .
NASA Astrophysics Data System (ADS)
Rezania, H.
2018-07-01
We have addressed the specific heat and magnetization of one dimensional spin-1/2 anisotropic antiferromagnetic Heisenberg chain at finite magnetic field. We have investigated the thermodynamic properties by means of excitation spectrum in terms of a hard core Bosonic representation. The effect of in-plane anisotropy thermodynamic properties has also been studied via the Bosonic model by Green's function approach. This anisotropy is considered for exchange constants that couple spin components perpendicular to magnetic field direction. We have found the temperature dependence of the specific heat and longitudinal magnetization in the gapped field induced spin-polarized phase for various magnetic fields and anisotropy parameters. Furthermore we have studied the magnetic field dependence of specific heat and magnetization for various anisotropy parameters. Our results show temperature dependence of specific heat includes a peak so that its temperature position goes to higher temperature with increase of magnetic field. We have found the magnetic field dependence of specific heat shows a monotonic decreasing behavior for various magnetic fields due to increase of energy gap in the excitation spectrum. Also we have studied the temperature dependence of magnetization for different magnetic fields and various anisotropy parameters.
The Magnetic Response of the Solar Atmosphere to Umbral Flashes
NASA Astrophysics Data System (ADS)
Houston, S. J.; Jess, D. B.; Asensio Ramos, A.; Grant, S. D. T.; Beck, C.; Norton, A. A.; Krishna Prasad, S.
2018-06-01
Chromospheric observations of sunspot umbrae offer an exceptional view of magnetoacoustic shock phenomena and the impact they have on the surrounding magnetically dominated plasma. We employ simultaneous slit-based spectro-polarimetry and spectral imaging observations of the chromospheric He I 10830 Å and Ca II 8542 Å lines to examine fluctuations in the umbral magnetic field caused by the steepening of magnetoacoustic waves into umbral flashes. Following the application of modern inversion routines, we find evidence to support the scenario that umbral shock events cause expansion of the embedded magnetic field lines due to the increased adiabatic pressure. The large number statistics employed allow us to calculate the adiabatic index, γ = 1.12 ± 0.01, for chromospheric umbral locations. Examination of the vector magnetic field fluctuations perpendicular to the solar normal revealed changes up to ∼200 G at the locations of umbral flashes. Such transversal magnetic field fluctuations have not been described before. Through comparisons with nonlinear force-free field extrapolations, we find that the perturbations of the transverse field components are oriented in the same direction as the quiescent field geometries. This implies that magnetic field enhancements produced by umbral flashes are directed along the motion path of the developing shock, hence producing relatively small changes, up to a maximum of ∼8°, in the inclination and/or azimuthal directions of the magnetic field. Importantly, this work highlights that umbral flashes are able to modify the full vector magnetic field, with the detection of the weaker transverse magnetic field components made possible by high-resolution data combined with modern inversion routines.
NASA Astrophysics Data System (ADS)
Pucci, F.; Usami, S.; Guo, X.; Ji, H.; Horiuchi, R.; Okamura, S.
2017-12-01
Electron dynamics and energization are a key component of magnetic field dissipation in collisionless reconnection. Indeed, in 2D reconnection, the main mechanism that limits the current density and provides the resistivity most probably relies on the electron pressure tensor term which has been shown to break the frozen-in condition at the x-point (Ishizawa and Horiuchi 2005; Horiuchi et al. 2014). In addition the electron-meandering-orbit scale controls the width of the electron dissipation region around the x-point, where the electron temperature is observed to increase, so understanding the electron heating mechanism is fundamental for magnetic reconnection. It has been shown by Guo et al. 2017 that for a 2D high guide field configuration (Bz/B0 = 3) electron perpendicular heating is mainly due to the breaking of magnetic moment conservation in the separatrix region while electron perpendicular acceleration takes place mainly in the downstream near the X-point. Electron velocity distributions have been shown to exhibit highly structured features within a few electron skin depths from the X line (Bessho et al. 2014) as well as in the exhaust (Shuster et al. 2014). By means of two-dimensional, full-particle simulations in an open system (Pei et al. 2001; Ohtani and R. Horiuchi 2009), we investigate how the energization mechanism depends on the guide field intensity. We compare electron distribution functions as well as particles orbits, in the electron diffusion region and the exhaust, in order to clarify the preferential electron heating/acceleration in two-dimensional systems. We will then compare our results with observations using the present catalogue of MMS diffusion region crossings.
Kinetic structures of quasi-perpendicular shocks in global particle-in-cell simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, Ivy Bo, E-mail: bopeng@kth.se; Markidis, Stefano; Laure, Erwin
2015-09-15
We carried out global Particle-in-Cell simulations of the interaction between the solar wind and a magnetosphere to study the kinetic collisionless physics in super-critical quasi-perpendicular shocks. After an initial simulation transient, a collisionless bow shock forms as a result of the interaction of the solar wind and a planet magnetic dipole. The shock ramp has a thickness of approximately one ion skin depth and is followed by a trailing wave train in the shock downstream. At the downstream edge of the bow shock, whistler waves propagate along the magnetic field lines and the presence of electron cyclotron waves has beenmore » identified. A small part of the solar wind ion population is specularly reflected by the shock while a larger part is deflected and heated by the shock. Solar wind ions and electrons are heated in the perpendicular directions. Ions are accelerated in the perpendicular direction in the trailing wave train region. This work is an initial effort to study the electron and ion kinetic effects developed near the bow shock in a realistic magnetic field configuration.« less
NASA Astrophysics Data System (ADS)
Zel'dovich, Boris Ya; Miklyaev, Yu V.; Safonov, V. I.
1995-02-01
An analysis is made of the mechanism of formation of a stationary grating in a planar photorefractive waveguide by a travelling interference pattern with the aid of an alternating electric field applied perpendicular to the waveguide layer. A theoretical calculation is reported of the distribution of the space-charge field in a transverse section of the waveguide. Finite drift lengths and trap saturation are taken into account in these calculations, which are carried out on the assumption of a weak contrast in the interference pattern.
Flux-driven algebraic damping of m = 1 diocotron mode
NASA Astrophysics Data System (ADS)
Chim, Chi Yung; O'Neil, Thomas M.
2016-07-01
Recent experiments with pure electron plasmas in a Malmberg-Penning trap have observed the algebraic damping of m = 1 diocotron modes. Transport due to small field asymmetries produces a low density halo of electrons moving radially outward from the plasma core, and the mode damping begins when the halo reaches the resonant radius r = Rw at the wall of the trap. The damping rate is proportional to the flux of halo particles through the resonant layer. The damping is related to, but distinct from, spatial Landau damping, in which a linear wave-particle resonance produces exponential damping. This paper explains with analytic theory the new algebraic damping due to particle transport by both mobility and diffusion. As electrons are swept around the "cat's eye" orbits of the resonant wave-particle interaction, they form a dipole (m = 1) density distribution. From this distribution, the electric field component perpendicular to the core displacement produces E × B-drift of the core back to the axis, that is, damps the m = 1 mode. The parallel component produces drift in the azimuthal direction, that is, causes a shift in the mode frequency.
Magnetic Fields and Bow Shocks Illustration
2013-02-19
This illustration shows quasi-parallel top and quasi-perpendicular bottom magnetic field conditions at a planetary bow shock. Bow shocks are shockwaves created when the solar wind blows on a planet magnetic field.
NASA Astrophysics Data System (ADS)
Maneva, Yana; Poedts, Stefaan
2017-04-01
The electromagnetic fluctuations in the solar wind represent a zoo of plasma waves with different properties, whose wavelengths range from largest fluid scales to the smallest dissipation scales. By nature the power spectrum of the magnetic fluctuations is anisotropic with different spectral slopes in parallel and perpendicular directions with respect to the background magnetic field. Furthermore, the magnetic field power spectra steepen as one moves from the inertial to the dissipation range and we observe multiple spectral breaks with different slopes in parallel and perpendicular direction at the ion scales and beyond. The turbulent dissipation of magnetic field fluctuations at the sub-ion scales is believed to go into local ion heating and acceleration, so that the spectral breaks are typically associated with particle energization. The gained energy can be in the form of anisotropic heating, formation of non-thermal features in the particle velocity distributions functions, and redistribution of the differential acceleration between the different ion populations. To study the relation between the evolution of the anisotropic turbulent spectra and the particle heating at the ion and sub-ion scales we perform a series of 2.5D hybrid simulations in a collisionless drifting proton-alpha plasma. We neglect the fast electron dynamics and treat the electrons as an isothermal fluid electrons, whereas the protons and a minor population of alpha particles are evolved in a fully kinetic manner. We start with a given wave spectrum and study the evolution of the magnetic field spectral slopes as a function of the parallel and perpendicular wave¬numbers. Simultaneously, we track the particle response and the energy exchange between the parallel and perpendicular scales. We observe anisotropic behavior of the turbulent power spectra with steeper slopes along the dominant energy-containing direction. This means that for parallel and quasi-parallel waves we have steeper spectral slope in parallel direction, whereas for highly oblique waves the dissipation occurs predominantly in perpendicular direction and the spectral slopes are steeper across the background magnetic field. The value of the spectral slopes depends on the angle of propagation, the spectral range, as well as the plasma properties. In general the dissipation is stronger at small scales and the corresponding spectral slopes there are steeper. For parallel and quasi-parallel propagation the prevailing energy cascade remains along the magnetic field, whereas for initially isotropic oblique turbulence the cascade develops mainly in perpendicular direction.
Apparatus and methods for memory using in-plane polarization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Junwei; Chang, Kai; Ji, Shuai-Hua
A memory device includes a semiconductor layer with an in-plane polarization component switchable between a first direction and a second direction. A writing electrode is employed to apply a writing voltage to the semiconductor layer to change the in-plane polarization component between the first direction and the second direction. A reading electrode is employed to apply a reading voltage to the semiconductor layer to measure a tunneling current substantially perpendicular to the polarization direction of the in-plane polarization component. The directions of the reading voltage and the writing voltage are substantially perpendicular to each other. Therefore, the reading process ismore » non-destructive. Thin films (e.g., one unit cell thick) of ferroelectric material can be used in the memory device to increase the miniaturization of the device.« less
Polariton excitation in epsilon-near-zero slabs: Transient trapping of slow light
NASA Astrophysics Data System (ADS)
Ciattoni, Alessandro; Marini, Andrea; Rizza, Carlo; Scalora, Michael; Biancalana, Fabio
2013-05-01
We numerically investigate the propagation of a spatially localized and quasimonochromatic electromagnetic pulse through a slab with a Lorentz dielectric response in the epsilon-near-zero regime, where the real part of the permittivity vanishes at the pulse carrier frequency. We show that the pulse is able to excite a set of virtual polariton modes supported by the slab, with the excitation undergoing a generally slow damping due to absorption and radiation leakage. Our numerical and analytical approaches indicate that in its transient dynamics the electromagnetic field displays the very same enhancement of the field component perpendicular to the slab, as in the monochromatic regime. The transient trapping is inherently accompanied by a significantly reduced group velocity ensuing from the small dielectric permittivity, thus providing an alternative platform for achieving control and manipulation of slow light.
Electrohydrodynamic Quincke rotation of a prolate ellipsoid
NASA Astrophysics Data System (ADS)
Brosseau, Quentin; Hickey, Gregory; Vlahovska, Petia M.
2017-01-01
We study experimentally the occurrence of spontaneous spinning (Quincke rotation) of an ellipsoid in a uniform direct current (dc) electric field. For an ellipsoid suspended in an unbounded fluid, we find two stable states characterized by the orientation of the ellipsoid long axis relative to the applied electric field: spinless (parallel) and spinning (perpendicular). The phase diagram of ellipsoid behavior as a function of field strength and aspect ratio is in close agreement with the theory of Cēbers et al. [Phys. Rev. E 63, 016301 (2000)], 10.1103/PhysRevE.63.016301. We also investigate the dynamics of the ellipsoidal Quincke rotor resting on a planar surface with normal perpendicular to the field direction. We find behaviors, such as swinging (long axis oscillating around the applied field direction) and tumbling, due to the confinement.
16 CFR 1509.6 - Component-spacing test method.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Component-spacing test method. 1509.6 Section 1509.6 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT... applied to the wedge perpendicular to the plane of the crib side. ...
Magnetic-field-dosimetry system
Lemon, D.K.; Skorpik, J.R.; Eick, J.L.
1981-01-21
A device is provided for measuring the magnetic field dose and peak field exposure. The device includes three Hall-effect sensors all perpendicular to each other, sensing the three dimensional magnetic field and associated electronics for data storage, calculating, retrieving and display.
Subgap transport in silicene-based superconducting hybrid structures
NASA Astrophysics Data System (ADS)
Li, Hai
2016-08-01
We investigate the influences of exchange field and perpendicular electric field on the subgap transport in silicene-based ferromagnetic/superconducting (FS) and ferromagnetic/superconducting/ferromagnetic (FSF) junctions. Owing to the unique buckling structure of silicene, the Andreev reflection and subgap conductance can be effectively modulated by a perpendicular electric field. It is revealed that the subgap conductance in the FS junction can be distinctly enhanced by an exchange field. Remarkably, resorting to the tunable band gap of silicene, an exclusive crossed Andreev reflection (CAR) process in the FSF junction can be realized within a wide range of related parameters. Moreover, in the FSF junction the exclusive CAR and exclusive elastic cotunneling processes can be switched by reversing the magnetization direction in one of the ferromagnetic regions.
Effect of electron thermal anisotropy on the kinetic cross-field streaming instability
NASA Technical Reports Server (NTRS)
Tsai, S. T.; Tanaka, M.; Gaffey, J. D., Jr.; Wu, C. S.; Da Jornada, E. H.; Ziebell, L. F.
1984-01-01
The investigation of the kinetic cross-field streaming instability, motivated by the research of collisionless shock waves and previously studied by Wu et al. (1983), is discussed more fully. Since in the ramp region of a quasi-perpendicular shock electrons can be preferentially heated in the direction transverse to the ambient magnetic field, it is both desirable and necessary to include the effect of the thermal anisotropy on the instability associated with a shock. It is found that Te-perpendicular greater than Te-parallel can significantly enhance the peak growth rate of the cross-field streaming instability when the electron beta is sufficiently high. Furthermore, the present analysis also improves the analytical and numerical solutions previously obtained.
Whelan, Brendan; Holloway, Lois; Constantin, Dragos; Oborn, Brad; Bazalova-Carter, Magdalena; Fahrig, Rebecca; Keall, Paul
2016-11-01
MRI-linac therapy is a rapidly growing field, and requires that conventional linear accelerators are operated with the fringe field of MRI magnets. One of the most sensitive accelerator components is the electron gun, which serves as the source of the beam. The purpose of this work was to develop a validated finite element model (FEM) model of a clinical triode (or gridded) electron gun, based on accurate geometric and electrical measurements, and to characterize the performance of this gun in magnetic fields. The geometry of a Varian electron gun was measured using 3D laser scanning and digital calipers. The electric potentials and emission current of these guns were measured directly from six dose matched true beam linacs for the 6X, 10X, and 15X modes of operation. Based on these measurements, a finite element model (FEM) of the gun was developed using the commercial software opera/scala. The performance of the FEM model in magnetic fields was characterized using parallel fields ranging from 0 to 200 G in the in-line direction, and 0-35 G in the perpendicular direction. The FEM model matched the average measured emission current to within 5% across all three modes of operation. Different high voltage settings are used for the different modes; the 6X, 10X, and 15X modes have an average high voltage setting of 15, 10, and 11 kV. Due to these differences, different operating modes show different sensitivities in magnetic fields. For in line fields, the first current loss occurs at 40, 20, and 30 G for each mode. This is a much greater sensitivity than has previously been observed. For perpendicular fields, first beam loss occurred at 8, 5, and 5 G and total beam loss at 27, 22, and 20 G. A validated FEM model of a clinical triode electron gun has been developed based on accurate geometric and electrical measurements. Three different operating modes were simulated, with a maximum mean error of 5%. This gun shows greater sensitivity to in-line magnetic fields than previously presented models, and different operating modes show different sensitivity.
Whelan, Brendan; Holloway, Lois; Constantin, Dragos; Oborn, Brad; Bazalova-Carter, Magdalena; Fahrig, Rebecca; Keall, Paul
2016-01-01
Purpose: MRI-linac therapy is a rapidly growing field, and requires that conventional linear accelerators are operated with the fringe field of MRI magnets. One of the most sensitive accelerator components is the electron gun, which serves as the source of the beam. The purpose of this work was to develop a validated finite element model (FEM) model of a clinical triode (or gridded) electron gun, based on accurate geometric and electrical measurements, and to characterize the performance of this gun in magnetic fields. Methods: The geometry of a Varian electron gun was measured using 3D laser scanning and digital calipers. The electric potentials and emission current of these guns were measured directly from six dose matched true beam linacs for the 6X, 10X, and 15X modes of operation. Based on these measurements, a finite element model (FEM) of the gun was developed using the commercial software opera/scala. The performance of the FEM model in magnetic fields was characterized using parallel fields ranging from 0 to 200 G in the in-line direction, and 0–35 G in the perpendicular direction. Results: The FEM model matched the average measured emission current to within 5% across all three modes of operation. Different high voltage settings are used for the different modes; the 6X, 10X, and 15X modes have an average high voltage setting of 15, 10, and 11 kV. Due to these differences, different operating modes show different sensitivities in magnetic fields. For in line fields, the first current loss occurs at 40, 20, and 30 G for each mode. This is a much greater sensitivity than has previously been observed. For perpendicular fields, first beam loss occurred at 8, 5, and 5 G and total beam loss at 27, 22, and 20 G. Conclusions: A validated FEM model of a clinical triode electron gun has been developed based on accurate geometric and electrical measurements. Three different operating modes were simulated, with a maximum mean error of 5%. This gun shows greater sensitivity to in-line magnetic fields than previously presented models, and different operating modes show different sensitivity. PMID:27806583
Finite-element modeling and micromagnetic modeling of perpendicular writers
NASA Astrophysics Data System (ADS)
Heinonen, Olle; Bozeman, Steven P.
2006-04-01
We compare finite-element modeling (FEM) and fully micromagnetic modeling results of four prototypical writers for perpendicular recording. In general, the agreement between the two models is quite good in the vicinity of saturated or near-saturated magnetic material, such as the pole tip, for quantities such as the magnetic field, the gradient of the magnetic field and the write width. However, in the vicinity of magnetic material far from saturation, e.g., return pole or trailing edge write shield, there can be large qualitative and quantitative differences.
NASA Astrophysics Data System (ADS)
Shimizu, Masahiro; Hashida, Masaki; Miyasaka, Yasuhiro; Tokita, Shigeki; Sakabe, Shuji
2013-10-01
We have investigated the origin of nanostructures formed on metals by low-fluence femtosecond laser pulses. Nanoscale cracks oriented perpendicular to the incident laser polarization are induced on tungsten, molybdenum, and copper targets. The number density of the cracks increases with the number of pulses, but crack length plateaus. Electromagnetic field simulation by the finite-difference time-domain method indicates that electric field is locally enhanced along the direction perpendicular to the incident laser polarization around a nanoscale hole on the metal surface. Crack formation originates from the hole.
VizieR Online Data Catalog: Solar wind 3D magnetohydrodynamic simulation (Chhiber+, 2017)
NASA Astrophysics Data System (ADS)
Chhiber, R.; Subedi, P.; Usmanov, A. V.; Matthaeus, W. H.; Ruffolo, D.; Goldstein, M. L.; Parashar, T. N.
2017-08-01
We use a three-dimensional magnetohydrodynamic simulation of the solar wind to calculate cosmic-ray diffusion coefficients throughout the inner heliosphere (2Rȯ-3au). The simulation resolves large-scale solar wind flow, which is coupled to small-scale fluctuations through a turbulence model. Simulation results specify background solar wind fields and turbulence parameters, which are used to compute diffusion coefficients and study their behavior in the inner heliosphere. The parallel mean free path (mfp) is evaluated using quasi-linear theory, while the perpendicular mfp is determined from nonlinear guiding center theory with the random ballistic interpretation. Several runs examine varying turbulent energy and different solar source dipole tilts. We find that for most of the inner heliosphere, the radial mfp is dominated by diffusion parallel to the mean magnetic field; the parallel mfp remains at least an order of magnitude larger than the perpendicular mfp, except in the heliospheric current sheet, where the perpendicular mfp may be a few times larger than the parallel mfp. In the ecliptic region, the perpendicular mfp may influence the radial mfp at heliocentric distances larger than 1.5au; our estimations of the parallel mfp in the ecliptic region at 1 au agree well with the Palmer "consensus" range of 0.08-0.3au. Solar activity increases perpendicular diffusion and reduces parallel diffusion. The parallel mfp mostly varies with rigidity (P) as P.33, and the perpendicular mfp is weakly dependent on P. The mfps are weakly influenced by the choice of long-wavelength power spectra. (2 data files).
Domain wall dynamics driven by spin transfer torque and the spin-orbit field.
Hayashi, Masamitsu; Nakatani, Yoshinobu; Fukami, Shunsuke; Yamanouchi, Michihiko; Mitani, Seiji; Ohno, Hideo
2012-01-18
We have studied current-driven dynamics of domain walls when an in-plane magnetic field is present in perpendicularly magnetized nanowires using an analytical model and micromagnetic simulations. We model an experimentally studied system, ultrathin magnetic nanowires with perpendicular anisotropy, where an effective in-plane magnetic field is developed when current is passed along the nanowire due to the Rashba-like spin-orbit coupling. Using a one-dimensional model of a domain wall together with micromagnetic simulations, we show that the existence of such in-plane magnetic fields can either lower or raise the threshold current needed to cause domain wall motion. In the presence of the in-plane field, the threshold current differs for positive and negative currents for a given wall chirality, and the wall motion becomes sensitive to out-of-plane magnetic fields. We show that large non-adiabatic spin torque can counteract the effect of the in-plane field.
Mirror force induced wave dispersion in Alfvén waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Damiano, P. A.; Johnson, J. R.
2013-06-15
Recent hybrid MHD-kinetic electron simulations of global scale standing shear Alfvén waves along the Earth's closed dipolar magnetic field lines show that the upward parallel current region within these waves saturates and broadens perpendicular to the ambient magnetic field and that this broadening increases with the electron temperature. Using resistive MHD simulations, with a parallel Ohm's law derived from the linear Knight relation (which expresses the current-voltage relationship along an auroral field line), we explore the nature of this broadening in the context of the increased perpendicular Poynting flux resulting from the increased parallel electric field associated with mirror forcemore » effects. This increased Poynting flux facilitates wave energy dispersion across field lines which in-turn allows for electron acceleration to carry the field aligned current on adjacent field lines. This mirror force driven dispersion can dominate over that associated with electron inertial effects for global scale waves.« less
3D axon growth by exogenous electrical stimulus and soluble factors.
Tang-Schomer, Min D
2018-01-01
Axon growth and alignment are fundamental processes during nervous system development and neural regeneration after injury. The present study investigates the effects of exogenous stimulus of electrical signals and soluble factors on axon 3D growth, using a silk protein material-based 3D brain tissue model. Electrical stimulus was delivered via embedded gold wires positioned at the interface of the scaffold region and the center matrix gel-filled region, spanning the axon growth area. This setup delivered applied electrical field directly to growing axons, and the effects were compared to micro-needle assisted local delivery of soluble factors of extracellular (ECM) components and neurotrophins. Dissociated rat cortical neurons were exposed to an alternating field of 80 mV/mm at 0.5 Hz to 2 kHz or soluble factors for up to 4 days, and evaluated by of β III-tubulin immunostaining, confocal imaging and 3D neurite tracing. 0.5-20 Hz were found to promote axon growth, with 2 Hz producing the biggest effect of ∼30% axon length increase compared to control cultures. Delivery of ECM components of laminin and fibronectin resulted significantly greater axon initial length increases compared to neurotrophic factors, such as BDNF, GDNF, NGF and NT3 (all at 1 μM). Though axon lengths under 2 Hz stimulation and LN or FN exposure were statistically similar, significant AC-induced axon alignment was found under all frequencies tested. The effects included perpendicular orientation of axons trespassing an electrode, large populations of aligned axon tracts in parallel to the field direction with a few perpendicularly aligned along the middle point of the EF. These findings are consistent with the hypothesis that an electrode in AC field could act as an alternating cathode that attracts the growing tip of the axon. These results demonstrate the use of alternating electric field stimulation to direct axon 3D length growth and orientation. Our study provides basis for further optimizing stimulation parameters, in conjunction of delivery of growth promoting soluble factors to direct axon growth in a brain mimetic 3D environment. This system provides a platform for studying the effects of exogenous signals on nervous system development and for testing neuromodulation approaches for neurological diseases. Copyright © 2017 Elsevier B.V. All rights reserved.
Near-infrared integral field spectroscopy of massive young stellar objects
NASA Astrophysics Data System (ADS)
Murakawa, K.; Lumsden, S. L.; Oudmaijer, R. D.; Davies, B.; Wheelwright, H. E.; Hoare, M. G.; Ilee, J. D.
2013-11-01
We present medium-resolution (R ≈ 5300) K-band integral field spectroscopy of six massive young stellar objects (MYSOs). The targets are selected from the Red MSX Source (RMS) survey, and we used the ALTAIR adaptive optics assisted Near-Infrared Integral Field Spectrometer (NIFS) mounted on the Gemini North telescope. The data show various spectral line features including Brγ, CO, H2 and He I. The Brγ line is detected in emission in all objects with vFWHM ˜ 100-200 km s-1. V645 Cyg shows a high-velocity P-Cygni profile between -800 and -300 km s-1. We performed three-dimensional spectroastrometry to diagnose the circumstellar environment in the vicinity of the central stars using the Brγ line. We measured the centroids of the velocity components with sub-mas precision. The centroids allow us to discriminate the blueshifted and redshifted components in a roughly east-west direction in both IRAS 18151-1208 and S106 in Brγ. This lies almost perpendicular to observed larger scale outflows. We conclude, given the widths of the lines and the orientation of the spectroastrometric signature, that our results trace a disc wind in both IRAS 18151-1208 and S106. The CO ν = 2-0 absorption lines at low J transitions are detected in IRAS 18151-1208 and AFGL 2136. We analysed the velocity structure of the neutral gas discs, which we find to have nearly Keplerian motions. In IRAS 18151-1208, the absorption centroids of the blueshifted and redshifted components are separated in a direction of north-east to south-west, nearly perpendicular to that of the larger scale H2 jet. The position-velocity relations of these objects can be reproduced with central masses of 30 M⊙ for IRAS 18151-1208 and 20 M⊙ for AFGL 2136. We also detect CO ν = 2-0 bandhead emission in IRAS 18151-1208, S106 and V645 Cyg. The results can be fitted reasonably with a Keplerian rotation model, with masses of 15, 20 and 20 M⊙, respectively. These results for a sample of MYSOs can be explained with disc and outflow models and support the hypothesis of massive star formation via mass accretion through discs as is the case for lower mass counterparts.
Design and analysis of miniature tri-axial fluxgate magnetometer
NASA Astrophysics Data System (ADS)
Zhi, Menghui; Tang, Liang; Qiao, Donghai
2017-02-01
The detection technology of weak magnetic field is widely used in Earth resource survey and geomagnetic navigation. Useful magnetic field information can be obtained by processing and analyzing the measurement data from magnetic sensors. A miniature tri-axial fluxgate magnetometer is proposed in this paper. This miniature tri-axial fluxgate magnetometer with ring-core structure has a dynamic range of the Earth’s field ±65,000 nT, resolution of several nT. It has three independent parts placed in three perpendicular planes for measuring three orthogonal magnetic field components, respectively. A field-programmable gate array (FPGA) is used to generate stimulation signal, analog-to-digital (A/D) convertor control signal, and feedback digital-to-analog (D/A) control signal. Design and analysis details are given to improve the dynamic range, sensitivity, resolution, and linearity. Our prototype was measured and compared with a commercial standard Magson fluxgate magnetometer as a reference. The results show that our miniature fluxgate magnetometer can follow the Magson’s change trend well. When used as a magnetic compass, our prototype only has ± 0.3∘ deviation compared with standard magnetic compass.
Transport in a toroidally confined pure electron plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crooks, S.M.; ONeil, T.M.
1996-07-01
O{close_quote}Neil and Smith [T.M. O{close_quote}Neil and R.A. Smith, Phys. Plasmas {bold 1}, 8 (1994)] have argued that a pure electron plasma can be confined stably in a toroidal magnetic field configuration. This paper shows that the toroidal curvature of the magnetic field of necessity causes slow cross-field transport. The transport mechanism is similar to magnetic pumping and may be understood by considering a single flux tube of plasma. As the flux tube of plasma undergoes poloidal {ital E}{bold {times}}{ital B} drift rotation about the center of the plasma, the length of the flux tube and the magnetic field strength withinmore » the flux tube oscillate, and this produces corresponding oscillations in {ital T}{sub {parallel}} and {ital T}{sub {perpendicular}}. The collisional relaxation of {ital T}{sub {parallel}} toward {ital T}{sub {perpendicular}} produces a slow dissipation of electrostatic energy into heat and a consequent expansion (cross-field transport) of the plasma. In the limit where the cross section of the plasma is nearly circular the radial particle flux is given by {Gamma}{sub {ital r}}=1/2{nu}{sub {perpendicular},{parallel}}{ital T}({ital r}/{rho}{sub 0}){sup 2}{ital n}/({minus}{ital e}{partial_derivative}{Phi}/{partial_derivative}{ital r}), where {nu}{sub {perpendicular},{parallel}} is the collisional equipartition rate, {rho}{sub 0} is the major radius at the center of the plasma, and {ital r} is the minor radius measured from the center of the plasma. The transport flux is first calculated using this simple physical picture and then is calculated by solving the drift-kinetic Boltzmann equation. This latter calculation is not limited to a plasma with a circular cross section. {copyright} {ital 1996 American Institute of Physics.}« less
Competition of Perpendicular and Parallel Flows in a Straight Magnetic Field
NASA Astrophysics Data System (ADS)
Li, Jiacong; Diamond, Patrick; Hong, Rongjie; Tynan, George
2017-10-01
In tokamaks, intrinsic rotations in both toroidal and poloidal directions are important for the stability and confinement. Since they compete for energy from background turbulence, the coupling of them is the key to understanding the physics of turbulent state and transport bifurcations, e.g. L-H transition. V⊥ can affect the parallel Reynolds stress via cross phase and energetics, and thus regulates the parallel flow generation. In return, the turbulence driven V∥ plays a role in the mean vorticity flux, influencing the generation of V⊥. Also, competition of intrinsic azimuthal and axial flows is observed in CSDX-a linear plasma device with straight magnetic fields. CSDX is a well diagnosed venue to study the basic physics of turbulence-flow interactions in straight magnetic fields. Here, we study the turbulent energy branching between the turbulence driven parallel flow and perpendicular flow. Specifically, the ratio between parallel and perpendicular Reynolds power decreases when the mean perpendicular flow increases. As the mean parallel flow increases, this ratio first increases and then decreases before the parallel flow shear hits the parallel shear flow instability threshold. We seek to understand the flow states and compare with CSDX experiments. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, under Award Number DE-FG02-04ER54738.
Magnetic printing characteristics using master disk with perpendicular magnetic anisotropy
NASA Astrophysics Data System (ADS)
Fujiwara, Naoto; Nishida, Yoichi; Ishioka, Toshihide; Sugita, Ryuji; Yasunaga, Tadashi
With the increase in recording density and capacity of hard-disk drives (HDD), high speed, high precision and low cost servo writing method has become an issue in HDD industry. The magnetic printing was proposed as the ultimate solution for this issue [1-3]. There are two types of magnetic printing methods, which are 'Bit Printing (BP)' and 'Edge Printing (EP)'. BP method is conducted by applying external field whose direction is vertical to the plane of both master disk (Master) and perpendicular magnetic recording (PMR) media (Slave). On the other hand, EP method is conducted by applying external field toward down track direction of both master and slave. In BP for bit length shorter than 100 nm, the SNR of perpendicular anisotropic master was higher than isotropic master. And the SNR of EP for the bit length shorter than 50 nm was demonstrated.
Strain-assisted magnetization reversal in Co/Ni multilayers with perpendicular magnetic anisotropy
Gopman, D. B.; Dennis, C. L.; Chen, P. J.; Iunin, Y. L.; Finkel, P.; Staruch, M.; Shull, R. D.
2016-01-01
Multifunctional materials composed of ultrathin magnetic films with perpendicular magnetic anisotropy combined with ferroelectric substrates represent a new approach toward low power, fast, high density spintronics. Here we demonstrate Co/Ni multilayered films with tunable saturation magnetization and perpendicular anisotropy grown directly on ferroelectric PZT [Pb(Zr0.52Ti0.48)O3] substrate plates. Electric fields up to ±2 MV/m expand the PZT by 0.1% and generate at least 0.02% in-plane compression in the Co/Ni multilayered film. Modifying the strain with a voltage can reduce the coercive field by over 30%. We also demonstrate that alternating in-plane tensile and compressive strains (less than 0.01%) can be used to propagate magnetic domain walls. This ability to manipulate high anisotropy magnetic thin films could prove useful for lowering the switching energy for magnetic elements in future voltage-controlled spintronic devices. PMID:27297638
NASA Astrophysics Data System (ADS)
Fukushima, A.; Taniguchi, T.; Sugihara, A.; Yakushiji, K.; Kubota, H.; Yuasa, S.
2018-05-01
Perpendicularly magnetized magnetic tunnel junction (p-MTJ) is a key element for developing high-density spin-transfer torque switching magnetoresistive random access memory. Recently, a large exchange coupling (IEC) in the synthetic antiferromagnetic reference layer with Ir interlayer was observed in p-MTJs. The evaluation of the IEC is, however, difficult due to the electrostatic breakdown of MTJs. This study demonstrates the evaluation of the IEC with Ir interlayer in giant magnetoresistive (GMR) nanopillar. We fabricated three kinds of perpendicularly magnetized GMR elements; bottom-free structures with Cu or Ir spacer, and top-free structure with Ir spacer. The magnetoresistance (RH) loops of all samples show sharp changes of the magnetoresistance at the magnetic fields over ±10 kOe, indicating the existence of the large IECs. In particular, a sharp change of the magnetoresistance at the field over ±20 kOe was found for the element with Cu of 2 nm thickness.
NASA Technical Reports Server (NTRS)
Sakai, J. I.; Zhao, J.; Nishikawa, K.-I.
1994-01-01
We have shown that a current-carrying plasma loop can be heated by magnetic pinch driven by the pressure imbalance between inside and outside the loop, using a 3-dimensional electromagnetic (EM) particle code. Both electrons and ions in the loop can be heated in the direction perpendicular to the ambient magnetic field, therefore the perpendicular temperature can be increased about 10 times compared with the parallel temperature. This temperature anisotropy produced by the magnetic pinch heating can induce a plasma instability, by which high-frequency electromagnetic waves can be excited. The plasma current which is enhanced by the magnetic pinch can also excite a kinetic kink instability, which can heat ions perpendicular to the magnetic field. The heating mechanism of ions as well as the electromagnetic emission could be important for an understanding of the coronal loop heating and the electromagnetic wave emissions from active coronal regions.
Perpendicular magnetic recording—Its development and realization—
IWASAKI, Shun-ichi
2009-01-01
The principle of conventional magnetic recording is that magnetic fields are applied parallel to the plane of the magnetic medium. As described in this paper, the invention and development of a new method of placing the magnetized information perpendicular to the plane of the magnetic recording medium is presented. The yield in the mass production of high-density hard disk drives (HDDs) for perpendicular recording is much higher than that of HDDs for conventional recording. Consequently, it is estimated that as many as 75% of the 500 million HDDs to be shipped this year will use this technology. PMID:19212097
NASA Technical Reports Server (NTRS)
Singh, Nagendra; Khazanov, George; Mukhter, Ali
2007-01-01
We present results here from 2.5-D particle-in-cell simulations showing that the electrostatic (ES) components of broadband extremely low frequency (BBELF) waves could possibly be generated by cross-field plasma instabilities driven by the relative drifts between the heavy and light ion species in the electromagnetic (EM) Alfvenic component of the BBELF waves in a multi-ion plasma. The ES components consist of ion cyclotron as well as lower hybrid modes. We also demonstrate that the ES wave generation is directly involved in the transverse acceleration of ions (TAI) as commonly measured with the BBELF wave events. The heating is affected by ion cyclotron resonance in the cyclotron modes and Landau resonance in the lower hybrid waves. In the simulation we drive the plasma by the transverse electric field, E(sub y), of the EM waves; the frequency of E(sub y), omega(sub d), is varied from a frequency below the heavy ion cyclotron frequency, OMEGA(sub h), to below the light ion cyclotron frequency, OMEGA(sub i). We have also performed simulations for E(sub y) having a continuous spectrum given by a power law, namely, |Ey| approx. omega(sub d) (exp -alpha), where the exponent alpha = _, 1, and 2 in three different simulations. The driving electric field generates polarization and ExB drifts of the ions and electrons. When the interspecies relative drifts are sufficiently large, they drive electrostatic waves, which cause perpendicular heating of both light and heavy ions. The transverse ion heating found here is discussed in relation to observations from Cluster, FAST and Freja.
Magnetic Field Control of Cycloidal Domains and Electric Polarization in Multiferroic BiFeO3
NASA Astrophysics Data System (ADS)
Bordács, S.; Farkas, D. G.; White, J. S.; Cubitt, R.; DeBeer-Schmitt, L.; Ito, T.; Kézsmárki, I.
