DOT National Transportation Integrated Search
2003-10-01
The purpose of this document is to expand upon the evaluation components presented in "Computer-aided dispatch--traffic management center field operational test final evaluation plan : WSDOT deployment". This document defines the objective, approach,...
DOT National Transportation Integrated Search
2015-09-27
This evaluation report provides background on the development and findings. The aim of the UTRC project was to develop and : deploy Portable IIMS based on Smartphone web applications. Previously, traditional IIMS was deployed in the field vehicles : ...
DOT National Transportation Integrated Search
2003-09-22
This document presents the Evaluation Teams plan for conducting the evaluation of the FOT in Washington State. A companion document exists for the evaluation of the Utah deployment. This plan includes the experimental design for testing hypotheses...
Performance-cost evaluation methodology for ITS equipment deployment
DOT National Transportation Integrated Search
2000-09-01
Although extensive Intelligent Transportation Systems (ITS) technology is being deployed in the field, little analysis is being performed to evaluate the benefits of implementation schemes. Benefit analysis is particularly in need for one popular ITS...
Results from the field testing of some innovative sampling methods developed to evaluate risk management strategies for polychlorinated biphenyl (PCB) contaminated sediments are presented. Semipermeable membrane devices (SPMDs) were combined with novel deployment methods to quan...
Evaluation of fatigue-prone details using a low-cost thermoelastic stress analysis system.
DOT National Transportation Integrated Search
2016-11-01
This study was designed to develop a novel approach for in situ evaluation of stress fields in the vicinity of fatigue-prone details on highway bridges using a low-cost microbolometer thermal imager. : The method was adapted into a field-deployable i...
DOT National Transportation Integrated Search
2008-03-14
This report contains the results, findings and conclusions generated from the evaluation and field testing of a specific subset of ITS Standards applicable to the center-to-center exchange of advanced traveler information as deployed by the Nebraska ...
U.S. Army Annual Injury Epidemiology Report 2007
2009-09-30
IPP) analyses, field investigations, and evaluations completed in 2007 are also presented. Topics included the examination of predictors of injuries...from non-deployment-related analyses, field investigations, and evaluations completed in 2007 by the Injury Prevention Program at U.S. Army Center for...injuries will be higher in the summer and should follow the work/rest recommendations and water replacement guidelines in Field Manual 21-10, Field
Jorritsma, Wiard; Cnossen, Fokie; Dierckx, Rudi A; Oudkerk, Matthijs; van Ooijen, Peter M A
2016-01-01
To perform a post-deployment usability evaluation of a radiology Picture Archiving and Communication System (PACS) client based on pattern mining of user interaction log data, and to assess the usefulness of this approach compared to a field study. All user actions performed on the PACS client were logged for four months. A data mining technique called closed sequential pattern mining was used to automatically extract frequently occurring interaction patterns from the log data. These patterns were used to identify usability issues with the PACS. The results of this evaluation were compared to the results of a field study based usability evaluation of the same PACS client. The interaction patterns revealed four usability issues: (1) the display protocols do not function properly, (2) the line measurement tool stays active until another tool is selected, rather than being deactivated after one use, (3) the PACS's built-in 3D functionality does not allow users to effectively perform certain 3D-related tasks, (4) users underuse the PACS's customization possibilities. All usability issues identified based on the log data were also found in the field study, which identified 48 issues in total. Post-deployment usability evaluation based on pattern mining of user interaction log data provides useful insights into the way users interact with the radiology PACS client. However, it reveals few usability issues compared to a field study and should therefore not be used as the sole method of usability evaluation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, Austin; Prabakar, Kumaraguru; Nagarajan, Adarsh
As more grid-connected photovoltaic (PV) inverters become compliant with evolving interconnections requirements, there is increased interest from utilities in understanding how to best deploy advanced grid-support functions (GSF) in the field. One efficient and cost-effective method to examine such deployment options is to leverage power hardware-in-the-loop (PHIL) testing methods. Two Hawaiian Electric feeder models were converted to real-time models in the OPAL-RT real-time digital testing platform, and integrated with models of GSF capable PV inverters that were modeled from characterization test data. The integrated model was subsequently used in PHIL testing to evaluate the effects of different fixed power factormore » and volt-watt control settings on voltage regulation of the selected feeders. The results of this study were provided as inputs for field deployment and technical interconnection requirements for grid-connected PV inverters on the Hawaiian Islands.« less
DOT National Transportation Integrated Search
2012-05-01
This report provides an analytical framework for evaluating the two field deployments under the United States Department of Transportation (U.S. DOT) Integrated Corridor Management (ICM) Initiative Demonstration Phase. The San Diego Interstate 15 cor...
Evaluation of Methods for In-Situ Calibration of Field-Deployable Microphone Phased Arrays
NASA Technical Reports Server (NTRS)
Humphreys, William M.; Lockard, David P.; Khorrami, Mehdi R.; Culliton, William G.; McSwain, Robert G.
2017-01-01
Current field-deployable microphone phased arrays for aeroacoustic flight testing require the placement of hundreds of individual sensors over a large area. Depending on the duration of the test campaign, the microphones may be required to stay deployed at the testing site for weeks or even months. This presents a challenge in regards to tracking the response (i.e., sensitivity) of the individual sensors as a function of time in order to evaluate the health of the array. To address this challenge, two different methods for in-situ tracking of microphone responses are described. The first relies on the use of an aerial sound source attached as a payload on a hovering small Unmanned Aerial System (sUAS) vehicle. The second relies on the use of individually excited ground-based sound sources strategically placed throughout the array pattern. Testing of the two methods was performed in microphone array deployments conducted at Fort A.P. Hill in 2015 and at Edwards Air Force Base in 2016. The results indicate that the drift in individual sensor responses can be tracked reasonably well using both methods. Thus, in-situ response tracking methods are useful as a diagnostic tool for monitoring the health of a phased array during long duration deployments.
Evaluation of advanced air bag deployment algorithm performance using event data recorders.
Gabler, Hampton C; Hinch, John
2008-10-01
This paper characterizes the field performance of occupant restraint systems designed with advanced air bag features including those specified in the US Federal Motor Vehicle Safety Standard (FMVSS) No. 208 for advanced air bags, through the use of Event Data Recorders (EDRs). Although advanced restraint systems have been extensively tested in the laboratory, we are only beginning to understand the performance of these systems in the field. Because EDRs record many of the inputs to the advanced air bag control module, these devices can provide unique insights into the characteristics of field performance of air bags. The study was based on 164 advanced air bag cases extracted from NASS/CDS 2002-2006 with associated EDR data. In this dataset, advanced driver air bags were observed to deploy with a 50% probability at a longitudinal delta-V of 9 mph for the first stage, and at 26 mph for both inflator stages. In general, advanced air bag performance was as expected, however, the study identified cases of air bag deployments at delta-Vs as low as 3-4 mph, non-deployments at delta-Vs over 26 mph, and possible delayed air bag deployments.
Evaluation of Advanced Air Bag Deployment Algorithm Performance using Event Data Recorders
Gabler, Hampton C.; Hinch, John
2008-01-01
This paper characterizes the field performance of occupant restraint systems designed with advanced air bag features including those specified in the US Federal Motor Vehicle Safety Standard (FMVSS) No. 208 for advanced air bags, through the use of Event Data Recorders (EDRs). Although advanced restraint systems have been extensively tested in the laboratory, we are only beginning to understand the performance of these systems in the field. Because EDRs record many of the inputs to the advanced air bag control module, these devices can provide unique insights into the characteristics of field performance of air bags. The study was based on 164 advanced air bag cases extracted from NASS/CDS 2002-2006 with associated EDR data. In this dataset, advanced driver air bags were observed to deploy with a 50% probability at a longitudinal delta-V of 9 mph for the first stage, and at 26 mph for both inflator stages. In general, advanced air bag performance was as expected, however, the study identified cases of air bag deployments at delta-Vs as low as 3-4 mph, non-deployments at delta-Vs over 26 mph, and possible delayed air bag deployments. PMID:19026234
Direct, Operational Field Test Evaluation, Institutional Issues
DOT National Transportation Integrated Search
1998-08-01
INSTITUTIONAL ISSUES HAVE BEEN DEFINED AS NON-TECHNICAL ISSUES OR CONCERNS THAT INFLUENCE THE COURSE AND OUTCOME OF AN OPERATIONAL TEST. OFTEN THEY ARE EVENTS AND/OR CIRCUMSTANCES THAT AFFECT ADMINISTRATION, DESIGN, DEPLOYMENT AND EVALUATION OF THE O...
Preparedness Evaluation of French Military Orthopedic Surgeons Before Deployment.
Choufani, Camille; Barbier, Olivier; Mayet, Aurélie; Rigal, Sylvain; Mathieu, Laurent
2018-06-13
A deployed military orthopedic surgeon is a trauma surgeon working in austere conditions. The first aim of this study was to analyze the current activity of French military orthopedic surgeons in the field and to identify the differences of the combat zone with their daily practice. The second aim was to assess the adequacy of the preparedness they received before their deployment and to identify additional needs that could be addressed in future training. An evaluation survey was sent to all French military orthopedic surgeons deployed in theaters of operations between 2004 and 2014. An analogic visual scale of 10 was used to evaluate their surgical activity abroad and prior training. A total of 55 surgeons, with a median deployment number of 7, were included in this study after they answered the survey. Debridement and external fixation were the most common orthopedic procedures. The practice of general surgery was mostly concerned with vascular and abdominal injuries as part of damage control procedures. Median scores were ranked at seven for surgical preparedness, five for physical readiness, and three for mental preparedness. There was a significant inverse relationship between the number of missions performed and the evaluation of surgical preparedness. The higher they perceived their mental preparedness, the better they estimated their surgical preparedness. In the French Army, deployed orthopedic surgeons perform general surgical activity. Their initial training must be adapted to this constraint and enhanced by continuing medical education.
CAESAR : an expert system for evaluation of scour and stream stability
DOT National Transportation Integrated Search
1999-01-01
This report documents the development and testing of a field-deployable, knowledge-based decision support system that assists bridge inspectors by acquiring, cataloging, storing, and retrieving information necessary for the evaluation of a bridge for...
2014-09-30
and on blue and humpback whales in Iceland. • To evaluate the reliability and quality of CTD data collected in arctic ice covered waters by slow...swimming bowhead whales and from the open ocean by fast swimming blue and humpback whales . APPROACH Diving ocean predators can act as “real-time...2014: Deployment of tags on bowhead whales in Disko Bay. June-July 2015: Deployment of tags on blue and humpback whales in Iceland. April-December
2009-09-01
NAS Lemoore; Yolk Field ANGB; Alpena 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF RESPONSIBLE PERSON a. REPORT...Currently identified preferred locations for conducting deployment demonstrations are Alpena Combat Readiness Training Center (CRTC), Michigan; Edwards...3-5 3.1.3 Deployment Demonstration Locations .............................................................3-5 3.1.3.1 Alpena Combat Range Test
Direct Operational Field Test Evaluation, Simulation And Modeling
DOT National Transportation Integrated Search
1998-08-01
THE PURPOSE OF THE SIMULATION EVALUATION IS TO ASSESS THE EXPECTED FUTURE IMPACTS OF THE DIRECT TECHNOLOGIES UNDER SCENARIOS OF FULL DEPLOYMENT. THIS PROVIDED SOME INDICATION OF THE LEVEL OF BENEFITS THAT CAN BE EXPECTED FROM DIRECT IN THE FUTURE. BE...
Evaluation and Comparison of Methods for Measuring Ozone ...
Ambient evaluations of the various ozone and NO2 methods were conducted during field intensive studies as part of the NASA DISCOVER-AQ project conducted during July 2011 near Baltimore, MD; January – February 2013 in the San Juaquin valley, CA; September 2013 in Houston, TX; and July – August 2014 near Denver, CO. During field intensive studies, instruments were calibrated according to manufacturers’ operation manuals and in accordance with FRM requirements listed in 40 CFR 50. During the ambient evaluation campaigns, nightly automated zero and span checks were performed to monitor the validity of the calibration and control for drifts or variations in the span and/or zero response. Both the calibration gas concentrations and the nightly zero and span gas concentrations were delivered using a dynamic dilution calibration system (T700U/T701H, Teledyne API). The analyzers were housed within a temperature-controlled shelter during the sampling campaigns. A glass inlet with sampling height located approximately 5 m above ground level and a subsequent sampling manifold were shared by all instruments. Data generated by all analyzers were collected and logged using a field deployable data acquisition system (Envidas Ultimate). A summary of instruments used during DISCOVER-AQ deployment are listed in Table 1. Figure 1 shows a typical DISCOVER-AQ site (Houston 2013) where EPA (and others) instrumentation was deployed. Under the Clean Air Act, the U.S. EPA has estab
Field evaluation of the myrtle creek advanced curve warning system : final report.
DOT National Transportation Integrated Search
2006-06-01
As part of a larger study focusing on determining optimum countermeasures for speed related crashes, this report presents the results of a quantitative and qualitative before and after evaluation of a dynamic curve warning system deployed at one site...
Thompson, Alison L.; Thorp, Kelly R.; Conley, Matthew; Andrade-Sanchez, Pedro; Heun, John T.; Dyer, John M.; White, Jeffery W.
2018-01-01
Field-based high-throughput phenotyping is an emerging approach to quantify difficult, time-sensitive plant traits in relevant growing conditions. Proximal sensing carts represent an alternative platform to more costly high-clearance tractors for phenotyping dynamic traits in the field. A proximal sensing cart and specifically a deployment protocol, were developed to phenotype traits related to drought tolerance in the field. The cart-sensor package included an infrared thermometer, ultrasonic transducer, multi-spectral reflectance sensor, weather station, and RGB cameras. The cart deployment protocol was evaluated on 35 upland cotton (Gossypium hirsutum L.) entries grown in 2017 at Maricopa, AZ, United States. Experimental plots were grown under well-watered and water-limited conditions using a (0,1) alpha lattice design and evaluated in June and July. Total collection time of the 0.87 hectare field averaged 2 h and 27 min and produced 50.7 MB and 45.7 GB of data from the sensors and RGB cameras, respectively. Canopy temperature, crop water stress index (CWSI), canopy height, normalized difference vegetative index (NDVI), and leaf area index (LAI) differed among entries and showed an interaction with the water regime (p < 0.05). Broad-sense heritability (H2) estimates ranged from 0.097 to 0.574 across all phenotypes and collections. Canopy cover estimated from RGB images increased with counts of established plants (r = 0.747, p = 0.033). Based on the cart-derived phenotypes, three entries were found to have improved drought-adaptive traits compared to a local adapted cultivar. These results indicate that the deployment protocol developed for the cart and sensor package can measure multiple traits rapidly and accurately to characterize complex plant traits under drought conditions. PMID:29868041
Electronic intermodal supply chain manifest field operational test evaluation draft final report
DOT National Transportation Integrated Search
2002-12-01
This report presents the results of a 2.5 year freight ITS evaluation of an air cargo security and logistics system which was deployed at OHare and JFK international airports. In September 1999, the Federal Highway Administration (FHWA) and the Fe...
Power Hardware-in-the-Loop Evaluation of PV Inverter Grid Support on Hawaiian Electric Feeders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, Austin A; Prabakar, Kumaraguru; Nagarajan, Adarsh
As more grid-connected photovoltaic (PV) inverters become compliant with evolving interconnections requirements, there is increased interest from utilities in understanding how to best deploy advanced grid-support functions (GSF) in the field. One efficient and cost-effective method to examine such deployment options is to leverage power hardware-in-the-loop (PHIL) testing methods, which combine the fidelity of hardware tests with the flexibility of computer simulation. This paper summarizes a study wherein two Hawaiian Electric feeder models were converted to real-time models using an OPAL-RT real-time digital testing platform, and integrated with models of GSF capable PV inverters based on characterization test data. Themore » integrated model was subsequently used in PHIL testing to evaluate the effects of different fixed power factor and volt-watt control settings on voltage regulation of the selected feeders using physical inverters. Selected results are presented in this paper, and complete results of this study were provided as inputs for field deployment and technical interconnection requirements for grid-connected PV inverters on the Hawaiian Islands.« less
Effects of field-of-view restrictions on speed and accuracy of manoeuvring.
Toet, Alexander; Jansen, Sander E M; Delleman, Nico J
2007-12-01
Effects of field-of-view restrictions on the speed and accuracy of participants performing a real-world manoeuvring task through an obstacled environment were investigated. Although field-of-view restrictions are known to affect human behaviour and to degrade performance for a range of different tasks, the relationship between human manoeuvring performance and field-of-view size is not known. This knowledge is essential to evaluate a trade-off between human performance, cost, and ergonomic aspects of field-of-view limiting devises like head-mounted displays and night vision goggles which are frequently deployed for tasks involving human motion through environments with obstacles. In this study the speed and accuracy of movement were measured in 15 participants (8 men, 7 women, 22.9 +/- 2.8 yr. of age) traversing a course formed by three wall segments for different field-of-view restrictions. Analysis showed speed decreased linearly with decreasing field-of-view extent, while accuracy was consistently reduced for all restricted field-of-view conditions. Present results may be used to evaluate cost and performance trade-offs for field-of-view restricting devices deployed to perform time-limited human-locomotion tasks in complex structured environments, such as night-vision goggles and head-mounted displays.
Evaluation strategy for the I-95 CC electronic credentialing program
DOT National Transportation Integrated Search
1999-03-01
The electronic credentialing field operational test will undertake the model deployment of electronic credentialing for commercial vehicles. The project will involve the development of state-specific electronic credentialing systems.
2017-01-01
This paper summarises key advances and priorities since the 2011 presentation of the Malaria Eradication Research Agenda (malERA), with a focus on the combinations of intervention tools and strategies for elimination and their evaluation using modelling approaches. With an increasing number of countries embarking on malaria elimination programmes, national and local decisions to select combinations of tools and deployment strategies directed at malaria elimination must address rapidly changing transmission patterns across diverse geographic areas. However, not all of these approaches can be systematically evaluated in the field. Thus, there is potential for modelling to investigate appropriate ‘packages’ of combined interventions that include various forms of vector control, case management, surveillance, and population-based approaches for different settings, particularly at lower transmission levels. Modelling can help prioritise which intervention packages should be tested in field studies, suggest which intervention package should be used at a particular level or stratum of transmission intensity, estimate the risk of resurgence when scaling down specific interventions after local transmission is interrupted, and evaluate the risk and impact of parasite drug resistance and vector insecticide resistance. However, modelling intervention package deployment against a heterogeneous transmission background is a challenge. Further validation of malaria models should be pursued through an iterative process, whereby field data collected with the deployment of intervention packages is used to refine models and make them progressively more relevant for assessing and predicting elimination outcomes. PMID:29190295
DOT National Transportation Integrated Search
1974-06-01
This evaluation report examines use in the field of portable breath test (PBT) devices by police in Hennepin County, Minnesota. Thirteen Brog-Warner J2 and J2A-200 "ALERT" devices were deployed by seven enforcement agencies. This report is presented ...
USDA-ARS?s Scientific Manuscript database
The Testing and Evaluation Department of the US Navy Entomology Center of Excellence (NECE), Naval Air Station, Jacksonville, Florida, is dedicated to the evaluation of novel equipment and vector control techniques to provide guidance on effective protection measures against human pathogens transmit...
Carnegie, Ryan B; Stokes, Nancy A; Audemard, Corinne; Bishop, Melanie J; Wilbur, Ami E; Alphin, Troy D; Posey, Martin H; Peterson, Charles H; Burreson, Eugene M
2008-07-01
Asian oyster Crassostrea ariakensis is being considered for introduction to Atlantic coastal waters of the USA. Successful aquaculture of this species will depend partly on mitigating impacts by Bonamia sp., a parasite that has caused high C. ariakensis mortality south of Virginia. To better understand the biology of this parasite and identify strategies for management, we evaluated its seasonal pattern of infection in C. ariakensis at two North Carolina, USA, locations in 2005. Small (<50 mm) triploid C. ariakensis were deployed to upwellers on Bogue Sound in late spring (May), summer (July), early fall (September), late fall (November), and early winter (December) 2005; and two field sites on Masonboro Sound in September 2005. Oyster growth and mortality were evaluated biweekly at Bogue Sound, and weekly at Masonboro, with Bonamia sp. prevalence evaluated using parasite-specific PCR. We used histology to confirm infections in PCR-positive oysters. Bonamia sp. appeared in the late spring Bogue Sound deployment when temperatures approached 25 degrees C, six weeks post-deployment. Summer- and early fall-deployed oysters displayed Bonamia sp. infections after 3-4 weeks. Bonamia sp. prevalences were 75% in Bogue Sound, and 60% in Masonboro. While oyster mortality reached 100% in late spring and summer deployments, early fall deployments showed reduced (17-82%) mortality. Late fall and early winter deployments, made at temperatures <20 degrees C, developed no Bonamia sp. infections at all. Seasonal Bonamia sp. cycling, therefore, is influenced greatly by temperature. Avoiding peak seasonal Bonamia sp. activity will be essential for culturing C. ariakensis in Bonamia sp.-enzootic waters.
Rule-Based vs. Behavior-Based Self-Deployment for Mobile Wireless Sensor Networks
Urdiales, Cristina; Aguilera, Francisco; González-Parada, Eva; Cano-García, Jose; Sandoval, Francisco
2016-01-01
In mobile wireless sensor networks (MWSN), nodes are allowed to move autonomously for deployment. This process is meant: (i) to achieve good coverage; and (ii) to distribute the communication load as homogeneously as possible. Rather than optimizing deployment, reactive algorithms are based on a set of rules or behaviors, so nodes can determine when to move. This paper presents an experimental evaluation of both reactive deployment approaches: rule-based and behavior-based ones. Specifically, we compare a backbone dispersion algorithm with a social potential fields algorithm. Most tests are done under simulation for a large number of nodes in environments with and without obstacles. Results are validated using a small robot network in the real world. Our results show that behavior-based deployment tends to provide better coverage and communication balance, especially for a large number of nodes in areas with obstacles. PMID:27399709
Mlangeni, Angstone Thembachako; Vecchi, Valeria; Norton, Gareth J; Raab, Andrea; Krupp, Eva M; Feldmann, Joerg
2018-10-15
A commercial arsenic field kit designed to measure inorganic arsenic (iAs) in water was modified into a field deployable method (FDM) to measure iAs in rice. While the method has been validated to give precise and accurate results in the laboratory, its on-site field performance has not been evaluated. This study was designed to test the method on-site in Malawi in order to evaluate its accuracy and precision in determination of iAs on-site by comparing with a validated reference method and giving original data on inorganic arsenic in Malawian rice and rice-based products. The method was validated by using the established laboratory-based HPLC-ICPMS. Statistical tests indicated there were no significant differences between on-site and laboratory iAs measurements determined using the FDM (p = 0.263, ά = 0.05) and between on-site measurements and measurements determined using HPLC-ICP-MS (p = 0.299, ά = 0.05). This method allows quick (within 1 h) and efficient screening of rice containing iAs concentrations on-site. Copyright © 2018 Elsevier Ltd. All rights reserved.
Kunkle, Gerald A.
2016-01-07
The Sutron 8310-N-S (8310) data collection platform (DCP) manufactured by Sutron Corporation was evaluated by the U.S. Geological Survey (USGS) Hydrologic Instrumentation Facility (HIF) for conformance to the manufacturer’s specifications for recording and transmitting data. The 8310-N-S is a National Electrical Manufacturers Association (NEMA)-enclosed DCP with a built-in Geostationary Operational Environmental Satellite transmitter that operates over a temperature range of −40 to 60 degrees Celsius (°C). The evaluation procedures followed and the results obtained are described in this report for bench, temperature chamber, and outdoor deployment testing. The three units tested met the manufacturer’s stated specifications for the tested conditions, but two of the units had transmission errors either during temperature chamber or deployment testing. During outdoor deployment testing, 6.72 percent of transmissions by serial number 1206109 contained errors, resulting in missing data. Transmission errors were also observed during temperature chamber testing with serial number 1208283, at an error rate of 3.22 percent. Overall, the 8310 has good logging capabilities, but the transmission errors are a concern for users who require reliable telemetered data.
ERIC Educational Resources Information Center
Paterson, Mark; Glass, Michael R.
2015-01-01
Google Glass was deployed in an Urban Studies field course to gather videographic data for team-based student research projects. We evaluate the potential for wearable computing technology such as Glass, in combination with other mobile computing devices, to enhance reflexive research skills, and videography in particular, during field research.…
Promising transit applications of fuel cells and alternative fuels
DOT National Transportation Integrated Search
2002-06-01
For over a decade, the Volpe Center has been providing technical support to the Federal Transit Administration (FTA) Office of Research, Demonstration and Innovation towards the development, deployment, field test and safety evaluation of advanced tr...
NASA Astrophysics Data System (ADS)
Gunawardena, N.; Pardyjak, E. R.; Stoll, R.; Khadka, A.
2018-02-01
Over the last decade there has been a proliferation of low-cost sensor networks that enable highly distributed sensor deployments in environmental applications. The technology is easily accessible and rapidly advancing due to the use of open-source microcontrollers. While this trend is extremely exciting, and the technology provides unprecedented spatial coverage, these sensors and associated microcontroller systems have not been well evaluated in the literature. Given the large number of new deployments and proposed research efforts using these technologies, it is necessary to quantify the overall instrument and microcontroller performance for specific applications. In this paper, an Arduino-based weather station system is presented in detail. These low-cost energy-budget measurement stations, or LEMS, have now been deployed for continuous measurements as part of several different field campaigns, which are described herein. The LEMS are low-cost, flexible, and simple to maintain. In addition to presenting the technical details of the LEMS, its errors are quantified in laboratory and field settings. A simple artificial neural network-based radiation-error correction scheme is also presented. Finally, challenges and possible improvements to microcontroller-based atmospheric sensing systems are discussed.
UAV Deployment Exercise for Mapping Purposes: Evaluation of Emergency Response Applications.
Boccardo, Piero; Chiabrando, Filiberto; Dutto, Furio; Tonolo, Fabio Giulio; Lingua, Andrea
2015-07-02
Exploiting the decrease of costs related to UAV technology, the humanitarian community started piloting the use of similar systems in humanitarian crises several years ago in different application fields, i.e., disaster mapping and information gathering, community capacity building, logistics and even transportation of goods. Part of the author's group, composed of researchers in the field of applied geomatics, has been piloting the use of UAVs since 2006, with a specific focus on disaster management application. In the framework of such activities, a UAV deployment exercise was jointly organized with the Regional Civil Protection authority, mainly aimed at assessing the operational procedures to deploy UAVs for mapping purposes and the usability of the acquired data in an emergency response context. In the paper the technical features of the UAV platforms will be described, comparing the main advantages/disadvantages of fixed-wing versus rotor platforms. The main phases of the adopted operational procedure will be discussed and assessed especially in terms of time required to carry out each step, highlighting potential bottlenecks and in view of the national regulation framework, which is rapidly evolving. Different methodologies for the processing of the acquired data will be described and discussed, evaluating the fitness for emergency response applications.
Meynard, Jean-Baptiste; Chaudet, Herve; Green, Andrew D; Jefferson, Henry L; Texier, Gaetan; Webber, Daniel; Dupuy, Bruce; Boutin, Jean-Paul
2008-01-01
Background In recent years a wide variety of epidemiological surveillance systems have been developed to provide early identification of outbreaks of infectious disease. Each system has had its own strengths and weaknesses. In 2002 a Working Group of the Centers for Disease Control and Prevention (CDC) produced a framework for evaluation, which proved suitable for many public health surveillance systems. However this did not easily adapt to the military setting, where by necessity a variety of different parameters are assessed, different constraints placed on the systems, and different objectives required. This paper describes a proposed framework for evaluation of military syndromic surveillance systems designed to detect outbreaks of disease on operational deployments. Methods The new framework described in this paper was developed from the cumulative experience of British and French military syndromic surveillance systems. The methods included a general assessment framework (CDC), followed by more specific methods of conducting evaluation. These included Knowledge/Attitude/Practice surveys (KAP surveys), technical audits, ergonomic studies, simulations and multi-national exercises. A variety of military constraints required integration into the evaluation. Examples of these include the variability of geographical conditions in the field, deployment to areas without prior knowledge of naturally-occurring disease patterns, the differences in field sanitation between locations and over the length of deployment, the mobility of military forces, turnover of personnel, continuity of surveillance across different locations, integration with surveillance systems from other nations working alongside each other, compatibility with non-medical information systems, and security. Results A framework for evaluation has been developed that can be used for military surveillance systems in a staged manner consisting of initial, intermediate and final evaluations. For each stage of the process parameters for assessment have been defined and methods identified. Conclusion The combined experiences of French and British syndromic surveillance systems developed for use in deployed military forces has allowed the development of a specific evaluation framework. The tool is suitable for use by all nations who wish to evaluate syndromic surveillance in their own military forces. It could also be useful for civilian mobile systems or for national security surveillance systems. PMID:18447944
Evaluation of Field-deployed Low Cost PM Sensors
Background Particulate matter (PM) is a pollutant of high public interest regulated by national ambient air quality standards (NAAQS) using federal reference method (FRM) and federal equivalent method (FEM) instrumentation identified for environmental monitoring. PM is present i...
Seattle wide-area information for travelers (SWIFT) : architecture study
DOT National Transportation Integrated Search
1998-10-19
The SWIFT (Seattle Wide-area Information For Travelers) Field Operational Test was intended to evaluate the performance of a large-scale urban Advanced Traveler Information System (ATIS) deployment in the Seattle area. The unique features of the SWIF...
Analysis of Doppler Lidar Data Acquired During the Pentagon Shield Field Campaign
2011-04-01
two coherent Doppler lidars deployed during the Pentagon Shield field campaign are analyzed in conjunction with other sensors to characterize the...Observations from two coherent Doppler lidars deployed during the Pentagon Shield field campaign are analyzed in conjunction with other sensors to... coherent Doppler lidars deployed during the Pentagon Shield field campaign are analyzed in conjunction with other sensors to characterize the overall
NASA Astrophysics Data System (ADS)
Harker-Klimes, G.; Copping, A. E.
2016-02-01
The portfolio of emerging renewables includes generating power from offshore winds, tides, waves, and ocean currents, as well as seawater temperature and salinity differentials. These new systems are collectively known as marine renewable energy (MRE). MRE development worldwide is in the early stages of design, deployment, and commercialization. A major barrier to bringing these systems into commercial use is the need to overcome uncertainties in environmental effects that slow siting and permitting of devices. Using a risk-based approach, this paper will discuss pathways for evaluating potential effects of tidal turbines and wave energy converters (WECs) on marine animals, habitats, and ecosystem processes. Using basic biological principles and knowledge of specific MRE technologies, the Environmental Risk Evaluation System has been used to narrow pertinent risks from devices, enabling laboratory and field studies to focus on the most important interactions. These interactions, include: potential collisions and behavioral disturbances of marine mammals, fish and other organisms; effects of underwater sound on animal communication and navigation; changes in sediment transport, benthic habitats, and water quality constituents; and effects of electromagnetic fields on animals. It is then necessary to apply these findings to the projects themselves. Another uncertainty is how to measure these key interactions in high-energy locations where MRE deployment is desirable. Consequently, new systems are being developed: instrumentation, innovative platforms for deployment, and new management strategies for collecting and analyzing very large data streams. Inherent in this development pathway is the need to test, deploy, and calibrate these monitoring systems. The Triton initiative is designed to enable this development, and has initiated testing of devices in Washington State to move the MRE industry forward while protecting marine animals, habitats and processes.
DOT National Transportation Integrated Search
2017-01-01
FHWAs Road Weather Management Program developed a Prototype Road Weather Management (RW-PM) Tool to help DOTs maximize the effectiveness of their maintenance resources and efficiently adjust deployments dynamically, as road conditions and traffic ...
2015-12-01
in mild traumatic brain injuries (It is estimated that 20% of all combat troops will experience a concussion while deployed...combat troops will experience a concussion while deployed) increased emphasis has rightly been placed on finding ways...stemming from different types of concussion . Neither testing technique is as readily accessible in the field and
UAV Deployment Exercise for Mapping Purposes: Evaluation of Emergency Response Applications
Boccardo, Piero; Chiabrando, Filiberto; Dutto, Furio; Giulio Tonolo, Fabio; Lingua, Andrea
2015-01-01
Exploiting the decrease of costs related to UAV technology, the humanitarian community started piloting the use of similar systems in humanitarian crises several years ago in different application fields, i.e., disaster mapping and information gathering, community capacity building, logistics and even transportation of goods. Part of the author’s group, composed of researchers in the field of applied geomatics, has been piloting the use of UAVs since 2006, with a specific focus on disaster management application. In the framework of such activities, a UAV deployment exercise was jointly organized with the Regional Civil Protection authority, mainly aimed at assessing the operational procedures to deploy UAVs for mapping purposes and the usability of the acquired data in an emergency response context. In the paper the technical features of the UAV platforms will be described, comparing the main advantages/disadvantages of fixed-wing versus rotor platforms. The main phases of the adopted operational procedure will be discussed and assessed especially in terms of time required to carry out each step, highlighting potential bottlenecks and in view of the national regulation framework, which is rapidly evolving. Different methodologies for the processing of the acquired data will be described and discussed, evaluating the fitness for emergency response applications. PMID:26147728
Integrated Field Testing of Fuel Cells and Micro-Turbines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jerome R. Temchin; Stephen J. Steffel
A technical and economic evaluation of the prospects for the deployment of distributed generation on Long Beach Island, New Jersey concluded that properly sited DG would defer upgrading of the electric power grid for 10 years. This included the deployment of fuel cells or microturbines as well as reciprocating engines. The implementation phase of this project focused on the installation of a 120 kW CHP microturbine system at the Harvey Cedars Bible Conference in Harvey Cedars, NJ. A 1.1 MW generator powered by a gas-fired reciprocating engine for additional grid support was also installed at a local substation. This reportmore » contains installation and operation issues as well as the utility perspective on DG deployment.« less
A Novel Field-Deployable Point-of-Care Diagnostic Test for Cutaneous Leishmaniasis
2017-10-01
AWARD NUMBER: W81XWH-14-2-0195 TITLE: A Novel Field-Deployable Point-of-Care Diagnostic Test for Cutaneous Leishmaniasis PRINCIPAL INVESTIGATOR...Field-Deployable Point-of-Care Diagnostic Test for Cutaneous Leishmaniasis 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...Month % completion Aim 1: To use simulated field conditions to optimize and produce the established RPA lateral flow diagnostic test for POC
Robertson, A. H.; Larivière, C.; Leduc, C. R.; McGillis, Z.; Eger, T.; Godwin, A.; Larivière, M.; Dorman, S. C.
2017-01-01
Introduction The seasonal profession of wildland fire fighting in Canada requires individuals to work in harsh environmental conditions that are physically demanding. The purpose of this study was to use novel technologies to evaluate the physiological demands and nutritional practices of Canadian FireRangers during fire deployments. Methods Participants (n = 21) from a northern Ontario Fire Base volunteered for this study and data collection occurred during the 2014 fire season and included Initial Attack (IA), Project Fire (P), and Fire Base (B) deployments. Deployment-specific energy demands and physiological responses were measured using heart-rate variability (HRV) monitoring devices (Zephyr BioHarness3 units). Food consumption behaviour and nutrient quantity and quality were captured using audio-video food logs on iPod Touches and analyzed by NutriBase Pro 11 software. Results Insufficient kilocalories were consumed relative to expenditure for all deployment types. Average daily kilocalories consumed: IA: 3758 (80% consumption rate); P: 2945±888.8; B: 2433±570.8. Average daily kilocalorie expenditure: IA: 4538±106.3; P: 4012±1164.8; B: 2842±649.9. The Average Macronutrient Distribution Range (AMDR) for protein was acceptable: 22–25% (across deployment types). Whereas the AMDR for fat and carbohydrates were high: 40–50%; and low: 27–37% respectively, across deployment types. Conclusions This study is the first to use the described methodology to simultaneously evaluate energy expenditures and nutritional practices in an occupational setting. The results support the use of HRV monitoring and video-food capture, in occupational field settings, to assess job demands. FireRangers expended the most energy during IA, and the least during B deployments. These results indicate the need to develop strategies centered on maintaining physical fitness and improving food practices. PMID:28107380
Robertson, A H; Larivière, C; Leduc, C R; McGillis, Z; Eger, T; Godwin, A; Larivière, M; Dorman, S C
2017-01-01
The seasonal profession of wildland fire fighting in Canada requires individuals to work in harsh environmental conditions that are physically demanding. The purpose of this study was to use novel technologies to evaluate the physiological demands and nutritional practices of Canadian FireRangers during fire deployments. Participants (n = 21) from a northern Ontario Fire Base volunteered for this study and data collection occurred during the 2014 fire season and included Initial Attack (IA), Project Fire (P), and Fire Base (B) deployments. Deployment-specific energy demands and physiological responses were measured using heart-rate variability (HRV) monitoring devices (Zephyr BioHarness3 units). Food consumption behaviour and nutrient quantity and quality were captured using audio-video food logs on iPod Touches and analyzed by NutriBase Pro 11 software. Insufficient kilocalories were consumed relative to expenditure for all deployment types. Average daily kilocalories consumed: IA: 3758 (80% consumption rate); P: 2945±888.8; B: 2433±570.8. Average daily kilocalorie expenditure: IA: 4538±106.3; P: 4012±1164.8; B: 2842±649.9. The Average Macronutrient Distribution Range (AMDR) for protein was acceptable: 22-25% (across deployment types). Whereas the AMDR for fat and carbohydrates were high: 40-50%; and low: 27-37% respectively, across deployment types. This study is the first to use the described methodology to simultaneously evaluate energy expenditures and nutritional practices in an occupational setting. The results support the use of HRV monitoring and video-food capture, in occupational field settings, to assess job demands. FireRangers expended the most energy during IA, and the least during B deployments. These results indicate the need to develop strategies centered on maintaining physical fitness and improving food practices.
NASA Astrophysics Data System (ADS)
Halliwell, G. R., Jr.; Mehari, M. F.; Dong, J.; Kourafalou, V.; Atlas, R. M.; Kang, H.; Le Henaff, M.
2016-02-01
A new ocean OSSE system validated in the tropical/subtropical Atlantic Ocean is used to evaluate ocean observing strategies during the 2014 hurricane season with the goal of improving coupled tropical cyclone forecasts. Enhancements to the existing operational ocean observing system are evaluated prior to two storms, Edouard and Gonzalo, where ocean measurements were obtained during field experiments supported by the 2013 Disaster Relief Appropriation Act. For Gonzalo, a reference OSSE is performed to evaluate the impact of two ocean gliders deployed north and south of Puerto Rico and two Alamo profiling floats deployed in the same general region during most of the hurricane season. For Edouard, a reference OSSE is performed to evaluate impacts of the pre-storm ocean profile survey conducted by NOAA WP-3D aircraft. For both storms, additional OSSEs are then conducted to evaluate more extensive seasonal and pre-storm ocean observing strategies. These include (1) deploying a larger number of synthetic ocean gliders during the hurricane season, (2) deploying pre-storm synthetic thermistor chains or synthetic profiling floats along one or more "picket fence" lines that cross projected storm tracks, and (3) designing pre-storm airborne profiling surveys to have larger impacts than the actual pre-storm survey conducted for Edouard. Impacts are evaluated based on error reduction in ocean parameters important to SST cooling and hurricane intensity such as ocean heat content and the structure of the ocean eddy field. In all cases, ocean profiles that sample both temperature and salinity down to 1000m provide greater overall error reduction than shallower temperature profiles obtained from AXBTs and thermistor chains. Large spatial coverage with multiple instruments spanning a few degrees of longitude and latitude is necessary to sufficiently reduce ocean initialization errors over a region broad enough to significantly impact predicted surface enthalpy flux into the storm. Error reduction in hurricane intensity forecasts resulting from the additional ocean observations is then assessed by initializing the ocean component of the HYCOM-HWRF coupled prediction system with analyses produced by the OSSE system.
Coverage-guaranteed sensor node deployment strategies for wireless sensor networks.
Fan, Gaojuan; Wang, Ruchuan; Huang, Haiping; Sun, Lijuan; Sha, Chao
2010-01-01
Deployment quality and cost are two conflicting aspects in wireless sensor networks. Random deployment, where the monitored field is covered by randomly and uniformly deployed sensor nodes, is an appropriate approach for large-scale network applications. However, their successful applications depend considerably on the deployment quality that uses the minimum number of sensors to achieve a desired coverage. Currently, the number of sensors required to meet the desired coverage is based on asymptotic analysis, which cannot meet deployment quality due to coverage overestimation in real applications. In this paper, we first investigate the coverage overestimation and address the challenge of designing coverage-guaranteed deployment strategies. To overcome this problem, we propose two deployment strategies, namely, the Expected-area Coverage Deployment (ECD) and BOundary Assistant Deployment (BOAD). The deployment quality of the two strategies is analyzed mathematically. Under the analysis, a lower bound on the number of deployed sensor nodes is given to satisfy the desired deployment quality. We justify the correctness of our analysis through rigorous proof, and validate the effectiveness of the two strategies through extensive simulation experiments. The simulation results show that both strategies alleviate the coverage overestimation significantly. In addition, we also evaluate two proposed strategies in the context of target detection application. The comparison results demonstrate that if the target appears at the boundary of monitored region in a given random deployment, the average intrusion distance of BOAD is considerably shorter than that of ECD with the same desired deployment quality. In contrast, ECD has better performance in terms of the average intrusion distance when the invasion of intruder is from the inside of monitored region.
DOT National Transportation Integrated Search
1998-08-01
The DIRECT project compared four low-cost driver information systems. Of the four that were : compared, the RDS approach proved superior to the others in toggling reliability and voice quality. The DIRECT project planned to expand the implementation ...
Radio/antenna mounting system for wireless networking under row-crop agriculture conditions
USDA-ARS?s Scientific Manuscript database
Interest in and deployment of wireless monitoring systems is increasing in many diverse environments, including row-crop agricultural fields. While many studies have been undertaken to evaluate various aspects of wireless monitoring and networking, such as electronic hardware components, data-colle...
Persistent Identifiers for Field Deployments: A Missing Link in the Provenance Chain
NASA Astrophysics Data System (ADS)
Arko, R. A.; Ji, P.; Fils, D.; Shepherd, A.; Chandler, C. L.; Lehnert, K.
2016-12-01
Research in the geosciences is characterized by a wide range of complex and costly field deployments including oceanographic cruises, submersible dives, drilling expeditions, seismic networks, geodetic campaigns, moored arrays, aircraft flights, and satellite missions. Each deployment typically produces a mix of sensor and sample data, spanning a period from hours to decades, that ultimately yields a long tail of post-field products and publications. Publishing persistent, citable identifiers for field deployments will facilitate 1) preservation and reuse of the original field data, 2) reproducibility of the resulting publications, and 3) recognition for both the facilities that operate the platforms and the investigators who secure funding for the experiments. In the ocean domain, sharing unique identifiers for field deployments is a familiar practice. For example, the Biological and Chemical Oceanography Data Management Office (BCO-DMO) routinely links datasets to cruise identifiers published by the Rolling Deck to Repository (R2R) program. In recent years, facilities have started to publish formal/persistent identifiers, typically Digital Object Identifiers (DOIs), for field deployments including seismic networks, oceanographic cruises, and moored arrays. For example, the EarthChem Library (ECL) publishes a DOI for each dataset which, if it derived from an oceanographic research cruise on a US vessel, is linked to a DOI for the cruise published by R2R. Work is underway to create similar links for the IODP JOIDES Resolution Science Operator (JRSO) and the Continental Scientific Drilling Coordination Office (CSDCO). We present results and lessons learned including a draft schema for publishing field deployments as DataCite DOI records; current practice for linking these DOIs with related identifiers such as Open Researcher and Contributor IDs (ORCIDs), Open Funder Registry (OFR) codes, and International Geo Sample Numbers (IGSNs); and consideration of other identifier types for field deployments such as UUIDs and Handles.
The field performance of frontal air bags: a review of the literature.
Kent, Richard; Viano, David C; Crandall, Jeff
2005-03-01
This article presents a broad review of the literature on frontal air bag field performance, starting with the initial government and industry projections of effectiveness and concluding with the most recent assessments of depowered systems. This review includes as many relevant metrics as practicable, interprets the findings, and provides references so the interested reader can further evaluate the limitations, confounders, and utility of each metric. The evaluations presented here range from the very specific (individual case studies) to the general (statistical analyses of large databases). The metrics used to evaluate air bag performance include fatality reduction or increase; serious, moderate, and minor injury reduction or increase; harm reduction or increase; and cost analyses, including insurance costs and the cost of life years saved for various air bag systems and design philosophies. The review begins with the benefits of air bags. Fatality and injury reductions attributable to the air bag are presented. Next, the negative consequences of air bag deployment are described. Injuries to adults and children and the current trends in air bag injury rates are discussed, as are the few documented instances of inadvertent deployments or non-deployment in severe crashes. In the third section, an attempt is made to quantify the influence of the many confounding factors that affect air bag performance. The negative and positive characteristics of air bags are then put into perspective within the context of societal costs and benefits. Finally, some special topics, including risk homeostasis and the performance of face bags, are discussed.
Howson, E L A; Armson, B; Madi, M; Kasanga, C J; Kandusi, S; Sallu, R; Chepkwony, E; Siddle, A; Martin, P; Wood, J; Mioulet, V; King, D P; Lembo, T; Cleaveland, S; Fowler, V L
2017-06-01
Accurate, timely diagnosis is essential for the control, monitoring and eradication of foot-and-mouth disease (FMD). Clinical samples from suspect cases are normally tested at reference laboratories. However, transport of samples to these centralized facilities can be a lengthy process that can impose delays on critical decision making. These concerns have motivated work to evaluate simple-to-use technologies, including molecular-based diagnostic platforms, that can be deployed closer to suspect cases of FMD. In this context, FMD virus (FMDV)-specific reverse transcription loop-mediated isothermal amplification (RT-LAMP) and real-time RT-PCR (rRT-PCR) assays, compatible with simple sample preparation methods and in situ visualization, have been developed which share equivalent analytical sensitivity with laboratory-based rRT-PCR. However, the lack of robust 'ready-to-use kits' that utilize stabilized reagents limits the deployment of these tests into field settings. To address this gap, this study describes the performance of lyophilized rRT-PCR and RT-LAMP assays to detect FMDV. Both of these assays are compatible with the use of fluorescence to monitor amplification in real-time, and for the RT-LAMP assays end point detection could also be achieved using molecular lateral flow devices. Lyophilization of reagents did not adversely affect the performance of the assays. Importantly, when these assays were deployed into challenging laboratory and field settings within East Africa they proved to be reliable in their ability to detect FMDV in a range of clinical samples from acutely infected as well as convalescent cattle. These data support the use of highly sensitive molecular assays into field settings for simple and rapid detection of FMDV. © 2015 The Authors. Transboundary and Emerging Diseases Published by Blackwell Verlag GmbH.
Temporal and spatial variability of aeolian sand transport: Implications for field measurements
NASA Astrophysics Data System (ADS)
Ellis, Jean T.; Sherman, Douglas J.; Farrell, Eugene J.; Li, Bailiang
2012-01-01
Horizontal variability is often cited as one source of disparity between observed and predicted rates of aeolian mass flux, but few studies have quantified the magnitude of this variability. Two field projects were conducted to evaluate meter-scale spatial and temporal in the saltation field. In Shoalhaven Heads, NSW, Australia a horizontal array of passive-style sand traps were deployed on a beach for 600 or 1200 s across a horizontal span of 0.80 m. In Jericoacoara, Brazil, traps spanning 4 m were deployed for 180 and 240 s. Five saltation sensors (miniphones) spaced 1 m apart were also deployed at Jericoacoara. Spatial variation in aeolian transport rates over small spatial and short temporal scales was substantial. The measured transport rates ( Q) obtained from the passive traps ranged from 0.70 to 32.63 g/m/s. When considering all traps, the coefficient of variation ( CoV) values ranged from 16.6% to 67.8%, and minimum and maximum range of variation coefficient ( RVC) values were 106.1% to 152.5% and 75.1% to 90.8%, respectively. The miniphone Q and CoV averaged 47.1% and 4.1% for the 1260 s data series, which was subsequently sub-sampled at 60-630 s intervals to simulate shorter deployment times. A statistically significant ( p < 0.002), inverselinear relationship was found between sample duration and CoV and between Q and CoV, the latter relationship also considering data from previous studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mendenhall, M.; Bowden, N.; Brodsky, J.
Electron anti-neutrino ( e) detectors can support nuclear safeguards, from reactor monitoring to spent fuel characterization. In recent years, the scientific community has developed multiple detector concepts, many of which have been prototyped or deployed for specific measurements by their respective collaborations. However, the diversity of technical approaches, deployment conditions, and analysis techniques complicates direct performance comparison between designs. We have begun development of a simulation framework to compare and evaluate existing and proposed detector designs for nonproliferation applications in a uniform manner. This report demonstrates the intent and capabilities of the framework by evaluating four detector design concepts, calculatingmore » generic reactor antineutrino counting sensitivity, and capabilities in a plutonium disposition application example.« less
DOT National Transportation Integrated Search
1998-10-01
The use of a spread spectrum radio network (SSRN) as an alternative to hard-wired communications between field equipment and the City of Los Angeless Automated Traffic Surveillance and Control (ATSAC) system has been investigated. The aim of using...
Arctic Glass: Innovative Consumer Technology in Support of Arctic Research
NASA Astrophysics Data System (ADS)
Ruthkoski, T.
2015-12-01
The advancement of cyberinfrastructure on the North Slope of Alaska is drastically limited by location-specific conditions, including: unique geophysical features, remoteness of location, and harsh climate. The associated cost of maintaining this unique cyberinfrastructure also becomes a limiting factor. As a result, field experiments conducted in this region have historically been at a technological disadvantage. The Arctic Glass project explored a variety of scenarios where innovative consumer-grade technology was leveraged as a lightweight, rapidly deployable, sustainable, alternatives to traditional large-scale Arctic cyberinfrastructure installations. Google Glass, cloud computing services, Internet of Things (IoT) microcontrollers, miniature LIDAR, co2 sensors designed for HVAC systems, and portable network kits are several of the components field-tested at the Toolik Field Station as part of this project. Region-specific software was also developed, including a multi featured, voice controlled Google Glass application named "Arctic Glass". Additionally, real-time sensor monitoring and remote control capability was evaluated through the deployment of a small cluster of microcontroller devices. Network robustness was analyzed as the devices delivered streams of abiotic data to a web-based dashboard monitoring service in near real time. The same data was also uploaded synchronously by the devices to Amazon Web Services. A detailed overview of solutions deployed during the 2015 field season, results from experiments utilizing consumer sensors, and potential roles consumer technology could play in support of Arctic science will be discussed.
NASA Astrophysics Data System (ADS)
Thompson, H. A.; Stern, J. C.; Graham, H. V.; Pratt, L. M.; White, J. R.
2014-12-01
The emission of CH4 from Arctic landscapes under warming climate is an important feedback in Earth's climate system. Studies of CH4 flux from Arctic wetlands have been growing in recent years, but few provide details on biogeochemical controls. Stable isotopic measurements help elucidate methane production and consumption pathways and offer important understanding about dynamics of CH4 cycling in Arctic systems. In order to demonstrate the possible instrumental approaches to measuring methane dynamics of wetlands in the Arctic, a fringing wetland of a small lake near the Russell Glacier in Southwestern Greenland was outfitted with static flux chambers and instrumented with a field-deployable Cavity Ring Down Spectrometer (CRDS) to measure real-time concentrations of CH4 and CO2 and their stable carbon isotopes. Several different wetland plant communities were included in the flux chamber experiments and field tests were conducted during several weeks in July 2014. Analytical measurements by CRDS were compared to batch samples analyzed in the laboratory using both Off-Axis Integrated Cavity Output Spectroscopy (ICOS) and Gas Chromatography-Combustion-Isotope Ratio Mass Spectrometry (GC-C-IRMS) with cryogenic pre-concentration. Results from flux chamber deployments will be presented and comparisons between the real-time field measurements and laboratory instrumental techniques will be evaluated.
Economic evaluation on CO₂-EOR of onshore oil fields in China
Wei, Ning; Li, Xiaochun; Dahowski, Robert T.; ...
2015-06-01
Carbon dioxide enhanced oil recovery (CO₂-EOR) and sequestration in depleted oil reservoirs is a plausible option for utilizing anthropogenic CO₂ to increase oil production while storing CO₂ underground. Evaluation of the storage resources and cost of potential CO₂-EOR projects is an essential step before the commencement of large-scale deployment of such activities. In this paper, a hybrid techno-economic evaluation method, including a performance model and cost model for onshore CO₂-EOR projects, has been developed based on previous studies. Total 296 onshore oil fields, accounting for about 70% of total mature onshore oil fields in China, were evaluated by the techno-economicmore » method. The key findings of this study are summarized as follows: (1) deterministic analysis shows there are approximately 1.1 billion tons (7.7 billion barrels) of incremental crude oil and 2.2 billion tons CO₂ storage resource for onshore CO₂-EOR at net positive revenue within the Chinese oil fields reviewed under the given operating strategy and economic assumptions. (2) Sensitivity study highlights that the cumulative oil production and cumulative CO₂ storage resource are very sensitive to crude oil price, CO₂ cost, project lifetime, discount rate and tax policy. High oil price, short project lifetime, low discount rate, low CO₂ cost, and low tax policy can greatly increase the net income of the oil enterprise, incremental oil recovery and CO₂ storage resource. (3) From this techno-economic evaluation, the major barriers to large-scale deployment of CO₂-EOR include complex geological conditions, low API of crude oil, high tax policy, and lack of incentives for the CO₂-EOR project.« less
Economic evaluation on CO₂-EOR of onshore oil fields in China
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Ning; Li, Xiaochun; Dahowski, Robert T.
Carbon dioxide enhanced oil recovery (CO₂-EOR) and sequestration in depleted oil reservoirs is a plausible option for utilizing anthropogenic CO₂ to increase oil production while storing CO₂ underground. Evaluation of the storage resources and cost of potential CO₂-EOR projects is an essential step before the commencement of large-scale deployment of such activities. In this paper, a hybrid techno-economic evaluation method, including a performance model and cost model for onshore CO₂-EOR projects, has been developed based on previous studies. Total 296 onshore oil fields, accounting for about 70% of total mature onshore oil fields in China, were evaluated by the techno-economicmore » method. The key findings of this study are summarized as follows: (1) deterministic analysis shows there are approximately 1.1 billion tons (7.7 billion barrels) of incremental crude oil and 2.2 billion tons CO₂ storage resource for onshore CO₂-EOR at net positive revenue within the Chinese oil fields reviewed under the given operating strategy and economic assumptions. (2) Sensitivity study highlights that the cumulative oil production and cumulative CO₂ storage resource are very sensitive to crude oil price, CO₂ cost, project lifetime, discount rate and tax policy. High oil price, short project lifetime, low discount rate, low CO₂ cost, and low tax policy can greatly increase the net income of the oil enterprise, incremental oil recovery and CO₂ storage resource. (3) From this techno-economic evaluation, the major barriers to large-scale deployment of CO₂-EOR include complex geological conditions, low API of crude oil, high tax policy, and lack of incentives for the CO₂-EOR project.« less
Military deployment toxicology: a program manager's perspective.
Knechtges, P L
2000-02-01
The Persian Gulf War drew attention to the potential hazards of chemicals that personnel may encounter during military operations and deployments overseas. During the War, the oil well fires of Kuwait highlighted the military threat of industrial chemicals in the area of operations. Following the War, the occurrence of Gulf War Illnesses brought home concerns and suspicions regarding "low level" and "mixed" exposures to chemicals. The public's concern and attention resulted in numerous institutional responses to the real and perceived problems of health risks during military deployments. These institutional responses ranged in scope from a Presidential Review Directive to the initiative known as the Deployment Toxicology Research, Development, Testing and Evaluation (RDT&E) Program. Most institutions, however, seem to agree that additional research is needed to assess the health risks from chemical exposures during military deployments. Establishing and managing an effective RDT&E program in risk assessment for deployed forces is a challenging enterprise. The Deployment Toxicology RDT&E Program was conceived utilizing the military's acquisition framework, an effective methodology with a proven record of fielding of new technologies. Based on a series of structured meetings with military representatives that would utilize new risk assessment tools, a hierarchical set of plans was developed to identify and prioritize end products. The challenge ahead for the Deployment Toxicology RDT&E Program is to execute these plans, provide the necessary oversight, and transition the results into successful product development.
Kunkle, Gerald A.
2016-05-04
The procedures followed and the results obtained from the testing are described in this publication. The device met most of the manufacturer’s stated specifications. An exception was power consumption, which was about 10 percent above the manufacturer’s specifications. It was also observed that enabling WiFi doubles the Storm 3’s power consumption. In addition, several logging errors were made by two units during deployment testing, but it could not be determined whether these errors were the fault of the Storm or of an attached sensor.
Low-Density polyethylene (LDPE) sheets are often used as passive samplers for aquatic environmental monitoring to measure the freely dissolved concentrations of hydrophobic organic contaminants (HOCs). HOCs that are freely dissolved in water (Cfree) will partition into the LDPE u...
DOT National Transportation Integrated Search
2008-04-25
This report presents the results of the ITS Standards Testing Program for the field testing, assessment, and evaluation of the NTCIP standards that apply in the domain of Dynamic Message Signs (DMS). Specifically, the National Transportation Communic...
DOT National Transportation Integrated Search
2008-05-23
This report presents the results of the ITS Standards Testing Program for the field testing, assessment, and evaluation of the three volumes comprising the Standards for Traffic Management Center to Center Communications (TMDD) version 2.1 and the NT...
