Science.gov

Sample records for field double ionization

  1. Nonsequential double ionization with mid-infrared laser fields

    PubMed Central

    Li, Ying-Bin; Wang, Xu; Yu, Ben-Hai; Tang, Qing-Bin; Wang, Guang-Hou; Wan, Jian-Guo

    2016-01-01

    Using a full-dimensional Monte Carlo classical ensemble method, we present a theoretical study of atomic nonsequential double ionization (NSDI) with mid-infrared laser fields, and compare with results from near-infrared laser fields. Unlike single-electron strong-field processes, double ionization shows complex and unexpected interplays between the returning electron and its parent ion core. As a result of these interplays, NSDI for mid-IR fields is dominated by second-returning electron trajectories, instead of first-returning trajectories for near-IR fields. Some complex NSDI channels commonly happen with near-IR fields, such as the recollision-excitation-with-subsequent-ionization (RESI) channel, are virtually shut down by mid-IR fields. Besides, the final energies of the two electrons can be extremely unequal, leading to novel e-e momentum correlation spectra that can be measured experimentally. PMID:27857182

  2. Nonsequential double ionization with mid-infrared laser fields

    NASA Astrophysics Data System (ADS)

    Li, Ying-Bin; Wang, Xu; Yu, Ben-Hai; Tang, Qing-Bin; Wang, Guang-Hou; Wan, Jian-Guo

    2016-11-01

    Using a full-dimensional Monte Carlo classical ensemble method, we present a theoretical study of atomic nonsequential double ionization (NSDI) with mid-infrared laser fields, and compare with results from near-infrared laser fields. Unlike single-electron strong-field processes, double ionization shows complex and unexpected interplays between the returning electron and its parent ion core. As a result of these interplays, NSDI for mid-IR fields is dominated by second-returning electron trajectories, instead of first-returning trajectories for near-IR fields. Some complex NSDI channels commonly happen with near-IR fields, such as the recollision-excitation-with-subsequent-ionization (RESI) channel, are virtually shut down by mid-IR fields. Besides, the final energies of the two electrons can be extremely unequal, leading to novel e-e momentum correlation spectra that can be measured experimentally.

  3. Strong Field Double Ionization: The Phase Space Perspective

    SciTech Connect

    Mauger, F.; Chandre, C.; Uzer, T.

    2009-05-01

    We identify the phase-space structures that regulate atomic double ionization in strong ultrashort laser pulses. The emerging dynamical picture complements the recollision scenario by clarifying the distinct roles played by the recolliding and core electrons, and leads to verifiable predictions on the characteristic features of the 'knee', a hallmark of the nonsequential process.

  4. The contribution of the delayed ionization in strong-field nonsequential double ionization

    SciTech Connect

    Chen, Yinbo; Zhou, Yueming Li, Yang; Li, Min; Lan, Pengfei; Lu, Peixiang

    2016-01-14

    With the classical ensemble model, we have investigated the pulse-duration dependence of nonsequential double ionization (NSDI) over a wide range of laser intensity. The correlated electron momentum distributions are distinctly different for the few-cycle and multiple cycle pulses, which agree well with the previous experiments. Based on this agreement, we analyzed the underlying process for the pulse-duration dependence of the electron correlation by tracing the classical trajectories. Counterintuitively, our analysis shows that the recollision-induced excited states of NSDI could resist ionization in the strong laser field for a time much longer than one optical cycle even at very high intensities. For the multiple-cycle pulses, NSDI events with such a long time delay have significant contribution to the total NSDI yields, which is responsible for the pulse-duration dependence of the observed correlated patterns in the electron momentum distributions.

  5. Knee structure in double ionization of noble atoms in circularly polarized laser fields

    NASA Astrophysics Data System (ADS)

    Chen, Xiang; Wu, Yan; Zhang, Jingtao

    2017-01-01

    Nonsequential double ionization is characterized by a knee structure in the plot of double-ionization probability versus laser intensity. In circularly polarized (CP) laser fields, this structure has only been observed for Mg atoms. By choosing laser fields according to a scaling law, we exhibit the knee structure in CP laser fields for Ar and He atoms. The collision of the ionized electron with the core enhances the ionization of the second electron and forms the knee structure. The electron recollision is universal in CP laser fields, but the ionization probability in the knee region decreases as the wavelength of the driven field increases. For experimental observations, it is beneficial to use target atoms with small ionization potentials and laser fields with short wavelengths.

  6. Dissociative double ionization of CO in orthogonal two-color laser fields

    NASA Astrophysics Data System (ADS)

    Song, Qiying; Lu, Peifen; Gong, Xiaochun; Ji, Qinying; Lin, Kang; Zhang, Wenbin; Ma, Junyang; Zeng, Heping; Wu, Jian

    2017-01-01

    We experimentally investigate dissociative double ionization of CO by a phase-controlled orthogonal two-color (OTC) laser pulse. Directional breaking of doubly ionized CO as a function of both kinetic energy and emission direction of the nuclear fragments is observed in the polarization plane steered by the laser phase. It is attributed to the dominating sequential double ionization at the maximum strength and nonsequential double ionization at a relatively weak strength of the spatiotemporally shaped oscillating laser field pointing to various directions. Our results are interesting not only for two-dimensional control of directional bond breaking, but also strengthen our understanding of strong-field sequential and nonsequential double ionization of molecules which are spatiotemporally streaked to various directions and kinetic energies by an OTC laser pulse.

  7. Controlling Nonsequential Double Ionization in Two-Color Circularly Polarized Femtosecond Laser Fields

    NASA Astrophysics Data System (ADS)

    Mancuso, Christopher A.; Dorney, Kevin M.; Hickstein, Daniel D.; Chaloupka, Jan L.; Ellis, Jennifer L.; Dollar, Franklin J.; Knut, Ronny; Grychtol, Patrik; Zusin, Dmitriy; Gentry, Christian; Gopalakrishnan, Maithreyi; Kapteyn, Henry C.; Murnane, Margaret M.

    2016-09-01

    Atoms undergoing strong-field ionization in two-color circularly polarized femtosecond laser fields exhibit unique two-dimensional photoelectron trajectories and can emit bright circularly polarized extreme ultraviolet and soft-x-ray beams. In this Letter, we present the first experimental observation of nonsequential double ionization in these tailored laser fields. Moreover, we can enhance or suppress nonsequential double ionization by changing the intensity ratio and helicity of the two driving laser fields to maximize or minimize high-energy electron-ion rescattering. Our experimental results are explained through classical simulations, which also provide insight into how to optimize the generation of circularly polarized high harmonic beams.

  8. Exploration of strong-field double ionization of CS2 molecule in bichromatic counterrotating circularly polarized laser fields

    NASA Astrophysics Data System (ADS)

    Ben, Shuai; Zuo, Wanlong; Song, Kaili; Xu, Tongtong; Guo, Jing; Xu, Haifeng; Yan, Bing; Liu, Xue-Shen

    2016-12-01

    By using classical ensemble method, we investigate the double ionization of CS2 molecule in linearly, the bichromatic counterrotating circularly polarized laser fields and the combination of bichromatic counterrotating circularly polarized laser fields and static field, respectively. The numerical results show that the ionization probability in the bichromatic counterrotating circularly polarized laser fields is about 2 order magnitude higher than that in linearly polarized laser field. When a static field is added, the ionization probability is the largest. Besides, the "knee" structure occurs at about 0.05 PW/cm2 in linearly polarized laser field; whereas "knee" structure is disappeared in the bichromatic counterrotating circularly polarized laser fields and combined laser field. The corresponding momentum distribution of CS2 molecule presents a "finger-like" structure at about 0.05 PW/cm2 in linearly polarized field. By analysing the energy distributions of double-ionized electrons versus time and corresponding trajectories, we find that, for linearly polarized case non-sequential double ionization (NSDI) is predominant at about 0.05 PW/cm2, for bichromatic counterrotating circularly polarized laser fields, one electron ionizes after another which indicate sequential ionization process (SDI). When the static field is added, the two electrons undergoes a long pre-ionization process first and then ionizes one after another, and the pre-ionization process lasts longer than other two cases.

  9. From Recollisions to the Knee: A Road Map for Double Ionization in Intense Laser Fields

    SciTech Connect

    Mauger, F.; Chandre, C.; Uzer, T.

    2010-01-29

    We examine the nature and statistical properties of electron-electron collisions in the recollision process in a strong laser field. The separation of the double ionization yield into sequential and nonsequential components leads to a bell-shaped curve for the nonsequential probability and a monotonically rising one for the sequential process. We identify key features of the nonsequential process and connect our findings in a simplified model which reproduces the knee shape for the probability of double ionization with laser intensity and associated trends.

  10. Quantum Theory of Recollisional (e, 2e) Process in Strong Field Nonsequential Double Ionization of Helium

    SciTech Connect

    Chen Zhangjin; Lin, C. D.; Liang Yaqiu

    2010-06-25

    Based on the full quantal recollision model and field-free electron impact ionization theory, we calculate the correlated momentum spectra of the two outgoing electrons in strong field nonsequential double ionization (NSDI) of helium to compare with recent experiments. By analyzing the relative strength of binary versus recoil collisions exhibited in the photoelectron spectra, we confirm that the observed fingerlike structure in the experiment is a consequence of the Coulomb interaction between the two emitted electrons. Our result supports the recollision mechanism of strong field NSDI at the most fundamental level.

  11. Quantum theory of recollisional (e, 2e) process in strong field nonsequential double ionization of helium.

    PubMed

    Chen, Zhangjin; Liang, Yaqiu; Lin, C D

    2010-06-25

    Based on the full quantal recollision model and field-free electron impact ionization theory, we calculate the correlated momentum spectra of the two outgoing electrons in strong field nonsequential double ionization (NSDI) of helium to compare with recent experiments. By analyzing the relative strength of binary versus recoil collisions exhibited in the photoelectron spectra, we confirm that the observed fingerlike structure in the experiment is a consequence of the Coulomb interaction between the two emitted electrons. Our result supports the recollision mechanism of strong field NSDI at the most fundamental level.

  12. Double ionization of HeH+ molecules in intense laser fields.

    PubMed

    Liao, Qing; Lu, Peixiang; Zhang, Qingbin; Yang, Zhenyu; Wang, Xinbing

    2008-10-13

    We present quantum mechanical calculations of double ionization of HeH(+) molecules by intense laser pulses at various intensities. The resulting two-electron momentum distributions exhibit a clear asymmetry, which depends on the laser intensity. The asymmetric charge configuration of HeH(+) is responsible for the asymmetric two-electron momentum distributions. An approach to control the dynamics of double ionization of heteronuclear molecules is proposed.

  13. Experimental and theoretical study on nonsequential double ionization of carbon disulfide in strong near-IR laser fields

    NASA Astrophysics Data System (ADS)

    Zuo, Wanlong; Ben, Shuai; Lv, Hang; Zhao, Lei; Guo, Jing; Liu, Xue-Shen; Xu, Haifeng; Jin, Mingxing; Ding, Dajun

    2016-05-01

    Nonsequential double ionization (NSDI) of carbon disulfide CS2 in strong 800-nm laser fields is studied experimentally and theoretically. A knee structure is observed in the intensity-dependent double ionization (DI) yield in linearly polarized laser fields, which exhibits a strong dependence on the laser ellipticity. The electron momentum distributions and energy trajectories after DI in both linearly and circularly polarized laser fields are investigated by employing the two-dimensional classical ensemble method. The results clearly show the evidence of NSDI in the strong-field DI of CS2 molecules. It is demonstrated that, similar to that of atoms, NSDI of CS2 molecules is produced via laser-driven electron recollision with the ion core and presents electron-electron correlations in the process. Analysis indicates that both mechanisms in atomic strong-field NSDI, i.e., recollision impact ionization and recollision excitation with subsequent ionization, may also be contributed to NSDI of CS2 in strong laser fields. Further studies are no doubt necessary for a full understanding of the underlying physical mechanism of molecular strong-field NSDI, due to the multicenter character of the molecular structure and the complex molecular excited states that could be involved in the ionization.

  14. Double-ionization mechanisms of the argon dimer in intense laser fields

    SciTech Connect

    Ulrich, B.; Vredenborg, A.; Malakzadeh, A.; Meckel, M.; Cole, K.; Jahnke, T.; Doerner, R.; Smolarski, M.; Chang, Z.

    2010-07-15

    We have measured the two-site double ionization of argon dimers by ultrashort laser pulses leading to fragmentation into two singly charged argon ions. Contrary to the expectations from a pure Coulomb explosion following rapid removal of one electron from each of the atoms, we find three distinct peaks in the kinetic energy release (KER) distribution. By measuring the angular distribution of the fragment ions and the vector momentum of one of the emitted electrons for circular and linear laser polarization, we are able to unravel the ionization mechanisms leading to the three features in the KER. The most abundant one results from tunnel ionization at one site followed by charge-enhanced tunnel ionization of the second atom. The second mechanism, which leads to a higher KER we identify as sequential tunnel ionization of both atoms accompanied by excitation. The third mechanism is present with linearly polarized light only. It is most likely a frustrated triple ionization, where the third electron does not escape but is trapped in a Rydberg state.

  15. Influence of magnetic field strength on potential well in the ionization stage of a double stage Hall thruster

    SciTech Connect

    Yu Daren; Song Maojiang; Liu Hui; Zhang Xu; Li Hong

    2012-07-15

    Similar to a single stage Hall thruster, the magnetic field, which controls electron trajectory and electric field distribution, is the most important factor determining the performance of a double stage Hall thruster. Especially, a potential well, which is helpful to reduce the ion loss on the thruster walls, is shaped in the ionization stage due to the existence of an annular magnetic field topology there. In this paper, the influence of magnetic field strength in the ionization stage on the potential well is researched with both experiments and particle-in-cell simulations. It is found that the depth of potential well increases with the magnetic field strength as a result of enhanced magnetic confinement and lowered electron conductivity. Consequently, the plasma density as well as the ion current entering the acceleration stage increases. However, an excessive magnetic field strength leads to an excess of ion loss on the walls of the acceleration stage. Therefore, there is an appropriate magnetic field strength in the ionization stage that results in a proper potential well and consequently an optimal performance of a double stage Hall thruster.

  16. Classical trajectory diagnosis of a fingerlike pattern in the correlated electron momentum distribution in strong field double ionization of helium.

    PubMed

    Ye, D F; Liu, X; Liu, J

    2008-12-05

    With a semiclassical quasistatic model, we identify the distinct roles of nuclear Coulomb attraction, final-state electron repulsion, and the electron-field interaction in forming the fingerlike (or V-shaped) pattern in the correlated electron momentum distribution for helium double ionization in intense laser field [Phys. Rev. Lett. 99, 263002;Phys.Rev.Lett.99, 263003 (2007)]. The underlying microscopic trajectory configurations responsible for asymmetric electron energy sharing after electron-electron collision have been uncovered, and the corresponding subcycle dynamics is analyzed. The correlation pattern is found to be sensitive to the transverse momentum of correlated electrons.

  17. Numerical simulation of the double-to-single ionization ratio for the helium atom in strong laser fields

    NASA Astrophysics Data System (ADS)

    Chen, Zhangjin; Zheng, Yanyan; Yang, Weifeng; Song, Xiaohong; Xu, Junliang; DiMauro, L. F.; Zatsarinny, Oleg; Bartschat, Klaus; Morishita, Toru; Zhao, Song-Feng; Lin, C. D.

    2015-12-01

    We present calculations on the ratio between double and single ionization of helium by a strong laser pulse at a wavelength of 780 nm using the quantitative rescattering (QRS) model. According to this model, the yield for the doubly charged ion He+2 can be obtained by multiplying the returning electron wave packet (RWP) with the total cross sections (TCSs) for electron impact ionization and electron impact excitation of +He in the singlet spin channel. The singlet constraint was imposed since the interaction of the helium atom with the laser and the recollision processes both preserve the total spin of the system. An R -matrix (close-coupling) code is used to obtain accurate TCSs, while the RWPs, according to the QRS, are calculated by the strong-field approximation for high-energy photoelectrons. The laser field, which lowers the required energy for the electron to escape from the nucleus at the time of recollision, is also taken into account. The simulated results are in good agreement with the measured He+2/+He ratio over a broad range of laser intensities. The result demonstrates that the QRS approach based on the rescattering model is fully capable of quantitatively interpreting nonsequential double ionization processes.

  18. Nonsequential Double Ionization of Atoms in Strong Laser Field: Identifying the Mechanisms behind the Correlated-Electron Momentum Spectra

    NASA Astrophysics Data System (ADS)

    Ye, Difa; Fu, Libin; Liu, Jie

    Within the strong-field physics community, there has been increasing interest on nonsequential double ionization (NSDI) induced by electron-electron (e-e) correlation. A large variety of novel phenomena has been revealed in experiments during the past decades. However, the theoretical understanding and interpretation of this process is still far from being complete. The most accurate simulation, i.e. the exact solution of the time-dependent Schrödinger equation (TDSE) for two electrons in a laser field is computationally expensive. In order to overcome the difficulty, we proposed a feasible semiclassical model, in which we treat the tunneling ionization of the outmost electron quantum mechanically according to the ADK theory, sample the inner electron from microcanonical distribution and then evolve the two electrons with Newton's equations. With this model, we have successfully explained various NSDI phenomena, including the excessive DI yield, the energy spectra and angular distribution of photoelectrons. Very recently, it is adopted to reveal the physical mechanisms behind the fingerlike structure in the correlated electron momentum spectra, the unexpected correlation-anticorrelation transition close to the recollision threshold, and the anomalous NSDI of alkaline-earth-metal atoms in circularly polarized field. The obvious advantage of our model is that it gives time-resolved insights into the complex dynamics of NSDI, from the turn-on of the laser field to the final escape of the electrons, thus allowing us to disentangle and thoroughly analyze the underlying physical mechanisms.

  19. Scaling Laws of the Two-Electron Sum-Energy Spectrum in Strong-Field Double Ionization.

    PubMed

    Ye, Difa; Li, Min; Fu, Libin; Liu, Jie; Gong, Qihuang; Liu, Yunquan; Ullrich, J

    2015-09-18

    The sum-energy spectrum of two correlated electrons emitted in nonsequential strong-field double ionization (SFDI) of Ar was studied for intensities of 0.3 to 2×10^{14} W/cm^{2}. We find the mean sum energy, the maximum of the distributions as well as the high-energy tail of the scaled (to the ponderomotive energy) spectra increase with decreasing intensity below the recollision threshold (BRT). At higher intensities the spectra collapse into a single distribution. This behavior can be well explained within a semiclassical model providing clear evidence of the importance of multiple recollisions in the BRT regime. Here, ultrafast thermalization between both electrons is found occurring within three optical cycles only and leaving its clear footprint in the sum-energy spectra.

  20. Numerical investigation of the sequential-double-ionization dynamics of helium in different few-cycle-laser-field shapes

    NASA Astrophysics Data System (ADS)

    Wustelt, Philipp; Möller, Max; Schöffler, Markus S.; Xie, Xinhua; Hanus, Vaclav; Sayler, A. Max; Baltuska, Andrius; Paulus, Gerhard G.; Kitzler, Markus

    2017-02-01

    We investigate sequential double ionization of helium by intense near-circularly polarized few-cycle laser pulses using a semiclassical ionization model with two independent electrons. Simulated He2 + ion momentum distributions are compared to those obtained in recent benchmark experiments [M. S. Schöffler, X. Xie, P. Wustelt, M. Möller, S. Roither, D. Kartashov, A. M. Sayler, A. Baltuska, G. G. Paulus, and M. Kitzler, Phys. Rev. A 93, 063421 (2016), 10.1103/PhysRevA.93.063421]. We study the influence of a number of pulse parameters such as peak intensity, carrier-envelope phase, pulse duration, and second- and third-order spectral phase on the shape of the ion momentum distributions. Good agreement is found in the main features of these distributions and of their dependence on the laser pulse duration, peak intensity, and carrier-envelope phase. Furthermore, we find that for explaining certain fine-scale features observed in the experiments, it becomes important to consider subtle timing variations in the two-electron emissions introduced by small values of chirp. This result highlights the possibility of measuring and controlling multielectron dynamics on the attosecond time scale by fine tuning the field evolution of intense close-to-single-cycle laser pulses.

  1. The influence of magnetic field strength in ionization stage on ion transport between two stages of a double stage Hall thruster

    SciTech Connect

    Yu Daren; Song Maojiang; Li Hong; Liu Hui; Han Ke

    2012-11-15

    It is futile for a double stage Hall thruster to design a special ionization stage if the ionized ions cannot enter the acceleration stage. Based on this viewpoint, the ion transport under different magnetic field strengths in the ionization stage is investigated, and the physical mechanisms affecting the ion transport are analyzed in this paper. With a combined experimental and particle-in-cell simulation study, it is found that the ion transport between two stages is chiefly affected by the potential well, the potential barrier, and the potential drop at the bottom of potential well. With the increase of magnetic field strength in the ionization stage, there is larger plasma density caused by larger potential well. Furthermore, the potential barrier near the intermediate electrode declines first and then rises up while the potential drop at the bottom of potential well rises up first and then declines as the magnetic field strength increases in the ionization stage. Consequently, both the ion current entering the acceleration stage and the total ion current ejected from the thruster rise up first and then decline as the magnetic field strength increases in the ionization stage. Therefore, there is an optimal magnetic field strength in the ionization stage to guide the ion transport between two stages.

  2. Experimental observation of the elusive double-peak structure in R-dependent strong-field ionization rate of H2(+).

    PubMed

    Xu, Han; He, Feng; Kielpinski, D; Sang, R T; Litvinyuk, I V

    2015-08-28

    When a diatomic molecule is ionized by an intense laser field, the ionization rate depends very strongly on the inter-nuclear separation. That dependence exhibits a pronounced maximum at the inter-nuclear separation known as the "critical distance". This phenomenon was first demonstrated theoretically in H2(+) and became known as "charge-resonance enhanced ionization" (CREI, in reference to a proposed physical mechanism) or simply "enhanced ionization"(EI). All theoretical models of this phenomenon predict a double-peak structure in the R-dependent ionization rate of H2(+). However, such double-peak structure has never been observed experimentally. It was even suggested that it is impossible to observe due to fast motion of the nuclear wavepackets. Here we report a few-cycle pump-probe experiment which clearly resolves that elusive double-peak structure. In the experiment, an expanding H2(+) ion produced by an intense pump pulse is probed by a much weaker probe pulse. The predicted double-peak structure is clearly seen in delay-dependent kinetic energy spectra of protons when pump and probe pulses are polarized parallel to each other. No structure is seen when the probe is polarized perpendicular to the pump.

  3. Correlated Two-Electron Momentum Spectra for Strong-Field Nonsequential Double Ionization of He at 800 nm

    SciTech Connect

    Rudenko, A.; Ergler, Th.; Zrost, K.; Feuerstein, B.; Schroeter, C. D.; Moshammer, R.; Ullrich, J.; Jesus, V. L. B. de

    2007-12-31

    We report on a kinematically complete experiment on nonsequential double ionization of He by 25 fs 800 nm laser pulses at 1.5 PW/cm{sup 2}. The suppression of the recollision-induced excitation at this high intensity allows us to address in a clean way direct (e,2e) ionization by the recolliding electron. In contrast with earlier experimental results, but in agreement with various theoretical predictions, the two-electron momentum distributions along the laser polarization axis exhibit a pronounced V-shaped structure, which can be explained by the role of Coulomb repulsion and typical (e,2e) kinematics.

  4. Recollisions and Correlated Double Ionization with Circularly Polarized Light

    SciTech Connect

    Mauger, F.; Chandre, C.; Uzer, T.

    2010-08-20

    It is generally believed that the recollision mechanism of atomic nonsequential double ionization is suppressed in circularly polarized laser fields because the returning electron is unlikely to encounter the core. On the contrary, we find that recollision can and does significantly enhance double ionization, even to the extent of forming a ''knee,'' the signature of the nonsequential process. Using a classical model, we explain two apparently contradictory experiments, the absence of a knee for helium and its presence for magnesium.

  5. Probing Angular Correlations in Sequential Double Ionization

    SciTech Connect

    Fleischer, A.; Woerner, H. J.; Arissian, L.; Liu, L. R.; Meckel, M.; Rippert, A.; Doerner, R.; Villeneuve, D. M.; Corkum, P. B.; Staudte, A.

    2011-09-09

    We study electron correlation in sequential double ionization of noble gas atoms and HCl in intense, femtosecond laser pulses. We measure the photoelectron angular distributions of Ne{sup +} relative to the first electron in a pump-probe experiment with 8 fs, 800 nm, circularly polarized laser pulses at a peak intensity of a few 10{sup 15} W/cm{sup 2}. Using a linear-linear pump-probe setup, we further study He, Ar, and HCl. We find a clear angular correlation between the two ionization steps in the sequential double ionization intensity regime.

  6. Single-shot carrier-envelope-phase-tagged ion-momentum imaging of nonsequential double ionization of argon in intense 4-fs laser fields

    SciTech Connect

    Johnson, Nora G.; Herrwerth, O.; Wirth, A.; De, S.; Ben-Itzhak, I.; Lezius, M.; Bergues, B.; Kling, M. F.; Senftleben, A.; Schroeter, C. D.; Moshammer, R.; Ullrich, J.; Betsch, K. J.; Jones, R. R.; Sayler, A. M.; Rathje, T.; Ruehle, K.; Mueller, W.; Paulus, G. G.

    2011-01-15

    Single-shot carrier-envelope-phase (CEP) tagging is combined with a reaction mircoscope (REMI) to investigate CEP-dependent processes in atoms. Excellent experimental stability and data acquisition longevity are achieved. Using this approach, we study the CEP effects for nonsequential double ionization of argon in 4-fs laser fields at 750 nm and an intensity of 1.6x10{sup 14} W/cm{sup 2}. The Ar{sup 2+} ionization yield shows a pronounced CEP dependence which compares well with recent theoretical predictions employing quantitative rescattering theory [S. Micheau et al., Phys. Rev. A 79, 013417 (2009)]. Furthermore, we find strong CEP influences on the Ar{sup 2+} momentum spectra along the laser polarization axis.

  7. Precision treatment of single and double multiphoton ionization of He atoms by strong laser fields: Time-dependent generalized pseudospectral method in internal coordinates

    NASA Astrophysics Data System (ADS)

    Telnov, Dmitry A.; Heslar, John; Chu, Shih-I.

    2012-06-01

    We have developed a new computational method for accurate and efficient numerical solution of the time-dependent Schr"odinger equation for two-electron atoms. Our approach is full-dimensional and makes use of the internal coordinates of the electrons in the plane defined by the electrons and the nucleus (r1, r2, and θ12) as well as Euler angles which determine the orientation of the plane in space. The internal coordinates can be optimally discretized by means of the generalized pseudospectral method while the Euler angles appear through the basis set functions with the definite total angular momentum and its projections. The results of the single and double ionization of the helium atom by strong 800 nm laser fields will be presented. The accurate time-dependent electron density obtained can be used for testing and improvement of various approximate exchange-correlation functionals of the time-dependent density functional theory.

  8. Double ionization of helium by particle impact

    NASA Technical Reports Server (NTRS)

    Jacobsen, Finn M.

    1990-01-01

    Experimental results are reviewed of the ratio, R sq., of double to single ionization of He by proton, antiproton, electron and positron impact in the energy range from 0.15 to about 10 MeV/amu. At high velocities (greater than 1 to 2 MeV/amu) values of R sq. caused by electron impact merge with those for the proton with the antiproton, electron values being up to a factor of 2 greater than that for the p, positron. At these velocities the single ionization cross sections caused by impact of any of these four particles are indistinguishable.

  9. Electron-impact double ionization of magnesium

    SciTech Connect

    Ford, M.J.; El-Marji, B.; Doering, J.P.; Moore, J.H.; Coplan, M.A.; Cooper, J.W.

    1998-01-01

    Electron-impact double-ionization cross sections differential in the angles of the two ejected electrons have been measured at impact energies of 422 and 1052 eV. The energies of the ejected electrons were fixed at 100 eV each. The cross sections are very different at the two incident energies. At 1052 eV the ejected electrons are preferentially found in the forward direction with respect to the incident beam. At 422 eV they are found in the forward and backward directions with approximately equal probability. The 422-eV cross sections are largest when the incident-electron and ejected-electron momentum vectors lie in a common plane. The observations are discussed in the context of several models for double ionization. {copyright} {ital 1998} {ital The American Physical Society}

  10. Equivalent electron correlations in nonsequential double ionization of noble atoms

    NASA Astrophysics Data System (ADS)

    Dong, Shansi; Han, Qiujing; Zhang, Jingtao

    2017-02-01

    Electron correlation is encoded directly in the distribution of the energetic electrons produced in a recollision-impact double ionization process, and varies with the laser field and the target atoms. In order to get equivalent electron correlation effects, one should enlarge the laser intensity cubically and the laser frequency linearly in proportion to the second ionization potentials of the target atoms. The physical mechanism behind the transform is to keep the ponderomotive parameter unchanged when the laser frequency is enlarged. Project supported by the National Natural Science Foundation of China (Grant Nos. 61475168 and 11674231) and sponsored by Shanghai Gaofeng & Gaoyuan Project for University Academic Program Development (Zhang).

  11. Frustrated double ionization in two-electron triatomic molecules

    NASA Astrophysics Data System (ADS)

    Chen, A.; Price, H.; Staudte, A.; Emmanouilidou, A.

    2016-10-01

    Using a semiclassical model, we investigate frustrated double ionization (FDI) in D3+ , a two-electron triatomic molecule, when driven by an intense, linearly polarized, near-infrared (800 nm) laser field. We compute the kinetic energy release of the nuclei and find a good agreement between experiment and our model. We explore the two pathways of FDI and show that, with increasing field strength, over-the-barrier ionization overtakes tunnel ionization as the underlying mechanism of FDI. Moreover, we compute the angular distribution of the ion fragments for FDI and identify a feature that can potentially be observed experimentally and is a signature of only one of the two pathways of FDI.

  12. Two- and three-photon double ionization of lithium

    NASA Astrophysics Data System (ADS)

    Armstrong, G.; Schuricke, M.; Veeravalli, G.; Dornes, Ch.; Zhu, G.; Joachimsmeyer, K.; Treusch, R.; Dorn, A.; Colgan, J.

    2012-06-01

    Motivated by current FEL experiments at FLASH, we present triple differential cross sections and recoil ion momentum distributions for two- and three-photon double ionization of the 1s^22s ^2S ground state of lithium at a photon energy of 50 eV. The time-dependent close-coupling (TDCC) method is used to solve the two-electron time-dependent Schr"odinger equation in full dimensionality. The double ionization process is treated as a two-active-electron process, where the ``active'' 1s and 2s electrons move in the field of the ``frozen-core'' Li^2+ 1s state. Recent experimental measurements of recoil ion momentum distributions have observed features associated with the absorption of both two and three photons. This work provides the first TDCC calculations to date of such two- and three-photon double ionization processes in lithium. The accurate treatment of these processes requires a detailed description of the final continuum containing both singlet and triplet S, P, D and F waves. We examine triple differential cross sections as a function of electron energy sharing for a variety of angular configurations. We also compare our calculated recoil ion momentum distributions with experimental measurements, providing the first such comparison for two- and three-photon processes.

  13. Double gate impact ionization MOS transistor: Proposal and investigation

    NASA Astrophysics Data System (ADS)

    Yang, Zhaonian; Zhang, Yue; Yang, Yuan; Yu, Ningmei

    2017-02-01

    In this paper, a double gate impact ionization MOS (DG-IMOS) transistor with improved performance is proposed and investigated by TCAD simulation. In the proposed design, a second gate is introduced in a conventional impact ionization MOS (IMOS) transistor that lengthens the equivalent channel length and suppresses the band-to-band tunneling. The OFF-state leakage current is reduced by over four orders of magnitude. At the ON-state, the second gate is negatively biased in order to enhance the electric field in the intrinsic region. As a result, the operating voltage does not increase with the increase in the channel length. The simulation result verifies that the proposed DG-IMOS achieves a better switching characteristic than the conventional is achieved. Lastly, the application of the DG-IMOS is discussed theoretically.

  14. Cross sections for short pulse single and double ionization ofhelium

    SciTech Connect

    Palacios, Alicia; Rescigno, Thomas N.; McCurdy, C. William

    2007-11-27

    In a previous publication, procedures were proposed for unambiguously extracting amplitudes for single and double ionization from a time-dependent wavepacket by effectively propagating for an infinite time following a radiation pulse. Here we demonstrate the accuracy and utility of those methods for describing two-photon single and one-photon double ionization of helium. In particular it is shown how narrow features corresponding to autoionizing states are easily resolved with these methods.

  15. Signatures of bound-state-assisted nonsequential double ionization

    SciTech Connect

    Sukiasyan, Suren; McDonald, Chris; Van Vlack, Cole; Destefani, Carlos; Fennel, Thomas; Brabec, Thomas; Ivanov, Misha

    2009-07-15

    The time-dependent multiconfiguration Hartree method is optimized for intense laser dynamics and applied to nonsequential double ionization in a two-electron diatomic model molecule with two dimensions per electron. The efficiency of our method brings these calculations from the realm of large scale computation facilities to single processor machines. The resulting two-electron spectrum exhibits pronounced signatures from which the ionic bound states involved in nonsequential double ionization are retrieved with the help of a semiclassical model. A mechanism for the ionization dynamics is suggested.

  16. Ionization and dissociation dynamics of molecules in strong laser fields

    NASA Astrophysics Data System (ADS)

    Lai, Wei

    The fast advancement of ultrashort-pulsed high-intensity laser technology allows for generating an electric field equivalent to the Coulomb field inside an atom or a molecule (e.g., EC=5.14x109 V/cm at the 1s orbit radius a0=0.0529 nm of the hydrogen atom, which corresponds to an intensity of 3.54x1016 W/cm2). Atoms and molecules exposed in such a field will easily be ionized, as the external field is strong enough to remove the electrons from the core. This is usually referred to "strong field". Strong fields provide a new tool for studying the interaction of atoms and molecules with light in the nonlinear nonperturbative regime. During the past three decades, significant progress has been made in the strong field science. Today, most phenomena involving atoms in strong fields have been relatively well understood by the single-active-electron (SAE) approximation. However, the interpretation of these responses in molecules has encountered great difficulties. Not like atoms that only undergo excitation and ionization, various dissociation channels accompanying excitation and ionization can occur in molecules during the laser pulse interaction, which imparts further complexity to the study of molecules in strong fields. Previous studies have shown that molecules can behave significantly different from rare gas atoms in phenomena as simple as single and double ionization. Molecular dissociation following ionization also presents challenges in strong fields compared to what we have learned in the weak-field regime. This dissertation focuses on experimental studies on ionization and dissociation of some commonly-seen small molecules in strong laser fields. Previous work of molecules in strong fields will be briefly reviewed, particularly on some open questions about multiple dissociation channels, nonsequential double ionization, enhanced ionization and molecular alignment. The identification of various molecular dissociation channels by recent experimental technical

  17. Nonsequential double ionization as a completely classical photoelectric effect.

    PubMed

    Ho, Phay J; Panfili, R; Haan, S L; Eberly, J H

    2005-03-11

    We introduce a unified and simplified theory of atomic double ionization. Our results show that at high laser intensities (I>/=10(14) W/cm(2)) purely classical correlation is strong enough to account for all of the main features observed in experiments to date.

  18. Frustrated double and single ionization in a two-electron triatomic molecule H+ 3

    NASA Astrophysics Data System (ADS)

    Chen, A.; Lazarou, C.; Price, H.; Emmanouilidou, A.

    2016-12-01

    Using a semi-classical model, we study the formation of highly excited neutral fragments during the fragmentation of {{{H}}}3+, a two-electron triatomic molecule, driven by an intense near-IR laser field. To do so, we first formulate a microcanonical distribution for arbitrary one-electron triatomic molecules. We then study frustrated double and single ionization in strongly driven {{{H}}}3+ and compute the kinetic energy release of the nuclei for these two processes. Moreover, we investigate the dependence of frustrated ionization on the strength of the laser field as well as on the geometry of the initial molecular state.

  19. Field-dressed orbitals in strong-field molecular ionization

    NASA Astrophysics Data System (ADS)

    Siemering, Robert; Njoya, Oumarou; Weinacht, Thomas; de Vivie-Riedle, Regina

    2015-10-01

    We demonstrate the importance of considering the shape of field-dressed molecular orbitals in interpreting angle-dependent measures of strong-field ionization from excited states. Our calculations of angle-dependent ionization for three homologous polyatomic molecules with very similar valence orbitals show that one has to take into account the shape of the field-dressed orbitals rather than the field-free orbitals in order to rationalize the experimental measurements.

  20. Double differential cross sections for electron impact ionization of helium

    NASA Astrophysics Data System (ADS)

    Yun-fei, Yao; Zhang-jin, Chen

    1999-03-01

    The double differential cross sections for electron impact ionization of helium at incident energies of 200 eV, 100 eV and 64.6 eV have been calculated in the BBK model. The present results are found to be in generally good agreement with the latest measurements of Röder et al. and the theoretical results of the convergent close-coupling method although some quantitative discrepancy remains.

  1. Field ionization of free helium atoms: Correlation between the kinetic energy of ionized atoms and probability of their field ionization

    NASA Astrophysics Data System (ADS)

    Piskur, J.; Borg, L.; Stupnik, A.; Leisch, M.; Ernst, W. E.; Holst, B.

    2008-05-01

    In this paper the correlation between the kinetic energy of helium atoms and the probability of field ionization is investigated by exploiting the narrow velocity distribution of supersonic molecular beams. Field ionization measurements were carried out on supersonic helium beams at 298 K and 95 K corresponding to energies of about 65 meV and 20 meV, respectively, for the individual atoms. The field ionization was performed with a tungsten tip, radius of curvature 12 nm, kept at room temperature. The ionization probability was found to increase by about a factor 10 when the beam was cooled from 298 K to 95 K. The results presented in this paper are of importance for improving the understanding of field ionization and for the development of a new detector for helium and other molecular beams.

  2. Nonsequential double ionization with time-dependent renormalized-natural-orbital theory

    NASA Astrophysics Data System (ADS)

    Brics, M.; Rapp, J.; Bauer, D.

    2014-11-01

    Recently introduced time-dependent renormalized-natural-orbital theory (TDRNOT) is tested on nonsequential double ionization (NSDI) of a numerically exactly solvable one-dimensional model He atom subject to few-cycle, 800-nm laser pulses. NSDI of atoms in strong laser fields is a prime example of nonperturbative, highly correlated electron dynamics. As such, NSDI is an important "worst-case" benchmark for any time-dependent few and many-body technique beyond linear response. It is found that TDRNOT reproduces the celebrated NSDI "knee," i.e., a many-order-of-magnitude enhancement of the double-ionization yield (as compared to purely sequential ionization) with only the ten most significant natural orbitals (NOs) per spin. Correlated photoelectron spectra—as "more differential" observables—require more NOs.

  3. Double field theory inspired cosmology

    SciTech Connect

    Wu, Houwen; Yang, Haitang E-mail: hyanga@scu.edu.cn

    2014-07-01

    Double field theory proposes a generalized spacetime action possessing manifest T-duality on the level of component fields. We calculate the cosmological solutions of double field theory with vanishing Kalb-Ramond field. It turns out that double field theory provides a more consistent way to construct cosmological solutions than the standard string cosmology. We construct solutions for vanishing and non-vanishing symmetry preserving dilaton potentials. The solutions assemble the pre- and post-big bang evolutions in one single line element. Our results show a smooth evolution from an anisotropic early stage to an isotropic phase without any special initial conditions in contrast to previous models. In addition, we demonstrate that the contraction of the dual space automatically leads to both an inflation phase and a decelerated expansion of the ordinary space during different evolution stages.

  4. Photo Double Ionization of Fixed in Space Deuterium Molecules

    NASA Astrophysics Data System (ADS)

    Weber, Thorsten; Dörner, Reinhard; Czasch, Achim; Jagutzki, Ottmar; Böcking, Horst Schmidt; Müller, Alkis; Mergel, Volker; Prior, Mike; Osipov, Timur; Daveau, Sebastian; Rotenberg, Eli; Meigs, George; Cocke, Lew; Landers, Allen; Kheifets, Anatoli; Feagin, Jim; Muino, Ricardo Diez

    2006-11-01

    In the following we present the kinematically complete study of the four-body fragmentation of the D2 molecule following absorption of a single photon. For equal energy sharing of the two electrons and a photon energy of 75.5 eV, we observed the relaxation of one of the selection rules valid for He photo double ionization and a strong dependence of the electron angular distribution on the orientation of the molecular axis in the coplanar geometry. This effect is reproduced by a model in which a pair of photo ionization amplitudes is introduced for the light polarization parallel and perpendicular to the molecular axis. The results in a non-coplanar geometry reveal that the correlated motion of the electrons is strongly dependent on the inter-nuclear separation in the molecular ground state at the instant of photon absorption.