2018-04-01
The magnetic field induced rearrangement of the cycloidal spin structure in ferroelectric monodomain single crystals of the room-temperature multiferroic BiFeO3 is studied using small-angle neutron scattering. The cycloid propagation vectors are observed to rotate when magnetic fields applied perpendicular to the rhombohedral (polar) axis exceed a pinning threshold value of ˜5 T . In light of these experimental results, a phenomenological model is proposed that captures the rearrangement of the cycloidal domains, and we revisit the microscopic origin of the magnetoelectric effect. A new coupling between the magnetic anisotropy and the polarization is proposed that explains the recently discovered magnetoelectric polarization perpendicular to the rhombohedral axis.
Perpendicular exchange coupling effects in ferrimagnetic TbFeCo/GdFeCo hard/soft structures
NASA Astrophysics Data System (ADS)
Wang, Ke; Wang, Yahong; Ling, Fujin; Xu, Zhan
2018-04-01
Bilayers consisting of magnetically hard TbFeCo and soft GdFeCo alloy were fabricated. Exchange-spring and sharp switching in a step-by-step fashion were observed in the TbFeCo/GdFeCo hard/soft bilayers with increasing GdFeCo thickness. A perpendicular exchange bias field of several hundred Oersteds is observed from the shift of minor loops pinned by TbFeCo layer. The perpendicular exchange energy is derived to be in the range of 0.18-0.30 erg/cm2. The exchange energy is shown to increase with the thickness of GdFeCo layer in the bilayers, which can be attributed to the enhanced perpendicular anisotropy of GdFeCo layer in our experimental range.
Aperture Synthesis C18O (1-0) Observations of L 1551 IRS5
NASA Astrophysics Data System (ADS)
Munetake, Momose; Nagayoshi, Ohashi; Ryohei, Kawabe; Takenori, Nakano; Masahiko, Hayashi
We report aperture synthesis jceto observations of L1551 IRS5 with a spatial resolution of 2.8" x 2.5" using the Nobeyama Millimeter Array. We have detected an emission component centrally condensed around IRS 5, as well as a diffuse component extending in the north-south direction from the centrally condensed component. The centrally condensed component, 2380 AU x 1050 AU in size, is elongated in the direction perpendicular to the outflow axis, indicating the existence of a flattened circumstellar envelope around L1551 IRS5. The mass of the centrally condensed component is estimated to be 0.062 Mo. The position-velocity (P-V) diagrams reveal that the velocity field in the centrally condensed component is composed of infall and slight rotation. The infall velocity in the outer part is equal to the free-fall velocity around a central mass of ~0.1 Mo, e.g., 0.5 km/s at r = 700 AU, while the rotation velocity, 0.24 km/s at the same radius, gets prominent at inner radii with a radial dependence of r-1. The infall rate in the envelope is derived to be 6 times 10-6 Mo/yr from the radius and mass of the centrally condensed component, and the infall velocity.
A hydromagnetic vortex seen by ISEE-1 and 2
NASA Technical Reports Server (NTRS)
Saunders, M. A.; Southwood, D. J.; Hones, E. W., Jr.; Russell, C. T.
1981-01-01
Magnetometer and plasma data from the dual ISEE spacecraft are combined in a study of the initial plasma vortex event reported by Hones et al. (1978) in the dawn plasma sheet. The event is a transient hydromagnetic wave of two cycles duration with a six minute period. Large amplitude compressional and transverse magnetic components were present. Particle and magnetic pressure oscillations were in strict antiphase, but did not balance. When combined with the plasma velocity data these properties show that substantial Earthward field-aligned flows of electromagnetic energy and heat flux occurred during the vortex. The net energy flow perpendicular to B was in the antisolar direction. This event possesses hydromagnetic features unique to a hot plasma environment.
Magnetoresistance due to domain walls in an epitaxial microfabricated Fe wire
NASA Astrophysics Data System (ADS)
Rüdiger, U.; Yu, J.; Kent, A. D.; Parkin, S. S. P.
1998-08-01
The domain wall (DW) contribution to magnetoresistance has been investigated using an epitaxial microfabricated bcc (110) Fe wires of 2 μm linewidth. A strong in-plane uniaxial component to the magnetic anisotropy perpendicular to the wire axis causes a regular stripe domain pattern with closure domains. The stripe domain width in zero-applied magnetic field is strongly affected by the magnetic history and can be continuously varied from 0.45 to 1.8 μm. This enables a measurement of the resistivity as a function of DW density in a single wire. Clear evidence is presented that the resistivity is reduced in the presence of DWs at low temperatures.
Hf thickness dependence of spin-orbit torques in Hf/CoFeB/MgO heterostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramaswamy, Rajagopalan; Qiu, Xuepeng; Dutta, Tanmay
We have studied the spin-orbit torques in perpendicularly magnetized Hf/CoFeB/MgO system, by systematically varying the thickness of Hf underlayer. We have observed a sign change of effective fields between Hf thicknesses of 1.75 and 2 nm, indicating that competing mechanisms, such as the Rashba and spin Hall effects, contribute to spin-orbit torques in our system. For larger Hf thicknesses (>2 nm), both the components of spin-orbit torques arise predominantly from the bulk spin Hall effect. We have also confirmed these results using spin-orbit torque induced magnetization switching measurements. Our results could be helpful in designing Hf based SOT devices.
Nonstationary behavior of a high-spin molecule in a bifrequency alternating current magnetic field
NASA Astrophysics Data System (ADS)
Tokman, I. D.; Vugalter, G. A.
2002-07-01
An interaction of a high-spin molecule with a bifrequency ac magnetic field, occurring at times much shorter than the molecule relaxation times, has been considered. The molecule is subjected to a dc magnetic field perpendicular to the easy anisotropy axis of the molecule. The bifrequency ac field is a superposition of two ac fields, one of which is perpendicular to the easy anisotropy axis and causes resonant transitions between the lower states of the fundamental and first excited doublets. The other ac field is parallel to the easy anisotropy axis and has a frequency much smaller than the frequency of the first ac field. It has been shown that, first, the molecule can absorb or emit energy, depending on the frequency of the low-frequency ac field, second, the bifrequency ac magnetic field induces tunneling of the molecule magnetization with the Rabi frequency. The conditions of observation of the effects predicted are discussed.
NASA Technical Reports Server (NTRS)
Liu, Boyang (Inventor); Ho, Seng-Tiong (Inventor)
2010-01-01
An imaging device. In one embodiment, the imaging device includes a plurality of first electrode strips in parallel to each other along a first direction x, wherein each first electrode strip has an elongated body with a first surface and an opposite, second surface and a thickness n.sub.1. The imaging device also includes a plurality of second electrode strips in parallel to each other along a second direction y that is substantially perpendicular to the first direction x, wherein each second electrode strip has an elongated body with a first surface and an opposite, second surface and a thickness n.sub.2. The plurality of second electrode strips are positioned apart from the plurality of first electrode strips along a third direction z that is substantially perpendicular to the first direction x and the second direction y such that the plurality of first electrode strips and the plurality of second electrode strips are crossing each other accordingly to form a corresponding number of crossing points. And at each crossing point, a semiconductor component is filled between the second surface of a corresponding first electrode strip and the first surface of a corresponding second electrode strip to form an addressable pixel.
NASA Technical Reports Server (NTRS)
Bavassano-Cattaneo, M. B.; Moreno, G.; Scotto, M. T.; Acuna, M.
1987-01-01
Plasma and magnetic field observations performed onboard the Voyager 2 spacecraft have been used to investigate Jupiter's foreshock. Large-amplitude waves have been detected in association with the quasi-perpendicular structure of the Jovian bow shock, thus proving that the upstream turbulence is not a characteristic signature of the quasi-parallel shock.
NASA Astrophysics Data System (ADS)
Chwiej, T.
2016-10-01
We theoretically study the single electron magnetotransport in GaAs and InGaAs vertically stacked bilayer nanowires. In considered geometry, the tilted magnetic field is always perpendicular to the main (transport) axis of the quantum wire and, therefore its transverse and vertical components allow separately for changing the magnitude of intralayer and interlayer subbands mixing. We study the changes introduced to energy dispersion relation E(k) by tilted magnetic field of strength up to several tesla and analyze their origins for symmetric as well as asymmetric confining potentials in the growth direction. Calculated energy dispersion relations are thereafter used to show that the value of a conductance of the bilayer nanowire may abruptly rise as well as fall by few conductance quanta when the Fermi energy in nanosystem is changed. It is also shown that such conductance oscillations, in conjunction with spin Zeeman effect, may give a moderately spin polarized current in the bilayer nanowire.
Fluid simulations of plasma turbulence at ion scales: Comparison with Vlasov-Maxwell simulations
NASA Astrophysics Data System (ADS)
Perrone, D.; Passot, T.; Laveder, D.; Valentini, F.; Sulem, P. L.; Zouganelis, I.; Veltri, P.; Servidio, S.
2018-05-01
Comparisons are presented between a hybrid Vlasov-Maxwell (HVM) simulation of turbulence in a collisionless plasma and fluid reductions. These include Hall-magnetohydrodynamics (HMHD) and Landau fluid (LF) or finite Larmor radius-Landau fluid (FLR-LF) models that retain pressure anisotropy and low-frequency kinetic effects such as Landau damping and, for the last model, finite Larmor radius (FLR) corrections. The problem is considered in two space dimensions, when initial conditions involve moderate-amplitude perturbations of a homogeneous equilibrium plasma subject to an out-of-plane magnetic field. LF turns out to provide an accurate description of the velocity field up to the ion Larmor radius scale, and even to smaller scales for the magnetic field. Compressibility nevertheless appears significantly larger at the sub-ion scales in the fluid models than in the HVM simulation. High frequency kinetic effects, such as cyclotron resonances, not retained by fluid descriptions, could be at the origin of this discrepancy. A significant temperature anisotropy is generated, with a bias towards the perpendicular component, the more intense fluctuations being rather spread out and located in a broad vicinity of current sheets. Non-gyrotropic pressure tensor components are measured and are shown to reach a significant fraction of the total pressure fluctuations, with intense regions closely correlated with current sheets.
Modeling of non-stationary local response on impurity penetration in plasma
NASA Astrophysics Data System (ADS)
Tokar, M. Z.; Koltunov, M.
2012-04-01
In fusion devices, strongly localized intensive sources of impurities may arise unexpectedly, e.g., if the wall is excessively demolished by hot plasma particles, or can be created deliberately through impurity seeding. The spreading of impurities from such sources both along and perpendicular to the magnetic field is affected by coulomb collisions with background particles, ionization, acceleration by electric field, etc. Simultaneously, the plasma itself can be significantly disturbed by these interactions. To describe self-consistently the impurity spreading process and the plasma response, three-dimensional fluid equations for the particle, parallel momentum, and energy balances of various plasma components are solved by reducing them to ordinary differential equations for the time evolution of several parameters characterizing the solutions in principal details: the maximum densities of impurity ions of different charges, the dimensions both along and across the magnetic field of the shells occupied by these particles, the characteristic temperatures of all plasma components, and the densities of the main ions and electrons in different shells. The results of modeling for penetration of lithium singly charged particles in tokamak edge plasma are presented. A new mechanism for the condensation phenomenon and formation of cold dense plasma structures, implying an outstanding role of coulomb collisions between main and impurity ions, is proposed.
Electro-gravity via geometric chrononfield
NASA Astrophysics Data System (ADS)
Suchard, Eytan H.
2017-05-01
In De Sitter / Anti De Sitter space-time and in other geometries, reference sub-manifolds from which proper time is measured along integral curves, are described as events. We introduce here a foliation with the help of a scalar field. The scalar field need not be unique but from the gradient of the scalar field, an intrinsic Reeb vector of the foliations perpendicular to the gradient vector is calculated. The Reeb vector describes the acceleration of a physical particle that moves along the integral curves that are formed by the gradient of the scalar field. The Reeb vector appears as a component of an anti-symmetric matrix which is a part of a rank-2, 2-Form. The 2-form is extended into a non-degenerate 4-form and into rank-4 matrix of a 2-form, which when multiplied by a velocity of a particle, becomes the acceleration of the particle. The matrix has one U(1) degree of freedom and an additional SU(2) degrees of freedom in two vectors that span the plane perpendicular to the gradient of the scalar field and to the Reeb vector. In total, there are U(1) x SU(2) degrees of freedom. SU(3) degrees of freedom arise from three dimensional foliations but require an additional symmetry to exist in order to have a valid covariant meaning. Matter in the Einstein Grossmann equation is replaced by the action of the acceleration field, i.e. by a geometric action which is not anticipated by the metric alone. This idea leads to a new formalism that replaces the conventional stress-energy-momentum-tensor. The formalism will be mainly developed for classical physics but will also be discussed for quantized physics based on events instead of particles. The result is that a positive charge manifests small attracting gravity and a stronger but small repelling acceleration field that repels even uncharged particles that have a rest mass. Negative charge manifests a repelling anti-gravity but also a stronger acceleration field that attracts even uncharged particles that have rest mass. Preliminary version: http://sciencedomain.org/abstract/9858
Sheared E×B flow and plasma turbulence viscosity in a Reversed Field Pinch
NASA Astrophysics Data System (ADS)
Vianello, N.; Antoni, V.; Spada, E.; Spolaore, M.; Serianni, G.; Regnoli, G.; Zuin, M.; Cavazzana, R.; Bergsåker, H.; Cecconello, M.; Drake, J. R.
2004-11-01
The relationship between electromagnetic turbulence and sheared plasma flow in Reversed Field Pinch configuration is addressed. The momentum balance equation for a compressible plasma is considered and the terms involved are measured in the outer region of Extrap-T2R RFP device. It results that electrostatic fluctuations determine the plasma flow through the electrostatic component of Reynolds Stress tensor. This term involves spatial and temporal scales comparable to those of MHD activity. The derived experimental perpendicular viscosity is consistent with anomalous diffusion, the latter being discussed in terms of electrostatic turbulence background and coherent structures emerging from fluctuations. The results indicate a dynamical interplay between turbulence, anomalous transport and mean E×B profiles. The momentum balance has been studied also in non-stationary condition during the application of Pulsed Poloidal Current Drive, which is known to reduce the amplitude of MHD modes.
High temperature superconductor dc-SQUID microscope with a soft magnetic flux guide
NASA Astrophysics Data System (ADS)
Poppe, U.; Faley, M. I.; Zimmermann, E.; Glaas, W.; Breunig, I.; Speen, R.; Jungbluth, B.; Soltner, H.; Halling, H.; Urban, K.
2004-05-01
A scanning SQUID microscope based on high-temperature superconductor (HTS) dc-SQUIDs was developed. An extremely soft magnetic amorphous foil was used to guide the flux from room temperature samples to the liquid-nitrogen-cooled SQUID sensor and back. The flux guide passes through the pick-up loop of the HTS SQUID, providing an improved coupling of magnetic flux of the object to the SQUID. The device measures the z component (direction perpendicular to the sample surface) of the stray field of the sample, which is rastered with submicron precision in the x-y direction by a motorized computer-controlled scanning stage. A lateral resolution better than 10 µm, with a field resolution of about 0.6 nT Hz-1/2 was achieved for the determination of the position of the current carrying thin wires. The presence of the soft magnetic foil did not significantly increase the flux noise of the SQUID.
Imaging the Localized Plasmon Resonance Modes in Graphene Nanoribbons
Hu, F.; Luan, Y.; Fei, Z.; ...
2017-08-14
Here, we report a nanoinfrared (IR) imaging study of the localized plasmon resonance modes of graphene nanoribbons (GNRs) using a scattering-type scanning near-field optical microscope (s-SNOM). By comparing the imaging data of GNRs that are aligned parallel and perpendicular to the in-plane component of the excitation laser field, we observed symmetric and asymmetric plasmonic interference fringes, respectively. Theoretical analysis indicates that the asymmetric fringes are formed due to the interplay between the localized surface plasmon resonance (SPR) mode excited by the GNRs and the propagative surface plasmon polariton (SPP) mode launched by the s-SNOM tip. And with rigorous simulations, wemore » reproduce the observed fringe patterns and address quantitatively the role of the s-SNOM tip on both the SPR and SPP modes. Moreover, we have seen real-space signatures of both the dipole and higher-order SPR modes by varying the ribbon width.« less
Magnetic flux studies in horizontally cooled elliptical superconducting cavities
Martinello, M.; Checchin, M.; Grassellino, A.; ...
2015-07-29
Previous studies on magnetic flux expulsion as a function of cooldown procedures for elliptical superconducting radio frequency (SRF) niobium cavities showed that when the cavity beam axis is placed parallel to the helium cooling flow and sufficiently large thermal gradients are achieved, all magnetic flux could be expelled and very low residual resistance could be achieved. In this paper, we investigate flux trapping for the case of resonators positioned perpendicularly to the helium cooling flow, which is more representative of how SRF cavities are cooled in accelerators and for different directions of the applied magnetic field surrounding the resonator. Wemore » show that different field components have a different impact on the surface resistance, and several parameters have to be considered to fully understand the flux dynamics. A newly discovered phenomenon of concentration of flux lines at the cavity top leading to temperature rise at the cavity equator is presented.« less
Spin and valley filter across line defect in silicene
NASA Astrophysics Data System (ADS)
Wang, Sake; Ren, Chongdan; Li, Yunfang; Tian, Hongyu; Lu, Weitao; Sun, Minglei
2018-05-01
We propose a new scheme to achieve an effective spin/valley filter in silicene with extended line defect on the basis of spin–valley coupling due to the intrinsic spin-orbit coupling (SOC). The transmission coefficient of the spin/valley states is seriously affected by the SOC. When a perpendicular magnetic field is applied on one side of the line defect, one valley state will experience backscattering, but the other valley will not; this leads to high valley polarization in all transmission directions. Moreover, the spin/valley polarization can be enhanced to 96% with the aid of a perpendicular electric field.
NASA Astrophysics Data System (ADS)
Singh, Rahul; Gangwar, Vinod K.; Daga, D. D.; Singh, Abhishek; Ghosh, A. K.; Kumar, Manoranjan; Lakhani, A.; Singh, Rajeev; Chatterjee, Sandip
2018-03-01
The magneto-transport properties of Bi2Se3-ySy were investigated. Magnetoresistance (MR) decreases with an increase in the S content, and finally, for 7% (i.e., y = 0.21) S doping, the magnetoresistance becomes negative. This negative MR is unusual as it is observed when a magnetic field is applied in the perpendicular direction to the plane of the sample. The magneto-transport behavior shows the Shubnikov-de Haas (SdH) oscillation, indicating the coexistence of surface and bulk states. The negative MR has been attributed to the non-trivial bulk conduction.
NASA Astrophysics Data System (ADS)
Tezuka, N.; Oikawa, S.; Matsuura, M.; Sugimoto, S.; Nishimura, K.; Irisawa, T.; Nagamine, Y.; Tsunekawa, K.
2018-05-01
The authors investigated the voltage control of a magnetic anisotropy field for perpendicular-magnetic tunnel junctions (p-MTJs) with low and high resistance-area (RA) products and for synthetic antiferromagnetic free and pinned layers. It was found that the sample with low RA products was more sensitive to the applied bias voltage than the sample with high RA products. The bias voltage effect was less pronounced for our sample with the synthetic antiferromagnetic layer for high RA products compared to the MTJs with single free and pinned layers.
Ion Cyclotron Resonant Heating (ICRH) system used on the Tandem Mirror Experiment-Upgrade (TMX-U)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferguson, S.W.; Maxwell, T.M.; Antelman, D.R.
1985-11-11
Ion Cyclotron Resonant Heating (ICRH) is part of the plasma heating system used on the TMX-U experiment. Radio frequency (RF) energy is injected into the TMX-U plasma at a frequency near the fundamental ion resonance (2 to 5 MHz). The RF fields impart high velocities to the ions in a direction perpendicular to the TMX-U magnetic field. Particle collision then converts this perpendicular heating to uniform plasma heating. This paper describes the various aspects of the ICRH system: antennas, power supplies, computer control, and data acquisition. 4 refs., 10 figs.
New perspectives on the supernova remnant Puppis A based on a radio polarization study
NASA Astrophysics Data System (ADS)
Reynoso, E. M.; Velázquez, P. F.; Cichowolski, S.
2018-06-01
We present a polarization study towards the supernova remnant (SNR) Puppis A based on original observations performed with the Australia Telescope Compact Array. Based on the analysis of a feature detected outside the SNR shell (called `the tail' throughout the paper), it was possible to disentangle the emission with origin in Puppis A itself from that coming from the foreground Vela SNR. We found a very low polarization fraction, of about 3 per cent on average. The upper limit of the magnetic field component parallel to the line of sight is estimated to be B∥ ˜ 20 μG. The statistical behaviour of the magnetic vectors shows two preferential directions, almost perpendicular to each other, which are approximately aligned with the flat edges of Puppis A. A third, narrow peak oriented perpendicular to the Galactic plane suggests the existence of an interstellar magnetic field locally aligned in this direction. There is evidence that the magnetic vectors along the shell are aligned with the shock front direction. The low polarization fraction and the statistical behaviour of the magnetic vectors are compatible with a scenario where the SNR evolves inside a stellar wind bubble with a box-like morphology, produced by the interaction of the different stellar winds, one of them magnetized, launched by the SN progenitor. This scenario can furthermore explain the morphology of Puppis A, rendering little support to the previously accepted picture which involved strong density gradients to explain the flat, eastern edge of the shell.
TRACING THE MAGNETIC FIELD MORPHOLOGY OF THE LUPUS I MOLECULAR CLOUD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franco, G. A. P.; Alves, F. O., E-mail: franco@fisica.ufmg.br, E-mail: falves@mpe.mpg.de
2015-07-01
Deep R-band CCD linear polarimetry collected for fields with lines of sight toward the Lupus I molecular cloud is used to investigate the properties of the magnetic field within this molecular cloud. The observed sample contains about 7000 stars, almost 2000 of them with a polarization signal-to-noise ratio larger than 5. These data cover almost the entire main molecular cloud and also sample two diffuse infrared patches in the neighborhood of Lupus I. The large-scale pattern of the plane-of-sky projection of the magnetic field is perpendicular to the main axis of Lupus I, but parallel to the two diffuse infraredmore » patches. A detailed analysis of our polarization data combined with the Herschel/SPIRE 350 μm dust emission map shows that the principal filament of Lupus I is constituted by three main clumps that are acted on by magnetic fields that have different large-scale structural properties. These differences may be the reason for the observed distribution of pre- and protostellar objects along the molecular cloud and the cloud’s apparent evolutionary stage. On the other hand, assuming that the magnetic field is composed of large-scale and turbulent components, we find that the latter is rather similar in all three clumps. The estimated plane-of-sky component of the large-scale magnetic field ranges from about 70 to 200 μG in these clumps. The intensity increases toward the Galactic plane. The mass-to-magnetic flux ratio is much smaller than unity, implying that Lupus I is magnetically supported on large scales.« less
IMPRINTS OF EXPANSION ON THE LOCAL ANISOTROPY OF SOLAR WIND TURBULENCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verdini, Andrea; Grappin, Roland
2015-08-01
We study the anisotropy of II-order structure functions (SFs) defined in a frame attached to the local mean field in three-dimensional (3D) direct numerical simulations of magnetohydrodynamic turbulence, with the solar wind expansion both included and not included. We simulate spacecraft flybys through the numerical domain by taking increments along the radial (wind) direction that form an angle of 45° with the ambient magnetic field. We find that only when expansion is taken into account do the synthetic observations match the 3D anisotropy observed in the solar wind, including the change of anisotropy with scale. Our simulations also show thatmore » the anisotropy changes dramatically when considering increments oblique to the radial directions. Both results can be understood by noting that expansion reduces the radial component of the magnetic field at all scales, thus confining fluctuations in the plane perpendicular to the radial. Expansion is thus shown to affect not only the (global) spectral anisotropy, but also the local anisotropy of second-order SF by influencing the distribution of the local mean field, which enters this higher-order statistics.« less
NASA Astrophysics Data System (ADS)
Fukuda, Kunito; Asakawa, Naoki
2017-08-01
Spin-dependent space charge limited carrier conduction in a Schottky barrier diode using polycrystalline p-type π-conjugated molecular pentacene is explored using multiple-frequency electrically detected magnetic resonance (EDMR) spectroscopy with a variable-angle configuration. The measured EDMR spectra are decomposed into two components derived respectively from mobile and trapped positive polarons. The linewidth of the EDMR signal for the trapped polarons increases with increasing resonance magnetic field for an in-plane configuration where the normal vector of the device substrate is perpendicular to the resonance magnetic field, while it is independent of the field for an out-of-plane configuration. This difference is consistent with the pentacene arrangement on the device substrate, where pentacene molecules exhibit a uniaxial orientation on the out-of-substrate plane. By contrast, the mobile polarons do not show anisotropic behavior with respect to the resonance magnetic field, indicating that the anisotropic effect is averaged out owing to carrier motion. These results suggest that the orientational arrangements of polycrystalline pentacene molecules in a nano thin film play a crucial role in spin-dependent electrical conduction.
Spin-orbit torque magnetization switching of a three-terminal perpendicular magnetic tunnel junction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cubukcu, Murat; Boulle, Olivier; Drouard, Marc
2014-01-27
We report on the current-induced magnetization switching of a three-terminal perpendicular magnetic tunnel junction by spin-orbit torque and its read-out using the tunnelling magnetoresistance (TMR) effect. The device is composed of a perpendicular Ta/FeCoB/MgO/FeCoB stack on top of a Ta current line. The magnetization of the bottom FeCoB layer can be switched reproducibly by the injection of current pulses with density 5 × 10{sup 11} A/m{sup 2} in the Ta layer in the presence of an in-plane bias magnetic field, leading to the full-scale change of the TMR signal. Our work demonstrates the proof of concept of a perpendicular spin-orbit torque magnetic memorymore » cell.« less
Reconnection Mediated by Magnetic Fractures and the Solar Flare
NASA Astrophysics Data System (ADS)
Haerendel, Gerhard
2018-03-01
Reconnection of sheared magnetic fields is commonly treated by regarding the component perpendicular to the antiparallel components as a largely inert guide field. In this paper an alternative is proposed in which the free energy residing in the shear field is being converted prior to reconnection. This happens in high-density, dissipative current sheets bordering the reconnection site. A global scenario is presented in which low-intensity currents out of the photosphere are converging into the narrow, high-intensity currents at high altitude. This is enabled by the obliqueness of the latter. The very short timescale of the energy conversion causes a lateral propagation of the current sheets. In a quasi-stationary situation, it balances the reconnection rate, which turns out to be much lower than in guide-field approaches. Another important consequence of the obliqueness is the field-parallel emission of runaway electrons. Accelerated up to tens of keV, they are possibly important contributors to the production of hard X-rays during the impulsive phase of a flare, but only in areas of upward-directed currents. Quantitative evaluation of the model predicts various potentially observable properties, such as width and propagation speed of the generated flare ribbons, spatial dependences of the electron spectrum, size of the area of energy deposition, and successive decrease of the shear angle between conjugate footpoints. The presented theoretical model can account for the observed brightness asymmetry of flare ribbons with respect to the direction of the vertical currents.
Precipitation and Release of Solar Energetic Particles from the Solar Coronal Magnetic Field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Ming; Zhao, Lulu, E-mail: mzhang@fit.edu
Most solar energetic particles (SEPs) are produced in the corona. They propagate through complex coronal magnetic fields subject to scattering and diffusion across the averaged field lines by turbulence. We examine the behaviors of particle transport using a stochastic 3D focused transport simulation in a potential field source surface model of coronal magnetic field. The model is applied to an SEP event on 2010 February 7. We study three scenarios of particle injection at (i) the compact solar flare site, (ii) the coronal mass ejection (CME) shock, and (iii) the EUV wave near the surface. The majority of particles injectedmore » on open field lines are able to escape the corona. We found that none of our models can explain the observations of wide longitudinal SEP spread without perpendicular diffusion. If the perpendicular diffusion is about 10% of what is derived from the random walk of field lines at the rate of supergranular diffusion, particles injected at the compact solar flare site can spread to a wide range of longitude and latitude, very similar to the behavior of particles injected at a large CME shock. Stronger pitch-angle scattering results in a little more lateral spread by holding the particles in the corona for longer periods of time. Some injected particles eventually end up precipitating onto the solar surface. Even with a very small perpendicular diffusion, the pattern of the particle precipitation can be quite complicated depending on the detailed small-scale coronal magnetic field structures, which could be seen with future sensitive gamma-ray telescopes.« less
Precipitation and Release of Solar Energetic Particles from the Solar Coronal Magnetic Field
NASA Astrophysics Data System (ADS)
Zhang, Ming; Zhao, Lulu
2017-09-01
Most solar energetic particles (SEPs) are produced in the corona. They propagate through complex coronal magnetic fields subject to scattering and diffusion across the averaged field lines by turbulence. We examine the behaviors of particle transport using a stochastic 3D focused transport simulation in a potential field source surface model of coronal magnetic field. The model is applied to an SEP event on 2010 February 7. We study three scenarios of particle injection at (I) the compact solar flare site, (II) the coronal mass ejection (CME) shock, and (III) the EUV wave near the surface. The majority of particles injected on open field lines are able to escape the corona. We found that none of our models can explain the observations of wide longitudinal SEP spread without perpendicular diffusion. If the perpendicular diffusion is about 10% of what is derived from the random walk of field lines at the rate of supergranular diffusion, particles injected at the compact solar flare site can spread to a wide range of longitude and latitude, very similar to the behavior of particles injected at a large CME shock. Stronger pitch-angle scattering results in a little more lateral spread by holding the particles in the corona for longer periods of time. Some injected particles eventually end up precipitating onto the solar surface. Even with a very small perpendicular diffusion, the pattern of the particle precipitation can be quite complicated depending on the detailed small-scale coronal magnetic field structures, which could be seen with future sensitive gamma-ray telescopes.
NASA Astrophysics Data System (ADS)
Hou, Xu; Li, Huiyu; Shimada, Takahiro; Kitamura, Takayuki; Wang, Jie
2018-03-01
The electrocaloric properties of ferroelectrics are highly dependent on the domain structure in the materials. For nanoscale ferroelectric materials, the domain structure is greatly influenced by the geometric configuration of the system. Using a real-space phase field model based on the Ginzburg-Landau theory, we investigate the effect of geometric configurations on the electrocaloric properties of nanoscale ferroelectric materials. The ferroelectric hysteresis loops under different temperatures are simulated for the ferroelectric nano-metamaterials with square, honeycomb, and triangular Archimedean geometric configurations. The adiabatic temperature changes (ATCs) for three ferroelectric nano-metamaterials under different electric fields are calculated from the Maxwell relationship based on the hysteresis loops. It is found that the honeycomb specimen exhibits the largest ATC of Δ T = 4.3 °C under a field of 391.8 kV/cm among three geometric configurations, whereas the square specimen has the smallest ATC of Δ T = 2.7 °C under the same electric field. The different electrocaloric properties for three geometric configurations stem from the different domain structures. There are more free surfaces perpendicular to the electric field in the square specimen than the other two specimens, which restrict more polarizations perpendicular to the electric field, resulting in a small ATC. Due to the absence of free surfaces perpendicular to the electric field in the honeycomb specimen, the change of polarization with temperature in the direction of the electric field is more easy and thus leads to a large ATC. The present work suggests a novel approach to obtain the tunable electrocaloric properties in nanoscale ferroelectric materials by designing their geometric configurations.
Magnetic behaviour of multisegmented FeCoCu/Cu electrodeposited nanowires
NASA Astrophysics Data System (ADS)
Núñez, A.; Pérez, L.; Abuín, M.; Araujo, J. P.; Proenca, M. P.
2017-04-01
Understanding the magnetic behaviour of multisegmented nanowires (NWs) is a major key for the application of such structures in future devices. In this work, magnetic/non-magnetic arrays of FeCoCu/Cu multilayered NWs electrodeposited in nanoporous alumina templates are studied. Contrarily to most reports on multilayered NWs, the magnetic layer thickness was kept constant (30 nm) and only the non-magnetic layer thickness was changed (0 to 80 nm). This allowed us to tune the interwire and intrawire interactions between the magnetic layers in the NW array creating a three-dimensional (3D) magnetic system without the need to change the template characteristics. Magnetic hysteresis loops, measured with the applied field parallel and perpendicular to the NWs’ long axis, showed the effect of the non-magnetic Cu layer on the overall magnetic properties of the NW arrays. In particular, introducing Cu layers along the magnetic NW axis creates domain wall nucleation sites that facilitate the magnetization reversal of the wires, as seen by the decrease in the parallel coercivity and the reduction of the perpendicular saturation field. By further increasing the Cu layer thickness, the interactions between the magnetic segments, both along the NW axis and of neighbouring NWs, decrease, thus rising again the parallel coercivity and the perpendicular saturation field. This work shows how one can easily tune the parallel and perpendicular magnetic properties of a 3D magnetic layer system by adjusting the non-magnetic layer thickness.
High-resolution hybrid simulations of turbulence from inertial to sub-proton scales
NASA Astrophysics Data System (ADS)
Franci, Luca; Hellinger, Petr; Landi, Simone; Matteini, Lorenzo; Verdini, Andrea
2015-04-01
We investigate properties of turbulence from MHD scales to ion scales by means of two-dimensional, large-scale, high-resolution hybrid particle-in-cell simulations, which to our knowledge constitute the most accurate hybrid simulations of ion scale turbulence ever presented so far. We impose an initial ambient magnetic field perpendicular to the simulation box, and we add a spectrum of large-scale, linearly polarized Alfvén waves, balanced and Alfvénically equipartitioned, on average. When turbulence is fully developed, we observe an inertial range which is characterized by the power spectrum of perpendicular magnetic field fluctuations following a Kolmogorov law with spectral index close to -5/3, while the proton bulk velocity fluctuations exhibit a less steeper slope with index close to -3/2. Both these trends hold over a full decade. A definite transition is observed at a scale of the order of the proton inertial length, above which both spectra steepen, with the perpendicular magnetic field still exhibiting a power law with spectral index about -3 over another full decade. The spectrum of perpendicular electric fluctuations follows the one of the proton bulk velocity at MHD scales and reaches a sort of plateau at small scales. The turbulent nature of our data is also supported by the presence of intermittency. This is revealed by the non-Gaussianity of the probability distribution functions of MHD primitive variables increasing as approaching kinetic scales. All these features are in good agreement with solar wind observations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Bin; Qin, Hongwei; Pei, Jinliang
2016-05-23
The treatment of perpendicular electric field upon γ-Fe{sub 2}O{sub 3}/MgO film at room temperature could adjust the magnetic properties (saturation magnetization, magnetic remanence, coercivity, and saturation magnetizing field) of the film. The enhancement of saturation magnetization after the treatment of electric field may be connected with the combined shift effects of Mg ions from MgO to γ-Fe{sub 2}O{sub 3} and O{sup 2−} ions from γ-Fe{sub 2}O{sub 3} to MgO. The negative magnetoresistance of the γ-Fe{sub 2}O{sub 3}/MgO film also enhances with the treatment of perpendicular electric field at room temperature, possibly due to the increasing of electron hopping rate betweenmore » Fe{sup 2+} and Fe{sup 3+}.« less
Magnetic droplet soliton nucleation in oblique fields
NASA Astrophysics Data System (ADS)
Mohseni, Morteza; Hamdi, M.; Yazdi, H. F.; Banuazizi, S. A. H.; Chung, S.; Sani, S. R.; Åkerman, Johan; Mohseni, Majid
2018-05-01
We study the auto-oscillating magnetodynamics in orthogonal spin-torque nano-oscillators (STNOs) as a function of the out-of-plane (OOP) magnetic-field angle. In perpendicular fields and at OOP field angles down to approximately 50°, we observe the nucleation of a droplet. However, for field angles below 50°, experiments indicate that the droplet gives way to propagating spin waves, in agreement with our micromagnetic simulations. Theoretical calculations show that the physical mechanism behind these observations is the sign changing of spin-wave nonlinearity (SWN) by angle. In addition, we show that the presence of a strong perpendicular magnetic anisotropy free layer in the system reverses the angular dependence of the SWN and dynamics in STNOs with respect to the known behavior determined for the in-plane magnetic anisotropy free layer. Our results are of fundamental interest in understanding the rich dynamics of nanoscale solitons and spin-wave dynamics in STNOs.
Thermodynamics around the first-order ferromagnetic phase transition of Fe2P single crystals
NASA Astrophysics Data System (ADS)
Hudl, M.; Campanini, D.; Caron, L.; Höglin, V.; Sahlberg, M.; Nordblad, P.; Rydh, A.
2014-10-01
The specific heat and thermodynamics of Fe2P single crystals around the first-order paramagnetic to ferromagnetic (FM) phase transition at TC≃217 K are empirically investigated. The magnitude and direction of the magnetic field relative to the crystal axes govern the derived H -T phase diagram. Strikingly different phase contours are obtained for fields applied parallel and perpendicular to the c axis of the crystal. In parallel fields, the FM state is stabilized, while in perpendicular fields the phase transition is split into two sections, with an intermediate FM phase where there is no spontaneous magnetization along the c axis. The zero-field transition displays a textbook example of a first-order transition with different phase stability limits on heating and cooling. The results have special significance since Fe2P is the parent material to a family of compounds with outstanding magnetocaloric properties.