Innovative Acoustic Sensor Technologies for Leak Detection in Challenging Pipe Types
2016-12-30
consuming field surveys using sounders (listening sticks) that relied heavily upon operator skill or noise correlators that were tuned for finding leaks...installation and setup cost • Annual service fee Periodic Inspection Deployed in a “lift and shift” survey using acoustic cross- correlation ...the correlator , a zero reading is displayed and one of the sensors can be placed to evaluate the next pipe segment in the field survey . Table 2
Materials Approach to Dissecting Surface Responses in the Attachment Stages of Biofouling Organisms
2016-04-25
their settlement behavior in regards to the coating surfaces. 5) Multivariate statistical analysis was used to examine the effect (if any) of the...applied to glass rods and were deployed in the field to evaluate settlement preferences. Canonical Analysis of Principal Coordinates were applied to...the influence of coating surface properties on the patterns in settlement observed in the field in the extension of this work over the coming year
Localization Framework for Real-Time UAV Autonomous Landing: An On-Ground Deployed Visual Approach
Kong, Weiwei; Hu, Tianjiang; Zhang, Daibing; Shen, Lincheng; Zhang, Jianwei
2017-01-01
One of the greatest challenges for fixed-wing unmanned aircraft vehicles (UAVs) is safe landing. Hereafter, an on-ground deployed visual approach is developed in this paper. This approach is definitely suitable for landing within the global navigation satellite system (GNSS)-denied environments. As for applications, the deployed guidance system makes full use of the ground computing resource and feedbacks the aircraft’s real-time localization to its on-board autopilot. Under such circumstances, a separate long baseline stereo architecture is proposed to possess an extendable baseline and wide-angle field of view (FOV) against the traditional fixed baseline schemes. Furthermore, accuracy evaluation of the new type of architecture is conducted by theoretical modeling and computational analysis. Dataset-driven experimental results demonstrate the feasibility and effectiveness of the developed approach. PMID:28629189
Localization Framework for Real-Time UAV Autonomous Landing: An On-Ground Deployed Visual Approach.
Kong, Weiwei; Hu, Tianjiang; Zhang, Daibing; Shen, Lincheng; Zhang, Jianwei
2017-06-19
[-5]One of the greatest challenges for fixed-wing unmanned aircraft vehicles (UAVs) is safe landing. Hereafter, an on-ground deployed visual approach is developed in this paper. This approach is definitely suitable for landing within the global navigation satellite system (GNSS)-denied environments. As for applications, the deployed guidance system makes full use of the ground computing resource and feedbacks the aircraft's real-time localization to its on-board autopilot. Under such circumstances, a separate long baseline stereo architecture is proposed to possess an extendable baseline and wide-angle field of view (FOV) against the traditional fixed baseline schemes. Furthermore, accuracy evaluation of the new type of architecture is conducted by theoretical modeling and computational analysis. Dataset-driven experimental results demonstrate the feasibility and effectiveness of the developed approach.
Evaluation and Field Assessment of Bifacial Photovoltaic Module Power Rating Methodologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deline, Chris; MacAlpine, Sara; Marion, Bill
2016-11-21
1-sun power ratings for bifacial modules are currently undefined. This is partly because there is no standard definition of rear irradiance given 1000 Wm-2 on the front. Using field measurements and simulations, we evaluate multiple deployment scenarios for bifacial modules and provide details on the amount of irradiance that could be expected. A simplified case that represents a single module deployed under conditions consistent with existing 1-sun irradiance standards leads to a bifacial reference condition of 1000 Wm-2 Gfront and 130-140 Wm-2 Grear. For fielded systems of bifacial modules, Grear magnitude and spatial uniformity will be affected by self-shade frommore » adjacent modules, varied ground cover, and ground-clearance height. A standard measurement procedure for bifacial modules is also currently undefined. A proposed international standard is under development, which provides the motivation for this work. Here, we compare outdoor field measurements of bifacial modules with irradiance on both sides with proposed indoor test methods where irradiance is only applied to one side at a time. The indoor method has multiple advantages, including controlled and repeatable irradiance and thermal environment, along with allowing the use of conventional single-sided flash test equipment. The comparison results are promising, showing that the indoor and outdoor methods agree within 1%-2% for multiple rear-irradiance conditions and bifacial module types.« less
Evaluation and Field Assessment of Bifacial Photovoltaic Module Power Rating Methodologies: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deline, Chris; MacAlpine, Sara; Marion, Bill
2016-06-16
1-sun power ratings for bifacial modules are currently undefined. This is partly because there is no standard definition of rear irradiance given 1000 Wm-2 on the front. Using field measurements and simulations, we evaluate multiple deployment scenarios for bifacial modules and provide details on the amount of irradiance that could be expected. A simplified case that represents a single module deployed under conditions consistent with existing 1-sun irradiance standards leads to a bifacial reference condition of 1000 Wm-2 Gfront and 130-140 Wm-2 Grear. For fielded systems of bifacial modules, Grear magnitude and spatial uniformity will be affected by self-shade frommore » adjacent modules, varied ground cover, and ground-clearance height. A standard measurement procedure for bifacial modules is also currently undefined. A proposed international standard is under development, which provides the motivation for this work. Here, we compare outdoor field measurements of bifacial modules with irradiance on both sides with proposed indoor test methods where irradiance is only applied to one side at a time. The indoor method has multiple advantages, including controlled and repeatable irradiance and thermal environment, along with allowing the use of conventional single-sided flash test equipment. The comparison results are promising, showing that the indoor and outdoor methods agree within 1%-2% for multiple rear-irradiance conditions and bifacial module types.« less
High-frequency field-deployable isotope analyzer for hydrological applications
Elena S.F. Berman; Manish Gupta; Chris Gabrielli; Tina Garland; Jeffrey J. McDonnell
2009-01-01
A high-frequency, field-deployable liquid water isotope analyzer was developed. The instrument was deployed for 4 contiguous weeks in the H. J. Andrews Experimental Forest Long-term Ecological Research site in western Oregon, where it was used for real-time measurement of the isotope ratios of precipitation and stream water during three large storm events. We were able...
An efficient genetic algorithm for maximum coverage deployment in wireless sensor networks.
Yoon, Yourim; Kim, Yong-Hyuk
2013-10-01
Sensor networks have a lot of applications such as battlefield surveillance, environmental monitoring, and industrial diagnostics. Coverage is one of the most important performance metrics for sensor networks since it reflects how well a sensor field is monitored. In this paper, we introduce the maximum coverage deployment problem in wireless sensor networks and analyze the properties of the problem and its solution space. Random deployment is the simplest way to deploy sensor nodes but may cause unbalanced deployment and therefore, we need a more intelligent way for sensor deployment. We found that the phenotype space of the problem is a quotient space of the genotype space in a mathematical view. Based on this property, we propose an efficient genetic algorithm using a novel normalization method. A Monte Carlo method is adopted to design an efficient evaluation function, and its computation time is decreased without loss of solution quality using a method that starts from a small number of random samples and gradually increases the number for subsequent generations. The proposed genetic algorithms could be further improved by combining with a well-designed local search. The performance of the proposed genetic algorithm is shown by a comparative experimental study. When compared with random deployment and existing methods, our genetic algorithm was not only about twice faster, but also showed significant performance improvement in quality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Travis, Bryan; Sauer, Jeremy; Dubey, Manvendra
2017-02-24
FIGS is a neural network software that ingests real time synchronized field data on environmental flow fields and turbulence and gas concentration variations at high frequency and uses an error minimization algorithm to locate the gas source and quantify its strength. The software can be interfaced with atmospheric, oceanic and subsurface instruments in a variety of platforms stationary or mobile (e.g. cars, UAVs, submersible vehicles or boreholes) and used to find gas sources by smart use of data and phenomenology. FIGS can be trained by phenomenological model of the flow fields in the environment of interest and/or be calibrated bymore » controlled release. After initial deployment the FIGS learning will grow with time as it accumulates data on source quantification. FIGS can be installed on any computer from small beagle-bones for field deployment/end-use to PC/MACs/main-frame for training/analysis. FIGS has been trained (using LANL's high resolution atmospheric simulations) and calibrated, tested and evaluated in the field and shown to perform well in finding and quantifying methane leaks at 10-100m scales at well pads by ingesting atmospheric measurements. The code is applicable to gas and particle source location at large scales.« less
NASA Astrophysics Data System (ADS)
Zhu, Feng; Hu, Xiaofeng; He, Xiaoyuan; Guo, Rui; Li, Kaiming; Yang, Lu
2017-11-01
In the military field, the performance evaluation of early-warning aircraft deployment or construction is always an important problem needing to be explored. As an effective approach of enterprise management and performance evaluation, Balanced Score Card (BSC) attracts more and more attentions and is studied more and more widely all over the world. It can also bring feasible ideas and technical approaches for studying the issue of the performance evaluation of the deployment or construction of early-warning aircraft which is the important component in early-warning detection system of systems (SoS). Therefore, the deep explored researches are carried out based on the previously research works. On the basis of the characteristics of space exploration and aerial detection effectiveness of early-warning detection SoS and the cardinal principle of BSC are analyzed simply, and the performance evaluation framework of the deployment or construction of early-warning aircraft is given, under this framework, aimed at the evaluation issue of aerial detection effectiveness of early-warning detection SoS with the cooperation efficiency factors of the early-warning aircraft and other land based radars, the evaluation indexes are further designed and the relative evaluation model is further established, especially the evaluation radar chart being also drawn to obtain the evaluation results from a direct sight angle. Finally, some practical computer simulations are launched to prove the validity and feasibility of the research thinking and technologic approaches which are proposed in the paper.
NASA Astrophysics Data System (ADS)
Inamori, Takaya; Sugawara, Yoshiki; Satou, Yasutaka
2015-12-01
Increasingly, spacecraft are installed with large-area structures that are extended and deployed post-launch. These extensible structures have been applied in several missions for power generation, thermal radiation, and solar propulsion. Here, we propose a deployment and retraction method using the electromagnetic force generated when the geomagnetic field interacts with electric current flowing on extensible panels. The panels are installed on a satellite in low Earth orbit. Specifically, electrical wires placed on the extensible panels generate magnetic moments, which interfere with the geomagnetic field. The resulting repulsive and retraction forces enable panel deployment and retraction. In the proposed method, a satellite realizes structural deployment using simple electrical wires. Furthermore, the satellite can achieve not only deployment but also retraction for avoiding damage from space debris and for agile attitude maneuvers. Moreover, because the proposed method realizes quasi-static deployment and the retraction of panels by electromagnetic forces, low impulsive force is exerted on fragile panels. The electrical wires can also be used to detect the panel deployment and retraction and generate a large magnetic moment for attitude control. The proposed method was assessed in numerical simulations based on multibody dynamics. Simulation results shows that a small cubic satellite with a wire current of 25 AT deployed 4 panels (20 cm × 20 cm) in 500 s and retracted 4 panels in 100 s.
On-the-field performance of quintuple-play long-reach OFDM-based WDM-PON optical access networks.
Llorente, Roberto; Morant, Maria; Pellicer, Eloy; Herman, Milan; Nagy, Zsolt; Alves, Tiago; Cartaxo, Adolfo; Herrera, Javier; Correcher, Jose; Quinlan, Terence; Walker, Stuart; Rodrigues, Cláudio; Cluzeaud, Pierre; Schmidt, Axel; Piesiewicz, Radoslaw; Sambaraju, Rakesh
2014-03-24
In this paper the on-the-field performance of a WDM-PON optical access providing quintuple-play services using orthogonal frequency division multiplexing (OFDM) modulation is evaluated in a real fiber-to-the-home (FTTH) network deployed by Towercom operator in Bratislava (Slovakia). A bundle of quintuple-play services comprising full-standard OFDM-based signals (LTE, WiMAX, UWB and DVB-T) and an ad-hoc OFDM-GbE signal is transmitted in coexistence per single user. Both downstream and upstream transmission performances are evaluated in different on-the-field long-reach optical link distance configurations. Four wavelength multi-user transmission of quintuple-play OFDM services is demonstrated exceeding 60.8 km reach in standard single mode fiber.
NASA Astrophysics Data System (ADS)
Petzold, A.; Perim de Faria, J.; Berg, M.; Bundke, U.; Freedman, A.
2015-12-01
Monitoring the direct impact of aerosol particles on climate requires the continuous measurement of aerosol optical parameters like the aerosol extinction coefficient on a regular basis. Remote sensing and ground-based networks are well in place (e.g., AERONET, ACTRIS), whereas the regular in situ measurement of vertical profiles of atmospheric aerosol optical properties remains still an important challenge in quantifying climate change. The European Research Infrastructure IAGOS (In-service Aircraft for a Global Observing System; www.iagos.org) responds to the increasing requests for long-term, routine in situ observational data by using commercial passenger aircraft as measurement platform. However, scientific instrumentation for the measurement of atmospheric constituents requires major modifications before being deployable aboard in-service passenger aircraft. Recently, a compact and robust family of optical instruments based on the cavity attenuated phase shift (CAPS) technique has become available for measuring aerosol light extinction. While this technique was successfully deployed for ground-based atmospheric measurements under various conditions, its suitability for operation aboard aircraft in the free and upper free troposphere still has to be demonstrated. In this work, the modifications of a CAPS PMex instrument for measuring aerosol light extinction on aircraft, the results from subsequent laboratory tests for evaluating the modified instrument prototype, and first results from a field deployment aboard a research aircraft will be covered. In laboratory studies, the instrument showed excellent agreement (deviation < 5%) with theoretical values calculated from Rayleigh scattering cross-sections, when operated on pressurized air and CO2 at ambient and low pressure (~200 hPa). For monodisperse and polydisperse aerosols, reference aerosol extinction coefficients were calculated from measured size distributions and agreed with the CAPS PMex instrument response within 10% deviation. During the field deployment, aerosol extinction coefficients and associated aerosol size distributions have been measured and will be presented as comparison studies between measured and calculated data.
An exploratory study of apex fence flaps on a 74 deg delta wing
NASA Technical Reports Server (NTRS)
Wahls, R. A.; Vess, R. J.
1985-01-01
An exploratory wind tunnel investigation was performed to observe the flow field effects produced by vertically deployed apex fences on a planar 74 degree delta wing. The delta shaped fences, each comprising approximately 3.375 percent of the wing area, were affixed along the first 25 percent of the wing leading edge in symmetric as well as asymmetric (i.e., fence on one side only) arrangements. The vortex flow field was visualized at angles of attack from 0 to 20 degrees using helium bubble and oil flow techniques; upper surface pressures were also measured along spanwise rows. The results were used to construct a preliminary description of the vortex patterns and induced pressures associated with vertical apex fence deployment. The objective was to obtain an initial evaluation of the potential of apex fences as vortex devices for subsonic lift modulation as well as lateral directional control of delta wing aircraft.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hudson, C.R.
Industrial consumers of energy now have the opportunity to participate directly in electricity generation. This report seeks to give the reader (1) insights into the various types of generation services that distributed generation (DG) units could provide, (2) a mechanism to evaluate the economics of using DG, (3) an overview of the status of DG deployment in selected states, and (4) a summary of the communication technologies involved with DG and what testing activities are needed to encourage industrial application of DG. Section 1 provides details on electricity markets and the types of services that can be offered. Subsequent sectionsmore » in the report address the technical requirements for participating in such markets, the economic decision process that an industrial energy user should go through in evaluating distributed generation, the status of current deployment efforts, and the requirements for test-bed or field demonstration projects.« less
Novel Sensor for the In Situ Measurement of Uranium Fluxes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hatfield, Kirk
2015-02-10
The goal of this project was to develop a sensor that incorporates the field-tested concepts of the passive flux meter to provide direct in situ measures of flux for uranium and groundwater in porous media. Measurable contaminant fluxes [J] are essentially the product of concentration [C] and groundwater flux or specific discharge [q ]. The sensor measures [J] and [q] by changes in contaminant and tracer amounts respectively on a sorbent. By using measurement rather than inference from static parameters, the sensor can directly advance conceptual and computational models for field scale simulations. The sensor was deployed in conjunction withmore » DOE in obtaining field-scale quantification of subsurface processes affecting uranium transport (e.g., advection) and transformation (e.g., uranium attenuation) at the Rifle IFRC Site in Rifle, Colorado. Project results have expanded our current understanding of how field-scale spatial variations in fluxes of uranium, groundwater and salient electron donor/acceptors are coupled to spatial variations in measured microbial biomass/community composition, effective field-scale uranium mass balances, attenuation, and stability. The coupling between uranium, various nutrients and micro flora can be used to estimate field-scale rates of uranium attenuation and field-scale transitions in microbial communities. This research focuses on uranium (VI), but the sensor principles and design are applicable to field-scale fate and transport of other radionuclides. Laboratory studies focused on sorbent selection and calibration, along with sensor development and validation under controlled conditions. Field studies were conducted at the Rifle IFRC Site in Rifle, Colorado. These studies were closely coordinated with existing SBR (formerly ERSP) projects to complement data collection. Small field tests were conducted during the first two years that focused on evaluating field-scale deployment procedures and validating sensor performance under controlled field conditions. In the third and fourth year a suite of larger field studies were conducted. For these studies, the uranium flux sensor was used with uranium speciation measurements and molecular-biological tools to characterize microbial community and active biomass at synonymous wells distributed in a large grid. These field efforts quantified spatial changes in uranium flux and field-scale rates of uranium attenuation (ambient and stimulated), uranium stability, and quantitatively assessed how fluxes and effective reaction rates were coupled to spatial variations in microbial community and active biomass. Analyses of data from these field experiments were used to generate estimates of Monod kinetic parameters that are ‘effective’ in nature and optimal for modeling uranium fate and transport at the field-scale. This project provided the opportunity to develop the first sensor that provides direct measures of both uranium (VI) and groundwater flux. A multidisciplinary team was assembled to include two geochemists, a microbiologist, and two quantitative contaminant hydrologists. Now that the project is complete, the sensor can be deployed at DOE sites to evaluate field-scale uranium attenuation, source behavior, the efficacy of remediation, and off-site risk. Because the sensor requires no power, it can be deployed at remote sites for periods of days to months. The fundamental science derived from this project can be used to advance the development of predictive models for various transport and attenuation processes in aquifers. Proper development of these models is critical for long-term stewardship of contaminated sites in the context of predicting uranium source behavior, remediation performance, and off-site risk.« less
Quantifying measurement uncertainty and spatial variability in the context of model evaluation
NASA Astrophysics Data System (ADS)
Choukulkar, A.; Brewer, A.; Pichugina, Y. L.; Bonin, T.; Banta, R. M.; Sandberg, S.; Weickmann, A. M.; Djalalova, I.; McCaffrey, K.; Bianco, L.; Wilczak, J. M.; Newman, J. F.; Draxl, C.; Lundquist, J. K.; Wharton, S.; Olson, J.; Kenyon, J.; Marquis, M.
2017-12-01
In an effort to improve wind forecasts for the wind energy sector, the Department of Energy and the NOAA funded the second Wind Forecast Improvement Project (WFIP2). As part of the WFIP2 field campaign, a large suite of in-situ and remote sensing instrumentation was deployed to the Columbia River Gorge in Oregon and Washington from October 2015 - March 2017. The array of instrumentation deployed included 915-MHz wind profiling radars, sodars, wind- profiling lidars, and scanning lidars. The role of these instruments was to provide wind measurements at high spatial and temporal resolution for model evaluation and improvement of model physics. To properly determine model errors, the uncertainties in instrument-model comparisons need to be quantified accurately. These uncertainties arise from several factors such as measurement uncertainty, spatial variability, and interpolation of model output to instrument locations, to name a few. In this presentation, we will introduce a formalism to quantify measurement uncertainty and spatial variability. The accuracy of this formalism will be tested using existing datasets such as the eXperimental Planetary boundary layer Instrumentation Assessment (XPIA) campaign. Finally, the uncertainties in wind measurement and the spatial variability estimates from the WFIP2 field campaign will be discussed to understand the challenges involved in model evaluation.
Mesa, Matthew G.; Copeland, Elizabeth S.
2009-01-01
Predation by pinnipeds, such as California sea lions Zalophus californianus, Pacific harbor seals Phoca vitulina, and Stellar sea lions Eumetopias jubatus on adult Pacific salmon Oncorhynchus spp in the lower Columbia River has become a serious concern for fishery managers trying to conserve and restore runs of threatened and endangered fish. As a result, Smith-Root, Incorporated (SRI; Vancouver, Washington), manufacturers of electrofishing and closely-related equipment, proposed a project to evaluate the potential of an electrical barrier to deter marine mammals and reduce the amount of predation on adult salmonids (SRI 2007). The objectives of their work were to develop, deploy, and evaluate a passive, integrated sonar and electric barrier that would selectively inhibit the upstream movements of marine mammals and reduce predation, but would not injure pinnipeds or impact anadromous fish migrations. However, before such a device could be deployed in the field, concerns by regional fishery managers about the potential effects of such a device on the migratory behavior of Pacific salmon, steelhead O. mykiss, Pacific lampreys Entoshpenus tridentata, and white sturgeon Acipenser transmontanus, needed to be addressed. In this report, we describe the results of laboratory research designed to evaluate the effects of prototype electric barriers on adult steelhead and Pacific lampreys.
A simple method for verifying the deployment of the TOMS-EP solar arrays
NASA Technical Reports Server (NTRS)
Koppersmith, James R.; Ketchum, Eleanor
1995-01-01
The Total Ozone Mapping Spectrometer-Earth Probe (TOMS-EP) mission relies upon a successful deployment of the spacecraft's solar arrays. Several methods of verification are being employed to ascertain the solar array deployment status, with each requiring differing amounts of data. This paper describes a robust attitude-independent verification method that utilizes telemetry from the coarse Sun sensors (CSS's) and the three-axis magnetometers (TAM's) to determine the solar array deployment status - and it can do so with only a few, not necessarily contiguous, points of data. The method developed assumes that the solar arrays are deployed. Telemetry data from the CSS and TAM are converted to the Sun and magnetic field vectors in spacecraft body coordinates, and the angle between them is calculated. Deployment is indicated if this angle is within a certain error tolerance of the angle between the reference Sun and magnetic field vectors. Although several other methods can indicate a non-deployed state, with this method there is a 70% confidence level in confirming deployment as well as a nearly 100% certainty in confirming a non-deployed state. In addition, the spacecraft attitude (which is not known during the first orbit after launch) is not needed for this algorithm because the angle between the Sun and magnetic field vectors is independent of the spacecraft attitude. This technique can be applied to any spacecraft with a TAM and with CSS's mounted on the solar array(s).
NASA Astrophysics Data System (ADS)
Lee, Jimi; Rao, P. S. C.; Poyer, Irene C.; Toole, Robyn M.; Annable, M. D.; Hatfield, K.
2007-07-01
We report here on the extension of Passive Flux Meter (PFM) applications for measuring fluxes of oxyanions in groundwater, and present results for laboratory and field studies. Granular activated carbon, with and without impregnated silver (GAC and SI-GAC, respectively), was modified with a cationic surfactant, hexadecyltrimethylammonium (HDTMA), to enhance the anion exchange capacity (AEC). Langmuir isotherm sorption maxima for oxyanions measured in batch experiments were in the following order: perchlorate >> chromate > selenate, consistent with their selectivity. Linear sorption isotherms for several alcohols suggest that surfactant modification of GAC and SI-GAC reduced (˜ 30-45%) sorption of alcohols by GAC. Water and oxyanion fluxes (perchlorate and chromate) measured by deploying PFMs packed with surfactant-modified GAC (SM-GAC) or surfactant-modified, silver-impregnated GAC (SM-SI-GAC) in laboratory flow chambers were in close agreement with the imposed fluxes. The use of SM-SI-GAC as a PFM sorbent was evaluated at a field site with perchlorate contamination of a shallow unconfined aquifer. PFMs packed with SM-SI-GAC were deployed in three existing monitoring wells with a perchlorate concentration range of ˜ 2.5 to 190 mg/L. PFM-measured, depth-averaged, groundwater fluxes ranged from 1.8 to 7.6 cm/day, while depth-averaged perchlorate fluxes varied from 0.22 to 1.7 g/m 2/day. Groundwater and perchlorate flux distributions measured in two PFM deployments closely matched each other. Depth-averaged Darcy fluxes measured with PFMs were in line with an estimate from a borehole dilution test, but much smaller than those based on hydraulic conductivity and head gradients; this is likely due to flow divergence caused by well-screen clogging. Flux-averaged perchlorate concentrations measured with PFM deployments matched concentrations in groundwater samples taken from one well, but not in two other wells, pointing to the need for additional field testing. Use of the surfactant-modified GACs for measuring fluxes of other anions of environmental interest is discussed.
Lee, Jimi; Rao, P S C; Poyer, Irene C; Toole, Robyn M; Annable, M D; Hatfield, K
2007-07-17
We report here on the extension of Passive Flux Meter (PFM) applications for measuring fluxes of oxyanions in groundwater, and present results for laboratory and field studies. Granular activated carbon, with and without impregnated silver (GAC and SI-GAC, respectively), was modified with a cationic surfactant, hexadecyltrimethylammonium (HDTMA), to enhance the anion exchange capacity (AEC). Langmuir isotherm sorption maxima for oxyanions measured in batch experiments were in the following order: perchlorate>chromate>selenate, consistent with their selectivity. Linear sorption isotherms for several alcohols suggest that surfactant modification of GAC and SI-GAC reduced (approximately 30-45%) sorption of alcohols by GAC. Water and oxyanion fluxes (perchlorate and chromate) measured by deploying PFMs packed with surfactant-modified GAC (SM-GAC) or surfactant-modified, silver-impregnated GAC (SM-SI-GAC) in laboratory flow chambers were in close agreement with the imposed fluxes. The use of SM-SI-GAC as a PFM sorbent was evaluated at a field site with perchlorate contamination of a shallow unconfined aquifer. PFMs packed with SM-SI-GAC were deployed in three existing monitoring wells with a perchlorate concentration range of approximately 2.5 to 190 mg/L. PFM-measured, depth-averaged, groundwater fluxes ranged from 1.8 to 7.6 cm/day, while depth-averaged perchlorate fluxes varied from 0.22 to 1.7 g/m2/day. Groundwater and perchlorate flux distributions measured in two PFM deployments closely matched each other. Depth-averaged Darcy fluxes measured with PFMs were in line with an estimate from a borehole dilution test, but much smaller than those based on hydraulic conductivity and head gradients; this is likely due to flow divergence caused by well-screen clogging. Flux-averaged perchlorate concentrations measured with PFM deployments matched concentrations in groundwater samples taken from one well, but not in two other wells, pointing to the need for additional field testing. Use of the surfactant-modified GACs for measuring fluxes of other anions of environmental interest is discussed.
Cui, Yong; Wang, Qiusheng; Yuan, Haiwen; Song, Xiao; Hu, Xuemin; Zhao, Luxing
2015-01-01
In the wireless sensor networks (WSNs) for electric field measurement system under the High-Voltage Direct Current (HVDC) transmission lines, it is necessary to obtain the electric field distribution with multiple sensors. The location information of each sensor is essential to the correct analysis of measurement results. Compared with the existing approach which gathers the location information by manually labelling sensors during deployment, the automatic localization can reduce the workload and improve the measurement efficiency. A novel and practical range-free localization algorithm for the localization of one-dimensional linear topology wireless networks in the electric field measurement system is presented. The algorithm utilizes unknown nodes' neighbor lists based on the Received Signal Strength Indicator (RSSI) values to determine the relative locations of nodes. The algorithm is able to handle the exceptional situation of the output permutation which can effectively improve the accuracy of localization. The performance of this algorithm under real circumstances has been evaluated through several experiments with different numbers of nodes and different node deployments in the China State Grid HVDC test base. Results show that the proposed algorithm achieves an accuracy of over 96% under different conditions. PMID:25658390
Cui, Yong; Wang, Qiusheng; Yuan, Haiwen; Song, Xiao; Hu, Xuemin; Zhao, Luxing
2015-02-04
In the wireless sensor networks (WSNs) for electric field measurement system under the High-Voltage Direct Current (HVDC) transmission lines, it is necessary to obtain the electric field distribution with multiple sensors. The location information of each sensor is essential to the correct analysis of measurement results. Compared with the existing approach which gathers the location information by manually labelling sensors during deployment, the automatic localization can reduce the workload and improve the measurement efficiency. A novel and practical range-free localization algorithm for the localization of one-dimensional linear topology wireless networks in the electric field measurement system is presented. The algorithm utilizes unknown nodes' neighbor lists based on the Received Signal Strength Indicator (RSSI) values to determine the relative locations of nodes. The algorithm is able to handle the exceptional situation of the output permutation which can effectively improve the accuracy of localization. The performance of this algorithm under real circumstances has been evaluated through several experiments with different numbers of nodes and different node deployments in the China State Grid HVDC test base. Results show that the proposed algorithm achieves an accuracy of over 96% under different conditions.
Wake Sensor Evaluation Program and Results of JFK-1 Wake Vortex Sensor Intercomparisons
NASA Technical Reports Server (NTRS)
Barker, Ben C., Jr.; Burnham, David C.; Rudis, Robert P.
1997-01-01
The overall approach should be to: (1) Seek simplest, sufficiently robust, integrated ground based sensor systems (wakes and weather) for AVOSS; (2) Expand all sensor performance cross-comparisons and data mergings in on-going field deployments; and (3) Achieve maximal cost effectiveness through hardware/info sharing. An effective team is in place to accomplish the above tasks.
Evaluation of Fast-Time Wake Models Using Denver 2006 Field Experiment Data
NASA Technical Reports Server (NTRS)
Ahmad, Nash’at N.; Pruis, Matthew J.
2015-01-01
The National Aeronautics and Space Administration conducted a series of wake vortex field experiments at Denver in 2003, 2005, and 2006. This paper describes the lidar wake vortex measurements and associated meteorological data collected during the 2006 deployment, and includes results of recent reprocessing of the lidar data using a new wake vortex algorithm and estimates of the atmospheric turbulence using a new algorithm to estimate eddy dissipation rate from the lidar data. The configuration and set-up of the 2006 field experiment allowed out-of-ground effect vortices to be tracked in lateral transport further than any previous campaign and thereby provides an opportunity to study long-lived wake vortices in moderate to low crosswinds. An evaluation of NASA's fast-time wake vortex transport and decay models using the dataset shows similar performance as previous studies using other field data.
An Evaluation of Oceanographic Optical Instruments and Deployment Methodologies
NASA Technical Reports Server (NTRS)
Hooker, Stanford B.; Maritorena, Stephane
1999-01-01
The primary objective of the Sea-viewing, Wide Field-of-view Sensor (SeaWiFS) Project is to produce water- leaving radiances with an uncertainty of 5% in clear-water regions and chlorophyll a concentrations within +/- 35% over the range of 0.05-50 mg/cu m. Any global mission, like SeaWiFS, requires validation data be submitted from a wide variety of investigators which places a significant challenge on quantifying the total uncertainty associated with the in situ measurements, because each investigator follows slightly different practices when it comes to implementing all of the steps associated with collecting field data, even those with a prescribed set of protocols. This study uses data from multiple cruises to quantify the uncertainties associated with implementing data collection procedures while utilizing differing in-water optical instruments and deployment methods. A comprehensive approach is undertaken and includes: (1) the use of a portable light source and in-water intercomparisons to monitor the stability of the field radiometers, (2) alternative methods for acquiring reference measurements, and (3) different techniques for making in-water profiles. The only system to meet the 5% radiometric objective of the SeaWiFS Project was a free-fall profiler using (relatively inexpensive) modular components, although a more sophisticated (and comparatively expensive) profiler using integral components was very close and only 1% higher. A relatively inexpensive system deployed with a winch and crane was also close, but the ship shadow contamination problem increased the total uncertainty to approximately 6.5%.
iFlorida model deployment final evaluation report.
DOT National Transportation Integrated Search
2009-01-01
This document is the final report for the evaluation of the USDOT-sponsored Surface Transportation Security and Reliability Information System Model Deployment, or iFlorida Model Deployment. This report discusses findings in the following areas: ITS ...
iFlorida model deployment final evaluation report
DOT National Transportation Integrated Search
2009-01-01
This document is the final report for the evaluation of the USDOT-sponsored Surface Transportation Security and Reliability Information System Model Deployment, or iFlorida Model Deployment. This report discusses findings in the following areas: ITS ...
Initial Field Deployment Results of Green PCB Removal from Sediment Systems (GPRSS)
NASA Technical Reports Server (NTRS)
Devor, Robert; Captain, James; Weis, Kyle; Maloney, Phillip; Booth, Greg; Quinn, Jacqueline
2014-01-01
Purpose of Study: (a) Develop/optimize technology capable of removing PCBs from contaminated sediments; (b) Develop design for functional GPRSS unit; (c) Produce and prove functionality of prototype units in a laboratory settings; (d) Produce fully-functional GPRSS units for testing at a demonstration site in Altavista, VA; and (e) Evaluate efficacy of GPRSS technology for the remediation of PCB-contaminated sediments.
Proceedings: TRIAGE of Irradiated Personnel, 25-27 September 1996
1998-03-01
thermoluminescent dosimeter project group (PG-29) has recommended grani- (TLD) systems accredited by the National Volun- setron as the deployable...individual phylactic antiemetic medications and regimens dosimeter system currently fielded is the high-range were evaluated prior to adoption of...granisetron. photoluminescent AN/PDR-75. This system con- sists of the ruggedized DT-236 wristband dosimeter Two drugs exceeded the criteria (shown below
2011-12-01
Policy. Graduates will develop an ability to think strategically, analyze past operations, and apply historical lessons to future joint and combined...Naval Special Warfare Development Group O-## Officer, ## Rank OPMEP Officer, Professional Military Education Program OPTEMPO Operational Tempo...Marine Corps. 2 Joint Special Operations University (2007). MCSOCOM Prrof of Concept Deployment Evaluation Report. Hurlburt Field : Joint Special
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martyn, Rose; Fitzgerald, Peter; Stehle, Nicholas D
An operational field test of a Radio-Frequency Identification (RFID) system for tracking and accounting UF6 cylinders was conducted at the Global Nuclear Fuel Americas (GNF) fuel fabrication plant in 2009. The Cylinder Accountability and Tracking System (CATS) was designed and deployed by Oak Ridge National Laboratory (ORNL) and evaluated in cooperation with GNF. The system required that passive RFID be attached to several UF6 30B cylinders as they were received at the site; then the cylinders were tracked as they proceeded to interim storage, to processing in an autoclave, and eventually to disposition from the site. This CATS deployment alsomore » provided a direct integration of scale data from the site accountability scales. The integration of this information into the tracking data provided an attribute for additional safeguards for evaluation. The field test provided insight into the advantages and challenges of using RFID at an operating nuclear facility. The RFID system allowed operators to interact with the technology and demonstrated the survivability of the tags and reader equipment in the process environment. This paper will provide the operator perspective on utilizing RFID technology for locating cylinders within the facility, thereby tracking the cylinders for process and for Material Control & Accounting functions. The paper also will present the operator viewpoint on RFID implemented as an independent safeguards system.« less
NASA Technical Reports Server (NTRS)
1978-01-01
The large format camera (LFC) designed as a 30 cm focal length cartographic camera system that employs forward motion compensation in order to achieve the full image resolution provided by its 80 degree field angle lens is described. The feasibility of application of the current LFC design to deployment in the orbiter program as the Orbiter Camera Payload System was assessed and the changes that are necessary to meet such a requirement are discussed. Current design and any proposed design changes were evaluated relative to possible future deployment of the LFC on a free flyer vehicle or in a WB-57F. Preliminary mission interface requirements for the LFC are given.
Design of Mechanisms for Deployable, Optical Instruments: Guidelines for Reducing Hysteresis
NASA Technical Reports Server (NTRS)
Lake, Mark S.; Hachkowski, M. Roman
2000-01-01
This paper is intended to facilitate the development of deployable, optical instruments by providing a rational approach for the design, testing, and qualification of high-precision (i.e., low-hysteresis) deployment mechanisms for these instruments. Many of the guidelines included herein come directly from the field of optomechanical engineering, and are, therefore, neither newly developed guidelines, nor are they uniquely applicable to the design of high-precision deployment mechanisms. This paper is to be regarded as a guide to design and not a set of NASA requirements, except as may be defined in formal project specifications. Furthermore, due to the rapid pace of advancement in the field of precision deployment, this paper should be regarded as a preliminary set of guidelines. However, it is expected that this paper, with revisions as experience may indicate to be desirable, might eventually form the basis for a set of uniform design requirements for high-precision deployment mechanisms on future NASA space-based science instruments.
Feasibility Assessment of ITS Deployment Analysis System (IDAS) for ITS Evaluation
DOT National Transportation Integrated Search
2003-12-01
This study investigated the feasibility of utilizing the ITS Deployment Analysis System (IDAS) program version 2.2 as a tool for evaluating Intelligent Transportation Systems (ITS) deployment plans. Firstly, an online survey was conducted among metro...
Metropolitan Model Deployment Initiative : San Antonio evaluation report
DOT National Transportation Integrated Search
2000-05-01
This report presents results from the evaluation of the San Antonio Texas Metropolitan Model Deployment Initiative (MMDI). The MMDI had six key goals directed at improving existing services and deploying new services. The goals were directed at: 1) e...
Performance characteristics of a low-cost, field-deployable miniature CCD spectrometer
Coles, Simon; Nimmo, Malcolm; Worsfold, Paul J.
2000-01-01
Miniature spectrometers incorporating array detectors are becoming a viable, low-cost option for field and process deployments. The performance characteristics of one such instrument are reported and compared with those of a conventional benchtop instrument. The parameters investigated were wavelength repeatability, photometric linearity, instrumental noise (photometric precision) and instrumental drift. PMID:18924863
USDA-ARS?s Scientific Manuscript database
Development of field-deployable methodology utilizing antigen–antibody reactions and the surface Plasmon resonance (SPR) effect to provide a rapid diagnostic test for recognition of the blue tongue virus (BTV) and epizootic hemorrhage disease virus (EHDV) in wild and domestic ruminants is reported. ...
Microspacecraft and Earth observation: Electrical field (ELF) measurement project
NASA Technical Reports Server (NTRS)
Olsen, Tanya; Elkington, Scot; Parker, Scott; Smith, Grover; Shumway, Andrew; Christensen, Craig; Parsa, Mehrdad; Larsen, Layne; Martinez, Ranae; Powell, George
1990-01-01
The Utah State University space system design project for 1989 to 1990 focuses on the design of a global electrical field sensing system to be deployed in a constellation of microspacecraft. The design includes the selection of the sensor and the design of the spacecraft, the sensor support subsystems, the launch vehicle interface structure, on board data storage and communications subsystems, and associated ground receiving stations. Optimization of satellite orbits and spacecraft attitude are critical to the overall mapping of the electrical field and, thus, are also included in the project. The spacecraft design incorporates a deployable sensor array (5 m booms) into a spinning oblate platform. Data is taken every 0.1 seconds by the electrical field sensors and stored on-board. An omni-directional antenna communicates with a ground station twice per day to down link the stored data. Wrap-around solar cells cover the exterior of the spacecraft to generate power. Nine Pegasus launches may be used to deploy fifty such satellites to orbits with inclinations greater than 45 deg. Piggyback deployment from other launch vehicles such as the DELTA 2 is also examined.
Post-deployment usability evaluation of a radiology workstation.
Jorritsma, Wiard; Cnossen, Fokie; Dierckx, Rudi A; Oudkerk, Matthijs; Van Ooijen, Peter M A
2016-01-01
To determine the number, nature and severity of usability issues radiologists encounter while using a commercially available radiology workstation in clinical practice, and to assess how well the results of a pre-deployment usability evaluation of this workstation generalize to clinical practice. The usability evaluation consisted of semi-structured interviews and observations of twelve users using the workstation during their daily work. Usability issues and positive usability findings were documented. Each issue was given a severity rating and its root cause was determined. Results were compared to the results of a pre-deployment usability evaluation of the same workstation. Ninety-two usability issues were identified, ranging from issues that cause minor frustration or delay, to issues that cause significant delays, prevent users from completing tasks, or even pose a potential threat to patient safety. The results of the pre-deployment usability evaluation had limited generalizability to clinical practice. This study showed that radiologists encountered a large number and a wide variety of usability issues when using a commercially available radiology workstation in clinical practice. This underlines the need for effective usability engineering in radiology. Given the limitations of pre-deployment usability evaluation in radiology, which were confirmed by our finding that the results of a pre-deployment usability evaluation of this workstation had limited generalizability to clinical practice, it is vital that radiology workstation vendors devote significant resources to usability engineering efforts before deployment of their workstation, and to continue these efforts after the workstation is deployed in a hospital. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Local evaluation for the Cumberland gap tunnel regional ITS deployment.
DOT National Transportation Integrated Search
2010-12-01
This report is the local evaluation of an Intelligent Transportation System deployment for the Cumberland Gap Tunnel and U.S. 25E corridor in Tennessee and Kentucky. This report examines the planning for the deployment and the systems and components ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roy C. Herndon
2001-02-28
Cooperative Agreement (DE-FC21-95EW55101) between the U.S. Department of Energy (DOE) and the Florida State University's Institute for International Cooperative Environmental Research (IICER) was designed to facilitate a number of joint programmatic goals of both the DOE and the IICER related to international technology identification, development, demonstration and deployment using a variety of mechanisms to accomplish these goals. These mechanisms included: laboratory and field research; technology demonstrations; international training and technical exchanges; data collection, synthesis and evaluation; the conduct of conferences, symposia and high-level meetings; and other appropriate and effective approaches. The DOE utilized the expertise and facilities of the IICERmore » at Florida State University to accomplish its goals related to this cooperative agreement. The IICER has unique and demonstrated capabilities that have been utilized to conduct the tasks for this cooperative agreement. The IICER conducted activities related to technology identification, development, evaluation, demonstration and deployment through its joint centers which link the capabilities at Florida State University with collaborating academic and leading research institutions in the major countries of Central and Eastern Europe (e.g., Czech Republic, Hungary, Poland) and Russia. The activities and accomplishments for this five-year cooperative agreement are summarized in this Final Technical Report.« less
Faye, Oumar; Faye, Ousmane; Soropogui, Barré; Patel, Pranav; El Wahed, Ahmed Abd; Loucoubar, Cheikh; Fall, Gamou; Kiory, Davy; Magassouba, N'Faly; Keita, Sakoba; Kondé, Mandy Kader; Diallo, Alpha Amadou; Koivogui, Lamine; Karlberg, Helen; Mirazimi, Ali; Nentwich, Oliver; Piepenburg, Olaf; Niedrig, Matthias; Weidmann, Manfred; Sall, Amadou Alpha
2015-01-01
In the absence of a vaccine or specific treatments for Ebola virus disease (EVD), early identification of cases is crucial for the control of EVD epidemics. We evaluated a new extraction kit (SpeedXtract (SE), Qiagen) on sera and swabs in combination with an improved diagnostic reverse transcription recombinase polymerase amplification assay for the detection of Ebola virus (EBOV-RT-RPA). The performance of combined extraction and detection was best for swabs. Sensitivity and specificity of the combined SE and EBOV-RT-RPA were tested in a mobile laboratory consisting of a mobile glovebox and a Diagnostics-in-a-Suitcase powered by a battery and solar panel, deployed to Matoto Conakry, Guinea as part of the reinforced surveillance strategy in April 2015 to reach the goal of zero cases. The EBOV-RT-RPA was evaluated in comparison to two real-time PCR assays. Of 928 post-mortem swabs, 120 tested positive, and the combined SE and EBOV-RT-RPA yielded a sensitivity and specificity of 100% in reference to one real-time RT-PCR assay. Another widely used real-time RT-PCR was much less sensitive than expected. Results were provided very fast within 30 to 60 min, and the field deployment of the mobile laboratory helped improve burial management and community engagement.
Sun, Li; Wong, Ka Chun; Wei, Peng; Ye, Sheng; Huang, Hao; Yang, Fenhuan; Westerdahl, Dane; Louie, Peter K K; Luk, Connie W Y; Ning, Zhi
2016-02-05
This study presents the development and evaluation of a next generation air monitoring system with both laboratory and field tests. A multi-parameter algorithm was used to correct for the impact of environmental conditions on the electrochemical sensors for carbon monoxide (CO) and nitrogen dioxide (NO2) pollutants. The field evaluation in an urban roadside environment in comparison to designated monitors showed good agreement with measurement error within 5% of the pollutant concentrations. Multiple sets of the developed system were then deployed in the Hong Kong Marathon 2015 forming a sensor-based network along the marathon route. Real-time air pollution concentration data were wirelessly transmitted and the Air Quality Health Index (AQHI) for the Green Marathon was calculated, which were broadcast to the public on an hourly basis. The route-specific sensor network showed somewhat different pollutant patterns than routine air monitoring, indicating the immediate impact of traffic control during the marathon on the roadside air quality. The study is one of the first applications of a next generation sensor network in international sport events, and it demonstrated the usefulness of the emerging sensor-based air monitoring technology in rapid network deployment to supplement existing air monitoring.
Sun, Li; Wong, Ka Chun; Wei, Peng; Ye, Sheng; Huang, Hao; Yang, Fenhuan; Westerdahl, Dane; Louie, Peter K.K.; Luk, Connie W.Y.; Ning, Zhi
2016-01-01
This study presents the development and evaluation of a next generation air monitoring system with both laboratory and field tests. A multi-parameter algorithm was used to correct for the impact of environmental conditions on the electrochemical sensors for carbon monoxide (CO) and nitrogen dioxide (NO2) pollutants. The field evaluation in an urban roadside environment in comparison to designated monitors showed good agreement with measurement error within 5% of the pollutant concentrations. Multiple sets of the developed system were then deployed in the Hong Kong Marathon 2015 forming a sensor-based network along the marathon route. Real-time air pollution concentration data were wirelessly transmitted and the Air Quality Health Index (AQHI) for the Green Marathon was calculated, which were broadcast to the public on an hourly basis. The route-specific sensor network showed somewhat different pollutant patterns than routine air monitoring, indicating the immediate impact of traffic control during the marathon on the roadside air quality. The study is one of the first applications of a next generation sensor network in international sport events, and it demonstrated the usefulness of the emerging sensor-based air monitoring technology in rapid network deployment to supplement existing air monitoring. PMID:26861336
The overall goal of the proposed research is to develop piezoelectric-excited millimeter-sized cantilever sensors (PEMC) for cyanotoxins in source, finished and system waters that measures in a field-deployable format and rapidly in 15 minutes so that cyanotoxin(s) hazard a...
NASA Astrophysics Data System (ADS)
Parker, Tim; Devanney, Peter; Bainbridge, Geoff; Townsend, Bruce
2017-04-01
The march to make every type of seismometer, weak to strong motion, reliable and economically deployable in any terrestrial environment continues with the availability of three new sensors and seismic systems including ones with over 200dB of dynamic range. Until recently there were probably 100 pier type broadband sensors for every observatory type pier, not the types of deployments geoscientists are needing to advance science and monitoring capability. Deeper boreholes are now the recognized quieter environments for best observatory class instruments and these same instruments can now be deployed in direct burial environments which is unprecedented. The experiences of facilities in large deployments of broadband seismometers in continental scale rolling arrays proves the utility of packaging new sensors in corrosion resistant casings and designing in the robustness needed to work reliably in temporary deployments. Integrating digitizers and other sensors decreases deployment complexity, decreases acquisition and deployment costs, increases reliability and utility. We'll discuss the informed evolution of broadband pier instruments into the modern integrated field tools that enable economic densification of monitoring arrays along with supporting new ways to approach geoscience research in a field environment.
The deployment of information systems and information technology in field hospitals.
Crowe, Ian R J; Naguib, Raouf N G
2010-01-01
Information systems and related technologies continue to develop and have become an integral part of healthcare provision and hospital care in particular. Field hospitals typically operate in the most austere and difficult of conditions and have yet to fully exploit related technologies. This paper addresses those aspects of healthcare informatics, healthcare knowledge management and lean healthcare that can be applied to field hospitals, with a view to improving patient care. The aim is to provide a vision for the deployment of information systems and information technology in field hospitals, using the British Army's field hospital as a representative model.
Training improves reading speed in peripheral vision: is it due to attention?
Lee, Hye-Won; Kwon, Miyoung; Legge, Gordon E; Gefroh, Joshua J
2010-06-01
Previous research has shown that perceptual training in peripheral vision, using a letter-recognition task, increases reading speed and letter recognition (S. T. L. Chung, G. E. Legge, & S. H. Cheung, 2004). We tested the hypothesis that enhanced deployment of spatial attention to peripheral vision explains this training effect. Subjects were pre- and post-tested with 3 tasks at 10° above and below fixation-RSVP reading speed, trigram letter recognition (used to construct visual-span profiles), and deployment of spatial attention (measured as the benefit of a pre-cue for target position in a lexical-decision task). Groups of five normally sighted young adults received 4 days of trigram letter-recognition training in upper or lower visual fields, or central vision. A control group received no training. Our measure of deployment of spatial attention revealed visual-field anisotropies; better deployment of attention in the lower field than the upper, and in the lower-right quadrant compared with the other three quadrants. All subject groups exhibited slight improvement in deployment of spatial attention to peripheral vision in the post-test, but this improvement was not correlated with training-related increases in reading speed and the size of visual-span profiles. Our results indicate that improved deployment of spatial attention to peripheral vision does not account for improved reading speed and letter recognition in peripheral vision.
Cable-catenary large antenna concept
NASA Technical Reports Server (NTRS)
Akle, W.
1985-01-01
Deployable to very large diameters (over 1000 ft), while still remaining compatible with a complete satellite system launch by STS, the cable-catenary antenna comprises: 8 radial deployable boom masts; a deployable hub and feed support center mast; balanced front and back, radial and circumferential catenary cabling for highly accurate (mm) surface control; no interfering cabling in the antenna field; and an RF reflecting mesh supported on the front catenaries. Illustrations show the antenna-satellite system deployed and stowed configurations; the antenna deployment sequence; the design analysis logic; the sizing analysis output, and typical parametric design data.
Evaluation of barrier treatments on native vegetation in a southern California desert habitat.
Britch, Seth C; Linthicum, Kenneth J; Wynn, Wayne W; Walker, Todd W; Farooq, Muhammad; Smith, Vincent L; Robinson, Cathy A; Lothrop, Branka B; Snelling, Melissa; Gutierrez, Arturo; Lothrop, Hugh D
2009-06-01
Treating perimeters with residual insecticides for protection from mosquito vectors has shown promise. These barrier treatments are typically evaluated in temperate or tropical areas using abundant vegetation as a substrate. However, there is an emerging interest to develop this technology to protect deployed US troops in extreme desert environments with sparse vegetation. We used a remote desert area in the Coachella Valley, California, to 1) evaluate bifenthrin barrier treatments on native xeric vegetation and 2) compare treatments applied with electrostatic and conventional spray technologies. Through a combination of laboratory bioassays on treated and control vegetation sampled at specific intervals over 63 days, synchronized with field surveillance of mosquitoes, we measured the temporal pattern of bioactivity of bifenthrin barriers under natural hot, dry, and dusty desert conditions. Regardless of spray technology, mosquito catch in treated plots was about 80% lower than the catch in control plots 1 day after treatment. This reduction in mosquito numbers in treated plots declined each week after treatment but remained at about 40% lower than control plots after 28 days. Field data were corroborated by results from bioassays that showed significantly higher mosquito mortality on treated vegetation over controls out to 28 days postspray. We concluded that barrier treatments in desert environments, when implemented as part of a suite of integrated control measures, may offer a significant level of protection from mosquitoes for deployed troops. Given the comparable performance of the tested spray technologies, we discuss considerations for choosing a barrier treatment sprayer for military scenarios.
Healy, Richard W.; Striegl, Robert G.; Russell, Thomas F.; Hutchinson, Gordon L.; Livingston, Gerald P.
1996-01-01
The exchange of gases between soil and atmosphere is an important process that affects atmospheric chemistry and therefore climate. The static-chamber method is the most commonly used technique for estimating the rate of that exchange. We examined the method under hypothetical field conditions where diffusion was the only mechanism for gas transport and the atmosphere outside the chamber was maintained at a fixed concentration. Analytical and numerical solutions to the soil gas diffusion equation in one and three dimensions demonstrated that gas flux density to a static chamber deployed on the soil surface was less in magnitude than the ambient exchange rate in the absence of the chamber. This discrepancy, which increased with chamber deployment time and air-filled porosity of soil, is attributed to two physical factors: distortion of the soil gas concentration gradient (the magnitude was decreased in the vertical component and increased in the radial component) and the slow transport rate of diffusion relative to mixing within the chamber. Instantaneous flux density to a chamber decreased continuously with time; steepest decreases occurred so quickly following deployment and in response to such slight changes in mean chamber headspace concentration that they would likely go undetected by most field procedures. Adverse influences of these factors were reduced by mixing the chamber headspace, minimizing deployment time, maximizing the height and radius of the chamber, and pushing the rim of the chamber into the soil. Nonlinear models were superior to a linear regression model for estimating flux densities from mean headspace concentrations, suggesting that linearity of headspace concentration with time was not necessarily a good indicator of measurement accuracy.
A Re-Examination of Neuropsychological Functioning in Persian Gulf War Era Veterans
2003-08-01
neuropsychological evaluations and a group of individuals seeking treatment or diagnostic evaluation for any purpose. Controls were treatment -seeking non deployed...GW-era veterans studied between 1995-1998. The prior finding of differences between the deployed and non-deployed treatment seeking GW-era veterans in...included patients who were initially referred for clinical neuropsychological evaluations and a group of individuals who were seeking treatment or
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mather, Barry
2015-07-09
The objective of this project is to use field verification to improve DOE’s ability to model and understand the impacts of, as well as develop solutions for, high penetration PV deployments in electrical utility distribution systems. The Participant will work with NREL to assess the existing distribution system at SCE facilities and assess adding additional PV systems into the electric power system.
An UHF Frequency-Modulated Continuous Wave Wind Profiler - Development and Initial Results
2009-09-01
proposed and tested . The current design stage and performance of the cancellation loop, and the need of a new design for the IF section, suggest that some of...contrued as an official Department of the Army position, policy or decision, unless so designated by other documentation. 12. DISTRIBUTION...development of each of its subsystems, the laboratory tests performed to evaluate their performance, and the results of the first field deployment
Toward Development of a Field-Deployable Imaging Device for TBI
2013-03-01
growing in importance for breast cancer diagnoses.5 One elastographic method evaluates tissue stiffness by analyzing the rate of propagation of mechani...2007). This rapid temperature rise can denature tissue, useful for “cooking” cancer cells as a way to kill them, or even vaporize tissue, useful for...ablation- based therapies for killing cancer , or for re-opening passages within the body, for Mourad PD (2013), “Therapeutic Ultrasound, with an
Efficient structures for geosynchronous spacecraft solar arrays. Phase 1, 2 and 3
NASA Astrophysics Data System (ADS)
Adams, L. R.; Hedgepeth, J. M.
1981-09-01
Structural concepts for deploying and supporting lightweight solar-array blankets for geosynchronous electrical power are evaluated. It is recommended that the STACBEAM solar-array system should be the object of further study and detailed evaluation. The STACBEAM system provides high stiffness at low mass, and with the use of a low mass deployment mechanism, full structural properties can be maintained throughout deployment. The stowed volume of the STACBEAM is acceptably small, and its linear deployment characteristic allows periodic attachments to the solar-array blanket to be established in the stowed configuration and maintained during deployment.
Efficient structures for geosynchronous spacecraft solar arrays. Phase 1, 2 and 3
NASA Technical Reports Server (NTRS)
Adams, L. R.; Hedgepeth, J. M.
1981-01-01
Structural concepts for deploying and supporting lightweight solar-array blankets for geosynchronous electrical power are evaluated. It is recommended that the STACBEAM solar-array system should be the object of further study and detailed evaluation. The STACBEAM system provides high stiffness at low mass, and with the use of a low mass deployment mechanism, full structural properties can be maintained throughout deployment. The stowed volume of the STACBEAM is acceptably small, and its linear deployment characteristic allows periodic attachments to the solar-array blanket to be established in the stowed configuration and maintained during deployment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dennis, B.R.; Lawton, R.G.; Kolar, J.D.
The well-logging operations performed in the Miravalles Geothermal Field in Costa Rica were conducted during two separate field trips. The Phase I program provided the deployment of a suite of high-temperature borehole instruments, including the temperature/rabbit, fluid sampler, and three-arm caliper in Well PGM-3. These same tools were deployed in Well PGM-10 along with an additional survey run with a combination fluid velocity/temperature/pressure instrument used to measure thermodynamic properties under flowing well conditions. The Phase II program complemented Phase I with the suite of tools deployed in Wells PGM-5, PGM-11, and PGM-12. 4 refs., 25 figs., 1 tab.
Cheadle, Lucy; Deanes, Lauren; Sadighi, Kira; Gordon Casey, Joanna; Collier-Oxandale, Ashley; Hannigan, Michael
2017-09-10
Recent advances in air pollution sensors have led to a new wave of low-cost measurement systems that can be deployed in dense networks to capture small-scale spatio-temporal variations in ozone, a pollutant known to cause negative human health impacts. This study deployed a network of seven low-cost ozone metal oxide sensor systems (UPods) in both an open space and an urban location in Boulder, Colorado during June and July of 2015, to quantify ozone variations on spatial scales ranging from 12 m between UPods to 6.7 km between open space and urban measurement sites with a measurement uncertainty of ~5 ppb. The results showed spatial variability of ozone at both deployment sites, with the largest differences between UPod measurements occurring during the afternoons. The peak median hourly difference between UPods was 6 ppb at 1:00 p.m. at the open space site, and 11 ppb at 4:00 p.m. at the urban site. Overall, the urban ozone measurements were higher than in the open space measurements. This study evaluates the effectiveness of using low-cost sensors to capture microscale spatial and temporal variation of ozone; additionally, it highlights the importance of field calibrations and measurement uncertainty quantification when deploying low-cost sensors.
