Science.gov

Sample records for field correlator method

  1. Hybrid star structure with the Field Correlator Method

    NASA Astrophysics Data System (ADS)

    Burgio, G. F.; Zappalà, D.

    2016-03-01

    We explore the relevance of the color-flavor locking phase in the equation of state (EoS) built with the Field Correlator Method (FCM) for the description of the quark matter core of hybrid stars. For the hadronic phase, we use the microscopic Brueckner-Hartree-Fock (BHF) many-body theory, and its relativistic counterpart, i.e. the Dirac-Brueckner (DBHF). We find that the main features of the phase transition are directly related to the values of the quark-antiquark potential V1, the gluon condensate G2 and the color-flavor superconducting gap Δ. We confirm that the mapping between the FCM and the CSS (constant speed of sound) parameterization holds true even in the case of paired quark matter. The inclusion of hyperons in the hadronic phase and its effect on the mass-radius relation of hybrid stars is also investigated.

  2. Field methods to measure surface displacement and strain with the Video Image Correlation method

    NASA Technical Reports Server (NTRS)

    Maddux, Gary A.; Horton, Charles M.; Mcneill, Stephen R.; Lansing, Matthew D.

    1994-01-01

    The objective of this project was to develop methods and application procedures to measure displacement and strain fields during the structural testing of aerospace components using paint speckle in conjunction with the Video Image Correlation (VIC) system.

  3. Correlation-based methods in calibrating an FBG sensor with strain field non-uniformity

    NASA Astrophysics Data System (ADS)

    Cieszczyk, S.

    2015-12-01

    Fibre Bragg gratings have many sensing applications, mainly for measuring strain and temperature. The physical quantity that influences grating uniformly along its length causes a related shift of the Bragg wavelength. Many peak detection algorithms have been proposed, among which the most popular are the detection of maximum intensity, the centroid detection, the least square method, the cross-correlation, auto-correlation and fast phase correlation. Nonuniform gratings elongation is a cause of spectrum deformation. The introduction of non-uniformity can be intentional or appear as an unintended effect of placing sensing elements in the tested structure. Heterogeneous impacts on grating may result in additional errors and the difficulty in tracking the Bragg wavelength based on a distorted spectrum. This paper presents the application of correlation methods of peak wavelength shifts estimation for non-uniform Bragg grating elongation. The autocorrelation, cross-correlation and fast phase correlation algorithms are considered and experimental spectra measured for axisymmetric strain field along the Bragg grating are analyzed. The strain profile consists of constant and variable components. The results of this study indicate the properties of correlation algorithms applied to moderately non-uniform elongation of an FBG sensor.

  4. Simplified method for including spatial correlations in mean-field approximations

    NASA Astrophysics Data System (ADS)

    Markham, Deborah C.; Simpson, Matthew J.; Baker, Ruth E.

    2013-06-01

    Biological systems involving proliferation, migration, and death are observed across all scales. For example, they govern cellular processes such as wound healing, as well as the population dynamics of groups of organisms. In this paper, we provide a simplified method for correcting mean-field approximations of volume-excluding birth-death-movement processes on a regular lattice. An initially uniform distribution of agents on the lattice may give rise to spatial heterogeneity, depending on the relative rates of proliferation, migration, and death. Many frameworks chosen to model these systems neglect spatial correlations, which can lead to inaccurate predictions of their behavior. For example, the logistic model is frequently chosen, which is the mean-field approximation in this case. This mean-field description can be corrected by including a system of ordinary differential equations for pairwise correlations between lattice site occupancies at various lattice distances. In this work we discuss difficulties with this method and provide a simplification in the form of a partial differential equation description for the evolution of pairwise spatial correlations over time. We test our simplified model against the more complex corrected mean-field model, finding excellent agreement. We show how our model successfully predicts system behavior in regions where the mean-field approximation shows large discrepancies. Additionally, we investigate regions of parameter space where migration is reduced relative to proliferation, which has not been examined in detail before and find our method is successful at correcting the deviations observed in the mean-field model in these parameter regimes.

  5. Identification of the elastic stiffness of composites using the virtual fields method and digital image correlation

    NASA Astrophysics Data System (ADS)

    Jiang, Lebin; Guo, Baoqiao; Xie, Huimin

    2015-04-01

    This paper presents an effective methodology for characterizing the mechanical parameters of composites using digital image correlation combined with the virtual fields method. By using a three-point bending test configuration, this method can identify all mechanical parameters of the material with merely a single test. Successful results verified that this method is especially effective for characterizing composite materials. In this study, the method is applied to measure the orthotropic elastic parameters of fiber-reinforced polymer-matrix composites before and after the hygrothermal aging process. The results indicate that the hygrothermal aging environment significantly influences the mechanical property of a composite. The components of the parameters in the direction of the fiber bundle decreased significantly. From the accuracy analysis, we found that the actual measurement accuracy is sensitive to a shift of the horizontal edges and rotation of the vertical edges.

  6. Correlation Based Geomagnetic Field Modeling

    NASA Astrophysics Data System (ADS)

    Holschneider, M.; Mauerberger, S.; Lesur, V.; Baerenzung, J.

    2015-12-01

    We present a new method for determining geomagnetic field models. It is based on the construction of an a priori correlation structure derived from our knowledge about characteristic length scales and sources of the geomagnetic field. The magnetic field measurements are then seen as correlated random variables too and the inversion process amounts to compute the a posteriori correlation structure using Bayes theorem. We show how this technique allows the statistical separation of the various field contributions and the assessment of their uncertainties.

  7. The CSS parametrization for Hybrid Stars with the Field Correlator Method

    NASA Astrophysics Data System (ADS)

    Burgio, G. F.

    2017-06-01

    We explore the structure of hybrid stars based on a nuclear matter equation of state (EoS) built with the microscopic Brueckner-Hartree-Fock many-body theory, and a quark matter EoS derived with the Field Correlator Method (FCM), which can be accurately represented by the CSS (constant speed of sound) parametrization. We find that the main features of the hadron-quark phase transition are directly related to the FCM parameters, i.e. the quark-antiquark potential V 1, the gluon condensate G 2 and the color-flavour superconducting gap ∆, whose values range can be determined by the observational data on neutron star (NS) masses.

  8. Frontiers of two-dimensional correlation spectroscopy. Part 2. Perturbation methods, fields of applications, and types of analytical probes

    NASA Astrophysics Data System (ADS)

    Noda, Isao

    2014-07-01

    Noteworthy experimental practices, which are advancing forward the frontiers of the field of two-dimensional (2D) correlation spectroscopy, are reviewed with the focus on various perturbation methods currently practiced to induce spectral changes, pertinent examples of applications in various fields, and types of analytical probes employed. Types of perturbation methods found in the published literature are very diverse, encompassing both dynamic and static effects. Although a sizable portion of publications report the use of dynamic perturbatuions, much greater number of studies employ static effect, especially that of temperature. Fields of applications covered by the literature are also very broad, ranging from fundamental research to practical applications in a number of physical, chemical and biological systems, such as synthetic polymers, composites and biomolecules. Aside from IR spectroscopy, which is the most commonly used tool, many other analytical probes are used in 2D correlation analysis. The ever expanding trend in depth, breadth and versatility of 2D correlation spectroscopy techniques and their broad applications all point to the robust and healthy state of the field.

  9. New method for estimation of fluence complexity in IMRT fields and correlation with gamma analysis

    NASA Astrophysics Data System (ADS)

    Hanušová, T.; Vondráček, V.; Badraoui-Čuprová, K.; Horáková, I.; Koniarová, I.

    2015-01-01

    A new method for estimation of fluence complexity in Intensity Modulated Radiation Therapy (IMRT) fields is proposed. Unlike other previously published works, it is based on portal images calculated by the Portal Dose Calculation algorithm in Eclipse (version 8.6, Varian Medical Systems) in the plane of the EPID aS500 detector (Varian Medical Systems). Fluence complexity is given by the number and the amplitudes of dose gradients in these matrices. Our method is validated using a set of clinical plans where fluence has been smoothed manually so that each plan has a different level of complexity. Fluence complexity calculated with our tool is in accordance with the different levels of smoothing as well as results of gamma analysis, when calculated and measured dose matrices are compared. Thus, it is possible to estimate plan complexity before carrying out the measurement. If appropriate thresholds are determined which would distinguish between acceptably and overly modulated plans, this might save time in the re-planning and re-measuring process.

  10. Improved Newton-Raphson digital image correlation method for full-field displacement and strain calculation.

    PubMed

    Cofaru, Corneliu; Philips, Wilfried; Van Paepegem, Wim

    2010-11-20

    The two-dimensional in-plane displacement and strain calculation problem through digital image processing methods has been studied extensively in the past three decades. Out of the various algorithms developed, the Newton-Raphson partial differential correction method performs the best quality wise and is the most widely used in practical applications despite its higher computational cost. The work presented in this paper improves the original algorithm by including adaptive spatial regularization in the minimization process used to obtain the motion data. Results indicate improvements in the strain accuracy for both small and large strains. The improvements become even more significant when employing small displacement and strain window sizes, making the new method highly suitable for situations where the underlying strain data presents both slow and fast spatial variations or contains highly localized discontinuities.

  11. Continuous variable methods in relativistic quantum information: characterization of quantum and classical correlations of scalar field modes in noninertial frames

    NASA Astrophysics Data System (ADS)

    Adesso, Gerardo; Ragy, Sammy; Girolami, Davide

    2012-11-01

    We review a recently introduced unified approach to the analytical quantification of correlations in Gaussian states of bosonic scalar fields by means of Rényi-2 entropy. This allows us to obtain handy formulae for classical, quantum, total correlations, as well as bipartite and multipartite entanglement. We apply our techniques to the study of correlations between two modes of a scalar field as described by observers in different states of motion. When one or both observers are in uniform acceleration, the quantum and classical correlations are degraded differently by the Unruh effect, depending on which mode is detected. Residual quantum correlations, in the form of quantum discord without entanglement, may survive in the limit of an infinitely accelerated observer Rob, provided they are revealed in a measurement performed by the inertial Alice.

  12. Correlations in cosmic density fields

    NASA Astrophysics Data System (ADS)

    Bromley, B. C.

    1994-12-01

    A method is proposed to place constraints on the functional form of the high-order correlation functions zetan that arise in cosmic density fields at large scales. This technique is based on a mass-in-cell statistic and a difference of mass in partitions of a cell. The relationship between these measures is sensitive to the formal structure of the zetan as well as their amplitudes. This relationship is quantified in several theoretical models of structure, based on the hierarchical clustering paradigm. The results lead to a test for specific types of hierarchical clustering that is sensitive to correlations of all orders. The method is applied to examples of simulated large-scaled structure dominated by cold dark matter. In the preliminary study, the hierarchical paradigm appears to be a realistic approximation over a broad range of the scales. Furthermore, there is evidence that graphs of low-order vertices are dominant. On the basis of simulated data a phenomological model is specified that gives a good representation of clustering from linear scales to the strongly clustered regime (zeta2 approximately 500).

  13. Cross-correlation of instantaneous amplitudes of field potential oscillations: a straightforward method to estimate the directionality and lag between brain areas

    PubMed Central

    Adhikari, Avishek; Sigurdsson, Torfi; Topiwala, Mihir A.; Gordon, Joshua A.

    2010-01-01

    Researchers performing multi-site recordings are often interested in identifying the directionality of functional connectivity and estimating lags between sites. Current techniques for determining directionality require spike trains or involve multivariate autoregressive modeling. However, it is often difficult to sample large numbers of spikes from multiple areas simultaneously, and modeling can be sensitive to noise. A simple, model-independent method to estimate directionality and lag using local field potentials (LFPs) would be of general interest. Here we describe such a method using the cross-correlation of the instantaneous amplitudes of filtered LFPs. The method involves four steps. First, LFPs are band-pass filtered; second, the instantaneous amplitude of the filtered signals is calculated; third, these amplitudes are cross-correlated and the lag at which the cross-correlation peak occurs is determined; fourth, the distribution of lags obtained is tested to determine if it differs from zero. This method was applied to LFPs recorded from the ventral hippocampus and the medial prefrontal cortex in awake behaving mice. The results demonstrate that the hippocampus leads the mPFC, in good agreement with the time lag calculated from the phase locking of mPFC spikes to vHPC LFP oscillations in the same dataset. We also compare the amplitude cross-correlation method to partial directed coherence, a commonly used multivariate autoregressive model-dependent method, and find that the former is more robust to the effects of noise. These data suggest that the cross-correlation of instantaneous amplitude of filtered LFPs is a valid method to study the direction of flow of information across brain areas. PMID:20600317

  14. Improved Digital Image Correlation method

    NASA Astrophysics Data System (ADS)

    Mudassar, Asloob Ahmad; Butt, Saira

    2016-12-01

    Digital Image Correlation (DIC) is a powerful technique which is used to correlate two image segments to determine the similarity between them. A correlation image is formed which gives a peak known as correlation peak. If the two image segments are identical the peak is known as auto-correlation peak otherwise it is known as cross correlation peak. The location of the peak in a correlation image gives the relative displacement between the two image segments. Use of DIC for in-plane displacement and deformation measurements in Electronic Speckle Photography (ESP) is well known. In ESP two speckle images are correlated using DIC and relative displacement is measured. We are presenting background review of ESP and disclosing a technique based on DIC for improved relative measurements which we regard as the improved DIC method. Simulation and experimental results reveal that the proposed improved-DIC method is superior to the conventional DIC method in two aspects, in resolution and in the availability of reference position in displacement measurements.

  15. Classical density functional theory and the phase-field crystal method using a rational function to describe the two-body direct correlation function.

    PubMed

    Pisutha-Arnond, N; Chan, V W L; Iyer, M; Gavini, V; Thornton, K

    2013-01-01

    We introduce a new approach to represent a two-body direct correlation function (DCF) in order to alleviate the computational demand of classical density functional theory (CDFT) and enhance the predictive capability of the phase-field crystal (PFC) method. The approach utilizes a rational function fit (RFF) to approximate the two-body DCF in Fourier space. We use the RFF to show that short-wavelength contributions of the two-body DCF play an important role in determining the thermodynamic properties of materials. We further show that using the RFF to empirically parametrize the two-body DCF allows us to obtain the thermodynamic properties of solids and liquids that agree with the results of CDFT simulations with the full two-body DCF without incurring significant computational costs. In addition, the RFF can also be used to improve the representation of the two-body DCF in the PFC method. Last, the RFF allows for a real-space reformulation of the CDFT and PFC method, which enables descriptions of nonperiodic systems and the use of nonuniform and adaptive grids.

  16. Speeding up local correlation methods

    SciTech Connect

    Kats, Daniel

    2014-12-28

    We present two techniques that can substantially speed up the local correlation methods. The first one allows one to avoid the expensive transformation of the electron-repulsion integrals from atomic orbitals to virtual space. The second one introduces an algorithm for the residual equations in the local perturbative treatment that, in contrast to the standard scheme, does not require holding the amplitudes or residuals in memory. It is shown that even an interpreter-based implementation of the proposed algorithm in the context of local MP2 method is faster and requires less memory than the highly optimized variants of conventional algorithms.

  17. Global Method for Electron Correlation

    NASA Astrophysics Data System (ADS)

    Piris, Mario

    2017-08-01

    The current work presents a new single-reference method for capturing at the same time the static and dynamic electron correlation. The starting point is a determinant wave function formed with natural orbitals obtained from a new interacting-pair model. The latter leads to a natural orbital functional (NOF) capable of recovering the complete intrapair, but only the static interpair correlation. Using the solution of the NOF, two new energy functionals are defined for both dynamic (Edyn) and static (Esta) correlation. Edyn is derived from a modified second-order Møller-Plesset perturbation theory (MP2), while Esta is obtained from the static component of the new NOF. Double counting is avoided by introducing the amount of static and dynamic correlation in each orbital as a function of its occupation. As a result, the total energy is represented by the sum E˜ HF+Edyn+Esta , where E˜ HF is the Hartree-Fock energy obtained with natural orbitals. The new procedure called NOF-MP2 scales formally as O (M5) (where M is the number of basis functions), and is applied successfully to the homolytic dissociation of a selected set of diatomic molecules, paradigmatic cases of near-degeneracy effects. The size consistency has been numerically demonstrated for singlets. The values obtained are in good agreement with the experimental data.

  18. A Survey of the Methods Developed in the National Coal Board's Pneumoconiosis Field Research for Correlating Environmental Exposure with Medical Condition

    PubMed Central

    Fay, J. W. J.; Ashford, J. R.

    1961-01-01

    The correlation of the medical and environmental data (i.e. the derivation of the dosage-response relationship) in a study such as the National Coal Board's Pneumoconiosis Field Research (P.F.R.) is subject to many complicating factors compared with the more conventional types of biological assay. Several methods have been developed within the Research to overcome these difficulties, and the new procedures are described. Each is concerned with the estimation of the direct relation between the radiological abnormality associated with simple pneumoconiosis and some single measure of the past hazard, but the basic techniques are sufficiently general to be applicable in other fields of study. The first development involves the definition of an underlying continuous scale of radiological abnormality. This prepares the way for the derivation of the “quantitative” relation between exposure and response, to replace the “semi-quantal” relation which is inherent in the use of a small number of discrete categories of radiological abnormality. The effect of errors of observation of dosage and response on the corresponding quantitative and quantal relationships is then determined. The second development concerns the use of a “multi-dimensional” representation of past hazard. Most of the men under observation had worked in a number of different mining occupations before their first chest radiograph was taken, but this exposure cannot be assessed in terms of dust concentrations, for which reliable data are not available. Nevertheless, it is shown that past hazard can usefully be represented by three “dimensions” corresponding to the periods spent in three main types of environment—(a) the coal-face (coal-getting shift), (b) the coal-face (preparation shift) and (c) elsewhere underground. Each man's past exposure up to the time of his first chest radiograph can be expressed in terms of these three dimensions and the effect of each environment separately can be

  19. Variational methods for field theories

    SciTech Connect

    Ben-Menahem, S.

    1986-09-01

    Four field theory models are studied: Periodic Quantum Electrodynamics (PQED) in (2 + 1) dimensions, free scalar field theory in (1 + 1) dimensions, the Quantum XY model in (1 + 1) dimensions, and the (1 + 1) dimensional Ising model in a transverse magnetic field. The last three parts deal exclusively with variational methods; the PQED part involves mainly the path-integral approach. The PQED calculation results in a better understanding of the connection between electric confinement through monopole screening, and confinement through tunneling between degenerate vacua. This includes a better quantitative agreement for the string tensions in the two approaches. Free field theory is used as a laboratory for a new variational blocking-truncation approximation, in which the high-frequency modes in a block are truncated to wave functions that depend on the slower background modes (Boron-Oppenheimer approximation). This ''adiabatic truncation'' method gives very accurate results for ground-state energy density and correlation functions. Various adiabatic schemes, with one variable kept per site and then two variables per site, are used. For the XY model, several trial wave functions for the ground state are explored, with an emphasis on the periodic Gaussian. A connection is established with the vortex Coulomb gas of the Euclidean path integral approach. The approximations used are taken from the realms of statistical mechanics (mean field approximation, transfer-matrix methods) and of quantum mechanics (iterative blocking schemes). In developing blocking schemes based on continuous variables, problems due to the periodicity of the model were solved. Our results exhibit an order-disorder phase transition. The transfer-matrix method is used to find a good (non-blocking) trial ground state for the Ising model in a transverse magnetic field in (1 + 1) dimensions.

  20. Multi-reference vibration correlation methods

    SciTech Connect

    Pfeiffer, Florian; Rauhut, Guntram

    2014-02-14

    State-specific vibration correlation methods beyond the vibrational multi-configuration self-consistent field (VMCSCF) approximation have been developed, which allow for the accurate calculation of state energies for systems suffering from strong anharmonic resonances. Both variational multi-reference configuration interaction approaches and an implementation of approximate 2nd order vibrational multi-reference perturbation theory are presented. The variational approach can be significantly accelerated by a configuration selection scheme, which leads to negligible deviations in the final results. Relaxation effects due to the partitioning of the correlation space and the performance of a VMCSCF modal basis in contrast to a standard modal basis obtained from vibrational self-consistent field theory have been investigated in detail. Benchmark calculations based on high-level potentials are provided for the propargyl cation and cis-diazene.

  1. Perturbative renormalization of the electric field correlator

    NASA Astrophysics Data System (ADS)

    Christensen, C.; Laine, M.

    2016-04-01

    The momentum diffusion coefficient of a heavy quark in a hot QCD plasma can be extracted as a transport coefficient related to the correlator of two colour-electric fields dressing a Polyakov loop. We determine the perturbative renormalization factor for a particular lattice discretization of this correlator within Wilson's SU(3) gauge theory, finding a ∼ 12% NLO correction for values of the bare coupling used in the current generation of simulations. The impact of this result on existing lattice determinations is commented upon, and a possibility for non-perturbative renormalization through the gradient flow is pointed out.

  2. Atomic electron correlations in intense laser fields

    SciTech Connect

    Agostini, P A; DiMauro, L F; Kulander, K; Sheehy, B; Walker, B

    1998-09-03

    Abstract. This talk examines two distinct cases in strong opbical fields where electron correlation plays an important role in the dynamic.s. In the first. example, strong coupling in a two-electron-like system is manifested as an intensity-dependent splitting in the ionized electron energy distribution. This two-electron phenomenon (dubbed continuum-continuum Autler-Townes effect) is analogous to a strongly coupled two- level, one-electron atom but raises some intriguing questions regarding the exact nature of electron-electron correlation. The second case examines the evidence for two-electron ionization in the strong-field tunneling limit. Although our ability to describe the one- electron dynamics has obtained a quantitative level of understanding, a description of the two (multiple) electron ionization remains unc

  3. Atomic electron correlations in intense laser fields

    SciTech Connect

    DiMauro, L.F.; Sheehy, B.; Walker, B. Agostini, P.A. Kulander, K.C.

    1999-06-01

    This talk examines two distinct cases in strong optical fields where electron correlation plays an important role in the dynamics. In the first example, strong coupling in a two-electron-like system is manifested as an intensity-dependent splitting in the ionized electron energy distribution. This two-electron phenomenon (dubbed continuum-continuum Autler-Townes effect) is analogous to a strongly coupled two-level, one-electron atom but raises some intriguing questions regarding the exact nature of electron-electron correlation. The second case examines the evidence for two-electron ionization in the strong-field tunneling limit. Although our ability to describe the one-electron dynamics has obtained a quantitative level of understanding, a description of the two (multiple) electron ionization remains unclear. {copyright} {ital 1999 American Institute of Physics.}

  4. Atomic electron correlations in intense laser fields

    SciTech Connect

    DiMauro, L.F.; Sheehy, B.; Walker, B.; Agostini, P.A.; Kulander, K.C.

    1998-11-01

    This talk examines two distinct cases in strong optical fields where electron correlation plays an important role in the dynamics. In the first example, strong coupling in a two-electron-like system is manifested as an intensity-dependent splitting in the ionized electron energy distribution. This two-electron phenomenon (dubbed continuum-continuum Autler-Townes effect) is analogous to a strongly coupled two-level, one-electron atom but raises some intriguing questions regarding the exact nature of electron-electron correlation. The second case examines the evidence for two-electron ionization in the strong-field tunneling limit. Although their ability to describe the one-electron dynamics has obtained a quantitative level of understanding, a description of the two (multiple) electron ionization remains unclear.

  5. Atomic electron correlations in intense laser fields

    SciTech Connect

    DiMauro, L. F.; Sheehy, B.; Walker, B.; Agostini, P. A.; Kulander, K. C.

    1999-06-11

    This talk examines two distinct cases in strong optical fields where electron correlation plays an important role in the dynamics. In the first example, strong coupling in a two-electron-like system is manifested as an intensity-dependent splitting in the ionized electron energy distribution. This two-electron phenomenon (dubbed continuum-continuum Autler-Townes effect) is analogous to a strongly coupled two-level, one-electron atom but raises some intriguing questions regarding the exact nature of electron-electron correlation. The second case examines the evidence for two-electron ionization in the strong-field tunneling limit. Although our ability to describe the one-electron dynamics has obtained a quantitative level of understanding, a description of the two (multiple) electron ionization remains unclear.

  6. Variational Methods for Field Theories.

    NASA Astrophysics Data System (ADS)

    Ben-Menahem, Shahar

    The thesis has four parts, dealing with four field theory models: Periodic Quantum Electrodynamics (PQED) in (2 + 1) dimensions, free scalar field theory in (1 + 1) dimensions, the Quantum XY model in (1 + 1) dimensions, and the (1 + 1) dimensional Ising model in a transverse magnetic field. The last three parts deal exclusively with variational methods; the PQED part involves mainly the path-integral approach. The PQED calculation results in a better understanding of the connection between electric confinement through monopole screening, and confinement through tunneling between degenerate vacua. This includes a better quantitative agreement for the string tensions in the two approaches. In the second part, we use free field theory as a loboratory for a new variational blocking-tuncation approximation, in which the high-frequency modes in a block are truncated to wave functions that depend on the slower background modes(Born-Oppenheimer approximation). This "adiabatic truncation" method gives very accurate results for ground -state energy density and correlation functions. Without the adiabatic method, a much larger number of state per block must be kept to get comparable results. Various adiabatic schemes, with one variable kept per site and then two variables per site, are used. For the XY model, several trial wave functions for the ground state are explored, with an emphasis on the periodic Gaussian. A connection is established with the vortex Coulomb gas of the Eclidean path integral approach. The approximations used are taken from the realms of statistical mechanics (mean field approximation, transfer-matrix methods) and of quantum mechanics (iterative blocking schemes). In developing blocking schemes based on continuous variables, problems due to the periodicity of the model were solved. Our results exhibit an order-disorder phase transition. This transition is a rudimentary version of the actual transition known to occur in the XY model, and is

  7. Iterative method for generating correlated binary sequences

    NASA Astrophysics Data System (ADS)

    Usatenko, O. V.; Melnik, S. S.; Apostolov, S. S.; Makarov, N. M.; Krokhin, A. A.

    2014-11-01

    We propose an efficient iterative method for generating random correlated binary sequences with a prescribed correlation function. The method is based on consecutive linear modulations of an initially uncorrelated sequence into a correlated one. Each step of modulation increases the correlations until the desired level has been reached. The robustness and efficiency of the proposed algorithm are tested by generating sequences with inverse power-law correlations. The substantial increase in the strength of correlation in the iterative method with respect to single-step filtering generation is shown for all studied correlation functions. Our results can be used for design of disordered superlattices, waveguides, and surfaces with selective transport properties.

  8. Methods in field chronobiology.

    PubMed

    Dominoni, Davide M; Åkesson, Susanne; Klaassen, Raymond; Spoelstra, Kamiel; Bulla, Martin

    2017-11-19

    Chronobiological research has seen a continuous development of novel approaches and techniques to measure rhythmicity at different levels of biological organization from locomotor activity (e.g. migratory restlessness) to physiology (e.g. temperature and hormone rhythms, and relatively recently also in genes, proteins and metabolites). However, the methodological advancements in this field have been mostly and sometimes exclusively used only in indoor laboratory settings. In parallel, there has been an unprecedented and rapid improvement in our ability to track animals and their behaviour in the wild. However, while the spatial analysis of tracking data is widespread, its temporal aspect is largely unexplored. Here, we review the tools that are available or have potential to record rhythms in the wild animals with emphasis on currently overlooked approaches and monitoring systems. We then demonstrate, in three question-driven case studies, how the integration of traditional and newer approaches can help answer novel chronobiological questions in free-living animals. Finally, we highlight unresolved issues in field chronobiology that may benefit from technological development in the future. As most of the studies in the field are descriptive, the future challenge lies in applying the diverse technologies to experimental set-ups in the wild.This article is part of the themed issue 'Wild clocks: integrating chronobiology and ecology to understand timekeeping in free-living animals'. © 2017 The Author(s).

  9. Field by field hybrid upwind splitting methods

    NASA Technical Reports Server (NTRS)

    Coquel, Frederic; Liou, Meng-Sing

    1993-01-01

    A new and general approach to upwind splitting is presented. The design principle combines the robustness of flux vector splitting schemes in the capture of nonlinear waves and the accuracy of some flux difference splitting schemes in the resolution of linear waves. The new schemes are derived following a general hybridization technique performed directly at the basic level of the field by field decomposition involved in FDS methods. The scheme does not use a spatial switch to be tuned up according to the local smoothness of the approximate solution.

  10. Full-field digital image correlation with Kriging regression

    NASA Astrophysics Data System (ADS)

    Wang, Dezhi; DiazDelaO, F. A.; Wang, Weizhuo; Mottershead, John E.

    2015-04-01

    A full-field Digital Image Correlation (DIC) method with integrated Kriging regression is presented in this article. The displacement field is formulated as a best linear unbiased model that includes the correlations between all the locations in the Region of Interest (RoI). A global error factor is employed to extend conventional Kriging interpolation to quantify displacement errors of the control points. An updating strategy for the self-adaptive control grid is developed on the basis of the Mean Squared Error (MSE) determined from the Kriging model. Kriging DIC is shown to outperform several other full-field DIC methods when using open-access experimental data. Numerical examples are used to demonstrate the robustness of Kriging DIC to different choices of initial control points and to speckle pattern variability. Finally Kriging DIC is tested on an experimental example.

  11. Incorporating spatial correlations into multispecies mean-field models

    NASA Astrophysics Data System (ADS)

    Markham, Deborah C.; Simpson, Matthew J.; Maini, Philip K.; Gaffney, Eamonn A.; Baker, Ruth E.

    2013-11-01

    In biology, we frequently observe different species existing within the same environment. For example, there are many cell types in a tumour, or different animal species may occupy a given habitat. In modeling interactions between such species, we often make use of the mean-field approximation, whereby spatial correlations between the locations of individuals are neglected. Whilst this approximation holds in certain situations, this is not always the case, and care must be taken to ensure the mean-field approximation is only used in appropriate settings. In circumstances where the mean-field approximation is unsuitable, we need to include information on the spatial distributions of individuals, which is not a simple task. In this paper, we provide a method that overcomes many of the failures of the mean-field approximation for an on-lattice volume-excluding birth-death-movement process with multiple species. We explicitly take into account spatial information on the distribution of individuals by including partial differential equation descriptions of lattice site occupancy correlations. We demonstrate how to derive these equations for the multispecies case and show results specific to a two-species problem. We compare averaged discrete results to both the mean-field approximation and our improved method, which incorporates spatial correlations. We note that the mean-field approximation fails dramatically in some cases, predicting very different behavior from that seen upon averaging multiple realizations of the discrete system. In contrast, our improved method provides excellent agreement with the averaged discrete behavior in all cases, thus providing a more reliable modeling framework. Furthermore, our method is tractable as the resulting partial differential equations can be solved efficiently using standard numerical techniques.

  12. Image correlation method for DNA sequence alignment.

    PubMed

    Curilem Saldías, Millaray; Villarroel Sassarini, Felipe; Muñoz Poblete, Carlos; Vargas Vásquez, Asticio; Maureira Butler, Iván

    2012-01-01

    The complexity of searches and the volume of genomic data make sequence alignment one of bioinformatics most active research areas. New alignment approaches have incorporated digital signal processing techniques. Among these, correlation methods are highly sensitive. This paper proposes a novel sequence alignment method based on 2-dimensional images, where each nucleic acid base is represented as a fixed gray intensity pixel. Query and known database sequences are coded to their pixel representation and sequence alignment is handled as object recognition in a scene problem. Query and database become object and scene, respectively. An image correlation process is carried out in order to search for the best match between them. Given that this procedure can be implemented in an optical correlator, the correlation could eventually be accomplished at light speed. This paper shows an initial research stage where results were "digitally" obtained by simulating an optical correlation of DNA sequences represented as images. A total of 303 queries (variable lengths from 50 to 4500 base pairs) and 100 scenes represented by 100 x 100 images each (in total, one million base pair database) were considered for the image correlation analysis. The results showed that correlations reached very high sensitivity (99.01%), specificity (98.99%) and outperformed BLAST when mutation numbers increased. However, digital correlation processes were hundred times slower than BLAST. We are currently starting an initiative to evaluate the correlation speed process of a real experimental optical correlator. By doing this, we expect to fully exploit optical correlation light properties. As the optical correlator works jointly with the computer, digital algorithms should also be optimized. The results presented in this paper are encouraging and support the study of image correlation methods on sequence alignment.

  13. Image Correlation Method for DNA Sequence Alignment

    PubMed Central

    Curilem Saldías, Millaray; Villarroel Sassarini, Felipe; Muñoz Poblete, Carlos; Vargas Vásquez, Asticio; Maureira Butler, Iván

    2012-01-01

    The complexity of searches and the volume of genomic data make sequence alignment one of bioinformatics most active research areas. New alignment approaches have incorporated digital signal processing techniques. Among these, correlation methods are highly sensitive. This paper proposes a novel sequence alignment method based on 2-dimensional images, where each nucleic acid base is represented as a fixed gray intensity pixel. Query and known database sequences are coded to their pixel representation and sequence alignment is handled as object recognition in a scene problem. Query and database become object and scene, respectively. An image correlation process is carried out in order to search for the best match between them. Given that this procedure can be implemented in an optical correlator, the correlation could eventually be accomplished at light speed. This paper shows an initial research stage where results were “digitally” obtained by simulating an optical correlation of DNA sequences represented as images. A total of 303 queries (variable lengths from 50 to 4500 base pairs) and 100 scenes represented by 100 x 100 images each (in total, one million base pair database) were considered for the image correlation analysis. The results showed that correlations reached very high sensitivity (99.01%), specificity (98.99%) and outperformed BLAST when mutation numbers increased. However, digital correlation processes were hundred times slower than BLAST. We are currently starting an initiative to evaluate the correlation speed process of a real experimental optical correlator. By doing this, we expect to fully exploit optical correlation light properties. As the optical correlator works jointly with the computer, digital algorithms should also be optimized. The results presented in this paper are encouraging and support the study of image correlation methods on sequence alignment. PMID:22761742

  14. Beyond the relativistic mean-field approximation -- collective correlations

    NASA Astrophysics Data System (ADS)

    Li, Zhipan; Nikšić, Tamara; Vretenar, Dario; Yao, Jiangming

    Semi-empirical relativistic energy density functionals (EDFs) or effective interactions implicitly comprise short-range correlations related to the repulsive core of the inter-nucleon interaction, and long-range correlations mediated by nuclear resonance modes. To model spectroscopic properties of finite nuclei, the self-consistent mean-field method must be extended to include collective correlations that arise from restoration of broken symmetries and fluctuations in collective coordinates. These correlations are sensitive to shell effects, vary with particle number, and cannot be included in a universal EDF. We review and compare recent advances in "beyond mean-field" methods based on relativistic EDFs: the angular-momentum and particle-number projected triaxial generator coordinate method, the five-dimensional quadrupole collective Hamiltonian and the axial quadrupole-octupole collective Hamiltonian models. Illustrative applications include low-energy collective excitation spectra and electromagnetic transition rates of nuclei characterised by quadrupole and/or octupole deformations: 24Mg, 76Kr, 240Pu and 224Ra, in comparison with available data.

  15. Liouville Field Theory and Log-Correlated Random Energy Models

    NASA Astrophysics Data System (ADS)

    Cao, Xiangyu; Rosso, Alberto; Santachiara, Raoul; Le Doussal, Pierre

    2017-03-01

    An exact mapping is established between the c ≥25 Liouville field theory (LFT) and the Gibbs measure statistics of a thermal particle in a 2D Gaussian free field plus a logarithmic confining potential. The probability distribution of the position of the minimum of the energy landscape is obtained exactly by combining the conformal bootstrap and one-step replica symmetry-breaking methods. Operator product expansions in the LFT allow us to unveil novel universal behaviors of the log-correlated random energy class. High-precision numerical tests are given.

  16. Liouville Field Theory and Log-Correlated Random Energy Models.

    PubMed

    Cao, Xiangyu; Rosso, Alberto; Santachiara, Raoul; Le Doussal, Pierre

    2017-03-03

    An exact mapping is established between the c≥25 Liouville field theory (LFT) and the Gibbs measure statistics of a thermal particle in a 2D Gaussian free field plus a logarithmic confining potential. The probability distribution of the position of the minimum of the energy landscape is obtained exactly by combining the conformal bootstrap and one-step replica symmetry-breaking methods. Operator product expansions in the LFT allow us to unveil novel universal behaviors of the log-correlated random energy class. High-precision numerical tests are given.

  17. Permutation method for evaluating topographic craniofacial correlations.

    PubMed

    Halazonetis, Demetrios J

    2011-03-01

    Correlations between cephalometric measurements are frequently assumed to represent biologic associations. However, a significant portion of such correlations might arise from purely geometric dependencies, when measurements share common landmarks. Analytic calculation of this topographic component is difficult. The purpose of this study was to propose a permutation method for evaluating the topographic component of cephalometric correlations. The method consisted of creating a virtual sample of cephalometric tracings (landmark configurations) from the original biologic sample under investigation. Each novel landmark configuration was constructed by assigning coordinates to the cephalometric points; the coordinates of each point were taken randomly from the original sample, each from a potentially different subject. Correlation analysis was performed separately on both samples and the results compared. Biologic meaning was ascribed only when there was a significant difference in correlation values between the samples. Confidence intervals for assessing statistical significance were calculated by using a randomization approach. The method was tested on a sample of 170 radiographs to evaluate the correlation between cranial base angle (NSBa) and angles SNA and SNB, as well as between ANB angle and the Wits appraisal. No biologic association was found between ANB and Wits, or between NSBa and SNA. The biologic correlation between NSBa and SNB was statistically significant but low (r(2) = 12%). Topographic associations between cephalometric measurements are ubiquitous and difficult to assess. The proposed method enables evaluation of their relative strength without the need for analytic solutions. Copyright © 2011 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  18. Using of Correlating monomineral thermobarometry for mantle peridotites (correlating methods).

    NASA Astrophysics Data System (ADS)

    Ashchepkov, I. V.; Pokhilenko, N. P.; Sobolev, N. V.; Rotman, A. Y.; Afanasiev, V. P.; Logvinova, A. M.; Vladykin, N. V.; Kostrovitsky, S. I.; Karpenko, M. A.; Vishnyakova, E. V.

    2005-12-01

    Correlating monomineral thermobarometry using kimberlite mega- and xenocrysts and xenoliths allows to determine mantle layering with concentrate from kimberlites or placers. Orthopyroxene method (Brey, Kohler,1990)-(McGregor, 1974) was used for calibration of others. Clinopyroxene. Po =0.04*Kd *ToC/(1-2.4*Fe)-5.5 where KD = Na/Ca *Mg/(Al+Cr)and polynomial P = 0.00006*Po3 - 0.0156*Po2 + 1.6757*Po (R2 = 0.8245). The ToC (Nimis -Taylor, 2000) are corrected ToC= 000001*TooC**2 +0.9575*TooC+107.01 Garnet. Thermometers based on: 1) OPx's (Brey, Kohler,1990) estimates, ToC =5272.5*(Ln(KD)/P)3+10265* (Ln(KD)/P)2+ 6472* Ln(KD)/P +2113 where KD= MgO*TiO2/((CaO+MgO)2* FeO*Al2O3 2) CPx (Nimis, Taylor, 2000), : T0oC =362.05*(Ln(KD)/P)3+1880.4* (Ln(KD))/P2+2659.6* Ln(KD)/P +1695.5 where KD= Na2O*MnO*TiO2/(CaO+MgO)* FeO*Al2O3, 3) Gar-Cpx (Krogh, 1988) KD= Na2O*MnO*TiO2/(CaO+MgO)* FeO*Al2O3, 4)Ni in garnet thermometry (Griffin, 1989) with Ni(ppm) =88,877*E**(-5.021*Ni'), (R2=0.69) where Ni' =MnO*ln(FeO)/ln(MgO)*1.1-0.193*TiO2 +0.003*ln(Na2O)- 0.003*Cr2O3+0.0035*CaO+0.004*Al2O3 ToC =0.0004*Ni3-0.0304*Ni2 +7.6318*Ni+ 597.2 ( R2 = 0.69) Chromite P=0.86347*(Cr/(Cr+Al)* ToC/14+Ti*0.1) the second approximation P=0.0004*Po3-0.0342*Po2+1.5323*Po The temperatures are determined using monomineral version of the Ol-Sp thermometer (Taylor et al.,1998) Fo=0.06+0.0005*P for P >30 kbar and Fo=0.095+0.0001*Po for the lower pressures. The Sp-Ol oxybarometer (Taylor et al ., 1998) give the lineal correlation with monomineral version made in the same manner (R-0,96). Ilmenite. P= (TiO2-23.)*2.15-(ToC-700)/20*MgO*Cr2O3-1.5*MnO)*ToC/1273 and further P=10*(60-Po)/60+Po. Monomineral version Ol-Il thermometer (Taylor et al ., 1998) where Fo=0.11+0.00025*P for pressures lower then 30 kbar and Fo=0.10+0.00025*P for greater pressures. The monomineral fO2 oxybarometer same Fo content . Data for 7 kimberlite fields in Yakutia show large scale variations of the mantle different part of Siberian platform

  19. Field method for sulfide determination

    SciTech Connect

    Wilson, B L; Schwarser, R R; Chukwuenye, C O

    1982-01-01

    A simple and rapid method was developed for determining the total sulfide concentration in water in the field. Direct measurements were made using a silver/sulfide ion selective electrode in conjunction with a double junction reference electrode connected to an Orion Model 407A/F Specific Ion Meter. The method also made use of a sulfide anti-oxidant buffer (SAOB II) which consists of ascorbic acid, sodium hydroxide, and disodium EDTA. Preweighed sodium sulfide crystals were sealed in air tight plastic volumetric flasks which were used in standardization process in the field. Field standards were prepared by adding SAOB II to the flask containing the sulfide crystals and diluting it to the mark with deionized deaerated water. Serial dilutions of the standards were used to prepare standards of lower concentrations. Concentrations as low as 6 ppB were obtained on lake samples with a reproducibility better than +- 10%.

  20. Density Functional Plus Dynamical Mean Field Theory of Correlated Oxides

    NASA Astrophysics Data System (ADS)

    Millis, Andrew

    2015-03-01

    The density functional plus dynamical mean field method is outlined and a few recent successes including applications to spin crossover molecules, oxide superlattices and metal-insulator transitions in bulk transition metals are outlined. Insights from the method into the essential role played by lattice distortions (both rotations and bond length changes) in determining the phase diagrams of correlated materials are presented. The key theoretical issue of the double counting correction is outlined, different approaches are compared, and a connection to the energy level differences between strongly and weakly correlated orbitals is presented. Charge transfer across oxide interfaces shown to depend crucially on the double counting correction, suggesting that experiments on oxide superlattices may provide insights into this important problem. Future directions are discussed. This work is performed in collaboration with Jia Chen, Hung Dang, Hyowon Park and Chris Marianetti. This research supported by the DOE Office of Science, Grant ER 046169.

  1. Variational methods for field theories

    NASA Astrophysics Data System (ADS)

    Ben-Menahem, Shahar

    1986-09-01

    The thesis is presented in four parts dealing with field theory models: Periodic Quantum Electrodynamics (PQED) in (2+1) dimensions, free scalar field theory in (1+1) dimensions, the Quantum XY model in (1+1) dimensions, and the (1+1) dimensional Ising model in a transverse magnetic field. The last three parts deal exclusively with variational methods; the PQED part involves mainly the path integral approach. The PQED calculation results in a better understanding of the connection between electric confinement through monopole screening, and confinement through tunneling between degenerate vacua. Free field theory is used as a laboratory for a new variational blocking truncation approximation, in which the high frequency modes in a block are truncated to wave functions that depend on the slower background model (Born Oppenheimer approximation). For the XY model, several trial wave functions for the ground state are explored, with an emphasis on the periodic Gaussian. In the 4th part, the transfer matrix method is used to find a good (non blocking) trial ground state for the Ising model in a transverse magnetic field in (1+1) dimensions.

  2. Equilibrium correlations in charged fluids coupled to the radiation field

    SciTech Connect

    El Boustani, Sami; Buenzli, Pascal R.; Martin, Philippe A.

    2006-03-15

    We provide an exact microscopic statistical treatment of particle and field correlations in a system of quantum charges in equilibrium with a classical radiation field. Using the Feynman-Kac-Ito representation of the Gibbs weight, the system of particles is mapped onto a collection of random charged wires. The field degrees of freedom can be integrated out, providing an effective pairwise magnetic potential. We then calculate the contribution of the transverse field coupling to the large-distance particle correlations. The asymptotics of the field correlations in the plasma are also exactly determined.

  3. A new 'Implicit correlation' method for cross-correlation sampling in MCNPX-PoliMi

    SciTech Connect

    Marcath, M. J.; Larsen, E. W.; Clarke, S. D.; Pozzi, S. A.

    2013-07-01

    Monte Carlo particle transport codes used to accurately model detector response are traditionally run in fully analog mode. Analog simulations of cross-correlation measurements with these codes are extremely time-consuming because the probability of correlated detection is extremely small, approximately equal to the product of the probabilities of a single detection in each detector. The new 'implicit correlation' method described here increases the number of correlation event scores thereby reducing variance and required computation times. The cost of the implicit correlation method is comparable to the cost of simulating single event detection for the lowest absolute detector efficiency in the problem. This method is especially useful in the nuclear non-proliferation and safeguards fields for simulating correlation measurements of shielded special nuclear material. The new method was implemented in MCNPX-PoliMi for neutron-neutron cross-correlations with a Cf-252 spontaneous fission source measured by two detectors of variable stand-offs. The method demonstrated good agreement with analog simulation results for multiple measurement geometries. Small differences between non-analog and analog cross-correlation distributions are attributed to known features of the specific problem simulated that will not be present in practical applications. (authors)

  4. Method of Second Cross-Correlation

    NASA Astrophysics Data System (ADS)

    Tanimoto, T.; Alvizuri, C.

    2008-12-01

    In a high frequency band above 1 Hz, the Noise Cross-Correlation method works because of multiple scattering but in a lower frequency band, say below 0.2 Hz, it works mainly because of wide distribution of sources as effects from multiple scattering are much smaller. As noise-source locations change seasonably, seasonal variations are often seen in the correlated seismograms (first correlogram). In Southern California, weaker signals are seen in summer because of weaker ocean waves. Source distribution also introduces another problem; near the coast, it is often found that the paths perpendicular to the coast show good signal in correlograms but the paths parallel to the coast do not necessarily contain good signals. This is directly related to the source locations, i.e., ocean waves in low frequency bands. This feature does harm in tomographic studies, especially for the recovery of azimuthal anisotropy, as measurements from all azimuths are the key to its success. One method to circumvent this problem is the method of Second Cross-Correlation. This method computes cross-correlations of Greens function that have been obtained by the noise cross-correlation method. We call it here as Second Cross-Correlation and refer to correlated seismograms as second correlograms. Campillo et al. (2008) showed an application to coda in Greens functions for the first time but in this study we focus on the entire waveforms. We present theoretical analysis of this method with some examples from Southern California. It works for a relatively dense array of network only, but such dense arrays are available in many parts of the world now. We extend our theoretical analysis in Tanimoto (2008) for first correlograms which was a full normal-mode- theory version of theories developed by Snieder (2004), Roux et al. (2005) and Wapenaar (2004). There are some distinct features in second correlograms; for example, while an ordinary (first) correlogram depends on f**2, where f is the source

  5. Theoretical methods in fluorescence correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Torres, Tedman Anthony

    2009-12-01

    analysis of the data. Also, a method is presented to eliminate the effect of diffusion in experimental correlation-functions of conformational reaction studies by means of auto/cross-correlation ratios. This method eliminates the need to utilize a separate diffusion-characterizing sample in a second experiment. Changes in confocal volume shape between experiments are also eliminated, providing more reliable parameter extraction.

  6. BONNSAI: correlated stellar observables in Bayesian methods

    NASA Astrophysics Data System (ADS)

    Schneider, F. R. N.; Castro, N.; Fossati, L.; Langer, N.; de Koter, A.

    2017-02-01

    In an era of large spectroscopic surveys of stars and big data, sophisticated statistical methods become more and more important in order to infer fundamental stellar parameters such as mass and age. Bayesian techniques are powerful methods because they can match all available observables simultaneously to stellar models while taking prior knowledge properly into account. However, in most cases it is assumed that observables are uncorrelated which is generally not the case. Here, we include correlations in the Bayesian code Bonnsai by incorporating the covariance matrix in the likelihood function. We derive a parametrisation of the covariance matrix that, in addition to classical uncertainties, only requires the specification of a correlation parameter that describes how observables co-vary. Our correlation parameter depends purely on the method with which observables have been determined and can be analytically derived in some cases. This approach therefore has the advantage that correlations can be accounted for even if information for them are not available in specific cases but are known in general. Because the new likelihood model is a better approximation of the data, the reliability and robustness of the inferred parameters are improved. We find that neglecting correlations biases the most likely values of inferred stellar parameters and affects the precision with which these parameters can be determined. The importance of these biases depends on the strength of the correlations and the uncertainties. For example, we apply our technique to massive OB stars, but emphasise that it is valid for any type of stars. For effective temperatures and surface gravities determined from atmosphere modelling, we find that masses can be underestimated on average by 0.5σ and mass uncertainties overestimated by a factor of about 2 when neglecting correlations. At the same time, the age precisions are underestimated over a wide range of stellar parameters. We conclude that

  7. Understanding GRETINA using angular correlation method

    NASA Astrophysics Data System (ADS)

    Austin, Madeline

    2015-10-01

    The ability to trace the path of gamma rays through germanium is not only necessary for taking full advantage of GRETINA but also a promising possibility for homeland security defense against nuclear threats. This research tested the current tracking algorithm using the angular correlation method by comparing results from raw and tracked data to the theoretical model for Co-60. It was found that the current tracking method is unsuccessful in reproducing angular correlation. Variations to the tracking algorithm were made in the FM value, tracking angle, number of angles of separation observed, and window of coincidence in attempt to improve correlation results. From these variations it was observed that having a larger FM improved results, reducing the number of observational angles worsened correlation, and that overall larger tracking angles improved with larger windows of coincidence and vice-verse. Future research would be to refine the angle of measurement for raw data and to explore the possibility of an energy dependence by testing other elements. This work is supported by the United States Department of Energy, Office of Science, under Contract Number DE-AC02-06CH11357

  8. Constructing the Coronal Magnetic Field by Correlating Parameterized Magnetic Field Lines with Observed Coronal Plasma Structures

    NASA Technical Reports Server (NTRS)

    Allen, Gary G.; Alexander, David

    1999-01-01

    A method is presented for constructing the coronal magnetic field from photospheric magnetograms and observed coronal loops. A set of magnetic field lines generated from magnetogram data is parameterized and then deformed by varying the parameterized values. The coronal flux tubes associated with this field are adjusted until the correlation between the field lines and the observed coronal loops is maximized. A mathematical formulation is described which ensures that (1) the normal component of the photospheric field remains unchanged, (2) the field is given in the entire corona over an active region, (3) the field remains divergence-free, and 4electric currents are introduced into the field. It is demonstrated that a parameterization of a potential field, comprising a radial stretching of the field, can provide a match for a simple bipolar active region, AR 7999, which crossed the central meridian on 1996 November 26. The result is a non-force-free magnetic field with the Lorentz force being of the order of 10(exp -5.5) g per s(exp 2) resulting from an electric current density of 0.79 micro A per m(exp 2). Calculations show that the plasma beta becomes larger than unity at a strong non-radial currents requires low height of about 0.25 solar radii supporting the non-force-free conclusion. The presence of such strong non-radial currents requires large transverse pressure gradients fo maintain a magnetostatic atmosphere, required by the relatively persistent nature of the coronal structures observed in AR 7999. This scheme is an important tool in generating a magnetic field solution consistent with the coronal flux tube observations and the observed photospheric magnetic field.

  9. Bright-field in situ hybridization for HER2 gene amplification in breast cancer using tissue microarrays: correlation between chromogenic (CISH) and automated silver-enhanced (SISH) methods with patient outcome.

    PubMed

    Francis, Glenn D; Jones, Mark A; Beadle, Geoffrey F; Stein, Sandra R

    2009-06-01

    . Both bright-field methods correlated with immunohistochemistry results and with breast cancer-specific survival. HER2 SISH testing combines the advantages of automation and bright-field microscopy to facilitate workflow within the laboratory, improves turnaround time, and correlates with patient outcome.

  10. Local zone wise elastic and plastic properties of electron beam welded Ti-6Al-4V alloy using digital image correlation technique: A comparative study between uniform stress and virtual fields method

    NASA Astrophysics Data System (ADS)

    Saranath, K. M.; Ramji, M.

    2015-05-01

    Joining of materials using welding results in the formation of material zones with varying microstructure across the weld. Extraction of the mechanical properties of those individual heterogeneous zones are important in designing components and structures comprised of welds. In this study, the zone wise local extraction of the elastic and plastic properties of an electron beam welded Ti-6Al-4V titanium alloy has been carried out using both the uniform stress method (USM) and the virtual fields method (VFM) involving digital image correlation (DIC) technique. The surface strain field obtained using DIC technique from a transverse weld specimen tensile testing is used for extracting the zone wise strain evolution. Initially, using uniform stress assumption, zone wise full range stress-strain curves are extracted. In USM methodology, the elastic and plastic material models are fitted to the zone wise stress-strain curves and required parameters are extracted from it. But inherent disadvantage is lot of images need to be processed for the parameter extraction. Recently, VFM is gaining lot of popularity in characterization domain as it is robust, accurate and faster. VFM is based on the principle of virtual work where, the weak form of local equilibrium equations and kinematically admissible virtual displacement fields are utilized for parameter extraction. Hollomon's power law is used here as the hardening rule. Young's modulus, Poisson's ratio, yield stress, strength coefficient and strain hardening exponent are the parameters extracted zone wise using both USM and VFM. A Vicker's microhardness measurement is also conducted across the weld zone towards mapping the strength behavior. Fusion zone has reported higher yield strength, strength coefficient and Poisson's ratio. Young's modulus value is found decreasing from base metal towards the fusion zone. The trend observed in parameter variation across the weld zone obtained by both USM and VFM compares very well. Due

  11. Subquantum nonlocal correlations induced by the background random field

    NASA Astrophysics Data System (ADS)

    Khrennikov, Andrei

    2011-10-01

    We developed a purely field model of microphenomena—prequantum classical statistical field theory (PCSFT). This model not only reproduces important probabilistic predictions of quantum mechanics (QM) including correlations for entangled systems, but also gives a possibility to go beyond QM, i.e. to make predictions of phenomena that could be observed at the subquantum level. In this paper, we discuss one such prediction—the existence of nonlocal correlations between prequantum random fields corresponding to all quantum systems. (And by PCSFT, quantum systems are represented by classical Gaussian random fields and quantum observables by quadratic forms of these fields.) The source of these correlations is the common background field. Thus all prequantum random fields are 'entangled', but in the sense of classical signal theory. On the one hand, PCSFT demystifies quantum nonlocality by reducing it to nonlocal classical correlations based on the common random background. On the other hand, it demonstrates total generality of such correlations. They exist even for distinguishable quantum systems in factorizable states (by PCSFT terminology—for Gaussian random fields with covariance operators corresponding to factorizable quantum states).

  12. Variational adaptive correlation method for flow estimation.

    PubMed

    Becker, Florian; Wieneke, Bernhard; Petra, Stefania; Schröder, Andreas; Schnörr, Christoph

    2012-06-01

    A variational approach is presented to the estimation of turbulent fluid flow from particle image sequences in experimental fluid mechanics. The approach comprises two coupled optimizations for adapting size and shape of a Gaussian correlation window at each location and for estimating the flow, respectively. The method copes with a wide range of particle densities and image noise levels without any data-specific parameter tuning. Based on a careful implementation of a multiscale nonlinear optimization technique, we demonstrate robustness of the solution over typical experimental scenarios and highest estimation accuracy for an international benchmark data set (PIV Challenge).

  13. Normalized Stokes operators for polarization correlations of entangled optical fields

    NASA Astrophysics Data System (ADS)

    Żukowski, Marek; Laskowski, Wiesław; Wieśniak, Marcin

    2017-04-01

    Stokes parameters are a standard tool in quantum optics. They involve averaged intensities at exits of polarizers. If the overall measured intensity fluctuates, as, e.g., for states with undefined photon numbers, the instances of its increased value contribute more to the parameters. One can introduce normalized quantum Stokes operators. Operationally, for a given single run of the experiment, their values are differences of measured intensities (or photon numbers) at the two exits of a polarizer divided by their sum. Effects of intensity fluctuations are removed. Switching to normalized Stokes operators results in more sensitive entanglement conditions. We also show a general method of deriving an entanglement indicator for optical fields which use polarization correlations, which starts with any two-qubit entanglement witness. This allows one to vastly expand the family of such indicators.

  14. A quantitative measure of phase correlations in density fields

    NASA Technical Reports Server (NTRS)

    Scherrer, Robert J.; Melott, Adrian L.; Shandarin, Sergei F.

    1991-01-01

    A quantitative measure of the phase correlations in a density field is presented based on the location of the maxima of the Fourier components of that field. It is found that this measue can easily detect non-Gaussian behavior either in artificially constructed density fields or those that become non-Gaussian from gravitational clustering of Gaussian initial conditions. It is found that different initial power spectra produce somewhat distinguishable signals, and the signals are robust against sparse sampling.

  15. Accurate method for computing correlated color temperature.

    PubMed

    Li, Changjun; Cui, Guihua; Melgosa, Manuel; Ruan, Xiukai; Zhang, Yaoju; Ma, Long; Xiao, Kaida; Luo, M Ronnier

    2016-06-27

    For the correlated color temperature (CCT) of a light source to be estimated, a nonlinear optimization problem must be solved. In all previous methods available to compute CCT, the objective function has only been approximated, and their predictions have achieved limited accuracy. For example, different unacceptable CCT values have been predicted for light sources located on the same isotemperature line. In this paper, we propose to compute CCT using the Newton method, which requires the first and second derivatives of the objective function. Following the current recommendation by the International Commission on Illumination (CIE) for the computation of tristimulus values (summations at 1 nm steps from 360 nm to 830 nm), the objective function and its first and second derivatives are explicitly given and used in our computations. Comprehensive tests demonstrate that the proposed method, together with an initial estimation of CCT using Robertson's method [J. Opt. Soc. Am. 58, 1528-1535 (1968)], gives highly accurate predictions below 0.0012 K for light sources with CCTs ranging from 500 K to 106 K.

  16. Distance correlation methods for discovering associations in large astrophysical databases

    SciTech Connect

    Martínez-Gómez, Elizabeth; Richards, Mercedes T.; Richards, Donald St. P. E-mail: mrichards@astro.psu.edu

    2014-01-20

    High-dimensional, large-sample astrophysical databases of galaxy clusters, such as the Chandra Deep Field South COMBO-17 database, provide measurements on many variables for thousands of galaxies and a range of redshifts. Current understanding of galaxy formation and evolution rests sensitively on relationships between different astrophysical variables; hence an ability to detect and verify associations or correlations between variables is important in astrophysical research. In this paper, we apply a recently defined statistical measure called the distance correlation coefficient, which can be used to identify new associations and correlations between astrophysical variables. The distance correlation coefficient applies to variables of any dimension, can be used to determine smaller sets of variables that provide equivalent astrophysical information, is zero only when variables are independent, and is capable of detecting nonlinear associations that are undetectable by the classical Pearson correlation coefficient. Hence, the distance correlation coefficient provides more information than the Pearson coefficient. We analyze numerous pairs of variables in the COMBO-17 database with the distance correlation method and with the maximal information coefficient. We show that the Pearson coefficient can be estimated with higher accuracy from the corresponding distance correlation coefficient than from the maximal information coefficient. For given values of the Pearson coefficient, the distance correlation method has a greater ability than the maximal information coefficient to resolve astrophysical data into highly concentrated horseshoe- or V-shapes, which enhances classification and pattern identification. These results are observed over a range of redshifts beyond the local universe and for galaxies from elliptical to spiral.

  17. Correlation fluorescence method of amine detection

    NASA Astrophysics Data System (ADS)

    Myslitsky, Valentin F.; Tkachuk, Svetlana S.; Rudeichuk, Volodimir M.; Strinadko, Miroslav T.; Slyotov, Mikhail M.; Strinadko, Marina M.

    1997-12-01

    The amines fluorescence spectra stimulated by UV laser radiation are investigated in this paper. The fluorescence is stimulated by the coherent laser beam with the wavelength 0.337 micrometers . At the sufficient energy of laser stimulation the narrow peaks of the fluorescence spectra are detected besides the wide maximum. The relationship between the fluorescence intensity and the concentration of amines solutions are investigated. The fluorescence intensity temporal dependence on wavelength 0.363 micrometers of the norepinephrine solution preliminarily radiated by UV laser with wavelength 0.337 micrometers was found. The computer stimulated and experimental investigations of adrenaline and norepinephrine mixtures fluorescence spectra were done. The correlation fluorescent method of amines detection is proposed.

  18. Shape determination of unidimensional objects: the virtual image correlation method

    NASA Astrophysics Data System (ADS)

    Francois, M.; Semin, B.; Auradou, H.; Vatteville, J.

    2010-06-01

    The proposed method, named Virtual Image Correlation, allows one to identify an analytical expression of the shape of a curvilinear object from its image. It uses a virtual beam, whose curvature field is expressed as a truncated mathematical series. The virtual beam width only needs to be close to the physical one; its gray level (in the transverse direction) is bell-shaped. The method consists in finding the coefficients of the series for which the correlation between physical and virtual beams is the best. The accuracy and the robustness of the method is shown by the mean of two examples. The first details a Young’s modulus identification from a cantilever beam image. The second is relative to a thermal plume image, that have a weak contrast and a lot of noise.

  19. Apparatuses and methods for generating electric fields

    DOEpatents

    Scott, Jill R; McJunkin, Timothy R; Tremblay, Paul L

    2013-08-06

    Apparatuses and methods relating to generating an electric field are disclosed. An electric field generator may include a semiconductive material configured in a physical shape substantially different from a shape of an electric field to be generated thereby. The electric field is generated when a voltage drop exists across the semiconductive material. A method for generating an electric field may include applying a voltage to a shaped semiconductive material to generate a complex, substantially nonlinear electric field. The shape of the complex, substantially nonlinear electric field may be configured for directing charged particles to a desired location. Other apparatuses and methods are disclosed.

  20. Cathodic protection design using the regression and correlation method

    SciTech Connect

    Niembro, A.M.; Ortiz, E.L.G.

    1997-09-01

    A computerized statistical method which calculates the current demand requirement based on potential measurements for cathodic protection systems is introduced. The method uses the regression and correlation analysis of statistical measurements of current and potentials of the piping network. This approach involves four steps: field potential measurements, statistical determination of the current required to achieve full protection, installation of more cathodic protection capacity with distributed anodes around the plant and examination of the protection potentials. The procedure is described and recommendations for the improvement of the existing and new cathodic protection systems are given.