Radiation-MHD Simulations of Pillars and Globules in HII Regions
NASA Astrophysics Data System (ADS)
Mackey, J.
2012-07-01
Implicit and explicit raytracing-photoionisation algorithms have been implemented in the author's radiation-magnetohydrodynamics code. The algorithms are described briefly and their efficiency and parallel scaling are investigated. The implicit algorithm is more efficient for calculations where ionisation fronts have very supersonic velocities, and the explicit algorithm is favoured in the opposite limit because of its better parallel scaling. The implicit method is used to investigate the effects of initially uniform magnetic fields on the formation and evolution of dense pillars and cometary globules at the boundaries of HII regions. It is shown that for weak and medium field strengths an initially perpendicular field is swept into alignment with the pillar during its dynamical evolution, matching magnetic field observations of the ‘Pillars of Creation’ in M16. A strong perpendicular magnetic field remains in its initial configuration and also confines the photoevaporation flow into a bar-shaped, dense, ionised ribbon which partially shields the ionisation front.
Dynamics and morphology of chiral magnetic bubbles in perpendicularly magnetized ultra-thin films
NASA Astrophysics Data System (ADS)
Sarma, Bhaskarjyoti; Garcia-Sanchez, Felipe; Nasseri, S. Ali; Casiraghi, Arianna; Durin, Gianfranco
2018-06-01
We study bubble domain wall dynamics using micromagnetic simulations in perpendicularly magnetized ultra-thin films with disorder and Dzyaloshinskii-Moriya interaction. Disorder is incorporated into the material as grains with randomly distributed sizes and varying exchange constant at the edges. As expected, magnetic bubbles expand asymmetrically along the axis of the in-plane field under the simultaneous application of out-of-plane and in-plane fields. Remarkably, the shape of the bubble has a ripple-like part which causes a kink-like (steep decrease) feature in the velocity versus in-plane field curve. We show that these ripples originate due to the nucleation and interaction of vertical Bloch lines. Furthermore, we show that the Dzyaloshinskii-Moriya interaction field is not constant but rather depends on the in-plane field. We also extend the collective coordinate model for domain wall motion to a magnetic bubble and compare it with the results of micromagnetic simulations.
Jeffrey H. Gove; Mark J. Ducey; Harry T. Valentine; Michael S. Williams
2013-01-01
Many new methods for sampling down coarse woody debris have been proposed in the last dozen or so years. One of the most promising in terms of field application, perpendicular distance sampling (PDS), has several variants that have been progressively introduced in the literature. In this study, we provide an overview of the different PDS variants and comprehensive...
Qu, Ting; Zhao, Yongbin; Li, Zongbo; Wang, Pingping; Cao, Shubo; Xu, Yawei; Li, Yayuan; Chen, Aihua
2016-02-14
The orientation transition from perpendicular to parallel alignment of PEO cylindrical domains of PEO-b-PMA(Az) films has been demonstrated by extruding the block copolymer (BCP) solutions through a micropore of a plastic gastight syringe. The parallelized orientation of PEO domains induced by this micropore extrusion can be recovered to perpendicular alignment via ultrasonication of the extruded BCP solutions and subsequent annealing. A plausible mechanism is proposed in this study. The BCP films can be used as templates to prepare nanowire arrays with controlled layers, which has enormous potential application in the field of integrated circuits.
Commensurability resonances in two-dimensional magnetoelectric lateral superlattices
NASA Astrophysics Data System (ADS)
Schluck, J.; Fasbender, S.; Heinzel, T.; Pierz, K.; Schumacher, H. W.; Kazazis, D.; Gennser, U.
2015-05-01
Hybrid lateral superlattices composed of a square array of antidots and a periodic one-dimensional magnetic modulation are prepared in Ga [Al ]As heterostructures. The two-dimensional electron gases exposed to these superlattices are characterized by magnetotransport experiments in vanishing average perpendicular magnetic fields. Despite the absence of closed orbits, the diagonal magnetoresistivity in the direction perpendicular to the magnetic modulation shows pronounced classical resonances. They are located at magnetic fields where snake trajectories exist which are quasicommensurate with the antidot lattice. The diagonal magnetoresistivity in the direction of the magnetic modulation increases sharply above a threshold magnetic field and shows no fine structure. The experimental results are interpreted with the help of numerical simulations based on the semiclassical Kubo model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bemporad, G.A.; Rubin, H.
This manuscript concerns the onset of thermohaline convection in a solar pond subject to field conditions as well as a small scale laboratory test section simulating the solar pond performance. The onset of thermohaline convection is analyzed in this study by means of a linear stability analysis in which the flow field perturbations are expended in sets of complete orthonormal functions satisfying the boundary conditions of the flow field. The linear stability analysis is first performed with regard to an advanced solar pond (ASP) subject to field conditions in which thermohaline convection develops in planes perpendicular to the unperturbed flowmore » velocity vector. In the laboratory simulator of the ASP the width and depth are of the same order of magnitude. In this case it is found that the side walls delay the onset of convection in planes perpendicular to the unperturbed flow velocity vector. The presence of the side walls may cause the planes parallel to the flow velocity to be the most susceptible to the development on all three spatial variables, are predicted. They may develop in planes parallel or perpendicular to the unperturbed velocity vector according to the value of the Reynolds number of the unperturbed flow and the ratio between the width and depth of the ASP simulator.« less
Backus Effect on a Perpendicular Errors in Harmonic Models of Real vs. Synthetic Data
NASA Technical Reports Server (NTRS)
Voorhies, C. V.; Santana, J.; Sabaka, T.
1999-01-01
Measurements of geomagnetic scalar intensity on a thin spherical shell alone are not enough to separate internal from external source fields; moreover, such scalar data are not enough for accurate modeling of the vector field from internal sources because of unmodeled fields and small data errors. Spherical harmonic models of the geomagnetic potential fitted to scalar data alone therefore suffer from well-understood Backus effect and perpendicular errors. Curiously, errors in some models of simulated 'data' are very much less than those in models of real data. We analyze select Magsat vector and scalar measurements separately to illustrate Backus effect and perpendicular errors in models of real scalar data. By using a model to synthesize 'data' at the observation points, and by adding various types of 'noise', we illustrate such errors in models of synthetic 'data'. Perpendicular errors prove quite sensitive to the maximum degree in the spherical harmonic expansion of the potential field model fitted to the scalar data. Small errors in models of synthetic 'data' are found to be an artifact of matched truncation levels. For example, consider scalar synthetic 'data' computed from a degree 14 model. A degree 14 model fitted to such synthetic 'data' yields negligible error, but amplifies 4 nT (rmss) added noise into a 60 nT error (rmss); however, a degree 12 model fitted to the noisy 'data' suffers a 492 nT error (rmms through degree 12). Geomagnetic measurements remain unaware of model truncation, so the small errors indicated by some simulations cannot be realized in practice. Errors in models fitted to scalar data alone approach 1000 nT (rmss) and several thousand nT (maximum).
Magnetic field dependence of electronic properties of MoS2 quantum dots with different edges
NASA Astrophysics Data System (ADS)
Chen, Qiao; Li, L. L.; Peeters, F. M.
2018-02-01
Using the tight-binding approach, we investigate the energy spectrum of square, triangular, and hexagonal MoS2 quantum dots (QDs) in the presence of a perpendicular magnetic field. Novel edge states emerge in MoS2 QDs, which are distributed over the whole edge which we call ring states. The ring states are robust in the presence of spin-orbit coupling (SOC). The corresponding energy levels of the ring states oscillate as a function of the perpendicular magnetic field which are related to Aharonov-Bohm oscillations. Oscillations in the magnetic field dependence of the energy levels and the peaks in the magneto-optical spectrum emerge (disappear) as the ring states are formed (collapsed). The period and the amplitude of the oscillation decrease with the size of the MoS2 QDs.
Field induced heliconical structure of cholesteric liquid crystal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lavrentovich, Oleg D.; Shiyanovsii, Sergij V.; Xiang, Jie
A diffraction grating comprises a liquid crystal (LC) cell configured to apply an electric field through a cholesteric LC material that induces the cholesteric LC material into a heliconical state with an oblique helicoid director. The applied electric field produces diffracted light from the cholesteric LC material within the visible, infrared or ultraviolet. The axis of the heliconical state is in the plane of the liquid crystal cell or perpendicular to the plane, depending on the application. A color tuning device operates with a similar heliconical state liquid crystal material but with the heliconical director axis oriented perpendicular to themore » plane of the cell. A power generator varies the strength of the applied electric field to adjust the wavelength of light reflected from the cholesteric liquid crystal material within the visible, infrared or ultraviolet.« less
Core radial electric field and transport in Wendelstein 7-X plasmas
NASA Astrophysics Data System (ADS)
Pablant, N. A.; Langenberg, A.; Alonso, A.; Beidler, C. D.; Bitter, M.; Bozhenkov, S.; Burhenn, R.; Beurskens, M.; Delgado-Aparicio, L.; Dinklage, A.; Fuchert, G.; Gates, D.; Geiger, J.; Hill, K. W.; Höfel, U.; Hirsch, M.; Knauer, J.; Krämer-Flecken, A.; Landreman, M.; Lazerson, S.; Maaßberg, H.; Marchuk, O.; Massidda, S.; Neilson, G. H.; Pasch, E.; Satake, S.; Svennson, J.; Traverso, P.; Turkin, Y.; Valson, P.; Velasco, J. L.; Weir, G.; Windisch, T.; Wolf, R. C.; Yokoyama, M.; Zhang, D.; W7-X Team
2018-02-01
The results from the investigation of neoclassical core transport and the role of the radial electric field profile (Er) in the first operational phase of the Wendelstein 7-X (W7-X) stellarator are presented. In stellarator plasmas, the details of the Er profile are expected to have a strong effect on both the particle and heat fluxes. Investigation of the radial electric field is important in understanding neoclassical transport and in validation of neoclassical calculations. The radial electric field is closely related to the perpendicular plasma flow (u⊥) through the force balance equation. This allows the radial electric field to be inferred from measurements of the perpendicular flow velocity, which can be measured using the x-ray imaging crystal spectrometer and correlation reflectometry diagnostics. Large changes in the perpendicular rotation, on the order of Δu⊥˜ 5 km/s (ΔEr ˜ 12 kV/m), have been observed within a set of experiments where the heating power was stepped down from 2 MW to 0.6 MW. These experiments are examined in detail to explore the relationship between heating power temperature, and density profiles and the radial electric field. Finally, the inferred Er profiles are compared to initial neoclassical calculations based on measured plasma profiles. The results from several neoclassical codes, sfincs, fortec-3d, and dkes, are compared both with each other and the measurements. These comparisons show good agreement, giving confidence in the applicability of the neoclassical calculations to the W7-X configuration.
NASA Astrophysics Data System (ADS)
Burov, Evgueni; Gerya, Taras
2013-04-01
It has been long assumed that the dynamic topography associated with mantle-lithosphere interactions should be characterized by long-wavelength features (> 1000 km) correlating with morphology of mantle flow and expanding beyond the scale of tectonic processes. For example, debates on the existence of mantle plumes largely originate from interpretations of expected signatures of plume-induced topography that are compared to the predictions of analytical and numerical models of plume- or mantle-lithosphere interactions (MLI). Yet, most of the large-scale models treat the lithosphere as a homogeneous stagnant layer. We show that in continents, the dynamic topography is strongly affected by rheological properties and layered structure of the lithosphere. For that we reconcile mantle- and tectonic-scale models by introducing a tectonically realistic continental plate model in 3D large-scale plume-mantle-lithosphere interaction context. This model accounts for stratified structure of continental lithosphere, ductile and frictional (Mohr-Coulomb) plastic properties and thermodynamically consistent density variations. The experiments reveal a number of important differences from the predictions of the conventional models. In particular, plate bending, mechanical decoupling of crustal and mantle layers and intra-plate tension-compression instabilities result in transient topographic signatures such as alternating small-scale surface features that could be misinterpreted in terms of regional tectonics. Actually thick ductile lower crustal layer absorbs most of the "direct" dynamic topography and the features produced at surface are mostly controlled by the mechanical instabilities in the upper and intermediate crustal layers produced by MLI-induced shear and bending at Moho and LAB. Moreover, the 3D models predict anisotropic response of the lithosphere even in case of isotropic solicitations by axisymmetric mantle upwellings such as plumes. In particular, in presence of small (i.e. insufficient to produce solely any significant deformation) uniaxial extensional tectonic stress field, the plume-produced surface and LAB features have anisotropic linear shapes perpendicular to the far-field tectonic forces, typical for continental rifts. Compressional field results in singular sub-linear folds above the plume head, perpendicular to the direction of compression. Small bi-axial tectonic stress fields (compression in one direction and extension in the orthogonal direction) result in oblique, almost linear segmented normal or inverse faults with strike-slip components (or visa verse , strike-slip faults with normal or inverse components)
Use of RORA for Complex Ground-Water Flow Conditions
Rutledge, A.T.
2004-01-01
The RORA computer program for estimating recharge is based on a condition in which ground water flows perpendicular to the nearest stream that receives ground-water discharge. The method, therefore, does not explicitly account for the ground-water-flow component that is parallel to the stream. Hypothetical finite-difference simulations are used to demonstrate effects of complex flow conditions that consist of two components: one that is perpendicular to the stream and one that is parallel to the stream. Results of the simulations indicate that the RORA program can be used if certain constraints are applied in the estimation of the recession index, an input variable to the program. These constraints apply to a mathematical formulation based on aquifer properties, recession of ground-water levels, and recession of streamflow.
Concerning the Motion of FTEs and Attendant Signatures
NASA Technical Reports Server (NTRS)
Sibeck, David G.
2010-01-01
We employ the Cooling et al. [2001] model to predict the location, orientation, and motion of flux transfer events (FTEs) generated along finite length component and anti parallel reconnection lines for typical solar wind plasma conditions and various interplanetary magnetic field (IMF) orientations in the plane perpendicular to the SunEarth line at the solstices and equinoxes. For duskward and northward or southward IMF orientations, events formed by component reconnection originate along reconnection curves passing through the sub solar point that tilt from southern dawn to northern dusk. They maintain this orientation as they move either northward into the northern dawn quadrant or southward into the southern dusk quadrant. By contrast, events formed by antiparallel reconnection originate along reconnection curves running from northern dawn to southern dusk in the southern dawn and northern dusk quadrants and maintain these orientations as they move anti sunward into both these quadrants. Although both the component and antiparallel reconnection models can explain previously reported event orientations on the southern dusk magnetopause during intervals of northward and dawn ward IMF orientation, only the component model explains event occurrence near the subsolar magnetopause during intervals when the IMF does not point due southward.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiengarten, T.; Fichtner, H.; Kleimann, J.
2016-12-10
We extend a two-component model for the evolution of fluctuations in the solar wind plasma so that it is fully three-dimensional (3D) and also coupled self-consistently to the large-scale magnetohydrodynamic equations describing the background solar wind. The two classes of fluctuations considered are a high-frequency parallel-propagating wave-like piece and a low-frequency quasi-two-dimensional component. For both components, the nonlinear dynamics is dominanted by quasi-perpendicular spectral cascades of energy. Driving of the fluctuations by, for example, velocity shear and pickup ions is included. Numerical solutions to the new model are obtained using the Cronos framework, and validated against previous simpler models. Comparing results frommore » the new model with spacecraft measurements, we find improved agreement relative to earlier models that employ prescribed background solar wind fields. Finally, the new results for the wave-like and quasi-two-dimensional fluctuations are used to calculate ab initio diffusion mean-free paths and drift lengthscales for the transport of cosmic rays in the turbulent solar wind.« less
Spin resonance and spin fluctuations in a quantum wire
NASA Astrophysics Data System (ADS)
Pokrovsky, V. L.
2017-02-01
This is a review of theoretical works on spin resonance in a quantum wire associated with the spin-orbit interaction. We demonstrate that the spin-orbit induced internal "magnetic field" leads to a narrow spin-flip resonance at low temperatures in the absence of an applied magnetic field. An applied dc magnetic field perpendicular to and small compared with the spin-orbit field enhances the resonance absorption by several orders of magnitude. The component of applied field parallel to the spin-orbit field separates the resonance frequencies of right and left movers and enables a linearly polarized ac electric field to produce a dynamic magnetization as well as electric and spin currents. We start with a simple model of noninteracting electrons and then consider the interaction that is not weak in 1d electron system. We show that electron spin resonance in the spin-orbit field persists in the Luttinger liquid. The interaction produces an additional singularity (cusp) in the spin-flip channel associated with the plasma oscillation. As it was shown earlier by Starykh and his coworkers, the interacting 1d electron system in the external field with sufficiently large parallel component becomes unstable with respect to the appearance of a spin-density wave. This instability suppresses the spin resonance. The observation of the electron spin resonance in a thin wires requires low temperature and high intensity of electromagnetic field in the terahertz diapason. The experiment satisfying these two requirements is possible but rather difficult. An alternative approach that does not require strong ac field is to study two-time correlations of the total spin of the wire with an optical method developed by Crooker and coworkers. We developed theory of such correlations. We prove that the correlation of the total spin component parallel to the internal magnetic field is dominant in systems with the developed spin-density waves but it vanishes in Luttinger liquid. Thus, the measurement of spin correlations is a diagnostic tool to distinguish between the two states of electronic liquid in the quantum wire.
NASA Astrophysics Data System (ADS)
Ivanov, K. A.; Nikolaev, V. V.; Gubaydullin, A. R.; Kaliteevski, M. A.
2017-10-01
Based on the scattering matrix formalism, we have developed a method of quantization of an electromagnetic field in two-dimensional photonic nanostructures ( S-quantization in the two-dimensional case). In this method, the fields at the boundaries of the quantization box are expanded into a Fourier series and are related with each other by the scattering matrix of the system, which is the product of matrices describing the propagation of plane waves in empty regions of the quantization box and the scattering matrix of the photonic structure (or an arbitrary inhomogeneity). The quantization condition (similarly to the onedimensional case) is formulated as follows: the eigenvalues of the scattering matrix are equal to unity, which corresponds to the fact that the set of waves that are incident on the structure (components of the expansion into the Fourier series) is equal to the set of waves that travel away from the structure (outgoing waves). The coefficients of the matrix of scattering through the inhomogeneous structure have been calculated using the following procedure: the structure is divided into parallel layers such that the permittivity in each layer varies only along the axis that is perpendicular to the layers. Using the Fourier transform, the Maxwell equations have been written in the form of a matrix that relates the Fourier components of the electric field at the boundaries of neighboring layers. The product of these matrices is the transfer matrix in the basis of the Fourier components of the electric field. Represented in a block form, it is composed by matrices that contain the reflection and transmission coefficients for the Fourier components of the field, which, in turn, constitute the scattering matrix. The developed method considerably simplifies the calculation scheme for the analysis of the behavior of the electromagnetic field in structures with a two-dimensional inhomogeneity. In addition, this method makes it possible to obviate difficulties that arise in the analysis of the Purcell effect because of the divergence of the integral describing the effective volume of the mode in open systems.
Polarization of Rayleigh scattered Lyα in active galactic nuclei
NASA Astrophysics Data System (ADS)
Chang, Seok-Jun; Lee, Hee-Won; Yang, Yujin
2017-02-01
The unification scheme of active galactic nuclei invokes an optically thick molecular torus component hiding the broad emission line region. Assuming the presence of a thick neutral component in the molecular torus characterized by a H I column density >1022 cm-2, we propose that far-UV radiation around Lyα can be significantly polarized through Rayleigh scattering. Adopting a Monte Carlo technique, we compute polarization of Rayleigh scattered radiation near Lyα in a thick neutral region in the shape of a slab and a cylindrical shell. It is found that radiation near Lyα Rayleigh reflected from a very thick slab can be significantly polarized in a fairly large range of wavelength Δλ ˜ 50 Å exhibiting a flux profile similar to the incident one. Rayleigh transmitted radiation in a slab is characterized by the central dip with a complicated polarization behaviour. The optically thick part near Lyα centre is polarized in the direction perpendicular to the slab normal, which is in contrast to weakly polarized wing parts in the direction parallel to the slab normal. A similar polarization flip phenomenon is also found in the case of a tall cylindrical shell, in which the spatial diffusion along the vertical direction near the inner cylinder wall for core photons leads to a tendency of the electric field aligned to the direction perpendicular to the vertical axis. Observational implications are briefly discussed including spectropolarimetry of the quasar PG 1630+377 by Koratkar et al. in 1990 where Lyα is strongly polarized with no other emission lines polarized.
Acceleration in Perpendicular Relativistic Shocks for Plasmas Consisting of Leptons and Hadrons
NASA Astrophysics Data System (ADS)
Stockem, A.; Fiúza, F.; Fonseca, R. A.; Silva, L. O.
2012-08-01
We investigate the acceleration of light particles in perpendicular shocks for plasmas consisting of a mixture of leptonic and hadronic particles. Starting from the full set of conservation equations for the mixed plasma constituents, we generalize the magnetohydrodynamical jump conditions for a multi-component plasma, including information about the specific adiabatic constants for the different species. The impact of deviations from the standard model of an ideal gas is compared in theory and particle-in-cell simulations, showing that the standard MHD model is a good approximation. The simulations of shocks in electron-positron-ion plasmas are for the first time multi-dimensional, transverse effects are small in this configuration, and one-dimensional (1D) simulations are a good representation if the initial magnetization is chosen high. 1D runs with a mass ratio of 1836 are performed, which identify the Larmor frequency ω ci as the dominant frequency that determines the shock physics in mixed component plasmas. The maximum energy in the non-thermal tail of the particle spectra evolves in time according to a power law vpropt α with α in the range 1/3 < α < 1, depending on the initial parameters. A connection is made with transport theoretical models by Drury and Gargaté & Spitkovsky, which predict an acceleration time vpropγ and the theory for small wavelength scattering by Kirk & Reville, which predicts a behavior rather as vpropγ2. Furthermore, we compare different magnetic field orientations with B 0 inside and out of the plane, observing qualitatively different particle spectra than in pure electron-ion shocks.
Electron heating in quasi-perpendicular shocks - A Monte Carlo simulation
NASA Technical Reports Server (NTRS)
Veltri, Pierluigi; Mangeney, Andre; Scudder, Jack D.
1990-01-01
To study the problem of electron heating in quasi-perpendicular shocks, under the combined effects of 'reversible' motion, in the shock electric potential and magnetic field, and wave-particle interactions a diffusion equation was derived, in the drift (adiabatic) approximation and it was solved by using a Monte Carlo method. The results show that most of the observations can be explained within this framework. The simulation has also definitively shown that the electron parallel temperature is determined by the dc electromagnetic field and not by any wave particle induced heating. Wave-particle interactions are effective in smoothing out the large gradients in phase space produced by the 'reversible' motion of the electrons, thus producing a 'cooling' of the electrons. Some constraints on the wave-particle interaction process may be obtained from a detailed comparison between the simulation and observations. In particular, it appears that the adiabatic approximation must be violated in order to explain the observed evolution of the perpendicular temperature.
Energy distribution functions of kilovolt ions in a modified Penning discharge.
NASA Technical Reports Server (NTRS)
Roth, J. R.
1973-01-01
The distribution function of ion energy parallel to the magnetic field of a modified Penning discharge has been measured with a retarding potential energy analyzer. These ions escaped through one of the throats of the magnetic mirror geometry. Simultaneous measurements of the ion energy distribution function perpendicular to the magnetic field have been made with a charge-exchange neutral detector. The ion energy distribution functions are approximately Maxwellian, and the parallel and perpendicular kinetic temperatures are equal within experimental error. These results suggest that turbulent processes previously observed in this discharge Maxwellianize the velocity distribution along a radius in velocity space, and result in an isotropic energy distribution.
Energy distribution functions of kilovolt ions in a modified Penning discharge.
NASA Technical Reports Server (NTRS)
Roth, J. R.
1972-01-01
The distribution function of ion energy parallel to the magnetic field of a modified Penning discharge has been measured with a retarding potential energy analyzer. These ions escaped through one of the throats of the magnetic mirror geometry. Simultaneous measurements of the ion energy distribution function perpendicular to the magnetic field have been made with a charge-exchange neutral detector. The ion energy distribution functions are approximately Maxwellian, and the parallel and perpendicular kinetic temperatures are equal within experimental error. These results suggest that turbulent processes previously observed in this discharge Maxwellianize the velocity distribution along a radius in velocity space, and result in an isotropic energy distribution.
NASA Technical Reports Server (NTRS)
Forman, M. A.; Jokipii, J. R.
1978-01-01
The distribution function of cosmic rays streaming perpendicular to the mean magnetic field in a turbulent medium is reexamined. Urch's (1977) discovery that in quasi-linear theory, the flux is due to particles at 90 deg pitch angle is discussed and shown to be consistent with previous formulations of the theory. It is pointed out that this flux of particles at 90 deg cannot be arbitrarily set equal to zero, and hence the alternative theory which proceeds from this premise is dismissed. A further, basic inconsistency in Urch's transport equation is demonstrated, and the connection between quasi-linear theory and compound diffusion is discussed.
Two-axis magnetic field sensor
NASA Technical Reports Server (NTRS)
Smith, Carl H. (Inventor); Nordman, Catherine A. (Inventor); Jander, Albrecht (Inventor); Qian, Zhenghong (Inventor)
2006-01-01
A ferromagnetic thin-film based magnetic field sensor with first and second sensitive direction sensing structures each having a nonmagnetic intermediate layer with two major surfaces on opposite sides thereof having a magnetization reference layer on one and an anisotropic ferromagnetic material sensing layer on the other having a length in a selected length direction and a smaller width perpendicular thereto and parallel to the relatively fixed magnetization direction. The relatively fixed magnetization direction of said magnetization reference layer in each is oriented in substantially parallel to the substrate but substantially perpendicular to that of the other. An annealing process is used to form the desired magnetization directions.
Plasma Generator Using Spiral Conductors
NASA Technical Reports Server (NTRS)
Szatkowski, George N. (Inventor); Dudley, Kenneth L. (Inventor); Ticatch, Larry A. (Inventor); Smith, Laura J. (Inventor); Koppen, Sandra V. (Inventor); Nguyen, Truong X. (Inventor); Ely, Jay J. (Inventor)
2016-01-01
A plasma generator includes a pair of identical spiraled electrical conductors separated by dielectric material. Both spiraled conductors have inductance and capacitance wherein, in the presence of a time-varying electromagnetic field, the spiraled conductors resonate to generate a harmonic electromagnetic field response. The spiraled conductors lie in parallel planes and partially overlap one another in a direction perpendicular to the parallel planes. The geometric centers of the spiraled conductors define endpoints of a line that is non-perpendicular with respect to the parallel planes. A voltage source coupled across the spiraled conductors applies a voltage sufficient to generate a plasma in at least a portion of the dielectric material.
Current induced perpendicular-magnetic-anisotropy racetrack memory with magnetic field assistance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Y.; Klein, J.-O.; Chappert, C.
2014-01-20
High current density is indispensable to shift domain walls (DWs) in magnetic nanowires, which limits the using of racetrack memory (RM) for low power and high density purposes. In this paper, we present perpendicular-magnetic-anisotropy (PMA) Co/Ni RM with global magnetic field assistance, which lowers the current density for DW motion. By using a compact model of PMA RM and 40 nm design kit, we perform mixed simulation to validate the functionality of this structure and analyze its density potential. Stochastic DW motion behavior has been taken into account and statistical Monte-Carlo simulations are carried out to evaluate its reliability performance.
PLASMA TURBULENCE AND KINETIC INSTABILITIES AT ION SCALES IN THE EXPANDING SOLAR WIND
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hellinger, Petr; Trávnícek, Pavel M.; Matteini, Lorenzo
The relationship between a decaying strong turbulence and kinetic instabilities in a slowly expanding plasma is investigated using two-dimensional (2D) hybrid expanding box simulations. We impose an initial ambient magnetic field perpendicular to the simulation box, and we start with a spectrum of large-scale, linearly polarized, random-phase Alfvénic fluctuations that have energy equipartition between kinetic and magnetic fluctuations and vanishing correlation between the two fields. A turbulent cascade rapidly develops; magnetic field fluctuations exhibit a power-law spectrum at large scales and a steeper spectrum at ion scales. The turbulent cascade leads to an overall anisotropic proton heating, protons are heatedmore » in the perpendicular direction, and, initially, also in the parallel direction. The imposed expansion leads to generation of a large parallel proton temperature anisotropy which is at later stages partly reduced by turbulence. The turbulent heating is not sufficient to overcome the expansion-driven perpendicular cooling and the system eventually drives the oblique firehose instability in a form of localized nonlinear wave packets which efficiently reduce the parallel temperature anisotropy. This work demonstrates that kinetic instabilities may coexist with strong plasma turbulence even in a constrained 2D regime.« less
NASA Astrophysics Data System (ADS)
Vemulkar, T.; Mansell, R.; Petit, D. C. M. C.; Cowburn, R. P.; Lesniak, M. S.
2017-01-01
Perpendicularly magnetized microparticles offer the ability to locally apply high torques on soft matter under an applied magnetic field. These particles are engineered to have a zero remanence magnetic configuration via synthetic antiferromagnetic coupling using a Ru coupling interlayer. The flexibility offered by the top down thin film fabrication process in a CoFeB/Pt perpendicular thin film is demonstrated by using the Pt interlayer thicknesses in a Pt/Ru/Pt antiferromagnetic coupling multilayer to tune the applied magnetic field value of the easy axis spin-flip transition to saturation and hence the field value at which the magnetic particles are magnetically activated via a distinct transition to saturation. The importance of a Ta buffer layer on the magnetic behavior of the stack is shown. While Au capping layers are desirable for biotechnology applications, we demonstrate that they can drastically change the nucleation and propagation of domains in the film, thereby altering the reversal behavior of the thin film. The effect of Au underlayers on a multilayer thin film composed of repeated motifs of a synthetic antiferromagnetic building block is also investigated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahn, J. -W.; Briesemester, A. R.; Kobayashi, M.
Enhanced perpendicular heat and momentum transport induces parallel pressure loss leading to divertor detachment, which can be produced by the increase of density in 2D tokamaks. However, in the 3D configurations such as tokamaks with 3D fields and stellarators, the fraction of perpendicular transport can be higher even in a lower density regime, which could lead to the early transition to detachment without passing through the high-recycling regime. 3D fields applied to the limiter tokamak plasmas produce edge stochastic layers close to the last closed flux surface (LCFS), which can allow for enhanced perpendicular transport and indeed the absence ofmore » high recycling regime and early detachment have been observed in TEXTOR and Tore Supra. However, in the X-point divertor tokamaks with the applied 3D fields, the parallel transport is still dominant and the detachment facilitation has not been observed yet. Rather, 3D fields affected detachment adversely under certain conditions, either by preventing detachment onset as seen in DIII-D or by re-attaching the existing detached plasma as shown in NSTX. The possible way for strong 3D effects to induce access to the early detachment in divertor tokamaks appears to be via significant perpendicular loss of parallel momentum by frictional force for the counter-streaming flows between neighboring flow channels in the divertor. In principle, the adjacent lobes in the 3D divertor tokamak may generate the counter-streaming flow channels. However, an EMC3-EIRENE simulation for ITER H-mode plasmas demonstrated that screened RMP leads to significantly reduced counter-flows near the divertor target, therefore the momentum loss effect leading to detachment facilitation is expected to be small. This is consistent with the observation in LHD, which showed screening (amplification) of RMP fields in the attachment (stable detachment) case. In conclusion, work for optimal parameter window for best divertor operation scenario is needed particularly for the 3D divertor tokamak configuration.« less
Effect of 3D magnetic perturbations on divertor conditions and detachment in tokamak and stellarator
Ahn, J. -W.; Briesemester, A. R.; Kobayashi, M.; ...
2017-06-22
Enhanced perpendicular heat and momentum transport induces parallel pressure loss leading to divertor detachment, which can be produced by the increase of density in 2D tokamaks. However, in the 3D configurations such as tokamaks with 3D fields and stellarators, the fraction of perpendicular transport can be higher even in a lower density regime, which could lead to the early transition to detachment without passing through the high-recycling regime. 3D fields applied to the limiter tokamak plasmas produce edge stochastic layers close to the last closed flux surface (LCFS), which can allow for enhanced perpendicular transport and indeed the absence ofmore » high recycling regime and early detachment have been observed in TEXTOR and Tore Supra. However, in the X-point divertor tokamaks with the applied 3D fields, the parallel transport is still dominant and the detachment facilitation has not been observed yet. Rather, 3D fields affected detachment adversely under certain conditions, either by preventing detachment onset as seen in DIII-D or by re-attaching the existing detached plasma as shown in NSTX. The possible way for strong 3D effects to induce access to the early detachment in divertor tokamaks appears to be via significant perpendicular loss of parallel momentum by frictional force for the counter-streaming flows between neighboring flow channels in the divertor. In principle, the adjacent lobes in the 3D divertor tokamak may generate the counter-streaming flow channels. However, an EMC3-EIRENE simulation for ITER H-mode plasmas demonstrated that screened RMP leads to significantly reduced counter-flows near the divertor target, therefore the momentum loss effect leading to detachment facilitation is expected to be small. This is consistent with the observation in LHD, which showed screening (amplification) of RMP fields in the attachment (stable detachment) case. In conclusion, work for optimal parameter window for best divertor operation scenario is needed particularly for the 3D divertor tokamak configuration.« less
Effect of 3D magnetic perturbations on divertor conditions and detachment in tokamak and stellarator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahn, J. -W.; Briesemester, A. R.; Kobayashi, M.
Enhanced perpendicular heat and momentum transport induces parallel pressure loss leading to divertor detachment, which can be produced by the increase of density in 2D tokamaks. However, in the 3D configurations such as tokamaks with 3D fields and stellarators, the fraction of perpendicular transport can be higher even in a lower density regime, which could lead to the early transition to detachment without passing through the high-recycling regime. 3D fields applied to the limiter tokamak plasmas produce edge stochastic layers close to the last closed flux surface (LCFS), which can allow for enhanced perpendicular transport and indeed the absence ofmore » high recycling regime and early detachment have been observed in TEXTOR and Tore Supra. However, in the X-point divertor tokamaks with the applied 3D fields, the parallel transport is still dominant and the detachment facilitation has not been observed yet. Rather, 3D fields affected detachment adversely under certain conditions, either by preventing detachment onset as seen in DIII-D or by re-attaching the existing detached plasma as shown in NSTX. The possible way for strong 3D effects to induce access to the early detachment in divertor tokamaks appears to be via significant perpendicular loss of parallel momentum by frictional force for the counter-streaming flows between neighboring flow channels in the divertor. In principle, the adjacent lobes in the 3D divertor tokamak may generate the counter-streaming flow channels. However, an EMC3-EIRENE simulation for ITER H-mode plasmas demonstrated that screened RMP leads to significantly reduced counter-flows near the divertor target, therefore the momentum loss effect leading to detachment facilitation is expected to be small. This is consistent with the observation in LHD, which showed screening (amplification) of RMP fields in the attachment (stable detachment) case. In conclusion, work for optimal parameter window for best divertor operation scenario is needed particularly for the 3D divertor tokamak configuration.« less
Chiba, D; Kawaguchi, M; Fukami, S; Ishiwata, N; Shimamura, K; Kobayashi, K; Ono, T
2012-06-06
Controlling the displacement of a magnetic domain wall is potentially useful for information processing in magnetic non-volatile memories and logic devices. A magnetic domain wall can be moved by applying an external magnetic field and/or electric current, and its velocity depends on their magnitudes. Here we show that the applying an electric field can change the velocity of a magnetic domain wall significantly. A field-effect device, consisting of a top-gate electrode, a dielectric insulator layer, and a wire-shaped ferromagnetic Co/Pt thin layer with perpendicular anisotropy, was used to observe it in a finite magnetic field. We found that the application of the electric fields in the range of ± 2-3 MV cm(-1) can change the magnetic domain wall velocity in its creep regime (10(6)-10(3) m s(-1)) by more than an order of magnitude. This significant change is due to electrical modulation of the energy barrier for the magnetic domain wall motion.
MMS Multipoint Electric Field Observations of Small-Scale Magnetic Holes
NASA Technical Reports Server (NTRS)
Goodrich, Katherine A.; Ergun, Robert E.; Wilder, Frederick; Burch, James; Torbert, Roy; Khotyaintsev, Yuri; Lindqvist, Per-Arne; Russell, Christopher; Strangeway, Robert; Magnus, Werner
2016-01-01
Small-scale magnetic holes (MHs), local depletions in magnetic field strength, have been observed multiple times in the Earths magnetosphere in the bursty bulk flow (BBF) braking region. This particular subset of MHs has observed scale sizes perpendicular to the background magnetic field (B) less than the ambient ion Larmor radius (p(sib i)). Previous observations by Time History of Events and Macroscale Interactions during Substorms (THEMIS) indicate that this subset of MHs can be supported by a current driven by the E x B drift of electrons. Ions do not participate in the E x B drift due to the small-scale size of the electric field. While in the BBF braking region, during its commissioning phase, the Magnetospheric Multiscale (MMS) spacecraft observed a small-scale MH. The electric field observations taken during this event suggest the presence of electron currents perpendicular to the magnetic field. These observations also suggest that these currents can evolve to smaller spatial scales.
NASA Technical Reports Server (NTRS)
Xing, W.; Heinrich, B.; Zhou, HU; Fife, A. A.; Cragg, A. R.; Grant, P. D.