The clinical application of mobile technology to disaster medicine.
Case, Timothy; Morrison, Cecily; Vuylsteke, Alain
2012-10-01
Mobile health care technology (mHealth) has the potential to improve communication and clinical information management in disasters. This study reviews the literature on health care and computing published in the past five years to determine the types and efficacy of mobile applications available to disaster medicine, along with lessons learned. Five types of applications are identified: (1) disaster scene management; (2) remote monitoring of casualties; (3) medical image transmission (teleradiology); (4) decision support applications; and (5) field hospital information technology (IT) systems. Most projects have not yet reached the deployment stage, but evaluation exercises show that mHealth should allow faster processing and transport of patients, improved accuracy of triage and better monitoring of unattended patients at a disaster scene. Deployments of teleradiology and field hospital IT systems to disaster zones suggest that mHealth can improve resource allocation and patient care. The key problems include suitability of equipment for use in disaster zones and providing sufficient training to ensure staff familiarity with complex equipment. Future research should focus on providing unbiased observations of the use of mHealth in disaster medicine.
USDOT guidance summary for connected vehicle deployments evaluation support.
DOT National Transportation Integrated Search
2016-07-01
The document provides guidance to Pilot Deployers in the timely and successful completion of Concept DevelopmentPhase deliverables, specifically in developing the Performance Measurement and Evaluation Support Plan in Task 5,identifying evaluation-su...
Bar-On, Elhanan; Abargel, Avi; Peleg, Kobi; Kreiss, Yitshak
2013-10-01
To propose strategies and recommendations for future planning and deployment of field hospitals after earthquakes by comparing the experience of 4 field hospitals deployed by The Israel Defense Forces (IDF) Medical Corps in Armenia, Turkey, India and Haiti. Quantitative data regarding the earthquakes were collected from published sources; data regarding hospital activity were collected from IDF records; and qualitative information was obtained from structured interviews with key figures involved in the missions. The hospitals started operating between 89 and 262 hours after the earthquakes. Their sizes ranged from 25 to 72 beds, and their personnel numbered between 34 and 100. The number of patients treated varied from 1111 to 2400. The proportion of earthquake-related diagnoses ranged from 28% to 67% (P < .001), with hospitalization rates between 3% and 66% (P < .001) and surgical rates from 1% to 24% (P < .001). In spite of characteristic scenarios and injury patterns after earthquakes, patient caseload and treatment requirements varied widely. The variables affecting the patient profile most significantly were time until deployment, total number of injured, availability of adjacent medical facilities, and possibility of evacuation from the disaster area. When deploying a field hospital in the early phase after an earthquake, a wide variability in patient caseload should be anticipated. Customization is difficult due to the paucity of information. Therefore, early deployment necessitates full logistic self-sufficiency and operational versatility. Also, collaboration with local and international medical teams can greatly enhance treatment capabilities.
PAPER: The Precision Array To Probe The Epoch Of Reionization
NASA Astrophysics Data System (ADS)
Backer, Donald C.; Parsons, A.; Bradley, R.; Parashare, C.; Gugliucci, N.; Mastrantonio, E.; Herne, D.; Lynch, M.; Wright, M.; Werhimer, D.; Carilli, C.; Datta, A.; Aguirre, J.
2007-12-01
The Precision Array to Probe the Epoch of Reionization (PAPER) is an experiment that is being designed to detect the faint HI signal from the epoch of reionization. Our instrumentation goals include: the design and building of dipole elements that are optimized for operation from 120-190 MHz with a clean beam response; amplifiers and receivers with good impedance match and overall flat gain response over a large bandpass; and an FPGA correlator capable of producing full Stokes products for the array. The array is being built and evaluated in stages at the Green Bank Observatory in West Virginia with deployment of the full instrument in Western Australia. We present results from an eight-station deployment in Green Bank and four-station deployment in Western Australia, including phase and amplitude calibration, RFI mitigation and removal, full sky maps, and wide-field snapshot imaging. We have discovered new ways to improve our system's stability and sensitivity from these early experiments, and are applying these concepts to a 16-element array in Green Bank in early 2008 and a 32-element array in Western Australia later in 2008.
DOT National Transportation Integrated Search
2018-03-01
The purpose of this report is to provide a refined evaluation plan detailing the approach to be used by the Texas A&M Transportation Institute Connected Vehicle Pilot Deployment Evaluation Team for evaluating the mobility, environmental, and public a...
ATLS-stowage and deployment testing of medical supplies and pharmaceuticals
NASA Technical Reports Server (NTRS)
Gosbee, John; Benz, Darren; Lloyd, Charles W.; Bueker, Richard; Orsak, Debra
1991-01-01
The objective is to evaluate stowage and deployment methods for the Health Maintenance Facility (HMF) during microgravity. The specific objectives of this experiment are: (1) to evaluate the stowage and deployment mechanisms for the medical supplies; and (2) to evaluate the procedures for performing medical scenarios. To accomplish these objectives, the HMF test mini-racks will contain medical equipment mounted in the racks; and self-contained drawers with various mechanisms for stowing and deploying items. The medical supplies and pharmaceuticals will be destowed, handled, and restowed. The in-flight test procedures and other aspects of the KC-135 parabolic flight test to simulate weightlessness are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hurd, Alan J.
2016-04-29
While the stated reason for asking this question is “to understand better our ability to warn policy makers in the unlikely event of an unanticipated SRM geoengineering deployment or large-scale field experiment”, my colleagues and I felt that motives would be important context because the scale of any meaningful SRM deployment would be so large that covert deployment seems impossible. However, several motives emerged that suggest a less-than-global effort might be important.
Field and laboratory evaluations of soybean lines against soybean aphid (Hemiptera: Aphididae).
Hesler, Louis S; Prischmann, Deirdre A; Dashiell, Kenton E
2012-04-01
The soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is a major pest of soybean, Glycine max (L.). Merr., that significantly reduces yield in northern production areas of North America. Insecticides are widely used to control soybean aphid outbreaks, but efforts are underway to develop host plant resistance as an effective alternative management strategy. Here, previously identified resistant lines were evaluated in laboratory tests against field-collected populations of soybean aphid and in field-plot tests over 2 yr in South Dakota. Six lines previously identified with resistance to soybean aphid--Jackson, Dowling, K1639, Cobb, Palmetto and Sennari--were resistant in this study, but relatively high aphid counts on Tie-feng 8 in field plots contrasted with its previously reported resistance. Bhart-PI 165989 showed resistance in one of two laboratory tests, but it had relatively large aphid infestations in both years of field tests. Intermediate levels of soybean aphid occurred in field plots on lines previously shown to have strong (Sugao Zairai, PI 230977, and D75-10169) or moderate resistance to soybean aphid (G93-9223, Bragg, Braxton, and Tracy-M). Sugao Zairai also failed to have a significant proportion of resistant plants in two laboratory tests against aphids field-collected in 2008, but it was resistant in laboratory tests with aphids collected in 2002, 2005, and 2006. Overall, results showed that lines with Rag (i.e., Jackson) or Rag1 gene (i.e., Dowling) had low aphid numbers, whereas lines with Rag2 (i.e., Sugao Zairai, Sennari) had mixed results. Collectively, responses of soybean aphid populations in laboratory and field tests in 2008 resembled a virulence pattern reported previously for biotype 3 soybean aphids, but virulence in soybean aphid populations was variable and dynamic over years of the study. These results, coupled with previous reports of biotypes virulent to Rag1, suggest that deployment of lines with a single aphid-resistance gene is limited for soybean aphid management, and that deployment strategies relying on multiple resistance genes may be needed to effectively use plant resistance against soybean aphid.
CAIRSENSE Study: Real-world evaluation of low cost sensors ...
Low-cost air pollution sensors are a rapidly developing field in air monitoring. In recent years, numerous sensors have been developed that can provide real-time concentration data for different air pollutants at costs accessible to individuals and non-regulatory groups. Additionally, these sensors have the potential to improve the spatial resolution of monitoring networks and provide a better understanding of neighborhood- and local-scale air quality and sources. However, many new sensors have not been evaluated to determine their long-term performance and capabilities. In this study, nine different low-cost sensor models, including O3, NO2 and particle sensors, were deployed in Denver, CO from September 2015 to February 2016. Three sensors of each type were deployed to evaluate instrument precision and consistency over the time period. Sensors were co-located with reference monitors at the Denver NCore site in order to evaluate sensor accuracy and precision. Denver was chosen as the location for this study to evaluate sensor performance in dry, high altitude, and low winter temperatures. Sensors were evaluated for data completeness, performance over time, and comparison with regulatory monitors. This presentation will also address challenges and approaches to data logging and processing. Preliminary analysis revealed that most sensors had high data completeness when data loggers were operational (e.g., the Aeroqual O3 sensor ranged from 94-100%), and exhibited
Pulmonary Function and Respiratory Health of Military Personnel Before Southwest Asia Deployment.
Skabelund, Andrew J; Rawlins, Frederic A; McCann, Edward T; Lospinoso, Joshua A; Burroughs, Lorraine; Gallup, Roger A; Morris, Michael J
2017-09-01
Significant concern exists regarding the respiratory health of military personnel deployed to Southwest Asia, given their exposures to numerous environmental hazards. Although the deployed military force is generally assumed to be fit, the pre-deployment respiratory health of these individuals is largely unknown. Soldiers deploying to Southwest Asia were recruited from the pre-deployment processing center at Fort Hood, Texas. Participants completed a general and respiratory health questionnaire and performed baseline spirometry. One thousand six hundred ninety-three pre-deployment evaluations were completed. The average age of the participants was 32.2 y, and 83.1% were male. More than one third of surveyed solders had a smoking history, 73% were overweight or obese, and 6.2% reported a history of asthma. Abnormal spirometry was found in 22.3% of participants. Soldiers with abnormal spirometry reported more asthma (10.1% vs 5.1%, P < .001), failed physical fitness tests (9.0% vs 4.6%, P = .02), and respiratory symptoms (32.8% vs 24.3%, P = .001). This is the first prospective pre-deployment evaluation of military personnel that delineates factors potentially associated with the development of pulmonary symptoms and/or disease. This study suggests that deploying soldiers are older, heavier, frequently smoke, and may have undiagnosed pre-deployment lung disease. Abnormal spirometry is common but may not represent underlying disease. Self-reported asthma, wheezing, and slower 2-mile run times were predictive of abnormal spirometry. Pre-deployment evaluation of military personnel identified numerous soldiers with active pulmonary symptoms and abnormal spirometry. When combined with questions regarding asthma history, wheezing and exercise intolerance, spirometry may identify individuals at risk for deployment-related respiratory complaints. Copyright © 2017 by Daedalus Enterprises.
Availability Issues in Wireless Visual Sensor Networks
Costa, Daniel G.; Silva, Ivanovitch; Guedes, Luiz Affonso; Vasques, Francisco; Portugal, Paulo
2014-01-01
Wireless visual sensor networks have been considered for a large set of monitoring applications related with surveillance, tracking and multipurpose visual monitoring. When sensors are deployed over a monitored field, permanent faults may happen during the network lifetime, reducing the monitoring quality or rendering parts or the entire network unavailable. In a different way from scalar sensor networks, camera-enabled sensors collect information following a directional sensing model, which changes the notions of vicinity and redundancy. Moreover, visual source nodes may have different relevancies for the applications, according to the monitoring requirements and cameras' poses. In this paper we discuss the most relevant availability issues related to wireless visual sensor networks, addressing availability evaluation and enhancement. Such discussions are valuable when designing, deploying and managing wireless visual sensor networks, bringing significant contributions to these networks. PMID:24526301
2007-12-01
electromagnetic theory related to RFID in his works “ Field measurements using active scatterers” and “Theory of loaded scatterers”. At the same time...Business Case Analysis BRE: Bangor Radio Frequency Evaluation C4ISR: Command, Control, Communications, Computers, Intelligence, Surveillance...Surveillance EEDSKs: Early Entry Deployment Support Kits EHF: Extremely High Frequency xvi EUCOM: European Command FCC : Federal Communications
2013-12-01
effectors (deployed on ground based or aerial platforms) to detect , identify, locate, track or suppress stationary or slow moving surface based RF...ground based or aerial platforms) to detect , identify, locate, track or suppress stationary or slow moving surface based RF emitting targets. In the...Electronic Support EO Electro-Optic FPGAs Field Programmable Gate Arrays IR Infra-red LADAR Laser Detection and Ranging OSX Mac OS X; the apple
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skees, J.L.; Middlebrook, M.L.; Anthony, W.L.
1997-01-01
The objective of this program is to transfer the core GRI advanced stimulation technologies to Sonat Exploration Company for their continued use upon completion of the program. The methodology to accomplish the objective included seminars and training schools, offset well baseline analysis, fracture treatment design optimization, real-time and post-fracture treatment evaluation and documentation of economic benefits.
NASA Technical Reports Server (NTRS)
Oubre, Cherie; Khodadad, Christina; Castro, Victoria; Ott, Mark; Pollack, Lawrence; Roman, Monsi
2017-01-01
The RAZOR EX (Registered Trademark) PCR unit was initially developed by the DoD as part of an SBIR project to detect and identify biothreats during field deployment. The system was evaluated by NASA as a commercial technology for future microbial monitoring requirements and has been successfully demonstrated in microgravity on-board the International Space Station.
Lewis, Suzanna M.; Lansley, Amber; Fraser, Sara; Shieber, Clare; Shah, Sonal; Semper, Amanda; Bailey, Daniel; Busuttil, Jason; Evans, Liz; Carroll, Miles W.; Silman, Nigel J.; Brooks, Tim; Shallcross, Jane A.
2017-01-01
As part of the UK response to the 2013–2016 Ebola virus disease (EVD) epidemic in West Africa, Public Health England (PHE) were tasked with establishing three field Ebola virus (EBOV) diagnostic laboratories in Sierra Leone by the UK Department for International Development (DFID). These provided diagnostic support to the Ebola Treatment Centre (ETC) facilities located in Kerry Town, Makeni and Port Loko. The Novel and Dangerous Pathogens (NADP) Training group at PHE, Porton Down, designed and implemented a pre-deployment Ebola diagnostic laboratory training programme for UK volunteer scientists being deployed to the PHE EVD laboratories. Here, we describe the training, workflow and capabilities of these field laboratories for use in response to disease epidemics and in epidemiological surveillance. We discuss the training outcomes, the laboratory outputs, lessons learned and the legacy value of the support provided. We hope this information will assist in the recruitment and training of staff for future responses and in the design and implementation of rapid deployment diagnostic field laboratories for future outbreaks of high consequence pathogens. This article is part of the themed issue ‘The 2013–2016 West African Ebola epidemic: data, decision-making and disease control’. PMID:28396470
Evaluation of thermal and non-thermal effects of UHF RFID exposure on biological drugs.
Calcagnini, Giovanni; Censi, Federica; Maffia, Michele; Mainetti, Luca; Mattei, Eugenio; Patrono, Luigi; Urso, Emanuela
2012-11-01
The Radio Frequency Identification (RFID) technology promises to improve several processes in the healthcare scenario, especially those related to traceability of people and things. Unfortunately, there are still some barriers limiting the large-scale deployment of these innovative technologies in the healthcare field. Among these, the evaluation of potential thermal and non-thermal effects due to the exposure of biopharmaceutical products to electromagnetic fields is very challenging, but still slightly investigated. This paper aims to setup a controlled RF exposure environment, in order to reproduce a worst-case exposure of pharmaceutical products to the electromagnetic fields generated by the UHF RFID devices placed along the supply chain. Radiated powers several times higher than recommended by current normative limits were applied (10 W and 20 W). The electric field strength at the exposed sample location, used in tests, was as high as 100 V/m. Non-thermal effects were evaluated by chromatography techniques and in vitro assays. The results obtained for a particular case study, the ActrapidTM human insulin preparation, showed temperature increases lower than 0.5 °C and no significant changes in the structure and performance of the considered drug.
Upper Ocean Momentum Response to Hurricane Forcing
NASA Astrophysics Data System (ADS)
Shay, L. K.; Jaimes de la Cruz, B.; Uhlhorn, E.
2016-02-01
The oceanic velocity response of the Loop Current (LC) and its complex warm and cold eddy field to hurricanes is critical to evaluate coupled operational forecast models. Direct velocity measurements of ocean current (including temperature and salinity) fields during hurricanes are needed to understand these complex interaction processes. As part of NOAA Intensity Forecasting Experiments, airborne expendable bathythermographs (AXBT), Conductivity-Temperature-Depth (AXCTD), and Current Profilers (AXCP) probes have been deployed in several major hurricanes from the NOAA research aircraft over the Gulf. Over the last decade, profilers were deployed in Isidore and Lili, Katrina and Rita, Gustav and Ike and Isaac-all of which interacted with the LC and warm eddy field. Central to these interactions under hurricane forcing is the level of sea surface cooling (typically about 1oC) induced by the wind-forced current response in the LC complex. Vertical current shear and instability (e.g., Richardson number) at the base of the oceanic mixed layer is often arrested by the strong upper ocean currents associated with the LC of 1 to 1.5 m s-1. By contrast, the SST cooling response often exceeds 3.5 to 4oC away from the LC complex in the Gulf Common Water. A second aspect of the interaction between the surface wind field and the LC is that the vorticity of the background flows (based on altimetry) enhances upwelling and downwelling processes by projecting onto the wind stress. This process modulates vertical mixing process at depth by keeping the Richardson numbers above criticality. Thus, the ocean cooling is less in the LC complex allowing for a higher and more sustained enthalpy flux as determined from global positioning system sondes deployed in these storms. This level of cooling (or lack thereof) in the LC complex significant impacts hurricane intensity that often reaches severe status which affects offshore structures and coastal communities at landfall in the northern Gulf of Mexico.
Cappelle, J.; Iverson, S.A.; Takekawa, John Y.; Newman, S.H.; Dodman, T.; Gaidet, N.
2011-01-01
We provide recommendations for implementing telemetry studies on waterfowl on the basis of our experience in a tracking study conducted in three countries of sub-Saharan Africa. The aim of the study was to document movements by duck species identified as priority candidates for the potential spread of avian influenza. Our study design included both captive and field test components on four wild duck species (Garganey, Comb Duck, White-faced Duck and Fulvous Duck). We used our location data to evaluate marking success and determine when signal loss occurred. The captive study of eight ducks marked with non-working transmitters in a zoo in Montpellier, France, prior to fieldwork showed no evidence of adverse effects, and the harness design appeared to work well. The field study in Malawi, Nigeria and Mali started in 2007 on 2 February, 6 February and 14 February, and ended on 22 November 2007 (288 d), 20 January 2010 (1 079 d), and 3 November 2008 (628 d), respectively. The field study indicated that 38 of 47 (81%) of the platform transmitter terminals (PTTs) kept transmitting after initial deployment, and the transmitters provided 15 576 locations. Signal loss during the field study was attributed to three main causes: PTT loss, PTT failure and mortality (natural, human-caused and PTT-related). The PTT signal quality varied by geographic region, and interference caused signal loss in the Mediterranean Sea region. We recommend careful attention at the beginning of the study to determine the optimum timing of transmitter deployment and the number of transmitters to be deployed per species. These sample sizes should be calculated by taking into account region-specific causes of signal loss to ensure research objectives are met. These recommendations should be useful for researchers undertaking a satellite tracking program, especially when working in remote areas of Africa where logistics are difficult or with poorly-known species. ?? NISC (Pty) Ltd.
NASA Technical Reports Server (NTRS)
Billica, Roger; Krupa, Debra T.; Stonestreet, Robert; Kizzee, Victor D.
1991-01-01
The purpose is to investigate and demonstrate equipment and techniques proposed for minor surgery on Space Station Freedom (SSF). The objectives are: (1) to test and evaluate methods of surgical instrument packaging and deployment; (2) to test and evaluate methods of surgical site preparation and draping; (3) to evaluate techniques of sterile procedure and maintaining sterile field; (4) to evaluate methods of trash management during medical/surgical procedures; and (4) to gain experience in techniques for performing surgery in microgravity. A KC-135 parabolic flight test was performed on March 30, 1990 with the goal of investigating and demonstrating surgical equipment and techniques under consideration for use on SSF. The flight followed the standard 40 parabola profile with 20 to 25 seconds of near-zero gravity in each parabola.
Harbour surveillance with cameras calibrated with AIS data
NASA Astrophysics Data System (ADS)
Palmieri, F. A. N.; Castaldo, F.; Marino, G.
The inexpensive availability of surveillance cameras, easily connected in network configurations, suggests the deployment of this additional sensor modality in port surveillance. Vessels appearing within cameras fields of view can be recognized and localized providing to fusion centers information that can be added to data coming from Radar, Lidar, AIS, etc. Camera systems, that are used as localizers however, must be properly calibrated in changing scenarios where often there is limited choice on the position on which they are deployed. Automatic Identification System (AIS) data, that includes position, course and vessel's identity, freely available through inexpensive receivers, for some of the vessels appearing within the field of view, provide the opportunity to achieve proper camera calibration to be used for the localization of vessels not equipped with AIS transponders. In this paper we assume a pinhole model for camera geometry and propose perspective matrices computation using AIS positional data. Images obtained from calibrated cameras are then matched and pixel association is utilized for other vessel's localization. We report preliminary experimental results of calibration and localization using two cameras deployed on the Gulf of Naples coastline. The two cameras overlook a section of the harbour and record short video sequences that are synchronized offline with AIS positional information of easily-identified passenger ships. Other small vessels, not equipped with AIS transponders, are localized using camera matrices and pixel matching. Localization accuracy is experimentally evaluated as a function of target distance from the sensors.
On the feasibility of measuring urban air pollution by wireless distributed sensor networks.
Moltchanov, Sharon; Levy, Ilan; Etzion, Yael; Lerner, Uri; Broday, David M; Fishbain, Barak
2015-01-01
Accurate evaluation of air pollution on human-wellbeing requires high-resolution measurements. Standard air quality monitoring stations provide accurate pollution levels but due to their sparse distribution they cannot capture the highly resolved spatial variations within cities. Similarly, dedicated field campaigns can use tens of measurement devices and obtain highly dense spatial coverage but normally deployment has been limited to short periods of no more than few weeks. Nowadays, advances in communication and sensory technologies enable the deployment of dense grids of wireless distributed air monitoring nodes, yet their sensor ability to capture the spatiotemporal pollutant variability at the sub-neighborhood scale has never been thoroughly tested. This study reports ambient measurements of gaseous air pollutants by a network of six wireless multi-sensor miniature nodes that have been deployed in three urban sites, about 150 m apart. We demonstrate the network's capability to capture spatiotemporal concentration variations at an exceptional fine resolution but highlight the need for a frequent in-situ calibration to maintain the consistency of some sensors. Accordingly, a procedure for a field calibration is proposed and shown to improve the system's performance. Overall, our results support the compatibility of wireless distributed sensor networks for measuring urban air pollution at a sub-neighborhood spatial resolution, which suits the requirement for highly spatiotemporal resolved measurements at the breathing-height when assessing exposure to urban air pollution. Copyright © 2014 Elsevier B.V. All rights reserved.
Goldmann, Emily; Calabrese, Joseph R; Prescott, Marta R; Tamburrino, Marijo; Liberzon, Israel; Slembarski, Renee; Shirley, Edwin; Fine, Thomas; Goto, Toyomi; Wilson, Kimberly; Ganocy, Stephen; Chan, Philip; Serrano, Mary Beth; Sizemore, James; Galea, Sandro
2012-02-01
To evaluate potentially modifiable deployment characteristics-- predeployment preparedness, unit support during deployment, and postdeployment support-that may be associated with deployment-related posttraumatic stress disorder (PTSD). We recruited a sample of 2616 Ohio Army National Guard (OHARNG) soldiers and conducted structured interviews to assess traumatic event exposure and PTSD related to the soldiers' most recent deployment, consistent with DSM-IV criteria. We assessed preparedness, unit support, and postdeployment support by using multimeasure scales adapted from the Deployment Risk and Resilience Survey. The prevalence of deployment-related PTSD was 9.6%. In adjusted logistic models, high levels of all three deployment characteristics (compared with low) were independently associated with lower odds of PTSD. When we evaluated the influence of combinations of deployment characteristics on the development of PTSD, we found that postdeployment support was an essential factor in the prevention of PTSD. Results show that factors throughout the life course of deployment-in particular, postdeployment support-may influence the development of PTSD. These results suggest that the development of suitable postdeployment support opportunities may be centrally important in mitigating the psychological consequences of war. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Arias, E. Y.; Beaudoin, B. C.; Barstow, N.; Slad, G.
2010-12-01
IRIS PASSCAL supported a NSF-funded project to collect an open community dataset from a portable seismograph deployment following the magnitude 8.8 earthquake that occurred off the coast of Chile on February 27, 2010 (an experiment of the Rapid Array Mobilization Program - RAMP). In part, due to logistical constraints, the broadband sensors (Guralp CMG3T) for this deployment were buried directly in soil. Direct burial refers to installation of a broadband sensor in a small hand-dug hole, encased in plastic bags, and ideally backfilled with well tamped and dampened sand. Field conditions did not provide ideal installations in all cases. Because of the variability in actual installation practices, the Chile RAMP data provide an opportunity to examine the impact of several factors on the direct burial data quality. Using McNamara and Boaz (2005) PQLX statistical analysis software, which calculates the power spectral density (PSD) and plots the probability density function (PDF)(McNamara and Buland, 2004), we characterize the background seismic noise levels and signal quality for 58 directly buried installations at the Chile RAMP. Data return and data quality during the deployment (April -September 2010) will be evaluated considering a variety of parameters including installation technique, site characteristics, and equipment performance. Preliminary results using data from two service runs (April - June), suggest variation in the data quality and recovery due to slightly different installation practices and/or possibly environmental factors. We seek to evaluate and characterize parameters that affect the resulting data recovery and their quality; this study is an important test case for future PASSCAL and RAMP installations. If possible we would like to compare data from other local networks to identify distinctive characteristics from different installation set-ups.
Cremers, David A; Beddingfield, Alan; Smithwick, Robert; Chinni, Rosemarie C; Jones, C Randy; Beardsley, Burt; Karch, Larry
2012-03-01
The development of field-deployable instruments to monitor radiological, nuclear, and explosive (RNE) threats is of current interest for a number of assessment needs such as the on-site screening of suspect facilities and nuclear forensics. The presence of uranium and plutonium and radiological materials can be determined through monitoring the elemental emission spectrum using relatively low-resolution spectrometers. In addition, uranium compounds, explosives, and chemicals used in nuclear fuel processing (e.g., tributyl-phosphate) can be identified by applying chemometric analysis to the laser-induced breakdown (LIBS) spectrum recorded by these spectrometers. For nuclear forensic applications, however, isotopes of U and Pu and other elements (e.g., H and Li) must also be determined, requiring higher resolution spectrometers given the small magnitude of the isotope shifts for some of these elements (e.g., 25 pm for U and 13 pm for Pu). High-resolution spectrometers will be preferred for several reasons but these must fit into realistic field-based analysis scenarios. To address the need for field instrumentation, we evaluated a previously developed field-deployable hand-held LIBS interrogation probe combined with two relatively new high-resolution spectrometers (λ/Δλ ~75,000 and ~44,000) that have the potential to meet field-based analysis needs. These spectrometers are significantly smaller and lighter in weight than those previously used for isotopic analysis and one unit can provide simultaneous wide spectral coverage and high resolution in a relatively small package. The LIBS interrogation probe was developed initially for use with low resolution compact spectrometers in a person-portable backpack LIBS instrument. Here we present the results of an evaluation of the LIBS probe combined with a high-resolution spectrometer and demonstrate rapid detection of isotopes of uranium and hydrogen and highly enriched samples of (6)Li and (7)Li. © 2012 Society for Applied Spectroscopy
Mechanism Design Principle for Optical-Precision, Deployable Instruments
NASA Technical Reports Server (NTRS)
Lake, Mark S.; Hachkowski, M. Roman
2000-01-01
The present paper is intended to be a guide for the design of 'microdynamically quiet' deployment mechanisms for optical-precision structures, such as deployable telescope mirrors and optical benches. Many of the guidelines included herein come directly from the field of optomechanical engineering, and are neither newly developed guidelines nor are they uniquely applicable to high-precision deployment mechanisms. However, the application of these guidelines to the design of deployment mechanisms is a rather new practice, so efforts are made herein to illustrate the process through the discussion of specific examples. The present paper summarizes a more extensive set of design guidelines for optical-precision mechanisms that are under development.
Rapidly deployable emergency communication system
Gladden, Charles A.; Parelman, Martin H.
1979-01-01
A highly versatile, highly portable emergency communication system which permits deployment in a very short time to cover both wide areas and distant isolated areas depending upon mission requirements. The system employs a plurality of lightweight, fully self-contained repeaters which are deployed within the mission area to provide communication between field teams, and between each field team and a mobile communication control center. Each repeater contains a microcomputer controller, the program for which may be changed from the control center by the transmission of digital data within the audible range (300-3,000 Hz). Repeaters are accessed by portable/mobile transceivers, other repeaters, and the control center through the transmission and recognition of digital data code words in the subaudible range.
Wozniak, Edward J; Wisser, John; Schwartz, Michael
2006-01-01
Each hurricane season, emergency-preparedness deployment teams including but not limited to the Office of Force Readiness and Deployment of the US Public Health Service, Federal Emergency Management Agency, Deployment Medical Assistance Teams, Veterinary Medical Assistance Teams, and the US Army and Air Force National Guard are at risk for deploying into hurricane-stricken areas that harbor indigenous hazards, including those posed by venomous snakes. North America is home to 2 distinct families of venomous snakes: 1) Viperidae, which includes the rattlesnakes, copperheads, and cottonmouths; and 2) Elapidae, in which the only native species are the coral snakes. Although some of these snakes are easily identified, some are not, and many rank among the most feared and misunderstood animals. This article specifically addresses all the native species of venomous snakes that inhabit the hurricane-prone regions of North America and is intended to serve as a reference to snake identification, basic field safety procedures, and the currently recommended first-aid measures for snakebite casualties.
Military Service, Deployments, and Exposures in Relation to Amyotrophic Lateral Sclerosis Etiology
Beard, John D.; Engel, Lawrence S.; Richardson, David B.; Gammon, Marilie D.; Baird, Coleen; Umbach, David M.; Allen, Kelli D.; Stanwyck, Catherine L.; Keller, Jean; Sandler, Dale P.; Schmidt, Silke; Kamel, Freya
2016-01-01
Background Factors underlying a possible excess of amyotrophic lateral sclerosis (ALS) among military veterans remain unidentified. Limitations of previous studies on this topic include reliance on ALS mortality as a surrogate for ALS incidence, low statistical power, and sparse information on military-related factors. Objectives We evaluated associations between military-related factors and ALS using data from a case-control study of U.S. military veterans. Methods From 2005 to 2010, we identified medical record-confirmed ALS cases via the National Registry of Veterans with ALS and controls via the Veterans Benefits Administration’s Beneficiary Identification and Records Locator System database. In total, we enrolled 621 cases and 958 frequency-matched controls in the Genes and Environmental Exposures in Veterans with Amyotrophic Lateral Sclerosis study. We collected information on military service and deployments and 39 related exposures. We used unconditional logistic regression models to estimate odds ratios (ORs) and 95% confidence intervals (CIs). We used inverse probability weighting to adjust for potential bias from confounding, missing covariate data, and selection arising from a case group that disproportionately included long-term survivors and a control group that may or may not differ from U.S. military veterans at large. Results The odds of ALS did not differ for veterans of the Air Force, Army, Marines, and Navy. We found higher odds of ALS for veterans whose longest deployment was World War II or the Korean War and a positive trend with total years of all deployments (OR = 1.27; 95% CI: 1.06, 1.52). ALS was positively associated with exposure to herbicides for military purposes, nasopharyngeal radium, personal pesticides, exhaust from heaters or generators, high-intensity radar waves, contaminated food, explosions within one mile, herbicides in the field, mixing and application of burning agents, burning agents in the field, and Agent Orange in the field, with ORs between 1.50 and 7.75. Conclusions Although our results need confirmation, they are potentially important given the large number of U.S. military veterans, and they provide clues to potential factors underlying the apparent increase of ALS in veteran populations. PMID:26923711
Military service, deployments, and exposures in relation to amyotrophic lateral sclerosis etiology.
Beard, John D; Engel, Lawrence S; Richardson, David B; Gammon, Marilie D; Baird, Coleen; Umbach, David M; Allen, Kelli D; Stanwyck, Catherine L; Keller, Jean; Sandler, Dale P; Schmidt, Silke; Kamel, Freya
2016-05-01
Factors underlying a possible excess of amyotrophic lateral sclerosis (ALS) among military veterans remain unidentified. Limitations of previous studies on this topic include reliance on ALS mortality as a surrogate for ALS incidence, low statistical power, and sparse information on military-related factors. We evaluated associations between military-related factors and ALS using data from a case-control study of U.S. military veterans. From 2005 to 2010, we identified medical record-confirmed ALS cases via the National Registry of Veterans with ALS and controls via the Veterans Benefits Administration's Beneficiary Identification and Records Locator System database. In total, we enrolled 621 cases and 958 frequency-matched controls in the Genes and Environmental Exposures in Veterans with Amyotrophic Lateral Sclerosis study. We collected information on military service and deployments and 39 related exposures. We used unconditional logistic regression models to estimate odds ratios (ORs) and 95% confidence intervals (CIs). We used inverse probability weighting to adjust for potential bias from confounding, missing covariate data, and selection arising from a case group that disproportionately included long-term survivors and a control group that may or may not differ from U.S. military veterans at large. The odds of ALS did not differ for veterans of the Air Force, Army, Marines, and Navy. We found higher odds of ALS for veterans whose longest deployment was World War II or the Korean War and a positive trend with total years of all deployments (OR=1.27; 95% CI: 1.06, 1.52). ALS was positively associated with exposure to herbicides for military purposes, nasopharyngeal radium, personal pesticides, exhaust from heaters or generators, high-intensity radar waves, contaminated food, explosions within one mile, herbicides in the field, mixing and application of burning agents, burning agents in the field, and Agent Orange in the field, with ORs between 1.50 and 7.75. Although our results need confirmation, they are potentially important given the large number of U.S. military veterans, and they provide clues to potential factors underlying the apparent increase of ALS in veteran populations. Published by Elsevier Ltd.
Market Transformation | Hydrogen and Fuel Cells | NREL
deployment sites Develop techno-economic assessment tools, deployment tools, and business cases for various fuel cell applications Collect and evaluate data from deployment projects to verify the business cases
Performance of 3-Component Nodes in the IRIS Community Wavefield Demonstration Experiment
NASA Astrophysics Data System (ADS)
Sweet, J. R.; Anderson, K. R.; Woodward, R.
2017-12-01
In June 2016, a field crew of 50 students, faculty, industry personnel, and IRIS staff deployed a total of 390 stations as part of a community seismic experiment above an active seismic lineament in north-central Oklahoma. The goals of the experiment were to test new instrumentation and deployment strategies that record the full seismic wavefield, and to advance understanding of earthquake source processes and regional lithospheric structure. The crew deployed 363 3-component, 5Hz Generation 2 Fairfield Z-Land nodes along three seismic lines and in a seven-layer nested gradiometer array. The seismic lines spanned a region 13 km long by 5 km wide. A broadband, 18 station "Golay 3x6" array with an aperture of approximately 5 km was deployed around the gradiometer and seismic lines to collect waveform data from local and regional events. In addition, 9 infrasound stations were deployed in order to capture and identify acoustic events that might be recorded by the seismic array. The variety and geometry of instrumentation deployed was intended to capture the full seismic wavefield generated by the local and regional seismicity beneath the array and the surrounding region. Additional details on the instrumentation and how it was deployed can be found by visiting our website www.iris.edu/wavefields. We present a detailed analysis of noise across the array—including station performance, as well as noise from nearby sources (wind turbines, automobiles, etc.). We report a clear reduction in noise for buried 3-component nodes compared to co-located surface nodes (see Figure). Using the IRIS DMC's ISPAQ client, we present a variety of metrics to evaluate the network's performance. We also present highlights from student projects at the recently-held IRIS advanced data processing short course, which focused on analyzing the wavefield dataset using array processing techniques.
NEW Manning System Field Evaluation
1986-12-15
M’xzimum 200 wor(ds) 14 . SUBJECT TERMS 15. NUMBER OF PAGES 16. PRICE COf 17. SECURITY CLASSIFI.ATION 18. SEC.URITY CLASSIFIC,,TIO 19 SECURITY...three- year life cycle geared to the fLrst-term soldIer’s enlistment. tn the majority or cases, these units were deployed OCONUS for a part of the unit’s...soldiers of selected COHORT and monCO9ORT battalions and companies/batterles )oth in CONUS and USARSUR (five iterations over three years ). The primary
Towards a theory of PACS deployment: an integrative PACS maturity framework.
van de Wetering, Rogier; Batenburg, Ronald
2014-06-01
Owing to large financial investments that go along with the picture archiving and communication system (PACS) deployments and inconsistent PACS performance evaluations, there is a pressing need for a better understanding of the implications of PACS deployment in hospitals. We claim that there is a gap in the research field, both theoretically and empirically, to explain the success of the PACS deployment and maturity in hospitals. Theoretical principles are relevant to the PACS performance; maturity and alignment are reviewed from a system and complexity perspective. A conceptual model to explain the PACS performance and a set of testable hypotheses are then developed. Then, structural equation modeling (SEM), i.e. causal modeling, is applied to validate the model and hypotheses based on a research sample of 64 hospitals that use PACS, i.e. 70 % of all hospitals in the Netherlands. Outcomes of the SEM analyses substantiate that the measurements of all constructs are reliable and valid. The PACS alignment-modeled as a higher-order construct of five complementary organizational dimensions and maturity levels-has a significant positive impact on the PACS performance. This result is robust and stable for various sub-samples and segments. This paper presents a conceptual model that explains how alignment in deploying PACS in hospitals is positively related to the perceived performance of PACS. The conceptual model is extended with tools as checklists to systematically identify the improvement areas for hospitals in the PACS domain. The holistic approach towards PACS alignment and maturity provides a framework for clinical practice.
Whitten, Pamela; Holtz, Bree; Laplante, Carolyn; Alverson, Dale; Krupinski, Elizabeth
2010-12-01
the goal of this study was to provide an independent and objective evaluation of the implementation of the Federal Communications Commission's Rural Health Care Pilot Program. thirty-nine of the programs that were provided funding through this program were interviewed and asked about their project deployment, network planning, and the involvement of their state in implementation. RESULTS showed that programs recruited project team members from a variety of fields to fulfill different roles. Network partners were often chosen because they were stakeholders in the outcome of the project and because they had a past working relationship with the grant-receiving programs. In terms of deployment, many programs had made progress in filling out necessary paperwork and were tracking milestones, but had experienced changes since first receiving funding, such as losing participants. Additionally, many encountered challenges that inhibited deployment, such as coping with rule fluctuations. Many of the programs received support from their respective state governments in project development, often through matching funds, but few states were involved in the actual management of projects. as rural healthcare facilities often lack the information technology infrastructure compared with many urban facilities, it is important to understand the implementation process for programs such as the Rural Health Care Pilot Program and to examine what contributes to progress, stagnation, or disintegration. Although the programs reported some success, almost all had encountered challenges that inhibited implementation. A follow-up study is planned to further investigate deployment and determine the implications of Federal Communications Commission funding.
Successful approaches to deploying a Metropolitan Intelligent Transportation System.
DOT National Transportation Integrated Search
1999-03-01
To identify and evaluate the institutional structures and working relationships associated with the deployment and integration of Intelligent Transportation Systems (ITS) products and services at the Model Deployment Initiatives (MDIs), the Volpe Cen...
NASA Technical Reports Server (NTRS)
1982-01-01
Design and test data for packaging, deploying, and assembling structures for near term space platform systems, were provided by testing light type hardware in the Neutral Buoyancy Simulator. An optimum or near optimum structural configuration for varying degrees of deployment utilizing different levels of EVA and RMS was achieved. The design of joints and connectors and their lock/release mechanisms were refined to improve performance and operational convenience. The incorporation of utilities into structural modules to determine their effects on packaging and deployment was evaluated. By simulation tests, data was obtained for stowage, deployment, and assembly of the final structural system design to determine construction timelines, and evaluate system functioning and techniques.
McChesney, Patrick J.; Couchman, Marvin R.; Moran, Seth C.; Lockhart, Andrew B.; Swinford, Kelly J.; LaHusen, Richard G.; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.
2008-01-01
The instruments in place at the start of volcanic unrest at Mount St. Helens in 2004 were inadequate to record the large earthquakes and monitor the explosions that occurred as the eruption developed. To remedy this, new instruments were deployed and the short-period seismic network was modified. A new method of establishing near-field seismic monitoring was developed, using remote deployment by helicopter. The remotely deployed seismic sensor was a piezoelectric accelerometer mounted on a surface-coupled platform. Remote deployment enabled placement of stations within 250 m of the active vent.
Army Logistician. Volume 38, Issue 3, May-June 2006
2006-06-01
that are deployed or preparing to deploy and those in the process of transforming to a modular design find it difficult to keep abreast of emerging...The Air Force and the Marine Corps have well-defined and -established career fields in con- tracting for their NCOs. Now the Army is developing ...How will field -grade officers in a BCT be developed as logistics officers? How will CSS company commanders be developed ? Will there be a female
1997-09-30
field experiments in Puget Sound . Each research vessel will use multi- sensor profiling instrument packages which obtain high-resolution physical...field deployment of the wireless network is planned for May-July, 1998, at Orcas Island, WA. IMPACT We expect that wireless communication systems will...East Sound project to be a first step toward continental shelf and open ocean deployments with the next generation of wireless and satellite
Benefit-cost evaluation of ITS projects : benefit-cost summary
DOT National Transportation Integrated Search
2000-10-01
Over 60 individual ITS projects were defined in four "model" cities for purposes of conducting benefit-cost evalations of deployments under the USDOT's Metrolpolitan Model Deployment Initiative (MMDI). The federal government provided funds for deploy...
Home Energy Displays: Consumer Adoption and Response
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaMarche, J.; Cheney, K.; Akers, C.
2012-12-01
The focus of this project was to investigate the factors influencing consumer adoption of Home Energy Displays (HEDs) and to evaluate electricity consumption in households with basic HEDs versus enhanced feedback methods - web portals or alerts. We hypothesized that providing flexible and relatable information to users, in addition to a basic HED, would make feedback more effective and achieve persistent energy savings. In Phase I, we conducted three user research studies and found preferences for aesthetically pleasing, easy to understand feedback that is accessible through multiple media and offered free of charge. The deployment of HEDs in 150 householdsmore » planned for Phase II encountered major recruitment and HED field deployment problems. First, after extensive outreach campaigns to apartment complexes with 760 units, only 8% of building's tenants elected to receive a free HED in their homes as part of the field study. Second, the HED used, a leading market model, had a spectrum of problems, including gateway miscommunications, failure to post to a data-hosting third party, and display malfunctions. In light of these challenges, we are pursuing a modified study investigating the energy savings of a web portal versus alert-based energy feedback instead of a physical HED.« less
Sea WiFS Postlaunch Technical Report Series. Volume 8; The SeaBOARR-99 Field Campaign
NASA Technical Reports Server (NTRS)
Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Lazin, Gordana (Editor)
2000-01-01
This report documents the scientific activities during the second Sea-viewing Wide Field-of-view Sensor (Sea- WIFS) Bio-Optical Algorithm Round-Robin (SeaBOARR-99) field campaign, which took place from 2 May to 7 June 1999 on board the Royal Research Ship James Clark Ross during the eighth Atlantic Meridional Transect cruise (AMT-8). The ultimate objective of the SeaBOARR activity is to evaluate the effect of different measurement protocols on bio-optical algorithms using data from a variety of field campaigns. The SeaBOARR-99 field campaign was concerned with collecting a high quality data set of simultaneous in-water and above-water radiometric measurements. The deployment goals documented in this report were to: a) use four different surface glint correction methods to compute water-leaving radiances, Lw(lambda), from above-water data; b) use two different in-water profiling systems and three different methods to compute Lw(lambda) from in-water data; c) use instruments with a common calibration history to minimize intercalibration uncertainties; d) monitor the calibration stability of the instruments in the field with the original SeaWiFS Quality Monitor (SQM) and a commercial, second-generation device called the SQM-II, thereby allowing a distinction between differences in methods from changes in instrument performance; and e) compare the Lw(lambda) values estimated from the above- water and in- water measurements. In addition to describing the instruments deployed and the data collected, a preliminary analysis of part of the SeaBOARR-99 data set is presented (using only the data collected during clear sky, calm sea, and Case-I waters).
Development of a ROV Deployed Video Analysis Tool for Rapid Measurement of Submerged Oil/Gas Leaks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Savas, Omer
Expanded deep sea drilling around the globe makes it necessary to have readily available tools to quickly and accurately measure discharge rates from accidental submerged oil/gas leak jets for the first responders to deploy adequate resources for containment. We have developed and tested a field deployable video analysis software package which is able to provide in the field sufficiently accurate flow rate estimates for initial responders in accidental oil discharges in submarine operations. The essence of our approach is based on tracking coherent features at the interface in the near field of immiscible turbulent jets. The software package, UCB_Plume, ismore » ready to be used by the first responders for field implementation. We have tested the tool on submerged water and oil jets which are made visible using fluorescent dyes. We have been able to estimate the discharge rate within 20% accuracy. A high end WINDOWS laptop computer is suggested as the operating platform and a USB connected high speed, high resolution monochrome camera as the imaging device are sufficient for acquiring flow images under continuous unidirectional illumination and running the software in the field. Results are obtained over a matter of minutes.« less
Cho, Yeo-Myoung; Ghosh, Upal; Kennedy, Alan J; Grossman, Adam; Ray, Gary; Tomaszewski, Jeanne E; Smithenry, Dennis W; Bridges, Todd S; Luthy, Richard G
2009-05-15
We report results on the first field-scale application of activated carbon (AC) amendment to contaminated sediment for in-situ stabilization of polychlorinated biphenyls (PCBs). The test was performed on a tidal mud flat at South Basin, adjacent to the former Hunters Point Naval Shipyard, San Francisco Bay, CA. The major goals of the field study were to (1) assess scale up of the AC mixing technology using two available, large-scale devices, (2) validate the effectiveness of the AC amendment at the field scale, and (3) identify possible adverse effects of the remediation technology. Also, the test allowed comparison among monitoring tools, evaluation of longer-term effectiveness of AC amendment, and identification of field-related factors that confound the performance of in-situ biological assessments. Following background pretreatment measurements, we successfully incorporated AC into sediment to a nominal 30 cm depth during a single mixing event, as confirmed by total organic carbon and black carbon contents in the designated test plots. The measured AC dose averaged 2.0-3.2 wt% and varied depending on sampling locations and mixing equipment. AC amendment did not impact sediment resuspension or PCB release into the water column over the treatment plots, nor adversely impactthe existing macro benthic community composition, richness, or diversity. The PCB bioaccumulation in marine clams was reduced when exposed to sediment treated with 2% AC in comparison to the control plot Field-deployed semi permeable membrane devices and polyethylene devices showed about 50% reduction in PCB uptake in AC-treated sediment and similar reduction in estimated pore-water PCB concentration. This reduction was evident even after 13-month post-treatment with then 7 months of continuous exposure, indicating AC treatment efficacy was retained for an extended period. Aqueous equilibrium PCB concentrations and PCB desorption showed an AC-dose response. Field-exposed AC after 18 months retained a strong stabilization capability to reduce aqueous equilibrium PCB concentrations by about 90%, which also supports the long-term effectiveness of AC in the field. Additional mixing during or after AC deployment, increasing AC dose, reducing AC-particle size, and sequential deployment of AC dose will likely improve AC-sediment contact and overall effectiveness. The reductions in PCB availability observed with slow mass transfer under field conditions calls for predictive models to assess the long-term trends in pore-water PCB concentrations and the benefits of alternative in-situ AC application and mixing strategies.
The surface renewal method for better spatial resolution of evapotranspiration measurements
NASA Astrophysics Data System (ADS)
Suvocarev, K.; Fischer, M.; Massey, J. H.; Reba, M. L.; Runkle, B.
2017-12-01
Evaluating feasible irrigation strategies when water is scarce requires measurements or estimations of evapotranspiration (ET). Direct observations of ET from agricultural fields are preferred, and micrometeorological methods such as eddy covariance (EC) provide a high quality, continuous time series of ET. However, when replicates of the measurements are needed to compare irrigation strategies, the cost of such experiments is often prohibitive and limits experimental scope. An alternative micrometeorological approach to ET, the surface renewal (SR) method, may be reduced to a thermocouple and a propeller anemometer (Castellvi and Snyder, 2009). In this case, net radiation, soil and sensible heat flux (H) are measured and latent heat flux (an energy equivalent for ET) is estimated as the residual of the surface energy-balance equation. In our experiment, thermocouples (Type E Fine-Wire Thermocouple, FW3) were deployed next to the EC system and combined with mean horizontal wind speed measurements to obtain H using SR method for three weeks. After compensating the temperature signal for non-ideal frequency response in the wavelet half-plane and correcting the sonic anemometer for the flow distortion (Horst et al., 2015), the SR H fluxes compared well to those measured by EC (r2 = 0.9, slope = 0.92). This result encouraged us to install thermocouples over 16 rice fields under different irrigation treatments (continuous cascade flood, continuous multiple inlet rice irrigation, alternate wetting and drying, and furrow irrigation). The EC measurements with net radiometer and soil heat flux plates are deployed at three of these fields to provide a direct comparison. The measurement campaign will finish soon and the data will be processed to evaluate the SR approach for ET estimation. The results will be used to show better spatial resolution of ET measurements to support irrigation decisions in agricultural crops.
Smith, Joshua T.; Kennedy, Theodore A.; Muehlbauer, Jeffrey D.
2014-01-01
Insect emergence is a fundamental process in freshwaters. It is a critical life-history stage for aquatic insects and provides an important prey resource for terrestrial and aquatic consumers. Sticky traps are increasingly being used to sample these insects. The most common design consists of an acetate sheet coated with a nondrying adhesive that is attached to a wire frame or cylinder. These traps must be prepared at the deployment site, a process that can be time consuming and difficult given the vagaries of field conditions. Our goals were to develop a sturdy, low-cost sticky trap that could be prepared in advance, rapidly deployed and recovered in the field, and used to estimate the flight direction of insects. We used 150-mm Petri dishes with lids. The dishes can be coated cleanly and consistently with Tangle-Trap® adhesive. Deploying traps is simple and requires only a pole set near the body of water being sampled. Four dishes can be attached to the pole using Velcro and aligned in 4 different directions to enable quantification of insect flight direction. After sampling, Petri dishes can be taped closed, packed in boxes, and stored indefinitely. Petri traps are comparable in price to standard acetate sheet traps at ∼US$0.50/directional deployment, but they require more space for storage than acetate sheet traps. However, a major benefit of Petri traps is that field deployment times are ⅓ those of acetate traps. Our study demonstrated that large Petri dishes are an ideal platform for sampling postemergent adult aquatic insects, particularly when the study design involves estimating flight direction and when rapid deployment and recovery of traps is critical.
Mechanisms of Günther Tulip filter tilting during transfemoral placement.
Matsui, Y; Horikawa, M; Ohta, K; Jahangiri Noudeh, Y; Kaufman, J A; Farsad, K
The purpose of this study was to characterize the mechanisms of Günther Tulip filter (GTF) tilting during transfemoral placement in an experimental model with further validation in a clinical series. In an experimental study, 120 GTF placements in an inferior vena cava (IVC) model were performed using 6 configurations of pre-deployment filter position. The angle between the pre-deployment filter axis and IVC axis, and the proximity of the constrained filter legs to IVC wall prior to deployment were evaluated. The association of those pre-deployment factors with post-deployment filter tilting was analyzed. The association noted in the experimental study was then evaluated in a retrospective clinical series of 21 patients. In the experimental study, there was a significant association between the pre-deployment angle and post-deployment filter tilting (P<0.0001). With a low pre-deployment angle (≤5°), a significant association was noted between filter tilting and the proximity of the constrained filter legs to the far IVC wall (P=0.001). In a retrospective clinical study, a significant association between the pre-deployment angle and post-deployment filter tilting was also noted with a linear regression model (P=0.026). Significant association of the pre-deployment angle with post-deployment GTF tilting was shown in both the experimental and clinical studies. The experimental study also showed that proximity of filter legs is relevant when pre-deployment angle is small. Addressing these factors may result in a lower incidence of filter tilting. Copyright © 2017 Editions françaises de radiologie. Published by Elsevier Masson SAS. All rights reserved.
Tien, Col Homer; Beckett, Maj Andrew; Garraway, LCol Naisan; Talbot, LCol Max; Pannell, Capt Dylan; Alabbasi, Thamer
2015-01-01
Medical support to deployed field forces is increasingly becoming a shared responsibility among allied nations. National military medical planners face several key challenges, including fiscal restraints, raised expectations of standards of care in the field and a shortage of appropriately trained specialists. Even so, medical services are now in high demand, and the availability of medical support may become the limiting factor that determines how and where combat units can deploy. The influence of medical factors on operational decisions is therefore leading to an increasing requirement for multinational medical solutions. Nations must agree on the common standards that govern the care of the wounded. These standards will always need to take into account increased public expectations regarding the quality of care. The purpose of this article is to both review North Atlantic Treaty Organization (NATO) policies that govern multinational medical missions and to discuss how recent scientific advances in prehospital battlefield care, damage control resuscitation and damage control surgery may inform how countries within NATO choose to organize and deploy their field forces in the future. PMID:26100784
A field-deployable GC-EI-HRTOF-MS for in situ characterization of volatile organic compounds
NASA Astrophysics Data System (ADS)
Lerner, B. M.; Herndon, S. C.; Yacovitch, T. I.; Roscioli, J. R.; Fortner, E.; Knighton, W. B.; Sueper, D.; Isaacman-VanWertz, G. A.; Jayne, J. T.; Worsnop, D. R.
2017-12-01
Previous authors have demonstrated the value of coupling conventional gas chromatograph (GC) separation techniques with the new generation of electron-impact high-resolution time-of-flight mass spectrometry (EI-HR-ToF-MS) detectors for the measurement of halocarbons and semi-volatile organic species. Here, we present new instrumentation, analytical techniques and field data from the deployment of a GC-EI-HR-ToF-MS system in the mini Aerodyne mobile laboratory to sites upwind and downwind of San Antonio, Texas in May 2017. The instrument employed a multi-component adsorbent trap pre-concertation system followed by single-column separation. We will show results from the field work, including inter-comparison with other VOC measurements and characterization of C5-C10 hydrocarbon mixing ratios to distinguish urban and oil/gas emission sources in characterized air. We will discuss practical aspects of deployment of the GC-EI-HRTOF-MS in a mobile laboratory and system performance in the field. Will we also present further development of Aerodyne's TERN software package for chromatographic data analysis to processing of HRTOF-MS datasets.
A Portable, Field-Deployable Analyzer for Isotopic Water Measurements
NASA Astrophysics Data System (ADS)
Berman, E. S.; Gupta, M.; Huang, Y. W.; Lacelle, D.; McKay, C. P.; Fortson, S.
2015-12-01
Water stable isotopes have for many years been used to study the hydrological cycle, catchment hydrology, and polar climate among other applications. Typically, discrete water samples are collected and transported to a laboratory for isotope analysis. Due to the expense and labor associated with such sampling, isotope studies have generally been limited in scope and time-resolution. Field sampling of water isotopes has been shown in recent years to provide dense data sets with the increased time resolution illuminating substantially greater short term variability than is generally observed during discrete sampling. A truly portable instrument also opens the possibility to utilize the instrument as a tool for identifying which water samples would be particularly interesting for further laboratory investigation. To make possible such field measurements of liquid water isotopes, Los Gatos Research has developed a miniaturized, field-deployable liquid water isotope analyzer. The prototype miniature liquid water isotope analyzer (mini-LWIA) uses LGR's patented Off-Axis ICOS (Integrated Cavity Output Spectroscopy) technology in a rugged, Pelican case housing for easy transport and field operations. The analyzer simultaneously measures both δ2H and δ18O from liquid water, with both manual and automatic water introduction options. The laboratory precision for δ2H is 0.6 ‰, and for δ18O is 0.3 ‰. The mini-LWIA was deployed in the high Arctic during the summer of 2015 at Inuvik in the Canadian Northwest Territories. Samples were collected from Sachs Harbor, on the southwest coast of Banks Island, including buried basal ice from the Lurentide Ice Sheet, some ice wedges, and other types of ground ice. Methodology and water analysis results from this extreme field deployment will be presented.
Design and analysis considerations for deployment mechanisms in a space environment
NASA Technical Reports Server (NTRS)
Vorlicek, P. L.; Gore, J. V.; Plescia, C. T.