  5. Electron-nuclear correlation in above-threshold double ionization of molecules

    NASA Astrophysics Data System (ADS)

    Lu, Peifen; Zhang, Wenbin; Gong, Xiaochun; Song, Qiying; Lin, Kang; Ji, Qinying; Ma, Junyang; He, Feng; Zeng, Heping; Wu, Jian

    2017-03-01

    We report on the experimental observation of photon energy sharing among two electrons and two ions ejected from a doubly ionized molecule exposed to an intense ultraviolet femtosecond laser pulse. Although two electrons are successively released one after the other, bridged by the nuclear motion via their interactions, photon energy sharing among four particles is observed as multiple energy conservation lines in their joint energy spectrum. For sequential double ionization of H2, the electron-nuclear joint energy spectrum allows us to identify three pathways towards the charge-resonance enhanced ionization of the stretching H2+ in strong laser fields. By counting the photon number absorbed by the molecule, we trace the accessibility, enhancement, and suppression of various pathways. The correlated electron-nuclear motion provides profound insights of the complicated strong-field dynamics of molecules.

  6. The ionization rate inversion of H? induced by the single and double UV photon(s)

    NASA Astrophysics Data System (ADS)

    He, Pei-Lun; He, Feng

    2013-11-01

    The ionization of H? in the strong UV laser pulse is studied by numerically solving the time-dependent Schrödinger equation. In analogy to Young's double-slit interference, the ionized electron originating from two nuclei will constructively, or destructively interfere, depending on the UV frequencies. The fluctuation of the ionization rate as a function of the laser frequency is observed. The destructive interference suppresses the single-photon ionization rate, so that the double-photon ionization rate can be larger than the single-photon ionization rate. When such an ionization-rate inversion happens, the electron momentum spectra splits into several peaks.

  7. Strong-field ionization of lithium

    SciTech Connect

    Schuricke, Michael; Zhu Ganjun; Steinmann, Jochen; Simeonidis, Konstantinos; Dorn, Alexander; Ullrich, Joachim; Ivanov, Igor; Kheifets, Anatoli; Grum-Grzhimailo, Alexei N.; Bartschat, Klaus

    2011-02-15

    We report photoelectron energy spectra, momentum, and angular distributions for the strong-field single ionization of lithium by 30-fs laser pulses. For peak intensities between 10{sup 11} and 10{sup 14} W/cm{sup 2} at a central wavelength of 785 nm, the classical over-the-barrier intensity was reached well inside the multiphoton regime. The complete vector momenta of the ionization fragments were recorded by a reaction microscope with a magneto-optically trapped target (MOTREMI). On the theoretical side, the time-dependent Schroedinger equation was solved by two independent methods seeking the solution directly on a radial grid. Distinct differences between the results of both calculations and also in comparison with experiment point to a high sensitivity of this reaction with respect to small details, particularly in the description of the Li{sup +} core.

  8. Relativistic effects on giant resonances in electron-impact double ionization

    SciTech Connect

    Pindzola, M.S.

    1987-06-01

    The electron-impact double-ionization cross section for Fr/sup +/ is calculated in the distorted-wave Born approximation. A giant resonance in the 5d subshell ionization-autoionization contribution to the cross section is found to be quite sensitive to changes in the double-well potential caused by relativistic effects on bound-state wave functions.

  9. Correlated electron dynamics in nonsequential double ionization by orthogonal two-color laser pulses.

    PubMed

    Zhou, Yueming; Huang, Cheng; Tong, Aihong; Liao, Qing; Lu, Peixiang

    2011-01-31

    We have investigated the correlated electron dynamics in nonsequential double ionization (NSDI) of helium by the orthogonally polarized two-color pulses that consisted of an 800-nm and a 400-nm laser fields using the classical ensemble model. Depending on the relative phase of the two-color field, the electron momentum distributions along the polarization direction of the 800-nm field exhibit a surprisingly strong anticorrelated or correlated behavior. Back analysis reveals that recollisions eventually leading to NSDI are concentrated in a time window as short as several hundreds attoseconds with this scheme. By changing the relative phase of the two-color field, the revisit time of recolliding electron wave packet has been controlled with attosecond precision, which is responsible for the various correlated behaviors of the two electrons. Our results reveal that the orthogonally polarized two-color field can serve as a powerful tool to control the correlated electron dynamics in NSDI.

  10. Dynamics of the helium atom close to the full fragmentation threshold: Double ionization

    SciTech Connect

    Bouri, C.; Selles, P.; Malegat, L.; Kwato Njock, M. G.

    2006-02-15

    A complete set of cross sections is presented for photodouble ionization of He at 0.1 eV above the threshold. Special care is taken to clear the asymmetry parameter and the energy differential cross section of any ionization-excitation contribution. As a result, their limiting behaviors for the fully asymmetric partitionings of the excess energy are elucidated, thus shedding light on pending discussions in the field. A reliable scheme follows for computing the fully integrated cross section. Very good agreement is observed between the calculated and measured fully differential cross sections after a detailed reassessment of the experimental normalization procedure. The present findings are compared with the assumptions underlying the Wannier picture of near-threshold double escape.

  11. Exit point in the strong field ionization process

    PubMed Central

    Ivanov, I. A.; Nam, Chang Hee; Kim, Kyung Taec

    2017-01-01

    We analyze the process of strong field ionization using the Bohmian approach. This allows retention of the concept of electron trajectories. We consider the tunnelling regime of ionization. We show that, in this regime, the coordinate distribution for the ionized electron has peaks near the points in space that can be interpreted as exit points. The interval of time during which ionization occurs is marked by a quick broadening of the coordinate distribution. The concept of the exit point in the tunneling regime, which has long been assumed for the description of strong field ionization, is justified by our analysis. PMID:28057938

  12. Exit point in the strong field ionization process

    NASA Astrophysics Data System (ADS)

    Ivanov, I. A.; Nam, Chang Hee; Kim, Kyung Taec

    2017-01-01

    We analyze the process of strong field ionization using the Bohmian approach. This allows retention of the concept of electron trajectories. We consider the tunnelling regime of ionization. We show that, in this regime, the coordinate distribution for the ionized electron has peaks near the points in space that can be interpreted as exit points. The interval of time during which ionization occurs is marked by a quick broadening of the coordinate distribution. The concept of the exit point in the tunneling regime, which has long been assumed for the description of strong field ionization, is justified by our analysis.

  13. Two-electron cusp in the double ionization of helium

    SciTech Connect

    Gulyas, L.; Sarkadi, L.; Igarashi, A.; Kirchner, T.

    2010-09-15

    We analyze the double ionization of He under the impact of 100 keV He{sup 2+} projectiles. The process is described within the framework of the impact parameter and frozen-correlation approximations where the one-electron events are treated by the continuum distorted wave method. Correlation between the emitted electrons, which plays an important role in forming the shape of the differential distribution of the electron emission, is described by the Coulomb density of states approximation (CDS). Special attention is paid to the region of the two-electron cusp that has been observed in a recent experiment for 100 keV He{sup 0}+He collisions [L. Sarkadi and A. Orban, Phys. Rev. Lett. 100, 133201 (2008)]. In the cusp region the correlated motion of the two electrons is influenced dominantly by the outgoing projectile, that is, the correlation function of the CDS treatment is expected to depend on the electron momenta measured relative to the projectile rather than to the target nucleus. A qualitative agreement with the experiment is achieved with a CDS model based on the use of such a projectile-centered correlation function that applies effective charges as given in the dynamically screened three-Coulomb wave function.

  14. Single and double ionization of magnesium by electron impact: A classical study

    NASA Astrophysics Data System (ADS)

    Dubois, J.; Berman, S. A.; Chandre, C.; Uzer, T.

    2017-02-01

    We consider electron impact-driven single and double ionization of magnesium in the energy range of 10 to 100 eV. Our classical Hamiltonian model of these (e ,2 e ) and (e ,3 e ) processes sheds light on their total cross sections and reveals the underlying ionization mechanisms. Two pathways are at play in single ionization: delayed and direct. In contrast, only the direct process is observed in double ionization, ruling out the excitation-autoionization channel. We also provide evidence that the so-called Two-Step 2 mechanism predominates over the Two-Step 1 mechanism, in agreement with experiments.

  15. Electron dynamics of molecular double ionization by elliptically polarized few-cycle laser pulses

    NASA Astrophysics Data System (ADS)

    Ai-Hong, Tong; Guo-Qiang, Feng; Dan, Liu

    2015-03-01

    Using the classical ensemble method, we have investigated double ionization (DI) of diatomic molecules driven by elliptically polarized few-cycle laser pulses. The results show that DI channel depends strongly on internuclear distances (R), which is dominated by nonsequential double ionization (NSDI) for small and large R, while sequential double ionization (SDI) for mediate R. By tracing NSDI trajectories, we find that NSDI mainly originates from recollision process for small R and collision process for large R. Moreover, the correlated momentum distributions along the long axis strongly depend on the carrier-envelope-phase (CEP), and this phase dependence is affected by R.

  16. Non-sequential double ionization of Ne in intense laser pulses: a coincidence experiment.

    PubMed

    Moshammer, R; Feuerstein, B; Fischer, D; Dorn, A; Schroter, C; Deipenwisch, J; Lopez-Urrutia, J R; Hohr, C; Neumayer, P; Ullrich, J; Rottke, H; Trump, C; Wittmann, M; Korn, G; Sandner, W

    2001-03-26

    The dynamics of Neon double ionization by 25 fs, 1.0 PW/cm 2 laser pulses at 795 nm has been studied in a many particle coincidence experiment. The momentum vectors of all ejected atomic fragments (electrons and ions) have been measured using combined electron and recoil-ion momentum spectroscopy. Electron emission spectra for double and single ionization will be discussed. In both processes the mean electron energies differ considerably and high energetic electrons with energies of more than 120 eV have been observed for double ionization. The experimental results are in qualitative agreement with the rescattering model.

  17. Slow-down collisions and nonsequential double ionization in classical simulations.

    PubMed

    Panfili, R; Haan, S L; Eberly, J H

    2002-09-09

    We use classical simulations to analyze the dynamics of nonsequential double-electron short-pulse photoionization. We utilize a microcanonical ensemble of 10(5) two-electron "trajectories," a number large enough to provide large subensembles and even sub-subensembles associated with double ionization. We focus on key events in the final doubly ionized subensemble and back-analyze the subensemble's history, revealing a classical slow-down scenario for nonsequential double ionization. We analyze the dynamics of these slow-down collisions and find that a good phase match between the motions of the electrons can lead to very effective energy transfer, followed by escape over a suppressed barrier.

  18. Ellipticity-dependent ionization/dissociation of carbon dioxide in strong laser fields

    NASA Astrophysics Data System (ADS)

    Zhang, Jun-Feng; Ma, Ri; Zuo, Wan-Long; Lv, Hang; Huang, Hong-Wei; Xu, Hai-Feng; Jin, Ming-Xing; Ding, Da-Jun

    2015-03-01

    Ionization and dissociation of linear triatomic molecules, carbon dioxide, are studied in 50-fs 800-nm strong laser fields using time-of-flight mass spectrometer. The yields of double charged ions and various fragment ions (CO+, On+, and Cn+ (n = 1, 2)) are measured as a function of ellipticity of laser polarization in the intensity range from 5.0 × 1013 W/cm2 to 6.0 × 1014 W/cm2. The results demonstrate that non-sequential double ionization, which is induced by laser-driven electron recollision, dominates double ionization of CO2 in the strong IR laser field with intensity lower than 2.0 × 1014 W/cm2. The electron recollision could also have contribution in strong-field multiple ionization and formation of fragments of CO2 molecules. The present study indicates that the intensity and ellipticity dependence of ions yields can be used to probe the complex dynamics of strong-field ionization/dissociation of polyatomic molecules. Project supported by the National Basic Research Program of China (Grant No. 2013CB922200) and the National Natural Science Foundation of China (Grant Nos. 11034003 and 11274140).

  19. Ionization Time and Exit Momentum in Strong-Field Tunnel Ionization.

    PubMed

    Teeny, Nicolas; Yakaboylu, Enderalp; Bauke, Heiko; Keitel, Christoph H

    2016-02-12

    Tunnel ionization belongs to the fundamental processes of atomic physics. The so-called two-step model, which describes the ionization as instantaneous tunneling at the electric field maximum and classical motion afterwards with zero exit momentum, is commonly employed to describe tunnel ionization in adiabatic regimes. In this contribution, we show by solving numerically the time-dependent Schrödinger equation in one dimension and employing a virtual detector at the tunnel exit that there is a nonvanishing positive time delay between the electric field maximum and the instant of ionization. Moreover, we find a nonzero exit momentum in the direction of the electric field. To extract proper tunneling times from asymptotic momentum distributions of ionized electrons, it is essential to incorporate the electron's initial momentum in the direction of the external electric field.

  20. Electron dynamics of molecular double ionization by circularly polarized laser pulses

    SciTech Connect

    Tong, Aihong; Zhou, Yueming; Huang, Cheng; Lu, Peixiang

    2013-08-21

    Using the classical ensemble method, we have investigated double ionization (DI) of diatomic molecules driven by circularly polarized laser pulses with different internuclear distances (R). The results show that the DI mechanism changes from sequential double ionization (SDI) to nonsequential double ionization (NSDI) as the internuclear distance increases. In SDI range, the structure of the electron momentum distribution changes seriously as R increases, which indicates the sensitive dependence of the release times of the two electrons on R. For NSDI, because of the circular polarization, the ionization of the second electron is not through the well-known recollision process but through a process where the first electron ionizes over the inner potential barrier of the molecule, moves directly towards the other nucleus, and kicks out the second electron.

  1. Pulse duration dependence of atomic sequential double ionization by circular laser pulses

    NASA Astrophysics Data System (ADS)

    Tong, Aihong; Chen, Liangyuan; Li, Yingbin

    2016-09-01

    Using classical ensemble method, we have investigated the pulse duration dependence of sequential double ionization (SDI) of Ar atoms driven by circularly polarized laser pulses. The results show that the ion momentum distribution of Ar atoms depends strongly on the pulse duration. As the pulse duration increases, the ion momentum distribution changes from single-ring to double-ring structure, and finally to the single-ring structure. Back analysis of double ionization trajectories shows that the variation of the ring structure originates from the dependence of the ionization time of the second electron on the pulse duration. Moreover, our calculations clearly manifest the subcycle electron emission in sequential double ionization by circularly polarized laser pulses.

  2. Double metric, generalized metric, and α' -deformed double field theory

    NASA Astrophysics Data System (ADS)

    Hohm, Olaf; Zwiebach, Barton

    2016-03-01

    We relate the unconstrained "double metric" of the "α' -geometry" formulation of double field theory to the constrained generalized metric encoding the spacetime metric and b -field. This is achieved by integrating out auxiliary field components of the double metric in an iterative procedure that induces an infinite number of higher-derivative corrections. As an application, we prove that, to first order in α' and to all orders in fields, the deformed gauge transformations are Green-Schwarz-deformed diffeomorphisms. We also prove that to first order in α' the spacetime action encodes precisely the Green-Schwarz deformation with Chern-Simons forms based on the torsionless gravitational connection. This seems to be in tension with suggestions in the literature that T-duality requires a torsionful connection, but we explain that these assertions are ambiguous since actions that use different connections are related by field redefinitions.

  3. Non-sequential double ionization spectroscopy of argon and spectrally resolved transient alignment of gaseous iodine molecules

    NASA Astrophysics Data System (ADS)

    Peterson, Emily R.

    This pair of experiments investigates strong-field behavior of an atom and of a molecule, observing these phenomena through collection of detailed spectral information under the necessary parameters. We first investigate the double-ionization of an argon atom; inelastic collisions between the ion and the laser-driven electron may provide an explanation of the unexpectedly high probabilities of multiple ionization under certain pulse intensities. The second experiment uses the polarization-dependence of molecular absorption spectra to monitor field-induced orientational anisotropy in a dense iodine gas sample. We record the times of flight of ions and electrons produced by a tightly focused short laser pulse in an intensity regime where non-sequential processes dominate double ionization. When a double ion is recorded under these conditions, it is statistically likely to be non-sequential and one of few ionization events during that laser shot. We collect a spectrum for the resulting electrons, recording only those electrons that are simultaneous with detection of a double ion. This spectrum reflects an enhancement in the fraction of electrons produced by non-sequential double ionization events. This enriched spectrum is compared to the single-ionization ATI spectrum, and the difference attributed to double ionization. These electron spectra show an increase in angular spread of electrons as well as the theorized increase in longitudinal energy associated with rescattering, and include some electrons which are best explained by extensions to the rescattering model. Similarly, we approach transient alignment of molecules with the belief that spectral information is important to our understanding of the system as a whole. It has been demonstrated that molecules exposed to a linearly polarized non-resonant laser pulse receive an angular impulse, kicking them into alignment. The rotational wavepacket created is coherent, resulting in periodic recurrences of this

  4. Integrated atom detector based on field ionization near carbon nanotubes

    SciTech Connect

    Gruener, B.; Jag, M.; Stibor, A.; Visanescu, G.; Haeffner, M.; Kern, D.; Guenther, A.; Fortagh, J.

    2009-12-15

    We demonstrate an atom detector based on field ionization and subsequent ion counting. We make use of field enhancement near tips of carbon nanotubes to reach extreme electrostatic field values of up to 9x10{sup 9} V/m, which ionize ground-state rubidium atoms. The detector is based on a carpet of multiwall carbon nanotubes grown on a substrate and used for field ionization, and a channel electron multiplier used for ion counting. We measure the field enhancement at the tips of carbon nanotubes by field emission of electrons. We demonstrate the operation of the field ionization detector by counting atoms from a thermal beam of a rubidium dispenser source. By measuring the ionization rate of rubidium as a function of the applied detector voltage we identify the field ionization distance, which is below a few tens of nanometers in front of nanotube tips. We deduce from the experimental data that field ionization of rubidium near nanotube tips takes place on a time scale faster than 10{sup -10} s. This property is particularly interesting for the development of fast atom detectors suitable for measuring correlations in ultracold quantum gases. We also describe an application of the detector as partial pressure gauge.

  5. Vacuum ultraviolet pulsed field ionization-photoelectron and infrared-photoinduced Rydberg ionization study of trans-1,3-butadiene.

    PubMed

    Hou, Y; Woo, H-K; Wang, P; Xing, X; Ng, C Y; Lau, K-C

    2008-09-21

    The vacuum ultraviolet (VUV) laser pulsed field ionization-photoelectron (PFI-PE) spectrum of trans-1,3-butadiene (trans-CH(2)[Double Bond]CHCH[Double Bond]CH(2)) has been measured in the region of 0-1700 cm(-1) above its ionization energy (IE) to probe the vibrational modes nu(i) (+) (i=1-18) of trans-CH(2)[Double Bond]CHCH[Double Bond]CH(2) (+). The high-frequency vibrational modes nu(i) (+) (i=19, 22, and 23) of trans-CH(2)[Double Bond]CHCH[Double Bond]CH(2) (+) have also been probed by the VUV-infrared-photoinduced Rydberg ionization (VUV-IR-PIRI) measurement. On the basis of the semiempirical simulation of the origin VUV-PFI-PE band, the IE(trans-CH(2)[Double Bond]CHCH[Double Bond]CH(2)) is determined to be 73 150.1+/-1.5 cm(-1) (9.06946+/-0.00019 eV). This value has been used to benchmark the state-of-the-art theoretical IE prediction based on the CCSD(T,Full)/CBS procedures, the calculation of which is reported in the present study. The vibrational bands observed in the VUV-PFI-PE and VUV-IR-PIRI spectra were assigned based on ab initio anharmonic vibrational frequencies and Franck-Condon factor calculations for the photoionization transitions. Combining the VUV-PFI-PE and VUV-IR-PIRI measurements, 17 fundamental vibrational frequencies of trans-CH(2)[Double Bond]CHCH[Double Bond]CH(2) (+) have been determined, including nu(1) (+)=182+/-3, nu(2) (+)=300+/-3, nu(3) (+)=428+/-3, nu(4) (+)=514+/-3, nu(5) (+)=554+/-5, nu(6) (+)=901+/-3, nu(7) (+)=928+/-5, nu(8) (+)=994+/-3, nu(9) (+)=1008+/-5, nu(10) (+)=1094+/-5, nu(13) (+)=1258+/-3, nu(14) (+)=1293+/-3, nu(16) (+)=1479+/-3, nu(18) (+)=1620+/-3, nu(19) (+)=2985+/-10, nu(22) (+)=3030+/-10, and nu(23) (+)=3105+/-10 cm(-1).

  6. Nonsequential Two-Photon Double Ionization of Atoms: Identifying the Mechanism

    SciTech Connect

    Foerre, Morten; Nepstad, Raymond; Selstoe, Soelve

    2010-10-15

    We develop an approximate model for the process of direct (nonsequential) two-photon double ionization of atoms. Employing the model, we calculate (generalized) total cross sections as well as energy-resolved differential cross sections of helium for photon energies ranging from 39 to 54 eV. A comparison with results of ab initio calculations reveals that the agreement is at a quantitative level. We thus demonstrate that this complex ionization process can be described by the simple model, providing insight into the underlying physical mechanism. Finally, we use the model to calculate generalized cross sections for the two-photon double ionization of neon in the nonsequential regime.

  7. Relativistic contributions to single and double core electron ionization energies of noble gases.

    PubMed

    Niskanen, J; Norman, P; Aksela, H; Agren, H

    2011-08-07

    We have performed relativistic calculations of single and double core 1s hole states of the noble gas atoms in order to explore the relativistic corrections and their additivity to the ionization potentials. Our study unravels the interplay of progression of relaxation, dominating in the single and double ionization potentials of the light elements, versus relativistic one-electron effects and quantum electrodynamic effects, which dominate toward the heavy end. The degree of direct relative additivity of the relativistic corrections for the single electron ionization potentials to the double electron ionization potentials is found to gradually improve toward the heavy elements. The Dirac-Coulomb Hamiltonian is found to predict a scaling ratio of ∼4 for the relaxation induced relativistic energies between double and single ionization. Z-scaling of the computed quantities were obtained by fitting to power law. The effects of nuclear size and form were also investigated and found to be small. The results indicate that accurate predictions of double core hole ionization potentials can now be made for elements across the full periodic table.

  8. Pulse-duration dependent sequential double ionization by elliptically polarized laser pulses

    NASA Astrophysics Data System (ADS)

    Tong, Aihong; Deng, Yongju; Liu, Dan

    2016-05-01

    Using a fully classical model, we have studied sequential double ionization of argon driven by elliptically polarized laser pulses at intensities well in the over-barrier ionization region. The results show that the joint electron momentum distributions in the minor elliptical direction depend strongly on the pulse duration. From pulse number N = 4 to 10, the clustering regions of the joint electron momentum increase with the pulse duration. For even larger pulse durations, the clustering region does not increase further but the population of the joint electron momentum in these regions changes with the pulse duration. Back analysis of double ionization trajectories shows the phenomenon of multiple ionization bursts and the pulse duration-dependent multiple ionization bursts of the second electron is responsible for the evolution of the joint electron momentum distribution with the pulse duration.

  9. Electric fields and double layers in plasmas

    NASA Technical Reports Server (NTRS)

    Singh, Nagendra; Thiemann, H.; Schunk, R. W.

    1987-01-01

    Various mechanisms for driving double layers in plasmas are briefly described, including applied potential drops, currents, contact potentials, and plasma expansions. Some dynamical features of the double layers are discussed. These features, as seen in simulations, laboratory experiments, and theory, indicate that double layers and the currents through them undergo slow oscillations which are determined by the ion transit time across an effective length of the system in which double layers form. It is shown that a localized potential dip forms at the low potential end of a double layer, which interrupts the electron current through it according to the Langmuir criterion, whenever the ion flux into the double is disrupted. The generation of electric fields perpendicular to the ambient magnetic field by contact potentials is also discussed. Two different situations were considered; in one, a low-density hot plasma is sandwiched between high-density cold plasmas, while in the other a high-density current sheet permeates a low-density background plasma. Perpendicular electric fields develop near the contact surfaces. In the case of the current sheet, the creation of parallel electric fields and the formation of double layers are also discussed when the current sheet thickness is varied. Finally, the generation of electric fields and double layers in an expanding plasma is discussed.

  10. Electric fields and double layers in plasmas

    NASA Astrophysics Data System (ADS)

    Singh, Nagendra; Thiemann, H.; Schunk, R. W.

    1987-05-01

    Various mechanisms for driving double layers in plasmas are briefly described, including applied potential drops, currents, contact potentials, and plasma expansions. Some dynamical features of the double layers are discussed. These features, as seen in simulations, laboratory experiments, and theory, indicate that double layers and the currents through them undergo slow oscillations which are determined by the ion transit time across an effective length of the system in which double layers form. It is shown that a localized potential dip forms at the low potential end of a double layer, which interrupts the electron current through it according to the Langmuir criterion, whenever the ion flux into the double is disrupted. The generation of electric fields perpendicular to the ambient magnetic field by contact potentials is also discussed. Two different situations were considered; in one, a low-density hot plasma is sandwiched between high-density cold plasmas, while in the other a high-density current sheet permeates a low-density background plasma. Perpendicular electric fields develop near the contact surfaces. In the case of the current sheet, the creation of parallel electric fields and the formation of double layers are also discussed when the current sheet thickness is varied. Finally, the generation of electric fields and double layers in an expanding plasma is discussed.

  11. Attosecond double-ionization dynamics of aligned H2: Two-dimensional quantum simulations

    NASA Astrophysics Data System (ADS)

    Wang, Shang; Chen, Yanjun

    2015-08-01

    A fully quantum procedure, based on the numerical solution of the time-dependent Schrödinger equation (TDSE) with two spatial dimensions for every electron, is developed to study the attosecond double-ionization (DI) dynamics from aligned H2 molecules in strong laser fields. Our simulations are able to reproduce the orientation dependence of DI, as observed for N2 in experiments [D. Zeidler et al., Phys. Rev. Lett. 95, 203003 (2005)], 10.1103/PhysRevLett.95.203003. Our TDSE analyses reveal the important roles of the lateral motion of the electron and two-center interference in the orientation-dependent DI. Our results give suggestions on the ultrafast probing of the dynamics of DI from aligned molecules.

  12. Dynamical core polarization in strong-field ionization

    NASA Astrophysics Data System (ADS)

    Zhao, Zengxiu; Zhang, Bin; Yuan, Jianmin

    2014-05-01

    Core polarization plays an important role in both ionization and high harmonic generation processes of molecules driven by strong laser fields. With our recently developed three-dimensional time-dependent Hartree-Fock method, we investigate the orientation-dependent ionization of CO molecules. It is found that the full ionization results are in good agreement with the recent experiment. The comparisons between the full method and the single-active-orbital method show that although the core electrons are generally more tightly bound and contribute little to the total ionization yields, their dynamics cannot be ignored, which effectively modifies the behavior of electrons in the HOMO. By incorporating it into the SAO method, we identify that the dynamic core polarization plays an important role in the tunneling ionization of CO molecules, which is helpful for the future development of the tunneling ionization theory beyond the single active electron approximation. In order to further verify the role of core polarization, exact calculations are performed for the ionization of two-electron model systems by strong laser fields. The limitations of HF and the SAE are quantified and the tunneling ionization rate is shown improved with the core-polarization induced correction.

  13. A compact neutron generator using a field ionization source.

    PubMed

    Persaud, Arun; Waldmann, Ole; Kapadia, Rehan; Takei, Kuniharu; Javey, Ali; Schenkel, Thomas

    2012-02-01

    Field ionization as a means to create ions for compact and rugged neutron sources is pursued. Arrays of carbon nano-fibers promise the high field-enhancement factors required for efficient field ionization. We report on the fabrication of arrays of field emitters with a density up to 10(6) tips∕cm(2) and measure their performance characteristics using electron field emission. The critical issue of uniformity is discussed, as are efforts towards coating the nano-fibers to enhance their lifetime and surface properties.

  14. Double Gamers: Academics between Fields

    ERIC Educational Resources Information Center

    Costa, Cristina

    2016-01-01

    The field of academia is frequently associated with traditional norms that aim to regulate scholarly activity, especially research. The social web, as another field, is often viewed as challenging long-established conventions with novel knowledge production practices. Hence, the two fields seem to oppose rather than complement each other. Using a…

  15. Subcycle electron emission in sequential double ionization by elliptical laser pulses

    NASA Astrophysics Data System (ADS)

    Tong, Ai-Hong; Li, Ying-Bin

    2016-12-01

    Using a classical ensemble method, we have investigated sequential double ionization (SDI) of Ar atoms driven by elliptical laser pulses. The results show that the ion momentum distribution of the Ar atoms depends strongly on the pulse duration. As the pulse duration increases, the ion momentum distribution changes from two bands to four bands and then to six bands and finally to an eight-band structure. Back analysis of double ionization trajectories shows that the variation of the band structure originates from pulse duration dependent multiple ionization bursts of the second electron. Our calculations indicate that the subcycle electron emission in the SDI could be more easily accessed by using elliptical laser pulses with a longer wavelength. Moreover, we show that there is good correspondence between the scaled radial momentum and the ionization time.

  16. Auger spectrum of a water molecule after single and double core ionization.

    PubMed

    Inhester, L; Burmeister, C F; Groenhof, G; Grubmüller, H

    2012-04-14

    The high intensity of free electron lasers opens up the possibility to perform single-shot molecule scattering experiments. However, even for small molecules, radiation damage induced by absorption of high intense x-ray radiation is not yet fully understood. One of the striking effects which occurs under intense x-ray illumination is the creation of double core ionized molecules in considerable quantity. To provide insight into this process, we have studied the dynamics of water molecules in single and double core ionized states by means of electronic transition rate calculations and ab initio molecular dynamics (MD) simulations. From the MD trajectories, photoionization and Auger transition rates were computed based on electronic continuum wavefunctions obtained by explicit integration of the coupled radial Schrödinger equations. These rates served to solve the master equations for the populations of the relevant electronic states. To account for the nuclear dynamics during the core hole lifetime, the calculated electron emission spectra for different molecular geometries were incoherently accumulated according to the obtained time-dependent populations, thus neglecting possible interference effects between different decay pathways. We find that, in contrast to the single core ionized water molecule, the nuclear dynamics for the double core ionized water molecule during the core hole lifetime leaves a clear fingerprint in the resulting electron emission spectra. The lifetime of the double core ionized water was found to be significantly shorter than half of the single core hole lifetime.

  17. Double and single ionization of He and H{sub 2} by slow protons and antiprotons

    SciTech Connect

    Kimura, Mineo |; Shimamura, Isao; Inokuti, Mitio

    1994-12-31

    Double and single ionization of He and H{sub 2} by proton (p) and antiproton ({bar p})impact in the energy region below 50 keV was studied theoretically by using the semiclassical molecular picture. As the energy decreased, the ratio of the double- to the single-ionization cross section increased for impact and decreased for p impact for both He and H{sub 2}. These trends are consistent with recent measurements for He. Ionization mechanisms differ distinctly for p impact and {bar p} impact. For p impact, the dominant mechanism for double ionization at the lower energies is sequential ladder climbing by the two electrons through various excited channels and finally into the continuum. For {bar p} impact, in contrast, the approaching negative charge distorts both the He and H{sub 2} electron clouds toward the other side of the nucleus and decreases the electron binding energies. These effects enhance electron-electron interactions, increasing double ionization. For the H{sub 2}, an effect of molecular orientation is an additional complication in determining the dynamics.

  18. Auger spectrum of a water molecule after single and double core ionization

    SciTech Connect

    Inhester, L.; Burmeister, C. F.; Groenhof, G.; Grubmueller, H.

    2012-04-14

    The high intensity of free electron lasers opens up the possibility to perform single-shot molecule scattering experiments. However, even for small molecules, radiation damage induced by absorption of high intense x-ray radiation is not yet fully understood. One of the striking effects which occurs under intense x-ray illumination is the creation of double core ionized molecules in considerable quantity. To provide insight into this process, we have studied the dynamics of water molecules in single and double core ionized states by means of electronic transition rate calculations and ab initio molecular dynamics (MD) simulations. From the MD trajectories, photoionization and Auger transition rates were computed based on electronic continuum wavefunctions obtained by explicit integration of the coupled radial Schroedinger equations. These rates served to solve the master equations for the populations of the relevant electronic states. To account for the nuclear dynamics during the core hole lifetime, the calculated electron emission spectra for different molecular geometries were incoherently accumulated according to the obtained time-dependent populations, thus neglecting possible interference effects between different decay pathways. We find that, in contrast to the single core ionized water molecule, the nuclear dynamics for the double core ionized water molecule during the core hole lifetime leaves a clear fingerprint in the resulting electron emission spectra. The lifetime of the double core ionized water was found to be significantly shorter than half of the single core hole lifetime.

  19. X-ray double ionization of helium iso-electronic sequence

    SciTech Connect

    Dalgarno, A.; Sadeghpour, H.R.

    1992-12-01

    A simple and accurate procedure for calculating the rate of double ionization of {open_quotes}two-electron{close_quotes} systems by X-ray photons is presented. Arguments are given to support the validity of the method used. In particular, the authors show that the many-body perturbation theory diagrams depend asymptotically on the choice of the gauge for the electric dipole operator. The ratio of double-to single-ionization is calculated to be 1.68% in agreement with the recent synchrotron measurements. For H{sup {minus}} and Li{sup +}, they predict ratios of 1.51% and 0.89%, respectively.

  20. Momentum spectra for single and double electron ionization of He in relativistic collisions

    NASA Astrophysics Data System (ADS)

    Wood, C. J.; Olson, R. E.; Schmitt, W.; Moshammer, R.; Ullrich, J.

    1997-11-01

    The complete momentum spectra for single and double ionization of He by 1-GeV/u (β=0.88) U92+ have been investigated using a classical trajectory Monte Carlo method corrected for the relativistic projectile. The 1/r12 electron-electron interaction has been included in the post-collision region for double ionization to incorporate the effects of both the nuclear-electron and electron-electron ionizing interactions, and to access the effects of electron correlation in the electron spectra. Experimental measurements were able to determine the longitudinal momentum spectra for single ionization; these observations are in accordance with the theoretical predictions for the three-body momentum balance between projectile, recoil ion, and ionized electron. In particular, the Lorentz contraction of the Coulomb interaction of the projectile manifests itself in the decrease of the post-collision interaction of the projectile with the electron and recoil ion, causing them to recoil back-to-back as in the case for a short electromagnetic pulse. This feature is clearly displayed in both the theoretical and experimental longitudinal momentum spectra, and by comparing to calculations that are performed at the same collision speed but do not include the relativistic potentials. Moreover, collision plane spectra of the three particles demonstrate that the momenta of the recoil ion and ionized electron are preferentially equal, and opposite, to each other. The electron spectra for double ionization show that the inclusion of the electron-electron interaction in the post-collision regime partitions the combined ionization momentum of the electrons so that the electrons are preferentially emitted in opposite azimuthal angles to one another. This is in contrast to calculations made assuming independent electrons.

  1. Ionization of highly excited helium atoms in an electric field

    SciTech Connect

    van de Water, W.; Mariani, D.R.; Koch, P.M.

    1984-11-01

    We present detailed measurements of ionization of highly excited triplet helium atoms in a static electric field. The atoms were prepared in states with energy E close to the saddle-point threshold E = -2(F(a.u.))/sup 1/2/. The electric field F was sufficiently strong for the states to be characterized by total spin S and absolute value of the magnetic quantum number M/sub L/. For M/sub L/ = 0 states the experiments measured ionization properties of adiabatic states. In another case, Vertical BarM/sub L/Vertical Bar = 2, they predominantly measured those of diabatic states. In both cases the ionization rate was found to be a highly nonmonotonic function of the field strength. The observations are analyzed in terms of a theory of the helium density of states in an electric field. A companion paper (D. A. Harmin, Phys. Rev. A 30, 2413 (1984)) develops in detail the general theory, which uses quantum defects to parametrize the effect of the core interaction. The agreement between measured and calculated ionization curves is good, indicating that the field ionization of a nonhydrogenic atom can now be understood in a detailed, quantitative, and predictive sense.

  2. Two-photon double ionization of the helium atom by ultrashort pulses

    SciTech Connect

    Palacios, Alicia; Horner, Daniel A; Rescigno, Thomas N; McCurdy, C William

    2010-05-14

    Two-photon double ionization of the helium atom was the subject of early experiments at FLASH and will be the subject of future benchmark measurements of the associated electron angular and energy distributions. As the photon energy of a single femtosecond pulse is raised from the threshold for two-photon double ionization at 39.5 eV to beyond the sequential ionization threshold at 54.4 eV, the electron ejection dynamics change from the highly correlated motion associated with nonsequential absorption to the much less correlated sequential ionization process. The signatures of both processes have been predicted in accurate \\textit{ab initio} calculations of the joint angular and energy distributions of the electrons, and those predictions contain some surprises. The dominant terms that contribute to sequential ionization make their presence apparent several eV below that threshold. In two-color pump probe experiments with short pulses whose central frequencies require that the sequential ionization process necessarily dominates, a two-electron interference pattern emerges that depends on the pulse delay and the spin state of the atom.

  3. Collision-induced dissociation reactions and pulsed field ionization photoelectron

    SciTech Connect

    Stimson, Stephanie

    1999-02-12

    This report summarized the four parts of the research study and describes the general conclusions. Individual chapters have been removed for separate processing. The chapter titles are: A study of the dissociation of CH3SH+ by collisional activation: Observation of non-statistical behavior; High resolution vacuum ultraviolet pulsed field ionization photoelectron band for OCS+(X2π): An experimental and theoretical study; Rotationally resolved pulsed field ionization photoelectron bands of H2+2Σ+g, v+ = 0--18); and Rotationally resolved pulsed field ionization photoelectron bands of HD+2Σ+, v+ = 0--21).

  4. Interference effects in double ionization of spatially aligned hydrogen molecules by fast highly charged ions

    SciTech Connect

    Landers, A.L.; Alnaser, A.S.; Tanis, J.A.; Wells, E.; Osipov, T.; Carnes, K.D.; Ben-Itzhak, I.; Cocke, C.L.; McGuire, J.H.

    2004-10-01

    Cross sections differential in target orientation angle were measured for 19 MeV F{sup 8+}+D{sub 2} collisions. Multihit position-sensitive detectors were used to isolate the double-ionization channel and determine a posteriori the full momentum vectors of both ejected D{sup +} fragments. A strong dependence of the double ionization cross section on the angle between the incident ion direction and the target molecular axis is observed with a {approx_equal}3.5:1 enhancement for molecules aligned perpendicular to the projectile axis. This clear asymmetry is attributed to interference effects, analogous to Young's two-slit experiment, arising from coherent contributions to the ionization from both atomic centers. The data are compared to a simple scattering model based on two center interference.

  5. Multiphoton double ionization of H2 using circularly polarized laser pulses

    NASA Astrophysics Data System (ADS)

    Pindzola, M. S.; Li, Y.; Colgan, J.

    2017-02-01

    A time-dependent close-coupling method is used to calculate the multiphoton double ionization of H2 using circularly polarized laser pulses. Total double ionization probabilities are calculated for 2, 3, and 4 photon absorption in the energy range from 10 to 50 eV. Single and triple differential probabilities are calculated at photon energies where the total ionization probability is near a maximum. For one electron emitted along the internuclear axis, the angular distribution for the other electron is similar for 2, 3, and 4 photon absorption. As one electron is emitted further away from the internuclear axis, the angular distribution for the other electron is similar for 2 and 4 photon absorption, but quite different for 3 photon absorption.

  6. Higher spin double field theory: a proposal

    NASA Astrophysics Data System (ADS)

    Bekaert, Xavier; Park, Jeong-Hyuck

    2016-07-01

    We construct a double field theory coupled to the fields present in Vasiliev's equations. Employing the "semi-covariant" differential geometry, we spell a functional in which each term is completely covariant with respect to O(4, 4) T-duality, doubled diffeomorphisms, Spin(1, 3) local Lorentz symmetry and, separately, HS(4) higher spin gauge symmetry. We identify a minimal set of BPS-like conditions whose solutions automatically satisfy the full Euler-Lagrange equations. As such a solution, we derive a linear dilaton vacuum. With extra algebraic constraints further supplemented, the BPS-like conditions reduce to the bosonic Vasiliev equations.

  7. Low-Pressure, Field-Ionizing Mass Spectrometer

    NASA Technical Reports Server (NTRS)

    Hartley, Frank; Smith, Steven

    2009-01-01

    A small mass spectrometer utilizing a miniature field ionization source is now undergoing development. It is designed for use in a variety of applications in which there are requirements for a lightweight, low-power-consumption instrument that can analyze the masses of a wide variety of molecules and ions. The device can operate without need for a high-vacuum, carrier-gas feed radioactive ionizing source, or thermal ionizer. This mass spectrometer can operate either in the natural vacuum of outer space or on Earth at any ambient pressure below 50 torr (below about 6.7 kPa) - a partial vacuum that can easily be reached by use of a small sampling pump. This mass spectrometer also has a large dynamic range - from singly charged small gas ions to deoxyribonucleic acid (DNA) fragments larger than 104 atomic mass units - with sensitivity adequate for detecting some molecules and ions at relative abundances of less than one part per billion. This instrument (see figure) includes a field ionizer integrated with a rotating-field mass spectrometer (RFMS). The field ionizer effects ionization of a type characterized as "soft" in the art because it does not fragment molecules or initiate avalanche arcing. What makes the "soft" ionization mode possible is that the distance between the ionizing electrodes is less than mean free path for ions at the maximum anticipated operating pressure, so that the ionizer always operates on the non-breakdown side of the applicable Paschen curve (a standard plot of breakdown potential on the ordinate and pressure electrode separation on the abscissa). The field ionizer in this instrument is fabricated by micromachining a submicron-thick membrane out of an electrically nonconductive substrate, coating the membrane on both sides to form electrodes, then micromachining small holes through the electrodes and membrane. Because of the submicron electrode separation, even a potential of only 1 V applied between the electrodes gives rise to an electric

  8. Interatomic relaxation effects in double core ionization of chain molecules

    NASA Astrophysics Data System (ADS)

    Kryzhevoi, Nikolai V.; Tashiro, Motomichi; Ehara, Masahiro; Cederbaum, Lorenz S.