  1. Full-Field Indentation Damage Measurement Using Digital Image Correlation.

    PubMed

    López-Alba, Elías; Díaz-Garrido, Francisco A

    2017-07-10

    A novel approach based on full-field indentation measurements to characterize and quantify the effect of contact in thin plates is presented. The proposed method has been employed to evaluate the indentation damage generated in the presence of bending deformation, resulting from the contact between a thin plate and a rigid sphere. For this purpose, the 3D Digital Image Correlation (3D-DIC) technique has been adopted to quantify the out of plane displacements at the back face of the plate. Tests were conducted using aluminum thin plates and a rigid bearing sphere to evaluate the influence of the thickness and the material behavior during contact. Information provided by the 3D-DIC technique has been employed to perform an indirect measurement of the contact area during the loading and unloading path of the test. A symmetrical distribution in the contact damage region due to the symmetry of the indenter was always observed. In the case of aluminum plates, the presence of a high level of plasticity caused shearing deformation as the load increased. Results show the full-field contact damage area for different plates' thicknesses at different loads. The contact damage region was bigger when the thickness of the specimen increased, and therefore, bending deformation was reduced. With the proposed approach, the elastic recovery at the contact location was quantified during the unloading, as well as the remaining permanent indentation damage after releasing the load. Results show the information obtained by full-field measurements at the contact location during the test, which implies a substantial improvement compared with pointwise techniques.

  2. Multichannel correlation recognition method of optical images

    NASA Astrophysics Data System (ADS)

    Wang, Hongxia; He, Junfa; Sun, Honghui

    2000-10-01

    In this paper a multi-channel real-time hybrid joint transform correlator is proposed. In this correlator, the computer control is used to divide the screen into several equal size windows, reference images of the windows are all the same one and object images are adopted from different frames of image sequences by CCD, twice Fourier transforms of every channel images are realized by using hololens array. Areas of LCLV and the output light energy can be used effectively. The correlation performance can be improved.

  3. Jet engine noise and infrared plume correlation field campaign

    NASA Astrophysics Data System (ADS)

    Cunio, Phillip M.; Weber, Reed A.; Knobel, Kimberly R.; Smith, Christine; Draudt, Andy

    2015-09-01

    Jet engine noise can be a health hazard and environmental pollutant, particularly affecting personnel working in close proximity to jet engines, such as airline mechanics. Mitigating noise could reduce the potential for hearing loss in runway workers; however, there exists a very complex relationship between jet engine design parameters, operating conditions, and resultant noise power levels, and understanding and characterizing this relationship is a key step in mitigating jet engine noise effects. We demonstrate initial results highlighting the utility of high-speed imaging (hypertemporal imaging) in correlating the infrared signatures of jet engines with acoustic noise. This paper builds on prior theoretical analysis of jet engine infrared signatures and their potential relationships to jet engine acoustic emissions. This previous work identified the region of the jet plume most likely to emit both in infrared and in acoustic domains, and it prompted the investigation of wave packets as a physical construct tying together acoustic and infrared energy emissions. As a means of verifying these assertions, a field campaign to collect relevant data was proposed, and data collection was carried out with a bank of infrared instruments imaging a T700 turboshaft engine undergoing routine operational testing. The detection of hypertemporal signatures in association with acoustic signatures of jet engines enables the use of a new domain in characterizing jet engine noise. This may in turn enable new methods of predicting or mitigating jet engine noise, which could lead to socioeconomic benefits for airlines and other operators of large numbers of jet engines.

  4. Probing correlations of early magnetic fields using μ-distortion

    SciTech Connect

    Ganc, Jonathan; Sloth, Martin S. E-mail: sloth@cp3.dias.sdu.dk

    2014-08-01

    The damping of a non-uniform magnetic field between the redshifts of about 10{sup 4} and 10{sup 6} injects energy into the photon-baryon plasma and causes the CMB to deviate from a perfect blackbody spectrum, producing a so-called μ-distortion. We can calculate the correlation (μ T) of this distortion with the temperature anisotropy T of the CMB to search for a correlation ( B{sup 2}ζ) between the magnetic field B and the curvature perturbation ζ; knowing the ( B{sup 2}ζ) correlation would help us distinguish between different models of magnetogenesis. Since the perturbations which produce the μ-distortion will be much smaller scale than the relevant density perturbations, the observation of this correlation is sensitive to the squeezed limit of ( B{sup 2}ζ), which is naturally parameterized by b{sub NL} (a parameter defined analogously to f{sub NL}). We find that a PIXIE-like CMB experiments has a signal to noise S/N≈ 1.0 × b{sub NL} ( B-tilde {sub μ}/10nG){sup 2}, where B-tilde {sub μ} is the magnetic field's strength on μ-distortion scales normalized to today's redshift; thus, a 10 nG field would be detectable with b{sub NL}=O(1). However, if the field is of inflationary origin, we generically expect it to be accompanied by a curvature bispectrum (ζ{sup 3}) induced by the magnetic field. For sufficiently small magnetic fields, the signal ( B{sup 2} ζ) will dominate, but for B-tilde {sub μ}∼> 1 nG, one would have to consider the specifics of the inflationary magnetogenesis model. We also discuss the potential post-magnetogenesis sources of a ( B{sup 2}ζ) correlation and explain why there will be no contribution from the evolution of the magnetic field in response to the curvature perturbation.

  5. Speckle correlation method used to detect an object's surface slope

    SciTech Connect

    Smid, Petr; Horvath, Pavel; Hrabovsky, Miroslav

    2006-09-20

    We present a technique employing a speckle pattern correlation method for detection of the slope of an object's surface. Controlled translation of an object under investigation and numerical correlation of speckle patterns recorded during its motion give information used to evaluate the tilt of the object. The proposed optical setup uses a symmetrical arrangement of detection planes in the image field and enables one to detect the tilt of an object's surface within the interval(10 deg. -30 deg. ). Simulation analysis shows how to control the measuring range. The presented theory, simulation analysis, and setup are verified through an experiment by measurement of the slope of a surface of a cube made out of steel.

  6. Speckle correlation method used to detect an object's surface slope.

    PubMed

    Smíd, Petr; Horváth, Pavel; Hrabovský, Miroslav

    2006-09-20

    We present a technique employing a speckle pattern correlation method for detection of the slope of an object's surface. Controlled translation of an object under investigation and numerical correlation of speckle patterns recorded during its motion give information used to evaluate the tilt of the object. The proposed optical setup uses a symmetrical arrangement of detection planes in the image field and enables one to detect the tilt of an object's surface within the interval (10 degrees-30 degrees). Simulation analysis shows how to control the measuring range. The presented theory, simulation analysis, and setup are verified through an experiment by measurement of the slope of a surface of a cube made out of steel.

  7. Large N correlation functions in superconformal field theories

    NASA Astrophysics Data System (ADS)

    Rodriguez-Gomez, Diego; Russo, Jorge G.

    2016-06-01

    We compute correlation functions of chiral primary operators in mathcal{N}=2 super-conformal theories at large N using a construction based on supersymmetric localization recently developed by Gerchkovitz et al. We focus on mathcal{N}=4 SYM as well as on supercon-formal QCD. In the case of mathcal{N}=4 we recover the free field theory results as expected due to non-renormalization theorems. In the case of superconformal QCD we study the planar expansion in the large N limit. The final correlators admit a simple generalization to a finite N formula which exactly matches the various small N results in the literature.

  8. Riemann correlator in de Sitter including loop corrections from conformal fields

    NASA Astrophysics Data System (ADS)

    Fröb, Markus B.; Roura, Albert; Verdaguer, Enric

    2014-07-01

    The Riemann correlator with appropriately raised indices characterizes in a gauge-invariant way the quantum metric fluctuations around de Sitter spacetime including loop corrections from matter fields. Specializing to conformal fields and employing a method that selects the de Sitter-invariant vacuum in the Poincaré patch, we obtain the exact result for the Riemann correlator through order H4/mp4. The result is expressed in a manifestly de Sitter-invariant form in terms of maximally symmetric bitensors. Its behavior for both short and long distances (sub- and superhorizon scales) is analyzed in detail. Furthermore, by carefully taking the flat-space limit, the explicit result for the Riemann correlator for metric fluctuations around Minkowki spacetime is also obtained. Although the main focus is on free scalar fields (our calculation corresponds then to one-loop order in the matter fields), the result for general conformal field theories is also derived.

  9. Riemann correlator in de Sitter including loop corrections from conformal fields

    SciTech Connect

    Fröb, Markus B.; Verdaguer, Enric

    2014-07-01

    The Riemann correlator with appropriately raised indices characterizes in a gauge-invariant way the quantum metric fluctuations around de Sitter spacetime including loop corrections from matter fields. Specializing to conformal fields and employing a method that selects the de Sitter-invariant vacuum in the Poincaré patch, we obtain the exact result for the Riemann correlator through order H{sup 4}/m{sub p}{sup 4}. The result is expressed in a manifestly de Sitter-invariant form in terms of maximally symmetric bitensors. Its behavior for both short and long distances (sub- and superhorizon scales) is analyzed in detail. Furthermore, by carefully taking the flat-space limit, the explicit result for the Riemann correlator for metric fluctuations around Minkowki spacetime is also obtained. Although the main focus is on free scalar fields (our calculation corresponds then to one-loop order in the matter fields), the result for general conformal field theories is also derived.

  10. Wilsonian renormalisation of CFT correlation functions: field theory

    NASA Astrophysics Data System (ADS)

    Lizana, J. M.; Pérez-Victoria, M.

    2017-06-01

    We examine the precise connection between the exact renormalisation group with local couplings and the renormalisation of correlation functions of composite operators in scale-invariant theories. A geometric description of theory space allows us to select convenient non-linear parametrisations that serve different purposes. First, we identify normal parameters in which the renormalisation group flows take their simplest form; normal correlators are defined by functional differentiation with respect to these parameters. The renormalised correlation functions are given by the continuum limit of correlators associated to a cutoff-dependent parametrisation, which can be related to the renormalisation group flows. The necessary linear and non-linear counterterms in any arbitrary parametrisation arise in a natural way from a change of coordinates. We show that, in a class of minimal subtraction schemes, the renormalised correlators are exactly equal to normal correlators evaluated at a finite cutoff. To illustrate the formalism and the main results, we compare standard diagrammatic calculations in a scalar free-field theory with the structure of the perturbative solutions to the Polchinski equation close to the Gaussian fixed point.

  11. Correlation of Field Data with Reliability Prediction Models

    DTIC Science & Technology

    1981-11-01

    Dsgwrtnsfl of Cginfuu mNW Tchnlca hifrmadw Sevice ADA 111258 RADC.TR-81 29 Final Tch1lcal Reprt November� CORRELATION OF FIELD DATA WITH RELIABILITY...of digital parts of D-1 and D screen but there was a higher proportion of better quality parts in PMOS, NMOS, etc. From here on, this type of...three factors, since military environments use military quality parts, and temperature is a characteristic of environment. The orientation of their inter

  12. Petascale Many Body Methods for Complex Correlated Systems

    NASA Astrophysics Data System (ADS)

    Pruschke, Thomas

    2012-02-01

    Correlated systems constitute an important class of materials in modern condensed matter physics. Correlation among electrons are at the heart of all ordering phenomena and many intriguing novel aspects, such as quantum phase transitions or topological insulators, observed in a variety of compounds. Yet, theoretically describing these phenomena is still a formidable task, even if one restricts the models used to the smallest possible set of degrees of freedom. Here, modern computer architectures play an essential role, and the joint effort to devise efficient algorithms and implement them on state-of-the art hardware has become an extremely active field in condensed-matter research. To tackle this task single-handed is quite obviously not possible. The NSF-OISE funded PIRE collaboration ``Graduate Education and Research in Petascale Many Body Methods for Complex Correlated Systems'' is a successful initiative to bring together leading experts around the world to form a virtual international organization for addressing these emerging challenges and educate the next generation of computational condensed matter physicists. The collaboration includes research groups developing novel theoretical tools to reliably and systematically study correlated solids, experts in efficient computational algorithms needed to solve the emerging equations, and those able to use modern heterogeneous computer architectures to make then working tools for the growing community.

  13. Dynamics of Coulomb correlations in semiconductors in high magnetic fields

    SciTech Connect

    Fromer, Neil Alan

    2002-01-01

    Current theories have been successful in explaining many nonlinear optical experiments in undoped semiconductors. However, these theories require a ground state which is assumed to be uncorrelated. Strongly correlated systems of current interest, such as a two dimensional electron gas in a high magnetic field, cannot be explained in this manner because the correlations in the ground state and the low energy collective excitations cause a breakdown of the conventional techniques. We perform ultrafast time-resolved four-wave mixing on $n$-modulation doped quantum wells, which contain a quasi-two dimensional electron gas, in a large magnetic field, when only a single Landau level is excited and also when two levels are excited together. We find evidence for memory effects and as strong coupling between the Landau levels induced by the electron gas. We compare our results with simulations based on a new microscopic approach capable of treating the collective effects and correlations of the doped electrons, and find a good qualitative agreement. By looking at the individual contributions to the model, we determine that the unusual correlation effects seen in the experiments are caused by the scattering of photo-excited electron-hole pairs with the electron gas, leading to new excited states which are not present in undoped semiconductors, and also by exciton-exciton interactions mediated by the long-lived collective excitations of the electron gas, inter-Landau level magnetoplasmons.

  14. Subaperture correlation based digital adaptive optics for full field optical coherence tomography.

    PubMed

    Kumar, Abhishek; Drexler, Wolfgang; Leitgeb, Rainer A

    2013-05-06

    This paper proposes a sub-aperture correlation based numerical phase correction method for interferometric full field imaging systems provided the complex object field information can be extracted. This method corrects for the wavefront aberration at the pupil/ Fourier transform plane without the need of any adaptive optics, spatial light modulators (SLM) and additional cameras. We show that this method does not require the knowledge of any system parameters. In the simulation study, we consider a full field swept source OCT (FF SSOCT) system to show the working principle of the algorithm. Experimental results are presented for a technical and biological sample to demonstrate the proof of the principle.

  15. Constructing the Coronal Magnetic Field: by Correlating Parameterized Magnetic Field Lines with Observed Coronal Plasma Structures

    NASA Technical Reports Server (NTRS)

    Gary, G. A.

    1998-01-01

    The reconstruction of the coronal magnetic field is carried out using a perturbation procedure. A set of magnetic field lines generated from magnetogram data is parameterized and then deformed by varying the parameterized values. The coronal fluxtubes associated with this field are adjusted until the correlation between the field lines and the observed coronal loops is maximized. A mathematical formulation is described which ensures (1) that the normal component of the photospheric field remains unchanged, (2) that the field is given in the entire corona, (3) that the field remains divergence free, and (4) that electrical currents are introduced into the field. It is demonstrated that a simple radial parameterization of a potential field, comprising a radial stretching of the field, can provide a match for a simple bipolar active region, AR 7999, which crossed the central meridian on 1996 Nov 26. At a coronal height of 30 km, the resulting magnetic field is a non-force free magnetic field with the maximum Lorentz force being on the order of 2.6 x 10(exp -9) dyn resulting from an electric current density of $0.13 mu A/ sq m. This scheme is an important tool in generating a magnetic field solution consistent with the coronal flux tube observations and the observed photospheric magnetic field.

  16. Correlation studies on surface particle detection methods

    NASA Technical Reports Server (NTRS)

    Peterson, Ronald V.; White, James C.

    1988-01-01

    The accurate determination of dust levels on optical surfaces is necessary to assess sensor system performance. A comparison study was made on several particle measurement methods including those based on direct imaging and light scattering. The effectiveness of removing the particles from the surface prior to determining particle size distributions was also assessed. These studies revealed that some methods, especially those requiring particle removal before analysis, are subject to large systematic errors affecting particle size distributions. Thus, an understanding of the particle measurement methods employed is necessary before any surface cleanliness or obstruction value assignments are accepted as true representations of an optical surface contamination condition.

  17. Acoustic ship signature measurements by cross-correlation method.

    PubMed

    Fillinger, Laurent; Sutin, Alexander; Sedunov, Alexander

    2011-02-01

    Cross-correlation methods were applied for the estimation of the power spectral density and modulation spectrum of underwater noise generated by moving vessels. The cross-correlation of the signal from two hydrophones allows the separation of vessel acoustic signatures in a busy estuary. Experimental data recorded in the Hudson River are used for demonstration that cross-correlation method measured the same ship noise and ship noise modulation spectra as conventional methods. The cross-correlation method was then applied for the separation of the acoustic signatures of two ships present simultaneously. Presented methods can be useful for ship traffic monitoring and small ship classification, even in noisy harbor environments.

  18. Correlations of Nematodes and Soil Properties in Soybean Fields

    PubMed Central

    Norton, D. C.; Frederick, L. R.; Ponchillia, P. E.; Nyhan, J. W.

    1971-01-01

    Soil samples from 40 soybean fields were collected in 1967 and 1968 and analyzed for nematodes and soil properties. Correlations o f total nematodes, non-stylet nematodes, Dorylaimoidea (excluding Xiphinema americanum), X. americanum, Helicotylenchus pseudorobustus, Tylenchus spp., Aphelenchus avenae, and other groupings of nematodes were made with pH; percentage sand, silt, and clay; percentage organic matter; cation exchange capacity; saturation percentage, and percentage saturation. Organic matter, pH, and cation exchange capacity were most consistently highly correlated with the nematodes. H. pseudorobustus had the most consistently significant correlations with the soil factors. Correlations of nematodes were with more soil factors and were stronger in a wet than in a dry year. The highest numbers of nematodes were usually found in the lighter soils, except in the loamy sand where moisture probably was limiting. In general, soil moisture levels below 20% saturation were probably limiting for most nematodes studied, except for the dorylaims which survived in large numbers in soils with less than 20% saturation. PMID:19322361

  19. Correlated multielectron systems in strong laser fields: A multiconfiguration time-dependent Hartree-Fock approach

    SciTech Connect

    Caillat, J.; Scrinzi, A.; Koch, O.; Kreuzer, W.

    2005-01-01

    The multiconfiguration time-dependent Hartree-Fock approach for the description of correlated few-electron dynamics in the presence of strong laser fields is introduced and a comprehensive description of the method is given. Total ionization and electron spectra for the ground and first excited ionic channels are calculated for one-dimensional model systems with up to six active electrons. Strong correlation effects are found in the shape of photoelectron peaks and the dependence of ionization on molecule size.

  20. Historic Methods for Capturing Magnetic Field Images

    NASA Astrophysics Data System (ADS)

    Kwan, Alistair

    2016-03-01

    I investigated two late 19th-century methods for capturing magnetic field images from iron filings for historical insight into the pedagogy of hands-on physics education methods, and to flesh out teaching and learning practicalities tacit in the historical record. Both methods offer opportunities for close sensory engagement in data-collection processes.

  1. Historic Methods for Capturing Magnetic Field Images

    ERIC Educational Resources Information Center

    Kwan, Alistair

    2016-01-01

    I investigated two late 19th-century methods for capturing magnetic field images from iron filings for historical insight into the pedagogy of hands-on physics education methods, and to flesh out teaching and learning practicalities tacit in the historical record. Both methods offer opportunities for close sensory engagement in data-collection…

  2. Historic Methods for Capturing Magnetic Field Images

    ERIC Educational Resources Information Center

    Kwan, Alistair

    2016-01-01

    I investigated two late 19th-century methods for capturing magnetic field images from iron filings for historical insight into the pedagogy of hands-on physics education methods, and to flesh out teaching and learning practicalities tacit in the historical record. Both methods offer opportunities for close sensory engagement in data-collection…

  3. Topology based methods for vector field comparisons

    NASA Astrophysics Data System (ADS)

    Batra, Rajesh Kumar

    Vector fields are commonly found in almost all branches of the physical sciences. Aerodynamics, dynamical systems, electromagnetism, and global climate modeling are a few examples. These multivariate data fields are often large, and no general, automated method exists for comparing these fields. Existing methods require either subjective visual judgments, or data interface compatibility, or domain specific knowledge. A topology based method intrinsically eliminates all of the above limitations and has the additional advantage of significantly compressing the vector field by representing only key features of the flow. Therefore, large databases are compactly represented and quickly searched. Topology is a natural framework for the study of many vector fields. It provides rules of an organizing principle, a flow grammar, that can describe and connect together the properties common to flows. Helman and Hesselink first introduced automated methods to extract and visualize this grammar. This work extends their method by introducing automated methods for vector topology comparison. Basic two-dimensional flows are first compared. The theory is extended to compare three-dimensional flow fields and the topology on no-slip surfaces. Concepts from graph theory and linear programming are utilized to solve these problems. Finally, the first automated method for higher order singularity comparisons is introduced using mathematical theories from geometric (Clifford) algebra.

  4. Teaching Geographic Field Methods Using Paleoecology

    ERIC Educational Resources Information Center

    Walsh, Megan K.

    2014-01-01

    Field-based undergraduate geography courses provide numerous pedagogical benefits including an opportunity for students to acquire employable skills in an applied context. This article presents one unique approach to teaching geographic field methods using paleoecological research. The goals of this course are to teach students key geographic…

  5. Teaching Geographic Field Methods Using Paleoecology

    ERIC Educational Resources Information Center

    Walsh, Megan K.

    2014-01-01

    Field-based undergraduate geography courses provide numerous pedagogical benefits including an opportunity for students to acquire employable skills in an applied context. This article presents one unique approach to teaching geographic field methods using paleoecological research. The goals of this course are to teach students key geographic…

  6. A calculable and correlation-based magnetic field fluctuation thermometer

    NASA Astrophysics Data System (ADS)

    Kirste, A.; Regin, M.; Engert, J.; Drung, D.; Schurig, T.

    2014-12-01

    We have developed a new Magnetic Field Fluctuation Thermometer (MFFT) specifically designed for operation in primary mode, which requires the determination of the relation between thermal flux noise density and thermodynamic temperature. The noise thermometer combines a correlation-based SQUID readout and an integrated conductivity measurement on the metallic temperature sensor with an in situ flux calibration. The operation of the MFFT is modelled theoretically. First temperature measurements in secondary mode between 9 mK and 4.2 K showed excellent agreement with a copy of the PLTS-2000 within 0.5%.

  7. An improved correlation method for determining the period of a torsion pendulum

    SciTech Connect

    Luo Jie; Wang Dianhong

    2008-09-15

    Considering variation of environment temperature and unhomogeneity of background gravitational field, an improved correlation method was proposed to determine the variational period of a torsion pendulum with high precision. The result of processing experimental data shows that the uncertainty of determining the period with this method has been improved about twofolds than traditional correlation method, which is significant for the determination of gravitational constant with time-of-swing method.

  8. A wave field synthesis approach to reproduction of spatially correlated sound fields.

    PubMed

    Berry, Alain; Dia, Rokhiya; Robin, Olivier

    2012-02-01

    This article discusses an open-loop wave field synthesis (WFS) approach for the reproduction of spatially correlated sound fields. The main application concerns laboratory reproduction of turbulent boundary layer wall pressure on aircraft fuselages and measurement of their sound transmission loss. The problem configuration involves reconstruction of random sound pressure distributions on a planar reproduction surface using a planar array of reproduction monopoles parallel to the reproduction plane. In this paper, the WFS formulation is extended to sound fields with imposed time and spatial correlation properties (or equivalently imposed cross-spectral density in the frequency and wave number domains). Numerical examples are presented for the reproduction of a propagating plane wave, diffuse acoustic field and wall pressure in subsonic or supersonic turbulent boundary layers. The reproduction accuracy is examined in terms of the size of the source plane and reproduction plane, their separation, and the number of reproduction sources required per acoustic wavelength. While the reproduction approach cannot reconstruct sub-wavelength correlation scales of subsonic turbulent boundary layers, it effectively reconstructs correlation scales larger than the acoustic wavelength, making it appropriate for diffuse acoustic field and supersonic turbulent layers.

  9. Development of a Mobile Tracer Correlation Method for Assessment of Air Emissions from Landfills and Other Area Sources

    EPA Science Inventory

    Information form the previously approved extended abstract A standardized area source measurement method based on mobile tracer correlation was used for methane emissions assessment in 52 field deployments...

  10. Development of a Mobile Tracer Correlation Method for Assessment of Air Emissions from Landfills and Other Area Sources

    EPA Science Inventory

    Information form the previously approved extended abstract A standardized area source measurement method based on mobile tracer correlation was used for methane emissions assessment in 52 field deployments...

  11. Wide-field TCSPC: methods and applications

    NASA Astrophysics Data System (ADS)

    Hirvonen, Liisa M.; Suhling, Klaus

    2017-01-01

    Time-correlated single photon counting (TCSPC) is a widely used, robust and mature technique to measure the photon arrival time in applications such as fluorescence spectroscopy and microscopy, LIDAR and optical tomography. In the past few years there have been significant developments with wide-field TCSPC detectors, which can record the position as well as the arrival time of the photon simultaneously. In this review, we summarise different approaches used in wide-field TCSPC detection, and discuss their merits for different applications, with emphasis on fluorescence lifetime imaging.

  12. Strong light-field effects in correlated oraganic conductors

    NASA Astrophysics Data System (ADS)

    Iwai, Shinichiro; Kawakami, Yohei; Naitoh, Yota; Itoh, Hirotake; Ishihara, Sumio; Yonemitsu, Kenji

    Optical responses of organic conductors have attracted much attentions, because they exhibit ultrafast solid-state phase transitions in the conducting and/or dielectric natures upon photo-excitations. In this decade, photoinduced melting of correlated insulators with clear charge gap have been extensively investigated. On the other hand, optical rsponses of correlated metal has not been studied well. Here, we describe a charge localization induced by the 9.3 MV/cm instantaneous electric field of a 1.5 cycle (7 fs) infrared pulse in an organic conductor alpha- (bis[ethylenedithio]-tetrathiafulvelene)2I3. A large reflectivity change of 30 percent and a coherent charge oscillation along the time axis reflect the opening of the charge ordering gap in the metallic phase. This optical freezing of charges, which is the reverse of the photoinduced melting of electronic orders, is attributed to the 10 percent reduction of t driven by the strong, high-frequency electric field. Furthermore, the contribution of Coulomb repulsion will be discussed on the basis of the polarization dependence of the pump light and the theory.

  13. Magnetic field correlations in kinematic two-dimensional magnetohydrodynamic turbulence

    NASA Astrophysics Data System (ADS)

    Schumacher, Jörg; Eckhardt, Bruno

    1999-09-01

    The scaling properties of the second order magnetic structure function D2(B)(r) and the corresponding magnetic correlation function C2(B)(r) are derived for two-dimensional magnetohydrodynamic turbulence in the kinematic regime where the ratio of kinetic energy to magnetic energy is much larger than one. In this regime the magnetic flux function ψ can be treated as a passive scalar advected in a two-dimensional turbulent flow. Its structure function D2(ψ)(r) and the one for the magnetic field D2(B)(r) are connected by an exact relation. We calculate D2(ψ)(r) and thus D2(B)(r) within geometric measure theory over a wide range of scales r and magnetic Prandtl numbers Prm. The magnetic field correlations follow a r-4/3-scaling law and show an anticorrelation at the beginning of the Batchelor regime indicative of the formation of strongly filamented current sheets. Differences to the full dynamic regime, where the ratio of kinetic to magnetic energies is smaller than in the kinematic case, are discussed.

  14. Extracting flat-field images from scene-based image sequences using phase correlation

    SciTech Connect

    Caron, James N.; Montes, Marcos J.; Obermark, Jerome L.

    2016-06-15

    Flat-field image processing is an essential step in producing high-quality and radiometrically calibrated images. Flat-fielding corrects for variations in the gain of focal plane array electronics and unequal illumination from the system optics. Typically, a flat-field image is captured by imaging a radiometrically uniform surface. The flat-field image is normalized and removed from the images. There are circumstances, such as with remote sensing, where a flat-field image cannot be acquired in this manner. For these cases, we developed a phase-correlation method that allows the extraction of an effective flat-field image from a sequence of scene-based displaced images. The method uses sub-pixel phase correlation image registration to align the sequence to estimate the static scene. The scene is removed from sequence producing a sequence of misaligned flat-field images. An average flat-field image is derived from the realigned flat-field sequence.

  15. Method of reflection point correlation seismic surveying

    SciTech Connect

    Barbier, M.G.; Staron, P.J.

    1982-02-16

    A method of seismic exploration comprises transmitting waves from transmission sources into the medium to be explored and picking up signals in a receiver and recording these as traces, the signals being produced by reflection in the medium, the sequential transmission of the sources taking place at intervals less than the reflection time of the longest transmitted waves, the repeated transmission of any one source taking place at intervals at least equal to the said reflection time and therein being an intercorrelation function of a series of transmission instants of all the sources and a series of transmission instants of any one of the sources to give a relationship between the maximum peak amplitude and the secondary residue amplitude greater than a predetermined value and grouping the recorded traces corresponding to the same reflection point, adjusting the traces in relation to the associated source providing the information relating to the reflection point and adding together the adjusted traces relating to the same reflection point.

  16. Human Biology, A Guide to Field Methods.

    ERIC Educational Resources Information Center

    Weiner, J. S.; Lourie, J. A.

    The aim of this handbook is to provide, in a form suitable for use in the field, instructions on the whole range of methods required for the fulfillment of human biological studies on a comparative basis. Certain of these methods can be used to carry out the rapid surveys on growth, physique, and genetic constitution. They are also appropriate for…

  17. Aggregating and Testing Intra-Individual Correlations: Methods and Comparisons.

    PubMed

    Zhang, Qian Jackie; Wang, Lijuan Peggy

    2014-01-01

    From a longitudinal study, we have repeatedly measured data from multiple individuals at multiple occasions. For each individual, the relation between 2 variables can be measured by the Pearson's correlation. The question is how to aggregate the multiple correlations and conduct statistical inference on the aggregated intra-individual correlation. Several methods are proposed to aggregate and test intra-individual correlations: (a) a meta-analysis method based on Fisher's Z transformed correlations, (b) a meta-analysis method based on the Pearson's correlations, and (c) a multilevel modeling method using data standardized within each individual. The performance of the methods after bias corrections was compared using simulations with considering factors including numbers of individuals, numbers of time points, population effect sizes, and their distribution forms (homogeneous vs heterogeneous). The results from the simulation studies show that estimation biases were found using the meta-analytic methods and suggestions on when and how to correct biases were provided based on the simulation results. Furthermore, the performance of the 3 methods after necessary bias corrections was found to be comparable and reasonably good, indicating that all 3 methods worked for aggregating and testing intra-individual correlations. An empirical daily diary data set was then used to illustrate the applications of the 3 methods. The assumptions, advantages and disadvantages, and possible extensions of the 3 methods were discussed.

  18. Correlation of Two Anthocyanin Quantification Methods: HPLC and Spectrophotometric Methods

    USDA-ARS?s Scientific Manuscript database

    The pH differential method and HPLC are methods that are commonly used by researchers and the food industry for quantifying anthocyanins in a sample. This study was conducted to establish a relationship between the two analytical methods. Seven juice samples containing an array of different individu...

  19. Modified methods of stellar magnetic field measurements

    NASA Astrophysics Data System (ADS)

    Kholtygin, A. F.

    2014-12-01

    The standard methods of the magnetic field measurement, based on an analysis of the relation between the Stokes V-parameter and the first derivative of the total line profile intensity, were modified by applying a linear integral operator \\hat{L} to both sides of this relation. As the operator \\hat{L}, the operator of the wavelet transform with DOG-wavelets is used. The key advantage of the proposed method is an effective suppression of the noise contribution to the line profile and the Stokes parameter V. The efficiency of the method has been studied using model line profiles with various noise contributions. To test the proposed method, the spectropolarimetric observations of the A0 star α2 CVn, the Of?p star HD 148937, and the A0 supergiant HD 92207 were used. The longitudinal magnetic field strengths calculated by our method appeared to be in good agreement with those determined by other methods.

  20. Correlation between dielectric property by dielectrophoretic levitation and growth activity of cells exposed to electric field.

    PubMed

    Hakoda, Masaru; Hirota, Yusuke

    2013-09-01

    The purpose of this study is to develop a system analyzing cell activity by the dielectrophoresis method. Our previous studies revealed a correlation between the growth activity and dielectric property (Re[K(ω)]) of mouse hybridoma 3-2H3 cells using dielectrophoretic levitation. Furthermore, it was clarified that the differentiation activity of many stem cells could be evaluated by the Re[K(ω)] without differentiation induction. In this paper, 3-2H3 cells exposed to an alternating current (AC) electric field or a direct current (DC) electric field were cultivated, and the influence of damage by the electric field on the growth activity of the cells was examined. To evaluate the activity of the cells by measuring the Re[K(ω)], the correlation between the growth activity and the Re[K(ω)] of the cells exposed to the electric field was examined. The relations between the cell viability, growth activity, and Re[K(ω)] in the cells exposed to the AC electric field were obtained. The growth activity of the cells exposed to the AC electric field could be evaluated by the Re[K(ω)]. Furthermore, it was found that the adverse effects of the electric field on the cell viability and the growth activity were smaller in the AC electric field than the DC electric field.

  1. Through-focus phase retrieval and its connection to the spatial correlation for propagating fields.

    PubMed

    El Gawhary, O; Wiegmann, A; Kumar, N; Pereira, S F; Urbach, H P

    2013-03-11

    Through-focus phase retrieval methods aim to retrieve the phase of an optical field from its intensity distribution measured at different planes in the focal region. By using the concept of spatial correlation for propagating fields, for both the complex amplitude and the intensity of a field, we can infer which planes are suitable to retrieve the phase and which are not. Our analysis also reveals why all techniques based on measuring the intensity at two Fourier-conjugated planes usually lead to a good reconstruction of the phase. The findings presented in this work are important for aberration characterization of optical systems, adaptive optics and wavefront metrology.

  2. Radio-optical galaxy shape correlations in the COSMOS field

    NASA Astrophysics Data System (ADS)

    Tunbridge, Ben; Harrison, Ian; Brown, Michael L.

    2016-12-01

    We investigate the correlations in galaxy shapes between optical and radio wavelengths using archival observations of the Cosmic Evolution Survey (COSMOS) field. Cross-correlation studies between different wavebands will become increasingly important for precision cosmology as future large surveys may be dominated by systematic rather than statistical errors. In the case of weak lensing, galaxy shapes must be measured to extraordinary accuracy (shear systematics of <0.01 per cent) in order to achieve good constraints on dark energy parameters. By using shape information from overlapping surveys in optical and radio bands, robustness to systematics may be significantly improved without loss of constraining power. Here we use HST-ACS (Hubble Space Telescope-Advanced Camera for Surveys) optical data, Very Large Array (VLA) radio data and extensive simulations to investigate both our ability to make precision measurements of source shapes from realistic radio data and to constrain the intrinsic astrophysical scatter between the shapes of galaxies as measured in the optical and radio wavebands. By producing a new image from the VLA-COSMOS L-band radio visibility data that are well suited to galaxy shape measurements, we are able to extract precise measurements of galaxy position angles. Comparing to corresponding measurements from the HST optical image, we set a lower limit on the intrinsic astrophysical scatter in position angles, between the optical and radio bands, of σα > 0.212π rad (or 38.2°) at a 95 per cent confidence level.

  3. Estimating the correlation between bursty spike trains and local field potentials.

    PubMed

    Li, Zhaohui; Ouyang, Gaoxiang; Yao, Li; Li, Xiaoli

    2014-09-01

    To further understand rhythmic neuronal synchronization, an increasingly useful method is to determine the relationship between the spiking activity of individual neurons and the local field potentials (LFPs) of neural ensembles. Spike field coherence (SFC) is a widely used method for measuring the synchronization between spike trains and LFPs. However, due to the strong dependency of SFC on the burst index, it is not suitable for analyzing the relationship between bursty spike trains and LFPs, particularly in high frequency bands. To address this issue, we developed a method called weighted spike field correlation (WSFC), which uses the first spike in each burst multiple times to estimate the relationship. In the calculation, the number of times that the first spike is used is equal to the spike count per burst. The performance of this method was demonstrated using simulated bursty spike trains and LFPs, which comprised sinusoids with different frequencies, amplitudes, and phases. This method was also used to estimate the correlation between pyramidal cells in the hippocampus and gamma oscillations in rats performing behaviors. Analyses using simulated and real data demonstrated that the WSFC method is a promising measure for estimating the correlation between bursty spike trains and high frequency LFPs.

  4. Direct correlation of internal gradients and pore size distributions with low field NMR

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Xiao, Lizhi; Liao, Guangzhi; Blümich, Bernhard

    2016-06-01

    Internal magnetic field gradients Gint, which arise from the magnetic susceptibility difference Δχ between solid matrix and fluid in porous media relate to the pore geometry. However, this relationship is complex and not well understood. Here we correlate internal-gradient distributions to pore-size distributions directly to examine internal gradients in detail at low field NMR. The pore-size distributions were obtained by the method of Decay due to Diffusion in the Internal Field (DDIF), and the internal-gradient distributions were measured with the Carr-Purcell-Meiboom-Gill (CPMG) method. The internal-gradient-pore-size distributions correlation maps were obtained for water in packs of glass beads with different diameter and in a sandstone sample. The relationship between internal gradients and pore structure is analyzed in detail by considering the restricted diffusion of fluids in porous samples. For each case diffusion regimes are assigned by plotting normalized CPMG data and comparing the diffusion lengths, the dephasing lengths and pore diameters. In the free-diffusion limit, the correlation maps reveal the true relationship between pore structure and internal gradients so that Δχ can be approximated from the correlation maps. This limit is met most easily at low field. It provides information about porous media, which is expected to benefit the oil industry, in particular NMR well logging.

  5. Direct correlation of internal gradients and pore size distributions with low field NMR.

    PubMed

    Zhang, Yan; Xiao, Lizhi; Liao, Guangzhi; Blümich, Bernhard

    2016-06-01

    Internal magnetic field gradients Gint, which arise from the magnetic susceptibility difference Δχ between solid matrix and fluid in porous media relate to the pore geometry. However, this relationship is complex and not well understood. Here we correlate internal-gradient distributions to pore-size distributions directly to examine internal gradients in detail at low field NMR. The pore-size distributions were obtained by the method of Decay due to Diffusion in the Internal Field (DDIF), and the internal-gradient distributions were measured with the Carr-Purcell-Meiboom-Gill (CPMG) method. The internal-gradient-pore-size distributions correlation maps were obtained for water in packs of glass beads with different diameter and in a sandstone sample. The relationship between internal gradients and pore structure is analyzed in detail by considering the restricted diffusion of fluids in porous samples. For each case diffusion regimes are assigned by plotting normalized CPMG data and comparing the diffusion lengths, the dephasing lengths and pore diameters. In the free-diffusion limit, the correlation maps reveal the true relationship between pore structure and internal gradients so that Δχ can be approximated from the correlation maps. This limit is met most easily at low field. It provides information about porous media, which is expected to benefit the oil industry, in particular NMR well logging. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Investigation of correlation properties of light fields by Fresnel diffraction from a step

    NASA Astrophysics Data System (ADS)

    Hosseini, S. R.; Tavassoly, M. T.

    2013-12-01

    We introduce a new method, based on Fresnel diffraction of light from a step, for the study of correlation properties (temporal and spatial) of optical fields. The method renders to measure wavelength, coherence length, and coherence width by recording the visibility of the diffraction fringes versus optical path difference and spacing of the interfering beams. In addition, the method permits to specify the spectral line shape, particularly, of lights with short coherence lengths and the spatial coherence behavior of the lights with short coherence widths. Since, in the introduced method the optical path difference can be varied by changing the light incident angle, practically, in an interval of 90º, a large volume of data is acquired which leads to reliable and accurate study of the subject. The method can be applied easily using modest equipment. We have applied the method to the study of correlation properties of the lights emitted by LED, incandescent bulb, and Hg lamp.

  7. An Experimental Method for Semantic Field Study.

    ERIC Educational Resources Information Center

    Cutler, Anne

    This paper emphasizes the need for empirical research and objective discovery procedures in semantics, and illustrates a method by which these goals may be obtained. The aim of the methodology described is to provide a description of the internal structure of a semantic field by eliciting the description--in an objective, standardized manner--from…

  8. Intra-field CDU map correlation between SEMs and aerial image characterization

    NASA Astrophysics Data System (ADS)

    Ning, Guoxiang; Philipp, Peter; Litt, Lloyd C.; Meusemann, Stefan; Thaler, Thomas; Schulz, Kristian; Tschinkl, Martin; Ackmann, Paul

    2014-09-01

    Reticle critical dimension uniformity (CDU) is one of the major sources of wafer CD variations which include both inter-field variations and intra-field variations. Generally, wafer critical dimension (CD) measurement sample size interfield is much less than intra-field. Intra-field CDU correction requires time-consumption of metrology. In order to improve wafer intra-field CDU, several methods can be applied such as intra-field dose correction to improve wafer intra-field CDU. Corrections can be based on CD(SEM) or aerial image metrology data from the reticle. Reticle CDU and wafer CDU maps are based on scanning electron microscope (SEM) metrology, while reticle inspection intensity mapping (NuFLare 6000) and wafer level critical dimension (WLCD) utilize aerial images or optical techniques. Reticle inspecton tools such as those from KLA and NuFlare, offer the ability to collect optical measurement data to produce an optical CDU map. WLCD of Zeiss has the advantage of using the same illumination condition as the scanner to measure the aerial images or optical CD. In this study, the intra-field wafer CDU map correlation between SEMs and aerial images are characterized. The layout of metrology structures is very important for the correlation between wafer intra-field CDU, measured by SEM, and the CDU determined by aerial images. The selection of metrology structures effects on the correlation to SEM CD to wafer is also demonstrated. Both reticle CDU, intensity CDU and WLCD are candidates for intra-field wafer CDU characterization and the advantages and limitations of each approach are discussed.

  9. A regularized finite-element digital image correlation for irregular displacement field

    NASA Astrophysics Data System (ADS)

    Yang, Reng-cai

    2014-05-01

    A nonlinear Tikhonov regularization scheme is developed to tackle the ill-posed finite-element digital image correlation, which aims to measure the displacement field from consequent digital images before and after deformation. The goal of this algorithm is to resolve the displacement field with fine and irregular structure without deteriorated by the measuring errors due to its ill-posedness. A Newton-type method is employed to linearize the nonlinear problem iteratively, then the Tikhonov regularization is applied to the linearized problem, with the regularization parameter adaptively chosen by the L-curve method. The proposed algorithm is verified by computer simulated input images with a priori displacement field. The result shows that it is capable of resolving displacement field with very fine structure in a reasonable accuracy.

  10. Emergent Gauge Fields and Their Nonperturbative Effects in Correlated Electrons

    NASA Astrophysics Data System (ADS)

    Kim, Ki-Seok; Tanaka, Akihiro

    The history of modern condensed matter physics may be regarded as the competition and reconciliation between Stoner's and Anderson's physical pictures, where the former is based on momentum-space descriptions focusing on long wave-length fluctuations while the latter is based on real-space physics emphasizing emergent localized excitations. In particular, these two view points compete with each other in various nonperturbative phenomena, which range from the problem of high Tc superconductivity, quantum spin liquids in organic materials and frustrated spin systems, heavy-fermion quantum criticality, metal-insulator transitions in correlated electron systems such as doped silicons and two-dimensional electron systems, the fractional quantum Hall effect, to the recently discussed Fe-based superconductors. An approach to reconcile these competing frameworks is to introduce topologically nontrivial excitations into the Stoner's description, which appear to be localized in either space or time and sometimes both, where scattering between itinerant electrons and topological excitations such as skyrmions, vortices, various forms of instantons, emergent magnetic monopoles, and etc. may catch nonperturbative local physics beyond the Stoner's paradigm. In this review article we discuss nonperturbative effects of topological excitations on dynamics of correlated electrons. First, we focus on the problem of scattering between itinerant fermions and topological excitations in antiferromagnetic doped Mott insulators, expected to be relevant for the pseudogap phase of high Tc cuprates. We propose that nonperturbative effects of topological excitations can be incorporated within the perturbative framework, where an enhanced global symmetry with a topological term plays an essential role. In the second part, we go on to discuss the subject of symmetry protected topological states in a largely similar light. While we do not introduce itinerant fermions here, the nonperturbative

  11. On the Angular Correlation Functions of the Hubble Deep Field

    NASA Astrophysics Data System (ADS)

    Roukema, B. F.

    Roukema & Valls-Gabaud (1997, RVG) reinforce the conclusion of Colley et al. (1996, 1997) that the Hubble Deep Field (HDF) ``galaxies'' are probably star-forming regions, not ``building-blocks''. Consider a ``building-block'' hypothesis: (1) all (colour-selected high z) HDF galaxy-like objects are galaxies; (2) these objects have a spatial correlation function xi(r,z) = b2 (r0 / r)gamma (1+z)-(3+epsilon-gamma) where b >> 1 is a strong bias factor at high z; and b > = 1, db/dr < 0 for all r,z; such that the projection of xi (3-D) into w (angular correlation; 2-D) (via Limber's equation) matches Figs 1a, 1d of Colley et al. (1996). Since w(1 arcsecond) > approx 1 in Figs 1a,1d of Colley et al. (1996), at least 50% of the 1 arcsecond object pairs can be considered ``excess pairs''. Table 1 of RVG therefore shows, conservatively, that of all the 1 arcsecond object pairs, and under the above hypotheses, 25% are spatially separated by a median of only 3-7h-1 kpc (proper units), and 45% are spatially separated by a median of 12-30h-1 kpc$, taking into account projection effects. Many excess pairs have theta approx 0.25 arcseconds. Hence, for a pure ``building-block'' model, galaxy formation models would have to post-dict the existence of many Rhalo << 2 kpc, very highly biased galaxies, at 2.5 < z < 5. This result is little sensitive to epsilon, Omega0, lambda0 or zmedian.

  12. Field evaluation of a VOST sampling method

    SciTech Connect

    Jackson, M.D.; Johnson, L.D.; Fuerst, R.G.; McGaughey, J.F.; Bursey, J.T.; Merrill, R.G.

    1994-12-31

    The VOST (SW-846 Method 0030) specifies the use of Tenax{reg_sign} and a particular petroleum-based charcoal (SKC Lot 104, or its equivalent), that is no longer commercially available. In field evaluation studies of VOST methodology, a replacement petroleum-based charcoal has been used: candidate replacement sorbents for charcoal were studied, and Anasorb{reg_sign} 747, a carbon-based sorbent, was selected for field testing. The sampling train was modified to use only Anasorb{reg_sign} in the back tube and Tenax{reg_sign} in the two front tubes to avoid analytical difficulties associated with the analysis of the sequential bed back tube used in the standard VOST train. The standard (SW-846 Method 0030) and the modified VOST methods were evaluated at a chemical manufacturing facility using a quadruple probe system with quadruple trains. In this field test, known concentrations of the halogenated volatile organic compounds, that are listed in the Clean Air Act Amendments of 1990, Title 3, were introduced into the VOST train and the modified VOST train, using the same certified gas cylinder as a source of test compounds. Statistical tests of the comparability of methods were performed on a compound-by-compound basis. For most compounds, the VOST and modified VOST methods were found to be statistically equivalent.

  13. New Methods of Magnetic Field Measurements

    NASA Astrophysics Data System (ADS)

    Kholtygin, A. F.

    2015-04-01

    The standard methods of magnetic field measurements, based on the relation between the Stokes V parameter and the first derivative of the line profile intensity were modified by applying a linear integral transform to both sides of this relation. We used the wavelet integral transform with the DOG wavelets. The key advantage of the proposed method is the effective suppression of the noise contribution both to the line profile and the Stokes V parameter. To test the proposed method, spectropolarimetric observations of the young O star θ1 Ori C were used. We also demonstrate that the smoothed Time Variation Spectra (smTVS) can be used as a tool for detecting the local stellar magnetic fields.

  14. Correlated electron and nuclear dynamics in strong field photoionization of H(2)(+).

    PubMed

    Silva, R E F; Catoire, F; Rivière, P; Bachau, H; Martín, F

    2013-03-15

    We present a theoretical study of H(2)(+) ionization under strong IR femtosecond pulses by using a method designed to extract correlated (2D) photoelectron and proton kinetic energy spectra. The results show two distinct ionization mechanisms-tunnel and multiphoton ionization-in which electrons and nuclei do not share the energy from the field in the same way. Electrons produced in multiphoton ionization share part of their energy with the nuclei, an effect that shows up in the 2D spectra in the form of energy-conservation fringes similar to those observed in weak-field ionization of diatomic molecules. In contrast, tunneling electrons lead to fringes whose position does not depend on the proton kinetic energy. At high intensity, the two processes coexist and the 2D plots show a very rich behavior, suggesting that the correlation between electron and nuclear dynamics in strong field ionization is more complex than one would have anticipated.

  15. Electric Field Quantitative Measurement System and Method

    NASA Technical Reports Server (NTRS)

    Generazio, Edward R. (Inventor)

    2016-01-01

    A method and system are provided for making a quantitative measurement of an electric field. A plurality of antennas separated from one another by known distances are arrayed in a region that extends in at least one dimension. A voltage difference between at least one selected pair of antennas is measured. Each voltage difference is divided by the known distance associated with the selected pair of antennas corresponding thereto to generate a resulting quantity. The plurality of resulting quantities defined over the region quantitatively describe an electric field therein.

  16. A method for detecting complex correlation in time series

    NASA Astrophysics Data System (ADS)

    Alfi, V.; Petri, A.; Pietronero, L.

    2007-06-01

    We propose a new method for detecting complex correlations in time series of limited size. The method is derived by the Spitzer's identity and proves to work successfully on different model processes, including the ARCH process, in which pairs of variables are uncorrelated, but the three point correlation function is non zero. The application to financial data allows to discriminate among dependent and independent stock price returns where standard statistical analysis fails.

  17. Probing magnetic turbulence by synchrotron polarimetry: statistics and structure of magnetic fields from Stokes correlators

    NASA Astrophysics Data System (ADS)

    Waelkens, A. H.; Schekochihin, A. A.; Enßlin, T. A.

    2009-10-01

    We describe a novel technique for probing the statistical properties of cosmic magnetic fields based on radio polarimetry data. Second-order magnetic field statistics like the power spectrum cannot always distinguish between magnetic fields with essentially different spatial structure. Synchrotron polarimetry naturally allows certain fourth-order magnetic field statistics to be inferred from observational data, which lifts this degeneracy and can thereby help us gain a better picture of the structure of the cosmic fields and test theoretical scenarios describing magnetic turbulence. In this work we show that a fourth-order correlator of specific physical interest, the tension force spectrum, can be recovered from the polarized synchrotron emission data. We develop an estimator for this quantity based on polarized emission observations in the Faraday rotation free frequency regime. We consider two cases: a statistically isotropic field distribution, and a statistically isotropic field superimposed on a weak mean field. In both cases the tension force power spectrum is measurable; in the latter case, the magnetic power spectrum may also be obtainable. The method is exact in the idealized case of a homogeneous relativistic electron distribution that has a power-law energy spectrum with a spectral index of p = 3, and assumes statistical isotropy of the turbulent field. We carry out numerical tests of our method using synthetic polarized emission data generated from numerically simulated magnetic fields. We show that the method is valid, that it is not prohibitively sensitive to the value of the electron spectral index p, and that the observed tension force spectrum allows one to distinguish between e.g. a randomly tangled magnetic field (a default assumption in many studies) and a field organized in folded flux sheets or filaments.

  18. Cross-correlation function of acoustic fields generated by random high-frequency sources.

    PubMed

    Godin, Oleg A

    2010-08-01

    Long-range correlations of noise fields in arbitrary inhomogeneous, moving or motionless fluids are studied in the ray approximation. Using the stationary phase method, two-point cross-correlation function of noise is shown to approximate the sum of the deterministic Green's functions describing sound propagation in opposite directions between the two points. Explicit relations between amplitudes of respective ray arrivals in the noise cross-correlation function and the Green's functions are obtained and verified against specific problems allowing an exact solution. Earlier results are extended by simultaneously accounting for sound absorption, arbitrary distribution of noise sources in a volume and on surfaces, and fluid inhomogeneity and motion. The information content of the noise cross-correlation function is discussed from the viewpoint of passive acoustic characterization of inhomogeneous flows.

  19. Lattice Methods and Effective Field Theory

    NASA Astrophysics Data System (ADS)

    Nicholson, Amy

    Lattice field theory is a non-perturbative tool for studying properties of strongly interacting field theories, which is particularly amenable to numerical calculations and has quantifiable systematic errors. In these lectures we apply these techniques to nuclear Effective Field Theory (EFT), a non-relativistic theory for nuclei involving the nucleons as the basic degrees of freedom. The lattice formulation of Endres et al. (Phys Rev A 84:043644, 2011; Phys Rev A 87:023615, 2013) for so-called pionless EFT is discussed in detail, with portions of code included to aid the reader in code development. Systematic and statistical uncertainties of these methods are discussed at length, and extensions beyond pionless EFT are introduced in the final section.

  20. Measuring Collisionless Damping in Heliospheric Plasmas using Field-Particle Correlations

    NASA Astrophysics Data System (ADS)

    Klein, K. G.; Howes, G. G.

    2016-08-01

    An innovative field-particle correlation technique is proposed that uses single-point measurements of the electromagnetic fields and particle velocity distribution functions to investigate the net transfer of energy from fields to particles associated with the collisionless damping of turbulent fluctuations in weakly collisional plasmas, such as the solar wind. In addition to providing a direct estimate of the local rate of energy transfer between fields and particles, it provides vital new information about the distribution of that energy transfer in velocity space. This velocity-space signature can potentially be used to identify the dominant collisionless mechanism responsible for the damping of turbulent fluctuations in the solar wind. The application of this novel field-particle correlation technique is illustrated using the simplified case of the Landau damping of Langmuir waves in an electrostatic 1D-1V Vlasov-Poisson plasma, showing that the procedure both estimates the local rate of energy transfer from the electrostatic field to the electrons and indicates the resonant nature of this interaction. Modifications of the technique to enable single-point spacecraft measurements of fields and particles to diagnose the collisionless damping of turbulent fluctuations in the solar wind are discussed, yielding a method with the potential to transform our ability to maximize the scientific return from current and upcoming spacecraft missions, such as the Magnetospheric Multiscale (MMS) and Solar Probe Plus missions.

  1. Generating partially correlated noise—A comparison of methods

    PubMed Central

    Hartmann, William M.; Cho, Yun Jin

    2011-01-01

    There are three standard methods for generating two channels of partially correlated noise: the two-generator method, the three-generator method, and the symmetric-generator method. These methods allow an experimenter to specify a target cross correlation between the two channels, but actual generated noises show statistical variability around the target value. Numerical experiments were done to compare the variability for those methods as a function of the number of degrees of freedom. The results of the experiments quantify the stimulus uncertainty in diverse binaural psychoacoustical experiments: incoherence detection, perceived auditory source width, envelopment, noise localization∕lateralization, and the masking level difference. The numerical experiments found that when the elemental generators have unequal powers, the different methods all have similar variability. When the powers are constrained to be equal, the symmetric-generator method has much smaller variability than the other two. PMID:21786899

  2. Power series expansion method in tensor-optimized antisymmetrized molecular dynamics beyond the Jastrow correlation method

    NASA Astrophysics Data System (ADS)

    Myo, Takayuki; Toki, Hiroshi; Ikeda, Kiyomi; Horiuchi, Hisashi; Suhara, Tadahiro

    2017-09-01

    We developed a new variational method for tensor-optimized antisymmetrized molecular dynamics (TOAMD) for nuclei. In TOAMD, the correlation functions for the tensor force and the short-range repulsion are introduced and used in the power series form of the wave function, which is different from the Jastrow method. Here, nucleon pairs are correlated in multisteps with different forms, while they are correlated only once including all pairs in the Jastrow correlation method. Each correlation function in every term is independently optimized in the variation of total energy in TOAMD. For s -shell nuclei using the nucleon-nucleon interaction, the energies in TOAMD are better than those in the variational Monte Carlo method with the Jastrow correlation function. This means that the power series expansion using the correlation functions in TOAMD describes the nuclei better than the Jastrow correlation method.

  3. Direct correlation of diffusion and pore size distributions with low field NMR

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Xiao, Lizhi; Liao, Guangzhi; Song, Yi-Qiao

    2016-08-01

    The time-dependent diffusion coefficient (D) is a powerful tool to probe microstructure in porous media, and can be obtained by the NMR method. In a real porous sample, molecular diffusion is very complex. Here we present a new method which directly measures the relationship between effective diffusion coefficients and pore size distributions without knowing surface relaxivity. This method is used to extract structural information and explore the relationship between D and a in porous media having broad pore size distributions. The diffusion information is encoded by the Pulsed Field Gradient (PFG) method and the pore size distributions are acquired by the Decay due to Diffusion in the Internal Field (DDIF) method. Two model samples were measured to verify this method. Restricted diffusion was analyzed, and shows that most fluid molecules experience pore wall. The D(a) curves obtained from correlation maps were fitted to the Padé approximant equation and a good agreement was found between the fitting lines and the measured data. Then a sandstone sample with unknown structure was measured. The state of confined fluids was analyzed and structural information, such as pore size distributions, were extracted. The D - T1 correlation maps were also obtained using the same method, which yielded surface relaxivities for different samples. All the experiments were conducted on 2 MHz NMR equipment to obtain accurate diffusion information, where internal gradients can be neglected. This method is expected to have useful applications in the oil industry, particularly for NMR logging in the future.

  4. Atmospheric pollution measurement by optical cross correlation methods - A concept

    NASA Technical Reports Server (NTRS)

    Fisher, M. J.; Krause, F. R.

    1971-01-01

    Method combines standard spectroscopy with statistical cross correlation analysis of two narrow light beams for remote sensing to detect foreign matter of given particulate size and consistency. Method is applicable in studies of generation and motion of clouds, nuclear debris, ozone, and radiation belts.

  5. Bringing the cross-correlation method up to date

    NASA Technical Reports Server (NTRS)

    Statler, Thomas

    1995-01-01

    The cross-correlation (XC) method of Tonry & Davis (1979, AJ, 84, 1511) is generalized to arbitrary parametrized line profiles. In the new algorithm the correlation function itself, rather than the observed galaxy spectrum, is fitted by the model line profile: this removes much of the complication in the error analysis caused by template mismatch. Like the Fourier correlation quotient (FCQ) method of Bender (1990, A&A, 229, 441), the inferred line profiles are, up to a normalization constant, independent of template mismatch as long as there are no blended lines. The standard reduced chi(exp 2) is a good measure of the fit of the inferred velocity distribution, largely decoupled from the fit of the spectral template. The updated XC method performs as well as other recently developed methods, with the added virtue of conceptual simplicity.

  6. Bringing the cross-correlation method up to date

    NASA Astrophysics Data System (ADS)

    Statler, Thomas

    1995-03-01

    The cross-correlation (XC) method of Tonry & Davis (1979, AJ, 84, 1511) is generalized to arbitrary parametrized line profiles. In the new algorithm the correlation function itself, rather than the observed galaxy spectrum, is fitted by the model line profile: this removes much of the complication in the error analysis caused by template mismatch. Like the Fourier correlation quotient (FCQ) method of Bender (1990, A&A, 229, 441), the inferred line profiles are, up to a normalization constant, independent of template mismatch as long as there are no blended lines. The standard reduced chi2 is a good measure of the fit of the inferred velocity distribution, largely decoupled from the fit of the spectral template. The updated XC method performs as well as other recently developed methods, with the added virtue of conceptual simplicity.

  7. A field day of soil regulation methods

    NASA Astrophysics Data System (ADS)

    Kempter, Axel; Kempter, Carmen

    2015-04-01

    The subject Soil plays an important role in the school subject geography. In particular in the upper classes it is expected that the knowledge from the area of Soil can be also be applied in other subjects. Thus, e.g., an assessment of economy and agricultural development and developing potential requires the interweaving of natural- geographic and human-geographic factors. The treatment of the subject Soil requires the desegregation of the results of different fields like Physics, Chemistry and Biology. Accordingly the subject gives cause to professional-covering lessons and offers the opportunity for practical work as well as excursions. Beside the mediation of specialist knowledge and with the support of the methods and action competences, the independent learning and the practical work should have a special emphasis on the field excursion by using stimulating exercises oriented to solving problems and mastering the methods. This aim should be achieved by the interdisciplinary treatment of the subject Soil in the task-oriented learning process on the field day. The methods and experiments should be sensibly selected for both the temporal and material supply constraints. During the field day the pupils had to categorize soil texture, soil colour, soil profile, soil skeleton, lime content, ion exchanger (Soils filter materials), pH-Value, water retention capacity and evidence of different ions like e.g. Fe3+, Mg2+, Cl- and NO3-. The pupils worked on stations and evaluated the data to receive a general view of the ground at the end. According to numbers of locations, amount of time and group size, different procedures can be offered. There are groups of experts who carry out the same experiment at all locations and split for the evaluation in different groups or each group ran through all stations. The results were compared and discussed at the end.

  8. Optimization methods in control of electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Angell, Thomas S.; Kleinman, Ralph E.

    1991-05-01

    This program is developing constructive methods for certain constrained optimization problems arising in the design and control of electromagnetic fields and in the identification of scattering objects. The problems addressed fall into three categories: (1) the design of antennas with optimal radiation characteristics measured in terms of directivity; (2) the control of the electromagnetic scattering characteristics of an object, in particular the minimization of its radar cross section, by the choice of material properties; and (3) the determination of the shape of scattering objects with various electromagnetic properties from scattered field data. The main thrust of the program is toward the development of constructive methods based on the use of complete families of solutions of the time-harmonic Maxwell equations in the infinite domain exterior to the radiating or scattering body. During the course of the work an increasing amount of attention has been devoted to the use of iterative methods for the solution of various direct and inverse problems. The continued investigation and development of these methods and their application in parameter identification has become a significant part of the program.

  9. Correlation between Visual Field Index and Other Functional and Structural Measures in Glaucoma Patients and Suspects

    PubMed Central

    Iutaka, Natalia A.; Grochowski, Rubens A.; Kasahara, Niro

    2017-01-01

    Purpose: To evaluate the correlation between visual field index (VFI) and both structural and functional measures of the optic disc in primary open angle glaucoma patients and suspects. Methods: In this retrospective study, 162 glaucoma patients and suspects underwent standard automated perimetry (SAP), retinography, and retinal nerve fiber layer (RNFL) measurement. The optic disc was stratified according to the vertical cup/disc ratio (C/D) and sorted by the disc damage likelihood scale (DDLS). RNFL was measured with the optical coherence tomography. The VFI perimetry was correlated with the mean deviation (MD) and pattern standard deviation (PSD) obtained by SAP, and structural parameters by Pearson's correlation coefficients. Results: VFI displayed strong correlation with MD (R = 0.959) and PSD (R = −0.744). The linear correlations between VFI and structural measures including C/D (R = −0.179, P = 0.012), DDLS (R = −0.214, P = 0.006), and RNFL (R = 0.416, P < 0.001) were weak but statistically significant. Conclusion: VFI showed a strong correlation with MD and PSD but demonstrated a weak correlation with structural measures. It can possibly be used as a marker for functional impairment severity in patients with glaucoma. PMID:28299007

  10. Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions

    SciTech Connect

    Georges, A.; Kotliar, G.; Krauth, W.; Rozenberg, M.J.