1995-01-01
Mapping of the magnetic flux density B(sub z) (perpendicular to the film plane) for a YBa2Cu3O7 thin-film sample was carried out using a scanning micro-Hall probe. The sheet magnetization and sheet current densities were calculated from the B(sub z) distributions. From the known sheet magnetization, the tangential (B(sub x,y)) and normal components of the flux density B were calculated in the vicinity of the film. It was found that the sheet current density was mostly determined by 2B(sub x,y)/d, where d is the film thickness. The evolution of flux penetration as a function of applied field will be shown.
Morphology and ionization of the interstellar cloud surrounding the solar system.
Frisch, P C
1994-09-02
The first encounter between the sun and the surrounding interstellar cloud appears to have occurred 2000 to 8000 years ago. The sun and cloud space motions are nearly perpendicular, an indication that the sun is skimming the cloud surface. The electron density derived for the surrounding cloud from the carbon component of the anomalous cosmic ray population in the solar system and from the interstellar ratio of Mg(+) to Mg degrees toward Sirius support an equilibrium model for cloud ionization (an electron density of 0.22 to 0.44 per cubic centimeter). The upwind magnetic field direction is nearly parallel to the cloud surface. The relative sun-cloud motion indicates that the solar system has a bow shock.
NASA Astrophysics Data System (ADS)
Sun, Wenxiu; Liu, Guoqiang; Xia, Hui; Xia, Zhengwu
2018-03-01
Accurate acquisition of the detection signal travel time plays a very important role in cross-hole tomography. The experimental platform of aluminum plate under the perpendicular magnetic field is established and the bilinear time-frequency analysis methods, Wigner-Ville Distribution (WVD) and the pseudo-Wigner-Ville distribution (PWVD), are applied to analyse the Lamb wave signals detected by electromagnetic acoustic transducer (EMAT). By extracting the same frequency component of the time-frequency spectrum as the excitation frequency, the travel time information can be obtained. In comparison with traditional linear time-frequency analysis method such as short-time Fourier transform (STFT), the bilinear time-frequency analysis method PWVD is more appropriate in extracting travel time and recognizing patterns of Lamb wave.
Shock drift acceleration in the presence of waves
NASA Technical Reports Server (NTRS)
Decker, R. B.; Vlahos, L.
1985-01-01
Attention is given to the initial results of a model designed to study the modification of the scatter-free, shock drift acceleration of energetic test particles by wave activity in the vicinity of a quasi-perpendicular, fast-mode MHD shock. It is emphasized that the concept of magnetic moment conservation is a valid approximation only in the perpendicular and nearly perpendicular regimes, when the angle theta-Bn between the shock normal and the upstream magnetic field vector is in the range from 70 deg to 90 deg. The present investigation is concerned with one step in a program which is being developed to combine the shock drift and diffusive processes at a shock of arbitrary theta-Bn.
Magnetic Fields in Blazar Jets: Jet-Alignment of Radio and Optical Polarization over 20-30 Years
NASA Astrophysics Data System (ADS)
Wills, Beverley J.; Aller, M. F.; Caldwell, C.; Aller, H. D.
2012-01-01
Blazars are highly active nuclei of distant galaxies. They produce synchrotron-emitting relativistic jets on scales of less than a parsec to many Kpc. When viewed head-on, as opposed to in the plane of the sky, the jet motion appears superluminal, and the emission is Doppler boosted. Blazars show rapid radio and optical variability in flux density and polarization. There are two types of blazars that can have strong synchrotron continua: some quasars with strong broad emission lines, and BL Lac objects with weak or undetected broad lines. We have compiled optical linear polarization measurements of more than 100 blazars, including archival data from McDonald Observatory. While the optical data are somewhat sparsely sampled, The University of Michigan Radio Astronomical Observatory observed many blazars over 20-30 years, often well-sampled over days to weeks, enabling quasi-simultaneous comparison of optical and radio polarization position angles (EVPAs). We also collected data on jet direction -- position angles of the jet component nearest the radio core. The project is unique in examining the polarization and jet behavior over many years. BL Lac objects tend to have stable optically thin EVPA in the jet direction, meaning magnetic field is perpendicular to jet flow, often interpreted as the magnetic field compressed by shocks. In quasar-blazars optical and radio EVPA often changes between parallel or perpendicular to the jet direction, even in the same object. The underlying B field of the jet is is parallel to the flow, with approximately 90 degree changes resulting from shocks. For both BL Lac objects & quasars, the scatter in EVPA usually increases from low frequencies (4.8 GHz) through 14.5 GHz through optical. The wide optical-radio frequency range allows us to investigate optical depth effects and the spatial origin of radio and optical emission.
Jackson, J.A.; Cooper, R.K.
1980-10-10
The patent consists of means for producing a region of homogeneous magnetic field remote from the source of the field, wherein two equal field sources are arranged axially so their fields oppose, producing a region near the plane perpendicular to the axis midway between the sources where the radial correspondent of the field goes through a maximum. Near the maximum, the field is homogeneous over prescribed regions.
CoPtB(O) alloy films as new perpendicular recording media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayashi, K.; Hayakawa, M.; Ohmori, H.
In search of new hard magnetic materials with high saturation magnetization and large coercivity, a comprehensive study was made on numerous Co- and CoPt-base crystalline alloys by means of sputtering techniques. It revealed that a newly found CoPtB(O) alloy system possessed excellent hard magnetic properties with remarkably large perpendicular coercivity and high saturation magnetization. This new alloy film, deposited onto room temperature substrates, shows the magnetic properties of 4{pi}{ital M}{sub {ital s}}=12 kG, {ital H}{sup {perpendicular}}{sub {ital c}}=4000 Oe, and perpendicular anisotropy field {ital H}{sub {ital k}}=22 kOe. These values are superior to those of prevailing materials such as CoCrmore » perpendicular and CoPt or CoNi longitudinal recording media. The typical composition is Co{sub 69}Pt{sub 20}B{sub 6}O{sub 5} (at. %), and oxygen plays a momentous role on the coercivity in this alloy film. As a magnetic recording medium, a write/read experiment of this film shows that the readout signal has a +9 dB peak-to-peak amplitude compared with that of metal particle tape at 1 {mu}m wavelength and has +10 dB compared with that of a CoCr perpendicular medium at 0.5 {mu}m wavelength.« less
Magnetization of a quantum spin system induced by a linear polarized laser
NASA Astrophysics Data System (ADS)
Zvyagin, A. A.
2015-08-01
It is shown that a linear polarized laser can cause magnetization of a spin system with magnetic anisotropy, the distinguished axis of which is perpendicular to the polarization of the laser field. In the dynamical regime the magnetization oscillates around the nonzero value determined by the parameters of the system. Oscillations have the frequency of the laser field, modulated by the lower Rabi-like frequencies. In the steady-state regime, for a large time scale greater than the characteristic relaxation time, the Rabi-like oscillations are damped, and the magnetization oscillates with the frequency of the laser field around the value which is determined by the relaxation rate also. Analytic results are presented for the spin-1/2 chain. The most direct manifestation of such a behavior can be observed in spin-1/2 Ising chain materials if the linear polarization of the laser field is chosen to be perpendicular to the Ising axis.
Anisotropic magnetotail equilibrium and convection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hau, L.N.
This paper reports on self-consistent two-dimensional equilibria with anisotropic plasma pressure for the Earth's magnetotail. These configurations are obtained by numerically solving the generalized Grad-Shafranov equation, describing anisotropic plasmas with p[parallel] [ne] p[perpendicular], including the Earth's dipolar field. Consistency between these new equilibria and the assumption of steady-state, sunward convection, described by the double-adiabatic laws, is examined. As for the case of isotropic pressure [Erickson and Wolf, 1980], there exists a discrepancy between typical quite-time magnetic field models and the assumption of steady-state double-adiabatic lossless plasma sheet convection. However, unlike that case, this inconsistency cannot be removed by the presencemore » of a weak equatorial normal magnetic field strength in the near tail region: magnetic field configurations of this type produce unreasonably large pressure anisotropies, p[parallel] > p[perpendicular], in the plasma sheet. 16 refs., 5 figs.« less
Reverse Electrorheological Effect:. a Suspension of Colloidal Motors
NASA Astrophysics Data System (ADS)
Lemaire, E.; Lobry, L.
We present an experimental evidence of a "colloidal motor" behavior of a suspension. Previous attempts to observe such a phenomenon with ferrofluids under alternating magnetic fields have failed. Here, negative viscosity is obtained by making use of Quincke rotation: the spontaneous rotation of insulating particles suspended in a weakly conducting liquid when the system is submitted to a DC electric field. In such a case, particles rotate around any axis perpendicular to the applied field, nevertheless, when a velocity gradient (simple shear rate) is applied along the E field direction, the particles rotation axes will be favored in the vorticity direction (the direction perpendicular to the suspension velocity and the velocity gradient). The collective movement of particles drives the surrounding liquid and then leads to a reduction of the apparent viscosity of the suspension. The decrease in viscosity is sufficiently important for the liquid to flow while no submitted to any mechanical stress.
A gyrofluid description of Alfvenic turbulence and its parallel electric field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bian, N. H.; Kontar, E. P.
2010-06-15
Anisotropic Alfvenic fluctuations with k{sub ||}/k{sub perpendicular}<<1 remain at frequencies much smaller than the ion cyclotron frequency in the presence of a strong background magnetic field. Based on the simplest truncation of the electromagnetic gyrofluid equations in a homogeneous plasma, a model for the energy cascade produced by Alfvenic turbulence is constructed, which smoothly connects the large magnetohydrodynamics scales and the small 'kinetic' scales. Scaling relations are obtained for the electromagnetic fluctuations, as a function of k{sub perpendicular} and k{sub ||}. Moreover, a particular attention is paid to the spectral structure of the parallel electric field which is produced bymore » Alfvenic turbulence. The reason is the potential implication of this parallel electric field in turbulent acceleration and transport of particles. For electromagnetic turbulence, this issue was raised some time ago in Hasegawa and Mima [J. Geophys. Res. 83, 1117 (1978)].« less
NASA Astrophysics Data System (ADS)
Geurts, Bernard J.; Wiegel, Frederik W.; Creswick, Richard J.
1990-05-01
The motion in the plane of an harmonically bound charged particle interacting with a magnetic field and a half-plane barrier along the positive x-axis is studied. The magnetic field is perpendicular to the plane in which the particle moves. This motion is integrable in between collisions of the particle with the barrier. However, the overall motion of the particle is very complicated. Chaotic regions in phase space exist next to island structures associated with linearly stable periodic orbits. We study in detail periodic orbits of low period and in particular their bifurcation behavior. Independent sequences of period doubling bifurcations and resonant bifurcations are observed associated with independent fixed points in the Poincaré section. Due to the perpendicular magnetic field an orientation is induced on the plane and time-reversal symmetry is broken.
NASA Astrophysics Data System (ADS)
Schlickeiser, R.; Krakau, S.; Supsar, M.
2013-11-01
The interaction of TeV gamma-rays from distant blazars with the extragalactic background light produces relativistic electron-positron pair beams by the photon-photon annihilation process. Using the linear instability analysis in the kinetic limit, which properly accounts for the longitudinal and the small but finite perpendicular momentum spread in the pair momentum distribution function, the growth rate of parallel propagating electrostatic oscillations in the intergalactic medium is calculated. Contrary to the claims of Miniati and Elyiv, we find that neither the longitudinal nor the perpendicular spread in the relativistic pair distribution function significantly affect the electrostatic growth rates. The maximum kinetic growth rate for no perpendicular spread is even about an order of magnitude greater than the corresponding reactive maximum growth rate. The reduction factors in the maximum growth rate due to the finite perpendicular spread in the pair distribution function are tiny and always less than 10-4. We confirm earlier conclusions by Broderick et al. and our group that the created pair beam distribution function is quickly unstable in the unmagnetized intergalactic medium. Therefore, there is no need to require the existence of small intergalactic magnetic fields to scatter the produced pairs, so that the explanation (made by several authors) for the Fermi non-detection of the inverse Compton scattered GeV gamma-rays by a finite deflecting intergalactic magnetic field is not necessary. In particular, the various derived lower bounds for the intergalactic magnetic fields are invalid due to the pair beam instability argument.
Plasmonic Antenna Coupling for QWIPs
NASA Technical Reports Server (NTRS)
Hong, John
2007-01-01
In a proposed scheme for coupling light into a quantum-well infrared photodetector (QWIP), an antenna or an array of antennas made of a suitable metal would be fabricated on the face of what would otherwise be a standard QWIP. This or any such coupling scheme is required to effect polarization conversion: Light incident perpendicularly to the face is necessarily polarized in the plane of the face, whereas, as a matter of fundamental electrodynamics and related quantum selection rules, light must have a non-zero component of perpendicular polarization in order to be absorbed in the photodetection process. In a prior coupling scheme, gratings in the form of surface corrugations diffract normally gles, thereby imparting some perpendicular polarization. Unfortunately, the corrugation- fabrication process increases the overall nonuniformity of a large QWIP array. The proposed scheme is an alternative to the use of surface corrugations.
The coil orientation dependency of the electric field induced by TMS for M1 and other brain areas.
Janssen, Arno M; Oostendorp, Thom F; Stegeman, Dick F
2015-05-17
The effectiveness of transcranial magnetic stimulation (TMS) depends highly on the coil orientation relative to the subject's head. This implies that the direction of the induced electric field has a large effect on the efficiency of TMS. To improve future protocols, knowledge about the relationship between the coil orientation and the direction of the induced electric field on the one hand, and the head and brain anatomy on the other hand, seems crucial. Therefore, the induced electric field in the cortex as a function of the coil orientation has been examined in this study. The effect of changing the coil orientation on the induced electric field was evaluated for fourteen cortical targets. We used a finite element model to calculate the induced electric fields for thirty-six coil orientations (10 degrees resolution) per target location. The effects on the electric field due to coil rotation, in combination with target site anatomy, have been quantified. The results confirm that the electric field perpendicular to the anterior sulcal wall of the central sulcus is highly susceptible to coil orientation changes and has to be maximized for an optimal stimulation effect of the motor cortex. In order to obtain maximum stimulation effect in areas other than the motor cortex, the electric field perpendicular to the cortical surface in those areas has to be maximized as well. Small orientation changes (10 degrees) do not alter the induced electric field drastically. The results suggest that for all cortical targets, maximizing the strength of the electric field perpendicular to the targeted cortical surface area (and inward directed) optimizes the effect of TMS. Orienting the TMS coil based on anatomical information (anatomical magnetic resonance imaging data) about the targeted brain area can improve future results. The standard coil orientations, used in cognitive and clinical neuroscience, induce (near) optimal electric fields in the subject-specific head model in most cases.
Optical detection of oil on water
NASA Technical Reports Server (NTRS)
Millard, J. P.; Arvesen, J. C.
1973-01-01
Three radiometric techniques utilizing sunlight reflected and backscattered from water bodies have potential application for remote sensing of oil spills. Oil on water can be detected by viewing perpendicular polarization component of reflected light or difference between polarization components. Best detection is performed in ultraviolet or far-red portions of spectrum and in azimuth directions toward or opposite sun.
NASA Astrophysics Data System (ADS)
Suto, Hirofumi; Kanao, Taro; Nagasawa, Tazumi; Mizushima, Koichi; Sato, Rie
2018-05-01
Microwave-assisted magnetization switching (MAS) is attracting attention as a method for reversing nanomagnets with a high magnetic anisotropy by using a small-amplitude magnetic field. We experimentally study MAS of a perpendicularly magnetized nanomagnet by applying a microwave magnetic field with a time-varying frequency. Because the microwave field frequency can follow the nonlinear decrease of the resonance frequency, larger magnetization excitation than that in a constant-frequency microwave field is induced, which enhances the MAS effect. The switching field decreases almost linearly as the start value of the time-varying microwave field frequency increases, and it becomes smaller than the minimum switching field in a constant-frequency microwave field. To obtain this enhancement of the MAS effect, the end value of the time-varying microwave field frequency needs to be almost the same as or lower than the critical frequency for MAS in a constant-frequency microwave field. In addition, the frequency change typically needs to take 1 ns or longer to make the rate of change slow enough for the magnetization to follow the frequency change. This switching behavior is qualitatively explained by the theory based on the macrospin model.
Field gradients can control the alignment of nanorods.
Ooi, Chinchun; Yellen, Benjamin B
2008-08-19
This work is motivated by the unexpected experimental observation that field gradients can control the alignment of nonmagnetic nanorods immersed inside magnetic fluids. In the presence of local field gradients, nanorods were observed to align perpendicular to the external field at low field strengths, but parallel to the external field at high field strengths. The switching behavior results from the competition between a preference to align with the external field (orientational potential energy) and preference to move into regions of minimum magnetic field (positional potential energy). A theoretical model is developed to explain this experimental behavior by investigating the statistics of nanorod alignment as a function of both the external uniform magnetic field strength and the local magnetic field variation above a periodic array of micromagnets. Computational phase diagrams are developed which indicate that the relative population of nanorods in parallel and perpendicular states can be adjusted through several control parameters. However, an energy barrier to rotation was discovered to influence the rate kinetics and restrict the utility of this assembly technique to nanorods which are slightly shorter than the micromagnet length. Experimental results concerning the orientation of nanorods inside magnetic fluid are also presented and shown to be in strong agreement with the theoretical work.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grigorenko, E. E., E-mail: elenagrigorenko2003@yahoo.com; Malova, H. V., E-mail: hmalova@yandex.ru; Malykhin, A. Yu., E-mail: anmaurdreg@gmail.com
2015-01-15
The influence of the shear magnetic field component, which is directed along the electric current in the current sheet (CS) of the Earth’s magnetotail and enhanced near the neutral plane of the CS, on the nonadiabatic dynamics of ions interacting with the CS is studied. The results of simulation of the nonadiabatic ion motion in the prescribed magnetic configuration similar to that observed in the magnetotail CS by the CLUSTER spacecraft demonstrated that, in the presence of some initial shear magnetic field, the north-south asymmetry in the ion reflection/refraction in the CS is observed. This asymmetry leads to the formationmore » of an additional current system formed by the oppositely directed electric currents flowing in the northern and southern parts of the plasma sheet in the planes tangential to the CS plane and in the direction perpendicular to the direction of the electric current in the CS. The formation of this current system perhaps is responsible for the enhancement and further maintenance of the shear magnetic field near the neutral plane of the CS. The CS structure and ion dynamics observed in 17 intervals of the CS crossings by the CLUSTER spacecraft is analyzed. In these intervals, the shear magnetic field was increased near the neutral plane of the CS, so that the bell-shaped spatial distribution of this field across the CS plane was observed. The results of the present analysis confirm the suggested scenario of the enhancement of the shear magnetic field near the neutral plane of the CS due to the peculiarities of the nonadiabatic ion dynamics.« less
Streamer properties and associated x-rays in perturbed air
NASA Astrophysics Data System (ADS)
Köhn, C.; Chanrion, O.; Babich, L. P.; Neubert, T.
2018-01-01
Streamers are ionization waves in electric discharges. One of the key ingredients of streamer propagation is an ambient gas that serves as a source of free electrons. Here, we explore the dependence of streamer dynamics on different spatial distributions of ambient air molecules. We vary the spatial profile of air parallel and perpendicular to the ambient electric field. We consider local sinusoidal perturbations of 5%-100%, as induced from discharge shock waves. We use a cylindrically symmetric particle-in-cell code to simulate the evolution of bidirectional streamers and compare the electron density, electric field, streamer velocity and electron energy of streamers in uniform air and in perturbed air. In all considered cases, the motion is driven along in decreasing air density and damped along increasing air density. Perturbations of at most 5%-10% change the velocity differences by up to approximately 40%. Perturbations perpendicular to the electric field additionally squeeze or branch streamers. Air variations can thus partly explain the difference of velocities and morphologies of streamer discharges. In cases with large perturbations, electrons gain energies of up to 30 keV compared to 100 eV in uniformly distributed air. For such perturbations parallel to the ambient electric field, we see the spontaneous initiation of a negative streamer; for perpendicular perturbations, x-rays with energies of up to 20 keV are emitted within 0.17 ns.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chacon, Luis; del-Castillo-Negrete, Diego; Hauck, Cory D.
2014-09-01
We propose a Lagrangian numerical algorithm for a time-dependent, anisotropic temperature transport equation in magnetized plasmas in the large guide field regime. The approach is based on an analytical integral formal solution of the parallel (i.e., along the magnetic field) transport equation with sources, and it is able to accommodate both local and non-local parallel heat flux closures. The numerical implementation is based on an operator-split formulation, with two straightforward steps: a perpendicular transport step (including sources), and a Lagrangian (field-line integral) parallel transport step. Algorithmically, the first step is amenable to the use of modern iterative methods, while themore » second step has a fixed cost per degree of freedom (and is therefore scalable). Accuracy-wise, the approach is free from the numerical pollution introduced by the discrete parallel transport term when the perpendicular to parallel transport coefficient ratio X ⊥ /X ∥ becomes arbitrarily small, and is shown to capture the correct limiting solution when ε = X⊥L 2 ∥/X1L 2 ⊥ → 0 (with L∥∙ L⊥ , the parallel and perpendicular diffusion length scales, respectively). Therefore, the approach is asymptotic-preserving. We demonstrate the capabilities of the scheme with several numerical experiments with varying magnetic field complexity in two dimensions, including the case of transport across a magnetic island.« less
Thick Disks in the Hubble Space Telescope Frontier Fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elmegreen, Bruce G.; Elmegreen, Debra Meloy; Tompkins, Brittany
Thick disk evolution is studied using edge-on galaxies in two Hubble Space Telescope Frontier Field Parallels. The galaxies were separated into 72 clumpy types and 35 spiral types with bulges. Perpendicular light profiles in F435W, F606W, and F814W ( B , V , and I ) passbands were measured at 1 pixel intervals along the major axes and fitted to sech{sup 2} functions convolved with the instrument line spread function (LSF). The LSF was determined from the average point spread function of ∼20 stars in each passband and field, convolved with a line of uniform brightness to simulate disk blurring.more » A spread function for a clumpy disk was also used for comparison. The resulting scale heights were found to be proportional to galactic mass, with the average height for a 10{sup 10±0.5} M {sub ⊙} galaxy at z = 2 ± 0.5 equal to 0.63 ± 0.24 kpc. This value is probably the result of a blend between thin and thick disk components that cannot be resolved. Evidence for such two-component structure is present in an inverse correlation between height and midplane surface brightness. Models suggest that the thick disk is observed best between the clumps, and there the average scale height is 1.06 ± 0.43 kpc for the same mass and redshift. A 0.63 ± 0.68 mag V − I color differential with height is also evidence for a mixture of thin and thick components.« less
Large-scale particle acceleration by magnetic reconnection during solar flares
NASA Astrophysics Data System (ADS)
Li, X.; Guo, F.; Li, H.; Li, G.; Li, S.
2017-12-01
Magnetic reconnection that triggers explosive magnetic energy release has been widely invoked to explain the large-scale particle acceleration during solar flares. While great efforts have been spent in studying the acceleration mechanism in small-scale kinetic simulations, there have been rare studies that make predictions to acceleration in the large scale comparable to the flare reconnection region. Here we present a new arrangement to study this problem. We solve the large-scale energetic-particle transport equation in the fluid velocity and magnetic fields from high-Lundquist-number MHD simulations of reconnection layers. This approach is based on examining the dominant acceleration mechanism and pitch-angle scattering in kinetic simulations. Due to the fluid compression in reconnection outflows and merging magnetic islands, particles are accelerated to high energies and develop power-law energy distributions. We find that the acceleration efficiency and power-law index depend critically on upstream plasma beta and the magnitude of guide field (the magnetic field component perpendicular to the reconnecting component) as they influence the compressibility of the reconnection layer. We also find that the accelerated high-energy particles are mostly concentrated in large magnetic islands, making the islands a source of energetic particles and high-energy emissions. These findings may provide explanations for acceleration process in large-scale magnetic reconnection during solar flares and the temporal and spatial emission properties observed in different flare events.
Anisotropy of critical correlations in moderately delocalized cerium and actinide systems
NASA Astrophysics Data System (ADS)
Kioussis, Nicholas; Cooper, Bernard R.
1986-09-01
The equilibrium and excitation magnetic behavior of a class of cerium and light actinide compounds have been explained previously, in a theory first developed by Siemann and Cooper, in terms of a band-f-electron anisotropic hybridization-mediated two-ion interaction of the Coqblin-Schrieffer type. Using the same theory, we present here a calculation, within the random-phase approximation, of the longitudinal component of the static wave-vector-dependent susceptibility in the paramagnetic phase. The calculations have been performed in the presence of a cubic crystal field (CF) and yield results for the ratio of inverse critical correlation lengths, κ/κ⊥, parallel and perpendicular to the moment direction, that compare well with those of diffuse critical neutron scattering experiments. In Ce3+ (f1) compounds, we find that as the CF interaction (Γ7 ground state) predominates over the two-ion interaction, the relative strength of the coupling within the ferromagnetic \\{001\\} planes (with moments perpendicular to the planes) and that between the \\{001\\} planes is gradually reversed, resulting in a ratio κ/κ⊥ smaller than unity, as is experimentally observed. We also present results for the effect of differing intraionic (L-S, intermediate, and j-j) coupling on κ/κ⊥ for the case of Pu3+(f5) and U3+(f3) compounds.
Multi-code analysis of scrape-off layer filament dynamics in MAST
NASA Astrophysics Data System (ADS)
Militello, F.; Walkden, N. R.; Farley, T.; Gracias, W. A.; Olsen, J.; Riva, F.; Easy, L.; Fedorczak, N.; Lupelli, I.; Madsen, J.; Nielsen, A. H.; Ricci, P.; Tamain, P.; Young, J.
2016-11-01
Four numerical codes are employed to investigate the dynamics of scrape-off layer filaments in tokamak relevant conditions. Experimental measurements were taken in the MAST device using visual camera imaging, which allows the evaluation of the perpendicular size and velocity of the filaments, as well as the combination of density and temperature associated with the perturbation. A new algorithm based on the light emission integrated along the field lines associated with the position of the filament is developed to ensure that it is properly detected and tracked. The filaments are found to have velocities of the order of 1~\\text{km}~{{\\text{s}}-1} , a perpendicular diameter of around 2-3 cm and a density amplitude 2-3.5 times the background plasma. 3D and 2D numerical codes (the STORM module of BOUT++, GBS, HESEL and TOKAM3X) are used to reproduce the motion of the observed filaments with the purpose of validating the codes and of better understanding the experimental data. Good agreement is found between the 3D codes. The seeded filament simulations are also able to reproduce the dynamics observed in experiments with accuracy up to the experimental errorbar levels. In addition, the numerical results showed that filaments characterised by similar size and light emission intensity can have quite different dynamics if the pressure perturbation is distributed differently between density and temperature components. As an additional benefit, several observations on the dynamics of the filaments in the presence of evolving temperature fields were made and led to a better understanding of the behaviour of these coherent structures.
NASA Astrophysics Data System (ADS)
Daboo, C.; Bland, J. A. C.; Hicken, R. J.; Ives, A. J. R.; Baird, M. J.; Walker, M. J.
1993-05-01
We report the magnetization reversal and magnetic anisotropy behavior of ultrathin Co/Cu(111)/Co (dCu=20 and 27 Å) trilayer structures prepared by MBE on a 500-Å Ge/GaAs(110) epilayer. We describe an arrangement in which the magnetization components parallel and perpendicular to the applied field are both determined from longitudinal MOKE measurements. For the samples examined, coherent rotation of the magnetization vector is observed when the magnetic field is applied along the hard in-plane anisotropy axis, with the magnitude of the magnetization vector constant and close to its bulk value. Results of micromagnetic calculations closely reproduce the observed parallel and perpendicular magnetization loops, and yield strong uniaxial magnetic anisotropies in both layers while the interlayer coupling appears to be absent or negligible in comparison with the anisotropy strengths. An absence of antiferromagnetic (AF) coupling has been observed previously [W. F. Egelhoff, Jr. and M. T. Kief, Phys. Rev. B 45, 7795 (1992)] in contrast to recent results, indicating that AF coupling [M. T. Johnson et al., Phys. Rev. Lett. 69, 969 (1992)] and GMR [D. Grieg et al., J. Magn. Magn. Mater. 110, L239 (1992)] can occur in Co/Cu(111)/Co structures grown by MBE, but these properties are sensitively dependent on growth conditions. The absence of coupling in our samples is attributed to the presence of a significant interface roughness induced by the Ge epilayer. The uniaxial anisotropies are assumed to arise from strain or defects induced in the film.
Ion acceleration and heating by kinetic Alfvén waves associated with magnetic reconnection
NASA Astrophysics Data System (ADS)
Liang, Ji; Lin, Yu; Johnson, Jay R.; Wang, Zheng-Xiong; Wang, Xueyi
2017-10-01
Our previous study on the generation and signatures of kinetic Alfvén waves (KAWs) associated with magnetic reconnection in a current sheet revealed that KAWs are a common feature during reconnection [Liang et al. J. Geophys. Res.: Space Phys. 121, 6526 (2016)]. In this paper, ion acceleration and heating by the KAWs generated during magnetic reconnection are investigated with a three-dimensional (3-D) hybrid model. It is found that in the outflow region, a fraction of inflow ions are accelerated by the KAWs generated in the leading bulge region of reconnection, and their parallel velocities gradually increase up to slightly super-Alfvénic. As a result of wave-particle interactions, an accelerated ion beam forms in the direction of the anti-parallel magnetic field, in addition to the core ion population, leading to the development of non-Maxwellian velocity distributions, which include a trapped population with parallel velocities consistent with the wave speed. The ions are heated in both parallel and perpendicular directions. In the parallel direction, the heating results from nonlinear Landau resonance of trapped ions. In the perpendicular direction, however, evidence of stochastic heating by the KAWs is found during the acceleration stage, with an increase of magnetic moment μ. The coherence in the perpendicular ion temperature T⊥ and the perpendicular electric and magnetic fields of KAWs also provides evidence for perpendicular heating by KAWs. The parallel and perpendicular heating of the accelerated beam occur simultaneously, leading to the development of temperature anisotropy with T⊥>T∥ . The heating rate agrees with the damping rate of the KAWs, and the heating is dominated by the accelerated ion beam. In the later stage, with the increase of the fraction of the accelerated ions, interaction between the accelerated beam and the core population also contributes to the ion heating, ultimately leading to overlap of the beams and an overall anisotropy with T∥>T⊥ .
Ion acceleration and heating by kinetic Alfvén waves associated with magnetic reconnection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, Ji; Lin, Yu; Johnson, Jay R.
In a previous study on the generation and signatures of kinetic Alfv en waves (KAWs) associated with magnetic reconnection in a current sheet revealed that KAWs are a common feature during reconnection [Liang et al. J. Geophys. Res.: Space Phys. 121, 6526 (2016)]. In this paper, ion acceleration and heating by the KAWs generated during magnetic reconnection are investigated with a three-dimensional (3-D) hybrid model. It is found that in the outflow region, a fraction of inflow ions are accelerated by the KAWs generated in the leading bulge region of reconnection, and their parallel velocities gradually increase up to slightly super-Alfv enic. As a result of waveparticle interactions, an accelerated ion beam forms in the direction of the anti-parallel magnetic field, in addition to the core ion population, leading to the development of non-Maxwellian velocity distributions, which include a trapped population with parallel velocities consistent with the wave speed. We then heat ions in both parallel and perpendicular directions. In the parallel direction, the heating results from nonlinear Landau resonance of trapped ions. In the perpendicular direction, however, evidence of stochastic heating by the KAWs is found during the acceleration stage, with an increase of magnetic moment μ. The coherence in the T more » $$\\perp$$ ion temperature and the perpendicular electric and magnetic fields of KAWs also provides evidence for perpendicular heating by KAWs. The parallel and perpendicular heating of the accelerated beam occur simultaneously, leading to the development of temperature anisotropy with the perpendicular temperature T $$\\perp$$>T $$\\parallel$$ temperature. The heating rate agrees with the damping rate of the KAWs, and the heating is dominated by the accelerated ion beam. In the later stage, with the increase of the fraction of the accelerated ions, interaction between the accelerated beam and the core population also contributes to the ion heating, ultimately leading to overlap of the beams and an overall anisotropy with T $$\\perp$$>T $$\\parallel$$.« less
Ion acceleration and heating by kinetic Alfvén waves associated with magnetic reconnection
Liang, Ji; Lin, Yu; Johnson, Jay R.; ...
2017-09-19
In a previous study on the generation and signatures of kinetic Alfv en waves (KAWs) associated with magnetic reconnection in a current sheet revealed that KAWs are a common feature during reconnection [Liang et al. J. Geophys. Res.: Space Phys. 121, 6526 (2016)]. In this paper, ion acceleration and heating by the KAWs generated during magnetic reconnection are investigated with a three-dimensional (3-D) hybrid model. It is found that in the outflow region, a fraction of inflow ions are accelerated by the KAWs generated in the leading bulge region of reconnection, and their parallel velocities gradually increase up to slightly super-Alfv enic. As a result of waveparticle interactions, an accelerated ion beam forms in the direction of the anti-parallel magnetic field, in addition to the core ion population, leading to the development of non-Maxwellian velocity distributions, which include a trapped population with parallel velocities consistent with the wave speed. We then heat ions in both parallel and perpendicular directions. In the parallel direction, the heating results from nonlinear Landau resonance of trapped ions. In the perpendicular direction, however, evidence of stochastic heating by the KAWs is found during the acceleration stage, with an increase of magnetic moment μ. The coherence in the T more » $$\\perp$$ ion temperature and the perpendicular electric and magnetic fields of KAWs also provides evidence for perpendicular heating by KAWs. The parallel and perpendicular heating of the accelerated beam occur simultaneously, leading to the development of temperature anisotropy with the perpendicular temperature T $$\\perp$$>T $$\\parallel$$ temperature. The heating rate agrees with the damping rate of the KAWs, and the heating is dominated by the accelerated ion beam. In the later stage, with the increase of the fraction of the accelerated ions, interaction between the accelerated beam and the core population also contributes to the ion heating, ultimately leading to overlap of the beams and an overall anisotropy with T $$\\perp$$>T $$\\parallel$$.« less
NASA Astrophysics Data System (ADS)
Fraleigh, Robert Douglas
Magnetic systems with interacting ferromagnetic single-domain elements are a useful landscape to explore a wide range of fundamental and technological phenomena. In this dissertation, we consider a system of interacting ferromagnetic islands with perpendicular anisotropy. Islands are lithographically-defined to be single-domain and are arranged into large arrays with geometries that are geometrically frustrated and unfrustrated. We explore field-driven local and global magnetic switching behavior using a home-built diffraction-limited magneto-optical Kerr microscope wherein individual islands in each array are isolated, indexed, and tracked in the presence of an applied external field. Global and local switching behavior is directly accessed through analysis island switching fields in the presence of magnetic hysteresis loops. We first explore the considerations regarding lithographic definition of disconnected islands and deposition of Co/Pt multilayers with strong perpendicular anisotropy. The thickness and number of stacked Co/Pt bilayers as well as deposition method significantly affect the strength of perpendicular anisotropy. We find sputter deposition of a 8-stack bilayer of Co0.3 nm=Pt 1 nm optimizes strong perpendicular anisotropy with square hysteresis loops. Our experimental sample contains several sets of ordered arrays with varying geometry and inter-island spacing. Each island is single-domain with length scales amenable to Kerr imaging such that magnetic degrees of freedom are optically accessible. We next discuss the development, calibration, and operation of a home-built magneto-optical Kerr microscope. The Kerr microscope uses a xenon stabilized white light source, Glan-Thompson polarizers, and a 100x oil objective lens to illuminate a sample with linear polarized light. A cooled CCD camera receives the re ected light and transmits it to the computer in a sequence timed with the application of an external magnetic field. We use LabVIEW software to isolate, index, track, and extract intensity information and corresponding switching fields associated with individual islands in each array as a function of a magnetic field. We find the switching field distribution width is well-fit by a simple model comprising the sum of an array-independent contribution (interpreted as disorder-induced), and a term proportional to the maximum field the entire rest of the array could exert on a single island, i.e., in a fully polarized state. This supports the claim that disorder in these arrays is primarily a single-island property.
Symmetry breaking in SNS junctions: edge transport and field asymmetries
NASA Astrophysics Data System (ADS)
Suominen, Henri; Nichele, Fabrizio; Kjaergaard, Morten; Rasmussen, Asbjorn; Danon, Jeroen; Flensberg, Karsten; Levitov, Leonid; Shabani, Javad; Palmstrom, Chris; Marcus, Charles
We study magnetic diffraction patterns in a tunable superconductor-semiconductor-superconductor junction. By utilizing epitaxial growth of aluminum on InAs/InGaAs we obtain transparent junctions which display a conventional Fraunhofer pattern of the critical current as a function of applied perpendicular magnetic field, B⊥. By studying the angular dependence of the critical current with applied magnetic fields in the plane of the junction we find a striking anisotropy. We attribute this effect to dephasing of Andreev states in the bulk of the junction, leading to SQUID like behavior when the magnetic field is applied parallel to current flow. Furthermore, in the presence of both in-plane and perpendicular fields, asymmetries in +/-B⊥ are observed. We suggest possible origins and discuss the role of spin-orbit and Zeeman physics together with a background disorder potential breaking spatial symmetries of the junction. Research supported by Microsoft Project Q, the Danish National Research Foundation and the NSF through the National Nanotechnology Infrastructure Network.