    2012-10-01

    Core vacancies created on opposite sides of a molecule operate against each other in polarizing the environment between them. Consequently, the relaxation energy associated with the simultaneous creation of these two core holes turns out to be smaller than the sum of the relaxation energies associated with each individual single core vacancy created independently. The corresponding residual, termed interatomic relaxation energy, is sensitive to the environment. In the present paper we explore how the interatomic relaxation energy depends on the length and type of carbon chains bridging two core ionized nitrile groups (-C≡N). We have uncovered several trends and discuss them with the help of simple electrostatic and quantum mechanical models. Namely, the absolute value of the interatomic relaxation energy depends strongly on the orbital hybridization in carbons being noticeably larger in conjugated chains (sp and sp2 hybridizations) possessing highly mobile electrons in delocalized π-type orbitals than in saturated chains (sp3 hybridization) where only σ bonds are available. The interatomic relaxation energy decreases monotonically with increasing chain length. The corresponding descent is determined by the energetics of the molecular bridge, in particular, by the HOMO-LUMO gap. The smallest HOMO-LUMO gap is found in molecules with the sp2-hybridized backbone. Here, the interatomic relaxation energy decreases slowest with the chain length.

  9. Coherent Dynamics Following Strong Field Ionization of Polyatomic Molecules

    NASA Astrophysics Data System (ADS)

    Konar, Arkaprabha; Shu, Yinan; Lozovoy, Vadim; Jackson, James; Levine, Benjamin; Dantus, Marcos

    2015-03-01

    Molecules, as opposed to atoms, present confounding possibilities of nuclear and electronic motion upon strong field ionization. The dynamics and fragmentation patterns in response to the laser field are structure sensitive; therefore, a molecule cannot simply be treated as a ``bag of atoms'' during field induced ionization. We consider here to what extent molecules retain their molecular identity and properties under strong laser fields. Using time-of-flight mass spectrometry in conjunction with pump-probe techniques we study the dynamical behavior of these molecules, monitoring ion yield modulation caused by intramolecular motions post ionization. The delay scans show that among positional isomers the variations in relative energies, amounting to only a few hundred meVs, influence the dynamical behavior of the molecules despite their having experienced such high fields (V/Å). Ab initio calculations were performed to predict dynamics along with single and multiphoton resonances in the neutral and ionic states. We propose that single electron ionization occurs within an optical cycle with the electron carrying away essentially all of the energy, leaving behind little internal energy in the cation. Evidence for this observation comes from coherent vibrational motion governed by the potential energy surface of the ground state of the cation. Subsequent fragmentation of the cation takes place as a result of further photon absorption modulated by one- and two-photon resonances, which provide sufficient energy to overcome the dissociation energy.

  10. Enhancement of strong-field multiple ionization in the vicinity of the conical intersection in 1,3-cyclohexadiene ring opening

    SciTech Connect

    Petrovic, Vladimir S. Kim, Jaehee; Schorb, Sebastian; White, James; Cryan, James P.; Zipp, Lucas; Glownia, J. Michael; Broege, Douglas; Miyabe, Shungo; Tao, Hongli; Martinez, Todd; Bucksbaum, Philip H.

    2013-11-14

    Nonradiative energy dissipation in electronically excited polyatomic molecules proceeds through conical intersections, loci of degeneracy between electronic states. We observe a marked enhancement of laser-induced double ionization in the vicinity of a conical intersection during a non-radiative transition. We measured double ionization by detecting the kinetic energy of ions released by laser-induced strong-field fragmentation during the ring-opening transition between 1,3-cyclohexadiene and 1,3,5-hexatriene. The enhancement of the double ionization correlates with the conical intersection between the HOMO and LUMO orbitals.

  11. Uniformly spaced field-aligned ionization ducts

    NASA Technical Reports Server (NTRS)

    Gross, S. H.; Muldrew, D. B.

    1984-01-01

    A number of interesting cases of combination mode ducted echoes for mid- and low-latitude regions are presented that show nearly uniformly spaced multiple combination mode traces on the ionograms in the frequency range above 1 MHz. These traces suggest that a parallel system of field-aligned ducts is present. Ray tracing studies are made to determine the structure that would explain the observations using the electron density profile derivable from the vertical trace and assuming field-aligned ducts. Spacing perpendicular to the ducts is found to be as much as 70 km. Some of these parallel duct structures are found to extend to the conjugate hemisphere, possibly to the F peak.

  12. Momentum space analysis of multiphoton double ionization of helium by intense attosecond xuv pulses.

    PubMed

    Zhang, Zheng; Peng, Liang-You; Gong, Qihuang; Morishita, Toru

    2010-04-26

    We investigate the momentum and energy distributions of the two electrons in multiphoton double ionization of He by intense attosecond xuv pulses, based on a two-dimensional model. Two different patterns of the momentum distributions are identified, corresponding to the uncorrelated and correlated channels, respectively. Our analysis of the electron correlations focuses on two-photon and three-photon double ionization processes for different pulse durations and for different time delays after the pulses. For both two-photon and three-photon cases, a clear correlation valley in energy distributions is found when both electrons are ejected in opposite directions. This is mostly attributed to the electron correlations during the ionization of the first electron. We also find that when two electrons are ejected in the same direction, their Coulomb repulsion has an significant influence on the electron energy distributions during the postionization stage. Finally, in the case of three photon double ionization, we observe that the effects of the Coulomb repulsion become much more complicated, and a new catch-up collision phenomena is observed in the energy distributions.

  13. Auger spectrum of a water molecule after single and double core ionization

    NASA Astrophysics Data System (ADS)

    Inhester, Ludger; Burmeister, Carl F.; Groenhof, Gerrit; Grubmueller, Helmut

    2012-06-01

    The high intensity of Free Electron Lasers (FEL) opens up the possibility to perform single-shot molecule scattering experiments. However, even for small molecules radiation damage induced by absorption of intense x-ray radiation is not yet fully understood. To provide insight into this process, we have studied the dynamics of water molecules in single and double core ionized states by means of electronic transition rate calculations and ab initio molecular dynamics (MD) simulations. From MD trajectories photoionization and Auger transition rates were computed based on electronic continuum wavefunctions obtained by explicit integration of the coupled radial Schr"odinger equations. To account for the nuclear dynamics during the core hole lifetime, the calculated electron emission spectra for different molecular geometries were accumulated according to the obtained time-dependent populations. We find that, in contrast to the single core ionized water molecule, the nuclear dynamics for the double core ionized water molecule during the core hole lifetime leaves a clear fingerprint on the electron emission spectra. In addition, the lifetime of the double core ionized water was found to be significantly shorter than half of the single core hole lifetime.

  14. Quantification of static magnetic field effects on radiotherapy ionization chambers

    NASA Astrophysics Data System (ADS)

    Agnew, J.; O’Grady, F.; Young, R.; Duane, S.; Budgell, G. J.

    2017-03-01

    Integrated magnetic resonance (MR) imaging and radiotherapy (RT) delivery machines are currently being developed, with some already in clinical use. It is anticipated that the strong magnetic field used in some MR-RT designs will have a significant impact on routine measurements of dose in the MR-linac performed using ionization chambers, which provide traceability back to a primary standard definition of dose. In particular, the presence of small air gaps around ionization chambers may introduce unacceptably high uncertainty into these measurements. In this study, we investigate and quantify the variation attributable to air gaps for several routinely-used cylindrical ionization chambers in a magnetic field, as well as the effect of the magnetic field alone on the response of the chambers. The measurements were performed in a Co-60 beam, while the ionization chambers were positioned in custom-made Perspex phantoms between the poles of an electromagnet, which was capable of generating magnetic fields of up to 2 T field strength, although measurements were focused around 1.5 T. When an asymmetric air gap was rotated at cardinal angles around the ionization chambers investigated here, variation of up to 8.5  ±  0.2 percentage points (PTW 31006 chamber) was observed in an applied magnetic field of 1.5 T. The minimum peak-to-peak variation was 1.1  ±  0.1% (Exradin A1SL). When the same experiment was performed with a well-defined air gap of known position using the PTW 30013 chamber, a variation of 3.8  ±  0.2% was observed. When water was added to the phantom cavity to eliminate all air gaps, the variation for the PTW 30013 was reduced to 0.2  ±  0.01%.

  15. Quantification of static magnetic field effects on radiotherapy ionization chambers.

    PubMed

    Agnew, J; O'Grady, F; Young, R; Duane, S; Budgell, G J

    2017-03-07

    Integrated magnetic resonance (MR) imaging and radiotherapy (RT) delivery machines are currently being developed, with some already in clinical use. It is anticipated that the strong magnetic field used in some MR-RT designs will have a significant impact on routine measurements of dose in the MR-linac performed using ionization chambers, which provide traceability back to a primary standard definition of dose. In particular, the presence of small air gaps around ionization chambers may introduce unacceptably high uncertainty into these measurements. In this study, we investigate and quantify the variation attributable to air gaps for several routinely-used cylindrical ionization chambers in a magnetic field, as well as the effect of the magnetic field alone on the response of the chambers. The measurements were performed in a Co-60 beam, while the ionization chambers were positioned in custom-made Perspex phantoms between the poles of an electromagnet, which was capable of generating magnetic fields of up to 2 T field strength, although measurements were focused around 1.5 T. When an asymmetric air gap was rotated at cardinal angles around the ionization chambers investigated here, variation of up to 8.5  ±  0.2 percentage points (PTW 31006 chamber) was observed in an applied magnetic field of 1.5 T. The minimum peak-to-peak variation was 1.1  ±  0.1% (Exradin A1SL). When the same experiment was performed with a well-defined air gap of known position using the PTW 30013 chamber, a variation of 3.8  ±  0.2% was observed. When water was added to the phantom cavity to eliminate all air gaps, the variation for the PTW 30013 was reduced to 0.2  ±  0.01%.

  16. Above-threshold ionization in two electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Bardfield, Rina Shoshana

    1997-11-01

    Above-threshold ionization (ATI) is a process in which a target atom absorbs more than the minimum number of photons from an applied electromagnetic field than are required for ionization, and is characterized by several peaks in the photoelectron spectrum which are separated from each other by the energy of a single photon (Agostini et al. 1979). The experiments of interest in this work involve ATI at microwave frequencies (Gallagher 1988, Gallagher and Scholz 1989), where the frequency of the field is too low to be able to see individual peaks in the spectrum. What is seen is that, in the presence of a weak assisting field, a very large number of microwave photons are absorbed. This problem cannot be treated using standard methods, due both to the intensity of the microwave field and to the large numbers of photons absorbed. The focus of this work is on the development of new analytical techniques to examine the interaction of an atomic system with two simultaneous electromagnetic fields. Specifically, the work focuses on above-threshold ionization in combined microwave and laser fields, where the microwave field is a very strong, very low frequency field, so that standard techniques, such as perturbation theory, do not apply. The work is based on two theoretical methods especially designed for use in intense field problems. These are the Strong Field Approximation (SFA) (Reiss 1980, 1992, 1996), which describes the ionization of an atom by an intense field in which the detached electron remains free in the field after ionization occurs, and the Momentum Translation Approximation (MTA) (Reiss 1970a, 1970b, 1989), which describes the dressing of a bound atomic state by a strong field in which the field can alter the state of the electron without necessarily causing transitions. The laser field, which is much weaker, is treated by traditional techniques. The theory is developed in general terms using S-matrix methods, with particular cases being modeled using

  17. Strong-field atomic ionization in an elliptically polarized laser field and a constant magnetic field

    NASA Astrophysics Data System (ADS)

    Rylyuk, V. M.

    2016-05-01

    Within the framework of the quasistationary quasienergy state (QQES) formalism, the tunneling and multiphoton ionization of atoms and ions subjected to a perturbation by a high intense laser radiation field of an arbitrary polarization and a constant magnetic field are considered. On the basis of the exact solution of the Schrödinger equation and the Green's function for the electron moving in an arbitrary laser field and crossed constant electric and magnetic fields, the integral equation for the complex quasienergy and the energy spectrum of the ejected electron are derived. Using the "imaginary-time" method, the extremal subbarrier trajectory of the photoelectron moving in a nonstationary laser field and a constant magnetic field are considered. Within the framework of the QQES formalism and the quasiclassical perturbation theory, ionization rates when the Coulomb interaction of the photoelectron with the parent ion is taken into account at arbitrary values of the Keldysh parameter are derived. The high accuracy of rates is confirmed by comparison with the results of numerical calculations. Simple analytical expressions for the ionization rate with the Coulomb correction in the tunneling and multiphoton regimes in the case of an elliptically polarized laser beam propagating at an arbitrary angle to the constant magnetic field are derived and discussed. The limits of small and large magnetic fields and low and high frequency of a laser field are considered in details. It is shown that in the presence of a nonstationary laser field perturbation, the constant magnetic field may either decrease or increase the ionization rate. The analytical consideration and numerical calculations also showed that the difference between the ionization rates for an s electron in the case of right- and left-elliptically polarized laser fields is especially significant in the multiphoton regime for not-too-high magnetic fields and decreases as the magnetic field increases. The paper

  18. Ionization and recombination in attosecond electric field pulses

    SciTech Connect

    Dimitrovski, Darko; Solov'ev, Eugene A.; Briggs, John S.

    2005-10-15

    Based on the results of a previous communication [Dimitrovski et al., Phys. Rev. Lett. 93, 083003 (2004)], we study ionization and excitation of a hydrogenic atom from the ground and first excited states in short electric field pulses of several cycles. A process of ionization and recombination which occurs periodically in time is identified, for both small and extremely large peak electric field strengths. In the limit of large electric peak fields closed-form analytic expressions for the population of the initial state after single- and few-cycle pulses are derived. These formulas, strictly valid for asymptotically large momentum transfer from the field, give excellent agreement with fully numerical calculations for all momentum transfers.

  19. Molecular Strong Field Ionization viewed with Photoelectron Velocity Map Imaging

    NASA Astrophysics Data System (ADS)

    Sandor, Peter

    In this thesis, work is presented on molecular strong-field ionization, during which an electron is removed from polyatomic molecules in the presence of strong laser fields. This is a process which is the basis of a number of experimental techniques to uncover electronic dynamics in atoms and molecules on the femtosecond and attosecond timescale. 'Strong' refers to an electric field strength which leads to a response from the system which can not be modeled perturbatively. These fields can be easily produced in the focus of femtosecond laser radiation, as is done in this work. With the use of velocity map imaging of the photoelectron in coincidence with the fragment ion, multiple ionization--dissociation pathways can be distinguished. It is shown that as opposed to early attempts to model the process, multiple low-lying states are populated in the ion, and also the signatures of multielectron dynamics are revealed. By changing the laser pulse duration from 30 fs to below 10 fs, control is demonstrated over which quantum states of the ion are populated. It is also shown that for pulses shorter than 10 fs (which is a timescale below the shortest vibrational period in molecules), ionization pathways that involve motion of the nuclei are almost completely shut off. Finally, the origin of electrons with <1 meV kinetic energy is discussed. A two-step model is proposed for creating the electrons: the first step is population transfer to high-lying excited states of the neutral molecule by the laser field; the second step is ionization. Different ionization mechanisms are examined and their viability is checked against available data.

  20. Ionizing gas breakdown waves in strong electric fields.

    NASA Technical Reports Server (NTRS)

    Klingbeil, R.; Tidman, D. A.; Fernsler, R. F.

    1972-01-01

    A previous analysis by Albright and Tidman (1972) of the structure of an ionizing potential wave driven through a dense gas by a strong electric field is extended to include atomic structure details of the background atoms and radiative effects, especially, photoionization. It is found that photoionization plays an important role in avalanche propagation. Velocities, electron densities, and temperatures are presented as a function of electric field for both negative and positive breakdown waves in nitrogen.

  1. Low-energy structures in strong-field ionization

    NASA Astrophysics Data System (ADS)

    Ivanov, I. A.; Nam, Chang Hee; Kim, Kyung Taec

    2016-04-01

    We show that the Gabor transform provides a convenient tool allowing one to study the origin of the low-energy structures (LES) in the process of the strong-field ionization. The classical trajectories associated with the stationary points of the Gabor transform enable us to explicate the role of the forward scattering process in forming LES. Our approach offers a fully quantum mechanical description of LES, which can also be applied for other strong-field processes.

  2. Field Ionization detection of supersonic helium atom beams

    NASA Astrophysics Data System (ADS)

    Doak, R. B.

    2003-10-01

    Field ionization detectors (FID) may offer near-unity detection efficiency and nanoscale spatial resolution. To date, FID detection of molecular beams has been limited to effusive beams of broad Maxwellian velocity distributions. We report FID measurements on monoenergetic helium beams, including intensity measurements and time-of-flight measurements. The FID tips were carefully prepared and characterized in a field ionization microscope prior to use. With the supersonic helium beam we find a much smaller effective detection area ( 50 sq. nm) than was reported in the effusive helium beam experiments ( 200,000 sq. nm). This suggests that the FID ionization yield depends strongly on energy loss by the impinging atom during its initial collision with the FID surface: Our thermal energy, monoenergetic helium beam atoms likely lose little or no energy upon scattering from the clean tungsten FID surface, allowing the scattered atoms to escape the FID polarization field and therby reducing the ionization yield. To improve signal levels, inelastic scattering might be enhanced by use of lower beam velocities (present in the tails of a Maxwellian) or by adsorbing an overlayer on the FID tip (present at cryogenic tip temperatures). These factors likely explain the higher detection yields measured in the effusive beam experiments.

  3. The role of molecular electron distribution in strong-field ionization and dissociation of heteronuclear molecules

    NASA Astrophysics Data System (ADS)

    Lai, Wei; Guo, Chunlei

    2016-11-01

    A comparison study of double-ionization induced dissociation in strong laser fields between a homonuclear diatomic molecule, O2, and a heteronuclear diatomic molecule, NO, shows that two electrons can easily be removed from one O atom of O2 to form a O2++O, however, two electrons can hardly be removed from the O atom of NO to form a N+O2+. Instead, for NO, two electrons are preferentially removed from the N atom to form a N2++O, even though the N atom requires higher ionization energy than the O atom. This indicates that atomic ionization energy does not play a significant role here. Our further study on the formation dynamics of the N2++O channel shows that the initial electron distribution of the NO molecule plays an important role in influencing the strong-field ionization and dissociation of NO and this effect seems to commonly exist in heteronuclear molecules when interacting with strong laser fields.

  4. The second Born approximation for the double ionization of N2 by electron impact

    NASA Astrophysics Data System (ADS)

    Lamy, P.; Dal Cappello, C.; Charpentier, I.; Ruiz-Lopez, M. F.; Hervieux, P. A.

    2016-07-01

    In their (e,3e) and (e,3-1e) experiments of the double ionization (DI) of the outermost orbital of N2, Li et al (2012 J. Phys. B: At. Mol. Opt. Phys. 45 135201) recently showed that the process is largely dominated by a two-step-2 mechanism, which is a double interaction of the incident electron with the target. From a theoretical point of view, this should entail the use of the second Born approximation. In the past, very few theoretical calculations had been carried out this way because it requires a difficult numerical triple integration. We propose here to take into account the second Born approximation for the DI of N2 by using the closure approximation. The initial state is described by a single-center wave function derived from the usual multi-center wave function obtained in the self-consistent-field Hartree-Fock method using the linear combination of atomic orbitals-molecular orbital (LCAO-MO) approximation. The final state describes the interaction between each of the ejected electrons and the target by a Coulomb wave and the interaction between the two ejected electrons with the use of the Gamow factor. We calculate differential cross sections using the same kinematic conditions as Li et al (intermediate incident energy about 600 eV) for (e,3e) and (e,3-1e) DI of N2. The results show that the model does not allow a shift of the variation of the four-fold differential cross section near the momentum transfer to be obtained nor its opposite when we include the contribution given by the second Born approximation, as in (e,3-1e) experiments.

  5. Double-differential cross sections for single ionization of helium by bare ion impact

    NASA Astrophysics Data System (ADS)

    Jana, S.; Samanta, R.; Purkait, M.

    2013-11-01

    Double-differential cross sections (DDCS) for single ionization of helium by impact of proton and highly charged carbon ion have been calculated in the framework of four-body formalism using the three-Coulomb wave model (3C-4B) and first Born approximation (FBA-4B), respectively. The correlated motion of the particles interacting through long-range Coulomb potential is properly taken into account in the final state. In this paper, the energy and angular distributions of DDCS of low- and high-energy electron emission for ground-state helium atoms have been investigated. The ejected electrons are affected by the two-center field of the target and the projectile ion. The two-center effects are confined to comparison with other theoretical results. The results obtained, both from the 3C-4B and FBA-4B models, are compared with other theoretical and experimental findings. The present results are found to reproduce the peak structure of the experimental observations. Large discrepancy occurs between the present two theories at forward and backward angles except about the emission angle 90°. The present computed results obtained by the 3C-4B model are in good agreement with the available experimental findings.

  6. Perturbative quantum gravity in double field theory

    NASA Astrophysics Data System (ADS)

    Boels, Rutger H.; Horst, Christoph

    2016-04-01

    We study perturbative general relativity with a two-form and a dilaton using the double field theory formulation which features explicit index factorisation at the Lagrangian level. Explicit checks to known tree level results are performed. In a natural covariant gauge a ghost-like scalar which contributes even at tree level is shown to decouple consistently as required by perturbative unitarity. In addition, a lightcone gauge is explored which bypasses the problem altogether. Using this gauge to study BCFW on-shell recursion, we can show that most of the D-dimensional tree level S-matrix of the theory, including all pure graviton scattering amplitudes, is reproduced by the double field theory. More generally, we argue that the integrand may be reconstructed from its single cuts and provide limited evidence for off-shell cancellations in the Feynman graphs. As a straightforward application of the developed technology double field theory-like expressions for four field string corrections are derived.

  7. Double-core ionization and excitation above the sulphur K-edge in ?, ? and ?

    NASA Astrophysics Data System (ADS)

    Reynaud, Cécile; Gaveau, Marc-André; Bisson, Kristel; Millié, Philippe; Nenner, Irène; Bodeur, Suzanne; Archirel, Pierre; Lévy, Bernard

    1996-11-01

    Experimental and theoretical results are reported on double-core excitation and ionization processes in some sulphur containing molecules. X-ray absorption spectra have been recorded at the sulphur K-edge using synchrotron radiation delivered by the DCI ring at LURE (Orsay, France). Absolute x-ray absorption cross sections have been determined for gas phase 0953-4075/29/22/017/img12, 0953-4075/29/22/017/img13 and 0953-4075/29/22/017/img14 molecules in the 2400 - 2800 eV region. Several narrow features are observed far from the edge and assigned to 0953-4075/29/22/017/img15 double-core excited states. Two series of states are present corresponding to the triplet and singlet configurations, due to the core 1s - 2p exchange term. The energy, width and intensity of the features are strongly molecule dependent. In the case of 0953-4075/29/22/017/img12, a theoretical determination of all the single- and double-core vacancy ionization potentials has been performed using a new theoretical approach which makes it possible to solve the convergence problem inherent in a simple SCF calculation. Results compare favourably with available experimental values. In particular, the singlet - triplet separation is correctly predicted for all the double-core ionized states. The relation between the double-core relaxation energies and the associated single-core relaxation values is discussed. Finally, the double-core excited state energies are determined within a Z + 2 core equivalent model, allowing a full assignment of the 0953-4075/29/22/017/img15 experimental spectra of 0953-4075/29/22/017/img12.

  8. Single-photon double K-shell ionization of low-Z atoms

    NASA Astrophysics Data System (ADS)

    Hoszowska, J.; Kheifets, A. S.; Dousse, J.-Cl; Bray, I.; Cao, W.; Fennane, K.; Kayser, Y.; Kavčič, M.; Szlachetko, J.; Szlachetko, M.

    2010-02-01

    The photon energy dependence of the double K-shell ionization of light atoms is reported. Experimental double-to-single photoionization cross section ratios for Mg, Al, Si and Ca were obtained from measurements of high-resolution x-ray emission spectra. The double photoionization (DPI) cross-sections for K-shell hollow atom production are compared to convergent close-coupling calculations (CCC) for neutral atoms and He-like ions. The relative importance of the initial-state and final-state electron-electron interactions to the K-shell DPI in many-electron atoms and two-electron ions is addressed. Physical mechanisms and scaling laws of the K-shell double photoionization are examined. A semiempirical universal scaling of the DPI cross sections with the effective nuclear charge for neutral atoms 2<=Z<=47 is established.

  9. DNA Damage by Ionizing Radiation: Tandem Double Lesions by Charged Particles

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Chaban, Galina M.; Wang, Dunyou; Dateo, Christopher E.

    2005-01-01

    Oxidative damages by ionizing radiation are the source of radiation-induced carcinogenesis, damage to the central nervous system, lowering of the immune response, as well as other radiation-induced damages to human health. Monte Carlo track simulations and kinetic modeling of radiation damages to the DNA employ available molecular and cellular data to simulate the biological effect of high and low LET radiation io the DNA. While the simulations predict single and double strand breaks and base damages, so far all complex lesions are the result of stochastic coincidence from independent processes. Tandem double lesions have not yet been taken into account. Unlike the standard double lesions that are produced by two separate attacks by charged particles or radicals, tandem double lesions are produced by one single attack. The standard double lesions dominate at the high dosage regime. On the other hand, tandem double lesions do not depend on stochastic coincidences and become important at the low dosage regime of particular interest to NASA. Tandem double lesions by hydroxyl radical attack of guanine in isolated DNA have been reported at a dosage of radiation as low as 10 Gy. The formation of two tandem base lesions was found to be linear with the applied doses, a characteristic of tandem lesions. However, tandem double lesions from attack by a charged particle have not been reported.

  10. Angular distributions in the double ionization of DNA bases by electron impact

    NASA Astrophysics Data System (ADS)

    Khelladi, M. F.; Mansouri, A.; Dal Cappello, C.; Charpentier, I.; Hervieux, P. A.; Ruiz-Lopez, M. F.; Roy, A. C.

    2016-11-01

    Ab initio calculations of the five-fold differential cross sections for electron-impact double ionization of thymine, cytosine, adenine and guanine are performed in the first Born approximation for an incident energy close to 5500 eV. The wavefunctions of the DNA bases are constructed using the multi-center wave functions from the Gaussian 03 program. These multi-center wave functions are converted into single-center expansions of Slater-type functions. For the final state, the two ejected electrons are described by two Coulomb wave functions. The electron-electron repulsion between the two ejected electrons is also taken into account. Mechanisms of the double ionization are discussed for each case and the best choices of the kinematical parameters are determined for next experiments.

  11. Properties of Hollow Molecules Probed by Single-Photon Double Ionization

    SciTech Connect

    Lablanquie, P.; Penent, F.; Palaudoux, J.; Selles, P.; Carniato, S.; Andric, L.; Bucar, K.; Zitnik, M.; Huttula, M.; Eland, J. H. D.; Shigemasa, E.; Soejima, K.; Hikosaka, Y.; Suzuki, I. H.; Nakano, M.; Ito, K.

    2011-02-11

    The formation of hollow molecules (with a completely empty K shell in one constituent atom) through single-photon core double ionization has been demonstrated using a sensitive magnetic bottle experimental technique combined with synchrotron radiation. Detailed properties are presented such as the spectroscopy, formation, and decay dynamics of the N{sub 2}{sup 2+} K{sup -2} main and satellite states and the strong chemical shifts of double K holes on an oxygen atom in CO, CO{sub 2}, and O{sub 2} molecules.

  12. Double ionization of single oriented water molecules by electron impact: Second-order Born description

    SciTech Connect

    Dal Cappello, C.; Champion, C.; Kada, I.; Mansouri, A.

    2011-06-15

    The double ionization of isolated water molecules fixed in space is investigated within a theoretical approach based on the second-order Born approximation. Electron angular distributions have been studied for specific kinematical conditions. The three usual mechanisms, the shake-off and the two two-step mechanisms, have been identified. A significant contribution of the two-step mechanism is clearly visible for some particular kinematics.

  13. Perturbative calculation of two-photon double electron ionization of helium

    NASA Astrophysics Data System (ADS)

    Ivanov, I. A.; Kheifets, A. S.

    2008-05-01

    We report the total integrated cross-section (TICS) of two-photon double ionization of helium in the photon energy range from 40 to 54 eV. We compute the TICS in the lowest order perturbation theory (LOPT) using the length and Kramers-Henneberger gauges of the electromagnetic interaction. Our findings indicate that the LOPT gives results for the TICS in agreement with our earlier non-perturbative calculations.

  14. Kinetic correlation in the final-state wave function in photo-double-ionization of He

    SciTech Connect

    Otranto, S.; Garibotti, C. R.

    2003-06-01

    We evaluate the triply differential cross section (TDCS) for photo-double-ionization of helium. We use a final continuum wave function which correlates the motion of the three particles, through an expansion in products of two-body Coulomb functions. This function satisfies a set of appropriate physical conditions in the coalescence points, in addition to the correct asymptotic behavior condition. We analyze the effect of this correlation in the TDCS and compare our results with experimental data.

  15. Few-XUV-photon laser-assisted double ionization of helium

    NASA Astrophysics Data System (ADS)

    Lui, Aihua; Thumm, Uwe

    2015-05-01

    We studied the few-photon IR laser-assisted double ionization of helium in ultrashort XUV pulse(s) by numerically solving the time-dependent Schrödinger equation in full dimensionality within a finite-element discrete-variable-representation scheme. We calculated energy and joint angle distributions in coplanar geometry, where the emitted electron momenta and identical polarization axis of the linearly polarized XUV and IR pulses lie in a plane. By analyzing joint angle distributions and asymmetries for two-XUV-photon double ionization, we identify ``sequential'' and ``non-sequential'' contributions for ultrashort XUV pulses whose spectra overlap the sequential (ℏω > 54.4 eV) and non-sequential (39.5 eV < ℏω < 54.4 eV) double ionization regimes. In addition, we show that emission angles between the two photoelectrons can be controlled by adjusting parameters of the XUV and assisting IR pulse. Supported by U.S. NSF and the Division of Chemical Sciences, Office of Basic Energy Sciences, Office of Energy Research, U.S. DoE.

  16. Core hole screening and decay rates of double core ionized first row hydrides.

    PubMed

    Inhester, L; Groenhof, G; Grubmüller, H

    2013-04-28

    Because of the high intensity, X-ray free electron lasers allow one to create and probe double core ionized states in molecules. The decay of these multiple core ionized states crucially determines the evolution of radiation damage in single molecule diffractive imaging experiments. Here we have studied the Auger decay in hydrides of first row elements after single and double core ionization by quantum mechanical ab initio calculations. In our approach the continuum wave function of the emitted Auger electron is expanded into spherical harmonics on a radial grid. The obtained decay rates of double K-shell vacancies were found to be systematically larger than those for the respective single K-shell vacancies, markedly exceeding the expected factor of two. This enhancement is attributed to the screening effects induced by the core hole. We propose a simple model, which is able to predict core hole decay rates in molecules with low Z elements based on the electron density in the vicinity of the core hole.

  17. Empirical formulas for direct double ionization by bare ions: Z = - 1 to 92

    DOE PAGES

    DuBois, R. D.; Santos, A. C. F.; Manson, S. T.

    2014-11-25

    Experimental cross sections and cross-section ratios reported in the literature for direct double ionization of the outer shells of helium, neon, and argon atoms resulting from bare ions ranging from protons to uranium and for antiprotons are analyzed in terms of a first- and second-order interference model originally proposed by McGuire [J. H. McGuire, Phys. Rev. Lett. 49, 1153 (1982)]. Empirical formulas for the various contributions to double ionization plus information about the phase difference between the first- and second-order mechanisms are extracted from the data. Projectile and target scalings are also extracted. Total cross sections and their ratios determinedmore » using these formulas and scalings are shown to be in very good agreement with experimental data for lower-Z projectiles and impact velocities larger than 1 a.u. For very-high-Z projectiles, the amount of double ionization is overestimated, probably due to saturation of probabilities that is not accounted for in scaling formulas.« less

  18. INSTRUMENTS AND METHODS OF INVESTIGATION: Surface-ionization field mass-spectrometry studies of nonequilibrium surface ionization

    NASA Astrophysics Data System (ADS)

    Blashenkov, Nikolai M.; Lavrent'ev, Gennadii Ya

    2007-01-01

    The ionization of polyatomic molecules on tungsten and tungsten oxide surfaces is considered for quasiequilibrium or essentially nonequilibrium conditions (in the latter case, the term nonequilibrium surface ionization is used for adsorbate ionization). Heterogeneous reactions are supposed to proceed through monomolecular decay of polyatomic molecules or fragments of multimolecular complexes. The nonequilibrium nature of these reactions is established. The dependences of the current density of disordered ions on the surface temperature, electric field strength, and ionized particle energy distribution are obtained in analytical form. Heterogeneous dissociation energies, the ionization potentials of radicals, and the magnitude of reaction departure from equilibrium are determined from experimental data, as are energy exchange times between reaction products and surfaces, the number of molecules in molecular complexes, and the number of effective degrees of freedom in molecules and complexes. In collecting the data a new technique relying on surface-ionization field mass-spectrometry was applied.

  19. Extended virtual detector theory for strong-field atomic ionization.

    PubMed

    Wang, Xu; Tian, Justin; Eberly, J H

    2013-06-14

    For time-dependent strong-field atomic ionization a new theoretical approach is described that combines the numerical time-dependent Schrödinger equation (TDSE) and the numerical time-dependent Newtonian equation (TDNE). This approach keeps both the accuracy of quantum calculations and the speed of classical calculations. It does not use approximate tunneling formulas. It is applied to a recent experimental result, and we show its successful comparison to extensive TDSE calculations made under exactly the same conditions.

  20. N1s and O1s double ionization of the NO and N{sub 2}O molecules

    SciTech Connect

    Hedin, L.; Zhaunerchyk, V.; Karlsson, L.; Pernestål, K.; Feifel, R.; Tashiro, M.; Ehara, M.; Linusson, P.; Eland, J. H. D.; Ueda, K.

    2014-01-28

    Single-site N1s and O1s double core ionisation of the NO and N{sub 2}O molecules has been studied using a magnetic bottle many-electron coincidence time-of-flight spectrometer at photon energies of 1100 eV and 1300 eV. The double core hole energies obtained for NO are 904.8 eV (N1s{sup −2}) and 1179.4 eV (O1s{sup −2}). The corresponding energies obtained for N{sub 2}O are 896.9 eV (terminal N1s{sup −2}), 906.5 eV (central N1s{sup −2}), and 1174.1 eV (O1s{sup −2}). The ratio between the double and single ionisation energies are in all cases close or equal to 2.20. Large chemical shifts are observed in some cases which suggest that reorganisation of the electrons upon the double ionization is significant. Δ-self-consistent field and complete active space self-consistent field (CASSCF) calculations were performed for both molecules and they are in good agreement with these results. Auger spectra of N{sub 2}O, associated with the decay of the terminal and central N1s{sup −2} as well as with the O1s{sup −2} dicationic states, were extracted showing the two electrons emitted as a result of filling the double core holes. The spectra, which are interpreted using CASSCF and complete active space configuration interaction calculations, show atomic-like character. The cross section ratio between double and single core hole creation was estimated as 1.6 × 10{sup −3} for nitrogen at 1100 eV and as 1.3 × 10{sup −3} for oxygen at 1300 eV.

  1. Performance of electret ionization chambers in magnetic field.

    PubMed

    Kotrappa, P; Stieff, L R; Mengers, T F; Shull, R D

    2006-04-01

    Electret ionization chambers are widely used for measuring radon and radiation. The radiation measured includes alpha, beta, and gamma radiation. These detectors do not have any electronics and as such can be introduced into magnetic field regions. It is of interest to study the effect of magnetic fields on the performance of these detectors. Relative responses are measured with and without magnetic fields present. Quantitative responses are measured as the magnetic field is varied from 8 kA/m to 716 kA/m (100 to 9,000 gauss). No significant effect is observed for measuring alpha radiation and gamma radiation. However, a significant systematic effect is observed while measuring beta radiation from a 90Sr-Y source. Depending upon the field orientation, the relative response increased from 1.0 to 2.7 (vertical position) and decreased from 1.0 to 0.60 (horizontal position). This is explained as due to the setting up of a circular motion for the electrons by the magnetic field, which may increase or decrease the path length in air depending upon the experimental configuration. It is concluded that these ionization chambers can be used for measuring alpha (and hence radon) and gamma radiation in the range of magnetic fields studied. However, caution must be exercised if measuring beta radiation.

  2. Multielectron effects in strong field ionization of molecules

    NASA Astrophysics Data System (ADS)

    Jaron-Becker, Agnieszka; Xia, Yuqing

    2014-05-01

    Multielectron effects are studied for strong field ionization of di- and polyatomic molecules at their equilibrium geometries, using time dependent density functional theory. Strong field ionization of molecules have been previously often analyzed using ``single active electron'' (SAE) approximation based theories such as for example Intense Field Many Body S-matrix Theory and typically the contributions from inner valence orbitals and multielectron effects were concluded to be of less importance. For several di- and polyatomic molecules we show that ionization rate from inner valence orbitals can increase dramatically due to a novel resonant coupling which influences the molecular dynamics. We discuss the dependence of the results on the orientation of the molecules and laser parameters. Moreover we show how such a mechanism can lead to localization of electron depending on the symmetry of the orbitals involved. Finally, we propose how the novel mechanism can be observed experimentally and show how the multi-electron effects can help explain several experimental results which have shown disagreement with SAE approximation based theories. Supported by NSF (Grants No. PHY-1068706 and PHY-1125844).

  3. Nuclear Recoil Cross Sections from Time-dependent Studies of Two-Photon Double Ionization of Helium

    SciTech Connect

    Horner, Daniel A.; Rescigno, Thomas N.; McCurdy, C. William

    2009-12-21

    We examine the sensitivity of nuclear recoil cross sections produced by two-photon double ionization of helium to the underlying triple differential cross sections (TDCS) used in their computation. We show that this sensitivity is greatest in the energy region just below the threshold for sequential double ionization. Accurate TDCS, extracted from non-perturbative solutions of the time-dependent Schroedinger equation, are used here in new computations of the nuclear recoil cross section.

  4. Semiclassical two-step model for strong-field ionization

    NASA Astrophysics Data System (ADS)

    Shvetsov-Shilovski, N. I.; Lein, M.; Madsen, L. B.; Räsänen, E.; Lemell, C.; Burgdörfer, J.; Arbó, D. G.; Tőkési, K.

    2016-07-01

    We present a semiclassical two-step model for strong-field ionization that accounts for path interferences of tunnel-ionized electrons in the ionic potential beyond perturbation theory. Within the framework of a classical trajectory Monte Carlo representation of the phase-space dynamics, the model employs the semiclassical approximation to the phase of the full quantum propagator in the exit channel. By comparison with the exact numerical solution of the time-dependent Schrödinger equation for strong-field ionization of hydrogen, we show that for suitable choices of the momentum distribution after the first tunneling step, the model yields good quantitative agreement with the full quantum simulation. The two-dimensional photoelectron momentum distributions, the energy spectra, and the angular distributions are found to be in good agreement with the corresponding quantum results. Specifically, the model quantitatively reproduces the fanlike interference patterns in the low-energy part of the two-dimensional momentum distributions, as well as the modulations in the photoelectron angular distributions.

  5. Multielectron coincidence study of the double Auger decay of 3d-ionized krypton

    SciTech Connect

    Andersson, E.; Hedin, L.; Rubensson, J.-E.; Karlsson, L.; Feifel, R.; Fritzsche, S.; Linusson, P.; Eland, J. H. D.

    2010-10-15

    Multielectron coincidence data for triple ionization of krypton have been recorded above the 3d ionization threshold at two photon energies (140 and 150 eV). Three principal transition pathways have been observed, two involving double Auger transitions from Kr{sup +}, and one involving single Auger transitions from Kr{sup 2+} created by direct single-photon double ionization. The decay of the 3d{sup 9} {sup 2}D{sub 5/2,3/2} states in Kr{sup +} has been analyzed in some detail and is found to be strongly dominated by cascade processes where two electrons with well-defined energies are emitted. The decay paths leading to the 4s{sup 2}4p{sup 3} {sup 4}S, {sup 2}D, and {sup 2}P states of Kr{sup 3+} are analyzed and energies of seven intermediate states in Kr{sup 2+} are given. A preliminary investigation of the decay paths from Kr{sup +} 3d{sup 9}4p{sup 5}nl shake-up states has also been carried out.