    1996-01-01

    We review the dynamical mean-field theory of strongly correlated electron systems which is based on a mapping of lattice models onto quantum impurity models subject to a self-consistency condition. This mapping is exact for models of correlated electrons in the limit of large lattice coordination (or infinite spatial dimensions). It extends the standard mean-field construction from classical statistical mechanics to quantum problems. We discuss the physical ideas underlying this theory and its mathematical derivation. Various analytic and numerical techniques that have been developed recently in order to analyze and solve the dynamical mean-field equations are reviewed and compared to each other. The method can be used for the determination of phase diagrams (by comparing the stability of various types of long-range order), and the calculation of thermodynamic properties, one-particle Green{close_quote}s functions, and response functions. We review in detail the recent progress in understanding the Hubbard model and the Mott metal-insulator transition within this approach, including some comparison to experiments on three-dimensional transition-metal oxides. We present an overview of the rapidly developing field of applications of this method to other systems. The present limitations of the approach, and possible extensions of the formalism are finally discussed. Computer programs for the numerical implementation of this method are also provided with this article. {copyright} {ital 1996 The American Physical Society.}

  11. Isotope correlations for safeguards surveillance and accountancy methods

    SciTech Connect

    Persiani, P.J.; Kalimullah

    1982-01-01

    Isotope correlations corroborated by experiments, coupled with measurement methods for nuclear material in the fuel cycle have the potential as a safeguards surveillance and accountancy system. The ICT allows the verification of: fabricator's uranium and plutonium content specifications, shipper/receiver differences between fabricator output and reactor input, reactor plant inventory changes, reprocessing batch specifications and shipper/receiver differences between reactor output and reprocessing plant input. The investigation indicates that there exist predictable functional relationships (i.e. correlations) between isotopic concentrations over a range of burnup. Several cross-correlations serve to establish the initial fuel assembly-averaged compositions. The selection of the more effective correlations will depend not only on the level of reliability of ICT for verification, but also on the capability, accuracy and difficulty of developing measurement methods. The propagation of measurement errors through the correlations have been examined to identify the sensitivity of the isotope correlations to measurement errors, and to establish criteria for measurement accuracy in the development and selection of measurement methods. 6 figures, 3 tables.

  12. Near-Surface Flow Fields Deduced Using Correlation Tracking and Time-Distance Analysis

    NASA Technical Reports Server (NTRS)

    DeRosa, Marc; Duvall, T. L., Jr.; Toomre, Juri

    1999-01-01

    Near-photospheric flow fields on the Sun are deduced using two independent methods applied to the same time series of velocity images observed by SOI-MDI on SOHO. Differences in travel times between f modes entering and leaving each pixel measured using time-distance helioseismology are used to determine sites of supergranular outflows. Alternatively, correlation tracking analysis of mesogranular scales of motion applied to the same time series is used to deduce the near-surface flow field. These two approaches provide the means to assess the patterns and evolution of horizontal flows on supergranular scales even near disk center, which is not feasible with direct line-of-sight Doppler measurements. We find that the locations of the supergranular outflows seen in flow fields generated from correlation tracking coincide well with the locations of the outflows determined from the time-distance analysis, with a mean correlation coefficient after smoothing of bar-r(sub s) = 0.840. Near-surface velocity field measurements can used to study the evolution of the supergranular network, as merging and splitting events are observed to occur in these images. The data consist of one 2048-minute time series of high-resolution (0.6" pixels) line-of-sight velocity images taken by MDI on 1997 January 16-18 at a cadence of one minute.

  13. Near-Surface Flow Fields Deduced Using Correlation Tracking and Time-Distance Analysis

    NASA Technical Reports Server (NTRS)

    DeRosa, Marc; Duvall, T. L., Jr.; Toomre, Juri

    1999-01-01

    Near-photospheric flow fields on the Sun are deduced using two independent methods applied to the same time series of velocity images observed by SOI-MDI on SOHO. Differences in travel times between f modes entering and leaving each pixel measured using time-distance helioseismology are used to determine sites of supergranular outflows. Alternatively, correlation tracking analysis of mesogranular scales of motion applied to the same time series is used to deduce the near-surface flow field. These two approaches provide the means to assess the patterns and evolution of horizontal flows on supergranular scales even near disk center, which is not feasible with direct line-of-sight Doppler measurements. We find that the locations of the supergranular outflows seen in flow fields generated from correlation tracking coincide well with the locations of the outflows determined from the time-distance analysis, with a mean correlation coefficient after smoothing of bar-r(sub s) = 0.840. Near-surface velocity field measurements can used to study the evolution of the supergranular network, as merging and splitting events are observed to occur in these images. The data consist of one 2048-minute time series of high-resolution (0.6" pixels) line-of-sight velocity images taken by MDI on 1997 January 16-18 at a cadence of one minute.

  14. Relaxation method of compensation in an optical correlator

    NASA Technical Reports Server (NTRS)

    Juday, Richard D.; Daiuto, Brian J.

    1987-01-01

    An iterative method is proposed for the sharpening of programmable filters in a 4-f optical correlator. Continuously variable spatial light modulators (SLMs) permit the fine adjustment of optical processing filters so as to compensate for the departures from ideal behavior of a real optical system. Although motivated by the development of continuously variable phase-only SLMs, the proposed sharpening method is also applicable to amplitude modulators and, with appropriate adjustments, to binary modulators as well. A computer simulation is presented that illustrates the potential effectiveness of the method: an image is placed on the input to the correlator, and its corresponding phase-only filter is adjusted (allowed to relax) so as to produce a progressively brighter and more centralized peak in the correlation plane. The technique is highly robust against the form of the system's departure from ideal behavior.

  15. Relaxation method of compensation in an optical correlator

    NASA Technical Reports Server (NTRS)

    Juday, Richard D.; Daiuto, Brian J.

    1987-01-01

    An iterative method is proposed for the sharpening of programmable filters in a 4-f optical correlator. Continuously variable spatial light modulators (SLMs) permit the fine adjustment of optical processing filters so as to compensate for the departures from ideal behavior of a real optical system. Although motivated by the development of continuously variable phase-only SLMs, the proposed sharpening method is also applicable to amplitude modulators and, with appropriate adjustments, to binary modulators as well. A computer simulation is presented that illustrates the potential effectiveness of the method: an image is placed on the input to the correlator, and its corresponding phase-only filter is adjusted (allowed to relax) so as to produce a progressively brighter and more centralized peak in the correlation plane. The technique is highly robust against the form of the system's departure from ideal behavior.

  16. Improved methods for fan sound field determination

    NASA Technical Reports Server (NTRS)

    Cicon, D. E.; Sofrin, T. G.; Mathews, D. C.

    1981-01-01

    Several methods for determining acoustic mode structure in aircraft turbofan engines using wall microphone data were studied. A method for reducing data was devised and implemented which makes the definition of discrete coherent sound fields measured in the presence of engine speed fluctuation more accurate. For the analytical methods, algorithms were developed to define the dominant circumferential modes from full and partial circumferential arrays of microphones. Axial arrays were explored to define mode structure as a function of cutoff ratio, and the use of data taken at several constant speeds was also evaluated in an attempt to reduce instrumentation requirements. Sensitivities of the various methods to microphone density, array size and measurement error were evaluated and results of these studies showed these new methods to be impractical. The data reduction method used to reduce the effects of engine speed variation consisted of an electronic circuit which windowed the data so that signal enhancement could occur only when the speed was within a narrow range.

  17. Detrended Partial-Cross-Correlation Analysis: A New Method for Analyzing Correlations in Complex System

    PubMed Central

    Yuan, Naiming; Fu, Zuntao; Zhang, Huan; Piao, Lin; Xoplaki, Elena; Luterbacher, Juerg

    2015-01-01

    In this paper, a new method, detrended partial-cross-correlation analysis (DPCCA), is proposed. Based on detrended cross-correlation analysis (DCCA), this method is improved by including partial-correlation technique, which can be applied to quantify the relations of two non-stationary signals (with influences of other signals removed) on different time scales. We illustrate the advantages of this method by performing two numerical tests. Test I shows the advantages of DPCCA in handling non-stationary signals, while Test II reveals the “intrinsic” relations between two considered time series with potential influences of other unconsidered signals removed. To further show the utility of DPCCA in natural complex systems, we provide new evidence on the winter-time Pacific Decadal Oscillation (PDO) and the winter-time Nino3 Sea Surface Temperature Anomaly (Nino3-SSTA) affecting the Summer Rainfall over the middle-lower reaches of the Yangtze River (SRYR). By applying DPCCA, better significant correlations between SRYR and Nino3-SSTA on time scales of 6 ~ 8 years are found over the period 1951 ~ 2012, while significant correlations between SRYR and PDO on time scales of 35 years arise. With these physically explainable results, we have confidence that DPCCA is an useful method in addressing complex systems. PMID:25634341

  18. Seeing asymptotic freedom in an exact correlator of a large-N matrix field theory

    NASA Astrophysics Data System (ADS)

    Orland, Peter

    2014-12-01

    Exact expressions for correlation functions are known for the large-N (planar) limit of the (1 +1 )-dimensional SU (N )×SU (N ) principal chiral sigma model. These were obtained with the form-factor bootstrap, an entirely nonperturbative method. The large-N solution of this asymptotically free model is far less trivial than that of the O (N ) sigma model (or other isovector models). Here we study the Euclidean two-point correlation function N-1⟨Tr Φ (0 )†Φ (x )⟩ , where Φ (x )˜Z-1 /2U (x ) is the scaling field and U (x )∈SU (N ) is the bare field. We express the two-point function in terms of the spectrum of the operator √{-d2/d u2 }, where u ∈(-1 ,1 ). At short distances, this expression perfectly matches the result from the perturbative renormalization group.

  19. Elongation measurement using 1-dimensional image correlation method

    NASA Astrophysics Data System (ADS)

    Phongwisit, Phachara; Kamoldilok, Surachart; Buranasiri, Prathan

    2016-11-01

    Aim of this paper was to study, setup, and calibrate an elongation measurement by using 1- Dimensional Image Correlation method (1-DIC). To confirm our method and setup correctness, we need calibration with other methods. In this paper, we used a small spring as a sample to find a result in terms of spring constant. With a fundamental of Image Correlation method, images of formed and deformed samples were compared to understand the difference between deformed process. By comparing the location of reference point on both image's pixel, the spring's elongation were calculated. Then, the results have been compared with the spring constants, which were found from Hooke's law. The percentage of 5 percent error has been found. This DIC method, then, would be applied to measure the elongation of some different kinds of small fiber samples.

  20. Correlation between field dependence-independence and handball shooting by Swedish national male handball players.

    PubMed

    Apitzsch, E; Liu, W H

    1997-06-01

    Contradictory claims exist as to whether field dependence or field independence is advantageous to team ball-game performance. For further investigation, Swedish national male handball players' Rod-and-Frame Test scores were correlated with their field-goal shooting attempts and shooting efficiency in the '94 European Handball Championship. No significant correlation was found; discussion followed.

  1. Nonlocal exchange correlation in screened-exchange densityfunctional methods

    SciTech Connect

    Lee, Byounghak; Wang, Lin-Wang; Spataru, Catalin D.; Louie,Steven G.

    2007-04-22

    We present a systematic study on the exchange-correlationeffects in screened-exchange local density functional method. Toinvestigate the effects of the screened-exchange potential in the bandgap correction, we have compared the exchange-correlation potential termin the sX-LDA formalism with the self-energy term in the GWapproximation. It is found that the band gap correction of the sX-LDAmethod primarily comes from the downshift of valence band states,resulting from the enhancement of bonding and the increase of ionizationenergy. The band gap correction in the GW method, on the contrary, comesin large part from the increase of theconduction band energies. We alsostudied the effects of the screened-exchange potential in the totalenergy by investigating the exchange-correlation hole in comparison withquantum Monte Carlo calculations. When the Thomas-Fermi screening isused, the sX-LDA method overestimates (underestimates) theexchange-correlation hole in short (long) range. From theexchange-correlation energy analysis we found that the LDA method yieldsbetter absolute total energy than sX-LDA method.

  2. Method of phased magnitude correlation using binary sequences

    NASA Astrophysics Data System (ADS)

    Pender, Michael; Tom, Donald

    1994-02-01

    A method for allowing a correlation function to be applied to binary codes of length 3 to length 255 is presented. A user may specify the desired length of the binary codes for correlation processing, whether the binary code is to use a phase sidelobe level as the threshold or a sidelobe amplitude as the threshold. The user will also be asked to specify the threshold as well as an in phase coefficient referred to as beta and in out of phase coefficient referred to as a alpha. When the user has specified the parameters for correlation processing of the binary code length selected by the user, the program of the present invention will process the binary codes eliminating allomorphic forms of the codes from correlation and then display the results to the user.

  3. A double-correlation tremor-location method

    NASA Astrophysics Data System (ADS)

    Li, Ka Lok; Sgattoni, Giulia; Sadeghisorkhani, Hamzeh; Roberts, Roland; Gudmundsson, Olafur

    2016-12-01

    A double-correlation method is introduced to locate tremor sources based on stacks of complex, doubly-correlated tremor records of multiple triplets of seismographs back projected to hypothetical source locations in a geographic grid. Peaks in the resulting stack of moduli are inferred source locations. The stack of the moduli is a robust measure of energy radiated from a point source or point sources even when the velocity information is imprecise. Application to real data shows how double correlation focuses the source mapping compared to the common single correlation approach. Synthetic tests demonstrate the robustness of the method and its resolution limitations which are controlled by the station geometry, the finite frequency of the signal, the quality of the used velocity information and noise level. Both random noise and signal or noise correlated at time shifts that are inconsistent with the assumed velocity structure can be effectively suppressed. Assuming a surface-wave velocity, we can constrain the source location even if the surface-wave component does not dominate. The method can also in principle be used with body waves in three dimensions, although this requires more data and seismographs placed near the source for depth resolution.

  4. A double-correlation tremor-location method

    NASA Astrophysics Data System (ADS)

    Li, Ka Lok; Sgattoni, Giulia; Sadeghisorkhani, Hamzeh; Roberts, Roland; Gudmundsson, Olafur

    2017-02-01

    A double-correlation method is introduced to locate tremor sources based on stacks of complex, doubly-correlated tremor records of multiple triplets of seismographs back projected to hypothetical source locations in a geographic grid. Peaks in the resulting stack of moduli are inferred source locations. The stack of the moduli is a robust measure of energy radiated from a point source or point sources even when the velocity information is imprecise. Application to real data shows how double correlation focuses the source mapping compared to the common single correlation approach. Synthetic tests demonstrate the robustness of the method and its resolution limitations which are controlled by the station geometry, the finite frequency of the signal, the quality of the used velocity information and noise level. Both random noise and signal or noise correlated at time shifts that are inconsistent with the assumed velocity structure can be effectively suppressed. Assuming a surface wave velocity, we can constrain the source location even if the surface wave component does not dominate. The method can also in principle be used with body waves in 3-D, although this requires more data and seismographs placed near the source for depth resolution.

  5. Cross-correlation of point series using a new method

    NASA Technical Reports Server (NTRS)

    Strothers, Richard B.

    1994-01-01

    Traditional methods of cross-correlation of two time series do not apply to point time series. Here, a new method, devised specifically for point series, utilizes a correlation measure that is based in the rms difference (or, alternatively, the median absolute difference) between nearest neightbors in overlapped segments of the two series. Error estimates for the observed locations of the points, as well as a systematic shift of one series with respect to the other to accommodate a constant, but unknown, lead or lag, are easily incorporated into the analysis using Monte Carlo techniques. A methodological restriction adopted here is that one series be treated as a template series against which the other, called the target series, is cross-correlated. To estimate a significance level for the correlation measure, the adopted alternative (null) hypothesis is that the target series arises from a homogeneous Poisson process. The new method is applied to cross-correlating the times of the greatest geomagnetic storms with the times of maximum in the undecennial solar activity cycle.

  6. Correlation functions of twist fields from Ward identities in the massive Dirac theory

    NASA Astrophysics Data System (ADS)

    Doyon, Benjamin; Silk, James

    2011-07-01

    We derive non-linear differential equations for correlation functions of U(1) twist fields in the two-dimensional massive Dirac theory. Primary U(1) twist fields correspond to exponential fields in the sine-Gordon model at the free-fermion point, and it is well-known that their vacuum two-point functions are determined by integrable differential equations. We extend part of this result to more general quantum states (pure or mixed) and to certain descendents, showing that some two-point functions are determined by the sinh-Gordon differential equations whenever there is translation and parity invariance, and the density matrix is the exponential of a bilinear expression in fermions. We use methods involving Ward identities associated to the copy-rotation symmetry in a model with two independent, anti-commuting copies. Such methods were used in the context of the thermally perturbed Ising quantum field theory model. We show that they are applicable to the Dirac theory as well, and we suggest that they are likely to have a much wider applicability to free fermion models in general. Finally, we note that our form-factor study of descendents twist fields combined with a CFT analysis provides a new way of evaluating vacuum expectation values of primary U(1) twist fields: by deriving and solving a recursion relation.

  7. Second-order spatial correlation in the far-field: Comparing entangled and classical light sources

    NASA Astrophysics Data System (ADS)

    Zhang, Erfeng; Liu, Weitao; Lin, Huizu; Chen, Pingxing

    2016-02-01

    We consider second-order spatial correlation with entangled and classical light in the far-field. The quantum theory of second-order spatial correlation is analyzed, and the role of photon statistics and detection mode in the second-order spatial correlation are discussed. Meanwhile, the difference of second-order spatial correlation with entangled and classical light sources is deduced.

  8. Capturing correlations in chaotic diffusion by approximation methods.

    PubMed

    Knight, Georgie; Klages, Rainer

    2011-10-01

    We investigate three different methods for systematically approximating the diffusion coefficient of a deterministic random walk on the line that contains dynamical correlations that change irregularly under parameter variation. Capturing these correlations by incorporating higher-order terms, all schemes converge to the analytically exact result. Two of these methods are based on expanding the Taylor-Green-Kubo formula for diffusion, while the third method approximates Markov partitions and transition matrices by using a slight variation of the escape rate theory of chaotic diffusion. We check the practicability of the different methods by working them out analytically and numerically for a simple one-dimensional map, study their convergence, and critically discuss their usefulness in identifying a possible fractal instability of parameter-dependent diffusion, in the case of dynamics where exact results for the diffusion coefficient are not available.

  9. Correlation between atmospheric electric fields and cloud cover using a field mill and cloud observation data

    NASA Astrophysics Data System (ADS)

    Nakamori, Kota; Suzuki, Yasuki; Ohya, Hiroyo; Takano, Toshiaki; Kawamura, Yohei; Nakata, Hiroyuki; Yamashita, Kozo

    2017-04-01

    It is known that lightning and precipitations of rain droplets generated from thunderclouds are a generator of global atmospheric electric circuit. In the fair weather, the atmospheric electric fields (AEF) are downward (positive), while they are upward (negative) during lightning and precipitations. However, the correlations between the AEF, and the cloud parameters such as cloud cover, weather phenomenon, have been not revealed quantitatively yet. In this study, we investigate the correlations between the AEF and the cloud parameters, weather phenomenon using a field mill, the 95 GHz-FALCON (FMCW Radar for Cloud Observations)-I and all-sky camera observations. In this study, we installed a Boltek field mill on the roof of our building in Chiba University, Japan, (Geographic coordinate: 35.63 degree N, 140.10 degree E, the sea level: 55 m) on the first June, 2016. The sampling time of the AEF is 0.5 s. On the other hand, the FALCON-I has observed the cloud parameters far from about 76 m of the field mill throughout 24 hours every day. The vertical cloud profiles and the Doppler velocity of cloud particles can be derived by the FALCON-I with high distance resolutions (48.8 m) (Takano et al., 2010). In addition, the images of the clouds and precipitations are recorded with 30-s sampling by an all-sky camera using a CCD camera on the same roof during 05:00-22:00 LT every day. The distance between the field mill and the all-sky camera is 3.75 m. During 08:30 UT - 10:30 UT, on 4 July, 2016, we found the variation of the AEF due to the approach of thundercloud. The variation consisted of two patterns. One was slow variation due to the movement of thunderclouds, and the other was rapid variation associated with lightning discharges. As for the movement of thunderclouds, the AEF increased when the anvil was located over the field mill, which was opposite direction of the previous studies. This change might be due to the positive charges in the upper anvil more than 14 km

  10. An Explicitly Correlated Wavelet Method for the Electronic Schroedinger Equation

    SciTech Connect

    Bachmayr, Markus

    2010-09-30

    A discretization for an explicitly correlated formulation of the electronic Schroedinger equation based on hyperbolic wavelets and exponential sum approximations of potentials is described, covering mathematical results as well as algorithmic realization, and discussing in particular the potential of methods of this type for parallel computing.

  11. Insights on why graphic correlation (Shaw's method) works.

    USGS Publications Warehouse

    Edwards, L.E.

    1984-01-01

    In 1964 A.B.Shaw presented a method of correlating fossilferous sedimentary rocks based on interpretation of graphic plots of first- and last-occurrences of taxa. Because there is no way to determine the true total ranges of fossil taxa, it is instructive to test the accuracy of the method using hypothetical datasets. The dataset used here consists of 16 taxa in six sections with differing known rates of rock accumulation. In all graphs, a single straight-line correlation was a reasonable interpretation. The resulting ranges after the first and third rounds of compositing reproduce the 'true' ranges but with small errors. Slight errors in the positioning of individual correlation lines are more likely to lengthen ranges artificially than to shorten them. Shaw's method works well because, whereas actually sampled ranges will be shorter than true ranges, errors in correlation will be likely to extend some ranges. This or any exercise using simulated data is useful only if the hypothetical situation resembles real geologic situations and if insights derived from the hypothetical dataset provide insights into real situations. The method is only as good as the available data. -Author

  12. Spectral properties and phase diagram of correlated lattice bosons in an optical cavity within bosonic dynamical mean-field theory

    NASA Astrophysics Data System (ADS)

    Panas, Jaromir; Kauch, Anna; Byczuk, Krzysztof

    2017-03-01

    We use the Bose-Hubbard model with an effective infinite-range interaction to describe the correlated lattice bosons in an optical cavity. We study both static and spectral properties of such system within the bosonic dynamical mean-field theory, which is the state-of-the-art method for strongly correlated bosonic systems. Both similarities and differences are found and discussed between our results and those obtained within different theoretical methods and experiment.

  13. Kernel-Correlated Levy Field Driven Forward Rate and Application to Derivative Pricing

    SciTech Connect

    Bo Lijun; Wang Yongjin; Yang Xuewei

    2013-08-01

    We propose a term structure of forward rates driven by a kernel-correlated Levy random field under the HJM framework. The kernel-correlated Levy random field is composed of a kernel-correlated Gaussian random field and a centered Poisson random measure. We shall give a criterion to preclude arbitrage under the risk-neutral pricing measure. As applications, an interest rate derivative with general payoff functional is priced under this pricing measure.

  14. Two-Dimensional Correlation Method for Polymer Analysis

    SciTech Connect

    Herman, Matthew Joseph

    2015-06-08

    Since its introduction by Noda in 1986 two-dimension correlation spectroscopy has been offering polymer scientists an opportunity to look more deeply into collected spectroscopic data. When the spectra are recorded in response to an external perturbation, it is possible to correlate the spectra and expand the information over a separate spectra axis allow for enhancement of spectral resolution, the ability to determine synchronous change, and a unique way to organize observed changes in the spectra into sequential order following a set of three simple rules. By organizing the 2D spectra into synchronous change plots and asynchronous change plots it is possible to correlate change between spectral regions and develop their temporal relationships to one another. With the introduction of moving-window correlation-spectroscopy by Thomas and Richardson in 2000, a method of binning and processing data, it became possible to directly correlate relationships generated in the spectra from the change in the perturbation variable. This method takes advantage of the added resolution of two-dimension spectroscopy and has been applied to study very week transitions found in polymer materials. Appling both of these techniques we are beginning to develop an understanding of how polymers decay under radiolytic aging, to develop a stronger understanding of changes in mechanical properties and the service capabilities of materials.

  15. Near-Field Fluorescence Cross-Correlation Spectroscopy on Planar Membranes

    PubMed Central

    2015-01-01

    The organization and dynamics of plasma membrane components at the nanometer scale are essential for biological functions such as transmembrane signaling and endocytosis. Planarized nanoscale apertures in a metallic film are demonstrated as a means of confining the excitation light for multicolor fluorescence spectroscopy to a 55 ± 10 nm beam waist. This technique provides simultaneous two-color, subdiffraction-limited fluorescence correlation spectroscopy and fluorescence cross-correlation spectroscopy on planar membranes. The fabrication and implementation of this technique are demonstrated for both model membranes and live cells. Membrane-bound proteins were observed to cluster upon the addition of a multivalent cross-linker: On supported lipid bilayers, clusters of cholera toxin subunit B were formed upon cross-linking by an antibody specific for this protein; on living cells, immunoglobulin E bound to its receptor (FcεRI) on the plasma membranes of RBL mast cells was observed to form clusters upon exposure to a trivalent antigen. The formation of membrane clusters was quantified via fluorescence intensity vs time and changes in the temporal auto- and cross-correlations above a single nanoscale aperture. The illumination profile from a single aperture is analyzed experimentally and computationally with a rim-dominated illumination profile, yielding no change in the autocorrelation dwell time with changes in aperture diameter from 60 to 250 nm. This near-field fluorescence cross-correlation methodology provides access to nanoscale details of dynamic membrane interactions and motivates further development of near-field optical methods. PMID:25004429

  16. Critical Exponents of Strongly Correlated Fermion Systems from Diagrammatic Multi-Scale Methods

    NASA Astrophysics Data System (ADS)

    Antipov, Andrey; Kirchner, Stefan; Gull, Emanuel

    2014-03-01

    The dynamical mean field theory (DMFT) has become the standard tool in describing strongly correlated electron materials. While it captures the quantum dynamics of local fields, it neglects spatial correlations. To describe e.g. anti-ferromagnetism, unconventional superconductivity or frustration a proper treatment of non-local correlations is necessary. Diagrammatic multi-scale approaches offer an elegant option to accomplish this: the difficult correlated part of the system is solved using a non-perturbative many-body method, whereas 'easier', 'weakly correlated' parts of the problem are tackled using a secondary perturbative scheme. Here we employ such a method, the dual fermion approach, to problems of charge ordering in Falicov-Kimball model by constructing a systematic diagrammatic extension on top of DMFT. Near the critical point of the Falicov-Kimball model we study the interplay between charge excitations and long-range fluctuations. We show that such multi-scale approach is indeed capable of capturing the non mean-field nature of the critical point of the lattice model and correctly describes the transition to mean-field like behavior as the number of spatial dimensions increases.

  17. A new method of field MRTD test

    NASA Astrophysics Data System (ADS)

    Chen, Zhibin; Song, Yan; Liu, Xianhong; Xiao, Wenjian

    2014-09-01

    MRTD is an important indicator to measure the imaging performance of infrared camera. In the traditional laboratory test, blackbody is used as simulated heat source which is not only expensive and bulky but also difficult to meet field testing requirements of online automatic infrared camera MRTD. To solve this problem, this paper introduces a new detection device for MRTD, which uses LED as a simulation heat source and branded plated zinc sulfide glass carved four-bar target as a simulation target. By using high temperature adaptability cassegrain collimation system, the target is simulated to be distance-infinite so that it can be observed by the human eyes to complete the subjective test, or collected to complete objective measurement by image processing. This method will use LED to replace blackbody. The color temperature of LED is calibrated by thermal imager, thereby, the relation curve between the LED temperature controlling current and the blackbody simulation temperature difference is established, accurately achieved the temperature control of the infrared target. Experimental results show that the accuracy of the device in field testing of thermal imager MRTD can be limited within 0.1K, which greatly reduces the cost to meet the project requirements with a wide application value.

  18. Narrow field electromagnetic sensor system and method

    DOEpatents

    McEwan, Thomas E.

    1996-01-01

    A narrow field electromagnetic sensor system and method of sensing a characteristic of an object provide the capability to realize a characteristic of an object such as density, thickness, or presence, for any desired coordinate position on the object. One application is imaging. The sensor can also be used as an obstruction detector or an electronic trip wire with a narrow field without the disadvantages of impaired performance when exposed to dirt, snow, rain, or sunlight. The sensor employs a transmitter for transmitting a sequence of electromagnetic signals in response to a transmit timing signal, a receiver for sampling only the initial direct RF path of the electromagnetic signal while excluding all other electromagnetic signals in response to a receive timing signal, and a signal processor for processing the sampled direct RF path electromagnetic signal and providing an indication of the characteristic of an object. Usually, the electromagnetic signal is a short RF burst and the obstruction must provide a substantially complete eclipse of the direct RF path. By employing time-of-flight techniques, a timing circuit controls the receiver to sample only the initial direct RF path of the electromagnetic signal while not sampling indirect path electromagnetic signals. The sensor system also incorporates circuitry for ultra-wideband spread spectrum operation that reduces interference to and from other RF services while allowing co-location of multiple electronic sensors without the need for frequency assignments.

  19. Narrow field electromagnetic sensor system and method

    DOEpatents

    McEwan, T.E.

    1996-11-19

    A narrow field electromagnetic sensor system and method of sensing a characteristic of an object provide the capability to realize a characteristic of an object such as density, thickness, or presence, for any desired coordinate position on the object. One application is imaging. The sensor can also be used as an obstruction detector or an electronic trip wire with a narrow field without the disadvantages of impaired performance when exposed to dirt, snow, rain, or sunlight. The sensor employs a transmitter for transmitting a sequence of electromagnetic signals in response to a transmit timing signal, a receiver for sampling only the initial direct RF path of the electromagnetic signal while excluding all other electromagnetic signals in response to a receive timing signal, and a signal processor for processing the sampled direct RF path electromagnetic signal and providing an indication of the characteristic of an object. Usually, the electromagnetic signal is a short RF burst and the obstruction must provide a substantially complete eclipse of the direct RF path. By employing time-of-flight techniques, a timing circuit controls the receiver to sample only the initial direct RF path of the electromagnetic signal while not sampling indirect path electromagnetic signals. The sensor system also incorporates circuitry for ultra-wideband spread spectrum operation that reduces interference to and from other RF services while allowing co-location of multiple electronic sensors without the need for frequency assignments. 12 figs.

  20. A field method for measurement of infiltration

    USGS Publications Warehouse

    Johnson, A.I.

    1963-01-01

    The determination of infiltration--the downward entry of water into a soil (or sediment)--is receiving increasing attention in hydrologic studies because of the need for more quantitative data on all phases of the hydrologic cycle. A measure of infiltration, the infiltration rate, is usually determined in the field by flooding basins or furrows, sprinkling, or measuring water entry from cylinders (infiltrometer rings). Rates determined by ponding in large areas are considered most reliable, but the high cost usually dictates that infiltrometer rings, preferably 2 feet in diameter or larger, be used. The hydrology of subsurface materials is critical in the study of infiltration. The zone controlling the rate of infiltration is usually the least permeable zone. Many other factors affect infiltration rate--the sediment (soil) structure, the condition of the sediment surface, the distribution of soil moisture or soil- moisture tension, the chemical and physical nature of the sediments, the head of applied water, the depth to ground water, the chemical quality and the turbidity of the applied water, the temperature of the water and the sediments, the percentage of entrapped air in the sediments, the atmospheric pressure, the length of time of application of water, the biological activity in the sediments, and the type of equipment or method used. It is concluded that specific values of the infiltration rate for a particular type of sediment are probably nonexistent and that measured rates are primarily for comparative use. A standard field-test method for determining infiltration rates by means of single- or double-ring infiltrometers is described and the construction, installation, and operation of the infiltrometers are discussed in detail.

  1. Deformation in lead zirconate titanate ceramics under large signal electric field loading measured by digital image correlation

    NASA Astrophysics Data System (ADS)

    Chen, Di; Kamlah, Marc

    2015-11-01

    Digital image correlation, a noncontact and nondestructive method, was employed to monitor the deformation of lead zirconate titanate piezoelectric ceramics. This method is based on imaging a speckle pattern on the specimen surface during the test and subsequently correlating each image of the deformed pattern to that in the reference state. In our work, both longitudinal and transverse strains were calculated from imaging a bulk sample under a ±2 kV/mm electric field. Compared with linear variable displacement transducer data, the results from this correlation method were validated. At the same time, based on this optical technique, different strain-electric field butterfly loops can be drawn from correspondingly selected regions of interest. Combined with contour plots of strain on the surface of the sample, the deformation of bulk ceramic sample under uniaxial electric field loading without any mechanical constraints is proven to be highly homogenous under macro-observing scale.

  2. Deformation in lead zirconate titanate ceramics under large signal electric field loading measured by digital image correlation.

    PubMed

    Chen, Di; Kamlah, Marc

    2015-11-01

    Digital image correlation, a noncontact and nondestructive method, was employed to monitor the deformation of lead zirconate titanate piezoelectric ceramics. This method is based on imaging a speckle pattern on the specimen surface during the test and subsequently correlating each image of the deformed pattern to that in the reference state. In our work, both longitudinal and transverse strains were calculated from imaging a bulk sample under a ±2 kV/mm electric field. Compared with linear variable displacement transducer data, the results from this correlation method were validated. At the same time, based on this optical technique, different strain-electric field butterfly loops can be drawn from correspondingly selected regions of interest. Combined with contour plots of strain on the surface of the sample, the deformation of bulk ceramic sample under uniaxial electric field loading without any mechanical constraints is proven to be highly homogenous under macro-observing scale.

  3. Effects of Source Correlations on the Spectrum of Radiated Fields

    DTIC Science & Technology

    1990-09-01

    paraxial approximation, with a known result for far-zone radiant intensity of Gaussian Schell - model sources3. Spectral changes on propagation of...33 2.2 The radiation efficiency of planar Gaussian Schell - model sources ............ 34...increase in the source correlation length. Page 40. Figure 2.5: The radiation efficiency of Gaussian Schell - model sources as a function of the rms

  4. In vivo full-field en face correlation mapping optical coherence tomography

    NASA Astrophysics Data System (ADS)

    McNamara, Paul M.; Subhash, Hrebesh M.; Leahy, Martin J.

    2013-12-01

    A full-field optical coherence tomography (OCT) system has been developed for the purpose of performing nonscanning en face flow imaging. The light source is centered at 840 nm with a bandwidth of 50 nm resulting in an axial resolution of 8 μm in air. Microscope objectives with a numerical aperture of 0.1 were incorporated giving a transverse resolution of 5 μm. A magnification of 5.65 was measured, resulting in a field of view of 1260×945 μm. Pairs of interference fringe images are captured with opposing phase and a two-step phase image reconstruction method is applied to reconstruct each en face image. The OCT frame rate is 10 Hz. A two-dimensional cross-correlation technique is applied to pairs of consecutive en face images in order to distinguish dynamic from static light-scatterers. The feasibility of the method was examined by simulating blood flow by creating a phantom with 5% intralipid solution. In vivo imaging of a Xenopus laevis tadpole was also performed in order to investigate the feasibility of imaging the vascular system. We present for what we believe to be the first time, the application of correlation mapping optical coherence tomography to full-field OCT to provide in vivo functional imaging of blood vessels.

  5. Method of phased magnitude correlation using binary sequences

    NASA Astrophysics Data System (ADS)

    Pender, Michael

    1994-07-01

    This patent discloses a method for allowing a correlation function to be applied to binary codes of length 3 to length 128. A user may specify the desired length of the binary codes for correlation processing; whether the binary code is to use a phase sidelobe level as the threshold or a sidelobe amplitude as the threshold. The user will also be asked to specify the threshold as well as an in phase coefficient referred to as alpha and an out of phase coefficient referred to as a beta. The user may also specify that the codes be expanded which results in correlated compounds having a length twice that of the specified length being displayed to the user. When the user has specified the parameters for correlation processing of the binary code length selected by the user, the program of the present invention will process the binary codes eliminating allomorphic and symmetrical forms of the codes from correlation and then display the results to the user.

  6. Soil Identification using Field Electrical Resistivity Method

    NASA Astrophysics Data System (ADS)

    Hazreek, Z. A. M.; Rosli, S.; Chitral, W. D.; Fauziah, A.; Azhar, A. T. S.; Aziman, M.; Ismail, B.

    2015-06-01

    Geotechnical site investigation with particular reference to soil identification was important in civil engineering works since it reports the soil condition in order to relate the design and construction of the proposed works. In the past, electrical resistivity method (ERM) has widely being used in soil characterization but experienced several black boxes which related to its results and interpretations. Hence, this study performed a field electrical resistivity method (ERM) using ABEM SAS (4000) at two different types of soils (Gravelly SAND and Silty SAND) in order to discover the behavior of electrical resistivity values (ERV) with type of soils studied. Soil basic physical properties was determine thru density (p), moisture content (w) and particle size distribution (d) in order to verify the ERV obtained from each type of soil investigated. It was found that the ERV of Gravelly SAND (278 Ωm & 285 Ωm) was slightly higher than SiltySAND (223 Ωm & 199 Ωm) due to the uncertainties nature of soils. This finding has showed that the results obtained from ERM need to be interpreted based on strong supported findings such as using direct test from soil laboratory data. Furthermore, this study was able to prove that the ERM can be established as an alternative tool in soil identification provided it was being verified thru other relevance information such as using geotechnical properties.

  7. Applying Field-Particle Correlations to Assess Turbulent Heating in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Klein, Kristopher; Howes, Gregory; TenBarge, Jason; Valentini, Francesco; Kasper, Justin

    2017-04-01

    Characterizing the mechanisms that drive the dissipation of turbulence and the associated heating is of significant importance to understanding the evolution of the solar wind as it is accelerated from the solar surface and expands through the heliosphere. A number of classes of mechanisms have been proposed to transfer energy between the electromagnetic fields and plasma particles, including resonant (e.g. Landau and cyclotron damping), stochastic, and intermittent (e.g. energization associated with current sheets and reconnection sites) mechanisms. We have proposed a method to trace the velocity-dependent energy transfer to and from the plasma velocity distribution using field-particle correlations constructed from single-point measurements of the type typically made in the solar wind. The velocity-dependent nature of the energization will allow for improved characterization of mechanisms which act to damp the turbulent fluctuations and heat the plasma. A derivation of the form of the correlation employed is outlined, which follows the form of the nonlinear field-particle interaction term in the Vlasov equation. The correlation is applied to increasingly complex plasma simulations, ranging from simple electrostatic to turbulent electromagnetic cases, revealing the nature of the energy transfer in each system. We finally consider the application of this method to spacecraft observations, including those from current (DSCOVR and MMS), future (Solar Probe Plus and Solar Orbiter), and proposed (THOR) missions. The single-point nature of the method is ideally suited to in situ observations of space plasmas and will help in revealing the sought after heating mechanisms.

  8. Critical exponents of strongly correlated fermion systems from diagrammatic multiscale methods.

    PubMed

    Antipov, Andrey E; Gull, Emanuel; Kirchner, Stefan

    2014-06-06

    Self-consistent dynamical approximations for strongly correlated fermion systems are particularly successful in capturing the dynamical competition of local correlations. In these, the effect of spatially extended degrees of freedom is usually only taken into account in a mean field fashion or as a secondary effect. As a result, critical exponents associated with phase transitions have a mean field character. Here we demonstrate that diagrammatic multiscale methods anchored around local approximations are indeed capable of capturing the non-mean-field nature of the critical point of the lattice model encoded in a nonvanishing anomalous dimension and of correctly describing the transition to mean-field-like behavior as the number of spatial dimensions increases.

  9. Studies on Partially Coherent Fields and Coherence Measurement Methods

    NASA Astrophysics Data System (ADS)

    Cho, Seongkeun

    The concept of coherence in optics means how closely an optical field oscillates in unison at the same position in different time (temporal coherence) or at different positions at the same time (spatial coherence). Since all optical fields oscillate very rapidly with random fluctuations, coherence theory has been developed to describe the state of coherence of those optical fields through the usage of time-averaged correlation functions. This thesis reviews and applies coherence theory for an accurate and improved modeling in field-propagation and coherence measurement for partially coherent fields. The first half of this thesis discusses the study of phase-space distributions and phase-space tomography. Phase-space distributions such as the Wigner and the ambiguity functions can be used as simple mathematical tools for describing the propagation of an optical field for any state of coherence as those functions incorporate wave effects with the simplicity of ray optics. However, the Wigner and the ambiguity functions require a paraxial condition for the field description. To overcome this limitation, the nonparaxial extensions of the Wigner function have been studied and applied for nonparaxial fields. In this thesis, a simple series expression for calculating a nonparaxial generalization of theWigner function from the standard Wigner function is developed in both two- and three-dimensional free space. A nonparaxial generalization of the ambiguity function that retains properties analogous to the standard ambiguity function is also proposed in both two and three dimensions. This generalization extends phase-space tomography to the nonparaxial regime. The second half of this thesis proposes a new method of coherence measurement based on diffraction. By measuring the radiant intensity of a field with and without a binary transparent phase mask, one can estimate the coherence of a field at all pairs of the points centered at the mask's edge. This method is proposed in

  10. Generation of spatiotemporally correlated spike trains and local field potentials using a multivariate autoregressive process.

    PubMed

    Gutnisky, Diego A; Josić, Kresimir

    2010-05-01

    Experimental advances allowing for the simultaneous recording of activity at multiple sites have significantly increased our understanding of the spatiotemporal patterns in neural activity. The impact of such patterns on neural coding is a fundamental question in neuroscience. The simulation of spike trains with predetermined activity patterns is therefore an important ingredient in the study of potential neural codes. Such artificially generated spike trains could also be used to manipulate cortical neurons in vitro and in vivo. Here, we propose a method to generate spike trains with given mean firing rates and cross-correlations. To capture this statistical structure we generate a point process by thresholding a stochastic process that is continuous in space and discrete in time. This stochastic process is obtained by filtering Gaussian noise through a multivariate autoregressive (AR) model. The parameters of the AR model are obtained by a nonlinear transformation of the point-process correlations to the continuous-process correlations. The proposed method is very efficient and allows for the simulation of large neural populations. It can be optimized to the structure of spatiotemporal correlations and generalized to nonstationary processes and spatiotemporal patterns of local field potentials and spike trains.

  11. Visual field loss associated with vigabatrin: pathological correlations

    PubMed Central

    Ravindran, J; Blumbergs, P; Crompton, J; Pietris, G; Waddy, H

    2001-01-01

    Pathological changes are reported in the anterior visual pathways of a 41 year old man with complex partial seizures treated with vigabatrin who developed bilateral visual field constriction. There was peripheral retinal atrophy with loss of ganglion cells and loss of nerve fibres in the optic nerves, chiasm, and tracts. No evidence of intramyelinic oedema was seen. These findings suggest that the primary site of injury lies within the ganglion cells in the retina. The degree of atrophy seen would suggest that the visual field loss is irreversible.

 PMID:11385015

  12. Characterizing Intra-Die Spatial Correlation Using Spectral Density Fitting Method

    NASA Astrophysics Data System (ADS)

    Fu, Qiang; Luk, Wai-Shing; Tao, Jun; Yan, Changhao; Zeng, Xuan

    In this paper, a spectral domain method named the SDF (Spectral Density Fitting) method for intra-die spatial correlation function extraction is presented. Based on theoretical analysis of random field, the spectral density, as the spectral domain counterpart of correlation function, is employed to estimate the parameters of the correlation function effectively in the spectral domain. Compared with the existing extraction algorithm in the original spatial domain, the SDF method can obtain the same quality of results in the spectral domain. In actual measurement process, the unavoidable measurement error with arbitrary frequency components would greatly confound the extraction results. A filtering technique is further developed to diminish the high frequency components of the measurement error and recover the data from noise contamination for parameter estimation. Experimental results have shown that the SDF method is practical and stable.

  13. An improved image reconstruction method for optical intensity correlation Imaging

    NASA Astrophysics Data System (ADS)

    Gao, Xin; Feng, Lingjie; Li, Xiyu

    2016-12-01

    The intensity correlation imaging method is a novel kind of interference imaging and it has favorable prospects in deep space recognition. However, restricted by the low detecting signal-to-noise ratio (SNR), it's usually very difficult to obtain high-quality image of deep space object like high-Earth-orbit (HEO) satellite with existing phase retrieval methods. In this paper, based on the priori intensity statistical distribution model of the object and characteristics of measurement noise distribution, an improved method of Prior Information Optimization (PIO) is proposed to reduce the ambiguous images and accelerate the phase retrieval procedure thus realizing fine image reconstruction. As the simulations and experiments show, compared to previous methods, our method could acquire higher-resolution images with less error in low SNR condition.

  14. Field-theory methods in coagulation theory

    SciTech Connect

    Lushnikov, A. A.

    2011-08-15

    Coagulating systems are systems of chaotically moving particles that collide and coalesce, producing daughter particles of mass equal to the sum of the masses involved in the respective collision event. The present article puts forth basic ideas underlying the application of methods of quantum-field theory to the theory of coagulating systems. Instead of the generally accepted treatment based on the use of a standard kinetic equation that describes the time evolution of concentrations of particles consisting of a preset number of identical objects (monomers in the following), one introduces the probability W(Q, t) to find the system in some state Q at an instant t for a specific rate of transitions between various states. Each state Q is characterized by a set of occupation numbers Q = (n{sub 1}, n{sub 2}, ..., n{sub g}, ...), where n{sub g} is the total number of particles containing precisely g monomers. Thereupon, one introduces the generating functional {Psi} for the probability W(Q, t). The time evolution of {Psi} is described by an equation that is similar to the Schroedinger equation for a one-dimensional Bose field. This equation is solved exactly for transition rates proportional to the product of the masses of colliding particles. It is shown that, within a finite time interval, which is independent of the total mass of the entire system, a giant particle of mass about the mass of the entire system may appear in this system. The particle in question is unobservable in the thermodynamic limit, and this explains the well-known paradox of mass-concentration nonconservation in classical kinetic theory. The theory described in the present article is successfully applied in studying the time evolution of random graphs.

  15. Macular Thickness Assessment in Patients with Glaucoma and Its Correlation with Visual Fields

    PubMed Central

    Vaz, Fernando T; Ramalho, Mário; Pedrosa, Catarina; Lisboa, Maria; Kaku, Paulo; Esperancinha, Florindo

    2016-01-01

    Aim To determine the relationship between macular thickness (MT) and visual field (VF) parameters, as well as with changes in the retinal nerve fiber layer (RNFL) thickness in patients with glaucoma and ocular hypertension (OH). Materials and methods Cross-sectional statistical analysis of spectral domain optical coherence tomography (SD-OCT) compared with several VF parameters (mean defect - MD and loss variance - LV), in a nonrandom sample of 70 eyes from patients with glaucoma or OH. Statistical analysis was performed using Statistical Package for Social Sciences®. The correlation coefficient used was determined by Spearman correlation and the value of p < 0.05 was considered statistically significant. Results A significant correlation was seen between VF parameters and decrease in MT (MD: r = –0.363, p = 0.002; LV: r=–0.378, p = 0.001). The results were more significant when we compared the LV in the group with average MT 270 to 300 μm (r = –0.413, p = 0.015). Asymmetry between the superior macula and inferior macula correlated with LV (r = 0.432, p = 0.019) in the group with MT < 270 μm. There was also a significant correlation between thinning of superior-temporal and inferior-temporal RNFL and the decrease of the superior and inferior MT respectively (p < 0.001). Conclusion Spectral domain optical coherence tomography measurements of retinal thickness in the macula correlate with VF parameters and RNFL parameters in glaucoma patients. This relationship was first demonstrated with static computerized perimetry made with Octopus 101®. These results can be a valuable aid for evaluating and monitoring of glaucoma patients, establishing a correlation between structure and function. Measurements of retinal thickness in the macula may be an additional instrument for early detection of structural changes and its correlation with functional defects. How to cite this article Mota M, Vaz FT, Ramalho M, Pedrosa C, Lisboa M, Kaku P, Esperancinha F. Macular

  16. Electric field correlations in the guiding-center plasma

    NASA Technical Reports Server (NTRS)

    Joyce, G.; Montgomery, D.; Emery, M.

    1974-01-01

    Electric field autocorrelations for the two-dimensional electrostatic guiding-center plasma are calculated numerically. It is concluded that the autocorrelation, averaged over a thermal equilibrium ensemble, is damped in an approximately exponential fashion, as predicted by Taylor and McNamara. Oscillatory behavior of the type predicted by Taylor and Thompson is not observed.

  17. Field methods for measuring concentrated flow erosion

    NASA Astrophysics Data System (ADS)

    Castillo, C.; Pérez, R.; James, M. R.; Quinton, J. N.; Taguas, E. V.; Gómez, J. A.

    2012-04-01

    Many studies have stressed the importance of gully erosion in the overall soil loss and sediment yield of agricultural catchments, for instance in recent years (Vandaele and Poesen, 1995; De Santisteban et al., 2006; Wu el al, 2008). Several techniques have been used for determining gully erosion in field studies. The conventional techniques involved the use of different devices (i.e. ruler, pole, tape, micro-topographic profilers, total station) to calculate rill and gully volumes through the determination of cross sectional areas and length of reaches (Casalí et al, 1999; Hessel and van Asch, 2003). Optical devices (i.e. laser profilemeters) have also been designed for the purpose of rapid and detailed assessment of cross sectional areas in gully networks (Giménez et al., 2009). These conventional 2d methods provide a simple and un-expensive approach for erosion evaluation, but are time consuming to carry out if a good accuracy is required. On the other hand, remote sensing techniques are being increasingly applied to gully erosion investigation such as aerial photography used for big-scale, long-term, investigations (e.g. Martínez-Casasnovas et al., 2004; Ionita, 2006), airborne and terrestrial LiDAR datasets for gully volume evaluation (James et al., 2007; Evans and Lindsay, 2010) and recently, major advances in 3D photo-reconstruction techniques (Welty et al. 2010, James et al., 2011). Despite its interest, few studies simultaneously compare the accuracies of the range of conventional and remote sensing techniques used, or define the most suitable method for a particular scale, given and time and cost constraints. That was the reason behind the International Workshop Innovations in the evaluation and measurement of rill and gully erosion, held in Cordoba in May 2011 and from which derive part of the materials presented in this abstract. The main aim of this work was to compare the accuracy and time requirements of traditional (2D) and recently developed

  18. Two-dimensional signal reconstruction: The correlation sampling method

    SciTech Connect

    Roman, H. E.

    2007-12-15

    An accurate approach for reconstructing a time-dependent two-dimensional signal from non-synchronized time series recorded at points located on a grid is discussed. The method, denoted as correlation sampling, improves the standard conditional sampling approach commonly employed in the study of turbulence in magnetoplasma devices. Its implementation is illustrated in the case of an artificial time-dependent signal constructed using a fractal algorithm that simulates a fluctuating surface. A statistical method is also discussed for distinguishing coherent (i.e., collective) from purely random (noisy) behavior for such two-dimensional fluctuating phenomena.

  19. Renyi Correlations and Phase Transitions in the Transverse-Field Ising model

    NASA Astrophysics Data System (ADS)

    Singh, Rajiv; Devakul, Trithep

    2015-03-01

    We calculate T = 0 spin-spin correlation functions with respect to a probability distribution given by an integer power (n) of the reduced density matrix ρcirc;A, when a transverse-field Ising model (TFIM) system is bipartitioned by a planar interface. Using series expansion methods these calculations are done in the thermodynamic limit for arbitrary positive integer n, with n = 1 giving us the bulk correlations. We study the TFIM system on isotropic and anisotropic simple-cubic lattices. We examine the evidence for whether the critical point of the transition deviates from the bulk critical point as a function of n and whether the critical behavior lies in the 2 D or 4 D Ising universality classes as would be expected from a surface transition at finite temperature and a T = 0 bulk transition, respectively. Work supported in part by NSF Grant Number DMR-1306048.

  20. Correlation Factors Describing Primary and Spatial Sensations of Sound Fields

    NASA Astrophysics Data System (ADS)

    ANDO, Y.

    2002-11-01

    The theory of subjective preference of the sound field in a concert hall is established based on the model of human auditory-brain system. The model consists of the autocorrelation function (ACF) mechanism and the interaural crosscorrelation function (IACF) mechanism for signals arriving at two ear entrances, and the specialization of human cerebral hemispheres. This theory can be developed to describe primary sensations such as pitch or missing fundamental, loudness, timbre and, in addition, duration sensation which is introduced here as a fourth. These four primary sensations may be formulated by the temporal factors extracted from the ACF associated with the left hemisphere and, spatial sensations such as localization in the horizontal plane, apparent source width and subjective diffuseness are described by the spatial factors extracted from the IACF associated with the right hemisphere. Any important subjective responses of sound fields may be described by both temporal and spatial factors.

  1. Hippocampal Spike-Timing Correlations Lead to Hexagonal Grid Fields

    NASA Astrophysics Data System (ADS)

    Monsalve-Mercado, Mauro M.; Leibold, Christian

    2017-07-01

    Space is represented in the mammalian brain by the activity of hippocampal place cells, as well as in their spike-timing correlations. Here, we propose a theory for how this temporal code is transformed to spatial firing rate patterns via spike-timing-dependent synaptic plasticity. The resulting dynamics of synaptic weights resembles well-known pattern formation models in which a lateral inhibition mechanism gives rise to a Turing instability. We identify parameter regimes in which hexagonal firing patterns develop as they have been found in medial entorhinal cortex.

  2. Fast Digital Correlations and Transforms Using Finite Field Techniques

    DTIC Science & Technology

    1979-12-01

    Signal Processing, Vol. ASSP-26, No. 6, December 1978. 14. I. S. Reed and T. K. Truong, "Fast Mersenne - Prime Transforms for Digital Filtering," Proceeding...Theorem for Computing Primitive Elements in the Field of Complex Integers Mersenne Prime ," (to be published) IEEE Trans. Acoustics, Speech, and Signal...Letters, Vol. 14, No. 15, 20th July, 1978. 20. I. S. Reed, T. K. Truong and R. L. Miller, "Correction to Fast Mersenne Prime Transforms for Digital

  3. Correlation between two methods of florbetapir PET quantitative analysis.

    PubMed

    Breault, Christopher; Piper, Jonathan; Joshi, Abhinay D; Pirozzi, Sara D; Nelson, Aaron S; Lu, Ming; Pontecorvo, Michael J; Mintun, Mark A; Devous, Michael D

    2017-01-01

    This study evaluated performance of a commercially available standardized software program for calculation of florbetapir PET standard uptake value ratios (SUVr) in comparison with an established research method. Florbetapir PET images for 183 subjects clinically diagnosed as cognitively normal (CN), mild cognitive impairment (MCI) or probable Alzheimer's disease (AD) (45 AD, 60 MCI, and 78 CN) were evaluated using two software processing algorithms. The research method uses a single florbetapir PET template generated by averaging both amyloid positive and amyloid negative registered brains together. The commercial software simultaneously optimizes the registration between the florbetapir PET images and three templates: amyloid negative, amyloid positive, and an average. Cortical average SUVr values were calculated across six predefined anatomic regions with respect to the whole cerebellum reference region. SUVr values were well correlated between the two methods (r2 = 0.98). The relationship between the methods computed from the regression analysis is: Commercial method SUVr = (0.9757*Research SUVr) + 0.0299. A previously defined cutoff SUVr of 1.1 for distinguishing amyloid positivity by the research method corresponded to 1.1 (95% CI = 1.098, 1.11) for the commercial method. This study suggests that the commercial method is comparable to the published research method of SUVr analysis for florbetapir PET images, thus facilitating the potential use of standardized quantitative approaches to PET amyloid imaging.

  4. Quench field sensitivity of two-particle correlation in a Hubbard model

    PubMed Central

    Zhang, X. Z.; Lin, S.; Song, Z.

    2016-01-01

    Short-range interaction can give rise to particle pairing with a short-range correlation, which may be destroyed in the presence of an external field. We study the transition between correlated and uncorrelated particle states in the framework of one- dimensional Hubbard model driven by a field. We show that the long time-scale transfer rate from an initial correlated state to final uncorrelated particle states is sensitive to the quench field strength and exhibits a periodic behavior. This process involves an irreversible energy transfer from the field to particles, leading to a quantum electrothermal effect. PMID:27250080

  5. GRACE gravity field modeling with an investigation on correlation between nuisance parameters and gravity field coefficients

    NASA Astrophysics Data System (ADS)

    Zhao, Qile; Guo, Jing; Hu, Zhigang; Shi, Chuang; Liu, Jingnan; Cai, Hua; Liu, Xianglin

    2011-05-01

    The GRACE (Gravity Recovery And Climate Experiment) monthly gravity models have been independently produced and published by several research institutions, such as Center for Space Research (CSR), GeoForschungsZentrum (GFZ), Jet Propulsion Laboratory (JPL), Centre National d’Etudes Spatiales (CNES) and Delft Institute of Earth Observation and Space Systems (DEOS). According to their processing standards, above institutions use the traditional variational approach except that the DEOS exploits the acceleration approach. The background force models employed are rather similar. The produced gravity field models generally agree with one another in the spatial pattern. However, there are some discrepancies in the gravity signal amplitude between solutions produced by different institutions. In particular, 10%-30% signal amplitude differences in some river basins can be observed. In this paper, we implemented a variant of the traditional variational approach and computed two sets of monthly gravity field solutions using the data from January 2005 to December 2006. The input data are K-band range-rates (KBRR) and kinematic orbits of GRACE satellites. The main difference in the production of our two types of models is how to deal with nuisance parameters. This type of parameters is necessary to absorb low-frequency errors in the data, which are mainly the aliasing and instrument errors. One way is to remove the nuisance parameters before estimating the geopotential coefficients, called NPARB approach in the paper. The other way is to estimate the nuisance parameters and geopotential coefficients simultaneously, called NPESS approach. These two types of solutions mainly differ in geopotential coefficients from degree 2 to 5. This can be explained by the fact that the nuisance parameters and the gravity field coefficients are highly correlated, particularly at low degrees. We compare these solutions with the official and published ones by means of spectral analysis. It is

  6. Quantum correlated cluster mean-field theory applied to the transverse Ising model.

    PubMed

    Zimmer, F M; Schmidt, M; Maziero, Jonas

    2016-06-01

    Mean-field theory (MFT) is one of the main available tools for analytical calculations entailed in investigations regarding many-body systems. Recently, there has been a surge of interest in ameliorating this kind of method, mainly with the aim of incorporating geometric and correlation properties of these systems. The correlated cluster MFT (CCMFT) is an improvement that succeeded quite well in doing that for classical spin systems. Nevertheless, even the CCMFT presents some deficiencies when applied to quantum systems. In this article, we address this issue by proposing the quantum CCMFT (QCCMFT), which, in contrast to its former approach, uses general quantum states in its self-consistent mean-field equations. We apply the introduced QCCMFT to the transverse Ising model in honeycomb, square, and simple cubic lattices and obtain fairly good results both for the Curie temperature of thermal phase transition and for the critical field of quantum phase transition. Actually, our results match those obtained via exact solutions, series expansions or Monte Carlo simulations.

  7. Advances in Neutron Spectroscopy and High Magnetic Field Instrumentation for studies of Correlated Electron Systems

    SciTech Connect

    Granroth, Garrett E

    2011-01-01

    Neutron Spectroscopy has provided critical information on the magnetism in correlated electron systems. Specifically quantum magnets, superconductors, and multi-ferroics are areas of productive research. A discussion of recent measurements on the SEQUOIA spectrometer will provide examples of how novel instrumentation concepts are used on the latest generation of spectrometers to extend our knowledge in such systems. The now ubiquitous function of sample rotation allows for full mapping of volumes of $Q$ and $\\omega$ space. An instrument focused on low angles could extend these maps to cover more of the first Brillioun zone. Innovative chopper cascades allow two unique modes of operation. Multiplexed measurements allow the simultaneous measurement of high and low energy features in an excitation spectrum. Alternatively by limiting the neutron bandwidth incident on the Fermi Chopper, background from subsequent time frames is removed, enabling the observation of weak, large energy transfer features. Finally the implementation of event-based detection for neutron experiments is time correlated experiments. Diffraction studies of the high field spin states in MnWO$_4$ using magnetic fields up to 30 T, provided by a pulsed magnet, illustrate this method. Expanding the high field studies to spectroscopy will require a novel instrument, focused around a world class DC magnet, like Zeemans proposed for the SNS.

  8. Quantum correlated cluster mean-field theory applied to the transverse Ising model

    NASA Astrophysics Data System (ADS)

    Zimmer, F. M.; Schmidt, M.; Maziero, Jonas

    2016-06-01

    Mean-field theory (MFT) is one of the main available tools for analytical calculations entailed in investigations regarding many-body systems. Recently, there has been a surge of interest in ameliorating this kind of method, mainly with the aim of incorporating geometric and correlation properties of these systems. The correlated cluster MFT (CCMFT) is an improvement that succeeded quite well in doing that for classical spin systems. Nevertheless, even the CCMFT presents some deficiencies when applied to quantum systems. In this article, we address this issue by proposing the quantum CCMFT (QCCMFT), which, in contrast to its former approach, uses general quantum states in its self-consistent mean-field equations. We apply the introduced QCCMFT to the transverse Ising model in honeycomb, square, and simple cubic lattices and obtain fairly good results both for the Curie temperature of thermal phase transition and for the critical field of quantum phase transition. Actually, our results match those obtained via exact solutions, series expansions or Monte Carlo simulations.

  9. Entanglement scaling and spatial correlations of the transverse-field Ising model with perturbations

    NASA Astrophysics Data System (ADS)

    Cole, Richard; Pollmann, Frank; Betouras, Joseph J.

    2017-06-01

    We study numerically the entanglement entropy and spatial correlations of the one-dimensional transverse-field Ising model with three different perturbations. First, we focus on the out-of-equilibrium steady state with an energy current passing through the system. By employing a variety of matrix-product state based methods, we confirm the phase diagram and compute the entanglement entropy. Second, we consider a small perturbation that takes the system away from integrability and calculate the correlations, the central charge, and the entanglement entropy. Third, we consider periodically weakened bonds, exploring the phase diagram and entanglement properties first in the situation when the weak and strong bonds alternate (period two bonds) and then the general situation of a period of n bonds. In the latter case we find a critical weak bond that scales with the transverse field as Jc'/J =(h/J ) n , where J is the strength of the strong bond, J' is that of the weak bond, and h is the transverse field. We explicitly show that the energy current is not a conserved quantity in this case.

  10. Note: Dynamic strain field mapping with synchrotron X-ray digital image correlation

    SciTech Connect

    Lu, L.; Fan, D.; Luo, S. N.; Bie, B. X.; Ran, X. X.; Qi, M. L.; Parab, N.; Sun, J. Z.; Liao, H. J.; Hudspeth, M. C.; Claus, B.; Fezzaa, K.; Sun, T.; Chen, W.; Gong, X. L.

    2014-07-15

    We present a dynamic strain field mapping method based on synchrotron X-ray digital image correlation (XDIC). Synchrotron X-ray sources are advantageous for imaging with exceptional spatial and temporal resolutions, and X-ray speckles can be produced either from surface roughness or internal inhomogeneities. Combining speckled X-ray imaging with DIC allows one to map strain fields with high resolutions. Based on experiments on void growth in Al and deformation of a granular material during Kolsky bar/gas gun loading at the Advanced Photon Source beamline 32ID, we demonstrate the feasibility of dynamic XDIC. XDIC is particularly useful for dynamic, in-volume, measurements on opaque materials under high strain-rate, large, deformation.

  11. Correlating Species and Spectral Diversity using Remote Sensing in Successional Fields in Virginia

    NASA Astrophysics Data System (ADS)

    Aneece, I.; Epstein, H. E.