1982-01-01
On the second flight of the INTELSAT V spacecraft the time required for successful deployment of the north solar array was longer than originally predicted. The south solar array deployed as predicted. As a result of the difference in deployment times a series of experiments was conducted to locate the cause of the difference. Deployment rate sensitivity to hinge friction and temperature levels was investigated. A digital computer simulation of the deployment was created to evaluate the effects of parameter changes on deployment. Hinge design was optimized for nominal solar array deployment time for future INTELSAT V satellites. The nominal deployment times of both solar arrays on the third flight of INTELSAT V confirms the validity of the simulation and design optimization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberts, Jesse D.; Chang, Grace; Magalen, Jason
A modified version of an indust ry standard wave modeling tool was evaluated, optimized, and utilized to investigate model sensitivity to input parameters a nd wave energy converter ( WEC ) array deployment scenarios. Wave propagation was investigated d ownstream of the WECs to evaluate overall near - and far - field effects of WEC arrays. The sensitivity study illustrate d that wave direction and WEC device type we r e most sensitive to the variation in the model parameters examined in this study . Generally, the changes in wave height we re the primary alteration caused by the presencemore » of a WEC array. Specifically, W EC device type and subsequently their size directly re sult ed in wave height variations; however, it is important to utilize ongoing laboratory studies and future field tests to determine the most appropriate power matrix values for a particular WEC device and configuration in order to improve modeling results .« less
Older Adults' Acceptance of Activity Trackers
Preusse, Kimberly C.; Mitzner, Tracy L.; Fausset, Cara Bailey; Rogers, Wendy A.
2016-01-01
Objective To assess the usability and acceptance of activity tracking technologies by older adults. Method First in our multi-method approach, we conducted heuristic evaluations of two activity trackers that revealed potential usability barriers to acceptance. Next, questionnaires and interviews were administered to 16 older adults (Mage=70, SDage=3.09, rangeage= 65-75) before and after a 28-day field study to understand facilitators and additional barriers to acceptance. These measurements were supplemented with diary and usage data and assessed if and why users overcame usability issues. Results The heuristic evaluation revealed usability barriers in System Status Visibility; Error Prevention; and Consistency and Standards. The field study revealed additional barriers (e.g., accuracy, format), and acceptance-facilitators (e.g., goal-tracking, usefulness, encouragement). Discussion The acceptance of wellness management technologies, such as activity trackers, may be increased by addressing acceptance-barriers during deployment (e.g., providing tutorials on features that were challenging, communicating usefulness). PMID:26753803
Next Generation Polar Seismic Instrumentation Challenges
NASA Astrophysics Data System (ADS)
Parker, T.; Beaudoin, B. C.; Gridley, J.; Anderson, K. R.
2011-12-01
Polar region logistics are the limiting factor for deploying deep field seismic arrays. The IRIS PASSCAL Instrument Center, in collaboration with UNAVCO, designed and deployed several systems that address some of the logistical constraints of polar deployments. However, continued logistics' pressures coupled with increasingly ambitious science projects require further reducing the logistics required for deploying both summer and over winter stations. Our focus is to reduce station power requirements and bulk, thereby minimizing the time and effort required to deploy these arrays. We will reduce the weight of the battery bank by incorporating the most applicable new high energy-density battery technology. Using these batteries will require a completely new power management system along with an appropriate smart enclosure. The other aspect will be to integrate the digitizing system with the sensor. Both of these technologies should reduce the install time and shipping volume plus weight while reducing some instrument costs. We will also continue work on an effective Iridium telemetry solution for automated data return. The costs and limitations of polar deep-field science easily justifies a specialized development effort but pays off doubly in that we will continue to leverage the advancements in reduced logistics and increased performance for the benefit of low-latitude seismic research.
Deployment and Performance of the NASA D3R During the GPM OLYMPEx Field Campaign
NASA Technical Reports Server (NTRS)
Chandrasekar, V.; Beauchamp, Robert M.; Chen, Haonan; Vega, Manuel; Schwaller, Mathew; Willie, Delbert; Dabrowski, Aaron; Kumar, Mohit; Petersen, Walter; Wolff, David
2016-01-01
The NASA D3R was successfully deployed and operated throughout the NASA OLYMPEx field campaign. A differential phase based attenuation correction technique has been implemented for D3R observations. Hydrometeor classification has been demonstrated for five distinct classes using Ku-band observations of both convection and stratiform rain. The stratiform rain hydrometeor classification is compared against LDR observations and shows good agreement in identification of mixed-phase hydrometeors in the melting layer.
Design of an ultra-portable field transfer radiometer supporting automated vicarious calibration
NASA Astrophysics Data System (ADS)
Anderson, Nikolaus; Thome, Kurtis; Czapla-Myers, Jeffrey; Biggar, Stuart
2015-09-01
The University of Arizona Remote Sensing Group (RSG) began outfitting the radiometric calibration test site (RadCaTS) at Railroad Valley Nevada in 2004 for automated vicarious calibration of Earth-observing sensors. RadCaTS was upgraded to use RSG custom 8-band ground viewing radiometers (GVRs) beginning in 2011 and currently four GVRs are deployed providing an average reflectance for the test site. This measurement of ground reflectance is the most critical component of vicarious calibration using the reflectance-based method. In order to ensure the quality of these measurements, RSG has been exploring more efficient and accurate methods of on-site calibration evaluation. This work describes the design of, and initial results from, a small portable transfer radiometer for the purpose of GVR calibration validation on site. Prior to deployment, RSG uses high accuracy laboratory calibration methods in order to provide radiance calibrations with low uncertainties for each GVR. After deployment, a solar radiation based calibration has typically been used. The method is highly dependent on a clear, stable atmosphere, requires at least two people to perform, is time consuming in post processing, and is dependent on several large pieces of equipment. In order to provide more regular and more accurate calibration monitoring, the small portable transfer radiometer is designed for quick, one-person operation and on-site field calibration comparison results. The radiometer is also suited for laboratory calibration use and thus could be used as a transfer radiometer calibration standard for ground viewing radiometers of a RadCalNet site.
Automated Water Quality Survey and Evaluation Using an IoT Platform with Mobile Sensor Nodes.
Li, Teng; Xia, Min; Chen, Jiahong; Zhao, Yuanjie; de Silva, Clarence
2017-07-28
An Internet of Things (IoT) platform with capabilities of sensing, data processing, and wireless communication has been deployed to support remote aquatic environmental monitoring. In this paper, the design and development of an IoT platform with multiple Mobile Sensor Nodes (MSN) for the spatiotemporal quality evaluation of surface water is presented. A survey planner is proposed to distribute the Sampling Locations of Interest (SLoIs) over the study area and generate paths for MSNs to visit the SLoIs, given the limited energy and time budgets. The SLoIs are chosen based on a cellular decomposition that is composed of uniform hexagonal cells. They are visited by the MSNs along a path ring generated by a planning approach that uses a spanning tree. For quality evaluation, an Online Water Quality Index (OLWQI) is developed to interpret the large quantities of online measurements. The index formulations are modified by a state-of-the-art index, the CCME WQI, which has been developed by the Canadian Council of Ministers of Environment (CCME) for off-line indexing. The proposed index has demonstrated effective and reliable performance in online indexing a large volume of measurements of water quality parameters. The IoT platform is deployed in the field, and its performance is demonstrated and discussed in this paper.
Field Evaluation of Seepage Meters in the Coastal Marine Environment
NASA Astrophysics Data System (ADS)
Cable, J. E.; Burnett, W. C.; Chanton, J. P.; Corbett, D. R.; Cable, P. H.
1997-09-01
The response of seepage meters was evaluated in a nearshore marine environment where water motion effects are more pronounced than in lake settings, where these meters have been used traditionally. Temporal and spatial variations of seepage, as well as potential artifacts, were evaluated using empty and 1000-ml pre-filled bag measurements. Time-series measurements confirmed earlier observations that anomalously high fluxes occur during the early stages (≤10 min) of collection. As deployment times increased (30-60 min), measured flow rates stabilized at a level thought to represent the actual seepage flux. Pre-filling the plastic measurement bags effectively alleviated this anomalous, short-term influx. Reliable seepage measurements required deployment times sufficient to allow a net volume of at least 150 ml into the collection bag. Control experiments, designed by placing seepage meters inside sand-filled plastic swimming pools, served as indicators of external effects on these measurements, i.e. they served as seepage meter blanks. When winds were under 15 knots, little evidence was found that water motion caused artifacts in the seepage measurements. Tidal cycle influences on seepage rates were negligible in the present study area, but long-term temporal variations (weeks to months) proved substantial. Observed long-term changes in groundwater flux into the Gulf of Mexico correlated with water table elevation at a nearby monitoring well.
Cragun, Joshua N; April, Michael D; Thaxton, Robert E
2016-08-01
Compassion fatigue is a problem for many health care providers manifesting as physical, mental, and spiritual exhaustion. Our objective was to evaluate the association between prior combat deployment and compassion fatigue among military emergency medicine providers. We conducted a nonexperimental cross-sectional survey of health care providers assigned to the San Antonio Military Medical Center, Department of Emergency Medicine. We used the Professional Quality of Life Scale V survey instrument that evaluates provider burnout, secondary traumatic stress, and compassion satisfaction. Outcomes included burnout, secondary traumatic stress, and compassion satisfaction raw scores. Scores were compared between providers based on previous combat deployments using two-tailed independent sample t tests and multiple regression models. Surveys were completed by 105 respondents: 42 nurses (20 previously deployed), 30 technicians (11 previously deployed), and 33 physicians (16 previously deployed). No statistically significant differences in burnout, secondary traumatic stress, or compassion satisfaction scores were detected between previously deployed providers versus providers not previously deployed. There was no association between previous combat deployment and emergency department provider burnout, secondary traumatic stress, or compassion satisfaction scores. Reprint & Copyright © 2016 Association of Military Surgeons of the U.S.
The ADVANCE project : formal evaluation of the targeted deployment. Volume 2
DOT National Transportation Integrated Search
1997-01-01
This document reports on the formal evaluation of the targeted (limited but highly focused) deployment of the Advanced Driver and Vehicle Advisory Navigation ConcEpt (ADVANCE), an in-vehicle advanced traveler information system designed to provide sh...
Metropolitan Model Deployment Initiative : San Antonio Evaluation Report : Final Draft
DOT National Transportation Integrated Search
2000-05-01
This report presents the evaluation results of the San Antonio, Texas Metropolitan Model Deployment Initiative (MMDI). The San Antonio MMDI sought to make improvements in six key transportation goals. The first of these goals was the expansion and st...
Experimental and Analytical Evaluation of a Composite Honeycomb Deployable Energy Absorber
NASA Technical Reports Server (NTRS)
Jackson, Karen E.; Kellas, Sotiris; Horta, Lucas G.; Annett, Martin S.; Polanco, Michael A.; Littell, Justin D.; Fasanella, Edwin L.
2011-01-01
In 2006, the NASA Subsonic Rotary Wing Aeronautics Program sponsored the experimental and analytical evaluation of an externally deployable composite honeycomb structure that is designed to attenuate impact energy during helicopter crashes. The concept, which is designated the Deployable Energy Absorber (DEA), utilizes an expandable Kevlar honeycomb structure to dissipate kinetic energy through crushing. The DEA incorporates a unique flexible hinge design that allows the honeycomb to be packaged and stowed flat until needed for deployment. A variety of deployment options such as linear, radial, and/or hybrid methods can be used. Experimental evaluation of the DEA utilized a building block approach that included material characterization testing of its constituent, Kevlar -129 fabric/epoxy, and flexural testing of single hexagonal cells. In addition, the energy attenuation capabilities of the DEA were demonstrated through multi-cell component dynamic crush tests, and vertical drop tests of a composite fuselage section, retrofitted with DEA blocks, onto concrete, water, and soft soil. During each stage of the DEA evaluation process, finite element models of the test articles were developed and simulations were performed using the explicit, nonlinear transient dynamic finite element code, LS-DYNA. This report documents the results of the experimental evaluation that was conducted to assess the energy absorption capabilities of the DEA.
NASA Technical Reports Server (NTRS)
Getliffe, Gwendolyn V.; Inamdar, Niraj K.; Masterson, Rebecca; Miller, David W.
2012-01-01
This report, concluding a one-year NIAC Phase I study, describes a new structural and mechanical technique aimed at reducing the mass and increasing the deployed-to-stowed length and volume ratios of spacecraft systems. This technique uses the magnetic fields generated by electrical current passing through coils of high-temperature superconductors (HTSs) to support spacecraft structures and deploy them to operational configurations from their stowed positions inside a launch vehicle fairing.
Mission Planning System Increment 5 (MPS Inc 5)
2016-03-01
DoD - Department of Defense DoDAF - DoD Architecture Framework FD - Full Deployment FDD - Full Deployment Decision FY - Fiscal Year IA...Alternative Selected (Funds First Obligated (FFO)) (O/T) : Mar 2013 / Mar 2013 • MS B (O/T) : Apr 2012 / Apr 2012 • MS C (O/T) : N/A / N/A • FDD (O/T...Deployed Software Intensive Program" as described in the DOD Instruction 5000.02, January 7, 2015. 4. FDD provides approval to field the
DOT National Transportation Integrated Search
2000-10-01
The Phoenix, Arizona Metropolitan Model Deployment was one of four cities included in the Metropolitan Model Deployment Initiative (MMDI). The initiative was set forth in 1996 to serve as model deployments of ITS infrastructure and integration. One o...
González-Parada, Eva; Cano-García, Jose; Aguilera, Francisco; Sandoval, Francisco; Urdiales, Cristina
2017-01-01
Autonomous mobile nodes in mobile wireless sensor networks (MWSN) allow self-deployment and self-healing. In both cases, the goals are: (i) to achieve adequate coverage; and (ii) to extend network life. In dynamic environments, nodes may use reactive algorithms so that each node locally decides when and where to move. This paper presents a behavior-based deployment and self-healing algorithm based on the social potential fields algorithm. In the proposed algorithm, nodes are attached to low cost robots to autonomously navigate in the coverage area. The proposed algorithm has been tested in environments with and without obstacles. Our study also analyzes the differences between non-hierarchical and hierarchical routing configurations in terms of network life and coverage. PMID:28075364
González-Parada, Eva; Cano-García, Jose; Aguilera, Francisco; Sandoval, Francisco; Urdiales, Cristina
2017-01-09
Autonomous mobile nodes in mobile wireless sensor networks (MWSN) allow self-deployment and self-healing. In both cases, the goals are: (i) to achieve adequate coverage; and (ii) to extend network life. In dynamic environments, nodes may use reactive algorithms so that each node locally decides when and where to move. This paper presents a behavior-based deployment and self-healing algorithm based on the social potential fields algorithm. In the proposed algorithm, nodes are attached to low cost robots to autonomously navigate in the coverage area. The proposed algorithm has been tested in environments with and without obstacles. Our study also analyzes the differences between non-hierarchical and hierarchical routing configurations in terms of network life and coverage.
Wesemann, Ulrich; Kowalski, Jens T; Jacobsen, Thomas; Beudt, Susan; Jacobs, Herbert; Fehr, Julia; Büchler, Jana; Zimmermann, Peter L
2016-08-01
To prevent deployment-related disorders, Chaos Driven Situations Management Retrieval System (CHARLY), a computer-aided training platform with a biofeedback interface has been developed. It simulates critical situations photorealistic for certain target and occupational groups. CHARLY was evaluated as a 1.5 days predeployment training method comparing it with the routine training. The evaluation was carried out for a matched random sample of N = 67 soldiers deployed in Afghanistan (International Security Assistance Force). Data collection took place before and after the prevention program and 4 to 6 weeks after deployment, which included mental state, post-traumatic stress disorder (PTSD) symptoms, knowledge of and attitude toward PTSD, and deployment-specific stressors. CHARLY has been significantly superior to the control group in terms of psychoeducation and attitude change. As to the mental state, both groups showed a significant increase in stress after deployment with significant lower increase in CHARLY. For PTSD-specific symptoms, CHARLY achieved a significant superiority. The fact that PTSD-specific scales showed significant differences at the end of deployment substantiates the validity of a specifically preventive effect of CHARLY. The study results tentatively indicate that highly standardized, computer-based primary prevention of mental disorders in soldiers on deployment might be superior to other more personal and less standardized forms of prevention. Reprint & Copyright © 2016 Association of Military Surgeons of the U.S.
NASA Astrophysics Data System (ADS)
Johnson, Nicholas E.; Bonczak, Bartosz; Kontokosta, Constantine E.
2018-07-01
The increased availability and improved quality of new sensing technologies have catalyzed a growing body of research to evaluate and leverage these tools in order to quantify and describe urban environments. Air quality, in particular, has received greater attention because of the well-established links to serious respiratory illnesses and the unprecedented levels of air pollution in developed and developing countries and cities around the world. Though numerous laboratory and field evaluation studies have begun to explore the use and potential of low-cost air quality monitoring devices, the performance and stability of these tools has not been adequately evaluated in complex urban environments, and further research is needed. In this study, we present the design of a low-cost air quality monitoring platform based on the Shinyei PPD42 aerosol monitor and examine the suitability of the sensor for deployment in a dense heterogeneous urban environment. We assess the sensor's performance during a field calibration campaign from February 7th to March 25th 2017 with a reference instrument in New York City, and present a novel calibration approach using a machine learning method that incorporates publicly available meteorological data in order to improve overall sensor performance. We find that while the PPD42 performs well in relation to the reference instrument using linear regression (R2 = 0.36-0.51), a gradient boosting regression tree model can significantly improve device calibration (R2 = 0.68-0.76). We discuss the sensor's performance and reliability when deployed in a dense, heterogeneous urban environment during a period of significant variation in weather conditions, and important considerations when using machine learning techniques to improve the performance of low-cost air quality monitors.
NASA Astrophysics Data System (ADS)
O'Boyle, Louise; Thorne, Peter; Cooke, Richard; Cohbed Team
2014-05-01
Estuaries are among some of the most important global landscapes in terms of population density, ecology and economy. Understanding the dynamics of these natural mixed sediment environments is of particular interest amid growing concerns over sea level rise, climate variations and estuarine response to these changes. Many predictors exist for bed form formation and sand transport in sandy coastal zones; however less work has been published on mixed sediments. This paper details a field study which forms part of the COHBED project aiming to increase understanding of bed forms in a biotic mixed sediment estuarine environment. The study was carried out in the Dee Estuary, in the eastern Irish Sea between England and Wales from the 21st May to 4th June 2013. A state of the art instrumentation frame, known as SEDbed, was deployed at three sites of differing sediment properties and biological makeup within the intertidal zone of the estuary. The SEDbed deployment consisted of a suite of optical and acoustic instrumentation, including an Acoustic Doppler Velocity Profiler (ADVP), Acoustic Doppler Velocimeter (ADV) and a three dimensional acoustic ripple profiler, 3D-ARP. Supplementary field samples and measurements were recorded alongside the frame during each deployment. This paper focuses on the use of new technological developments for the investigation of sediment dynamics. The hydrodynamics at each of the deployment sites are presented including centimetre resolution velocity profiles in the near bed region of the water column, obtained from the ADVP, which is presently the only autonomous field deployed coherent Doppler profiler . Based on these high resolution profiles variations in frictional velocity, bed shear stress and roughness length are calculated. Comparisons are made with theoretical models and with Reynolds stress values obtained from ADV data at a single point within the ADVP profile and from ADVP data itself. Predictions of bed roughness at each deployment site are compared with ripple measurements obtained on site using a three dimensional acoustic ripple profiler, 3D-ARP. These results will later be used to validate laboratory studies in mixed sediments, carried out as part of the COHBED Project, and enable development of new bed from predictors for biotic mixed sediment environments.
NASA Astrophysics Data System (ADS)
Gaura, Elena; Roedig, Utz; Brusey, James
2010-12-01
Wireless sensor networks (WSNs) are among the most promising technologies of the new millennium. The opportunities afforded by being able to program networks of small, lightweight, low-power, computation- and bandwidth-limited nodes have attracted a large community of researchers and developers. However, the unique set of capabilities offered by the technology produces an exciting but complex design space, which is often difficult to negotiate in an application context. Deploying sensing physical environments produces its own set of challenges, and can push systems into failure modes, thus revealing problems that can be difficult to discover or reproduce in simulation or the laboratory. Sustained efforts in the area of wireless networked sensing over the last 15 years have resulted in a large number of theoretical developments, substantial practical achievements, and a wealth of lessons for the future. It is clear that in order to bridge the gap between (on the one hand) visions of very large scale, autonomous, randomly deployed networks and (on the other) the actual performance of fielded systems, we need to view deployment as an essential component in the process of developing sensor networks: a process that includes hardware and software solutions that serve specific applications and end-user needs. Incorporating deployment into the design process reveals a new and different set of requirements and considerations, whose solutions require innovative thinking, multidisciplinary teams and strong involvement from end-user communities. This special feature uncovers and documents some of the hurdles encountered and solutions offered by experimental scientists when deploying and evaluating wireless sensor networks in situ, in a variety of well specified application scenarios. The papers specifically address issues of generic importance for WSN system designers: (i) data quality, (ii) communications availability and quality, (iii) alternative, low-energy sensing modalities and (iv) system solutions with high end-user added value and cost benefits. The common thread is deployment and deployment evaluation. In particular, satisfaction of application requirements, involvement of the end-user in the design and deployment process, satisfactory system performance and user acceptance are concerns addressed in many of the contributions. The contributions form a valuable set, which help to identify the priorities for research in this burgeoning area: Robust, reliable and efficient data collection in embedded wireless multi-hop networks are essential elements in creating a true deploy-and-forget user experience. Maintaining full connectivity within a WSN, in a real world environment populated by other WSNs, WiFi networks or Bluetooth devices that constitute sources of interference is a key element in any application, but more so for those that are safety-critical, such as disaster response. Awareness of the effects of wireless channel, physical position and line-of-sight on received signal strength in real-world, outdoor environments will shape the design of many outdoor applications. Thus, the quantification of such effects is valuable knowledge for designers. Sensors' failure detection, scalability and commercialization are common challenges in many long-term monitoring applications; transferable solutions are evidenced here in the context of pollutant detection and water quality. Innovative, alternative thinking is often needed to achieve the desired long-lived networks when power-hungry sensors are foreseen components; in some instances, the very problems of wireless technology, such as RF irregularity, can be transformed into advantages. The importance of an iterative design and evaluation methodology—from analysis to simulation to real-life deployment—should be well understood by all WSN developers. The value of this is highlighted in the context of a challenging WPAN video-surveillance application based on a novel Nomadic Access Mechanism. Cost benefits to be drawn from devising a WSN based solution to classic application areas such as surveillance are often a prime motivator for WSN designers; an example is offered here based on the use of intelligent agents for intrusion monitoring. Last but not least, the practicality and usability of the WSN solutions found for novel applications is key to their adoption. This is particularly true when the end-users of the developed technology are medical patients. The importance of feedback, elegant hardware encapsulation and extraction of meaning from data is presented in the context of novel orthopedic rehabilitation aids. Overall, this feature offers wide coverage of most issues encountered in the process of design, implementation and evaluation of deployable WSN systems. We trust that designers and developers of WSN systems will find much work of value, ranging from lessons learned, through solutions to known hurdles, to novel developments that enhance applications. Finally, we would like to thank all authors for their valuable contributions!
DOT National Transportation Integrated Search
2010-06-11
The purpose of this document is to present the findings of the national evaluation of the deployment of portable traffic monitoring devices (PTMDs) at a variety of locations in North Carolina conducted under the USDOTs SafeTrip-21 Initiative. The ...
DOT National Transportation Integrated Search
2010-06-11
The purpose of this document is to present the findings of the national evaluation of the deployment of portable trafficmonitoring devices (PTMDs) at a variety of locations in North Carolina conducted under the USDOTs SafeTrip-21 Initiative. The N...
A Wireless Communications Laboratory on Cellular Network Planning
ERIC Educational Resources Information Center
Dawy, Z.; Husseini, A.; Yaacoub, E.; Al-Kanj, L.
2010-01-01
The field of radio network planning and optimization (RNPO) is central for wireless cellular network design, deployment, and enhancement. Wireless cellular operators invest huge sums of capital on deploying, launching, and maintaining their networks in order to ensure competitive performance and high user satisfaction. This work presents a lab…
DOT National Transportation Integrated Search
2000-04-07
The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...
DOT National Transportation Integrated Search
2000-04-07
The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...
DOT National Transportation Integrated Search
2000-04-07
The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...
DOT National Transportation Integrated Search
2000-04-07
The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...
DOT National Transportation Integrated Search
2000-04-07
The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...
DOT National Transportation Integrated Search
2000-04-07
The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...
DOT National Transportation Integrated Search
2000-04-07
The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...
DOT National Transportation Integrated Search
2000-04-07
The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...
DOT National Transportation Integrated Search
2000-04-07
The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...
DOT National Transportation Integrated Search
2000-04-07
The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...
DOT National Transportation Integrated Search
2000-04-07
The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...
DOT National Transportation Integrated Search
2000-04-07
The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...
DOT National Transportation Integrated Search
2000-04-07
The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...
DOT National Transportation Integrated Search
2000-04-07
The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...
DOT National Transportation Integrated Search
2000-04-07
The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...
DOT National Transportation Integrated Search
2000-04-07
The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...
DOT National Transportation Integrated Search
2000-04-07
The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...
DOT National Transportation Integrated Search
2000-04-07
The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...
DOT National Transportation Integrated Search
2000-04-07
The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...
DOT National Transportation Integrated Search
2000-04-07
The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...
DOT National Transportation Integrated Search
2000-04-07
The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...
DOT National Transportation Integrated Search
2000-04-07
The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...
DOT National Transportation Integrated Search
2000-04-07
The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...
DOT National Transportation Integrated Search
2000-04-07
The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...
DOT National Transportation Integrated Search
2000-04-07
The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...
DOT National Transportation Integrated Search
2000-04-07
The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...
DOT National Transportation Integrated Search
2000-04-07
The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...
DOT National Transportation Integrated Search
2000-04-07
The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...
DOT National Transportation Integrated Search
2000-04-07
The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...
DOT National Transportation Integrated Search
2000-04-07
The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...
DOT National Transportation Integrated Search
2000-04-07
The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...
DOT National Transportation Integrated Search
2000-04-07
The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...
DOT National Transportation Integrated Search
2000-04-07
The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...
DOT National Transportation Integrated Search
2016-07-12
This document describes the Performance Measurement and Evaluation Support Plan for the New York City Department of Transportation New York City (NYC) Connected Vehicle Pilot Deployment (CVPD) Project. The report documents the performance metrics tha...
DOT National Transportation Integrated Search
2016-03-14
The Performance Measurement and Evaluation Support Plan for the Connected Vehicle Pilot Deployment Program Phase 1, Tampa Hillsborough Expressway Authority, outlines the goals and objectives for the Pilot as well as the proposed performance metrics. ...
Shape accuracy optimization for cable-rib tension deployable antenna structure with tensioned cables
NASA Astrophysics Data System (ADS)
Liu, Ruiwei; Guo, Hongwei; Liu, Rongqiang; Wang, Hongxiang; Tang, Dewei; Song, Xiaoke
2017-11-01
Shape accuracy is of substantial importance in deployable structures as the demand for large-scale deployable structures in various fields, especially in aerospace engineering, increases. The main purpose of this paper is to present a shape accuracy optimization method to find the optimal pretensions for the desired shape of cable-rib tension deployable antenna structure with tensioned cables. First, an analysis model of the deployable structure is established by using finite element method. In this model, geometrical nonlinearity is considered for the cable element and beam element. Flexible deformations of the deployable structure under the action of cable network and tensioned cables are subsequently analyzed separately. Moreover, the influence of pretension of tensioned cables on natural frequencies is studied. Based on the results, a genetic algorithm is used to find a set of reasonable pretension and thus minimize structural deformation under the first natural frequency constraint. Finally, numerical simulations are presented to analyze the deployable structure under two kinds of constraints. Results show that the shape accuracy and natural frequencies of deployable structure can be effectively improved by pretension optimization.
Tsai, Jih-Jin; Liu, Li-Teh; Lin, Ping-Chang; Tsai, Ching-Yi; Chou, Pin-Hsing; Tsai, Yun-Long; Chang, Hsiao-Fen Grace; Lee, Pei-Yu Alison
2018-05-01
Dengue virus (DENV) infection, a mosquito-borne disease, is a major public health problem in tropical countries. Point-of-care DENV detection with good sensitivity and specificity enables timely early diagnosis of DENV infection, facilitating effective disease management and control, particularly in regions of low resources. The Pockit dengue virus reagent set (GeneReach Biotech), a reverse transcription insulated isothermal PCR (RT-iiPCR), is available to detect all four serotypes of DENV on the field-deployable Pockit system, which is ready for on-site applications. In this study, analytical and clinical performances of the assay were evaluated. The index assay did not react with 14 non-DENV human viruses, indicating good specificity. Compared to the U.S. CDC DENV-1-4 real-time quantitative RT-PCR (qRT-PCR) assay, testing with serial dilutions of virus-spiked human sera demonstrated that the index assay had detection endpoints that were separately comparable with the 4 serotypes. Excellent reproducibility was observed among repeat tests done by six operators at three sites. In clinical performance, 195 clinical sera collected around Kaohsiung city in 2012 and 21 DENV-4-spiked sera were tested with the RT-iiPCR and qRT-PCR assays in parallel. The 121 (11 DENV-1, 78 DENV-2, 11 DENV-3, and 21 DENV-4) qRT-PCR-positive and 95 qRT-PCR-negative samples were all positive and negative by the RT-iiPCR reagent results, respectively, demonstrating high (100%) interrater agreement (95% confidence interval [CI 95% ], ∼98.81% to 100%; κ = 1). With analytical and clinical performance equivalent to those of the reference qRT-PCR assay, the index PCR assay on the field-deployable system can serve as a highly sensitive and specific on-site tool for DENV detection. Copyright © 2018 American Society for Microbiology.
SeaWiFS Postlaunch Technical Report Series. Volume 3; The SeaBOARR-98 Field Campaign
NASA Technical Reports Server (NTRS)
Zibordi, Giuseppe; Lazin, Gordana; McLean, Scott; Firestone, Elaine R. (Editor); Hooker, Stanford B. (Editor)
1999-01-01
This report documents the scientific activities during the first Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Bio-Optical Algorithm Round-Robin (SeaBOARR-98) experiment, which took place from 5-17 July 1998, at the Acqua Alta Oceanographic Tower (AAOT) in the northern Adriatic Sea off the coast of Italy. The ultimate objective of the SeaBOARR activity is to evaluate the effect of different measurement protocols on bio-optical algorithms using data from a variety of field campaigns. The SeaBOARR-98 field campaign was concerned with collecting a high quality data set of simultaneous in-water and above-water radiometric measurements. The deployment goals documented in this report were to: a) use four different surface glint correction methods to compute water-leaving radiances, L W (lambda), from above-water data; b) use two different in-water profiling systems and three different methods to compute L W (lambda) from in-water data (one making measurements at a fixed distance from the tower, 7.5 m, and the other at variable distances up to 29 m away); c) use instruments with a common calibration history to minimize intercalibration uncertainties; d) monitor the calibration drift of the instruments in the field with a second generation SeaWiFS Quality Monitor (SQM-II), to separate differences in methods from changes in instrument performance; and e) compare the L W (lambda) values estimated from the above-water and in-water measurements. In addition to describing the instruments deployed and the data collected, a preliminary analysis of the data is presented, and the kind of follow-on work that is needed to completely assess the estimation of L W (lambda) from above-water and in-water measurements is discussed.
2012-05-31
plasmid and P . falciparum plasmid. The assay was 100% (17/17) concordant in testing using a diverse panel ofPiasmodium species and strains prepared...AFMSA O&M FY10 ‘Plasmodium Project’, existing Plasmodium genus, P . falciparum , and P . vivax TaqMan assays were proposed for transfer to the RAPID...using P . vivax plasmid and P . falciparum plasmid. The assay was 100% (17/17) concordant in testing using a diverse panel of Plasmodium species and
NASA Technical Reports Server (NTRS)
Kessler, W. C.; Woeller, F. H.; Wilkins, M. E.
1975-01-01
An Outer Planets Probe which retains the charred heatshield during atmospheric descent must deploy a sampling tube through the heatshield to extract atmospheric samples for analysis. Once the sampling tube is deployed, the atmospheric samples ingested must be free of contaminant gases generated by the heatshield. Outgassing products such as methane and water vapor are present in planetary atmospheres and hence, ingestion of such species would result in gas analyzer measurement uncertainties. This paper evaluates the potential for, and design impact of, the extracted atmospheric samples being contaminated by heatshield outgassing products. Flight trajectory data for Jupiter, Saturn and Uranus entries are analyzed to define the conditions resulting in the greatest potential for outgassing products being ingested into the probe's sampling system. An experimental program is defined and described which simulates the key flow field features for a planetary flight in a ground-based test facility. The primary parameters varied in the test include: sampling tube length, injectant mass flow rate and angle of attack. Measured contaminant levels predict the critical sampling tube length for contamination avoidance. Thus, the study demonstrates the compatibility of a retained heatshield concept and high quality atmospheric trace species measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Leon E.; Conrad, Ryan C.; Keller, Daniel T.
The International Atomic Energy Agency (IAEA) deploys unattended monitoring systems to provide continuous monitoring of nuclear material within safeguarded facilities around the world. As the number of unattended monitoring instruments increases, the IAEA is challenged to become more efficient in the implementation of those systems. In 2010, the IAEA initiated the Front-End Electronics for Unattended Measurement (FEUM) project with the goals of greater flexibility in the interfaces to various sensors and data acquisition systems, and improved capabilities for remotely located sensors (e.g., where sensor and front-end electronics might be separated by tens of meters). In consultation with the IAEA, amore » technical evaluation of a candidate FEUM device produced by a commercial vendor is being performed. This evaluation is assessing the device against the IAEA’s original technical specifications and a broad range of important parameters that included sensor types, cable types, and industrial electromagnetic noise that can degrade signals from remotely located detectors. Testing has been performed in a laboratory and also in environments representative of IAEA deployments. The results are expected to inform the IAEA about where and how FEUM devices might be implemented in the field. Data and preliminary findings from the testing performed to date are presented.« less
DOT National Transportation Integrated Search
2000-01-01
The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...
DOT National Transportation Integrated Search
2000-04-07
The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...
DOT National Transportation Integrated Search
2000-04-07
The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...
DOT National Transportation Integrated Search
2000-04-07
The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...
DOT National Transportation Integrated Search
2000-04-07
The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...
DOT National Transportation Integrated Search
2000-04-07
The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...
DOT National Transportation Integrated Search
2000-04-07
The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...
DOT National Transportation Integrated Search
2000-04-07
The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...
DOT National Transportation Integrated Search
2000-04-07
The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...
DOT National Transportation Integrated Search
2000-04-07
The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...
Summary of 2006 to 2010 FPMU Measurements of International Space Station Frame Potential Variations
NASA Technical Reports Server (NTRS)
Minow, Joseph I.; Wright, Kenneth H., Jr.; Chandler, Michael O.; Coffey, Victoria N.; Craven, Paul D.; Schneider, Todd A.; Parker, Linda N.; Ferguson, Dale C.; Koontz, Steve L.; Alred, John W.
2010-01-01
Electric potential variations on the International Space Station (ISS) structure in low Earth orbit are dominated by contributions from interactions of the United States (US) 160 volt solar arrays with the relatively high density, low temperature plasma environment and inductive potentials generated by motion of the large vehicle across the Earth?s magnetic field. The Floating Potential Measurement Unit (FPMU) instrument suite comprising two Langmuir probes, a plasma impedance probe, and a floating potential probe was deployed in August 2006 for use in characterizing variations in ISS potential, the state of the ionosphere along the ISS orbit and its effect on ISS charging, evaluating effects of payloads and visiting vehicles, and for supporting ISS plasma hazard assessments. This presentation summarizes observations of ISS frame potential variations obtained from the FPMU from deployment in 2006 through the current time. We first describe ISS potential variations due to current collection by solar arrays in the day time sector of the orbit including eclipse exit and entry charging events, potential variations due to plasma environment variations in the equatorial anomaly, and visiting vehicles docked to the ISS structure. Next, we discuss potential variations due to inductive electric fields generated by motion of the vehicle across the geomagnetic field and the effects of external electric fields in the ionosphere. Examples of night time potential variations at high latitudes and their possible relationship to auroral charging are described and, finally, we demonstrate effects on the ISS potential due to European Space Agency and US plasma contactor devices.
Field comparison of optical and clark cell dissolved-oxygen sensors
Fulford, J.M.; Davies, W.J.; Garcia, L.
2005-01-01
Three multi-parameter water-quality monitors equipped with either Clark cell type or optical type dissolved-oxygen sensors were deployed for 30 days in a brackish (salinity <10 parts per thousand) environment to determine the sensitivity of the sensors to biofouling. The dissolved-oxygen sensors compared periodically to a hand-held dissolved oxygen sensor, but were not serviced or cleaned during the deployment. One of the Clark cell sensors and the optical sensor performed similarly during the deployment. The remaining Clark cell sensor was not aged correctly prior to deployment and did not perform as well as the other sensors. All sensors experienced substantial biofouling that gradually degraded the accuracy of the dissolved-oxygen measurement during the last half of the deployment period. Copyright ASCE 2005.
Deployable Mini-Payload Missions Enabled by Small Radioisotope Power Systems (RPSs)
NASA Technical Reports Server (NTRS)
Abelson, Robert D.; Satter, Celeste M.
2005-01-01
Deployable mini-payloads are envisioned as small, simple, standalone instruments that could be deployed from a mother vehicle such as a rover or the proposed Jupiter Icy Moons Orbiter to key points of interest within the solar system. Used in conjunction with a small radioisotope power system (RPS), these payloads could potentially be used for long-duration science missions or as positional beacons for rovers or other spacecraft. The RPS power source would be suitable for deployable mini-payload missions that would take place anywhere there is limited, intermittent, or no solar insolation. This paper introduces two such concepts: (1) a seismic monitoring station deployed by a rover or aerobot, and (2) a passive fields and particles station delivered by a mother spacecraft to Jupiter.
NASA Astrophysics Data System (ADS)
Bader, B. E.
1981-10-01
The principal activities of the Sandia National Laboratories in the Department of Energy Oil shale program during the period April 1 to June 30, 1981 are discussed. Currently, Sandia's activities are focused upon: the development and use of analytical and experimental modeling techniques to describe and predict the retort properties and retorting process parameters that are important to the preparation, operation, and stability of in situ retorts, and the development, deployment, and field use of instrumentation, data acquisition, and process monitoring systems to characterize and evaluate in site up shale oil recovery operations. In-house activities and field activities (at the Geokinetics Oil Shale Project and the Occidental Oil Shale Project) are described under the headings: bed preparation, bed characterization, retorting process, and structural stability.
The Propulsive Small Expendable Deployer System (ProSEDS)
NASA Technical Reports Server (NTRS)
Lorenzini, Enrico C.
2002-01-01
This Annual Report covers the following main topics: 1) Updated Reference Mission. The reference ProSEDS (Propulsive Small Expendable Deployer System) mission is evaluated for an updated launch date in the Summer of 2002 and for the new 80-s current operating cycle. Simulations are run for nominal solar activity condition at the time of launch and for extreme conditions of dynamic forcing. Simulations include the dynamics of the system, the electrodynamics of the bare tether, the neutral atmosphere and the thermal response of the tether. 2) Evaluation of power delivered by the tether system. The power delivered by the tethered system during the battery charging mode is computed under the assumption of minimum solar activity for the new launch date. 3) Updated Deployment Control Profiles and Simulations. A number of new deployment profiles were derived based on the latest results of the deployment ground tests. The flight profile is then derived based on the friction characteristics obtained from the deployment tests of the F-1 tether. 4) Analysis/estimation of deployment flight data. A process was developed to estimate the deployment trajectory of the endmass with respect to the Delta and the final libration amplitude from the data of the deployer turn counters. This software was tested successfully during the ProSEDS mission simulation at MSFC (Marshall Space Flight Center) EDAC (Environments Data Analysis Center).
Field-deployable gamma-radiation detectors for DHS use
NASA Astrophysics Data System (ADS)
Mukhopadhyay, Sanjoy
2007-09-01
Recently, the Department of Homeland Security (DHS) has integrated all nuclear detection research, development, testing, evaluation, acquisition, and operational support into a single office: the Domestic Nuclear Detection Office (DNDO). The DNDO has specific requirements set for all commercial off-the-shelf and government off-the-shelf radiation detection equipment and data acquisition systems. This article would investigate several recent developments in field deployable gamma radiation detectors that are attempting to meet the DNDO specifications. Commercially available, transportable, handheld radio isotope identification devices (RIID) are inadequate for DHS' requirements in terms of sensitivity, resolution, response time, and reach-back capability. The leading commercial vendor manufacturing handheld gamma spectrometer in the United States is Thermo Electron Corporation. Thermo Electron's identiFINDER TM, which primarily uses sodium iodide crystals (3.18 x 2.54cm cylinders) as gamma detectors, has a Full-Width-at-Half-Maximum energy resolution of 7 percent at 662 keV. Thermo Electron has just recently come up with a reach-back capability patented as RadReachBack TM that enables emergency personnel to obtain real-time technical analysis of radiation samples they find in the field1. The current project has the goal to build a prototype handheld gamma spectrometer, equipped with a digital camera and an embedded cell phone to be used as an RIID with higher sensitivity, better resolution, and faster response time (able to detect the presence of gamma-emitting radio isotopes within 5 seconds of approach), which will make it useful as a field deployable tool. The handheld equipment continuously monitors the ambient gamma radiation, and, if it comes across any radiation anomalies with higher than normal gamma gross counts, it sets an alarm condition. When a substantial alarm level is reached, the system automatically triggers the saving of relevant spectral data and software-triggers the digital camera to take a snapshot. The spectral data including in situ analysis and the imagery data will be packaged in a suitable format and sent to a command post using an imbedded cell phone.
You, David J; Geshell, Kenneth J; Yoon, Jeong-Yeol
2011-10-15
Direct and sensitive detection of foodborne pathogens from fresh produce samples was accomplished using a handheld lab-on-a-chip device, requiring little to no sample processing and enrichment steps for a near-real-time detection and truly field-deployable device. The detection of Escherichia coli K12 and O157:H7 in iceberg lettuce was achieved utilizing optimized Mie light scatter parameters with a latex particle immunoagglutination assay. The system exhibited good sensitivity, with a limit of detection of 10 CFU mL(-1) and an assay time of <6 min. Minimal pretreatment with no detrimental effects on assay sensitivity and reproducibility was accomplished with a simple and cost-effective KimWipes filter and disposable syringe. Mie simulations were used to determine the optimal parameters (particle size d, wavelength λ, and scatter angle θ) for the assay that maximize light scatter intensity of agglutinated latex microparticles and minimize light scatter intensity of the tissue fragments of iceberg lettuce, which were experimentally validated. This introduces a powerful method for detecting foodborne pathogens in fresh produce and other potential sample matrices. The integration of a multi-channel microfluidic chip allowed for differential detection of the agglutinated particles in the presence of the antigen, revealing a true field-deployable detection system with decreased assay time and improved robustness over comparable benchtop systems. Additionally, two sample preparation methods were evaluated through simulated field studies based on overall sensitivity, protocol complexity, and assay time. Preparation of the plant tissue sample by grinding resulted in a two-fold improvement in scatter intensity over washing, accompanied with a significant increase in assay time: ∼5 min (grinding) versus ∼1 min (washing). Specificity studies demonstrated binding of E. coli O157:H7 EDL933 to only O157:H7 antibody conjugated particles, with no cross-reactivity to K12. This suggests the adaptability of the system for use with a wide variety of pathogens, and the potential to detect in a variety of biological matrices with little to no sample pretreatment. Copyright © 2011 Elsevier B.V. All rights reserved.
The Community Seismic Network: Enabling Observations Through Citizen Science Participation
NASA Astrophysics Data System (ADS)
Kohler, M. D.; Clayton, R. W.; Heaton, T. H.; Bunn, J.; Guy, R.; Massari, A.; Chandy, K. M.
2017-12-01
The Community Seismic Network is a dense accelerometer array deployed in the greater Los Angeles area and represents the future of densely instrumented urban cities where localized vibration measurements are collected continuously throughout the free-field and built environment. The hardware takes advantage of developments in the semiconductor industry in the form of inexpensive MEMS accelerometers that are each coupled with a single board computer. The data processing and archival architecture borrows from developments in cloud computing and network connectedness. The ability to deploy densely in the free field and in upper stories of mid/high-rise buildings is enabled by community hosts for sensor locations. To this end, CSN has partnered with the Los Angeles Unified School District (LAUSD), the NASA-Jet Propulsion Laboratory (JPL), and commercial and civic building owners to host sensors. At these sites, site amplification estimates from RMS noise measurements illustrate the lateral variation in amplification over length scales of 100 m or less, that correlate with gradients in the local geology such as sedimentary basins that abut crystalline rock foothills. This is complemented by high-resolution, shallow seismic velocity models obtained using an H/V method. In addition, noise statistics are used to determine the reliability of sites for ShakeMap and earthquake early warning data. The LAUSD and JPL deployments are examples of how situational awareness and centralized warning products such as ShakeMap and ShakeCast are enabled by citizen science participation. Several buildings have been instrumented with at least one triaxial accelerometer per floor, providing measurements for real-time structural health monitoring through local, customized displays. For real-time and post-event evaluation, the free-field and built environment CSN data and products illustrate the feasibility of order-of-magnitude higher spatial resolution mapping compared to what is currently possible with traditional, regional seismic networks. The JPL experiment in particular represents a miniature prototype for city-wide earthquake monitoring that combines free-field measurements for ground shaking intensities, with mid-rise building response through advanced fragility curve computations.
NASA Astrophysics Data System (ADS)
Long, M. D.
2015-12-01
Research experiences for secondary school science teachers have been shown to improve their students' test scores, and there is a substantial body of literature about the effectiveness of RET (Research Experience for Teachers) or SWEPT (Scientific Work Experience Programs for Teachers) programs. RET programs enjoy substantial support, and several opportunities for science teachers to engage in research currently exist. However, there are barriers to teacher participation in research projects; for example, laboratory-based projects can be time consuming and require extensive training before a participant can meaningfully engage in scientific inquiry. Field-based projects can be an effective avenue for involving teachers in research; at its best, earth science field work is a fun, highly immersive experience that meaningfully contributes to scientific research projects, and can provide a payoff that is out of proportion to a relatively small time commitment. In particular, broadband seismology deployments provide an excellent opportunity to provide teachers with field-based research experience. Such deployments are labor-intensive and require large teams, with field tasks that vary from digging holes and pouring concrete to constructing and configuring electronics systems and leveling and orienting seismometers. A recently established pilot program, known as FEST (Field Experiences for Science Teachers) is experimenting with providing one week of summer field experience for high school earth science teachers in Connecticut. Here I report on results and challenges from the first year of the program, which is funded by the NSF-CAREER program and is being run in conjunction with a temporary deployment of 15 seismometers in Connecticut, known as SEISConn (Seismic Experiment for Imaging Structure beneath Connecticut). A small group of teachers participated in a week of field work in August 2015 to deploy seismometers in northern CT; this experience followed a visit of the PI to the classroom of one of the teacher participants during spring 2015 to give a series of talks on Connecticut earthquakes and geology. This presentation will focus on the challenges and opportunities of running small, PI-driven, field-based RET programs.
Possible overexposure of pregnant women to emissions from a walk through metal detector.
Wu, Dagang; Qiang, Rui; Chen, Ji; Seidman, Seth; Witters, Donald; Kainz, Wolfgang
2007-10-07
This paper presents a systematic procedure to evaluate the induced current densities and electric fields due to walk-through metal detector (WTMD) exposure. This procedure is then used to assess the exposure of nine pregnant women models exposed to one WTMD model. First, we measured the magnetic field generated by the WTMD, then we extracted the equivalent current source to represent the WTMD emissions and finally we calculated the induced current densities and electric fields using the impedance method. The WTMD emissions and the induced fields in the pregnant women and fetus models are then compared to the ICNIRP Guidelines and the IEEE C95.6 exposure safety standard. The results prove the consistency between maximum permissible exposure (MPE) levels and basic restrictions for the ICNIRP Guidelines and IEEE C95.6. We also found that this particular WTMD complies with the ICNIRP basic restrictions for month 1-5 models, but leads to both fetus and pregnant women overexposure for month 6-9 models. The IEEE C95.6 restrictions (MPEs and basic restrictions) are not exceeded. The fetus overexposure of this particular WTMD calls for carefully conducted safety evaluations of security systems before they are deployed.
Possible overexposure of pregnant women to emissions from a walk through metal detector
NASA Astrophysics Data System (ADS)
Wu, Dagang; Qiang, Rui; Chen, Ji; Seidman, Seth; Witters, Donald; Kainz, Wolfgang
2007-09-01
This paper presents a systematic procedure to evaluate the induced current densities and electric fields due to walk-through metal detector (WTMD) exposure. This procedure is then used to assess the exposure of nine pregnant women models exposed to one WTMD model. First, we measured the magnetic field generated by the WTMD, then we extracted the equivalent current source to represent the WTMD emissions and finally we calculated the induced current densities and electric fields using the impedance method. The WTMD emissions and the induced fields in the pregnant women and fetus models are then compared to the ICNIRP Guidelines and the IEEE C95.6 exposure safety standard. The results prove the consistency between maximum permissible exposure (MPE) levels and basic restrictions for the ICNIRP Guidelines and IEEE C95.6. We also found that this particular WTMD complies with the ICNIRP basic restrictions for month 1-5 models, but leads to both fetus and pregnant women overexposure for month 6-9 models. The IEEE C95.6 restrictions (MPEs and basic restrictions) are not exceeded. The fetus overexposure of this particular WTMD calls for carefully conducted safety evaluations of security systems before they are deployed.
Consistency of Recall for Deployment-Related Traumatic Brain Injury.
Alosco, Michael L; Aslan, Mihaela; Du, Mengtian; Ko, John; Grande, Laura; Proctor, Susan P; Concato, John; Vasterling, Jennifer J
2016-01-01
To examine the temporal consistency of self-reported deployment-related traumatic brain injury (TBI) and its association with posttraumatic stress disorder (PTSD) symptom severity. In-person interviews at US Army installations (postdeployment); phone interviews (long-term follow-up). A total of 378 US Army soldiers and veterans deployed to Iraq; 14.3% (n = 54) reported TBI with loss of consciousness during an index deployment. Participants were evaluated after returning from deployment and again 5 to 9 years later. Temporal consistency of TBI endorsement based on TBI screening interviews; PTSD Checklist, Civilian Version. The concordance of deployment-related TBI endorsement from the postdeployment to long-term follow-up assessment was moderate (κ = 0.53). Of the 54 participants reporting (predominantly mild) TBI occurring during an index deployment, 32 endorsed TBI inconsistently over time. More severe PTSD symptoms at postdeployment assessment were independently associated with discordant reporting (P = .0004); each 10-point increase in PCL scores increasing odds of discordance by 69% (odds ratio = 1.69; 95% confidence interval, 1.26-2.26). Deployment-related TBI may not be reported reliably over time, particularly among war-zone veterans with greater PTSD symptoms. Results of screening evaluations for TBI history should be viewed with caution in the context of PTSD symptom history.
Kato, Hironari; Kawamoto, Hirofumi; Noma, Yasuhiro; Sonoyama, Takayuki; Tsutsumi, Koichiro; Fujii, Masakuni; Okada, Hiroyuki; Yamamoto, Kazuhide
2013-01-01
The endoscopic management of malignant hilar biliary strictures using multiple metallic stents (MS) is technically demanding, in the initial deployment of MS and the recovery from MS occlusion with deployment of multiple plastic stents (PS). We evaluated the outcomes of the application of a Soehendra stent retriever (SSR) as a dilator of intractable strictures. Fifty-nine patients with malignant hilar biliary strictures had multiple MS inserted using a partial stent-in-stent procedure. When we encountered intractable strictures, we adopted SSR to dilate the stricture and the interstice of the MS. We evaluated the success rate of MS or PS deployment after SSR application and procedural complications. Five of 59 patients (8%) were subjected to SSR application for the initial MS deployment. MS were successfully deployed in all of these patients (100%). MS occlusion was noted in 27 patients. We applied SSR to seven patients (26%) for the deployment of multiple PS after MS occlusion. In five patients (71%), successful PS deployment was achieved after the SSR application. No complications related to dilatation using SSR occurred in any patient. SSR proved to be a potent dilator of difficult strictures in the management of malignant hilar biliary strictures.
Design and Field Test of a WSN Platform Prototype for Long-Term Environmental Monitoring
Lazarescu, Mihai T.
2015-01-01
Long-term wildfire monitoring using distributed in situ temperature sensors is an accurate, yet demanding environmental monitoring application, which requires long-life, low-maintenance, low-cost sensors and a simple, fast, error-proof deployment procedure. We present in this paper the most important design considerations and optimizations of all elements of a low-cost WSN platform prototype for long-term, low-maintenance pervasive wildfire monitoring, its preparation for a nearly three-month field test, the analysis of the causes of failure during the test and the lessons learned for platform improvement. The main components of the total cost of the platform (nodes, deployment and maintenance) are carefully analyzed and optimized for this application. The gateways are designed to operate with resources that are generally used for sensor nodes, while the requirements and cost of the sensor nodes are significantly lower. We define and test in simulation and in the field experiment a simple, but effective communication protocol for this application. It helps to lower the cost of the nodes and field deployment procedure, while extending the theoretical lifetime of the sensor nodes to over 16 years on a single 1 Ah lithium battery. PMID:25912349
1987-02-01
The FSWRS will be used by forces deployed to Theaters of Operations located in water-short areas of the world, and will greatly reduce water supply... operators take ’ A appropriate precautions in handling sulfuric acid and un- . treat.d waters. Although no health hazards are anticipated to result from...field. The FSWRS will be used by forces deployed to Theaters of Operations located in water short areas of the world, and will greatly reduce water
Dow, Geoffrey S; McCarthy, William F; Reid, Mark; Smith, Bryan; Tang, Douglas; Shanks, G Dennis
2014-02-06
In 2000/2001, the Australian Defense Forces (ADF), in collaboration with SmithKline Beecham and the United States Army, conducted a field trial to evaluate the safety, tolerability and efficacy of tafenoquine and mefloquine/primaquine for the prophylaxis of malaria amongst non-immune Australian soldiers deployed to East Timor (now called Timor Leste) for peacekeeping operations. The lack of a concurrent placebo control arm prevented an internal estimate of the malaria attack rate and so the protective efficacy of the study regimens was not determined at the time. In a retrospective analysis of the trial results, the all species malaria attack rate was estimated for the prophylactic phase of the study which was defined as the period between administration of the first prophylactic dose and the first dose of post-deployment medication. First, the Plasmodium vivax attack rate was estimated during the prophylactic phase of the deployment by adjusting the observed P. vivax relapse rate during post-deployment to account for the known anti-relapse efficacies (or effectiveness) of the study medications (determined from prior studies). The all species malaria attack rate (P. vivax and Plasmodium falciparum) was then determined by adjusting the P. vivax attack rate based on the ratio of P. falciparum to P. vivax observed during prior ADF deployments to Timor Leste. This estimated all species malaria attack rate was then used as the 'constant estimated attack rate' in the calculation of the protective efficacy of tafenoquine and mefloquine during the prophylactic phase of the deployment. The estimated attack rate during the prophylactic phase of the study was determined to be 7.88%. The protective efficacies of tafenoquine and mefloquine, with corresponding 95% confidence intervals (95% CI), were determined to be 100% (93%-100%) and 100% (79%-100%) respectively. The protective efficacy of tafenoquine (200 mg per day for three days, followed by weekly 200 mg maintenance doses) is similar to that of the weekly standard of care (mefloquine, 250 mg).
2014-01-01
Background In 2000/2001, the Australian Defense Forces (ADF), in collaboration with SmithKline Beecham and the United States Army, conducted a field trial to evaluate the safety, tolerability and efficacy of tafenoquine and mefloquine/primaquine for the prophylaxis of malaria amongst non-immune Australian soldiers deployed to East Timor (now called Timor Leste) for peacekeeping operations. The lack of a concurrent placebo control arm prevented an internal estimate of the malaria attack rate and so the protective efficacy of the study regimens was not determined at the time. Methods In a retrospective analysis of the trial results, the all species malaria attack rate was estimated for the prophylactic phase of the study which was defined as the period between administration of the first prophylactic dose and the first dose of post-deployment medication. First, the Plasmodium vivax attack rate was estimated during the prophylactic phase of the deployment by adjusting the observed P. vivax relapse rate during post-deployment to account for the known anti-relapse efficacies (or effectiveness) of the study medications (determined from prior studies). The all species malaria attack rate (P. vivax and Plasmodium falciparum) was then determined by adjusting the P. vivax attack rate based on the ratio of P. falciparum to P. vivax observed during prior ADF deployments to Timor Leste. This estimated all species malaria attack rate was then used as the ‘constant estimated attack rate’ in the calculation of the protective efficacy of tafenoquine and mefloquine during the prophylactic phase of the deployment. Results The estimated attack rate during the prophylactic phase of the study was determined to be 7.88%. The protective efficacies of tafenoquine and mefloquine, with corresponding 95% confidence intervals (95% CI), were determined to be 100% (93%-100%) and 100% (79%-100%) respectively. Conclusions The protective efficacy of tafenoquine (200 mg per day for three days, followed by weekly 200 mg maintenance doses) is similar to that of the weekly standard of care (mefloquine, 250 mg). PMID:24502679
A Causal Role for the Cortical Frontal Eye Fields in Microsaccade Deployment
Dash, Suryadeep; Lomber, Stephen G.