  6. Numerical Modeling of Ion Dynamics in a Carbon Nanotube Field-Ionized Thruster

    DTIC Science & Technology

    2011-12-01

    ION SOURCES Ions may be produced by several methods: photo-ionization, electron bombardment, field ionization, surface ionization, and thermionic ...OF ION DYNAMICS IN A CARBON NANOTUBE FIELD -IONIZED ION THRUSTER by Sarah F. Michael December 2011 Thesis Advisors: Dragoslav Grbovic...December 2011 3. REPORT TYPE AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE Numerical Modeling of Ion Dynamics in a Carbon Nanotube Field

  7. Electron correlation in two-photon double ionization of helium from attosecond to FEL pulses

    SciTech Connect

    Collins, Lee

    2009-01-01

    We investigate the role of electron correlation in the two-photon double ionization of helium for ultrashort pulses in the extreme ultraviolet (XUV) regime with durations ranging from a hundred attoseconds to a few femtoseconds. We perform time-dependent ab initio calculations for pulses with mean frequencies in the so-called 'sequential' regime ({Dirac_h}{omega} > 54.4 eV). Electron correlation induced by the time correlation between emission events manifests itself in the angular distribution of the ejected electrons, which strongly depends on the energy sharing between them. We show that for ultrashort pulses two-photon double ionization probabilities scale non-uniformly with pulse duration depending on the energy sharing between the electrons. Most interestingly we find evidence for an interference between direct ('nonsequential') and indirect ('sequential') double photoionization with intermediate shake-up states, the strength of which is controlled by the pulse duration. This observation may provide a route towards measuring the pulse duration of x-ray free-electron laser (XFEL) pulses.

  8. Wavelength and Intensity Dependence of Short Pulse Laser Xenon Double Ionization between 500 and 2300 nm

    NASA Astrophysics Data System (ADS)

    Gingras, G.; Tripathi, A.; Witzel, B.

    2009-10-01

    The wavelength and intensity dependence of xenon ionization with 50 fs laser pulses has been studied using time-of-flight mass spectrometry. We compare the ion yield distribution of singly and doubly charged xenon with the Perelomov-Popov-Terent’ev (PPT) theory, Perelomov, Popov, and Terent’ev, Zh. Eksp. Teor. Fiz.ZETFA70044-4510 50, 1393 (1966) PerelomovPopovTerent’ev[Sov. Phys. JETPSPHJAR0038-5646 23, 924 (1966)], in the regime between 500 and 2300 nm. The intensity dependence for each wavelength is measured in a range between 1×1013 and 1×1015W/cm2. The Xe+-ion signal is in good agreement with the PPT theory at all used wavelengths. In addition we demonstrate that ionic 5s5p6 S2 state is excited by an electron impact excitation process and contributes to the nonsequential double ionization process.

  9. Wavelength and intensity dependence of short pulse laser xenon double ionization between 500 and 2300 nm.

    PubMed

    Gingras, G; Tripathi, A; Witzel, B

    2009-10-23

    The wavelength and intensity dependence of xenon ionization with 50 fs laser pulses has been studied using time-of-flight mass spectrometry. We compare the ion yield distribution of singly and doubly charged xenon with the Perelomov-Popov-Terent'ev (PPT) theory, Perelomov, Popov, and Terent'ev, Zh. Eksp. Teor. Fiz. 50, 1393 (1966) [Sov. Phys. JETP 23, 924 (1966)], in the regime between 500 and 2300 nm. The intensity dependence for each wavelength is measured in a range between 1 x 10(13) and 1 x 10(15) W/cm2. The Xe+-ion signal is in good agreement with the PPT theory at all used wavelengths. In addition we demonstrate that ionic 5s5p6 2S state is excited by an electron impact excitation process and contributes to the nonsequential double ionization process.

  10. Electric fields and double layers in plasmas

    NASA Astrophysics Data System (ADS)

    Singh, Nagendra; Thiemann, H.; Schunk, R. W.

    1987-05-01

    Various mechanisms for driving double layers (DLs) in plasmas are described, including applied potential drops, currents, contact potentials, and plasma expansions. Somne dynamic features of the DLs are discussed; and it is demonstrated that DLs and the currents through them undergo slow oscillations, determined by the ion transit time across an effective length of the system in which the DLs form. It is shown that a localized potential dip forms at the low potential end of a DL, which interrupts the electron current through it according to the Langmuir criterion whenever the ion flux into the DL is disrupted. Also considered is the generation of electric fields perpendicular to the ambient magnetic field by contact potentials.

  11. Ionization of CO in radio-frequency electric field

    NASA Astrophysics Data System (ADS)

    Aoneas, M. M.; Vojnović, M. M.; Ristić, M. M.; Vićić, M. D.; Poparić, G. B.

    2017-02-01

    The rate coefficients for the electron impact ionization of the CO molecule have been calculated in the presence of the radio-frequency (RF) electric field. The non-equilibrium electron energy distribution functions, used for the rate coefficient calculations, were generated by using a Monte Carlo simulation. The rate coefficients were obtained, time resolved within one period, in the frequency range from 13.56 up to 500 MHz, at effective reduced electric field values up to 700 Td. A temporal behavior of the rate coefficients under the influence of magnitude and frequency of the fields has been studied. The total ionization rate coefficients and the rate coefficients for the production of different ion fragments have been period averaged and presented in the order to be of use for practical implementation in the RF discharges in CO. Also, the temporal characteristics of the electron energy distribution functions and the diffusion coefficients have been studied separately revealing some interesting features in their time dependence within the period of electric field oscillations.

  12. Double ionization of neon by electron impact: use of correlated wave functions*

    NASA Astrophysics Data System (ADS)

    Kada, Imene; Cappello, Claude Dal; Mansouri, Abdelaziz

    2017-02-01

    A model including correlation both in the initial state and in the final state is applied to the case of the double ionization of neon. The results of our model are compared to the available experimental data performed at high incident energy. Fully (fivefold) differential cross sections (FDCS) have been studied by applying the first Born approximation. Four ion states of Ne++, which are not resolved in the experiments, have been included in our calculation. Contribution to the Topical Issue "Many Particle Spectroscopy of Atoms, Molecules, Clusters and Surfaces", edited by A.N. Grum-Grzhimailo, E.V. Gryzlova, Yu V. Popov, and A.V. Solov'yov.

  13. Fully Differential Cross Sections for Photo-Double-Ionization of D2_

    NASA Astrophysics Data System (ADS)

    Weber, Th.; Czasch, A.; Jagutzki, O.; Müller, A.; Mergel, V.; Kheifets, A.; Feagin, J.; Rotenberg, E.; Meigs, G.; Prior, M. H.; Daveau, S.; Landers, A. L.; Cocke, C. L.; Osipov, T.; Schmidt-Böcking, H.; Dörner, R.

    2004-04-01

    We report the first kinematically complete study of the four-body fragmentation of the D2 molecule following absorption of a single photon. For equal energy sharing of the two electrons and a photon energy of 75.5eV, we observed the relaxation of one of the selection rules valid for He photo-double-ionization and a strong dependence of the electron angular distribution on the orientation of the molecular axis. This effect is reproduced by a model in which a pair of photoionization amplitudes is introduced for the light polarization parallel and perpendicular to the molecular axis.

  14. Kinetic Correlation In Photo-Double-Ionization Processes: The He-Isoelectronic Sequence

    SciTech Connect

    Otranto, S.; Garibotti, C. R.

    2006-01-09

    Analytical models proposed to represent the two-electron continuum are revisited. Main results obtained with these models are summarized. Recent studies of the photo-double-ionization (PDI) of the He-isoelectronic sequence by means of the recently introduced SC3 model are shown and compared with the results predicted by classical and semi-classical Wannier approaches. By fitting the triply differential cross sections (TDCSs) with the usual dipolar Gaussian form we find that the width has a power dependence on excess energy with exponent 0.25 in the near threshold region and departs from this law with increasing energy.

  15. STORAGE RING CROSS-SECTION MEASUREMENTS FOR ELECTRON IMPACT SINGLE AND DOUBLE IONIZATION OF Fe{sup 9+} AND SINGLE IONIZATION OF Fe{sup 10+}

    SciTech Connect

    Hahn, M.; Novotny, O.; Savin, D. W.; Becker, A.; Grieser, M.; Krantz, C.; Wolf, A.; Lestinsky, M.; Repnow, R.; Mueller, A.; Schippers, S.; Spruck, K.

    2012-11-20

    We have measured electron impact ionization from the ground state of Fe{sup 9+} and Fe{sup 10+} over the relative electron-ion collision energy ranges 200-1900 eV and 250-1800 eV, respectively. The ions were confined in an ion storage ring long enough for essentially all metastable levels to radiatively relax to the ground state. For single ionization, we find a number of discrepancies between the existing theoretical cross sections and our results. The calculations appear to neglect some excitation-autoionization (EA) channels, particularly from n = 3 to n' excitations, which are important near threshold, and those from n = 2 {yields} 3 excitations, which contribute at about 650 eV. Conversely, at higher energies the calculations appear to overestimate the importance of EA channels due to excitation into levels where n {>=} 4. The resulting experimental rate coefficients agree with the most recent theory for Fe{sup 9+} to within 16% and for Fe{sup 10+} to within 19% at temperatures where these ions are predicted to form in collisional ionization equilibrium. We have also measured double ionization of Fe{sup 9+} forming Fe{sup 11+} in the energy range 450-3000 eV and found that although there is an appreciable cross section for direct double ionization, the dominant mechanism appears to be through direct ionization of an inner shell electron producing an excited state that subsequently stabilizes through autoionization.

  16. Transport equations for partially ionized reactive plasma in magnetic field

    NASA Astrophysics Data System (ADS)

    Zhdanov, V. M.; Stepanenko, A. A.

    2016-06-01

    Transport equations for partially ionized reactive plasma in magnetic field taking into account the internal degrees of freedom and electronic excitation of plasma particles are derived. As a starting point of analysis the kinetic equation with a binary collision operator written in the Wang-Chang and Uhlenbeck form and with a reactive collision integral allowing for arbitrary chemical reactions is used. The linearized variant of Grad's moment method is applied to deduce the systems of moment equations for plasma and also full and reduced transport equations for plasma species nonequilibrium parameters.

  17. XUV Transient Absorption of Strong-Field Ionized Ferrocene

    NASA Astrophysics Data System (ADS)

    Chatterley, Adam S.; Lackner, Florian; Neumark, Daniel M.; Leone, Stephen R.; Gessner, Oliver

    2015-05-01

    Femtosecond extreme ultraviolet (XUV) transient absorption experiments are underway to study the dynamics of ferrocene following strong field ionization. Ferrocene is a textbook organometallic compound, composed of an iron atom sandwiched between two aromatic organic rings. An intense infrared (IR, 790 nm) pump pulse is used to ionize the ferrocene molecules. Femtosecond XUV pulses, created by high harmonic generation (HHG) are used to probe the induced dynamics. Iron 3p inner-shell to valence transitions (M edge, 50 eV field induced molecular dynamics from the perspective of the metal center. We will induce dissociation dynamics at high field intensities and use lower IR intensities to study dynamics of electronically and/or vibrationally excited ferrocene cations. Preliminary results will be presented, demonstrating current progress of XUV transient absorption experiments on moderately large molecular systems.

  18. Cross sections for non-sequential two-photon double ionization of helium

    NASA Astrophysics Data System (ADS)

    Feist, Johannes; Nagele, Stefan; Pazourek, Renate; Persson, Emil; Burgdörfer, Joachim; Schneider, Barry; Collins, Lee

    2008-05-01

    The generalized cross sections for non-sequential two-photon double ionization of helium at photon energies from 39.5,V to 54.4,V have been the subject of several recent theoretical studies. Quantitative agreement between the different approaches has not yet been reached. In this contribution, we present converged results for the total integrated and triply differential cross sections for the above process, which are based on the direct integration of the time-dependent Schr"odinger equation. We compare our data with calculations from other authors and investigate to what extent electronic correlation in the representation of the double continuum affects the cross sections. We also study the influence of the pulse shape on the value of the cross sections extracted from time-dependent approaches.

  19. Optimal control of the strong-field ionization of silver clusters in helium droplets

    SciTech Connect

    Truong, N. X.; Goede, S.; Przystawik, A.; Fennel, Th.; Bornath, Th.; Tiggesbaeumker, J.; Meiwes-Broer, K. H.; Hilse, P.; Schlanges, M.; Doeppner, T.; Gerber, G.

    2010-01-15

    Optimal control techniques combined with femtosecond laser pulse shaping are applied to steer and enhance the strong-field induced emission of highly charged atomic ions from silver clusters embedded in helium nanodroplets. With light fields shaped in amplitude and phase we observe a substantial increase of the Ag{sup q+} yield for q>10 when compared to bandwidth-limited and optimally stretched pulses. A remarkably simple double-pulse structure, containing a low-intensity prepulse and a stronger main pulse, turns out to produce the highest atomic charge states up to Ag{sup 20+}. A negative chirp during the main pulse hints at dynamic frequency locking to the cluster plasmon. A numerical optimal control study on pure silver clusters with a nanoplasma model converges to a similar pulse structure and corroborates that the optimal light field adapts to the resonant excitation of cluster surface plasmons for efficient ionization.

  20. Double and single ionization of He and other targets studied using cold target recoil momentum spectroscopy

    SciTech Connect

    Doerner, R.; Feagin, J. M.; Brauning, H.; Jagutzki, O.; Jung, M.; Kanter, E. P.; Khemliche, H.; Kravis, S.; Mergel, V.; Prior, M. H.; Schmidt-Boeking, H.; Spielberger, L.; Ullrich, J.; Unverzagt, M.; Vogt, T.

    1997-04-01

    Double ionization of an atom by a single photon is the simplest and most fundamental many-electron process. The ejection of two electrons following the absorption of one photon is strictly prohibited in an independent electron approximation. Thus determining the probability of double photoionization alone is already a challenging test of the understanding of electron-electron correlation. Furthermore, in the slow breakup of a bound system into three charged particles, the final state wave function must represent a high degree of few-body Coulomb correlation involving the simultaneous interaction of all three particles. The case of double photoionization is again particularly well suited to study this problem as the energy and the angular momentum delivered to the system can be very well controlled. Helium, as the most basic three body system, has been the target of extensive studies over the past decades. The purpose of this project has been to study double and single ionization using cold target recoil ion momentum spectroscopy (COLTRIMS). This technique has been widely applied within the area of ion-atom collisions to study the dynamics of energy and momentum transfer in collisions between few-electron systems, and the entire technical machinery has been transferred to photon-atom collisions. The technique uses space- and time-imaging of He{sup +} and He{sup ++} recoil ions created in photon-He collisions to measure the full momentum vector of each ion produced. Event-mode recording is used and a solid angle of nearly 4{pi} is realized, allowing an extremely high data-collection efficiency. In order to reduce the initial momentum spread of the He target a precooled supersonic He jet is used.

  1. Two-photon double ionization of helium in the region of photon energies 42-50eV

    NASA Astrophysics Data System (ADS)

    Ivanov, I. A.; Kheifets, A. S.

    2007-03-01

    We report the total integrated cross section (TICS) of two-photon double ionization of helium in the photon energy range from 42to50eV . Our computational procedure relies on a numerical solution of the time-dependent Schrödinger equation on a square-integrable basis and subsequent projection of this solution on a set of final field-free states describing correlation in the two-electron continuum. Our results suggest that the TICS grows monotonically as a function of photon energy in the region of 42-50eV , possibly reaching a maximum in the vicinity of 50eV . We also present fully resolved triple-differential cross sections for selected photon energies.

  2. Connecting field ionization to photoionization via 17- and 36-GHz microwave fields

    SciTech Connect

    Gurian, J. H.; Overstreet, K. R.; Gallagher, T. F.; Maeda, H.

    2010-10-15

    Here we present experimental results connecting field ionization to photoionization in Li Rydberg atoms obtained with 17- and 36-GHz microwave fields. At a low principal quantum number n, where the microwave frequency {omega} is much lower than the classical, or Kepler frequency, {omega}{sub K}=1/n{sup 3}, microwave ionization occurs by field ionization, at E=1/9n{sup 4}. When the microwave frequency exceeds the Kepler frequency, {omega}>1/n{sup 3}, the field required for ionization is independent of n and given by E=2.4{omega}{sup 5/3}, in agreement with dynamic localization models, which cross over to a Fermi's Golden Rule approach at the photoionization limit. A surprising aspect of our results is that when {omega}{approx_equal}1/2n{sup 2}, the one- and multiphoton ionization rates are similar, and even at the lowest microwave powers, all are 10 times lower than the perturbation theory rate calculated for single-photon ionization. Further, we show that when the Rydberg atoms are excited in the presence of the microwave field, the probability of an atom's being bound at the end of the microwave pulse passes smoothly across the limit. This microwave stimulated recombination to bound Rydberg states can be well described by a simple classical model. More generally, these results suggest that the problem of a Rydberg atom coupled to a high-frequency microwave field is similar to the problem of interchannel internal coupling in multilimit atoms, a problem well described by quantum defect theory.

  3. Integrated reservoir management doubles Nigerian field reserves

    SciTech Connect

    Akinlawon, Y.; Nwosu, T.; Satter, A.; Jespersen, R.

    1996-10-01

    An integrated alliance across disciplines, companies and countries enabled Texaco to conduct a comprehensive reservoir analysis of the North Apoi/Funiwa field in Nigeria. Recommendations implemented in 3 months doubled the book reserves of this mature field. The paper discusses the objectives, the integration of organizations, reservoir analysis, and conclusions. The conclusions made from the integrated study are: (1) 3-D seismic data dramatically improved reservoir description. (2) OOIP is considerably more than the booked values and reserves additions are substantial. (3) Significant value has been added to TOPCON`s assets as a result of teamwork and a multidisciplinary approach to evaluating the reservoirs and optimizing the scenarios for reservoir management. (4) Teamwork and integration of professionals, data, technology and tools was critical to the projects success. (5) The study set an example for effective and expeditious technology transfer and applications. (6) Partnering of TOPCON, DPR, NAPIMS, EPTD and SSI resulted in a quick cycle time and set an excellent example of integration and alliance.

  4. Double ionization effect in electron accelerations by high-intensity laser pulse interaction with a neutral gas

    NASA Astrophysics Data System (ADS)

    Nandan Gupta, Devki

    2013-11-01

    We study the effect of laser-induced double-ionization of a helium gas (with inhomogeneous density profile) on vacuum electron acceleration. For enough laser intensity, helium gas can be found doubly ionized and it strengthens the divergence of the pulse. The double ionization of helium gas can defocus the laser pulse significantly, and electrons are accelerated by the front of the laser pulse in vacuum and then decelerated by the defocused trail part of the laser pulse. It is observed that the electrons experience a very low laser-intensity at the trailing part of the laser pulse. Hence, there is not much electron deceleration at the trailing part of the pulse. We found that the inhomogeneity of the neutral gas reduced the rate of tunnel ionization causing less defocusing of the laser pulse and thus the electron energy gain is reduced.

  5. Single-photon double and triple ionization of acetaldehyde (ethanal) studied by multi-electron coincidence spectroscopy

    NASA Astrophysics Data System (ADS)

    Zagorodskikh, S.; Zhaunerchyk, V.; Mucke, M.; Eland, J. H. D.; Squibb, R. J.; Karlsson, L.; Linusson, P.; Feifel, R.

    2015-12-01

    Single-photon multiple ionization processes of acetaldehyde (ethanal) have been experimentally investigated by utilizing a multi-particle coincidence technique based on the time-of-flight magnetic bottle principle, in combination with either a synchrotron radiation source or a pulsed helium discharge lamp. The processes investigated include double and triple ionization in the valence region as well as single and double Auger decay of core-ionized acetaldehyde. The latter are studied site-selectively for chemically different carbon core vacancies, scrutinizing early theoretical predictions specifically made for the case of acetaldehyde. Moreover, Auger processes in shake-up and core-valence ionized states are investigated. In the cases where the processes involve simultaneous emission of two electrons, the distributions of the energy sharing are presented, emphasizing either the knock-out or shake-off mechanism.

  6. Recoil Momentum Spectroscopy of Double and Single Ionization of He by 80-400 eV Photons

    NASA Astrophysics Data System (ADS)

    Dörner, R.; Kravis, S.; Cocke, C. L.; Vogt, T.; Mergel, V.; Unverzagt, M.; Spielberger, L.; Damrau, M.; Jagutzki, O.; Ali, I.; Weaver, B.; Ullmann, K.; Schmidt-Böcking, H.; Khemliche, H.; Prior, M. H.; Warwick, T.; Ullrich, J.; Jung, M.; Kanter, E. P.; Hsu, C. C.; Sonntag, B.; Rotenberg, E.; Denlinger, J.; Manson, S. T.; Feagin, J.

    1996-05-01

    We have measured the ratio (R) between double and single ionization of He by photons between 85 eV and 400 eV using COLTRIMS.(J. Ullrich et al., Comm. At. Mol. Phys. \\underline30), 285 (1994). The experiment, performed at the Berkeley ALS, eliminates many systematic errors which have plagued previous attempts to measure R. The values of R obtained are about 25% below those previously reported but are in good agreement with several recent theoretical calculations. We also report preliminary results of triply differential cross sections for double ionization of He measured near threshold.

  7. Pulse-shape-dependent strong-field ionization viewed with velocity-map imaging

    SciTech Connect

    Geissler, Dominik; Weinacht, Thomas C.; Rozgonyi, Tamas; Gonzalez-Vazquez, Jesus

    2011-11-15

    We explore strong field molecular ionization with velocity map imaging of fragment ions produced by dissociation following ionization. Our measurements and ab initio electronic structure calculations allow us to identify various electronic states of the molecular cation populated during ionization, with multiple pathways to individual states highlighted by the pulse shape dependence. In addition, we show that relative populations can be reconstructed from our measurements. The results illustrate how strong field molecular ionization can be complicated by the presence and interaction of multiple cationic states during ionization.

  8. Three-body neutral dissociations of a multiply excited water molecule around the double ionization potential

    NASA Astrophysics Data System (ADS)

    Odagiri, Takeshi; Nakano, Motoyoshi; Tanabe, Takehiko; Kumagai, Yoshiaki; Suzuki, Isao H.; Kitajima, Masashi; Kouchi, Noriyuki

    2012-11-01

    The cross sections for emission of two fluorescence photons from a pair of excited fragments in photoexcitation of H2O have been measured as a function of the incident photon energy using the photon-photon coincidence technique. The cross section increased in the range 30-45 eV, i.e. in the vicinity of the double ionization potential of H2O. The increase of the cross section was attributed to three-body neutral dissociations of a water molecule via multiply excited states: H2O** → H(2p) + OH** → H(2p) + H(2p) + O(3P). Some multiply excited states of H2O were also found in the cross section curve around 65 eV.

  9. Double ionization of helium by bare ions: Theoretical study of the fully differential cross sections

    SciTech Connect

    Lopez, S. D.; Garibotti, C. R.; Otranto, S.

    2011-06-15

    This work presents a theoretical study of fully differential cross sections (FDCSs) for the double ionization of an He target by ion impact within a distorted wave model. The initial atomic system is described by two approximated wave functions of different accuracy proposed by Bonham and Kohl. For the final channel several models are considered based upon improvements and simplifications of the well-known three-body Coulomb (3C) model. The influence of the receding projectile on the resulting fragments is also studied by implementing a model with effective charges that depend on the momenta of the four particles. The FDCSs resulting for different electron energy sharing are discussed. The sensitivity of the FDCSs to the projectile charge sign and magnitude is explored over the energy range 700 keV/amu through 6 MeV/amu.

  10. Charge Dependent Effects in Double-Photo-Ionization of Helium-Like Ions

    NASA Astrophysics Data System (ADS)

    Foster, Matt; Colgan, James

    2006-10-01

    A study is made of triple differential cross sections (TDCS) for double-photo-ionization (DPI) of helium-like ions. The angular distribution between the equal energy outgoing electrons is examined as a function of the nuclear target charge. Time-dependent close-coupling theory (TDCC) will be used to solve the time-dependent Schr"odinger equation for both outgoing electrons. The TDCC method treats the correlation between the electrons without approximation. Previous theoretical models that have calculated the TDCS for helium-like ions have only included the electron-electron interaction through approximate perturbative methods. We will analyze the effects of the electron correlation and its dependence relative to the nuclear charge. We will compare our calculations with previous experimental and theoretical work, where available.

  11. Detection of internal fields in double-metal terahertz resonators

    NASA Astrophysics Data System (ADS)

    Mitrofanov, Oleg; Han, Zhanghua; Ding, Fei; Bozhevolnyi, Sergey I.; Brener, Igal; Reno, John L.

    2017-02-01

    Terahertz (THz) double-metal plasmonic resonators enable enhanced light-matter coupling by exploiting strong field confinement. The double-metal design however restricts access to the internal fields. We propose and demonstrate a method for spatial mapping and spectroscopic analysis of the internal electromagnetic fields in double-metal plasmonic resonators. We use the concept of image charges and aperture-type scanning near-field THz time-domain microscopy to probe the fields confined within the closed resonator. The experimental method opens doors to studies of light-matter coupling in deeply sub-wavelength volumes at THz frequencies.

  12. Ionization signals from diamond detectors in fast-neutron fields

    NASA Astrophysics Data System (ADS)

    Weiss, C.; Frais-Kölbl, H.; Griesmayer, E.; Kavrigin, P.

    2016-09-01

    In this paper we introduce a novel analysis technique for measurements with single-crystal chemical vapor deposition (sCVD) diamond detectors in fast-neutron fields. This method exploits the unique electronic property of sCVD diamond sensors that the signal shape of the detector current is directly proportional to the initial ionization profile. In fast-neutron fields the diamond sensor acts simultaneously as target and sensor. The interaction of neutrons with the stable isotopes 12 C and 13 C is of interest for fast-neutron diagnostics. The measured signal shapes of detector current pulses are used to identify individual types of interactions in the diamond with the goal to select neutron-induced reactions in the diamond and to suppress neutron-induced background reactions as well as γ-background. The method is verified with experimental data from a measurement in a 14.3 MeV neutron beam at JRC-IRMM, Geel/Belgium, where the 13C(n, α)10Be reaction was successfully extracted from the dominating background of recoil protons and γ-rays and the energy resolution of the 12C(n, α)9Be reaction was substantially improved. The presented analysis technique is especially relevant for diagnostics in harsh radiation environments, like fission and fusion reactors. It allows to extract the neutron spectrum from the background, and is particularly applicable to neutron flux monitoring and neutron spectroscopy.

  13. Ionization Study of Isomeric Molecules in Strong-field Laser Pulses

    NASA Astrophysics Data System (ADS)

    Zigo, Stefan; Le, Anh-Thu; Timilsina, Pratap; Trallero-Herrero, Carlos A.

    2017-02-01

    Through the use of the technique of time-of-flight mass spectroscopy, we obtain strong-field ionization yields for randomly oriented 1,2-dichloroethylene (1,2-DCE) (C2H2Cl2) and 2-butene (C4H8). We are interested in studying the effect of conformal structure in strong-field ionization and, in particular, the role of molecular polarity. That is, we can perform strong-field ionization studies in polar vs non-polar molecules that have the same chemical composition. We report our findings through the ionization yields and the ratio (trans/cis) of each stereoisomer pair as a function of intensity.

  14. Towards a double field theory on para-Hermitian manifolds

    NASA Astrophysics Data System (ADS)

    Vaisman, Izu

    2013-12-01

    In a previous paper, we have shown that the geometry of double field theory has a natural interpretation on flat para-Kähler manifolds. In this paper, we show that the same geometric constructions can be made on any para-Hermitian manifold. The field is interpreted as a compatible (pseudo-)Riemannian metric. The tangent bundle of the manifold has a natural, metric-compatible bracket that extends the C-bracket of double field theory. In the para-Kähler case, this bracket is equal to the sum of the Courant brackets of the two Lagrangian foliations of the manifold. Then, we define a canonical connection and an action of the field that correspond to similar objects of double field theory. Another section is devoted to the Marsden-Weinstein reduction in double field theory on para-Hermitian manifolds. Finally, we give examples of fields on some well-known para-Hermitian manifolds.

  15. Towards a double field theory on para-Hermitian manifolds

    SciTech Connect

    Vaisman, Izu

    2013-12-15

    In a previous paper, we have shown that the geometry of double field theory has a natural interpretation on flat para-Kähler manifolds. In this paper, we show that the same geometric constructions can be made on any para-Hermitian manifold. The field is interpreted as a compatible (pseudo-)Riemannian metric. The tangent bundle of the manifold has a natural, metric-compatible bracket that extends the C-bracket of double field theory. In the para-Kähler case, this bracket is equal to the sum of the Courant brackets of the two Lagrangian foliations of the manifold. Then, we define a canonical connection and an action of the field that correspond to similar objects of double field theory. Another section is devoted to the Marsden-Weinstein reduction in double field theory on para-Hermitian manifolds. Finally, we give examples of fields on some well-known para-Hermitian manifolds.

  16. Double L{sub 3}M ionization of Pd induced by impact with medium-energy electrons

    SciTech Connect

    Cao, W.; Dousse, J.-Cl.; Hoszowska, J.; Kayser, Y.; Schenker, J.-L.; Kavcic, M.; Zitnik, M.

    2011-02-15

    The electron-induced L{sub 3}M two-step double ionization cross sections of metallic Pd were determined experimentally for incident electron beam energies ranging from the double ionization threshold up to 18 keV. The double L{sub 3}M ionization cross sections were derived from the intensity ratios (I{sub L{alpha}M}:I{sub L{alpha}}) of the resolved M satellites to the parent diagram lines. The sample was bombarded with monoenergetic electrons from an energy-tunable 20-kV electron gun. The diagram and M-satellite x-ray lines were measured by means of high-resolution x-ray spectroscopy, using a reflection-type von Hamos bent crystal spectrometer. The two-step partial cross sections were determined by subtracting from the measured total double ionization cross sections the contributions due to the shake process and L{sub 1}-L{sub 3}M{sub 4,5} Coster-Kronig transitions. Despite the thick target employed in the present study, the dependence of the two-step cross sections on the incoming electron energy could be derived using a target slice decomposition method. It is shown that the obtained energy dependence can be well reproduced by the semiempirical parametrization model of Pattard and Rost.

  17. Strong field ionization rates simulated with time-dependent configuration interaction and an absorbing potential

    SciTech Connect

    Krause, Pascal; Sonk, Jason A.; Schlegel, H. Bernhard

    2014-05-07

    Ionization rates of molecules have been modeled with time-dependent configuration interaction simulations using atom centered basis sets and a complex absorbing potential. The simulations agree with accurate grid-based calculations for the ionization of hydrogen atom as a function of field strength and for charge resonance enhanced ionization of H{sub 2}{sup +} as the bond is elongated. Unlike grid-based methods, the present approach can be applied to simulate electron dynamics and ionization in multi-electron polyatomic molecules. Calculations on HCl{sup +} and HCO{sup +} demonstrate that these systems also show charge resonance enhanced ionization as the bonds are stretched.

  18. Investigation of electric field distribution on FAC-IR-300 ionization chamber

    NASA Astrophysics Data System (ADS)

    Mohammadi, S. M.; Tavakoli-Anbaran, H.; Zeinali, H. Z.

    2016-07-01

    One of the important parameters for establishing charge particle equilibrium (CPE) conditions of free-air ionization chamber is an electric field distribution. In this paper, electric field distribution inside the ionization chamber was investigated by finite element method. For this purpose, the effects of adding guard plate and guard strips on the electric field distribution in the ionization chamber were studied. it is necessary to apply a lead box around the ionization chamber body to avoid of scattered radiation effects on the ionization chamber operation, but the lead box changes the electric field distribution. In the following, the effect of lead box on the electric field distribution was studied. Finally, electric field distribution factor (kfield) was calculated by the simulation. The results of the simulation showed that presence of the guard plate and guard strips, and applying a suitable potential to lead box, a convergence of kfield to 1 was achieved.

  19. The Contribution of Field OB Stars to the Ionization of the Diffuse Ionized Gas in M33

    NASA Astrophysics Data System (ADS)

    Hoopes, Charles G.; Walterbos, René A. M.

    2000-10-01

    We present a study of the ionizing stars associated with the diffuse ionized gas (DIG) and H II regions in the nearby spiral galaxy M33. We compare our Schmidt Hα image to the far-ultraviolet (FUV, 1520 Å) image from the Ultraviolet Imaging Telescope (UIT). The Hα/FUV ratio is higher in H II regions than in the DIG, suggesting an older population of ionizing stars in the DIG. Assuming ionization equilibrium, we convert the Hα flux to the number of Lyman continuum photons NLyc. When compared to models of evolving stellar populations, the NLyc/FUV ratio in H II regions is consistent with a young burst, while the DIG ratio resembles an older burst population, or a steady state population built up by constant star formation, which is probably a more accurate description of the stellar population in the field. The UIT data is complemented with archival FUV and optical images of a small portion of the disk of M33 obtained with WFPC2 on board the Hubble Space Telescope (HST). These images overlap low- and mid-luminosity H II regions as well as DIG, so we can investigate the stellar population in these environments. Using the HST FUV and optical photometry, we assign spectral types to the stars observed in DIG and H II regions. The photometry indicates that ionizing stars are present in the DIG. We compare the predicted ionizing flux with the amount required to produce the observed Hα emission, and we find that field OB stars in the HST images can account for 40%+/-12% of the ionization of the DIG, while the stars in H II regions can provide 107%+/-26% of the Hα luminosity of the H II regions. Due to the limited coverage of the HST data, we cannot determine if stars outside the HST fields ionize some of the DIG located in the HST fields, nor can we determine if photons from stars inside the HST fields leak out of the area covered by the HST fields. We do not find any correlation between leakage of ionizing photons and Hα luminosity for the H II regions in our HST

  20. Ionizing Radiation Effects on Graphene Based Field Effects Transistors

    NASA Astrophysics Data System (ADS)

    Alexandrou, Konstantinos

    Graphene, first isolated in 2004 by Andre Geim and Konstantin Novoselov, is an atomically thin two-dimensional layer of hexagonal carbon that has been extensively studied due to its unique electronic, mechanical, thermal and optical properties. Its vast potential has led to the development of a wide variety of novel devices such as, transistors, solar cells, batteries and sensors that offer significant advantages over the conventional microelectronic ones. Although graphene-based devices show very promising performance characteristics, limited has been done in order to evaluate how these devices operate in a radiation harsh environment. Undesirable phenomena such as total dose effects, single event upsets, displacement damage and soft errors that silicon-based devices are prone to, can have a detrimental impact on performance and reliability. Similarly, the significant effects of irradiation on carbon nanotubes indicate the potential for related radiation induced defects in carbon-based materials, such as graphene. In this work, we fabricate graphene field effect transistors (GFETs) and systematically study the various effects of ionizing radiation on the material and device level. Graphene grown by chemical vapor deposition (CVD) along with standard lithographic and shadow masking techniques, was used for the transistor fabrication. GFETs were subjected to different radiation sources, such as, beta particles (electron radiation), gamma (photons) and ions (alpha, protons and Fe particles) under various radiation doses and energies. The effects on graphene's crystal structure, transport properties and doping profile were examined by using a variety of characterization tools and techniques. We demonstrate not only the mechanisms of ionized charge build up in the substrate and displacement damage effects on GFET performance, but also that atmospheric adsorbents from the surrounding environment can have a significant impact on the radiation hardness of graphene. We

  1. Investigating two-photon double ionization of D{sub 2} by XUV-pump-XUV-probe experiments

    SciTech Connect

    Jiang, Y. H.; Kurka, M.; Kuehnel, K. U.; Toppin, M.; Schroeter, C. D.; Moshammer, R.; Rudenko, A.; Foucar, L.; Perez-Torres, J. F.; Plesiat, E.; Morales, F.; Martin, F.; Herrwerth, O.; Lezius, M.; Kling, M. F.; Jahnke, T.; Doerner, R.; Sanz-Vicario, J. L.; Tilborg, J. van; Belkacem, A.

    2010-05-15

    We used a split-mirror setup attached to a reaction microscope at the free-electron laser in Hamburg (FLASH) to perform an XUV-pump-XUV-probe experiment by tracing the ultrafast nuclear wave-packet motion in the D{sub 2}{sup +}(1s{sigma}{sub g}) with <10 fs time resolution. Comparison with time-dependent calculations shows excellent agreement with the measured vibrational period of 22{+-}4 fs in D{sub 2}{sup +}, points to the importance of accurately knowing the internuclear distance-dependent ionization probability, and paves the way to control sequential and nonsequential two-photon double-ionization contributions.

  2. One- and two-photon ionization of DNA single and double helices studied by laser flash photolysis at 266 nm.

    PubMed

    Marguet, Sylvie; Markovitsi, Dimitra; Talbot, Francis

    2006-06-15

    The ionization of the DNA single and double helices (dA)20, (dT)20, (dAdT)10(dAdT)10 and (dA)20(dT)20, induced by nanosecond pulses at 266 nm, is studied by time-resolved absorption spectroscopy. The variation of the hydrated electron concentration with the absorbed laser intensity shows that, in addition to two-photon ionization, one-photon ionization takes place for (dAdT)10(dAdT)10, (dA)20(dT)20 and (dA)20 but not for (dT)20. The spectra of all adenine-containing oligomers at the microsecond time-scale correspond to the adenine deprotonated radical formed in concentrations comparable to that of the hydrated electron. The quantum yield for one-photon ionization of the oligomers (ca. 10(-3)) is higher by at least 1 order of magnitude than that of dAMP, showing clearly that organization of the bases in single and double helices leads to an important lowering of the ionization potential. The propensity of (dAdT)10(dAdT)10, containing alternating adenine-thymine sequences, to undergo one-photon ionization is lower than that of (dA)20(dT)20 and (dA)20, containing adenine runs. Pairing of the (dA)20 with the complementary strand leads to a decrease of quantum yield for one photon ionization by about a factor of 2.

  3. Coulomb-tail effect of electron-electron interaction on nonsequential double ionization

    NASA Astrophysics Data System (ADS)

    Zhou, Yueming; Huang, Cheng; Lu, Peixiang

    2011-08-01

    With the classical ensemble model, we investigate the manifestations of the Coulomb tail of electron-electron interaction in nonsequential double ionization by comparing the results from the short-range electron-electron interaction with those from the Coulombic electron-electron interaction. At the intensity below the recollision threshold, the two-electron momentum distributions in the direction parallel to the laser polarization show an anticorrelated behavior for the Coulombic electron-electron interaction while a correlated behavior for the short-range interaction, which indicates the responsibility of the Coulomb tail of the electron-electron interaction for the experimentally observed anticorrelated emission [Y. Liu, S. Tschuch, A. Rudenko, M. Durr, M. Siegel, U. Morgner, R. Moshammer, and J. Ullrich, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.101.053001 101, 053001 (2008)]. In the transverse direction, for the Coulombic electron-electron interaction, the two electrons exhibit no effect of repulsion at an intensity below the recollision threshold while a strong repulsion effect at an intensity above the threshold, which becomes weaker as the laser intensity further increases. Back analysis shows that the role of the Coulomb tail of electron-electron interaction leads asymmetric energy sharing (AES) to be prevalent at recollision. This AES results in the two electrons leaving the ion at different times or with different initial momenta, which is responsible for the anticorrelated behavior in the parallel direction and the intensity-dependent repulsion effect in the transverse direction.

  4. Coulomb-tail effect of electron-electron interaction on nonsequential double ionization

    SciTech Connect

    Zhou Yueming; Huang Cheng; Lu Peixiang

    2011-08-15

    With the classical ensemble model, we investigate the manifestations of the Coulomb tail of electron-electron interaction in nonsequential double ionization by comparing the results from the short-range electron-electron interaction with those from the Coulombic electron-electron interaction. At the intensity below the recollision threshold, the two-electron momentum distributions in the direction parallel to the laser polarization show an anticorrelated behavior for the Coulombic electron-electron interaction while a correlated behavior for the short-range interaction, which indicates the responsibility of the Coulomb tail of the electron-electron interaction for the experimentally observed anticorrelated emission [Y. Liu, S. Tschuch, A. Rudenko, M. Durr, M. Siegel, U. Morgner, R. Moshammer, and J. Ullrich, Phys. Rev. Lett. 101, 053001 (2008)]. In the transverse direction, for the Coulombic electron-electron interaction, the two electrons exhibit no effect of repulsion at an intensity below the recollision threshold while a strong repulsion effect at an intensity above the threshold, which becomes weaker as the laser intensity further increases. Back analysis shows that the role of the Coulomb tail of electron-electron interaction leads asymmetric energy sharing (AES) to be prevalent at recollision. This AES results in the two electrons leaving the ion at different times or with different initial momenta, which is responsible for the anticorrelated behavior in the parallel direction and the intensity-dependent repulsion effect in the transverse direction.