    2015-12-01

    Conserving biodiversity can help preserve ecosystem properties and function. As the increasing prevalence of invasive plant species threatens biodiversity, advances in remote sensing technology can help monitor invasive species and their effects on ecosystems and plant communities. To assess whether we could study the effects of invasive species on biodiversity using remote sensing, we asked whether species diversity was positively correlated with spectral diversity, and whether correlations differed among spectral regions along the visible and near-infrared range. To answer these questions, we established community plots in secondary successional fields at the Blandy Experimental Farm in northern Virginia and collected vegetation surveys and ground-level hyperspectral data from 350 to 1025 nm wavelengths. Pearson correlation analysis revealed a positive correlation between spectral diversity and species diversity in the visible ranges of 350-499 nm (Pearson correlation=0.69, p=0.01), 500-589 nm (Pearson=0.64, p=0.03), and 590-674 nm (Pearson=0.70, p=0.01), slight positive correlation in the red edge range of 675-754 nm (Pearson=0.56, p=0.06), and no correlation in the near-infrared ranges of 755-924 nm (Pearson=-0.06, p=0.85) and 925-1025 nm (Pearson=0.30, p=0.34). These differences in correlations across spectral regions may be due to the elements that contribute to signatures in those regions and spectral data transformation methods. To investigate the role of pigment variability in these correlations, we estimated chlorophyll, carotenoid, and anthocyanin concentrations of five dominant species in the plots using vegetation indices. Although interspecific variability in pigment levels exceeded intraspecific variability, chlorophyll (F value=118) was more varied within species than carotenoids (F=322) and anthocyanins (F=126), perhaps contributing to the lack of correlation between species diversity and spectral diversity in the red edge region. Interspecific

  12. Correlating field and laboratory data for crude oil fouling

    SciTech Connect

    Asomaning, S.; Panchal, C.B.; Liao, C.F.

    2000-06-01

    Crude oil fouling in a laboratory fouling unit was investigated. The study focused on the preheat-train heat exchangers located just before the crude unit furnace and operating at temperatures in excess of 200 C. A fouling rate model developed using laboratory data from crude blends was used to predict the threshold conditions where negligible fouling was expected under refinery conditions. The results from the model were compared to actual data from a fouling unit located at a refinery. The article discusses factors that may explain the performance of the model and the observed discrepancies between fouling data obtained in the laboratory and the field.

  13. A fast digital image correlation method for deformation measurement

    NASA Astrophysics Data System (ADS)

    Pan, Bing; Li, Kai

    2011-07-01

    Fast and high-accuracy deformation analysis using digital image correlation (DIC) has been increasingly important and highly demanded in recent years. In literature, the DIC method using the Newton-Rapshon (NR) algorithm has been considered as a gold standard for accurate sub-pixel displacement tracking, as it is insensitive to the relative deformation and rotation of the target subset and thus provides highest sub-pixel registration accuracy and widest applicability. A significant drawback of conventional NR-algorithm-based DIC method, however, is its extremely huge computational expense. In this paper, a fast DIC method is proposed deformation measurement by effectively eliminating the repeating redundant calculations involved in the conventional NR-algorithm-based DIC method. Specifically, a reliability-guided displacement scanning strategy is employed to avoid time-consuming integer-pixel displacement searching for each calculation point, and a pre-computed global interpolation coefficient look-up table is utilized to entirely eliminate repetitive interpolation calculation at sub-pixel locations. With these two approaches, the proposed fast DIC method substantially increases the calculation efficiency of the traditional NR-algorithm-based DIC method. The performance of proposed fast DIC method is carefully tested on real experimental images using various calculation parameters. Results reveal that the computational speed of the present fast DIC is about 120-200 times faster than that of the traditional method, without any loss of its measurement accuracy

  14. Robust full-field measurement considering rotation using digital image correlation

    NASA Astrophysics Data System (ADS)

    Wu, Rong; Qian, Hao; Zhang, Dongsheng

    2016-10-01

    Digital image correlation (DIC) has been widely accepted as a method for displacement and strain measurement and is applied in a variety of engineering fields. Most DIC algorithms encounter errors in measuring the deformation in conditions that involve rotation since they are designed without considering rotation of the deformed object. In this paper, a robust and automated DIC method capable of determining full-field displacement and strain components with random rotations has been presented. The algorithm starts with the determination of the initial position of the seed point in the integer-pixel domain. An approximate rotational angle between the reference and the deformed subset is estimated using an automated feature matching technology. A two-step Newton-Raphson algorithm has been developed for optimizing a suite of variables including displacement, strain and the rotational angle to achieve subpixel accuracy. A reliable propagation scheme, which enables rapid determination of the initial guess for full-field analysis is also proposed. Results from numerical simulations are used to validate the feasibility of the proposed DIC method. An application to 3-point bending with large deflection shows that the algorithm can be employed to measure displacement or strain parameters of the deformed object with arbitrary angles of rotation.

  15. Regional Correlation Among Ganglion Cell Complex, Nerve Fiber Layer, and Visual Field Loss in Glaucoma

    PubMed Central

    Le, Phuc V.; Tan, Ou; Chopra, Vikas; Francis, Brian A.; Ragab, Omar; Varma, Rohit; Huang, David

    2013-01-01

    Purpose. To analyze the relationship among macular ganglion cell complex (GCC) thickness, peripapillary nerve fiber layer (NFL) thickness, and visual field (VF) defects in patients with glaucoma. Methods. A Fourier-domain optical coherence tomography (FD-OCT) system was used to map the macula and peripapillary regions of the retina in 56 eyes of 38 patients with perimetric glaucoma. The macular GCC and peripapillary NFL thicknesses were mapped and standard automated perimetry (SAP) was performed. Loss of GCC and NFL were correlated with the VF map on both a point-by-point and regional basis. Results. Correlation between GCC thickness and peripapillary NFL thickness produced a detailed correspondence map that demonstrates the arcuate course of the NFL in the macula. Corresponding regions within the GCC, NFL, and VF maps demonstrate significant correlation, once parafoveal retinal ganglion cell (RGC) displacement is taken into account. Conclusions. There are significant point-specific and regional correlations between GCC loss, NFL loss, and deficits on SAP. Using these different data sources together may improve our understanding of glaucomatous damage and aid in the management of patients with glaucoma. PMID:23716631

  16. Application of the Graphic Correlation method to Pliocene marine sequences

    USGS Publications Warehouse

    Dowsett, H.J.

    1989-01-01

    Biostratigraphy - the use of paleontological evidence to establish relative chronologies, forms the cornerstone of many sedimentary geological investigations. Several different approaches to biochronology are available. Traditional interval zones, defined on lowest and/or highest occurrences of selected taxa, are used to place bodies of rock in a relative chronological framework. Fossil datum levels, which are more numerous than zones, are often used as chronohorizons for correlation purposs. The Graphic Correlation method, like interval zonations, synthesizes information from a number of different taxa but does not assume synchrony of any one taxon. A magnetobiostratigraphic model for deep-sea Pliocene sequences has been constructed by graphic correlation of Deep Sea Drilling project cores from the North Atlantic (606), Caribbean Sea (502), South Atlantic (516), Tasman Sea (590), Equatorial Pacific (573) and North Pacific (577). All cores are hydraulic piston cores which contain abundant planktonic foraminifers, calcareous nannofossils and which record many of the magnetic reversals expected in the Pliocene. The model is based on internally consistent paleontologic data gathered by the author. This study demonstrates the advantages of graphic correlation over conventional biostratigraphic procedures. Accurate inter-regional correlations can be made between core sites without resorting to multiple microfossil zonations and without invoking synchrony of fossil events. Important results of this study are: (1) many Pliocene planktonic foraminifer and calcareous nannofossil events are diachronous by more than 0.20 m.y., (2) Globorotalia truncatulinoides first occurs in the Southwest Pacific Ocean, approximately 0.50 m.y. earlier than previously reported, (3) a previously undetected hiatus of short duration (0.38 m.y.) exists just above the Cochiti subchron at DSDP 577A. ?? 1989.

  17. Evaluation of the maximum cross-correlation method of estimating sea surface velocities from sequential satellite images

    NASA Technical Reports Server (NTRS)

    Tokmakian, Robin; Strub, P. Ted; Mcclean-Padman, Julie

    1990-01-01

    The maximum cross correlation (MCC) method of Leese et al. (1971) for estimating sea surface velocities from sequences of satellite images is evaluated by comparing the MCC fields obtained from sequences of AVHRR and CZCS with in situ data and velocity fields calculated with a high-resolution quasi-geostrophic model. The rms differences and vector correlations between the velocity field produced by the MCC method and the model's field are presented. It is shown that much of the difference between the MCC fields and either the in situ data or the model velocity fields can be accounted for by considering physical and biological processes not included in the MCC method. The conditions under which the method is likely to be most successful are discussed.

  18. Preparation method: structure-bioactivity correlation in mesoporous bioactive glass

    NASA Astrophysics Data System (ADS)

    Shih, Shao-Ju; Chou, Yu-Jen; Borisenko, Konstantin B.

    2013-06-01

    Mesoporous bioactive glasses (MBGs) are receiving increased attention because of their superior bioactive properties and possible applications as drug-releasing carriers, bone implants and sealing materials in dentistry. We report here the results of investigation of structures and bioactivities of two types of MBG particles prepared by two different techniques, the sol-gel method and spray pyrolysis (SP). In this study, we used transmission electron microscopy and selected area electron diffraction to characterize particle morphology and atomistic structures of the particles correlating these observations with nitrogen adsorption measurements to determine surface areas of the particles and in vitro bioactivity tests. It is found that the preparation method can influence the final composition of the particles and that SP method offers a better control over the composition. The SP particles have higher bioactivity than the sol-gel particles due to their higher surface area and possibly more favourable atomistic structure for promoting deposition of pure hydroxyl apatite phase.

  19. Do adherence rates and glaucomatous visual field progression correlate?

    PubMed

    Rossi, Gemma C M; Pasinetti, Gian Maria; Scudeller, Luigia; Radaelli, Rosella; Bianchi, Paolo Emilio

    2011-01-01

    To assess the relation between visual field progression and adherence rate in patients with glaucoma using Travatan Dosing Aid® (TDA). In this 36-month retrospective study, 35 patients with primary open-angle glaucoma on travoprost or travoprost/timolol fixed combination monotherapy were submitted to ophthalmic examination and to visual field (VF) test from 2007 to 2009. Adherence was recorded with TDA. The association between VF progression (from 2007 to the end of the follow-up period) and a number of predictors (adherence rates at 12 months) was tested by means of chi-square test (or Fisher exact test) or Mann-Whitney test as appropriate. The mean (±SD) adherence rates were 71.9%±27.8% after 1 month of follow-up and 76.8%±20.9% at 12 months. A total of 25 (71.4%) patients with stable VF had a median adherence rate (IQR) of 85% (75%-97%); patients who worsened (n=10; 28.6%) recorded a median (IQR) adherence of 21% (9%-45%) (p<0.001). No association was found between VF progression and any of the other variables (age, sex, schooling, visual acuity, intraocular pressure (IOP) at baseline and over time, other ocular diseases, time since diagnosis and actual therapy, number of concomitant systemic therapies). Patients who were at least 90% adherent did not progress, while 43.5% of the patients with lower adherence worsened (p=0.01). Our data suggest that adherence rate may play a role in glaucomatous damage and/or progression; the target IOP therefore should be adjusted by adherence rates. Monitoring tools, educational programs, use of videos, a better doctor-patient relationship, or other means to improve adherence are desirable and necessary to preserve visual function.

  20. In Vivo Assessment of Age-related Brain Iron Differences by Magnetic Field Correlation Imaging

    PubMed Central

    Adisetiyo, Vitria; Jensen, Jens H.; Ramani, Anita; Tabesh, Ali; Di Martino, Adriana; Fieremans, Els; Castellanos, Francisco X.; Helpern, Joseph A.

    2012-01-01

    Purpose To assess a recently developed Magnetic Resonance Imaging (MRI) technique called Magnetic Field Correlation (MFC) imaging along with a conventional imaging method, the transverse relaxation rate (R2), for estimating age-related brain iron concentration in adolescents and adults. Brain region measures were compared to non-heme iron concentrations (CPM) based on a prior postmortem study. Materials and Methods Asymmetric spin echo (ASE) images were acquired at 3T from 26 healthy individuals (16 adolescents, 10 adults). Regions of interest (ROIs) were placed in areas in which age-related iron content has been estimated post-mortem: globus pallidus (GP), putamen (PUT), caudate nucleus (CN), thalamus (THL) and frontal white matter (FWM). Regression and group analyses were conducted on ROI means. Results MFC and R2 displayed significant linear relationships to CPM when all regions were combined. Whereas MFC was significantly correlated with CPM for every individual region except FWM and detected significantly lower means in adolescents than adults for each region, R2 detected significant correlation and lower means for only PUT and CN. Conclusion Our results support the hypothesis that MFC is sensitive to brain iron in GM regions and detects age-related iron increases known to occur from adolescence to adulthood. MFC may be more sensitive than R2 to iron-related changes occurring within specific brain regions. PMID:22392846

  1. Dipion decays of heavy quarkonium in the field correlator method

    SciTech Connect

    Simonov, Yu. A.

    2008-06-15

    The mechanism of dipion transitions nS {sup {yields}}n'S {pi}{pi} (n = 3, 2; n' = 2, 1) in bottomonium and charmonium is studied with the use of the chiral string-breaking Lagrangian allowing for the emission of any number of {pi}(K, {nu}), and not containing fitting parameters. The transition amplitude contains two terms: M = a - b, where the first term (a) refers to subsequent one-pion emission, {Gamma} (nS) {yields} {pi} B bar B {yields} {pi} {Gamma} (n'S){pi} , and the second term (b) refers to two-pion emission, {Gamma} (nS) {yields} {pi} {pi} B bar B {yields} {pi} {pi} {Gamma} (n'S). The one parameter formula for the dipion mass distribution is derived, dw/dq {approx} (phase space) x vertical bar {eta} - x vertical bar {sup 2}, where x = (q{sup 2} - 4m{sub {pi}}{sup 2})/(q{sub max}{sup 2} - 4m{sub {pi}}{sup 2}), q{sup 2} m= M{sub {pi}{pi}}{sup 2}. The parameter {nu} dependent on the process is calculated, using SHO wave functions and imposing PCAC restrictions (Adler zero) on amplitudes a and b. The resulting dipion mass distributions are in agreement with experimental data.

  2. Method for measuring radial impurity emission profiles using correlations of line integrated signals

    NASA Astrophysics Data System (ADS)

    Kuldkepp, M.; Brunsell, P. R.; Drake, J.; Menmuir, S.; Rachlew, E.

    2006-04-01

    A method of determining radial impurity emission profiles is outlined. The method uses correlations between line integrated signals and is based on the assumption of cylindrically symmetric fluctuations. Measurements at the reversed field pinch EXTRAP T2R show that emission from impurities expected to be close to the edge is clearly different in raw as well as analyzed data to impurities expected to be more central. Best fitting of experimental data to simulated correlation coefficients yields emission profiles that are remarkably close to emission profiles determined using more conventional techniques. The radial extension of the fluctuations is small enough for the method to be used and bandpass filtered signals indicate that fluctuations below 10kHz are cylindrically symmetric. The novel method is not sensitive to vessel window attenuation or wall reflections and can therefore complement the standard methods in the impurity emission reconstruction procedure.

  3. a Task-Oriented Disaster Information Correlation Method

    NASA Astrophysics Data System (ADS)

    Linyao, Q.; Zhiqiang, D.; Qing, Z.

    2015-07-01

    With the rapid development of sensor networks and Earth observation technology, a large quantity of disaster-related data is available, such as remotely sensed data, historic data, case data, simulated data, and disaster products. However, the efficiency of current data management and service systems has become increasingly difficult due to the task variety and heterogeneous data. For emergency task-oriented applications, the data searches primarily rely on artificial experience based on simple metadata indices, the high time consumption and low accuracy of which cannot satisfy the speed and veracity requirements for disaster products. In this paper, a task-oriented correlation method is proposed for efficient disaster data management and intelligent service with the objectives of 1) putting forward disaster task ontology and data ontology to unify the different semantics of multi-source information, 2) identifying the semantic mapping from emergency tasks to multiple data sources on the basis of uniform description in 1), and 3) linking task-related data automatically and calculating the correlation between each data set and a certain task. The method goes beyond traditional static management of disaster data and establishes a basis for intelligent retrieval and active dissemination of disaster information. The case study presented in this paper illustrates the use of the method on an example flood emergency relief task.

  4. Coherent scattering of an atom in the field of a standing wave under conditions of initial quantum correlation of subsystems

    SciTech Connect

    Trubilko, A. I.

    2016-10-15

    Coherent scattering of a two-level atom in the field of a quantized standing wave of a micromaser is considered under conditions of initial quantum correlation between the atom and the field. Such a correlation can be produced by a broadband parametric source. The interaction leading to scattering of the atom from the nonuniform field occurs in the dispersion limit or in the wing of the absorption line of the atom. Apart from the quantized field, the atom simultaneously interacts with two classical counterpropagating waves with different frequencies, which are acting in the plane perpendicular to the atom’s propagation velocity and to the wavevector of the standing wave. Joint action of the quantized field and two classical waves induces effective two-photon and Raman resonance interaction on the working transition. The effective Hamiltonian of the interaction is derived using the unitary transformation method developed for a moving atom. A strong effect is detected, which makes it possible to distinguish the correlated initial state of the atom and the field in the scattering of atom from the state of independent systems. For all three waves, scattering is not observed when systems with quantum correlation are prepared using a high-intensity parametric source. Conversely, when the atom interacts only with the nonuniform field of the standing wave, scattering is not observed in the case of the initial factorized state.

  5. Performance of Canonical Correlation Analysis (CCA) and Bayesian Hierarchical Modelling (BHM) for European temperature field reconstructions

    NASA Astrophysics Data System (ADS)

    Werner, J. P.; Smerdon, J. E.; Luterbacher, J.

    2011-12-01

    A Pseudoproxy comparison is presented for two statistical methods used to derive annual climate field reconstructions (CFR) for europe. The employed methods use the canonical correlation analysis (CCA) procedure presented by Smerdon et al. (2010, J. Climate) and the Bayesian Hierarchical Model (BHM) based method adopted from Tingley and Huybers (2010a,b, J. Climate). Pseudoproxy experiments are constructed from modelled temperature data sampled from the 1250-year paleo-run of the NCAR CCSM 1.4 model (Ammann et al. 2007, PNAS). The pseudoproxies approximate the distribution of the Mann et al. (1998, Nature) multi-proxy network and use Gaussian white noise to mimic the combined signal and noise properties of real-world proxies. The derived CFRs are tested by comparing the mean temperature bias, the reconstructed temperature variability and two error measures: the cross correlation and the root mean square error. The results show that the BHM method performs much better than the CCA method in areas with good proxy coverage. The BHM method also delivers the added value over the more traditional CCA method by providing objective error estimates. Reconstructions of key years are also analysed. While CCA returns estimates for the full climate field even for areas with sparse data, the more flexible model used in the BHM method returns results that are closer to the target for most of the reconstruction area, albeit with higher uncertainties in data sparse regions. Based on the success of these current BHM results, the algorithm will be extended to make use of proxies with different temporal resolution (cf. Li et al. 2010) in order to reconstruct the temperature and precipitation fields over Europe and the Mediterranean covering much of the common-era period. Ammann, C. et al. (2007), PNAS 104, 3713--3718 Li, B. et al. (2010), J. Am. Stat. Assoc. 105, 883-911 Mann, M. et al. (1998), Nature 392, 779-787 Smerdon, J. et al. (2010), J. Climate 24, 1284-1309 Tingley, M. and

  6. Rapid field-screening method for PCBs

    NASA Astrophysics Data System (ADS)

    Vo-Dinh, Tuan; Watts, Wendi; Miller, Gordon H.; Pal, A.; Eastwood, DeLyle; Lidberg, Russell L.

    1993-03-01

    The analysis of polychlorinated biphenyls (PCBs) generally requires selectivity and sensitivity. Even after cleanup, PCBs are usually at ultratrace levels in field samples, mixed in with other halocarbons, hydrocarbons, lipids, etc. The levels of PCBs typically found in water, soil, tissue, food, biota, and other matrices of interest are in the parts per billion (ppb) range. Most current measurement techniques for PCBs require chromatographic separations and are not practical for routine analysis. There is a strong need to have rapid and simple techniques to screen for PCBs under field conditions. The use of field screening analysis allows rapid decisions in remedial actions and reduces the need for sample preparations and time- consuming laboratory analyses. Field screening techniques also reduce the cost of clean-up operations. This paper describes a simple screening technique based on room temperature phosphorescence (RTP) and provides an overview of both this analytical procedure to detect trace levels of PCBs in environmental samples.

  7. Program to stimulate graduate training in the field of aeroacoustics. [cross correlation of flow fields of a jet-blown flap with far fields

    NASA Technical Reports Server (NTRS)

    Becker, R. S.

    1975-01-01

    An experiment is reported to cross correlate the output of hot film probes located at various points in the flow field of a jet-blown flap with the output of microphones in the acoustic far field. Fluid dynamic measurements of the flow fields of the test configuration are reported.

  8. Magnetic field transfer device and method

    DOEpatents

    Wipf, S.L.

    1990-02-13

    A magnetic field transfer device includes a pair of oppositely wound inner coils which each include at least one winding around an inner coil axis, and an outer coil which includes at least one winding around an outer coil axis. The windings may be formed of superconductors. The axes of the two inner coils are parallel and laterally spaced from each other so that the inner coils are positioned in side-by-side relation. The outer coil is outwardly positioned from the inner coils and rotatable relative to the inner coils about a rotational axis substantially perpendicular to the inner coil axes to generate a hypothetical surface which substantially encloses the inner coils. The outer coil rotates relative to the inner coils between a first position in which the outer coil axis is substantially parallel to the inner coil axes and the outer coil augments the magnetic field formed in one of the inner coils, and a second position 180[degree] from the first position, in which the augmented magnetic field is transferred into the other inner coil and reoriented 180[degree] from the original magnetic field. The magnetic field transfer device allows a magnetic field to be transferred between volumes with negligible work being required to rotate the outer coil with respect to the inner coils. 16 figs.

  9. Magnetic field transfer device and method

    DOEpatents

    Wipf, Stefan L.

    1990-01-01

    A magnetic field transfer device includes a pair of oppositely wound inner coils which each include at least one winding around an inner coil axis, and an outer coil which includes at least one winding around an outer coil axis. The windings may be formed of superconductors. The axes of the two inner coils are parallel and laterally spaced from each other so that the inner coils are positioned in side-by-side relation. The outer coil is outwardly positioned from the inner coils and rotatable relative to the inner coils about a rotational axis substantially perpendicular to the inner coil axes to generate a hypothetical surface which substantially encloses the inner coils. The outer coil rotates relative to the inner coils between a first position in which the outer coil axis is substantially parallel to the inner coil axes and the outer coil augments the magnetic field formed in one of the inner coils, and a second position 180.degree. from the first position, in which the augmented magnetic field is transferred into the other inner coil and reoriented 180.degree. from the original magnetic field. The magnetic field transfer device allows a magnetic field to be transferred between volumes with negligible work being required to rotate the outer coil with respect to the inner coils.

  10. Digital image correlation for full-field time-resolved assessment of arterial stiffness

    NASA Astrophysics Data System (ADS)

    Campo, Adriaan; Soons, Joris; Heuten, Hilde; Ennekens, Guy; Goovaerts, Inge; Vrints, Christiaan; Lava, Pascal; Dirckx, Joris

    2014-01-01

    Pulse wave velocity (PWV) of the arterial system is a very important parameter to evaluate cardiovascular health. Currently, however, there is no golden standard for PWV measurement. Digital image correlation (DIC) was used for full-field time-resolved assessment of displacement, velocity, acceleration, and strains of the skin in the neck directly above the common carotid artery. By assessing these parameters, propagation of the pulse wave could be tracked, leading to a new method for PWV detection based on DIC. The method was tested on five healthy subjects. As a means of validation, PWV was measured with ultrasound (US) as well. Measured PWV values were between 3.68 and 5.19 m/s as measured with DIC and between 5.14 and 6.58 m/s as measured with US, with a maximum absolute difference of 2.78 m/s between the two methods. DIC measurements of the neck region can serve as a test base for determining a robust strategy for PWV detection, they can serve as reference for three-dimensional fluid-structure interaction models, or they may even evolve into a screening method of their own. Moreover, full-field, time-resolved DIC can be adapted for other applications in biomechanics.

  11. 2D focal-field aberration dependence on time/phase screen position and correlation lengths

    NASA Astrophysics Data System (ADS)

    Näsholm, Sven Peter

    2004-05-01

    For high-frequency annular array transducers used in medical ultrasound imaging, aberrations due to tissue and body wall have a significant effect on energy transfer from the main lobe to the sidelobes of the acoustic field: that is, the aberrations make the total sidelobe level increase. This effect makes the ultrasound image poor when imaging heterogeneous organs. This study performs an analysis of the focal-field quality as a function of time/phase screen z position and time/phase screen correlation length. It establishes some rules of thumb which indicate when the focal-field sidelobe energy is at its highest. It also introduces a simple screen-scaling model which is useful as long as the screen position is not closer to the focus than a certain limit distance. The scaling model allows the real screen at a depth z=zscreen to be treated as a scaled screen at the position z=ztransd. 2D sound fields after 3D propagation from the annular arrays to the focal plane have been simulated using an angular spectrum method. The aberrators are represented by amplitude and phase/time screens.

  12. Field evaluation of endotoxin air sampling assay methods.

    PubMed

    Thorne, P S; Reynolds, S J; Milton, D K; Bloebaum, P D; Zhang, X; Whitten, P; Burmeister, L F

    1997-11-01

    This study tested the importance of filter media, extraction and assay protocol, and bioaerosol source on the determination of endotoxin under field conditions in swine and poultry confinement buildings. Multiple simultaneous air samples were collected using glass fiber (GF) and polycarbonate (PC) filters, and these were assayed using two methods in two separate laboratories: an endpoint chromogenic Limulus amebocyte lysate (LAL) assay (QCL) performed in water and a kinetic chromogenic LAL assay (KQCL) performed in buffer with resistant-parallel line estimation analysis (KLARE). In addition, two aqueous filter extraction methods were compared in the QCL assay: 120 min extraction at 22 degrees C with vigorous shaking and 30 min extraction at 68 degrees C with gentle rocking. These extraction methods yielded endotoxin activities that were not significantly different and were very highly correlated. Reproducibility of endotoxin determinations from duplicate air sampling filters was very high (Cronbach alpha all > 0.94). When analyzed by the QCL method GF filters yielded significantly higher endotoxin activity than PC filters. QCL and KLARE methods gave similar estimates for endotoxin activity from PC filters; however, GF filters analyzed by the QCL method yielded significantly higher endotoxin activity estimates, suggesting enhancement of the QCL assay or inhibition of the KLARE asay with GF filters. Correlation between QCL-GF and QCL-PC was high (r = 0.98) while that between KLARE-GF and KLARE-PC was moderate (r = 0.68). Analysis of variance demonstrated that assay methodology, filter-type, barn-type, and interactions between assay and filter-type and between assay and barn-type were important factors influencing endotoxin exposure assessment.

  13. Speckle correlation method used to measure object's in-plane velocity.

    PubMed

    Smíd, Petr; Horváth, Pavel; Hrabovský, Miroslav

    2007-06-20

    We present a measurement of an object's in-plane velocity in one direction by the use of the speckle correlation method. Numerical correlations of speckle patterns recorded periodically during motion of the object under investigation give information used to evaluate the object's in-plane velocity. The proposed optical setup uses a detection plane in the image field and enables one to detect the object's velocity within the interval (10-150) microm x s(-1). Simulation analysis shows a way of controlling the measuring range. The presented theory, simulation analysis, and setup are verified through an experiment of measurement of the velocity profile of an object.

  14. Correlation between abnormal trends in the spontaneous fields of tectonic plates and strong seismicities

    NASA Astrophysics Data System (ADS)

    Tan, Da-Cheng; Xin, Jian-Cun

    2017-06-01

    Tectonic activities, electrical structures, and electromagnetic environments are major factors that affect the stability of spontaneous fields. The method of correlating regional synchronization contrasts (CRSC) can determine the reliability of multi-site data trends or short-impending anomalies. From 2008 to 2013, there were three strong earthquake cluster periods in the North-South seismic belt that lasted for 8-12 months. By applying the CRSC method to analyze the spontaneous field E SP at 25 sites of the region in the past 6 years, it was discovered that for each strong earthquake cluster period, the E SP strength of credible anomalous trends was present at minimum 30% of the stations. In the southern section of the Tan-Lu fault zone, the E SP at four main geoelectric field stations showed significant anomalous trends after June 2015, which could be associated with the major earthquakes of the East China Sea waters (M S 7.2) in November 2015 and Japan's Kyushu island (M S 7.3) in April 2016.

  15. A novel colorimetric method for field arsenic speciation analysis.

    PubMed

    Hu, Shan; Lu, Jinsuo; Jing, Chuanyong

    2012-01-01

    Accurate on-site determination of arsenic (As) concentration as well as its speciation presents a great environmental challenge especially to developing countries. To meet the need of routine field monitoring, we developed a rapid colorimetric method with a wide dynamic detection range and high precision. The novel application of KMnO4 and CH4N2S as effective As(III) oxidant and As(V) reductant, respectively, in the formation of molybdenum blue complexes enabled the differentiation of As(III) and As(V). The detection limit of the method was 8 microg/L with a linear range (R2 = 0.998) of four orders of magnitude in total As concentrations. The As speciation in groundwater samples determined with the colorimetric method in the field were consistent with the results using the high performance liquid chromatography atomic fluorescence spectrometry, as evidenced by a linear correlation in paired analysis with a slope of 0.9990-0.9997 (p < 0.0001, n = 28). The recovery of 96%-116% for total As, 85%-122% for As(III), and 88%-127% for As(V) were achieved for groundwater samples with a total As concentration range 100-800 microg/L. The colorimetric result showed that 3.61 g/L As(III) existed as the only As species in a real industrial wastewater, which was in good agreement with the HPLC-AFS result of 3.56 g/L As(III). No interference with the color development was observed in the presence of sulfate, phosphate, silicate, humic acid, and heavy metals from complex water matrix. This accurate, sensitive, and easy-to-use method is especially suitable for field As determination.

  16. Fast methods for spatially correlated multilevel functional data

    PubMed Central

    Staicu, Ana-Maria; Crainiceanu, Ciprian M.; Carroll, Raymond J.

    2010-01-01

    We propose a new methodological framework for the analysis of hierarchical functional data when the functions at the lowest level of the hierarchy are correlated. For small data sets, our methodology leads to a computational algorithm that is orders of magnitude more efficient than its closest competitor (seconds versus hours). For large data sets, our algorithm remains fast and has no current competitors. Thus, in contrast to published methods, we can now conduct routine simulations, leave-one-out analyses, and nonparametric bootstrap sampling. Our methods are inspired by and applied to data obtained from a state-of-the-art colon carcinogenesis scientific experiment. However, our models are general and will be relevant to many new data sets where the object of inference are functions or images that remain dependent even after conditioning on the subject on which they are measured. Supplementary materials are available at Biostatistics online. PMID:20089508

  17. Study of quantum correlation swapping with relative entropy methods

    NASA Astrophysics Data System (ADS)

    Xie, Chuanmei; Liu, Yimin; Chen, Jianlan; Zhang, Zhanjun

    2016-02-01

    To generate long-distance shared quantum correlations (QCs) for information processing in future quantum networks, recently we proposed the concept of QC repeater and its kernel technique named QC swapping. Besides, we extensively studied the QC swapping between two simple QC resources (i.e., a pair of Werner states) with four different methods to quantify QCs (Xie et al. in Quantum Inf Process 14:653-679, 2015). In this paper, we continue to treat the same issue by employing other three different methods associated with relative entropies, i.e., the MPSVW method (Modi et al. in Phys Rev Lett 104:080501, 2010), the Zhang method (arXiv:1011.4333 [quant-ph]) and the RS method (Rulli and Sarandy in Phys Rev A 84:042109, 2011). We first derive analytic expressions of all QCs which occur during the swapping process and then reveal their properties about monotonicity and threshold. Importantly, we find that a long-distance shared QC can be generated from two short-distance ones via QC swapping indeed. In addition, we simply compare our present results with our previous ones.

  18. Explicitly Correlated Methods within the ccCA Methodology.

    PubMed

    Mahler, Andrew; Wilson, Angela K

    2013-03-12

    The prediction of energetic properties within "chemical accuracy" (1 kcal mol(-1) from well-established experiment) can be a major challenge in computational quantum chemistry due to the computational requirements (computer time, memory, and disk space) needed to achieve this level of accuracy. Methodologies such as coupled cluster with single, double, and perturbative triple excitations (CCSD(T)) combined with very large basis sets are often required to reach this level of accuracy. Unfortunately, such calculations quickly become cost prohibitive as system size increases. Our group has developed an ab initio composite method, the correlation consistent Composite Approach (ccCA), which enables such accuracy to be possible, on average, but at reduced computational cost as compared with CCSD(T) in combination with a large basis set. While ccCA has proven quite useful, computational bottlenecks still occur. In this study, the means to reduce the computational cost of ccCA without compromising accuracy by utilizing explicitly correlated methods within ccCA have been considered, and an alternative formulation is described.

  19. An experimental correlation study between field-target overlap and sensitivity of surface plasmon resonance biosensors based on sandwiched immunoassays

    NASA Astrophysics Data System (ADS)

    Ryu, Yeonsoo; Moon, Seyoung; Oh, Youngjin; Kim, Yonghwi; Kim, Donghyun

    2012-10-01

    In this report, we have studied the effectiveness of field-target overlap to evaluate detection sensitivity of surface plasmon resonance (SPR) biosensors. The investigation used theoretical analysis based on the transfer matrix method, which was experimentally confirmed by thin film-based detection in sandwich and reverse sandwich immunoglobulin G (IgG) assays. Both theoretical and experimental results show that strong correlation exists between the overlap and the sensitivity with the coefficient of correlation higher than 95% in all the cases that we have considered. We have also confirmed the correlation in diffraction grating-based SPR measurement of IgG/anti-IgG interactions. The correlation elucidates the mechanism behind the far-field detection sensitivity of SPR biosensors and can lead to the enhancement of SPR biosensing with molecular scale sensitivity.

  20. Development of a Mobile Tracer Correlation Method for Assessment of Air Emissions from Landfills and Other Area Sources (Abstract)

    EPA Science Inventory

    Work toward a standardized version of a mobile tracer correlation measurement method is discussed. The method used for assessment of methane emissions from 15 landfills in 56 field deployments from 2009 to 2013. This general area source measurement method uses advances in instrum...

  1. Development of a Mobile Tracer Correlation Method for Assessment of Air Emissions from Landfills and Other Area Sources (Abstract)

    EPA Science Inventory

    Work toward a standardized version of a mobile tracer correlation measurement method is discussed. The method used for assessment of methane emissions from 15 landfills in 56 field deployments from 2009 to 2013. This general area source measurement method uses advances in instrum...

  2. Mathematical correlation of modal parameter identification methods via system realization theory

    NASA Technical Reports Server (NTRS)

    Juang, J. N.

    1986-01-01

    A unified approach is introduced using system realization theory to derive and correlate modal parameter identification methods for flexible structures. Several different time-domain and frequency-domain methods are analyzed and treated. A basic mathematical foundation is presented which provides insight into the field of modal parameter identification for comparison and evaluation. The relation among various existing methods is established and discussed. This report serves as a starting point to stimulate additional research towards the unification of the many possible approaches for modal parameter identification.

  3. A correlation-based approach for determining the threshold value of singular value decomposition filtering for potential field data denoising

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Meng, Xiaohong; Guo, Lianghui; Chen, Zhaoxi; Li, Fang

    2014-10-01

    We present a correlation coefficient analysis (CCA) method for obtaining threshold when using singular value decomposition (SVD) filtering method to reduce noise in potential field data. Before computation of correlation coefficients, SVD is performed on the gridded potential field data with the purpose of obtaining singular values of the data. A sliding window is utilized to truncate the acquired singular values, which allows us to obtain different singular value sequences. The lower limit of the sliding window is generally set to zero and the upper limit of the sliding window is the threshold. Then, we calculate and plot the correlation coefficients associated with the initial sequence and the newly obtained sequences, choosing the inflection point of the plotted correlation coefficients as the threshold. The CCA method offers a quantitative way to determine a threshold, which can be easily implemented by a computer program. We illustrate the method using synthetic datasets and field data from a metallic deposit area in the middle-lower reaches of the Yangtze River in China. The results show that the proposed method is effective and is able to provide an optimal threshold.

  4. Correlation between magnetic and electric field perturbations in the field-aligned current regions deduced from DE 2 observations

    NASA Technical Reports Server (NTRS)

    Ishii, M.; Sugiura, M.; Iyemori, T.; Slavin, J. A.

    1992-01-01

    The satellite-observed high correlations between magnetic and electric field perturbations in the high-latitude field-aligned current regions are investigated by examining the dependence of the relationship between Delta-B and E on spatial scale, using the electric and magnetic field data obtained by DE 2 in the polar regions. The results are compared with the Pedersen conductivity inferred from the international reference ionosphere model and the Alfven wave velocity calculated from the in situ ion density and magnetic field measurements.

  5. THEORETICAL ESTIMATES OF TWO-POINT SHEAR CORRELATION FUNCTIONS USING TANGLED MAGNETIC FIELDS

    SciTech Connect

    Pandey, Kanhaiya L.; Sethi, Shiv K.

    2012-03-20

    The existence of primordial magnetic fields can induce matter perturbations with additional power at small scales as compared to the usual {Lambda}CDM model. We study its implication within the context of a two-point shear correlation function from gravitational lensing. We show that a primordial magnetic field can leave its imprints on the shear correlation function at angular scales {approx}< a few arcminutes. The results are compared with CFHTLS data, which yield some of the strongest known constraints on the parameters (strength and spectral index) of the primordial magnetic field. We also discuss the possibility of detecting sub-nano Gauss fields using future missions such as SNAP.

  6. On the emergence of the Green's function in the correlations of a diffuse field

    NASA Astrophysics Data System (ADS)

    Lobkis, Oleg I.; Weaver, Richard L.

    2001-12-01

    A diffuse acoustic field is shown to have correlations equal to the Green's function of the body. Simple plausibility arguments for this assertion are followed by a more detailed proof. A careful version of the statement is found to include caveats in regard to how diffuse the field truly is, the spectrum of the diffuse field, and the phase of the receivers. Ultrasonic laboratory tests confirm the assertion. The main features of the direct signal between two transducers are indeed recovered by cross correlating their responses to a diffuse field generated by a third transducer. The quality of the recovery improves with increased averaging and the use of multiple sources. Applications are discussed.

  7. Damping, field-field correlation and dipole-dipole interaction effects on the entanglement and atomic inversion dynamics

    NASA Astrophysics Data System (ADS)

    Rustaee, N.; Tavassoly, M. K.; Daneshmand, R.

    2017-01-01

    In this paper we study the interaction between two two-level atoms with a two-mode quantized field in the presence of damping. Dipole-dipole interaction between the two atoms and the correlation between the two modes of field are also taken into account. To solve the model, using appropriate transformations, we reduce the considered model to a well-known Jaynes-Cummings model. After finding the analytical solution for the atom-field system, the effects of damping, field-field correlation and atomic dipole-dipole interaction on the entanglement between atoms and population inversion are investigated, numerically. It is observed that the dynamical behavior of the degree of entanglement for damped systems, in relatively large domains of time, takes a low but constant value adequately far from the beginning of the interaction. In addition, it is found that the value of population inversion after the initial oscillations takes negative values for damped systems and eventually vanishes by increasing time. Also, it is seen that simultaneous presence of both dipole-dipole interaction and field-field correlation provides typical collapse-revival phenomenon in the time-behavior of atomic inversion.

  8. Bootstrapping conformal field theories with the extremal functional method.

    PubMed

    El-Showk, Sheer; Paulos, Miguel F

    2013-12-13

    The existence of a positive linear functional acting on the space of (differences between) conformal blocks has been shown to rule out regions in the parameter space of conformal field theories (CFTs). We argue that at the boundary of the allowed region the extremal functional contains, in principle, enough information to determine the dimensions and operator product expansion (OPE) coefficients of an infinite number of operators appearing in the correlator under analysis. Based on this idea we develop the extremal functional method (EFM), a numerical procedure for deriving the spectrum and OPE coefficients of CFTs lying on the boundary (of solution space). We test the EFM by using it to rederive the low lying spectrum and OPE coefficients of the two-dimensional Ising model based solely on the dimension of a single scalar quasiprimary--no Virasoro algebra required. Our work serves as a benchmark for applications to more interesting, less known CFTs in the near future.

  9. Regional Mapping of the Lunar Crustal Magnetic Field: Correlation of Strong Anomalies with Curvilinear Albedo Markings

    NASA Technical Reports Server (NTRS)

    Hood, L. L.; Yingst, A.; Zakharian, A.; Lin, R. P.; Mitchell, D. L.; Halekas, J.; Acuna, M. H.; Binder, A. B.

    2000-01-01

    Using high-resolution regional Lunar Prospector magnetometer magnetic field maps, we report here a close correlation of the strongest individual crustal anomalies with unusual curvilinear albedo markings of the Reiner Gamma class.

  10. Correlation between proton anisotropy and magnetic field direction in the distant geotail

    NASA Technical Reports Server (NTRS)

    Klecker, B.; Scholer, M.; Hovestadt, D.; Gloeckler, G.; Ipavich, F. M.; Smith, E. J.; Tsurutani, B. T.

    1984-01-01

    A statistical analysis has been conducted of the anisotropy of suprathermal protons and the polarity of the magnetic field during April 10-16, 1983. At this time, ISEE-3 was at lunar distances in the geomagnetic tail of the earth, and well within the nominal magnetopause. The first-order anisotropy is presently correlated with the latitude angle and the z-component of the magnetic field. The anisotropy direction's frequency distribution is strongly peaked in the earthward and tailward direction, indicating fast earthward and tailward flows. For large anisotropies, and within 5 earth radii of the nominal neutral sheet position, a strong correlation is found between the earthward-streaming suprathermal protons and the northward polarity of the magnetic field; large tailward anisotropies are generally correlated with southward magnetic field polarity. This correlation is most simply interpreted in terms of a neutral line or reconnection model.

  11. Near Noise Field of a Jet-engine Exhaust II : Cross Correlation of Sound Pressures

    NASA Technical Reports Server (NTRS)

    Callaghan, Edmund E; Howes, Walton L; Coles, Willard D

    1956-01-01

    Pressure cross correlations were obtained over a range of jet velocities both longitudinally and laterally for the overall sound pressure and for several frequency bands. The region of positive correlation was found to increase with distance downstream of the nozzle exit and was greater for lateral than for longitudinal correlations. In general, little change in the correlation curves was found as a function of jet velocity or frequency band width. Measurements made with a fixed and a movable microphone in a plate showed correlations similar to the free-field results. The results are interpreted in terms of pressure loads on surfaces.

  12. Interpolation methods for time-delay estimation using cross-correlation method for blood velocity measurement.

    PubMed

    Lai, X; Torp, H

    1999-01-01

    The cross-correlation method (CCM) for blood flow velocity measurement using Doppler ultrasound is based on time delay estimation of echoes from pulse-to-pulse. The sampling frequency of the received signal is usually kept as low as possible in order to reduce computational complexity, and the peak in the correlation function is found by interpolating the correlation function. The parabolic-fit interpolation method introduces a bias at low sampling rate to the ultrasound center frequency ratio. In this study, four different methods are suggested to improve the estimation accuracy: (1) Parabolic interpolation with bias-compensation, derived from a theoretical signal model. (2) Parabolic interpolation combined with linear filter interpolation of the correlation function. (3) Parabolic interpolation to the complex correlation function envelope. (4) Matched filter interpolation applied to the correlation function. The new interpolation methods are analyzed both by computer simulated signals and RF-signals recorded from a patient with time delay larger than 1/f(0), where f(0) is the center frequency. The simulation results show that these methods are more accurate than the parabolic-fit method. From the simulation, the worst estimation accuracy is about 1.25% of 1/f(0) for the parabolic-fit interpolation, and it is improved by the above methods to less than 0.5% of 1/f(0) when the sampling rate is 10 MHz, the center frequency is 2.5 MHz and the bandwidth is 1 MHz. This improvement also can be observed in the experimental data. Furthermore, the matched filter interpolation gives the best performance when signal-to-noise ratio (SNR) is low. This is verified both by simulation and experimentation.

  13. Stream temperature investigations: field and analytic methods

    USGS Publications Warehouse

    Bartholow, J.M.

    1989-01-01

    Alternative public domain stream and reservoir temperature models are contrasted with SNTEMP. A distinction is made between steady-flow and dynamic-flow models and their respective capabilities. Regression models are offered as an alternative approach for some situations, with appropriate mathematical formulas suggested. Appendices provide information on State and Federal agencies that are good data sources, vendors for field instrumentation, and small computer programs useful in data reduction.

  14. Use of digital image correlation to study the local deformation field of paper and paperboard

    Treesearch

    J.M. Considine; C.T. Scott; R. Gleisner; J.Y. Zhu

    2005-01-01

    Digital image correlation was used to measure the full-field deformation of paperboard and handsheet tensile specimens. The correlation technique was able to accurately measure strain in regions 0.6 by 0.6 mm. Results showed the variation of strain to be much larger than has been previously reported. For machine made paperboard tested in the cross-direction, the...

  15. Cross correlation method application to prompt fission neutron investigation

    NASA Astrophysics Data System (ADS)

    Zeynalova, O. V.; Zeynalov, Sh.; Nazarenko, M. A.; Hambsch, F.-J.; Oberstedt, S.

    2012-10-01

    Do The prompt neutron emission in spontaneous fission of 252Cf has been investigated applying cross correlation method and digital signal processing algorithms. A new mathematical approach for neutron/gamma pulse shape separation was developed and implemented for prompt fission neutron (PFN) time-of-flight measurement. The main goal was development of automated data analysis algorithms and procedures for data analysis with minimum human intervention. Experimental data was taken with a twin Frisch-grid ionization chamber and a NE213-equivalent neutron detector in an experimental setup similar to well work of C. Budtz-Jorgensen and H.-H. Knitter [1]. About 2*107 fission events were registered with 2*105 neutron/gamma detection in coincidence with fission fragments. Fission fragment kinetic energy, mass and angular distribution, neutron time-of-flight and pulse shape have been investigated using a 12 bit waveform digitizer.

  16. Visual field examination method using virtual reality glasses compared with the Humphrey perimeter.

    PubMed

    Tsapakis, Stylianos; Papaconstantinou, Dimitrios; Diagourtas, Andreas; Droutsas, Konstantinos; Andreanos, Konstantinos; Moschos, Marilita M; Brouzas, Dimitrios

    2017-01-01

    To present a visual field examination method using virtual reality glasses and evaluate the reliability of the method by comparing the results with those of the Humphrey perimeter. Virtual reality glasses, a smartphone with a 6 inch display, and software that implements a fast-threshold 3 dB step staircase algorithm for the central 24° of visual field (52 points) were used to test 20 eyes of 10 patients, who were tested in a random and consecutive order as they appeared in our glaucoma department. The results were compared with those obtained from the same patients using the Humphrey perimeter. High correlation coefficient (r=0.808, P<0.0001) was found between the virtual reality visual field test and the Humphrey perimeter visual field. Visual field examination results using virtual reality glasses have a high correlation with the Humphrey perimeter allowing the method to be suitable for probable clinical use.

  17. a New Digital Image Correlation Software for Displacements Field Measurement in Structural Applications

    NASA Astrophysics Data System (ADS)

    Ravanelli, R.; Nascetti, A.; Di Rita, M.; Belloni, V.; Mattei, D.; Nisticó, N.; Crespi, M.

    2017-07-01

    Recently, there has been a growing interest in studying non-contact techniques for strain and displacement measurement. Within photogrammetry, Digital Image Correlation (DIC) has received particular attention thanks to the recent advances in the field of lowcost, high resolution digital cameras, computer power and memory storage. DIC is indeed an optical technique able to measure full field displacements and strain by comparing digital images of the surface of a material sample at different stages of deformation and thus can play a major role in structural monitoring applications. For all these reasons, a free and open source 2D DIC software, named py2DIC, was developed at the Geodesy and Geomatics Division of DICEA, University of Rome La Sapienza. Completely written in python, the software is based on the template matching method and computes the displacement and strain fields. The potentialities of Py2DIC were evaluated by processing the images captured during a tensile test performed in the Lab of Structural Engineering, where three different Glass Fiber Reinforced Polymer samples were subjected to a controlled tension by means of a universal testing machine. The results, compared with the values independently measured by several strain gauges fixed on the samples, demonstrate the possibility to successfully characterize the deformation mechanism of the investigated material. Py2DIC is indeed able to highlight displacements at few microns level, in reasonable agreement with the reference, both in terms of displacements (again, at few microns in the average) and Poisson's module.

  18. Variational multiparticle-multihole configuration mixing method applied to pairing correlations in nuclei

    SciTech Connect

    Pillet, N.; Berger, J.-F.; Caurier, E.

    2008-08-15

    Applying a variational multiparticle-multihole configuration mixing method whose purpose is to include correlations beyond the mean field in a unified way without particle number and Pauli principle violations, we investigate pairing-like correlations in the ground states of {sup 116}Sn, {sup 106}Sn, and {sup 100}Sn. The same effective nucleon-nucleon interaction, namely, the D1S parametrization of the Gogny force, is used to derive both the mean field and correlation components of nuclear wave functions. Calculations are performed using an axially symmetric representation. The structure of correlated wave functions, their convergence with respect to the number of particle-hole excitations, and the influence of correlations on single-particle level spectra and occupation probabilities are analyzed and compared with results obtained with the same two-body effective interaction from BCS, Hartree-Fock-Bogoliubov, and particle number projected after variation BCS approaches. Calculations of nuclear radii and the first theoretical excited 0{sup +} states are compared with experimental data.

  19. Estimation of velocity vector angles using the directional cross-correlation method.

    PubMed

    Kortbek, Jacob; Jensen, Jørgen Arendt

    2006-11-01

    A method for determining both velocity magnitude and angle in any direction is suggested. The method uses focusing along the velocity direction and cross-correlation for finding the correct velocity magnitude. The angle is found from beamforming directional signals in a number of directions and then selecting the angle with the highest normalized correlation between directional signals. The approach is investigated using Field II simulations and data from the experimental ultrasound scanner RASMUS and a circulating flow rig with a parabolic flow having a peak velocity of 0.3 m/s. A 7-MHz linear array transducer is used with a normal transmission of a focused ultrasound field. In the simulations the relative standard deviation of the velocity magnitude is between 0.7% and 7.7% for flow angles between 45 degrees and 90 degrees. The study showed that angle estimation by directional beamforming can be estimated with a high precision. The angle estimation performance is highly dependent on the choice of the time ktprf x Tprf (correlation time) between signals to correlate. One performance example is given with a fixed value of ktprf for all flow angles. The angle estimation on measured data for flow at 60 degrees to 90 degrees yields a probability of valid estimates between 68% and 98%. The optimal value of ktprf for each flow angle is found from a parameter study; with these values, the performance on simulated data yields angle estimates with no outlier estimates and with standard deviations below 2 degrees.

  20. Dispersion Method Using Focused Ultrasonic Field

    NASA Astrophysics Data System (ADS)

    Jungsoon Kim,; Moojoon Kim,; Kanglyel Ha,; Minchul Chu,

    2010-07-01

    The dispersion of powders into liquids has become one of the most important techniques in high-tech industries and it is a common process in the formulation of various products, such as paint, ink, shampoo, beverages, and polishing media. In this study, an ultrasonic system with a cylindrical transducer is newly introduced for pure nanoparticle dispersion. The acoustics pressure field and the characteristics of the shock pulse caused by cavitation are investigated. The frequency spectrum of the pulse from the collapse of air bubbles in the cavitation is analyzed theoretically. It was confirmed that a TiO2 water suspension can be dispersed effectively using the suggested system.

  1. Computational Methods for Complex Flow Fields.

    DTIC Science & Technology

    1986-06-28

    James J. Riley Joel H . Ferziger "Turbulent Flow Simulation - Future Needs" Micha Wolfshtein " Numerical Calculation of the Reynolds Stress and Turbulent...July 1983. Also in RECENT ADVANCES IN NUMERICAL METHODS IN FLUIDS, Vol. 3, Editor W.G. Habashi, Pineridge Press. 2. Usab, W.J., "Embedded Mesh Solutions...ridiaconal matrices applicable to approximane factorization methods . E:xlicit algcrit-s are also easier to adapz to multiProcessor arcr.itectures as the

  2. Correlation of electrostatic fluctuation and reversal of toroidal field in the reversed-field pinch plasma

    SciTech Connect

    Yambe, Kiyoyuki; Koguchi, Haruhisa; Sakakita, Hajime; Hirano, Yoichi; Kiyama, Satoru

    2011-06-15

    The magnetic fluctuations and electrostatic probe potential have been measured in the Toroidal Pinch Experiment - RX (TPE-RX) reversed-field pinch plasma [Y. Yagi et al., Fusion Eng. Des. 45, 421 (1999)] (at the plasma surface r/a = 1.00). Fast electrons with energy comparable to or slightly higher than the core electron temperature are observed as many spikes in the electrostatic probe signal. These electrons are diffused by a fluctuating magnetic field from the core region. During the period of mild deepening of the reversal of the edge toroidal field, a significant reduction in the spike signal, increases in electron density and soft x-ray radiation, and a decrease in the D{alpha} line radiation are observed, even though the reduction in magnetic fluctuations is not significant during the same period, which indicates that the mild deepening of the reversal of the toroidal field can improve the confinement of fast electrons.

  3. Correlation Between Bacterial Attachment Rate Coefficients and Hydraulic Conductivity and its Effect on Field-Scale Bacterial Transport

    SciTech Connect

    Scheibe, Timothy D.; Dong, Hailiang; Xie, YuLong

    2007-06-01

    It has been widely observed in field experiments that the apparent rate of bacterial attachment, particularly as parameterized by the collision efficiency in filtration-based models, decreases with transport distance (i.e., exhibits scale-dependency). This effect has previously been attributed to microbial heterogeneity; that is, variability in cell-surface properties within a single monoclonal population. We demonstrate that this effect could also be interpreted as a field-scale manifestation of local-scale correlation between physical heterogeneity (hydraulic conductivity variability) and reaction heterogeneity (attachment rate coefficient variability). A field-scale model of bacterial transport developed for the South Oyster field research site located near Oyster, Virginia, and observations from field experiments performed at that site, are used as the basis for this study. Three-dimensional Monte Carlo simulations of bacterial transport were performed under four alternative scenarios: 1) homogeneous hydraulic conductivity (K) and attachment rate coefficient (Kf), 2) heterogeneous K, homogeneous Kf, 3) heterogeneous K and Kf with local correlation based on empirical and theoretical relationships, and 4) heterogeneous K and Kf without local correlation. The results of the 3D simulations were analyzed using 1D model approximations following conventional methods of field data analysis. An apparent decrease with transport distance of effective collision efficiency was observed only in the case where the local properties were both heterogeneous and correlated. This effect was observed despite the fact that the local collision efficiency was specified as a constant in the 3D model, and can therefore be interpreted as a scale effect associated with the local correlated heterogeneity as manifested at the field scale.

  4. The correlation between the statistical indexes of geoelectric fields and earthquakes

    NASA Astrophysics Data System (ADS)

    Chen, Hong-Jia; Chen, Chien-Chih

    2016-04-01

    In rock fracture experiments, electromagnetic emission accompanying fracture is a common physical phenomenon. And in field observations, the anomalies of electromagnetic signals were found before large earthquakes. Taiwan has abundant earthquakes. According Central Weather Bureau of Taiwan, there are averagely 20 ML≥5 earthquakes per year. Since 2012, 20 stations to continuously monitor geoelectric fields have been densely instrumented on Taiwan Island, which is called Geoelectric Monitoring System (GEMS). Hence, GEMS might register variations of geoelectric fields before, during, and after large earthquakes. These registered data could help us to understand whether or not there are conditions of producing large variations of electric charges before large earthquakes in seismogenic zones. After analyzing the data of both geoelectric fields and the earthquake catalogue from 2012 to 2014, we found that the statistical correlation between anomalies of statistical indexes of geoelectric fields and earthquakes with ML≥5. This kind of correlation was examined by the statistical methods of binary classification and C1-F1 analysis. The analyzing procedure is as follow. First, we established the alarm model of time of increased probability (TIP), which can judge that which periods a large earthquakes would be occur in with high probability. Secondly, we calculated the C1 and F1 indexes, and the C1 index and the F1 index can independently explain the portions of true positive (TP) and true negative (TN). Afterwards, we could obtain a best set of TIP model parameters for earthquake prediction based on C1-F1 analysis. The TIP spatiotemporal map was also attained based on the best set of TIP model parameters. According to the TIP spatiotemporal map, we could judge whether or not the future t3 is an earthquake-prone period with ML≥5 on the region of the target station within Rad km and above Dep km. Besides, the other purpose of this project is to conduct significance

  5. Field-measured drag area is a key correlate of level cycling time trial performance.

    PubMed

    Peterman, James E; Lim, Allen C; Ignatz, Ryan I; Edwards, Andrew G; Byrnes, William C

    2015-01-01

    Drag area (Ad ) is a primary factor determining aerodynamic resistance during level cycling and is therefore a key determinant of level time trial performance. However, Ad has traditionally been difficult to measure. Our purpose was to determine the value of adding field-measured Ad as a correlate of level cycling time trial performance. In the field, 19 male cyclists performed a level (22.1 km) time trial. Separately, field-determined Ad and rolling resistance were calculated for subjects along with projected frontal area assessed directly (AP ) and indirectly (Est AP ). Also, a graded exercise test was performed to determine [Formula: see text] peak, lactate threshold (LT), and economy. [Formula: see text] peak ([Formula: see text]) and power at LT were significantly correlated to power measured during the time trial (r = 0.83 and 0.69, respectively) but were not significantly correlated to performance time (r = - 0.42 and -0.45). The correlation with performance time improved significantly (p < 0.05) when these variables were normalized to Ad . Of note, Ad alone was better correlated to performance time (r = 0.85, p < 0.001) than any combination of non-normalized physiological measure. The best correlate with performance time was field-measured power output during the time trial normalized to Ad (r = - 0.92). AP only accounted for 54% of the variability in Ad . Accordingly, the correlation to performance time was significantly lower using power normalized to AP (r = - 0.75) or Est AP (r = - 0.71). In conclusion, unless normalized to Ad , level time trial performance in the field was not highly correlated to common laboratory measures. Furthermore, our field-measured Ad is easy to determine and was the single best predictor of level time trial performance.

  6. An Efficient Method for Transferring Adult Mosquitoes during Field Tests,

    DTIC Science & Technology

    CULICIDAE, *COLLECTING METHODS, REPRINTS, BLOOD SUCKING INSECTS, FIELD TESTS, HAND HELD, EFFICIENCY, LABORATORY EQUIPMENT, MORTALITY RATES , ADULTS, AEDES, ASPIRATORS, CULICIDAE, TEST AND EVALUATION, REPRINTS

  7. Advanced Fuzzy Potential Field Method for Mobile Robot Obstacle Avoidance

    PubMed Central

    Park, Jong-Wook; Kwak, Hwan-Joo; Kang, Young-Chang; Kim, Dong W.

    2016-01-01

    An advanced fuzzy potential field method for mobile robot obstacle avoidance is proposed. The potential field method primarily deals with the repulsive forces surrounding obstacles, while fuzzy control logic focuses on fuzzy rules that handle linguistic variables and describe the knowledge of experts. The design of a fuzzy controller—advanced fuzzy potential field method (AFPFM)—that models and enhances the conventional potential field method is proposed and discussed. This study also examines the rule-explosion problem of conventional fuzzy logic and assesses the performance of our proposed AFPFM through simulations carried out using a mobile robot. PMID:27123001

  8. Advanced Fuzzy Potential Field Method for Mobile Robot Obstacle Avoidance.

    PubMed

    Park, Jong-Wook; Kwak, Hwan-Joo; Kang, Young-Chang; Kim, Dong W

    2016-01-01

    An advanced fuzzy potential field method for mobile robot obstacle avoidance is proposed. The potential field method primarily deals with the repulsive forces surrounding obstacles, while fuzzy control logic focuses on fuzzy rules that handle linguistic variables and describe the knowledge of experts. The design of a fuzzy controller--advanced fuzzy potential field method (AFPFM)--that models and enhances the conventional potential field method is proposed and discussed. This study also examines the rule-explosion problem of conventional fuzzy logic and assesses the performance of our proposed AFPFM through simulations carried out using a mobile robot.

  9. Communication: Mean-field theory of water-water correlations in electrolyte solutions

    NASA Astrophysics Data System (ADS)

    Wilkins, David M.; Manolopoulos, David E.; Roke, Sylvie; Ceriotti, Michele

    2017-05-01

    Long-range ion induced water-water correlations were recently observed in femtosecond elastic second harmonic scattering experiments of electrolyte solutions. To further the qualitative understanding of these correlations, we derive an analytical expression that quantifies ion induced dipole-dipole correlations in a non-interacting gas of dipoles. This model is a logical extension of the Debye-Hückel theory that can be used to qualitatively understand how the combined electric field of the ions induces correlations in the orientational distributions of the water molecules in an aqueous solution. The model agrees with the results from molecular dynamics simulations and provides an important starting point for further theoretical work.

  10. Development of Mobile Tracer Correlation Method for Assessment of Air Emissions from Landfills and Other Area Sources

    EPA Science Inventory

    Abstract - A standardized version of a mobile tracer correlation measurement method was developed and used for assessment of methane emissions from 15 landfills in 56 field deployments from 2009 to 2013. This general area source measurement method uses advances in instrumentation...

  11. Development of Mobile Tracer Correlation Method for Assessment of Air Emissions from Landfills and Other Area Sources

    EPA Science Inventory

    Abstract - A standardized version of a mobile tracer correlation measurement method was developed and used for assessment of methane emissions from 15 landfills in 56 field deployments from 2009 to 2013. This general area source measurement method uses advances in instrumentation...

  12. Field testing method for photovaltaic modules

    NASA Astrophysics Data System (ADS)

    Ramos, Gerber N.

    For remote areas, where solar photovoltaic modules are the only source of power, it is essential to perform preventive maintenance to insure that the PV system works properly; unfortunately, prices for PV testers range from 1,700 to 8,000. To address this issue, a portable inexpensive tester and analysis methodology have been developed. Assembling a simple tester, which costs $530 and weighs about 5 pounds, and using the Four-Parameters PV Model, we characterized the current-voltage (I-V) curve at environmental testing conditions; and then employing radiation, temperature, and age degradation sensitivity equations, we extrapolated the I-V curve to standard testing conditions. After applying the methodology to three kinds of silicon modules (mono-crystalline, multi-crystalline, and thin-film), we obtained maximum power points up to 97% of the manufacturer's specifications. Therefore, based on these results, it is reasonably accurate and affordable to verify the performance of solar modules in the field.