2016-01-01
Microsaccades aid vision by helping to strategically sample visual scenes. Despite the importance of these small eye movements, no cortical area has ever been implicated in their generation. Here, we used unilateral and bilateral reversible inactivation of the frontal eye fields (FEF) to identify a cortical drive for microsaccades. Unexpectedly, FEF inactivation altered microsaccade metrics and kinematics. Such inactivation also impaired microsaccade deployment following peripheral cue onset, regardless of cue side or inactivation configuration. Our results demonstrate that the FEF provides critical top-down drive for microsaccade generation, particularly during the recovery of microsaccades after disruption by sensory transients. Our results constitute the first direct evidence, to our knowledge, for the contribution of any cortical area to microsaccade generation, and they provide a possible substrate for how cognitive processes can influence the strategic deployment of microsaccades. PMID:27509130
A Causal Role for the Cortical Frontal Eye Fields in Microsaccade Deployment.
Peel, Tyler R; Hafed, Ziad M; Dash, Suryadeep; Lomber, Stephen G; Corneil, Brian D
2016-08-01
Microsaccades aid vision by helping to strategically sample visual scenes. Despite the importance of these small eye movements, no cortical area has ever been implicated in their generation. Here, we used unilateral and bilateral reversible inactivation of the frontal eye fields (FEF) to identify a cortical drive for microsaccades. Unexpectedly, FEF inactivation altered microsaccade metrics and kinematics. Such inactivation also impaired microsaccade deployment following peripheral cue onset, regardless of cue side or inactivation configuration. Our results demonstrate that the FEF provides critical top-down drive for microsaccade generation, particularly during the recovery of microsaccades after disruption by sensory transients. Our results constitute the first direct evidence, to our knowledge, for the contribution of any cortical area to microsaccade generation, and they provide a possible substrate for how cognitive processes can influence the strategic deployment of microsaccades.
The Potential of Geothermal as a Major Supplier of U.S. Primary Energy using EGS technology
NASA Astrophysics Data System (ADS)
Tester, J. W.
2012-12-01
Recent national focus on the value of increasing our supply of indigenous, renewable energy underscores the need for re-evaluating all alternatives, particularly those that are large and well-distributed nationally. To transition from our current hydrocarbon-based energy system, we will need to expand and diversify the portfolio of options we currently have. One such option that has been undervalued and often ignored completely in national assessments is geothermal energy from both conventional hydrothermal resources and enhanced or engineered geothermal systems (EGS). Although geothermal energy is currently used for both electric and non-electric applications worldwide from conventional hydrothermal resources and in groundsource heat pumps, most of the emphasis in the US has been generating electricity. For example, a 2006 MIT-led study focused on the potential for EGS to provide 100,000 MWe of base-load electric generating capacity in the US by 2050. Since that time, a Cornell-led study has evaluated the potential for geothermal to meet the more than 25 EJ per year demand in the US for low temperature thermal energy for heating and other direct process applications Field testing of EGS in the US, Europe, and Australia is reviewed to outline what remains to be done for large-scale deployment. Research, Development and Demonstration (RD&D) needs in five areas important to geothermal deployment on a national scale will be reviewed: 1. Resource - estimating the magnitude and distribution of the US resource 2. Reservoir Technology - establishing requirements for extracting and utilizing energy from EGS reservoirs including drilling, reservoir design and stimulation 3. Utilization - exploring end use options for district heating, electricity generation and co-generation. 4. Environmental impacts and tradeoffs -- dealing with water and land use and seismic risk and quantifying the reduction in carbon emissions with increased deployment 5. Economics - projecting costs for EGS supplied electricity as a function of invested R&D and deployment in evolving US energy markets
Space station structures development
NASA Technical Reports Server (NTRS)
Teller, V. B.
1986-01-01
A study of three interrelated tasks focusing on deployable Space Station truss structures is discussed. Task 1, the development of an alternate deployment system for linear truss, resulted in the preliminary design of an in-space reloadable linear motor deployer. Task 2, advanced composites deployable truss development, resulted in the testing and evaluation of composite materials for struts used in a deployable linear truss. Task 3, assembly of structures in space/erectable structures, resulted in the preliminary design of Space Station pressurized module support structures. An independent, redundant support system was developed for the common United States modules.
DOT National Transportation Integrated Search
2016-01-01
This report presents the methodology and results of the independent evaluation of heavy trucks (HTs) in the Safety Pilot Model Deployment (SPMD); part of the United States Department of Transportations Intelligent Transportation Systems research p...
DOT National Transportation Integrated Search
2015-12-01
This report presents the methodology and results of the independent evaluation of safety applications for passenger vehicles in the 2012-2013 Safety Pilot Model Deployment, part of the United States Department of Transportations Intelligent Transp...
DOT National Transportation Integrated Search
2006-02-20
To help states track their own progress in deploying Commercial Vehicle Information Systems and Networks (CVISN) technologies, a self-evaluation requirement was included in the partnership agreements between the U.S. Department of Transportation (DOT...
Briand, Françoise; Guerin, Patrick M.; Charmillot, Pierre-Joseph; Kehrli, Patrik
2012-01-01
Mating disruption by sex pheromones is a sustainable, effective and widely used pest management scheme. A drawback of this technique is its challenging assessment of effectiveness in the field (e.g., spatial scale, pest density). The aim of this work was to facilitate the evaluation of field-deployed pheromone dispensers. We tested the suitability of small insect field cages for a pre-evaluation of the impact of sex pheromones on mating using the grape moths Eupoecilia ambiguella and Lobesia botrana, two major pests in vineyards. Cages consisted of a cubic metal frame of 35 cm sides, which was covered with a mosquito net of 1500 μm mesh size. Cages were installed in the centre of pheromone-treated and untreated vineyards. In several trials, 1 to 20 couples of grape moths per cage were released for one to three nights. The proportion of mated females was between 15 to 70% lower in pheromone-treated compared to untreated vineyards. Overall, the exposure of eight couples for one night was adequate for comparing different control schemes. Small cages may therefore provide a fast and cheap method to compare the effectiveness of pheromone dispensers under standardised semi-field conditions and may help predict the value of setting-up large-scale field trials. PMID:22645483
DOT National Transportation Integrated Search
2005-03-01
The conventional approach to signal timing optimization and field deployment requires current traffic flow data, experience with optimization models, familiarity with the signal controller hardware, and knowledge of field operations including signal ...
Signal timing on a shoestring.
DOT National Transportation Integrated Search
2005-03-01
The conventional approach to signal timing optimization and field deployment requires current traffic flow data, experience with optimization models, familiarity with the signal controller hardware, and knowledge of field operations including signal ...
The Propulsive Small Expendable Deployer System (ProSEDS)
NASA Technical Reports Server (NTRS)
Lorenzini, Enrico C.; Cosmo, Mario L.; Estes, Robert D.; Sanmartin, Juan; Pelaez, Jesus; Ruiz, Manuel
2003-01-01
This Final Report covers the following main topics: 1) Brief Description of ProSEDS; 2) Mission Analysis; 3) Dynamics Reference Mission; 4) Dynamics Stability; 5) Deployment Control; 6) Updated System Performance; 7) Updated Mission Analysis; 8) Updated Dynamics Reference Mission; 9) Updated Deployment Control Profiles and Simulations; 10) Updated Reference Mission; 11) Evaluation of Power Delivered by the Tether; 12) Deployment Control Profile Ref. #78 and Simulations; 13) Kalman Filters for Mission Estimation; 14) Analysis/Estimation of Deployment Flight Data; 15) Comparison of ED Tethers and Electrical Thrusters; 16) Dynamics Analysis for Mission Starting at a Lower Altitude; 17) Deployment Performance at a Lower Altitude; 18) Satellite Orbit after a Tether Cut; 19) Deployment with Shorter Dyneema Tether Length; 20) Interactive Software for ED Tethers.
Defensive aids suite prototype for light armored vehicles
NASA Astrophysics Data System (ADS)
Cantin, Andre; Fortin, Jean; Venter, Johan; Philip, Brian G.; Hagen, Russell; Krieger, Dietmar; Greenley, Mike
2001-09-01
The Defence Research Establishment Valcartier has initiated in 1998 R&D work to investigate and to demonstrate key technologies required for future Defensive Aid Suite to protect Light Armoured Vehicles. A basic Defensive Aid Suite demonstrator (Phase I) was built and integrated into the LAV vetronics by Litton Systems Canada and his consortium. The Defensive Aid Suite consisted of a 2-band HARLIDTM-based laser detection head, a processor capable to control and deploy countermeasures and a DAS touch-screen display all integrated in a Light Armored Vehicle. The crew was able to select the operation mode for direct fire or smoke deployment by pushing one of the pair of buttons available at the bottom of the display. This system was successfully demonstrated in October 1999 during an international trial. This article gives an overview of the results obtained in the field as well as some of the lessons learnt. It also describes laboratory and field measurements made on the Laser Warning Receiver unit itself. The results of the DAS tactical use and of Human factor evaluation will illustrate its performance within typical laser threat scenarios. This work will serve as the basis for the recommendation of a future DAS demonstrator (Phase II) integrating more sensors and countermeasures.
NASA Astrophysics Data System (ADS)
Arvidson, R. E.; Squyres, S. W.; Baumgartner, E. T.; Schenker, P. S.; Niebur, C. S.; Larsen, K. W.; SeelosIV, F. P.; Snider, N. O.; Jolliff, B. L.
2002-08-01
The Field Integration Design and Operations (FIDO) prototype Mars rover was deployed and operated remotely for 2 weeks in May 2000 in the Black Rock Summit area of Nevada. The blind science operation trials were designed to evaluate the extent to which FIDO-class rovers can be used to conduct traverse science and collect samples. FIDO-based instruments included stereo cameras for navigation and imaging, an infrared point spectrometer, a color microscopic imager for characterization of rocks and soils, and a rock drill for core acquisition. Body-mounted ``belly'' cameras aided drill deployment, and front and rear hazard cameras enabled terrain hazard avoidance. Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) data, a high spatial resolution IKONOS orbital image, and a suite of descent images were used to provide regional- and local-scale terrain and rock type information, from which hypotheses were developed for testing during operations. The rover visited three sites, traversed 30 m, and acquired 1.3 gigabytes of data. The relatively small traverse distance resulted from a geologically rich site in which materials identified on a regional scale from remote-sensing data could be identified on a local scale using rover-based data. Results demonstrate the synergy of mapping terrain from orbit and during descent using imaging and spectroscopy, followed by a rover mission to test inferences and to make discoveries that can be accomplished only with surface mobility systems.
A new type of tri-axial accelerometers with high dynamic range MEMS for earthquake early warning
NASA Astrophysics Data System (ADS)
Peng, Chaoyong; Chen, Yang; Chen, Quansheng; Yang, Jiansi; Wang, Hongti; Zhu, Xiaoyi; Xu, Zhiqiang; Zheng, Yu
2017-03-01
Earthquake Early Warning System (EEWS) has shown its efficiency for earthquake damage mitigation. As the progress of low-cost Micro Electro Mechanical System (MEMS), many types of MEMS-based accelerometers have been developed and widely used in deploying large-scale, dense seismic networks for EEWS. However, the noise performance of these commercially available MEMS is still insufficient for weak seismic signals, leading to the large scatter of early-warning parameters estimation. In this study, we developed a new type of tri-axial accelerometer based on high dynamic range MEMS with low noise level using for EEWS. It is a MEMS-integrated data logger with built-in seismological processing. The device is built on a custom-tailored Linux 2.6.27 operating system and the method for automatic detecting seismic events is STA/LTA algorithms. When a seismic event is detected, peak ground parameters of all data components will be calculated at an interval of 1 s, and τc-Pd values will be evaluated using the initial 3 s of P wave. These values will then be organized as a trigger packet actively sent to the processing center for event combining detection. The output data of all three components are calibrated to sensitivity 500 counts/cm/s2. Several tests and a real field test deployment were performed to obtain the performances of this device. The results show that the dynamic range can reach 98 dB for the vertical component and 99 dB for the horizontal components, and majority of bias temperature coefficients are lower than 200 μg/°C. In addition, the results of event detection and real field deployment have shown its capabilities for EEWS and rapid intensity reporting.
NASA Technical Reports Server (NTRS)
Hamid, Hedayat U.; Margason, Richard J.; Hardy, Gordon
1995-01-01
An investigation of the wing upper surface flow-field disturbance due to in-flight inboard thrust reverser deployment on the NASA DC-8-72, which was conducted cooperatively by NASA Ames, the Federal Aviation Administration (FAA), McDonnell Douglas, and the Aerospace Industry Association (AIA), is outlined and discussed in detail. The purpose of this flight test was to obtain tufted flow visualization data which demonstrates the effect of thrust reverser deployment on the wing upper surface flow field to determine if the disturbed flow regions could be modeled by computational methods. A total of six symmetric thrust reversals of the two inboard engines were performed to monitor tuft and flow cone patterns as well as the character of their movement at the nominal Mach numbers of 0.55, 0.70, and 0.85. The tufts and flow cones were photographed and video-taped to determine the type of flow field that occurs with and without the thrust reversers deployed. In addition, the normal NASA DC-8 onboard Data Acquisition Distribution System (DADS) was used to synchronize the cameras. Results of this flight test will be presented in two parts. First, three distinct flow patterns associated with the above Mach numbers were sketched from the motion videos and discussed in detail. Second, other relevant aircraft parameters, such as aircraft's angular orientation, altitude, Mach number, and vertical descent, are discussed. The flight test participants' comments were recorded on the videos and the interested reader is referred to the video supplement section of this report for that information.
NASA Astrophysics Data System (ADS)
Schmitt, Mathias
2014-12-01
The aim of this paper is to give a preliminary insight regarding the current work in the field of mobile interaction in industrial environments by using established interaction technologies and metaphors from the consumer goods industry. The major objective is the development and implementation of a holistic app-framework, which enables dynamic feature deployment and extension by using mobile apps on industrial field devices. As a result, field device functionalities can be updated and adapted effectively in accordance with well-known appconcepts from consumer electronics to comply with the urgent requirements of more flexible and changeable factory systems of the future. In addition, a much more user-friendly and utilizable interaction with field devices can be realized. Proprietary software solutions and device-stationary user interfaces can be overcome and replaced by uniform, cross-vendor solutions
Propulsive Small Expendable Deployer System (ProSEDS)
NASA Technical Reports Server (NTRS)
1999-01-01
NASA's Propulsive Small Expendable Deployer System experiment (ProSEDS) will demonstrate the use of an electrodynamic tether, basically a long, thin wire, for propulsion. An electrodynamic tether uses the same principles as electric motors in toys, appliances and computer disk drives, and generators in automobiles and power plants. When electrical current is flowing through the tether, a magnetic field is produced that pushes against the magnetic field of the Earth. For ProSEDS, the current in the tether results by virtue of the voltage generated when the tether moves through the Earth's magnetic field at more than 17,000 mph. This approach can produce drag thrust generating useable power. Since electrodynamic tethers require no propellant, they could substantially reduce the weight of the spacecraft and provide a cost-effective method of reboosting spacecraft. The initial flight of ProSEDS is scheduled to fly aboard an Air Force Delta II rocket in the summer of 2002. In orbit, ProSEDS will deploy from a Delta II second stage. It will be a 3.1-mile (5 kilometer) long, ultrathin base-wire cornected with a 6.2-mile (10 kilometer) long nonconducting tether. This photograph shows Less Johnson, a scientist at MSFC inspecting the nonconducting part of a tether as it exits a deployer similar to the one to be used in the ProSEDS experiment. The ProSEDS experiment is managed by the Space Transportation Directorate at MSFC.
Surgical workload of a foreign medical team after Typhoon Haiyan.
Read, David J; Holian, Annette; Moller, Cea-Cea; Poutawera, Vaughan
2016-05-01
On 8 November 2013, Typhoon Haiyan struck the Philippines causing widespread loss of lives and infrastructures. At the request of the Government of the Philippines, the Australian Government deployed a surgical field hospital to the city of Tacloban for 4 weeks. This paper describes the establishment of the hospital, the surgical workload and handover to the local health system upon the end of deployment. A Microsoft excel database was utilized throughout the deployment, recording demographics, relationship to the typhoon and surgical procedure performed. Over the 21 days of surgical activity, the Australian field hospital performed 222 operations upon 131 persons. A mean of 10.8 procedures were performed per day (range 3-20). The majority (70.2%) of procedures were soft tissue surgery. Diabetes was present in 22.9% and 67.9% were typhoon-related. The Australian Medical Assistance Team field hospital adhered to the World Health Organization guidelines for foreign medical teams, in ensuring informed consent, appropriate anaesthesia and surgery, and worked collaboratively with local surgeons, ensuring adequate documentation and clinical handover. This paper describes the experience of a trained, equipped and collaborative surgical foreign medical team in Tacloban in the aftermath of Typhoon Haiyan. Sepsis from foot injuries in diabetic patients constituted an unexpected majority of the workload. New presentations of typhoon-related injuries were presented throughout the deployment. © 2015 Royal Australasian College of Surgeons.
Studying seafloor bedforms using autonomous stationary imaging and profiling sonars
Montgomery, Ellyn T.; Sherwood, Christopher R.
2014-01-01
The Sediment Transport Group at the U.S. Geological Survey, Woods Hole Coastal and Marine Science Center uses downward looking sonars deployed on seafloor tripods to assess and measure the formation and migration of bedforms. The sonars have been used in three resolution-testing experiments, and deployed autonomously to observe changes in the seafloor for up to two months in seven field experiments since 2002. The sonar data are recorded concurrently with measurements of waves and currents to: a) relate bedform geometry to sediment and flow characteristics; b) assess hydrodynamic drag caused by bedforms; and c) estimate bedform sediment transport rates, all with the goal of evaluating and improving numerical models of these processes. Our hardware, data processing methods, and test and validation procedures have evolved since 2001. We now employ a standard sonar configuration that provides reliable data for correlating flow conditions with bedform morphology. Plans for the future are to sample more rapidly and improve the precision of our tripod orientation measurements.
Phototaxis of larval and juvenile northern pike
Zigler, S.J.; Dewey, M.R.
1995-01-01
Age- Phi northern pike Esox lucius prefer vegetated habitats that are difficult to sample with standard towed gears. Light traps can be effective for sampling larval fishes in dense vegetation, given positive phototaxis of fish. We evaluated the phototactic response of young northern pike by comparing the catches of larvae and juveniles obtained with plexiglass traps deployed with a chemical light stick versus traps deployed without a light source (controls) in a laboratory raceway and in a vegetated pond. In the laboratory tests, catches of protolarvae and mesolarvae in lighted traps were 11-35 times greater than catches in control traps. The catches of juvenile northern pike in field and laboratory experiments were 3-15 times greater in lighted traps than in control traps, even though the maximum body width of the larger juveniles was similar to the width of the entrance slots of the traps (5 mm). Larval and juvenile northern pike were photopositive; thus, light traps should effectively sample age-0 northern pike for at least 6 weeks after hatching.
Pánek, Jiří; Marek, Lukáš; Pászto, Vít; Valůch, Jaroslav
2017-10-01
Crisis mapping is a legitimate component of both crisis informatics and disaster risk management. It has become an effective tool for humanitarian workers, especially after the earthquake in Haiti in 2010. Ushahidi is among the many mapping platforms on offer in the growing field of crisis mapping, and involves the application of crowdsourcing to create online and interactive maps of areas in turmoil. This paper presents the Crisis Map of the Czech Republic, which is the first such instrument to be deployed nationwide in Central Europe. It describes the methodologies used in the preparatory work phase and details some practices identified during the creation and actual employment of the map. In addition, the paper assesses its structure and technological architecture, as well as its potential possible development in the future. Lastly, it evaluates the utilisation of the Crisis Map during the floods in the Czech Republic in 2013. © 2017 The Author(s). Disasters © Overseas Development Institute, 2017.
Gulf War veterans' health: medical evaluation of a U.S. cohort.
Eisen, Seth A; Kang, Han K; Murphy, Frances M; Blanchard, Melvin S; Reda, Domenic J; Henderson, William G; Toomey, Rosemary; Jackson, Leila W; Alpern, Renee; Parks, Becky J; Klimas, Nancy; Hall, Coleen; Pak, Hon S; Hunter, Joyce; Karlinsky, Joel; Battistone, Michael J; Lyons, Michael J
2005-06-07
United States military personnel reported various symptoms after deployment to the Persian Gulf during the 1991 Gulf War. However, the symptoms' long-term prevalence and association with deployment remain controversial. To assess and compare the prevalence of selected medical conditions in a national cohort of deployed and nondeployed Gulf War veterans who were evaluated by direct medical and teledermatologic examinations. A cross-sectional prevalence study performed 10 years after the 1991 Gulf War. Veterans were examined at 1 of 16 Veterans Affairs medical centers. Deployed (n = 1061) and nondeployed (n = 1128) veterans of the 1991 Gulf War. Primary outcome measures included fibromyalgia, the chronic fatigue syndrome, dermatologic conditions, dyspepsia, physical health-related quality of life (Short Form-36 [SF-36]), hypertension, obstructive lung disease, arthralgias, and peripheral neuropathy. Of 12 conditions, only 4 conditions were more prevalent among deployed than nondeployed veterans: fibromyalgia (deployed, 2.0%; nondeployed, 1.2%; odds ratio, 2.32 [95% CI, 1.02 to 5.27]); the chronic fatigue syndrome (deployed, 1.6%; nondeployed 0.1%; odds ratio, 40.6 [CI, 10.2 to 161]); dermatologic conditions (deployed, 34.6%; nondeployed, 26.8%; odds ratio, 1.38 [CI, 1.06 to 1.80]), and dyspepsia (deployed, 9.1%; nondeployed, 6.0%; odds ratio, 1.87 [CI, 1.16 to 2.99]). The mean physical component summary score of the SF-36 for deployed and nondeployed veterans was 49.3 and 50.8, respectively. Relatively low participation rates introduce potential participation bias, and deployment-related illnesses that resolved before the research examination could not, by design, be detected. Ten years after the Gulf War, the physical health of deployed and nondeployed veterans is similar. However, Gulf War deployment is associated with an increased risk for fibromyalgia, the chronic fatigue syndrome, skin conditions, dyspepsia, and a clinically insignificant decrease in the SF-36 physical component score.
DOT National Transportation Integrated Search
2000-01-01
This report describes the results of a major data gathering effort aimed at tracking deployment of nine infrastructure components of the metropolitan ITS infrastructure in 78 of the largest metropolitan areas in the nation. The nine components are: F...
San Diego field operational test of smart call boxes : institutional issues
DOT National Transportation Integrated Search
1997-01-01
Important institutional lessons learned in the course of the San Diego smart call box field operational test are presented. These lessons relate both to the conduct of the field test itself and to requirements for deployment of intelligent transporta...
Applications of Dynamic Deployment of Services in Industrial Automation
NASA Astrophysics Data System (ADS)
Candido, Gonçalo; Barata, José; Jammes, François; Colombo, Armando W.
Service-oriented Architecture (SOA) is becoming a de facto paradigm for business and enterprise integration. SOA is expanding into several domains of application envisioning a unified solution suitable across all different layers of an enterprise infrastructure. The application of SOA based on open web standards can significantly enhance the interoperability and openness of those devices. By embedding a dynamical deployment service even into small field de- vices, it would be either possible to allow machine builders to place built- in services and still allow the integrator to deploy on-the-run the services that best fit his current application. This approach allows the developer to keep his own preferred development language, but still deliver a SOA- compliant application. A dynamic deployment service is envisaged as a fundamental framework to support more complex applications, reducing deployment delays, while increasing overall system agility. As use-case scenario, a dynamic deployment service was implemented over DPWS and WS-Management specifications allowing designing and programming an automation application using IEC61131 languages, and deploying these components as web services into devices.
DOT National Transportation Integrated Search
2015-09-30
Incident Management (IM) is an area of transportation management that can significantly decrease the congestion and increase the : efficiency of transportation networks in non-ideal conditions. In this study, the existing state of the Integrated Inci...
Automated Water Quality Survey and Evaluation Using an IoT Platform with Mobile Sensor Nodes
Li, Teng; Xia, Min; Chen, Jiahong; Zhao, Yuanjie; de Silva, Clarence
2017-01-01
An Internet of Things (IoT) platform with capabilities of sensing, data processing, and wireless communication has been deployed to support remote aquatic environmental monitoring. In this paper, the design and development of an IoT platform with multiple Mobile Sensor Nodes (MSN) for the spatiotemporal quality evaluation of surface water is presented. A survey planner is proposed to distribute the Sampling Locations of Interest (SLoIs) over the study area and generate paths for MSNs to visit the SLoIs, given the limited energy and time budgets. The SLoIs are chosen based on a cellular decomposition that is composed of uniform hexagonal cells. They are visited by the MSNs along a path ring generated by a planning approach that uses a spanning tree. For quality evaluation, an Online Water Quality Index (OLWQI) is developed to interpret the large quantities of online measurements. The index formulations are modified by a state-of-the-art index, the CCME WQI, which has been developed by the Canadian Council of Ministers of Environment (CCME) for off-line indexing. The proposed index has demonstrated effective and reliable performance in online indexing a large volume of measurements of water quality parameters. The IoT platform is deployed in the field, and its performance is demonstrated and discussed in this paper. PMID:28788098
Alternate retrieval technology demonstrations program - test report (ARD Environmental, Inc.)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berglin, E.J.
A prototype vehicle, control system, and waste and water scavenging system were designed and fabricated with essentially the full capabilities of the vehicle system proposed by ARD Environmental. A test tank mockup, including riser and decontamination chamber were designed and fabricated, and approximately 830 cubic feet of six varieties of waste simulants poured. The tests were performed by ARD Environmental personnel at its site in Laurel, Maryland, from 4/22/97 through 5/2/97. The capabilities tested were deployment and retrieval, extended mobility and productivity, the ability to operate the system using video viewing only, retrieval after simulated failure, and retrieval and decontamination.more » Testing commenced with deployment of the vehicle into the tank. Deployment was accomplished using a crane and auxiliary winch to position the vehicle and lower it through the decontamination chamber, into the 36`` diameter x 6` high riser, and touch down on the waste field in the tank. The initial mobility tests were conducted immediately after deployment, prior to sluicing, as the waste field exhibited the greatest amount of variation at this time. This test demonstrated the ability of the vehicle to maneuver over the simulated waste field, and the ability of the operator to work with only video viewing available. In addition, the ability of the vehicle to right itself after being turned on its side was demonstrated. The production rate was evaluated daily through the testing period by measuring the surface and estimating the amount of material removed. The test demonstrated the ability of the vehicle to reduce the waste surface using 400 psi (nominal) water jets, scavenge water and material from the work area, and move to any location, even in the relatively confined space of the 20` diameter test tank. In addition, the ability to sluice to a remote scavenging module was demonstrated. The failure mode test demonstrated the ability to retrieve a stuck vehicle by pulling on the tether, even if the vehicle wheels were locked or the vehicle was on its side. Line pull required to retrieve the vehicle was measured, and side load on the riser calculated from the line pull and line angles. Finally, the decontamination test demonstrated the ability to effectively clean the umbilical and vehicle. The issues addressed and resolved during the testing were: Feasibility of deploying a vehicle- based system, mobility, production rate and limitation of water in the tank during sluicing, mining strategy, operator efficiency, vehicle recovery, and decontamination. Water usage and waste removal rates were used to estimate the time and water usage requirements for cleaning a Hanford SST.« less
Deployment Health Surveillance
2004-06-01
executing a rigorous pre- and post- deployment health screening program. Our healthcare providers practice preventive medicine, promote healthy lifestyles ...individual responsibility for their health and fitness. This includes avoidance of unhealthy behaviors like alcohol abuse and cigarette smoking...due to accident or disease. The basic principles of disease prevention in the field really haven’t changed much. Hand washing, food sanitation
Quick survey of avirulence genes in field isolates of Magnaporthe oryzae in the past 60 years
USDA-ARS?s Scientific Manuscript database
Avirulence (AVR) genes in Magnaporthe oryzae determine deployment of effective corresponding resistance (R) genes. Instability of AVR genes is the major cause for resistance breakdown. Information on the presence or absence (P/A) of AVR genes can be used as a predictor of the stability of deployed R...
Fabrication system, method and apparatus for microelectromechanical devices
NASA Technical Reports Server (NTRS)
Johnson, A. David (Inventor); Busta, Heinz H. (Inventor); Nowicki, Ronald S. (Inventor)
1999-01-01
A fabrication system and method of fabrication for producing microelectromechanical devices such as field-effect displays using thin-film technology. A spacer is carried at its proximal end on the surface of a substrate having field-effect emitters with the spacer being enabled for tilting movement from a nested position to a deployed position which is orthogonal to the plane of the substrate. An actuator is formed with one end connected with the substrate and another end connected with spacer. The actuator is made of a shape memory alloy material which contracts when heated through the material's phase-change transition temperature. Contraction of the actuator exerts a pulling force on the spacer which is tilted to the deployed position. A plurality of the spacers are distributed over the area of the display. A glass plate having a phosphor-coated surface is fitted over the distal ends of the deployed spacer.
Advanced Opto-Electronics (LIDAR and Microsensor Development)
NASA Technical Reports Server (NTRS)
Vanderbilt, Vern C. (Technical Monitor); Spangler, Lee H.
2005-01-01
Our overall intent in this aspect of the project were to establish a collaborative effort between several departments at Montana State University for developing advanced optoelectronic technology for advancing the state-of-the-art in optical remote sensing of the environment. Our particular focus was on development of small systems that can eventually be used in a wide variety of applications that might include ground-, air-, and space deployments, possibly in sensor networks. Specific objectives were to: 1) Build a field-deployable direct-detection lidar system for use in measurements of clouds, aerosols, fish, and vegetation; 2) Develop a breadboard prototype water vapor differential absorption lidar (DIAL) system based on highly stable, tunable diode laser technology developed previously at MSU. We accomplished both primary objectives of this project, in developing a field-deployable direct-detection lidar and a breadboard prototype of a water vapor DIAL system. Paper summarizes each of these accomplishments.
Social Acceptance of Wind Energy: Managing and Evaluating Its Market Impacts (Presentation)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baring-Gould, I.
2012-06-01
As with any industrial-scale technology, wind power has impacts. As wind technology deployment becomes more widespread, a defined opposition will form as a result of fear of change and competing energy technologies. As the easy-to-deploy sites are developed, the costs of developing at sites with deployment barriers will increase, therefore increasing the total cost of power. This presentation provides an overview of wind development stakeholders and related stakeholder engagement questions, Energy Department activities that provide wind project deployment information, and the quantification of deployment barriers and costs in the continental United States.
Design and evaluation of a hybrid storage system in HEP environment
NASA Astrophysics Data System (ADS)
Xu, Qi; Cheng, Yaodong; Chen, Gang
2017-10-01
Nowadays, the High Energy Physics experiments produce a large amount of data. These data are stored in mass storage systems which need to balance the cost, performance and manageability. In this paper, a hybrid storage system including SSDs (Solid-state Drive) and HDDs (Hard Disk Drive) is designed to accelerate data analysis and maintain a low cost. The performance of accessing files is a decisive factor for the HEP computing system. A new deployment model of Hybrid Storage System in High Energy Physics is proposed which is proved to have higher I/O performance. The detailed evaluation methods and the evaluations about SSD/HDD ratio, and the size of the logic block are also given. In all evaluations, sequential-read, sequential-write, random-read and random-write are all tested to get the comprehensive results. The results show the Hybrid Storage System has good performance in some fields such as accessing big files in HEP.
Goodman, Joseph; Caravati, Kevin; Foote, Andrew; Nelson, Molly; Woods, Emily
2013-06-01
One of the methods proposed to improve access to clean drinking water is the mobile packaged water treatment system (MPWTS). The lack of published system performance comparisons combined with the diversity of technology available and intended operating conditions make it difficult for stakeholders to choose the system best suited for their application. MPWTS are often deployed in emergency situations, making selection of the appropriate system crucial to avoiding wasted resources and loss of life. Measurable critical-to-quality characteristics (CTQs) and a system selection tool for MPWTS were developed by utilizing relevant literature, including field studies, and implementing and comparing seven different MPWTS. The proposed System Life Cycle Evaluation (SLiCE) method uses these CTQs to evaluate the diversity in system performance and harmonize relevant performance with stakeholder preference via a selection tool. Agencies and field workers can use SLiCE results to inform and drive decision-making. The evaluation and selection tool also serves as a catalyst for communicating system performance, common design flaws, and stakeholder needs to system manufacturers. The SLiCE framework can be adopted into other emerging system technologies to communicate system performance over the life cycle of use.
Test Report for Permanganate and Cold Strontium Strike for Tank 241-AN-102
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duncan, James B.; Huber, Heinz J.; Smalley, Colleen S.
Tanks 241-AN-102 and 241-AN-107 supernatants contain soluble Sr-90 and transuranic elements that require removal prior to vitrification to comply with the Waste Treatment and Immobilization Plant immobilized low-activity waste specification (WTP Contract, DE-AC27-01RV 14136, Specification 2.2.2.8, "Radionuclide Concentration Limitations") and the U.S. Nuclear Regulatory Commission provisional agreement on waste incidental to reprocessing (letter, Paperiello, C. J., "Classification of Hanford Low-Activity Tank Waste Fraction"). These two tanks have high concentrations of organics and organic complexants and are referred to as complexant concentrate tanks. A precipitation process using sodium permanganate (NaMnO{sub 4}) and strontium nitrate (Sr(NO{sub 3}){sub 2}) was developed and testedmore » with tank waste samples to precipitate Sr-90 and transuranic elements from the supernate (PNWD-3141, Optimization of Sr/TRU Removal Conditions with Samples of AN-102 Tank Waste). Testing documented in this report was conducted to further evaluate the use of the strontium nitrate/sodium permanganate process in tank farms with a retention time of up to 12 months. Previous testing was focused on developing a process for deployment in the ultrafiltration vessels in the Waste Treatment and Immobilization Plant. This environment is different from tank farms in two important ways: the waste is diluted in the Waste Treatment and Immobilization Plant to ~5.5 M sodium, whereas the supernate in the tank farms is ~9 M Na. Secondly, while the Waste Treatment and Immobilization Plant allows for a maximum treatment time of hours to days, the in-tank farms treatment of tanks 241-AN102 and 241-AN-107 will result in a retention time of months (perhaps up to12 months) before processing. A comparative compilation of separation processes for Sr/transuranics has been published as RPP-RPT-48340, Evaluation of Alternative Strontium and Transuranic Separation Processes. This report also listed the testing needs for the permanganate precipitation process to be field-deployable. A more comprehensive listing of future testing needs to allow the process to be field deployable are contained in RPP-PLAN-51288, Development Test Plan for Sr/TRU Precipitation Process.« less
Polarization variations in installed fibers and their influence on quantum key distribution systems.
Ding, Yu-Yang; Chen, Hua; Wang, Shuang; He, De-Yong; Yin, Zhen-Qiang; Chen, Wei; Zhou, Zheng; Guo, Guang-Can; Han, Zheng-Fu
2017-10-30
Polarization variations in the installed fibers are complex and volatile, and would severely affect the performances of polarization-sensitive quantum key distribution (QKD) systems. Based on the recorded data about polarization variations of different installed fibers, we establish an analytical methodology to quantitatively evaluate the influence of polarization variations on polarization-sensitive QKD systems. Using the increased quantum bit error rate induced by polarization variations as a key criteria, we propose two parameters - polarization drift time and required tracking speed - to characterize polarization variations. For field buried and aerial fibers with different length, we quantitatively evaluate the influence of polarization variations, and also provide requirements and suggestions for polarization basis alignment modules of QKD systems deployed in different kind of fibers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fitzgerald, Peter; Laughter, Mark D; Martyn, Rose
The Cylinder Accountability and Tracking System (CATS) is a tool designed for use by the International Atomic Energy Agency (IAEA) to improve overall inspector efficiency through real-time unattended monitoring of cylinder movements, site specific rules-based event detection, and the capability to integrate many types of monitoring technologies. The system is based on the tracking of cylinder movements using (radio frequency) RF tags, and the collection of data, such as accountability weights, that can be associated with the cylinders. This presentation will cover the installation and evaluation of the CATS at the Global Nuclear Fuels (GNF) fuel fabrication facility in Wilmington,more » NC. This system was installed to evaluate its safeguards applicability, operational durability under operating conditions, and overall performance. An overview of the system design and elements specific to the GNF deployment will be presented along with lessons learned from the installation process and results from the field trial.« less
Evaluation of Zeolite Permeable Treatment Wall for the Removal of Strontium-90 from Groundwater
NASA Astrophysics Data System (ADS)
Seneca, S. M.; Bandilla, K.; Rabideau, A. J.; Ross, E.; Bronner, C. E.
2009-12-01
Experimental and modeling studies are in progress to evaluate the potential performance of a permeable treatment wall comprised of zeolite-rich rock for the removal of strontium-90 from groundwater. Column studies were performed using a synthetic groundwater referenced to anticipate field conditions, with a focus on quantifying the competitive ion exchange among five cations (Na+, K+, Ca2+, Mg2+, and Sr2+). Ongoing studies are focused on the comparison of zeolites obtained from two sources: Teague Mineral Products (Adrian, OR) and Bear River Zeolite (Preston, UT), and on the possible influence of native soil that is mixed with treatment wall material during construction. The data obtained from the column studies is used to support robust estimation of zeolite cation exchange parameters producing a five-solute cation exchange model describing the removal efficiency of the zeolite. The field-scale transport model provides flexibility to explore design parameters to support the possible deployment of a full scale treatment wall at a Western New York nuclear facility.
NASA Astrophysics Data System (ADS)
Schiering, David W.; Walton, Robert B.; Brown, Christopher W.; Norman, Mark L.; Brewer, Joseph; Scott, James
2004-12-01
IR spectroscopy is a broadly applicable technique for the identification of covalent materials. Recent advances in instrumentation have made Fourier Transform infrared (FT-IR) spectroscopy available for field characterization of suspect materials. Presently, this instrumentation is broadly deployed and used for the identification of potential chemical hazards. This discussion concerns work towards expanding the analytical utility of field-based FT-IR spectrometry in the characterization of biological threats. Two classes of materials were studied: biologically produced chemical toxins which were non-peptide in nature and peptide toxin. The IR spectroscopic identification of aflatoxin-B1, trichothecene T2 mycotoxin, and strychnine was evaluated using the approach of spectral searching against large libraries of materials. For pure components, the IR method discriminated the above toxins at better than the 99% confidence level. The ability to identify non-peptide toxins in mixtures was also evaluated using a "spectral stripping" search approach. For the mixtures evaluated, this method was able to identify the mixture components from ca. 32K spectral library entries. Castor bean extract containing ricin was used as a representative peptide toxin. Due to similarity in protein spectra, a SIMCA pattern recognition methodology was evaluated for classifying peptide toxins. In addition to castor bean extract the method was validated using bovine serum albumin and myoglobin as simulants. The SIMCA approach was successful in correctly classifying these samples at the 95% confidence level.
Laser Imaging Detection and Ranging Performance in a High-Fidelity Lunar Terrain Field
NASA Technical Reports Server (NTRS)
Chuang, Jason
2015-01-01
The prime objective of this project is to evaluate Laser Imaging Detection and Ranging (LIDAR) systems and compare their performance for hazard avoidance when tested at the NASA Marshall Space Flight Center's (MSFC's) lunar high-fidelity terrain field (see fig. 1). Hazard avoidance is the ability to avoid boulders, holes, or slopes that would jeopardize a safe landing and the deployment of scientific payloads. This capability is critical for any sample return mission intending to land in challenging terrain. Since challenging terrain is frequently where the most scientifically attractive targets are, hazard avoidance will be among the highest priorities for future robotic exploration missions. The maturation of hazard avoidance sensing addressed in this project directly supports the MSFC Tier I priority of sample return.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nielsen, Roy S.
2015-02-17
New generator technology project is driven by the need to be able to remotely deploy generator technology where it is needed, when it is needed. Both the military and aid programs that provide assistance after disasters could use the ability to deploy energy generation that fits the needs of the situation. Currently, pre-specified generators are deployed, sometime more than half way around the world to provide electricity. Through our Phase-I to Phase III DARPA grant, we will provide a mechanism where a 3d print station and raw materials could be shipped to a deployment site and remotely deployed personnel. Thesemore » remote personnel can collaborate with engineers at a home location where 3d print plans can be optimized for the remote purpose. The plans can then be sent electronically to the remote location for printing, much like NASA sent the plans for a socket wrench to the International Space Station for printing in . If multiple generators need to be deployed at different remote locations, within miles of each other the printer rig can be moved to print the generators where they are needed. 3d printing is growing in the field of manufacturing. 3d printing has matured to the point where many types of materials are now available for many types of manufacturing. Both magnetic and electrically conductive material materials have recently been developed which can now lead to 3d printing of engines and generators. Our project will provide a successful printer rig that can be remotely deployed, to print a generator design in the field as well as provide a process for deploying the printed generator as well. This Systems Engineering Management Plan(SEMP) will provide the planning required for a Phase I DARPA grant that may also include goals for Phase II and Phase II grants. The SEMP provides a proposed project schedule, references, system engineering processes, specialty engineering system deployment and product support sections. Each section will state how our company will provide the necessary services to make this project succeed.« less
Field Validation of POCIS for Monitoring at Underwater Munitions Sites.
Rosen, Gunther; Lotufo, Guilherme R; George, Robert D; Wild, Bill; Rabalais, Lauren K; Morrison, Shane; Belden, Jason B
2018-04-24
The present study evaluated Polar Organic Chemical Integrative Samplers (POCIS) for quantification of conventional munitions constituents (MC), including trinitrotoluene (TNT), aminodinitrotoluenes, diaminonitrotoluenes, dinitrotoluene, and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in a field setting. POCIS were deployed at varying distances from the commonly used explosive formulation Composition B (39.5% TNT, 59.5% RDX, 1% wax) in an embayment of Santa Rosa Sound (Florida, USA). Time-weighted averaged (TWA) water concentrations from a 13-day deployment ranged from 9-103 ng/L for TNT and RDX approximately 0.3 to 2 m from the source. Concentrations decreased with increasing distance from the source to below quantitation limits (5-7 ng/L) at stations greater than 2 m away. Moderate biofouling of POCIS membranes after 13-d led to a subsequent effort to quantify potential effects of biofouling on sampling rate for MC. After biofouling was allowed to occur for periods of 0, 7, 14 or 28 days at the field site, POCIS were transferred to aquaria spiked with MC. No significant differences in uptake of TNT or RDX were observed across a gradient of biofouling presence, although mass of fouling organisms on the membranes was statistically greater for the 28-d field exposure. The present study verified the high sensitivity and integrative nature of POCIS for relevant MC potentially present in aquatic environments, indicating that application at underwater military munitions sites may be useful for ecological risk assessment. This article is protected by copyright. All rights reserved This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
DOT National Transportation Integrated Search
2011-08-01
The goal of this report is to present an overview of the state of the practice for techniques that could be used to evaluate the environmental impacts of ITS deployments enabled by real-time communications. Commercial freight and public transit appli...
Eelgrass is often considered a sentinel species that can be used as an indicator of water clarity and quality. I used the Eelgrass Indicator Deployment System (EIDS) in a series of short term experiments to evaluate eelgrass growth and survival at a decline and a control site in...
Deployment of assistive living technology in a nursing home environment: methods and lessons learned
2013-01-01
Background With an ever-growing ageing population, dementia is fast becoming the chronic disease of the 21st century. Elderly people affected with dementia progressively lose their autonomy as they encounter problems in their Activities of Daily Living (ADLs). Hence, they need supervision and assistance from their family members or professional caregivers, which can often lead to underestimated psychological and financial stress for all parties. The use of Ambient Assistive Living (AAL) technologies aims to empower people with dementia and relieve the burden of their caregivers. The aim of this paper is to present the approach we have adopted to develop and deploy a system for ambient assistive living in an operating nursing home, and evaluate its performance and usability in real conditions. Based on this approach, we emphasise on the importance of deployments in real world settings as opposed to prototype testing in laboratories. Methods We chose to conduct this work in close partnership with end-users (dementia patients) and specialists in dementia care (professional caregivers). Our trial was conducted during a period of 14 months within three rooms in a nursing home in Singapore, and with the participation of eight dementia patients and two caregivers. A technical ambient assistive living solution, consisting of a set of sensors and devices controlled by a software platform, was deployed in the collaborating nursing home. The trial was preceded by a pre-deployment period to organise several observation sessions with dementia patients and focus group discussions with professional caregivers. A process of ground truth and system’s log data gathering was also planned prior to the trial and a system performance evaluation was realised during the deployment period with the help of caregivers. An ethical approval was obtained prior to real life deployment of our solution. Results Patients’ observations and discussions allowed us to gather a set of requirements that a system for elders with mild-dementia should fulfil. In fact, our deployment has exposed more concrete requirements and problems that need to be addressed, and which cannot be identified in laboratory testing. Issues that were neither forecasted during the design phase nor during the laboratory testing surfaced during deployment, thus affecting the effectiveness of the proposed solution. Results of the system performance evaluation show the evolution of system precision and uptime over the deployment phases, while data analysis demonstrates the ability to provide early detection of the degradation of patients’ conditions. A qualitative feedback was collected from caregivers and doctors and a set of lessons learned emerged from this deployment experience. (Continued on next page) (Continued from previous page) Conclusion Lessons learned from this study were very useful for our research work and can serve as inspiration for developers and providers of assistive living services. They confirmed the importance of real deployment to evaluate assistive solutions especially with the involvement of professional caregivers. They also asserted the need for larger deployments. Larger deployments will allow to conduct surveys on assistive solutions social and health impact, even though they are time and manpower consuming during their first phases. PMID:23565984
Evaluation of Anomaly Detection Capability for Ground-Based Pre-Launch Shuttle Operations. Chapter 8
NASA Technical Reports Server (NTRS)
Martin, Rodney Alexander
2010-01-01
This chapter will provide a thorough end-to-end description of the process for evaluation of three different data-driven algorithms for anomaly detection to select the best candidate for deployment as part of a suite of IVHM (Integrated Vehicle Health Management) technologies. These algorithms were deemed to be sufficiently mature enough to be considered viable candidates for deployment in support of the maiden launch of Ares I-X, the successor to the Space Shuttle for NASA's Constellation program. Data-driven algorithms are just one of three different types being deployed. The other two types of algorithms being deployed include a "nile-based" expert system, and a "model-based" system. Within these two categories, the deployable candidates have already been selected based upon qualitative factors such as flight heritage. For the rule-based system, SHINE (Spacecraft High-speed Inference Engine) has been selected for deployment, which is a component of BEAM (Beacon-based Exception Analysis for Multimissions), a patented technology developed at NASA's JPL (Jet Propulsion Laboratory) and serves to aid in the management and identification of operational modes. For the "model-based" system, a commercially available package developed by QSI (Qualtech Systems, Inc.), TEAMS (Testability Engineering and Maintenance System) has been selected for deployment to aid in diagnosis. In the context of this particular deployment, distinctions among the use of the terms "data-driven," "rule-based," and "model-based," can be found in. Although there are three different categories of algorithms that have been selected for deployment, our main focus in this chapter will be on the evaluation of three candidates for data-driven anomaly detection. These algorithms will be evaluated upon their capability for robustly detecting incipient faults or failures in the ground-based phase of pre-launch space shuttle operations, rather than based oil heritage as performed in previous studies. Robust detection will allow for the achievement of pre-specified minimum false alarm and/or missed detection rates in the selection of alert thresholds. All algorithms will also be optimized with respect to an aggregation of these same criteria. Our study relies upon the use of Shuttle data to act as was a proxy for and in preparation for application to Ares I-X data, which uses a very similar hardware platform for the subsystems that are being targeted (TVC - Thrust Vector Control subsystem for the SRB (Solid Rocket Booster)).
ERIC Educational Resources Information Center
Thakkar, Jitesh; Deshmukh, S. G.; Shastree, Anil
2006-01-01
Purpose: To explore the potential for adoption of TQM in self-financed technical institutions in the light of new demands and challenges posed by customers/students and society. Design/methodology/approach: The paper presents use of quality function deployment (QFD) which prioritizes technical requirements and correlates them with various…
USDA-ARS?s Scientific Manuscript database
New techniques that we developed to protect deployed military troops from the threat of vector-borne diseases and are also applicable for use by civilian mosquito control program use are described. Techniques illustrated included (1) novel military personal protection methods, (2) barrier treatments...
Sensitivity of Force Fields on Mechanical Properties of Metals Predicted by Atomistic Simulations
NASA Astrophysics Data System (ADS)
Rassoulinejad-Mousavi, Seyed Moein; Zhang, Yuwen
Increasing number of micro/nanoscale studies for scientific and engineering applications, leads to huge deployment of atomistic simulations such as molecular dynamics and Monte-Carlo simulation. Many complains from users in the simulation community arises for obtaining wrong results notwithstanding of correct simulation procedure and conditions. Improper choice of force field, known as interatomic potential is the likely causes. For the sake of users' assurance, convenience and time saving, several interatomic potentials are evaluated by molecular dynamics. Elastic properties of multiple FCC and BCC pure metallic species are obtained by LAMMPS, using different interatomic potentials designed for pure species and their alloys at different temperatures. The potentials created based on the Embedded Atom Method (EAM), Modified EAM (MEAM) and ReaX force fields, adopted from available open databases. Independent elastic stiffness constants of cubic single crystals for different metals are obtained. The results are compared with the experimental ones available in the literature and deviations for each force field are provided at each temperature. Using current work, users of these force fields can easily judge on the one they are going to designate for their problem.
Farm Deployable Microbial Bioreactor for Fuel Ethanol Production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okeke, Benedict
Research was conducted to develop a farm and field deployable microbial bioreactor for bioethanol production from biomass. Experiments were conducted to select the most efficient microorganisms for conversion of plant fiber to sugars for fermentation to ethanol. Mixtures of biomass and surface soil samples were collected from selected sites in Alabama black belt counties (Macon, Sumter, Choctaw, Dallas, Montgomery, Lowndes) and other areas within the state of Alabama. Experiments were conducted to determine the effects of culture parameters on key biomass saccharifying enzymes (cellulase, beta-glucosidase, xylanase and beta-xylosidase). A wide-scale sampling of locally-grown fruits in Central Alabama was embarked tomore » isolate potential xylose fermenting microorganisms. Yeast isolates were evaluated for xylose fermentation. Selected microorganisms were characterized by DNA based methods. Factors affecting enzyme production and biomass saccharification were examined and optimized in the laboratory. Methods of biomass pretreatment were compared. Co-production of amylolytic enzymes with celluloytic-xylanolytic enzymes was evaluated; and co-saccharification of a combination of biomass, and starch-rich materials was examined. Simultaneous saccharification and fermentation with and without pre-saccharifcation was studied. Whole culture broth and filtered culture broth simultaneous saccahrifcation and fermentation were compared. A bioreactor system was designed and constructed to employ laboratory results for scale up of biomass saccharification.« less
Calendar aging of a 250 kW/500 kWh Li-ion battery deployed for the grid storage application
NASA Astrophysics Data System (ADS)
Kubiak, Pierre; Cen, Zhaohui; López, Carmen M.; Belharouak, Ilias
2017-12-01
The introduction of Li-ion batteries for grid applications has become evidence as the cost per kWh is continuously decreasing. Although the Li-ion battery is a mature technology for automotive applications and portable electronics, its use for stationary applications needs more validation. The Li-ion technology is considered safe enough for grid storage application, but its lifetime is generally evaluated to be around 10 years. Higher market penetration will be achieved if a longer lifespan could be demonstrated. Therefore, aging evaluation of the batteries becomes crucial. In this paper we investigated the effects of aging after a three years' standby field deployment of a 250 kW/500 kWh Li-ion battery integrated with the grid and solar farm under the harsh climate conditions of Qatar. The development of tools for acquisition and analysis of data from the battery management system (BMS) allows the assessment of the battery performance at the battery stack, string and cell levels. The analysis of the residual capacity after aging showed that the stack suffered from a low decrease of capacity, whereas some inconsistencies have been found between the strings. These inconsistencies are caused by misalignment of a small number of cells that underwent self-discharge during standby at high state of charge.
Chen, Xiaomei; Longstaff, Andrew; Fletcher, Simon; Myers, Alan
2014-04-01
This paper presents and evaluates an active dual-sensor autofocusing system that combines an optical vision sensor and a tactile probe for autofocusing on arrays of small holes on freeform surfaces. The system has been tested on a two-axis test rig and then integrated onto a three-axis computer numerical control (CNC) milling machine, where the aim is to rapidly and controllably measure the hole position errors while the part is still on the machine. The principle of operation is for the tactile probe to locate the nominal positions of holes, and the optical vision sensor follows to focus and capture the images of the holes. The images are then processed to provide hole position measurement. In this paper, the autofocusing deviations are analyzed. First, the deviations caused by the geometric errors of the axes on which the dual-sensor unit is deployed are estimated to be 11 μm when deployed on a test rig and 7 μm on the CNC machine tool. Subsequently, the autofocusing deviations caused by the interaction of the tactile probe, surface, and small hole are mathematically analyzed and evaluated. The deviations are a result of the tactile probe radius, the curvatures at the positions where small holes are drilled on the freeform surface, and the effect of the position error of the hole on focusing. An example case study is provided for the measurement of a pattern of small holes on an elliptical cylinder on the two machines. The absolute sum of the autofocusing deviations is 118 μm on the test rig and 144 μm on the machine tool. This is much less than the 500 μm depth of field of the optical microscope. Therefore, the method is capable of capturing a group of clear images of the small holes on this workpiece for either implementation.
NASA Astrophysics Data System (ADS)
North, K. P.; Mackay, D. M.; Scow, K. M.
2010-12-01
In situ bioremediation has typically been confirmed by collecting sediment and groundwater samples to directly demonstrate a degradation process in a laboratory microcosm. However, recent advances in molecular biological tools present options for demonstrating degradation processes with field-based tools that are less time-consuming. We have been investigating the capability of some of these molecular biological tools to evaluate in situ biodegradation of tert-butyl alcohol (TBA), methyl tert-butyl ether (MTBE), and benzene at two field sites in California. At both sites, we have deployed Bio-Traps® (“traps”), made of Bio-Sep® beads in slotted PVC pipe, which provide ideal environments for microbial colonization. Stable Isotope Probing can be accomplished by sorbing the13C-labeled organic contaminant of concern onto Bio-Sep® beads (“baiting”); incorporation of 13C into the biomass collected by the trap would indicate that the microbial community was capable of degrading the labeled compound. In addition, we examined the chemistry and flow dynamics of these traps and present those results here. We performed a field experiment and a lab experiment to, in part, define the rate that different baits leached off various traps. At a TBA- and MTBE-contaminated site at Vandenberg AFB, Lompoc, CA, the TBA-dominant plume was effectively treated by recirculation/oxygenation of groundwater, decreasing TBA and MTBE concentrations to detection limits along predicted flowpaths created by two pairs of recirculation wells. We used the generated aerobic treatment zone to deploy traps baited with 13C-labeled MTBE or TBA in a novel, ex situ experimental setup. The groundwater flow extracted from the aerobic treatment zone was split through several chambers, each containing a trap and monitoring of influent and effluent. The chamber effluent was measured throughout a six-week deployment and analyzed for both TBA and MTBE; the majority of mass leached from the baited traps did so within the first eight days. The lab experiment assessed a trap designed as an in situ microcosm, containing 13C-labeled benzene and a sulfate source, in order to quantify the amount of benzene leached from the trap and the rate of sulfate dissolution into the surrounding area. An “aquifer” was built in a tank and designed to mimic the well installations at a benzene-contaminated, sulfate-reducing site in Fillmore, CA. Multi-level upgradient and downgradient monitoring points were sampled throughout the six-week deployment and analyzed for sulfate and benzene. The trap and “aquifer” chemistry will be discussed and compared to the field experiment results.
Applications of Sunphotometry to Aerosol Extinction and Surface Anisotropy
NASA Technical Reports Server (NTRS)
Tsay, S. C.; Holben, B. N.; Privette, J. L.
2005-01-01
Support cost-sharing of a newly developed sunphotometer in field deployment for aerosol studies. This is a cost-sharing research to deploy a newly developed sun-sky-surface photometer for studying aerosol extinction and surface anisotropy at the ARM SGP, TWP, and NSA-AAO CART sites and in many field campaigns. Atmospheric aerosols affect the radiative energy balance of the Earth, both directly by perturbing the incoming/outgoing radiation fields and indirectly by influencing the properties/processes of clouds and reactive greenhouse gases. The surface bidirectional reflectance distribution function (BRDF) also plays a crucial role in the radiative energy balance, since the BRDF is required to determine (1) the spectral and spectrally-averaged surface albedo, and (2) the top-of-the-atmosphere (TOA) angular distribution of radiance field. Therefore, the CART sites provide an excellent, albeit unique, opportunity to collect long-term climatic data in characterizing aerosol properties and various types of surface anisotropy.
Mobile phone tools for field-based health care workers in low-income countries.
Derenzi, Brian; Borriello, Gaetano; Jackson, Jonathan; Kumar, Vikram S; Parikh, Tapan S; Virk, Pushwaz; Lesh, Neal
2011-01-01
In low-income regions, mobile phone-based tools can improve the scope and efficiency of field health workers. They can also address challenges in monitoring and supervising a large number of geographically distributed health workers. Several tools have been built and deployed in the field, but little comparison has been done to help understand their effectiveness. This is largely because no framework exists in which to analyze the different ways in which the tools help strengthen existing health systems. In this article we highlight 6 key functions that health systems currently perform where mobile tools can provide the most benefit. Using these 6 health system functions, we compare existing applications for community health workers, an important class of field health workers who use these technologies, and discuss common challenges and lessons learned about deploying mobile tools. © 2011 Mount Sinai School of Medicine.