  5. Alignment- and orientation-dependent strong-field ionization of molecules: Field-induced orbital distortion effects

    NASA Astrophysics Data System (ADS)

    Spiewanowski, Maciej Dominik; Madsen, Lars Bojer

    2015-05-01

    Strong-field ionization (SFI) is a starting point for many strong-field phenomena, e.g., high-order harmonic generation, as well as a source of fundamental information about the ionized target. Therefore, investigation of SFI of atoms and molecules has been the aim for research since the first strong laser pulses became available. We present a recently developed method, adiabatic strong-field approximation, to study ionization yields as a function of alignment angle for CO2, CO, and OCS molecules. We show that orbital distortion plays an important role in explaining the position and relative strength of maxima in the yields for both polar and nonpolar molecules, even for targets with low polarizabilities at low laser intensities. In particular, we report that for ionization of CO2 the maximum in ionization yield shifts towards the experimentally-measured maximum with respect to the strong-field approximation. For ionization of the CO molecule, not only does the theory predict the preferred direction of ionization correctly, but also the ratio between yields for the two molecular orientations where the electric field points either towards the C or towards the O end. Finally, we find that ionization of OCS is more probable for the laser pointing from the O end towards the S end. Work supported by the Natural Sciences and Engineering Research Council of Canada, the ERC-StG (Project No. 277767-TDMET), and the VKR center of excellence, QUS- COPE.

  6. Phase singularity in the diffracted field from Fresnel's double mirror

    NASA Astrophysics Data System (ADS)

    Aalipour, Rasoul; Taghi Tavassoly, M.

    2013-05-01

    It is shown that when a coherent beam of light illuminates a Fresnel's double mirror, Fresnel diffraction becomes appreciable. The subject fundamentally differs from interference. We calculate the diffracted field by applying Fresnel-Kirchhoff integral. We modified the common Fresnel's double mirror by imposing an initial height between the mirrors, as the height is chosen small enough so that the application of Fresnel's double mirror is maintained. We show by simulation and experiment that a phase singularity causes from the initial height and modifies the diffracted field from the Fresnel's double mirror. One can adjust the location of the line singularity by changing the angle between the mirrors. Also, the anomalous behavior of a polychromatic beam diffracted from the modified Fresnel's double mirror at the neighborhood of the line singularity, is investigated by simulation.

  7. Low Field Laser Ionization of Argon Clusters: The Remarkable Fragmentation Dynamics of Doubly Ionized Clusters

    NASA Astrophysics Data System (ADS)

    Poisson, Lionel; Raffael, Kevin D.; Gaveau, Marc-André; Soep, Benoît; Mestdagh, Jean-Michel; Caillat, Jérémie; Taïeb, Richard; Maquet, Alfred

    2007-09-01

    We have investigated the fission following a Coulomb explosion in argon clusters (up to Ar800) irradiated by a femtosecond infrared laser with moderate intensity IL≈1013Wcm-2. We report the a priori surprising observation of well-defined velocity distributions of the ionized fragments Arn<50+. This is interpreted by the formation of a valence shell excited charged ion, followed by relaxation, charge transfer by autoionizing collision at very short distance, and asymmetric fission.

  8. Directional deprotonation ionization of acetylene in asymmetric two-color laser fields

    NASA Astrophysics Data System (ADS)

    Song, Qiying; Gong, Xiaochun; Ji, Qinying; Lin, Kang; Pan, Haifeng; Ding, Jingxin; Zeng, Heping; Wu, Jian

    2015-05-01

    We experimentally investigate the deprotonation dissociative double ionization of an acetylene molecule by an asymmetric two-color laser pulse. We find that the ejection direction of the proton, and hence the directional C-H bond breaking of a polyatomic hydrocarbon molecule, can be controlled by finely tuning the phase of a two-color laser pulse.

  9. Ionization of a lithium ion by electron impact in a strong laser field

    SciTech Connect

    Ghosh Deb, S.; Sinha, C.; Chattopadhyay, A.

    2011-12-15

    The modification in the dynamics of the electron-impact ionization process of a Li{sup +} ion due to an intense linearly polarized monochromatic laser field (n{gamma}e,2e) is studied theoretically using coplanar geometry. Significant laser modifications are noted due to multiphoton effects both in the shape and magnitude of the triple-differential cross sections (TDCSs) with respect to the field-free (FF) situation. The net effect of the laser field is to suppress the FF cross sections in the zeroth-order approximation [Coulomb-Volkov (CV)] of the ejected electron wave function, while in the first order [modified Coulomb-Volkov (MCV)], the TDCSs are found to be enhanced or suppressed depending on the kinematics of the process. The strong FF recoil dominance for the (e,2e) process of an ionic target at low incident energy is destroyed in the presence of the laser field. The FF binary-to-recoil ratio changes remarkably in the presence of the laser field, particularly at low incident energies. The difference between the multiphoton CV and the FF results indicates that for the ionic target, the Kroll-Watson sum rule does not hold well at the present energy range in contrast to the neutral atom (He) case. The TDCSs are found to be quite sensitive with respect to the initial phase of the laser field, particularly at higher incident energies. A significant qualitative difference is noted in the multiphoton ejected energy distribution (double-differential cross sections) between the CV and the MCV models. Variation of the TDCSs with respect to the laser phase is also studied.

  10. Ionization in an intense field considering Coulomb correction

    NASA Astrophysics Data System (ADS)

    Li, Jian; Huo, Yi-Ning; Tang, Zeng-Hua; Ma, Feng-Cai

    2017-01-01

    We derive a simple ionization rate formula for the ground state of a hydrogen atom in the velocity gauge under the conditions: ω \\ll 1 a.u. (a.u. is short for atomic unit) and γ \\ll 1 (ω is the laser frequency and γ is the Keldysh parameter). Comparisons are made among the different versions of the Keldysh–Faisal–Reiss (KFR) theory. The numerical study shows that with considering the quasi-classical (WKB) Coulomb correction in the final state of the ionized electron, the photoionization rate is enhanced compared with without considering the Coulomb correction, and the Reiss theory with the WKB Coulomb correction gives the correct result in the tunneling regime. Our concise formula of the ionization rate may provide an insight into the ionization mechanism for the ground state of a hydrogen atom. Project supported by the National Natural Science Foundation of China (Grant Nos. 11274149 and 11304185) and the Program of Shenyang Key Laboratory of Optoelectronic Materials and Technology, China (Grant No. F12-254-1-00).

  11. Low Field Laser Ionization of Argon Clusters: The Remarkable Fragmentation Dynamics of Doubly Ionized Clusters

    SciTech Connect

    Poisson, Lionel; Raffael, Kevin D.; Gaveau, Marc-Andre; Soep, Benoit; Mestdagh, Jean-Michel; Caillat, Jeremie; Taieeb, Richard; Maquet, Alfred

    2007-09-07

    We have investigated the fission following a Coulomb explosion in argon clusters (up to Ar{sub 800}) irradiated by a femtosecond infrared laser with moderate intensity I{sub L}{approx_equal}10{sup 13} W cm{sup -2}. We report the a priori surprising observation of well-defined velocity distributions of the ionized fragments Ar{sub n<50}{sup +}. This is interpreted by the formation of a valence shell excited charged ion, followed by relaxation, charge transfer by autoionizing collision at very short distance, and asymmetric fission.

  12. Hole dynamics and spin currents after ionization in strong circularly polarized laser fields

    NASA Astrophysics Data System (ADS)

    Barth, Ingo; Smirnova, Olga

    2014-10-01

    We apply the time-dependent analytical R-matrix theory to develop a movie of hole motion in a Kr atom upon ionization by strong circularly polarized field. We find rich hole dynamics, ranging from rotation to swinging motion. The motion of the hole depends on the final energy and the spin of the photoelectron and can be controlled by the laser frequency and intensity. Crucially, hole rotation is a purely non-adiabatic effect, completely missing in the framework of quasistatic (adiabatic) tunneling theories. We explore the possibility to use hole rotation as a clock for measuring ionization time. Analyzing the relationship between the relative phases in different ionization channels we show that in the case of short-range electron-core interaction the hole is always initially aligned along the instantaneous direction of the laser field, signifying zero delays in ionization. Finally, we show that strong-field ionization in circular fields creates spin currents (i.e. different flow of spin-up and spin-down density in space) in the ions. This phenomenon is intimately related to the production of spin-polarized electrons in strong laser fields Barth and Smirnova (2013 Phys. Rev. A 88 013401). We demonstrate that rich spin dynamics of electrons and holes produced during strong field ionization can occur in typical experimental conditions and does not require relativistic intensities or strong magnetic fields.

  13. Ultralow-voltage field-ionization discharge on whiskered silicon nanowires for gas-sensing applications.

    PubMed

    Banan Sadeghian, Ramin; Islam, M Saif; Saif Islam, M

    2011-02-01

    Several hundred million volts per centimetre of electric-field strength are required to field-ionize gas species. Such fields are produced on sharp metallic tips under a bias of a few kilovolts. Here, we show that field ionization is possible at dramatically lower fields on semiconductor nanomaterials containing surface states, particularly with metal-catalysed whiskers grown on silicon nanowires. The low-voltage field-ionization phenomena observed here cannot be explained solely on the basis of the large field-amplification effect of suspended gold nanoparticles present on the whisker tips. We postulate that field penetration causes upward band-bending at the surface of exposed silicon containing surface states in the vicinity of the catalyst. Band-bending enables the valence electron to tunnel into the surface states at reduced fields. This work provides a basis for development of low-voltage ionization sensors. Although demonstrated on silicon, low-voltage field ionization can be detected on any sharp semiconductor tip containing proper surface states.

  14. Selective strong-field enhancement and suppression of ionization with short laser pulses

    NASA Astrophysics Data System (ADS)

    Hart, N. A.; Strohaber, J.; Kolomenskii, A. A.; Paulus, G. G.; Bauer, D.; Schuessler, H. A.

    2016-06-01

    We experimentally demonstrate robust selective excitation and attenuation of atomic Rydberg level populations in sodium vapor (Na i) using intense laser pulses in the strong-field limit (>1012W /c m2 ). Coherent control of the atomic population and related ionization channels is realized for intensities above the over-the-barrier ionization intensity. Moreover, atomic excitation selectivity and high ionization yield are simultaneously achieved without the need to tailor the spectral phase of the laser. A qualitative model confirms that this strong-field coherent control arises through the manifestation of a Freeman resonance.

  15. Ionization Study of Isomeric Molecules in Strong-field Laser Pulses

    PubMed Central

    Zigo, Stefan; Le, Anh-Thu; Timilsina, Pratap; Trallero-Herrero, Carlos A.

    2017-01-01

    Through the use of the technique of time-of-flight mass spectroscopy, we obtain strong-field ionization yields for randomly oriented 1,2-dichloroethylene (1,2-DCE) (C2H2Cl2) and 2-butene (C4H8). We are interested in studying the effect of conformal structure in strong-field ionization and, in particular, the role of molecular polarity. That is, we can perform strong-field ionization studies in polar vs non-polar molecules that have the same chemical composition. We report our findings through the ionization yields and the ratio (trans/cis) of each stereoisomer pair as a function of intensity. PMID:28186110

  16. Multiphoton and tunneling ionization probability of atoms and molecules in an intense laser field

    NASA Astrophysics Data System (ADS)

    Zhao, Song-Feng; Liu, Lu; Zhou, Xiao-Xin

    2014-02-01

    We theoretically studied ionization of atoms exposed to an intense laser field by using three different methods, i.e., the numerical solution of the single-active-electron approximation based time-dependent Schrödinger equation (SAE-TDSE), the Perelomov-Popov-Terent'ev (PPT) model, and the Ammosov-Delone-Krainov (ADK) model. The ionization of several linear molecules in a strong laser field is also investigated with the molecular ADK (MO-ADK) and the molecular PPT (MO-PPT) model. We show that the ionization probability from the PPT and the MO-PPT model agrees well with the corresponding SAE-TDSE result in both the multiphoton and tunneling ionization regimes. By considering the volume effect of the laser field, the ionization signal obtained from the PPT and the MO-PPT model fits well the experimental data in the whole range of the multiphoton and tunneling ionization regimes. However, both the ADK and MO-ADK models seriously underestimate the ionization probabilities (or signals) in the multiphoton regime.

  17. Slowing the probe field in the second window of double-double electromagnetically induced transparency

    NASA Astrophysics Data System (ADS)

    Alotaibi, Hessa M. M.; Sanders, Barry C.

    2015-04-01

    For Doppler-broadened media operating under double-double electromagnetically induced transparency (EIT) conditions, we devise a scheme to control and reduce the probe-field group velocity at the center of the second transparency window. We derive numerical and approximate analytical solutions for the width of EIT windows and for the group velocities of the probe field at the two distinct transparency windows, and we show that the group velocities of the probe field can be lowered by judiciously choosing the physical parameters of the system. Our modeling enables us to identify three signal-field strength regimes (with a signal-field strength always higher than the probe-field strength), quantified by the Rabi frequency, for slowing the probe field. These three regimes correspond to a weak signal field, with the probe-field group velocity and transparency-window width both smaller for the second window compared to the first window, a medium-strength signal field, with a probe-field group velocity smaller in the second window than in the first window but with larger transparency-window width for the second window, and the strong signal field, with both group velocity and transparency-window width larger for the second window. Our scheme exploits the fact that the second transparency window is sensitive to a temperature-controlled signal-field nonlinearity, whereas the first transparency window is insensitive to this nonlinearity.

  18. High-precision measurements of seawater Pb isotope compositions by double spike thermal ionization mass spectrometry.

    PubMed

    Paul, Maxence; Bridgestock, Luke; Rehkämper, Mark; van DeFlierdt, Tina; Weiss, Dominik

    2015-03-10

    A new method for the determination of seawater Pb isotope compositions and concentrations was developed, which combines and optimizes previously published protocols for the separation and isotopic analysis of this element. For isotopic analysis, the procedure involves initial separation of Pb from 1 to 2L of seawater by co-precipitation with Mg hydroxide and further purification by a two stage anion exchange procedure. The Pb isotope measurements are subsequently carried out by thermal ionization mass spectrometry using a (207)Pb-(204)Pb double spike for correction of instrumental mass fractionation. These methods are associated with a total procedural Pb blank of 28±21 pg (1sd) and typical Pb recoveries of 40-60%. The Pb concentrations are determined by isotope dilution (ID) on 50 mL of seawater, using a simplified version of above methods. Analyses of multiple aliquots of six seawater samples yield a reproducibility of about ±1 to ±10% (1sd) for Pb concentrations of between 7 and 50 pmol/kg, where precision was primarily limited by the uncertainty of the blank correction (12±4 pg; 1sd). For the Pb isotope analyses, typical reproducibilities (±2sd) of 700-1500 ppm and 1000-2000 ppm were achieved for (207)Pb/(206)Pb, (208)Pb/(206)Pb and (206)Pb/(204)Pb, (207)Pb/(204)Pb, (208)Pb/(204)Pb, respectively. These results are superior to literature data that were obtained using plasma source mass spectrometry and they are at least a factor of five more precise for ratios involving the minor (204)Pb isotope. Both Pb concentration and isotope data, furthermore, show good agreement with published results for two seawater intercomparison samples of the GEOTRACES program. Finally, the new methods were applied to a seawater depth profile from the eastern South Atlantic. Both Pb contents and isotope compositions display a smooth evolution with depth, and no obvious outliers. Compared to previous Pb isotope data for seawater, the (206)Pb/(204)Pb ratios are well correlated

  19. The Influence of Stray Fields on the Ionization of Rydberg atoms at Metallic Surfaces

    NASA Astrophysics Data System (ADS)

    Neufeld, Dennis; Pu, Yu; Dunning, F. Barry

    2010-03-01

    The effect of local surface electric (``patch'') fields on the ionization of xenon Rydberg atoms at metallic surfaces is examined. The patch fields are determined from measurements of the potential variations across the target surfaces using Kelvin probe force microscopy. These measurements are used in conjunction with a simple over-the-barrier model of ionization to predict the surface ionization characteristics for Rydberg atoms with a range of different n and angles of incidence. These predictions are in good agreement with experimental measurements demonstrating the important role that patch fields play during Rydberg atom-surface interactions and suggesting that such interactions can provide a sensitive probe of stray fields at surfaces. These techniques are extended to lithographically patterned structures comprising two sets of interleaved ``comb-like'' electrodes to which different potentials can be applied. This allows control of the surface patch fields and direct study of their effects.

  20. Strong Field Molecular Ionization in the Impulsive Limit: Freezing Vibrations with Short Pulses.

    PubMed

    Sándor, Péter; Tagliamonti, Vincent; Zhao, Arthur; Rozgonyi, Tamás; Ruckenbauer, Matthias; Marquetand, Philipp; Weinacht, Thomas

    2016-02-12

    We study strong-field molecular ionization as a function of pulse duration. Experimental measurements of the photoelectron yield for a number of molecules reveal competition between different ionization continua (cationic states) which depends strongly on pulse duration. Surprisingly, in the limit of short pulse duration, we find that a single ionic continuum dominates the yield, whereas multiple continua are produced for longer pulses. Using calculations which take vibrational dynamics into account, we interpret our results in terms of nuclear motion and nonadiabatic dynamics during the ionization process.

  1. Integral-equation approach to the weak-field asymptotic theory of tunneling ionization

    NASA Astrophysics Data System (ADS)

    Dnestryan, Andrey I.; Tolstikhin, Oleg I.

    2016-03-01

    An integral equation approach to the weak-field asymptotic theory (WFAT) of tunneling ionization is developed. An integral representation for the exact partial amplitudes of ionization into parabolic channels is derived. The WFAT expansion for the ionization rate follows immediately from this relation. Integral representations for the coefficients in the expansion are obtained. The integrals accumulate where the ionizing orbital has large amplitude and are not sensitive to its behavior in the asymptotic region. Hence, these formulas enable one to reliably calculate the WFAT coefficients even if the orbital is represented by an expansion in Gaussian basis, as is usually the case in standard software packages for electronic structure calculations. This development is expected to greatly simplify the implementation of the WFAT for polyatomic molecules, and thus facilitate its growing applications in strong-field physics.

  2. Influence of resonant charge exchange on the viscosity of partially ionized plasma in a magnetic field

    SciTech Connect

    Zhdanov, V. M. Stepanenko, A. A.

    2013-12-15

    The influence of resonant charge exchange for ion-atom interaction on the viscosity of partially ionized plasma embedded in the magnetic field is investigated. The general system of equations used to derive the viscosity coefficients for an arbitrary plasma component in the 21-moment approximation of Grad’s method is presented. The expressions for the coefficients of total and partial viscosities of a multicomponent partially ionized plasma in the magnetic field are obtained. As an example, the coefficients of the parallel and transverse viscosities for the ionic and neutral components of the partially ionized hydrogen plasma are calculated. It is shown that the account for resonant charge exchange can lead to a substantial change of the parallel and transverse viscosity of the plasma components in the region of low degrees of ionization on the order of 0.1.

  3. Total ionizing dose and single-event effect in vertical channel double-gate nMOSFETs

    NASA Astrophysics Data System (ADS)

    Tan, Fei; An, Xia; Xue, Shoubin; Huang, Liangxi; Wu, Weikang; Zhang, Xing; Huang, Ru

    2013-05-01

    In this paper, the total ionizing dose (TID) and single-event effect (SEE) in vertical channel double-gate (DG) nMOSFETs are comprehensively investigated. Due to the vertical channel structure and the excellent gate control capability, the vertical channel DG transistor is relatively resistant to TID and transient ionization effect. However, the dc characteristics of vertical channel DG device are very sensitive to permanent damage induced by a few ions hitting the device. The on-state current and transconductance of the vertical channel DG MOSFETs show significant degradation after exposure to heavy ions, which is attributed to the formation of displacement damage in the channel. As the device feature size scales down to the deca-nanometer regime, the influence of permanent damage induced by a few ions striking the device static performance cannot be ignored and should be seriously considered in radiation-hardened technologies.

  4. Investigating two-photon double ionization of D2 by XUV-Pump -- XUV-Probe experiments at FLASH

    SciTech Connect

    FLASH Collaboration; Jiang, Y.; Rudenko, A.; Perez-Torres, J.; Foucar, L.; Kurka, M.; Kuhnel, K.; Toppin, M.; Plesiat, E.; Morales, F.; Martin, F.; Herrwerth, O.; Lezius, M.; Kling, M.; Jahnke, T.; Dorner, R.; Sanz-Vicario, J.; van Tilborg, J.; Belkacem, A.; Schulz, M.; Ueda, K.; Zouros, T.; Dusterer, S.; Treusch, R.; Schroter, C.; Moshammer, R.; Ullrich, J.

    2010-08-02

    Using a novel split-mirror set-up attached to a Reaction Microscope at the Free electron LASer in Hamburg (FLASH) we demonstrate an XUV-pump -- XUV-probe ((hbar omega = 38 eV) experiment by tracing the ultra-fast nuclear wave-packet motion in the D2+ (1s sigma g-state) with<10 fs time resolution. Comparison with time-dependent calculations yields excellent agreement with the measured vibrational period of 22+-4 fs in D2+, points to the importance of the inter-nuclear distance dependent ionization probability and paves the way to control sequential and non-sequential two-photon double ionization contributions.

  5. Effect of an improved molecular potential on strong-field tunneling ionization of molecules

    SciTech Connect

    Zhao Songfeng; Jin Cheng; Le, Anh-Thu; Lin, C. D.

    2010-09-15

    We study the effect of one-electron model potentials on the tunneling ionization rates of molecules in strong fields. By including electron correlation using the modified Leeuwen-Baerends (LB {alpha}) model, the binding energies of outer shells of molecules are significantly improved. However, we show that the tunneling ionization rates from the LB {alpha} do not differ much from the earlier calculations [Phys. Rev. A 81, 033423 (2010)], in which the local correlation potential was neglected.

  6. Wave-packet analysis of strong-field ionization of sodium in the quasistatic regime*

    NASA Astrophysics Data System (ADS)

    Bunjac, Andrej; Popović, Duška B.; Simonović, Nenad S.

    2016-05-01

    Strong field ionization of the sodium atom in the tunnelling and over-the-barrier regimes is studied by examining the valence electron wave-packet dynamics in the static electric field. The lowest state energy and the ionization rate determined by this method for different strengths of the applied field agree well with the results obtained using other methods. The initial period of the nonstationary decay after switching the field on is analyzed and discussed. It is demonstrated that, if the Keldysh parameter is significantly lower than one (quasistatic regime), the probability of ionization by a laser pulse can be obtained from the static rates. Contribution to the Topical Issue "Advances in Positron and Electron Scattering", edited by Paulo Limao-Vieira, Gustavo Garcia, E. Krishnakumar, James Sullivan, Hajime Tanuma and Zoran Petrovic.

  7. Detection and Repair of Ionizing Radiation-Induced DNA Double Strand Breaks: New Developments in Nonhomologous End Joining

    SciTech Connect

    Wang, Chen; Lees-Miller, Susan P.

    2013-07-01

    DNA damage can occur as a result of endogenous metabolic reactions and replication stress or from exogenous sources such as radiation therapy and chemotherapy. DNA double strand breaks are the most cytotoxic form of DNA damage, and defects in their repair can result in genome instability, a hallmark of cancer. The major pathway for the repair of ionizing radiation-induced DSBs in human cells is nonhomologous end joining. Here we review recent advances on the mechanism of nonhomologous end joining, as well as new findings on its component proteins and regulation.

  8. Field ionization of high-Rydberg fragments produced after inner-shell photoexcitation and photoionization of the methane molecule

    SciTech Connect

    Kivimäki, A.; Sankari, A.; Kettunen, J. A.; Stråhlman, C.; Álvarez Ruiz, J.; Richter, R.

    2015-09-21

    We have studied the production of neutral high-Rydberg (HR) fragments from the CH{sub 4} molecule at the C 1s → 3p excitation and at the C 1s ionization threshold. Neutral fragments in HR states were ionized using a pulsed electric field and the resulting ions were mass-analyzed using an ion time-of-flight spectrometer. The atomic fragments C(HR) and H(HR) dominated the spectra, but molecular fragments CH{sub x}(HR), x = 1-3, and H{sub 2}(HR) were also observed. The production of HR fragments is attributed to dissociation of CH{sub 4}{sup +} and CH{sub 4}{sup 2+} ions in HR states. Just above the C 1s ionization threshold, such molecular ionic states are created when the C 1s photoelectron is recaptured after single or double Auger decay. Similar HR states may be reached directly following resonant Auger decay at the C 1s → 3p resonance. The energies and geometries of the parent and fragment ions have been calculated in order to gain insight into relevant dissociation pathways.

  9. Field ionization of high-Rydberg fragments produced after inner-shell photoexcitation and photoionization of the methane molecule

    NASA Astrophysics Data System (ADS)

    Kivimäki, A.; Sankari, A.; Kettunen, J. A.; Strâhlman, C.; Álvarez Ruiz, J.; Richter, R.

    2015-09-01

    We have studied the production of neutral high-Rydberg (HR) fragments from the CH4 molecule at the C 1s → 3p excitation and at the C 1s ionization threshold. Neutral fragments in HR states were ionized using a pulsed electric field and the resulting ions were mass-analyzed using an ion time-of-flight spectrometer. The atomic fragments C(HR) and H(HR) dominated the spectra, but molecular fragments CHx(HR), x = 1-3, and H2(HR) were also observed. The production of HR fragments is attributed to dissociation of CH4+ and CH42+ ions in HR states. Just above the C 1s ionization threshold, such molecular ionic states are created when the C 1s photoelectron is recaptured after single or double Auger decay. Similar HR states may be reached directly following resonant Auger decay at the C 1s → 3p resonance. The energies and geometries of the parent and fragment ions have been calculated in order to gain insight into relevant dissociation pathways.

  10. Field ionization of high-Rydberg fragments produced after inner-shell photoexcitation and photoionization of the methane molecule.

    PubMed

    Kivimäki, A; Sankari, A; Kettunen, J A; Stråhlman, C; Álvarez Ruiz, J; Richter, R

    2015-09-21

    We have studied the production of neutral high-Rydberg (HR) fragments from the CH4 molecule at the C 1s → 3p excitation and at the C 1s ionization threshold. Neutral fragments in HR states were ionized using a pulsed electric field and the resulting ions were mass-analyzed using an ion time-of-flight spectrometer. The atomic fragments C(HR) and H(HR) dominated the spectra, but molecular fragments CH(x)(HR), x = 1-3, and H2(HR) were also observed. The production of HR fragments is attributed to dissociation of CH4(+) and CH4(2+) ions in HR states. Just above the C 1s ionization threshold, such molecular ionic states are created when the C 1s photoelectron is recaptured after single or double Auger decay. Similar HR states may be reached directly following resonant Auger decay at the C 1s → 3p resonance. The energies and geometries of the parent and fragment ions have been calculated in order to gain insight into relevant dissociation pathways.

  11. Adaptive response in human blood lymphocytes exposed to non-ionizing radiofrequency fields: resistance to ionizing radiation-induced damage.

    PubMed

    Sannino, Anna; Zeni, Olga; Romeo, Stefania; Massa, Rita; Gialanella, Giancarlo; Grossi, Gianfranco; Manti, Lorenzo; Vijayalaxmi; Scarfì, Maria Rosaria

    2014-03-01

    The aim of this preliminary investigation was to assess whether human peripheral blood lymphocytes which have been pre-exposed to non-ionizing radiofrequency fields exhibit an adaptive response (AR) by resisting the induction of genetic damage from subsequent exposure to ionizing radiation. Peripheral blood lymphocytes from four healthy donors were stimulated with phytohemagglutinin for 24 h and then exposed for 20 h to 1950 MHz radiofrequency fields (RF, adaptive dose, AD) at an average specific absorption rate of 0.3 W/kg. At 48 h, the cells were subjected to a challenge dose (CD) of 1.0 or 1.5 Gy X-irradiation (XR, challenge dose, CD). After a 72 h total culture period, cells were collected to examine the incidence of micronuclei (MN). There was a significant decrease in the number of MN in lymphocytes exposed to RF + XR (AD + CD) as compared with those subjected to XR alone (CD). These observations thus suggested a RF-induced AR and induction of resistance to subsequent damage from XR. There was variability between the donors in RF-induced AR. The data reported in our earlier investigations also indicated a similar induction of AR in human blood lymphocytes that had been pre-exposed to RF (AD) and subsequently treated with a chemical mutagen, mitomycin C (CD). Since XR and mitomycin-C induce different kinds of lesions in cellular DNA, further studies are required to understand the mechanism(s) involved in the RF-induced adaptive response.

  12. Black hole thermodynamics, stringy dualities and double field theory

    NASA Astrophysics Data System (ADS)

    Arvanitakis, Alex S.; Blair, Chris D. A.

    2017-03-01

    We discuss black hole thermodynamics in the manifestly duality invariant formalism of double field theory (DFT). We reformulate and prove the first law of black hole thermodynamics in DFT, using the covariant phase space approach. After splitting the full O(D, D) invariant DFT into a Kaluza–Klein-inspired form where only n coordinates are doubled, our results provide explicit duality invariant mass and entropy formulas. We illustrate how this works by discussing the black string solution and its T-duals.

  13. Single-photon double ionization of H2 away from equilibrium: A showcase of two-center electron interference

    NASA Astrophysics Data System (ADS)

    Serov, Vladislav V.; Ivanov, I. A.; Kheifets, A. S.

    2012-08-01

    We demonstrate the effect of two-center interference on single-photon double ionization [double photoionization (DPI)] of the aligned H2 molecule when it shrinks or expands from the equilibrium internuclear distance. This interference affects the first stage of the DPI process in which the primary photoelectron is ejected predominantly along the polarization axis of light and its geometrical interference factor is most sensitive to the internuclear distance in the parallel (Σ) orientation of the internuclear and polarization axes. This effect is responsible for strong modification of the DPI amplitude in the parallel orientation while the corresponding amplitude for the perpendicular (Π) orientation is rather insensitive to the internuclear distance. The combination of these two factors explains the profound kinetic energy release effect on the fully differential cross sections of DPI of H2.

  14. Photo-Double Ionization: Threshold Law and Low-Energy Behavior

    NASA Technical Reports Server (NTRS)

    Bhatia, Anand

    2008-01-01

    The threshold law for photoejection of two electrons from atoms (PDI) is derived from a modification of the Coulomb-dipole (C-D) theory. The C-D theory applies to two-electron ejection from negative ions (photo-double detachment:PDD). The modification consists of correctly accounting for the fact that in PDI that the two escaping electrons see a Coulomb field, asymptotically no matter what their relative distances from the residual ion are. We find in the contralinear spherically symmetric model that the analytic threshold law Q(E),i. e. the yield of residual ions, to be Qf(E)approaches E + CwE(sup gamma(w)) + CE(sup 5/4)sin[1/2 ln(E + theta)]/ln(E). The first and third terms are beyond the Wannier law. Our threshold law can only be rigorously justified for residual energies less than or equal to 10(exp -3) eV. Nevertheless in the present experimental range (0.1 - 4 eV), the form, even without the second term, can be fitted to experimental results of PDI for He, Li, and Be, in contrast to the Wannier law which has a larger deviation from the data for Li and Be, for both of which the data show signs of modulation.

  15. Photo-Double Ionization: Threshold Law and Low-Energy Behavior

    NASA Technical Reports Server (NTRS)

    Bhatia, A. K.; Temkin, A.

    2007-01-01

    The threshold law for photoejection of two electrons from atoms (PDI) is derived from a modification of the Coulomb-dipole (C-D) theory. The C-D theory applies to two-electron ejection from negative ions (photo-double detachment:PDD). The modification consists of correctly accounting for the fact that in PDI that the two escaping electrons see a Coulomb field, asymptotically no matter what their relative distances from the residual ion are. We find in the contralinear spherically symmetric model that the analytic threshold law Q(E), i.e. the yield of residual ions, to be Q Integral of (E) varies as E + (C(sub w) E(sup gamma W)) +CE(sup 5/4) sin [1/2 ln E + phi]/ln(E). The first and third terms are beyond the Wannier law. Our threshold law can only be rigorously justified for residual energies <= 10(exp -3) eV. Nevertheless in the present experimental range (0.1 - 4 eV), the form, even without the second term, can be fitted to experimental results of PDI for He, Li, and Be, in contrast to the Wannier law which has a larger deviation from the data for Li and Be.

  16. Determination of structure parameters in strong-field tunneling ionization theory of molecules

    SciTech Connect

    Zhao Songfeng; Jin Cheng; Le, Anh-Thu; Lin, C. D.; Jiang, T. F.

    2010-03-15

    In the strong field molecular tunneling ionization theory of Tong et al. [Phys. Rev. A 66, 033402 (2002)], the ionization rate depends on the asymptotic wave function of the molecular orbital from which the electron is removed. The orbital wave functions obtained from standard quantum chemistry packages in general are not good enough in the asymptotic region. Here we construct a one-electron model potential for several linear molecules using density functional theory. We show that the asymptotic wave function can be improved with an iteration method and after one iteration accurate asymptotic wave functions and structure parameters are determined. With the new parameters we examine the alignment-dependent tunneling ionization probabilities for several molecules and compare with other calculations and with recent measurements, including ionization from inner molecular orbitals.

  17. Quantum control of a molecular ionization process by using Fourier-synthesized laser fields

    NASA Astrophysics Data System (ADS)

    Ohmura, Hideki; Saito, Naoaki

    2015-11-01

    In photoexcitation processes, if the motion of excited electrons can be precisely steered by the instantaneous electric field of an arbitrary waveform of a Fourier-synthesized laser field, the resultant matter response can be achieved within one optical cycle, usually within the attosecond (1 as =10-18s) regime. Fourier synthesis of laser fields has been achieved in various ways. However, the general use of Fourier-synthesized laser fields for the control of matter is extremely limited. Here, we report the quantum control of a nonlinear response of a molecular ionization process by using Fourier-synthesized laser fields. The directionally asymmetric molecular tunneling ionization induced by intense (5.0 ×1012W /c m2) Fourier-synthesized laser fields consisting of fundamental, second-, third-, and fourth-harmonic light achieves the orientation-selective ionization; we utilized the orientation-selective ionization for measurement of the relative phase differences between the fundamental and each harmonic light. Our findings impact not only light-wave engineering but also the control of matter, possibly triggering the creation and establishment of a new methodology that uses Fourier-synthesized laser fields.

  18. Above-threshold ionization with highly charged ions in superstrong laser fields. I. Coulomb-corrected strong-field approximation

    NASA Astrophysics Data System (ADS)

    Klaiber, Michael; Yakaboylu, Enderalp; Hatsagortsyan, Karen Z.

    2013-02-01

    Aiming at the investigation of above-threshold ionization in superstrong laser fields with highly charged ions, we develop a Coulomb-corrected strong-field approximation (SFA). The influence of the Coulomb potential of the atomic core on the ionized electron dynamics in the continuum is taken into account via the eikonal approximation, treating the Coulomb potential perturbatively in the phase of the quasiclassical wave function of the continuum electron. In this paper the formalism of the Coulomb-corrected SFA for the nonrelativistic regime is discussed, employing velocity and length gauge. Direct ionization of a hydrogenlike system in a strong linearly polarized laser field is considered. The relation of the results in the different gauges to the Perelomov-Popov-Terent'ev imaginary-time method is discussed.

  19. TD-CI simulation of the strong-field ionization of polyenes.

    PubMed

    Sonk, Jason A; Schlegel, H Bernhard

    2012-07-05

    Ionization of ethylene, butadiene, hexatriene, and octatetraene by short, intense laser pulses was simulated using the time-dependent single-excitation configuration-interaction (TD-CIS) method and Klamroth's heuristic model for ionization (J. Chem. Phys.2009, 131, 114304). The calculations used the 6-31G(d,p) basis set augmented with up to three sets of diffuse sp functions on each heavy atom as well as the 6-311++G(2df,2pd) basis set. The simulations employed a seven-cycle cosine pulse (ω = 0.06 au, 760 nm) with intensities up to 3.5 × 10(14) W cm(-2) (E(max) = 0.10 au) directed along the vector connecting the end carbons of the linear polyenes. TD-CIS simulations for ionization were carried out as a function of the escape distance parameter, the field strength, the number of states, and the basis set size. With a distance parameter of 1 bohr, calculations with Klamroth's heuristic model reproduce the expected trend that the ionization rate increases as the molecular length increases. While the ionization rates are too high at low intensities, the ratios of ionization rates for ethylene, butadiene, hexatriene, and octatetraene are in good agreement with the ratios obtained from the ADK model. As compared to earlier work on the optical response of polyenes to intense laser pulses, ionization using Klamroth's model is less sensitive to the number of diffuse functions in the basis set, and only a fraction of the total possible CIS states are needed to model the strong field ionizations.

  20. Bond-rearrangement and ionization mechanisms in the photo-double-ionization of simple hydrocarbons (C2H4 , C2H3F , and 1 ,1 -C2H2F2 ) near and above threshold

    NASA Astrophysics Data System (ADS)

    Gaire, B.; Gatton, A.; Wiegandt, F.; Neff, J.; Janke, C.; Zeller, S.; Reedy, D.; Rajput, J.; Ben-Itzhak, I.; Landers, A. L.; Belkacem, A.; Weber, Th.

    2016-09-01

    We investigate bond-rearrangement driven by photo-double-ionization (PDI) near and above the double-ionization threshold in a sequence of carbon-carbon double-bonded hydrocarbon molecules: ethylene, fluoroethylene, and 1,1-difluoroethylene. We employ the kinematically complete cold target recoil ion momentum spectroscopy method to resolve all photo-double-ionization events leading to two-ion fragments. We observe changes in the branching ratios of different dissociative ionization channels depending on the presence of no, one, or two fluorine atoms. The role of the fluorine atom in the bond-rearrangement channels is intriguing, as evident by the reordering of the threshold energies of the PDI in the fluorinated molecules. These effects offer a compelling argument that the electronegativity of the fluorine (or the polarity of the molecule) strongly influences the potential energy surfaces of the molecules and drives bond rearrangement during the dissociation process. The energy sharing and the relative angle between the three-dimensional momentum vectors of the two electrons enable us to distinguish between knockout and other ionization mechanisms of the PDI processes.

  1. The design of double electrostatic-lens optics for resonance enhanced multiphoton ionization and photoelectron imaging experiments

    SciTech Connect

    Qu, Zehua; Li, Chunsheng; Qin, Zhengbo E-mail: xfzheng@mail.ahnu.edu.cn; Zheng, Xianfeng E-mail: xfzheng@mail.ahnu.edu.cn; Yao, Guanxin; Zhang, Xianyi; Cui, Zhifeng

    2015-06-15

    Compared to single ion/electron-optics for velocity-map imaging, a double-focusing lens assembly designed not only allows for mapping velocity imaging of photoelectrons but also allows for investigating the vibrational structure of the intermediate states of neutral species in resonance enhanced multiphoton ionization (REMPI) spectra. In this presentation, in order to record REMPI and photoelectron spectra separately, we have constructed a compact photoelectron velocity-map imaging (VMI) apparatus combined with an opposite linear Wiley-Mclaren time-of-flight mass spectrometer (TOFMS). A mass resolution (m/Δm) of ∼1300 for TOFMS and electron energy resolution (ΔE/E) of 2.4% for VMI have been achieved upon three-photon ionization of Xe atom at 258.00 nm laser wavelength. As a benchmark, in combination of one-color (1 + 1) REMPI and photoelectron imaging of benzene via 6{sup 1} and 6{sup 1}1{sup 1} vibronic levels in the S{sub 1} state, the vibrational structures of the cation and photoelectron angular anisotropy are unraveled. In addition, two-color (1 + 1′) REMPI and photoelectron imaging of aniline was used to complete the accurate measurement of ionization potential (62 271 ± 3 cm{sup −1}). The results suggest that the apparatus is a powerful tool for studying photoionization dynamics in the photoelectron imaging using vibrational-state selected excitation to the intermediate states of neutrals based on REMPI technique.

  2. The design of double electrostatic-lens optics for resonance enhanced multiphoton ionization and photoelectron imaging experiments

    NASA Astrophysics Data System (ADS)

    Qu, Zehua; Li, Chunsheng; Qin, Zhengbo; Zheng, Xianfeng; Yao, Guanxin; Zhang, Xianyi; Cui, Zhifeng

    2015-06-01

    Compared to single ion/electron-optics for velocity-map imaging, a double-focusing lens assembly designed not only allows for mapping velocity imaging of photoelectrons but also allows for investigating the vibrational structure of the intermediate states of neutral species in resonance enhanced multiphoton ionization (REMPI) spectra. In this presentation, in order to record REMPI and photoelectron spectra separately, we have constructed a compact photoelectron velocity-map imaging (VMI) apparatus combined with an opposite linear Wiley-Mclaren time-of-flight mass spectrometer (TOFMS). A mass resolution (m/Δm) of ˜1300 for TOFMS and electron energy resolution (ΔE/E) of 2.4% for VMI have been achieved upon three-photon ionization of Xe atom at 258.00 nm laser wavelength. As a benchmark, in combination of one-color (1 + 1) REMPI and photoelectron imaging of benzene via 61 and 6111 vibronic levels in the S1 state, the vibrational structures of the cation and photoelectron angular anisotropy are unraveled. In addition, two-color (1 + 1') REMPI and photoelectron imaging of aniline was used to complete the accurate measurement of ionization potential (62 271 ± 3 cm-1). The results suggest that the apparatus is a powerful tool for studying photoionization dynamics in the photoelectron imaging using vibrational-state selected excitation to the intermediate states of neutrals based on REMPI technique.

  3. Letter Report on 500 nA Pulsed Current from Field Ionization Source

    SciTech Connect

    Ellsworth, Jennifer L.