  13. Digital image correlation method for calculating coefficients of Williams expansion in compact tension specimen

    NASA Astrophysics Data System (ADS)

    Ayatollahi, Majid R.; Moazzami, Mostafa

    2017-03-01

    The digital image correlation (DIC) method is used to obtain the coefficients of higher-order terms in the Williams expansion in a compact tension (CT) specimens made of polymethyl methacrylate (PMMA). The displacement field is determined by the correlation between reference image (i.e., before deformation) and deformed image. The part of displacements resulting from rigid body motion and rotation is eliminated from the displacement field. For a large number of points in the vicinity of the crack tip, an over-determined set of simultaneous linear equations is collected, and by using the fundamental concepts of the least-squares method, the coefficients of the Williams expansion are calculated for pure mode I conditions. The experimental results are then compared with the numerical results calculated by finite element method (FEM). Very good agreement is shown to exist between the DIC and FE results confirming the effectiveness of the DIC technique in obtaining the coefficients of higher order terms of Williams series expansion from the displacement field around the crack tip.

  14. Speckle correlation resolution enhancement of wide-field fluorescence imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Yilmaz, Hasan

    2016-03-01

    Structured illumination enables high-resolution fluorescence imaging of nanostructures [1]. We demonstrate a new high-resolution fluorescence imaging method that uses a scattering layer with a high-index substrate as a solid immersion lens [2]. Random scattering of coherent light enables a speckle pattern with a very fine structure that illuminates the fluorescent nanospheres on the back surface of the high-index substrate. The speckle pattern is raster-scanned over the fluorescent nanospheres using a speckle correlation effect known as the optical memory effect. A series of standard-resolution fluorescence images per each speckle pattern displacement are recorded by an electron-multiplying CCD camera using a commercial microscope objective. We have developed a new phase-retrieval algorithm to reconstruct a high-resolution, wide-field image from several standard-resolution wide-field images. We have introduced phase information of Fourier components of standard-resolution images as a new constraint in our algorithm which discards ambiguities therefore ensures convergence to a unique solution. We demonstrate two-dimensional fluorescence images of a collection of nanospheres with a deconvolved Abbe resolution of 116 nm and a field of view of 10 µm × 10 µm. Our method is robust against optical aberrations and stage drifts, therefore excellent for imaging nanostructures under ambient conditions. [1] M. G. L. Gustafsson, J. Microsc. 198, 82-87 (2000). [2] H. Yilmaz, E. G. van Putten, J. Bertolotti, A. Lagendijk, W. L. Vos, and A. P. Mosk, Optica 2, 424-429 (2015).

  15. Correlation between clinico-pathological outcome and typing of Haemophilus parasuis field strains.

    PubMed

    Aragon, Virginia; Cerdà-Cuéllar, Marta; Fraile, Lorenzo; Mombarg, Mark; Nofrarías, Miquel; Olvera, Alexandre; Sibila, Marina; Solanes, David; Segalés, Joaquim

    2010-05-19

    Haemophilus parasuis is the etiologic agent of Glässer's disease in pigs, which is pathologically characterized by serofibrinous polyserositis and arthritis. H. parasuis include virulent and non-virulent strains and confirmation of virulence in H. parasuis is still dependent on experimental reproduction of the disease. Since the variability in virulence is supported by serotyping and genotyping (particularly, multilocus sequence typing [MLST]), we examined the relationship between the classification of 8 field strains by these methods and their capacity to cause disease in snatch-farrowed, colostrum-deprived piglets. The severity of clinical signs and lesions produced by the different strains correlated with the quantity of H. parasuis recovered from the lesions. However, the virulence of the strains in the animal model did not show a total correlation with their serovar or their classification by MLST. More studies are needed to identify a virulence marker that could substitute animal experimentation in H. parasuis. In addition, we reproduced disease in domestic pigs with a strain isolated from the nasal cavity of wild boars. This result indicates the existence of virulent strains of H. parasuis in wild suids, which could produce disease under appropriate circumstances, and suggests a possible source of infection for domestic pigs. Copyright 2009 Elsevier B.V. All rights reserved.

  16. GW correlation effects on plutonium quasiparticle energies: changes in crystal-field splitting

    SciTech Connect

    Albers, Robert C; Chantis, Athanasios N; Svane, Axel; Christensen, Niels E

    2009-01-01

    We present results for the electronic structure of plutonium by using a recently developed quasiparticle self-consistent GW method (QSGW). We consider a paramagnetic solution without spin-orbit interaction as a function of volume for the face-centered cubic (fcc) unit cell. We span unit-cell volumes ranging from 10% greater than the equilibrium volume of the 8 phase to 90 % of the equivalent for the a phase of Pu. The self-consistent GW quasiparticle energies are compared to those obtained within the Local Density Approximation (LDA). The goal of the calculations is to understand systematic trends in the effects of electronic correlations on the quasiparticle energy bands of Pu as a function of the localization of the J orbitals. We show that correlation effects narrow the f bands in two significantly different ways. Besides the expected narrowing of individual f bands (flatter dispersion), we find that an even more significant effect on the f bands is a decrease in the crystal-field splitting of the different bands

  17. A self-constrained inversion of magnetic data based on correlation method

    NASA Astrophysics Data System (ADS)

    Sun, Shida; Chen, Chao

    2016-12-01

    Geologically-constrained inversion is a powerful method for producing geologically reasonable solutions in geophysical exploration problems. But in many cases, except the observed geophysical data to be inverted, the geological information is insufficiently available for improving reliability of recovered models. To deal with these situations, self-constraints extracted from preprocessing observed data have been applied to constrain the inversion. In this paper, we present a self-constrained inversion method based on correlation method. In our approach the correlation results are first obtained by calculating the cross-correlation between theoretical data and horizontal gradients of the observed data. Subsequently, we propose two specific strategies to extract the spatial variation from the correlation results and then translate them into spatial weighting functions. Incorporating the spatial weighting functions into the model objective function, we obtain self-constrained solutions with higher reliability. We presented two synthetic and one field magnetic data example to test the validity. All results demonstrate that the solution from our self-constrained inversion can delineate the geological bodies with clearer boundaries and much more concentrated physical property.

  18. Correlation of LANDSAT lineaments with Devonian gas fields in Lawrence County, Ohio

    NASA Technical Reports Server (NTRS)

    Johnson, G. O.

    1981-01-01

    In an effort to locate sources of natural gas in Ohio, the fractures and lineaments in Black Devonian shale were measured by: (1) field mapping of joints, swarms, and fractures; (2) stereophotointerpretation of geomorphic lineaments with precise photoquads; and (3) by interpreting the linear features on LANDSAT images. All results were compiled and graphically represented on 1:250,000 scale maps. The geologic setting of Lawrence County was defined and a field fracture map was generated and plotted as rose patterns at the exposure site. All maps were compared, contrasted, and correlated by superimposing each over the other as a transparency. The LANDSAT lineaments had significant correlation with the limits of oil and gas producing fields. These limits included termination of field production as well as extensions to other fields. The lineaments represent real rock fractures with zones of increased permeability in the near surface bedrock.

  19. Correlation of LANDSAT lineaments with Devonian gas fields in Lawrence County, Ohio

    NASA Technical Reports Server (NTRS)

    Johnson, G. O.

    1981-01-01

    In an effort to locate sources of natural gas in Ohio, the fractures and lineaments in Black Devonian shale were measured by: (1) field mapping of joints, swarms, and fractures; (2) stereophotointerpretation of geomorphic lineaments with precise photoquads; and (3) by interpreting the linear features on LANDSAT images. All results were compiled and graphically represented on 1:250,000 scale maps. The geologic setting of Lawrence County was defined and a field fracture map was generated and plotted as rose patterns at the exposure site. All maps were compared, contrasted, and correlated by superimposing each over the other as a transparency. The LANDSAT lineaments had significant correlation with the limits of oil and gas producing fields. These limits included termination of field production as well as extensions to other fields. The lineaments represent real rock fractures with zones of increased permeability in the near surface bedrock.

  20. Prediction of sound fields in acoustical cavities using the boundary element method. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Kipp, C. R.; Bernhard, R. J.

    1985-01-01

    A method was developed to predict sound fields in acoustical cavities. The method is based on the indirect boundary element method. An isoparametric quadratic boundary element is incorporated. Pressure, velocity and/or impedance boundary conditions may be applied to a cavity by using this method. The capability to include acoustic point sources within the cavity is implemented. The method is applied to the prediction of sound fields in spherical and rectangular cavities. All three boundary condition types are verified. Cases with a point source within the cavity domain are also studied. Numerically determined cavity pressure distributions and responses are presented. The numerical results correlate well with available analytical results.

  1. Anisotropic Turbulent Advection of a Passive Vector Field: Effects of the Finite Correlation Time

    NASA Astrophysics Data System (ADS)

    Antonov, N. V.; Gulitskiy, N. M.

    2016-02-01

    The turbulent passive advection under the environment (velocity) field with finite correlation time is studied. Inertial-range asymptotic behavior of a vector (e.g., magnetic) field, passively advected by a strongly anisotropic turbulent flow, is investigated by means of the field theoretic renormalization group and the operator product expansion. The advecting velocity field is Gaussian, with finite correlation time and prescribed pair correlation function. The inertial-range behavior of the model is described by two regimes (the limits of vanishing or infinite correlation time) that correspond to nontrivial fixed points of the RG equations and depend on the relation between the exponents in the energy energy spectrum ɛ ∝ k⊥1-ξ and the dispersion law ω ∝ k⊥2-η . The corresponding anomalous exponents are associated with the critical dimensions of tensor composite operators built solely of the passive vector field itself. In contrast to the well-known isotropic Kraichnan model, where various correlation functions exhibit anomalous scaling behavior with infinite sets of anomalous exponents, here the dependence on the integral turbulence scale L has a logarithmic behavior: instead of power-like corrections to ordinary scaling, determined by naive (canonical) dimensions, the anomalies manifest themselves as polynomials of logarithms of L. Due to the presence of the anisotropy in the model, all multiloop diagrams are equal to zero, thus this result is exact.

  2. Reliability of field methods for estimating body fat.

    PubMed

    Loenneke, Jeremy P; Barnes, Jeremy T; Wilson, Jacob M; Lowery, Ryan P; Isaacs, Melissa N; Pujol, Thomas J

    2013-09-01

    When health professionals measure the fitness levels of clients, body composition is usually estimated. In practice, the reliability of the measurement may be more important than the actual validity, as reliability determines how much change is needed to be considered meaningful. Therefore, the purpose of this study was to determine the reliability of two bioelectrical impedance analysis (BIA) devices (in athlete and non-athlete mode) and compare that to 3-site skinfold (SKF) readings. Twenty-one college students attended the laboratory on two occasions and had their measurements taken in the following order: body mass, height, SKF, Tanita body fat-350 (BF-350) and Omron HBF-306C. There were no significant pairwise differences between Visit 1 and Visit 2 for any of the estimates (P>0.05). The Pearson product correlations ranged from r = 0.933 for HBF-350 in the athlete mode (A) to r = 0.994 for SKF. The ICC's ranged from 0.93 for HBF-350(A) to 0.992 for SKF, and the MD's ranged from 1.8% for SKF to 5.1% for BF-350(A). The current study found that SKF and HBF-306C(A) were the most reliable (<2%) methods of estimating BF%, with the other methods (BF-350, BF-350(A), HBF-306C) producing minimal differences greater than 2%. In conclusion, the SKF method presented with the best reliability because of its low minimal difference, suggesting this method may be the best field method to track changes over time if you have an experienced tester. However, if technical error is a concern, the practitioner may use the HBF-306C(A) because it had a minimal difference value comparable to SKF.

  3. Background field method in the gradient flow

    NASA Astrophysics Data System (ADS)

    Suzuki, Hiroshi

    2015-10-01

    In perturbative consideration of the Yang-Mills gradient flow, it is useful to introduce a gauge non-covariant term (“gauge-fixing term”) to the flow equation that gives rise to a Gaussian damping factor also for gauge degrees of freedom. In the present paper, we consider a modified form of the gauge-fixing term that manifestly preserves covariance under the background gauge transformation. It is shown that our gauge-fixing term does not affect gauge-invariant quantities as does the conventional gauge-fixing term. The formulation thus allows a background gauge covariant perturbative expansion of the flow equation that provides, in particular, a very efficient computational method of expansion coefficients in the small flow time expansion. The formulation can be generalized to systems containing fermions.

  4. Retinal NFL thinning on OCT correlates with visual field loss in pediatric craniopharyngioma.

    PubMed

    Bialer, Omer Y; Goldenberg-Cohen, Nitza; Toledano, Helen; Snir, Moshe; Michowiz, Shalom

    2013-12-01

    To investigate the use of peripapillary optical coherence tomography for monitoring optic neuropathy in pediatric craniopharyngioma. Retrospective, consecutive-cohort, single-centre chart analysis. Twenty children with craniopharyngioma treated at a pediatric medical centre from 1999 to 2011. The medical files were reviewed for demographics and optic nerve function. Findings for visual acuity and visual fields were analyzed against repeated optical coherence tomography (OCT) measurements of peripapillary nerve fibre layer thickness (using either time-domain Stratus OCT or spectral-domain Cirrus OCT). Average age at diagnosis was 6.5 ± 3.88 years. The most common presenting symptom was headache; only 1 child complained of visual loss. Mean best corrected visual acuity (logMAR) was 0.036 ± 0.06 in the 17 healthy eyes and 1.05 ± 1.45 in the 23 eyes with optic neuropathy. Positive signs included relative afferent pupillary defect (8/20), visual acuity loss (7/20), temporal visual field loss (bilateral 4/15, unilateral 4/15), papilledema (3/20), and unilateral/bilateral optic disc pallor (14/20). RNFL thickness was significantly lower in eyes with optic neuropathy than in healthy eyes (65 ± 22 µm vs 86.2 ± 29 µm; p = 0.000) and correlated with visual acuity (r = -0.43 to -0.17, p = 0.0001) and presence or absence of a visual field defect (mean difference, 26.1 ± 5.8 µm, p = 0.003). Ten children showed no change in RNFL thickness over time (mean 18 ± 14.2 months). A thinner RNFL on ocular coherence tomography is correlated with poorer visual acuity and visual field loss. Ocular coherence tomography may serve as an objective method to quantify axonal loss caused by craniopharyngioma. Further investigation is needed to determine its use for evaluating progressive axonal loss over time. Copyright © 2013 Canadian Ophthalmological Society. Published by Elsevier Inc. All rights reserved.

  5. Correlated electric field and low-energy electron measurements in the low-altitude polar cusp

    NASA Technical Reports Server (NTRS)

    Kintner, P. M.; Ackerson, K. L.; Gurnett, D. A.; Frank, L. A.

    1978-01-01

    Correlated electric field and low-energy electron measurements are presented for two passes of Hawkeye 1 through the south polar cusp at 2000-km altitude during local morning. In one case the electric field reversal coincides with the boundary of detectable 5.2keV electron intensities and the equatorward boundary of the cusp. In the other case the electric field reversal and the 5.2 keV electron trapping boundary coincide, but the equatorward edge of the cusp as determined from the presence of 180 eV electron intensities is 5 degrees invariant latitude equatorward of the electric field reversal. It is concluded that in the second case, electron intensities associated with the polar cusp populate closed dayside field lines, and hence the corresponding equatorward edge of these electron intensities is not always an indicator of the boundary between closed dayside field lines and polar cap field lines.

  6. Correlated electric field and low-energy electron measurements in the low-altitude polar cusp

    NASA Technical Reports Server (NTRS)

    Kintner, P. M.; Ackerson, K. L.; Gurnett, D. A.; Frank, L. A.

    1978-01-01

    Correlated electric field and low-energy electron measurements are presented for two passes of Hawkeye 1 through the south polar cusp at 2000-km altitude during local morning. In one case the electric field reversal coincides with the boundary of detectable 5.2keV electron intensities and the equatorward boundary of the cusp. In the other case the electric field reversal and the 5.2 keV electron trapping boundary coincide, but the equatorward edge of the cusp as determined from the presence of 180 eV electron intensities is 5 degrees invariant latitude equatorward of the electric field reversal. It is concluded that in the second case, electron intensities associated with the polar cusp populate closed dayside field lines, and hence the corresponding equatorward edge of these electron intensities is not always an indicator of the boundary between closed dayside field lines and polar cap field lines.

  7. Measurement of temporal correlations of the overhauser field in a double quantum dot.

    PubMed

    Reilly, D J; Taylor, J M; Laird, E A; Petta, J R; Marcus, C M; Hanson, M P; Gossard, A C

    2008-12-05

    In quantum dots made from materials with nonzero nuclear spins, hyperfine coupling creates a fluctuating effective Zeeman field (Overhauser field) felt by electrons, which can be a dominant source of spin qubit decoherence. We characterize the spectral properties of the fluctuating Overhauser field in a GaAs double quantum dot by measuring correlation functions and power spectra of the rate of singlet-triplet mixing of two separated electrons. Away from zero field, spectral weight is concentrated below 10 Hz, with approximately 1/f2 dependence on frequency f. This is consistent with a model of nuclear spin diffusion, and indicates that decoherence can be largely suppressed by echo techniques.

  8. Method for making field-structured memory materials

    DOEpatents

    Martin, James E.; Anderson, Robert A.; Tigges, Chris P.

    2002-01-01

    A method of forming a dual-level memory material using field structured materials. The field structured materials are formed from a dispersion of ferromagnetic particles in a polymerizable liquid medium, such as a urethane acrylate-based photopolymer, which are applied as a film to a support and then exposed in selected portions of the film to an applied magnetic or electric field. The field can be applied either uniaxially or biaxially at field strengths up to 150 G or higher to form the field structured materials. After polymerizing the field-structure materials, a magnetic field can be applied to selected portions of the polymerized field-structured material to yield a dual-level memory material on the support, wherein the dual-level memory material supports read-and-write binary data memory and write once, read many memory.

  9. Field ionization of free helium atoms: Correlation between the kinetic energy of ionized atoms and probability of their field ionization

    NASA Astrophysics Data System (ADS)

    Piskur, J.; Borg, L.; Stupnik, A.; Leisch, M.; Ernst, W. E.; Holst, B.

    2008-05-01

    In this paper the correlation between the kinetic energy of helium atoms and the probability of field ionization is investigated by exploiting the narrow velocity distribution of supersonic molecular beams. Field ionization measurements were carried out on supersonic helium beams at 298 K and 95 K corresponding to energies of about 65 meV and 20 meV, respectively, for the individual atoms. The field ionization was performed with a tungsten tip, radius of curvature 12 nm, kept at room temperature. The ionization probability was found to increase by about a factor 10 when the beam was cooled from 298 K to 95 K. The results presented in this paper are of importance for improving the understanding of field ionization and for the development of a new detector for helium and other molecular beams.

  10. Deformation methods in modelling of the inner magnetospheric electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Toivanen, P. K.

    2007-12-01

    Various deformation methods have been widely used in animation image processing. In common terms, they are mathematical presentations of deformations of an image drawn on an elastic material under stretching or compression of the material. Such a method has also been used in modelling of the magnetospheric magnetic fields, and recently been generalized to include also the electric fields. In this presentations, the theory of the deformation method and an application in a form of a new global magnetospheric electromagnetic field model are previewed. The main focus of the presentation is on the inner magnetospheric current systems and associated electromagnetic fields during quiet and disturbed periods. Finally, a short look at the modern deformation methods in image processing is taken. These methods include the Free Form Deformations and Moving Least Squares Deformations, and their future applications in magnetospheric field modelling are discussed.

  11. Comparison of induction motor field efficiency evaluation methods

    SciTech Connect

    Hsu, J.S.; Kueck, J.D.; Olszewski, M.; Casada, D.A.; Otaduy, P.J.; Tolbert, L.M.

    1996-10-01

    Unlike testing motor efficiency in a laboratory, certain methods given in the IEEE-Std 112 cannot be used for motor efficiency in the field. For example, it is difficult to load a motor in the field with a dynamometer when the motor is already coupled to driven equipment. The motor efficiency field evaluation faces a different environment from that for which the IEEE-Std 112 is chiefly written. A field evaluation method consists of one or several basic methods according to their physical natures. Their intrusivenesses and accuracies are also discussed. This study is useful for field engineers to select or to establish a proper efficiency evaluation method by understanding the theories and error sources of the methods.

  12. An autonomous surface discontinuity detection and quantification method by digital image correlation and phase congruency

    NASA Astrophysics Data System (ADS)

    Cinar, A. F.; Barhli, S. M.; Hollis, D.; Flansbjer, M.; Tomlinson, R. A.; Marrow, T. J.; Mostafavi, M.

    2017-09-01

    Digital image correlation has been routinely used to measure full-field displacements in many areas of solid mechanics, including fracture mechanics. Accurate segmentation of the crack path is needed to study its interaction with the microstructure and stress fields, and studies of crack behaviour, such as the effect of closure or residual stress in fatigue, require data on its opening displacement. Such information can be obtained from any digital image correlation analysis of cracked components, but it collection by manual methods is quite onerous, particularly for massive amounts of data. We introduce the novel application of Phase Congruency to detect and quantify cracks and their opening. Unlike other crack detection techniques, Phase Congruency does not rely on adjustable threshold values that require user interaction, and so allows large datasets to be treated autonomously. The accuracy of the Phase Congruency based algorithm in detecting cracks is evaluated and compared with conventional methods such as Heaviside function fitting. As Phase Congruency is a displacement-based method, it does not suffer from the noise intensification to which gradient-based methods (e.g. strain thresholding) are susceptible. Its application is demonstrated to experimental data for cracks in quasi-brittle (Granitic rock) and ductile (Aluminium alloy) materials.

  13. Influence of lattice vibrations on the field driven electronic transport in chains with correlated disorder

    NASA Astrophysics Data System (ADS)

    da Silva, L. D.; Sales, M. O.; Ranciaro Neto, A.; Lyra, M. L.; de Moura, F. A. B. F.

    2016-12-01

    We investigate electronic transport in a one-dimensional model with four different types of atoms and long-ranged correlated disorder. The latter was attained by choosing an adequate distribution of on-site energies. The wave-packet dynamics is followed by taking into account effects due to a static electric field and electron-phonon coupling. In the absence of electron-phonon coupling, the competition between correlated disorder and the static electric field promotes the occurrence of wave-packet oscillations in the regime of strong correlations. When the electron-lattice coupling is switched on, phonon scattering degrades the Bloch oscillations. For weak electron-phonon couplings, a coherent oscillatory-like dynamics of the wave-packet centroid persists for short periods of time. For strong couplings the wave-packet acquires a diffusive-like displacement and spreading. A slower sub-diffusive spreading takes place in the regime of weak correlations.

  14. Explicitly-correlated non-born-oppenheimer calculations of the HD molecule in a strong magnetic field

    NASA Astrophysics Data System (ADS)

    Adamowicz, Ludwik; Stanke, Monika; Tellgren, Erik; Helgaker, Trygve

    2017-08-01

    Explicitly correlated all-particle Gaussian functions with shifted centers (ECGs) are implemented within the earlier proposed effective variational non-Born-Oppenheimer method for calculating bound states of molecular systems in magnetic field (Adamowicz et al., 2015). The Hamiltonian used in the calculations is obtained by subtracting the operator representing the kinetic energy of the center-of-mass motion from the total laboratory-frame Hamiltonian. Test ECG calculations are performed for the HD molecule.

  15. Character of the correlation between the geographic distribution of auroras and the anomalous geomagnetic field

    NASA Astrophysics Data System (ADS)

    Degtiarev, V. I.; Nadubovich, Iu. A.; Platonov, O. I.; Shumilova, N. A.; Mishurinskii, B. E.

    1987-06-01

    Photographic measurements obtained on Taimyr and in the Iakutsk region are used in a statistical correlation of the distributions of the relative occurrence probability of auroras along the auroral zone and the magnitude of the anomalous geomagnetic field (AGF). A negative correlation between the AGF and the geographic distribution of auroras is established. Using topside sounding data, the characteristic dimensions of ionospheric irregularities in the auroral zone are determined which coincide with the regional scale of aurora distribution.

  16. Nonconvergence/Improper Solution Problems with the Correlated-Trait Correlated-Method Parameterization of a Multitrait-Multimethod Matrix

    ERIC Educational Resources Information Center

    Dumenci, Levent; Yates, Phillip D.

    2012-01-01

    Estimation problems associated with the correlated-trait correlated-method (CTCM) parameterization of a multitrait-multimethod (MTMM) matrix are widely documented: the model often fails to converge; even when convergence is achieved, one or more of the parameter estimates are outside the admissible parameter space. In this study, the authors…

  17. Diagnosing collisionless energy transfer using field-particle correlations: Vlasov-Poisson plasmas

    NASA Astrophysics Data System (ADS)

    Howes, Gregory G.; Klein, Kristopher G.; Li, Tak Chu

    2017-02-01

    Turbulence plays a key role in the conversion of the energy of large-scale fields and flows to plasma heat, impacting the macroscopic evolution of the heliosphere and other astrophysical plasma systems. Although we have long been able to make direct spacecraft measurements of all aspects of the electromagnetic field and plasma fluctuations in near-Earth space, our understanding of the physical mechanisms responsible for the damping of the turbulent fluctuations in heliospheric plasmas remains incomplete. Here we propose an innovative field-particle correlation technique that can be used to measure directly the secular energy transfer from fields to particles associated with collisionless damping of the turbulent fluctuations. Furthermore, this novel procedure yields information about the collisionless energy transfer as a function of particle velocity, providing vital new information that can help to identify the dominant collisionless mechanism governing the damping of the turbulent fluctuations. Kinetic plasma theory is used to devise the appropriate correlation to diagnose Landau damping, and the field-particle correlation technique is thoroughly illustrated using the simplified case of the Landau damping of Langmuir waves in a 1D-1V (one dimension in physical space and one dimension in velocity space) Vlasov-Poisson plasma. Generalizations necessary to apply the field-particle correlation technique to diagnose the collisionless damping of turbulent fluctuations in the solar wind are discussed, highlighting several caveats. This novel field-particle correlation technique is intended to be used as a primary analysis tool for measurements from current, upcoming and proposed spacecraft missions that are focused on the kinetic microphysics of weakly collisional heliospheric plasmas, including the Magnetospheric Multiscale (MMS), Solar Probe Plus, Solar Orbiter and Turbulence Heating ObserveR (THOR) missions.

  18. Correlation functions for Elekta aSi EPIDs used as transit dosimeter for open fields.

    PubMed

    Cilla, Savino; Fidanzio, Andrea; Greco, Francesca; Sabatino, Domenico; Russo, Aniello; Gargiulo, Laura; Azario, Luigi; Piermattei, Angelo

    2010-10-27

    In-vivo dosimetry techniques are currently being applied only by a few Centers because they require time-consuming implementation measurements, and workload for detector positioning and data analysis. The transit in-vivo dosimetry performed by the electronic portal imaging device (EPID) avoids the problem of solid-state detector positioning on the patient. Moreover, the dosimetric characterization of the recent Elekta aSi EPIDs in terms of signal stability and linearity make these detectors useful for the transit in-vivo dosimetry with 6, 10 and 15 MV photon beams. However, the implementation of the EPID transit dosimetry requires several measurements. Recently, the present authors have developed an in-vivo dosimetry method for 3D CRT based on correlation functions defined by the ratios between the transit signal, st (w,L), by the EPID and the phantom midplane dose, Dm(w,L), at the source to axis distance (SAD) as a function of the phantom thickness, w, and the square field dimensions, L. When the phantom midplane was positioned at distance, d, from the SAD, the ratios st(w,L)/s't(d,w,L) were used to take into account the variation of the scattered photon contributions on the EPID as a function of d and L.The aim of this paper is the implementation of a procedure that uses generalized correlation functions obtained by nine Elekta Precise linac beams. The procedure can be used by other Elekta Precise linacs equipped with the same aSi EPIDs, assuming the stabilities of the beam output factors and the EPID signals. The procedure here reported avoids measurements in solid water equivalent phantoms needed to implement the in-vivo dosimetry method in the radiotherapy department. A tolerance level ranging between ± 5% and ± 6% (depending on the type of tumor) was estimated for the comparison between the reconstructed isocenter dose, Diso, and the computed dose, Diso,TPS, by the treatment planning system (TPS).

  19. Self-consistent field model for strong electrostatic correlations and inhomogeneous dielectric media

    SciTech Connect

    Ma, Manman Xu, Zhenli

    2014-12-28

    Electrostatic correlations and variable permittivity of electrolytes are essential for exploring many chemical and physical properties of interfaces in aqueous solutions. We propose a continuum electrostatic model for the treatment of these effects in the framework of the self-consistent field theory. The model incorporates a space- or field-dependent dielectric permittivity and an excluded ion-size effect for the correlation energy. This results in a self-energy modified Poisson-Nernst-Planck or Poisson-Boltzmann equation together with state equations for the self energy and the dielectric function. We show that the ionic size is of significant importance in predicting a finite self energy for an ion in an inhomogeneous medium. Asymptotic approximation is proposed for the solution of a generalized Debye-Hückel equation, which has been shown to capture the ionic correlation and dielectric self energy. Through simulating ionic distribution surrounding a macroion, the modified self-consistent field model is shown to agree with particle-based Monte Carlo simulations. Numerical results for symmetric and asymmetric electrolytes demonstrate that the model is able to predict the charge inversion at high correlation regime in the presence of multivalent interfacial ions which is beyond the mean-field theory and also show strong effect to double layer structure due to the space- or field-dependent dielectric permittivity.

  20. Self-consistent field model for strong electrostatic correlations and inhomogeneous dielectric media.

    PubMed

    Ma, Manman; Xu, Zhenli

    2014-12-28

    Electrostatic correlations and variable permittivity of electrolytes are essential for exploring many chemical and physical properties of interfaces in aqueous solutions. We propose a continuum electrostatic model for the treatment of these effects in the framework of the self-consistent field theory. The model incorporates a space- or field-dependent dielectric permittivity and an excluded ion-size effect for the correlation energy. This results in a self-energy modified Poisson-Nernst-Planck or Poisson-Boltzmann equation together with state equations for the self energy and the dielectric function. We show that the ionic size is of significant importance in predicting a finite self energy for an ion in an inhomogeneous medium. Asymptotic approximation is proposed for the solution of a generalized Debye-Hückel equation, which has been shown to capture the ionic correlation and dielectric self energy. Through simulating ionic distribution surrounding a macroion, the modified self-consistent field model is shown to agree with particle-based Monte Carlo simulations. Numerical results for symmetric and asymmetric electrolytes demonstrate that the model is able to predict the charge inversion at high correlation regime in the presence of multivalent interfacial ions which is beyond the mean-field theory and also show strong effect to double layer structure due to the space- or field-dependent dielectric permittivity.

  1. Self-consistent field model for strong electrostatic correlations and inhomogeneous dielectric media

    NASA Astrophysics Data System (ADS)

    Ma, Manman; Xu, Zhenli

    2014-12-01

    Electrostatic correlations and variable permittivity of electrolytes are essential for exploring many chemical and physical properties of interfaces in aqueous solutions. We propose a continuum electrostatic model for the treatment of these effects in the framework of the self-consistent field theory. The model incorporates a space- or field-dependent dielectric permittivity and an excluded ion-size effect for the correlation energy. This results in a self-energy modified Poisson-Nernst-Planck or Poisson-Boltzmann equation together with state equations for the self energy and the dielectric function. We show that the ionic size is of significant importance in predicting a finite self energy for an ion in an inhomogeneous medium. Asymptotic approximation is proposed for the solution of a generalized Debye-Hückel equation, which has been shown to capture the ionic correlation and dielectric self energy. Through simulating ionic distribution surrounding a macroion, the modified self-consistent field model is shown to agree with particle-based Monte Carlo simulations. Numerical results for symmetric and asymmetric electrolytes demonstrate that the model is able to predict the charge inversion at high correlation regime in the presence of multivalent interfacial ions which is beyond the mean-field theory and also show strong effect to double layer structure due to the space- or field-dependent dielectric permittivity.

  2. Sensitivity-based virtual fields for the non-linear virtual fields method

    NASA Astrophysics Data System (ADS)

    Marek, Aleksander; Davis, Frances M.; Pierron, Fabrice

    2017-04-01

    The virtual fields method is an approach to inversely identify material parameters using full-field deformation data. In this manuscript, a new set of automatically-defined virtual fields for non-linear constitutive models has been proposed. These new sensitivity-based virtual fields reduce the influence of noise on the parameter identification. The sensitivity-based virtual fields were applied to a numerical example involving small strain plasticity; however, the general formulation derived for these virtual fields is applicable to any non-linear constitutive model. To quantify the improvement offered by these new virtual fields, they were compared with stiffness-based and manually defined virtual fields. The proposed sensitivity-based virtual fields were consistently able to identify plastic model parameters and outperform the stiffness-based and manually defined virtual fields when the data was corrupted by noise.

  3. A simple calculation method for determination of equivalent square field.

    PubMed

    Shafiei, Seyed Ali; Hasanzadeh, Hadi; Shafiei, Seyed Ahmad

    2012-04-01

    Determination of the equivalent square fields for rectangular and shielded fields is of great importance in radiotherapy centers and treatment planning software. This is accomplished using standard tables and empirical formulas. The goal of this paper is to present a formula based on analysis of scatter reduction due to inverse square law to obtain equivalent field. Tables are published by different agencies such as ICRU (International Commission on Radiation Units and measurements), which are based on experimental data; but there exist mathematical formulas that yield the equivalent square field of an irregular rectangular field which are used extensively in computation techniques for dose determination. These processes lead to some complicated and time-consuming formulas for which the current study was designed. In this work, considering the portion of scattered radiation in absorbed dose at a point of measurement, a numerical formula was obtained based on which a simple formula was developed to calculate equivalent square field. Using polar coordinate and inverse square law will lead to a simple formula for calculation of equivalent field. The presented method is an analytical approach based on which one can estimate the equivalent square field of a rectangular field and may be used for a shielded field or an off-axis point. Besides, one can calculate equivalent field of rectangular field with the concept of decreased scatter radiation with inverse square law with a good approximation. This method may be useful in computing Percentage Depth Dose and Tissue-Phantom Ratio which are extensively used in treatment planning.

  4. Speckle correlation method used to measure object's in-plane velocity

    SciTech Connect

    Schmid, Petr; Horvath, Pavel; Hrabovsky, Miroslav

    2007-06-20

    We present a measurement of an object's in-plane velocity in onedirection by the use of the speckle correlation method. Numerical correlationsof speckle patterns recorded periodically during motion of the object underinvestigation give information used to evaluate the object's in-plane velocity.The proposed optical setup uses a detection plane in the image field and enablesone to detect the object's velocity within the interval(10-150) {mu}m ? s-1.Simulation analysis shows a way of controlling the measuring range. Thepresented theory, simulation analysis, and setup are verified through anexperiment of measurement of the velocity profile of an object.

  5. Cross-correlation analysis of the AE index and the interplanetary magnetic field Bz component.

    NASA Technical Reports Server (NTRS)

    Meng, C.-I.; Tsurutani, B.; Kawasaki, K.; Akasofu, S.-I.

    1973-01-01

    A cross-correlation study between magnetospheric activity (the AE index) and the southward-directed component of the interplanetary magnetic field (IMF) is made for a total of 792 hours (33 days) with a time resolution of about 5.5 min. The peak correlation tends to occur when the interplanetary data are shifted approximately 40 min later with respect to the AE index data. Cross-correlation analysis is conducted on some idealized wave forms to illustrate that this delay between southward turning of the IMF and the AE index should not be interpreted as being the duration of the growth phase.

  6. Cross-correlation analysis of the AE index and the interplanetary magnetic field Bz component.

    NASA Technical Reports Server (NTRS)

    Meng, C.-I.; Tsurutani, B.; Kawasaki, K.; Akasofu, S.-I.

    1973-01-01

    A cross-correlation study between magnetospheric activity (the AE index) and the southward-directed component of the interplanetary magnetic field (IMF) is made for a total of 792 hours (33 days) with a time resolution of about 5.5 min. The peak correlation tends to occur when the interplanetary data are shifted approximately 40 min later with respect to the AE index data. Cross-correlation analysis is conducted on some idealized wave forms to illustrate that this delay between southward turning of the IMF and the AE index should not be interpreted as being the duration of the growth phase.

  7. A method for longitudinal relaxation time measurement in inhomogeneous fields

    NASA Astrophysics Data System (ADS)

    Chen, Hao; Cai, Shuhui; Chen, Zhong

    2017-08-01

    The spin-lattice relaxation time (T1) plays a crucial role in the study of spin dynamics, signal optimization and data quantification. However, the measurement of chemical shift-specific T1 constants is hampered by the magnetic field inhomogeneity due to poorly shimmed external magnetic fields or intrinsic magnetic susceptibility heterogeneity in samples. In this study, we present a new protocol to determine chemical shift-specific T1 constants in inhomogeneous fields. Based on intermolecular double-quantum coherences, the new method can resolve overlapped peaks in inhomogeneous fields. The measurement results are in consistent with the measurements in homogeneous fields using the conventional method. Since spatial encoding technique is involved, the experimental time for the new method is very close to that for the conventional method. With the aid of T1 knowledge, some concealed information can be exploited by T1 weighting experiments.

  8. X-ray microtomography using correlation of near-field speckles for material characterization.

    PubMed

    Zanette, Irene; Zdora, Marie-Christine; Zhou, Tunhe; Burvall, Anna; Larsson, Daniel H; Thibault, Pierre; Hertz, Hans M; Pfeiffer, Franz

    2015-10-13

    Nondestructive microscale investigation of objects is an invaluable tool in life and materials sciences. Currently, such investigation is mainly performed with X-ray laboratory systems, which are based on absorption-contrast imaging and cannot access the information carried by the phase of the X-ray waves. The phase signal is, nevertheless, of great value in X-ray imaging as it is complementary to the absorption information and in general more sensitive to visualize features with small density differences. Synchrotron facilities, which deliver a beam of high brilliance and high coherence, provide the ideal condition to develop such advanced phase-sensitive methods, but their access is limited. Here we show how a small modification of a laboratory setup yields simultaneously quantitative and 3D absorption and phase images of the object. This single-shot method is based on correlation of X-ray near-field speckles and represents a significant broadening of the capabilities of laboratory-based X-ray tomography.

  9. X-ray microtomography using correlation of near-field speckles for material characterization

    PubMed Central

    Zanette, Irene; Zdora, Marie-Christine; Zhou, Tunhe; Burvall, Anna; Larsson, Daniel H.; Thibault, Pierre; Hertz, Hans M.; Pfeiffer, Franz

    2015-01-01

    Nondestructive microscale investigation of objects is an invaluable tool in life and materials sciences. Currently, such investigation is mainly performed with X-ray laboratory systems, which are based on absorption-contrast imaging and cannot access the information carried by the phase of the X-ray waves. The phase signal is, nevertheless, of great value in X-ray imaging as it is complementary to the absorption information and in general more sensitive to visualize features with small density differences. Synchrotron facilities, which deliver a beam of high brilliance and high coherence, provide the ideal condition to develop such advanced phase-sensitive methods, but their access is limited. Here we show how a small modification of a laboratory setup yields simultaneously quantitative and 3D absorption and phase images of the object. This single-shot method is based on correlation of X-ray near-field speckles and represents a significant broadening of the capabilities of laboratory-based X-ray tomography. PMID:26424447

  10. Low field SQUID MRI devices, components and methods

    NASA Technical Reports Server (NTRS)

    Penanen, Konstantin I. (Inventor); Eom, Byeong H (Inventor); Hahn, Inseob (Inventor)

    2010-01-01

    Low field SQUID MRI devices, components and methods are disclosed. They include a portable low field (SQUID)-based MRI instrument and a portable low field SQUID-based MRI system to be operated under a bed where a subject is adapted to be located. Also disclosed is a method of distributing wires on an image encoding coil system adapted to be used with an NMR or MRI device for analyzing a sample or subject and a second order superconducting gradiometer adapted to be used with a low field SQUID-based MRI device as a sensing component for an MRI signal related to a subject or sample.

  11. Low field SQUID MRI devices, components and methods

    NASA Technical Reports Server (NTRS)

    Penanen, Konstantin I. (Inventor); Eom, Byeong H. (Inventor); Hahn, Inseob (Inventor)

    2011-01-01

    Low field SQUID MRI devices, components and methods are disclosed. They include a portable low field (SQUID)-based MRI instrument and a portable low field SQUID-based MRI system to be operated under a bed where a subject is adapted to be located. Also disclosed is a method of distributing wires on an image encoding coil system adapted to be used with an NMR or MRI device for analyzing a sample or subject and a second order superconducting gradiometer adapted to be used with a low field SQUID-based MRI device as a sensing component for an MRI signal related to a subject or sample.

  12. Low Field Squid MRI Devices, Components and Methods

    NASA Technical Reports Server (NTRS)

    Penanen, Konstantin I. (Inventor); Eom, Byeong H. (Inventor); Hahn, Inseob (Inventor)

    2013-01-01

    Low field SQUID MRI devices, components and methods are disclosed. They include a portable low field (SQUID)-based MRI instrument and a portable low field SQUID-based MRI system to be operated under a bed where a subject is adapted to be located. Also disclosed is a method of distributing wires on an image encoding coil system adapted to be used with an NMR or MRI device for analyzing a sample or subject and a second order superconducting gradiometer adapted to be used with a low field SQUID-based MRI device as a sensing component for an MRI signal related to a subject or sample.

  13. Low Field Squid MRI Devices, Components and Methods

    NASA Technical Reports Server (NTRS)

    Penanen, Konstantin I. (Inventor); Eom, Byeong H. (Inventor); Hahn, Inseob (Inventor)

    2014-01-01

    Low field SQUID MRI devices, components and methods are disclosed. They include a portable low field (SQUID)-based MRI instrument and a portable low field SQUID-based MRI system to be operated under a bed where a subject is adapted to be located. Also disclosed is a method of distributing wires on an image encoding coil system adapted to be used with an NMR or MRI device for analyzing a sample or subject and a second order superconducting gradiometer adapted to be used with a low field SQUID-based MRI device as a sensing component for an MRI signal related to a subject or sample.

  14. Theory and simulation of anisotropic pair correlations in ferrofluids in magnetic fields.

    PubMed

    Elfimova, Ekaterina A; Ivanov, Alexey O; Camp, Philip J

    2012-05-21

    Anisotropic pair correlations in ferrofluids exposed to magnetic fields are studied using a combination of statistical-mechanical theory and computer simulations. A simple dipolar hard-sphere model of the magnetic colloidal particles is studied in detail. A virial-expansion theory is constructed for the pair distribution function (PDF) which depends not only on the length of the pair separation vector, but also on its orientation with respect to the field. A detailed comparison is made between the theoretical predictions and accurate simulation data, and it is found that the theory works well for realistic values of the dipolar coupling constant (λ = 1), volume fraction (φ ≤ 0.1), and magnetic field strength. The structure factor is computed for wavevectors either parallel or perpendicular to the field. The comparison between theory and simulation is generally very good with realistic ferrofluid parameters. For both the PDF and the structure factor, there are some deviations between theory and simulation at uncommonly high dipolar coupling constants, and with very strong magnetic fields. In particular, the theory is less successful at predicting the behavior of the structure factors at very low wavevectors, and perpendicular Gaussian density fluctuations arising from strongly correlated pairs of magnetic particles. Overall, though, the theory provides reliable predictions for the nature and degree of pair correlations in ferrofluids in magnetic fields, and hence should be of use in the design of functional magnetic materials.

  15. HORIZONTAL FLOWS IN ACTIVE REGIONS FROM RING-DIAGRAM AND LOCAL CORRELATION TRACKING METHODS

    SciTech Connect

    Jain, Kiran; Tripathy, S. C.; Komm, R.; Hill, F.; Ravindra, B.

    2016-01-01

    Continuous high-cadence and high spatial resolution Dopplergrams allow us to study subsurface dynamics that may be further extended to explore precursors of visible solar activity on the surface. Since the p-mode power is absorbed in the regions of high magnetic field, the inferences in these regions are often presumed to have large uncertainties. In this paper, using the Dopplergrams from space-borne Helioseismic Magnetic Imager, we compare horizontal flows in a shear layer below the surface and the photospheric layer in and around active regions. The photospheric flows are calculated using the local correlation tracking (LCT) method, while the ring-diagram technique of helioseismology is used to infer flows in the subphotospheric shear layer. We find a strong positive correlation between flows from both methods near the surface. This implies that despite the absorption of acoustic power in the regions of strong magnetic field, the flows inferred from the helioseismology are comparable to those from the surface measurements. However, the magnitudes are significantly different; the flows from the LCT method are smaller by a factor of 2 than the helioseismic measurements. Also, the median difference between the direction of corresponding vectors is 49°.

  16. Application of the minimum correlation technique to the correction of the magnetic field measured by magnetometers on spacecraft

    NASA Technical Reports Server (NTRS)

    Mariani, F.

    1979-01-01

    Some aspects of the problem of obtaining precise, absolute determination of the vector of low magnetic fields existing in the interplanetary medium are addressed. In the case of a real S/C, there is always the possibility of a spurious field which includes the spacecraft residual field and/or possible field from the sensors, due to both electronic drifts or changes of the magnetic properties of the sensor core. These latter effects may occur during storage of the sensors prior to launching and/or in-flight. The reliability is demonstrated for a method which postulates that there should be no correlation between changes in measured field magnitude and changes in the measured inclination of the field with respect to any one of three fixed Cartesian component directions. Application of this minimum correlation technique to data from IMP-8 and Helios 1-2 shows it is appropriate for determination of the zero offset corrections of triaxial magnetometers. In general, a number of the order of 1000 consecutive data points is sufficient for a good determination.

  17. Longitudinal correlation properties of an optical field with broad angular and frequency spectra and their manifestation in interference microscopy

    SciTech Connect

    Lyakin, D V; Ryabukho, V P

    2013-10-31

    The results of theoretical and experimental studies of the longitudinal correlation properties of an optical field with broad angular and frequency spectra and manifestations of these properties in interference microscopy are presented. The joint and competitive influence of the angular and frequency spectra of the object-probing field on the longitudinal resolution and on the amplitude of the interference microscope signals from the interfaces between the media inside a multilayer object is demonstrated. The method of compensating the so-called defocusing effect that arises in the interference microscopy using objectives with a large numerical aperture is experimentally demonstrated, which consists in using as a light source in the interference microscope an illuminating interferometer with a frequency-broadband light source. This method of compensation may be used as the basis of simultaneous determination of geometric thickness and refractive index of media forming a multilayer object. (optical fields)

  18. Correlating field and laboratory rates of particle abrasion, Rio Medio, Sangre de Cristo Mountains, New Mexico

    NASA Astrophysics Data System (ADS)

    Polito, P. J.; Sklar, L. S.

    2006-12-01

    River bed sediments commonly fine downstream due to a combination of particle abrasion, selective transport of finer grains, and fining of the local sediment supply from hillslopes and tributaries. Particle abrasion rates can be directly measured in the laboratory using tumbling barrels and annular flumes, however, scaling experimental particle abrasion rates to the field has proven difficult due to the confounding effects of selective transport and local supply variations. Here we attempt to correlate laboratory and field rates of particle abrasion in a field setting where these confounding effects can be controlled. The Rio Medio, which flows westward from the crest of the Sangre de Cristo Mountains in north central New Mexico, is one of several streams studied by John P. Miller in the early 1960's. Several kilometers downstream of its headwaters, the river crosses the Picuris-Pecos fault. Upstream of the fault the river receives quartzite, sandstone and shale clasts from the Ortega Formation, while downstream sediments are supplied by the Embudo Granite. Because the upstream lithologies are not resupplied downstream of the fault, any observed fining of these clasts should be due only to abrasion and selective transport. We hypothesize that we can account for the effects of selective transport by comparing relative fining rates for the different upstream lithologies from both the field and a laboratory tumbler. By correlating laboratory abrasion rates with rock strength, we can predict the relative fining rates due solely to abrasion expected in the field; differences between the predicted and observed fining rates could then be attributed to selective transport. We used point counts to measure bed surface sediment grain size distributions at 15 locations along a 25 kilometer reach of the Rio Medio, beginning just downstream of the fault and ending upstream of a developed area with disturbed channel conditions. We recorded intermediate particle diameter as well

  19. Study on Two Methods for Nonlinear Force-Free Extrapolation Based on Semi-Analytical Field

    NASA Astrophysics Data System (ADS)

    Liu, S.; Zhang, H. Q.; Su, J. T.; Song, M. T.

    2011-03-01

    In this paper, two semi-analytical solutions of force-free fields (Low and Lou, Astrophys. J. 352, 343, 1990) have been used to test two nonlinear force-free extrapolation methods. One is the boundary integral equation (BIE) method developed by Yan and Sakurai ( Solar Phys. 195, 89, 2000), and the other is the approximate vertical integration (AVI) method developed by Song et al. ( Astrophys. J. 649, 1084, 2006). Some improvements have been made to the AVI method to avoid the singular points in the process of calculation. It is found that the correlation coefficients between the first semi-analytical field and extrapolated field using the BIE method, and also that obtained by the improved AVI method, are greater than 90% below a height 10 of the 64×64 lower boundary. For the second semi-analytical field, these correlation coefficients are greater than 80% below the same relative height. Although differences between the semi-analytical solutions and the extrapolated fields exist for both the BIE and AVI methods, these two methods can give reliable results for heights of about 15% of the extent of the lower boundary.

  20. Charge Ordered Insulator without Magnetic Order Studied by Correlator Projection Method

    NASA Astrophysics Data System (ADS)

    Hanasaki, Kota; Imada, Masatoshi

    2005-10-01

    The Hubbard model with additional intersite interaction ‘V’ (the extended Hubbard model) is investigated by the correlator projection method (CPM). CPM is a newly developed numerical method that combines the equation-of-motion approach and the dynamical mean-field theory. Using this method, properties of the extended Hubbard Model at quarter filling are discussed with special emphasis on the metal-insulator transition induced by electron-electron correlations. As we increase the interaction, a metal-insulator transition to a charge ordered insulator with antiferromagnetic order occurs at low temperatures, but a metal-insulator transition to a charge ordered insulator without magnetic symmetry breaking occurs at intermediate temperatures. Here, the magnetic order is found to be confined to low temperatures because of the smallness of the exchange coupling Jeff. The present results are in sharp contrast to the Hatree--Fock approximation whereas they are in agreement with the experimental results on quarter-filled materials with strong correlations such as organic BEDT-TTF conductors.

  1. On the mode I fracture analysis of cracked Brazilian disc using a digital image correlation method

    NASA Astrophysics Data System (ADS)

    Abshirini, Mohammad; Soltani, Nasser; Marashizadeh, Parisa

    2016-03-01

    Mode I of fracture of centrally cracked Brazilian disc was investigated experimentally using a digital image correlation (DIC) method. Experiments were performed on PMMA polymers subjected to diametric-compression load. The displacement fields were determined by a correlation between the reference and the deformed images captured before and during loading. The stress intensity factors were calculated by displacement fields using William's equation and the least square algorithm. The parameters involved in the accuracy of SIF calculation such as number of terms in William's equation and the region of analysis around the crack were discussed. The DIC results were compared with the numerical results available in literature and a very good agreement between them was observed. By extending the tests up to the critical state, mode I fracture toughness was determined by analyzing the image of specimen captured at the moment before fracture. The results showed that the digital image correlation was a reliable technique for the calculation of the fracture toughness of brittle materials.

  2. A component compensation method for magnetic interferential field

    NASA Astrophysics Data System (ADS)

    Zhang, Qi; Wan, Chengbiao; Pan, Mengchun; Liu, Zhongyan; Sun, Xiaoyong

    2017-04-01

    A new component searching with scalar restriction method (CSSRM) is proposed for magnetometer to compensate magnetic interferential field caused by ferromagnetic material of platform and improve measurement performance. In CSSRM, the objection function for parameter estimation is to minimize magnetic field (components and magnitude) difference between its measurement value and reference value. Two scalar compensation method is compared with CSSRM and the simulation results indicate that CSSRM can estimate all interferential parameters and external magnetic field vector with high accuracy. The magnetic field magnitude and components, compensated with CSSRM, coincide with true value very well. Experiment is carried out for a tri-axial fluxgate magnetometer, mounted in a measurement system with inertial sensors together. After compensation, error standard deviation of both magnetic field components and magnitude are reduced from more than thousands nT to less than 20 nT. It suggests that CSSRM provides an effective way to improve performance of magnetic interferential field compensation.

  3. Color night vision method based on the correlation between natural color and dual band night image

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Bai, Lian-fa; Zhang, Chuang; Chen, Qian; Gu, Guo-hua

    2009-07-01

    Color night vision technology can effectively improve the detection and identification probability. Current color night vision method based on gray scale modulation fusion, spectrum field fusion, special component fusion and world famous NRL method, TNO method will bring about serious color distortion, and the observers will be visual tired after long time observation. Alexander Toet of TNO Human Factors presents a method to fuse multiband night image a natural day time color appearance, but it need the true color image of the scene to be observed. In this paper we put forward a color night vision method based on the correlation between natural color image and dual band night image. Color display is attained through dual-band low light level images and their fusion image. Actual color image of the similar scene is needed to obtain color night vision image, the actual color image is decomposed to three gray-scale images of RGB color module, and the short wave LLL image, long wave LLL image and their fusion image are compared to them through gray-scale spatial correlation method, and the color space mapping scheme is confirmed by correlation. Gray-scale LLL images and their fusion image are adjusted through the variation of HSI color space coefficient, and the coefficient matrix is built. Color display coefficient matrix of LLL night vision system is obtained by multiplying the above coefficient matrix and RGB color space mapping matrix. Emulation experiments on general scene dual-band color night vision indicate that the color display effect is approving. This method was experimented on dual channel dual spectrum LLL color night vision experimental apparatus based on Texas Instruments digital video processing device DM642.

  4. Evaluation of Test/Analysis Correlation Methods for Crash Applications

    NASA Technical Reports Server (NTRS)

    Lyle, Karen H.; Bark, Lindley W.; Jackson, Karen E.

    2001-01-01

    A project has been initiated to improve crash test and analysis correlation. The work in this paper concentrated on the test and simulation results for a fuselage section. Two drop tests of the section were conducted. The first test was designed to excite the linear structural response for comparison with finite element modal analysis results. The second test was designed to provide data for correlation with crash simulations. An MSC.Dytran model was developed to generate nonlinear transient dynamic results. Following minor modifications, the same model was executed in MSC.Nastran to generate modal analysis results. The results presented in this paper concentrate on evaluation of correlation methodologies for crash test data and finite element simulation results.

  5. Correlation between morphology and ambipolar transport in organic field-effect transistors

    NASA Astrophysics Data System (ADS)

    Singh, Th. B.; Günes, S.; Marjanović, N.; Sariciftci, N. S.; Menon, R.

    2005-06-01

    Attaining ambipolar charge transport in organic field-effect transistors (OFET) is highly desirable from both fundamental understanding and application points of view. We present the results of an approach to obtain ambipolar OFET with an active layer of organic semiconductor blends using semiconducting polymers in composite with fullerene derivatives. Clear features of forming the superposition of both hole and electron-enhanced channels for an applied gate field are observed. The present studies suggest a strong correlation of thin-film nanomorphology and ambipolar transport in field-effect devices.

  6. Strongly correlated states of a small cold-atom cloud from geometric gauge fields

    SciTech Connect

    Julia-Diaz, B.; Dagnino, D.; Barberan, N.; Guenter, K. J.; Dalibard, J.; Grass, T.; Lewenstein, M.

    2011-11-15

    Using exact diagonalization for a small system of cold bosonic atoms, we analyze the emergence of strongly correlated states in the presence of an artificial magnetic field. This gauge field is generated by a laser beam that couples two internal atomic states, and it is related to Berry's geometrical phase that emerges when an atom follows adiabatically one of the two eigenstates of the atom-laser coupling. Our approach allows us to go beyond the adiabatic approximation, and to characterize the generalized Laughlin wave functions that appear in the strong magnetic-field limit.

  7. Magnetic field dependence of the longitudinal and transverse spin correlation in the Blume-Hubbard theory

    NASA Technical Reports Server (NTRS)

    Sung, C. C.

    1973-01-01

    The longitudinal and transverse spin-correlation functions of local paramagnetic impurities are solved in the long-time limit on the basis of the Blume-Hubbard theory. The magnetic field dependence of the nuclear spin-lattice relaxation via paramagnetic centers is in good agreement with the experimental data by McHenry et al.

  8. Sequential accelerated tests: Improving the correlation of accelerated tests to module performance in the field

    NASA Astrophysics Data System (ADS)

    Felder, Thomas; Gambogi, William; Stika, Katherine; Yu, Bao-Ling; Bradley, Alex; Hu, Hongjie; Garreau-Iles, Lucie; Trout, T. John

    2016-09-01

    DuPont has been working steadily to develop accelerated backsheet tests that correlate with solar panels observations in the field. This report updates efforts in sequential testing. Single exposure tests are more commonly used and can be completed more quickly, and certain tests provide helpful predictions of certain backsheet failure modes. DuPont recommendations for single exposure tests are based on 25-year exposure levels for UV and humidity/temperature, and form a good basis for sequential test development. We recommend a sequential exposure of damp heat followed by UV then repetitions of thermal cycling and UVA. This sequence preserves 25-year exposure levels for humidity/temperature and UV, and correlates well with a large body of field observations. Measurements can be taken at intervals in the test, although the full test runs 10 months. A second, shorter sequential test based on damp heat and thermal cycling tests mechanical durability and correlates with loss of mechanical properties seen in the field. Ongoing work is directed toward shorter sequential tests that preserve good correlation to field data.

  9. Field-Particle Correlations as a Measure of Turbulent Damping in Collisionless Plasmas

    NASA Astrophysics Data System (ADS)

    Klein, K. G.

    2016-12-01

    Determination of the mechanisms that damp turbulent fluctuations in collisionless plasmas such as the solar wind is a fundamental physics question, one which is a focus of a number of forthcoming and proposed spacecraft missions, including Solar Probe Plus, Solar Orbiter, and THOR. We present a novel theoretically motivated technique to identify the dominant dissipation mechanisms from single point, in situ spacecraft observations of the type these spacecraft will make. As the transfer of energy in a collisionless plasma is governed by the field-particle interaction term in the Vlasov equation, a correlation of the factors in that term, functions of the electromagnetic fields and perturbed distributions, can be constructed to measure the secular transfer of energy from fields to particles as a function of particle velocity. The velocity space structure of this energy transfer differs depending on the mechanism responsible, allowing field-particle correlations calculated as function of velocity to distinguish between proposed dissipation mechanisms. Following a discussion of the underlying plasma theory, we calculate correlations using single-point data from a range of nonlinear kinetic simulations of increasing complexity, including electrostatic, gyrokinetic, and hybrid Vlasov-Maxwell codes. Correlations extracted from these simulations are shown to distinguish between the accessible dissipation mechanisms. We comment on the application of this technique to spacecraft data, with particular attention to the usefulness for the proposed THOR mission, which should allow us to identify the physical mechanisms that damp the turbulence in the solar wind.

  10. Diagnosing collisionless energy transfer using field-particle correlations: gyrokinetic turbulence

    NASA Astrophysics Data System (ADS)

    Klein, Kristopher G.; Howes, Gregory G.; Tenbarge, Jason M.

    2017-08-01

    Determining the physical mechanisms that extract energy from turbulent fluctuations in weakly collisional magnetized plasmas is necessary for a more complete characterization of the behaviour of a variety of space and astrophysical plasmas. Such a determination is complicated by the complex nature of the turbulence as well as observational constraints, chiefly that in situ measurements of such plasmas are typically only available at a single point in space. Recent work has shown that correlations between electric fields and particle velocity distributions constructed from single-point measurements produce a velocity-dependent signature of the collisionless damping mechanism. We extend this work by constructing field-particle correlations using data sets drawn from single points in strongly driven, turbulent, electromagnetic gyrokinetic simulations to demonstrate that this technique can identify the collisionless mechanisms operating in such systems. The velocity-space structure of the correlation between proton distributions and parallel electric fields agrees with expectations of resonant mechanisms transferring energy collisionlessly in turbulent systems. This work motivates the eventual application of field-particle correlations to spacecraft measurements in the solar wind, with the ultimate goal to determine the physical mechanisms that dissipate magnetized plasma turbulence.

  11. PHREATOPHYTE WATER USE ESTIMATED BY EDDY-CORRELATION METHODS.

    USGS Publications Warehouse

    Weaver, H.L.; Weeks, E.P.; Campbell, G.S.; Stannard, D.I.; Tanner, B.D.

    1986-01-01

    Water-use was estimated for three phreatophyte communities: a saltcedar community and an alkali-Sacaton grass community in New Mexico, and a greasewood rabbit-brush-saltgrass community in Colorado. These water-use estimates were calculated from eddy-correlation measurements using three different analyses, since the direct eddy-correlation measurements did not satisfy a surface energy balance. The analysis that seems to be most accurate indicated the saltcedar community used from 58 to 87 cm (23 to 34 in. ) of water each year. The other two communities used about two-thirds this quantity.

  12. Correlative analysis of breast lesions on full-field digital mammography and magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Yuan, Yading

    Multi-modality imaging techniques are increasingly being applied in clinical practice to improve the accuracy with which breast cancer can be diagnosed. However, interpreting images from different modalities is not trivial as different images of the same lesion may exhibit different physical lesion attributes, and currently the various image modality acquisitions are performed under different breast positioning protocols. The general objective of this research is to investigate computerized correlative feature analysis (CFA) methods for integrating information from full-field digital mammographic (FFDM) images and dynamic contrast-enhanced magnetic resonance (DCE-MR) images by taking advantage of the information from different imaging modalities, and thus improving the diagnostic ability of computer-aided diagnosis (CADx) in breast cancer workup. The main hypothesis to be tested is that by incorporating correlative feature analysis in CADx, one can achieve an accurate and efficient discrimination between corresponding and non-corresponding lesion pairs, and subsequently improve performance in the estimation of computer-estimated probabilities of malignancy. The main contributions of this research work are summarized as follows. (1) A novel active-contour model based algorithm was developed for lesion segmentation on mammograms. This new algorithm yielded a statistically improved segmentation performance as compared to previously developed methods: a region-growing method and a radial gradient index (RGI) based method. (2) A computerized feature-based, supervised-learning driven CFA method was investigated to identify corresponding lesions in different mammographic views. The performance obtained by combining multiple features was found to be statistically better than the use of a distance feature alone, and robust across different mammographic view combinations. (3) A multi-modality CADx method that automatically selects and combines discriminative information from

  13. Correlating the EMC analysis and testing methods for space systems in MIL-STD-1541A

    NASA Technical Reports Server (NTRS)

    Perez, Reinaldo J.

    1990-01-01

    A study was conducted to improve the correlation between the electromagnetic compatibility (EMC) analysis models stated in MIL-STD-1541A and the suggested testing methods used for space systems. The test and analysis methods outlined in MIL-STD-1541A are described, and a comparative assessment of testing and analysis techniques as they relate to several EMC areas is presented. Suggestions on present analysis and test methods are introduced to harmonize and bring the analysis and testing tools in MIL-STD-1541A into closer agreement. It is suggested that test procedures in MIL-STD-1541A must be improved by providing alternatives to the present use of shielded enclosures as the primary site for such tests. In addition, the alternate use of anechoic chambers and open field test sites must be considered.

  14. Computation of electronic structure and magnetic properties of strongly correlated materials with LDA+DMFT method

    NASA Astrophysics Data System (ADS)

    Skornyakov, S. L.; Anisimov, V. I.