NASA Astrophysics Data System (ADS)
Polley, Debanjan; Pancaldi, Matteo; Hudl, Matthias; Vavassori, Paolo; Urazhdin, Sergei; Bonetti, Stefano
2018-02-01
We study THz-driven spin dynamics in thin CoPt films with perpendicular magnetic anisotropy. Femtosecond magneto-optical Kerr effect measurements show that demagnetization amplitude of about 1% can be achieved with a peak THz electric field of 300 kV cm-1, and a corresponding peak magnetic field of 0.1 T. The effect is more than an order of magnitude larger than observed in samples with easy-plane anisotropy irradiated with the same field strength. We also utilize finite-element simulations to design a meta-material structure that can enhance the THz magnetic field by more than an order of magnitude, over an area of several tens of square micrometers. Magnetic fields exceeding 1 Tesla, generated in such meta-materials with the available laser-based THz sources, are expected to produce full magnetization reversal via ultrafast ballistic precession driven by the THz radiation. Our results demonstrate the possibility of table-top ultrafast magnetization reversal induced by THz radiation.
Ultrasonic Fluid Quality Sensor System
Gomm, Tyler J.; Kraft, Nancy C.; Phelps, Larry D.; Taylor, Steven C.
2003-10-21
A system for determining the composition of a multiple-component fluid and for determining linear flow comprising at least one sing-around circuit that determines the velocity of a signal in the multiple-component fluid and that is correlatable to a database for the multiple-component fluid. A system for determining flow uses two of the inventive circuits, one of which is set at an angle that is not perpendicular to the direction of flow.
Ultrasonic fluid quality sensor system
Gomm, Tyler J.; Kraft, Nancy C.; Phelps, Larry D.; Taylor, Steven C.
2002-10-08
A system for determining the composition of a multiple-component fluid and for determining linear flow comprising at least one sing-around circuit that determines the velocity of a signal in the multiple-component fluid and that is correlatable to a database for the multiple-component fluid. A system for determining flow uses two of the inventive circuits, one of which is set at an angle that is not perpendicular to the direction of flow.
NASA Astrophysics Data System (ADS)
Liu, Y. Y.; Xie, S. H.; Jin, G.; Li, J. Y.
2009-04-01
Magnetoelectric annealing is necessary to remove antiferromagnetic domains and induce macroscopic magnetoelectric effect in polycrystalline magnetoelectric materials, and in this paper, we study the effective magnetoelectric properties of perpendicularly annealed polycrystalline Cr2O3 using effective medium approximation. The effect of temperatures, grain aspect ratios, and two different types of orientation distribution function have been analyzed, and unusual material symmetry is observed when the orientation distribution function only depends on Euler angle ψ. Optimal grain aspect ratio and texture coefficient are also identified. The approach can be applied to analyze the microstructural field distribution and macroscopic properties of a wide range of magnetoelectric polycrystals.
Guo, Lili; Qi, Junwei; Xue, Wei
2018-01-01
This article proposes a novel active localization method based on the mixed polarization multiple signal classification (MP-MUSIC) algorithm for positioning a metal target or an insulator target in the underwater environment by using a uniform circular antenna (UCA). The boundary element method (BEM) is introduced to analyze the boundary of the target by use of a matrix equation. In this method, an electric dipole source as a part of the locating system is set perpendicularly to the plane of the UCA. As a result, the UCA can only receive the induction field of the target. The potential of each electrode of the UCA is used as spatial-temporal localization data, and it does not need to obtain the field component in each direction compared with the conventional fields-based localization method, which can be easily implemented in practical engineering applications. A simulation model and a physical experiment are constructed. The simulation and the experiment results provide accurate positioning performance, with the help of verifying the effectiveness of the proposed localization method in underwater target locating. PMID:29439495
Dehzangi, Arash; Abedini, Alam; Abdullah, Ahmad Makarimi; Saion, Elias; Hutagalung, Sabar D; Hamidon, Mohd N; Hassan, Jumiah
2012-01-01
Summary A double-lateral-gate p-type junctionless transistor is fabricated on a low-doped (1015) silicon-on-insulator wafer by a lithography technique based on scanning probe microscopy and two steps of wet chemical etching. The experimental transfer characteristics are obtained and compared with the numerical characteristics of the device. The simulation results are used to investigate the pinch-off mechanism, from the flat band to the off state. The study is based on the variation of the carrier density and the electric-field components. The device is a pinch-off transistor, which is normally in the on state and is driven into the off state by the application of a positive gate voltage. We demonstrate that the depletion starts from the bottom corner of the channel facing the gates and expands toward the center and top of the channel. Redistribution of the carriers due to the electric field emanating from the gates creates an electric field perpendicular to the current, toward the bottom of the channel, which provides the electrostatic squeezing of the current. PMID:23365794
The solar corona as probed by comet Lovejoy (C/2011 W3)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raymond, J. C.; McCauley, P. I.; Cranmer, S. R.
2014-06-20
Extreme-ultraviolet images of Comet Lovejoy (C/2011 W3) from the Atmospheric Imaging Assembly show striations related to the magnetic field structure in both open and closed magnetic regions. The brightness contrast implies coronal density contrasts of at least a factor of six between neighboring flux tubes over scales of a few thousand kilometers. These density structures imply variations in the Alfvén speed on a similar scale. They will drastically affect the propagation and dissipation of Alfvén waves, and that should be taken into account in models of coronal heating and solar wind acceleration. In each striation, the cometary emission moves alongmore » the magnetic field and broadens with time. The speed and the rate of broadening are related to the parallel and perpendicular components of the velocities of the cometary neutrals when they become ionized. We use a magnetohydrodynamic model of the coronal magnetic field and the theory of pickup ions to compare the measurements with theoretical predictions, in particular with the energy lost to Alfvén waves as the cometary ions isotropize.« less
Direct Reconstruction of Two-Dimensional Currents in Thin Films from Magnetic-Field Measurements
NASA Astrophysics Data System (ADS)
Meltzer, Alexander Y.; Levin, Eitan; Zeldov, Eli
2017-12-01
An accurate determination of microscopic transport and magnetization currents is of central importance for the study of the electric properties of low-dimensional materials and interfaces, of superconducting thin films, and of electronic devices. Current distribution is usually derived from the measurement of the perpendicular component of the magnetic field above the surface of the sample, followed by numerical inversion of the Biot-Savart law. The inversion is commonly obtained by deriving the current stream function g , which is then differentiated in order to obtain the current distribution. However, this two-step procedure requires filtering at each step and, as a result, oversmooths the solution. To avoid this oversmoothing, we develop a direct procedure for inversion of the magnetic field that avoids use of the stream function. This approach provides enhanced accuracy of current reconstruction over a wide range of noise levels. We further introduce a reflection procedure that allows for the reconstruction of currents that cross the boundaries of the measurement window. The effectiveness of our approach is demonstrated by several numerical examples.
NASA Astrophysics Data System (ADS)
Chacon, Luis; Del-Castillo-Negrete, Diego; Hauck, Cory
2012-10-01
Modeling electron transport in magnetized plasmas is extremely challenging due to the extreme anisotropy between parallel (to the magnetic field) and perpendicular directions (χ/χ˜10^10 in fusion plasmas). Recently, a Lagrangian Green's function approach, developed for the purely parallel transport case,footnotetextD. del-Castillo-Negrete, L. Chac'on, PRL, 106, 195004 (2011)^,footnotetextD. del-Castillo-Negrete, L. Chac'on, Phys. Plasmas, 19, 056112 (2012) has been extended to the anisotropic transport case in the tokamak-ordering limit with constant density.footnotetextL. Chac'on, D. del-Castillo-Negrete, C. Hauck, JCP, submitted (2012) An operator-split algorithm is proposed that allows one to treat Eulerian and Lagrangian components separately. The approach is shown to feature bounded numerical errors for arbitrary χ/χ ratios, which renders it asymptotic-preserving. In this poster, we will present the generalization of the Lagrangian approach to arbitrary magnetic fields. We will demonstrate the potential of the approach with various challenging configurations, including the case of transport across a magnetic island in cylindrical geometry.
Experimental signatures of the inverted phase in InAs/GaSb coupled quantum wells
NASA Astrophysics Data System (ADS)
Karalic, Matija; Mueller, Susanne; Mittag, Christopher; Pakrouski, Kiryl; Wu, QuanSheng; Soluyanov, Alexey A.; Troyer, Matthias; Tschirky, Thomas; Wegscheider, Werner; Ensslin, Klaus; Ihn, Thomas
2016-12-01
Transport measurements are performed on InAs/GaSb double quantum wells at zero and finite magnetic fields applied parallel and perpendicular to the quantum wells. We investigate a sample in the inverted regime where electrons and holes coexist, and compare it with another sample in the noninverted semiconducting regime. The activated behavior in conjunction with a strong suppression of the resistance peak at the charge neutrality point in a parallel magnetic field attest to the topological hybridization gap between electron and hole bands in the inverted sample. We observe an unconventional Landau level spectrum with energy gaps modulated by the magnetic field applied perpendicular to the quantum wells. This is caused by a strong spin-orbit interaction provided jointly by the InAs and the GaSb quantum wells.
Observation of low magnetic field density peaks in helicon plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barada, Kshitish K.; Chattopadhyay, P. K.; Ghosh, J.
2013-04-15
Single density peak has been commonly observed in low magnetic field (<100 G) helicon discharges. In this paper, we report the observations of multiple density peaks in low magnetic field (<100 G) helicon discharges produced in the linear helicon plasma device [Barada et al., Rev. Sci. Instrum. 83, 063501 (2012)]. Experiments are carried out using argon gas with m = +1 right helical antenna operating at 13.56 MHz by varying the magnetic field from 0 G to 100 G. The plasma density varies with varying the magnetic field at constant input power and gas pressure and reaches to its peakmore » value at a magnetic field value of {approx}25 G. Another peak of smaller magnitude in density has been observed near 50 G. Measurement of amplitude and phase of the axial component of the wave using magnetic probes for two magnetic field values corresponding to the observed density peaks indicated the existence of radial modes. Measured parallel wave number together with the estimated perpendicular wave number suggests oblique mode propagation of helicon waves along the resonance cone boundary for these magnetic field values. Further, the observations of larger floating potential fluctuations measured with Langmuir probes at those magnetic field values indicate that near resonance cone boundary; these electrostatic fluctuations take energy from helicon wave and dump power to the plasma causing density peaks.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Di; Department of Optical Science and Engineering, Key Laboratory of Micro and Nano Photonic Structures; Yu, Guoqiang, E-mail: guoqiangyu@ucla.edu
2016-05-23
We study spin-orbit-torque (SOT)-driven magnetization switching in perpendicularly magnetized Ta/Mo/Co{sub 40}Fe{sub 40}B{sub 20} (CoFeB)/MgO films. The thermal tolerance of the perpendicular magnetic anisotropy (PMA) is enhanced, and the films sustain the PMA at annealing temperatures of up to 430 °C, due to the ultra-thin Mo layer inserted between the Ta and CoFeB layers. More importantly, the Mo insertion layer also allows for the transmission of the spin current generated in the Ta layer due to spin Hall effect, which generates a damping-like SOT and is able to switch the perpendicular magnetization. When the Ta layer is replaced by a Pt layer,more » i.e., in a Pt/Mo/CoFeB/MgO multilayer, the direction of the SOT-induced damping-like effective field becomes opposite because of the opposite sign of spin Hall angle in Pt, which indicates that the SOT-driven switching is dominated by the spin current generated in the Ta or Pt layer rather than the Mo layer. Quantitative characterization through harmonic measurements reveals that the large SOT effective field is preserved for high annealing temperatures. This work provides a route to applying SOT in devices requiring high temperature processing steps during the back-end-of-line processes.« less
What band rocks the MTB? (Invited)
NASA Astrophysics Data System (ADS)
Kind, J.; García-Rubio, I.; Gehring, A. U.
2013-12-01
Magnetotactic bacteria (MTB) are a polyphyletic group of bacteria that have been found in marine and lacustrine environments and soils [e.g. 1]. The hallmark of MTB is their intracellular formation of magnetosomes, single-domain ferrimagnetic particles that are aligned in chains. The chain configuration generates a strong magnetic dipole, which is used as magnetic compass to move the MTB into their favorable habit. The term band corresponds to a frequency window of microwaves in the gigahertz (GHz) range. Ferromagnetic resonance (FMR) spectroscopy uses the microwave absorption in a magnetic field to analyze the anisotropy properties and the domain state of magnetic materials. Specific microwave frequency causes absorption in a characteristic magnetic field range. For the investigation of MTB we use S-band (4.02 GHz), X-band (9.47 GHz), and Q-band (34.16 GHz). Experiments on cultured MTB and on sediment samples of Holocene age showed that absorption in X- and Q-band occurs when the sample is in a saturated or nearly saturated state [2, 3]. By contrast, absorption in the S-band appears in lower magnetic fields, where the sample is far from saturation. All FMR spectra show two distinct low-field features that can be assigned to magnetite particles in chains, aligned parallel and perpendicular to the external magnetic field. The detailed separation of the parallel and perpendicular components in the bulk samples is hampered, because of the random orientation of the chains in the sample. The comparison of S-, X-, and Q-band shows that the lower the frequency the better the separation of the components. In the S-band FMR spectroscopy, the separation of chains parallel to the external magnetic field is supported by the internal field of the sample. This field is caused by the remanence that contributes to the external magnetic field to fulfill the resonance condition [3,4]. Considering the different FMR responses, it can be postulated that a lower microwave frequency generally leads to a better resolution of the chain configuration. Finally, for the investigation of geological samples, the application of S-band can be a powerful tool to complement the commonly used X-band FMR spectroscopy, i.e. multiple band rock the MTB. [1] Blakemore R.P., 1975, Magnetotactic bacteria, Science, 190, 377-379 [2] Mastogiacomo G., Fischer H., Garcia-Rubio I., and Gehring A. U., 2010, Ferromagnetic resonance spectroscopic response of magnetic chains in a biological matrix, J. Magn. Magn. Matter, 322, 661-663, doi: 10.1016/j.jmmm.2009.10.035 [3] Gehring A. U., Kind. J., Charilaou M., Garcia-Rubio I., 2011, S-band ferromagnetic resonance spectroscopy and the detection of magnetofossils, J. R. Soc. Interface, 10(80), doi: 10.1098/rsif.2012.0790 [4] Kind J., van Raden U., Garcia-Rubio I., and Gehring A. U., 2012, Rock magnetic techniques complemented by ferromagnetic resonance spectroscopy to analyse a sediment record, Geophys. J. Int., 191, 51-61, doi: 10.1111/j.1365-246X.2012.05620.x
Tailoring perpendicular magnetic coupling by XMCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Idzerda, Y. U.; Snow, R.; Bhatkar, H.
2017-01-10
The elemental perpendicular magnetic anisotropy constants of both elements of a 20 nm bcc Co 88Mn 12 alloy film grown on MgO(001) and capped with Al, have been determined. By fitting a Stoner-Wohlfarth astroid model to the measured Co and Mn L 3 XMCD peak intensities as a function of incidence photon angle with the magnetic field applied co-axially with the photon propagation direction, the elemental perpendicular anisotropy constants were found to be –6.46 x 10 5 J/m 3 and –6.68 x 10 5 J/m 3, respectively. The modeling of the Co and Mn data both result in nearly themore » same anisotropy constant as expected for a single alloy film.« less
Kubo number and magnetic field line diffusion coefficient for anisotropic magnetic turbulence.
Pommois, P; Veltri, P; Zimbardo, G
2001-06-01
The magnetic field line diffusion coefficients Dx and D(y) are obtained by numerical simulations in the case that all the magnetic turbulence correlation lengths l(x), l(y), and l(z) are different. We find that the variety of numerical results can be organized in terms of the Kubo number, the definition of which is extended from R=(deltaB/B(0))(l(parallel)/l(perpendicular)) to R=(deltaB/B(0))(l(z)/l(x)), for l(x) > or = l(y). Here, l(parallel) (l(perpendicular)) is the correlation length along (perpendicular to) the average field B(0)=B(0)ê(z). We have anomalous, non-Gaussian transport for R less, similar 0.1, in which case the mean square deviation scales nonlinearly with time. For R greater, similar 1 we have several Gaussian regimes: an almost quasilinear regime for 0.1 less, similar R less, similar 1, an intermediate, transition regime for 1 less, similar R less, similar 10, and a percolative regime for R greater, similar 10. An analytical form of the diffusion coefficient is proposed, D(i)=D(deltaBl(z)/B(0)l(x))(mu)(l(i)/l(x))(nu)l(2)(x)/l(z), which well describes the numerical simulation results in the quasilinear, intermediate, and percolative regimes.
Rudenko, Anton; Colombier, Jean-Philippe; Höhm, Sandra; Rosenfeld, Arkadi; Krüger, Jörg; Bonse, Jörn; Itina, Tatiana E
2017-09-26
Periodic self-organization of matter beyond the diffraction limit is a puzzling phenomenon, typical both for surface and bulk ultrashort laser processing. Here we compare the mechanisms of periodic nanostructure formation on the surface and in the bulk of fused silica. We show that volume nanogratings and surface nanoripples having subwavelength periodicity and oriented perpendicular to the laser polarization share the same electromagnetic origin. The nanostructure orientation is defined by the near-field local enhancement in the vicinity of the inhomogeneous scattering centers. The periodicity is attributed to the coherent superposition of the waves scattered at inhomogeneities. Numerical calculations also support the multipulse accumulation nature of nanogratings formation on the surface and inside fused silica. Laser surface processing by multiple laser pulses promotes the transition from the high spatial frequency perpendicularly oriented nanoripples to the low spatial frequency ripples, parallel or perpendicular to the laser polarization. The latter structures also share the electromagnetic origin, but are related to the incident field interference with the scattered far-field of rough non-metallic or transiently metallic surfaces. The characteristic ripple appearances are predicted by combined electromagnetic and thermo-mechanical approaches and supported by SEM images of the final surface morphology and by time-resolved pump-probe diffraction measurements.
Magnetic and exchange bias properties of YCo thin films and IrMn/YCo bilayers
NASA Astrophysics Data System (ADS)
Venkat Narayana, M.; Manivel Raja, M.; Jammalamadaka, S. Narayana
2018-02-01
We report on the structural and magnetic properties of YCo thin films and IrMn/YCo bilayers. X-ray diffraction infer that all the films are amorphous in nature. Magnetization versus magnetic field measurements reveal room temperature soft ferromagnetism in all the YCo films. Thin films which were grown at 100 W sputter power with growth rates of 0.677, 0.694 and 0.711 Å/sec show better morphology and composition than 50 W (0.333, 0.444 and 0.277 Å/sec) grown films. Perpendicular exchange bias in as deposited bilayers is evident for IrMn/YCo bilayers. Exchange bias (EB) decreases in case of in plane measurements and enhances for out of plane measurements after perpendicular field annealing. EB is more in case of out of plane direction due to large perpendicular anisotropy in comparison with in plane direction. Above the critical thickness, EB variation is explained on the basis of random field model in the Heisenberg regime, which has been proposed by Malozemoff. Indeed there exists an inverse relationship between EB and IrMn layer thickness. Evidenced vertical shift apart from the horizontal shift for magnetization loops is attributed to frozen magnetic moments in one of the layers at the interface. Present results would prove to be helpful in spintronic device applications.
Optical polarimetry and molecular line studies of L1157 dark molecular cloud
NASA Astrophysics Data System (ADS)
Sharma, Ekta; Soam, Archana; Gopinathan, Maheswar
2018-04-01
Filaments are omnipresent in molecular clouds which are believed to fragment into cores. The detailed process of the evolution from filaments to cores depends critically on the physical conditions in the star forming region. This study aims at characterising gas motions using velocity structure and finding the dynamical importance of magnetic fields in the filament morphology. The plane-of-the-sky component of the magnetic field has been measured using optical polarization of the background stars. The orientation is found to be almost perpendicular to the filament implying its dynamical importance in the evolution of the cloud. Optical polarimetric results match very well with the sub millimetre polarization angles obtained in the inner core regions. The magnetic fields are found to have an orientation of 130° east with respect to north. The angular offset between the outflow axis and the magnetic field direction is found to be 25°. Values for parameters like the excitation temperature, optical depth and column densities have been derived using molecular lines. Optically thick lines show non-gaussian features. The non-thermal widths tell about the presence of turbulent motions whereas the C180 lines follow Gaussian features almost at all the locations observed in the filament.
A Novel Approach to the Millikan Oil Drop Experiment
NASA Astrophysics Data System (ADS)
Gibbs, Spencer; Oyun, Nomin
2008-05-01
Robert Millikan was in part awarded the 1923 Nobel Prize in physics for the famous Millikan Oil Drop Experiment. We have successfully repeated the experiment using a novel approach designed by Brian Scott and Robert Hobbs of Bellevue Community College that is less tedious and more reliable than the classic experiment. In Millikan's experiment, the charged plates are oriented horizontally so that the electric and gravitational forces are parallel to each other. By observing the velocity of the droplets in the field free state, the mass of the droplet can be determined, and by observing the velocity in the electric field, the charge can be inferred. Bellevue College's new approach reorients the plates vertically so that the gravitational field is perpendicular to the electric field. We have also added video capture of the falling drop to replace the traditional repeated rise and fall timings from the original. This allows both the mass and charge of the droplet to be determined in one passage from the orthogonal components of velocity, dramatically improving the ease and success rate of the experiment. Using this method, it is well within the experimental abilities of first year physics students to successfully determine the mass and charge of the oil droplets.
NASA Astrophysics Data System (ADS)
Kuncser, A.; Antohe, S.; Kuncser, V.
2017-02-01
Peculiarities of the magnetization reversal process in cylindrical Ni-Cu soft magnetic nanowires with dominant shape anisotropy are analyzed via both static and time dependent micromagnetic simulations. A reversible process involving a coherent-like spin rotation is always observed for magnetic fields applied perpendicularly to the easy axis whereas nucleation of domain walls is introduced for fields applied along the easy axis. Simple criteria for making distinction between a Stoner-Wohlfarth type rotation and a nucleation mechanism in systems with uniaxial magnetic anisotropy are discussed. Superposed reversal mechanisms can be in action for magnetic fields applied at arbitrary angles with respect to the easy axis within the condition of an enough strong axial component required by the nucleation. The dynamics of the domain wall, involving two different stages (nucleation and propagation), is discussed with respect to initial computing conditions and orientations of the magnetic field. A nucleation time of about 3 ns and corkscrew domain walls propagating with a constant velocity of about 150 m/s are obtained in case of Ni-Cu alloy (Ni rich side) NWs with diameters of 40 nm and high aspect ratio.
NASA Astrophysics Data System (ADS)
Varghani, Ali; Peiravi, Ali; Moradi, Farshad
2018-04-01
The perpendicular anisotropy Spin-Transfer Torque Random Access Memory (P-STT-RAM) is considered to be a promising candidate for high-density memories. Many distinct advantages of Perpendicular Magnetic Tunnel Junction (P-MTJ) compared to the conventional in-plane MTJ (I-MTJ) such as lower switching current, circular cell shape that facilitates manufacturability in smaller technology nodes, large thermal stability, smaller cell size, and lower dipole field interaction between adjacent cells make it a promising candidate as a universal memory. However, for small MTJ cell sizes, the perpendicular technology requires new materials with high polarization and low damping factor as well as low resistance area product of a P-MTJ in order to avoid a high write voltage as technology is scaled down. A new graphene-based STT-RAM cell for 8 nm technology node that uses high perpendicular magnetic anisotropy cobalt/nickel (Co/Ni) multilayer as magnetic layers is proposed in this paper. The proposed junction benefits from enough Tunneling Magnetoresistance Ratio (TMR), low resistance area product, low write voltage, and low power consumption that make it suitable for 8 nm technology node.
NASA Astrophysics Data System (ADS)
Lakshmanan, Saravanan; Rao, Subha Krishna; Muthuvel, Manivel Raja; Chandrasekaran, Gopalakrishnan; Therese, Helen Annal
2017-08-01
Magnetization of Ta/CoFeB/Ta trilayer films with thick layer of CoFeB deposited under different substrate temperatures (Ts) via ultra-high vacuum DC sputtering technique has been measured with the applied magnetic field parallel and perpendicular to the plane of the film respectively to study the perpendicular coercive forces of the film. The samples were further analyzed for its structural, topological, morphological, and electrical transport properties. The core chemical states for the elements present in the CoFeB thin film were analyzed by XPS studies. Magnetization studies reveal the existence of perpendicular coercive forces in CoFeB films deposited only at certain temperatures such as RT, 450 °C, 475 °C and 500 °C. CoFeB film deposited at 475 °C exhibited a maximum coercivity of 315 Oe and a very low saturation magnetization (Ms) of 169 emu/cc in perpendicular direction. This pronounced effect in perpendicular coercive forces observed for CoFeB475 could be attributed to the effect of temperature in enhancing the crystallization of the film at the Ta/CoFeB interfaces. However at temperatures higher than 475 °C the destruction of the Ta/CoFeB interface due to intermixing of Ta and CoFeB results in the disappearance of magnetic anisotropy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Navarro, Alejandro Bañón, E-mail: banon@physics.ucla.edu; Jenko, Frank, E-mail: jenko@physics.ucla.edu; Teaca, Bogdan, E-mail: bogdan.teaca@coventry.ac.uk
For a Z-pinch geometry, we report on the nonlinear redistribution of free energy across scales perpendicular to the magnetic guide field, for a turbulent plasma described in the framework of gyrokinetics. The analysis is performed using a local flux-surface approximation, in a regime dominated by electrostatic fluctuations driven by the entropy mode, with both ion and electron species being treated kinetically. To explore the anisotropic nature of the free energy redistribution caused by the emergence of zonal flows, we use a polar coordinate representation for the field-perpendicular directions and define an angular density for the scale flux. Positive values formore » the classically defined (angle integrated) scale flux, which denote a direct energy cascade, are shown to be also composed of negative angular sections, a fact that impacts our understanding of the backscatter of energy and the way in which it enters the modeling of sub-grid scales for turbulence. A definition for the flux of free energy across each perpendicular direction is introduced as well, which shows that the redistribution of energy in the presence of zonal flows is highly anisotropic.« less
Switching a Perpendicular Ferromagnetic Layer by Competing Spin Currents
NASA Astrophysics Data System (ADS)
Ma, Qinli; Li, Yufan; Gopman, D. B.; Kabanov, Yu. P.; Shull, R. D.; Chien, C. L.
2018-03-01
An ultimate goal of spintronics is to control magnetism via electrical means. One promising way is to utilize a current-induced spin-orbit torque (SOT) originating from the strong spin-orbit coupling in heavy metals and their interfaces to switch a single perpendicularly magnetized ferromagnetic layer at room temperature. However, experimental realization of SOT switching to date requires an additional in-plane magnetic field, or other more complex measures, thus severely limiting its prospects. Here we present a novel structure consisting of two heavy metals that delivers competing spin currents of opposite spin indices. Instead of just canceling the pure spin current and the associated SOTs as one expects and corroborated by the widely accepted SOTs, such devices manifest the ability to switch the perpendicular CoFeB magnetization solely with an in-plane current without any magnetic field. Magnetic domain imaging reveals selective asymmetrical domain wall motion under a current. Our discovery not only paves the way for the application of SOT in nonvolatile technologies, but also poses questions on the underlying mechanism of the commonly believed SOT-induced switching phenomenon.
Tang, M H; Zhang, Zongzhi; Tian, S Y; Wang, J; Ma, B; Jin, Q Y
2015-06-15
Interfacial exchange coupling and magnetization reversal characteristics in the perpendicular heterostructures consisting of an amorphous ferrimagnetic (FI) TbxCo(100-x) alloy layer exchange-coupled with a ferromagnetic (FM) [Co/Ni]N multilayer have been investigated. As compared with pure TbxCo(100-x) alloy, the magnetization compensation composition of the heterostructures shift to a higher Tb content, implying Co/Ni also serves to compensate the Tb moment in TbCo layer. The net magnetization switching field Hc⊥ and interlayer interfacial coupling field Hex, are not only sensitive to the magnetization and thickness of the switched TbxCo(100-x) or [Co/Ni]N layer, but also to the perpendicular magnetic anisotropy strength of the pinning layer. By tuning the layer structure we achieve simultaneously both large Hc⊥ = 1.31 T and Hex = 2.19 T. These results, in addition to the fundamental interest, are important to understanding of the interfacial coupling interaction in the FM/FI heterostructures, which could offer the guiding of potential applications in heat-assisted magnetic recording or all-optical switching recording technique.
NASA Technical Reports Server (NTRS)
Morgan, Harry L., Jr.
2002-01-01
This report presents the results of a test conducted in the Langley Low-Turbulence Pressure Tunnel to measure the flow field properties of a flap-edge vortex. The model was the EET (Energy Efficient Transport) Flap-Edge Vortex Model, which consists of a main element and a part-span, single-slotted trailing-edge flap. The model surface was instrumented with several chordwise and spanwise rows of pressure taps on each element. The off-body flow field velocities were to be measured in several planes perpendicular to the flap edge with a laser velocimetry system capable of measuring all three components in coincidence. However, due to seeding difficulties, the preliminary laser data did not have sufficient accuracy to be suitable for presentation; therefore, this report presents only the tabulated and plotted surface pressure data. In addition, the report contains a detail description of the model which can be used to generate accurate CFD grid structures.
Experimental investigation of a throttlable 15 cm hollow cathode ion thruster
NASA Technical Reports Server (NTRS)
Wilbur, P. J.
1972-01-01
The use of dished high perveance grids on a 15 cm modified SERT 2 thruster is shown to facilitate throttled operation over a beam current range from 60 to 600 mA. Effects of increasing the radial component of the magnetic field in the main discharge chamber and decreasing the dimensions of the cathode discharge region are examined and found to degrade performance to the extent that primary electrons are forced in toward the center-line of the thruster. Studies of the baffle aperture region of two thrusters indicate that the electric potential gradient vector is perpendicular to the local magnetic field lines when the thruster is operating properly. The correlation between the shape of the ion beam current density and that of the ion density at the screen grid within the thruster is shown to be 94%. Additional experimental studies on maximum propellant utilization, plasma ion production cost, neutral density in the cathode discharge region, double ion production in hollow cathode thrusters and thermal flow meter performance are discussed.
A gold hybrid structure as optical coupler for quantum well infrared photodetector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Jiayi; Li, Qian; Jing, Youliang
2014-08-28
A hybrid structure consisting of a square lattice of gold disk arrays and an overlaying gold film is proposed as an optical coupler for a backside-illuminated quantum well infrared photodetector (QWIP). Finite difference time-domain method is used to numerically simulate the reflection spectra and the field distributions of the hybrid structure combined with the QWIP device. The results show that the electric field component perpendicular to the quantum well is strongly enhanced when the plasmonic resonant wavelength of the hybrid structure coincides with the response one of the quantum well infrared photodetector regardless of the polarization of the incident light.more » The effect of the diameter and thickness of an individual gold disk on the resonant wavelength is also investigated, which indicates that the localized surface plasmon also plays a role in the light coupling with the hybrid structure. The coupling efficiency can exceed 50 if the structural parameters of the gold disk arrays are well optimized.« less
Response of the microwave-induced cyclotron harmonic resistance spike to an in-plane magnetic field
NASA Astrophysics Data System (ADS)
Dai, Yanhua; Stone, Kristjan; Knez, Ivan; Zhang, Chi; Du, R. R.; Yang, Changli; Pfeiffer, L. N.; West, K. W.
2011-12-01
Microwave-induced resistance oscillations (MIROs) have been commonly observed in high-mobility GaAs/AlGaAs two-dimensional electron systems (2DESs) under microwave irradiation. In ultraclean GaAs/AlGaAs quantum wells, we have recently observed a very large resistance spike at the second harmonic of cyclotron resonance. In order to elucidate its origin, we have studied the response of microwave photoresistances in a two-axis magnetic field configuration, where the perpendicular (Bz) and the in-plane (Bx) components can be independently applied to the sample. The experiments reveal a distinctive response of the spike to the Bx compared with that of the MIROs. While the major MIRO peaks show an increasing phase shift toward a quarter period in increasing Bx, the spike position shows an essentially zero shift. This finding lends additional support for the notion that the spike is a unique effect in the microwave-driven 2DES.
NASA Technical Reports Server (NTRS)
Fitzenreiter, R. J.
1995-01-01
An overview of the observations of backstreaming electrons in the foreshock and the mechanisms that have been proposed to explain their properties will be presented. A primary characteristic of observed foreshock electrons is that their velocity distributions are spatially structured in a systematic way depending on distance from the magnetic field line which is tangent to the shock. There are two interrelated aspects to explaining the structure of velocity distributions in the foreshock, one involving the acceleration mechanism and the other, propagation from the source to the observing point. First, the source distribution of electrons energized by the shock must be determined along the shock surface. Proposed acceleration mechanisms include magnetic mirroring of incoming solar wind particles and mechanisms involving transmission of particles through the shock. Secondly, the kinematics of observable electrons streaming away from a curved shock with an initial parallel velocity and a downstream perpendicular velocity component due to the motional electric field must be determined. This is the context in which the observations and their explanations will be reviewed.
NASA Astrophysics Data System (ADS)
Arendt, V.; Shalchi, A.
2018-06-01
We explore numerically the transport of energetic particles in a turbulent magnetic field configuration. A test-particle code is employed to compute running diffusion coefficients as well as particle distribution functions in the different directions of space. Our numerical findings are compared with models commonly used in diffusion theory such as Gaussian distribution functions and solutions of the cosmic ray Fokker-Planck equation. Furthermore, we compare the running diffusion coefficients across the mean magnetic field with solutions obtained from the time-dependent version of the unified non-linear transport theory. In most cases we find that particle distribution functions are indeed of Gaussian form as long as a two-component turbulence model is employed. For turbulence setups with reduced dimensionality, however, the Gaussian distribution can no longer be obtained. It is also shown that the unified non-linear transport theory agrees with simulated perpendicular diffusion coefficients as long as the pure two-dimensional model is excluded.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masters, A.; Dougherty, M. K.; Sulaiman, A. H.
A leading explanation for the origin of Galactic cosmic rays is acceleration at high-Mach number shock waves in the collisionless plasma surrounding young supernova remnants. Evidence for this is provided by multi-wavelength non-thermal emission thought to be associated with ultrarelativistic electrons at these shocks. However, the dependence of the electron acceleration process on the orientation of the upstream magnetic field with respect to the local normal to the shock front (quasi-parallel/quasi-perpendicular) is debated. Cassini spacecraft observations at Saturn’s bow shock have revealed examples of electron acceleration under quasi-perpendicular conditions, and the first in situ evidence of electron acceleration at amore » quasi-parallel shock. Here we use Cassini data to make the first comparison between energy spectra of locally accelerated electrons under these differing upstream magnetic field regimes. We present data taken during a quasi-perpendicular shock crossing on 2008 March 8 and during a quasi-parallel shock crossing on 2007 February 3, highlighting that both were associated with electron acceleration to at least MeV energies. The magnetic signature of the quasi-perpendicular crossing has a relatively sharp upstream–downstream transition, and energetic electrons were detected close to the transition and immediately downstream. The magnetic transition at the quasi-parallel crossing is less clear, energetic electrons were encountered upstream and downstream, and the electron energy spectrum is harder above ∼100 keV. We discuss whether the acceleration is consistent with diffusive shock acceleration theory in each case, and suggest that the quasi-parallel spectral break is due to an energy-dependent interaction between the electrons and short, large-amplitude magnetic structures.« less
NASA Astrophysics Data System (ADS)
Kim, June-Seo; Lee, Hyeon-Jun; Hong, Jung-Il; You, Chun-Yeol
2018-06-01
The in-plane magnetic field pulse driven domain wall motion on a perpendicularly magnetized nanowire is numerically investigated by performing micromagnetic simulations and magnetic domain wall dynamics are evaluated analytically with one-dimensional collective coordinate models including the interfacial Dzyaloshinskii-Moriya interaction. With the action of the precession torque, the chirality and the magnetic field direction dependent displacements of the magnetic domain walls are clearly observed. In order to move Bloch type and Neel type domain walls, a longitudinal and a transverse in-plane magnetic field pulse are required, respectively. The domain wall type (Bloch or Neel) can easily be determined by the dynamic motion of the domain walls under the applied pulse fields. By applying a temporally asymmetric in-plane field pulse and successive notches in the perpendicularly magnetized nanowire strip line with a proper interval, the concept of racetrack memory based on the synchronous displacements of the chirality dependent multiple domain walls is verified to be feasible. Requirement of multiple domain walls with homogeneous chirality is achieved with the help of Dzyaloshinskii-Moriya interaction.
Quincke rotation of an ellipsoid
NASA Astrophysics Data System (ADS)
Vlahovska, Petia; Brosseau, Quentin
2016-11-01
The Quincke effect - spontaneous spinning of a sphere in a uniform DC electric field - has attracted considerable interest in recent year because of the intriguing dynamics exhibited by a Quincke-rotating drop and the emergent collective behavior of confined suspensions of Quincke-rotating spheres. Shape anisotropy, e.g., due to drop deformation or particle asphericity, is predicted to give rise to complex particle dynamics. Analysis of the dynamics of rigid prolate ellipsoid in a uniform DC electric field shows two possible stable states characterized by the orientation of the ellipsoid long axis relative to the applied electric field : spinless (parallel) and spinning (perpendicular). Here we report an experimental study testing the theoretical predictions. The phase diagram of ellipsoid behavior as a function of field strength and aspect ratio is in close agreement with theory. We also investigated the dynamics of the ellipsoidal Quincke "roller": an ellipsoid near a planar surface with normal perpendicular to the field direction. We find novel behaviors such as swinging (long axis oscillating around the applied field direction) and tumbling due to the confinement. Supported by NSF CBET awards 1437545 and 1544196.