Maltby, L; Naylor, C; Calow, P
1990-06-01
Scope for growth (SfG) is a measure of the energy balance of an animal (i.e., the difference between energy intake and metabolic output). The SfG of marine invertebrates, particularly the mussel Mytilus edulis, has been successfully used as the basis of a field bioassay to detect a range of stresses both natural (temperature, food, salinity) and anthropogenic (hydrocarbons, sewage sludge). SfG of the freshwater amphipod Gammarus pulex was found to be a sensitive indicator of stress under laboratory conditions and here we describe the field deployment of this technique and present data from three field trials. In every case, SfG was reduced at the downstream polluted site compared with that at an upstream reference site. This reduction in SfG was the result of a decrease in energy intake (absorption) rather than an increase in energy expenditure (respiration).
NASA Astrophysics Data System (ADS)
Gu, Yongzhen; Duan, Baoyan; Du, Jingli
2018-05-01
The electrostatically controlled deployable membrane antenna (ECDMA) is a promising space structure due to its low weight, large aperture and high precision characteristics. However, it is an extreme challenge to describe the coupled field between electrostatic and membrane structure accurately. A direct coupled method is applied to solve the coupled problem in this paper. Firstly, the membrane structure and electrostatic field are uniformly described by energy, considering the coupled problem is an energy conservation phenomenon. Then the direct coupled electrostatic-structural field governing equilibrium equations are obtained by energy variation approach. Numerical results show that the direct coupled method improves the computing efficiency by 36% compared with the traditional indirect coupled method with the same level accuracy. Finally, the prototype has been manufactured and tested and the ECDMA finite element simulations show good agreement with the experiment results as the maximum surface error difference is 6%.
USDA-ARS?s Scientific Manuscript database
Due to the harmful nature of the rice blast fungus, Magnaporthe oryzae, it is beneficial to characterize field isolates to help aid in the deployment of resistance (R) genes in rice. In the present study, 190 field isolates of M. oryzae, collected from rice fields of Yunnan province in China, were a...
Innes, Anthea; Mountain, Gail; Robinson, Louise; van der Roest, Henriëtte; García-Casal, J Antonio; Gove, Dianne; Thyrian, Jochen René; Evans, Shirley; Dröes, Rose-Marie; Kelly, Fiona; Kurz, Alexander; Casey, Dympna; Szcześniak, Dorota; Dening, Tom; Craven, Michael P; Span, Marijke; Felzmann, Heike; Tsolaki, Magda; Franco-Martin, Manuel
2017-01-01
Background With the expected increase in the numbers of persons with dementia, providing timely, adequate, and affordable care and support is challenging. Assistive and health technologies may be a valuable contribution in dementia care, but new challenges may emerge. Objective The aim of our study was to review the state of the art of technologies for persons with dementia regarding issues on development, usability, effectiveness and cost-effectiveness, deployment, and ethics in 3 fields of application of technologies: (1) support with managing everyday life, (2) support with participating in pleasurable and meaningful activities, and (3) support with dementia health and social care provision. The study also aimed to identify gaps in the evidence and challenges for future research. Methods Reviews of literature and expert opinions were used in our study. Literature searches were conducted on usability, effectiveness and cost-effectiveness, and ethics using PubMed, Embase, CINAHL, and PsycINFO databases with no time limit. Selection criteria in our selected technology fields were reviews in English for community-dwelling persons with dementia. Regarding deployment issues, searches were done in Health Technology Assessment databases. Results According to our results, persons with dementia want to be included in the development of technologies; there is little research on the usability of assistive technologies; various benefits are reported but are mainly based on low-quality studies; barriers to deployment of technologies in dementia care were identified, and ethical issues were raised by researchers but often not studied. Many challenges remain such as including the target group more often in development, performing more high-quality studies on usability and effectiveness and cost-effectiveness, creating and having access to high-quality datasets on existing technologies to enable adequate deployment of technologies in dementia care, and ensuring that ethical issues are considered an important topic for researchers to include in their evaluation of assistive technologies. Conclusions Based on these findings, various actions are recommended for development, usability, effectiveness and cost-effectiveness, deployment, and ethics of assistive and health technologies across Europe. These include avoiding replication of technology development that is unhelpful or ineffective and focusing on how technologies succeed in addressing individual needs of persons with dementia. Furthermore, it is suggested to include these recommendations in national and international calls for funding and assistive technology research programs. Finally, practitioners, policy makers, care insurers, and care providers should work together with technology enterprises and researchers to prepare strategies for the implementation of assistive technologies in different care settings. This may help future generations of persons with dementia to utilize available and affordable technologies and, ultimately, to benefit from them. PMID:28582262
Social Learning Strategies: Bridge-Building between Fields.
Kendal, Rachel L; Boogert, Neeltje J; Rendell, Luke; Laland, Kevin N; Webster, Mike; Jones, Patricia L
2018-07-01
While social learning is widespread, indiscriminate copying of others is rarely beneficial. Theory suggests that individuals should be selective in what, when, and whom they copy, by following 'social learning strategies' (SLSs). The SLS concept has stimulated extensive experimental work, integrated theory, and empirical findings, and created impetus to the social learning and cultural evolution fields. However, the SLS concept needs updating to accommodate recent findings that individuals switch between strategies flexibly, that multiple strategies are deployed simultaneously, and that there is no one-to-one correspondence between psychological heuristics deployed and resulting population-level patterns. The field would also benefit from the simultaneous study of mechanism and function. SLSs provide a useful vehicle for bridge-building between cognitive psychology, neuroscience, and evolutionary biology. Copyright © 2018. Published by Elsevier Ltd.
Airframe noise prediction evaluation
NASA Technical Reports Server (NTRS)
Yamamoto, Kingo J.; Donelson, Michael J.; Huang, Shumei C.; Joshi, Mahendra C.
1995-01-01
The objective of this study is to evaluate the accuracy and adequacy of current airframe noise prediction methods using available airframe noise measurements from tests of a narrow body transport (DC-9) and a wide body transport (DC-10) in addition to scale model test data. General features of the airframe noise from these aircraft and models are outlined. The results of the assessment of two airframe prediction methods, Fink's and Munson's methods, against flight test data of these aircraft and scale model wind tunnel test data are presented. These methods were extensively evaluated against measured data from several configurations including clean, slat deployed, landing gear-deployed, flap deployed, and landing configurations of both DC-9 and DC-10. They were also assessed against a limited number of configurations of scale models. The evaluation was conducted in terms of overall sound pressure level (OASPL), tone corrected perceived noise level (PNLT), and one-third-octave band sound pressure level (SPL).
Iakovlev, S V; Sidorov, V A; Korniushko, I G; Medvedev, V R; Matveev, A G
2011-11-01
Presented data is about attendance means of deployment of field medical units and pieces of army-level medical services and disaster medicine Defense Ministry did not ensure compliance with requirements to create optimal conditions for highly effective work of the medical staff, placing the wounded, the use of modern aids and appliances. The prospects of creation of mobile unit for high-availability modular pre-fabricated on the basis of tent structures, pneumoconstructions and removable habitable bodies, containers, tents, pneumocovers till 2020 are analyzed. Livelihood systems provide armor protection against fragments, bullets, flames, damaging factors of chemical and biological weapons.
The acoustic field of singing humpback whales in the vertical plane
NASA Astrophysics Data System (ADS)
Au, Whitlow W. L.; Pack, Adam A.; Lammers, Marc O.; Herman, Louis; Andrews, Kimberly; Deakos, Mark
2003-04-01
A vertical array of five hydrophones was used to measure the acoustic field of singing humpback whales. Once a singer was located, two swimmers with snorkel gear were deployed to determine the orientation of the whale and to position the boat so that the array could be deployed in front of the whale at a minimum standoff distance of 10 m. The spacing of the hydrophones was 7 m with the deepest hydrophone deployed at depth of 35 m. An 8-channel TASCAM recorder having a bandwidth of 24 kHz was used to record the hydrophone signals. The location of the singer was determined by computing the time of arrival differences between the hydrophone signals. The maximum source level varied between individual units in a song, with values between 180 and 190 dB. The acoustic field determined by considering the relative intensity of higher frequency harmonics in the signals indicate that the sounds are projected in the horizontal direction with the singer's head canted downward 45 to 60°. High-frequency harmonics extended beyond 24 kHz, suggesting that humpback whales may have an upper frequency limit of hearing as high as 24 kHz.
Assessment of bifacial photovoltaic module power rating methodologies–inside and out
Deline, Chris; MacAlpine, Sara; Marion, Bill; ...
2017-01-26
One-sun power ratings for bifacial modules are currently undefined. This is partly because there is no standard definition of rear irradiance given 1000 W·m -2 on the front. Using field measurements and simulations, we evaluate multiple deployment scenarios for bifacial modules and provide details on the amount of irradiance that could be expected. A simplified case that represents a single module deployed under conditions consistent with existing one-sun irradiance standards lead to a bifacial reference condition of 1000 W·m -2 G front and 130-140 W·m -2 G rear. For fielded systems of bifacial modules, Grear magnitude and spatial uniformity willmore » be affected by self-shade from adjacent modules, varied ground cover, and ground-clearance height. A standard measurement procedure for bifacial modules is also currently undefined. A proposed international standard is under development, which provides the motivation for this paper. Here, we compare field measurements of bifacial modules under natural illumination with proposed indoor test methods, where irradiance is only applied to one side at a time. The indoor method has multiple advantages, including controlled and repeatable irradiance and thermal environment, along with allowing the use of conventional single-sided flash test equipment. The comparison results are promising, showing that indoor and outdoor methods agree within 1%-2% for multiple rear-irradiance conditions and bifacial module construction. Furthermore, a comparison with single-diode theory also shows good agreement to indoor measurements, within 1%-2% for power and other current-voltage curve parameters.« less
Reisner, A. T.; Khitrov, M. Y.; Chen, L.; Blood, A.; Wilkins, K.; Doyle, W.; Wilcox, S.; Denison, T.; Reifman, J.
2013-01-01
Summary Background Advanced decision-support capabilities for prehospital trauma care may prove effective at improving patient care. Such functionality would be possible if an analysis platform were connected to a transport vital-signs monitor. In practice, there are technical challenges to implementing such a system. Not only must each individual component be reliable, but, in addition, the connectivity between components must be reliable. Objective We describe the development, validation, and deployment of the Automated Processing of Physiologic Registry for Assessment of Injury Severity (APPRAISE) platform, intended to serve as a test bed to help evaluate the performance of decision-support algorithms in a prehospital environment. Methods We describe the hardware selected and the software implemented, and the procedures used for laboratory and field testing. Results The APPRAISE platform met performance goals in both laboratory testing (using a vital-sign data simulator) and initial field testing. After its field testing, the platform has been in use on Boston MedFlight air ambulances since February of 2010. Conclusion These experiences may prove informative to other technology developers and to healthcare stakeholders seeking to invest in connected electronic systems for prehospital as well as in-hospital use. Our experiences illustrate two sets of important questions: are the individual components reliable (e.g., physical integrity, power, core functionality, and end-user interaction) and is the connectivity between components reliable (e.g., communication protocols and the metadata necessary for data interpretation)? While all potential operational issues cannot be fully anticipated and eliminated during development, thoughtful design and phased testing steps can reduce, if not eliminate, technical surprises. PMID:24155791
Cell-tower deployment of counter-sniper sensors
NASA Astrophysics Data System (ADS)
Storch, Michael T.
2004-09-01
Cellular telephone antenna towers are evaluated as sites for rapid, effective & efficient deployment of counter-sniper sensors, especially in urban environments. They are expected to offer a suitable density, excellent LOS, and a generally limited variety of known or readily-characterized mechanical interfaces. Their precise locations are easily mapped in advance of deployment, are easily accessible by ground and air, and are easily spotted by deployment teams in real-time. We survey issues of EMI & RFI, susceptibility to denial & ambush in military scenarios, and the impact of trends in cell tower design & construction.
USDOT guidance summary for connected vehicle deployments : data sharing.
DOT National Transportation Integrated Search
2016-07-01
AbstractThe document provides guidance to Pilot Deployers in the timely and successful completion of Concept Development Phase deliverables, specifically in developing the Data Sharing Framework portion of the Performance Measurement and Evaluation S...
Return to contingency: developing a coherent strategy for future R2E/R3 land medical capabilities.
Ingram, Mike; Mahan, J
2015-03-01
Key to deploying forces in the future will be the provision of a rapidly deployable Deployed Hospital Capability. Developing this capability has been the focus of 34 Field Hospital and 2nd Medical Brigade over the last 18 months and this paper describes a personal account of this development work to date. Future contingent Deployed Hospital Capability must meet the requirements of Defence; that is to be rapidly deployable delivering a hospital standard of care. The excellence seen in clinical delivery on recent operations is intensive; in personnel, equipment, infrastructure and sustainment. The challenge in developing a coherent capability has been in balancing the clinical capability and capacity against strategic load in light of recent advances in battlefield medicine. This paper explores the issues encountered and solutions found to date in reconstituting a Very High Readiness Deployed Hospital Capability. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
2017-02-21
missiles; cruise missiles; and gravity bombs . In contrast with the longer-range “strategic” nuclear weapons, these weapons had a lower profile in policy...States sought to deploy dual-capable aircraft and nuclear bombs at bases on the territories of NATO members in eastern Europe. Neither NATO, as an...ballistic missiles; cruise missiles; and gravity bombs . The United States deployed these weapons with its troops in the field, aboard aircraft, on
NASA Astrophysics Data System (ADS)
Collier-Oxandale, A. M.; Hannigan, M.; Casey, J. G.; Johnston, J.; Coffey, E.; Thorson, J.
2017-12-01
The field of low-cost air quality sensing technologies is growing rapidly through the continual development of new sensors, increased research into sensor performance, and more and more community groups utilizing sensors to investigate local issues. However, as this technology is still in an exploratory phase, there are few `best-practices' available to serve as guidelines for these projects and the standardization of some procedures could benefit the research community as a whole. For example, deployment considerations such as where and how to place a monitor at a given location are often determined by accessibility and safety, power-requirements, and what is an ideal for sampling the target pollutant. Using data from multiple gas-phase sensors, we will examine the importance of siting considerations for low-cost monitoring systems. During a sampling campaign in Los Angeles, a subset of monitors was deployed at one field site to explore the variability in air quality sensor data around a single building. The site is a three story, multi-family housing unit in a primarily residential neighborhood that is near two major roadways and other potential sources of pollution. Five low-cost monitors were co-located prior to and following the field deployment. During the approximately 2.5-month deployment, these monitors were placed at various heights above street level, on different sides of the building, and on the roof. In our analysis, we will examine how monitor placement affects a sensor's ability to detect local verses more regional trends and how this building-scale spatial variability changes over time. Additionally, examining data from VOC sensors (quantified for methane and total non-methane hydrocarbon signals) and O3 sensors will allow us to compare the variability of primary and secondary pollutants. An outcome of this analysis may include guidelines or `best practices' for siting sensors that could aid in ensuring the collection of high quality field data. These may be particularly useful in community-based projects where monitor siting is typically a collaborative process.
Acadia National Park ITS field operational test : visitor survey
DOT National Transportation Integrated Search
2003-02-01
In 2002, as part of the Acadia National Park Field Operational Test, Intelligent Transportation Systems (ITS) components were deployed to help visitors travel around Mount Desert Island and in Acadia National Park. Using data from surveys of visitors...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tegen, Suzanne
This presentation provides an overview of findings from a report published in 2016 by researchers at the National Renewable Energy Laboratory, An Initial Evaluation of Siting Considerations on Current and Future Wind Deployment. The presentation covers the background for research, the Energy Department's Wind Vision, research methods, siting considerations, the wind project deployment process, and costs associated with siting considerations.
Riddle, M S; Althoff, J M; Earhart, K; Monteville, M R; Yingst, S L; Mohareb, E W; Putnam, S D; Sanders, J W
2008-05-01
Understanding the epidemiology of current health threats to deployed U.S. troops is important for medical assessment and planning. As part of a 2004 study among U.S. military personnel deployed to Al Asad Air Base, in the western Anbar Province of Iraq, over 500 subjects were enrolled, provided a blood specimen, and completed a questionnaire regarding history of febrile illness during this deployment (average approximately 4 months in country). This mid-deployment serum was compared to pre-deployment samples (collected approximately 3 months prior to deployment) and evaluated for seroconversion to a select panel of regional arboviral pathogens. At least one episode of febrile illness was reported in 84/504 (17%) of the troops surveyed. Seroconversion was documented in nine (2%) of deployed forces tested, with no association to febrile illness. Self-reported febrile illness was uncommon although often debilitating, and the risk of illness due to arbovirus infections was relatively low.
Wang, Xuan; Yin, Fenggui; Bi, Yuhai; Cheng, Gong; Li, Jing; Hou, Lidan; Li, Yunlong; Yang, Baozhi; Liu, Wenjun; Yang, Limin
2016-12-01
Zika virus (ZIKV) is an arbovirus that recently emerged and has expanded worldwide, causing a global threat and raising international concerns. Current molecular diagnostics, e.g., real-time PCR and reverse transcription PCR (RT-PCR), are time consuming, expensive, and can only be deployed in a laboratory instead of for field diagnostics. This study aimed to develop a one-step reverse transcription loop-mediated isothermal amplification (RT-LAMP) platform showing sensitivity, specificity, and more convenience than previous methods, being easily distributed and implemented. Specific primers were designed and screened to target the entire ZIKV genome. The analytical sensitivity and specificity of the assay were evaluated and compared with traditional PCR and quantitative real-time PCR. Three different simulated clinical sample quick preparation protocols were evaluated to establish a rapid and straightforward treatment procedure for clinical specimens in open field detection. The RT-LAMP assay for detection of ZIKV demonstrated superior specificity and sensitivity compared to traditional PCR at the optimum reaction temperature. For the ZIKV RNA standard, the limit of detection was 20 copies/test. For the simulated ZIKV clinical samples, the limit of detection was 0.02 pfu/test, which was one order of magnitude higher than RT-PCR and similar to real-time PCR. The detection limit of simulated ZIKV specimens prepared using a protease quick processing method was consistent with that of samples prepared using commercial nucleic acid extraction kits, indicating that our ZIKV detection method could be used in point-of-care testing. The RT-LAMP assay had excellent sensitivity and specificity for detecting ZIKV and can be deployed together with a rapid specimen processing method, offering the possibility for ZIKV diagnosis outside of the laboratory. Copyright © 2016 Elsevier B.V. All rights reserved.
Kushniruk, A W; Patel, C; Patel, V L; Cimino, J J
2001-04-01
The World Wide Web provides an unprecedented opportunity for widespread access to health-care applications by both patients and providers. The development of new methods for assessing the effectiveness and usability of these systems is becoming a critical issue. This paper describes the distance evaluation (i.e. 'televaluation') of emerging Web-based information technologies. In health informatics evaluation, there is a need for application of new ideas and methods from the fields of cognitive science and usability engineering. A framework is presented for conducting evaluations of health-care information technologies that integrates a number of methods, ranging from deployment of on-line questionnaires (and Web-based forms) to remote video-based usability testing of user interactions with clinical information systems. Examples illustrating application of these techniques are presented for the assessment of a patient clinical information system (PatCIS), as well as an evaluation of use of Web-based clinical guidelines. Issues in designing, prototyping and iteratively refining evaluation components are discussed, along with description of a 'virtual' usability laboratory.
Rapid screening of guar gum using portable Raman spectral identification methods.
Srivastava, Hirsch K; Wolfgang, Steven; Rodriguez, Jason D
2016-01-25
Guar gum is a well-known inactive ingredient (excipient) used in a variety of oral pharmaceutical dosage forms as a thickener and stabilizer of suspensions and as a binder of powders. It is also widely used as a food ingredient in which case alternatives with similar properties, including chemically similar gums, are readily available. Recent supply shortages and price fluctuations have caused guar gum to come under increasing scrutiny for possible adulteration by substitution of cheaper alternatives. One way that the U.S. FDA is attempting to screen pharmaceutical ingredients at risk for adulteration or substitution is through field-deployable spectroscopic screening. Here we report a comprehensive approach to evaluate two field-deployable Raman methods--spectral correlation and principal component analysis--to differentiate guar gum from other gums. We report a comparison of the sensitivity of the spectroscopic screening methods with current compendial identification tests. The ability of the spectroscopic methods to perform unambiguous identification of guar gum compared to other gums makes them an enhanced surveillance alternative to the current compendial identification tests, which are largely subjective in nature. Our findings indicate that Raman spectral identification methods perform better than compendial identification methods and are able to distinguish guar gum from other gums with 100% accuracy for samples tested by spectral correlation and principal component analysis. Published by Elsevier B.V.
Rey, Jean-François; Barrett, Luke G.; Thrall, Peter H.
2018-01-01
Genetically-controlled plant resistance can reduce the damage caused by pathogens. However, pathogens have the ability to evolve and overcome such resistance. This often occurs quickly after resistance is deployed, resulting in significant crop losses and a continuing need to develop new resistant cultivars. To tackle this issue, several strategies have been proposed to constrain the evolution of pathogen populations and thus increase genetic resistance durability. These strategies mainly rely on varying different combinations of resistance sources across time (crop rotations) and space. The spatial scale of deployment can vary from multiple resistance sources occurring in a single cultivar (pyramiding), in different cultivars within the same field (cultivar mixtures) or in different fields (mosaics). However, experimental comparison of the efficiency (i.e. ability to reduce disease impact) and durability (i.e. ability to limit pathogen evolution and delay resistance breakdown) of landscape-scale deployment strategies presents major logistical challenges. Therefore, we developed a spatially explicit stochastic model able to assess the epidemiological and evolutionary outcomes of the four major deployment options described above, including both qualitative resistance (i.e. major genes) and quantitative resistance traits against several components of pathogen aggressiveness: infection rate, latent period duration, propagule production rate, and infectious period duration. This model, implemented in the R package landsepi, provides a new and useful tool to assess the performance of a wide range of deployment options, and helps investigate the effect of landscape, epidemiological and evolutionary parameters. This article describes the model and its parameterisation for rust diseases of cereal crops, caused by fungi of the genus Puccinia. To illustrate the model, we use it to assess the epidemiological and evolutionary potential of the combination of a major gene and different traits of quantitative resistance. The comparison of the four major deployment strategies described above will be the objective of future studies. PMID:29649208
NASA Astrophysics Data System (ADS)
Sadighi, Kira; Coffey, Evan; Polidori, Andrea; Feenstra, Brandon; Lv, Qin; Henze, Daven K.; Hannigan, Michael
2018-03-01
Sensor networks are being more widely used to characterize and understand compounds in the atmosphere like ozone (O3). This study employs a measurement tool, called the U-Pod, constructed at the University of Colorado Boulder, to investigate spatial and temporal variability of O3 in a 200 km2 area of Riverside County near Los Angeles, California. This tool contains low-cost sensors to collect ambient data at non-permanent locations. The U-Pods were calibrated using a pre-deployment field calibration technique; all the U-Pods were collocated with regulatory monitors. After collocation, the U-Pods were deployed in the area mentioned. A subset of pods was deployed at two local regulatory air quality monitoring stations providing validation for the collocation calibration method. Field validation of sensor O3 measurements to minute-resolution reference observations resulted in R2 and root mean squared errors (RMSEs) of 0.95-0.97 and 4.4-5.9 ppbv, respectively. Using the deployment data, ozone concentrations were observed to vary on this small spatial scale. In the analysis based on hourly binned data, the median R2 values between all possible U-Pod pairs varied from 0.52 to 0.86 for ozone during the deployment. The medians of absolute differences were calculated between all possible pod pairs, 21 pairs total. The median values of those median absolute differences for each hour of the day varied between 2.2 and 9.3 ppbv for the ozone deployment. Since median differences between U-Pod concentrations during deployment are larger than the respective root mean square error values, we can conclude that there is spatial variability in this criteria pollutant across the study area. This is important because it means that citizens may be exposed to more, or less, ozone than they would assume based on current regulatory monitoring.
Madar, Cristian S; Lewin-Smith, Michael R; Franks, Teri J; Harley, Russell A; Klaric, John S; Morris, Michael J
2017-08-01
The current understanding of associations between lung disease and military deployment to Southwest Asia, including Iraq and Afghanistan, is both controversial and limited. We sought to clarify the relation between military deployment and biopsy-proven lung disease. Retrospective data were analyzed for military personnel with non-neoplastic lung biopsies evaluated at the Armed Forces Institute of Pathology or Joint Pathology Center (January 2005 to December 2012). Of 391 subjects, 137 (35.0%) had deployed to Southwest Asia prior to biopsy. Compared to non-deployed subjects, those deployed were younger (median age 37 vs. 51 years) with higher representation of African Americans (30.0 vs. 16.9%). Deployed patients were more likely diagnosed with non-necrotizing granulomas (OR 2.4). Non-deployed subjects had higher frequency of idiopathic interstitial pneumonias, particularly organizing pneumonia. Prevalence of small airways diseases including constrictive bronchiolitis was low. This study provides a broader understanding of diversity of biopsy-proven non-neoplastic lung disease as it relates to military deployment to Southwest Asia and importantly did not show an increased prevalence of small airway disease to include constrictive bronchiolitis.
NASA Astrophysics Data System (ADS)
Nickerson, Nick; Kim-Hak, David; McArthur, Gordon
2017-04-01
Preservation and restoration of wetlands has the potential to help sequester large amounts of carbon due to the naturally high primary productivity and slow turnover of stored soil carbon. However, the anoxic environmental conditions present in wetland soils are also the largest natural contributor to global methane emissions. While it is well known that wetlands are net carbon sinks over long time scales, given the high global warming potential of methane, the short-term balances between C uptake and storage and loss as CO2 and CH4 need to be carefully considered when evaluating the climate effects of land-use change. It is relatively difficult to measure methane emissions from wetlands with currently available techniques given the temporally and spatially sporadic nature of the processes involved (methanogenesis, methane oxidation, ebullition, etc.). For example, using manual soil flux chambers can often only capture a portion of either the spatial or temporal variability, and often have other disadvantages associated with soil atmosphere disturbance during deployment in these relatively compressible wetland soils. Automated chamber systems offer the advantage of collecting high-resolution time series of gaseous fluxes while reducing some human and method induced biases. Additionally, new laser-based analyzers that can be used in situ alongside automated chambers offer a greater minimum detectable flux than can be achieved using alternative methods such as Gas Chromatography. Until recently these types of automated measurements were limited to areas that had good power coverage, as laser based systems were power intensive and could not easily be supplemented with power from field-available sources such as solar. Recent advances in laser technology has reduced the power needed and made these systems less power intensive and more field portable in the process. Here we present data using an automated chamber system coupled to a portable laser based greenhouse gas analyzer (Picarro G4301). We will present on the methodological and field deployment benefits of the system with a strong emphasis on the enhanced minimum detectable flux limits offered by this fully automated design. These advantages will be demonstrated through two deployments of the system in wetland and peatland ecosystems in Nova Scotia, Canada.
New Technology Changing The Face of Mobile Seismic Networks
NASA Astrophysics Data System (ADS)
Brisbourne, A.; Denton, P.; Seis-Uk
SEIS-UK, a seismic equipment pool and data management facility run by a consortium of four UK universities (Leicester, Leeds, Cambridge and Royal Holloway, London) completed its second phase in 2001. To compliment the existing broadband equipment pool, which has been deployed to full capacity to date, the consortium undertook a tender evaluation process for low-power, lightweight sensors and recorders, for use on both controlled source and passive seismic experiments. The preferred option, selected by the consortium, was the Guralp CMG-6TD system, with 150 systems ordered. The CMG-6TD system is a new concept in temporary seismic equipment. A 30s- 100Hz force-feedback sensor, integral 24bit digitiser and 3-4Gbyte of solid-state memory are all housed in a single unit. Use of the most recent technologies has kept the power consumption to below 1W and the weight to 3.5Kg per unit. The concept of the disk-swap procedure for obtaining data from the field has been usurped by a fast data download technique using firewire technology. This allows for rapid station servicing, essential when 150 stations are in use, and also ensures the environmental integrity of the system by removing the requirement for a disk access port and envi- ronmentally exposed data disk. The system therefore meets the criteria for controlled source and passive seismic experiments: (1) the single unit concept and low-weight is designed for rapid deployment on short-term projects; (2) the low power consumption reduces the power-supply requirements facilitating deployment; (3) the low self-noise and bandwidth of the sensor make it applicable to passive experiments involving nat- ural sources. Further to this acquisition process, in collaboration with external groups, the SEIS- UK data management procedures have been streamlined with the integration of the Guralp GCF format data into the PASSCAL PDB software. This allows for rapid dissemination of field data and the production of archive-ready datasets, reducing the time between field recording and data archive. The archiving procedure for SEIS- UK datasets has been established, with data from experiments carried out with the broadband equipment already on the permanent continuous data archive at IRIS DMC.
Zhao, Ding; Lam, Henry; Peng, Huei; Bao, Shan; LeBlanc, David J.; Nobukawa, Kazutoshi; Pan, Christopher S.
2016-01-01
Automated vehicles (AVs) must be thoroughly evaluated before their release and deployment. A widely used evaluation approach is the Naturalistic-Field Operational Test (N-FOT), which tests prototype vehicles directly on the public roads. Due to the low exposure to safety-critical scenarios, N-FOTs are time consuming and expensive to conduct. In this paper, we propose an accelerated evaluation approach for AVs. The results can be used to generate motions of the other primary vehicles to accelerate the verification of AVs in simulations and controlled experiments. Frontal collision due to unsafe cut-ins is the target crash type of this paper. Human-controlled vehicles making unsafe lane changes are modeled as the primary disturbance to AVs based on data collected by the University of Michigan Safety Pilot Model Deployment Program. The cut-in scenarios are generated based on skewed statistics of collected human driver behaviors, which generate risky testing scenarios while preserving the statistical information so that the safety benefits of AVs in nonaccelerated cases can be accurately estimated. The cross-entropy method is used to recursively search for the optimal skewing parameters. The frequencies of the occurrences of conflicts, crashes, and injuries are estimated for a modeled AV, and the achieved accelerated rate is around 2000 to 20 000. In other words, in the accelerated simulations, driving for 1000 miles will expose the AV with challenging scenarios that will take about 2 to 20 million miles of real-world driving to encounter. This technique thus has the potential to greatly reduce the development and validation time for AVs. PMID:27840592
Zhao, Ding; Lam, Henry; Peng, Huei; Bao, Shan; LeBlanc, David J; Nobukawa, Kazutoshi; Pan, Christopher S
2017-03-01
Automated vehicles (AVs) must be thoroughly evaluated before their release and deployment. A widely used evaluation approach is the Naturalistic-Field Operational Test (N-FOT), which tests prototype vehicles directly on the public roads. Due to the low exposure to safety-critical scenarios, N-FOTs are time consuming and expensive to conduct. In this paper, we propose an accelerated evaluation approach for AVs. The results can be used to generate motions of the other primary vehicles to accelerate the verification of AVs in simulations and controlled experiments. Frontal collision due to unsafe cut-ins is the target crash type of this paper. Human-controlled vehicles making unsafe lane changes are modeled as the primary disturbance to AVs based on data collected by the University of Michigan Safety Pilot Model Deployment Program. The cut-in scenarios are generated based on skewed statistics of collected human driver behaviors, which generate risky testing scenarios while preserving the statistical information so that the safety benefits of AVs in nonaccelerated cases can be accurately estimated. The cross-entropy method is used to recursively search for the optimal skewing parameters. The frequencies of the occurrences of conflicts, crashes, and injuries are estimated for a modeled AV, and the achieved accelerated rate is around 2000 to 20 000. In other words, in the accelerated simulations, driving for 1000 miles will expose the AV with challenging scenarios that will take about 2 to 20 million miles of real-world driving to encounter. This technique thus has the potential to greatly reduce the development and validation time for AVs.
NASA Astrophysics Data System (ADS)
Wang, S.; McGillis, W. R.; Hu, R.; Culligan, P. J.
2017-12-01
Green infrastructure (GI) interventions, such as right-of-way bioswales, are being implemented in many urban areas, including New York City, to help mitigate the negative impacts of stormwater runoff. To understand the storm water retention capacity of bioswales, hydrological models, at scales ranging from the tributary area of a single right-of-way bioswale to an entire watershed, are often invoked. The validation and calibration of these models is, however, currently hampered by lack of extensive field measurements that quantify bioswale stormwater retention behaviors for different storm sizes and bioswale configurations. To overcome this problem, three field methods to quantify the water retention capacity of individual bioswales were developed. The methods are potentially applicable to other applications concerned with quantifying flow regimes in urban area. Precise measurements with high time resolutions and low environmental impacts are desired for gauging the hydraulic performance of bioswales, and similar GI configurations. To satisfy these requirements, an in-field measurement method was developed which involved the deployment of acoustic water-level sensors to measure the upstream and downstream water levels of flow into and out of a bioswale located in the Bronx areas of New York City. The measurements were made during several individual storm events. To provide reference flow rates to enable accurate calibration of the acoustic water level measurements, two other conductometry-based methods, which made use of YSI sensors and injected calcium chloride solutions, were also developed and deployed simultaneously with the water level measurements. The suite of data gathered by these methods enabled the development of a relationship between stage-discharge and rainfall intensity, which was then used to obtain the upstream and downstream hydrographs for the individual bioswale for the different storm events. This presentation will describe in detail the developed field methods, and will present results arising from the deployment of the methods, including results on the stormwater infiltration quantity and infiltration rate of the studied bioswale. The field methods are easily deployed at other bioswales sites and for other similar GI configurations.
Evaluation of a Digital Library by Means of Quality Function Deployment (QFD) and the Kano Model
ERIC Educational Resources Information Center
Garibay, Cecilia; Gutierrez, Humberto; Figueroa, Arturo
2010-01-01
This paper proposes utilizing a combination of the Quality Function Deployment (QFD)-Kano model as a useful tool to evaluate service quality. The digital library of the University of Guadalajara (Mexico) is presented as a case study. Data to feed the QFD-Kano model was gathered by an online questionnaire that was made available to users on the…
Mesa, Matthew G.; Dixon, Christopher J.
2010-01-01
salmonids. As a result, Smith-Root Incorporated (SRI; Vancouver, Washington) proposed a demonstration project to evaluate the potential of an electrical array to deter marine mammals (SRI 2007). The objective of their work was to develop, deploy, and evaluate a passive, integrated electric and sonar array that selectively inhibits upstream marine mammal movements and predation, without injuring pinnipeds or affecting anadromous fish migrations. However, before such a device could be placed in the field, concerns by regional fishery managers about the potential effects of such a device on the migratory behavior of or injury to Pacific salmon, steelhead (O. mykiss), Pacific lampreys (Entoshpenus tridentata), and white sturgeon (Acipenser transmontanus) needed to be addressed.
ERIC Educational Resources Information Center
Nardi, Elena; Biza, Irene; Zachariades, Theodossios
2012-01-01
In this paper, we propose an approach to analysing teacher arguments that takes into account field dependence--namely, in Toulmin's sense, the dependence of warrants deployed in an argument on the field of activity to which the argument relates. Freeman, to circumvent issues that emerge when we attempt to determine the field(s) that an argument…
Non-traditional Infrasound Deployment
NASA Astrophysics Data System (ADS)
McKenna, M. H.; McComas, S.; Simpson, C. P.; Diaz-Alvarez, H.; Costley, R. D.; Hayward, C.; Golden, P.; Endress, A.
2017-12-01
Historically, infrasound arrays have been deployed in rural environments where anthropological noise sources are limited. As interest in monitoring low energy sources at local distances grows in the infrasound community, it will be vital to understand how to monitor infrasound sources in an urban environment. Arrays deployed in urban centers have to overcome the decreased signal-to-noise ratio and reduced amount of real estate available to deploy an array. To advance the understanding of monitoring infrasound sources in urban environments, local and regional infrasound arrays were deployed on building rooftops on the campus at Southern Methodist University (SMU), and data were collected for one seasonal cycle. The data were evaluated for structural source signals (continuous-wave packets), and when a signal was identified, the back azimuth to the source was determined through frequency-wavenumber analysis. This information was used to identify hypothesized structural sources; these sources were verified through direct measurement and dynamic structural analysis modeling. In addition to the rooftop arrays, a camouflaged infrasound sensor was installed on the SMU campus and evaluated to determine its effectiveness for wind noise reduction. Permission to publish was granted by Director, Geotechnical and Structures Laboratory.
Developing a Cyberinfrastructure for integrated assessments of environmental contaminants.
Kaur, Taranjit; Singh, Jatinder; Goodale, Wing M; Kramar, David; Nelson, Peter
2005-03-01
The objective of this study was to design and implement prototype software for capturing field data and automating the process for reporting and analyzing the distribution of mercury. The four phase process used to design, develop, deploy and evaluate the prototype software is described. Two different development strategies were used: (1) design of a mobile data collection application intended to capture field data in a meaningful format and automate transfer into user databases, followed by (2) a re-engineering of the original software to develop an integrated database environment with improved methods for aggregating and sharing data. Results demonstrated that innovative use of commercially available hardware and software components can lead to the development of an end-to-end digital cyberinfrastructure that captures, records, stores, transmits, compiles and integrates multi-source data as it relates to mercury.
Riddle, Mark S.; Savarino, Stephen J.; Sanders, John W.
2015-01-01
Infectious diarrhea has been among the most common maladies of military deployments throughout time. The U.S. military experienced a significant burden from this disease in the middle eastern and north African campaigns of World War II (WWII). This article compares patterns of disease experienced in WWII with the recent military deployments to the same region for Operation Iraqi Freedom and Operation Enduring Freedom (OIF/OEF). Remarkable similarities in the prevalence and risk factors were noted, which belie the assumed improvements in prevention against these infections. In both campaigns, peaks of diarrhea occurred shortly after arrival of new personnel, which were seasonally associated and were linked to initial lapses in field sanitation and hygiene. It is important to reassess current strategies, especially, in light of emerging evidence of the chronic sequelae of these common infections to include a reemphasis on or reexamination of vaccine development, rapid field diagnostics, treatment algorithms, and antimicrobial prophylaxis. PMID:26350450
Poston, Walker S C; Taylor, Jennifer E; Hoffman, Kevin M; Peterson, Alan L; Lando, Harry A; Shelton, Suzanne; Haddock, C Keith
2008-05-01
Smoking during deployments is a growing problem, particularly among junior-enlisted personnel, who have the highest smoking rates in the military. Few studies have examined reasons for smoking initiation among never smokers, relapse among former smokers, or increased smoking frequency among current smokers. We conducted 24 focus groups at four Air Force and two Army installations (N = 189) to examine the extent of smoking during deployment and to elucidate factors thought to contribute to new initiation, relapse, and increased smoking in a sample of junior-enlisted personnel and their supervisors. Important reasons for smoking included: (1) managing stress, boredom, anxiety, and sleep deprivation; (2) lack of alternate activities and privileges; (3) the perception that dangers in the field trumps the health impact of smoking; and (4) the role of the military environment in encouraging smoking. In addition, the phenomenon of new initiation and relapse to smoking in the field was discussed.
Driven by major scientific advances in analytical methods, biomonitoring, computation, and a newly articulated vision for a greater impact in public health, the field of exposure science is undergoing a rapid transition from a field of observation to a field of prediction. Deploy...
Shukle, Richard H; Cambron, Sue E; Moniem, Hossam Abdel; Schemerhorn, Brandon J; Redding, Julie; David Buntin, G; Flanders, Kathy L; Reisig, Dominic D; Mohammadi, Mohsen
2016-02-01
The Hessian fly, Mayetiola destructor (Say) (Diptera: Cecidomyiidae), is the most important insect pest of wheat (Triticum aestivum L. subsp. aestivum) in the southeastern United States, and the deployment of genetically resistant wheat is the most effective control. However, the use of resistant wheat results in the selection of pest genotypes that can overcome formerly resistant wheat. We have evaluated the effectiveness of 16 resistance genes for protection of wheat from Hessian fly infestation in the southeastern United States. Results documented that while 10 of the genes evaluated could provide protection of wheat, the most highly effective genes were H12, H18, H24, H25, H26, and H33. However, H12 and H18 have been reported to be only partially effective in field evaluations, and H24, H25, and H26 may be associated with undesirable effects on agronomic traits when introgressed into elite wheat lines. Thus, the most promising new gene for Hessian fly resistance appears to be H33. These results indicate that identified highly effective resistance in wheat to the Hessian fly is a limited resource and emphasize the need to identify novel sources of resistance. Also, we recommend that the deployment of resistance in gene pyramids and the development of novel strategies for engineered resistance be considered. Published by Oxford University Press on behalf of Entomological Society of America 2015. This work is written by US Government employees and is in the public domain in the US.
BCILAB: a platform for brain-computer interface development
NASA Astrophysics Data System (ADS)
Kothe, Christian Andreas; Makeig, Scott
2013-10-01
Objective. The past two decades have seen dramatic progress in our ability to model brain signals recorded by electroencephalography, functional near-infrared spectroscopy, etc., and to derive real-time estimates of user cognitive state, response, or intent for a variety of purposes: to restore communication by the severely disabled, to effect brain-actuated control and, more recently, to augment human-computer interaction. Continuing these advances, largely achieved through increases in computational power and methods, requires software tools to streamline the creation, testing, evaluation and deployment of new data analysis methods. Approach. Here we present BCILAB, an open-source MATLAB-based toolbox built to address the need for the development and testing of brain-computer interface (BCI) methods by providing an organized collection of over 100 pre-implemented methods and method variants, an easily extensible framework for the rapid prototyping of new methods, and a highly automated framework for systematic testing and evaluation of new implementations. Main results. To validate and illustrate the use of the framework, we present two sample analyses of publicly available data sets from recent BCI competitions and from a rapid serial visual presentation task. We demonstrate the straightforward use of BCILAB to obtain results compatible with the current BCI literature. Significance. The aim of the BCILAB toolbox is to provide the BCI community a powerful toolkit for methods research and evaluation, thereby helping to accelerate the pace of innovation in the field, while complementing the existing spectrum of tools for real-time BCI experimentation, deployment and use.
Airport Remote Tower Sensor Systems
NASA Technical Reports Server (NTRS)
Maluf, David A.; Gawdiak, Yuri; Leidichj, Christopher; Papasin, Richard; Tran, Peter B.; Bass, Kevin
2006-01-01
Networks of video cameras, meteorological sensors, and ancillary electronic equipment are under development in collaboration among NASA Ames Research Center, the Federal Aviation Administration (FAA), and the National Oceanic Atmospheric Administration (NOAA). These networks are to be established at and near airports to provide real-time information on local weather conditions that affect aircraft approaches and landings. The prototype network is an airport-approach-zone camera system (AAZCS), which has been deployed at San Francisco International Airport (SFO) and San Carlos Airport (SQL). The AAZCS includes remotely controlled color video cameras located on top of SFO and SQL air-traffic control towers. The cameras are controlled by the NOAA Center Weather Service Unit located at the Oakland Air Route Traffic Control Center and are accessible via a secure Web site. The AAZCS cameras can be zoomed and can be panned and tilted to cover a field of view 220 wide. The NOAA observer can see the sky condition as it is changing, thereby making possible a real-time evaluation of the conditions along the approach zones of SFO and SQL. The next-generation network, denoted a remote tower sensor system (RTSS), will soon be deployed at the Half Moon Bay Airport and a version of it will eventually be deployed at Los Angeles International Airport. In addition to remote control of video cameras via secure Web links, the RTSS offers realtime weather observations, remote sensing, portability, and a capability for deployment at remote and uninhabited sites. The RTSS can be used at airports that lack control towers, as well as at major airport hubs, to provide synthetic augmentation of vision for both local and remote operations under what would otherwise be conditions of low or even zero visibility.
Aero-thermo-dynamic analysis of a low ballistic coefficient deployable capsule in Earth re-entry
NASA Astrophysics Data System (ADS)
Zuppardi, G.; Savino, R.; Mongelluzzo, G.
2016-10-01
The paper deals with a microsatellite and the related deployable recovery capsule. The aero-brake is folded at launch and deployed in space and is able to perform a de-orbiting controlled re-entry. This kind of capsule, with a flexible, high temperature resistant fabric, thanks to its lightness and modulating capability, can be an alternative to the current ;conventional; recovery capsules. The present authors already analyzed the trajectory and the aerodynamic behavior of low ballistic coefficient capsules during Earth re-entry and Mars entry. In previous studies, aerodynamic longitudinal stability analysis and evaluation of thermal and aerodynamic loads for a possible suborbital re-entry demonstrator were carried out in both continuum and rarefied regimes. The present study is aimed at providing preliminary information about thermal and aerodynamic loads and longitudinal stability for a similar deployable capsule, as well as information about the electronic composition of the plasma sheet and its possible influence on radio communications at the altitudes where GPS black-out could occur. Since the computer tests were carried out at high altitudes, therefore in rarefied flow fields, use of Direct Simulation Monte Carlo codes was mandatory. The computations involved both global aerodynamic quantities (drag and longitudinal moment coefficients) and local aerodynamic quantities (heat flux and pressure distributions along the capsule surface). The results verified that the capsule at high altitude (150 km) is self-stabilizing; it is stable around the nominal attitude or at zero angle of attack and unstable around the reverse attitude or at 180° angle of attack. The analysis also pointed out the presence of extra statically stable equilibrium trim points.
Smaradottir, Berglind; Gerdes, Martin; Martinez, Santiago; Fensli, Rune
2015-01-01
This study presents the user-centred design and evaluation process of a Collaborative Information System (CIS), developed for a new telehealth service for remote monitoring of chronic obstructive pulmonary disease patients after hospital discharge. The CIS was designed based on the information gathered in a workshop, where target end-users described the context of use, a telehealth workflow and their preferred ways of interaction with the solution. Evaluation of the iterative refinements were made through user tests, semi-structured interviews and a questionnaire. A field trial reported results on the ease of use and user satisfaction during the interaction with the fully developed system. The implemented CIS was successfully deployed within the secured Norwegian Health Network. The research was a result of cooperation between international partners within the EU FP7 project United4Health.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chan, George; Valentine, John D.; Russo, Richard E.
The primary objective of the present study is to identity the most promising, viable technologies that are likely to culminate in an expedited development of the next-generation, field-deployable instrument for providing rapid, accurate, and precise enrichment assay of uranium hexafluoride (UF6). UF6 is typically involved, and is arguably the most important uranium compound, in uranium enrichment processes. As the first line of defense against proliferation, accurate analytical techniques to determine the uranium isotopic distribution in UF6 are critical for materials verification, accounting, and safeguards at enrichment plants. As nuclear fuel cycle technology becomes more prevalent around the world, international nuclearmore » safeguards and interest in UF6 enrichment assay has been growing. At present, laboratory-based mass spectrometry (MS), which offers the highest attainable analytical accuracy and precision, is the technique of choice for the analysis of stable and long-lived isotopes. Currently, the International Atomic Energy Agency (IAEA) monitors the production of enriched UF6 at declared facilities by collecting a small amount (between 1 to 10 g) of gaseous UF6 into a sample bottle, which is then shipped under chain of custody to a central laboratory (IAEA’s Nuclear Materials Analysis Laboratory) for high-precision isotopic assay by MS. The logistics are cumbersome and new shipping regulations are making it more difficult to transport UF6. Furthermore, the analysis is costly, and results are not available for some time after sample collection. Hence, the IAEA is challenged to develop effective safeguards approaches at enrichment plants. In-field isotopic analysis of UF6 has the potential to substantially reduce the time, logistics and expense of sample handling. However, current laboratory-based MS techniques require too much infrastructure and operator expertise for field deployment and operation. As outlined in the IAEA Department of Safeguards Long-Term R&D Plan, 2012–2023, one of the IAEA long-term R&D needs is to “develop tools and techniques to enable timely, potentially real-time, detection of HEU (Highly Enriched Uranium) production in LEU (Lowly Enriched Uranium) enrichment facilities” (Milestone 5.2). Because it is common that the next generation of analytical instruments is driven by technologies that are either currently available or just now emerging, one reasonable and practical approach to project the next generation of chemical instrumentation is to track the recent trends and to extrapolate them. This study adopted a similar approach, and an extensive literature review on existing and emerging technologies for UF6 enrichment assay was performed. The competitive advantages and current limitations of different analytical techniques for in-field UF6 enrichment assay were then compared, and the main gaps between needs and capabilities for their field use were examined. Subsequently, based on these results, technologies for the next-generation field-deployable instrument for UF6 enrichment assay were recommended. The study was organized in a way that a suite of assessment metric was first identified. Criteria used in this evaluation are presented in Section 1 of this report, and the most important ones are described briefly in the next few paragraphs. Because one driving force for in-field UF6 enrichment assay is related to the demanding transportation regulation for gaseous UF6, Section 2 contains a review of solid sorbents that convert and immobilized gaseous UF6 to a solid state, which is regarded as more transportation friendly and is less regulated. Furthermore, candidate solid sorbents, which show promise in mating with existing and emerging assay technologies, also factor into technology recommendations. Extensive literature reviews on existing and emerging technologies for UF6 enrichment assay, covering their scientific principles, instrument options, and current limitations are detailed in Sections 3 and 4, respectively. In Section 5, the technological gaps as well as start-of-the-art and commercial off-the-shelf components that can be adopted to expedite the development of a fieldable or portable UF6 enrichment-assay instrument are identified and discussed. Finally, based on the results of the review, requirements and recommendations for developing the next-generation field-deployable instrument for UF6 enrichment assay are presented in Section 6.« less
Cloud Environment Automation: from infrastructure deployment to application monitoring
NASA Astrophysics Data System (ADS)
Aiftimiei, C.; Costantini, A.; Bucchi, R.; Italiano, A.; Michelotto, D.; Panella, M.; Pergolesi, M.; Saletta, M.; Traldi, S.; Vistoli, C.; Zizzi, G.; Salomoni, D.
2017-10-01
The potential offered by the cloud paradigm is often limited by technical issues, rules and regulations. In particular, the activities related to the design and deployment of the Infrastructure as a Service (IaaS) cloud layer can be difficult to apply and time-consuming for the infrastructure maintainers. In this paper the research activity, carried out during the Open City Platform (OCP) research project [1], aimed at designing and developing an automatic tool for cloud-based IaaS deployment is presented. Open City Platform is an industrial research project funded by the Italian Ministry of University and Research (MIUR), started in 2014. It intends to research, develop and test new technological solutions open, interoperable and usable on-demand in the field of Cloud Computing, along with new sustainable organizational models that can be deployed for and adopted by the Public Administrations (PA). The presented work and the related outcomes are aimed at simplifying the deployment and maintenance of a complete IaaS cloud-based infrastructure.
NASA Astrophysics Data System (ADS)
McMahon, Paul; Jung, Hans-Juergen; Edwards, Jeff
2013-09-01
The Swarm programme consists of 3 magnetically clean satellites flying in close formation designed to measure the Earth's magnetic field using 2 Magnetometers mounted on a 4.3m long deployable boom.Deployment is initiated by releasing 3 HDRMs, once released the boom oscillates back and forth on a pair of pivots, similar to a restaurant kitchen door hinge, for around 120 seconds before coming to rest on 3 kinematic mounts which are used to provide an accurate reference location in the deployed position. Motion of the boom is damped through a combination of friction, spring hysteresis and flexing of the 120+ cables crossing the hinge. Considerable development work and accurate numerical modelling of the hinge motion was required to predict performance across a wide temperature range and ensure that during the 1st overshoot the boom did not damage itself, the harness or the spacecraft.Due to the magnetic cleanliness requirements of the spacecraft no magnetic materials could be used in the design of the hardware.
The Most Serious Stressors in Foreign Military Missions
2011-04-01
collecting method. However, we know by experience that the level of cooperation in such surveys is really low . In fact the troops usually cooperate...formally but the acquired data is often useless. In general the willingness and openness towards the questionnaires are really low . There are more...would be deployed, motivation, reactions of the close people, training prior to the deployment, self -evaluation of the preparedness etc, deployment
Space Shuttle to deploy Magellan planetary science mission
NASA Technical Reports Server (NTRS)
1989-01-01
The objectives of Space Shuttle Mission STS-30 are described along with major flight activities, prelaunch and launch operations, trajectory sequence of events, and landing and post-landing operations. The primary objective of STS-30 is to successfully deploy the Magellan spacecraft into low earth orbit. Following deployment, Magellan will be propelled to its Venus trajectory by an Inertial Upper Stage booster. The objectives of the Magellan mission are to obtain radar images of more than 70 percent of Venus' surface, a near-global topographic map, and near-global gravity field data. Secondary STS-30 payloads include the Fluids Experiment Apparatus (FEA) and the Mesoscale Lightning Experiment (MLE).
Brady's Geothermal Field - Map of DAS, Nodal, Vibroseis and Reftek Station Deployment
Kurt Feigl
2016-10-15
Map of DAS, nodal, vibroseis and Reftek stations during March 2016 deployment. The plot on the left has nodal stations labeled; the plot on the right has vibroseis observations labeled. Stations are shown in map-view using Brady's rotated X-Y coordinates with side plots denoting elevation with respect to the WGS84 ellipsoid. Blue circles denote vibroseis data, x symbols denote DAS (cyan for horizontal and magenta for vertical), black asterisks denote Reftek data, and red plus signs denote nodal data. This map can be found on UW-Madison's askja server at /PoroTomo/DATA/MAPS/Deployment_Stations.pdf
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frew, Bethany; Mai, Trieu; Krishnan, Venkat
2016-12-01
In this study, we use the National Renewable Energy Laboratory's (NREL's) Regional Energy Deployment System (ReEDS) capacity expansion model to estimate utility-scale photovoltaic (UPV) deployment trends from present day through 2030. The analysis seeks to inform the U.S. Bureau of Land Management's (BLM's) planning activities related to UPV development on federal lands in Nevada as part of the Resource Management Plan (RMP) revision for the Las Vegas and Pahrump field offices. These planning activities include assessing the demand for new or expanded additional Solar Energy Zones (SEZ), per the process outlined in BLM's Western Solar Plan process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Claisse, Jeremy T.; Pondella, Daniel J.; Williams, Chelsea M.
Marine and hydrokinetic energy (MHK) and offshore wind devices are being developed and deployed in U.S. and international waters. Electric current flowing through subsea transmission cables associated with these devices will generate electromagnetic fields (EMF), which may interact with, and potentially impact, marine fishes. Some marine fishes can detect electric and/or magnetic fields and use them to navigate, orientate, and sense prey, mates and predators. Over the past five years there have been multiple comprehensive reviews and studies evaluating the potential vulnerability of marine fishes to EMF produced by MHK devices. Most documented effects involve sub-lethal behavioral responses of individualmore » fish when in close proximity to EMF (e.g., fish being repelled by or attracted to fields). These reviews reach conclusions that the current state of research on this topic is still in its infancy and evaluations of potential impacts are associated with great uncertainty. A variety of MHK technologies are likely to be considered for deployment offshore of the Hawaiian Islands, and there is a need to be able to better predict and assess potential associated environmental impacts. The goal of this study was to provide a complementary piece to these previous reviews (e.g., Normandeau et al. 2011) by focusing on marine fish species in the Hawaii region. We compiled the relevant available information, then prioritized fish species as candidates for various paths of future research. To address this, we first developed a list of Hawaii Region Focal Species, which included fishes that are more likely to be sensitive to EMF. We then compiled species-specific information available in the literature on their sensitivity to EMF, as well as life history, movement and habitat use information that could inform an analysis of their likelihood of encountering EMF from subsea cables associated with MHK devices. Studies have only documented EMF sensitivity in 11 of the marine fish species in this region. There was also relatively little detailed information on fish movement and habitat use patterns for most of the focal species. Our last objective was to develop recommendations for research needs to close the important knowledge gaps. We describe species-independent baseline research that primarily consists of in situ quantification of EMF generated by MHK devices and undersea cables that can occur as pilot and commercial scale MHK devices are deployed in Hawaii. Then we propose a simple approach for prioritizing Hawaii Region Focal Species (ranked relative to each other) as candidates in multiple related research paths. The prioritization approach incorporates EMF sensitivity information with the likelihood of interacting with EMF generated undersea transmission cables associated with MHK devices. Finally, we discuss the types of research needed to help fill gaps in the scientific knowledge base for this region. These involve studies to better define species-specific EMF sensitivity thresholds under various environmental conditions, studies of life history, movement and habitat use patterns to improve our understanding of the likelihood and frequency fishes may be in the vicinity of EMF generated by subsea transmission cables, and studies of the potential for related population, community or ecosystem impacts. Many of these studies can and should occur opportunistically as pilot and commercial scale MHK devices are deployed in Hawaii.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
M. V. Carpenter; Jay A. Roach; John R Giles
2005-09-01
The environmental restoration industry offers several sys¬tems that perform scan-type characterization of radiologically contaminated areas. The Idaho National Laboratory (INL) has developed and deployed a suite of field systems that rapidly scan, characterize, and analyse radiological contamination in surface soils. The base system consists of a detector, such as sodium iodide (NaI) spectrometers, a global positioning system (GPS), and an integrated user-friendly computer interface. This mobile concept was initially developed to provide precertifica¬tion analyses of soils contaminated with uranium, thorium, and radium at the Fernald Closure Project, near Cincinnati, Ohio. INL has expanded the functionality of this basic system tomore » create a suite of integrated field-deployable analytical systems. Using its engineering and radiation measurement expertise, aided by computer hardware and software support, INL has streamlined the data acquisition and analysis process to provide real-time information presented on wireless screens and in the form of coverage maps immediately available to field technicians. In addition, custom software offers a user-friendly interface with user-selectable alarm levels and automated data quality monitoring functions that validate the data. This system is deployed from various platforms, depending on the nature of the survey. The deployment platforms include a small all-terrain vehicle used to survey large, relatively flat areas, a hand-pushed unit for areas where manoeuvrability is important, an excavator-mounted system used to scan pits and trenches where personnel access is restricted, and backpack- mounted systems to survey rocky shoreline features and other physical settings that preclude vehicle-based deployment. Variants of the base system include sealed proportional counters for measuring actinides (i.e., plutonium-238 and americium-241) in building demolitions, soil areas, roadbeds, and process line routes at the Miamisburg Closure Project near Dayton, Ohio. In addition, INL supports decontamination operations at the Oak Ridge National Laboratory.« less
Chronic Left Lower Lobe Pulmonary Infiltrates During Military Deployment.