    2015-04-01

    In this review, we describe general ideas of the LDA+DMFT method which merges dynamical mean-field theory (DMFT) and density functional theory (in particular the local density approximation (LDA)). Nowadays, the LDA+DMFT computational scheme is the most powerful numerical tool for studying physical properties of real materials and chemical compounds. It incorporates the advantage of DMFT to treat the full range of local dynamical Coulomb correlations and the ability of band methods to describe material-specific band dispersion caused by the lattice periodicity. We briefly discuss underlying physical ideas of LDA+DMFT and its mathematical implementation. Then different algorithms applied to solution of the DMFT impurity problem are briefly described. We then give examples of successful applications of the LDA+DMFT method to study spectral and magnetic properties of recently synthesized compounds like pnictide superconductors as well as classic charge-transfer systems NiO and MnO.

  15. Field-measured drag area is a key correlate of level cycling time trial performance

    PubMed Central

    Peterman, James E.; Lim, Allen C.; Ignatz, Ryan I.; Edwards, Andrew G.

    2015-01-01

    Drag area (Ad) is a primary factor determining aerodynamic resistance during level cycling and is therefore a key determinant of level time trial performance. However, Ad has traditionally been difficult to measure. Our purpose was to determine the value of adding field-measured Ad as a correlate of level cycling time trial performance. In the field, 19 male cyclists performed a level (22.1 km) time trial. Separately, field-determined Ad and rolling resistance were calculated for subjects along with projected frontal area assessed directly (AP) and indirectly (Est AP). Also, a graded exercise test was performed to determine \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$\\dot {V}{O}_{2}$\\end{document}V˙O2 peak, lactate threshold (LT), and economy. \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$\\dot {V}{O}_{2}$\\end{document}V˙O2 peak (\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$\\mathrm{l}~\\min ^{-1}$\\end{document}lmin−1) and power at LT were significantly correlated to power measured during the time trial (r = 0.83 and 0.69, respectively) but were not significantly correlated to performance time (r = − 0.42 and −0.45). The correlation with performance time improved significantly (p < 0.05) when these variables were normalized to Ad. Of note, Ad alone was better correlated to performance time (r = 0.85, p < 0.001) than any combination of non-normalized physiological

  16. Field transients of coherent terahertz synchrotron radiation accessed via time-resolving and correlation techniques

    SciTech Connect

    Pohl, A.; Hübers, H.-W.; Semenov, A.; Hoehl, A.; Ulm, G.; Ries, M.; Wüstefeld, G.; Ilin, K.; Thoma, P.; Siegel, M.

    2016-03-21

    Decaying oscillations of the electric field in repetitive pulses of coherent synchrotron radiation in the terahertz frequency range was evaluated by means of time-resolving and correlation techniques. Comparative analysis of real-time voltage transients of the electrical response and interferograms, which were obtained with an ultrafast zero-bias Schottky diode detector and a Martin-Puplett interferometer, delivers close values of the pulse duration. Consistent results were obtained via the correlation technique with a pair of Golay Cell detectors and a pair of resonant polarisation-sensitive superconducting detectors integrated on one chip. The duration of terahertz synchrotron pulses does not closely correlate with the duration of single-cycle electric field expected for the varying size of electron bunches. We largely attribute the difference to the charge density oscillations in electron bunches and to the low-frequency spectral cut-off imposed by both the synchrotron beamline and the coupling optics of our detectors.

  17. Overlay control methodology comparison: field-by-field and high-order methods

    NASA Astrophysics Data System (ADS)

    Huang, Chun-Yen; Chiu, Chui-Fu; Wu, Wen-Bin; Shih, Chiang-Lin; Huang, Chin-Chou Kevin; Huang, Healthy; Choi, DongSub; Pierson, Bill; Robinson, John C.

    2012-03-01

    Overlay control in advanced integrated circuit (IC) manufacturing is becoming one of the leading lithographic challenges in the 3x and 2x nm process nodes. Production overlay control can no longer meet the stringent emerging requirements based on linear composite wafer and field models with sampling of 10 to 20 fields and 4 to 5 sites per field, which was the industry standard for many years. Methods that have emerged include overlay metrology in many or all fields, including the high order field model method called high order control (HOC), and field by field control (FxFc) methods also called correction per exposure. The HOC and FxFc methods were initially introduced as relatively infrequent scanner qualification activities meant to supplement linear production schemes. More recently, however, it is clear that production control is also requiring intense sampling, similar high order and FxFc methods. The added control benefits of high order and FxFc overlay methods need to be balanced with the increased metrology requirements, however, without putting material at risk. Of critical importance is the proper control of edge fields, which requires intensive sampling in order to minimize signatures. In this study we compare various methods of overlay control including the performance levels that can be achieved.

  18. Method of using triaxial magnetic fields for making particle structures

    DOEpatents

    Martin, James E.; Anderson, Robert A.; Williamson, Rodney L.

    2005-01-18

    A method of producing three-dimensional particle structures with enhanced magnetic susceptibility in three dimensions by applying a triaxial energetic field to a magnetic particle suspension and subsequently stabilizing said particle structure. Combinations of direct current and alternating current fields in three dimensions produce particle gel structures, honeycomb structures, and foam-like structures.

  19. Self-consistent slave rotor mean-field theory for strongly correlated systems

    NASA Astrophysics Data System (ADS)

    Zhao, E.; Paramekanti, A.

    2007-11-01

    Building on the work by Florens and Georges [Phys. Rev. B 70, 035114 (2004)], we formulate and study a self-consistent slave rotor mean-field theory for strongly correlated systems. This approach views the electron, in the strong correlation regime, as a composite of a neutral spinon and a charged rotor field. We solve the coupled spinon-rotor model self-consistently using a cluster mean-field theory for the rotors and various Ansätze for the spinon ground state. We illustrate this approach with a number of examples relevant to ongoing experiments in strongly correlated electronic systems such as (i) the phase diagram of the isotropic triangular lattice organic Mott insulators, (ii) quasiparticle excitations and tunneling asymmetry in the weakly doped cuprate superconductors, and (iii) the cyclotron mass of carriers in commensurate spin-density wave and U(1) staggered flux (or d -density wave) normal states of the underdoped cuprates. We compare the estimated cyclotron mass with results from recent quantum oscillation experiments on ortho-II YBa2Cu3O6.5 by Doiron-Leyraud [Nature (London) 447, 565 (2007)] which appear to find Fermi pockets in the magnetic field induced normal state. We comment on the relation of this normal ground state to Fermi arcs seen in photoemission experiments above Tc . This slave rotor mean-field theory can be generalized to study inhomogeneous states and strongly interacting models relevant to ultracold atoms in optical lattices.

  20. Dual-Scattering Near-Field Microscope for Correlative Nanoimaging of SERS and Electromagnetic Hotspots.

    PubMed

    Kusch, Patryk; Mastel, Stefan; Mueller, Niclas S; Morquillas Azpiazu, Nieves; Heeg, Sebastian; Gorbachev, Roman; Schedin, Fredrik; Hübner, Uwe; Pascual, Jose I; Reich, Stephanie; Hillenbrand, Rainer

    2017-04-12

    Surface-enhanced Raman spectroscopy (SERS) enables sensitive chemical studies and materials identification, relying on electromagnetic (EM) and chemical-enhancement mechanisms. Here we introduce a tool for the correlative nanoimaging of EM and SERS hotspots, areas of strongly enhanced EM fields and Raman scattering, respectively. To that end, we implemented a grating spectrometer into a scattering-type scanning near-field optical microscope (s-SNOM) for mapping of both the elastically and inelastically (Raman) scattered light from the near-field probe, that is, a sharp silicon tip. With plasmon-resonant gold dimers (canonical SERS substrates) we demonstrate with nanoscale spatial resolution that the enhanced Raman scattering from the tip is strongly correlated with its enhanced elastic scattering, the latter providing access to the EM-field enhancement at the illumination frequency. Our technique has wide application potential in the correlative nanoimaging of local-field enhancement and SERS efficiency as well as in the investigation and quality control of novel SERS substrates.

  1. Spectral methods and cluster structure in correlation-based networks

    NASA Astrophysics Data System (ADS)

    Heimo, Tapio; Tibély, Gergely; Saramäki, Jari; Kaski, Kimmo; Kertész, János

    2008-10-01

    We investigate how in complex systems the eigenpairs of the matrices derived from the correlations of multichannel observations reflect the cluster structure of the underlying networks. For this we use daily return data from the NYSE and focus specifically on the spectral properties of weight W=|-δ and diffusion matrices D=W/sj-δ, where C is the correlation matrix and si=∑jW the strength of node j. The eigenvalues (and corresponding eigenvectors) of the weight matrix are ranked in descending order. As in the earlier observations, the first eigenvector stands for a measure of the market correlations. Its components are, to first approximation, equal to the strengths of the nodes and there is a second order, roughly linear, correction. The high ranking eigenvectors, excluding the highest ranking one, are usually assigned to market sectors and industrial branches. Our study shows that both for weight and diffusion matrices the eigenpair analysis is not capable of easily deducing the cluster structure of the network without a priori knowledge. In addition we have studied the clustering of stocks using the asset graph approach with and without spectrum based noise filtering. It turns out that asset graphs are quite insensitive to noise and there is no sharp percolation transition as a function of the ratio of bonds included, thus no natural threshold value for that ratio seems to exist. We suggest that these observations can be of use for other correlation based networks as well.

  2. Methods of Assessing Replicability in Canonical Correlation Analysis (CCA).

    ERIC Educational Resources Information Center

    King, Jason E.

    Theoretical hypotheses generated from data analysis of a single sample should not be advanced until the replicability issue is treated. At least one of three questions usually arises when evaluating the invariance of results obtained from a canonical correlation analysis (CCA): (1) "Will an effect occur in subsequent studies?"; (2)…

  3. Methods of measuring soil moisture in the field

    USGS Publications Warehouse

    Johnson, A.I.

    1962-01-01

    For centuries, the amount of moisture in the soil has been of interest in agriculture. The subject of soil moisture is also of great importance to the hydrologist, forester, and soils engineer. Much equipment and many methods have been developed to measure soil moisture under field conditions. This report discusses and evaluates the various methods for measurement of soil moisture and describes the equipment needed for each method. The advantages and disadvantages of each method are discussed and an extensive list of references is provided for those desiring to study the subject in more detail. The gravimetric method is concluded to be the most satisfactory method for most problems requiring onetime moisture-content data. The radioactive method is normally best for obtaining repeated measurements of soil moisture in place. It is concluded that all methods have some limitations and that the ideal method for measurement of soil moisture under field conditions has yet to be perfected.

  4. The Geomagnetic Field and Correlations with Multiple Sclerosis: A Possible Etiology of Disease

    NASA Astrophysics Data System (ADS)

    Wade, Brett

    Multiple sclerosis (MS) is a complex autoimmune disease that results in a demyelinating process of the central nervous system. It is the most common, progressive, neurological disease affecting young adults, and there is no cure. A curious feature of MS is its distinct global prevalence with high rates of occurrence between 40 and 60 degrees latitude. While genetics may partially explain this phenomenon, studies have shown that the influence of genetics is modest. Many non-genetic variables, such as viruses, vitamin D, smoking, diet, hormones, etc., have been shown to be related to the expression of MS but none of these variables have been determined to be necessarily strong enough to exclude other factors. The geomagnetic field, which is a non-uniform, three dimensional entity which protects all living things from ionizing radiation, is suggested in this research to be related to global MS prevalence. This study hypothesized that either the total field, the vertical field, or the horizontal field strength of the geomagnetic field will be correlated with MS. Using secondary sources of prevalence studies (N=131) and geomagnetic data, the results supported all three hypotheses with the strongest correlation being an inverse relationship between the horizontal field and MS (r = -.607). The explanation for the inverse relationship being most strongly correlated with MS prevalence is explained by the fact that the horizontal aspect of the geomagnetic field has a protective effect from incoming cosmic radiation. Chronic exposure to high levels of background radiation can have deleterious health effects. This research suggests that living in areas of a weak horizontal field increases a person's exposure to ionizing radiation and therefore increases the risk for developing MS. While it was not the intention of this research, it became clear that an explanation which explained the results of this research and also attempted to unify the mechanisms of all non

  5. A Field-Particle Correlation Technique to Explore the Collisionless Damping of Plasma Turbulence

    NASA Astrophysics Data System (ADS)

    Klein, Kristopher

    2016-10-01

    The nature of the dominant mechanisms which damp turbulent electromagnetic fluctuations remains an unanswered question in the study of a variety of collisionless plasma systems. Proposed damping mechanisms can be generally, but not exclusively, classified as resonant, e.g. Landau and cyclotron damping, non-resonant, e.g. stochastic ion heating, and intermittent, e.g. energization via current sheets or magnetic reconnection. To determine the role these mechanisms play in turbulent plasmas, we propose the application of field-particle correlations to time series of single spatial point observations of the type typically measured in the solar wind. This correlation, motivated by the form of the collisionless Vlasov equation, is the time averaged product of the factors comprising the nonlinear field-particle interaction term. The correlation both captures the secular transfer of energy between fields and perturbed plasma distributions by averaging out the conservative oscillatory energy transfer, and retains the velocity space structure of the secular transfer, allowing for observational characterization of the damping mechanism. Field-particle correlations are applied to a set of nonlinear kinetic numerical simulations of increasing complexity, including electrostatic, gyrokinetic, and hybrid Vlasov-Maxwell systems. These correlations are shown to capture the secular energy transfer between fields and particles and distinguish between the mechanisms accessible to the chosen system. We conclude with a discussion of the application of this general technique to data from current and upcoming spacecraft missions, including MMS, DSCOVR, Solar Probe Plus and THOR, which should help in determining which damping mechanisms operate in a variety of heliospheric plasmas. This work was performed in collaboration with Gregory Howes, Jason TenBarge, Nuno Loureiro, Ryusuke Numata, Francesco Valetini, Oreste Pezzi, Matt Kunz, Justin Kasper, and Chris Chen, with support from Grants

  6. FIELD ANALYTICAL SCREENING PROGRAM: PCB METHOD - INNOVATIVE TECHNOLOGY REPORT

    EPA Science Inventory

    This innovative technology evaluation report (ITER) presents information on the demonstration of the U.S. Environmental Protection Agency (EPA) Region 7 Superfund Field Analytical Screening Program (FASP) method for determining polychlorinated biphenyl (PCB) contamination in soil...

  7. FIELD ANALYTICAL SCREENING PROGRAM: PCB METHOD - INNOVATIVE TECHNOLOGY REPORT

    EPA Science Inventory

    This innovative technology evaluation report (ITER) presents information on the demonstration of the U.S. Environmental Protection Agency (EPA) Region 7 Superfund Field Analytical Screening Program (FASP) method for determining polychlorinated biphenyl (PCB) contamination in soil...

  8. Correlations in the two-dimensional random-field Ising model

    SciTech Connect

    Glaus, U.

    1986-09-01

    Using transfer matrices, we calculate the connected and disconnected correlation functions of the random-field Ising model on long strips of width N-italic< or =8. The results, where extrapolated to the thermodynamic limit, are in good qualitative agreement with neutron scattering experiments of Birgeneau e-italict-italic a-italicl-italic. (Phys. Rev. B 28, 1438 (1983)) on the two-dimensional dilute Ising-like antiferromagnet Rb/sub 2/Co/sub 0.7/Mg/sub 0.3/F/sub 4/ . For a particular probability distribution of the random field we propose that this model describes an adsorbed monolayer with a doubly degenerate ground state in the presence of frozen impurities and predict some features that could be detected with low-energy electron diffraction experiments on such systems. A modified mean-field theory gives a good qualitative account of the high-temperature behavior of the correlations of this model.

  9. XPCS study of dynamic correlation in polyurethane gel-carbonyl iron composite under magnetic field

    NASA Astrophysics Data System (ADS)

    Grigoriew, Helena; Wiegart, Lutz; Boczkowska, Anna; Mirkowska, Monika

    2010-10-01

    An X-ray photon correlation spectroscopy (XPCS) study of composite-type material consisting of polyurethane gel and carbonyl iron micrometric spheres was performed under magnetic fields of 0, 300 and 600 mT. The onion-like spheres structure was destroyed during the composite processing. The following conclusions were obtained from the study: -The polyurethane matrix is preferred as a source for the observed dynamic effects. -Below 300mT the material dynamics in direction of the outer magnetic field are very clear. -For 600 mT the dependence of the dynamics on magnetic field direction disappears, but the correlation rate is much higher. These findings may be caused by a disturbance of the polymer mesostructure by larger strain leading to its cross-linking.

  10. A New Method for Coronal Magnetic Field Reconstruction

    NASA Astrophysics Data System (ADS)

    Yi, Sibaek; Choe, Gwangson; Lim, Daye

    2015-08-01

    We present a new, simple, variational method for reconstruction of coronal force-free magnetic fields based on vector magnetogram data. Our method employs vector potentials for magnetic field description in order to ensure the divergence-free condition. As boundary conditions, it only requires the normal components of magnetic field and current density so that the boundary conditions are not over-specified as in many other methods. The boundary normal current distribution is initially fixed once and for all and does not need continual adjustment as in stress-and-relax type methods. We have tested the computational code based on our new method in problems with known solutions and those with actual photospheric data. When solutions are fully given at all boundaries, the accuracy of our method is almost comparable to best performing methods in the market. When magnetic field data are given only at the photospheric boundary, our method excels other methods in most “figures of merit” devised by Schrijver et al. (2006). Furthermore the residual force in the solution is at least an order of magnitude smaller than that of any other method. It can also accommodate the source-surface boundary condition at the top boundary. Our method is expected to contribute to the real time monitoring of the sun required for future space weather forecasts.

  11. New Method for Solving Inductive Electric Fields in the Ionosphere

    NASA Astrophysics Data System (ADS)

    Vanhamäki, H.

    2005-12-01

    We present a new method for calculating inductive electric fields in the ionosphere. It is well established that on large scales the ionospheric electric field is a potential field. This is understandable, since the temporal variations of large scale current systems are generally quite slow, in the timescales of several minutes, so inductive effects should be small. However, studies of Alfven wave reflection have indicated that in some situations inductive phenomena could well play a significant role in the reflection process, and thus modify the nature of ionosphere-magnetosphere coupling. The input to our calculation method are the time series of the potential part of the ionospheric electric field together with the Hall and Pedersen conductances. The output is the time series of the induced rotational part of the ionospheric electric field. The calculation method works in the time-domain and can be used with non-uniform, time-dependent conductances. In addition no particular symmetry requirements are imposed on the input potential electric field. The presented method makes use of special non-local vector basis functions called Cartesian Elementary Current Systems (CECS). This vector basis offers a convenient way of representing curl-free and divergence-free parts of 2-dimensional vector fields and makes it possible to solve the induction problem using simple linear algebra. The new calculation method is validated by comparing it with previously published results for Alfven wave reflection from uniformly conducting ionosphere.

  12. Method for using germanium thermometers in moderately high magnetic fields

    NASA Astrophysics Data System (ADS)

    Roy, A.; Buchanan, D. S.; Ginsberg, D. M.

    1985-03-01

    We have devised a simple method for extending the zero-field calibration of a germanium resistance thermometer to include the effects of magnetic fields up to 5 T. We describe the application of this method to the use of a germanium thermometer at liquid-helium temperatures. We outline a similar procedure to take into account the temperature variation of the calibration of a Hall probe.

  13. Localization of incipient tip vortex cavitation using ray based matched field inversion method

    NASA Astrophysics Data System (ADS)

    Kim, Dongho; Seong, Woojae; Choo, Youngmin; Lee, Jeunghoon

    2015-10-01

    Cavitation of marine propeller is one of the main contributing factors of broadband radiated ship noise. In this research, an algorithm for the source localization of incipient vortex cavitation is suggested. Incipient cavitation is modeled as monopole type source and matched-field inversion method is applied to find the source position by comparing the spatial correlation between measured and replicated pressure fields at the receiver array. The accuracy of source localization is improved by broadband matched-field inversion technique that enhances correlation by incoherently averaging correlations of individual frequencies. Suggested localization algorithm is verified through known virtual source and model test conducted in Samsung ship model basin cavitation tunnel. It is found that suggested localization algorithm enables efficient localization of incipient tip vortex cavitation using a few pressure data measured on the outer hull above the propeller and practically applicable to the typically performed model scale experiment in a cavitation tunnel at the early design stage.

  14. Ultrasonic velocity measurement using phase-slope cross-correlation methods

    NASA Technical Reports Server (NTRS)

    Hull, D. R.; Kautz, H. E.; Vary, A.

    1984-01-01

    Computer implemented phase-slope and cross-correlation methods are introduced for measuring time delays between pairs of broadband ultrasonic pulse-echo signals for determining velocity in engineering materials. The phase-slope and cross-correlation methods are compared with the overlap method which is currently in wide use. Comparison of digital versions of the three methods shows similar results for most materials having low ultrasonic attenuation. However, the cross-correlation method is preferred for highly attenuating materials. An analytical basis for the cross-correlation method is presented. Examples are given for the three methods investigated to measure velocity in representative materials in the megahertz range.

  15. Full-field inspection of a wind turbine blade using three-dimensional digital image correlation

    NASA Astrophysics Data System (ADS)

    LeBlanc, Bruce; Niezrecki, Christopher; Avitabile, Peter; Chen, Julie; Sherwood, James; Hughes, Scott

    2011-04-01

    Increasing demand and deployment of wind power has led to a significant increase in the number of wind-turbine blades manufactured globally. As the physical size and number of turbines deployed grows, the probability of manufacturing defects being present in composite turbine blade fleets also increases. As both capital blade costs, and operational and maintenance costs, increase for larger turbine systems the need for large-scale inspection and monitoring of the state of structural health of turbine blades during manufacturing and operation critically increase. One method for locating and quantifying manufacturing defects, while also allowing for the in-situ measurement of the structural health of blades, is through the observation of the full-field state of deformation and strain of the blade. Static tests were performed on a nine-meter CX-100 composite turbine blade to extract full-field displacement and strain measurements using threedimensional digital image correlation (3D DIC). Measurements were taken at several angles near the blade root, including along the high-pressure surface, low-pressure surface, and along the trailing edge of the blade. The overall results indicate that the measurement approach can clearly identify failure locations and discontinuities in the blade curvature under load. Post-processing of the data using a stitching technique enables the shape and curvature of the entire blade to be observed for a large-scale wind turbine blade for the first time. The experiment demonstrates the feasibility of the approach and reveals that the technique readily can be scaled up to accommodate utility-scale blades. As long as a trackable pattern is applied to the surface of the blade, measurements can be made in-situ when a blade is on a manufacturing floor, installed in a test fixture, or installed on a rotating turbine. The results demonstrate the great potential of the optical measurement technique and its capability for use in the wind industry for

  16. Magnetic field pitch angle and perpendicular velocity measurements from multi-point time-delay estimation of poloidal correlation reflectometry

    NASA Astrophysics Data System (ADS)

    Prisiazhniuk, D.; Krämer-Flecken, A.; Conway, G. D.; Happel, T.; Lebschy, A.; Manz, P.; Nikolaeva, V.; Stroth, U.; the ASDEX Upgrade Team

    2017-02-01

    In fusion machines, turbulent eddies are expected to be aligned with the direction of the magnetic field lines and to propagate in the perpendicular direction. Time delay measurements of density fluctuations can be used to calculate the magnetic field pitch angle α and perpendicular velocity {{v}\\bot} profiles. The method is applied to poloidal correlation reflectometry installed at ASDEX Upgrade and TEXTOR, which measure density fluctuations from poloidally and toroidally separated antennas. Validation of the method is achieved by comparing the perpendicular velocity (composed of the E× B drift and the phase velocity of turbulence {{v}\\bot}={{v}E× B}+{{v}\\text{ph}} ) with Doppler reflectometry measurements and with neoclassical {{v}E× B} calculations. An important condition for the application of the method is the presence of turbulence with a sufficiently long decorrelation time. It is shown that at the shear layer the decorrelation time is reduced, limiting the application of the method. The magnetic field pitch angle measured by this method shows the expected dependence on the magnetic field, plasma current and radial position. The profile of the pitch angle reproduces the expected shape and values. However, comparison with the equilibrium reconstruction code cliste suggests an additional inclination of turbulent eddies at the pedestal position (2-3°). This additional angle decreases towards the core and at the edge.

  17. Correlated electrons in delta-plutonium within a dynamical mean-field picture.

    PubMed

    Savrasov, S Y; Kotliar, G; Abrahams, E

    2001-04-12

    Given the practical importance of metallic plutonium, there is considerable interest in understanding its fundamental properties. Plutonium undergoes a 25 per cent increase in volume when transformed from its alpha-phase (which is stable below 400 K) to the delta-phase (stable at around 600 K), an effect that is crucial for issues of long-term storage and disposal. It has long been suspected that this unique property is a consequence of the special location of plutonium in the periodic table, on the border between the light and heavy actinides-here, electron wave-particle duality (or itinerant versus localized behaviour) is important. This situation has resisted previous theoretical treatment. Here we report an electronic structure method, based on dynamical mean-field theory, that enables interpolation between the band-like and atomic-like behaviour of the electron. Our approach enables us to study the phase diagram of plutonium, by providing access to the energetics and one-electron spectra of strongly correlated systems. We explain the origin of the volume expansion between the alpha- and delta-phases, predict the existence of a strong quasiparticle peak near the Fermi level and give a new viewpoint on the physics of plutonium, in which the alpha- and delta-phases are on opposite sides of the interaction-driven localization-delocalization transition.

  18. MRI relaxation in the presence of fictitious fields correlates with myelin content in normal rat brain.

    PubMed

    Hakkarainen, Hanne; Sierra, Alejandra; Mangia, Silvia; Garwood, Michael; Michaeli, Shalom; Gröhn, Olli; Liimatainen, Timo

    2016-01-01

    Brain myelin plays an important role in normal brain function. Demyelination is involved in many degenerative brain diseases, thus quantitative imaging of myelin has been under active investigation. In previous work, we demonstrated the capability of the method known as Relaxation Along a Fictitious Field (RAFF) in the rotating frame of rank n (RAFFn) to provide image contrast between white and gray matter in human and rat brains. Here, we provide evidence pointing to myelin being the major source of this contrast. RAFFn relaxation time constant (TRAFFn) was mapped in rat brain ex vivo. TRAFFn was quantified in 12 different brain areas. TRAFFn values were compared with multiple other MRI metrics (T1, T2 , continuous wave T1ρ, adiabatic T1ρ and T2ρ, magnetization transfer ratio), and with histologic measurements of cell density, myelin and iron content. Highest contrast between white and grey matter was obtained with TRAFFn in the rotating frames of ranks n = 4 and 5. TRAFFn values correlated strongly with myelin content, whereas no associations between TRAFFn and iron content or cell density were found. TRAFFn with n = 4 or 5 provides a high sensitivity for selective myelin mapping in the rat brain. © 2015 Wiley Periodicals, Inc.

  19. Domain decomposition methods in FVM approach to gravity field modelling.

    NASA Astrophysics Data System (ADS)

    Macák, Marek

    2017-04-01

    The finite volume method (FVM) as a numerical method can be straightforwardly implemented for global or local gravity field modelling. This discretization method solves the geodetic boundary value problems in a space domain. In order to obtain precise numerical solutions, it usually requires very refined discretization leading to large-scale parallel computations. To optimize such computations, we present a special class of numerical techniques that are based on a physical decomposition of the global solution domain. The domain decomposition (DD) methods like the Multiplicative Schwarz Method and Additive Schwarz Method are very efficient methods for solving partial differential equations. We briefly present their mathematical formulations and we test their efficiency. Presented numerical experiments are dealing with gravity field modelling. Since there is no need to solve special interface problems between neighbouring subdomains, in our applications we use the overlapping DD methods.

  20. Correlation filter fusion for detection: morphological, wavelet, and Gabor methods

    NASA Astrophysics Data System (ADS)

    Casasent, David P.; Smokelin, John S.; Ye, Anqi; Schaefer, Roland H.

    1993-11-01

    We consider the detection of candidate objects (regions of interest) in a scene containing high clutter, multiple objects in different classes, independent of aspect view, with hot/cold/bimodal/partial object variations, and with low contrast targets. We use three different filters with each designed to produce high probability of detection (PD). We fuse the results from different outputs to reduce false alarms (PFA). All filters are realizable on a correlator.

  1. Full-field dynamic displacement and strain measurement using pulsed and high-speed 3D image correlation photogrammetry

    NASA Astrophysics Data System (ADS)

    Schmidt, Timothy; Tyson, John; Galanulis, Konstantin

    2004-02-01

    3D image correlation is a robust method for measuring full-field displacements and strains using a calibrated pair of video cameras. Underlying principles and benefits are reviewed, and the method is compared to both 3D ESPI and 2D image correlation. Several applications combining image correlation photogrammetry with stroboscopic illumination and/or high-speed video cameras are presented. Operational strains in ionic polymeric muscle samples and electro-restrictive actuators are determined. The use of short-duration white light pulses to study automobile tires on road wheels at speeds up to 150 miles per hour is demonstrated. Initial work measuring strains on an 18" flywheel in a spin pit at up to 35,000 rpm is described. A notched rubber dogbone sample is pulled to failure at 125% strain in 38 milliseconds, and hundreds of full-field strain maps are captured. This paper includes discussion of sample preparation methods and special lighting systems, including pulsed arc lamps and pulsed lasers. A matrix of capability using available high speed cameras is included.

  2. Vector correlators in lattice QCD: Methods and applications

    NASA Astrophysics Data System (ADS)

    Bernecker, David; Meyer, Harvey B.

    2011-11-01

    We discuss the calculation of the leading hadronic vacuum polarization in lattice QCD. Exploiting the excellent quality of the compiled experimental data for the e + e - → hadrons cross-section, we predict the outcome of large-volume lattice calculations at the physical pion mass, and design computational strategies for the lattice to have an impact on important phenomenological quantities such as the leading hadronic contribution to ( g - 2) μ and the running of the electromagnetic coupling constant. First, the R( s) ratio can be calculated directly on the lattice in the threshold region, and we provide the formulae to do so with twisted boundary conditions. Second, the current correlator projected onto zero spatial momentum, in a Euclidean time interval where it can be calculated accurately, provides a potentially critical test of the experimental R( s) ratio in the region that is most relevant for ( g - 2) μ . This observation can also be turned around: the vector correlator at intermediate distances can be used to determine the lattice spacing in fm, and we make a concrete proposal in this direction. Finally, we quantify the finite-size effects on the current correlator coming from low-energy two-pion states and provide a general parametrization of the vacuum polarization on the torus.

  3. Double-sensor method for detection of oscillating electric field.

    PubMed

    Ohkuma, Yasunori; Ikeyama, Taeko; Nogi, Yasuyuki

    2011-04-01

    An electric-field sensor consisting of thin copper plates is designed to measure an oscillating electric field produced by charge separations on a plasma column. The sensor installed in a vacuum region around plasma detects charges induced by the electric field on the copper plates. The value of the induced charges depends not only on the strength of the electric field, but also on the design of the sensor. To obtain the correct strength of the electric field, a correction factor arising from the design of the sensor must be known. The factor is calculated numerically using Laplace's equation and compared with a value measured using a uniform electric field in the frequency range of 10-500 kHz. When an external circuit is connected to the sensor to measure the induced charges, the electric field around the sensor is disturbed. Therefore, a double-sensor method for excluding a disturbed component in the measured electric field is proposed. The reliability of the double-sensor method is confirmed by measuring dipole-like and quadrupole-like electric fields. © 2011 American Institute of Physics

  4. Correlation of the summary method with learning styles.

    PubMed

    Sarikcioglu, Levent; Senol, Yesim; Yildirim, Fatos B; Hizay, Arzu

    2011-09-01

    The summary is the last part of the lesson but one of the most important. We aimed to study the relationship between the preference of the summary method (video demonstration, question-answer, or brief review of slides) and learning styles. A total of 131 students were included in the present study. An inventory was prepared to understand the students' learning styles, and a satisfaction questionnaire was provided to determine the summary method selection. The questionnaire and inventory were collected and analyzed. A comparison of the data revealed that the summary method with video demonstration received the highest score among all the methods tested. Additionally, there were no significant differences between learning styles and summary method with video demonstration. We suggest that such a summary method should be incorporated into neuroanatomy lessons. Since anatomy has a large amount of visual material, we think that it is ideally suited for this summary method.

  5. Spatial coherence and cross correlation of three-dimensional ambient noise fields in the ocean.

    PubMed

    Walker, Shane C; Buckingham, Michael J

    2012-02-01

    Ambient acoustic noise fields in the ocean are generally three dimensional in that they exhibit vertical and horizontal directivity. A model of spatially homogeneous noise is introduced in which the directionality is treated as separable, that is, the overall directionality of the field is the product of the individual directivities in the horizontal and vertical. A uni-modal von Mises circular distribution from directional statistics is taken to represent the noise in the horizontal, whilst the vertical component is consistent with a surface distribution of vertical dipoles. An analysis of the coherence and cross correlation of the noise at two horizontally aligned sensors is developed. The coherence function involves a single integral over finite limits, whilst the cross-correlation function, derived on the assumption that the noise has been pre-whitened, is given by an integral with limits that depend on the correlation delay time. Although the cross-correlation function does not exhibit delta functions that could be identified with the Green's function for propagation between the two sensors in the field, it does drop abruptly to zero at numerical time delays equal to the travel time between the sensors. Hence the noise could be used to recover the sound speed in the medium.

  6. IS THE SMALL-SCALE MAGNETIC FIELD CORRELATED WITH THE DYNAMO CYCLE?

    SciTech Connect

    Karak, Bidya Binay; Brandenburg, Axel

    2016-01-01

    The small-scale magnetic field is ubiquitous at the solar surface—even at high latitudes. From observations we know that this field is uncorrelated (or perhaps even weakly anticorrelated) with the global sunspot cycle. Our aim is to explore the origin, and particularly the cycle dependence, of such a phenomenon using three-dimensional dynamo simulations. We adopt a simple model of a turbulent dynamo in a shearing box driven by helically forced turbulence. Depending on the dynamo parameters, large-scale (global) and small-scale (local) dynamos can be excited independently in this model. Based on simulations in different parameter regimes, we find that, when only the large-scale dynamo is operating in the system, the small-scale magnetic field generated through shredding and tangling of the large-scale magnetic field is positively correlated with the global magnetic cycle. However, when both dynamos are operating, the small-scale field is produced from both the small-scale dynamo and the tangling of the large-scale field. In this situation, when the large-scale field is weaker than the equipartition value of the turbulence, the small-scale field is almost uncorrelated with the large-scale magnetic cycle. On the other hand, when the large-scale field is stronger than the equipartition value, we observe an anticorrelation between the small-scale field and the large-scale magnetic cycle. This anticorrelation can be interpreted as a suppression of the small-scale dynamo. Based on our studies we conclude that the observed small-scale magnetic field in the Sun is generated by the combined mechanisms of a small-scale dynamo and tangling of the large-scale field.

  7. Method of frequency dependent correlations: investigating the variability of total solar irradiance

    NASA Astrophysics Data System (ADS)

    Pelt, J.; Käpylä, M. J.; Olspert, N.

    2017-04-01

    Context. This paper contributes to the field of modeling and hindcasting of the total solar irradiance (TSI) based on different proxy data that extend further back in time than the TSI that is measured from satellites. Aims: We introduce a simple method to analyze persistent frequency-dependent correlations (FDCs) between the time series and use these correlations to hindcast missing historical TSI values. We try to avoid arbitrary choices of the free parameters of the model by computing them using an optimization procedure. The method can be regarded as a general tool for pairs of data sets, where correlating and anticorrelating components can be separated into non-overlapping regions in frequency domain. Methods: Our method is based on low-pass and band-pass filtering with a Gaussian transfer function combined with de-trending and computation of envelope curves. Results: We find a major controversy between the historical proxies and satellite-measured targets: a large variance is detected between the low-frequency parts of targets, while the low-frequency proxy behavior of different measurement series is consistent with high precision. We also show that even though the rotational signal is not strongly manifested in the targets and proxies, it becomes clearly visible in FDC spectrum. A significant part of the variability can be explained by a very simple model consisting of two components: the original proxy describing blanketing by sunspots, and the low-pass-filtered curve describing the overall activity level. The models with the full library of the different building blocks can be applied to hindcasting with a high level of confidence, Rc ≈ 0.90. The usefulness of these models is limited by the major target controversy. Conclusions: The application of the new method to solar data allows us to obtain important insights into the different TSI modeling procedures and their capabilities for hindcasting based on the directly observed time intervals.

  8. Spatial correlation of the high intensity zone in deep-water acoustic field

    NASA Astrophysics Data System (ADS)

    Li, Jun; Li, Zheng-Lin; Ren, Yun

    2016-12-01

    The spatial correlations of acoustic field have important implications for underwater target detection and other applications in deep water. In this paper, the spatial correlations of the high intensity zone in the deep-water acoustic field are investigated by using the experimental data obtained in the South China Sea. The experimental results show that the structures of the spatial correlation coefficient at different ranges and depths are similar to the transmission loss structure in deep water. The main reason for this phenomenon is analyzed by combining the normal mode theory with the ray theory. It is shown that the received signals in the high intensity zone mainly include one or two main pulses which are contributed by the interference of a group of waterborne modes with similar phases. The horizontal-longitudinal correlations at the same receiver depth but in different high intensity zones are analyzed. At some positions, more pulses are received in the arrival structure of the signal due to bottom reflection and the horizontal-longitudinal correlation coefficient decreases accordingly. The multi-path arrival structure of receiving signal becomes more complex with increasing receiver depth. Project supported by the National Natural Science Foundation of China (Grant Nos. 11434012 and 41561144006).

  9. Generalized moment analysis of magnetic field correlations for accumulations of spherical and cylindrical magnetic pertubers

    NASA Astrophysics Data System (ADS)

    Kurz, Felix; Kampf, Thomas; Buschle, Lukas; Schlemmer, Heinz-Peter; Bendszus, Martin; Heiland, Sabine; Ziener, Christian

    2016-12-01

    In biological tissue, an accumulation of similarly shaped objects with a susceptibility difference to the surrounding tissue generates a local distortion of the external magnetic field in magnetic resonance imaging. It induces stochastic field fluctuations that characteristically influence proton spin diffusion in the vicinity of these magnetic perturbers. The magnetic field correlation that is associated with such local magnetic field inhomogeneities can be expressed in the form of a dynamic frequency autocorrelation function that is related to the time evolution of the measured magnetization. Here, an eigenfunction expansion for two simple magnetic perturber shapes, that of spheres and cylinders, is considered for restricted spin diffusion in a simple model geometry. Then, the concept of generalized moment analysis, an approximation technique that is applied in the study of (non-)reactive processes that involve Brownian motion, allows to provide analytical expressions for the correlation function for different exponential decay forms. Results for the biexponential decay for both spherical and cylindrical magnetized objects are derived and compared with the frequently used (less accurate) monoexponential decay forms. They are in asymptotic agreement with the numerically exact value of the correlation function for long and short times.

  10. Robust spin correlations at high magnetic fields in the harmonic honeycomb iridates

    DOE PAGES

    Modic, K. A.; Ramshaw, Brad J.; Betts, J. B.; ...

    2017-08-01

    Here, the complex antiferromagnetic orders observed in the honeycomb iridates are a double-edged sword in the search for a quantum spin-liquid: both attesting that the magnetic interactions provide many of the necessary ingredients, while simultaneously impeding access. Focus has naturally been drawn to the unusual magnetic orders that hint at the underlying spin correlations. However, the study of any particular broken symmetry state generally provides little clue about the possibility of other nearby ground states. Here we use magnetic fields approaching 100 Tesla to reveal the extent of the spin correlations in γ-lithium iridate. We find that a small componentmore » of field along the magnetic easy-axis melts long-range order, revealing a bistable, strongly correlated spin state. Far from the usual destruction of antiferromagnetism via spin polarization, the high-field state possesses only a small fraction of the total iridium moment, without evidence for long-range order up to the highest attainable magnetic fields.« less

  11. Comparison of electric field exposure measurement methods under power lines.

    PubMed

    Korpinen, Leena; Kuisti, Harri; Tarao, Hiroo; Pääkkönen, Rauno; Elovaara, Jarmo

    2014-01-01

    The object of the study was to investigate extremely low frequency (ELF) electric field exposure measurement methods under power lines. The authors compared two different methods under power lines: in Method A, the sensor was placed on a tripod; and Method B required the measurer to hold the meter horizontally so that the distance from him/her was at least 1.5 m. The study includes 20 measurements in three places under 400 kV power lines. The authors used two commercial three-axis meters, EFA-3 and EFA-300. In statistical analyses, they did not find significant differences between Methods A and B. However, in the future, it is important to take into account that measurement methods can, in some cases, influence ELF electric field measurement results, and it is important to report the methods used so that it is possible to repeat the measurements.

  12. Quantum Entanglement and Correlation of Two Qubit Atoms Interacting with the Coherent State Optical Field

    NASA Astrophysics Data System (ADS)

    Liu, Tang-Kun; Tao, Yu; Shan, Chuan-Jia; Liu, Ji-bing

    2017-10-01

    Using the three criterions of the concurrence, the negative eigenvalue and the geometric quantum discord, we investigate the quantum entanglement and quantum correlation dynamics of two two-level atoms interacting with the coherent state optical field. We discuss the influence of different photon number of the mean square fluctuations on the temporal evolution of the concurrence, the negative eigenvalue and the geometric quantum discord between two atoms when the two atoms are initially in specific three states. The results show that different photon number of the mean square fluctuations can lead to different effects of quantum entanglement and quantum correlation dynamics.

  13. The Radio-Far Infrared Correlation in the NEP Deep Field

    NASA Astrophysics Data System (ADS)

    Barrufet, Laia; White, Glenn J.; Pearson, Chris; Serjeant, Stephen; Lim, Tanya; Matsuhara, Hideo; Oi, Nagisa; Karouzos, Marios; AKARI-NEP Team

    2017-03-01

    We report the results of a multi-wavelength study in the North Ecliptic Pole (NEP) deep field and examine the far infrared-radio correlation (FIRC) for high and low redshift objects. We have found a correlation between the GMRT data at 610 MHz and the Herschel data at 250 μm that has been used to define a spectral index. This spectral index shows no evolution against redshift. As a result of the study, we show a radio colour-infrared diagram that can be used as a redshift indicator.

  14. Characterization of a random anisotropic conductivity field with Karhunen-Loeve methods

    SciTech Connect

    Cherry, Matthew R.; Sabbagh, Harold S.; Pilchak, Adam L.; Knopp, Jeremy S.

    2014-02-18

    While parametric uncertainty quantification for NDE models has been addressed in recent years, the problem of stochastic field parameters such as spatially distributed electrical conductivity has only been investigated minimally in the last year. In that work, the authors treated the field as a one-dimensional random process and Karhunen-Loeve methods were used to discretize this process to make it amenable to UQ methods such as ANOVA expansions. In the present work, we will treat the field as a two dimensional random process, and the eigenvalues and eigenfunctions of the integral operator will be determined via Galerkin methods. The Karhunen-Loeve methods is extended to two dimensions and implemented to represent this process. Several different choices for basis functions will be discussed, as well as convergence criteria for each. The methods are applied to correlation functions collected over electron backscatter data from highly micro textured Ti-7Al.

  15. Self-regulation of infrared correlations for massless scalar fields during inflation

    NASA Astrophysics Data System (ADS)

    Garbrecht, Björn; Rigopoulos, Gerasimos

    2011-09-01

    Self-energies of a minimally coupled scalar field with quartic and trilinear interactions are calculated in a de Sitter background, using a position space propagator. For quartic interactions, we recover earlier results for the seagull diagram, namely, that it contributes an effective mass for the scalar field at leading order in the infrared enhancement in a steady-state de Sitter background. We further show that the sunset diagram also contributes to this effective mass and argue that these two contributions are sufficient in order to determine a self-consistent dynamical mass. In addition, trilinear interactions also induce a dynamical mass for the scalar field which we calculate. Since an interacting scalar field in de Sitter acquires a dynamical mass through these loop corrections, the infrared divergences of the two-point correlator are naturally self-regulated.

  16. Nearest neighbor correlations in perpendicular artificial spin ice arrays in the presence of an applied field

    NASA Astrophysics Data System (ADS)

    Kempinger, Susan; Fraleigh, Robert; Lammert, Paul; Crespi, Vincent; Samarth, Nitin; Schiffer, Peter

    By studying the field dependent magnetization switching process in perpendicular artificial spin ice arrays arrays, we hope to gain insight in to the dynamical properties of interacting spin systems. To this end, we have used diffraction-limited Kerr imaging to study lithographically patterned arrays of single domain, nanoscale islands of Co/Pt multilayers. We can tune the interaction strength and introduce geometric frustration in to the patterned systems by changing the lattice spacing and geometry of the arrays. Using MOKE microscopy we are able to optically resolve, spatially isolate, and extract the switching field of each island in an array in the presence of an external field. These switching fields allow us to calculate the magnetization and nearest neighbor spin-spin correlation throughout a hysteresis loop. These quantities help us determine the effect of increased interactions and geometric frustration on the switching process of dipole coupled arrays. Funded by DOE.

  17. Characterizing ice crystal growth behavior under electric field using phase field method.

    PubMed

    He, Zhi Zhu; Liu, Jing

    2009-07-01

    In this article, the microscale ice crystal growth behavior under electrostatic field is investigated via a phase field method, which also incorporates the effects of anisotropy and thermal noise. The multiple ice nuclei's competitive growth as disclosed in existing experiments is thus successfully predicted. The present approach suggests a highly efficient theoretical tool for probing into the freeze injury mechanisms of biological material due to ice formation during cryosurgery or cryopreservation process when external electric field was involved.

  18. FIELD ANALYTICAL SCREENING PROGRAM: PCP METHOD - INNOVATIVE TECHNOLOGY EVALUATION REPORT

    EPA Science Inventory

    The Field Analytical Screening Program (FASP) pentachlorophenol (PCP) method uses a gas chromatograph (GC) equipped with a megabore capillary column and flame ionization detector (FID) and electron capture detector (ECD) to identify and quantify PCP. The FASP PCP method is design...

  19. FIELD ANALYTICAL SCREENING PROGRAM: PCP METHOD - INNOVATIVE TECHNOLOGY EVALUATION REPORT

    EPA Science Inventory

    The Field Analytical Screening Program (FASP) pentachlorophenol (PCP) method uses a gas chromatograph (GC) equipped with a megabore capillary column and flame ionization detector (FID) and electron capture detector (ECD) to identify and quantify PCP. The FASP PCP method is design...

  20. Branch point twist field correlators in the massive free Boson theory

    NASA Astrophysics Data System (ADS)

    Bianchini, Davide; Castro-Alvaredo, Olalla A.

    2016-12-01

    Well-known measures of entanglement in one-dimensional many body quantum systems, such as the entanglement entropy and the logarithmic negativity, may be expressed in terms of the correlation functions of local fields known as branch point twist fields in a replica quantum field theory. In this "replica" approach the computation of measures of entanglement generally involves a mathematically non-trivial analytic continuation in the number of replicas. In this paper we consider two-point functions of twist fields and their analytic continuation in the 1 + 1 dimensional massive (non-compactified) free Boson theory. This is one of the few theories for which all matrix elements of twist fields are known so that we may hope to compute correlation functions very precisely. We study two particular two-point functions which are related to the logarithmic negativity of semi-infinite disjoint intervals and to the entanglement entropy of one interval. We show that our prescription for the analytic continuation yields results which are in full agreement with conformal field theory predictions in the short-distance limit. We provide numerical estimates of universal quantities and their ratios, both in the massless (twist field structure constants) and the massive (expectation values of twist fields) theory. We find that particular ratios are given by divergent form factor expansions. We propose such divergences stem from the presence of logarithmic factors in addition to the expected power-law behaviour of two-point functions at short-distances. Surprisingly, at criticality these corrections give rise to a log ⁡ (log ⁡ ℓ) correction to the entanglement entropy of one interval of length ℓ. This hitherto overlooked result is in agreement with results by Calabrese, Cardy and Tonni and has been independently derived by Blondeau-Fournier and Doyon [25].

  1. A Method for Efficiently Sampling From Distributions With Correlated Dimensions

    PubMed Central

    Turner, Brandon M.; Sederberg, Per B.; Brown, Scott D.; Steyvers, Mark

    2013-01-01

    Bayesian estimation has played a pivotal role in the understanding of individual differences. However, for many models in psychology, Bayesian estimation of model parameters can be difficult. One reason for this difficulty is that conventional sampling algorithms, such as Markov chain Monte Carlo (MCMC), can be inefficient and impractical when little is known about the target distribution—particularly the target distribution’s covariance structure. In this article, we highlight some reasons for this inefficiency and advocate the use of a population MCMC algorithm, called differential evolution Markov chain Monte Carlo (DE-MCMC), as a means of efficient proposal generation. We demonstrate in a simulation study that the performance of the DE-MCMC algorithm is unaffected by the correlation of the target distribution, whereas conventional MCMC performs substantially worse as the correlation increases. We then show that the DE-MCMC algorithm can be used to efficiently fit a hierarchical version of the linear ballistic accumulator model to response time data, which has proven to be a difficult task when conventional MCMC is used. PMID:23646991

  2. An analytical method to calculate equivalent fields to irregular symmetric and asymmetric photon fields

    SciTech Connect

    Tahmasebi Birgani, Mohamad J.; Chegeni, Nahid; Zabihzadeh, Mansoor; Hamzian, Nima

    2014-04-01

    Equivalent field is frequently used for central axis depth-dose calculations of rectangular- and irregular-shaped photon beams. As most of the proposed models to calculate the equivalent square field are dosimetry based, a simple physical-based method to calculate the equivalent square field size was used as the basis of this study. The table of the sides of the equivalent square or rectangular fields was constructed and then compared with the well-known tables by BJR and Venselaar, et al. with the average relative error percentage of 2.5 ± 2.5% and 1.5 ± 1.5%, respectively. To evaluate the accuracy of this method, the percentage depth doses (PDDs) were measured for some special irregular symmetric and asymmetric treatment fields and their equivalent squares for Siemens Primus Plus linear accelerator for both energies, 6 and 18 MV. The mean relative differences of PDDs measurement for these fields and their equivalent square was approximately 1% or less. As a result, this method can be employed to calculate equivalent field not only for rectangular fields but also for any irregular symmetric or asymmetric field.

  3. The Influence of Correlated Crustal Signals in Modelling the Main Geomagnetic Field

    NASA Technical Reports Server (NTRS)

    Rygaard-Hjalsted, C.; Constable, C. G.; Parker, R. L.

    1997-01-01

    Algorithms used in geomagnetic main-field modelling have for the most part treated the noise in the field measurements as if it were white. A major component of the noise consists of the field due to magnetization in the crust and it has been realized for some time that such signals are highly correlated at satellite altitude. Hence approximation by white noise, while of undoubted utility, is of unknown validity. In this paper we study two plausible statistical models for the crustal magnetization, in which the magnetization is a realization of a stationary, isotropic, random process. At a typical satellite altitude the associated fields exhibit significant correlation over ranges as great as 15 deg. or more, which introduces off-diagonal elements into the covariance matrix, elements that have usually been neglected in modelling procedures. Dealing with a full covariance matrix for a large data set would present a formidable computational challenge, but fortunately most of the entries in the covariance matrix are so small that they can be replaced by zeros. The resultant matrix comprises only about 3 per cent non-zero entries and thus we can take advantage of efficient sparse matrix techniques to solve the numerical system. We construct several main-field models based on vertical-component data from a selected 5 deg. by 5 deg. data set derived from the Magsat mission. Models with and without off-diagonal terms are compared.

  4. Correlation study of knee joint proprioception test results using common test methods.

    PubMed

    Li, Lin; Ji, Zhong-Qiu; Li, Yan-Xia; Liu, Wei-Tong

    2016-01-01

    [Purpose] To study the correlation of the results obtained from different proprioception test methods, namely, the joint angle reset method, the motion minimum threshold measurement method, and the force sense reproduction method, performed on the same subjects' knees. [Subjects and Methods] Different proprioception test methods, the joint angle reset method, the motion minimum threshold measurement method and the force sense reproduction method were used to test the knees of 30 healthy young men. [Results] Correlations were found in the following descending order from strong to weak: the correlation between the joint angle reset method and the force sense reproduction method (correlation coefficient of 0.41), the correlation between the joint angle reset method and the motion minimum threshold measurement method (correlation coefficient of 0.29), the correlation between the motion minimum threshold measurement method and the force sense reproduce method (correlation coefficient of 0.15). [Conclusion] No correlation was found among the results obtained using the joint angle reset method, the motion minimum threshold measurement method and the force sense reproduction method. Therefore, no correlation was found among the position sense, the motion sense and the force sense represented by these methods. Using the results of only one of the test methods to represent proprioception is one-sided. Force sensation depends more on the sensory input of information from the Golgi tendon organs, motion sense depends more on the input information of the muscle spindles, and position sense relies on the double input information of the muscle spindles and the Golgi tendon organs.

  5. Geochemical field method for determination of nickel in plants

    USGS Publications Warehouse

    Reichen, L.E.

    1951-01-01

    The use of biogeochemical data in prospecting for nickel emphasizes the need for a simple, moderately accurate field method for the determination of nickel in plants. In order to follow leads provided by plants of unusual nickel content without loss of time, the plants should be analyzed and the results given to the field geologist promptly. The method reported in this paper was developed to meet this need. Speed is acquired by elimination of the customary drying and controlled ashing; the fresh vegetation is ashed in an open dish over a gasoline stove. The ash is put into solution with hydrochloric acid and the solution buffered. A chromograph is used to make a confined spot with an aliquot of the ash solution on dimethylglyoxime reagent paper. As little as 0.025% nickel in plant ash can be determined. With a simple modification, 0.003% can be detected. Data are given comparing the results obtained by an accepted laboratory procedure. Results by the field method are within 30% of the laboratory values. The field method for nickel in plants meets the requirements of biogeochemical prospecting with respect to accuracy, simplicity, speed, and ease of performance in the field. With experience, an analyst can make 30 determinations in an 8-hour work day in the field.

  6. Correlations among field dependence/independence, locus of control and self-monitoring.

    PubMed

    Leventhal, G; Sisco, H

    1996-10-01

    72 college students completed the Witkin Rod and Frame Test and the Group Embedded Figures Test as measures of Field Dependence/Independence, the Nowicki-Strickland Internal-External Locus of Control Scale, and the Synder Self-monitoring Scale. Analysis indicated a small but significant relationship between scores on the first two tests but none between the second two. A significant correlation between scores on locus of control with the Group Embedded Figures Test and none with the Rod and Frame test, and a small but significant relationship between scores on self-monitoring with those on both measures of field dependence.

  7. Rational Conformal Correlation Functions of Gauge-Invariant Local Fields in Four Dimensions

    SciTech Connect

    Nikolov, N.M.; Stanev, Ya.S.; Todorov, I.T.

    2005-11-01

    Global conformal invariance in Minkowski space and the Wightman axioms imply strong locality (Huygens principle) and rationality of correlation functions, thus providing an extension of the concept of a vertex algebra to higher (even) dimensions D. We (p)review current work on a model of a Hermitian scalar field L of scale dimension 4 (D = 4) which can be interpreted as the Lagrangian of a gauge field theory that generates the algebra of gauge-invariant local observables in a conformally invariant renormalization group fixed point.

  8. Correlation functions and renormalization in a scalar field theory on the fuzzy sphere

    NASA Astrophysics Data System (ADS)

    Hatakeyama, Kohta; Tsuchiya, Asato

    2017-06-01

    We study renormalization in a scalar field theory on the fuzzy sphere. The theory is realized by a matrix model, where the matrix size plays the role of an ultraviolet cutoff. We define correlation functions by using the Berezin symbol identified with a field and calculate them nonperturbatively by Monte Carlo simulation. We find that the 2-point and 4-point functions are made independent of the matrix size by tuning a parameter and performing a wave function renormalization. The results strongly suggest that the theory is nonperturbatively renormalizable in the ordinary sense.

  9. Characteristics of local field potentials correlate with pain relief by deep brain stimulation.

    PubMed

    Huang, Yongzhi; Luo, Huichun; Green, Alexander L; Aziz, Tipu Z; Wang, Shouyan

    2016-07-01

    To investigate the link between neuronal activity recorded from the sensory thalamus and periventricular gray/periaqueductal gray (PVAG) and pain relief by deep brain stimulation (DBS). Local field potentials (LFPs) were recorded from the sensory thalamus and PVAG post-operatively from ten patients with neuropathic pain. The LFPs were quantified using spectral and time-frequency analysis, the relationship between the LFPs and pain relief was quantified with nonlinear correlation analysis. The theta oscillations of both sensory thalamus and PVAG correlated inversely with pain relief. The high beta oscillations in the sensory thalamus and the alpha oscillations in the PVAG correlated positively with pain relief. Moreover, the ratio of high-power duration to low-power duration of theta band activity in the sensory thalamus and PVAG correlated inversely with pain relief. The duration ratio at the high beta band in the sensory thalamus correlated positively with pain relief. Our results reveal distinct neuronal oscillations at the theta, alpha, and beta frequencies correlating with pain relief by DBS. The study provides quantitative measures for predicting the outcomes of neuropathic pain relief by DBS as well as potential biomarkers for developing adaptive stimulation strategies. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  10. Method of electric field flow fractionation wherein the polarity of the electric field is periodically reversed

    DOEpatents

    Stevens, Fred J.

    1992-01-01

    A novel method of electric field flow fractionation for separating solute molecules from a carrier solution is disclosed. The method of the invention utilizes an electric field that is periodically reversed in polarity, in a time-dependent, wave-like manner. The parameters of the waveform, including amplitude, frequency and wave shape may be varied to optimize separation of solute species. The waveform may further include discontinuities to enhance separation.

  11. A comparison of methods for estimating the geoelectric field

    NASA Astrophysics Data System (ADS)

    Weigel, R. S.

    2017-02-01

    The geoelectric field is the primary input used for estimation of geomagnetically induced currents (GICs) in conducting systems. We compare three methods for estimating the geoelectric field given the measured geomagnetic field at four locations in the U.S. during time intervals with average Kp in the range of 2-3 and when the measurements had few data spikes and no baseline jumps. The methods include using (1) a preexisting 1-D conductivity model, (2) a conventional 3-D frequency domain method, and (3) a robust and remote reference 3-D frequency domain method. The quality of the estimates is determined using the power spectrum (in the period range 9.1 to 18,725 s) of estimation errors along with the prediction efficiency summary statistic. It is shown that with respect to these quality metrics, Method 1 produces average out-of-sample electric field estimation errors with a variance that can be equal to or larger than the average measured variance (due to underestimation or overestimation, respectively), and Method 3 produces reliable but slightly lower quality estimates than Method 2 for the time intervals and locations considered.

  12. Ps-Ps scattering via the correlated Gaussian hyperspherical method

    NASA Astrophysics Data System (ADS)

    Daily, Kevin; von Stecher, Javier; Greene, Chris

    2014-05-01

    There is renewed interest in systems of electrons and positrons since it may be possible to create a Bose-Einstein condensate of spin-triplet positronium atoms [P. M. Platzman and A. P. Mills, Jr., Phys. Rev. B 49, 454 (1994)]. We study the four-body system consisting of two positrons and two electrons. Using a basis of correlated Gaussians at fixed hyperradius, we utilize a new technique [K. M. Daily and C. H. Greene, Phys. Rev. A 89, 012503 (2014)] to efficiently calculate the adiabatic potentials and non-adiabatic couplings as a function of the hyperradius. The R-matrix is propagated to large hyperradius and scattering properties are derived. We gratefully acknowledge support by the NSF.

  13. Direct field method for root biomass quantification in agroecosystems.

    PubMed

    Frasier, Ileana; Noellemeyer, Elke; Fernández, Romina; Quiroga, Alberto

    2016-01-01

    The present article describes a field auger sampling method for row-crop root measurements. In agroecosystems where crops are planted in a specific design (row crops), sampling procedures for root biomass quantification need to consider the spatial variability of the root system. This article explains in detail how to sample and calculate root biomass considering the sampling position in the field and the differential weight of the root biomass in the inter-row compared to the crop row when expressing data per area unit. This method is highly reproducible in the field and requires no expensive equipment and/or special skills. It proposes to use a narrow auger thus reducing field labor with less destructive sampling, and decreases laboratory time because samples are smaller. The small sample size also facilitates the washing and root separation with tweezers. This method is suitable for either winter- or summer crop roots. •Description of a direct field method for row-crop root measurements.•Description of data calculation for total root-biomass estimation per unit area.•The proposed method is simple, less labor- and less time consuming.

  14. The emergence of mixing methods in the field of evaluation.

    PubMed

    Greene, Jennifer C

    2015-06-01

    When and how did the contemporary practice of mixing methods in social inquiry get started? What events transpired to catalyze the explosive conceptual development and practical adoption of mixed methods social inquiry over recent decades? How has this development progressed? What "next steps" would be most constructive? These questions are engaged in this personally narrative account of the beginnings of the contemporary mixed methods phenomenon in the field of evaluation from the perspective of a methodologist who was there.

  15. Correlation of photon emission with electric-field-initiated nanometer-scale surface modification

    NASA Astrophysics Data System (ADS)

    Strozewski, K. J.; McBride, S. E.; Wetsel, G. C., Jr.

    1996-06-01

    Photon emission during electric-field-initiated material transfer has been measured using a scanning tunneling microscope configured for surface modification. The instrument has been integrated with a photon-counting system that measures the emission originating from the tip-sample junction under both quiescent and transient conditions. The transient photon emission recorded during nanometer-scale surface modification of gold samples is correlated with the type of feature formed on the sample surface.

  16. Sound Source Identification Through Flow Density Measurement and Correlation With Far Field Noise

    NASA Technical Reports Server (NTRS)

    Panda, J.; Seasholtz, R. G.

    2001-01-01

    Sound sources in the plumes of unheated round jets, in the Mach number range 0.6 to 1.8, were investigated experimentally using "casuality" approach, where air density fluctuations in the plumes were correlated with the far field noise. The air density was measured using a newly developed Molecular Rayleigh scattering based technique, which did not require any seeding. The reference at the end provides a detailed description of the measurement technique.

  17. Poloidal correlation reflectometry at W7-X: radial electric field and coherent fluctuations

    NASA Astrophysics Data System (ADS)

    Windisch, T.; Krämer-Flecken, A.; Velasco, JL; Könies, A.; Nührenberg, C.; Grulke, O.; Klinger, T.; the W7-X Team

    2017-10-01

    Poloidal correlation reflectometry measurements during the first plasma campaign of the optimized stellarator Wendelstein-7X are presented. The radial electric field is determined and a comparison with neoclassical calculations and shows good qualitative agreement. The measured density fluctuation spectrum exhibits coherent low- and high-frequency modes. Magneto-hydrodynamic (MHD) modeling results suggest that the coherent fluctuations are caused by stable MHD-modes and Alfvén waves.

  18. Out-of-time-ordered correlators and purity in rational conformal field theories

    NASA Astrophysics Data System (ADS)

    Caputa, Paweł; Numasawa, Tokiro; Veliz-Osorio, Alvaro

    2016-11-01

    In this paper we investigate measures of chaos and entanglement in rational conformal field theories in 1 + 1 dimensions. First, we derive a formula for the late time value of the out-of-time-ordered correlators for this class of theories. Our universal result can be expressed as a particular combination of the modular S-matrix elements known as anyon monodromy scalar. Next, in the explicit setup of an SUN Wess-Zumino-Witten model, we compare the late time behavior of the out-of-time-ordered correlators and the purity. Interestingly, in the large-c limit, the purity grows logarithmically as in holographic theories; in contrast, the out-of-time-ordered correlators remain, in general, nonvanishing.