On the Transition from Two-Dimensional to Three-Dimensional MHD Turbulence
NASA Technical Reports Server (NTRS)
Thess, A.; Zikanov, Oleg
2004-01-01
We report a theoretical investigation of the robustness of two-dimensional inviscid MHD flows at low magnetic Reynolds numbers with respect to three-dimensional perturbations. We analyze three model problems, namely flow in the interior of a triaxial ellipsoid, an unbounded vortex with elliptical streamlines, and a vortex sheet parallel to the magnetic field. We demonstrate that motion perpendicular to the magnetic field with elliptical streamlines becomes unstable with respect to the elliptical instability once the velocity has reached a critical magnitude whose value tends to zero as the eccentricity of the streamlines becomes large. Furthermore, vortex sheets parallel to the magnetic field, which are unstable for any velocity and any magnetic field, are found to emit eddies with vorticity perpendicular to the magnetic field and with an aspect ratio proportional to N(sup 1/2). The results suggest that purely two-dimensional motion without Joule energy dissipation is a singular type of flow which does not represent the asymptotic behaviour of three-dimensional MHD turbulence in the limit of infinitely strong magnetic fields.
Broad-band, radio spectro-polarimetric study of 100 radiative-mode and jet-mode AGN
NASA Astrophysics Data System (ADS)
O'Sullivan, S. P.; Purcell, C. R.; Anderson, C. S.; Farnes, J. S.; Sun, X. H.; Gaensler, B. M.
2017-08-01
We present the results from a broad-band (1 to 3 GHz), spectro-polarimetry study of the integrated emission from 100 extragalactic radio sources with the Australia Telescope Compact Array, selected to be highly linearly polarized at 1.4 GHz. We use a general-purpose, polarization model-fitting procedure that describes the Faraday rotation measure (RM) and intrinsic polarization structure of up to three distinct polarized emission regions or `RM components' of a source. Overall, 37 per cent/52 per cent/11 per cent of sources are best fitted by one/two/three RM components. However, these fractions are dependent on the signal-to-noise ratio (S/N) in polarization (more RM components more likely at higher S/N). In general, our analysis shows that sources with high integrated degrees of polarization at 1.4 GHz have low Faraday depolarization, are typically dominated by a single RM component, have a steep spectral index and have a high intrinsic degree of polarization. After classifying our sample into radiative-mode and jet-mode AGN, we find no significant difference between the Faraday rotation or Faraday depolarization properties of jet-mode and radiative-mode AGN. However, there is a statistically significant difference in the intrinsic degree of polarization between the two types, with the jet-mode sources having more intrinsically ordered magnetic field structures than the radiative-mode sources. We also find a preferred perpendicular orientation of the intrinsic magnetic field structure of jet-mode AGN with respect to the jet direction, while no clear preference is found for the radiative-mode sources.
NASA Astrophysics Data System (ADS)
Alvarez-Prado, L. M.; Cid, R.; Morales, R.; Diaz, J.; Vélez, M.; Rubio, H.; Hierro-Rodriguez, A.; Alameda, J. M.
2018-06-01
Amorphous Nd-Co thin films exhibit stripe shaped periodic magnetic domains with local out-of-plane magnetization components due to their perpendicular magnetic anisotropy. This anisotropy has been quantified in a fairly simple way by reproducing the experimental magnetization curves by means of micromagnetic numerical simulations. The simulations show that the first (K1) and second (K2) anisotropy constants must be used to properly describe the variation of the stripe domains with the in plane applied magnetic field. A strong temperature dependence of both K1 and K2 has been obtained between 10 K and room temperature. This anisotropy behavior is characteristic of two magnetically coupled 3d-4f sublattices with competing anisotropies.
Piezoelectric Multilayer-Stacked Hybrid Actuation/Transduction System
NASA Technical Reports Server (NTRS)
Xu, Tian-Bing (Inventor); Jiang, Xiaoning (Inventor); Su, Ji (Inventor)
2014-01-01
A novel full piezoelectric multilayer stacked hybrid actuation/transduction system. The system demonstrates significantly-enhanced electromechanical performance by utilizing the cooperative contributions of the electromechanical responses of multilayer stacked negative and positive strain components. Both experimental and theoretical studies indicate that for this system, the displacement is over three times that of a same-sized conventional flextensional actuator/transducer. The system consists of at least 2 layers which include electromechanically active components. The layers are arranged such that when electric power is applied, one layer contracts in a transverse direction while the second layer expands in a transverse direction which is perpendicular to the transverse direction of the first layer. An alternate embodiment includes a third layer. In this embodiment, the outer two layers contract in parallel transverse directions while the middle layer expands in a transverse direction which is perpendicular to the transverse direction of the outer layers.
NASA Astrophysics Data System (ADS)
Kiyani, Khurom; Chapman, Sandra; Osman, Kareem; Sahraoui, Fouad; Hnat, Bogdan
2014-05-01
The anisotropic nature of the scaling properties of solar wind magnetic turbulence fluctuations is investigated scale by scale using high cadence in situ magnetic field measurements from the Cluster, ACE and STEREO spacecraft missions in both fast and slow quiet solar wind conditions. The data span five decades in scales from the inertial range to the electron Larmor radius. We find a clear transition in scaling behaviour between the inertial and kinetic range of scales, which provides a direct, quantitative constraint on the physical processes that mediate the cascade of energy through these scales. In the inertial (magnetohydrodynamic) range the statistical nature of turbulent fluctuations are known to be anisotropic, both in the vector components of the magnetic field fluctuations (variance anisotropy) and in the spatial scales of these fluctuations (wavevector or k-anisotropy). We show for the first time that, when measuring parallel to the local magnetic field direction, the full statistical signature of the magnetic and Elsasser field fluctuations is that of a non-Gaussian globally scale-invariant process. This is distinct from the classic multi-exponent statistics observed when the local magnetic field is perpendicular to the flow direction. These observations suggest the weakness, or absence, of a parallel magnetofluid turbulence energy cascade. In contrast to the inertial range, there is a successive increase toward isotropy between parallel and transverse power at scales below the ion Larmor radius, with isotropy being achieved at the electron Larmor radius. Computing higher-order statistics, we show that the full statistical signature of both parallel, and perpendicular fluctuations at scales below the ion Larmor radius are that of an isotropic globally scale-invariant non-Gaussian process. Lastly, we perform a survey of multiple intervals of quiet solar wind sampled under different plasma conditions (fast, slow wind; plasma beta etc.) and find that the above results on the scaling transition between inertial and kinetic range scales are qualitatively robust, and that quantitatively, there is a spread in the values of the scaling exponents.
Hyper-Rayleigh scattering in centrosymmetric systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Mathew D.; Ford, Jack S.; Andrews, David L., E-mail: david.andrews@physics.org
Hyper-Rayleigh scattering (HRS) is an incoherent mechanism for optical second harmonic generation. The frequency-doubled light that emerges from this mechanism is not emitted in a laser-like manner, in the forward direction; it is scattered in all directions. The underlying theory for this effect involves terms that are quadratic in the incident field and involves an even-order optical susceptibility (for a molecule, its associated hyperpolarizability). In consequence, HRS is often regarded as formally forbidden in centrosymmetric media. However, for the fundamental three-photon interaction, theory based on the standard electric dipole approximation, representable as E1{sup 3}, does not account for all experimentalmore » observations. The relevant results emerge upon extending the theory to include E1{sup 2}M1 and E1{sup 2}E2 contributions, incorporating one magnetic dipolar or electric quadrupolar interaction, respectively, to a consistent level of multipolar expansion. Both additional interactions require the deployment of higher orders in the multipole expansion, with the E1{sup 2}E2 interaction analogous in rank and parity to a four-wave susceptibility. To elicit the correct form of response from fluid or disordered media invites a tensor representation which does not oversimplify the molecular components, yet which can produce results to facilitate the interpretation of experimental observations. The detailed derivation in this work leads to results which are summarized for the following: perpendicular detection of polarization components both parallel and perpendicular to the pump radiation, leading to distinct polarization ratio results, as well as a reversal ratio for forward scattered circular polarizations. The results provide a route to handling data with direct physical interpretation, to enable the more sophisticated design of molecules with sought nonlinear optical properties.« less
Hyper-Rayleigh scattering in centrosymmetric systems
NASA Astrophysics Data System (ADS)
Williams, Mathew D.; Ford, Jack S.; Andrews, David L.
2015-09-01
Hyper-Rayleigh scattering (HRS) is an incoherent mechanism for optical second harmonic generation. The frequency-doubled light that emerges from this mechanism is not emitted in a laser-like manner, in the forward direction; it is scattered in all directions. The underlying theory for this effect involves terms that are quadratic in the incident field and involves an even-order optical susceptibility (for a molecule, its associated hyperpolarizability). In consequence, HRS is often regarded as formally forbidden in centrosymmetric media. However, for the fundamental three-photon interaction, theory based on the standard electric dipole approximation, representable as E13, does not account for all experimental observations. The relevant results emerge upon extending the theory to include E12M1 and E12E2 contributions, incorporating one magnetic dipolar or electric quadrupolar interaction, respectively, to a consistent level of multipolar expansion. Both additional interactions require the deployment of higher orders in the multipole expansion, with the E12E2 interaction analogous in rank and parity to a four-wave susceptibility. To elicit the correct form of response from fluid or disordered media invites a tensor representation which does not oversimplify the molecular components, yet which can produce results to facilitate the interpretation of experimental observations. The detailed derivation in this work leads to results which are summarized for the following: perpendicular detection of polarization components both parallel and perpendicular to the pump radiation, leading to distinct polarization ratio results, as well as a reversal ratio for forward scattered circular polarizations. The results provide a route to handling data with direct physical interpretation, to enable the more sophisticated design of molecules with sought nonlinear optical properties.
Core radial electric field and transport in Wendelstein 7-X plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pablant, N. A.; Langenberg, A.; Alonso, A.
The results from the investigation of neoclassical core transport and the role of the radial electric field profile (E r) in the first operational phase of the Wendelstein 7-X (W7-X) stellarator are presented. In stellarator plasmas, the details of the E r profile are expected to have a strong effect on both the particle and heat fluxes. Investigation of the radial electric field is important in understanding neoclassical transport and in validation of neoclassical calculations. The radial electric field is closely related to the perpendicular plasma flow (u ⊥) through the force balance equation. This allows the radial electric fieldmore » to be inferred from measurements of the perpendicular flow velocity, which can be measured using the x-ray imaging crystal spectrometer and correlation reflectometry diagnostics. Large changes in the perpendicular rotation, on the order of Δu ⊥~ 5 km/s (ΔE r ~12 kV/m), have been observed within a set of experiments where the heating power was stepped down from 2 MW to 0.6 MW. These experiments are examined in detail to explore the relationship between heating power temperature, and density profiles and the radial electric field. Finally, the inferred E r profiles are compared to initial neoclassical calculations based on measured plasma profiles. The results from several neoclassical codes, sfincs, fortec-3d, and dkes, are compared both with each other and the measurements. Finally, these comparisons show good agreement, giving confidence in the applicability of the neoclassical calculations to the W7-X configuration.« less
Core radial electric field and transport in Wendelstein 7-X plasmas
Pablant, N. A.; Langenberg, A.; Alonso, A.; ...
2018-02-12
The results from the investigation of neoclassical core transport and the role of the radial electric field profile (E r) in the first operational phase of the Wendelstein 7-X (W7-X) stellarator are presented. In stellarator plasmas, the details of the E r profile are expected to have a strong effect on both the particle and heat fluxes. Investigation of the radial electric field is important in understanding neoclassical transport and in validation of neoclassical calculations. The radial electric field is closely related to the perpendicular plasma flow (u ⊥) through the force balance equation. This allows the radial electric fieldmore » to be inferred from measurements of the perpendicular flow velocity, which can be measured using the x-ray imaging crystal spectrometer and correlation reflectometry diagnostics. Large changes in the perpendicular rotation, on the order of Δu ⊥~ 5 km/s (ΔE r ~12 kV/m), have been observed within a set of experiments where the heating power was stepped down from 2 MW to 0.6 MW. These experiments are examined in detail to explore the relationship between heating power temperature, and density profiles and the radial electric field. Finally, the inferred E r profiles are compared to initial neoclassical calculations based on measured plasma profiles. The results from several neoclassical codes, sfincs, fortec-3d, and dkes, are compared both with each other and the measurements. Finally, these comparisons show good agreement, giving confidence in the applicability of the neoclassical calculations to the W7-X configuration.« less
NASA Astrophysics Data System (ADS)
Lu, San; Artemyev, A. V.; Angelopoulos, V.
2017-11-01
Magnetotail current sheet thinning is a distinctive feature of substorm growth phase, during which magnetic energy is stored in the magnetospheric lobes. Investigation of charged particle dynamics in such thinning current sheets is believed to be important for understanding the substorm energy storage and the current sheet destabilization responsible for substorm expansion phase onset. We use Time History of Events and Macroscale Interactions during Substorms (THEMIS) B and C observations in 2008 and 2009 at 18 - 25 RE to show that during magnetotail current sheet thinning, the electron temperature decreases (cooling), and the parallel temperature decreases faster than the perpendicular temperature, leading to a decrease of the initially strong electron temperature anisotropy (isotropization). This isotropization cannot be explained by pure adiabatic cooling or by pitch angle scattering. We use test particle simulations to explore the mechanism responsible for the cooling and isotropization. We find that during the thinning, a fast decrease of a parallel electric field (directed toward the Earth) can speed up the electron parallel cooling, causing it to exceed the rate of perpendicular cooling, and thus lead to isotropization, consistent with observation. If the parallel electric field is too small or does not change fast enough, the electron parallel cooling is slower than the perpendicular cooling, so the parallel electron anisotropy grows, contrary to observation. The same isotropization can also be accomplished by an increasing parallel electric field directed toward the equatorial plane. Our study reveals the existence of a large-scale parallel electric field, which plays an important role in magnetotail particle dynamics during the current sheet thinning process.
Vertical electric field stimulation of neural cells on porous amorphous carbon electrodes
NASA Astrophysics Data System (ADS)
Jain, Shilpee; Sharma, Ashutosh; Basu, Bikramjit
2014-03-01
We demonstrate the efficacy of amorphous macroporous carbon substrates as electrodes to stimulate neuronal cell proliferation in presence of external electric field. The electric field was applied perpendicular to carbon electrode, while growing mouse neuroblastoma (N2a) cells in vitro. The placement of the second electrode outside of the cell culture medium allows the investigation of cell response to electric field without the concurrent complexities of submerged electrodes such as potentially toxic electrode reactions, electro-kinetic flows and charge transfer (electrical current) in the cell medium. The macroporous carbon electrodes are uniquely characterized by a higher specific charge storage capacity (0.2 mC/cm2) and low impedance (3.3 k Ω at 1 kHz). When a uniform or a gradient electric field was applied perpendicular to the amorphous carbon substrate, it was found that the N2a cell viability and neurite length were higher at low electric field strengths (<= 2.5 V/cm) compared to that measured without an applied field (0 V/cm). Overall, the results of the present study unambiguously establish the uniform/gradient vertical electric field based culture protocol to stimulate neurite outgrowth and viability of nerve cells.
Effects of magnetic fields on photoionized pillars and globules
NASA Astrophysics Data System (ADS)
Mackey, Jonathan; Lim, Andrew J.
2011-04-01
The effects of initially uniform magnetic fields on the formation and evolution of dense pillars and cometary globules at the boundaries of H II regions are investigated using 3D radiation-magnetohydrodynamics simulations. It is shown, in agreement with previous work, that a strong initial magnetic field is required to significantly alter the non-magnetized dynamics because the energy input from photoionization is so large that it remains the dominant driver of the dynamics in most situations. Additionally, it is found that for weak and medium field strengths an initially perpendicular field is swept into alignment with the pillar during its dynamical evolution, matching magnetic field observations of the 'Pillars of Creation' in M16 and also some cometary globules. A strong perpendicular magnetic field remains in its initial configuration and also confines the photoevaporation flow into a bar-shaped dense ionized ribbon which partially shields the ionization front and would be readily observable in recombination lines. A simple analytic model is presented to explain the properties of this bright linear structure. These results show that magnetic field strengths in star-forming regions can in principle be significantly constrained by the morphology of structures which form at the borders of H II regions.
Hybrid simulations of radial transport driven by the Rayleigh-Taylor instability
NASA Astrophysics Data System (ADS)
Delamere, P. A.; Stauffer, B. H.; Ma, X.
2017-12-01
Plasma transport in the rapidly rotating giant magnetospheres is thought to involve a centrifugally-driven flux tube interchange instability, similar to the Rayleigh-Taylor (RT) instability. In three dimensions, the convective flow patterns associated with the RT instability can produce strong guide field reconnection, allowing plasma mass to move radially outward while conserving magnetic flux (Ma et al., 2016). We present a set of hybrid (kinetic ion / fluid electron) plasma simulations of the RT instability using high plasma beta conditions appropriate for Jupiter's inner and middle magnetosphere. A density gradient, combined with a centrifugal force, provide appropriate RT onset conditions. Pressure balance is achieved by initializing two ion populations: one with fixed temperature, but varying density, and the other with fixed density, but a temperature gradient that offsets the density gradient from the first population and the centrifugal force (effective gravity). We first analyze two-dimensional results for the plane perpendicular to the magnetic field by comparing growth rates as a function of wave vector following Huba et al. (1998). Prescribed perpendicular wave modes are seeded with an initial velocity perturbation. We then extend the model to three dimensions, introducing a stabilizing parallel wave vector. Boundary conditions in the parallel direction prohibit motion of the magnetic field line footprints to model the eigenmodes of the magnetodisc's resonant cavity. We again compare growth rates based on perpendicular wave number, but also on the parallel extent of the resonant cavity, which fixes the size of the largest parallel wavelength. Finally, we search for evidence of strong guide field magnetic reconnection within the domain by identifying areas with large parallel electric fields or changes in magnetic field topology.
Numerical Simulation and Forecast of Equatorial Spread F Under Realistic Postsunset Conditions
2012-01-30
at Kwajalein Atoll (8.8◦N, 167.5◦E) [Tsunoda et al., 1979]. Figure 1 displays ALTAIR UHF (422 MHz) data for the night of April 29, 2009. ALTAIR ...perpendicular scans reflect only incoherent scatter. The top panel of Figure 1 shows ALTAIR scans made pointing perpendicular to the geomagnetic field...to be driven downward in between ascending depletions. 1 X - 22 AVEIRO ET AL.: 3-D ESF SIMULATIONS AND OBSERVATIONS Figure 1 . ALTAIR radar scans for
NASA Astrophysics Data System (ADS)
Johnston, David C.
2017-03-01
The influence of uniaxial single-ion anisotropy -D Sz2 on the magnetic and thermal properties of Heisenberg antiferromagnets (AFMs) is investigated. The uniaxial anisotropy is treated exactly and the Heisenberg interactions are treated within unified molecular field theory (MFT) [Phys. Rev. B 91, 064427 (2015), 10.1103/PhysRevB.91.064427], where thermodynamic variables are expressed in terms of directly measurable parameters. The properties of collinear AFMs with ordering along the z axis (D >0 ) in applied field Hz=0 are calculated versus D and temperature T , including the ordered moment μ , the Néel temperature TN, the magnetic entropy, internal energy, heat capacity, and the anisotropic magnetic susceptibilities χ∥ and χ⊥ in the paramagnetic (PM) and AFM states. The high-field average magnetization per spin μz(Hz,D ,T ) is found, and the critical field Hc(D ,T ) is derived at which the second-order AFM to PM phase transition occurs. The magnetic properties of the spin-flop (SF) phase are calculated, including the zero-field properties TN(D ) and μ (D ,T ) . The high-field μz(Hz,D ,T ) is determined, together with the associated spin-flop field HSF(D ,T ) at which a second-order SF to PM phase transition occurs. The free energies of the AFM, SF, and PM phases are derived from which Hz-T phase diagrams are constructed. For fJ=-1 and -0.75 , where fJ=θp J/TN J and θp J and TN J are the Weiss temperature in the Curie-Weiss law and the Néel temperature due to exchange interactions alone, respectively, phase diagrams in the Hz-T plane similar to previous results are obtained. However, for fJ=0 we find a topologically different phase diagram where a spin-flop bubble with PM and AFM boundaries occurs at finite Hz and T . Also calculated are properties arising from a perpendicular magnetic field, including the perpendicular susceptibility χ⊥(D ,T ) , the associated effective torque at low fields arising from the -D Sz2 term in the Hamiltonian, the high-field perpendicular magnetization μ⊥, and the perpendicular critical field Hc ⊥ at which the second-order AFM to PM phase transition occurs. In addition to the above results for D >0 , the TN(D ) and ordered moment μ (T ,D ) for collinear AFM ordering along the x axis with D <0 are determined. In order to compare the properties of the above spin systems with those of noninteracting systems with -D Sz2 uniaxial anisotropy with either sign of D , Supplemental Material is provided in which results for the thermal and magnetic properties of such noninteracting spin systems are given.
NASA Astrophysics Data System (ADS)
Yépez, L. D.; Carrillo, J. L.; Donado, F.; Sausedo-Solorio, J. M.; Miranda-Romagnoli, P.
2016-06-01
The dynamical pattern formation of clusters of magnetic particles in a low-concentration magnetorheological fluid, under the influence of a superposition of two perpendicular sinusoidal fields, is studied experimentally. By varying the frequency and phase shift of the perpendicular fields, this configuration enables us to experimentally analyze a wide range of field configurations, including the case of a pure rotating field and the case of an oscillating unidirectional field. The fields are applied parallel to the horizontal plane where the fluid lies or in the vertical plane. For fields applied in the horizontal plane, we observed that, when the ratio of the frequencies increases, the average cluster size exhibits a kind of periodic resonances. When the phase shift between the fields is varied, the average chain length reaches maximal values for the cases of the rotating field and the unidirectional case. We analyze and discuss these results in terms of a weighted average of the time-dependent Mason number. In the case of a rotating field on the vertical plane, we also observe that the competition between the magnetic and the viscous forces determines the average cluster size. We show that this configuration generates a series of physically meaningful self-organization of clusters and transport phenomena.
DeepVel: Deep learning for the estimation of horizontal velocities at the solar surface
NASA Astrophysics Data System (ADS)
Asensio Ramos, A.; Requerey, I. S.; Vitas, N.
2017-07-01
Many phenomena taking place in the solar photosphere are controlled by plasma motions. Although the line-of-sight component of the velocity can be estimated using the Doppler effect, we do not have direct spectroscopic access to the components that are perpendicular to the line of sight. These components are typically estimated using methods based on local correlation tracking. We have designed DeepVel, an end-to-end deep neural network that produces an estimation of the velocity at every single pixel, every time step, and at three different heights in the atmosphere from just two consecutive continuum images. We confront DeepVel with local correlation tracking, pointing out that they give very similar results in the time and spatially averaged cases. We use the network to study the evolution in height of the horizontal velocity field in fragmenting granules, supporting the buoyancy-braking mechanism for the formation of integranular lanes in these granules. We also show that DeepVel can capture very small vortices, so that we can potentially expand the scaling cascade of vortices to very small sizes and durations. The movie attached to Fig. 3 is available at http://www.aanda.org
Hybrid simulation techniques applied to the earth's bow shock
NASA Technical Reports Server (NTRS)
Winske, D.; Leroy, M. M.
1985-01-01
The application of a hybrid simulation model, in which the ions are treated as discrete particles and the electrons as a massless charge-neutralizing fluid, to the study of the earth's bow shock is discussed. The essentials of the numerical methods are described in detail; movement of the ions, solution of the electromagnetic fields and electron fluid equations, and imposition of appropriate boundary and initial conditions. Examples of results of calculations for perpendicular shocks are presented which demonstrate the need for a kinetic treatment of the ions to reproduce the correct ion dynamics and the corresponding shock structure. Results for oblique shocks are also presented to show how the magnetic field and ion motion differ from the perpendicular case.
Effective Hamiltonians for phosphorene and silicene
Lew Yan Voon, L. C.; Lopez-Bezanilla, A.; Wang, J.; ...
2015-02-04
Here, we derived the effective Hamiltonians for silicene and phosphorene with strain, electric field and magnetic field using the method of invariants. Our paper extends the work on silicene, and on phosphorene. Our Hamiltonians are compared to an equivalent one for graphene. For silicene, the expression for band warping is obtained analytically and found to be of different order than for graphene.We prove that a uniaxial strain does not open a gap, resolving contradictory numerical results in the literature. For phosphorene, it is shown that the bands near the Brillouin zone center only have terms in even powers of themore » wave vector.We predict that the energies change quadratically in the presence of a perpendicular external electric field but linearly in a perpendicular magnetic field, as opposed to those for silicene which vary linearly in both cases. Preliminary ab initio calculations for the intrinsic band structures have been carried out in order to evaluate some of the k · p parameters.« less
Reversal of the Upper Critical Field Anisotropy and Spin-Locked Superconductivity in K 2Cr 3As 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balakirev, Fedor Fedorovich; Kong, T.; Jaime, Marcelo
2016-02-08
Recently, superconductivity in K 2Cr 3As 3 (T c =6.1 K) was discovered. The crystalline lattice contains an array of weakly coupled, double well [(Cr 3As 3) 2-] ∞ linkages stretched along the c axis, suggesting the possibility of quasi-one-dimensional superconductivity. Moderately anisotropic upper critical field was revealed in single crystals, with very large initial slopes, dH ∥ c2 /dT=12 T/K along the Cr chains and dH perpendicular c2 /dT =7 T/K perpendicular to the chains. Given the ambiguity of conclusions based on the extrapolations of H c2(T) measured near T c to low temperatures, we performed high-field measurements ofmore » H c2(T) on K 2Cr 3As 3 single crystals in pulsed magnetic fields which enabled us to reveal the full anisotropic H c2(T) curves from T c down to 600 mK.« less
Nuclear resonance tomography with a toroid cavity detector
Woelk, K.; Rathke, J.W.; Klingler, R.J.
1996-11-12
A toroid cavity detection system is described for determining the spectral properties and distance from a fixed point for a sample using Nuclear Magnetic Resonance. The detection system consists of a toroid with a central conductor oriented along the main axis of the toroidal cylinder and perpendicular to a static uniform magnetic field oriented along the main axis of the toroid. An rf signal is input to the central conductor to produce a magnetic field perpendicular to the central axis of the toroid and whose field strength varies as the inverse of the radius of the toroid. The toroid cavity detection system can be used to encapsulate a sample, or the detection system can be perforated to allow a sample to flow into the detection device or to place the samples in specified sample tubes. The central conductor can also be coated to determine the spectral property of the coating and the coating thickness. The sample is then subjected to the respective magnetic fields and the responses measured to determine the desired properties. 4 figs.
Nuclear resonance tomography with a toroid cavity detector
Woelk, Klaus; Rathke, Jerome W.; Klingler, Robert J.
1996-01-01
A toroid cavity detection system for determining the spectral properties and distance from a fixed point for a sample using Nuclear Magnetic Resonance. The detection system consists of a toroid with a central conductor oriented along the main axis of the toroidal cylinder and perpendicular to a static uniform magnetic field oriented along the main axis of the toroid. An rf signal is inputted to the central conductor to produce a magnetic field perpendicular to the central axis of the toroid and whose field strength varies as the inverse of the radius of the toroid. The toroid cavity detection system can be used to encapsulate a sample, or the detection system can be perforated to allow a sample to flow into the detection device or to place the samples in specified sample tubes. The central conductor can also be coated to determine the spectral property of the coating and the coating thickness. The sample is then subjected to the respective magnetic fields and the responses measured to determine the desired properties.
Magnetic anisotropies and magnetic switching in Co films
NASA Astrophysics Data System (ADS)
Bland, J. A. C.; Baird, M. J.; Leung, H. T.; Ives, A. J. R.; Mackay, K. D.; Hughes, H. P.
1992-07-01
We have used the magneto-optical Kerr effect to investigate the role of the substrate and growth conditions in determining the magnetic switching behaviour of Co films in the thickness range 100-200 Å supported by GaAs(001) and Si(111) substrates. We discuss the anisotropic magnetic hysteresis behaviour observed for Co/GaAs and Co/Si films in terms of coherent rotation of the magnetisation vector during magnetic switching. Equivalent films supported by glass substrates are found to be almost isotropic in-plane. The in-plane coercive and saturation fields are observed to lie in the range 20-80 Oe but perpendicular saturation fields of 25 and 19 kOe are found for the Co/Si and Co/GaAs systems respectively which substantially exceed the demagnetising field in each case. The measured perpendicular anisotropy fields differ strongly from the values for hcp and bcc Co and are attributed to the details of the interface and film structure. We also report strongly frequency dependent magnetic switching behaviour in these Co films.
Spatial structure of ion beams in an expanding plasma
NASA Astrophysics Data System (ADS)
Aguirre, E. M.; Scime, E. E.; Thompson, D. S.; Good, T. N.
2017-12-01
We report spatially resolved perpendicular and parallel, to the magnetic field, ion velocity distribution function (IVDF) measurements in an expanding argon helicon plasma. The parallel IVDFs, obtained through laser induced fluorescence (LIF), show an ion beam with v ≈ 8000 m/s flowing downstream and confined to the center of the discharge. The ion beam is measurable for tens of centimeters along the expansion axis before the LIF signal fades, likely a result of metastable quenching of the beam ions. The parallel ion beam velocity slows in agreement with expectations for the measured parallel electric field. The perpendicular IVDFs show an ion population with a radially outward flow that increases with distance from the plasma axis. Structures aligned to the expanding magnetic field appear in the DC electric field, the electron temperature, and the plasma density in the plasma plume. These measurements demonstrate that at least two-dimensional and perhaps fully three-dimensional models are needed to accurately describe the spontaneous acceleration of ion beams in expanding plasmas.
Quantifying the effects of disorder on switching of perpendicular spin ice arrays
NASA Astrophysics Data System (ADS)
Kempinger, Susan; Fraleigh, Robert; Lammert, Paul; Crespi, Vincent; Samarth, Nitin; Zhang, Sheng; Schiffer, Peter
There is much contemporary interest in probing custom designed, frustrated systems such as artificial spin ice. To that end, we study arrays of lithographically patterned, single-domain Pt/Co multilayer islands. Due to the perpendicular anisotropy of these materials, we are able to use diffraction-limited magneto-optical Kerr effect microscopy to access the magnetic state in situ with an applied field. As we tune the interaction strength by adjusting the lattice spacing, we observe the switching field distribution broadening with increasing dipolar interactions. Using a simple mathematical analysis we extract the intrinsic disorder (the disorder that would be present without interactions) from these switching field distributions. We also characterize the intrinsic disorder by systematically removing neighbor effects from the switching field distribution. Understanding this disorder contribution as well as the interaction strength allows us to more accurately characterize the moment correlation. This project was funded by the US Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division under Grant No. DE- SC0010778
DOE Office of Scientific and Technical Information (OSTI.GOV)
Damiano, P. A.; Johnson, J. R.; Chaston, C. C.
2015-07-01
A new 2-D self-consistent hybrid gyrofluid-kinetic electron model in dipolar coordinates is presented and used to simulate dispersive-scale Alfvén wave pulse propagation from the equator to the ionosphere along an L = 10 magnetic field line. The model is an extension of the hybrid MHD-kinetic electron model that incorporates ion Larmor radius corrections via the kinetic fluid model of Cheng and Johnson (1999). It is found that consideration of a realistic ion to electron temperature ratio decreases the propagation time of the wave from the plasma sheet to the ionosphere by several seconds relative to a ρi=0 case (which alsomore » implies shorter timing for a substorm onset signal) and leads to significant dispersion of wave energy perpendicular to the ambient magnetic field. Additionally, ion temperature effects reduce the parallel current and electron energization all along the field line for the same magnitude perpendicular electric field perturbation.« less
Strain and electric field induced metallization in the GaX (X = N, P, As & Sb) monolayer
NASA Astrophysics Data System (ADS)
Bahuguna, Bhagwati Prasad; Saini, L. K.; Sharma, Rajesh O.; Tiwari, Brajesh
2018-05-01
We investigate the strain and electric field dependent electronic properties of two dimensional Ga-based group III-V monolayer from the first-principles approach within density functional theory. The energy bandgap of GaX monolayer increases upto the certain value of compressive strain and then decreases. On the other hand, the energy bandgap of GaX monolayer is monotonically decreased with increasing tensile strain and become metallic at the higher value. Furthermore, the perpendicular electric field decreases the energy band gap of unstrained GaX monolayer and shows semiconductor to metal transition. These results suggest that the nature of energy bands and value of energy bandgap in GaX monolayer can be tuned by the biaxial mechanical strain or perpendicular electrical field. Additionally, we have also studied the optical response of unstrained GaX monolayer in term of optical conductivity. These findings may provide valuable information to develop the Ga-based optoelectronic devices and further the understanding of the GaX monolayer.
NASA Astrophysics Data System (ADS)
Xiao, X.; Sun, L.; Luo, Y. M.; Zhang, D.; Liang, J. H.; Wu, Y. Z.
2018-03-01
Strain-induced modulation of perpendicular magnetic anisotropy (PMA) is demonstrated in a wedge-shaped Pt/Co/Pt sandwich grown on PMN-PT(0 1 1) substrate using magnetic torque measurements. An anisotropic in-plane strain is generated by applying an electric field across the PMN-PT substrate and transferred to the ferromagnetic Pt/Co/Pt sandwich. The critical thickness of spin reorientation transition is tuned to the thicker region of the Pt/Co/Pt wedge. The strain-induced change of PMA is quantitatively extracted. Only the first order anisotropy term is tuned by the electric field, while the second order anisotropy term has negligible electric field-dependence. Both of the volume and interface contributions of the first order anisotropy term show tunable electric field modulation. These results may benefit the understanding of strain-mediated magnetoelectric coupling effect in artificial multiferroic structures containing a ferromagnetic layer with PMA.
14 CFR 27.339 - Resultant limit maneuvering loads.
Code of Federal Regulations, 2010 CFR
2010-01-01
... velocity component in the plane of the rotor disc to the rotational tip speed of the rotor blades, and is... the projection, in the plane of symmetry, of the axis of no feathering and a line perpendicular to the...
14 CFR 29.339 - Resultant limit maneuvering loads.
Code of Federal Regulations, 2010 CFR
2010-01-01
... velocity component in the plane of the rotor disc to the rotational tip speed of the rotor blades, and is... the projection, in the plane of symmetry, of the axis of no feathering and a line perpendicular to the...
Reorientations, relaxations, metastabilities, and multidomains of skyrmion lattices
NASA Astrophysics Data System (ADS)
Bannenberg, L. J.; Qian, F.; Dalgliesh, R. M.; Martin, N.; Chaboussant, G.; Schmidt, M.; Schlagel, D. L.; Lograsso, T. A.; Wilhelm, H.; Pappas, C.
2017-11-01
Magnetic skyrmions are nanosized topologically protected spin textures with particlelike properties. They can form lattices perpendicular to the magnetic field, and the orientation of these skyrmion lattices with respect to the crystallographic lattice is governed by spin-orbit coupling. By performing small-angle neutron scattering measurements, we investigate the coupling between the crystallographic and skyrmion lattices in both Cu2OSeO3 and the archetype chiral magnet MnSi. The results reveal that the orientation of the skyrmion lattice is primarily determined by the magnetic field direction with respect to the crystallographic lattice. In addition, it is also influenced by the magnetic history of the sample, which can induce metastable lattices. Kinetic measurements show that these metastable skyrmion lattices may or may not relax to their equilibrium positions under macroscopic relaxation times. Furthermore, multidomain lattices may form when two or more equivalent crystallographic directions are favored by spin-orbit coupling and oriented perpendicular to the magnetic field.
NASA Astrophysics Data System (ADS)
Ye, Junye; le Roux, Jakobus A.; Arthur, Aaron D.
2016-08-01
We study the physics of locally born interstellar pickup proton acceleration at the nearly perpendicular solar wind termination shock (SWTS) in the presence of a random magnetic field spiral angle using a focused transport model. Guided by Voyager 2 observations, the spiral angle is modeled with a q-Gaussian distribution. The spiral angle fluctuations, which are used to generate the perpendicular diffusion of pickup protons across the SWTS, play a key role in enabling efficient injection and rapid diffusive shock acceleration (DSA) when these particles follow field lines. Our simulations suggest that variation of both the shape (q-value) and the standard deviation (σ-value) of the q-Gaussian distribution significantly affect the injection speed, pitch-angle anisotropy, radial distribution, and the efficiency of the DSA of pickup protons at the SWTS. For example, increasing q and especially reducing σ enhances the DSA rate.