    2013-12-12

    We recently produced a milestone 500 nA of pulsed current using 40 Ir field ionizer electrodes in our ion source. In conclusion, we have produced the milestone pulsed current of 500 nA using 40 electrochemically etched iridium tips in a field ionization source. The pulsed current output is repeatable and scales as expected with gas fill pressure and bias voltage. We expect these current will be sufficient to produce neutral yields of 1∙107 DT n/s.

  4. Classical Monte-Carlo simulation for Rydberg states ionization in strong field

    NASA Astrophysics Data System (ADS)

    Carrat, Vincent; Magnuson, Eric; Gallagher, Thomas

    2016-05-01

    The resilience of Rydberg states against ionization has fascinated physicists for a long time. One might expect that the loosely bound electron would be ionized by modest electromagnetic field. However, experiments show that a notable fraction of neutral atoms survive in Rydberg states when exposed to strong microwave or laser fields. Energy transfer between the field and the photoelectron occurs when the electron is close to the ionic core and depends on the phase of the field. Since those states have orbital times that can be larger than the field pulse duration, these energy exchanges will only occur a few times. While we can experimentally control the initial time when we create the Rydberg states and as a consequence the initial energy transfer from the field, our classical calculation suggests that the phase when the electron is returning to the ionic core on the next orbit is chaotic. Statistically the electron only has a 50% chance to gain energy which may lead to ionization. Additionally the population tends to accumulate in very high n states where ionization is less likely due to fewer rescattering events. Though incomplete, this classical Monte­-Carlo simulation provides useful insights for understanding the experimental observations. This work has been entirely performed at University of Virginia and is supported by the U. S. Department of Energy, Office of Basic energy Sciences.

  5. From exceptional field theory to heterotic double field theory via K3

    NASA Astrophysics Data System (ADS)

    Malek, Emanuel

    2017-03-01

    In this paper we show how to obtain heterotic double field theory from exceptional field theory by breaking half of the supersymmetry. We focus on the SL(5) exceptional field theory and show that when the extended space contains a generalised SU(2)-structure manifold one can define a reduction to obtain the heterotic SO(3 , n) double field theory. In this picture, the reduction on the SU(2)-structure breaks half of the supersymmetry of the exceptional field theory and the gauge group of the heterotic double field theory is given by the embedding tensor of the reduction used. Finally, we study the example of a consistent truncation of M-theory on K3 and recover the duality with the heterotic string on T 3. This suggests that the extended space can be made sense of even in the case of non-toroidal compactifications.

  6. Effects of inner electrons on atomic strong-field-ionization dynamics

    NASA Astrophysics Data System (ADS)

    Rapp, J.; Bauer, D.

    2014-03-01

    The influence of inner electrons on the ionization dynamics in strong laser fields is investigated in a wavelength regime where the inner electron dynamics is usually assumed to be negligible. The role of inner electrons is of particular interest for the application of frozen-core approximations and pseudopotentials in time-dependent density functional theory (TDDFT) and the single-active-electron (SAE) approximation in strong-field laser physics. Results of TDDFT and SAE calculations are compared with exact ones obtained by the numerical ab initio solution of the three-electron time-dependent Schrödinger equation for a lithium model atom. It is found that dynamical antiscreening, i.e., a particular form of dynamical core polarization, may substantially alter the ionization rate in the single-photon regime. Requirements for the validity of the approximations in the single and multiphoton ionization domain are identified.

  7. Photon Energy Deposition in Strong-Field Single Ionization of Multielectron Molecules.

    PubMed

    Zhang, Wenbin; Li, Zhichao; Lu, Peifen; Gong, Xiaochun; Song, Qiying; Ji, Qinying; Lin, Kang; Ma, Junyang; He, Feng; Zeng, Heping; Wu, Jian

    2016-09-02

    Molecules exposed to strong laser fields may coherently absorb multiple photons and deposit the energy into electrons and nuclei, triggering the succeeding dynamics as the primary stage of the light-molecule interaction. We experimentally explore the electron-nuclear sharing of the absorbed photon energy in above-threshold multiphoton single ionization of multielectron molecules. Using CO as a prototype, vibrational and orbital resolved electron-nuclear sharing of the photon energy is observed. Different from the simplest one- or two-electron systems, the participation of the multiple orbitals and the coupling of various electronic states in the strong-field ionization and dissociation processes alter the photon energy deposition dynamics of the multielectron molecule. The population of numerous vibrational states of the molecular cation as the energy reservoir in the ionization process plays an important role in photon energy sharing between the emitted electron and the nuclear fragments.

  8. Adaptive response in human blood lymphocytes exposed to non-ionizing radiofrequency fields: resistance to ionizing radiation-induced damage

    PubMed Central

    Sannino, Anna; Zeni, Olga; Romeo, Stefania; Massa, Rita; Gialanella, Giancarlo; Grossi, Gianfranco; Manti, Lorenzo; Vijayalaxmi; Scarfì, Maria Rosaria

    2014-01-01

    The aim of this preliminary investigation was to assess whether human peripheral blood lymphocytes which have been pre-exposed to non-ionizing radiofrequency fields exhibit an adaptive response (AR) by resisting the induction of genetic damage from subsequent exposure to ionizing radiation. Peripheral blood lymphocytes from four healthy donors were stimulated with phytohemagglutinin for 24 h and then exposed for 20 h to 1950 MHz radiofrequency fields (RF, adaptive dose, AD) at an average specific absorption rate of 0.3 W/kg. At 48 h, the cells were subjected to a challenge dose (CD) of 1.0 or 1.5 Gy X-irradiation (XR, challenge dose, CD). After a 72 h total culture period, cells were collected to examine the incidence of micronuclei (MN). There was a significant decrease in the number of MN in lymphocytes exposed to RF + XR (AD + CD) as compared with those subjected to XR alone (CD). These observations thus suggested a RF-induced AR and induction of resistance to subsequent damage from XR. There was variability between the donors in RF-induced AR. The data reported in our earlier investigations also indicated a similar induction of AR in human blood lymphocytes that had been pre-exposed to RF (AD) and subsequently treated with a chemical mutagen, mitomycin C (CD). Since XR and mitomycin-C induce different kinds of lesions in cellular DNA, further studies are required to understand the mechanism(s) involved in the RF-induced adaptive response. PMID:23979077

  9. Photo-double-ionization of the ns shell of rare gases

    NASA Astrophysics Data System (ADS)

    Argenti, L.; Bolognesi, P.; Colle, R.; Feyer, V.; Avaldi, L.

    2009-06-01

    The triple differential cross sections (TDCS) for the photodouble ionization of He, Ne, Ar, and Xe leading to the He2+(1s0S1e) , Ne2+(2s02p6S1e) , Ar2+(3s03p6S1e) , and Xe2+(5s05p6S1e) states have been measured at about 20 eV above their respective thresholds with the two photoelectrons equally sharing the excess energy. The experimental data are analyzed using a parametrization recently proposed [J. Phys. B 41, 245205 (2008)] which takes into account experimental uncertainties. The parametrization provides a satisfactory representation of the shape of the measured TDCS. The study of the behavior of the gerade amplitude of the TDCS in the different targets gives hints on the dependence of the electron correlation with the principal quantum number n of the ionized ns orbital.

  10. Analysis of Double Ring Resonators using Method of Equating Fields

    NASA Astrophysics Data System (ADS)

    Althaf, Shahana

    Optical ring resonators have the potential to be integral parts of large scale photonic circuits. My thesis theoretically analyzes parallel coupled double ring resonators (DRRs) in detail. The analysis is performed using the method of equating fields (MEF) which provides an in depth understanding about the transmitted and reflected light paths in the structure. Equations for the transmitted and reflected fields are derived; these equations allow for unequal ring lengths and coupling coefficients. Sanity checks including comparison with previously studied structures are performed in the final chapter in order to prove the correctness of the obtained results.

  11. Strong-field ionization via a high-order Coulomb-corrected strong-field approximation

    NASA Astrophysics Data System (ADS)

    Klaiber, Michael; Daněk, Jiří; Yakaboylu, Enderalp; Hatsagortsyan, Karen Z.; Keitel, Christoph H.

    2017-02-01

    Signatures of the Coulomb corrections in the photoelectron momentum distribution during laser-induced ionization of atoms or ions in tunneling and multiphoton regimes are investigated analytically in the case of a one-dimensional problem. A high-order Coulomb-corrected strong-field approximation is applied, where the exact continuum state in the S matrix is approximated by the eikonal Coulomb-Volkov state including the second-order corrections to the eikonal. Although without high-order corrections our theory coincides with the known analytical R -matrix (ARM) theory, we propose a simplified procedure for the matrix element derivation. Rather than matching the eikonal Coulomb-Volkov wave function with the bound state as in the ARM theory to remove the Coulomb singularity, we calculate the matrix element via the saddle-point integration method by time as well as by coordinate, and in this way avoiding the Coulomb singularity. The momentum shift in the photoelectron momentum distribution with respect to the ARM theory due to high-order corrections is analyzed for tunneling and multiphoton regimes. The relation of the quantum corrections to the tunneling delay time is discussed.

  12. Exotic dual of type II double field theory

    NASA Astrophysics Data System (ADS)

    Bergshoeff, Eric A.; Hohm, Olaf; Riccioni, Fabio

    2017-04-01

    We perform an exotic dualization of the Ramond-Ramond fields in type II double field theory, in which they are encoded in a Majorana-Weyl spinor of O (D , D). Starting from a first-order master action, the dual theory in terms of a tensor-spinor of O (D , D) is determined. This tensor-spinor is subject to an exotic version of the (self-)duality constraint needed for a democratic formulation. We show that in components, reducing O (D , D) to GL (D), one obtains the expected exotically dual theory in terms of mixed Young tableaux fields. To this end, we generalize exotic dualizations to self-dual fields, such as the 4-form in type IIB string theory.

  13. Studying interfacial reactions of cholesterol sulfate in an unsaturated phosphatidylglycerol layer with ozone using field induced droplet ionization mass spectrometry.

    PubMed

    Ko, Jae Yoon; Choi, Sun Mi; Rhee, Young Min; Beauchamp, J L; Kim, Hugh I

    2012-01-01

    Field-induced droplet ionization (FIDI) is a recently developed ionization technique that can transfer ions from the surface of microliter droplets to the gas phase intact. The air-liquid interfacial reactions of cholesterol sulfate (CholSO(4)) in a 1-palmitoyl-2-oleoyl-sn-phosphatidylglycerol (POPG) surfactant layer with ozone (O(3)) are investigated using field-induced droplet ionization mass spectrometry (FIDI-MS). Time-resolved studies of interfacial ozonolysis of CholSO(4) reveal that water plays an important role in forming oxygenated products. An epoxide derivative is observed as a major product of CholSO(4) oxidation in the FIDI-MS spectrum after exposure of the droplet to O(3) for 5 s. The abundance of the epoxide product then decreases with continued O(3) exposure as the finite number of water molecules at the air-liquid interface becomes exhausted. Competitive oxidation of CholSO(4) and POPG is observed when they are present together in a lipid surfactant layer at the air-liquid interface. Competitive reactions of CholSO(4) and POPG with O(3) suggest that CholSO(4) is present with POPG as a well-mixed interfacial layer. Compared with CholSO(4) and POPG alone, the overall ozonolysis rates of both CholSO(4) and POPG are reduced in a mixed layer, suggesting the double bonds of both molecules are shielded by additional hydrocarbons from one another. Molecular dynamics simulations of a monolayer comprising POPG and CholSO(4) correlate well with experimental observations and provide a detailed picture of the interactions between CholSO(4), lipids, and water molecules in the interfacial region.

  14. Tracing direct and sequential two-photon double ionization of D{sub 2} in femtosecond extreme-ultraviolet laser pulses

    SciTech Connect

    Jiang, Y. H.; Kurka, M.; Kuehnel, K. U.; Ergler, Th.; Schroeter, C. D.; Moshammer, R.; Rudenko, A.; Foucar, L.; Plesiat, E.; Perez-Torres, J. F.; Martin, F.; Herrwerth, O.; Lezius, M.; Kling, M. F.; Titze, J.; Jahnke, T.; Doerner, R.; Sanz-Vicario, J. L.; Schoeffler, M.; Tilborg, J. van

    2010-02-15

    Two-photon double ionization (TPDI) of D{sub 2} is studied for 38-eV photons at the Free Electron Laser in Hamburg (FLASH). Based on model calculations, instantaneous and sequential absorption pathways are identified as separated peaks in the measured D{sup +}+D{sup +} fragment kinetic energy release (KER) spectra. The instantaneous process appears at high KER, corresponding to ionization at the molecule's equilibrium distance, in contrast to sequential ionization mainly leading to low-KER contributions. Measured fragment angular distributions are in good agreement with theory.

  15. Bond-rearrangement and ionization mechanisms in the photo-double-ionization of simple hydrocarbons (C2H4, C2H3F, and 1,1-C2H2F2) near and above threshold

    DOE PAGES

    Gaire, B.; Gatton, A. S.; Wiegandt, F.; ...

    2016-09-14

    We have investigated bond-rearrangement driven by photo-double-ionization (PDI) near and above the double ionization threshold in a sequence of carbon-carbon double bonded hydrocarbon molecules: ethylene, fluoroethylene, and 1,1-difluoroethylene. We employ the kinematically complete cold target recoil ion momentum spectroscopy (COLTRIMS) method to resolve all photo-double-ionization events leading to two-ionic fragments. We observe changes in the branching ratios of different dissociative ionization channels depending on the presence of none, one, or two fluorine atoms. The role of the fluorine atom in the bond-rearrangement channels is intriguing as evident by the re-ordering of the threshold energies of the PDI in the fluorinatedmore » molecules. These effects offer a compelling argument that the electronegativity of the fluorine (or the polarity of the molecule) strongly influences the potential energy surfaces of the molcules and drives bond-rearrangement during the dissociation process. The energy sharing and the relative angle between the 3D-momentum vectors of the two electrons provide clear evidence of direct and indirect PDI processes.« less

  16. Bond-rearrangement and ionization mechanisms in the photo-double-ionization of simple hydrocarbons (C2H4, C2H3F, and 1,1-C2H2F2) near and above threshold

    SciTech Connect

    Gaire, B.; Gatton, A. S.; Wiegandt, F.; Neff, J.; Janke, C.; Zeller, S.; Reedy, D.; Rajput, J.; Ben-Itzahk, I.; Landers, A. L.; Belkacem, A.; Weber, Th.

    2016-09-14

    We have investigated bond-rearrangement driven by photo-double-ionization (PDI) near and above the double ionization threshold in a sequence of carbon-carbon double bonded hydrocarbon molecules: ethylene, fluoroethylene, and 1,1-difluoroethylene. We employ the kinematically complete cold target recoil ion momentum spectroscopy (COLTRIMS) method to resolve all photo-double-ionization events leading to two-ionic fragments. We observe changes in the branching ratios of different dissociative ionization channels depending on the presence of none, one, or two fluorine atoms. The role of the fluorine atom in the bond-rearrangement channels is intriguing as evident by the re-ordering of the threshold energies of the PDI in the fluorinated molecules. These effects offer a compelling argument that the electronegativity of the fluorine (or the polarity of the molecule) strongly influences the potential energy surfaces of the molcules and drives bond-rearrangement during the dissociation process. The energy sharing and the relative angle between the 3D-momentum vectors of the two electrons provide clear evidence of direct and indirect PDI processes.

  17. Fully differential study on dissociative ionization dynamics of deuteron molecules in strong elliptical laser fields

    NASA Astrophysics Data System (ADS)

    Shao, Yun; He, Peilun; Liu, Ming-Ming; Sun, Xufei; Li, Min; Deng, Yongkai; Wu, Chengyin; He, Feng; Gong, Qihuang; Liu, Yunquan

    2017-03-01

    Deuteron momentum distributions from the dissociative ionization of D2 in intense elliptically polarized laser fields have been explored in a joint experimental and numerical study. The asymmetrical charge localization in the dissociative D2 + offers a large torque, and thus an elliptically polarized laser field efficiently rotates the molecular ion during its dissociation, resulting in the emission of deuterons finally deviating from the bond direction at the instant of tunneling ionization of D2. The rotating torque of the molecular ions increases with the field ellipticity, leading to an ellipticity-dependent tilt angle for the deuteron momentum distribution. Due to the notable rotation of D2 + during its dissociation, the photoelectron angular distributions in the laboratory frame and the molecular frame are distinct, which illustrates that the axial recoil approximation is broken for discussing the photoelectron angular distributions of molecules in elliptically polarized laser fields.

  18. Hartree simulations of multi-electron atoms ionization in strong laser fields

    NASA Astrophysics Data System (ADS)

    Kalinski, Matt

    2007-05-01

    The recent success of classical simulations of the ionization process of few electron atom is an argument that normal electron exchange and correlations effects are negligible for certain conditions of strong field ionization and only the Coulomb effects are essential [1]. The numerical convenience of solving the Schr"odinger equation with nonlinearity instead of classical equations of the motion has been recently proved by us in case of so-called Trojan electrons in strong CP fields with Shay logarithmic quantum mechanics [2]. We present Hartree simulations of the ultra-strong field time-dependent ionization of model one dimensional atoms with up to 10 active electrons involved (10 dimensional configuration space). N coupled Schr"odinger equations is solved simultaneously on the Cartesian grid with our new nonlinear split-operator method. The continuum states are taken into account with delta grid representation of the multi electron wavefunction and the Coulomb interaction integral is calculated as the direct solution of the Poisson equation with the ultra-fast Fast Fourier convolution method developed by us to treat the supersolid formation in Bose-Einstein condensate. We calculate n-electron ionization rates for ultra-strong ultra-short few cycle pulses. [1] P. J. Ho and J. H. Eberly, Phys. Rev. Lett. 95, 193002 (2005). [2] M. Kalinski, contributed paper, APS DAMOP meeting, Lincoln, Nebraska, May, 2005 To cite this abstract, use the following reference: http://meetings.aps.org/link/BAPS.2007.NWS07.E3.2

  19. COMMENT: Comment on `Asymptotic behaviour of the total cross section for double ionization of helium-like ions by electrons'

    NASA Astrophysics Data System (ADS)

    Lindsay, B. G.; Rejoub, R.; Stebbings, R. F.

    2002-04-01

    Defrance et al (Defrance P, Kereselidze T M, Noselidze I L and Tzulukidze M F 2001b J. Phys. B: At. Mol. Opt. Phys. 34 4957-68; Defrance P, Kereselidze T, Noselidze I and Tzulukidze M 2001a 22nd Int. Conf. on Photonic, Electronic, and Atomic Collisions (Santa Fe, CA) (abstracts of contributed papers) p 315) have reported calculations of the electron-impact double-ionization cross section for helium that display a markedly different high-energy behaviour than do most of the published experimental data and they contend that new precise measurements are needed. The results presented here confirm the correctness of the more recent experimental data and indicate that revision of the theory is required.

  20. Transition from SAMO to Rydberg State Ionization in C60 in Femtosecond Laser Fields

    PubMed Central

    2016-01-01

    The transition between two distinct ionization mechanisms in femtosecond laser fields at 785 nm is observed for C60 molecules. The transition occurs in the investigated intensity range from 3 to 20 TW/cm2 and is visualized in electron kinetic energy spectra below the one-photon energy (1.5 eV) obtained via velocity map imaging. Assignment of several observed broad spectral peaks to ionization from superatom molecular orbitals (SAMOs) and Rydberg states is based on time-dependent density functional theory simulations. We find that ionization from SAMOs dominates the spectra for intensities below 5 TW/cm2. As the intensity increases, Rydberg state ionization exceeds the prominence of SAMOs. Using short laser pulses (20 fs) allowed uncovering of distinct six-lobe photoelectron angular distributions with kinetic energies just above the threshold (below 0.2 eV), which we interpret as over-the-barrier ionization of shallow f-Rydberg states in C60. PMID:27934203

  1. Micromachined mold-type double-gated metal field emitters

    NASA Astrophysics Data System (ADS)

    Lee, Yongjae; Kang, Seokho; Chun, Kukjin

    1997-12-01

    Electron field emitters with double gates were fabricated using micromachining technology and the effect of the electric potential of the focusing gate (or second gate) was experimentally evaluated. The molybdenum field emission tip was made by filling a cusplike mold formed when a conformal film was deposited on the hole-trench that had been patterned on stacked metals and dielectric layers. The hole-trench was patterned by electron beam lithography and reactive ion etching. Each field emitter has a 0960-1317/7/4/009/img1 diameter extraction gate (or first gate) and a 0960-1317/7/4/009/img2 diameter focusing gate (or second gate). To make a path for the emitted electrons, silicon bulk was etched anisotropically in KOH and EDP (ethylene-diamine pyrocatechol) solution successively. The I - V characteristics and anode current change due to the focusing gate potential were measured.

  2. Double-resonance spectroscopy of the high Rydberg states of HCO. I. A precise determination of the adiabatic ionization potential

    NASA Astrophysics Data System (ADS)

    Mayer, Eric; Grant, Edward R.

    1995-12-01

    We report the first spectroscopic observation of the high Rydberg states of HCO. Individual lines in a system of vibrationally autoionizing Rydberg series converging to the (010) state of HCO+ are rotationally labeled in a double-resonance excitation scheme that uses resolved levels in the (010) A' vibronic component of the 3pπ 2Π Rydberg state as intermediates. Observed high-Rydberg structure extends from the adiabatic ionization threshold—which falls just below the principal quantum number of 12 in the vibrationally excited series—to the (010) vertical threshold. Elements of a single series extending from n=12 to 50, for which the total angular momentumless spin can be assigned as N=1, are extrapolated to obtain a vertical convergence limit with respect to the 3pπ 2Π(010)A' N'=0 intermediate state of 20 296.9±0.3 cm-1. Referring this transition energy to the ground state, and subtracting the precisely known fundamental bending frequency of the cation, establishes the adiabatic ionization potential corresponding to the transition from HCO 2A'(000) J″=0, K″=0 to HCO+ J+=0 1Σ+(000). The result is 65 735.9±0.5 cm-1 or 8.150 22±0.000 06 eV.

  3. Using the charge-stabilization technique in the double ionization potential equation-of-motion calculations with dianion references.

    PubMed

    Kuś, Tomasz; Krylov, Anna I

    2011-08-28

    The charge-stabilization method is applied to double ionization potential equation-of-motion (EOM-DIP) calculations to stabilize unstable dianion reference functions. The auto-ionizing character of the dianionic reference states spoils the numeric performance of EOM-DIP limiting applications of this method. We demonstrate that reliable excitation energies can be computed by EOM-DIP using a stabilized resonance wave function instead of the lowest energy solution corresponding to the neutral + free electron(s) state of the system. The details of charge-stabilization procedure are discussed and illustrated by examples. The choice of optimal stabilizing Coulomb potential, which is strong enough to stabilize the dianion reference, yet, minimally perturbs the target states of the neutral, is the crux of the approach. Two algorithms of choosing optimal parameters of the stabilization potential are presented. One is based on the orbital energies, and another--on the basis set dependence of the total Hartree-Fock energy of the reference. Our benchmark calculations of the singlet-triplet energy gaps in several diradicals show a remarkable improvement of the EOM-DIP accuracy in problematic cases. Overall, the excitation energies in diradicals computed using the stabilized EOM-DIP are within 0.2 eV from the reference EOM spin-flip values.

  4. Alignment effects in two-photon double ionization of H{sub 2} in femtosecond xuv laser pulses

    SciTech Connect

    Guan Xiaoxu; Bartschat, Klaus; Schneider, Barry I.

    2011-09-15

    Triple-differential cross sections for two-photon double ionization of the aligned hydrogen molecule at the equilibrium distance are presented for a central photon energy of 30 eV. The temporal response of the laser-driven molecule is investigated by solving the time-dependent Schroedinger equation in full dimensionality using two-center elliptical coordinates and a finite-element discrete-variable-representation approach. The molecular orientation is found to have a strong effect on the emission modes of the two correlated photoelectrons. This molecular effect is most noticeable when the molecular axis and the laser polarization vector are oriented parallel to each other. For intermediate cases between the parallel and perpendicular geometries, the dominant emission modes for two-electron ejection oscillate between those for the two extreme cases. The contributions from different ionization channels are also analyzed in detail. Depending on the emission direction of the reference electron, the interference contributions from the various channels can be constructive or destructive at small alignment angles, while they always contribute constructively to the triple-differential cross sections near the perpendicular geometry.

  5. Single and double ionization of helium by the impact of fast charged particles

    NASA Astrophysics Data System (ADS)

    Jones, S.; Madison, D. H.; Macek, Joseph H.

    2005-12-01

    A survey of the recent literature shows that paradoxes abound in electron- and ion-impact ionization of helium. For example, Schulz et al. [M. Schulz, R. Moshammer, D. Fischer, H. Kollmus, D.H. Madison, S. Jones, J. Ullrich, Nature 422 (2003) 48] found that first-Born and three-body distorted-wave (3DW) theories reproduced their data for single ionization of helium by very fast fully stripped carbon ions in the scattering plane, but not outside the scattering plane. For much slower impacting carbon ions, however, Madison et al. [D.H. Madison, D. Fischer, M. Foster, M. Schulz, R. Moshammer, S. Jones, J. Ullrich, Phys. Rev. Lett. 91 (2003) 253201] found good agreement between 3DW theory and experiment, even outside the scattering plane. This creates a dilemma, since distorted-wave perturbation theories are generally thought to improve with increasing, not decreasing, projectile speed! In this contribution, we will address these and other issues, and suggest possible ways of proceeding.

  6. Field-Induced Superconductivity in Electric Double Layer Transistors

    NASA Astrophysics Data System (ADS)

    Ueno, Kazunori; Shimotani, Hidekazu; Yuan, Hongtao; Ye, Jianting; Kawasaki, Masashi; Iwasa, Yoshihiro

    2014-03-01

    Electric field tuning of superconductivity has been a long-standing issue in solid state physics since the invention of the field-effect transistor (FET) in 1960. Owing to limited available carrier density in conventional FET devices, electric-field-induced superconductivity was believed to be possible in principle but impossible in practice. However, in the past several years, this limitation has been overcome by the introduction of an electrochemical concept, and electric-field-induced superconductivity has been realized. In the electric double layer (EDL) formed at the electrochemical interfaces, an extremely high electric field is generated and hence high-density charge carriers sufficient to induce superconductivity exist and are collectively used as a charge accumulation device known as an EDL capacitor. Field-induced superconductivity has been used to establish the relationship between Tc and carrier density and can now be used to search for new superconductors. Here, we review electric-field-induced superconductivity using an FET device, with a particular focus on the latest advances in EDL transistors.

  7. Breakdown voltage reduction by field emission in multi-walled carbon nanotubes based ionization gas sensor

    SciTech Connect

    Saheed, M. Shuaib M.; Muti Mohamed, Norani; Arif Burhanudin, Zainal

    2014-03-24

    Ionization gas sensors using vertically aligned multi-wall carbon nanotubes (MWCNT) are demonstrated. The sharp tips of the nanotubes generate large non-uniform electric fields at relatively low applied voltage. The enhancement of the electric field results in field emission of electrons that dominates the breakdown mechanism in gas sensor with gap spacing below 14 μm. More than 90% reduction in breakdown voltage is observed for sensors with MWCNT and 7 μm gap spacing. Transition of breakdown mechanism, dominated by avalanche electrons to field emission electrons, as decreasing gap spacing is also observed and discussed.

  8. Improved strong-field approximation and quantum-orbit theory: Application to ionization by a bicircular laser field

    NASA Astrophysics Data System (ADS)

    Milošević, D. B.; Becker, W.

    2016-06-01

    A theory of above-threshold ionization of atoms by a strong laser field is formulated. Two versions of the strong-field approximation (SFA) are considered, the direct SFA and the improved SFA, which do not and do, respectively, take into account rescattering of the freed electron off the parent ion. The atomic bound state is included in two different ways: as an expansion in terms of Slater-type orbitals or as an asymptotic wave function. Even though we are using the single-active-electron approximation, multielectron effects are taken into account in two ways: by a proper choice of the ground state and by an adequate definition of the ionization rate. For the case of the asymptotic bound-state wave functions, using the saddle-point method, a simple expression for the T -matrix element is derived for both the direct and the improved SFA. The theory is applied to ionization by a bicircular field, which consists of two coplanar counterrotating circularly polarized components with frequencies that are integer multiples of a fundamental frequency ω . Special emphasis is on the ω -2 ω case. In this case, the threefold rotational symmetry of the field carries over to the velocity map of the liberated electrons, for both the direct and the improved SFA. The results obtained are analyzed in detail using the quantum-orbit formalism, which gives good physical insight into the above-threshold ionization process. For this purpose, a specific classification of the saddle-point solutions is introduced for both the backward-scattered and the forward-scattered electrons. The high-energy backward-scattering quantum orbits are similar to those discovered for high-order harmonic generation. The short forward-scattering quantum orbits for a bicircular field are similar to those of a linearly polarized field. The conclusion is that these orbits are universal, i.e., they do not depend much on the shape of the laser field.

  9. Compact deuterium-tritium neutron generator using a novel field ionization source

    SciTech Connect

    Ellsworth, J. L. Falabella, S.; Sanchez, J.; Tang, V.; Wang, H.

    2014-11-21

    Active interrogation using neutrons is an effective method for detecting shielded nuclear material. A lightweight, lunch-box-sized, battery-operated neutron source would enable new concepts of operation in the field. We have developed at-scale components for a highly portable, completely self-contained, pulsed Deuterium-Tritium (DT) neutron source producing 14 MeV neutrons with average yields of 10{sup 7} n/s. A gated, field ionization ion source using etched electrodes has been developed that produces pulsed ion currents up to 500 nA. A compact Cockcroft-Walton high voltage source is used to accelerate deuterons into a metal hydride target for neutron production. The results of full scale DT tests using the field ionization source are presented.

  10. Computer study of convection of weakly ionized plasma in a nonuniform magnetic field.

    NASA Technical Reports Server (NTRS)

    Shiau, J. N.

    1972-01-01

    A weakly ionized plasma in a strong and nonuniform magnetic field exhibits an instability analogous to the flute instability in a fully ionized plasma. The instability sets in at a critical magnetic field. To study the final state of the plasma after the onset of the instability, the plasma equations are integrated numerically assuming a certain initial spectrum of small disturbances. In the regime studied, numerical results indicate a final steadily oscillating state consisting of a single finite amplitude mode together with a time-independent modification of the original equilibrium. These results agree with the analytic results obtained by Simon in the slightly supercritical regime. As the magnetic field is increased further, the wavelength of the final oscillation becomes nonunique. There exists a subinterval in the unstable wave band. Final stable oscillation with a wavelength in this subinterval can be established if the initial disturbance has a sufficiently strong component at the particular wavelength.

  11. Magnetic field induced minigap in double quantum wells

    SciTech Connect

    Simmons, J.A.; Lyo, S.K.; Klem, J.F.; Harff, N.E. |

    1994-07-01

    We report discovery of a partial energy gap, or minigap, in strongly coupled double quantum wells (QWs), due to an anticrossing of the two QW dispersion curves. The anticrossing and minigap are induced by an in-plane magnetic field B{sub {parallel}}, and give rise to large distortions in the Fermi surface and density of states, including a Van Hove singularity. Sweeping B{sub {parallel}} moves the minigap through the Fermi level, with the upper and lower gap edges producing a sharp maximum and minimum in the low-temperature in-plane conductance, in agreement with theoretical calculations. The gap energy may be directly determined from the data.

  12. Unraveling nonadiabatic ionization and Coulomb potential effect in strong-field photoelectron holography

    SciTech Connect

    Song, Xiaohong; Lin, Cheng; Sheng, Zhihao; Liu, Peng; Chen, Zhangjin; Yang, Weifeng; Hu, Shilin; Lin, C. D.; Chen, Jing

    2016-06-22

    Strong field photoelectron holography has been proposed as a means for interrogating the spatial and temporal information of electrons and ions in a dynamic system. After ionization, part of the electron wave packet may directly go to the detector (the reference wave), while another part may be driven back and scatters off the ion(the signal wave). The interference hologram of the two waves may be used to extract target information embedded in the collision process. Unlike conventional optical holography, however, propagation of the electron wave packet is affected by the Coulomb potential as well as by the laser field. In addition, electrons are emitted over the whole laser pulse duration, thus multiple interferences may occur. In this work, we used a generalized quantum-trajectory Monte Carlo method to investigate the effect of Coulomb potential and the nonadiabatic subcycle ionization on the photoelectron hologram. Here, we showed that photoelectron hologram can be well described only when the effect of nonadiabatic ionization is accounted for, and Coulomb potential can be neglected only in the tunnel ionization regime. Our results help paving the way for establishing photoelectron holography for probing spatial and dynamic properties of atoms and molecules.

  13. Unraveling nonadiabatic ionization and Coulomb potential effect in strong-field photoelectron holography

    DOE PAGES

    Song, Xiaohong; Lin, Cheng; Sheng, Zhihao; ...

    2016-06-22

    Strong field photoelectron holography has been proposed as a means for interrogating the spatial and temporal information of electrons and ions in a dynamic system. After ionization, part of the electron wave packet may directly go to the detector (the reference wave), while another part may be driven back and scatters off the ion(the signal wave). The interference hologram of the two waves may be used to extract target information embedded in the collision process. Unlike conventional optical holography, however, propagation of the electron wave packet is affected by the Coulomb potential as well as by the laser field. Inmore » addition, electrons are emitted over the whole laser pulse duration, thus multiple interferences may occur. In this work, we used a generalized quantum-trajectory Monte Carlo method to investigate the effect of Coulomb potential and the nonadiabatic subcycle ionization on the photoelectron hologram. Here, we showed that photoelectron hologram can be well described only when the effect of nonadiabatic ionization is accounted for, and Coulomb potential can be neglected only in the tunnel ionization regime. Our results help paving the way for establishing photoelectron holography for probing spatial and dynamic properties of atoms and molecules.« less

  14. Unraveling nonadiabatic ionization and Coulomb potential effect in strong-field photoelectron holography

    PubMed Central

    Song, Xiaohong; Lin, Cheng; Sheng, Zhihao; Liu, Peng; Chen, Zhangjin; Yang, Weifeng; Hu, Shilin; Lin, C. D.; Chen, Jing

    2016-01-01

    Strong field photoelectron holography has been proposed as a means for interrogating the spatial and temporal information of electrons and ions in a dynamic system. After ionization, part of the electron wave packet may directly go to the detector (the reference wave), while another part may be driven back and scatters off the ion(the signal wave). The interference hologram of the two waves may be used to extract target information embedded in the collision process. Unlike conventional optical holography, however, propagation of the electron wave packet is affected by the Coulomb potential as well as by the laser field. In addition, electrons are emitted over the whole laser pulse duration, thus multiple interferences may occur. In this work, we used a generalized quantum-trajectory Monte Carlo method to investigate the effect of Coulomb potential and the nonadiabatic subcycle ionization on the photoelectron hologram. We showed that photoelectron hologram can be well described only when the effect of nonadiabatic ionization is accounted for, and Coulomb potential can be neglected only in the tunnel ionization regime. Our results help paving the way for establishing photoelectron holography for probing spatial and dynamic properties of atoms and molecules. PMID:27329071

  15. Resonance Enhanced Multi-Photon Ionization (rempi) and Double Resonance Uv-Uv and Ir-Uv Spectroscopic Investigation Isocytosine

    NASA Astrophysics Data System (ADS)

    Lee, Seung Jun; Min, Ahreum; Ahn, Ahreum; Moon, Cheol Joo; Choi, Myong Yong; Ishiuchi, Shun-Ichi; Miyazaki, Mitsuhiko; Fujii, Masaaki

    2013-06-01

    Isocytosine(iC), 2-aminouracil, is a non-natural nucleobase and its functional group's positions resemble those of guanine; therefore, its spectroscopic investigation is worthy of attention especially for the natural/unnatural base pairs with guanine and isoguanine. In this study, resonance enhanced multi-photon ionization (REMPI) and UV/IR-UV double resonance spectra of iC in the gas phase are presented. The collaboration work between Tokyo Institute of Technology, Japan and Gyeongsang National University, Korea using laser ablation and thermal evaporation, respectively, for producing jet-cooled iC is presented and discussed. The REMPI spectrum of iC monomers is recorded in the spectral range of 35000 to 36400cm-1, showing very congested π-π* vibronic bands. UV-UV hole burning spectroscopy is further conducted to investigate the conformational landscapes of iC monomers. Moreover, the presence of free OH band from IR-UV double resonance spectroscopy in combination with quantum chemical calculations convinces that the iC monomer in free-jet expansion experiment is an enol tautomer. However, a possible presence of a keto tautomer of iC may be provided by employing a pico-second experiment on iC.

  16. Melatonin sensitizes human breast cancer cells to ionizing radiation by downregulating proteins involved in double-strand DNA break repair.

    PubMed

    Alonso-González, Carolina; González, Alicia; Martínez-Campa, Carlos; Gómez-Arozamena, José; Cos, Samuel

    2015-03-01

    Radiation and adjuvant endocrine therapy are nowadays considered a standard treatment option after surgery in breast cancer. Melatonin exerts oncostatic actions on human breast cancer cells. In the current study, we investigated the effects of a combination of radiotherapy and melatonin on human breast cancer cells. Melatonin (1 mm, 10 μm and 1 nm) significantly inhibited the proliferation of MCF-7 cells. Radiation alone inhibited the MCF-7 cell proliferation in a dose-dependent manner. Pretreatment of breast cancer cells with melatonin 1 wk before radiation led to a significantly greater decrease of MCF-7 cell proliferation compared with radiation alone. Melatonin pretreatment before radiation also decreased G2 -M phase arrest compared with irradiation alone, with a higher percentage of cells in the G0 -G1 phase and a lower percentage of cells in S phase. Radiation alone diminished RAD51 and DNA-protein kinase (PKcs) mRNA expression, two main proteins involved in double-strand DNA break repair. Treatment with melatonin for 7 days before radiation led to a significantly greater decrease in RAD51 and DNA-PKcs mRNA expression compared with radiation alone. Our findings suggest that melatonin pretreatment before radiation sensitizes breast cancer cells to the ionizing effects of radiation by decreasing cell proliferation, inducing cell cycle arrest and downregulating proteins involved in double-strand DNA break repair. These findings may have implications for designing clinical trials using melatonin and radiotherapy.

  17. Generation of a pair of photons through the three-body dissociation of a multiply excited water molecule around the double ionization potential

    NASA Astrophysics Data System (ADS)

    Odagiri, Takeshi; Nakano, Motoyoshi; Tanabe, Takehiko; Kumagai, Yoshiaki; Suzuki, Isao H.; Kouchi, Noriyuki

    2009-11-01

    The cross sections for the generation of a photon-pair from excited fragments in photoexcitation of H2O have been measured as a function of incident photon energy. The multiply excited states of H2O have been observed even above the adiabatic double ionization potential.

  18. Weak-field versus Born-Oppenheimer asymptotics in the theory of tunneling ionization of molecules

    NASA Astrophysics Data System (ADS)

    Tolstikhin, Oleg I.; Morishita, Toru

    2017-03-01

    The weak-field asymptotic theory (WFAT) and the Born-Oppenheimer approximation (BOA) provide two general approaches to the theory of tunneling ionization of molecules enabling one to treat the internuclear motion quantum mechanically on an equal footing with the electronic motion. The approaches are based on the asymptotic expansions in field strength and electron-to-nuclear mass ratio, respectively. The problem is that they yield quite different formulas for the ionization rate, which causes an ambiguity for applications in strong-field physics. A recent experimental observation of the isotope effect in tunneling ionization of hydrogen molecules [X. Wang et al., Phys. Rev. Lett. 117, 083003 (2016)], 10.1103/PhysRevLett.117.083003 motivates us to address this theoretical ambiguity. The WFAT and BOA have different but overlapping regions of applicability in the field strength—nuclear mass plane. We link the approaches analytically, in particular showing that the rate formulas in fact coincide in the overlap region where they both apply, and compare their predictions quantitatively.

  19. Electric Field Double Probe Measurements for Ionospheric Space Plasma Experiments

    NASA Technical Reports Server (NTRS)

    Pfaff, R.

    1999-01-01

    Double probes represent a well-proven technique for gathering high quality DC and AC electric field measurements in a variety of space plasma regimes including the magnetosphere, ionosphere, and mesosphere. Such experiments have been successfully flown on a variety of spacecraft including sounding rockets and satellites. Typical instrument designs involve a series of trades, depending on the science objectives, type of platform (e.g., spinning or 3-axis stabilized), expected plasma regime where the measurements will be made, available telemetry, budget, etc. In general, ionospheric DC electric field instruments that achieve accuracies of 0.1 mV/m or better, place spherical sensors at large distances (10m or more) from the spacecraft body in order to extend well beyond the spacecraft wake and sheath and to achieve large signal-to-noise ratios for DC and long wavelength measurements. Additional sets of sensors inboard of the primary, outermost sensors provide useful additional information, both for diagnostics of the plasma contact potentials, which particularly enhance the DC electric field measurements on non-spinning spacecraft, and for wavelength and phase velocity measurements that use the spaced receiver or "interferometer" technique. Accurate attitude knowledge enables B times V contributions to be subtracted from the measured potentials, and permits the measured components to be rotated into meaningful geophysical reference frames. We review the measurement technique for both DC and wave electric field measurements in the ionosphere discussing recent advances involving high resolution burst memories, multiple baseline double probes, new sensor surface materials, biasing techniques, and other considerations.