  19. Correlating species and spectral diversities using hyperspectral remote sensing in early-successional fields.

    PubMed

    Aneece, Itiya P; Epstein, Howard; Lerdau, Manuel

    2017-05-01

    Advances in remote sensing technology can help estimate biodiversity at large spatial extents. To assess whether we could use hyperspectral visible near-infrared (VNIR) spectra to estimate species diversity, we examined the correlations between species diversity and spectral diversity in early-successional abandoned agricultural fields in the Ridge and Valley ecoregion of north-central Virginia at the Blandy Experimental Farm. We established plant community plots and collected vegetation surveys and ground-level hyperspectral data from 350 to 1,025 nm wavelengths. We related spectral diversity (standard deviations across spectra) with species diversity (Shannon-Weiner index) and evaluated whether these correlations differed among spectral regions throughout the visible and near-infrared wavelength regions, and across different spectral transformation techniques. We found positive correlations in the visible regions using band depth data, positive correlations in the near-infrared region using first derivatives of spectra, and weak to no correlations in the red-edge region using either of the two spectral transformation techniques. To investigate the role of pigment variability in these correlations, we estimated chlorophyll, carotenoid, and anthocyanin concentrations of five dominant species in the plots using spectral vegetation indices. Although interspecific variability in pigment levels exceeded intraspecific variability, chlorophyll was more varied within species than carotenoids and anthocyanins, contributing to the lack of correlation between species diversity and spectral diversity in the red-edge region. Interspecific differences in pigment levels, however, made it possible to differentiate these species remotely, contributing to the species-spectral diversity correlations. VNIR spectra can be used to estimate species diversity, but the relationships depend on the spectral region examined and the spectral transformation technique used.

  20. Non-perturbative methods in relativistic field theory

    SciTech Connect

    Franz Gross

    2013-03-01

    This talk reviews relativistic methods used to compute bound and low energy scattering states in field theory, with emphasis on approaches that John Tjon and I discussed (and argued about) together. I compare the Bethe–Salpeter and Covariant Spectator equations, show some applications, and then report on some of the things we have learned from the beautiful Feynman–Schwinger technique for calculating the exact sum of all ladder and crossed ladder diagrams in field theory.

  1. Method of determining interwell oil field fluid saturation distribution

    DOEpatents

    Donaldson, Erle C.; Sutterfield, F. Dexter

    1981-01-01

    A method of determining the oil and brine saturation distribution in an oil field by taking electrical current and potential measurements among a plurality of open-hole wells geometrically distributed throughout the oil field. Poisson's equation is utilized to develop fluid saturation distributions from the electrical current and potential measurement. Both signal generating equipment and chemical means are used to develop current flow among the several open-hole wells.

  2. Effect of charge on the ferroelectric field effect in strongly correlated oxides

    NASA Astrophysics Data System (ADS)

    Chen, Xuegang; Xiao, Zhiyong; Zhang, Xiaozhe; Zhang, Le; Zhao, Weiwei; Xu, Xiaoshan; Hong, Xia

    We present a systematic study of the effect of charge on the ferroelectric field effect modulation of various strongly correlated oxide materials. We have fabricated high quality epitaxial heterostructures composed of a ferroelectric Pb(Zr,Ti)O3 (PZT) gate and a correlated oxide channel, including Sm0.5Nd0.5NiO3 (SNNO), La0.7Sr0.3MnO3 (LSMO), SNNO/LSMO bilayers, and NiCo2O4 (NCO). The Hall effect measurements reveal a carrier density of ~4 holes/u.c. (0.4 cm2V-1s-1) for SNNO to ~2 holes/u.c. (27 cm2V-1s-1) for NCO. We find the magnitude of the field effect is closely related to both the intrinsic carrier density and carrier mobility of the channel material. For devices employing the SNNO/LSMO bilayer channel, we believe the charge transfer between the two correlated oxides play an important role in the observed resistance modulation. The screening capacitor of the channel materials and the interfacial defect states also have significant impact on the retention characteristics of the field effect. Our study reveals the critical role of charge in determining the interfacial coupling between ferroelectric and magnetic oxides, and has important implications in developing ferroelectric-controlled Mott memory devices.

  3. A time correlation function theory describing static field enhanced third order optical effects at interfaces.

    PubMed

    Neipert, Christine; Space, Brian

    2006-12-14

    Sum vibrational frequency spectroscopy, a second order optical process, is interface specific in the dipole approximation. At charged interfaces, there exists a static field, and as a direct consequence, the experimentally detected signal is a combination of enhanced second and static field induced third order contributions. There is significant evidence in the literature of the importance/relative magnitude of this third order contribution, but no previous molecularly detailed approach existed to separately calculate the second and third order contributions. Thus, for the first time, a molecularly detailed time correlation function theory is derived here that allows for the second and third order contributions to sum frequency vibrational spectra to be individually determined. Further, a practical, molecular dynamics based, implementation procedure for the derived correlation functions that describe the third order phenomenon is also presented. This approach includes a novel generalization of point atomic polarizability models to calculate the hyperpolarizability of a molecular system. The full system hyperpolarizability appears in the time correlation functions responsible for third order contributions in the presence of a static field.

  4. Correlation of Coronal Plasma Properties and Solar Magnetic Field in a Decaying Active Region

    NASA Astrophysics Data System (ADS)

    Ko, Yuan-Kuen; Young, Peter R.; Muglach, Karin; Warren, Harry P.; Ugarte-Urra, Ignacio

    2016-08-01

    We present the analysis of a decaying active region observed by the EUV Imaging Spectrometer on Hinode during 2009 December 7-11. We investigated the temporal evolution of its structure exhibited by plasma at temperatures from 300,000 to 2.8 million degrees, and derived the electron density, differential emission measure, effective electron temperature, and elemental abundance ratios of Si/S and Fe/S (as a measure of the First Ionization Potential (FIP) Effect). We compared these coronal properties to the temporal evolution of the photospheric magnetic field strength obtained from the Solar and Heliospheric Observatory Michelson Doppler Imager magnetograms. We find that, while these coronal properties all decreased with time during this decay phase, the largest change was at plasma above 1.5 million degrees. The photospheric magnetic field strength also decreased with time but mainly for field strengths lower than about 70 Gauss. The effective electron temperature and the FIP bias seem to reach a “basal” state (at 1.5 × 106 K and 1.5, respectively) into the quiet Sun when the mean photospheric magnetic field (excluding all areas <10 G) weakened to below 35 G, while the electron density continued to decrease with the weakening field. These physical properties are all positively correlated with each other and the correlation is the strongest in the high-temperature plasma. Such correlation properties should be considered in the quest for our understanding of how the corona is heated. The variations in the elemental abundance should especially be considered together with the electron temperature and density.

  5. Correlation of Coronal Plasma Properties and Solar Magnetic Field in a Decaying Active Region

    NASA Technical Reports Server (NTRS)

    Ko, Yuan-Kuen; Young, Peter R.; Muglach, Karin; Warren, Harry P.; Ugarte-Urra, Ignacio

    2016-01-01

    We present the analysis of a decaying active region observed by the EUV Imaging Spectrometer on Hinode during 2009 December 7-11. We investigated the temporal evolution of its structure exhibited by plasma at temperatures from 300,000 to 2.8 million degrees, and derived the electron density, differential emission measure, effective electron temperature, and elemental abundance ratios of Si/S and Fe/S (as a measure of the First Ionization Potential (FIP) Effect). We compared these coronal properties to the temporal evolution of the photospheric magnetic field strength obtained from the Solar and Heliospheric Observatory Michelson Doppler Imager magnetograms. We find that, while these coronal properties all decreased with time during this decay phase, the largest change was at plasma above 1.5 million degrees. The photospheric magnetic field strength also decreased with time but mainly for field strengths lower than about 70 Gauss. The effective electron temperature and the FIP bias seem to reach a basal state (at 1.5 x 10(exp 6) K and 1.5, respectively) into the quiet Sun when the mean photospheric magnetic field (excluding all areas <10 G) weakened to below 35 G, while the electron density continued to decrease with the weakening field. These physical properties are all positively correlated with each other and the correlation is the strongest in the high-temperature plasma. Such correlation properties should be considered in the quest for our understanding of how the corona is heated. The variations in the elemental abundance should especially be considered together with the electron temperature and density.

  6. Correlation of Puma airloads: Evaluation of CFD prediction methods

    NASA Technical Reports Server (NTRS)

    Strawn, Roger C.; Desopper, Andre; Miller, Judith; Jones, Alan

    1989-01-01

    A cooperative program was undertaken by research organizations in England, France, Australia and the U.S. to study the capabilities of computational fluid dynamics codes (CFD) to predict the aerodynamic loading on helicopter rotor blades. The program goal is to compare predictions with experimental data for flight tests of a research Puma helicopter with rectangular and swept tip blades. Two topics are studied. First, computed results from three CFD codes are compared for flight test cases where all three codes use the same partial inflow-angle boundary conditions. Second, one of the CFD codes (FPR) is iteratively coupled with the CAMRAD/JA helicopter performance code. These results are compared with experimental data and with an uncoupled CAMRAD/JA solution. The influence of flow field unsteadiness is found to play an important role in the blade aerodynamics. Alternate boundary conditions are suggested in order to properly model this unsteadiness in the CFD codes.

  7. Correlation of Puma airfoils - Evaluation of CFD prediction methods

    NASA Technical Reports Server (NTRS)

    Strawn, Roger C.; Desopper, Andre; Miller, Judith; Jones, Alan

    1989-01-01

    A cooperative program was undertaken by research organizations in England, France, Australia and the U.S. to study the capabilities of computational fluid dynamics codes (CFD) to predict the aerodynamic loading on helicopter rotor blades. The program goal is to compare predictions with experimental data for flight tests of a research Puma helicopter with rectangular and swept tip blades. Two topics are studied. First, computed results from three CFD codes are compared for flight test cases where all three codes use the same partial inflow-angle boundary conditions. Second, one of the CFD codes (FPR) is iteratively coupled with the CAMRAD/JA heilcopter performance code. These results are compared with experimental data and with an uncoupled CAMRAD/JA solution. The influence of flow field unsteadiness is found to play an important role in the blade aerodynamics. Alternate boundary conditions are suggested in order to properly model this unsteadiness in the CFD codes.

  8. Correlation of Puma airfoils - Evaluation of CFD prediction methods

    NASA Technical Reports Server (NTRS)

    Strawn, Roger C.; Desopper, Andre; Miller, Judith; Jones, Alan

    1989-01-01

    A cooperative program was undertaken by research organizations in England, France, Australia and the U.S. to study the capabilities of computational fluid dynamics codes (CFD) to predict the aerodynamic loading on helicopter rotor blades. The program goal is to compare predictions with experimental data for flight tests of a research Puma helicopter with rectangular and swept tip blades. Two topics are studied. First, computed results from three CFD codes are compared for flight test cases where all three codes use the same partial inflow-angle boundary conditions. Second, one of the CFD codes (FPR) is iteratively coupled with the CAMRAD/JA heilcopter performance code. These results are compared with experimental data and with an uncoupled CAMRAD/JA solution. The influence of flow field unsteadiness is found to play an important role in the blade aerodynamics. Alternate boundary conditions are suggested in order to properly model this unsteadiness in the CFD codes.

  9. A new method to measure galaxy bias by combining the density and weak lensing fields

    SciTech Connect

    Pujol, Arnau; Chang, Chihway; Gaztanaga, Enrique; Amara, Adam; Refregier, Alexandre; Bacon, David J.; Carretero, Jorge; Castander, Francisco J.; Crocce, Martin; Fosalba, Pablo; Vikram, Vinu

    2016-10-11

    We present a new method to measure redshift-dependent galaxy bias by combining information from the galaxy density field and the weak lensing field. This method is based on the work of Amara et al., who use the galaxy density field to construct a bias-weighted convergence field κg. The main difference between Amara et al.'s work and our new implementation is that here we present another way to measure galaxy bias, using tomography instead of bias parametrizations. The correlation between κg and the true lensing field κ allows us to measure galaxy bias using different zero-lag correlations, such as 〈κgκ〉/〈κκ〉 or 〈κgκg〉/〈κgκ〉. Our method measures the linear bias factor on linear scales, under the assumption of no stochasticity between galaxies and matter. We use the Marenostrum Institut de Ciències de l'Espai (MICE) simulation to measure the linear galaxy bias for a flux-limited sample (i < 22.5) in tomographic redshift bins using this method. This article is the first that studies the accuracy and systematic uncertainties associated with the implementation of the method and the regime in which it is consistent with the linear galaxy bias defined by projected two-point correlation functions (2PCF). We find that our method is consistent with a linear bias at the per cent level for scales larger than 30 arcmin, while non-linearities appear at smaller scales. This measurement is a good complement to other measurements of bias, since it does not depend strongly on σ8 as do the 2PCF measurements. We will apply this method to the Dark Energy Survey Science Verification data in a follow-up article.

  10. A new method to measure galaxy bias by combining the density and weak lensing fields

    NASA Astrophysics Data System (ADS)

    Pujol, Arnau; Chang, Chihway; Gaztañaga, Enrique; Amara, Adam; Refregier, Alexandre; Bacon, David J.; Carretero, Jorge; Castander, Francisco J.; Crocce, Martin; Fosalba, Pablo; Manera, Marc; Vikram, Vinu

    2016-10-01

    We present a new method to measure redshift-dependent galaxy bias by combining information from the galaxy density field and the weak lensing field. This method is based on the work of Amara et al., who use the galaxy density field to construct a bias-weighted convergence field κg. The main difference between Amara et al.'s work and our new implementation is that here we present another way to measure galaxy bias, using tomography instead of bias parametrizations. The correlation between κg and the true lensing field κ allows us to measure galaxy bias using different zero-lag correlations, such as <κgκ>/<κκ> or <κgκg>/<κgκ>. Our method measures the linear bias factor on linear scales, under the assumption of no stochasticity between galaxies and matter. We use the Marenostrum Institut de Ciències de l'Espai (MICE) simulation to measure the linear galaxy bias for a flux-limited sample (i < 22.5) in tomographic redshift bins using this method. This article is the first that studies the accuracy and systematic uncertainties associated with the implementation of the method and the regime in which it is consistent with the linear galaxy bias defined by projected two-point correlation functions (2PCF). We find that our method is consistent with a linear bias at the per cent level for scales larger than 30 arcmin, while non-linearities appear at smaller scales. This measurement is a good complement to other measurements of bias, since it does not depend strongly on σ8 as do the 2PCF measurements. We will apply this method to the Dark Energy Survey Science Verification data in a follow-up article.

  11. Correlation of the Summary Method with Learning Styles

    ERIC Educational Resources Information Center

    Sarikcioglu, Levent; Senol, Yesim; Yildirim, Fatos B.; Hizay, Arzu

    2011-01-01

    The summary is the last part of the lesson but one of the most important. We aimed to study the relationship between the preference of the summary method (video demonstration, question-answer, or brief review of slides) and learning styles. A total of 131 students were included in the present study. An inventory was prepared to understand the…

  12. Correlates of the Rosenberg Self-Esteem Scale Method Effects

    ERIC Educational Resources Information Center

    Quilty, Lena C.; Oakman, Jonathan M.; Risko, Evan

    2006-01-01

    Investigators of personality assessment are becoming aware that using positively and negatively worded items in questionnaires to prevent acquiescence may negatively impact construct validity. The Rosenberg Self-Esteem Scale (RSES) has demonstrated a bifactorial structure typically proposed to result from these method effects. Recent work suggests…

  13. Correlates of the Rosenberg Self-Esteem Scale Method Effects

    ERIC Educational Resources Information Center

    Quilty, Lena C.; Oakman, Jonathan M.; Risko, Evan

    2006-01-01

    Investigators of personality assessment are becoming aware that using positively and negatively worded items in questionnaires to prevent acquiescence may negatively impact construct validity. The Rosenberg Self-Esteem Scale (RSES) has demonstrated a bifactorial structure typically proposed to result from these method effects. Recent work suggests…

  14. Method for numerical simulation of two-term exponentially correlated colored noise

    SciTech Connect

    Yilmaz, B.; Ayik, S.; Abe, Y.; Gokalp, A.; Yilmaz, O.

    2006-04-15

    A method for numerical simulation of two-term exponentially correlated colored noise is proposed. The method is an extension of traditional method for one-term exponentially correlated colored noise. The validity of the algorithm is tested by comparing numerical simulations with analytical results in two physical applications.

  15. A comprehensive method of estimating electric fields from vector magnetic field and Doppler measurements

    SciTech Connect

    Kazachenko, Maria D.; Fisher, George H.; Welsch, Brian T.

    2014-11-01

    Photospheric electric fields, estimated from sequences of vector magnetic field and Doppler measurements, can be used to estimate the flux of magnetic energy (the Poynting flux) into the corona and as time-dependent boundary conditions for dynamic models of the coronal magnetic field. We have modified and extended an existing method to estimate photospheric electric fields that combines a poloidal-toroidal decomposition (PTD) of the evolving magnetic field vector with Doppler and horizontal plasma velocities. Our current, more comprehensive method, which we dub the 'PTD-Doppler-FLCT Ideal' (PDFI) technique, can now incorporate Doppler velocities from non-normal viewing angles. It uses the FISHPACK software package to solve several two-dimensional Poisson equations, a faster and more robust approach than our previous implementations. Here, we describe systematic, quantitative tests of the accuracy and robustness of the PDFI technique using synthetic data from anelastic MHD (ANMHD) simulations, which have been used in similar tests in the past. We find that the PDFI method has less than 1% error in the total Poynting flux and a 10% error in the helicity flux rate at a normal viewing angle (θ = 0) and less than 25% and 10% errors, respectively, at large viewing angles (θ < 60°). We compare our results with other inversion methods at zero viewing angle and find that our method's estimates of the fluxes of magnetic energy and helicity are comparable to or more accurate than other methods. We also discuss the limitations of the PDFI method and its uncertainties.

  16. Full-field wing deformation measurement scheme for in-flight cantilever monoplane based on 3D digital image correlation

    NASA Astrophysics Data System (ADS)

    Li, Lei-Gang; Liang, Jin; Guo, Xiang; Guo, Cheng; Hu, Hao; Tang, Zheng-Zong

    2014-06-01

    In this paper, a new non-contact scheme, based on 3D digital image correlation technology, is presented to measure the full-field wing deformation of in-flight cantilever monoplanes. Because of the special structure of the cantilever wing, two conjugated camera groups, which are rigidly connected and calibrated to an ensemble respectively, are installed onto the vertical fin of the aircraft and record the whole measurement. First, a type of pre-stretched target and speckle pattern are designed to adapt the oblique camera view for accurate detection and correlation. Then, because the measurement cameras are swinging with the aircraft vertical trail all the time, a camera position self-correction method (using control targets sprayed on the back of the aircraft), is designed to orientate all the cameras’ exterior parameters to a unified coordinate system in real time. Besides, for the excessively inclined camera axis and the vertical camera arrangement, a weak correlation between the high position image and low position image occurs. In this paper, a new dual-temporal efficient matching method, combining the principle of seed point spreading, is proposed to achieve the matching of weak correlated images. A novel system is developed and a simulation test in the laboratory was carried out to verify the proposed scheme.

  17. Assessment of Thematic Mapper Band-to-band Registration by the Block Correlation Method

    NASA Technical Reports Server (NTRS)

    Card, D. H.; Wrigley, R. C.; Mertz, F. C.; Hall, J. R.

    1984-01-01

    The design of the Thematic Mapper (TM) multispectral radiometer makes it susceptible to band-to-band misregistration. To estimate band-to-band misregistration a block correlation method is employed. This method is chosen over other possible techniques (band differencing and flickering) because quantitative results are produced. The method correlates rectangular blocks of pixels from one band against blocks centered on identical pixels from a second band. The block pairs are shifted in pixel increments both vertically and horizontally with respect to each other and the correlation coefficient for each shift position is computed. The displacement corresponding to the maximum correlation is taken as the best estimate of registration error for each block pair. Subpixel shifts are estimated by a bi-quadratic interpolation of the correlation values surrounding the maximum correlation. To obtain statistical summaries for each band combination post processing of the block correlation results performed. The method results in estimates of registration error that are consistent with expectations.

  18. Assessment of Thematic Mapper Band-to-band Registration by the Block Correlation Method

    NASA Technical Reports Server (NTRS)

    Card, D. H.; Wrigley, R. C.; Mertz, F. C.; Hall, J. R.

    1984-01-01

    The design of the Thematic Mapper (TM) multispectral radiometer makes it susceptible to band-to-band misregistration. To estimate band-to-band misregistration a block correlation method is employed. This method is chosen over other possible techniques (band differencing and flickering) because quantitative results are produced. The method correlates rectangular blocks of pixels from one band against blocks centered on identical pixels from a second band. The block pairs are shifted in pixel increments both vertically and horizontally with respect to each other and the correlation coefficient for each shift position is computed. The displacement corresponding to the maximum correlation is taken as the best estimate of registration error for each block pair. Subpixel shifts are estimated by a bi-quadratic interpolation of the correlation values surrounding the maximum correlation. To obtain statistical summaries for each band combination post processing of the block correlation results performed. The method results in estimates of registration error that are consistent with expectations.

  19. Optimal tradeoff circular harmonic function correlation filter methods providing controlled in-plane rotation response.

    PubMed

    Vijaya Kumar, B K; Mahalanobis, A; Takessian, A

    2000-01-01

    Correlation methods are becoming increasingly attractive tools for image recognition and location. This renewed interest in correlation methods is spurred by the availability of high-speed image processors and the emergence of correlation filter designs that can optimize relevant figures of merit. In this paper, a new correlation filter design method is presented that allows one to optimally tradeoff among potentially conflicting correlation output performance criteria while achieving desired correlation peak value behavior in response to in-plane rotation of input images. Such controlled in-plane rotation response is useful in image analysis and pattern recognition applications where the sensor follows a pre-arranged trajectory while imaging an object. Since this new correlation filter design is based on circular harmonic function (CHF) theory, we refer to the resulting filters as optimal tradeoff circular harmonic function (OTCHF) filters. Underlying theory, OTCHF filter design method, and illustrative numerical results are presented.

  20. The correlation between glaucomatous visual field loss and vision-related quality of life.

    PubMed

    Orta, Asli Ö F; Öztürker, Zeynep K; Erkul, Sezin Ö; Bayraktar, Şükrü; Yilmaz, Omer F

    2015-01-01

    To evaluate the vision-related quality of life (QoL) of glaucoma patients in terms of the correlation between visual field (VF) loss and National Eye Institute Visual Functioning Questionnaire-39 (NEI VFQ-39) survey. A total of 244 glaucoma patients were examined with monocular Humphrey 24-2 central full threshold and Esterman binocular VF tests. Patients were grouped according to their monocular VFs done by Advanced Glaucoma Intervention Study (AGIS) classification and Esterman binocular VF efficiency scores. NEI VFQ-39 was applied for the evaluation of vision-related QoL. NEI VFQ-39 subscales and total scores were evaluated and the highest mean average values were in "color vision" (92.00±16.59) and "social functioning" (90.74±15.98). The lowest mean average values were in "general health" (54.76±18.86) and "general vision" (66.03±17.59). All the subscales except "general health" and "ocular pain" showed positive correlations with the monocular and Esterman binocular VF groupings. Pearson correlation analysis between NEI VFQ-39 subscales and the AGIS VF classification-based groups indicated that the subscales had statistically significant negative correlations except the "general health" (r=-0.151, P=0.018) and "ocular pain" (r=-0.048, P=0.455). The highest correlation with AGIS VF classification was in "driving" (r=-0.477, P=0.001) and "general vision" (r=-0.446, P=0.000) subscales. There was statistically significant correlation between NEI VFQ-39 subscales and Esterman binocular VF groups except "general health" (r=-0.064, P=0.318) and "ocular pain" (r=-0.062, P=0.337). The highest negative correlation was in "distant activities" (r=-0.522, P=0.000) and the lowest negative correlation was in "color vision" (r=-0.416, P=0.000) subscales. The highest correlation between binocular distant and binocular near-visual acuities was in "distant activities" and the lowest correlation was in "role difficulties" subscales. There is statistically significant

  1. A simple field method to determine mercury volatilization from soils.

    PubMed

    Böhme, Frank; Rinklebe, Jörg; Stärk, Hans-Joachim; Wennrich, Rainer; Mothes, Sibylle; Neue, Heinz-Ulrich

    2005-01-01

    Estimations of gaseous mercury volatilization from soils are often complex, stationary and expensive. Our objective was to develop a mobile and more simple, easy to handle and more cost-effective field method allowing rapid estimates of potential Hg emissions from soils. The study site is located in Germany, about 100 kilometers south-westerly of Berlin and influenced by the river Elbe and its tributary Saale river. The site is representative for a lot of other floodplain locations at the river Elbe and highly polluted with Hg and other heavy metals. For our study we developed a system consisting of a glass chamber gas, two gold traps, a battery operated pump and a gas meter. Adsorbed total gaseous mercury (TGM) in the gold traps was determined by use of atomic absorption spectrometry (AAS). In contrast to the common used flux chambers we designed a chamber without inlet and named it gas suck up chamber (GSC). TGM fluxes determined with the GSC showed a very close linear correlation (r = 0.993) between the TGM content in the gold traps and the corresponding pumped gas volume. The TGM adsorbed, increased proportional with increasing gas volume indicating homogenous concentrations of gaseous mercury in the soil air sucked. In contrast to the commonly used dynamic flux chamber with the aim of precisely measuring actual fluxes of Hg from a defined soil area, we focused on developing of a measurement system which will allow rapid estimates of potential Hg emissions of a site. Earlier research at the study site indicated a high potential for releasing volatile Hg from the soil to the atmosphere. Indeed, due to the high Hg content of the soil significant amounts of TGM could be detected and no shortage was reached. Our initial measurements are still too few in number neither to generalize the achieved results nor discuss controlling factors and processes. However, we are pleased to communicate that the developed GSC is well suited to become an effective sampling set up to

  2. Method of improving field emission characteristics of diamond thin films

    DOEpatents

    Krauss, Alan R.; Gruen, Dieter M.

    1999-01-01

    A method of preparing diamond thin films with improved field emission properties. The method includes preparing a diamond thin film on a substrate, such as Mo, W, Si and Ni. An atmosphere of hydrogen (molecular or atomic) can be provided above the already deposited film to form absorbed hydrogen to reduce the work function and enhance field emission properties of the diamond film. In addition, hydrogen can be absorbed on intergranular surfaces to enhance electrical conductivity of the diamond film. The treated diamond film can be part of a microtip array in a flat panel display.

  3. Method of improving field emission characteristics of diamond thin films

    DOEpatents

    Krauss, A.R.; Gruen, D.M.

    1999-05-11

    A method of preparing diamond thin films with improved field emission properties is disclosed. The method includes preparing a diamond thin film on a substrate, such as Mo, W, Si and Ni. An atmosphere of hydrogen (molecular or atomic) can be provided above the already deposited film to form absorbed hydrogen to reduce the work function and enhance field emission properties of the diamond film. In addition, hydrogen can be absorbed on intergranular surfaces to enhance electrical conductivity of the diamond film. The treated diamond film can be part of a microtip array in a flat panel display. 3 figs.

  4. Experimental correlation of electric fields and Raman signals in SERS and TERS.

    PubMed

    Schultz, Zachary D; Wang, Hao; Kwasnieski, Daniel T; Marr, James M

    2015-08-09

    Enhanced Raman scattering from plasmonic nanostructures associated with surface enhanced (SERS) and tip enhanced (TERS) is seeing a dramatic increase in applications from bioimaging to chemical catalysis. The importance of gap-modes for high sensitivity indicates plasmon coupling between nanostructures plays an important role. However, the observed Raman scattering can change with different geometric arrangements of nanoparticles, excitation wavelengths, and chemical environments; suggesting differences in the local electric field. Our results indicate that molecules adsorbed to the nanostructures are selectively enhanced in the presence of competing molecules. This selective enhancement arises from controlled interactions between nanostructures, such as an isolated nanoparticle and a TERS tip. Complementary experiments suggest that shifts in the vibrational frequency of reporter molecules can be correlated to the electric field. Here we present a strategy that utilizes the controlled formation of coupled plasmonic structures to experimentally measure both the magnitude of the electric fields and the observed Raman scattering.

  5. Static and dynamic properties of strongly correlated lattice models under electric fields (Dynamical Mean Field Theory approach)

    NASA Astrophysics Data System (ADS)

    Joura, Alexander V.

    In this thesis we study the Falicov-Kimball model within the framework of Dynamical Mean Field Theory (DMFT). We derive expressions for the electrical conductivity, electronic thermal conductivity, Seebeck coefficient (thermopower) and thermoelectric figure of merit (ZT) for the infinite dimensional hypercubic lattice and the Bethe lattice of infinite connectivity within linear response theory. We use these formulas to numerically calculate thermoelectric properties of the model away from half-filling. We also derive explicit analytic formulas for the retarded Green's function, the retarded self-energy and the relaxation time near the pole in the insulating regime on the hypercubic lattice. Using these results we compare thermal and electric transport properties of the correlated insulator to that of a generic insulator in the small temperature regime. Using analytic expressions for the self-energy near the pole in the insulator phase, we derive analytic formulas for the metal-insulator transition Ucr on the hypercubic lattice. For the Bethe lattice we derive explicit analytic formulas for the electric conductivity, the electronic part of the thermal conductivity, the Seebeck coefficient, the Lorentz number and the figure of merit in the low temperature limit. We also examine the problem of calculating the density of states for single-band lattice Hamiltonians with an applied constant and uniform external electric field, when the field is large enough that nonlinear effects are important. To do this we develop a general formalism (based on the nonequilibrium Kadanoff-Baym-Keldysh theory), which can be applied to a wide variety of different many-body Hamiltonians. We assume that the electric field was turned on in the distant past, so the system has reached the steady state. We present numerical solutions of the equations derived for the Falicov-Kimball model within the framework of dynamical mean-field theory. Finally, nonequilibrium properties of the Hubbard model

  6. Coda reconstruction from cross-correlation of a diffuse field on thin elastic plates

    NASA Astrophysics Data System (ADS)

    Hejazi Nooghabi, Aida; Boschi, Lapo; Roux, Philippe; de Rosny, Julien

    2017-09-01

    This study contributes to the evaluation of the robustness and accuracy of Green's function reconstruction from cross-correlation of strongly dispersed reverberated signals, with disentangling of the respective roles of ballistic and reverberated ("coda") contributions. We conduct a suite of experiments on a highly reverberating thin duralumin plate, where an approximately diffuse flexural wave field is generated by taking advantage of the plate reverberation and wave dispersion. A large number of impulsive sources that cover the whole surface of the plate are used to validate ambient-noise theory through comparison of the causal and anticausal (i.e., positive- and negative-time) terms of the cross-correlation to one another and to the directly measured Green's function. To quantify the contribution of the ballistic and coda signals, the cross-correlation integral is defined over different time windows of variable length, and the accuracy of the reconstructed Green's function is studied as a function of the initial and end times of the integral. We show that even cross-correlations measured over limited time windows converge to a significant part of the Green's function. Convergence is achieved over a wide time window, which includes not only direct flexural-wave arrivals, but also the multiply reverberated coda. We propose a model, based on normal-mode analysis, that relates the similarity between the cross-correlation and the Green's function to the statistical properties of the plate. We also determine quantitatively how incoherent noise degrades the estimation of the Green's function.

  7. Heliocentric distance and temporal dependence of the interplanetary density-magnetic field magnitude correlation

    NASA Technical Reports Server (NTRS)

    Roberts, D. A.

    1990-01-01

    The Helios, IMP 8, ISEE 3, ad Voyager 2 spacecraft are used to examine the solar cycle and heliocentric distance dependence of the correlation between density n and magnetic field magnitude B in the solar wind. Previous work had suggested that this correlation becomes progressively more negative with heliocentric distance out to 9.5 AU. Here it is shown that this evolution is not a solar cycle effect, and that the correlations become even more strongly negative at heliocentric distance larger than 9.5 AU. There is considerable variability in the distributions of the correlations at a given heliocentric distance, but this is not simply related to the solar cycle. Examination of the evolution of correlations between density and speed suggest that most of the structures responsible for evolution in the anticorrelation between n and B are not slow-mode waves, but rather pressure balance structures. The latter consist of both coherent structures such as tangential discontinuities and the more generally pervasive 'pseudosound' which may include the coherent structures as a subset.

  8. Heliocentric distance and temporal dependence of the interplanetary density-magnetic field magnitude correlation

    NASA Technical Reports Server (NTRS)

    Roberts, D. A.

    1990-01-01

    The Helios, IMP 8, ISEE 3, ad Voyager 2 spacecraft are used to examine the solar cycle and heliocentric distance dependence of the correlation between density n and magnetic field magnitude B in the solar wind. Previous work had suggested that this correlation becomes progressively more negative with heliocentric distance out to 9.5 AU. Here it is shown that this evolution is not a solar cycle effect, and that the correlations become even more strongly negative at heliocentric distance larger than 9.5 AU. There is considerable variability in the distributions of the correlations at a given heliocentric distance, but this is not simply related to the solar cycle. Examination of the evolution of correlations between density and speed suggest that most of the structures responsible for evolution in the anticorrelation between n and B are not slow-mode waves, but rather pressure balance structures. The latter consist of both coherent structures such as tangential discontinuities and the more generally pervasive 'pseudosound' which may include the coherent structures as a subset.

  9. Benchmarking of depth of field for large out-of-plane deformations with single camera digital image correlation

    NASA Astrophysics Data System (ADS)

    Van Mieghem, Bart; Ivens, Jan; Van Bael, Albert

    2017-04-01

    A problem that arises when performing stereo digital image correlation in applications with large out-of-plane displacements is that the images may become unfocused. This unfocusing could result in correlation instabilities or inaccuracies. When performing DIC measurements and expecting large out-of-plane displacements researchers either trust on their experience or use the equations from photography to estimate the parameters affecting the depth of field (DOF) of the camera. A limitation of the latter approach is that the definition of sharpness is a human defined parameter and that it does not reflect the performance of the digital image correlation system. To get a more representative DOF value for DIC applications, a standardised testing method is presented here, making use of real camera and lens combinations as well as actual image correlation results. The method is based on experimental single camera DIC measurements of a backwards moving target. Correlation results from focused and unfocused images are compared and a threshold value defines whether or not the correlation results are acceptable even if the images are (slightly) unfocused. By following the proposed approach, the complete DOF of a specific camera/lens combination as function of the aperture setting and distance from the camera to the target can be defined. The comparison between the theoretical and the experimental DOF results shows that the achievable DOF for DIC applications is larger than what theoretical calculations predict. Practically this means that the cameras can be positioned closer to the target than what is expected from the theoretical approach. This leads to a gain in resolution and measurement accuracy.

  10. Correlation between vacancies and magnetoresistance changes in FM manganites using the Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Agudelo-Giraldo, J. D.; Restrepo-Parra, E.; Restrepo, J.

    2015-10-01

    The Metropolis algorithm and the classical Heisenberg approximation were implemented by the Monte Carlo method to design a computational approach to the magnetization and resistivity of La2/3Ca1/3MnO3, which depends on the Mn ion vacancies as the external magnetic field increases. This compound is ferromagnetic, and it exhibits the colossal magnetoresistance (CMR) effect. The monolayer was built with L×L×d dimensions, and it had L=30 umc (units of magnetic cells) for its dimension in the x-y plane and was d=12 umc in thickness. The Hamiltonian that was used contains interactions between first neighbors, the magnetocrystalline anisotropy effect and the external applied magnetic field response. The system that was considered contains mixed-valence bonds: Mn3+eg'-O-Mn3+eg, Mn3+eg-O-Mn4+d3 and Mn3+eg'-O-Mn4+d3. The vacancies were placed randomly in the sample, replacing any type of Mn ion. The main result shows that without vacancies, the transitions TC (Curie temperature) and TMI (metal-insulator temperature) are similar, whereas with the increase in the vacancy percentage, TMI presented lower values than TC. This situation is caused by the competition between the external magnetic field, the vacancy percentage and the magnetocrystalline anisotropy, which favors the magnetoresistive effect at temperatures below TMI. Resistivity loops were also observed, which shows a direct correlation with the hysteresis loops of magnetization at temperatures below TC.

  11. Multigrid Methods for the Computation of Propagators in Gauge Fields

    NASA Astrophysics Data System (ADS)

    Kalkreuter, Thomas

    Multigrid methods were invented for the solution of discretized partial differential equations in order to overcome the slowness of traditional algorithms by updates on various length scales. In the present work generalizations of multigrid methods for propagators in gauge fields are investigated. Gauge fields are incorporated in algorithms in a covariant way. The kernel C of the restriction operator which averages from one grid to the next coarser grid is defined by projection on the ground-state of a local Hamiltonian. The idea behind this definition is that the appropriate notion of smoothness depends on the dynamics. The ground-state projection choice of C can be used in arbitrary dimension and for arbitrary gauge group. We discuss proper averaging operations for bosons and for staggered fermions. The kernels C can also be used in multigrid Monte Carlo simulations, and for the definition of block spins and blocked gauge fields in Monte Carlo renormalization group studies. Actual numerical computations are performed in four-dimensional SU(2) gauge fields. We prove that our proposals for block spins are “good”, using renormalization group arguments. A central result is that the multigrid method works in arbitrarily disordered gauge fields, in principle. It is proved that computations of propagators in gauge fields without critical slowing down are possible when one uses an ideal interpolation kernel. Unfortunately, the idealized algorithm is not practical, but it was important to answer questions of principle. Practical methods are able to outperform the conjugate gradient algorithm in case of bosons. The case of staggered fermions is harder. Multigrid methods give considerable speed-ups compared to conventional relaxation algorithms, but on lattices up to 184 conjugate gradient is superior.

  12. Frustrating a correlated superconductor: the 2D Attractive Hubbard Model in an external magnetic field

    NASA Astrophysics Data System (ADS)

    Zhao, Hongbo; Engelbrecht, Jan R.

    2000-03-01

    At the Mean Field level (G. Murthy and R. Shankar, J. Phys. Condens. Matter, 7) (1995), the frustration due to an external field first makes the uniform BCS ground state unstable to an incommensurate (qne0) superconducting state and then to a spin-polarized Fermi Liquid state. Our interest is how fluctuations modify this picture, as well as the normal state of this system which has a quantum critical point. We use the Fluctuation-Exchange Approximation for the 2D Attractive Hubbard Model, to study this system beyond the Mean-Field level. Earlier work in zero field has shown that this numerical method successfully captures the critical scaling of the KT superconducting transition upon cooling in the normal state. Here we investigate how the pair-breaking external field modifies this picture, and the development of incommensurate pairing.

  13. Field Science Ethnography: Methods For Systematic Observation on an Expedition

    NASA Technical Reports Server (NTRS)

    Clancey, William J.; Clancy, Daniel (Technical Monitor)

    2001-01-01

    The Haughton-Mars expedition is a multidisciplinary project, exploring an impact crater in an extreme environment to determine how people might live and work on Mars. The expedition seeks to understand and field test Mars facilities, crew roles, operations, and computer tools. I combine an ethnographic approach to establish a baseline understanding of how scientists prefer to live and work when relatively unemcumbered, with a participatory design approach of experimenting with procedures and tools in the context of use. This paper focuses on field methods for systematically recording and analyzing the expedition's activities. Systematic photography and time-lapse video are combined with concept mapping to organize and present information. This hybrid approach is generally applicable to the study of modern field expeditions having a dozen or more multidisciplinary participants, spread over a large terrain during multiple field seasons.

  14. Hyperspectral Imaging and Related Field Methods: Building the Science

    NASA Technical Reports Server (NTRS)

    Goetz, Alexander F. H.; Steffen, Konrad; Wessman, Carol

    1999-01-01

    The proposal requested funds for the computing power to bring hyperspectral image processing into undergraduate and graduate remote sensing courses. This upgrade made it possible to handle more students in these oversubscribed courses and to enhance CSES' summer short course entitled "Hyperspectral Imaging and Data Analysis" provided for government, industry, university and military. Funds were also requested to build field measurement capabilities through the purchase of spectroradiometers, canopy radiation sensors and a differential GPS system. These instruments provided systematic and complete sets of field data for the analysis of hyperspectral data with the appropriate radiometric and wavelength calibration as well as atmospheric data needed for application of radiative transfer models. The proposed field equipment made it possible to team-teach a new field methods course, unique in the country, that took advantage of the expertise of the investigators rostered in three different departments, Geology, Geography and Biology.

  15. Background field method and the cohomology of renormalization

    NASA Astrophysics Data System (ADS)

    Anselmi, Damiano

    2016-03-01

    Using the background field method and the Batalin-Vilkovisky formalism, we prove a key theorem on the cohomology of perturbatively local functionals of arbitrary ghost numbers in renormalizable and nonrenormalizable quantum field theories whose gauge symmetries are general covariance, local Lorentz symmetry, non-Abelian Yang-Mills symmetries and Abelian gauge symmetries. Interpolating between the background field approach and the usual, nonbackground approach by means of a canonical transformation, we take advantage of the properties of both approaches and prove that a closed functional is the sum of an exact functional plus a functional that depends only on the physical fields and possibly the ghosts. The assumptions of the theorem are the mathematical versions of general properties that characterize the counterterms and the local contributions to the potential anomalies. This makes the outcome a theorem on the cohomology of renormalization, rather than the whole local cohomology. The result supersedes numerous involved arguments that are available in the literature.

  16. A novel background field removal method for MRI using projection onto dipole fields (PDF).

    PubMed

    Liu, Tian; Khalidov, Ildar; de Rochefort, Ludovic; Spincemaille, Pascal; Liu, Jing; Tsiouris, A John; Wang, Yi

    2011-11-01

    For optimal image quality in susceptibility-weighted imaging and accurate quantification of susceptibility, it is necessary to isolate the local field generated by local magnetic sources (such as iron) from the background field that arises from imperfect shimming and variations in magnetic susceptibility of surrounding tissues (including air). Previous background removal techniques have limited effectiveness depending on the accuracy of model assumptions or information input. In this article, we report an observation that the magnetic field for a dipole outside a given region of interest (ROI) is approximately orthogonal to the magnetic field of a dipole inside the ROI. Accordingly, we propose a nonparametric background field removal technique based on projection onto dipole fields (PDF). In this PDF technique, the background field inside an ROI is decomposed into a field originating from dipoles outside the ROI using the projection theorem in Hilbert space. This novel PDF background removal technique was validated on a numerical simulation and a phantom experiment and was applied in human brain imaging, demonstrating substantial improvement in background field removal compared with the commonly used high-pass filtering method. Copyright © 2011 John Wiley & Sons, Ltd.

  17. Visualizing confusion matrices for multidimensional signal detection correlational methods

    NASA Astrophysics Data System (ADS)

    Zhou, Yue; Wischgoll, Thomas; Blaha, Leslie M.; Smith, Ross; Vickery, Rhonda J.

    2013-12-01

    Advances in modeling and simulation for General Recognition Theory have produced more data than can be easily visualized using traditional techniques. In this area of psychological modeling, domain experts are struggling to find effective ways to compare large-scale simulation results. This paper describes methods that adapt the web-based D3 visualization framework combined with pre-processing tools to enable domain specialists to more easily interpret their data. The D3 framework utilizes Javascript and scalable vector graphics (SVG) to generate visualizations that can run readily within the web browser for domain specialists. Parallel coordinate plots and heat maps were developed for identification-confusion matrix data, and the results were shown to a GRT expert for an informal evaluation of their utility. There is a clear benefit to model interpretation from these visualizations when researchers need to interpret larger amounts of simulated data.

  18. Intermediate electrostatic field for the generalized elongation method.

    PubMed

    Liu, Kai; Korchowiec, Jacek; Aoki, Yuriko

    2015-05-18

    An intermediate electrostatic field is introduced to improve the accuracy of fragment-based quantum-chemical computational methods by including long-range polarizations of biomolecules. The point charge distribution of the intermediate field is generated by a charge sensitivity analysis that is parameterized for five different population analyses, namely, atoms-in-molecules, Hirshfeld, Mulliken, natural orbital, and Voronoi population analysis. Two model systems are chosen to demonstrate the performance of the generalized elongation method (ELG) combined with the intermediate electrostatic field. The calculations are performed for the STO-3G, 6-31G, and 6-31G(d) basis sets and compared with reference Hartree-Fock calculations. It is shown that the error in the total energy is reduced by one order of magnitude, independently of the population analyses used. This demonstrates the importance of long-range polarization in electronic-structure calculations by fragmentation techniques.

  19. Field and laboratory methods in human milk research.

    PubMed

    Miller, Elizabeth M; Aiello, Marco O; Fujita, Masako; Hinde, Katie; Milligan, Lauren; Quinn, E A

    2013-01-01

    Human milk is a complex and variable fluid of increasing interest to human biologists who study nutrition and health. The collection and analysis of human milk poses many practical and ethical challenges to field workers, who must balance both appropriate methodology with the needs of participating mothers and infants and logistical challenges to collection and analysis. In this review, we address various collection methods, volume measurements, and ethical considerations and make recommendations for field researchers. We also review frequently used methods for the analysis of fat, protein, sugars/lactose, and specific biomarkers in human milk. Finally, we address new technologies in human milk research, the MIRIS Human Milk Analyzer and dried milk spots, which will improve the ability of human biologists and anthropologists to study human milk in field settings.

  20. Methane generation in tropical landfills: simplified methods and field results.

    PubMed

    Machado, Sandro L; Carvalho, Miriam F; Gourc, Jean-Pierre; Vilar, Orencio M; do Nascimento, Julio C F

    2009-01-01

    This paper deals with the use of simplified methods to predict methane generation in tropical landfills. Methane recovery data obtained on site as part of a research program being carried out at the Metropolitan Landfill, Salvador, Brazil, is analyzed and used to obtain field methane generation over time. Laboratory data from MSW samples of different ages are presented and discussed; and simplified procedures to estimate the methane generation potential, Lo, and the constant related to the biodegradation rate, k are applied. The first order decay method is used to fit field and laboratory results. It is demonstrated that despite the assumptions and the simplicity of the adopted laboratory procedures, the values Lo and k obtained are very close to those measured in the field, thus making this kind of analysis very attractive for first approach purposes.

  1. Quantum mean-field approximation for lattice quantum models: Truncating quantum correlations and retaining classical ones

    NASA Astrophysics Data System (ADS)

    Malpetti, Daniele; Roscilde, Tommaso

    2017-02-01

    The mean-field approximation is at the heart of our understanding of complex systems, despite its fundamental limitation of completely neglecting correlations between the elementary constituents. In a recent work [Phys. Rev. Lett. 117, 130401 (2016), 10.1103/PhysRevLett.117.130401], we have shown that in quantum many-body systems at finite temperature, two-point correlations can be formally separated into a thermal part and a quantum part and that quantum correlations are generically found to decay exponentially at finite temperature, with a characteristic, temperature-dependent quantum coherence length. The existence of these two different forms of correlation in quantum many-body systems suggests the possibility of formulating an approximation, which affects quantum correlations only, without preventing the correct description of classical fluctuations at all length scales. Focusing on lattice boson and quantum Ising models, we make use of the path-integral formulation of quantum statistical mechanics to introduce such an approximation, which we dub quantum mean-field (QMF) approach, and which can be readily generalized to a cluster form (cluster QMF or cQMF). The cQMF approximation reduces to cluster mean-field theory at T =0 , while at any finite temperature it produces a family of systematically improved, semi-classical approximations to the quantum statistical mechanics of the lattice theory at hand. Contrary to standard MF approximations, the correct nature of thermal critical phenomena is captured by any cluster size. In the two exemplary cases of the two-dimensional quantum Ising model and of two-dimensional quantum rotors, we study systematically the convergence of the cQMF approximation towards the exact result, and show that the convergence is typically linear or sublinear in the boundary-to-bulk ratio of the clusters as T →0 , while it becomes faster than linear as T grows. These results pave the way towards the development of semiclassical numerical

  2. Far-field method for the characterisation of three-dimensional fields: vectorial polarimetry

    NASA Astrophysics Data System (ADS)

    Rodríguez, O.; Lara, D.; Dainty, C.

    2010-06-01

    The first attempt to completely characterise a three-dimensional field was done by Ellis and Dogariu with excellent results reported [1] . However, their method is based on near-field techniques, which limits its range of applications. In this work, we present an alternative far-field method for the characterisation of the three-dimensional field that results from the interaction of a tightly focused three-dimensional field [2] with a sub-resolution specimen. Our method is based on the analysis of the scattering-angle-resolved polarisation state distribution across the exit pupil of a high numerical aperture (NA) collector lens using standard polarimetry techniques. Details of the method, the experimental setup built to verify its capabilities, and numerical and first experimental evidence demonstrating that the method allows for high sensitivit y on sub-resolution displacements of a sub-resolution specimen shall be presented [3]. This work is funded by Science Foundation Ireland grant No. 07/IN.1/I906 and Shimadzu Corporation, Japan. Oscar Rodríguez is grateful to the National Council for Science and Technology (CONACYT, Mexico) for the Ph D scholarship 177627.

  3. Spatial correlation in the ambient core noise field of a turbofan engine.

    PubMed

    Miles, Jeffrey Hilton

    2012-06-01

    An acoustic transfer function relating combustion noise and turbine exit noise in the presence of enclosed ambient core noise is investigated using a dynamic system model and an acoustic system model for the particular turbofan engine studied and for a range of operating conditions. Measurements of cross-spectra magnitude and phase between the combustor and turbine exit and auto-spectra at the turbine exit and combustor are used to show the presence of indirect and direct combustion noise over the frequency range of 0-400 Hz. The procedure used evaluates the ratio of direct to indirect combustion noise. The procedure used also evaluates the post-combustion residence time in the combustor which is a factor in the formation of thermal NO(x) and soot in this region. These measurements are masked by the ambient core noise sound field in this frequency range which is observable since the transducers are situated within an acoustic wavelength of one another. An ambient core noise field model based on one and two dimensional spatial correlation functions is used to replicate the spatially correlated response of the pair of transducers. The spatial correlation function increases measured attenuation due to destructive interference and masks the true attenuation of the turbine.

  4. Spatial Correlation in the Ambient Core Noise Field of a Turbofan Engine

    NASA Technical Reports Server (NTRS)

    Miles, Jeffrey Hilton

    2012-01-01

    An acoustic transfer function relating combustion noise and turbine exit noise in the presence of enclosed ambient core noise is investigated using a dynamic system model and an acoustic system model for the particular turbofan engine studied and for a range of operating conditions. Measurements of cross-spectra magnitude and phase between the combustor and turbine exit and auto-spectra at the turbine exit and combustor are used to show the presence of indirect and direct combustion noise over the frequency range of 0 400 Hz. The procedure used evaluates the ratio of direct to indirect combustion noise. The procedure used also evaluates the post-combustion residence time in the combustor which is a factor in the formation of thermal NOx and soot in this region. These measurements are masked by the ambient core noise sound field in this frequency range which is observable since the transducers are situated within an acoustic wavelength of one another. An ambient core noise field model based on one and two dimensional spatial correlation functions is used to replicate the spatially correlated response of the pair of transducers. The spatial correlation function increases measured attenuation due to destructive interference and masks the true attenuation of the turbine.

  5. A field theoretical approach to the quasi-continuum method

    NASA Astrophysics Data System (ADS)

    Iyer, Mrinal; Gavini, Vikram

    2011-08-01

    The quasi-continuum method has provided many insights into the behavior of lattice defects in the past decade. However, recent numerical analysis suggests that the approximations introduced in various formulations of the quasi-continuum method lead to inconsistencies—namely, appearance of ghost forces or residual forces, non-conservative nature of approximate forces, etc.—which affect the numerical accuracy and stability of the method. In this work, we identify the source of these errors to be the incompatibility of using quadrature rules, which is a local notion, on a non-local representation of energy. We eliminate these errors by first reformulating the extended interatomic interactions into a local variational problem that describes the energy of a system via potential fields. We subsequently introduce the quasi-continuum reduction of these potential fields using an adaptive finite-element discretization of the formulation. We demonstrate that the present formulation resolves the inconsistencies present in previous formulations of the quasi-continuum method, and show using numerical examples the remarkable improvement in the accuracy of solutions. Further, this field theoretic formulation of quasi-continuum method makes mathematical analysis of the method more amenable using functional analysis and homogenization theories.

  6. A Field Method for Investigating the Cultural Landscape.

    ERIC Educational Resources Information Center

    Parson, Helen E.; McKay, Ian A.

    1989-01-01

    Outlines a method for conducting a rural cultural-landscape field project. Notes that this activity is especially useful with students whose life experiences are primarily urban. Describes a cemetery survey, a small town reconnaissance, and rural land and building survey. Provides examples of student generated materials. (KO)

  7. General Anisotropy Identification of Paperboard with Virtual Fields Method

    Treesearch

    J.M. Considine; F. Pierron; K.T. Turner; D.W. Vahey

    2014-01-01

    This work extends previous efforts in plate bending of Virtual Fields Method (VFM) parameter identification to include a general 2-D anisotropicmaterial. Such an extension was needed for instances in which material principal directions are unknown or when specimen orientation is not aligned with material principal directions. A new fixture with a multiaxial force...

  8. Work function measurements by the field emission retarding potential method

    NASA Technical Reports Server (NTRS)

    Swanson, L. W.; Strayer, R. W.; Mackie, W. A.

    1971-01-01

    Using the field emission retarding potential method true work functions have been measured for the following monocrystalline substrates: W(110), W(111), W(100), Nb(100), Ni(100), Cu(100), Ir(110) and Ir(111). The electron elastic and inelastic reflection coefficients from several of these surfaces have also been examined near zero primary beam energy.

  9. Field test of a new Australian method of rangeland monitoring

    Treesearch

    Suzanne Mayne; Neil West

    2001-01-01

    Managers need more efficient means of monitoring changes on the lands they manage. Accordingly, a new Australian approach was field tested and compared to the Daubenmire method of assessing plant cover, litter, and bare soil. The study area was a 2 mile wide by 30.15 mile long strip, mostly covered by salt desert shrub ecosystem types, centered along the SE boundary of...

  10. Unsaturated soil hydraulic conductivity: The field infiltrometer method

    USDA-ARS?s Scientific Manuscript database

    Theory: Field methods to measure the unsaturated soil hydraulic conductivity assume presence of steady-state water flow. Soil infiltrometers are desired to apply water onto the soil surface at constant negative pressure. Water is applied to the soil from the Marriott device through a porous membrane...

  11. The virtual fields method applied to spalling tests on concrete

    NASA Astrophysics Data System (ADS)

    Pierron, F.; Forquin, P.

    2012-08-01

    For one decade spalling techniques based on the use of a metallic Hopkinson bar put in contact with a concrete sample have been widely employed to characterize the dynamic tensile strength of concrete at strain-rates ranging from a few tens to two hundreds of s-1. However, the processing method mainly based on the use of the velocity profile measured on the rear free surface of the sample (Novikov formula) remains quite basic and an identification of the whole softening behaviour of the concrete is out of reach. In the present paper a new processing method is proposed based on the use of the Virtual Fields Method (VFM). First, a digital high speed camera is used to record the pictures of a grid glued on the specimen. Next, full-field measurements are used to obtain the axial displacement field at the surface of the specimen. Finally, a specific virtual field has been defined in the VFM equation to use the acceleration map as an alternative `load cell'. This method applied to three spalling tests allowed to identify Young's modulus during the test. It was shown that this modulus is constant during the initial compressive part of the test and decreases in the tensile part when micro-damage exists. It was also shown that in such a simple inertial test, it was possible to reconstruct average axial stress profiles using only the acceleration data. Then, it was possible to construct local stress-strain curves and derive a tensile strength value.

  12. Longitudinal Field Research Methods for Studying Processes of Organizational Change.

    ERIC Educational Resources Information Center

    Van de Ven, Andrew H.; Huber, George P.

    1990-01-01

    This and the next issue of "Organization Science" contain eight papers that deal with the process of organizational change. The five papers in this issue feature the theory of method and practice of researchers engaged in longitudinal field studies aimed at understanding processes of organizational change. (MLF)

  13. Spatial dependence of correlation functions in the decay problem for a passive scalar in a large-scale velocity field

    SciTech Connect

    Vergeles, S. S.

    2006-04-15

    Statistical characteristics of a passive scalar advected by a turbulent velocity field are considered in the decay problem with a low scalar diffusivity {kappa} (large Prandtl number v/{kappa}, where v is kinematic viscosity). A regime in which the scalar correlation length remains smaller than the velocity correlation length is analyzed. The equal-time correlation functions of the scalar field are found to vary according to power laws and have angular singularities reflecting locally layered distribution of the scalar in space.

  14. Enhanced field emission from lanthanum hexaboride coated multiwalled carbon nanotubes: Correlation with physical properties

    SciTech Connect

    Patra, Rajkumar; Ghosh, S.; Sheremet, E.; Rodriguez, R. D.; Lehmann, D.; Zahn, D. R. T.; Jha, Menaka; Ganguli, A. K.; Schmidt, H.; Schulze, S.; Hietschold, M.; Schmidt, O. G.

    2014-10-28

    Detailed results from field emission studies of lanthanum hexaboride (LaB{sub 6}) coated multiwalled carbon nanotube (MWCNT) films, pristine LaB{sub 6} films, and pristine MWCNT films are reported. The films have been synthesized by a combination of chemical and physical deposition processes. An impressive increase in field enhancement factor and temporal stability as well as a reduction in turn-on field and threshold field are observed in LaB{sub 6}-coated MWCNTs compared to pristine MWCNT and pristine LaB{sub 6} films. Surface morphology of the films has been examined by scanning electron microscopy. Introduction of LaB{sub 6} nanoparticles on the outer walls of CNTs LaB{sub 6}-coated MWCNTs films is confirmed by transmission electron microscopy. The presence of LaB{sub 6} was confirmed by X-ray photoelectron spectroscopy results and further validated by the Raman spectra. Raman spectroscopy also shows 67% increase in defect concentration in MWCNTs upon coating with LaB{sub 6} and an upshift in the 2D band that could be attributed to p-type doping. Ultraviolet photoelectron spectroscopy studies reveal a reduction in the work function of LaB{sub 6}-coated MWCNT with respect to its pristine counterpart. The enhanced field emission properties in LaB{sub 6}-coated MWCNT films are correlated with a change in microstructure and work function.

  15. Temperament in bullheads: do laboratory and field explorative behaviour variables correlate?

    NASA Astrophysics Data System (ADS)

    Kobler, Alexander; Engelen, Brecht; Knaepkens, Guy; Eens, Marcel

    2009-10-01

    The relevance of temperament traits for life history strategy or productivity is increasingly acknowledged. Temperament traits are often either observed in captivity or in the wild, but studies combining both observations are very rare. We examine whether exploratory behaviour in the bullhead ( Cottus perifretum), assayed under laboratory conditions, predicts this behaviour under field conditions. Forty-three PIT-tagged individuals were first assayed for exploration of a novel environment in the aquarium and then released into an unfamiliar stream stretch, where they were later relocated using a mobile antenna. Explorative behaviour assayed in the laboratory was significantly positively related to the exploration in the field, thus predicting distance moved in the field release. Both in the laboratory and in the field, explorative behaviour was not related to individual body length. When bullheads that did not leave the refuge in the aquarium (laboratory assay) and, therefore, did not explore the new environment were excluded from the analysis, the correlation between laboratory and field explorative behaviour variables became weaker. However, overall, our results illustrate that exploration rate of bullheads in isolated single-individual experiments can be used to predict this behaviour in the natural ecosystem.

  16. Temperament in bullheads: do laboratory and field explorative behaviour variables correlate?

    PubMed

    Kobler, Alexander; Engelen, Brecht; Knaepkens, Guy; Eens, Marcel

    2009-10-01

    The relevance of temperament traits for life history strategy or productivity is increasingly acknowledged. Temperament traits are often either observed in captivity or in the wild, but studies combining both observations are very rare. We examine whether exploratory behaviour in the bullhead (Cottus perifretum), assayed under laboratory conditions, predicts this behaviour under field conditions. Forty-three PIT-tagged individuals were first assayed for exploration of a novel environment in the aquarium and then released into an unfamiliar stream stretch, where they were later relocated using a mobile antenna. Explorative behaviour assayed in the laboratory was significantly positively related to the exploration in the field, thus predicting distance moved in the field release. Both in the laboratory and in the field, explorative behaviour was not related to individual body length. When bullheads that did not leave the refuge in the aquarium (laboratory assay) and, therefore, did not explore the new environment were excluded from the analysis, the correlation between laboratory and field explorative behaviour variables became weaker. However, overall, our results illustrate that exploration rate of bullheads in isolated single-individual experiments can be used to predict this behaviour in the natural ecosystem.

  17. Quasiparticles of strongly correlated Fermi liquids at high temperatures and in high magnetic fields

    NASA Astrophysics Data System (ADS)

    Shaginyan, V. R.

    2011-08-01

    Strongly correlated Fermi systems are among the most intriguing, best experimentally studied and fundamental systems in physics. There is, however, lack of theoretical understanding in this field of physics. The ideas based on the concepts like Kondo lattice and involving quantum and thermal fluctuations at a quantum critical point have been used to explain the unusual physics. Alas, being suggested to describe one property, these approaches fail to explain the others. This means a real crisis in theory suggesting that there is a hidden fundamental law of nature. It turns out that the hidden fundamental law is well forgotten old one directly related to the Landau-Migdal quasiparticles, while the basic properties and the scaling behavior of the strongly correlated systems can be described within the framework of the fermion condensation quantum phase transition (FCQPT). The phase transition comprises the extended quasiparticle paradigm that allows us to explain the non-Fermi liquid (NFL) behavior observed in these systems. In contrast to the Landau paradigm stating that the quasiparticle effective mass is a constant, the effective mass of new quasiparticles strongly depends on temperature, magnetic field, pressure, and other parameters. Our observations are in good agreement with experimental facts and show that FCQPT is responsible for the observed NFL behavior and quasiparticles survive both high temperatures and high magnetic fields.

  18. Quasiparticles of strongly correlated Fermi liquids at high temperatures and in high magnetic fields

    SciTech Connect

    Shaginyan, V. R.

    2011-08-15

    Strongly correlated Fermi systems are among the most intriguing, best experimentally studied and fundamental systems in physics. There is, however, lack of theoretical understanding in this field of physics. The ideas based on the concepts like Kondo lattice and involving quantum and thermal fluctuations at a quantum critical point have been used to explain the unusual physics. Alas, being suggested to describe one property, these approaches fail to explain the others. This means a real crisis in theory suggesting that there is a hidden fundamental law of nature. It turns out that the hidden fundamental law is well forgotten old one directly related to the Landau-Migdal quasiparticles, while the basic properties and the scaling behavior of the strongly correlated systems can be described within the framework of the fermion condensation quantum phase transition (FCQPT). The phase transition comprises the extended quasiparticle paradigm that allows us to explain the non-Fermi liquid (NFL) behavior observed in these systems. In contrast to the Landau paradigm stating that the quasiparticle effective mass is a constant, the effective mass of new quasiparticles strongly depends on temperature, magnetic field, pressure, and other parameters. Our observations are in good agreement with experimental facts and show that FCQPT is responsible for the observed NFL behavior and quasiparticles survive both high temperatures and high magnetic fields.