NASA Astrophysics Data System (ADS)
Pryadun, Vladimir
2005-03-01
Rectification of AC current has been observed in plain superconducting Nb films and in Nb/Ni films with symmetric periodic pinning centers. The rectified DC voltage appears for various sample geometries (cross or strip) both along and transverse to the alternating current direction, is nearly anti-symmetric with perpendicular magnetic field and strongly dependent on temperature below Tc. Analyses of the data at different temperatures, drive frequencies from 100kHz to 150MHz and at the different sample sides [1] shows that not far below Tc the rectification phenomena can be understood in terms of generation of electric fields due to local excess of critical current. Further below Tc anisotropic pinning effects could also contribute to the rectification. [1] F.G.Aliev, et al., Cond. Mat.405656. Supported by Comunidad Autonoma de Madrid -CAM/07N/0050/2002
Interaction between Faraday rotation and Cotton-Mouton effects in polarimetry modeling for NSTX
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, J.; Crocker, N. A.; Carter, T. A.
The evolution of electromagnetic wave polarization is modeled for propagation in the major radial direction in the National Spherical Torus Experiment with retroreflection from the center stack of the vacuum vessel. This modeling illustrates that the Cotton-Mouton effect-elliptization due to the magnetic field perpendicular to the propagation direction-is shown to be strongly weighted to the high-field region of the plasma. An interaction between the Faraday rotation and Cotton-Mouton effects is also clearly identified. Elliptization occurs when the wave polarization direction is neither parallel nor perpendicular to the local transverse magnetic field. Since Faraday rotation modifies the polarization direction during propagation,more » it must also affect the resultant elliptization. The Cotton-Mouton effect also intrinsically results in rotation of the polarization direction, but this effect is less significant in the plasma conditions modeled. The interaction increases at longer wavelength and complicates interpretation of polarimetry measurements.« less
Tunability of the fractional quantum Hall states in buckled Dirac materials
NASA Astrophysics Data System (ADS)
Apalkov, Vadym M.; Chakraborty, Tapash
2014-12-01
We report on the fractional quantum Hall states of germanene and silicene where one expects a strong spin-orbit interaction. This interaction causes an enhancement of the electron-electron interaction strength in one of the Landau levels corresponding to the valence band of the system. This enhancement manifests itself as an increase of the fractional quantum Hall effect gaps compared to that in graphene and is due to the spin-orbit induced coupling of the Landau levels of the conduction and valence bands, which modifies the corresponding wave functions and the interaction within a single level. Due to the buckled structure, a perpendicular electric field lifts the valley degeneracy and strongly modifies the interaction effects within a single Landau level: in one valley the perpendicular electric field enhances the interaction strength in the conduction band Landau level, while in another valley, the electric field strongly suppresses the interaction effects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bannenberg, L. J.; Qian, F.; Dalgliesh, R. M.
Magnetic skyrmions are nanosized topologically protected spin textures with particlelike properties. They can form lattices perpendicular to the magnetic field, and the orientation of these skyrmion lattices with respect to the crystallographic lattice is governed by spin-orbit coupling. By performing small-angle neutron scattering measurements, we investigate the coupling between the crystallographic and skyrmion lattices in both Cu 2OSeO 3 and the archetype chiral magnet MnSi. The results reveal that the orientation of the skyrmion lattice is primarily determined by the magnetic field direction with respect to the crystallographic lattice. In addition, it is also influenced by the magnetic history ofmore » the sample, which can induce metastable lattices. Kinetic measurements show that these metastable skyrmion lattices may or may not relax to their equilibrium positions under macroscopic relaxation times. Moreover, multidomain lattices may form when two or more equivalent crystallographic directions are favored by spin-orbit coupling and oriented perpendicular to the magnetic field.« less
Source analysis of MEG activities during sleep (abstract)
NASA Astrophysics Data System (ADS)
Ueno, S.; Iramina, K.
1991-04-01
The present study focuses on magnetic fields of the brain activities during sleep, in particular on K-complexes, vertex waves, and sleep spindles in human subjects. We analyzed these waveforms based on both topographic EEG (electroencephalographic) maps and magnetic fields measurements, called MEGs (magnetoencephalograms). The components of magnetic fields perpendicular to the surface of the head were measured using a dc SQUID magnetometer with a second derivative gradiometer. In our computer simulation, the head is assumed to be a homogeneous spherical volume conductor, with electric sources of brain activity modeled as current dipoles. Comparison of computer simulations with the measured data, particularly the MEG, suggests that the source of K-complexes can be modeled by two current dipoles. A source for the vertex wave is modeled by a single current dipole which orients along the body axis out of the head. By again measuring the simultaneous MEG and EEG signals, it is possible to uniquely determine the orientation of this dipole, particularly when it is tilted slightly off-axis. In sleep stage 2, fast waves of magnetic fields consistently appeared, but EEG spindles appeared intermittently. The results suggest that there exist sources which are undetectable by electrical measurement but are detectable by magnetic-field measurement. Such source can be described by a pair of opposing dipoles of which directions are oppositely oriented.
Effects of flow on the dynamics of a ferromagnetic nematic liquid crystal
NASA Astrophysics Data System (ADS)
Potisk, Tilen; Pleiner, Harald; Svenšek, Daniel; Brand, Helmut R.
2018-04-01
We investigate the effects of flow on the dynamics of ferromagnetic nematic liquid crystals. As a model, we study the coupled dynamics of the magnetization, M , the director field, n , associated with the liquid crystalline orientational order, and the velocity field, v . We evaluate how simple shear flow in a ferromagnetic nematic is modified in the presence of small external magnetic fields, and we make experimentally testable predictions for the resulting effective shear viscosity: an increase by a factor of 2 in a magnetic field of about 20 mT. Flow alignment, a characteristic feature of classical uniaxial nematic liquid crystals, is analyzed for ferromagnetic nematics for the two cases of magnetization in or perpendicular to the shear plane. In the former case, we find that small in-plane magnetic fields are sufficient to suppress tumbling and thus that the boundary between flow alignment and tumbling can be controlled easily. In the latter case, we furthermore find a possibility of flow alignment in a regime for which one obtains tumbling for the pure nematic component. We derive the analogs of the three Miesowicz viscosities well-known from usual nematic liquid crystals, corresponding to nine different configurations. Combinations of these can be used to determine several dynamic coefficients experimentally.
Interaction of a neutral cloud moving through a magnetized plasma
NASA Technical Reports Server (NTRS)
Goertz, C. K.; Lu, G.
1990-01-01
Current collection by outgassing probes in motion relative to a magnetized plasma may be significantly affected by plasma processes that cause electron heating and cross field transport. Simulations of a neutral gas cloud moving across a static magnetic field are discussed. The authors treat a low-Beta plasma and use a 2-1/2 D electrostatic code linked with the authors' Plasma and Neutral Interaction Code (PANIC). This study emphasizes the understanding of the interface between the neutral gas cloud and the surrounding plasma where electrons are heated and can diffuse across field lines. When ionization or charge exchange collisions occur a sheath-like structure is formed at the surface of the neutral gas. In that region the crossfield component of the electric field causes the electron to E times B drift with a velocity of the order of the neutral gas velocity times the square root of the ion to electron mass ratio. In addition a diamagnetic drift of the electron occurs due to the number density and temperature inhomogeneity in the front. These drift currents excite the lower-hybrid waves with the wave k-vectors almost perpendicular to the neutral flow and magnetic field again resulting in electron heating. The thermal electron current is significantly enhanced due to this heating.
NASA Technical Reports Server (NTRS)
Brinca, A. L.; Tsurutani, B. T.
1987-01-01
The characteristics of electromagnetic waves excited by cometary newborn ions with large perpendicular energies are examined using a model of solar wind permeated by dilute drifting ring distributions of electrons and oxygen ions with finite thermal spreads. The model has parameters compatible with the ICE observations at the Giacobini-Zinner comet. It is shown that cometary newborn ions with large perpendicular energies can excite a wave mode with rest frame frequencies in the order of the heavy ion cyclotron frequency, Omega(i), and unusual propagation characteristics at small obliquity angles. For parallel propagation, the mode is left-hand circularly polarized, might be unstable in a frequency range containing Omega(i), and moves in the direction of the newborn ion drift along the static magnetic field.
NASA Astrophysics Data System (ADS)
Wang, Xiao; Feng, Jiafeng; Guo, Peng; Wei, H. X.; Han, X. F.; Fang, B.; Zeng, Z. M.
2017-12-01
We report the temperature dependence of the spin-torque (ST) driven ferromagnetic resonance in MgO-based magnetic tunnel junction (MTJ) nanopillars with a perpendicularly free layer and an in-plane reference layer. From the evolution of the resonance frequency with magnetic field, we clearly identify the free-layer resonance mode and reference-layer mode. For the reference layer, we demonstrate a monotonic increase in resonance frequency and the effective damping with decreasing temperature, which suggests the saturated magnetization of the reference layer is dominant. However, for the free layer, the frequency and damping exhibit almost no change with temperature, indicating that the perpendicular magnetic anisotropy plays an important role in magnetization dynamics of the free layer.
Magnetic field effect for cellulose nanofiber alignment
NASA Astrophysics Data System (ADS)
Kim, Jaehwan; Chen, Yi; Kang, Kwang-Sun; Park, Young-Bin; Schwartz, Mark
2008-11-01
Regenerated cellulose formed into cellulose nanofibers under strong magnetic field and aligned perpendicularly to the magnetic field. Well-aligned microfibrils were found as the exposure time of the magnetic field increased. Better alignment and more crystalline structure of the cellulose resulted in the increased decomposition temperature of the material. X-ray crystallograms showed that crystallinity index of the cellulose increased as the exposure time of the magnetic field increased.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnston, David C.
Here, the influence of uniaxial single-ion anisotropy –DS 2 z on the magnetic and thermal properties of Heisenberg antiferromagnets (AFMs) is investigated. The uniaxial anisotropy is treated exactly and the Heisenberg interactions are treated within unified molecular field theory (MFT), where thermodynamic variables are expressed in terms of directly measurable parameters. The properties of collinear AFMs with ordering along the z axis (D>0) in applied field H z = 0 are calculated versus D and temperature T, including the ordered moment μ, the Néel temperature T N, the magnetic entropy, internal energy, heat capacity, and the anisotropic magnetic susceptibilities χmore » ∥ and χ ⊥ in the paramagnetic (PM) and AFM states. The high-field average magnetization per spin μ z(H z,D,T) is found, and the critical field H c(D,T) is derived at which the second-order AFM to PM phase transition occurs. The magnetic properties of the spin-flop (SF) phase are calculated, including the zero-field properties T N(D) and μ(D,T). The high-field μ z(H z,D,T) is determined, together with the associated spin-flop field H SF(D,T) at which a second-order SF to PM phase transition occurs. The free energies of the AFM, SF, and PM phases are derived from which H z–T phase diagrams are constructed. For f J =–1 and –0.75, where f J = θ pJ/T NJ and θ pJ and T NJ are the Weiss temperature in the Curie-Weiss law and the Néel temperature due to exchange interactions alone, respectively, phase diagrams in the H z–T plane similar to previous results are obtained. However, for f J = 0 we find a topologically different phase diagram where a spin-flop bubble with PM and AFM boundaries occurs at finite H z and T. Also calculated are properties arising from a perpendicular magnetic field, including the perpendicular susceptibility χ ⊥(D,T), the associated effective torque at low fields arising from the –DS 2 z term in the Hamiltonian, the high-field perpendicular magnetization μ ⊥, and the perpendicular critical field H c⊥ at which the second-order AFM to PM phase transition occurs. In addition to the above results for D > 0, the T N(D) and ordered moment μ(T,D) for collinear AFM ordering along the x axis with D < 0 are determined. In order to compare the properties of the above spin systems with those of noninteracting systems with –DS 2 z uniaxial anisotropy with either sign of D, Supplemental Material is provided in which results for the thermal and magnetic properties of such noninteracting spin systems are given.« less
New Method for Astrometric Measurements in Space Mission, JASMINE.
NASA Astrophysics Data System (ADS)
Yano, T.; Gouda, N.; Yamada, Y.
2006-08-01
We present a new method for measuring positions of stars in the Milky Way Galaxy by astrometric satellite, JASMINE, which is in progress at the National Astronomical Observatory of Japan. JASMINE is the acronym of the Japan Astrometry Satellite Mission for Infrared (z-band : 0.9 micron) Exploration, and is planned to be launched around 2015 The main objective of JASMINE is to study the fundamental structure and evolution of the bulge components of the Milky Way Galaxy. In order to accomplish these objectives, JASMINE will measure trigonometric parallaxes, positions and proper motions of about a few million stars during the observational program, with the precision of 10 microarcsec at z =14mag. The telescope of JASMINE has just one field of view, which is different from other astrometric satellites like Hipparcos and GAIA, that have two fields of view with large angle. These satellites, Hipparcos and GAIA, scan along the great circle with the spin axis perpendicular to both two fields of view to estimate the relative positions of stars on the great circle. They scan many different great circles to observe all the sky. On the other hand, JASMINE will take overlapping fields of view without any gaps to survey an area of about 20deg*10deg. Accordingly survey area covers the region of about 20deg*10deg in the bulge component. JASMINE will continue the above procedure for observing the area during the mission life. As a consequence, JASMINE will observe the restricted regions around the Galactic bulge and sweep repeatedly. The mission life is planned to be 5 years.
NASA Astrophysics Data System (ADS)
Kuzmiak, Vladimir; Maradudin, Alexei A.
1998-09-01
We study the distribution of the electromagnetic field of the eigenmodes and corresponding group velocities associated with the photonic band structures of two-dimensional periodic systems consisting of an array of infinitely long parallel metallic rods whose intersections with a perpendicular plane form a simple square lattice. We consider both nondissipative and lossy metallic components characterized by a complex frequency-dependent dielectric function. Our analysis is based on the calculation of the complex photonic band structure obtained by using a modified plane-wave method that transforms the problem of solving Maxwell's equations into the problem of diagonalizing an equivalent non-Hermitian matrix. In order to investigate the nature and the symmetry properties of the eigenvectors, which significantly affect the optical properties of the photonic lattices, we evaluate the associated field distribution at the high symmetry points and along high symmetry directions in the two-dimensional first Brillouin zone of the periodic system. By considering both lossless and lossy metallic rods we study the effect of damping on the spatial distribution of the eigenvectors. Then we use the Hellmann-Feynman theorem and the eigenvectors and eigenfrequencies obtained from a photonic band-structure calculation based on a standard plane-wave approach applied to the nondissipative system to calculate the components of the group velocities associated with individual bands as functions of the wave vector in the first Brillouin zone. From the group velocity of each eigenmode the flow of energy is examined. The results obtained indicate a strong directional dependence of the group velocity, and confirm the experimental observation that a photonic crystal is a potentially efficient tool in controlling photon propagation.
Pablant, N. A.; Satake, S.; Yokoyama, M.; ...
2016-01-28
An analysis of the radial electric field and heat transport, both for ions and electrons, is presented for a high-more » $${{T}_{\\text{e}}}$$ electron cyclotron heated (ECH) discharge on the large helical device (LHD). Transport analysis is done using the task3d transport suite utilizing experimentally measured profiles for both ions and electrons. Ion temperature and perpendicular flow profiles are measured using the recently installed x-ray imaging crystal spectrometer diagnostic (XICS), while electron temperature and density profiles are measured using Thomson scattering. The analysis also includes calculated ECH power deposition profiles as determined through the travis ray-tracing code. This is the first time on LHD that this type of integrated transport analysis with measured ion temperature profiles has been performed without NBI, allowing the heat transport properties of plasmas with only ECH heating to be more clearly examined. For this study, a plasma discharge is chosen which develops a high central electron temperature ($${{T}_{\\text{eo}}}=9$$ keV) at moderately low densities ($${{n}_{\\text{eo}}}=1.5\\times {{10}^{19}}$$ m-3). The experimentally determined transport properties from task3d are compared to neoclassical predictions as calculated by the gsrake and fortec-3d codes. The predicted electron fluxes are seen to be an order of magnitude less than the measured fluxes, indicating that electron transport is largely anomalous, while the neoclassical and measured ion heat fluxes are of the same magnitude. Neoclassical predictions of a strong positive ambipolar electric field ($${{E}_{\\text{r}}}$$ ) in the plasma core are validated through comparisons to perpendicular flow measurements from the XICS diagnostic. Furthermore, this provides confidence that the predictions are producing physically meaningful results for the particle fluxes and radial electric field, which are a key component in correctly predicting plasma confinement.« less
NASA Astrophysics Data System (ADS)
Szegö, Karoly; Nemeth, Zoltan; Foldy, Lajos; Burch, James L.; Goldstein, Raymond; Mandt, Kathleen; Mokashi, Prachet; Broiles, Tom
2015-04-01
The Ion Electron Sensor (IES) simultaneously measures ions and electrons with two separate electrostatic plasma analyzers in the energy range of 4 eV- 22 keV for ions. The field of view is 90ox360o, with angular resolution 5ox45o for ions, with a sector containing the solar wind being further segmented to 5o × 5o. IES has operated continuously since early 2014. In the ion data a low energy (<50-100 eV) component is well separated from the higher energy ions. Here we analyze the arrival direction of this low energy component. The origin of these low energy ions is certainly the ionized component of the neutral gas emitted due to solar activity from comet 67P/Churiumov-Gerasimenko. The low energy component in general shows a 6h periodicity due to cometary rotation. The data show, however, that the arrival direction of the low energy ions is smeared both in azimuth and elevation, due possibly to the diverse mechanisms affecting these ions. One of these effects is the spacecraft potential (~-10V), which accelerates the ions towards the spacecraft omnidirectionally. To characterize the flow direction in azimuth-elevation, we have integrated over the lowest 8 energy channels using weighted energy: sum(counts * energy)/sum(counts); and considered only cases when the counts are above 30. When we apply higher cut for counts, the flow direction became more definite. For this analysis we use data files where the two neighbouring energy values and elevation values are collapsed; and the azimuthal resolution is 45o, that is the solar wind azimuthal segmentation is also collapsed. Here we use day 2014.09.11. as illustration. On that day a solar wind shock reached the spacecraft at about ~10 UT. After the shock transition the energy of the solar wind became higher, and after ~12 UT the flow direction of the solar wind fluctuated, sometimes by 35o. On this day Rosetta flew at about 29.3-29.6 km from the nucleus. In the azimuth-elevation plots summed over "weighted energy" (as defined above) we were able to identify two flow directions: one close to the anti-solar direction, and one perpendicular to it. The occurrence and variations of these directions are still under investigation. A possible cause of the acceleration of low energy ions along the solar wind might be that electrons produced by the ionization of neutrals are immediately picked up by the solar wind generating a polarization electric field that accelerates the ions. This effect is similar to the generation of ionospheric holes at Venus [Hartle and Grebowsky, Adv. Space Res., 4, 1995]. The acceleration perpendicular to the solar wind might be due to the v x B electric field. The variations of the low energy flow direction is analyzed in detail in the presentation.
Drift-Alfven wave mediated particle transport in an elongated density depression
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vincena, Stephen; Gekelman, Walter
Cross-field particle transport due to drift-Alfven waves is measured in an elongated density depression within an otherwise uniform, magnetized helium plasma column. The depression is formed by drawing an electron current to a biased copper plate with cross-field dimensions of 28x0.24 ion sound-gyroradii {rho}{sub s}=c{sub s}/{omega}{sub ci}. The process of density depletion and replenishment via particle flux repeats in a quasiperiodic fashion for the duration of the current collection. The mode structure of the wave density fluctuations in the plane perpendicular to the background magnetic field is revealed using a two-probe correlation technique. The particle flux as a function ofmore » frequency is measured using a linear array of Langmuir probes and the only significant transport occurs for waves with frequencies between 15%-25% of the ion cyclotron frequency (measured in the laboratory frame) and with perpendicular wavelengths k{sub perpendicular}{rho}{sub s}{approx}0.7. The frequency-integrated particle flux is in rough agreement with observed increases in density in the center of the depletion as a function of time. The experiments are carried out in the Large Plasma Device (LAPD) [Gekelman et al., Rev. Sci. Instrum. 62, 2875 (1991)] at the Basic Plasma Science Facility located at the University of California, Los Angeles.« less
TH-CD-BRA-07: MRI-Linac Dosimetry: Parameters That Change in a Magnetic Field
DOE Office of Scientific and Technical Information (OSTI.GOV)
O’Brien, D. J.; Sawakuchi, G. O.
Purpose: In MRI-linac integrated systems, the presence of the magnetic (B-)field has a large impact of the dose-distribution and the dose-responses of detectors; yet established protocols and previous experience may lead to assumptions about the commissioning process that are no longer valid. This study quantifies parameters that change when performing dosimetry with an MRI-linac including beam quality specifiers and the effective-point-of-measurement (EPOM) of ionization chambers. Methods: We used the Geant4 Monte Carlo code for this work with physics parameters that pass the Fano cavity test to within 0.1% for the simulated conditions with and without a 1.5 T B-field. Amore » point source model with the energy distribution of an MRI-linac beam was used with and without the B-field to calculate the beam quality specifiers %dd(10)× and TPR{sup 20}{sub 10}, the variation of chamber response with orientation and the how the B-field affects the EPOM of ionization chambers by comparing depth-dose curves calculated in water to those generated by a model PTW30013 Farmer chamber. Results: The %dd(10)× changes by over 2% in the presence of the B-field while the TPR{sup 20}{sub 10} is unaffected. Ionization chamber dose-response is known to depend on the orientation w.r.t. the B-field, but two alternative perpendicular orientations (anti-parallel to each other) also differ in dose-response by over 1%. The B-field shifts the EPOM downstream (closer to the chamber center) but it is also shifted laterally by 0.27 times the chamber’s cavity radius. Conclusion: The EPOM is affected by the B-field and it even shifts laterally. The relationship between %dd(10)× and the Spencer-Attix stopping powers is also changed. Care must be taken when using chambers perpendicular to the field as the dose-response changes depending on which perpendicular orientation is used. All of these effects must be considered when performing dosimetry in B-fields and should be accounted for in future dosimetry protocols. This project was partially funded by Elekta Ltd.« less
Revisiting the Velocity Selector Problem with VPython
ERIC Educational Resources Information Center
Milbourne, Jeff; Lim, Halson
2015-01-01
The velocity selector is a classic first-year physics problem that demonstrates the influence of perpendicular electric and magnetic fields on a charged particle. Traditionally textbooks introduce this problem in the context of balanced forces, often asking for field strengths that would allow a charged particle, with a specific target velocity,…
He, Lan; Sewell, Thomas D; Thompson, Donald L
2012-01-21
Molecular dynamics simulations of supported shock waves (shock pressure P(s) ∼ 15 GPa) propagating along the [110], [011], [101], and [111] directions in crystalline nitromethane initially at T = 200 K were performed using the nonreactive Sorescu-Rice-Thompson force field [D. C. Sorescu, B. M. Rice, and D. L. Thompson, J. Phys. Chem. B 104, 8406 (2000)]. These simulations, combined with those from a preceding study of shocks propagating along [100], [010], and [001] directions in nitromethane for similar conditions of temperature and shock pressure [L. He, T. D. Sewell, and D. L. Thompson, J. Chem. Phys. 134, 124506 (2011)], have been used to study the post-shock relaxation phenomena. Shocks along [010] and [101] lead to a crystal-crystal structure transformation. Shocks propagating along [011], [110], [111], [100], and [001] exhibit plane-specific disordering, which was characterized by calculating as functions of time the 1D mean square displacement (MSD), 2D radial distribution function (RDF), and 2D orientation order parameter P(2)(θ) in orthogonal planes mutually perpendicular to the shock plane; and by calculating as functions of distance behind the shock front the Cartesian components of intermolecular, intramolecular, and total kinetic energies. The 2D RDF results show that the structural disordering for shocks along [100], [110], and [111] is strongly plane-specific; whereas for shocks along [001] and [011], the loss of crystal structural order is almost equivalent in the orthogonal planes perpendicular to the shock plane. Based on the entire set of simulations, there is a trend for the most extensive disordering to occur in the (010) and (110) planes, less extensive disordering to occur in the (100) plane, and essentially no disordering to occur in the (001) plane. The 2D P(2)(θ) and 1D MSD profiles show, respectively, that the orientational and translational disordering is plane-specific, which results in the plane-specific structural disordering observed in the 2D RDF. By contrast, the kinetic energy partitioning and redistribution do not exhibit plane specificity, as shown by the similarity of spatial profiles of the Cartesian components of the intermolecular, intramolecular, and total kinetic energies in orthogonal planes perpendicular to the shock plane. © 2012 American Institute of Physics
NASA Astrophysics Data System (ADS)
Gharekhan, Anita H.; Biswal, Nrusingh C.; Gupta, Sharad; Pradhan, Asima; Sureshkumar, M. B.; Panigrahi, Prasanta K.
2008-02-01
The statistical and characteristic features of the polarized fluorescence spectra from cancer, normal and benign human breast tissues are studied through wavelet transform and singular value decomposition. The discrete wavelets enabled one to isolate high and low frequency spectral fluctuations, which revealed substantial randomization in the cancerous tissues, not present in the normal cases. In particular, the fluctuations fitted well with a Gaussian distribution for the cancerous tissues in the perpendicular component. One finds non-Gaussian behavior for normal and benign tissues' spectral variations. The study of the difference of intensities in parallel and perpendicular channels, which is free from the diffusive component, revealed weak fluorescence activity in the 630nm domain, for the cancerous tissues. This may be ascribable to porphyrin emission. The role of both scatterers and fluorophores in the observed minor intensity peak for the cancer case is experimentally confirmed through tissue-phantom experiments. Continuous Morlet wavelet also highlighted this domain for the cancerous tissue fluorescence spectra. Correlation in the spectral fluctuation is further studied in different tissue types through singular value decomposition. Apart from identifying different domains of spectral activity for diseased and non-diseased tissues, we found random matrix support for the spectral fluctuations. The small eigenvalues of the perpendicular polarized fluorescence spectra of cancerous tissues fitted remarkably well with random matrix prediction for Gaussian random variables, confirming our observations about spectral fluctuations in the wavelet domain.
Wave and ion evolution downstream of quasi-perpendicular bow shocks
NASA Technical Reports Server (NTRS)
Mckean, M. E.; Omidi, N.; Krauss-Varban, D.
1995-01-01
Distribution functions of ions heated in quasi-perpendicular bow shocks have a large perpendicular temperature anisotropy that provides free energy for the growth of Alfven ion cyclotron (AIC) waves and mirror waves. Both types of waves have been observed in the Earth's magnetosheath downstream of quasi-perpendicular shocks. We use a two-dimensional hybrid simulations to give a self-consistent description of the evolution of the wave spectra downstream of quasi-perpendicular shocks. Both mirror and AIC waves are identified in the simulated magnetosheath. They are generated at or near the shock front and convected away from it by the sheath plasma. Near the shock, the waves have a broad spectrum, but downstream of the shock, shorter-wavelength modes are heavily damped and only longer-wavelength modes persist. The characteristics of these surviving modes can be predicted with reasonable accuracy by linear kinetic theory appropriate for downstream conditions. We also follow the evolution of the ion distribution function. The shocked ions that provide the free energy for wave growth have a two-component distribution function. The halo is initially gyrophase-bunched and extremely anisotropic. Within a relatively short distance downstream of the shock (of the order of 10 ion inertial lengths), wave-particle interactions remove these features from the halo and reduce the anisotropy of the distribution to near-threshold levels for the mirror and AIC instabilities. A similar evolution has been observed for ions at the Earth's bow shock.
Perpendicular dynamics of runaway electrons in tokamak plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernandez-Gomez, I.; Martin-Solis, J. R.; Sanchez, R.
2012-10-15
In this paper, it will be shown that the runaway phenomenon in tokamak plasmas cannot be reduced to a one-dimensional problem, based on the competence between electric field acceleration and collisional friction losses in the parallel direction. A Langevin approach, including collisional diffusion in velocity space, will be used to analyze the two-dimensional runaway electron dynamics. An investigation of the runaway probability in velocity space will yield a criterion for runaway, which will be shown to be consistent with the results provided by the more simple test particle description of the runaway dynamics [Fuchs et al., Phys. Fluids 29, 2931more » (1986)]. Electron perpendicular collisional scattering will be found to play an important role, relaxing the conditions for runaway. Moreover, electron pitch angle scattering perpendicularly broadens the runaway distribution function, increasing the electron population in the runaway plateau region in comparison with what it should be expected from electron acceleration in the parallel direction only. The perpendicular broadening of the runaway distribution function, its dependence on the plasma parameters, and the resulting enhancement of the runaway production rate will be discussed.« less
NASA Astrophysics Data System (ADS)
Sun, J. Z.; Trouilloud, P. L.; Gajek, M. J.; Nowak, J.; Robertazzi, R. P.; Hu, G.; Abraham, D. W.; Gaidis, M. C.; Brown, S. L.; O'Sullivan, E. J.; Gallagher, W. J.; Worledge, D. C.
2012-04-01
CoFeB-based magnetic tunnel junctions with perpendicular magnetic anisotropy are used as a model system for studies of size dependence in spin-torque-induced magnetic switching. For integrated solid-state memory applications, it is important to understand the magnetic and electrical characteristics of these magnetic tunnel junctions as they scale with tunnel junction size. Size-dependent magnetic anisotropy energy, switching voltage, apparent damping, and anisotropy field are systematically compared for devices with different materials and fabrication treatments. Results reveal the presence of sub-volume thermal fluctuation and reversal, with a characteristic length-scale of the order of approximately 40 nm, depending on the strength of the perpendicular magnetic anisotropy and exchange stiffness. To have the best spin-torque switching efficiency and best stability against thermal activation, it is desirable to optimize the perpendicular anisotropy strength with the junction size for intended use. It also is important to ensure strong exchange-stiffness across the magnetic thin film. These combine to give an exchange length that is comparable or larger than the lateral device size for efficient spin-torque switching.
Effective Ion Heating in Guide Field Reconnection
NASA Astrophysics Data System (ADS)
Guo, Xuehan; Horiuchi, Ritoku; Usami, Shunsuke; Ono, Yasushi
2017-10-01
The energy conversion mechanism for ion perpendicular thermal energy is investigated by means of two-dimensional, full particle simulations in an open system. It is shown that ions gain kinetic energy due to the plasma potential drop, which is caused by the charge separation in the one pair of separatrix arms. Based on the force balance in the inflow direction, the strength of the normalized charge density can be expressed by electron Alfvén velocity, which is measurable value in the laboratory experiment and/or satellite observation. Meanwhile, we found that the accelerated ions form a ring shape like distribution in f(v1 ,v2) , as a result, the ion perpendicular temperature Ti , perp increases from inflow region. Here, both v1 and v2 are perpendicular to the magnetic field and v2 is parallel to the in-plane. The mixing of particle populations is verified by means of tracing ions and it is shown three typical particle orbits and each orbit has different entry angle to the potential drop. This ring shape like distribution consists three different population due to the difference of the entry angles to the potential drop. This mixing process will thermalize ions and produce entropy without collisions.
Dissipation and particle energization in moderate to low beta turbulent plasma via PIC simulations
NASA Astrophysics Data System (ADS)
Makwana, Kirit; Li, Hui; Guo, Fan; Li, Xiaocan
2017-05-01
We simulate decaying turbulence in electron-positron pair plasmas using a fully-kinetic particle-in-cell (PIC) code. We run two simulations with moderate-to-low plasma β (the ratio of thermal pressure to magnetic pressure). The energy decay rate is found to be similar in both cases. The perpendicular wave-number spectrum of magnetic energy shows a slope between {k}\\perp -1.3 and {k}\\perp -1.1, where the perpendicular (⊥) and parallel (∥) directions are defined with respect to the magnetic field. The particle kinetic energy distribution function shows the formation of a non-thermal feature in the case of lower plasma β, with a slope close to E-1. The correlation between thin turbulent current sheets and Ohmic heating by the dot product of electric field (E) and current density (J) is investigated. Heating by the parallel E∥ · J∥ term dominates the perpendicular E⊥ · J⊥ term. Regions of strong E∥ · J∥ are spatially well-correlated with regions of intense current sheets, which also appear correlated with regions of strong E∥ in the low β simulation, suggesting an important role of magnetic reconnection in the dissipation of low β plasma turbulence.
NASA Astrophysics Data System (ADS)
Laval, M.; Lüders, U.; Bobo, J. F.
2007-09-01
We have prepared ultrathin Pt-Co-Pt-IrMn polycrystalline multilayers on float-glass substrates by DC magnetron sputtering. We have determined the optimal set of thickness for both Pt layers, the Co layer and the IrMn biasing layer so that these samples exhibit at the same time out-of-plane magnetic anisotropy and exchange bias. Kerr microscopy domain structure imaging evidences an increase of nucleation rate accompanied with inhomogeneous magnetic behavior in the case of exchange-biased films compared to Pt-Co-Pt trilayers. Polar hysteresis loops are measured in obliquely applied magnetic field conditions, allowing us to determine both perpendicular anisotropy effective constant Keff and exchange-bias coupling JE, which are significantly different from the ones determined by standard switching field measurements.
Full particle simulations of quasi-perpendicular shocks
NASA Astrophysics Data System (ADS)
Lembège, B.
This tutorial-style review is dedicated to the different strategies and constraints used for analysing the dynamics of a collisionless shocks with full particle simulations. Main results obtained with such simulations can be found in published materials (recent references are provided in this text); these will be only quoted herein in order to illustrate a few aspects of these simulations. Thanks to the large improvement of super computers, full particle simulations reveal to be quite helpful for analyzing in details the dynamics of collisionless shocks. The main characteristics of such codes can be shortly reminded as follows: one resolves the full set of Poisson and Maxwell's equations without any approximation. Two approaches are commonly used for resolving this equation's set, more precisely the space derivatives: (i) the finite difference approach and (ii) the use of FFT's (Fast Fourier Transform). Two advantages of approach (ii) are that FFT's are highly optimized in supercomputers libraries, and these allow to separate all fields components into two groups: the longitudinal electrostatic component El (solution of Poisson equation) and the transverse electromagnetic components Et and Bt solutions of the Maxwell's equations (so called "fields pusher"). Such a separation is quite helpful in the post processing stage necessary for the data analysis, as will be explained in the presentation. both ions and electrons populations are treated as individual finite-size particles and suffer the effects of all fields via the Lorentz force, so called "particle pusher", which is applied to each particle. Because of the large number of particles commonly used, the particle pusher represents the most expensive part of the calculations on which most efforts of optimisation needs to be performed (in terms of "vectorisation" or of "parallelism"). Relativistic effects may be included in this force via the use of particle momemtum. Each particle has three velocity components (vx, vy, vz), but may have 1, 2 or 3 space coordinates (x, y, z) according to the dimension of the code of concern.
NASA Astrophysics Data System (ADS)
Levin, A. D.; Momtaz, Z. S.; Gusev, G. M.; Raichev, O. E.; Bakarov, A. K.
2015-11-01
We observe the phonon-drag voltage oscillations correlating with the resistance oscillations under microwave irradiation in a two-dimensional electron gas in perpendicular magnetic field. This phenomenon is explained by the influence of dissipative resistivity modified by microwaves on the phonon-drag voltage perpendicular to the phonon flux. When the lowest-order resistance minima evolve into zero-resistance states, the phonon-drag voltage demonstrates sharp features suggesting that current domains associated with these states can exist in the absence of external dc driving.
Levin, A D; Momtaz, Z S; Gusev, G M; Raichev, O E; Bakarov, A K
2015-11-13
We observe the phonon-drag voltage oscillations correlating with the resistance oscillations under microwave irradiation in a two-dimensional electron gas in perpendicular magnetic field. This phenomenon is explained by the influence of dissipative resistivity modified by microwaves on the phonon-drag voltage perpendicular to the phonon flux. When the lowest-order resistance minima evolve into zero-resistance states, the phonon-drag voltage demonstrates sharp features suggesting that current domains associated with these states can exist in the absence of external dc driving.
Induced velocity field of a jet in a crossflow
NASA Technical Reports Server (NTRS)
Fearn, R. L.; Weston, R. P.
1978-01-01
An experimental investigation of a subsonic round jet exhausting perpendicularly from a flat plate into a subsonic crosswind of the same temperature was conducted. Velocity and pressure measurements were made in planes perpendicular to the path of the jet for ratios of jet velocity to crossflow velocity ranging from 3 to 10. The results of these measurements are presented in tabular and graphical forms. A pair of diffuse contrarotating vortices is identified as a significant feature of the flow, and the characteristics of the vortices are discussed.
Temperature dependence of spin-orbit torques in Pt/Co/Pt multilayers
NASA Astrophysics Data System (ADS)
Chen, Shiwei; Li, Dong; Cui, Baoshan; Xi, Li; Si, Mingsu; Yang, Dezheng; Xue, Desheng
2018-03-01
We studied the current-induced spin-orbit torques in a perpendicularly magnetized Pt (1 nm)/Co (0.8 nm)/Pt (5 nm) heterojunction by harmonic Hall voltage measurements. Owing to similar Pt/Co/Pt interfaces, the spin-orbit torques originated from the Rashba effect are reduced, but the contribution from the spin Hall effect is still retained because of asymmetrical Pt thicknesses. When the temperature increases from 50 to 300 K, two orthogonal components of the effective field, induced by spin-orbit torques, reveal opposite temperature dependencies: the field-like term (transverse effective field) decreases from 2.3 to 2.1 (10-6 Oe (A cm-2)-1), whereas the damping-like term (longitudinal effective field) increases from 3.7 to 4.8 (10-6 Oe (A cm-2)-1). It is noticed that the damping-like term, usually smaller than the field-like term in the similar Pt/Co interfaces, is twice as large as the field-like term. As a result, the damping-like spin-orbit torque reaches an efficiency of 0.15 at 300 K. Such a temperature-dependent damping-like term in a Pt/Co/Pt heterojunction can efficiently reduce the switching current density which is 2.30 × 106 A cm-2 at 300 K, providing an opportunity to further improve and understand spin-orbit torques induced by spin Hall effect.