  20. Residual energy in optical-field-ionized plasmas with the longitudinal motion of electrons included.

    PubMed

    He, Bin; Chang, Tie-Qiang

    2005-06-01

    The space-charge effect on the residual energy of electrons in optical-field-ionized plasmas is studied in detail by an extended simplified model and the cloud-in-cell simulation, with the longitudinal motion of electrons included. It is found that in moderate conditions the space-charge field can influence the residual energy of electrons effectively by matching the space-charge field with laser pulse. The effect of stimulated Raman scattering on electron temperature is also investigated in detail. Finally, a comparison is made between the results and experimental data.

  1. Characterization of Wax Esters by Electrospray Ionization Tandem Mass Spectrometry: Double Bond Effect and Unusual Product Ions.

    PubMed

    Chen, Jianzhong; Green, Kari B; Nichols, Kelly K

    2015-08-01

    A series of different types of wax esters (represented by RCOOR') were systematically studied by using electrospray ionization (ESI) collision-induced dissociation tandem mass spectrometry (MS/MS) along with pseudo MS(3) (in-source dissociation combined with MS/MS) on a quadrupole time-of-flight (Q-TOF) mass spectrometer. The tandem mass spectra patterns resulting from dissociation of ammonium/proton adducts of these wax esters were influenced by the wax ester type and the collision energy applied. The product ions [RCOOH2](+), [RCO](+) and [RCO-H2O](+) that have been reported previously were detected; however, different primary product ions were demonstrated for the three wax ester types including: (1) [RCOOH2](+) for saturated wax esters, (2) [RCOOH2](+), [RCO](+) and [RCO-H2O](+) for unsaturated wax esters containing only one double bond in the fatty acid moiety or with one additional double bond in the fatty alcohol moiety, and (3) [RCOOH2](+) and [RCO](+) for unsaturated wax esters containing a double bond in the fatty alcohol moiety alone. Other fragments included [R'](+) and several series of product ions for all types of wax esters. Interestingly, unusual product ions were detected, such as neutral molecule (including water, methanol and ammonia) adducts of [RCOOH2](+) ions for all types of wax esters and [R'-2H](+) ions for unsaturated fatty acyl-containing wax esters. The patterns of tandem mass spectra for different types of wax esters will inform future identification and quantification approaches of wax esters in biological samples as supported by a preliminary study of quantification of isomeric wax esters in human meibomian gland secretions.

  2. Characterization of Wax Esters by Electrospray Ionization Tandem Mass Spectrometry: Double Bond Effect and Unusual Product Ions

    PubMed Central

    Chen, Jianzhong; Green, Kari B; Nichols, Kelly K

    2015-01-01

    A series of different types of wax esters (represented by RCOOR′) were systematically studied by using electrospray ionization (ESI) collision-induced dissociation tandem mass spectrometry (MS/MS) along with pseudo MS3 (in-source dissociation combined with MS/MS) on a quadrupole time-of-flight (Q-TOF) mass spectrometer. The tandem mass spectra patterns resulting from dissociation of ammonium/proton adducts of these wax esters were influenced by the wax ester type and the collision energy applied. The product ions [RCOOH2]+, [RCO]+ and [RCO – H2O]+ that have been reported previously were detected; however, different primary product ions were demonstrated for the three wax ester types including: 1) [RCOOH2]+ for saturated wax esters, 2) [RCOOH2]+, [RCO]+ and [RCO – H2O]+ for unsaturated wax esters containing only one double bond in the fatty acid moiety or with one additional double bond in the fatty alcohol moiety, and 3) [RCOOH2]+ and [RCO]+ for unsaturated wax esters containing a double bond in the fatty alcohol moiety alone. Other fragments included [R′]+ and several series of product ions for all types of wax esters. Interestingly, unusual product ions were detected, such as neutral molecule (including water, methanol and ammonia) adducts of [RCOOH2]+ ions for all types of wax esters and [R′ – 2H]+ ions for unsaturated fatty acyl-containing wax esters. The patterns of tandem mass spectra for different types of wax esters will inform future identification and quantification approaches of wax esters in biological samples as supported by a preliminary study of quantification of isomeric wax esters in human meibomian gland secretions. PMID:26178197

  3. Static field ionization rates for multi-electron atoms and small molecules

    NASA Astrophysics Data System (ADS)

    Pramod Majety, Vinay; Scrinzi, Armin

    2015-12-01

    We present an application of the hybrid anti-symmetrized coupled channels approach to compute static field ionization rates for multi-electron atoms (He, Ne, Ar) and small molecules (H2, N2, CO). While inert gas atoms behave as effective single electron systems, molecules exhibit multi-electron effects in the form of core polarization. It is shown that at moderate field strengths, these effects can be modeled to about 10% accuracy using a few (5-6) channel ansatz. In the case of the CO molecule, description of core polarization is essential for the correct prediction of the maximum ionization direction and our converged results are in good agreement with the experimental measurements.

  4. Molecular ionization of cyclohexanone in femtosecond laser fields: An application of ADK theory

    NASA Astrophysics Data System (ADS)

    Wang, Q. Q.; Mineo, H.; Wu, D.; Jin, M. X.; Chin, C. H.; Teranishi, Y.; Chao, S. D.; Ding, D.; Lin, S. H.

    2009-08-01

    The mechanisms of ionization and dissociation of cyclohexanone (C6H10O) in a 90 fs, 788 nm linearly polarized laser field ranging from 1013 to 1014 W/cm2 by a time-of-flight mass spectrometer (TOF-MS) have been investigated. The ion yields as a function of laser intensity have been measured experimentally. By comparison with the Ammosov-Delone-Krainov (ADK) theory based on a hydrogen-like model, the ionization mechanism of cyclohexanone in this intense femtosecond laser field has been understood. Considering the importance of molecular nuclear motions, we propose that the Franck-Condon (F-C) factor can provide the excess vibrational energy in the molecular ion. This energy is required for the decomposition of the molecular ion which finally results in the observed mass spectrum.

  5. Towards reference dosimetry for the MR-linac: magnetic field correction of the ionization chamber reading

    NASA Astrophysics Data System (ADS)

    Smit, K.; van Asselen, B.; Kok, J. G. M.; Aalbers, A. H. L.; Lagendijk, J. J. W.; Raaymakers, B. W.

    2013-09-01

    In the UMC Utrecht a prototype MR-linac has been installed. The system consists of a 6 MV Elekta (Crawley, UK) linear accelerator and a 1.5 T Philips (Best, The Netherlands) Achieva MRI system. This paper investigates the feasibility to correct the ionization chamber reading for the magnetic field within the dosimetry calibration method described by Almond et al (1999 Med. Phys. 26 1847-70). Firstly, the feasibility of using an ionization chamber in an MR-linac was assessed by investigating possible influences of the magnetic field on NE2571 Farmer-type ionization chamber characteristics: linearity, repeatability, orientation in the magnetic field; and AAPM TG51 correction factor for voltage polarity and ion recombination. We found that these AAPM correction factors for the NE2571 chamber were not influenced by the magnetic field. Secondly, the influence of the permanent 1.5 T magnetic field on the NE2571 chamber reading was quantified. The reading is influenced by the magnetic field; therefore, a correction factor has been added. For the standardized setup used in this paper, the NE2571 chamber reading increases by 4.9% (± 0.2%) due to the transverse 1.5 T magnetic field. Dosimetry measurements in an MR-linac are feasible, if a setup-specific magnetic field correction factor (P1.5 T) for the charge reading is introduced. For the setup investigated in this paper, the P1.5 T has a value of 0.953.

  6. Time-dependent density functional theory for strong-field ionization by circularly polarized pulses

    NASA Astrophysics Data System (ADS)

    Chirilă, Ciprian C.; Lein, Manfred

    2017-03-01

    By applying time-dependent density functional theory to a two-dimensional multielectron atom subject to strong circularly polarized light pulses, we confirm that the ionization of p orbitals with defined angular momentum depends on the sense of rotation of the applied field. A simple ad-hoc modification of the adiabatic local-density exchange-correlation functional is proposed to remedy its unphysical behavior under orbital depletion.

  7. Pulsed-field ionization photoelectron and IR-UV resonant photoionization spectroscopy of Al-thymine.

    PubMed

    Krasnokutski, Serge A; Lei, Yuxiu; Lee, Jung Sup; Yang, Dong-Sheng

    2008-09-28

    Al-thymine (Al-C(4)H(3)N(2)O(2)CH(3)) is produced by laser vaporization of a rod made of Al and thymine powders in a molecular beam and studied by single-photon pulsed-field ionization-zero electron kinetic energy (ZEKE) photoelectron and IR-UV resonant two-photon ionization spectroscopy and density functional theory calculations. The ZEKE experiment determines the adiabatic ionization energy of the neutral complex and 22 vibrational modes for the corresponding ion with frequencies below 2000 cm(-1). The IR-UV photoionization experiment measures two N-H and three C-H stretches for the neutral species. The theoretical calculations predict a number of low-energy isomers with Al binding to single oxygen or adjacent oxygen and nitrogen atoms of thymine. Among these isomers, the structure with Al binding to the O4 atom of the diketo tautomer is predicted to be the most stable one by the theory and is probed by both ZEKE and IR-UV measurements. This work presents the first application of the IR-UV resonant ionization to metal-organic molecule systems. Like ZEKE spectroscopy, the IR-UV photoionization technique is sensitive for identifying isomeric structures of metal association complexes.

  8. NON-EQUILIBRIUM CHEMISTRY OF DYNAMICALLY EVOLVING PRESTELLAR CORES. II. IONIZATION AND MAGNETIC FIELD

    SciTech Connect

    Tassis, Konstantinos; Willacy, Karen; Yorke, Harold W.; Turner, Neal J.

    2012-07-20

    We study the effect that non-equilibrium chemistry in dynamical models of collapsing molecular cloud cores has on measurements of the magnetic field in these cores, the degree of ionization, and the mean molecular weight of ions. We find that OH and CN, usually used in Zeeman observations of the line-of-sight magnetic field, have an abundance that decreases toward the center of the core much faster than the density increases. As a result, Zeeman observations tend to sample the outer layers of the core and consistently underestimate the core magnetic field. The degree of ionization follows a complicated dependence on the number density at central densities up to 10{sup 5} cm{sup -3} for magnetic models and 10{sup 6} cm{sup -3} in non-magnetic models. At higher central densities, the scaling approaches a power law with a slope of -0.6 and a normalization which depends on the cosmic-ray ionization rate {zeta} and the temperature T as ({zeta}T){sup 1/2}. The mean molecular weight of ions is systematically lower than the usually assumed value of 20-30, and, at high densities, approaches a value of 3 due to the asymptotic dominance of the H{sup +}{sub 3} ion. This significantly lower value implies that ambipolar diffusion operates faster.

  9. High-resolution pulsed-field ionization photoelectron spectroscopy using multi-bunch synchrotron radiation

    SciTech Connect

    Hsu, C.W.; Evans, M.; Ng, C.Y.; Heimann, P.

    1997-04-01

    BL9.0.2.2 is the newly constructed experimental End Station 2 at the Chemical Dynamics Beamline 9.0.2 of the Advanced Light Source (ALS). It is dedicated to the high resolution photoionization study of molecules of interest to atmospheric and combustion chemistry. This End Station is equipped with a high resolution scanning monochromator, which has been demonstrated to have a world record resolution of E/{delta}E=70,000. Taking the advantage of the high resolution ALS light, the authors have improved the energy resolution in threshold photoelectron spectroscopy (TPES) to 0.8 meV. The TPES is a popular technique for photoionization experiments at all synchrotron radiation facilities due to its high energy resolution as compared to that of traditional photoelectron spectroscopy (PES). TPES achieves higher energy resolution by preferentially detecting near zero kinetic energy photoelectrons resulting from threshold photoionization. However, the spectra obtained from the TPES technique generally are complicated by the simultaneous detection of electrons with nonzero kinetic energy, which are not fully discriminated against. On the other hand, the spectra obtained from pulsed field ionization photoelectron spectroscopy (PFI-PES) are completely free of the contamination from kinetic electrons. The PFI-PE technique basically involves the detection of the photoelectrons from field ionization of the very high-n Rydberg states, a few cm{sup {minus}1} below the ionization energy (IE), by applying a delayed pulsed electric field. Within a delay of a few microseconds, all the prompt electrons formed from direct ionization will escape from the photoionization region and will not be collected. The authors have recently overcome problems with energy resolution of an electron time-of-flight technique, and incorporated the PFI-PE technique with multi-bunch VUV synchrotron radiation.

  10. Double bond localization in minor homoallylic fatty acid methyl esters using acetonitrile chemical ionization tandem mass spectrometry.

    PubMed

    Michaud, Anthony L; Diau, Guan-Yeu; Abril, Reuben; Brenna, J Thomas

    2002-08-15

    Double bond position in natural fatty acids is critical to biochemical properties, however, common instrument-based methods cannot locate double bonds in fatty acid methyl esters (FAME), the predominant analysis form of fatty acids. A recently described mass spectrometry (MS) method for locating double bonds in FAME is reported here for the analysis of minor (<1%) components of real FAME mixtures derived from three natural sources; golden algae (Schizochytrium sp.), primate brain white matter, and transgenic mouse liver. Acetonitrile chemical ionization tandem MS was used to determine double bond positions in 39 FAME, most at concentrations well below 1% of all fatty acid methyl esters. FAME identified in golden algae are 14:1n-6, 14:3n-3, 16:1n-7, 16:2n-6, 16:3n-6, 16:3n-3, 16:4n-3, 18:2n-7, 18:3n-7, 18:3n-8, 18:4n-3, 18:4n-5, 20:3n-7, 20:4n-3, 20:4n-5, 20:4n-7, 20:5n-3, and 22:4n-9. Additional FAME identified in primate brain white matter are 20:1n-7, 20:1n-9, 20:2n-7, 20:2n-9, 22:1n-7, 22:1n-9, 22:1n-13, 22:2n-6, 22:2n-7, 22:2n-9, 22:3n-6, 22:3n-7, 22:3n-9, 22:4n-6, 24:1n-7, 24:1n-9, and 24:4n-6. Additional FAME identified in mouse liver are 26:5n-6, 26:6n-3, 28:5n-6, and 28:6n-3. The primate brain 22:3n-7 and algae 18:4n-5 are novel fatty acids. These results demonstrate the usefulness of the technique for analysis of real samples. Tables are presented to aid in interpretation of acetonitrile CIMS/MS spectra.

  11. Above-threshold ionization with highly charged ions in superstrong laser fields. II. Relativistic Coulomb-corrected strong-field approximation

    NASA Astrophysics Data System (ADS)

    Klaiber, Michael; Yakaboylu, Enderalp; Hatsagortsyan, Karen Z.

    2013-02-01

    We develop a relativistic Coulomb-corrected strong-field approximation (SFA) for the investigation of spin effects at above-threshold ionization in relativistically strong laser fields with highly charged hydrogenlike ions. The Coulomb-corrected SFA is based on the relativistic eikonal-Volkov wave function describing the ionized electron laser-driven continuum dynamics disturbed by the Coulomb field of the ionic core. The SFA in different partitions of the total Hamiltonian is considered. The formalism is applied for direct ionization of a hydrogenlike system in a strong linearly polarized laser field. The differential and total ionization rates are calculated analytically. The relativistic analog of the Perelomov-Popov-Terent'ev ionization rate is retrieved within the SFA technique. The physical relevance of the SFA in different partitions is discussed.

  12. Measurement of scintillation and ionization yield with high-pressure gaseous mixtures of Xe and TMA for improved neutrinoless double beta decay and dark matter searches

    NASA Astrophysics Data System (ADS)

    Nakajima, Y.; Goldschmidt, A.; Matis, H. S.; Nygren, D.; Oliveira, C.; Renner, J.

    2015-11-01

    Liquid Xe TPCs are among the most popular choices for double beta decay and WIMP dark matter searches. Gaseous Xe has intrinsic advantages when compared to Liquid Xe, specifically, tracking capability and better energy resolution for double beta decay searches. The performance of gaseous Xe can be further improved by molecular additives such as trimethylamine(TMA), which are expected to (1) cool down the ionization electrons, (2) convert Xe excitation energy to TMA ionizations through Penning transfer, and (3) produce scintillation and electroluminescence light in a more easily detectable wavelength (300 nm). These features may provide better tracking and energy resolution for double-beta decay searches. They are also expected to enhance columnar recombination for nuclear recoils, which can be used for searches for WIMP dark matter with directional sensitivity. We constructed a test ionization chamber and successfully measured scintillation and ionization yields at high precision with various Xe and TMA mixtures and pressures. We observed the Penning effect and an increase in recombination with the addition of TMA. However, many undesired features for dark matter searches, such as strong suppression of the scintillation light and no sign of recombination light, were also found. This work has been carried out within the context of the NEXT collaboration.

  13. Development of a compact neutron source based on field ionization processes

    SciTech Connect

    Persaud, Arun; Allen, Ian; Dickinson, Michael R.; Schenkel, Thomas; Kapadia, Rehan; Takei, Kuniharu; Javey, Ali

    2010-11-25

    The authors report on the use of carbon nanofiber nanoemitters to ionize deuterium atoms for the generation of neutrons in a deuterium-deuterium reaction in a preloaded target. Acceleration voltages in the range of 50-80 kV are used. Field emission of electrons is investigated to characterize the emitters. The experimental setup and sample preparation are described and first data of neutron production are presented. Ongoing experiments to increase neutron production yields by optimizing the field emitter geometry and surface conditions are discussed.

  14. Signatures of Molecular Orbital Structure in Lateral Electron Momentum Distributions from Strong-Field Ionization

    NASA Astrophysics Data System (ADS)

    Petersen, Ingo; Henkel, Jost; Lein, Manfred

    2015-03-01

    Strong-field ionization of aligned diatomic and polyatomic molecules such as O2, N2, C2H4, and others in circularly polarized laser fields is investigated theoretically. By calculating the emission-angle-resolved lateral width of the momentum distribution perpendicular to the polarization plane, we show that nodal planes in molecular orbitals are directly imprinted on the angular dependence of the width. We demonstrate that orbital symmetries can be distinguished with the information obtained by observing the lateral width in addition to the angular distributions.

  15. Strong Field Ionization Rate Depends on the Sign of the Magnetic Quantum Number

    DTIC Science & Technology

    2013-04-01

    xenon and krypton . It was found that spin-orbital coupling does not suppress the dependency of strong field ionization on atomic orientation. These...both   xenon  and   krypton .  It  was  found  that  spin-­‐orbital  coupling  does  not  suppress  the   dependency  of...spin-­‐orbital   coupling   in   krypton   and   xenon  does   not   suppress   the   dependency  of  strong  field

  16. Threshold for thermal ionization of an aluminum surface by pulsed megagauss magnetic field.

    PubMed

    Awe, T J; Bauer, B S; Fuelling, S; Siemon, R E

    2010-01-22

    The first measurement of the threshold for thermal ionization of the surface of thick metal by pulsed magnetic field (B) is reported. Thick aluminum-with depth greater than the magnetic skin layer-was pulsed with partial differential B/ partial differential t from 30-80 MG/micros. Novel loads avoided nonthermal plasma (from electron avalanche, or energetic particles or photons from arcs). Thermal plasma forms from 6061-alloy aluminum when the surface magnetic field reaches 2.2 MG, in qualitative agreement with numerical simulation results by Garanin et al. [J. Appl. Mech. Tech. Phys. 46, 153 (2005)].

  17. Angle-dependent strong-field molecular ionization rates with tuned range-separated time-dependent density functional theory

    NASA Astrophysics Data System (ADS)

    Sissay, Adonay; Abanador, Paul; Mauger, François; Gaarde, Mette; Schafer, Kenneth J.; Lopata, Kenneth

    2016-09-01

    Strong-field ionization and the resulting electronic dynamics are important for a range of processes such as high harmonic generation, photodamage, charge resonance enhanced ionization, and ionization-triggered charge migration. Modeling ionization dynamics in molecular systems from first-principles can be challenging due to the large spatial extent of the wavefunction which stresses the accuracy of basis sets, and the intense fields which require non-perturbative time-dependent electronic structure methods. In this paper, we develop a time-dependent density functional theory approach which uses a Gaussian-type orbital (GTO) basis set to capture strong-field ionization rates and dynamics in atoms and small molecules. This involves propagating the electronic density matrix in time with a time-dependent laser potential and a spatial non-Hermitian complex absorbing potential which is projected onto an atom-centered basis set to remove ionized charge from the simulation. For the density functional theory (DFT) functional we use a tuned range-separated functional LC-PBE*, which has the correct asymptotic 1/r form of the potential and a reduced delocalization error compared to traditional DFT functionals. Ionization rates are computed for hydrogen, molecular nitrogen, and iodoacetylene under various field frequencies, intensities, and polarizations (angle-dependent ionization), and the results are shown to quantitatively agree with time-dependent Schrödinger equation and strong-field approximation calculations. This tuned DFT with GTO method opens the door to predictive all-electron time-dependent density functional theory simulations of ionization and ionization-triggered dynamics in molecular systems using tuned range-separated hybrid functionals.

  18. Double-electron capture by highly-ionized atoms isolated at very low energy

    NASA Astrophysics Data System (ADS)

    Fogwell Hoogerheide, Shannon; Dreiling, Joan M.; Sahiner, Arda; Tan, Joseph N.

    2016-05-01

    Charge exchange with background gases, also known as electron capture processes, is important in the study of comets, controlled fusion energy, anti-matter atoms, and proposed one-electron ions in Rydberg states. However, there are few experiments in the very low energy regime that could be useful for further theoretical development. At NIST, highly-charged ions extracted from an electron-beam ion trap can be isolated with energy < 10 eV in a compact Penning trap. By controlling the background gas pressure and composition, the charge exchange rates can be studied. Fully stripped neon or other ions are held in the trap for varying lengths of time and allowed to interact with different background gases at multiple pressures. The ions are then pulsed to a time-of-flight detector to count the population of each charge state. Analysis using a system of rate equations yields information about the ion cloud expansion and single-electron capture rates. A substantial amount of double-electron capture is also observed. We present the relative rates and discuss the error budget. SFH and JMD were funded by National Research Council Research Associateship Awards during some of this work.

  19. The doubling dose of ionizing radiation for drosophilia, mice, and humans

    SciTech Connect

    Neel, J.V.

    1997-10-01

    It is part of the lore of radiation genetics that Drosophila is much more resistant to the genetic effects of radiation than the mouse. For across-species comparisons and risk setting, an estimate of the mutational doubling dose (DD) for human germ cells (immature oocytes and spermatogonia) was approximately 2 Sv equivalents. Neel and Lewis suggested that the population DD for mouse spermatogonia was approximately 1.3 Sv equivalents, with the rate for immature oocytes even higher, because of the failure to recover mutations in the late litters of radiated females. With the incorporation of cluster mutations into the mouse DD estimate, as discussed by Selby here last year, these mouse DD can only go higher. Given the relative agreement between these two mammals, I have now reviewed all the pertinent Drosophila data, the results of which review will be presented. There are many difficulties to combining the results of the various relevant Drosophila studies, but, to a first approximation, a population DD of approximately 4 Gy emerges. There is, thus, given the uncertainties in such estimates, agreement within a factor of 2 between the three species, with such different life histories. The coincidence, to what extent a simple function of target size, and to what extent the result of an evolutionary adjustment by virtue of which induced mutation rates (i.e., repair inefficiencies) are proportional to generation length rather than absolute time.

  20. Electron residual energy due to stochastic heating in field-ionized plasma

    SciTech Connect

    Khalilzadeh, Elnaz; Yazdanpanah, Jam Chakhmachi, Amir; Jahanpanah, Jafar; Yazdani, Elnaz

    2015-11-15

    The electron residual energy originated from the stochastic heating in under-dense field-ionized plasma is investigated here. Initially, the optical response of plasma is modeled by using two counter-propagating electromagnetic waves. In this case, the solution of motion equation of a single electron indicates that by including the ionization, the electron with higher residual energy compared with that without ionization could be obtained. In agreement with chaotic nature of the motion, it is found that the electron residual energy will be significantly changed by applying a minor change in the initial conditions. Extensive kinetic 1D-3V particle-in-cell simulations have been performed in order to resolve full plasma reactions. In this way, two different regimes of plasma behavior are observed by varying the pulse length. The results indicate that the amplitude of scattered fields in a proper long pulse length is high enough to act as a second counter-propagating wave and trigger the stochastic electron motion. On the contrary, the analyses of intensity spectrum reveal the fact that the dominant scattering mechanism tends to Thomson rather than Raman scattering by increasing the pulse length. A covariant formalism is used to describe the plasma heating so that it enables us to measure electron temperature inside and outside of the pulse region.

  1. Electron residual energy due to stochastic heating in field-ionized plasma

    NASA Astrophysics Data System (ADS)

    Khalilzadeh, Elnaz; Yazdanpanah, Jam; Jahanpanah, Jafar; Chakhmachi, Amir; Yazdani, Elnaz

    2015-11-01

    The electron residual energy originated from the stochastic heating in under-dense field-ionized plasma is investigated here. Initially, the optical response of plasma is modeled by using two counter-propagating electromagnetic waves. In this case, the solution of motion equation of a single electron indicates that by including the ionization, the electron with higher residual energy compared with that without ionization could be obtained. In agreement with chaotic nature of the motion, it is found that the electron residual energy will be significantly changed by applying a minor change in the initial conditions. Extensive kinetic 1D-3V particle-in-cell simulations have been performed in order to resolve full plasma reactions. In this way, two different regimes of plasma behavior are observed by varying the pulse length. The results indicate that the amplitude of scattered fields in a proper long pulse length is high enough to act as a second counter-propagating wave and trigger the stochastic electron motion. On the contrary, the analyses of intensity spectrum reveal the fact that the dominant scattering mechanism tends to Thomson rather than Raman scattering by increasing the pulse length. A covariant formalism is used to describe the plasma heating so that it enables us to measure electron temperature inside and outside of the pulse region.

  2. Superelastic rescattering in single ionization of helium in strong laser fields

    NASA Astrophysics Data System (ADS)

    Li, Zhi-Chao; Jaron-Becker, Agnieszka; He, Feng

    2016-10-01

    Rescattering is a central process in ultrafast physics, in which an electron, freed from an atom and accelerated by a laser field, loses its energy by producing high-order harmonics or multiple ionization. Here, taking helium as a prototypical atom, we demonstrate numerically superelastic rescattering in single ionization of an atom. In this scenario, the absorption of a high-energy extreme ultraviolet photon leads to emission of one electron and excitation of the second one into its first excited state, forming He+*. A time-delayed midinfrared laser pulse accelerates the freed electron, drives it back to the He+*, and induces the transition of the bound electron to the ground state of the ion. Identification of the superelastic rescattering process in the photoelectron momentum spectra provides a means to determine the photoelectron momentum at the time of rescattering without using any information of the time-delayed probe laser pulse.

  3. Evolution of the initial ionizing discontinuity in a transverse magnetic field

    NASA Astrophysics Data System (ADS)

    Liberman, M. A.; Synakh, V. S.; Zakajdakhov, V. V.; Velikovich, A. L.

    1980-04-01

    The problem of the nonstationary evolution of the magnetic structure of transverse ionizing shock wave, arising from a gasdynamic shock wave ahead of a piston moving into an initially neutral gas, is solved. Photoionization of the cold gas ahead of the shock front by the radiation of the shock-heated gas is taken into account. When the stationary regime is achieved, the structure and boundary conditions are those obtained previously for a stationary ionizing shock wave (Liberman and Velikovich, 1978). The time of achieving the stationary regime depends on the magnitude of the electric field ahead of the initial gasdynamic discontinuity and the intensity of the precursor photoionization. The results of computation for shock waves in hydrogen are in good agreement with the measurements of Stebbins and Vlases (1968).

  4. Time evolution of the lateral-velocity distribution for a strong-field-ionization process

    NASA Astrophysics Data System (ADS)

    Ivanov, I. A.

    2016-05-01

    We study time development of a cusp in the lateral-velocity distribution for the process of strong-field ionization. The lateral-velocity distribution is computed using an ab initio quantum mechanical procedure for the moments of time inside and after the end of the laser pulse. We show that at the moment of time corresponding to the midpoint of the laser pulse the lateral-velocity distribution is a smooth Gaussian curve, its parameters agreeing very well with the predictions of the tunelling theories. At the moment of time corresponding to the end of the pulse the lateral-velocity distribution narrows considerably, showing the initial stage of the cusp-formation process due to the Coulomb focusing effect. Following evolution of the ionized wave packet yet further in time we consider the cusp formation in detail.

  5. The response of prototype plane-parallel ionization chambers in small megavoltage x-ray fields.

    PubMed

    McNiven, Andrea L; Mulligan, Matt; Kron, Tomas; Battista, Jerry J

    2006-11-01

    Accurate small-field dosimetry has become important with the use of multiple small fields in modern radiotherapy treatments such as IMRT and stereotactic radiosurgery. In this study, we investigate the response of a set of prototype plane-parallel ionization chambers, based upon the Exradin T11 chamber, with active volume diameters of 2, 4, 10, and 20 mm, exposed to 6 MV stereotactic radiotherapy x-ray fields. Our goal was to assess their usefulness for accurate small x-ray field dose measurements. The relative ionization response was measured in circular fields (0.5 to 4 cm diameter) as compared to a 10 x 10 cm2 reference field. A large discrepancy (approximately 40%) was found between the relative response in the smallest plane-parallel chamber and other small volume dosimeters (radiochromic film, micro-metal-oxide-semiconductor field-effect transistor and diode) used for comparison. Monte Carlo BEAMnrc simulations were used to simulate the experimental setup in order to investigate the cause of the under-response and to calculate appropriate correction factors that could be applied to experimental measurements. It was found that in small fields, the air cavity of these custom-made research chambers perturbed the secondary electron fluence profile significantly, resulting in decreased fluence within the active volume, which in turn produces a chamber under-response. It is demonstrated that a large correction to the p(fl) correction factor would be required to improve dosimetric accuracy in small fields, and that these factors could be derived using Monte Carlo simulations.

  6. STORAGE RING CROSS SECTION MEASUREMENTS FOR ELECTRON IMPACT SINGLE AND DOUBLE IONIZATION OF Fe{sup 13+} AND SINGLE IONIZATION OF Fe{sup 16+} AND Fe{sup 17+}

    SciTech Connect

    Hahn, M.; Novotny, O.; Savin, D. W.; Becker, A.; Grieser, M.; Krantz, C.; Repnow, R.; Wolf, A.; Bernhardt, D.; Mueller, A.; Schippers, S.; Spruck, K.; Lestinsky, M.

    2013-04-10

    We report measurements of electron impact ionization for Fe{sup 13+}, Fe{sup 16+}, and Fe{sup 17+} over collision energies from below threshold to above 3000 eV. The ions were recirculated using an ion storage ring. Data were collected after a sufficiently long time that essentially all the ions had relaxed radiatively to their ground state. For single ionization of Fe{sup 13+}, we find that previous single pass experiments are more than 40% larger than our results. Compared to our work, the theoretical cross section recommended by Arnaud and Raymond is more than 30% larger, while that of Dere is about 20% greater. Much of the discrepancy with Dere is due to the theory overestimating the contribution of excitation-autoionization via n = 2 excitations. Double ionization of Fe{sup 13+} is dominated by direct ionization of an inner shell electron accompanied by autoionization of a second electron. Our results for single ionization of Fe{sup 16+} and Fe{sup 17+} agree with theoretical calculations to within the experimental uncertainties.

  7. Orientation dependence of the ionization of CO and NO in an intense femtosecond two-color laser field

    SciTech Connect

    Li, H.; Ray, D.; De, S.; Cao, W.; Laurent, G.; Wang, Z.; Le, A. T.; Cocke, C. L.; Znakovskaya, I.; Kling, M. F.

    2011-10-15

    Two-color (800- and 400-nm) short (45-fs) linearly polarized pulses are used to ionize and dissociate CO and NO. The emission of C{sup q+}, N{sup q+}, and O{sup +} fragments indicates that the higher ionization rate occurs when the peak electric field points from C to O in CO and from N to O in NO. This preferred direction is in agreement with that predicted by Stark-corrected strong-field-approximation calculations.

  8. Strong-field ionization of homonuclear diatomic molecules by a bicircular laser field: Rotational and reflection symmetries

    NASA Astrophysics Data System (ADS)

    Busuladžić, M.; Gazibegović-Busuladžić, A.; Milošević, D. B.

    2017-03-01

    We investigate above-threshold ionization (ATI) of homonuclear diatomic molecules by the so-called bicircular field using the improved molecular strong-field approximation. Bicircular field is a two-color laser field having coplanar circularly polarized counter-rotating components of frequencies r ω and s ω , with r and s integers. Our analysis includes the high-energy part of the corresponding spectra, i.e., high-order ATI (HATI). The obtained molecular (H)ATI spectra are more complicated than the corresponding atomic spectra. We have identified four symmetries which are satisfied in (H)ATI of homonuclear diatomic molecules. Two of these symmetries are general rotational symmetries valid both for direct and rescattered HATI electrons. The remaining two symmetries are reflection symmetries valid only for the direct ATI electrons. Analytical proof of these symmetries is also given. These symmetries are illustrated using numerical examples of HATI spectra of the N2 molecule for various molecular orientations.

  9. Spatially resolved integral field spectroscopy of the ionized gas in IZw18

    NASA Astrophysics Data System (ADS)

    Kehrig, C.; Vílchez, J. M.; Pérez-Montero, E.; Iglesias-Páramo, J.; Hernández-Fernández, J. D.; Duarte Puertas, S.; Brinchmann, J.; Durret, F.; Kunth, D.

    2016-07-01

    We present a detailed 2D study of the ionized ionized interstellar medium (ISM) of IZw18 using new Potsdam Multi-Aperture Spectrophotometer-integral field unit (PMAS-IFU) optical observations. IZw18 is a high-ionization galaxy which is among the most metal-poor starbursts in the local Universe. This makes IZw18 a local benchmark for understanding the properties most closely resembling those prevailing at distant starbursts. Our IFU aperture (˜1.4 × 1.4 kpc2) samples the entire IZw18 main body and an extended region of its ionized gas. Maps of relevant emission lines and emission line ratios show that higher-excitation gas is preferentially located close to the north-west knot and thereabouts. We detect a Wolf-Rayet feature near the north-west knot. We derive spatially resolved and integrated physical-chemical properties for the ionized gas in IZw18. We find no dependence between the metallicity indicator R23 and the ionization parameter (as traced by [O III]/[O II]) across IZw18. Over ˜0.30 kpc2, using the [O III] λ4363 line, we compute Te[O III] values (˜15 000-25 000 K), and oxygen abundances are derived from the direct determinations of Te[O III]. More than 70 per cent of the higher-Te[O III] (≳22 000 K) spaxels are He IIλ4686-emitting spaxels too. From a statistical analysis, we study the presence of variations in the ISM physical-chemical properties. A galaxy-wide homogeneity, across hundreds of parsecs, is seen in O/H. Based on spaxel-by-spaxel measurements, the error-weighted mean of 12 + log(O/H) = 7.11 ± 0.01 is taken as the representative O/H for IZw18. Aperture effects on the derivation of O/H are discussed. Using our IFU data we obtain, for the first time, the IZw18 integrated spectrum.

  10. Rigorous electromagnetic field simulation of two-beam interference exposures for the exploration of double patterning and double exposure scenarios

    NASA Astrophysics Data System (ADS)

    Erdmann, Andreas; Evanschitzky, Peter; Fühner, Tim; Schnattinger, Thomas; Xu, Cheng-Bai; Szmanda, Chuck

    2008-03-01

    The introduction of double patterning and double exposure technologies, especially in combination with hyper NA, increases the importance of wafer topography phenomena. Rigorous electromagnetic field (EMF) simulations of two beam interference exposures over non-planar wafers are used to explore the impact of the hardmask material and pattern on resulting linewidths and swing curves after the second lithography step. Moreover, the impact of the optical material contrast between the frozen and unfrozen resist in a pattern freezing process and the effect of a reversible contrast enhancement layer on the superposition of two subsequent lithographic exposures are simulated. The described simulation approaches can be used for the optimization of wafer stack configurations for double patterning and to identify appropriate optical material properties for alternative double patterning and double exposure techniques.

  11. Cross-Field Current Instabilities in Thin Ionization Layers and the Enhanced Aurora

    SciTech Connect

    Jay R. Johnson and Hideo Okuda

    2008-05-20

    Nearly half of the time, auroral displays exhibit thin, bright layers known as \\enhanced aurora." There is a substantial body of evidence that connects these displays with thin, dense, heavy ion layers in the E-region. Based on the spectral characteristics of the enhanced layers, it is believed that they result when wave-particle interaction heats ambient electrons to energies at or just above the 17 eV ionization energy of N2. While there are several possible instabilities that could produce suprathermal electrons in thin layers, there has been no clear theoretical investigation which examines in detail how wave instabilities in the thin ionization layers could develop and produce the suprathermal electrons. We examine instabilities which would occur in thin, dense, heavy ion layers using extensive analytical analysis combined with particle simulations. We analyze a cross field current instability that is found to be strongly unstable in the heavy ion layers. Electrostatic simulations show that substantial heating of the ambient electrons occurs with energization at or above the N2 ionization energy.

  12. Pulsed field ionization electron spectroscopy and molecular structure of aluminum uracil.

    PubMed

    Krasnokutski, Serge A; Yang, Dong-Sheng

    2007-10-25

    Al-uracil (Al-C4H4N2O2) was synthesized in a laser-vaporization supersonic molecular beam source and studied with pulsed field ionization-zero electron kinetic energy (ZEKE) photoelectron spectroscopy and density functional theory (DFT). The DFT calculations predicted several low-energy Al-uracil isomers with Al binding to the diketo, keto-enol, and dienol tautomers of uracil. The ZEKE spectroscopic measurements of Al-uracil determined the ionization energy of 43 064(5) cm-1 [or 5.340(6) eV] and a vibrational mode of 51 cm-1 for the neutral complex and several vibrational modes of 51, 303, 614, and 739 cm-1 for the ionized species. Combination of the ZEEK spectrum with the DFT and Franck-Condon factor calculations determined the preferred isomeric structure and electronic states of the Al-uracil complex. This isomer is formed by Al binding to the O4 atom of the diketo tautomer of uracil and has a planar Cs symmetry. The ground electronic states of the neutral and ionized species are 2A' ' and 1A', respectively. The 2A' ' neutral state has a slightly shorter Al-O4 distance than the 1A' ion state. However, the 1A' ion state has stronger metal-ligand binding compared to the 2A' ' state. The increased Al-O4 distance from the 2A' ' state to the 1A' state is attributed to the loss of the pi binding interaction between Al and O4 in the singlet ion state, whereas the increased metal-ligand binding strength is due to the additional charge-dipole interaction in the ion that surpasses the loss of the pi orbital interaction.

  13. Spin-orbit Larmor clock for ionization times in one-photon and strong-field regimes

    NASA Astrophysics Data System (ADS)

    Kaushal, Jivesh; Morales, Felipe; Torlina, Lisa; Ivanov, Misha; Smirnova, Olga

    2015-12-01

    Photoionization is a process where absorption of one or several photons liberates an electron and creates a hole in a quantum system, such as an atom or a molecule. Is it faster to remove an electron using one or many photons, and how to define this time? Here we introduce a clock that allows us to define ionization time for both one-photon and many-photon ionization regimes. The clock uses the interaction of the electron or hole spin with the magnetic field created by their orbital motion, known as the spin-orbit interaction. The angle of spin precession in the magnetic field records time. We use the combination of analytical theory and ab initio calculations to show how ionization delay depends on the number of absorbed photons, how it appears in the experiment and what electron dynamics it signifies. In particular, we apply our method to calculate the derived time delays in tunneling regime of strong-field ionization.

  14. Dc to ac field conversion due to leaky-wave excitation in a plasma slab behind an ionization front

    NASA Astrophysics Data System (ADS)

    Kostin, V. A.; Vvedenskii, N. V.

    2015-03-01

    We present a way for generating coherent tunable electromagnetic radiation through dc to ac field conversion by an ionization front. The conversion is caused by the excitation of leaky waves behind the transversely limited ionization front propagating in a uniform electrostatic field. This differs significantly from the well-known dc-to-ac-radiation-converter models which consider Doppler-like frequency conversion by a transversely unlimited ionization front propagating in a spatially periodic electric field. We explore the dispersion properties and excitation of these leaky waves radiated through the transverse plasma boundary at the Cherenkov angle to the direction of propagation of a superluminal ionization front as dependent on the parameters of the plasma produced and on the speed of the ionization front. It is shown that not only the center frequency but also the duration and waveform of the generated pulse may significantly depend on the speed of the ionization front. The results indicate the possibility of using such converters based on planar photoconductive antennas to create sources of microwave and terahertz radiation with controllable waveforms that are transformed from video to radio pulse when the angle of incident ionizing radiation is tuned.

  15. Sprites as Luminous Columns of Ionization Produced by Quasi-Electrostatic Thundercloud Fields

    NASA Technical Reports Server (NTRS)

    Pasko, V. P.; Inan, U. S.; Bell, T. F.