  19. Plasmon-Induced Optical Field Enhancement studied by Correlated Scanning and Photoemission Electron Microscopy

    SciTech Connect

    Peppernick, Samuel J.; Joly, Alan G.; Beck, Kenneth M.; Hess, Wayne P.

    2013-04-21

    We use multi-photon photoemission electron microscopy (PEEM) to image the enhanced electric fields of silver nanoparticles supported on a silver thin film substrate. Electromagnetic field enhancement is measured by comparing the photoelectron yield of the nanoparticles with respect to the photoelectron yield of the surrounding silver thin film. We investigate the dependence of the photoelectron yield of the nanoparticle as a function of size and shape. Multi-photon PEEM results are presented for three average nanoparticle diameters: 122 ± 6, 75 ± 6, and 34 ± 2 nm. The enhancement in photoelectron yield of single nanoparticles illuminated with femtosecond laser pulses (400 nm, ~3.1 eV) is found to be a factor of 102 to 103 times greater than that produced by the flat silver thin film. High-resolution, multi-photon PEEM images of single silver nanoparticles reveal that the greatest enhancement in photoelectron yield is localized at distinct regions on the surface of the nanoparticle whose magnitude and spatial extent is dependent on the incident electric field polarization. In conjunction with correlated scanning electron microscopy (SEM), nanoparticles that deviate from nominally spherical shapes are found to exhibit irregular spatial distributions in the multi-photon PEEM images that are correlated with the unique shape and topology of the nanoparticle.

  20. A time and space correlated turbulence synthesis method for Large Eddy Simulations

    NASA Astrophysics Data System (ADS)

    Castro, Hugo G.; Paz, Rodrigo R.

    2013-02-01

    In the present work the problem of generating synthesized turbulence at inflow boundaries of the simulation domain is addressed in the context of the Large Eddy Simulation (LES) method. To represent adequately certain statistical properties of a turbulent process, we propose a synthesized turbulence method which is based on previous works (Huang et al., 2010; Smirnov et al., 2001) [15,28]. For this purpose, time and space correlations are introduced strictly in the mathematical formulation of the synthetic turbulence inflow data. It is demonstrated that the proposed approach inherits the properties of the methods on which it is based while presents some particular advantages as well. The strategy of imposing conditions on the inlet velocity field through turbulence synthesis is implemented in the parallel multiphysics code called PETSc-FEM (http://www.cimec.org.ar/petscfem) primarily targeted to calculations throughout finite elements on general unstructured 2D and 3D grids. We present several numerical tests in order to validate and evaluate the method describing the dynamic phenomena that take place in “real-life” problems, such as a swirling turbulent flow inside a diffuser and the airflow around a vehicle model inside a wind tunnel at high Reynolds number.

  1. Quantitative Near-field Microscopy of Heterogeneous and Correlated Electron Oxides

    NASA Astrophysics Data System (ADS)

    McLeod, Alexander Swinton

    Scanning near-field optical microscopy (SNOM) is a novel scanning probe microscopy technique capable of circumventing the conventional diffraction limit of light, affording unparalleled optical resolution (down to 10 nanometers) even for radiation in the infrared and terahertz energy regimes, with light wavelengths exceeding 10 micrometers. However, although this technique has been developed and employed for more than a decade to a qualitatively impressive effect, researchers have lacked a practically quantitative grasp of its capabilities, and its application scope has so far remained restricted by implementations limited to ambient atmospheric conditions. The two-fold objective of this dissertation work has been to address both these shortcomings. The first half of the dissertation presents a realistic, semi-analytic, and benchmarked theoretical description of probe-sample near-field interactions that form the basis of SNOM. Owing its name to the efficient nano-focusing of light at a sharp metallic apex, the "lightning rod model" of probe-sample near-field interactions is mathematically developed from a flexible and realistic scattering formalism. Powerful and practical applications are demonstrated through the accurate prediction of spectroscopic near-field optical contrasts, as well as the "inversion" of these spectroscopic contrasts into a quantitative description of material optical properties. Thus enabled, this thesis work proceeds to present quantitative applications of infrared near-field spectroscopy to investigate nano-resolved chemical compositions in a diverse host of samples, including technologically relevant lithium ion battery materials, astrophysical planetary materials, and invaluable returned extraterrestrial samples. The second half of the dissertation presents the design, construction, and demonstration of a sophisticated low-temperature scanning near-field infrared microscope. This instrument operates in an ultra-high vacuum environment

  2. An improved schlieren method for measurement and automatic reconstruction of the far-field focal spot

    PubMed Central

    Wang, Zhengzhou; Hu, Bingliang; Yin, Qinye

    2017-01-01

    The schlieren method of measuring far-field focal spots offers many advantages at the Shenguang III laser facility such as low cost and automatic laser-path collimation. However, current methods of far-field focal spot measurement often suffer from low precision and efficiency when the final focal spot is merged manually, thereby reducing the accuracy of reconstruction. In this paper, we introduce an improved schlieren method to construct the high dynamic-range image of far-field focal spots and improve the reconstruction accuracy and efficiency. First, a detection method based on weak light beam sampling and magnification imaging was designed; images of the main and side lobes of the focused laser irradiance in the far field were obtained using two scientific CCD cameras. Second, using a self-correlation template matching algorithm, a circle the same size as the schlieren ball was dug from the main lobe cutting image and used to change the relative region of the main lobe cutting image within a 100×100 pixel region. The position that had the largest correlation coefficient between the side lobe cutting image and the main lobe cutting image when a circle was dug was identified as the best matching point. Finally, the least squares method was used to fit the center of the side lobe schlieren small ball, and the error was less than 1 pixel. The experimental results show that this method enables the accurate, high-dynamic-range measurement of a far-field focal spot and automatic image reconstruction. Because the best matching point is obtained through image processing rather than traditional reconstruction methods based on manual splicing, this method is less sensitive to the efficiency of focal-spot reconstruction and thus offers better experimental precision. PMID:28207758

  3. Whole-field thickness strain measurement using multiple camera digital image correlation system

    NASA Astrophysics Data System (ADS)

    Li, Junrui; Xie, Xin; Yang, Guobiao; Zhang, Boyang; Siebert, Thorsten; Yang, Lianxiang.

    2017-03-01

    Three Dimensional digital image correlation(3D-DIC) has been widely used by industry, especially for strain measurement. The traditional 3D-DIC system can accurately obtain the whole-field 3D deformation. However, the conventional 3D-DIC system can only acquire the displacement field on a single surface, thus lacking information in the depth direction. Therefore, the strain in the thickness direction cannot be measured. In recent years, multiple camera DIC (multi-camera DIC) systems have become a new research topic, which provides much more measurement possibility compared to the conventional 3D-DIC system. In this paper, a multi-camera DIC system used to measure the whole-field thickness strain is introduced in detail. Four cameras are used in the system. two of them are placed at the front side of the object, and the other two cameras are placed at the back side. Each pair of cameras constitutes a sub stereo-vision system and measures the whole-field 3D deformation on one side of the object. A special calibration plate is used to calibrate the system, and the information from these two subsystems is linked by the calibration result. Whole-field thickness strain can be measured using the information obtained from both sides of the object. Additionally, the major and minor strain on the object surface are obtained simultaneously, and a whole-field quasi 3D strain history is acquired. The theory derivation for the system, experimental process, and application of determining the thinning strain limit based on the obtained whole-field thickness strain history are introduced in detail.

  4. Regional correlation among ganglion cell complex, nerve fiber layer, and visual field loss in glaucoma.

    PubMed

    Le, Phuc V; Tan, Ou; Chopra, Vikas; Francis, Brian A; Ragab, Omar; Varma, Rohit; Huang, David

    2013-06-21

    To analyze the relationship among macular ganglion cell complex (GCC) thickness, peripapillary nerve fiber layer (NFL) thickness, and visual field (VF) defects in patients with glaucoma. A Fourier-domain optical coherence tomography (FD-OCT) system was used to map the macula and peripapillary regions of the retina in 56 eyes of 38 patients with perimetric glaucoma. The macular GCC and peripapillary NFL thicknesses were mapped and standard automated perimetry (SAP) was performed. Loss of GCC and NFL were correlated with the VF map on both a point-by-point and regional basis. Correlation between GCC thickness and peripapillary NFL thickness produced a detailed correspondence map that demonstrates the arcuate course of the NFL in the macula. Corresponding regions within the GCC, NFL, and VF maps demonstrate significant correlation, once parafoveal retinal ganglion cell (RGC) displacement is taken into account. There are significant point-specific and regional correlations between GCC loss, NFL loss, and deficits on SAP. Using these different data sources together may improve our understanding of glaucomatous damage and aid in the management of patients with glaucoma.

  5. Density Fluctuation in Asymmetric Nozzle Plumes and Correlation with Far Field Noise

    NASA Technical Reports Server (NTRS)

    Panda, J.; Zaman, K. B. M. Q.

    2001-01-01

    A comparative experimental study of air density fluctuations in the unheated plumes of a circular, 4-tabbed-circular, chevron-circular and 10-lobed rectangular nozzles was performed at a fixed Mach number of 0.95 using a recently developed Rayleigh scattering based technique. Subsequently, the flow density fluctuations are cross-correlated with the far field sound pressure fluctuations to determine sources for acoustics emission. The nearly identical noise spectra from the baseline circular and the chevron nozzles are found to be in agreement with the similarity in spreading, turbulence fluctuations, and flow-sound correlations measured in the plumes. The lobed nozzle produced the least low frequency noise, in agreement with the weakest overall density fluctuations and flow-sound correlation. The tabbed nozzle took an intermediate position in the hierarchy of noise generation, intensity of turbulent fluctuation and flow-sound correlation. Some of the features in the 4-tabbed nozzle are found to be explainable in terms of splitting of the jet in a central large core and 4 side jetlets.

  6. Correlation functions of the electric and magnetic fields in the vicinity of a metal surface

    NASA Astrophysics Data System (ADS)

    Langsjoen, Luke; Joynt, Robert; Vavilov, Maxim; Poudel, Amrit

    2012-02-01

    The Johnson noise-induced relaxation rate of a charge or spin qubit for a transition at a particular frequency in the vicinity of a metal boundary is proportional to the temporal Fourier component at that frequency of the electric or magnetic correlation function evaluated at the position of the qubit. These correlation functions are shown to be greatly enhanced compared to the blackbody result in the near vicinity of the metal due to the contribution of evanescent waves. As such, we expect a measurable enhancement of qubit decoherence due to the contribution of evanescent waves. We use a Green's dyadic approach to calculate the correlation functions of the fluctuating electric and magnetic fields in the vicinity of a conducting surface. In a local treatment of the dielectric properties of the metal this enhancement diverges as the inverse cube of the distance from the boundary, and for distances less than the order of the Fermi wavelength of the metal a nonlocal treatment is necessary to obtain an accurate result. We present a calculation of the correlation function for the full range of distances.

  7. Multipoint correlators of conformal field theories: implications for quantum critical transport

    NASA Astrophysics Data System (ADS)

    Strack, Philipp; Chowdhury, Debanjan; Raju, Suvrat; Sachdev, Subir; Singh, Ajay

    2013-03-01

    We relate three-point correlators between the stress-energy tensor and conserved currents of conformal field theories (CFTs) in 2+1 dimensions to observables of quantum critical transport. We first compute the correlators in the large-flavor-number expansion of conformal gauge theories and then do the computation using holography. In the holographic approach, the correlators are computed from an effective action on 3+1 dimensional anti-de Sitter space (AdS4), and depend upon the co-efficient, γ, of a four-derivative term in the action. We find a precise match between the CFT and the holographic results, thus fixing the values of γ. The CFTs of free fermions and bosons take the values γ = 1 / 12 , - 1 / 12 respectively, and so saturate the bound | γ | <= 1 / 12 obtained earlier from the holographic theory; the correlator of the conserved gauge flux of U(1) gauge theories takes intermediate values of γ. The value of γ also controls the frequency dependence of the conductivity, and other properties of quantum-critical transport at non-zero temperatures. Our results for the values of γ lead to an appealing physical interpretation of particle-like or vortex-like transport near quantum phase transitions of interest in condensed matter physics.

  8. Five radiographic methods for assessing skeletal maturity in a Spanish population: is there a correlation?

    PubMed

    Camacho-Basallo, Paula; Yáñez-Vico, Rosa-María; Solano-Reina, Enrique; Iglesias-Linares, Alejandro

    2017-03-01

    The need for accurate techniques of estimating age has sharply increased in line with the rise in illegal migration and the political, economic and socio-demographic problems that this poses in developed countries today. The methods routinely employed for determining chronological age are mainly based on determining skeletal maturation using radiological techniques. The objective of this study was to correlate five different methods for assessing skeletal maturation. 606 radiographs of growing patients were analyzed, and each patient was classified according to two cervical vertebral-based methods, two hand-wrist-based methods and one tooth-based method. Spearman's rank-order correlation coefficient was applied to assess the relationship between chronological age and the five methods of assessing maturation, as well as correlations between the five methods (p < 0.05). Spearman's rank correlation coefficients for chronological age and cervical vertebral maturation stage using both methods were 0.656/0.693 (p < 0.001), respectively, for males. For females, the correlation was stronger for both methods. The correlation coefficients for chronological age against the two hand-wrist assessment methods were statistically significant only for Fishman's method, 0.722 (p < 0.001) and 0.839 (p < 0.001), respectively for males and females. The cervical vertebral, hand-wrist and dental maturation methods of assessment were all found to correlate strongly with each other, irrespective of gender, except for Grave and Brown's method. The results found the strongest correlation between the second molars and females, and the second premolar and males. This study sheds light on and correlates with the five radiographic methods most commonly used for assessing skeletal maturation in a Spanish population in southern Europe.

  9. Empirical source strength correlations for rans-based acoustic analogy methods

    NASA Astrophysics Data System (ADS)

    Kube-McDowell, Matthew Tyndall

    JeNo is a jet noise prediction code based on an acoustic analogy method developed by Mani, Gliebe, Balsa, and Khavaran. Using the flow predictions from a standard Reynolds-averaged Navier-Stokes computational fluid dynamics solver, JeNo predicts the overall sound pressure level and angular spectra for high-speed hot jets over a range of observer angles, with a processing time suitable for rapid design purposes. JeNo models the noise from hot jets as a combination of two types of noise sources; quadrupole sources dependent on velocity fluctuations, which represent the major noise of turbulent mixing, and dipole sources dependent on enthalpy fluctuations, which represent the effects of thermal variation. These two sources are modeled by JeNo as propagating independently into the far-field, with no cross-correlation at the observer location. However, high-fidelity computational fluid dynamics solutions demonstrate that this assumption is false. In this thesis, the theory, assumptions, and limitations of the JeNo code are briefly discussed, and a modification to the acoustic analogy method is proposed in which the cross-correlation of the two primary noise sources is allowed to vary with the speed of the jet and the observer location. As a proof-of-concept implementation, an empirical correlation correction function is derived from comparisons between JeNo's noise predictions and a set of experimental measurements taken for the Air Force Aero-Propulsion Laboratory. The empirical correlation correction is then applied to JeNo's predictions of a separate data set of hot jets tested at NASA's Glenn Research Center. Metrics are derived to measure the qualitative and quantitative performance of JeNo's acoustic predictions, and the empirical correction is shown to provide a quantitative improvement in the noise prediction at low observer angles with no freestream flow, and a qualitative improvement in the presence of freestream flow. However, the results also demonstrate

  10. Interferometric methods for mapping static electric and magnetic fields

    NASA Astrophysics Data System (ADS)

    Pozzi, Giulio; Beleggia, Marco; Kasama, Takeshi; Dunin-Borkowski, Rafal E.

    2014-02-01

    The mapping of static electric and magnetic fields using electron probes with a resolution and sensitivity that are sufficient to reveal nanoscale features in materials requires the use of phase-sensitive methods such as the shadow technique, coherent Foucault imaging and the Transport of Intensity Equation. Among these approaches, image-plane off-axis electron holography in the transmission electron microscope has acquired a prominent role thanks to its quantitative capabilities and broad range of applicability. After a brief overview of the main ideas and methods behind field mapping, we focus on theoretical models that form the basis of the quantitative interpretation of electron holographic data. We review the application of electron holography to a variety of samples (including electric fields associated with p-n junctions in semiconductors, quantized magnetic flux in superconductors and magnetization topographies in nanoparticles and other magnetic materials) and electron-optical geometries (including multiple biprism, amplitude and mixed-type set-ups). We conclude by highlighting the emerging perspectives of (i) three-dimensional field mapping using electron holographic tomography and (ii) the model-independent determination of the locations and magnitudes of field sources (electric charges and magnetic dipoles) directly from electron holographic data. xml:lang="fr"

  11. Gravitational collapse of scalar fields via spectral methods

    SciTech Connect

    Oliveira, H. P. de; Rodrigues, E. L.; Skea, J. E. F.

    2010-11-15

    In this paper we present a new numerical code based on the Galerkin method to integrate the field equations for the spherical collapse of massive and massless scalar fields. By using a spectral decomposition in terms of the radial coordinate, the field equations were reduced to a finite set of ordinary differential equations in the space of modes associated with the Galerkin expansion of the scalar field, together with algebraic sets of equations connecting modes associated with the metric functions. The set of ordinary differential equations with respect to the null coordinate is then integrated using an eighth-order Runge-Kutta method. The numerical tests have confirmed the high accuracy and fast convergence of the code. As an application we have evaluated the whole spectrum of black hole masses which ranges from infinitesimal to large values obtained after varying the amplitude of the initial scalar field distribution. We have found strong numerical evidence that this spectrum is described by a nonextensive distribution law.

  12. Observation of correlated electronic decay in expanding clusters triggered by near-infrared fields

    PubMed Central

    Schütte, B.; Arbeiter, M.; Fennel, T.; Jabbari, G.; Kuleff, A.I.; Vrakking, M.J.J.; Rouzée, A.

    2015-01-01

    When an excited atom is embedded into an environment, novel relaxation pathways can emerge that are absent for isolated atoms. A well-known example is interatomic Coulombic decay, where an excited atom relaxes by transferring its excess energy to another atom in the environment, leading to its ionization. Such processes have been observed in clusters ionized by extreme-ultraviolet and X-ray lasers. Here, we report on a correlated electronic decay process that occurs following nanoplasma formation and Rydberg atom generation in the ionization of clusters by intense, non-resonant infrared laser fields. Relaxation of the Rydberg states and transfer of the available electronic energy to adjacent electrons in Rydberg states or quasifree electrons in the expanding nanoplasma leaves a distinct signature in the electron kinetic energy spectrum. These so far unobserved electron-correlation-driven energy transfer processes may play a significant role in the response of any nano-scale system to intense laser light. PMID:26469997

  13. Observation of correlated electronic decay in expanding clusters triggered by near-infrared fields

    NASA Astrophysics Data System (ADS)

    Schütte, B.; Arbeiter, M.; Fennel, T.; Jabbari, G.; Kuleff, A. I.; Vrakking, M. J. J.; Rouzée, A.

    2015-10-01

    When an excited atom is embedded into an environment, novel relaxation pathways can emerge that are absent for isolated atoms. A well-known example is interatomic Coulombic decay, where an excited atom relaxes by transferring its excess energy to another atom in the environment, leading to its ionization. Such processes have been observed in clusters ionized by extreme-ultraviolet and X-ray lasers. Here, we report on a correlated electronic decay process that occurs following nanoplasma formation and Rydberg atom generation in the ionization of clusters by intense, non-resonant infrared laser fields. Relaxation of the Rydberg states and transfer of the available electronic energy to adjacent electrons in Rydberg states or quasifree electrons in the expanding nanoplasma leaves a distinct signature in the electron kinetic energy spectrum. These so far unobserved electron-correlation-driven energy transfer processes may play a significant role in the response of any nano-scale system to intense laser light.

  14. Exact spectra of strong coulomb correlations of 3-D 2-e harmonic dots in magnetic field

    NASA Astrophysics Data System (ADS)

    Aggarwal, Priyanka; Sharma, Shivalika; Kaur, Harsimran; Singh, Sunny; Hazra, Ram Kuntal

    2017-01-01

    Applications of 3-D 2-e systems have proliferated very fast due to technological advancements in wide range of phenomena from atomic landscape to mesoscopic scale. The unusual properties of atomic/mesoscopic systems are the results of interplaying charge interactions among different bound states. The non-trivial e-e correlations in electrically and/or magnetically confined systems improvise wealth of intriguing challenges at fundamental level due to lack of exact solution of Schrödinger equations. For the first time, a novel methodology of exactly finite summed coulomb correlations invented by us is so handy that even usual programmable calculator can be used to examine the electronic structures of 3-D 2-e harmonic dots in perpendicular magnetic field (symmetric gauge). Statistics of electronic levels, heat capacity measurements and magnetization (T∼1 K) are also investigated in brief to probe the degree of disorderedness.

  15. REVIEW OF METHODS OF OPTICAL GAS Detection by Direct Optical Spectroscopy, with Emphasis on Correlation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Dakin, John P.; Chambers, Paul

    This chapter reviews the development of optical gas sensors, starting with an initial emphasis on optical-fibre remoted techniques and finishing with a particular focus on our own group's work on highly selective methods using correlation spectroscopy. This latter section includes extensive theoretical modelling of a correlation spectroscopy method, and compares theory with practice for a CO2 sensor.

  16. Full 3D correlation tensor computed from double field stereoscopic PIV in a high Reynolds number turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Foucaut, Jean-Marc; Coudert, Sebastien; Stanislas, Michel; Delville, Joel

    2011-04-01

    The turbulence structure near a wall is a very active subject of research and a key to the understanding and modeling of this flow. Many researchers have worked on this subject since the fifties Hama et al. (J Appl Phys 28:388-394, 1957). One way to study this organization consists of computing the spatial two-point correlations. Stanislas et al. (C R Acad Sci Paris 327(2b):55-61, 1999) and Kahler (Exp Fluids 36:114-130, 2004) showed that double spatial correlations can be computed from stereoscopic particle image velocimetry (SPIV) fields and can lead to a better understanding of the turbulent flow organization. The limitation is that the correlation is only computed in the PIV plane. The idea of the present paper is to propose a new method based on a specific stereoscopic PIV experiment that allows the computation of the full 3D spatial correlation tensor. The results obtained are validated by comparison with 2D computation from SPIV. They are in very good agreement with the results of Ganapthisubramani et al. (J Fluid Mech 524:57-80, 2005a).

  17. Potential theoretic methods for far field sound radiation calculations

    NASA Technical Reports Server (NTRS)

    Hariharan, S. I.; Stenger, Edward J.; Scott, J. R.

    1995-01-01

    In the area of computational acoustics, procedures which accurately predict the far-field sound radiation are much sought after. A systematic development of such procedures are found in a sequence of papers by Atassi. The method presented here is an alternate approach to predicting far field sound based on simple layer potential theoretic methods. The main advantages of this method are: it requires only a simple free space Green's function, it can accommodate arbitrary shapes of Kirchoff surfaces, and is readily extendable to three-dimensional problems. Moreover, the procedure presented here, though tested for unsteady lifting airfoil problems, can easily be adapted to other areas of interest, such as jet noise radiation problems. Results are presented for lifting airfoil problems and comparisons are made with the results reported by Atassi. Direct comparisons are also made for the flat plate case.

  18. Multiresolution and Explicit Methods for Vector Field Analysis and Visualization

    NASA Technical Reports Server (NTRS)

    Nielson, Gregory M.

    1997-01-01

    This is a request for a second renewal (3d year of funding) of a research project on the topic of multiresolution and explicit methods for vector field analysis and visualization. In this report, we describe the progress made on this research project during the second year and give a statement of the planned research for the third year. There are two aspects to this research project. The first is concerned with the development of techniques for computing tangent curves for use in visualizing flow fields. The second aspect of the research project is concerned with the development of multiresolution methods for curvilinear grids and their use as tools for visualization, analysis and archiving of flow data. We report on our work on the development of numerical methods for tangent curve computation first.

  19. On the Brodutch and Modi method of constructing geometric measures of classical and quantum correlations

    NASA Astrophysics Data System (ADS)

    Walczak, Zbigniew; Wintrowicz, Iwona

    2017-03-01

    Recently, Brodutch and Modi proposed a general method of constructing meaningful measures of classical and quantum correlations. We systematically apply this method to obtain geometric classical and quantum correlations based on the Bures and the trace distances for two-qubit Bell diagonal states. Moreover, we argue that in general the Brodutch and Modi method may provide non-unique results, and we show how to modify this method to avoid this issue.

  20. Extending methods: using Bourdieu's field analysis to further investigate taste

    NASA Astrophysics Data System (ADS)

    Schindel Dimick, Alexandra

    2015-06-01

    In this commentary on Per Anderhag, Per-Olof Wickman and Karim Hamza's article Signs of taste for science, I consider how their study is situated within the concern for the role of science education in the social and cultural production of inequality. Their article provides a finely detailed methodology for analyzing the constitution of taste within science education classrooms. Nevertheless, because the authors' socially situated methodology draws upon Bourdieu's theories, it seems equally important to extend these methods to consider how and why students make particular distinctions within a relational context—a key aspect of Bourdieu's theory of cultural production. By situating the constitution of taste within Bourdieu's field analysis, researchers can explore the ways in which students' tastes and social positionings are established and transformed through time, space, place, and their ability to navigate the field. I describe the process of field analysis in relation to the authors' paper and suggest that combining the authors' methods with a field analysis can provide a strong methodological and analytical framework in which theory and methods combine to create a detailed understanding of students' interest in relation to their context.

  1. Volumetric calculations in an oil field: The basis method

    USGS Publications Warehouse

    Olea, R.A.; Pawlowsky, V.; Davis, J.C.

    1993-01-01

    The basis method for estimating oil reserves in place is compared to a traditional procedure that uses ordinary kriging. In the basis method, auxiliary variables that sum to the net thickness of pay are estimated by cokriging. In theory, the procedure should be more powerful because it makes full use of the cross-correlation between variables and forces the original variables to honor interval constraints. However, at least in our case study, the practical advantages of cokriging for estimating oil in place are marginal. ?? 1993.

  2. Analysis of Double Ring Resonators using Method of Equating Fields

    NASA Astrophysics Data System (ADS)

    Althaf, Shahana

    Optical ring resonators have the potential to be integral parts of large scale photonic circuits. My thesis theoretically analyzes parallel coupled double ring resonators (DRRs) in detail. The analysis is performed using the method of equating fields (MEF) which provides an in depth understanding about the transmitted and reflected light paths in the structure. Equations for the transmitted and reflected fields are derived; these equations allow for unequal ring lengths and coupling coefficients. Sanity checks including comparison with previously studied structures are performed in the final chapter in order to prove the correctness of the obtained results.

  3. The discrete correlation function: A new method for analyzing unevenly sampled variability data. [IUE

    NASA Technical Reports Server (NTRS)

    Edelson, R. A.; Krolik, J. H.

    1988-01-01

    A method of measuring correlation functions without interpolating in the temporal domain, the discrete correlation function, is introduced. It provides an assumption-free representation of the correlation measured in the data, and allows meaningful error estimates. This method does not produce spurious correlations at zero lag due to correlated errors. It is shown that physical interpretation of active galactic nuclei cross-correlation functions requires knowledge of the input function's fluctuation power spectrum, involves model-dependence in the form of symmetry assumptions, and must take into account intrinsic scale bias. This technique was used to find a correlation in published IUE data for NGC 4151, which indicates that the broad C IV feature emanates from a shell 15 to 75 light-days in radius, assuming spherical symmetry.

  4. Spatial correlations and probability density function of the phase difference in a developed speckle-field: numerical and natural experiments

    NASA Astrophysics Data System (ADS)

    Mysina, N. Yu; Maksimova, L. A.; Gorbatenko, B. B.; Ryabukho, V. P.

    2015-10-01

    Investigated are statistical properties of the phase difference of oscillations in speckle-fields at two points in the far-field diffraction region, with different shapes of the scatterer aperture. Statistical and spatial nonuniformity of the probability density function of the field phase difference is established. Numerical experiments show that, for the speckle-fields with an oscillating alternating-sign transverse correlation function, a significant nonuniformity of the probability density function of the phase difference in the correlation region of the field complex amplitude, with the most probable values 0 and p, is observed. A natural statistical interference experiment using Young diagrams has confirmed the results of numerical experiments.

  5. Correlation algorithm for computing the velocity fields in microchannel flows with high resolution

    NASA Astrophysics Data System (ADS)

    Karchevskiy, M. N.; Tokarev, M. P.; Yagodnitsyna, A. A.; Kozinkin, L. A.

    2015-11-01

    A cross-correlation algorithm, which enables the obtaining of the velocity field in the flow with a spatial resolution up to a single pixel per vector, has been realized in the work. It gives new information about the structure of microflows as well as increases considerably the accuracy of the measurement of the flow velocity field. In addition, the realized algorithm renders information about the velocity fluctuations in the flow structure. The algorithm was tested on synthetic data at a different number of test images the velocity distribution on which was specified by the Siemens star. The experimental validation was done on the data provided within the international project "4th International PIV Challenge". Besides, a detailed comparison with the Particle Image Velocimetry algorithm, which was realized previously, was carried out.

  6. A comparison of confidence interval methods for the concordance correlation coefficient and intraclass correlation coefficient with small number of raters.

    PubMed

    Feng, Dai; Svetnik, Vladimir; Coimbra, Alexandre; Baumgartner, Richard

    2014-01-01

    The intraclass correlation coefficient (ICC) with fixed raters or, equivalently, the concordance correlation coefficient (CCC) for continuous outcomes is a widely accepted aggregate index of agreement in settings with small number of raters. Quantifying the precision of the CCC by constructing its confidence interval (CI) is important in early drug development applications, in particular in qualification of biomarker platforms. In recent years, there have been several new methods proposed for construction of CIs for the CCC, but their comprehensive comparison has not been attempted. The methods consisted of the delta method and jackknifing with and without Fisher's Z-transformation, respectively, and Bayesian methods with vague priors. In this study, we carried out a simulation study, with data simulated from multivariate normal as well as heavier tailed distribution (t-distribution with 5 degrees of freedom), to compare the state-of-the-art methods for assigning CI to the CCC. When the data are normally distributed, the jackknifing with Fisher's Z-transformation (JZ) tended to provide superior coverage and the difference between it and the closest competitor, the Bayesian method with the Jeffreys prior was in general minimal. For the nonnormal data, the jackknife methods, especially the JZ method, provided the coverage probabilities closest to the nominal in contrast to the others which yielded overly liberal coverage. Approaches based upon the delta method and Bayesian method with conjugate prior generally provided slightly narrower intervals and larger lower bounds than others, though this was offset by their poor coverage. Finally, we illustrated the utility of the CIs for the CCC in an example of a wake after sleep onset (WASO) biomarker, which is frequently used in clinical sleep studies of drugs for treatment of insomnia.

  7. A field-space conformal-solution method: Binary vapor-liquid phase behavior

    NASA Astrophysics Data System (ADS)

    Storvick, T. S.; Fox, J. R.

    1990-01-01

    The field-space conformal solution method provides an entirely new thermodynamic framework for the description of fluid mixtures in terms of the properties of a pure reference fluid. The utility and performance of the method are examined in the special case of vapor-liquid equilibrium correlation for simple mixtures. This is one of several cases in which field-space methods have numerical or theoretical advantages over methods presently used in mixture property correlation; only properties along the vapor pressure curve of the purefluid reference system are required for a complete description of the mixture phase behavior. Vapor-liquid equilibrium data for three binary hydrocarbon mixtures, n-butane + n-pentane, n-butane + n-hexane, and n-butane + n-octane, are correlated with a simple implementation of the method having two independent mixture parameters. Two pure-fluid equations of state, a Peng-Robinson equation and a 32-constant modified Benedict-Webb-Rubin equation, are tested as reference systems. The effects of differences in the quality of the reference system and of a range of mixture component size ratios are examined.

  8. Methods of measuring velocity fields in the problem with a channel with periodic hills

    NASA Astrophysics Data System (ADS)

    Kozinkin, L. A.; Karchevskiy, M. N.

    2016-11-01

    The work studies the flow characteristics in a channel with periodic hills on the basis of three algorithms for calculating the flow velocity fields through the images: Particle Image Velocimetry, Particle Tracking Velocimetry, and Pyramid Correlation. Descriptions of algorithms, detailed information about the experiment and parameters of the received data processing, as well as the results of calculations of instantaneous velocity fields at selected time points obtained by corresponding methods are provided. In addition, the presented techniques are compared on the basis of experimental data.

  9. A procedure for specimen optimization applied to material testing in plasticity with the virtual fields method

    NASA Astrophysics Data System (ADS)

    Rossi, Marco; Badaloni, Michele; Lava, Pascal; Debruyne, Dimitri; Pierron, Fabrice

    2016-10-01

    The paper presents a numerical procedure to design an optimal geometry for specimens that will be used to identify the hardening behaviour of sheet metals with the virtual fields method (VFM). The procedure relies on a test simulator able to generate synthetic images similar to the ones obtained during an actual test. Digital image correlation (DIC) was used to achieve the strain field, then the constitutive parameters are identified with the VFM and compared with the reference ones. A parametric study was conducted on different types of notched specimens and an optimal configuration was identified eventually.

  10. One-shot measurement of thermal and kinematic fields from Infra-Red Image Correlation (IRIC)

    NASA Astrophysics Data System (ADS)

    Maynadier, A.; Poncelet, M.; Lavernhe-Taillard, K.; Roux, S.

    2010-06-01

    Many materials are concerned by strain localization, for instance PLC phe¨ nomena, Luders’ bands or Shape Memory Alloys (SMA). The experimental identification of such material behaviors requires the use of full field kinematic measurements, such as provided by Digital Image Correlation (DIC), as well as Infra-Red (IR) thermography to evaluate the associate thermal dissipation. Jointly, these field measurements allow for a full thermo-mechanical characterization of material behavior. However, the space and time association of both fields remains a major difficulty (antagonist surface texture requirements, imaging devices having different pixel number and acquisition rate...). In this paper, we introduce a much simpler experimental approach, which consists in a novel extended DIC technique applied to a single set of IR images. It gives access to both displacement and temperature fields decomposed over the same discretization. This technique, applied to tensile tests on a NiTi SMA, reveals both strain localization due to the phase transformation and associated thermal dissipation.

  11. Study of the electron field emission and microstructure correlation in nanocrystalline carbon thin films

    NASA Astrophysics Data System (ADS)

    Gupta, S.; Weiss, B. L.; Weiner, B. R.; Morell, G.

    2001-05-01

    Nanocrystalline carbon thin films were deposited by hot-filament chemical vapor deposition using a 2% concentration of methane in hydrogen. The films were deposited on molybdenum substrates under various substrate biasing conditions. A positive bias produced a continuous flow of electrons from the filament onto the substrate, while a negative bias caused the substrate to be bombarded with positive ions. Films were also grown under no bias, for comparison. Differences in the electron field emission properties (turn-on fields and emitted currents) of these films were characterized. Correspondingly, microstructural differences were also studied, as characterized with atomic force microscopy and Raman spectroscopy. Films grown under electron bombardment showed lower turn-on fields, smoother surfaces, and smaller grains than those grown under ion bombardment or no bias. A correlation between the enhanced emission properties and the nanocrystalline carbon material produced by the low-energy particle bombardment was found through the parameters obtained using spectroscopic ellipsometry modeling. The results confirm the significant role of defects on the electron field emission mechanism.

  12. Effects of the mean velocity field on the renormalized turbulent viscosity and correlation function

    NASA Astrophysics Data System (ADS)

    Kumar, Abhishek; Verma, Mahendra

    2015-11-01

    We perform renormalization group analysis of the Navier Stokes equation in the Eulerian framework in the presence of mean velocity field U0, and observe that that the renormalized viscosity ν (k) is independent of U0, where k is the wavenumber. Thus we show that ν (k) in the Eulerian field theory is Galilean invariant. We also compute ν (k) using numerical simulations and verify the above theoretical prediction. The velocity-velocity correlation function however exhibits damped oscillations whose time period of oscillation and damping time scales are given by 1 / kU0 and 1 / (ν (k) k2) respectively. In a modified form of Kraichnan's direct interaction approximation (DIA), the ``random mean velocity field'' of the large eddies sweeps the small-scale fluctuations. The DIA calculations also reveal that in the weak turbulence limit, the energy spectrum E (k) ~k - 3 / 2 , but for the strong turbulence limit, the random velocity field of the large-scale eddies is scale-dependent that leads to Kolmogorov's energy spectrum.

  13. Markov random field method for dynamic PET image segmentation

    NASA Astrophysics Data System (ADS)

    Lin, Kang-Ping; Lou, Shyhliang A.; Yu, Chin-Lung; Chung, Being-Tau; Wu, Liang-Chi; Liu, Ren-Shyan

    1998-06-01

    In this paper, the Markov random field (MRF) clustering method for highly noisy medical image segmentation is presented. In MRF method, the image to be segmented is analyzed in a probabilistic way that establishes image model by a posteriori probability density function with Bayes' theorem, with relation between pixel positions as well as gray-levels involved. The adaptive threshold parameter is determined in the iterative clustering process to achieve global optimal segmentation. The presented method and other segmentation methods in use are tested on simulation images of different noise levels, and the numerical comparison result is presented. It also is applied on the highly noisy positron emission tomography images, in that the diagnostic hypoxia fraction is automatically calculated. The experimental results are acceptable, and show that the presented method is suitable and robust for noisy image segmentation.

  14. Abnormality degree detection method using negative potential field group detectors

    NASA Astrophysics Data System (ADS)

    Zhang, Hongli; Liu, Shulin; Li, Dong; Shi, Kunju; Wang, Bo; Cui, Jiqiang

    2015-09-01

    Online monitoring methods have been widely used in many major devices, however the normal and abnormal states of equipment are estimated mainly based on the monitoring results whether monitored parameters exceed the setting thresholds. Using these monitoring methods may cause serious false positive or false negative results. In order to precisely monitor the state of equipment, the problem of abnormality degree detection without fault sample is studied with a new detection method called negative potential field group detectors(NPFG-detectors). This method achieves the quantitative expression of abnormality degree and provides the better detection results compared with other methods. In the process of Iris data set simulation, the new algorithm obtains the successful results in abnormal detection. The detection rates for 3 types of Iris data set respectively reach 100%, 91.6%, and 95.24% with 50% training samples. The problem of Bearing abnormality degree detection via an abnormality degree curve is successfully solved.

  15. Fitness Field Tests' Correlation With Game Performance in U-19-Category Basketball Referees.

    PubMed

    Nabli, Mohamed Ali; Abdelkrim, Nidhal Ben; Jabri, Imed; Batikh, Tahar; Castagna, Carlo; Chamari, Karim

    2016-11-01

    To examine the relation between game performance, physiological responses, and field-test results in Tunisian basketball referees. Computerized time-motion analysis, heart rate (HR), and blood lactate concentration [La(-)] were measured in 15 referees during 8 competitive games (under-19-y-old Tunisian league). Referees also performed a repeated-sprint test (RSA), Yo-Yo Intermittent Recovery Test level 1 (YYIRTL1), agility T-test, and 30-m sprint with 10-m lap time. Computerized video analysis determined the time spent in 5 locomotor activities (standing, walking, jogging, running, and sprint), then grouped in high-, moderate-, and low-intensity activities (HIAs, MIAs, and LIAs, respectively). YYIRTL1 performance correlated with (1) total distance covered during the 4th quarter (r = .52, P = .04) and (2) distance covered in LIA during all game periods (P < .05). Both distance covered and time spent in MIA during the 1st quarter were negatively correlated with the YYIRTL1 performance (r = -.53, P = .035; r = -.67, P = .004, respectively). A negative correlation was found between distance covered at HIA during the 2nd half (3rd quarter + 4th quarter) and fatigue index of the RSA test (r = -.54, P = .029). Mean HR (expressed as %HRpeak) during all game periods was correlated with YYIRTL1 performance (.61 ≤ r < .67, P < .01). This study showed that (1) the YYIRTL1 performance is a moderate predictor of game physical performance in U-19 basketball referees and (2) referees' RSA correlates with the amount of HIA performed during the 2nd half, which represents the ability to keep up with play.

  16. Performance of climate field reconstruction methods over multiple seasons and climate variables

    NASA Astrophysics Data System (ADS)

    Dannenberg, Matthew P.; Wise, Erika K.

    2013-09-01

    Studies of climate variability require long time series of data but are limited by the absence of preindustrial instrumental records. For such studies, proxy-based climate reconstructions, such as those produced from tree-ring widths, provide the opportunity to extend climatic records into preindustrial periods. Climate field reconstruction (CFR) methods are capable of producing spatially-resolved reconstructions of climate fields. We assessed the performance of three commonly used CFR methods (canonical correlation analysis, point-by-point regression, and regularized expectation maximization) over spatially-resolved fields using multiple seasons and climate variables. Warm- and cool-season geopotential height, precipitable water, and surface temperature were tested for each method using tree-ring chronologies. Spatial patterns of reconstructive skill were found to be generally consistent across each of the methods, but the robustness of the validation metrics varied by CFR method, season, and climate variable. The most robust validation metrics were achieved with geopotential height, the October through March temporal composite, and the Regularized Expectation Maximization method. While our study is limited to assessment of skill over multidecadal (rather than multi-centennial) time scales, our findings suggest that the climate variable of interest, seasonality, and spatial domain of the target field should be considered when assessing potential CFR methods for real-world applications.

  17. Process system and method for fabricating submicron field emission cathodes

    DOEpatents

    Jankowski, A.F.; Hayes, J.P.

    1998-05-05

    A process method and system for making field emission cathodes exists. The deposition source divergence is controlled to produce field emission cathodes with height-to-base aspect ratios that are uniform over large substrate surface areas while using very short source-to-substrate distances. The rate of hole closure is controlled from the cone source. The substrate surface is coated in well defined increments. The deposition source is apertured to coat pixel areas on the substrate. The entire substrate is coated using a manipulator to incrementally move the whole substrate surface past the deposition source. Either collimated sputtering or evaporative deposition sources can be used. The position of the aperture and its size and shape are used to control the field emission cathode size and shape. 3 figs.

  18. Process system and method for fabricating submicron field emission cathodes

    DOEpatents

    Jankowski, Alan F.; Hayes, Jeffrey P.

    1998-01-01

    A process method and system for making field emission cathodes exists. The deposition source divergence is controlled to produce field emission cathodes with height-to-base aspect ratios that are uniform over large substrate surface areas while using very short source-to-substrate distances. The rate of hole closure is controlled from the cone source. The substrate surface is coated in well defined increments. The deposition source is apertured to coat pixel areas on the substrate. The entire substrate is coated using a manipulator to incrementally move the whole substrate surface past the deposition source. Either collimated sputtering or evaporative deposition sources can be used. The position of the aperture and its size and shape are used to control the field emission cathode size and shape.

  19. Evaluation of Phase Locking and Cross Correlation Methods for Estimating the Time Lag between Brain Sites: A Simulation Approach.

    PubMed

    Soltanzadeh, Mohammad Javad; Daliri, Mohammad Reza

    2014-01-01

    Direction and latency of electrical connectivity between different sites of brain explains brain neural functionality. We compared efficiency of cross correlation and phase locking methods in time lag estimation which are based on local field potential (LFP) and LFP-spike signals, respectively. Signals recorded from MT area of a macaque's brain was used in a simulation approach. The first signal was real brain activity and the second was identical to the first one, but with two kinds of delayed and not delayed forms. Time lag between two signals was estimated by cross correlation and phase locking methods. Both methods estimated the time lags with no errors. Phase locking was not as time efficient as correlation. In addition, phase locking suffered from temporal self bias. Correlation was a more efficient method. Phase locking was not considered as a proper method to estimate the time lags between brain sites due to time inefficiency and self bias, the problems which are reported for the first time about this method.

  20. Hyperbolic Methods for Surface and Field Grid Generation

    NASA Technical Reports Server (NTRS)

    Chan, William M.; VanDalsem, William R. (Technical Monitor)

    1996-01-01

    This chapter describes the use of hyperbolic partial differential equation methods for structured surface grid generation and field grid generation. While the surface grid generation equations are inherently three dimensional, the field grid generation equations can be formulated in two or three dimensions. The governing equations are derived from orthogonality relations and cell area/volume constraints; and are solved numerically by marching from an initial curve or surface. The marching step size and marching distance can be prescribedly the user. Exact specifications of the side and outer boundaries are not possible with a one sweep marching scheme but limited control is achievable. Excellent orthogonality and grid clustering characteristics are provided by hyperbolic methods with one to two orders of magnitude savings in time over typical elliptic methods. Since hyperbolic grid generation methods do not require the exact specifications of the side and outer boundaries of a grid, these methods are particularly well suited for the overlapping grid approach for solving problems on complex configurations. Grid generation software based on hyperbolic methods and their applications on several complex configurations will be described.

  1. Comparison of dust sampling methods in Estonia and Sweden--a field study.

    PubMed

    Berg, P; Jaakmees, V; Bodin, L

    1999-09-01

    The purpose of this field study was to compare an Estonian dust sampling method, a method also used in other former East Block countries, with a Swedish method and to estimate inter-method agreement with statistical analyses. The Estonian standard method (ESM), used to assess exposure in Estonia since the early 1950s, is based on a strategy where air samples are collected for 10 minutes every hour over a full shift. This method was compared to a Swedish standard method (SSM), a modified NIOSH method, comparable to international standards, where one air sample is collected during a full shift. The study was carried out at a cement plant that in the beginning of the 1990s was subjected to an epidemiological study, including collection of exposure data. The results of the analysis from 31 clusters of parallel samples of the two methods, when dust consisting of Portland cement was collected, showed a relatively weak correlation between the SSM and the ESM, ri = 0.81 (Pearson's intra-class correlation coefficient). A conversion factor between the two methods was estimated, where SSM is 0.69 times ESM and the limits of agreement are 0.25 and 1.84, respectively. These results indicate a substantial inter-method difference. We therefore recommend that measurements obtained from the two methods should not be used interchangeably. Because the present study is of limited extent, our findings are confined to the operations studied and further studies covering other exposure situations will be needed.

  2. Correlation of throwing velocity to the results of lower-body field tests in male college baseball players.

    PubMed

    Lehman, Graeme; Drinkwater, Eric J; Behm, David G

    2013-04-01

    Baseball-specific athleticism, potential, and performance have been difficult to predict. Increased muscle strength and power can increase throwing velocity but the majority of research has focused on the upper body. The present study sought to determine if bilateral or unilateral lower-body field testing correlates with throwing velocity. Baseball throwing velocity scores were correlated to the following tests: medicine ball (MB) scoop toss and squat throw, bilateral and unilateral vertical jumps, single and triple broad jumps, hop and stop in both directions, lateral to medial jumps, 10- and 60-yd sprints, and both left and right single-leg 10-yd hop for speed in 42 college baseball players. A multiple regression analysis (forward method), assessing the relationship between shuffle and stretch throwing velocities and lower-body field test results determined that right-handed throwing velocity from the stretch position was most strongly predicted by lateral to medial jump right (LMJR) and body weight (BW; R = 0.322), whereas lateral to medial jump left (LMJL; R = 0.688) predicted left stretch throw. Right-handed shuffle throw was most strongly predicted by LMJR and MB scoop (R = 0.338), whereas LMJL, BW, and LMJR all contributed to left-handed shuffle throw (R = 0.982). Overall, this study found that lateral to medial jumps were consistently correlated with high throwing velocity in each of the throwing techniques, in both left-handed and right-handed throwers. This is the first study to correlate throwing velocity with a unilateral jump in the frontal plane, mimicking the action of the throwing stride.

  3. Long-term comparison of energy flux calculation methods over an agricultural field

    NASA Astrophysics Data System (ADS)

    Kolle, O.

    1996-05-01

    Since March 1990 micrometeorological measurements were carried out over an agricultural field with varying land use (wheat, barley, sunflowers, mustard) using a profile mast and an energy balance mast with an eddy correlation system for the sensible heat flux. Soil temperature, soil heat flux, soil moisture and precipitation were measured as well. Long-term measurements allow statistical analysis of the energy fluxes and comparisons of different methods for their calculation (eddy correlation, flux profile, Bowen ratio and the residual method). For the sensible heat flux a good agreement was found using these different methods after applying all necessary corrections. The latent heat flux shows greater deviations in the daily cycle between the flux profile method and the residual method due to the shape of the humidity profiles which often and especially at night show a maximum at heights between 1 m and 4 m, even if the soil is free of vegetation. This could be a consequence of the patchiness of the agricultural area, the position of the station on top of a hillock or high water absorption of the soil, respectively. The residual method seems to give more reliable results for the actual evapotranspiration than the flux profile method or the Bowen ratio method if an eddy correlation system is used to determine the sensible heat flux. Differences in the soil heat flux measured with heat flux plates and determined using the profiles of soil temperature and soil moisture can be explained by the heat flux plates being a disturbance to the soil matrix.

  4. Advanced correlative light/electron microscopy: current methods and new developments using Tokuyasu cryosections.

    PubMed

    Cortese, Katia; Diaspro, Alberto; Tacchetti, Carlo

    2009-12-01

    Microscopy is an essential tool for analysis of cellular structures and function. With the advent of new fluorescent probes and super-resolution light microscopy techniques, the study of dynamic processes in living cells has been greatly facilitated. Fluorescence light microscopy provides analytical, quantitative, and three-dimensional (3D) data with emphasis on analysis of live cells using fluorescent markers. Sample preparation is easy and relatively inexpensive, and the use of appropriate tags provides the ability to track specific proteins of interest. Of course, only electron microscopy (EM) achieves the highest definition in terms of ultrastructure and protein labeling. To fill the gap between light microscopy and EM, correlative light and electron microscopy (CLEM) strategies have been developed. In particular, hybrid techniques based upon immuno-EM provide sensitive protein detection combined with high-resolution information on cell structures and protein localization. By adding the third dimension to EM with electron tomography (ET) combined with rapid freezing, CLEM techniques now provide additional tools for quantitative 3D analysis. Here, we overview the major methods applied and highlight the latest advances in the field of CLEM. We then focus on two selected techniques that use cryosections as substrate for combined biomolecular imaging. Finally, we provide a perspective of future developments in the field.

  5. Measurement of high temperature full-field strain up to 2000 °C using digital image correlation

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Xu, Chenghai; Jin, Hua; Meng, Songhe; Zhang, Yumin; Xie, Weihua

    2017-03-01

    Understanding the deformation and strain at elevated temperature is a critical factor for the stability of aerodynamic shape, and an important consideration for the thermal protection system design. However, accurate measurement of deformation and strain at high temperatures is a challenge. Here, we present a measurement study for full-field strain mapping up to 2000 °C using digital image correlation (DIC) method, which mainly depends on the quality of speckle patterns on the specimen surface. In our study, the strain values are analyzed by DIC method while specimens are heated using a large electric current. Improvements in filtering and speckling allow the measured temperatures using this method to reach 2000 °C. We confirmed the validity of this method by comparison of measured Young’s modulus values with reference data for Inconel 718 Ni-based superalloy and graphite at different temperatures. Additionally, the full-field strain and Young’s modulus were demonstrated for a carbon fiber-reinforced carbon (C/C) composite uniaxial tensile specimen at 2000 °C.

  6. Bosonic particle-correlated states: A nonperturbative treatment beyond mean field

    NASA Astrophysics Data System (ADS)

    Jiang, Zhang; Tacla, Alexandre B.; Caves, Carlton M.

    2017-08-01

    Many useful properties of dilute Bose gases at ultralow temperature are predicted precisely by the (mean-field) product-state Ansatz, in which all particles are in the same quantum state. Yet, in situations where particle-particle correlations become important, the product Ansatz fails. To include correlations nonperturbatively, we consider a new set of states: the particle-correlated state of N =l ×n bosons is derived by symmetrizing the n -fold product of an l -particle quantum state. Quantum correlations of the l -particle state "spread out" to any subset of the N bosons by symmetrization. The particle-correlated states can be simulated efficiently for large N , because their parameter spaces, which depend on l , do not grow with n . Here we formulate and develop in great detail the pure-state case for l =2 , where the many-body state is constructed from a two-particle pure state. These paired wave functions, which we call pair-correlated states (PCS), were introduced by A. J. Leggett [Rev. Mod. Phys. 73, 307 (2001), 10.1103/RevModPhys.73.307] as a particle-number-conserving version of the Bogoliubov approximation. We present an iterative algorithm that solves for the reduced (marginal) density matrices (RDMs), i.e., the correlation functions, associated with PCS in time O (N ) . The RDMs can also be derived from the normalization factor of PCS, which is derived analytically in the large-N limit. To test the efficacy of PCS, we analyze the ground state of the two-site Bose-Hubbard model by minimizing the energy of the PCS state, both in its exact form and in its large-N approximate form, and comparing with the exact ground state. For N =1000 , the relative errors of the ground-state energy for both cases are within 10-5 over the entire parameter region from a single condensate to a Mott insulator. We present numerical results that suggest that PCS might be useful for describing the dynamics in the strongly interacting regime.

  7. Indicators of conformal field theory: Entanglement entropy and multiple-point correlators

    NASA Astrophysics Data System (ADS)

    Patil, Pranay; Tang, Ying; Katz, Emanuel; Sandvik, Anders W.

    2017-07-01

    The entanglement entropy (EE) of quantum systems is often used as a test of low-energy descriptions by conformal field theory (CFT). Here we point out that this is not a reliable indicator, as the EE often shows the same behavior even when a CFT description is not correct (as long as the system is asymptotically scale-invariant). We use constraints on the scaling dimension given by the CFT with SU(2) symmetry to provide alternative tests with two- and four-point correlation functions, showing examples for quantum spin models in 1+1 dimensions. In the case of a critical amplitude-product state expressed in the valence-bond basis (where the amplitudes decay as a power law of the bond length and the wave function is the product of all bond amplitudes), we show that even though the EE exhibits the expected CFT behavior, there is no CFT description of this state. We provide numerical tests of the behavior predicted by CFT for the correlation functions in the critical transverse-field Ising chain and the J -Q spin chain, where the conformal structure is well understood. That behavior is not reproduced in the amplitude-product state.

  8. Auxiliary-Field Quantum Monte Carlo Simulations of Strongly-Correlated Molecules and Solids

    SciTech Connect

    Chang, C.; Morales, M. A.

    2016-11-10

    We propose a method of implementing projected wave functions for second-quantized auxiliary- field quantum Monte Carlo (AFQMC) techniques. The method is based on expressing the two-body projector as one-body terms coupled to binary Ising fields. To benchmark the method, we choose to study the two-dimensional (2D) one-band Hubbard model with repulsive interactions using the constrained-path MC (CPMC). The CPMC uses a trial wave function to guide the random walks so that the so-called fermion sign problem can be eliminated. The trial wave function also serves as the importance function in Monte Carlo sampling. AS such, the quality of the trial wave function has a direct impact to the efficiency and accuracy of the simulations.

  9. A self-consistent field method for galactic dynamics

    NASA Technical Reports Server (NTRS)

    Hernquist, Lars; Ostriker, Jeremiah P.

    1992-01-01

    The present study describes an algorithm for evolving collisionless stellar systems in order to investigate the evolution of systems with density profiles like the R exp 1/4 law, using only a few terms in the expansions. A good fit is obtained for a truncated isothermal distribution, which renders the method appropriate for galaxies with flat rotation curves. Calculations employing N of about 10 exp 6-7 are straightforward on existing supercomputers, making possible simulations having significantly smoother fields than with direct methods such as tree-codes. Orbits are found in a given static or time-dependent gravitational field; the potential, phi(r, t) is revised from the resultant density, rho(r, t). Possible scientific uses of this technique are discussed, including tidal perturbations of dwarf galaxies, the adiabatic growth of central masses in spheroidal galaxies, instabilities in realistic galaxy models, and secular processes in galactic evolution.

  10. A Method for Evaluating Volt-VAR Optimization Field Demonstrations

    SciTech Connect

    Schneider, Kevin P.; Weaver, T. F.

    2014-08-31

    In a regulated business environment a utility must be able to validate that deployed technologies provide quantifiable benefits to the end-use customers. For traditional technologies there are well established procedures for determining what benefits will be derived from the deployment. But for many emerging technologies procedures for determining benefits are less clear and completely absent in some cases. Volt-VAR Optimization is a technology that is being deployed across the nation, but there are still numerous discussions about potential benefits and how they are achieved. This paper will present a method for the evaluation, and quantification of benefits, for field deployments of Volt-VAR Optimization technologies. In addition to the basic methodology, the paper will present a summary of results, and observations, from two separate Volt-VAR Optimization field evaluations using the proposed method.

  11. Method for imaging with low frequency electromagnetic fields

    DOEpatents

    Lee, Ki H.; Xie, Gan Q.

    1994-01-01

    A method for imaging with low frequency electromagnetic fields, and for interpreting the electromagnetic data using ray tomography, in order to determine the earth conductivity with high accuracy and resolution. The imaging method includes the steps of placing one or more transmitters, at various positions in a plurality of transmitter holes, and placing a plurality of receivers in a plurality of receiver holes. The transmitters generate electromagnetic signals which diffuse through a medium, such as earth, toward the receivers. The measured diffusion field data H is then transformed into wavefield data U. The traveltimes corresponding to the wavefield data U, are then obtained, by charting the wavefield data U, using a different regularization parameter .alpha. for each transform. The desired property of the medium, such as conductivity, is then derived from the velocity, which in turn is constructed from the wavefield data U using ray tomography.

  12. The reduced basis method for the electric field integral equation

    SciTech Connect

    Fares, M.; Hesthaven, J.S.; Maday, Y.; Stamm, B.

    2011-06-20

    We introduce the reduced basis method (RBM) as an efficient tool for parametrized scattering problems in computational electromagnetics for problems where field solutions are computed using a standard Boundary Element Method (BEM) for the parametrized electric field integral equation (EFIE). This combination enables an algorithmic cooperation which results in a two step procedure. The first step consists of a computationally intense assembling of the reduced basis, that needs to be effected only once. In the second step, we compute output functionals of the solution, such as the Radar Cross Section (RCS), independently of the dimension of the discretization space, for many different parameter values in a many-query context at very little cost. Parameters include the wavenumber, the angle of the incident plane wave and its polarization.

  13. A geologic approach to field methods in fluvial geomorphology

    USGS Publications Warehouse

    Fitzpatrick, Faith A.; Thornbush, Mary J; Allen, Casey D; Fitzpatrick, Faith A.

    2014-01-01

    A geologic approach to field methods in fluvial geomorphology is useful for understanding causes and consequences of past, present, and possible future perturbations in river behavior and floodplain dynamics. Field methods include characterizing river planform and morphology changes and floodplain sedimentary sequences over long periods of time along a longitudinal river continuum. Techniques include topographic and bathymetric surveying of fluvial landforms in valley bottoms and describing floodplain sedimentary sequences through coring, trenching, and examining pits and exposures. Historical sediment budgets that include floodplain sedimentary records can characterize past and present sources and sinks of sediment along a longitudinal river continuum. Describing paleochannels and floodplain vertical accretion deposits, estimating long-term sedimentation rates, and constructing historical sediment budgets can assist in management of aquatic resources, habitat, sedimentation, and flooding issues.

  14. A self-consistent field method for galactic dynamics

    NASA Technical Reports Server (NTRS)

    Hernquist, Lars; Ostriker, Jeremiah P.

    1992-01-01

    The present study describes an algorithm for evolving collisionless stellar systems in order to investigate the evolution of systems with density profiles like the R exp 1/4 law, using only a few terms in the expansions. A good fit is obtained for a truncated isothermal distribution, which renders the method appropriate for galaxies with flat rotation curves. Calculations employing N of about 10 exp 6-7 are straightforward on existing supercomputers, making possible simulations having significantly smoother fields than with direct methods such as tree-codes. Orbits are found in a given static or time-dependent gravitational field; the potential, phi(r, t) is revised from the resultant density, rho(r, t). Possible scientific uses of this technique are discussed, including tidal perturbations of dwarf galaxies, the adiabatic growth of central masses in spheroidal galaxies, instabilities in realistic galaxy models, and secular processes in galactic evolution.

  15. Method for imaging with low frequency electromagnetic fields

    DOEpatents

    Lee, K.H.; Xie, G.Q.

    1994-12-13

    A method is described for imaging with low frequency electromagnetic fields, and for interpreting the electromagnetic data using ray tomography, in order to determine the earth conductivity with high accuracy and resolution. The imaging method includes the steps of placing one or more transmitters, at various positions in a plurality of transmitter holes, and placing a plurality of receivers in a plurality of receiver holes. The transmitters generate electromagnetic signals which diffuse through a medium, such as earth, toward the receivers. The measured diffusion field data H is then transformed into wavefield data U. The travel times corresponding to the wavefield data U, are then obtained, by charting the wavefield data U, using a different regularization parameter [alpha] for each transform. The desired property of the medium, such as conductivity, is then derived from the velocity, which in turn is constructed from the wavefield data U using ray tomography. 13 figures.

  16. Bringing the Field into the Classroom: A Field Methods Course on Saudi Arabian Sign Language

    ERIC Educational Resources Information Center

    Stephen, Anika; Mathur, Gaurav

    2012-01-01

    The methodology used in one graduate-level linguistics field methods classroom is examined through the lens of the students' experiences. Four male Deaf individuals from the Kingdom of Saudi Arabia served as the consultants for the course. After a brief background information about their country and its practices surrounding deaf education, both…

  17. Bringing the Field into the Classroom: A Field Methods Course on Saudi Arabian Sign Language

    ERIC Educational Resources Information Center

    Stephen, Anika; Mathur, Gaurav

    2012-01-01

    The methodology used in one graduate-level linguistics field methods classroom is examined through the lens of the students' experiences. Four male Deaf individuals from the Kingdom of Saudi Arabia served as the consultants for the course. After a brief background information about their country and its practices surrounding deaf education, both…

  18. Computing Correlations with Q-Sort Data for McQuitty's Pattern-Analytic Methods

    ERIC Educational Resources Information Center

    Lee, Jae-Won

    1977-01-01

    McQuitty has developed a number of pattern analytic methods that can be computed by hand, but the matrices of associations used in these methods cannot be so readily computed. A simplified but exact method of computing product moment correlations based on Q sort data for McQuitty's methods is described. (Author/JKS)

  19. Work function measurements by the field emission retarding potential method.

    NASA Technical Reports Server (NTRS)

    Strayer, R. W.; Mackie, W.; Swanson, L. W.

    1973-01-01

    Description of the theoretical foundation of the field electron retarding potential method, and review of its experimental application to the measurement of single crystal face work functions. The results obtained from several substrates are discussed. An interesting and useful fallout from the experimental approach described is the ability to accurately measure the elastic and inelastic reflection coefficient for impinging electrons to near zero-volt energy.

  20. Lidar Tracking of Multiple Fluorescent Tracers: Method and Field Test

    NASA Technical Reports Server (NTRS)

    Eberhard, Wynn L.; Willis, Ron J.

    1992-01-01

    Past research and applications have demonstrated the advantages and usefulness of lidar detection of a single fluorescent tracer to track air motions. Earlier researchers performed an analytical study that showed good potential for lidar discrimination and tracking of two or three different fluorescent tracers at the same time. The present paper summarizes the multiple fluorescent tracer method, discusses its expected advantages and problems, and describes our field test of this new technique.