Density-matrix description of heteronuclear decoupling in A mX n systems
NASA Astrophysics Data System (ADS)
McClung, R. E. D.; John, Boban K.
A detailed investigation of the effects of ordinary noise decoupling and spherical randomization decoupling on the elements of the density matrix for A mX n spin systems is presented. The elements are shown to reach steady-state values in the rotating frame of the decoupled nuclei when the decoupling field is strong and is applied for a sufficient time interval. The steady-state values are found to be linear combinations of the density-matrix elements at the beginning of the decoupling period, and often involve mixing of populations with multiple-quantum coherences, and mixing of the perpendicular components of the magnetization with higher coherences. This description of decoupling is shown to account for the "illusions" of spin decoupling in 2D gated-decoupler 13C J-resolved spectra reported by Levitt et al.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xing, W.; Heinrich, B.; Zhou, H.
1994-12-31
Mapping of the magnetic flux density B{sub z} (perpendicular to the film plane) for a YBa{sub 2}Cu{sub 3}O{sub 7} thin-film sample was carried out using a scanning micro-Hall probe. The sheet magnetization and sheet current densities were calculated from the B{sub z} distributions. From the known sheet magnetization, the tangential (B{sub x,y}) and normal components of the flux density B were calculated in the vicinity of the film. It was found that the sheet current density was mostly determined by 2B{sub x,y}/d, where d is the film thickness. The evolution of flux penetration as a function of applied field willmore » be shown.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whelan, B; Keall, P; Bazalova-Carter, M
Purpose: Recent advances towards MRI Linac radiotherapy have motivated a wide range of studies characterizing electromagnetic interactions between the two devices. One of the most sensitive components is the linac electron gun. To data, only non gridded (diode) guns have been investigated however, most linac vendors utilize gridded (triode) guns, which enable efficient and robust beam gating. The purpose of this study was to develop a realistic model of a gridded gun used clinically, and to characterize its performance in magnetic fields. Methods: The gridded electron gun used on Varian high energy machines was measured using 3D laser scanning quotedmore » as accurate to 0.1mm. Based on the scane, a detailed CAD mode was developed. From this, key geometry was extracted and a FEM model was developed (Opera/SCALA). Next, the high voltage (HV), grid voltage, and emission current were read from six dose matched TrueBeam linacs for the 6X, 10X and 15X photon modes (0 B-field). The mean values were used to represent each mode, which was simulated I constant magnetic fields from 0–200G in-line, and 0–35G perpendicular. Results: Experimentally measured HV, grid voltage, and emission current from 6X, 10X and 15X modes were respectively: 15±.03kV, 10±.08kV, 11±.03kV; 93±7V, 41±3V, and 70±6V; 327±27mA, 129±10mA, and 214±19mA. The error in simulated emission current of each mode was 3%,6%, and 3%. For in-line fields, 50% beam loss occurred at 114, 96, and 97G; for perpendicular; at 12, 13 and 14G. Sensitivity for a given geometry is primarily determined by HV setting. Conclusion: Future MRI-Linac systems will almost certainly use gridded guns. We present the first model of a clinical gridded gun, and match the experimental emission current to within 6% across three different operating modes. This clinical gun shows increased sensitivity to magnetic fields than previous work,and different modes show different sensitivity.« less
Choice of Grating Orientation for Evaluation of Peripheral Vision
Venkataraman, Abinaya Priya; Winter, Simon; Rosén, Robert; Lundström, Linda
2016-01-01
ABSTRACT Purpose Peripheral resolution acuity depends on the orientation of the stimuli. However, it is uncertain if such a meridional effect also exists for peripheral detection tasks because they are affected by optical errors. Knowledge of the quantitative differences in acuity for different grating orientations is crucial for choosing the appropriate stimuli for evaluations of peripheral resolution and detection tasks. We assessed resolution and detection thresholds for different grating orientations in the peripheral visual field. Methods Resolution and detection thresholds were evaluated for gratings of four different orientations in eight different visual field meridians in the 20-deg visual field in white light. Detection measurements in monochromatic light (543 nm; bandwidth, 10 nm) were also performed to evaluate the effects of chromatic aberration on the meridional effect. A combination of trial lenses and adaptive optics system was used to correct the monochromatic lower- and higher-order aberrations. Results For both resolution and detection tasks, gratings parallel to the visual field meridian had better threshold compared with the perpendicular gratings, whereas the two oblique gratings had similar thresholds. The parallel and perpendicular grating acuity differences for resolution and detection tasks were 0.16 logMAR and 0.11 logMAD, respectively. Elimination of chromatic errors did not affect the meridional preference in detection acuity. Conclusions Similar to peripheral resolution, detection also shows a meridional effect that appears to have a neural origin. The threshold difference seen for parallel and perpendicular gratings suggests the use of two oblique gratings as stimuli in alternative forced-choice procedures for peripheral vision evaluation to reduce measurement variation. PMID:26889822
Choice of Grating Orientation for Evaluation of Peripheral Vision.
Venkataraman, Abinaya Priya; Winter, Simon; Rosén, Robert; Lundström, Linda
2016-06-01
Peripheral resolution acuity depends on the orientation of the stimuli. However, it is uncertain if such a meridional effect also exists for peripheral detection tasks because they are affected by optical errors. Knowledge of the quantitative differences in acuity for different grating orientations is crucial for choosing the appropriate stimuli for evaluations of peripheral resolution and detection tasks. We assessed resolution and detection thresholds for different grating orientations in the peripheral visual field. Resolution and detection thresholds were evaluated for gratings of four different orientations in eight different visual field meridians in the 20-deg visual field in white light. Detection measurements in monochromatic light (543 nm; bandwidth, 10 nm) were also performed to evaluate the effects of chromatic aberration on the meridional effect. A combination of trial lenses and adaptive optics system was used to correct the monochromatic lower- and higher-order aberrations. For both resolution and detection tasks, gratings parallel to the visual field meridian had better threshold compared with the perpendicular gratings, whereas the two oblique gratings had similar thresholds. The parallel and perpendicular grating acuity differences for resolution and detection tasks were 0.16 logMAR and 0.11 logMAD, respectively. Elimination of chromatic errors did not affect the meridional preference in detection acuity. Similar to peripheral resolution, detection also shows a meridional effect that appears to have a neural origin. The threshold difference seen for parallel and perpendicular gratings suggests the use of two oblique gratings as stimuli in alternative forced-choice procedures for peripheral vision evaluation to reduce measurement variation.
Earth Observations taken by Expedition 30 crewmember
2011-12-29
ISS030-E-019144 (29 Dec. 2011) --- Agricultural patterns in Quebec, Canada are featured in this image photographed by an Expedition 30 crew member on the International Space Station. The region shown in the image, known as the Chaudiere-Appalaches, is located midway between Quebec City (the provincial capital) and the international border with the United States (specifically, the State of Maine). Agriculture is a significant component of Quebec’s industries, with over 50 per cent of the food produced or processed consumed within the province as of 2008 (source: Agriculture and Agri-Food Canada). The tapestry-like pattern is due to the fact that the agricultural fields in the region are closely tied to access roads, with rectangular fields extending outwards perpendicular to the roadways. A similar pattern—embedded within a different social, historical, and economic context—can be seen in the Rondonia region of western Brazil. Snow cover highlights the rectangular fields interspersed with dark green forested patches. The urban area of Saint Georges (left) is visible as a light gray region along the Chaudiere River. The Parc national de Frontenac borders parts of Lac (lake) St.-Francois at upper center, providing an area for outdoor recreation within the intensive agricultural landscape.
The influence of the ionized medium on synchrotron emission in interstellar space.
NASA Technical Reports Server (NTRS)
Ramaty, R.
1972-01-01
The effect of the ionized gas on synchrotron emission in the interstellar medium is investigated. A detailed calculation of the synchrotron emissivity of cosmic electrons, assumed to have an isotropic pitch-angle distribution in a uniform magnetic field, is made as a function of frequency and observation angle with respect to the field. The results are presented both as a local emissivity and as an intensity, the latter obtained by neglecting free-free absorption in the interstellar medium and by assuming that the emissivity is constant along the line of sight. The comparison of these results with previous studies on the nature of the low-frequency turnover of the galactic nonthermal radio background reveals that, except if the component perpendicular to the line of sight of the interstellar magnetic field is small (less than 1 microgauss), or if the cosmic-ray electron spectrum is cut off at energies below a few hundred MeV, the suppression of synchrotron emission by the ambient electrons has in general a lesser effect than free-free absorption by these electrons, and that in some cases this suppression effect is almost entirely negligible.
A new approach to the inverse problem for current mapping in thin-film superconductors
NASA Astrophysics Data System (ADS)
Zuber, J. W.; Wells, F. S.; Fedoseev, S. A.; Johansen, T. H.; Rosenfeld, A. B.; Pan, A. V.
2018-03-01
A novel mathematical approach has been developed to complete the inversion of the Biot-Savart law in one- and two-dimensional cases from measurements of the perpendicular component of the magnetic field using the well-developed Magneto-Optical Imaging technique. Our approach, especially in the 2D case, is provided in great detail to allow a straightforward implementation as opposed to those found in the literature. Our new approach also refines our previous results for the 1D case [Johansen et al., Phys. Rev. B 54, 16264 (1996)], and streamlines the method developed by Jooss et al. [Physica C 299, 215 (1998)] deemed as the most accurate if compared to that of Roth et al. [J. Appl. Phys. 65, 361 (1989)]. We also verify and streamline the iterative technique, which was developed following Laviano et al. [Supercond. Sci. Technol. 16, 71 (2002)] to account for in-plane magnetic fields caused by the bending of the applied magnetic field due to the demagnetising effect. After testing on magneto-optical images of a high quality YBa2Cu3O7 superconducting thin film, we show that the procedure employed is effective.
NASA Astrophysics Data System (ADS)
Omura, Y.; Hsieh, Y. K.; Foster, J. C.; Erickson, P. J.; Kletzing, C.; Baker, D. N.
2017-12-01
A recent test particle simulation of obliquely propagating whistler mode wave-particle interaction [Hsieh and Omura, 2017] shows that the perpendicular wave electric field can play a significant role in trapping and accelerating relativistic electrons through Landau resonance. A further theoretical and numerical investigation verifies that there occurs nonlinear wave trapping of relativistic electrons by the nonlinear Lorentz force of the perpendicular wave magnetic field. An electron moving with a parallel velocity equal to the parallel phase velocity of an obliquely propagating wave basically see a stationary wave phase. Since the electron position is displaced from its gyrocenter by a distance ρ*sin(φ), where ρ is the gyroradius and φ is the gyrophase, the wave phase is modulated with the gyromotion, and the stationary wave fields as seen by the electron are expanded as series of Bessel functions Jn with phase variations n*φ. The J1 components of the wave electric and magnetic fields rotate in the right-hand direction with the gyrofrequency, and they can be in resonance with the electron undergoing the gyromotion, resulting in effective electron acceleration and pitch angle scattering. We have performed a subpacket analysis of chorus waveforms observed by the Van Allen Probes [Foster et al., 2017], and calculated the energy gain by the cyclotron acceleration through Landau resonance. We compare the efficiencies of accelerations by cyclotron and Landau resonances in typical events of rapid electron acceleration observed by the Van Allen Probes.References:[1] Hsieh, Y.-K., and Y. Omura (2017), Nonlinear dynamics of electrons interacting with oblique whistler mode chorus in the magnetosphere, J. Geophys. Res. Space Physics, 122, 675-694, doi:10.1002/2016JA023255.[2] Foster, J. C., P. J. Erickson, Y. Omura, D. N. Baker, C. A. Kletzing, and S. G. Claudepierre (2017), Van Allen Probes observations of prompt MeV radiation belt electron acceleration in nonlinear interactions with VLF chorus, J. Geophys. Res. Space Physics, 122, 324-339, doi:10.1002/2016JA023429.
Johnston, David C.
2017-03-17
Here, the influence of uniaxial single-ion anisotropy –DS 2 z on the magnetic and thermal properties of Heisenberg antiferromagnets (AFMs) is investigated. The uniaxial anisotropy is treated exactly and the Heisenberg interactions are treated within unified molecular field theory (MFT), where thermodynamic variables are expressed in terms of directly measurable parameters. The properties of collinear AFMs with ordering along the z axis (D>0) in applied field H z = 0 are calculated versus D and temperature T, including the ordered moment μ, the Néel temperature T N, the magnetic entropy, internal energy, heat capacity, and the anisotropic magnetic susceptibilities χmore » ∥ and χ ⊥ in the paramagnetic (PM) and AFM states. The high-field average magnetization per spin μ z(H z,D,T) is found, and the critical field H c(D,T) is derived at which the second-order AFM to PM phase transition occurs. The magnetic properties of the spin-flop (SF) phase are calculated, including the zero-field properties T N(D) and μ(D,T). The high-field μ z(H z,D,T) is determined, together with the associated spin-flop field H SF(D,T) at which a second-order SF to PM phase transition occurs. The free energies of the AFM, SF, and PM phases are derived from which H z–T phase diagrams are constructed. For f J =–1 and –0.75, where f J = θ pJ/T NJ and θ pJ and T NJ are the Weiss temperature in the Curie-Weiss law and the Néel temperature due to exchange interactions alone, respectively, phase diagrams in the H z–T plane similar to previous results are obtained. However, for f J = 0 we find a topologically different phase diagram where a spin-flop bubble with PM and AFM boundaries occurs at finite H z and T. Also calculated are properties arising from a perpendicular magnetic field, including the perpendicular susceptibility χ ⊥(D,T), the associated effective torque at low fields arising from the –DS 2 z term in the Hamiltonian, the high-field perpendicular magnetization μ ⊥, and the perpendicular critical field H c⊥ at which the second-order AFM to PM phase transition occurs. In addition to the above results for D > 0, the T N(D) and ordered moment μ(T,D) for collinear AFM ordering along the x axis with D < 0 are determined. In order to compare the properties of the above spin systems with those of noninteracting systems with –DS 2 z uniaxial anisotropy with either sign of D, Supplemental Material is provided in which results for the thermal and magnetic properties of such noninteracting spin systems are given.« less
Wide-field fluorescent microscopy on a cell-phone.
Zhu, Hongying; Yaglidere, Oguzhan; Su, Ting-Wei; Tseng, Derek; Ozcan, Aydogan
2011-01-01
We demonstrate wide-field fluorescent imaging on a cell-phone, using compact and cost-effective optical components that are mechanically attached to the existing camera unit of the cell-phone. Battery powered light-emitting diodes (LEDs) are used to side-pump the sample of interest using butt-coupling. The pump light is guided within the sample cuvette to excite the specimen uniformly. The fluorescent emission from the sample is then imaged with an additional lens that is put in front of the existing lens of the cell-phone camera. Because the excitation occurs through guided waves that propagate perpendicular to the detection path, an inexpensive plastic color filter is sufficient to create the dark-field background needed for fluorescent imaging. The imaging performance of this light-weight platform (~28 grams) is characterized with red and green fluorescent microbeads, achieving an imaging field-of-view of ~81 mm(2) and a spatial resolution of ~10 μm, which is enhanced through digital processing of the captured cell-phone images using compressive sampling based sparse signal recovery. We demonstrate the performance of this cell-phone fluorescent microscope by imaging labeled white-blood cells separated from whole blood samples as well as water-borne pathogenic protozoan parasites such as Giardia Lamblia cysts.
Pan, Linjie; Cirillo, John; Borgens, Richard Ben
2012-08-01
The remarkable polarity-dependent growth and anatomical organization of neurons in vitro produced by imposed direct current (DC) voltage gradients (electrical fields; Ef) can be mimicked by another type of electrical cue. This is a properly structured asymmetrical alternating current (AC) electrical field (A-ACEf). Here we provide details on the construction of an AC signal generator in which all components of an AC waveform can be individually controlled. We show that 1) conventional symmetrical AC voltage gradients will not induce growth, guidance, or architectural changes in sympathetic neurons. We also provide the first qualitative and quantitative data showing that an asymmetric AC application can indeed mimic the DC response in chick sympathetic neurons and their growing neurites. This shift in orientation and neuronal anatomy requires dieback of some neurites and the extension of others to produce a preferred orientation perpendicular to the gradient of voltage. Our new results may lead to a noninvasive means to modify nerve growth and organization by magnetic inductive coupling at distance. These data also indicate the possibility of a means to mimic DC-dependent release of drugs or other biologically active molecules from electrically sensitive that can be loaded with these chemical cargos. Copyright © 2012 Wiley Periodicals, Inc.
Explorer 45 wave observations during the large magnetic storm of August 4-5, 1972
NASA Technical Reports Server (NTRS)
Taylor, W. W. L.; Anderson, R. G.
1977-01-01
The magnetospheric compression associated with the very large magnetic storm of August 4-5, 1972, provided an opportunity for Explorer 45 to observe plasma waves in the magnetosphere and the magnetosheath during extremely disturbed conditions. Electrostatic noise bursts were observed near the plasmapause in electric-field channels from 35 Hz to 5.62 kHz. In the outer magnetosphere, electric-field noise bands apparently harmonically related to the electron gyrofrequency with components as low as 3 kHz and as high as 50 kHz were observed. The electric field of the fundamental was perpendicular to the magnetic-field vector. A mechanism including the electron cyclotron instability may generate the noise band. Hiss of 100-1000 Hz was observed in the outer magnetosphere. The electromagnetic hiss was generally weak and was observed in the magnetic wide-band data only when it was strong. In the magnetosheath broad band, incoherent noise (hiss) was observed from 1 Hz to 100 kHz. This magnetosheath hiss was the strongest phenomenon observed by the plasma-wave detectors during the lifetime of Explorer 45. The highest intensities of magnetosheath hiss occurred at the magnetopause. Its broad-band nature suggests that magnetosheath hiss was generated locally. Broad-band noise bursts and short bursts of chorus were also observed in the magnetosheath.
3-D MHD disk wind simulations of protostellar jets
NASA Astrophysics Data System (ADS)
Staff, Jan E.; Koning, Nico; Ouyed, Rachid; Tanaka, Kei; Tan, Jonathan C.
2016-01-01
We present the results of large scale, three-dimensional magnetohydrodynamics simulations of disk winds for different initial magnetic field configurations. The jets are followed from the source to distances, which are resolvable by HST and ALMA observations. Our simulations show that jets are heated along their length by many shocks. The mass of the protostar is a free parameter that can be inserted in the post processing of the data, and we apply the simulations to both low mass and high mass protostars. For the latter we also compute the expected diagnostics when the outflow is photoionized by the protostar. We compute the emission lines that are produced, and find excellent agreement with observations. For a one solar mass protostar, we find the jet width to be between 20 and 30 au while the maximum velocities perpendicular to the jet are found to be 100 km s-1. The initially less open magnetic field configuration simulations result in a wider, two-component jet; a cylindrically shaped outer jet surrounding a narrow and much faster, inner jet. For the initially most open magnetic field configuration the kink mode creates a narrow corkscrew-like jet without a clear Keplerian rotation profile and even regions where we observe rotation opposite to the disk (counter-rotating). This is not seen in the less open field configurations.
NASA Astrophysics Data System (ADS)
Shigeta, Iduru; Kubota, Takahide; Sakuraba, Yuya; Kimura, Shojiro; Awaji, Satoshi; Takanashi, Koki; Hiroi, Masahiko
2018-05-01
Transport properties were investigated for epitaxial films of superconductor NbN and half-metallic Heusler alloy Co2MnSi under high magnetic fields up to 17 T. The superconducting transition temperature Tc of NbN/Co2MnSi/Au trilayer films was determined to be 16.1 K in the absence of magnetic field. Temperature dependence of the resistivity ρ (T) was measured in both magnetic fields parallel and perpendicular to the surface of NbN/Co2MnSi/Au trilayer films. The activation energy U0 (H) for vortex motion of the trilayer films in both magnetic fields was well fitted above 5 T by the similar model with the exponents in the field dependence of the pinning force density. From the resistivity ρ (T) measurements under high magnetic fields, the upper critical field Hc2 (0) at 0 K was also deduced to be μ0 Hc2 ∥ (0) = 23.2 T for the parallel magnetic filed and μ0 Hc2 ⊥ (0) = 15.8 T for the perpendicular magnetic field, respectively. The experimental results under magnetic fields revealed the superconductivity of the NbN layer was affected by the interplay between the superconducting NbN layer and the half-metallic Co2MnSi layer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Golubkov, A A; Makarov, Vladimir A
We have proved for the first time and proposed an algorithm of unique spatial profile reconstruction of the components {chi}-circumflex {sup (3)}{sub yyyy} of complex tensors {chi}-circumflex {sup (3)}(z, {omega}', {omega}', -{omega}, {omega}) and {chi}-circumflex {sup (3)}(z, 2{omega}{+-}{omega}', {+-}{omega}', {omega}, {omega}), describing four-photon interaction of light waves in a one-dimensionally inhomogeneous plate, whose medium has a symmetry plane m{sub y} that is perpendicular to its surface. For the media with an additional symmetry axis 2{sub z}, 4{sub z}, 6{sub z} or {infinity}{sub z} that is perpendicular to the plate surface, the proposed method can be used to reconstruct about one-fifthmore » of all independent components of the above tensors. (nonlinear optical phenomena)« less
NASA Astrophysics Data System (ADS)
Belmeguenai, M.; Gabor, M. S.; Roussigné, Y.; Petrisor, T.; Mos, R. B.; Stashkevich, A.; Chérif, S. M.; Tiusan, C.
2018-02-01
C o2FeAl (CFA) ultrathin films, of various thicknesses (0.9 nm ≤tCFA≤1.8 nm ), have been grown by sputtering on Si substrates, using Ir as a buffer layer. The magnetic properties of these structures have been studied by vibrating sample magnetometry (VSM), miscrostrip ferromagnetic resonance (MS-FMR), and Brillouin light scattering (BLS) in the Damon-Eshbach geometry. VSM characterizations show that films are mostly in-plane magnetized and the saturating field perpendicular to the film plane increases with decreasing CFA thickness suggesting the existence of a perpendicular interface anisotropy. The presence of a magnetic dead layer of 0.44 nm has been detected by VSM. The MS-FMR with the magnetic field applied perpendicularly to the film plane has been used to determine the gyromagnetic factor. The BLS measurements reveal a pronounced nonreciprocal spin wave propagation, due to the interfacial Dzyaloshinskii-Moriya interaction (DMI) induced by the Ir interface with CFA, which increases with decreasing CFA thickness. The DMI sign has been found to be the same (negative) as that of Pt/Co, in contrast to the ab initio calculation on Ir/Co, where it is found to be positive. The thickness dependence of the effective DMI constant shows the existence of two regimes similarly to that of the perpendicular anisotropy constant. The surface DMI constant Ds was estimated to be -0.37 pJ /m for the thickest samples, where a linear thickness dependence of the effective DMI constant has been observed.
NASA Astrophysics Data System (ADS)
Grappone, J. M., Jr.; Biggin, A. J.; Barrett, T. J.; Hill, M. J.
2017-12-01
Deep in the Earth, thermodynamic behavior drives the geodynamo and creates the Earth's magnetic field. Determining how the strength of the field, its paleointensity (PI), varies with time, is vital to our understanding of Earth's evolution. Thellier-style paleointensity experiments assume the presence of non-interacting, single domain (SD) magnetic particles, which follow Thellier's laws. Most natural rocks however, contain larger, multi-domain (MD) or interacting single domain (ISD) particles that often violate these laws and cause experiments to fail. Even for samples that pass reliability criteria designed to minimize the impact of MD or ISD grains, different PI techniques can give systematically different estimates, implying violation of Thellier's laws. Our goal is to identify any disparities in PI results that may be explainable by protocol-specific MD and ISD behavior and determine optimum methods to maximize accuracy. Volcanic samples from the Hawai'ian SOH1 borehole previously produced method-dependent PI estimates. Previous studies showed consistently lower PI values when using a microwave (MW) system and the perpendicular method than using the original thermal Thellier-Thellier (OT) technique. However, the data were ambiguous regarding the cause of the discrepancy. The diverging estimates appeared to be either the result of using OT instead of the perpendicular method or the result of using MW protocols instead of thermal protocols. Comparison experiments were conducted using the thermal perpendicular method and microwave OT technique to bridge the gap. Preliminary data generally show that the perpendicular method gives lower estimates than OT for comparable Hlab values. MW estimates are also generally lower than thermal estimates using the same protocol.
NASA Astrophysics Data System (ADS)
Wang, Hailong; Ma, Jialin; Yu, Xueze; Yu, Zhifeng; Zhao, Jianhua
2017-01-01
The electric-field effects on the magnetism in perpendicularly magnetized (Ga,Mn)As films at high temperatures have been investigated. An electric-field as high as 0.6 V nm-1 is applied by utilizing a solid-state dielectric Al2O3 film as a gate insulator. The coercive field, saturation magnetization and magnetic anisotropy have been clearly changed by the gate electric-field, which are detected via the anomalous Hall effect. In terms of the Curie temperature, a variation of about 3 K is observed as determined by the temperature derivative of the sheet resistance. In addition, electrical switching of the magnetization assisted by a fixed external magnetic field at 120 K is demonstrated, employing the gate-controlled coercive field. The above experimental results have been attributed to the gate voltage modulation of the hole density in (Ga,Mn)As films, since the ferromagnetism in (Ga,Mn)As is carrier-mediated. The limited modulation magnitude of magnetism is found to result from the strong charge screening effect introduced by the high hole concentration up to 1.10 × 1021 cm-3, while the variation of the hole density is only about 1.16 × 1020 cm-3.
NASA Astrophysics Data System (ADS)
Hussein, Z. A.; Boekelheide, Z.
In magnetic nanoparticle hyperthermia in an alternating magnetic field for cancer therapy, it is important to monitor the temperature in situ. This can be done optically or electrically, but electronic measurements can be problematic because conducting parts heat up in a changing magnetic field. Microfabricated thin film sensors may be advantageous because eddy current heating is a function of size, and are promising for further miniaturization of sensors and fabrication of arrays of sensors. Thin films could also be used for in situ magnetic field sensors or for strain sensors. For a proof of concept, we fabricated a metallic thin film resistive thermometer by photolithographically patterning a 500Å Au/100Å Cr thin film on a glass substrate. Measurements were taken in a solenoidal coil supplying 0.04 T (rms) at 235 kHz with the sensor parallel and perpendicular to the magnetic field. In the parallel orientation, the resistive thermometer mirrored the background heating from the coil, while in the perpendicular orientation self-heating was observed due to eddy current heating of the conducting elements by Faraday's law. This suggests that metallic thin film sensors can be used in an alternating magnetic field, parallel to the field, with no significant self-heating.
NASA Astrophysics Data System (ADS)
Shepley, Philippa M.; Tunnicliffe, Harry; Shahbazi, Kowsar; Burnell, Gavin; Moore, Thomas A.
2018-04-01
We study the magnetic properties of perpendicularly magnetized Pt/Co/Ir thin films and investigate the domain-wall creep method of determining the interfacial Dzyaloshinskii-Moriya (DM) interaction in ultrathin films. Measurements of the Co layer thickness dependence of saturation magnetization, perpendicular magnetic anisotropy, and symmetric and antisymmetric (i.e., DM) exchange energies in Pt/Co/Ir thin films have been made to determine the relationship between these properties. We discuss the measurement of the DM interaction by the expansion of a reverse domain in the domain-wall creep regime. We show how the creep parameters behave as a function of in-plane bias field and discuss the effects of domain-wall roughness on the measurement of the DM interaction by domain expansion. Whereas modifications to the creep law with DM field and in-plane bias fields have taken into account changes in the energy barrier scaling parameter α , we find that both α and the velocity scaling parameter v0 change as a function of in-plane bias field.
Spatial Studies of Ion Beams in an Expanding Plasma
NASA Astrophysics Data System (ADS)
Aguirre, Evan; Good, Timothy; Scime, Earl; Thompson, Derek
2017-10-01
We report spatially resolved perpendicular and parallel ion velocity distribution function (IVDF) measurements in an expanding argon helicon plasma. The parallel IVDFs, obtained through laser induced fluorescence (LIF), show an ion beam with v 8 km/s flowing downstream that is confined to the center of the discharge. The ion beam is confined to within a few centimeters radially and is measurable for tens of centimeters axially before the LIF signal fades, likely a result of metastable quenching of the beam ions. The axial ion beam velocity slows in agreement with collisional processes. The perpendicular IVDFs show an ion population with a radially outward flow that increases with radial location. The DC electric field, electron temperature, and the plasma density in the double layer plume are all consistent with magnetic field aligned structures. The upstream and downstream electric field measurements show clear evidence of an ion hole that maps along the magnetic field at the edge of the plasma. Current theories and simulations of double layers, which are one-dimensional, completely miss these critically important two-dimensional features.
Particle Heating in Space and Laboratory Plasmas
NASA Astrophysics Data System (ADS)
Scime, E. E.; Keesee, A. M.; Aquirre, E.; Good, T.
2017-12-01
We report spatially resolved perpendicular and parallel ion velocity distribution function (IVDF) measurements in an expanding argon helicon plasma. The parallel IVDFs, obtained through laser induced fluorescence (LIF), show an ion beam with v ˜ 8 km/s flowing downstream that is confined to the center of the discharge. The ion beam is confined to within a few centimeters radially and is measurable for tens of centimeters axially before the LIF signal fades, likely a result of metastable quenching of the beam ions. The axial ion beam velocity slows in agreement with collisional processes. The perpendicular IVDFs show an ion population with a radially outward flow that increases with radial location. The DC electric field, electron temperature, and the plasma density in the double layer plume are all consistent with magnetic field aligned structures. The upstream and downstream electric field measurements show clear evidence of an ion hole that maps along the magnetic field at the edge of the plasma. Current theories and simulations of double layers, which are one-dimensional, completely miss these critically important two-dimensional features.
Proton beam deflection in MRI fields: Implications for MRI-guided proton therapy.
Oborn, B M; Dowdell, S; Metcalfe, P E; Crozier, S; Mohan, R; Keall, P J
2015-05-01
This paper investigates, via magnetic modeling and Monte Carlo simulation, the ability to deliver proton beams to the treatment zone inside a split-bore MRI-guided proton therapy system. Field maps from a split-bore 1 T MRI-Linac system are used as input to geant4 Monte Carlo simulations which model the trajectory of proton beams during their paths to the isocenter of the treatment area. Both inline (along the MRI bore) and perpendicular (through the split-bore gap) orientations are simulated. Monoenergetic parallel and diverging beams of energy 90, 195, and 300 MeV starting from 1.5 and 5 m above isocenter are modeled. A phase space file detailing a 2D calibration pattern is used to set the particle starting positions, and their spatial location as they cross isocenter is recorded. No beam scattering, collimation, or modulation of the proton beams is modeled. In the inline orientation, the radial symmetry of the solenoidal style fringe field acts to rotate the protons around the beam's central axis. For protons starting at 1.5 m from isocenter, this rotation is 19° (90 MeV) and 9.8° (300 MeV). A minor focusing toward the beam's central axis is also seen, but only significant, i.e., 2 mm shift at 150 mm off-axis, for 90 MeV protons. For the perpendicular orientation, the main MRI field and near fringe field act as the strongest to deflect the protons in a consistent direction. When starting from 1.5 m above isocenter shifts of 135 mm (90 MeV) and 65 mm (300 MeV) were observed. Further to this, off-axis protons are slightly deflected toward or away from the central axis in the direction perpendicular to the main deflection direction. This leads to a distortion of the phase space pattern, not just a shift. This distortion increases from zero at the central axis to 10 mm (90 MeV) and 5 mm (300 MeV) for a proton 150 mm off-axis. In both orientations, there is a small but subtle difference in the deflection and distortion pattern between protons fired parallel to the beam axis and those fired from a point source. This is indicative of the 3D spatially variant nature of the MRI fringe field. For the first time, accurate magnetic and Monte Carlo modeling have been used to assess the transport of generic proton beams toward a 1 T split-bore MRI. Significant rotation is observed in the inline orientation, while more complex deflection and distortion are seen in the perpendicular orientation. The results of this study suggest that due to the complexity and energy-dependent nature of the magnetic deflection and distortion, the pencil beam scanning method will be the only choice for delivering a therapeutic proton beam inside a potential MRI-guided proton therapy system in either the inline or perpendicular orientation. Further to this, significant correction strategies will be required to account for the MRI fringe fields.
Energy distribution functions of kilovolt ions in a modified Penning discharge
NASA Technical Reports Server (NTRS)
Roth, J. R.
1972-01-01
The distribution function of ion energy parallel to the magnetic field of a Penning discharge was measured with a retarding potential energy analyzer. Simultaneous measurements of the ion energy distribution function perpendicular to the magnetic field were made with a charge-exchange neutral detector. The ion energy distribution functions are approximately Maxwellian, and their kinetic temperatures are equal within experimental error. This suggests that turbulent processes previously observed Maxwellianize the velocity distribution along a radius in velocity space, and result in an isotropic energy distribution. The kinetic temperatures are on the order of kilovolts, and the tails of the ion energy distribution functions are Maxwellian up to a factor of 7 e-folds in energy. When the distributions depart from Maxwellian, they are enhanced above the Maxwellian tail. Above densities of about 10 to the 10th power particles/cc, this enhancement appears to be the result of a second, higher temperature Maxwellian distribution. At these high particle energies, only the ions perpendicular to the magnetic field lines were investigated.
Particle model of full-size ITER-relevant negative ion source.
Taccogna, F; Minelli, P; Ippolito, N
2016-02-01
This work represents the first attempt to model the full-size ITER-relevant negative ion source including the expansion, extraction, and part of the acceleration regions keeping the mesh size fine enough to resolve every single aperture. The model consists of a 2.5D particle-in-cell Monte Carlo collision representation of the plane perpendicular to the filter field lines. Magnetic filter and electron deflection field have been included and a negative ion current density of j(H(-)) = 660 A/m(2) from the plasma grid (PG) is used as parameter for the neutral conversion. The driver is not yet included and a fixed ambipolar flux is emitted from the driver exit plane. Results show the strong asymmetry along the PG driven by the electron Hall (E × B and diamagnetic) drift perpendicular to the filter field. Such asymmetry creates an important dis-homogeneity in the electron current extracted from the different apertures. A steady state is not yet reached after 15 μs.
Alekseev, S I; Ziskin, M S; Fesenko, E E
2011-01-01
The possibility of using thermocouples for the artifact-free measurements of skin temperature during millimeter wave exposure was studied. The distributions of the specific absorption rate (SAR) in the human skin were calculated for different orientations of the thermocouple relative to the E-field of exposure. It was shown that, at the parallel orientation of a thermocouple relative to the E-field, SAR significantly increased at the tip of the thermocouple. This can result in an overheating of the thermocouple. At the perpendicular orientation of a thermocouple, the distortions of the SAR were insignificant. The data obtained confirm that the skin temperature can be measured with a thermocouple during exposure under the condition that the thermocouple is located perpendicular to the E-vector of the electromagnetic field. For the accurate determination of SAR from the rate of the initial temperature rise, it is necessary to fit the temperature kinetics measured with the thermocouple to the solution of the bio-heat transfer equation.
Reorientations, relaxations, metastabilities, and multidomains of skyrmion lattices
Bannenberg, L. J.; Qian, F.; Dalgliesh, R. M.; ...
2017-11-13
Magnetic skyrmions are nanosized topologically protected spin textures with particlelike properties. They can form lattices perpendicular to the magnetic field, and the orientation of these skyrmion lattices with respect to the crystallographic lattice is governed by spin-orbit coupling. By performing small-angle neutron scattering measurements, we investigate the coupling between the crystallographic and skyrmion lattices in both Cu 2OSeO 3 and the archetype chiral magnet MnSi. The results reveal that the orientation of the skyrmion lattice is primarily determined by the magnetic field direction with respect to the crystallographic lattice. In addition, it is also influenced by the magnetic history ofmore » the sample, which can induce metastable lattices. Kinetic measurements show that these metastable skyrmion lattices may or may not relax to their equilibrium positions under macroscopic relaxation times. Moreover, multidomain lattices may form when two or more equivalent crystallographic directions are favored by spin-orbit coupling and oriented perpendicular to the magnetic field.« less
Marracino, Paolo; Liberti, Micaela; Trapani, Erika; Burnham, Christian J.; Avena, Massimiliano; Garate, José-Antonio; Apollonio, Francesca; English, Niall J.
2016-01-01
Human aquaporin 4 has been studied using molecular dynamics (MD) simulations in the absence and presence of pulses of external static electric fields. The pulses were 10 ns in duration and 0.012–0.065 V/Å in intensity acting along both directions perpendicular to the pores. Water permeability and the dipolar response of all residues of interest (including the selectivity filter) within the pores have been studied. Results showed decreased levels of water osmotic permeability within aquaporin channels during orthogonally-oriented field impulses, although care must be taken with regard to statistical certainty. This can be explained observing enhanced “dipolar flipping” of certain key residues, especially serine 211, histidine 201, arginine 216, histidine 95 and cysteine 178. These residues are placed at the extracellular end of the pore (serine 211, histidine 201, and arginine 216) and at the cytoplasm end (histidine 95 and cysteine 178), with the key role in gating mechanism, hence influencing water permeability. PMID:27428954