Hunninghake, John C; Skabelund, Andrew J; Morris, Michael J
2016-08-01
Deployment to Southwest Asia is associated with increased airborne hazards such as geologic dusts, burn pit smoke, vehicle exhaust, or air pollution. There are numerous ongoing studies to evaluate the potential effects of inhaled particulate matter on reported increases in acute and chronic respiratory symptoms. Providers need to be aware of potential causes of pulmonary disease such as acute eosinophilic pneumonia, asthma, and vocal cord dysfunction that have been associated with deployment. Other pulmonary disorders such as interstitial lung disease are infrequently reported. Not all deployment-related respiratory complaints may result from deployment airborne hazards and a broad differential should be considered. We present the case of a military member with a prolonged deployment found to have lobar infiltrates secondary to pulmonary vein stenosis from treatment for atrial fibrillation. Reprint & Copyright © 2016 Association of Military Surgeons of the U.S.
1999-12-01
Infection of an extraction site (dry socket, localized osteitis). Apical abscess /periapical abscess - Collection of purulent exudate around the area...conditions for deployment data were 5.79% higher than the rate during conflicts. Caries, third molar complications, periapical abscesses , and endodontics are...restorations and fractured teeth. The "Periodontal" category was grouped to include periodontal abscess , acute necrotizing gingivitis (ANUG), and
Patrick C. Tobin; Kenneth T. Klein; Donna S. Leonard
2009-01-01
Populations of the gypsy moth, Lymantria dispar (L.), are extensively monitored in the United States through the use of pheromone-baited traps.We report on use of automated pheromone-baited traps that use a recording sensor and data logger to record the unique date-time stamp of males as they enter the trap.We deployed a total of 352 automated traps...
Westhoff, John L; Roberts, Brad J; Erickson, Kristin
2013-01-01
Vehicle-mounted high-power microwave systems have been developed to counter the improvised explosive device threat in southwest Asia. Many service members only vaguely comprehend the nature of these devices and the nonionizing radio frequency (RF) radiation they emit. Misconceptions about the health effects of RF radiation have the potential to produce unnecessary anxiety. We report an incident in which concern for exposure to radiation from a high-power microwave device thought to be malfunctioning led to an extensive field investigation, multiple evaluations by clinicians in theater, and subsequent referrals to an Occupational Health clinic upon return from deployment. When acute exposure to RF does occur, the effects are thermally mediated and immediately perceptible--limiting the possibility of injury. Unlike ionizing radiation, RF radiation is not known to cause cancer and the adverse health effects are not cumulative. Medical officers counseling service members concerned about potential RF radiation exposure should apply established principles of risk communication, attend to real and perceived risks, and enlist the assistance of technical experts to properly characterize an exposure when appropriate.
Pore water sampling in acid sulfate soils: a new peeper method.
Johnston, Scott G; Burton, Edward D; Keene, Annabelle F; Bush, Richard T; Sullivan, Leigh A; Isaacson, Lloyd
2009-01-01
This study describes the design, deployment, and application of a modified equilibration dialysis device (peeper) optimized for sampling pore waters in acid sulfate soils (ASS). The modified design overcomes the limitations of traditional-style peepers, when sampling firm ASS materials over relatively large depth intervals. The new peeper device uses removable, individual cells of 25 mL volume housed in a 1.5 m long rigid, high-density polyethylene rod. The rigid housing structure allows the device to be inserted directly into relatively firm soils without requiring a supporting frame. The use of removable cells eliminates the need for a large glove-box after peeper retrieval, thus simplifying physical handling. Removable cells are easily maintained in an inert atmosphere during sample processing and the 25-mL sample volume is sufficient for undertaking multiple analyses. A field evaluation of equilibration times indicates that 32 to 38 d of deployment was necessary. Overall, the modified method is simple and effective and well suited to acquisition and processing of redox-sensitive pore water profiles>1 m deep in acid sulfate soil or any other firm wetland soils.
Sensing Home: A Cost-Effective Design for Smart Home via Heterogeneous Wireless Networks
Fan, Xiaohu; Huang, Hao; Qi, Shipeng; Luo, Xincheng; Zeng, Jing; Xie, Qubo; Xie, Changsheng
2015-01-01
The aging population has inspired the marketing of advanced real time devices for home health care, more and more wearable devices and mobile applications, which have emerged in this field. However, to properly collect behavior information, accurately recognize human activities, and deploy the whole system in a real living environment is a challenging task. In this paper, we propose a feasible wireless-based solution to deploy a data collection scheme, activity recognition model, feedback control and mobile integration via heterogeneous networks. We compared and found a suitable algorithm that can be run on cost-efficient embedded devices. Specifically, we use the Super Set Transformation method to map the raw data into a sparse binary matrix. Furthermore, designed front-end devices of low power consumption gather the living data of the habitant via ZigBee to reduce the burden of wiring work. Finally, we evaluated our approach and show it can achieve a theoretical time-slice accuracy of 98%. The mapping solution we propose is compatible with more wearable devices and mobile apps. PMID:26633424
Sensing Home: A Cost-Effective Design for Smart Home via Heterogeneous Wireless Networks.
Fan, Xiaohu; Huang, Hao; Qi, Shipeng; Luo, Xincheng; Zeng, Jing; Xie, Qubo; Xie, Changsheng
2015-12-03
The aging population has inspired the marketing of advanced real time devices for home health care, more and more wearable devices and mobile applications, which have emerged in this field. However, to properly collect behavior information, accurately recognize human activities, and deploy the whole system in a real living environment is a challenging task. In this paper, we propose a feasible wireless-based solution to deploy a data collection scheme, activity recognition model, feedback control and mobile integration via heterogeneous networks. We compared and found a suitable algorithm that can be run on cost-efficient embedded devices. Specifically, we use the Super Set Transformation method to map the raw data into a sparse binary matrix. Furthermore, designed front-end devices of low power consumption gather the living data of the habitant via ZigBee to reduce the burden of wiring work. Finally, we evaluated our approach and show it can achieve a theoretical time-slice accuracy of 98%. The mapping solution we propose is compatible with more wearable devices and mobile apps.
Real and virtual robotics in mathematics education at the school-university transition
NASA Astrophysics Data System (ADS)
Samuels, Peter; Haapasalo, Lenni
2012-04-01
LOGO and turtle graphics were an influential movement in primary school mathematics education in the 1980s and 1990s. Since then, technology has moved forward, both in terms of its sophistication and pedagogical potential; and learner experiences, preferences and ways of thinking have changed dramatically. Based on the authors' previous work and a literature review, this article revisits the subject of enhancing mathematics education through educational robotics kits and virtual robotic animations by proposing their simultaneous deployment at the school-university transition. The rationale for such an application is argued and an evaluation framework for these technologies is proposed. Two educational robotic kits and a virtual environment supporting robotic animations are evaluated both in terms of their feasibility of deployment and their educational effectiveness. Finally, the evaluation of learning experiences when deploying the proposed pedagogical approach is discussed.
The Role of Mass Spectrometry-Based Metabolomics in Medical Countermeasures Against Radiation
Patterson, Andrew D.; Lanz, Christian; Gonzalez, Frank J.; Idle, Jeffrey R.
2013-01-01
Radiation metabolomics can be defined as the global profiling of biological fluids to uncover latent, endogenous small molecules whose concentrations change in a dose-response manner following exposure to ionizing radiation. In response to the potential threat of nuclear or radiological terrorism, the Center for High-Throughput Minimally Invasive Radiation Biodosimetry (CMCR) was established to develop field-deployable biodosimeters based, in principle, on rapid analysis by mass spectrometry of readily and easily obtainable biofluids. In this review, we briefly summarize radiation biology and key events related to actual and potential nuclear disasters, discuss the important contributions the field of mass spectrometry has made to the field of radiation metabolomics, and summarize current discovery efforts to use mass spectrometry-based metabolomics to identify dose-responsive urinary constituents, and ultimately to build and deploy a noninvasive high-throughput biodosimeter. PMID:19890938
NASA Astrophysics Data System (ADS)
Cuvelier, Daphne; Beesau, Julie; Ivanenko, Viatcheslav N.; Zeppilli, Daniela; Sarradin, Pierre-Marie; Sarrazin, Jozée
2014-05-01
In 2006, paired wood and slate panels, each equipped with a temperature probe, were deployed on three different localities on and around the Eiffel Tower edifice (Lucky Strike vent field, Mid-Atlantic Ridge) within close proximity of visible hydrothermal activity. Recovery of these panels took place in 2008. For this two-year deployment period, the composition of colonising organisms (both macro-and meiofauna) was assessed, along with image analyses of the deployment sites in 2006 and 2008. Very few significant differences in colonisation between organic (wood) and inorganic (slate) panels were revealed. Rather, the locality of deployment and the local environmental conditions and hydrothermal activity were found to influence taxonomic composition. Variability in microhabitat conditions and biological interactions were hypothesised to interact jointly in shaping new faunal communities on the colonisation substrata.
The Carnegie Quick Deploy Box (QDB) for use with broadband and intermediate period sensors
NASA Astrophysics Data System (ADS)
Wagner, L. S.; Roman, D.; Bartholomew, T.; Golden, S.; Schleigh, B.
2017-12-01
Recent data processing advances have increased the call for dense recordings of teleseismic data. However, traditional broadband field installations typically comprise 1) a sensor vault 2) a field box to hold the recording and power systems, and 3) a solar panel mount. The construction of these installations is time consuming and requires bulky construction materials, limiting the number of stations that can be installed from a single vehicle without repeated trips to a storage facility. Depending on the deployment location, watertight containers for both vault and field box can be difficult to find, resulting in a loss of data due to flooding. Recent technological improvements have made possible the direct burial of sensors (no vault required) and a reduction in the size of the solar panels needed to run a station. With support from the Brinson Foundation, we take advantage of these advances to create a field box/shipping container that will greatly simplify these types of seismic deployments. The goal of the Carnegie Quick Deploy Box (QDB) is to have everything needed for an intermediate period station install (except battery and shovel) contained in a single box for shipment, and to be able to leave everything (except the shovel) in that box when the station is deployed. The box is small enough ( 13"x13"x21") and lightweight enough (< 35 lbs) to be checked as airline luggage. The solar panel mount can be attached securely to the top of the box, but it can also be pole mounted with U-bolts or hose clamps. The sensor can be direct-buried. The sensor cable and solar panel cable plug into watertight bulkhead-fitted plugs on the outside of the box that are in turn plugged into the digitizer and power regulator inside the box. Our prototype boxes (Pelican Cases) have proved watertight when submerged for days. This equipment has been tested in Alaska in winter and Nicaragua in summer without failure due to flooding or power. The cost for parts for a single box (not including sensor cable, sensor, or digitizer) is $500. The setup is simple, and can be completed in a matter of minutes once the sensor is installed. QDBs such as ours will make possible a dramatic increase in the number of stations that can be installed, while also significantly decreasing the cost of deployment per station by reducing vehicle time, fuel, personnel time, and shipping costs.
Dupré, Olivier; Niesen, Bjoern; De Wolf, Stefaan; Ballif, Christophe
2018-01-18
Multijunction cells may offer a cost-effective route to boost the efficiency of industrial photovoltaics. For any technology to be deployed in the field, its performance under actual operating conditions is extremely important. In this perspective, we evaluate the impact of spectrum, light intensity, and module temperature variations on the efficiency of tandem devices with crystalline silicon bottom cells with a particular focus on perovskite top cells. We consider devices with different efficiencies and calculate their energy yields using field data from Denver. We find that annual losses due to differences between operating conditions and standard test conditions are similar for single-junction and four-terminal tandem devices. The additional loss for the two-terminal tandem configuration caused by current mismatch reduces its performance ratio by only 1.7% when an optimal top cell bandgap is used. Additionally, the unusual bandgap temperature dependence of perovskites is shown to have a positive, compensating effect on current mismatch.
LASER FLUORESCENCE EEM PROBE FOR CONE PENETROMETER POLLUTION ANALYSIS
A fiber optic LIF (Laser induced fluorescence) EEM (Excitation emission matrix) instrument for CPT deployment has been successfully developed and field tested. The system employs a Nd: YAG laser and Raman shifter as a rugged field portable excitation source. This excitation sou...
On Efficient Deployment of Wireless Sensors for Coverage and Connectivity in Constrained 3D Space.
Wu, Chase Q; Wang, Li
2017-10-10
Sensor networks have been used in a rapidly increasing number of applications in many fields. This work generalizes a sensor deployment problem to place a minimum set of wireless sensors at candidate locations in constrained 3D space to k -cover a given set of target objects. By exhausting the combinations of discreteness/continuousness constraints on either sensor locations or target objects, we formulate four classes of sensor deployment problems in 3D space: deploy sensors at Discrete/Continuous Locations (D/CL) to cover Discrete/Continuous Targets (D/CT). We begin with the design of an approximate algorithm for DLDT and then reduce DLCT, CLDT, and CLCT to DLDT by discretizing continuous sensor locations or target objects into a set of divisions without sacrificing sensing precision. Furthermore, we consider a connected version of each problem where the deployed sensors must form a connected network, and design an approximation algorithm to minimize the number of deployed sensors with connectivity guarantee. For performance comparison, we design and implement an optimal solution and a genetic algorithm (GA)-based approach. Extensive simulation results show that the proposed deployment algorithms consistently outperform the GA-based heuristic and achieve a close-to-optimal performance in small-scale problem instances and a significantly superior overall performance than the theoretical upper bound.
Nelson, Todd G.; Zimmerman, Trent K.; Fernelius, Janette D.; Magleby, Spencer P.; Howell, Larry L.
2016-01-01
Packing soft-sheet materials of approximately zero bending stiffness using Soft Origami (origami patterns applied to soft-sheet materials) into cylindrical volumes and their deployment via mechanisms or internal pressure (inflation) is of interest in fields including automobile airbags, deployable heart stents, inflatable space habitats, and dirigible and parachute packing. This paper explores twofold patterns, the ‘flasher’ and the ‘inverted-cone fold’, for packing soft-sheet materials into cylindrical volumes. Two initial packing methods and mechanisms are examined for each of the flasher and inverted-cone fold patterns. An application to driver’s side automobile airbags is performed, and deployment tests are completed to compare the influence of packing method and origami pattern on deployment performance. Following deployment tests, two additional packing methods for the inverted-cone fold pattern are explored and applied to automobile airbags. It is shown that modifying the packing method (using different methods to impose the same base pattern on the soft-sheet material) can lead to different deployment performance. In total, two origami patterns and six packing methods are examined, and the benefits of using Soft Origami patterns and packing methods are discussed. Soft Origami is presented as a viable method for efficiently packing soft-sheet materials into cylindrical volumes. PMID:27703707
Stent deployment protocol for optimized real-time visualization during endovascular neurosurgery.
Silva, Michael A; See, Alfred P; Dasenbrock, Hormuzdiyar H; Ashour, Ramsey; Khandelwal, Priyank; Patel, Nirav J; Frerichs, Kai U; Aziz-Sultan, Mohammad A
2017-05-01
Successful application of endovascular neurosurgery depends on high-quality imaging to define the pathology and the devices as they are being deployed. This is especially challenging in the treatment of complex cases, particularly in proximity to the skull base or in patients who have undergone prior endovascular treatment. The authors sought to optimize real-time image guidance using a simple algorithm that can be applied to any existing fluoroscopy system. Exposure management (exposure level, pulse management) and image post-processing parameters (edge enhancement) were modified from traditional fluoroscopy to improve visualization of device position and material density during deployment. Examples include the deployment of coils in small aneurysms, coils in giant aneurysms, the Pipeline embolization device (PED), the Woven EndoBridge (WEB) device, and carotid artery stents. The authors report on the development of the protocol and their experience using representative cases. The stent deployment protocol is an image capture and post-processing algorithm that can be applied to existing fluoroscopy systems to improve real-time visualization of device deployment without hardware modifications. Improved image guidance facilitates aneurysm coil packing and proper positioning and deployment of carotid artery stents, flow diverters, and the WEB device, especially in the context of complex anatomy and an obscured field of view.
NASA Astrophysics Data System (ADS)
Bruton, Jared T.; Nelson, Todd G.; Zimmerman, Trent K.; Fernelius, Janette D.; Magleby, Spencer P.; Howell, Larry L.
2016-09-01
Packing soft-sheet materials of approximately zero bending stiffness using Soft Origami (origami patterns applied to soft-sheet materials) into cylindrical volumes and their deployment via mechanisms or internal pressure (inflation) is of interest in fields including automobile airbags, deployable heart stents, inflatable space habitats, and dirigible and parachute packing. This paper explores twofold patterns, the `flasher' and the `inverted-cone fold', for packing soft-sheet materials into cylindrical volumes. Two initial packing methods and mechanisms are examined for each of the flasher and inverted-cone fold patterns. An application to driver's side automobile airbags is performed, and deployment tests are completed to compare the influence of packing method and origami pattern on deployment performance. Following deployment tests, two additional packing methods for the inverted-cone fold pattern are explored and applied to automobile airbags. It is shown that modifying the packing method (using different methods to impose the same base pattern on the soft-sheet material) can lead to different deployment performance. In total, two origami patterns and six packing methods are examined, and the benefits of using Soft Origami patterns and packing methods are discussed. Soft Origami is presented as a viable method for efficiently packing soft-sheet materials into cylindrical volumes.
Bruton, Jared T; Nelson, Todd G; Zimmerman, Trent K; Fernelius, Janette D; Magleby, Spencer P; Howell, Larry L
2016-09-01
Packing soft-sheet materials of approximately zero bending stiffness using Soft Origami (origami patterns applied to soft-sheet materials) into cylindrical volumes and their deployment via mechanisms or internal pressure (inflation) is of interest in fields including automobile airbags, deployable heart stents, inflatable space habitats, and dirigible and parachute packing. This paper explores twofold patterns, the 'flasher' and the 'inverted-cone fold', for packing soft-sheet materials into cylindrical volumes. Two initial packing methods and mechanisms are examined for each of the flasher and inverted-cone fold patterns. An application to driver's side automobile airbags is performed, and deployment tests are completed to compare the influence of packing method and origami pattern on deployment performance. Following deployment tests, two additional packing methods for the inverted-cone fold pattern are explored and applied to automobile airbags. It is shown that modifying the packing method (using different methods to impose the same base pattern on the soft-sheet material) can lead to different deployment performance. In total, two origami patterns and six packing methods are examined, and the benefits of using Soft Origami patterns and packing methods are discussed. Soft Origami is presented as a viable method for efficiently packing soft-sheet materials into cylindrical volumes.
Low Density Supersonic Decelerator Parachute Decelerator System
NASA Technical Reports Server (NTRS)
Gallon, John C.; Clark, Ian G.; Rivellini, Tommaso P.; Adams, Douglas S.; Witkowski, Allen
2013-01-01
The Low Density Supersonic Decelerator Project has undertaken the task of developing and testing a large supersonic ringsail parachute. The parachute under development is intended to provide mission planners more options for parachutes larger than the Mars Science Laboratory's 21.5m parachute. During its development, this new parachute will be taken through a series of tests in order to bring the parachute to a TRL-6 readiness level and make the technology available for future Mars missions. This effort is primarily focused on two tests, a subsonic structural verification test done at sea level atmospheric conditions and a supersonic flight behind a blunt body in low-density atmospheric conditions. The preferred method of deploying a parachute behind a decelerating blunt body robotic spacecraft in a supersonic flow-field is via mortar deployment. Due to the configuration constraints in the design of the test vehicle used in the supersonic testing it is not possible to perform a mortar deployment. As a result of this limitation an alternative deployment process using a ballute as a pilot is being developed. The intent in this alternate approach is to preserve the requisite features of a mortar deployment during canopy extraction in a supersonic flow. Doing so will allow future Mars missions to either choose to mortar deploy or pilot deploy the parachute that is being developed.
NASA Technical Reports Server (NTRS)
Beaton, Kara H.; Chappell, Steven P.; Abercromby, Andrew F. J.; Lim, Darlene S. S.
2018-01-01
The Biologic Analog Science Associated with Lava Terrains (BASALT) project is a four-year program dedicated to iteratively designing, implementing, and evaluating concepts of operations (ConOps) and supporting capabilities to enable and enhance scientific exploration for future human Mars missions. The BASALT project has incorporated three field deployments during which real (non-simulated) biological and geochemical field science have been conducted at two high-fidelity Mars analog locations under simulated Mars mission conditions, including communication delays and data transmission limitations. BASALT's primary Science objective has been to extract basaltic samples for the purpose of investigating how microbial communities and habitability correlate with the physical and geochemical characteristics of chemically altered basalt environments. Field sites include the active East Rift Zone on the Big Island of Hawai'i, reminiscent of early Mars when basaltic volcanism and interaction with water were widespread, and the dormant eastern Snake River Plain in Idaho, similar to present-day Mars where basaltic volcanism is rare and most evidence for volcano-driven hydrothermal activity is relict. BASALT's primary Science Operations objective has been to investigate exploration ConOps and capabilities that facilitate scientific return during human-robotic exploration under Mars mission constraints. Each field deployment has consisted of ten extravehicular activities (EVAs) on the volcanic flows in which crews of two extravehicular and two intravehicular crewmembers conducted the field science while communicating across time delay and under bandwidth constraints with an Earth-based Mission Support Center (MSC) comprised of expert scientists and operators. Communication latencies of 5 and 15 min one-way light time and low (0.512 Mb/s uplink, 1.54 Mb/s downlink) and high (5.0 Mb/s uplink, 10.0 Mb/s downlink) bandwidth conditions were evaluated. EVA crewmembers communicated with the MSC via voice and text messaging. They also provided scientific instrument data, still imagery, video streams from chest-mounted cameras, GPS location tracking information. The MSC monitored and reviewed incoming data from the field across delay and provided recommendations for pre-sampling and sampling tasks based on their collective expertise. The scientists used dynamic priority ranking lists, referred to as dynamic leaderboards, to track and rank candidate samples relative to one another and against the science objectives for the current EVA and the overall mission. Updates to the dynamic leaderboards throughout the EVA were relayed regularly to the IV crewmembers. The use of these leaderboards enabled the crew to track the dynamic nature of the MSC recommendations and helped minimize crew idle time (defined as time spent waiting for input from Earth during which no other productive tasks are being performed). EVA timelines were strategically designed to enable continuous (delayed) feedback from an Earth-based Science Team while simultaneously minimizing crew idle time. Such timelines are operationally advantageous, reducing transport costs by eliminating the need for crews to return to the same locations on multiple EVAs while still providing opportunities for recommendations from science experts on Earth, and scientifically advantageous by minimizing the potential for cross-contamination across sites. This paper will highlight the space-to-ground interaction results from the three BASALT field deployments, including planned versus actual EVA timeline data, ground assimilation times (defined as the amount of time available to the MSC to provide input to the crew), and idle time. Furthermore, we describe how these results vary under the different communication latency and bandwidth conditions. Together, these data will provide a basis for guiding and prioritizing capability development for future human exploration missions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kramer, William; Martin, Greg; Lundstrom, Blake
Portland General Electric (PGE) is installing a 5-megawatt (MW) lithium-ion-based battery-inverter system (BIS) in Salem, Oregon, as part of the Pacific Northwest Smart Grid Demonstration Project. NREL will assist PGE in testing a 250-kilovolt-ampere (kVA) portion of the BIS in order to verify correct operation and minimize risk to subsequent demonstrations. In this project NREL will providetechnical support for the 250-kVA test and will work with PGE to write a test plan and evaluate the system in the lab before deployment in the field.
Smith Newton Vehicle Performance Evaluation - Gen 2 - Cumulative (Brochure)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2014-08-01
The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Smith Electric Vehicles is building and deploying 500 all-electric medium-duty trucks that will be deployed by a variety of companies in diverse climates across the country.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2014-01-01
The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Navistar will build and deploy all-electric medium-duty trucks. The trucks will be deployed in diverse climates across the country.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2013-05-01
The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Navistar will build and deploy all-electric medium-duty trucks. The trucks will be deployed in diverse climates across the country.
Optimal Sparse Upstream Sensor Placement for Hydrokinetic Turbines
NASA Astrophysics Data System (ADS)
Cavagnaro, Robert; Strom, Benjamin; Ross, Hannah; Hill, Craig; Polagye, Brian
2016-11-01
Accurate measurement of the flow field incident upon a hydrokinetic turbine is critical for performance evaluation during testing and setting boundary conditions in simulation. Additionally, turbine controllers may leverage real-time flow measurements. Particle image velocimetry (PIV) is capable of rendering a flow field over a wide spatial domain in a controlled, laboratory environment. However, PIV's lack of suitability for natural marine environments, high cost, and intensive post-processing diminish its potential for control applications. Conversely, sensors such as acoustic Doppler velocimeters (ADVs), are designed for field deployment and real-time measurement, but over a small spatial domain. Sparsity-promoting regression analysis such as LASSO is utilized to improve the efficacy of point measurements for real-time applications by determining optimal spatial placement for a small number of ADVs using a training set of PIV velocity fields and turbine data. The study is conducted in a flume (0.8 m2 cross-sectional area, 1 m/s flow) with laboratory-scale axial and cross-flow turbines. Predicted turbine performance utilizing the optimal sparse sensor network and associated regression model is compared to actual performance with corresponding PIV measurements.
Field Data on Head Injuries in Side Airbag Vehicles in Lateral Impact
Yoganandan, Narayan; Pintar, Frank A.; Gennarelli, Thomas A.
2005-01-01
Field data on side airbag deployments in lateral crashes and head injuries have largely remained anecdotal. Consequently, the purpose of this research was to report head injuries in lateral motor vehicle impacts. Data from the National Automotive Sampling System files were extracted from side impacts associated with side airbag deployments. Matched pairs with similar vehicle characteristics but without side airbags were also extracted. All data were limited to the United States Federal Motor vehicle Safety Standards FMVSS 214 compliant vehicles so that the information may be more effectively used in the future. In this study, some fundamental analyses are presented regarding occupant- and vehicle-related parameters. PMID:16179147
NASA Astrophysics Data System (ADS)
Wu, Sheng; Deev, Andrei
2013-01-01
A field deployable Compound Specific Isotope Analyzer (CSIA) coupled with capillary chromatogrpahy based on Quantum Cascade (QC) lasers and Hollow Waveguide (HWG) with precision and chemical resolution matching mature Mass Spectroscopy has been achieved in our laboratory. The system could realize 0.3 per mil accuracy for 12C/13C for a Gas Chromatography (GC) peak lasting as short as 5 seconds with carbon molar concentration in the GC peak less than 0.5%. Spectroscopic advantages of HWG when working with QC lasers, i.e. single mode transmission, noiseless measurement and small sample volume, are compared with traditional free space and multipass spectroscopy methods.
Deployment of a tool for measuring freeway safety performance.
DOT National Transportation Integrated Search
2011-12-01
This project updated and deployed a freeway safety performance measurement tool, building upon a previous project that developed the core methodology. The tool evaluates the cumulative risk over time of an accident or a particular kind of accident. T...
Qualitative Assessment of IVHS Emission and Air Quality Impacts
DOT National Transportation Integrated Search
2000-04-07
The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...
Evaluation of the ITS planning process.
DOT National Transportation Integrated Search
1996-01-01
Planning for the deployment of ITS in regions throughout the United States has been underway since the development of the Early Deployment Program by the Federal Highway Administration (FHWA) in 1992. In 1993, the FHWA released Version 1.0 of the 1TS...
Structural design and static analysis of a double-ring deployable truss for mesh antennas
NASA Astrophysics Data System (ADS)
Xu, Yan; Guan, Fuling; Chen, Jianjun; Zheng, Yao
2012-12-01
This paper addresses the structural design, the deployment control design, the static analysis and the model testing of a new double-ring deployable truss that is intended for large mesh antennas. This deployable truss is a multi-DOF (degree-of-freedom), over-constrained mechanism. Two kinds of deployable basic elements were introduced, as well as a process to synthesise the structure of the deployable truss. The geometric equations were formulated to determine the length of each strut, including the effects of the joint size. A DOF evaluation showed that the mechanism requires two active cables and requires deployment control. An open-loop control system was designed to control the rotational velocities of two motors. The structural stiffness of the truss was assessed by static analysis that considered the effects of the constraint condition and the pre-stress of the passive cables. A 4.2-metre demonstration model of an antenna was designed and fabricated. The geometry and the deployment behaviour of the double-ring truss were validated by the experiments using this model.
Study on the criterion to determine the bottom deployment modes of a coilable mast
NASA Astrophysics Data System (ADS)
Ma, Haibo; Huang, Hai; Han, Jianbin; Zhang, Wei; Wang, Xinsheng
2017-12-01
A practical design criterion that allows the coilable mast bottom to deploy in local coil mode was proposed. The criterion was defined with initial bottom helical angle and obtained by bottom deformation analyses. Discretizing the longerons into short rods, analyses were conducted based on the cylinder assumption and Kirchhoff's kinetic analogy theory. Then, iterative calculations aiming at the bottom four rods were carried out. A critical bottom helical angle was obtained while the angle changing rate equaled to zero. The critical value was defined as a criterion for judgement of bottom deployment mode. Subsequently, micro-gravity deployment tests were carried out and bottom deployment simulations based on finite element method were developed. Through comparisons of bottom helical angles in critical state, the proposed criterion was evaluated and modified, that is, an initial bottom helical angle less than critical value with a design margin of -13.7% could ensure the mast bottom deploying in local coil mode, and further determine a successful local coil deployment of entire coilable mast.
Carter, S. P.; Loew, B.; Allen, E. S.; Osborne, L.; Stanley, S. M.; Markman, H. J.
2015-01-01
Military spouses often have concerns regarding the impact of their communication on soldiers during deployment. However, literature is mixed regarding how communication between soldiers and spouses may impact soldiers’ self-reported work functioning during deployment, suggesting the need to evaluate moderating factors. In the current study, three relationship factors (marital satisfaction, conflictual communication, and proportion of conversation focused on problems) were tested as moderators of communication frequency and negative marriage-to-work spillover for soldiers. Whereas the three relationship factors were independently related to negative spillover, none significantly moderated the relationship between communication frequency and spillover. The overall pattern of results suggests that (a) lower marital satisfaction, a focus on problems during communication, and conflictual communication are each strongly linked to spillover for deployed soldiers, and (b) military couples may be self-restricting deployment communication frequency when experiencing less marital satisfaction and higher rates of negative communication. Implications for communication during deployment are discussed. PMID:26236093
Deployment-Related Benefit Finding and Postdeployment Marital Satisfaction in Military Couples.
Renshaw, Keith D; Campbell, Sarah B
2017-12-01
Extensive research has evaluated potential negative effects of military deployments on romantic relationships. Comparatively few studies have examined potential positive effects of such deployments. In stressful situations, benefit finding (BF) has been found to be linked with better functioning on both individual and interpersonal levels. This study reports on deployment-related BF in a sample of 67 male service members (SMs) who deployed at least once since 9/11/2001 and their wives. Couples completed measures of marital satisfaction at baseline (an average of 1 year postdeployment) and follow-up 4-6 months later. At follow-up, SMs also provided data on symptoms of posttraumatic stress, and both partners provided reports of deployment-related BF. Multivariate path analysis controlling for SMs' PTSD symptom severity revealed that wives' BF was positively associated with increases in SMs' relationship satisfaction. These findings suggest that wives' responses to deployment may be more influential than SMs' responses to deployment on military couples' relationships. This pattern indicates that support for spouses during deployments is essential; furthermore, such support should include an emphasis on trying to facilitate personal growth in spouses. © 2016 Family Process Institute.
McNulty, Peggy Anne Fisher
2005-06-01
Literature has generously documented the stress of military members and their families during deployments in noncombat periods. Deployment has been shown to increase the needs of family members for health care, both physical and psychological. The purpose of this study was to describe the health care needs and perceived stressors of active duty members deployed to Iraq during the predeployment, mid-deployment, and postdeployment phases. Active duty Navy service members deployed on three aircraft carriers during Operation Enduring Freedom and Operation Iraqi Freedom in 2002-2003 were randomly selected to participate in an anonymous study that evaluated member well-being, adaptation, coping, anxiety, stress, and health care needs during three phases of deployment. Data were obtained from 474 Navy members in predeployment, 445 in mid-deployment, and 276 in postdeployment. Logistic regression analyses indicated that many variables predicted extreme anxiety during deployment, including mid-deployment phase, age of under 25 years, being childless, nonattendance at church, being enlisted, zero- or one-deployment history; no high school education, and being currently in counseling. Active duty members in all phases of deployment had equally disturbing levels of anxiety. All phases reported suicidal ideation at alarming rates (2.4% in predeployment, 4.9% in mid-deployment, and 3% in postdeployment). This study sheds new light on the stressors and subsequent health care needs of active duty members on carriers during war and provides valuable information for the prevention of high-risk anxieties and subsequent health risks for all service members during similar deployments.
NASA Astrophysics Data System (ADS)
Miles, Natasha L.; Martins, Douglas K.; Richardson, Scott J.; Rella, Christopher W.; Arata, Caleb; Lauvaux, Thomas; Davis, Kenneth J.; Barkley, Zachary R.; McKain, Kathryn; Sweeney, Colm
2018-03-01
Four in situ cavity ring-down spectrometers (G2132-i, Picarro, Inc.) measuring methane dry mole fraction (CH4), carbon dioxide dry mole fraction (CO2), and the isotopic ratio of methane (δ13CH4) were deployed at four towers in the Marcellus Shale natural gas extraction region of Pennsylvania. In this paper, we describe laboratory and field calibration of the analyzers for tower-based applications and characterize their performance in the field for the period January-December 2016. Prior to deployment, each analyzer was tested using bottles with various isotopic ratios, from biogenic to thermogenic source values, which were diluted to varying degrees in zero air, and an initial calibration was performed. Furthermore, at each tower location, three field tanks were employed, from ambient to high mole fractions, with various isotopic ratios. Two of these tanks were used to adjust the calibration of the analyzers on a daily basis. We also corrected for the cross-interference from ethane on the isotopic ratio of methane. Using an independent field tank for evaluation, the standard deviation of 4 h means of the isotopic ratio of methane difference from the known value was found to be 0.26 ‰ δ13CH4. Following improvements in the field tank testing scheme, the standard deviation of 4 h means was 0.11 ‰, well within the target compatibility of 0.2 ‰. Round-robin style testing using tanks with near-ambient isotopic ratios indicated mean errors of -0.14 to 0.03 ‰ for each of the analyzers. Flask to in situ comparisons showed mean differences over the year of 0.02 and 0.08 ‰, for the east and south towers, respectively. Regional sources in this region were difficult to differentiate from strong perturbations in the background. During the afternoon hours, the median differences of the isotopic ratio measured at three of the towers, compared to the background tower, were &minus0.15 to 0.12 ‰ with standard deviations of the 10 min isotopic ratio differences of 0.8 ‰. In terms of source attribution, analyzer compatibility of 0.2 ‰ δ13CH4 affords the ability to distinguish a 50 ppb CH4 peak from a biogenic source (at -60 ‰, for example) from one originating from a thermogenic source (-35 ‰), with the exact value dependent upon the source isotopic ratios. Using a Keeling plot approach for the non-afternoon data at a tower in the center of the study region, we determined the source isotopic signature to be -31.2 ± 1.9 ‰, within the wide range of values consistent with a deep-layer Marcellus natural gas source.
Lester, Patricia; Saltzman, William R; Woodward, Kirsten; Glover, Dorie; Leskin, Gregory A; Bursch, Brenda; Pynoos, Robert; Beardslee, William
2012-03-01
We evaluated the Families OverComing Under Stress program, which provides resiliency training designed to enhance family psychological health in US military families affected by combat- and deployment-related stress. We performed a secondary analysis of Families OverComing Under Stress program evaluation data that was collected between July 2008 and February 2010 at 11 military installations in the United States and Japan. We present data at baseline for 488 unique families (742 parents and 873 children) and pre-post outcomes for 331 families. Family members reported high levels of satisfaction with the program and positive impact on parent-child indicators. Psychological distress levels were elevated for service members, civilian parents, and children at program entry compared with community norms. Change scores showed significant improvements across all measures for service member and civilian parents and their children (P < .001). Evaluation data provided preliminary support for a strength-based, trauma-informed military family prevention program to promote resiliency and mitigate the impact of wartime deployment stress.
Food and drinking water hygiene and intestinal protozoa in deployed German soldiers.
Frickmann, Hagen; Schwarz, Norbert G; Wiemer, Dorothea F; Fischer, Marcellus; Tannich, Egbert; Scheid, Patrick L; Müller, Martin; Schotte, Ulrich; Bock, Wolfgang; Hagen, Ralf M
2013-03-01
This report analyzes the occurrence of Cryptosporidium spp., E. histolytica, and G. intestinalis in stool of returnees from military deployments and the impact of hygiene precautions. Between 2007 and 2010, stool samples of 830 returnees that were obtained 8-12 weeks after military deployments in Afghanistan, Uzbekistan, the Balkans, Democratic Republic of the Congo/Gabonese Republic, and Sudan and 292 control samples from non-deployed soldiers were analyzed by PCR for Cryptosporidium spp., E. histolytica, G. intestinalis, and the commensal indicator of fecal contamination E. dispar. Data on hygiene precautions were available. The soldiers were questioned regarding gastrointestinal and general symptoms. Among 1122 stool samples, 18 were positive for G. intestinalis, 10 for E. dispar, and no-one for Cryptosporidium spp. and E. histolytica. An increased risk of acquiring chronic parasitic infections in comparison with non-deployed controls was demonstrated only for G. intestinalis in Sudan, where standardized food and drinking water hygiene precautions could not be implemented. Standard food and drinking water hygiene precautions in the context of screened military field camps proved to be highly reliable in preventing food-borne and water-borne chronic infections and colonization by intestinal protozoa, leading to detection proportions similar to those in non-deployed controls.
NASA Astrophysics Data System (ADS)
Maniatis, Georgios
2017-04-01
Fluvial sediment transport is controlled by hydraulics, sediment properties and arrangement, and flow history across a range of time scales. One reference frame descriptions (Eulerian or Lagrangian) yield useful results but restrict the theoretical understanding of the process as differences between the two phases (liquid and solid) are not explicitly accounted. Recently, affordable Inertial Measurement Units (IMUs) that can be embedded in coarse (100 mm diameter scale) natural or artificial particles became available. These sensors are subjected to technical limitations when deployed for natural sediment transport. However, they give us the ability to measure for the first time the inertial dynamics (acceleration and angular velocity) of moving sediment grains under fluvial transport. Theoretically, the assumption of an ideal (IMU), rigidly attached at the centre of the mass of a sediment particle can simplify greatly the derivation of a general Eulerian-Lagrangian (E-L) model. This approach accounts for inertial characteristics of particles in a Lagrangian (particle fixed) frame, and for the hydrodynamics in an independent Eulerian frame. Simplified versions of the E-L model have been evaluated in laboratory experiments using real-IMUs [Maniatis et. al 2015]. Here, experimental results are presented relevant to the evaluation of the complete E-L model. Artificial particles were deployed in a series of laboratory and field experiments. The particles are equipped with an IMU capable of recording acceleration at ± 400 g and angular velocities at ± 1200 rads/sec ranges. The sampling frequency ranges from 50 to 200 Hz for the total IMU measurement. Two sets of laboratory experiments were conducted in a 0.9m wide laboratory flume. The first is a set of entrainment threshold experiments using two artificial particles: a spherical of D=90mm (A) and an ellipsoid with axes of 100, 70 and 30 mm (B). For the second set of experiments, a spherical artificial enclosure of D=75 mm (C) was released to roll freely in a (> threshold for entrainment) flow and over surfaces of different roughness. Finally, the coarser spherical and elliptical sensor- assemblies (A and B) were deployed in a steep mountain stream during active sediment transport flow conditions. The results include the calculation of the inertial acceleration, the instantaneous particle velocity and the total kinetic energy of the mobile particle (including the rotational component using gyroscope measurements). The comparison of the field deployments with the laboratory experiments suggests that E-L model can be generalised from laboratory to natural conditions. Overall, the inertia of individual coarse particles is a statistically significant effect for all the modes of sediment transport (entrainment, translation, deposition) in both natural and laboratory regimes. Maniatis et. al 2015: "Calculating the Explicit Probability of Entrainment Based on Inertial Acceleration Measurements", J. Hydraulic Engineering, 04016097
Appendix I1-2 to Wind HUI Initiative 1: Field Campaign Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
John Zack; Deborah Hanley; Dora Nakafuji
This report is an appendix to the Hawaii WindHUI efforts to dev elop and operationalize short-term wind forecasting and wind ramp event forecasting capabilities. The report summarizes the WindNET field campaign deployment experiences and challenges. As part of the WindNET project on the Big Island of Hawaii, AWS Truepower (AWST) conducted a field campaign to assess the viability of deploying a network of monitoring systems to aid in local wind energy forecasting. The data provided at these monitoring locations, which were strategically placed around the Big Island of Hawaii based upon results from the Oahu Wind Integration and Transmission Studymore » (OWITS) observational targeting study (Figure 1), provided predictive indicators for improving wind forecasts and developing responsive strategies for managing real-time, wind-related system events. The goal of the field campaign was to make measurements from a network of remote monitoring devices to improve 1- to 3-hour look ahead forecasts for wind facilities.« less
Exposure assessment of microwave ovens and impact on total exposure in WLANs
Plets, David; Verloock, Leen; Van Den Bossche, Matthias; Tanghe, Emmeric; Joseph, Wout; Martens, Luc
2016-01-01
In situ exposure of electric fields of 11 microwave ovens is assessed in an occupational environment and in an office. Measurements as a function of distance without load and with a load of 275 ml of tap water were performed at distances of <1 m. The maximal measured field was 55.2 V m−1 at 5 cm from the oven (without load), which is 2.5 and 1.1 times below the International Commission on Non-Ionizing Radiation Protection reference level for occupational exposure and general public exposure, respectively. For exposure at distances of >1 m, a model of the electric field in a realistic environment is proposed. In an office scenario, switching on a microwave oven increases the median field strength from 91 to 145 mV m−1 (+91 %) in a traditional Wireless Local Area Network (WLAN) deployment and from 44 to 92 mV m−1 (+109 %) in an exposure-optimised WLAN deployment. PMID:25956787
An approach to evaluating reactive airborne wind shear systems
NASA Technical Reports Server (NTRS)
Gibson, Joseph P., Jr.
1992-01-01
An approach to evaluating reactive airborne windshear detection systems was developed to support a deployment study for future FAA ground-based windshear detection systems. The deployment study methodology assesses potential future safety enhancements beyond planned capabilities. The reactive airborne systems will be an integral part of planned windshear safety enhancements. The approach to evaluating reactive airborne systems involves separate analyses for both landing and take-off scenario. The analysis estimates the probability of effective warning considering several factors including NASA energy height loss characteristics, reactive alert timing, and a probability distribution for microburst strength.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slad, George William; Merchant, Bion J.
The Seismo - Hydroacoustic Data Acquisition System (SHDAS) is undergoing evaluation in preparation for its engineering, development, and deployment by the U.S Navy as an ocean bottom seismic monitoring system. At the current stage of development, the production seismometers are being evaluated to confirm their performance prior to packaging and assembly for deployment. The testing of the seismometers is being conducted at the Pinon Flats Observatory (PFO) , supervised by Sandia National Laboratories, U.S Navy, and RP Kromer Consulting. SNL will conduct evaluation of the collected seismometer data and comment on the performance of the seismometers.
NASA Astrophysics Data System (ADS)
Haltigin, T.; Hipkin, V.; Picard, M.
2016-12-01
Mars Sample Return (MSR) remains one of the highest priorities of the international planetary science community. While the overall mission architecture required for MSR is relatively well defined, there remain a number of open questions regarding its implementation. In preparing for an eventual MSR campaign, simulating portions of the sample collection mission can provide important insight to address existing knowledge gaps. In 2015 and 2016, the Canadian Space Agency (CSA) led robotic deployments to address a variety of technical, scientific, operational, and educational objectives. Here we report on the results. The deployments were conducted at a field site near Hanskville, UT, USA, chosen to satisfy scientific, technical, and logistical considerations. The geology of the region is dominated by Jurassic-aged sandstones and mudstones, indicative of an ancient sedimentary environment. Moreover, a series of linear topographically inverted features are present, similar to morphologies observed in particular Martian landscapes. On both Earth and Mars, these features are interpreted as lithified and exhumed river channels. A science operations center was established in London, ON, Canada, at Western University. Here, a science team of > 30 students and professionals - unaware of the rover's actual location - were responsible for generating daily science plans, requesting observations, and interpreting downloaded data, all while respecting Mars-realistic flight rules and constraints for power, scheduling, and data. Rover commanding was performed by an engineering team at CSA headquarters in St. Hubert, QC, Canada, while a small out-of-simulation field team was present on-site to ensure safe operations of the rover and to provide data transfers. Between the 2015 and 2016 campaigns, nearly five weeks of operations were conducted. The team successfully collected scientifically-selected samples to address the group objectives, and the rover demonstrated system integration and a variety of navigational techniques. Forward work involves laboratory-based validation of the returned samples to evaluate the efficiency of the in-simulation operational decision-making.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dando, Neal; Gershenzon, Mike; Ghosh, Rajat
2012-07-31
The overall goal of this DOE Phase 2 project was to further develop and conduct pilot-scale and field testing of a biomimetic in-duct scrubbing system for the capture of gaseous CO 2 coupled with sequestration of captured carbon by carbonation of alkaline industrial wastes. The Phase 2 project, reported on here, combined efforts in enzyme development, scrubber optimization, and sequestrant evaluations to perform an economic feasibility study of technology deployment. The optimization of carbonic anhydrase (CA) enzyme reactivity and stability are critical steps in deployment of this technology. A variety of CA enzyme variants were evaluated for reactivity and stabilitymore » in both bench scale and in laboratory pilot scale testing to determine current limits in enzyme performance. Optimization of scrubber design allowed for improved process economics while maintaining desired capture efficiencies. A range of configurations, materials, and operating conditions were examined at the Alcoa Technical Center on a pilot scale scrubber. This work indicated that a cross current flow utilizing a specialized gas-liquid contactor offered the lowest system operating energy. Various industrial waste materials were evaluated as sources of alkalinity for the scrubber feed solution and as sources of calcium for precipitation of carbonate. Solids were mixed with a simulated sodium bicarbonate scrubber blowdown to comparatively examine reactivity. Supernatant solutions and post-test solids were analyzed to quantify and model the sequestration reactions. The best performing solids were found to sequester between 2.3 and 2.9 moles of CO 2 per kg of dry solid in 1-4 hours of reaction time. These best performing solids were cement kiln dust, circulating dry scrubber ash, and spray dryer absorber ash. A techno-economic analysis was performed to evaluate the commercial viability of the proposed carbon capture and sequestration process in full-scale at an aluminum smelter and a refinery location. For both cases the in-duct scrubber technology was compared to traditional amine- based capture. Incorporation of the laboratory results showed that for the application at the aluminum smelter, the in-duct scrubber system is more economical than traditional methods. However, the reverse is true for the refinery case, where the bauxite residue is not effective enough as a sequestrant, combined with challenges related to contaminants in the bauxite residue accumulating in and fouling the scrubber absorbent. Sensitivity analyses showed that the critical variables by which process economics could be improved are enzyme concentration, efficiency, and half-life. At the end of the first part of the Phase 2 project, a gate review (DOE Decision Zero Gate Point) was conducted to decide on the next stages of the project. The original plan was to follow the pre-testing phase with a detailed design for the field testing. Unfavorable process economics, however, resulted in a decision to conclude the project before moving to field testing. It is noted that CO 2 Solutions proposed an initial solution to reduce process costs through more advanced enzyme management, however, DOE program requirements restricting any technology development extending beyond 2014 as commercial deployment timeline did not allow this solution to be undertaken.« less
Artist's Concept of Propulsive Small Expendable Deployer System (ProSEDS)
NASA Technical Reports Server (NTRS)
1999-01-01
Pictured is an artist's concept of NASA's Propulsive Small Expendable Deployer System experiment (ProSEDS). ProSEDS will demonstrate the use of an electrodynamic tether, basically a long, thin wire, for propulsion. An electrodynamic tether uses the same principles as electric motors in toys, appliances and computer disk drives, and generators in automobiles and power plants. When electrical current is flowing through the tether, a magnetic field is produced that pushes against the magnetic field of the Earth. For ProSEDS, the current in the tether results by virtue of the voltage generated when the tether moves through the Earth's magnetic field at more than 17,000 mph. This approach can produce drag thrust generating useable power. Since electrodynamic tethers require no propellant, they could substantially reduce the weight of the spacecraft and provide a cost-effective method of reboosting spacecraft. The initial flight of ProSEDS is scheduled to fly aboard an Air Force Delta II rocket in summer of 2002. In orbit, ProSEDS will deploy from a Delta II second stage. It will be a 3.1-mile (5 kilometer) long, ultrathin base-wire tether cornected with a 6.2-mile (10 kilometer) long nonconducting tether. The ProSEDS experiment is managed by the Space Transportation Directorate at the Marshall Space Flight Center.
Active Time-Domain Reflectometry for Unattended Safeguards Systems FY15 Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tedeschi, Jonathan R.; Smith, Leon E.; Moore, David E.
2015-09-01
The International Atomic Energy Agency (IAEA) continues to expand its use of unattended measurement systems. An increasing number of systems and an expanding family of instruments create challenges in terms of deployment efficiency and the implementation of data authentication measures. In collaboration with the IAEA, tamper-indicating measures to address data-transmission authentication challenges with unattended safeguards systems are under investigation. Pacific Northwest National Laboratory (PNNL) is studying the viability of active time-domain reflectometry (TDR) along two parallel but interconnected paths: (1) swept-frequency TDR as the highly flexible, laboratory gold standard to which field-deployable options can be compared, and (2) a low-costmore » commercially available spread-spectrum TDR technology as one option for field implementation. This report describes PNNL’s FY15 progress in the viability study including: an overview of the TDR methods under investigation; description of the testing configurations and mock tampering scenarios; results from a preliminary sensitivity comparison of the two TDR methods; demonstration of a quantitative metric for estimating field performance that acknowledges the need for high detection probability while minimizing false alarms. FY15 progress reported here sets the stage for a rigorous comparison of the candidate TDR methods, over a range of deployment scenarios and perturbing effects typical of IAEA unattended monitoring systems.« less
Clinical Predictive Modeling Development and Deployment through FHIR Web Services.
Khalilia, Mohammed; Choi, Myung; Henderson, Amelia; Iyengar, Sneha; Braunstein, Mark; Sun, Jimeng
2015-01-01
Clinical predictive modeling involves two challenging tasks: model development and model deployment. In this paper we demonstrate a software architecture for developing and deploying clinical predictive models using web services via the Health Level 7 (HL7) Fast Healthcare Interoperability Resources (FHIR) standard. The services enable model development using electronic health records (EHRs) stored in OMOP CDM databases and model deployment for scoring individual patients through FHIR resources. The MIMIC2 ICU dataset and a synthetic outpatient dataset were transformed into OMOP CDM databases for predictive model development. The resulting predictive models are deployed as FHIR resources, which receive requests of patient information, perform prediction against the deployed predictive model and respond with prediction scores. To assess the practicality of this approach we evaluated the response and prediction time of the FHIR modeling web services. We found the system to be reasonably fast with one second total response time per patient prediction.
Users speak out on technology deployment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peters, Mark; Prochaska, Marty; Cromer, Paul
2001-02-25
This report summarizes user feedback data collected during a recent Accelerated Site Technology Deployment (ASTD) project: the Fluor Fernald ASTD Technology Deployment Project from May, 1999 through September, 2000. The main goal of the ASTD project was to use the ''Fernald approach'' to expedite the deployment of new or innovative technologies with superior safety, cost, and/or productivity benefits to Department of Energy (DOE) facilities. The Fernald approach targets technology end-users and their managers and directly involves them with hands-on demonstrations of new or innovative technologies during technology transfer sessions. The two technologies deployed through this project were the Personal Icemore » Cooling System (PICS) and the oxy-gasoline torch. Participants of technology transfer sessions were requested to complete feedback surveys. Surveys evaluated the effectiveness of the Fernald approach to technology deployment and assessed the responsiveness of employees to new technologies. This report presents the results of those surveys.« less
Clinical Predictive Modeling Development and Deployment through FHIR Web Services
Khalilia, Mohammed; Choi, Myung; Henderson, Amelia; Iyengar, Sneha; Braunstein, Mark; Sun, Jimeng
2015-01-01
Clinical predictive modeling involves two challenging tasks: model development and model deployment. In this paper we demonstrate a software architecture for developing and deploying clinical predictive models using web services via the Health Level 7 (HL7) Fast Healthcare Interoperability Resources (FHIR) standard. The services enable model development using electronic health records (EHRs) stored in OMOP CDM databases and model deployment for scoring individual patients through FHIR resources. The MIMIC2 ICU dataset and a synthetic outpatient dataset were transformed into OMOP CDM databases for predictive model development. The resulting predictive models are deployed as FHIR resources, which receive requests of patient information, perform prediction against the deployed predictive model and respond with prediction scores. To assess the practicality of this approach we evaluated the response and prediction time of the FHIR modeling web services. We found the system to be reasonably fast with one second total response time per patient prediction. PMID:26958207
Israel and Iran: A Dangerous Rivalry
2011-01-01
and Knesset view the Islamic Republic as “a bitter ideological enemy that is deter- mined to bring about the physical annihilation of Israel”; only...entirely different set of values. . . . Iran sends children into mine fields. Iran denies the Holocaust. Iran openly calls for Israel’s destruction...compromise on sovereignty by having U.S. troops deployed here.” Quoted in Barbara Opall -Rome, “U.S. to Deploy Radar, Troops In Israel,” Defense News
NASA Technical Reports Server (NTRS)
Barnes, Norman P.
2005-01-01
NASA is developing active remote sensors to monitor the health of Planet Earth and for exploration of other planets. Development and deployment of these remote sensors can have a huge economic impact. Lasers for these active remote sensors span the spectral range from the ultraviolet to the mid infrared spectral regions. Development activities range from quantum mechanical modeling and prediction of new laser materials to the design, development, and demonstration be deployed in the field.
ALFA MHK Biological Monitoring Stationary deployment
Horne, John
2016-10-01
Acoustic backscatter data from a WBAT operating at 70kHz deployed at PMEC-SETS from April to September of 2016. 180 pings were collected at 1Hz every two hours, as part of the Advanced Laboratory and Field Arrays (ALFA) for Marine Energy project. Data was subject to preliminary processing (noise removal, a threshold of -75dB was applied, surface turbulence and data below 0.5m from the bottom was removed).
NASA Astrophysics Data System (ADS)
Nagaoka, Kenji; Yano, Hajime; Yoshimitsu, Tetsuo; Yoshida, Kazuya; Kubota, Takashi; Adachi, Tadashi; Kurisu, Masamitsu; Yatsunami, Hiroyuki; Kuroda, Yoji
This presentation introduces the analysis and evaluation of a deployment mechanism of a tiny rover by ZARM drop tower experiments. The mechanism is installed on the MINERVA-II2 system in the Hayabusa-2 project performed by JAXA. The MINERVA-II2 system includes a small exploration rover, and the rover will be released from the Hayabusa-2 spacecraft to the asteroid surface. After the rover lands on the surface, it will move over the surface and conduct scientific measurements. To achieve such a challenging mission, the deployment mechanism of the rover is one of the significant components. In particular, controlling the rover's landing velocity against the asteroid surface is required with high-reliability mechanism. In the MINERVA-II2 system, a reliable deployment mechanism using a metal spring is installed. By the simple mechanism, the rover's releasing velocity will be controlled within a required value. Although the performance evaluation and analysis are necessary before launch, it is difficult to experiment the deployment performance three-dimensionally on ground. In the MINERVA-II2 project, with the cooperation of ZARM, DLR and JAXA, we conducted microgravity experiments using a ZARM drop tower to examine the deployment performance in a three-dimensional microgravity. During the experiments, motion of the deployment mechanism and the rover were captured by an external camera mounted on the dropping chamber. After the drop, we analyzed the rover's releasing velocity based on image processing of the camera data. The experimental results confirmed that the deployment mechanism is feasible and reliable for controlling the rover's releasing velocity. In addition to the experiments, we analyzed a mechanical friction resistance of the mechanism from a theoretical viewpoint. These results contribute to design of spring stiffness and feedback to the development of the MINERVA-II2 flight model. Finally, the drop tower experiments were accomplished based on the agreement on the Hayabusa-2 project by DLR-JAXA. The chamber for the experiments was used, which was developed by the Hayabusa-2 project. In the experiments, we received technical and operations supports from ZARM. We sincerely express our acknowledgement to ZARM, DLR and JAXA.
Feasibility assessment of the use of transit bus driving simulators : final report.
DOT National Transportation Integrated Search
2000-04-07
The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...
DOT National Transportation Integrated Search
2002-03-01
The Commercial Vehicle Information Systems and Networks Model Deployment Initiative (CVISN MDI) is funded by the Intelligent Transportation Systems Joint Program Office (ITS JPO) and managed by the Federal Motor Carrier Safety Administration (FMCSA),...
DOT National Transportation Integrated Search
2000-01-01
This report demonstrates the benefits and potential pitfalls of deploying and operating an integrated freeway and arterial management system. In particular, it discusses the lessons learned about the Medical Center Corridor (MCC) Project deployed in ...
DOT National Transportation Integrated Search
2002-03-01
The Commercial Vehicle Information Systems and Networks Model Deployment Initiative (CVISN MDI) is funded by the Intelligent Transportation Systems Joint Program Office (ITS JPO) and managed by the Federal Motor Carrier Safety Administration (FMCSA),...
Cigarette smoking and military deployment: a prospective evaluation.
Smith, Besa; Ryan, Margaret A K; Wingard, Deborah L; Patterson, Thomas L; Slymen, Donald J; Macera, Caroline A
2008-12-01
The stress of military deployment may compound occupational stress experienced in the military and manifest in maladaptive coping behaviors such as cigarette smoking. The current study describes new smoking among never-smokers, smoking recidivism among past smokers, and change in daily smoking among smokers in relation to military deployment. The Millennium Cohort is a 21-year longitudinal study. The current analysis utilized participants (N=48,304) who submitted baseline data (July 2001-June 2003) before the current conflicts in Iraq and Afghanistan and follow-up data (June 2004-January 2006) on health measures. New smoking was identified among baseline never-smokers, smoking recidivism among baseline past smokers, and increased or decreased daily smoking among baseline smokers. Analyses were conducted March 2007-April 2007. Among never-smokers, smoking initiation was identified in 1.3% of nondeployers and 2.3% of deployers. Among past smokers, smoking resumption occurred in 28.7% of nondeployers and 39.4% of those who deployed. Smoking increased 44% among nondeployers and 57% among deployers. Those who deployed and reported combat exposures were at 1.6 times greater odds of initiating smoking among baseline never-smokers (95% CI=1.2, 2.3) and at 1.3 times greater odds of resuming smoking among baseline past smokers when compared to those who did not report combat exposures. Other deployment factors independently associated with postdeployment smoking recidivism included deploying for >9 months and deploying multiple times. Among those who smoked at baseline, deployment was not associated with changes in daily amount smoked. Military deployment is associated with smoking initiation and, more strongly, with smoking recidivism, particularly among those with prolonged deployments, multiple deployments, or combat exposures. Prevention programs should focus on the prevention of smoking relapse during or after deployment.
Early disaster response in Haiti: the Israeli field hospital experience.
Kreiss, Yitshak; Merin, Ofer; Peleg, Kobi; Levy, Gad; Vinker, Shlomo; Sagi, Ram; Abargel, Avi; Bartal, Carmi; Lin, Guy; Bar, Ariel; Bar-On, Elhanan; Schwaber, Mitchell J; Ash, Nachman
2010-07-06
The earthquake that struck Haiti in January 2010 caused an estimated 230,000 deaths and injured approximately 250,000 people. The Israel Defense Forces Medical Corps Field Hospital was fully operational on site only 89 hours after the earthquake struck and was capable of providing sophisticated medical care. During the 10 days the hospital was operational, its staff treated 1111 patients, hospitalized 737 patients, and performed 244 operations on 203 patients. The field hospital also served as a referral center for medical teams from other countries that were deployed in the surrounding areas. The key factor that enabled rapid response during the early phase of the disaster from a distance of 6000 miles was a well-prepared and trained medical unit maintained on continuous alert. The prompt deployment of advanced-capability field hospitals is essential in disaster relief, especially in countries with minimal medical infrastructure. The changing medical requirements of people in an earthquake zone dictate that field hospitals be designed to operate with maximum flexibility and versatility regarding triage, staff positioning, treatment priorities, and hospitalization policies. Early coordination with local administrative bodies is indispensable.
OTEC modular experiment cold water pipe concept evaluation. Volume III. Appendices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1979-04-01
The Cold Water Pipe System Design Study was undertaken to evaluate the diverse CWP concepts, recommend the most viable alternatives for a 1984 deployment of the 10 to 40 MWe MEP, and carry out preliminary designs of three concepts. The concept evaluation phase reported involved a systems analysis of design alternatives in the broad categories of rigid walled (with hinges), compliant walled, stockade and bottom mounted buoyant. Quantitative evaluations were made of concept performance, availability, deployment schedule, technical feasibility and cost. CWP concepts were analyzed to determine if they met or could be made to meet established system requirements andmore » could be deployed by 1984. Fabrication, construction and installation plans were developed for successful concepts, and costs were determined in a WBS format. Evaluations were performed on the basis of technical and cost risk. This volume includes the following appendices: (A) materials and associated design criteria; (B) summary of results of dynamic flow and transportation analysis; (C) CWP sizing analysis; (D) CWP thermal performance; and (E) investigation of the APL/ABAM CWP design. (WHK)« less
Tethered Satellite System (TSS-1R)-Post Flight (STS-75) Engineering Performance Report
NASA Technical Reports Server (NTRS)
Lavoie, Anthony R.
1996-01-01
The first mission of the Tethered Satellite deployer was flown onboard Atlantis in 1992 during the Space Transportation System (STS) flight STS-46. Due to a mechanical interference with the level wind mechanism the satellite was only Deployed to 256 m rather than the planned 20,000 m. Other problems were also experienced during the STS-46 flight and several modifications were made to the Deployer and Satellite. STS-75 was a reflight of the Tethered Satellite System 1 (TSS-1) designated as Tethered Satellite System 1 Reflight (TSS-1 R) onboard Columbia. As on STS-46, the TSS payload consisted of the Deployer, the Satellite, 3 cargo bay mounted experiments: Shuttle Electrodynamic Tether System (SETS), Shuttle Potential and Return Electron Experiment (SPREE), Deployer Core Equipment (DCORE) 4 Satellite mounted experiments: Research on Electrodynamics Tether Effects (RETE), Research on Orbital Plasma Electrodynamics (ROPE), Satellite Core Instruments (SCORE), Tether Magnetic Field Experiment (TEMAG) and an aft flight deck camera: Tether Optical Phenomena Experiment (TOP). Following successful pre-launch, launch and pre-deployment orbital operations, the Deployer deployed the Tethered Satellite to 19,695 m at which point the tether broke within the Satellite Deployment Boom (SDB). The planned length for On-Station I (OST1) was 20,700 m The Satellite flew away from the Orbiter with the tether attached. The satellite was "safed" and placed in a limited power mode via the RF link. The Satellite was contacted periodically during overflights of ground stations. Cargo bay science activities continued for the period of time allocated to TSS-1 R operations.
Deployment and Validation of a Smart System for Screening of Language Disorders in Primary Care
Martín-Ruiz, María Luisa; Duboy, Miguel Ángel Valero; de la Cruz, Iván Pau
2013-01-01
Neuro-evolutive development from birth until the age of six years is a decisive factor in a child's quality of life. Early detection of development disorders in early childhood can facilitate necessary diagnosis and/or treatment. Primary-care pediatricians play a key role in its detection as they can undertake the preventive and therapeutic actions requested to promote a child's optimal development. However, the lack of time and little specific knowledge at primary-care avoid to applying continuous early-detection anomalies procedures. This research paper focuses on the deployment and evaluation of a smart system that enhances the screening of language disorders in primary care. Pediatricians get support to proceed with early referral of language disorders. The proposed model provides them with a decision-support tool for referral actions to trigger essential diagnostic and/or therapeutic actions for a comprehensive individual development. The research was conducted by starting from a sample of 60 cases of children with language disorders. Validation was carried out through two complementary steps: first, by including a team of seven experts from the fields of neonatology, pediatrics, neurology and language therapy, and, second, through the evaluation of 21 more previously diagnosed cases. The results obtained show that therapist positively accepted the system proposal in 18 cases (86%) and suggested system redesign for single referral to a speech therapist in three remaining cases. PMID:23752564
Deployment and validation of a smart system for screening of language disorders in primary care.
Martín-Ruiz, María Luisa; Duboy, Miguel Ángel Valero; de la Cruz, Iván Pau
2013-06-10
Neuro-evolutive development from birth until the age of six years is a decisive factor in a child's quality of life. Early detection of development disorders in early childhood can facilitate necessary diagnosis and/or treatment. Primary-care pediatricians play a key role in its detection as they can undertake the preventive and therapeutic actions requested to promote a child's optimal development. However, the lack of time and little specific knowledge at primary-care avoid to applying continuous early-detection anomalies procedures. This research paper focuses on the deployment and evaluation of a smart system that enhances the screening of language disorders in primary care. Pediatricians get support to proceed with early referral of language disorders. The proposed model provides them with a decision-support tool for referral actions to trigger essential diagnostic and/or therapeutic actions for a comprehensive individual development. The research was conducted by starting from a sample of 60 cases of children with language disorders. Validation was carried out through two complementary steps: first, by including a team of seven experts from the fields of neonatology, pediatrics, neurology and language therapy, and, second, through the evaluation of 21 more previously diagnosed cases. The results obtained show that therapist positively accepted the system proposal in 18 cases (86%) and suggested system redesign for single referral to a speech therapist in three remaining cases.
OPTICAL FIBER SENSOR TECHNOLOGIES FOR EFFICIENT AND ECONOMICAL OIL RECOVERY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kristie Cooper; Gary Pickrell; Anbo Wang
2003-04-01
This report summarizes technical progress over the fourth year of the ''Optical Fiber Sensor Technologies for Efficient and Economical Oil Recovery'' program, funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. During the reporting period, research efforts under the program were focused on the development and evaluation of the fiber optic flow sensor system, and field testing in Tulsa, OK and the second field test of the pressure and temperature sensors in Coalinga, CA. The feasibilitymore » of a self-compensating fiber optic flow sensor based on a cantilever beam and interferometer for real-time flow rate measurements in the fluid filled pipes of oil field was clearly demonstrated. In addition, field testing of the pressure and temperature sensors deployed downhole continued. These accomplishments are summarized here: (1) Theoretical analysis and simulations were performed to ensure performance of the design. (2) The sensor fabrication and packaging techniques were investigated and improved. (3) Prototype flow sensors were fabricated based on the fabrication experience of hundreds of test sensors. (4) A lab-scale flow testing system was constructed and used for sensor evaluation. (5) Field-testing was performed in both the indoor and outdoor flow testing facility at the University of Tulsa, OK. (6) Testing of a multimode white light pressure and temperature sensor system continued at the oil site of Chevron/Texaco Company (Coalinga CA).« less
NASA Technical Reports Server (NTRS)
Schmidt, G. K.
1979-01-01
A booms and mechanisms subsystem was designed, developed, and qualified for the geostationary scientific satellite GEOS. Part of this subsystem consist of four axial booms consisting of one pair of 1 m booms and one pair of 2.5 m booms. Each of these booms is carrying one bird cage electric field sensor. Alignment accuracy requirements led to a telescopic type solution. Deployment is performed by pressurized nitrogen. At deployment in orbit two of these booms showed some anomalies and one of these two deployed only about 80%. Following this malfunction a detailed failure investigation was performed resulting in a design modification of some critical components as release mechanism, guide sleeves of the telescopic elements, and pressure system.
Taking it to the streets: delivering on deployment.
Carr, Dafna; Welch, Vickie; Fabik, Trish; Hirji, Nadir; O'Connor, Casey
2009-01-01
From inception to deployment, the Wait Time Information System (WTIS) project faced significant challenges associated with time, scope and complexity. It involved not only the creation and deployment of two large-scale province-wide systems (the WTIS and Ontario's Client Registry/Enterprise Master Patient Index) within aggressive time frames, but also the active engagement of 82 Ontario hospitals, scores of healthcare leaders and several thousand clinicians who would eventually be using the new technology and its data. The provincial WTIS project team (see Figure 1) also had to be able to adapt and evolve their planning in an environment that was changing day-by-day. This article looks at the factors that allowed the team to take the WTIS out to the field and shares the approach, processes and tools used to deploy this complex and ambitious information management and information technology (IM/IT) initiative.
Development of a Strain Energy Deployable Boom for the Space Technology 5 Mission
NASA Technical Reports Server (NTRS)
Meyers, Stew; Sturm, James
2004-01-01
The Space Technology 5 (ST5) mission is one of a series of technology demonstration missions for the New Millennium Program. This mission will fly three fully functional 25-kilogram micro-class spacecraft in formation through the Earth's magnetosphere; the primary science instrument is a very sensitive magnetometer. The constraints of a 25-kg Micosat resulted in a spin stabilized, octagonal spacecraft that is 30 cm tall by 50 cm diameter and has state-of-the-art solar cells on all eight sides. A non-magnetic boom was needed to place the magnetometer as far from the spacecraft and its residual magnetic fields as possible. The ST-5 spacecraft is designed to be spun up and released from its deployer with the boom and magnetometer stowed for later release. The deployer is the topic of another paper. This paper describes the development efforts and resulting self-deploying magnetometer boom.
Development of a Strain Energy Deployable Boom for the Space Technology 5 Mission
NASA Technical Reports Server (NTRS)
Meyers, Stew; Sturm, James
2004-01-01
The Space Technology 5 (ST5) mission is one of a series of technology demonstration missions for the New Millennium Program. This mission will fly three fully functional 25 kilogram micro class spacecraft in formation through the Earth s magnetosphere; the primary science instrument is a very sensitive magnetometer. The constraints of a 25 kg "Micosat" resulted in a spin stabilized, octagonal spacecraft that is 30 cm tall by 50 cm diameter and has state of the art solar cells on all eight sides. A non-magnetic boom was needed to place the magnetometer as far from the spacecraft and its residual magnetic fields as possible. The ST-5 spacecraft is designed to be spun up and released from its deployer with the boom and magnetometer stowed for later release. The deployer is the topic of another paper, This paper describes the development efforts and resulting self-deploying magnetometer boom.
Security-by-Experiment: Lessons from Responsible Deployment in Cyberspace.
Pieters, Wolter; Hadžiosmanović, Dina; Dechesne, Francien
2016-06-01
Conceiving new technologies as social experiments is a means to discuss responsible deployment of technologies that may have unknown and potentially harmful side-effects. Thus far, the uncertain outcomes addressed in the paradigm of new technologies as social experiments have been mostly safety-related, meaning that potential harm is caused by the design plus accidental events in the environment. In some domains, such as cyberspace, adversarial agents (attackers) may be at least as important when it comes to undesirable effects of deployed technologies. In such cases, conditions for responsible experimentation may need to be implemented differently, as attackers behave strategically rather than probabilistically. In this contribution, we outline how adversarial aspects are already taken into account in technology deployment in the field of cyber security, and what the paradigm of new technologies as social experiments can learn from this. In particular, we show the importance of adversarial roles in social experiments with new technologies.
Evaluating PTSD on Reproductive Outcomes: Women Deployed in Iraq and Afghanistan
2009-10-01
Center attacks and its effect on pregnancy outcome . Paediatric and Perinatal Epidemiology, 2005. 19(5): p. 334-41. 6. Xiong, X., et al., Exposure ...health system. Thus, the effect of women’s military service on reproductive outcomes is a key concern. Due to the unique situation of women in the... exposure to PTSD as a consequence of deployment is one example of recent concern. A recent study found women who had deployed to Iraq/Afghanistan
Diagnosis and management of chronic lung disease in deployed military personnel.
Morris, Michael J; Lucero, Pedro F; Zanders, Thomas B; Zacher, Lisa L
2013-08-01
Military personnel are a unique group of individuals referred to the pulmonary physician for evaluation. Despite accession standards that limit entrance into the military for individuals with various pre-existing lung diseases, the most common disorders found in the general population such as asthma and chronic obstructive pulmonary disease remain frequently diagnosed. Military personnel generally tend to be a more physically fit population who are required to exercise on a regular basis and as such may have earlier presentations of disease than their civilian counterparts. Exertional dyspnea is a common complaint; establishing a diagnosis may be challenging given the subtle nature of symptoms and lack of specificity with pulmonary function testing. The conflicts over the past 10 years in Iraq and Afghanistan have also given rise to new challenges for deployed military. Various respiratory hazards in the deployed environment include suspended geologic dusts, burn pits, vehicle exhaust emissions, industrial air pollution, and isolated exposure incidents and may give rise to both acute respiratory symptoms and chronic lung disease. In the evaluation of deployed military personnel, establishing the presence of actual pulmonary disease and the relationship of existing disease to deployment is an ongoing issue to both military and civilian physicians. This paper reviews the current evidence for chronic lung disease in the deployed military population and addresses any differences in diagnosis and management.
Field-deployable sniffer for 2,4-dinitrotoluene detection.
Albert, K J; Myrick, M L; Brown, S B; James, D L; Milanovich, F P; Walt, D R
2001-08-01
A field-deployable instrument has been developed to detect low-level 2,4-dinitrotoluene (2,4-DNT) vapors. The system is based on previously developed artificial nose technology and employs an array of sensory materials attached to the distal tips of an optical fiber bundle. Both semiselective and nonspecific, cross-reactive sensors were employed. Each sensor within the array responds differentially to vapor exposure so the array's fluorescence response patterns are unique for each analyte. The instrument is computationally "trained" to discriminate target response patterns from nontarget and background environments. This detection system has been applied to detect 2,4-DNT, an analyte commonly detected on the soil surface above buried 2,4,6-trinitrotoluene (TNT) land mines, in spiked soil and aqueous and ground samples. The system has been characterized and demonstrated the ability to detect 120 ppb 2,4-DNT vapor in blind (unknown) humidified samples during a supervised field test.
The NHERI RAPID Facility: Enabling the Next-Generation of Natural Hazards Reconnaissance
NASA Astrophysics Data System (ADS)
Wartman, J.; Berman, J.; Olsen, M. J.; Irish, J. L.; Miles, S.; Gurley, K.; Lowes, L.; Bostrom, A.
2017-12-01
The NHERI post-disaster, rapid response research (or "RAPID") facility, headquartered at the University of Washington (UW), is a collaboration between UW, Oregon State University, Virginia Tech, and the University of Florida. The RAPID facility will enable natural hazard researchers to conduct next-generation quick response research through reliable acquisition and community sharing of high-quality, post-disaster data sets that will enable characterization of civil infrastructure performance under natural hazard loads, evaluation of the effectiveness of current and previous design methodologies, understanding of socio-economic dynamics, calibration of computational models used to predict civil infrastructure component and system response, and development of solutions for resilient communities. The facility will provide investigators with the hardware, software and support services needed to collect, process and assess perishable interdisciplinary data following extreme natural hazard events. Support to the natural hazards research community will be provided through training and educational activities, field deployment services, and by promoting public engagement with science and engineering. Specifically, the RAPID facility is undertaking the following strategic activities: (1) acquiring, maintaining, and operating state-of-the-art data collection equipment; (2) developing and supporting mobile applications to support interdisciplinary field reconnaissance; (3) providing advisory services and basic logistics support for research missions; (4) facilitating the systematic archiving, processing and visualization of acquired data in DesignSafe-CI; (5) training a broad user base through workshops and other activities; and (6) engaging the public through citizen science, as well as through community outreach and education. The facility commenced operations in September 2016 and will begin field deployments beginning in September 2018. This poster will provide an overview of the vision for the RAPID facility, the equipment that will be available for use, the facility's operations, and opportunities for user training and facility use.
NASA Astrophysics Data System (ADS)
Xiong, Zhi; Zhu, J. G.; Xue, B.; Ye, Sh. H.; Xiong, Y.
2013-10-01
As a novel network coordinate measurement system based on multi-directional positioning, workspace Measurement and Positioning System (wMPS) has outstanding advantages of good parallelism, wide measurement range and high measurement accuracy, which makes it to be the research hotspots and important development direction in the field of large-scale measurement. Since station deployment has a significant impact on the measurement range and accuracy, and also restricts the use-cost, the optimization method of station deployment was researched in this paper. Firstly, positioning error model was established. Then focusing on the small network consisted of three stations, the typical deployments and error distribution characteristics were studied. Finally, through measuring the simulated fuselage using typical deployments at the industrial spot and comparing the results with Laser Tracker, some conclusions are obtained. The comparison results show that under existing prototype conditions, I_3 typical deployment of which three stations are distributed in a straight line has an average error of 0.30 mm and the maximum error is 0.50 mm in the range of 12 m. Meanwhile, C_3 typical deployment of which three stations are uniformly distributed in the half-circumference of an circle has an average error of 0.17 mm and the maximum error is 0.28 mm. Obviously, C_3 typical deployment has a higher control effect on precision than I_3 type. The research work provides effective theoretical support for global measurement network optimization in the future work.
Demand Response and Energy Storage Integration Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Ookie; Cheung, Kerry; Olsen, Daniel J.
2016-03-01
Demand response and energy storage resources present potentially important sources of bulk power system services that can aid in integrating variable renewable generation. While renewable integration studies have evaluated many of the challenges associated with deploying large amounts of variable wind and solar generation technologies, integration analyses have not yet fully incorporated demand response and energy storage resources. This report represents an initial effort in analyzing the potential integration value of demand response and energy storage, focusing on the western United States. It evaluates two major aspects of increased deployment of demand response and energy storage: (1) Their operational valuemore » in providing bulk power system services and (2) Market and regulatory issues, including potential barriers to deployment.« less
Demand Response and Energy Storage Integration Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Ookie; Cheung, Kerry
Demand response and energy storage resources present potentially important sources of bulk power system services that can aid in integrating variable renewable generation. While renewable integration studies have evaluated many of the challenges associated with deploying large amounts of variable wind and solar generation technologies, integration analyses have not yet fully incorporated demand response and energy storage resources. This report represents an initial effort in analyzing the potential integration value of demand response and energy storage, focusing on the western United States. It evaluates two major aspects of increased deployment of demand response and energy storage: (1) Their operational valuemore » in providing bulk power system services and (2) Market and regulatory issues, including potential barriers to deployment.« less
Measuring the impact of complete streets projects : preliminary field testing : final report.
DOT National Transportation Integrated Search
2016-12-01
This report describes a field study that sought to assess the impact of Complete Streets (CS) projects in Buffalo, NY. Multiple data collection tools were deployed to capture a diversity of impacts on 8 street corridors where CS projects have been im...
3D Extended Logging for Geothermal Resources: Field Trials with the Geo-Bilt System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mallan, R; Wilt, M; Kirkendall, B
2002-05-29
Geo-BILT (Geothermal Borehole Induction Logging Tool) is an extended induction logging tool designed for 3D resistivity imaging around a single borehole. The tool was developed for deployment in high temperature geothermal wells under a joint program funded by the California Energy Commission, Electromagnetic Instruments (EMI) and the U.S. Department of Energy. EM1 was responsible for tool design and manufacture, and numerical modeling efforts were being addressed at Lawrence Livermore Laboratory (LLNL) and other contractors. The field deployment was done by EM1 and LLNL. The tool operates at frequencies from 2 to 42 kHz, and its design features a series ofmore » three-component magnetic sensors offset at 2 and 5 meters from a three-component magnetic source. The combined package makes it possible to do 3D resistivity imaging, deep into the formation, from a single well. The manufacture and testing of the tool was completed in spring of 2001, and the initial deployment of Geo-BILT occurred in May 2001 at the Lost Hills oil field in southern California at leases operated by Chevron USA. This site was chosen for the initial field test because of the favorable geological conditions and the availability of a number of wells suitable for tool deployment. The second deployment occurred in April 2002 at the Dixie Valley geothermal field, operated by Caithness Power LLC, in central Nevada. This constituted the first test in a high temperature environment. The Chevron site features a fiberglass-cased observation well in the vicinity of a water injector. The injected water, which is used for pressure maintenance and for secondary sweep of the heavy oil formation, has a much lower resistivity than the oil bearing formation. This, in addition to the non-uniform flow of this water, creates a 3D resistivity structure, which is analogous to conditions produced from flowing fractures adjacent to geothermal boreholes. Therefore, it is an excellent site for testing the 3D capability of the tool in a low risk environment. The Dixie Valley site offered an environment where the tool could locate near-well fractures associated with steam development. The Lost Hills field measurements yielded a data set suitable for 3D imaging. The Geo-BLT data corresponded to existing conventional logging data and showed clear indications, in several depth intervals, of near-well 3D structure. Subsequent 3D inversion of these data produced a model consistent with non-planar water flow in specific layers. The Dixie Valley measurements identified structures associated with dike intrusions and water inflow at particular depths. Preliminary analysis suggests these structures are steeply dipping, which is consistent with the geology.« less
A Polygon Model for Wireless Sensor Network Deployment with Directional Sensing Areas
Wu, Chun-Hsien; Chung, Yeh-Ching
2009-01-01
The modeling of the sensing area of a sensor node is essential for the deployment algorithm of wireless sensor networks (WSNs). In this paper, a polygon model is proposed for the sensor node with directional sensing area. In addition, a WSN deployment algorithm is presented with topology control and scoring mechanisms to maintain network connectivity and improve sensing coverage rate. To evaluate the proposed polygon model and WSN deployment algorithm, a simulation is conducted. The simulation results show that the proposed polygon model outperforms the existed disk model and circular sector model in terms of the maximum sensing coverage rate. PMID:22303159
St George, Tiffany; Vlahos, Penny; Harner, Tom; Helm, Paul; Wilford, Bryony
2011-02-01
Improving methods for assessing the spatial and temporal resolution of organic compound concentrations in marine environments is important to the sustainable management of our coastal systems. Here we evaluate the use of ethylene vinyl acetate (EVA) as a candidate polymer for thin-film passive sampling in waters of marine environments. Log K(EVA-W) partition coefficients correlate well (r(2) = 0.87) with Log K(OW) values for selected pesticides and polychlorinated biphenyls (PCBs) where Log K(EVA-W) = 1.04 Log K(OW) + 0.22. EVA is a suitable polymer for passive sampling due to both its high affinity for organic compounds and its ease of coating at sub-micron film thicknesses on various substrates. Twelve-day field deployments were effective in detecting target compounds with good precision making EVA a potential multi-media fugacity meter. Published by Elsevier Ltd.
Zuccaro, Laura; Tesauro, Cinzia; Kurkina, Tetiana; Fiorani, Paola; Yu, Hak Ki; Knudsen, Birgitta R; Kern, Klaus; Desideri, Alessandro; Balasubramanian, Kannan
2015-11-24
Monolayer graphene field-effect sensors operating in liquid have been widely deployed for detecting a range of analyte species often under equilibrium conditions. Here we report on the real-time detection of the binding kinetics of the essential human enzyme, topoisomerase I interacting with substrate molecules (DNA probes) that are immobilized electrochemically on to monolayer graphene strips. By monitoring the field-effect characteristics of the graphene biosensor in real-time during the enzyme-substrate interactions, we are able to decipher the surface binding constant for the cleavage reaction step of topoisomerase I activity in a label-free manner. Moreover, an appropriate design of the capture probes allows us to distinctly follow the cleavage step of topoisomerase I functioning in real-time down to picomolar concentrations. The presented results are promising for future rapid screening of drugs that are being evaluated for regulating enzyme activity.
Test techniques for determining laser ranging system performance
NASA Technical Reports Server (NTRS)
Zagwodzki, T. W.
1981-01-01
Procedures and results of an on going test program intended to evaluate laser ranging system performance levels in the field as well as in the laboratory are summarized. Tests show that laser ranging system design requires consideration of time biases and RMS jitters of individual system components. All simple Q switched lasers tested were found to be inadequate for 10 centimeter ranging systems. Timing discriminators operating over a typical 100:1 dynamic signal range may introduce as much as 7 to 9 centimeters of range bias. Time interval units commercially available today are capable of half centimeter performance and are adequate for all field systems currently deployed. Photomultipliers tested show typical tube time biases of one centimeter with single photoelectron transit time jitter of approximately 10 centimeters. Test results demonstrate that NASA's Mobile Laser Ranging System (MOBLAS) receiver configuration is limiting system performance below the 100 photoelectron level.
Evaluation of activated sludge for biodegradation of propylene glycol as an aircraft deicing fluid.
Delorit, Justin D; Racz, LeeAnn
2014-04-01
Aircraft deicing fluid used at airport facilities is often collected for treatment or disposal in order to prevent serious ecological threats to nearby surface waters. This study investigated lab scale degradation of propylene glycol, the active ingredient in a common aircraft deicing fluid, by way of a laboratory-scale sequencing batch reactor containing municipal waste water treatment facility activated sludge performing simultaneous organic carbon oxidation and nitrification. The ability of activated sludge to remove propylene glycol was evaluated by studying the biodegradation and sorption characteristics of propylene glycol in an activated sludge medium. The results indicate sorption may play a role in the fate of propylene glycol in AS, and the heterotrophic bacteria readily degrade this compound. Therefore, a field deployable bioreactor may be appropriate for use in flight line applications.
Stability of user-friendly blood typing kits stored under typical military field conditions.
Bienek, Diane R; Chang, Cheow K; Charlton, David G
2009-10-01
To help preserve in-theater strength within deployed military units, commercially available, rapid, user-friendly ABO-Rh blood typing kits were evaluated to determine their stability in storage conditions commonly encountered by the warfighter. Methods for environmental exposure testing were based on MIL-STD-810F. When Eldon Home Kits 2511 were exposed to various temperature/relative humidity conditions, the results were comparable to those obtained with the control group and those obtained with industry-standard methods. For the ABO-Rh Combination Blood Typing Experiment Kits, 2 of the exposure treatments rendered them unusable. In addition, a third set of exposure treatments adversely affected the kits, resulting in approximately 30% blood type misclassifications. Collectively, this evaluation of commercial blood typing kits revealed that diagnostic performance can vary between products, lots, and environmental storage conditions.
Connected vehicle insights : fourth generation wireless - vehicle and highway gateways to the cloud.
DOT National Transportation Integrated Search
2000-04-07
The purpose of this document is to present state-level statistics for the CVISN deployment described in the national report. These data will allow state stakeholders to evaluate their own deployment standings in relation to national averages. The nat...
DOT National Transportation Integrated Search
1998-11-01
This document describes the strategy used to evaluate the Intelligent Transportation Systems (ITS) Joint Program Offices Metropolitan Model Deployment Initiative (MMDI). The MMDI is an aggressive deployment of ITS at four urban sites: New York/New...
DOT National Transportation Integrated Search
1997-09-01
Integration of intelligent transportation systems (ITS) within a metropolitan area is crucial for effective deployment. The Early Deployment Planning (EDP) Process is one tool that allows transportation officials to plan for and implement ITS technol...
Application of the ADAMS program to deployable space truss structures
NASA Technical Reports Server (NTRS)
Calleson, R. E.
1985-01-01
The need for a computer program to perform kinematic and dynamic analyses of large truss structures while deploying from a packaged configuration in space led to the evaluation of several existing programs. ADAMS (automatic dynamic analysis of mechanical systems), a generalized program from performing the dynamic simulation of mechanical systems undergoing large displacements, is applied to two concepts of deployable space antenna units. One concept is a one cube folding unit of Martin Marietta's Box Truss Antenna and the other is a tetrahedral truss unit of a Tetrahedral Truss Antenna. Adequate evaluation of dynamic forces during member latch-up into the deployed configuration is not yet available from the present version of ADAMS since it is limited to the assembly of rigid bodies. Included is a method for estimating the maximum bending stress in a surface member at latch-up. Results include member displacement and velocity responses during extension and an example of member bending stresses at latch-up.
Biological Response to the Dynamic Spectral-Polarized Underwater Light Field
2011-09-30
www.bio.utexas.edu/research/cummingslab/ LONG-TERM GOALS Camouflage in marine environments requires matching all of the background optical ...polarized light field in near-shore and near-surface environments (2) Characterize the biological camouflage response of organisms to these dynamic optical ...field will be measured by the simultaneous deployment of a comprehensive optical suite including underwater video-polarimetry (Cummings), inherent
ERIC Educational Resources Information Center
Hendricks, Julie E.; Atchison, Christopher L.; Feig, Anthony D.
2017-01-01
In 2014, the Geological Society of America sponsored an Accessible Field Trip, designed to demonstrate best practices in accommodating a wide variety of participants with disabilities during a field experience. During the trip, an aide was deployed to assist two student participants with sensory disabilities, one with low vision and the other with…
Blocking and guiding adult sea lamprey with pulsed direct current from vertical electrodes
Johnson, Nicholas S.; Thompson, Henry T.; Holbrook, Christopher M.; Tix, John A.
2014-01-01
Controlling the invasion front of aquatic nuisance species is of high importance to resource managers. We tested the hypothesis that adult sea lamprey (Petromyzon marinus), a destructive invasive species in the Laurentian Great Lakes, would exhibit behavioral avoidance to dual-frequency pulsed direct current generated by vertical electrodes and that the electric field would not injure or kill sea lamprey or non-target fish. Laboratory and in-stream experiments demonstrated that the electric field blocked sea lamprey migration and directed sea lamprey into traps. Rainbow trout (Oncorhynchus mykiss) and white sucker (Catostomus commersoni), species that migrate sympatrically with sea lamprey, avoided the electric field and had minimal injuries when subjected to it. Vertical electrodes are advantageous for fish guidance because (1) the electric field produced varies minimally with depth, (2) the electric field is not grounded, reducing power consumption to where portable and remote deployments powered by solar, wind, hydro, or a small generator are feasible, and (3) vertical electrodes can be quickly deployed without significant stream modification allowing rapid responses to new invasions. Similar dual-frequency pulsed direct current fields produced from vertical electrodes may be advantageous for blocking or trapping other invasive fish or for guiding valued fish around dams.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2014-10-01
The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Smith Electric Vehicles is building and deploying 500 all-electric medium-duty trucks that will be deployed by a variety of companies in diverse climates across the country.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2014-01-01
The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Smith Electric Vehicles is building and deploying 500 all-electric medium-duty trucks that will be deployed by a variety of companies in diverse climates across the country.
Evaluation of Airframe Noise Reduction Concepts via Simulations Using a Lattice Boltzmann Approach
NASA Technical Reports Server (NTRS)
Fares, Ehab; Casalino, Damiano; Khorrami, Mehdi R.
2015-01-01
Unsteady computations are presented for a high-fidelity, 18% scale, semi-span Gulfstream aircraft model in landing configuration, i.e. flap deflected at 39 degree and main landing gear deployed. The simulations employ the lattice Boltzmann solver PowerFLOW® to simultaneously capture the flow physics and acoustics in the near field. Sound propagation to the far field is obtained using a Ffowcs Williams and Hawkings acoustic analogy approach. In addition to the baseline geometry, which was presented previously, various noise reduction concepts for the flap and main landing gear are simulated. In particular, care is taken to fully resolve the complex geometrical details associated with these concepts in order to capture the resulting intricate local flow field thus enabling accurate prediction of their acoustic behavior. To determine aeroacoustic performance, the farfield noise predicted with the concepts applied is compared to high-fidelity simulations of the untreated baseline configurations. To assess the accuracy of the computed results, the aerodynamic and aeroacoustic impact of the noise reduction concepts is evaluated numerically and compared to experimental results for the same model. The trends and effectiveness of the simulated noise reduction concepts compare well with measured values and demonstrate that the computational approach is capable of capturing the primary effects of the acoustic treatment on a full aircraft model.
2009 Goose Bay Experiment Ocean Measurements. Part 1; Data
NASA Technical Reports Server (NTRS)
Jacob, S. Daniel; LeVine, David M.
2010-01-01
During late February and early March 2009, a field experiment was performed using the NASA P3 over the Labrador Sea. During this experiment, expendable probes deployed from the aircraft acquired ocean mixed layer temperature, salinity and currents Probes were deployed during three flights of the four. Overall 7 AXBTs, 15 AXCTDs and 7 AXCPs were deployed with a success rate of nearly 70%. This is much lower than expected based on prior experience deploying from other aircraft. But given the difficulties associated with the Pneumatic Sonobuoy Launch Tube mechanism on the NASA P3, this rate likely can be improved significantly by using a different deployment mechanism. Additionally, two sets of collocated measurements of AXBTs, AXCPs and AXCTDs were made to verify the drop rates and measurements of the old AXBTs. While there were differences in the measurements, the old AXCTDs are performing well. The expendable data from the experiment are compared to the Argo profiles in the region to check for consistency. Comparisons indicate all the expendable probes acquired useful data and are well within the range of values measured by Argo floats.
NASA Astrophysics Data System (ADS)
Thoreson, E. J.; Stievater, T. H.; Rabinovich, W. S.; Ferraro, M. S.; Papanicolaou, N. A.; Bass, R.; Boos, J. B.; Stepnowski, J. L.; McGill, R. A.
2008-10-01
Low cost passive detection of Chemical Warfare Agents (CWA) and being able to distinguish them from interferents is of great interest in the protection of human capital. If CWA sensors could be made cheaply enough, they could be deployed profusely throughout the environment intended for protection. NRL (Naval Research Labs) has demonstrated a small sensor with potentially very low unit cost and compatible with high volume production which has the ability to distinguish between H2O, DMMP, and Toluene. Additionally, they have measured concentrations as low as 17 ppb passively in a package the size of a quarter. Using the latest MEMS technology coupled with advanced chemical identification algorithms we propose a development path for a low cost, highly integrated chemical sensor capable of detecting CWA's, Explosives, VOC's (Volatile Organic Chemicals), and TIC's (Toxic Industrial Chemicals). ITT AES (Advanced Engineering & Sciences) has partnered with NRL (Naval Research Labs) to develop this ``microharp'' technology into a field deployable sensor that will be capable of remote communication with a central server.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merchant, Bion J.
The Seismo-Hydroacoustic Data Acquisition System (SHDAS) is undergoing evaluation in preparation for its engineering, development, and deployment by the U.S Navy as an ocean bottom seismic monitoring system. At the current stage of development, the production digitizers are being evaluated to confirm their performance prior to packaging and assembly for deployment. The testing of the digitizers is being conducted at Delta Group Electronics, the digitizer fabricator, in San Diego, California, performed by Sandia National Laboratories with the assistance of Leidos and Delta Group Electronics.
2015-09-01
SOA Service-Oriented Architecture SOTM Satellite Communications-on-the-Move SoS System of Systems SwCIs Software Criticality Indices TPM Technical...into the C2 system. To manage stakeholders’ expectations, there is a need to evaluate the effectiveness of the deployed C2 system having implemented ...the C2 system. However, there is a need to recognize the limitations and constraints on the land battlefield to implement these requirements. There
A compact neutron scatter camera for field deployment
Goldsmith, John E. M.; Gerling, Mark D.; Brennan, James S.
2016-08-23
Here, we describe a very compact (0.9 m high, 0.4 m diameter, 40 kg) battery operable neutron scatter camera designed for field deployment. Unlike most other systems, the configuration of the sixteen liquid-scintillator detection cells are arranged to provide omnidirectional (4π) imaging with sensitivity comparable to a conventional two-plane system. Although designed primarily to operate as a neutron scatter camera for localizing energetic neutron sources, it also functions as a Compton camera for localizing gamma sources. In addition to describing the radionuclide source localization capabilities of this system, we demonstrate how it provides neutron spectra that can distinguish plutonium metalmore » from plutonium oxide sources, in addition to the easier task of distinguishing AmBe from fission sources.« less
Calibration and Vegetation Field Spectra Collection for the 2000 AVIRIS Hawaii Deployment
NASA Technical Reports Server (NTRS)
Dennison, Philip E.; Gardner, Margaret E.; Roberts, Dar A.; Green, Robert O.
2001-01-01
As part of the April 2000 Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Hawaii deployment, two researchers from the University of California, Santa Barbara, were sent to Hawaii to collect supporting field data. The primary goal of the fieldwork was to obtain spectra of bright targets to be used for retrieving surface reflectance from AVIRIS imagery. Secondary goals included recording the spectra of dominant vegetation, marking the position of homogeneous land cover for use as potential image endmembers (PIEs), and recording firsthand impressions of cover types. Primary and secondary goals were met. Spectra were recorded for 12 calibration targets on 5 islands and spectra were obtained for 61 vegetation species. Twenty PIEs were located, and video was used to document cover at 56 locations.
Režek Jambrak, Anet; Šimunek, Marina; Grbeš, Franjo; Mandura, Ana; Djekic, Ilija
2018-04-01
The objective of this paper was to demonstrate application of quality function deployment in analysing effects of high power ultrasound on quality properties of apple juices and nectars. In order to develop a quality function deployment model, joint with instrumental analysis of treated samples, a field survey was performed to identify consumer preferences towards quality characteristics of juices/nectar. Based on field research, the three most important characteristics were 'taste' and 'aroma' with 28.5% of relative absolute weight importance, followed by 'odour' (16.9%). The quality function deployment model showed that the top three 'quality scores' for apple juice were treatments with amplitude 90 µm, 9 min treatment time and sample temperature 40 °C; 60 µm, 9 min, 60 °C; and 90 µm, 6 min, 40 °C. For nectars, the top three were treatments 120 µm, 9 min, 20 °C; 60 µm, 9 min, 60 °C; and A2.16 60 µm, 9 min, 20 °C. This type of quality model enables a more complex measure of large scale of different quality parameters. Its simplicity should be understood as its practical advantage and, as such, this tool can be a part of design quality when using novel preservation technologies. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Tether deployment monitoring system, phase 2
NASA Technical Reports Server (NTRS)
1989-01-01
An operational Tether Deployment Monitoring System (TEDEMS) was constructed that would show system functionality in a terrestrial environment. The principle function of the TEDEMS system is the launching and attachment of reflective targets onto the tether during its deployment. These targets would be tracked with a radar antenna that was pointed towards the targets by a positioning system. A spring powered launcher for the targets was designed and fabricated. An instrumentation platform and launcher were also developed. These modules are relatively heavy and will influence tether deployment scenarios, unless they are released with a velocity and trajectory closely matching that of the tether. Owing to the tracking range limitations encountered during field trails of the Radar system, final TEDEMS system integration was not completed. The major module not finished was the system control computer. The lack of this device prevented any subsystem testing or field trials to be conducted. Other items only partially complete were the instrumentation platform launcher and modules and the radar target launcher. The work completed and the tests performed suggest that the proposed system continues to be a feasible approach to tether monitoring, although additional effort is still necessary to increase the range at which modules can be detected. The equipment completed and tested, to the extent stated, is available to NASA for use on any future program that requires tether tracking capability.
DOT National Transportation Integrated Search
2005-09-30
This document presents the findings of the national evaluation of the 511 telephone traveler information system Model Deployment in Arizona. The United States Department of Transportation (U.S. DOT) National 511 Model Deployment supported a wid...
DOT National Transportation Integrated Search
2016-06-06
The Wyoming Department of Transportations (WYDOT) Connected Vehicle (CV) Pilot Deployment Program is intended to develop a suite of applications that utilize vehicle to infrastructure (V2I) and vehicle to vehicle (V2V) communication technology to ...
DOT National Transportation Integrated Search
2004-01-28
This document presents the detailed plan to conduct the Key Informants Interviews Test, one of several test activities to be conducted as part of the national evaluation of the regional, multi-modal 511 Traveler Information System Model Deployment. T...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Zhaoqing; Wang, Taiping; Copping, Andrea E.
Understanding and providing proactive information on the potential for tidal energy projects to cause changes to the physical system and to key water quality constituents in tidal waters is a necessary and cost-effective means to avoid costly regulatory involvement and late stage surprises in the permitting process. This paper presents a modeling study for evaluating the tidal energy extraction and its potential impacts on the marine environment in a real world site - Tacoma Narrows of Puget Sound, Washington State, USA. An unstructured-grid coastal ocean model, fitted with a module that simulates tidal energy devices, was applied to simulate themore » tidal energy extracted by different turbine array configurations and the potential effects of the extraction at local and system-wide scales in Tacoma Narrows and South Puget Sound. Model results demonstrated the advantage of an unstructured-grid model for simulating the far-field effects of tidal energy extraction in a large model domain, as well as assessing the near-field effect using a fine grid resolution near the tidal turbines. The outcome shows that a realistic near-term deployment scenario extracts a very small fraction of the total tidal energy in the system and that system wide environmental effects are not likely; however, near-field effects on the flow field and bed shear stress in the area of tidal turbine farm are more likely. Model results also indicate that from a practical standpoint, hydrodynamic or water quality effects are not likely to be the limiting factor for development of large commercial-scale tidal farms. Results indicate that very high numbers of turbines are required to significantly alter the tidal system; limitations on marine space or other environmental concerns are likely to be reached before reaching these deployment levels. These findings show that important information obtained from numerical modeling can be used to inform regulatory and policy processes for tidal energy development.« less
Deployment-related Respiratory Issues.
Morris, Michael J; Rawlins, Frederic A; Forbes, Damon A; Skabelund, Andrew J; Lucero, Pedro F
2016-01-01
Military deployment to Southwest Asia since 2003 in support of Operations Enduring Freedom/Iraqi Freedom/New Dawn has presented unique challenges from a pulmonary perspective. Various airborne hazards in the deployed environment include suspended geologic dusts, burn pit smoke, vehicle exhaust emissions, industrial air pollution, and isolated exposure incidents. These exposures may give rise to both acute respiratory symptoms and in some instances development of chronic lung disease. While increased respiratory symptoms during deployment are well documented, there is limited data on whether inhalation of airborne particulate matter is causally related to an increase in either common or unique pulmonary diseases. While disease processes such as acute eosinophilic pneumonia and exacerbation of preexisting asthma have been adequately documented, there is significant controversy surrounding the potential effects of deployment exposures and development of rare pulmonary disorders such as constrictive bronchiolitis. The role of smoking and related disorders has yet to be defined. This article presents the current evidence for deployment-related respiratory symptoms and ongoing Department of Defense studies. Further, it also provides general recommendations for evaluating pulmonary health in the deployed military population.
U.S. Army Reserve (Medical) soldier prescription challenges during Operation Iraqi Freedom.
Savitala, Murty; Dydek, George J
2004-12-01
The continuous requirement to mobilize and deploy reserve soldiers presents numerous challenges for the Army Medical Department. One of the challenges in the preparation for deployment of reserve soldiers is the assessment of chronic prescription medication requirements and the eventual filling of these requirements during deployment. The assigned unit pharmacy officer can provide a value-added service through the identification and coordination of the pharmaceutical needs of an activated deploying unit. A unit pharmacy officer conducted a prescription medication use analysis on an activated Army Reserve Medical Unit before deployment in support of Operation Iraqi Freedom. The study population consisted of 181 soldiers identified through a volunteer survey administered by the assigned pharmacy officer. The prescription medication requirements for the unit were identified in a predeployment status and an evaluation was conducted to determine the ability to sustain the medication requirements once the unit was to be deployed. Gaps in the availability of prescription medication requirements in a predeployed status were identified indicating potential deficiencies in the capability to replenish prescription medication requirements during deployment.
Radiative Energetics of Mineral Dust Aerosols from Ground-Based Measurements
NASA Technical Reports Server (NTRS)
Tsay, Si-Chee; Hansell, Richard A.
2011-01-01
Airborne dust aerosols worldwide contribute a significant part to air quality problems and, to some extent, regional climatic issues (e.g., radiative forcing, hydrological cycle, and primary biological productivity in oceans). Evaluating the direct solar radiative effect of dust aerosols is relatively straightforward due in part to the relatively large SIN ratio in broadband irradiance measurements. The longwave (LW) impact, on the other hand, is rather difficult to ascertain since the measured dust signal level (approx.10 W/sq m) is on the same order as the instrumental uncertainties. Although the magnitude of the LW impact is much smaller than that of the shortwave (SW), it can still have a noticeable influence on the energy distribution of Earth-atmosphere system, particularly due to the strong light-absorptive properties commonly found in many terrestrial minerals. The current effort is part of an ongoing research study to perform a global assessment of dust direct aerosol radiative effects (DARE) during major field deployments of key dust source regions worldwide. In this work we present results stemming from two previous field deployments: the 2006 NASA African Monsoon Multidisciplinary Activities and the 2008 Asian Monsoon Years, both utilizing NASA Goddard's mobile ground-based facility. The former study focused on transported Saharan dust at Sal (16.73degN, 22.93degW), Cape Verde along the west coast of Africa while the latter focused on Asian dust at Zhangye (39.082degN, 100.276degE), China near the source between the Taklimakan and Gobi deserts. Due to the compelling variability in spatial and temporal scale of dust properties during field experiments, a deterministic I-D radiative transfer model constrained by local measurements (i.e., spectral photometry/interferometry and lidar for physical/microphysical, mineralogy, and single-scattering properties) is employed to evaluate dust's local instantaneous SW/LW DARE both at the surface and at the top of the atmosphere along with heating rate profiles for cloud-free atmospheres. In both dust cases the efficiency in the L W DARE is investigated and its significance is compared relative to that of diurnally SW.
Visual soil evaluation - future research requirements
NASA Astrophysics Data System (ADS)
Emmet-Booth, Jeremy; Forristal, Dermot; Fenton, Owen; Ball, Bruce; Holden, Nick
2017-04-01
A review of Visual Soil Evaluation (VSE) techniques (Emmet-Booth et al., 2016) highlighted their established utility for soil quality assessment, though some limitations were identified; (1) The examination of aggregate size, visible intra-porosity and shape forms a key assessment criterion in almost all methods, thus limiting evaluation to structural form. The addition of criteria that holistically examine structure may be desirable. For example, structural stability can be indicated using dispersion tests or examining soil surface crusting, while the assessment of soil colour may indirectly indicate soil organic matter content, a contributor to stability. Organic matter assessment may also indicate structural resilience, along with rooting, earthworm numbers or shrinkage cracking. (2) Soil texture may influence results or impeded method deployment. Modification of procedures to account for extreme texture variation is desirable. For example, evidence of compaction in sandy or single grain soils greatly differs to that in clayey soils. Some procedures incorporate separate classification systems or adjust deployment based on texture. (3) Research into impacts of soil moisture content on VSE evaluation criteria is required. Criteria such as rupture resistance and shape may be affected by moisture content. It is generally recommended that methods are deployed on moist soils and quantification of influences of moisture variation on results is necessary. (4) Robust sampling strategies for method deployment are required. Dealing with spatial variation differs between methods, but where methods can be deployed over large areas, clear instruction on sampling is required. Additionally, as emphasis has been placed on the agricultural production of soil, so the ability of VSE for exploring structural quality in terms of carbon storage, water purification and biodiversity support also requires research. References Emmet-Booth, J.P., Forristal. P.D., Fenton, O., Ball, B.C. & Holden, N.M. 2016. A review of visual soil evaluation techniques for soil structure. Soil Use and Management, 32, 623-634.
2013-12-20
MORRO BAY, Calif. – Drogue chutes open above Dragon test article during a test to evaluate the spacecraft's parachute deployment system. The drogue chutes stabilized the vehicle, in preparation for main chute deployment as part of a milestone under SpaceX's Commercial Crew Integrated Capability agreement with NASA's Commercial Crew Program. Photo credit: NASA/Kim Shiflett
2013-12-20
MORRO BAY, Calif. – Drogue chutes open above Dragon test article during a test to evaluate the spacecraft's parachute deployment system. The drogue chutes stabilized the vehicle, in preparation for main chute deployment as part of a milestone under SpaceX's Commercial Crew Integrated Capability agreement with NASA's Commercial Crew Program. Photo credit: NASA/Kim Shiflett
2013-12-20
MORRO BAY, Calif. – Drogue chutes open above Dragon test article during a test to evaluate the spacecraft's parachute deployment system. The drogue chutes stabilized the vehicle, in preparation for main chute deployment as part of a milestone under SpaceX's Commercial Crew Integrated Capability agreement with NASA's Commercial Crew Program. Photo credit: NASA/Kim Shiflett
Designing and Deploying 3D Collaborative Games in Education
ERIC Educational Resources Information Center
Mavridis, Apostolos; Tsiatsos, Thrasyvoulos; Terzidou, Theodouli
2016-01-01
This paper focuses on methodologies of serious games deployment and evaluation. Particularly, this study will present a specific category of serious games that are based on Collaborative Virtual Environments and they aim to support Collaborative Learning. We call these serious games Collaborative Virtual Educational Games (CVEG). The paper aims to…
USDA-ARS?s Scientific Manuscript database
This paper provides an overview of the GMI (Geospatial Modeling Interface) simulation framework for environmental model deployment and assessment. GMI currently provides access to multiple environmental models including AgroEcoSystem-Watershed (AgES-W), Nitrate Leaching and Economic Analysis 2 (NLEA...
Design of Dual-Road Transportable Portal Monitoring System for Visible Light and Gamma-Ray Imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karnowski, Thomas Paul; Cunningham, Mark F; Goddard Jr, James Samuel
2010-01-01
The use of radiation sensors as portal monitors is increasing due to heightened concerns over the smuggling of fissile material. Transportable systems that can detect significant quantities of fissile material that might be present in vehicular traffic are of particular interest, especially if they can be rapidly deployed to different locations. To serve this application, we have constructed a rapid-deployment portal monitor that uses visible-light and gamma-ray imaging to allow simultaneous monitoring of multiple lanes of traffic from the side of a roadway. The system operation uses machine vision methods on the visible-light images to detect vehicles as they entermore » and exit the field of view and to measure their position in each frame. The visible-light and gamma-ray cameras are synchronized which allows the gamma-ray imager to harvest gamma-ray data specific to each vehicle, integrating its radiation signature for the entire time that it is in the field of view. Thus our system creates vehicle-specific radiation signatures and avoids source confusion problems that plague non-imaging approaches to the same problem. Our current prototype instrument was designed for measurement of upto five lanes of freeway traffic with a pair of instruments, one on either side of the roadway. Stereoscopic cameras are used with a third alignment camera for motion compensation and are mounted on a 50 deployable mast. In this paper we discuss the design considerations for the machine-vision system, the algorithms used for vehicle detection and position estimates, and the overall architecture of the system. We also discuss system calibration for rapid deployment. We conclude with notes on preliminary performance and deployment.« less
Design of dual-road transportable portal monitoring system for visible light and gamma-ray imaging
NASA Astrophysics Data System (ADS)
Karnowski, Thomas P.; Cunningham, Mark F.; Goddard, James S.; Cheriyadat, Anil M.; Hornback, Donald E.; Fabris, Lorenzo; Kerekes, Ryan A.; Ziock, Klaus-Peter; Bradley, E. Craig; Chesser, J.; Marchant, W.
2010-04-01
The use of radiation sensors as portal monitors is increasing due to heightened concerns over the smuggling of fissile material. Transportable systems that can detect significant quantities of fissile material that might be present in vehicular traffic are of particular interest, especially if they can be rapidly deployed to different locations. To serve this application, we have constructed a rapid-deployment portal monitor that uses visible-light and gamma-ray imaging to allow simultaneous monitoring of multiple lanes of traffic from the side of a roadway. The system operation uses machine vision methods on the visible-light images to detect vehicles as they enter and exit the field of view and to measure their position in each frame. The visible-light and gamma-ray cameras are synchronized which allows the gamma-ray imager to harvest gamma-ray data specific to each vehicle, integrating its radiation signature for the entire time that it is in the field of view. Thus our system creates vehicle-specific radiation signatures and avoids source confusion problems that plague non-imaging approaches to the same problem. Our current prototype instrument was designed for measurement of upto five lanes of freeway traffic with a pair of instruments, one on either side of the roadway. Stereoscopic cameras are used with a third "alignment" camera for motion compensation and are mounted on a 50' deployable mast. In this paper we discuss the design considerations for the machine-vision system, the algorithms used for vehicle detection and position estimates, and the overall architecture of the system. We also discuss system calibration for rapid deployment. We conclude with notes on preliminary performance and deployment.
Bower, W R; Smith, A D; Pattrick, R A D; Pimblott, S M
2015-04-01
Evaluating the radiation stability of mineral phases is a vital research challenge when assessing the performance of the materials employed in a Geological Disposal Facility for radioactive waste. This report outlines the setup and methodology for efficiently allowing the determination of the dose dependence of damage to a mineral from a single ion irradiated sample. The technique has been deployed using the Dalton Cumbrian Facility's 5 MV tandem pelletron to irradiate a suite of minerals with a controlled α-particle ((4)He(2+)) beam. Such minerals are proxies for near-field clay based buffer material surrounding radioactive canisters, as well as the sorbent components of the host rock.
NASA Astrophysics Data System (ADS)
Bower, W. R.; Smith, A. D.; Pattrick, R. A. D.; Pimblott, S. M.
2015-04-01
Evaluating the radiation stability of mineral phases is a vital research challenge when assessing the performance of the materials employed in a Geological Disposal Facility for radioactive waste. This report outlines the setup and methodology for efficiently allowing the determination of the dose dependence of damage to a mineral from a single ion irradiated sample. The technique has been deployed using the Dalton Cumbrian Facility's 5 MV tandem pelletron to irradiate a suite of minerals with a controlled α-particle (4He2+) beam. Such minerals are proxies for near-field clay based buffer material surrounding radioactive canisters, as well as the sorbent components of the host rock.
Evaluating IPv6 Adoption in the Internet
NASA Astrophysics Data System (ADS)
Colitti, Lorenzo; Gunderson, Steinar H.; Kline, Erik; Refice, Tiziana
As IPv4 address space approaches exhaustion, large networks are deploying IPv6 or preparing for deployment. However, there is little data available about the quantity and quality of IPv6 connectivity. We describe a methodology to measure IPv6 adoption from the perspective of a Web site operator and to evaluate the impact that adding IPv6 to a Web site will have on its users. We apply our methodology to the Google Web site and present results collected over the last year. Our data show that IPv6 adoption, while growing significantly, is still low, varies considerably by country, and is heavily influenced by a small number of large deployments. We find that native IPv6 latency is comparable to IPv4 and provide statistics on IPv6 transition mechanisms used.