    1996-01-01

    Quasi-electrostatic (QE) fields which exist above thunderclouds after lightning discharges can lead to the formation of columnar channels of breakdown ionization and carrot-like vertical luminous structures with typical transverse dimension approximately 5-10 km spaning an altitude range from approximately 80 km to well below approximately 50 km. The carrot-like forms closely resemble those observed in sprites. Results indicate that the appearance of optical emissions can be significantly delayed in time (approx. 1-20 ms) with respect to the causative lightning discharge.

  16. Heating and ionization of metal clusters in the field of an intense femtosecond laser pulse

    NASA Astrophysics Data System (ADS)

    Kostenko, O. F.; Andreev, N. E.

    2007-06-01

    Inverse bremsstrahlung heating and thermal electron-impact ionization of a metal cluster are analyzed with account for the spatial structure of the electromagnetic field. It is shown that, for a femtosecond IR radiation pulse with an intensity of ˜1018 W/cm2 and for an iron cluster with an optimum radius of ˜25 nm, the electron temperature is higher than 1 keV. In this case, the L shell of the ions is highly stripped. The X-ray bremsstrahlung yield from clusters with a radius greater than the skin depth is estimated.

  17. Switching the vibrational excitation of a polyatomic ion in multi-photon strong field ionization

    NASA Astrophysics Data System (ADS)

    Liu, Yuzhu; Gerber, Thomas; Radi, Peter; Sych, Yaroslav; Knopp, Gregor

    2014-08-01

    The multiphoton ionization (MPI) of CH3I has been investigated by angular resolved photoelectron spectroscopy as a function of femtosecond laser excitation intensity. A sudden change in the electron kinetic energy is observed above a specific field strength. The multiphoton excitation at a fixed wavelength of 800 nm becomes vibronically resonant due to Stark shifting of intermediate Rydberg state levels. The present letter gives an experimental evidence for ultrafast optical control of the vibrational excitation in a polyatomic ion by adjusting the intensity of a femtosecond laser pulse.

  18. Charge transfer to a dielectric target by guided ionization waves using electric field measurements

    NASA Astrophysics Data System (ADS)

    Slikboer, Elmar; Garcia-Caurel, Enric; Guaitella, Olivier; Sobota, Ana

    2017-03-01

    A kHz-operated atmospheric pressure plasma jet is investigated by measuring charge transferred to a dielectric electro-optic surface (BSO crystal) allowing for the measurement of electric field by exploiting the Pockels effect. The electric field values, distribution of the surface discharge and amount of deposited charge are obtained for various parameters, including gas flow, applied voltage, target distance and the length of the capillary from ground to the end. A newly formed surface discharge emerges at the target when enough charge is deposited at the impact point and electric fields are high enough, i.e. 200 pC and 9 ± 2 kV cm‑1. The maximum amount of charge transferred by a single ionization wave (‘plasma bullet’) is 350 ± 40 pC. Due to the emerging new surface discharge behind the impact point, the total charge deposited on the surface of the dielectric target can increase up to 950 pC. The shape of the secondary discharge on the target is found to be mainly driven by gas flow, while the applied voltage allows us to utilize longer distances within the boundaries set by this gas mixing. Finally the ionization wave is found to lose charge along its propagation on the inner walls of the capillary. The loss is estimated to be approximately 7.5 pC mm‑1 of travel distance inside the capillary.

  19. High-field plasma acceleration in a high-ionization-potential gas

    SciTech Connect

    Corde, S.; Adli, E.; Allen, J. M.; An, W.; Clarke, C. I.; Clausse, B.; Clayton, C. E.; Delahaye, J. P.; Frederico, J.; Gessner, S.; Green, S. Z.; Hogan, M. J.; Joshi, C.; Litos, M.; Lu, W.; Marsh, K. A.; Mori, W. B.; Vafaei-Najafabadi, N.; Walz, D.; Yakimenko, V.

    2016-06-17

    Plasma accelerators driven by particle beams are a very promising future accelerator technology as they can sustain high accelerating fields over long distances with high energy efficiency. They rely on the excitation of a plasma wave in the wake of a drive beam. To generate the plasma, a neutral gas can be field-ionized by the head of the drive beam, in which case the distance of acceleration and energy gain can be strongly limited by head erosion. In our research, we overcome this limit and demonstrate that electrons in the tail of a drive beam can be accelerated by up to 27 GeV in a high-ionization-potential gas (argon), boosting their initial 20.35 GeV energy by 130%. Particle-in-cell simulations show that the argon plasma is sustaining very high electric fields, of ~150 GV m-1, over ~20 cm. Lastly, the results open new possibilities for the design of particle beam drivers and plasma sources.

  20. High-field plasma acceleration in a high-ionization-potential gas

    DOE PAGES

    Corde, S.; Adli, E.; Allen, J. M.; ...

    2016-06-17

    Plasma accelerators driven by particle beams are a very promising future accelerator technology as they can sustain high accelerating fields over long distances with high energy efficiency. They rely on the excitation of a plasma wave in the wake of a drive beam. To generate the plasma, a neutral gas can be field-ionized by the head of the drive beam, in which case the distance of acceleration and energy gain can be strongly limited by head erosion. In our research, we overcome this limit and demonstrate that electrons in the tail of a drive beam can be accelerated by upmore » to 27 GeV in a high-ionization-potential gas (argon), boosting their initial 20.35 GeV energy by 130%. Particle-in-cell simulations show that the argon plasma is sustaining very high electric fields, of ~150 GV m-1, over ~20 cm. Lastly, the results open new possibilities for the design of particle beam drivers and plasma sources.« less

  1. High-field plasma acceleration in a high-ionization-potential gas

    PubMed Central

    Corde, S.; Adli, E.; Allen, J. M.; An, W.; Clarke, C. I.; Clausse, B.; Clayton, C. E.; Delahaye, J. P.; Frederico, J.; Gessner, S.; Green, S. Z.; Hogan, M. J.; Joshi, C.; Litos, M.; Lu, W.; Marsh, K. A.; Mori, W. B.; Vafaei-Najafabadi, N.; Walz, D.; Yakimenko, V.

    2016-01-01

    Plasma accelerators driven by particle beams are a very promising future accelerator technology as they can sustain high accelerating fields over long distances with high energy efficiency. They rely on the excitation of a plasma wave in the wake of a drive beam. To generate the plasma, a neutral gas can be field-ionized by the head of the drive beam, in which case the distance of acceleration and energy gain can be strongly limited by head erosion. Here we overcome this limit and demonstrate that electrons in the tail of a drive beam can be accelerated by up to 27 GeV in a high-ionization-potential gas (argon), boosting their initial 20.35 GeV energy by 130%. Particle-in-cell simulations show that the argon plasma is sustaining very high electric fields, of ∼150 GV m−1, over ∼20 cm. The results open new possibilities for the design of particle beam drivers and plasma sources. PMID:27312720

  2. Identification of first order and non-first order contributions in the (e,3-1e) and (e,3e) double ionization of molecular nitrogen

    NASA Astrophysics Data System (ADS)

    Li, C.; Staicu Casagrande, E. M.; Lahmam-Bennani, A.; Naja, A.

    2012-07-01

    Double ionization of nitrogen molecules is investigated in coplanar asymmetric (e,3-1e) and (e,3e) experiments. The measurements are performed at intermediate incident energy (˜600 eV) with one fast scattered electron and two slower ejected electrons sharing equally the excess energy. The data are compared with the predictions of a simple kinematical model recently reported by Lahmam-Bennani et al (2010 J. Phys. B: At. Mol. Opt. Phys. 43 105201) which describes the ‘two-step 2’ (TS2) mechanism as two successive (e,2e) single ionization interactions. The model is extended to include binary as well as recoil scattering during the two successive single ionization events. It is shown to qualitatively predict the correct angular positions for most of the observed structures. Moreover, the (e,3e) data are compared with the predictions of a first Born model which fails to reproduce the experimental angular distributions. These results demonstrate that the molecular double ionization process is largely dominated by the TS2 mechanism, as was the case in our previous works on atomic targets.

  3. Adaptive response in animals exposed to non-ionizing radiofrequency fields: some underlying mechanisms.

    PubMed

    Cao, Yi; Tong, Jian

    2014-04-22

    During the last few years, our research group has been investigating the phenomenon of adaptive response in animals exposed to non-ionizing radiofrequency fields. The results from several separate studies indicated a significant increase in survival, decreases in genetic damage as well as oxidative damage and, alterations in several cellular processes in mice pre-exposed to radiofrequency fields and subsequently subjected to sub-lethal or lethal doses of γ-radiation or injected with bleomycin, a radiomimetic chemical mutagen. These observations indicated the induction of adaptive response providing the animals the ability to resist subsequent damage. Similar studies conducted by independent researchers in mice and rats have supported our observation on increased survival. In this paper, we have presented a brief review of all of our own and other independent investigations on radiofrequency fields-induced adaptive response and some underlying mechanisms discussed.

  4. Empirical formulas for direct double ionization by bare ions: Z = - 1 to 92

    SciTech Connect

    DuBois, R. D.; Santos, A. C. F.; Manson, S. T.

    2014-11-25

    Experimental cross sections and cross-section ratios reported in the literature for direct double ionization of the outer shells of helium, neon, and argon atoms resulting from bare ions ranging from protons to uranium and for antiprotons are analyzed in terms of a first- and second-order interference model originally proposed by McGuire [J. H. McGuire, Phys. Rev. Lett. 49, 1153 (1982)]. Empirical formulas for the various contributions to double ionization plus information about the phase difference between the first- and second-order mechanisms are extracted from the data. Projectile and target scalings are also extracted. Total cross sections and their ratios determined using these formulas and scalings are shown to be in very good agreement with experimental data for lower-Z projectiles and impact velocities larger than 1 a.u. For very-high-Z projectiles, the amount of double ionization is overestimated, probably due to saturation of probabilities that is not accounted for in scaling formulas.

  5. Recognition, signaling, and repair of DNA double-strand breaks produced by ionizing radiation in mammalian cells: the molecular choreography.

    PubMed

    Thompson, Larry H

    2012-01-01

    The faithful maintenance of chromosome continuity in human cells during DNA replication and repair is critical for preventing the conversion of normal diploid cells to an oncogenic state. The evolution of higher eukaryotic cells endowed them with a large genetic investment in the molecular machinery that ensures chromosome stability. In mammalian and other vertebrate cells, the elimination of double-strand breaks with minimal nucleotide sequence change involves the spatiotemporal orchestration of a seemingly endless number of proteins ranging in their action from the nucleotide level to nucleosome organization and chromosome architecture. DNA DSBs trigger a myriad of post-translational modifications that alter catalytic activities and the specificity of protein interactions: phosphorylation, acetylation, methylation, ubiquitylation, and SUMOylation, followed by the reversal of these changes as repair is completed. "Superfluous" protein recruitment to damage sites, functional redundancy, and alternative pathways ensure that DSB repair is extremely efficient, both quantitatively and qualitatively. This review strives to integrate the information about the molecular mechanisms of DSB repair that has emerged over the last two decades with a focus on DSBs produced by the prototype agent ionizing radiation (IR). The exponential growth of molecular studies, heavily driven by RNA knockdown technology, now reveals an outline of how many key protein players in genome stability and cancer biology perform their interwoven tasks, e.g. ATM, ATR, DNA-PK, Chk1, Chk2, PARP1/2/3, 53BP1, BRCA1, BRCA2, BLM, RAD51, and the MRE11-RAD50-NBS1 complex. Thus, the nature of the intricate coordination of repair processes with cell cycle progression is becoming apparent. This review also links molecular abnormalities to cellular pathology as much a possible and provides a framework of temporal relationships.

  6. High-rate axial-field ionization chamber for particle identification of Radioactive beams

    NASA Astrophysics Data System (ADS)

    Desouza, Romualdo; Vadas, Justin; Singh, Varinderjit; Visser, G.; Alexander, A.; Hudan, S.; Huston, J.; Wiggins, B.; Chbihi, A.; Famiano, M.; Bischak, M.

    2017-01-01

    The design, construction and performance characteristics of a simple axial-field ionization chamber suitable for identifying ions in a radioactive beam are presented. The detector is optimized for use with low-energy radioactive beams (<) 5 MeV/A. A fast charge sensitive amplifier (CSA) integrated into the detector design is also described. Coupling this fast CSA to the axial field ionization chamber produces an output pulse with a rise-time of 60 to 70 ns and a fall time of 100 ns, making the detector capable of sustaining a relatively high rate while providing a time resolution of 6 to 8 ns. Tests with an α source establish the detector energy resolution as 8 % for an energy deposit of 3.5 MeV. Beam tests indicate that the detector is an effective tool for the characterization of low-energy radioactive beams at beam intensities up to 3 x 105 ions/s. Supported by the U.S. DOE under Award # DE-FG02-88ER-40404 and the NSF under Grant No. 1342962.

  7. Space-time description of strong-field ionization and high-order-harmonic generation

    NASA Astrophysics Data System (ADS)

    Granados, C.; Plaja, L.

    2014-02-01

    We develop the spatiotemporal description of matter-field interaction within the strong-field approximation. We show that the space-time form of the ionized wave function has analogies with the diffraction phenomenon, allowing for the definition of two different regimes: Fresnel and Fraunhofer. We demonstrate that the standard saddle-point analysis corresponds to the paraxial approximation of the Fraunhofer case. The Fresnel number therefore appears as a useful parameter to characterize the validity of the saddle-point approach. We give a closed formula for the ionized wave function beyond the standard saddle-point analysis that takes the form of a chirped Volkov wave. We apply our results to the study of high-order-harmonic generation, demonstrating that the saddle-point approximation breaks down for extended systems, i.e., when the Fresnel number approaches or is above the unity. As a simple example, we analyze the harmonic generation of dissociating H2+ and demonstrate the Fresnel number as a useful parameter to determine the accuracy of the semiclassical saddle-point approach.

  8. High-rate axial-field ionization chamber for particle identification of radioactive beams

    NASA Astrophysics Data System (ADS)

    Vadas, J.; Singh, Varinderjit; Visser, G.; Alexander, A.; Hudan, S.; Huston, J.; Wiggins, B. B.; Chbihi, A.; Famiano, M.; Bischak, M. M.; deSouza, R. T.

    2016-11-01

    The design, construction and performance characteristics of a simple axial-field ionization chamber suitable for identifying ions in a radioactive beam are presented. Optimized for use with low-energy radioactive beams (< 5 MeV / A) the detector presents only three 0.5 μm/cm2 foils to the beam in addition to the detector gas. A fast charge sensitive amplifier (CSA) integrated into the detector design is also described. Coupling this fast CSA to the axial field ionization chamber produces an output pulse with a risetime of 60-70 ns and a fall time of 100 ns, making the detector capable of sustaining a relatively high rate and providing a time resolution of 6-8 ns. Tests with an α source establish the detector energy resolution as ∼ 8 % for an energy deposit of ∼3.5 MeV. The energy resolution with beams of 2.5 and 4.0 MeV/A 39K ions and the dependence of the energy resolution on beam intensity is measured. At an instantaneous rate of 3×105 ions/s the energy resolution has degraded to 14% with a pileup of 12%. The good energy resolution of this detector at rates up to 3×105 ions/s makes it an effective tool in the characterization of low-energy radioactive beams.

  9. THE NONLINEAR OHM'S LAW: PLASMA HEATING BY STRONG ELECTRIC FIELDS AND ITS EFFECTS ON THE IONIZATION BALANCE IN PROTOPLANETARY DISKS

    SciTech Connect

    Okuzumi, Satoshi; Inutsuka, Shu-ichiro

    2015-02-10

    The ionization state of the gas plays a key role in the magnetohydrodynamics (MHD) of protoplanetary disks. However, the ionization state can depend on the gas dynamics, because electric fields induced by MHD turbulence can heat up plasmas and thereby affect the ionization balance. To study this nonlinear feedback, we construct an ionization model that includes plasma heating by electric fields and impact ionization by heated electrons, as well as charging of dust grains. We show that when plasma sticking onto grains is the dominant recombination process, the electron abundance in the gas decreases with increasing electric field strength. This is a natural consequence of electron-grain collisions whose frequency increases with the electron's random velocity. The decreasing electron abundance may lead to a self-regulation of MHD turbulence. In some cases, not only the electron abundance but also the electric current decreases with increasing field strength in a certain field range. The resulting N-shaped current-field relation violates the fundamental assumption of the non-relativistic MHD that the electric field is uniquely determined by the current density. At even higher field strengths, impact ionization causes an abrupt increase of the electric current as expected by previous studies. We find that this discharge current is multi-valued (i.e., the current-field relation is S-shaped) under some circumstances, and that the intermediate branch is unstable. The N/S-shaped current-field relations may yield hysteresis in the evolution of MHD turbulence in some parts of protoplanetary disks.

  10. The Nonlinear Ohm's Law: Plasma Heating by Strong Electric Fields and its Effects on the Ionization Balance in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Okuzumi, Satoshi; Inutsuka, Shu-ichiro

    2015-02-01

    The ionization state of the gas plays a key role in the magnetohydrodynamics (MHD) of protoplanetary disks. However, the ionization state can depend on the gas dynamics, because electric fields induced by MHD turbulence can heat up plasmas and thereby affect the ionization balance. To study this nonlinear feedback, we construct an ionization model that includes plasma heating by electric fields and impact ionization by heated electrons, as well as charging of dust grains. We show that when plasma sticking onto grains is the dominant recombination process, the electron abundance in the gas decreases with increasing electric field strength. This is a natural consequence of electron-grain collisions whose frequency increases with the electron's random velocity. The decreasing electron abundance may lead to a self-regulation of MHD turbulence. In some cases, not only the electron abundance but also the electric current decreases with increasing field strength in a certain field range. The resulting N-shaped current-field relation violates the fundamental assumption of the non-relativistic MHD that the electric field is uniquely determined by the current density. At even higher field strengths, impact ionization causes an abrupt increase of the electric current as expected by previous studies. We find that this discharge current is multi-valued (i.e., the current-field relation is S-shaped) under some circumstances, and that the intermediate branch is unstable. The N/S-shaped current-field relations may yield hysteresis in the evolution of MHD turbulence in some parts of protoplanetary disks.

  11. Generation of electric fields and currents by neutral flows in weakly ionized plasmas through collisional dynamos

    NASA Astrophysics Data System (ADS)

    Dimant, Y. S.; Oppenheim, M. M.; Fletcher, A. C.

    2016-08-01

    In weakly ionized plasmas neutral flows drag plasma across magnetic field lines generating intense electric fields and currents. An example occurs in the Earth's ionosphere near the geomagnetic equator. Similar processes take place in the Solar chromosphere and magnetohydrodynamic generators. This paper argues that not all convective neutral flows generate electric fields and currents and it introduces the corresponding universal criterion for their formation, ∇×(U ×B )≠∂B /∂t , where U is the neutral flow velocity, B is the magnetic field, and t is time. This criterion does not depend on the conductivity tensor, σ ̂ . For many systems, the displacement current, ∂B /∂t , is negligible making the criterion even simpler. This theory also shows that the neutral-dynamo driver that generates E-fields and currents plays the same role as the DC electric current plays for the generation of the magnetic field in the Biot-Savart law.

  12. INTEGRAL-FIELD STELLAR AND IONIZED GAS KINEMATICS OF PECULIAR VIRGO CLUSTER SPIRAL GALAXIES

    SciTech Connect

    Cortés, Juan R.; Hardy, Eduardo; Kenney, Jeffrey D. P. E-mail: ehardy@nrao.cl

    2015-01-01

    We present the stellar and ionized gas kinematics of 13 bright peculiar Virgo cluster galaxies observed with the DensePak Integral Field Unit at the WIYN 3.5 m telescope in order to look for kinematic evidence that these galaxies have experienced gravitational interactions or gas stripping. Two-dimensional maps of the stellar velocity V, stellar velocity dispersion σ, and the ionized gas velocity (Hβ and/or [O III]) are presented for the galaxies in the sample. The stellar rotation curves and velocity dispersion profiles are determined for 13 galaxies, and the ionized gas rotation curves are determined for 6 galaxies. Misalignments between the optical and kinematical major axes are found in several galaxies. While in some cases this is due to a bar, in other cases it seems to be associated with gravitational interaction or ongoing ram pressure stripping. Non-circular gas motions are found in nine galaxies, with various causes including bars, nuclear outflows, or gravitational disturbances. Several galaxies have signatures of kinematically distinct stellar components, which are likely signatures of accretion or mergers. For all of our galaxies, we compute the angular momentum parameter λ {sub R}. An evaluation of the galaxies in the λ {sub R} ellipticity plane shows that all but two of the galaxies have significant support from random stellar motions, and have likely experienced gravitational interactions. This includes some galaxies with very small bulges and truncated/compact Hα morphologies, indicating that such galaxies cannot be fully explained by simple ram pressure stripping, but must have had significant gravitational encounters. Most of the sample galaxies show evidence for ICM-ISM stripping as well as gravitational interactions, indicating that the evolution of a significant fraction of cluster galaxies is likely strongly impacted by both effects.

  13. Properties of long-term optical variability of active galactic nuclei with double-peaked broad low-ionization emission lines

    NASA Astrophysics Data System (ADS)

    Zhang, Xue-Guang; Feng, Long-Long

    2017-01-01

    In this paper, we study properties of the long-term optical variability of a large sample of 106 Sloan Digital Sky Survey (SDSS) spectroscopically confirmed active galactic nuclei (AGN) with double-peaked broad low-ionization emission lines (double-peaked emitters). The long-term optical light curves over 8 yr are collected from the Catalina Sky Surveys Data Release 2, and the Damped Random Walk (DRW) process is applied to describe the long-term variability of the double-peaked emitters. Meanwhile, the same DRW process is applied to long-term optical light curves of more than 7000 spectroscopically confirmed normal quasars in the SDSS Stripe82 Database. Then, we can find that the DRW process determined rest-frame intrinsic variability time-scales ln (τ /d) are about 5.8 and about 4.8 for the double-peaked emitters and for the normal quasars, respectively. The statistically longer intrinsic variability time-scales can be confirmed in the double-peaked emitters, after considerations of necessary effects, such as the effects from different distributions of redshift, black hole mass, and accretion rate between the double-peaked emitters and the normal quasars. Moreover, a radial dependence of the accretion rate dot{m}R ∝ R^β with larger values of β could be an acceptable interpretation of the longer intrinsic variability time-scales in the double-peaked emitters. Therefore, there are different intrinsic properties of emission regions between the double-peaked emitters and the normal quasars. The double-peaked emitters can be well treated as an unique subclass of AGN.

  14. Localization of double bonds in triacylglycerols using high-performance liquid chromatography/atmospheric pressure chemical ionization ion-trap mass spectrometry.

    PubMed

    Háková, Eva; Vrkoslav, Vladimír; Míková, Radka; Schwarzová-Pecková, Karolina; Bosáková, Zuzana; Cvačka, Josef

    2015-07-01

    A method for localizing double bonds in triacylglycerols using high-performance liquid chromatography-tandem mass spectrometry with atmospheric pressure chemical ionization (APCI) was developed. The technique was based on collision-induced dissociation or pulsed Q collision-induced dissociation of the C3H5N(+•) adducts ([M + 55](+•)) formed in the presence of acetonitrile in the APCI source. The spectra were investigated using a large series of standards obtained from commercial sources and prepared by randomization. The fragmentation spectra made it possible to determine (i) the total number of carbons and double bonds in the molecule, (ii) the number of carbons and double bonds in acyls, (iii) the acyl in the sn-2 position on the glycerol backbone, and (iv) the double-bond positions in acyls. The double-bond positions were determined based on two types of fragments (alpha and omega ions) formed by cleavages of C-C bonds vinylic to the original double bond. The composition of the acyls and their positions on glycerol were established from the masses and intensities of the ions formed by the elimination of fatty acids from the [M + 55](+•) precursor. The method was applied for the analysis of triacylglycerols in olive oil and vernix caseosa.

  15. Ionization, Charging and Electric Field Effects on Cloud Particles in the CLOUD Experiment

    NASA Astrophysics Data System (ADS)

    Nichman, L.; Järvinen, E.; Wagner, R.; Dorsey, J.; Dias, A. M.; Ehrhart, S.; Kirkby, J.; Gallagher, M. W.; Saunders, C. P.

    2015-12-01

    Ice crystals and frozen droplets play an important role in atmospheric charging and electrification processes, particularly by collision and aggregation. The dynamics of charged particles in the atmosphere can be modulated by Galactic Cosmic Rays (GCR). High electric fields also affect the alignment of charged particles, allowing more time for interactions. The CLOUD (Cosmics Leaving OUtdoor Droplets) experiment at CERN has the ability to conduct ionization, charging and high electric field experiments on liquid or ice clouds created in the chamber by adiabatic pressure reductions. A pion secondary beam from the CERN Proton Synchrotron is used to ionize the molecules in the chamber, and Ar+ Corona Ion Generator for Atmospheric Research (CIGAR) is used to inject unipolar charged ions directly into the chamber. A pressurized airgun provides rapid pressure shocks inside the chamber and induces charged ice nucleation. The cloud chamber is accompanied by a variety of analysing instruments e.g. a 3View Cloud Particle Imager (3V-CPI) coupled with an induction ring, a Scattering Intensity Measurements for the Optical detection of icE (SIMONE) and a Nano-aerosol and Air Ion Spectrometer (NAIS). Using adiabatic expansion and high electric fields we can replicate the ideal conditions for adhesion, sintering and interlocking between ice crystals. Charged cloud particles produced measurable variations in the total induced current pulse on the induction ring. The most influential factors comprised initial temperature, lapse rate and charging mechanism. The ions produced in the chamber may deposit onto larger particles and form dipoles during ice nucleation and growth. The small ion concentration was monitored by the NAIS during these runs. Possible short-term aggregates or alignment of particles were observed in-situ with the SIMONE. These and future chamber measurements of charging and aggregation could shed more light on the ambient conditions and dynamics for electrification

  16. GoAmazon 2014/15 Thermal Desorption Chemical Ionization Mass Spectrometer (TDCIMS) Field Campaign Report

    SciTech Connect

    Smith, JN

    2016-04-01

    The Thermal Desorption Chemical Ionization Mass Spectrometer (TDCIMS) deployment to the U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility T3 site in Manacapuru, Brazil, was motivated by two main scientific objectives of the Green Ocean Amazon (GoAmazon) 2014/15 field campaign. 1) Study the interactions between anthropogenic and biogenic emissions by determining important molecular species in ambient nanoparticles. To address this, TDCIMS data will be combined with coincident measurements such as gas-phase sulfuric acid to determine the contribution of sulfuric acid condensation to nucleation and growth. We can then compare that result to TDCIMS-derived nanoparticle composition to determine the fraction of growth that can be attributed to the uptake of organic compounds. The molecular composition of sampled particles will also be used to attribute specific chemical species and mechanisms to growth, such as the condensation of low-volatility species or the oligomerization of α-dicarbonyl compounds. 2) Determine the source of new ambient nanoparticles in the Amazon. The hypothesis prior to measurements was that potassium salts formed from the evaporation of primary particles emitted by fungal spores can provide a unique and important pathway for new particle production in the Amazon basin. To explore this hypothesis, the TDCIMS recorded the mass spectra of sampled ambient particles using a protonated water cluster Chemical Ionization Mass Spectrometer (CIMS). Laboratory tests performed using potassium salts show that the TDCIMS can detect potassium with high sensitivity with this technique.

  17. Mechanism of enhanced ionization of linear H+3 in intense laser fields

    NASA Astrophysics Data System (ADS)

    Kawata, I.; Kono, H.; Bandrauk, A. D.

    2001-10-01

    We investigate the mechanism of enhanced ionization that occurs at a critical internuclear distance Rc in the two-electron symmetric linear triatomic molecule H+3 subjected to an ultrashort, intense laser pulse by solving exactly the time-dependent Schrödinger equation for a one-dimensional model of H+3. Results of the simulations are analyzed by using three essential adiabatic field states \\|1>, \\|2>, and \\|3> that are adiabatically connected with the lowest three electronic states X1Σ+g, B1Σ+u, and E1Σ+g of the field free ion. We give also a simple MO (molecular orbital) picture in terms of these three states to illustrate the important electronic configurations in an intense field. The states \\|1>, \\|2>, and \\|3> are shown to be composed mainly of the configurations HHH+, HH+H, and H+HH, respectively in the presence of the field. We conclude that the overall level dynamics is governed mainly by transitions at the zero-field energy quasicrossings of these three states. The response of H+3 to a laser field can be classified into two regimes. In the adiabatic regime (RRc), internuclear electron transfer is suppressed due to electron repulsion and laser induced localization. In the intermediate (R~=Rc) region, where enhanced ionization occurs, the state \\|3> is most efficiently created by the field-induced nonadiabatic transitions between the states at quasicrossing points. The ``quasistatic'' laser-induced potential barriers are low enough for the electron to tunnel from the ascending (upper) well, thus confirming the quasistatic model at high intensities. Analytic expressions for the critical distance Rc are obtained from this model and collective electron motion is inferred from the detailed time-dependent two-electron distributions.

  18. Scaling properties of field ionization of Rydberg atoms in single-cycle THz pulses: 1D considerations

    NASA Astrophysics Data System (ADS)

    Agueny, H.; Chovancova, M.; Hansen, J. P.; Kocbach, L.

    2016-12-01

    In recent experiments of single-cycle field ionization of excited Na(nd) atoms with principal quantum number n\\in [6,15] (Li and Jones 2014 Phys. Rev. Lett. 112 143006) it was shown that the maximum field intensity necessary to ionize 10% of the atoms decreases with increasing n according to an {n}-3 power law dependence. This scaling property at the same ionization probability was confirmed in classical trajectory Monte Carlo calculations. In this work we note that the scaling relation in the experiment is much more general, it is in fact valid for all ionization probabilities. When applied to the emitted electron energies it places a very wide distribution of electron momenta from different initial states onto a narrow range. These aspects are investigated in a one-dimensional model with a 3D hydrogen-like spectrum. Calculations confirm the general {n}-3 scaling relation for the ionization probability and that this particular scaling of the kinetic emission spectrum puts the ejected electron momenta on a narrow common scale. The ionization mechanism itself is identified as quantum mechanical tunneling and the nature of the tunneling process is the direct origin of the scaling law.

  19. Nonadiabatic tunnel ionization of current-carrying orbitals of prealigned linear molecules in strong circularly polarized laser fields

    NASA Astrophysics Data System (ADS)

    Liu, Kunlong; Barth, Ingo

    2016-10-01

    We derive the analytical formula of the ratio of the ionization rates of degenerate valence π± orbitals of prealigned linear molecules in strong circularly polarized (CP) laser fields. Interestingly, our theory shows that the ionization ratio for molecular orbitals with opposite azimuthal quantum numbers ±|m | (e.g., π±) is identical to that for atomic orbitals with the same ±|m | (e.g., p±). In general, the electron counter-rotating to the CP laser field tunnels more easily, not only for atoms but also for linear molecules. Our theoretical predictions are then verified by numerically solving the three-dimensional time-dependent Schrödinger equation for the ionization of the prealigned nitric oxide (NO) molecule in strong CP laser fields. Due to the spin-orbital coupling in the electronic ground state of NO and the sensitivity of ionization to the sense of electron rotation, the ionization of NO in CP fields can produce spin-polarized photoelectrons with high controllability of spin polarization up to 100 % .

  20. Strong-field ionization rates of linear polyenes simulated with time-dependent configuration interaction with an absorbing potential.

    PubMed

    Krause, Pascal; Schlegel, H Bernhard

    2014-11-07

    The strong field ionization rates for ethylene, trans 1,3-butadiene, and trans,trans 1,3,5-hexatriene have been calculated using time-dependent configuration interaction with single excitations and a complex absorbing potential (TDCIS-CAP). The calculations used the aug-cc-pVTZ basis set with a large set of diffuse functions (3 s, 2 p, 3 d, and 1 f) on each atom. The absorbing boundary was placed 3.5 times the van der Waals radius from each atom. The simulations employed a seven-cycle cosine squared pulse with a wavelength of 800 nm. Ionization rates were calculated for intensities ranging from 0.3 × 10(14) W/cm(2) to 3.5 × 10(14) W/cm(2). Ionization rates along the molecular axis increased markedly with increasing conjugation length. By contrast, ionization rates perpendicular to the molecular axis were almost independent of the conjugation length.

  1. Strong-field ionization rates of linear polyenes simulated with time-dependent configuration interaction with an absorbing potential

    NASA Astrophysics Data System (ADS)

    Krause, Pascal; Schlegel, H. Bernhard

    2014-11-01

    The strong field ionization rates for ethylene, trans 1,3-butadiene, and trans,trans 1,3,5-hexatriene have been calculated using time-dependent configuration interaction with single excitations and a complex absorbing potential (TDCIS-CAP). The calculations used the aug-cc-pVTZ basis set with a large set of diffuse functions (3 s, 2 p, 3 d, and 1 f) on each atom. The absorbing boundary was placed 3.5 times the van der Waals radius from each atom. The simulations employed a seven-cycle cosine squared pulse with a wavelength of 800 nm. Ionization rates were calculated for intensities ranging from 0.3 × 1014 W/cm2 to 3.5 × 1014 W/cm2. Ionization rates along the molecular axis increased markedly with increasing conjugation length. By contrast, ionization rates perpendicular to the molecular axis were almost independent of the conjugation length.

  2. Connecting the dots: a correlation between ionizing radiation and cloud mass-loss rate traced by optical integral field spectroscopy

    NASA Astrophysics Data System (ADS)

    McLeod, A. F.; Gritschneder, M.; Dale, J. E.; Ginsburg, A.; Klaassen, P. D.; Mottram, J. C.; Preibisch, T.; Ramsay, S.; Reiter, M.; Testi, L.

    2016-11-01

    We present an analysis of the effect of feedback from O- and B-type stars with data from the integral field spectrograph Multi Unit Spectroscopic Explorer (MUSE) mounted on the Very Large Telescope of pillar-like structures in the Carina Nebular Complex, one of the most massive star-forming regions in the Galaxy. For the observed pillars, we compute gas electron densities and temperatures maps, produce integrated line and velocity maps of the ionized gas, study the ionization fronts at the pillar tips, analyse the properties of the single regions, and detect two ionized jets originating from two distinct pillar tips. For each pillar tip, we determine the incident ionizing photon flux Q0, pil originating from the nearby massive O- and B-type stars and compute the mass-loss rate dot{M} of the pillar tips due to photoevaporation caused by the incident ionizing radiation. We combine the results of the Carina data set with archival MUSE data of a pillar in NGC 3603 and with previously published MUSE data of the Pillars of Creation in M16, and with a total of 10 analysed pillars, find tight correlations between the ionizing photon flux and the electron density, the electron density and the distance from the ionizing sources, and the ionizing photon flux and the mass-loss rate. The combined MUSE data sets of pillars in regions with different physical conditions and stellar content therefore yield an empirical quantification of the feedback effects of ionizing radiation. In agreement with models, we find that dot{M}∝ Q_0,pil^{1/2}.

  3. State-selective preparation of A r2 + and K r2 + by resonantly enhanced two-photon double ionization via intermediate Rydberg states using high-order harmonics

    NASA Astrophysics Data System (ADS)

    Yamada, Kana; Iwasaki, Atsushi; Sato, Takahiro; Midorikawa, Katsumi; Yamanouchi, Kaoru

    2016-11-01

    Simultaneous two-electron emission processes of Ar induced by high-order harmonics of near-infrared femtosecond laser pulses were investigated by coincidence photoelectron spectroscopy. Two-photon double ionization processes via the 3 s 3 p6n p (n ˜25 ) intermediate resonances of Ar were observed, which selectively created the 3 s 3 p51P state of A r2 + . The similar double ionization processes were also observed in Kr. The selective creation indicates that the core electron configuration of the doubly ionized state tends to be the same as that of the intermediate state and that the emitted two electrons tend to form the singlet state.

  4. Estimating the daytime Equatorial Ionization Anomaly strength from electric field proxies

    NASA Astrophysics Data System (ADS)

    Stolle, C.; Manoj, C.; Lühr, H.; Maus, S.; Alken, P.

    2008-09-01

    The Equatorial Ionization Anomaly (EIA) is a significant feature of the low-latitude ionosphere. During daytime, the eastward electric field drives a vertical plasma fountain at the magnetic equator creating the EIA. Since the eastward electric field is also the driving force for the Equatorial Electrojet (EEJ), the latter is positively correlated with the EIA strength. We investigate the correlation between the zonal electric field and the EIA in the Peruvian sector and compare the results with correlations of the EEJ versus EIA strength. Analyzing 5 years of Challenging Minisatellite Payload (CHAMP) electron density measurements, plasma drift readings from the Jicamarca Unattended Long-term Investigations of the Ionosphere and Atmosphere (JULIA) radar, and magnetic field observations at Huancayo and Piura, we find the EEJ strength and the zonal electric field to be suitable proxies for the EIA intensity. Both analyses reveal high correlation coefficients of cc > 0.8. A typical response time of the EIA to variations in the zonal electric field is ˜1-2 h, and it is ˜2-4 h after EEJ strength variations. Quantitative expressions are provided, which directly relate the EIA parameters to both proxies. From these relations, we infer that an EIA develops also during weak Counter Electrojets (CEJs), but no EIA forms when the vertical plasma drift is zero. For positive EEJ magnetic signatures to form, a minimum eastward electric field of 0.2 mV/m is required on average. The above-mentioned delay between EIA and EEJ variations of ˜3 h is further confirmed by the investigation of the EIA response to transitions from CEJ to EEJ, e.g., during late morning hours.

  5. Nonadiabatic molecular alignment of linear molecules probed by strong-field ionization yields of photoelectrons

    NASA Astrophysics Data System (ADS)

    Kaya, G.; Kaya, N.; Strohaber, J.; Hart, N. A.; Kolomenskii, A. A.; Schuessler, H. A.

    2016-12-01

    The dynamics of rotational wave packets of laser-aligned linear molecules were studied with femtosecond laser-driven strong-field ionization (SFI). The dynamics were observed as a function of the delay between a femtosecond probe pulse and a linearly polarized aligning pump pulse. The induced nonadiabatic molecular alignment was directly monitored by the total SFI yield. The measured revival signatures were compared to the calculated degree of molecular alignment taking into account the effects of electronic structure and symmetry of the molecules. By fitting the calculated alignment parameter to the measured experimental data, we also determined the molecular rotational constants of N2, CO, O2, and C2H2 gas molecules.

  6. Laser intensity determination using nonadiabatic tunneling ionization of atoms in close-to-circularly polarized laser fields.

    PubMed

    Quan, Wei; Yuan, MingHu; Yu, ShaoGang; Xu, SongPo; Chen, YongJu; Wang, YanLan; Sun, RenPing; Xiao, ZhiLei; Gong, Cheng; Hua, LinQiang; Lai, XuanYang; Liu, XiaoJun; Chen, Jing

    2016-10-03

    We conceive an improved procedure to determine the laser intensity with the momentum distributions from nonadiabatic tunneling ionization of atoms in the close-to-circularly polarized laser fields. The measurements for several noble gas atoms are in accordance with the semiclassical calculations, where the nonadiabatic effect and the influence of Coulomb potential are included. Furthermore, the high-order above-threshold ionization spectrum in linearly polarized laser fields for Ar is measured and compared with the numerical calculation of the time-dependent Schrödinger equation in the single-active-electron approximation to test the accuracy of the calibrated laser intensity.

  7. First-order correction terms in the weak-field asymptotic theory of tunneling ionization in many-electron systems

    NASA Astrophysics Data System (ADS)

    Trinh, Vinh H.; Tolstikhin, Oleg I.; Morishita, Toru

    2016-10-01

    The many-electron weak-field asymptotic theory of tunneling ionization including the first-order correction terms in the asymptotic expansion of the ionization rate in field strength was highlighted in our recent fast track communication (Trinh et al 2015 J. Phys. B: At. Mol. Opt. Phys. 48 061003) by demonstrating its performance for two-electron atoms. Here we present a thorough derivation of the first-order terms omitted in the previous publication and provide additional numerical illustrations of the theory.

  8. Performance of a multi-axis ionization chamber array in a 1.5 T magnetic field

    NASA Astrophysics Data System (ADS)

    Smit, K.; Kok, J. G. M.; Lagendijk, J. J. W.; Raaymakers, B. W.

    2014-04-01

    At the UMC Utrecht a prototype MR-linac has been installed. The system consists of an 8 MV Elekta linear accelerator and a 1.5 T Philips MRI system. This paper investigates the performance of the IC PROFILER™, a multi-axis ionization chamber array, in a 1.5 T magnetic field. The influence of the magnetic field on the IC PROFILER™ reproducibility, dose response linearity, pulse rate frequency dependence, power to electronics, panel orientation and ionization chamber shape were investigated. The linearity, reproducibility, pulse rate frequency dependence, panel orientation and ionization chamber shape are unaffected by the magnetic field. When the measurements results are normalized to the centre reference chamber, the measurements can commence unaltered. Orientation of the ionization chambers in the magnetic field is of importance, therefore caution must be taken when comparing or normalizing results from several different axes. IC PROFILER™ dose profiles were compared with film dose profiles obtained simultaneously in the MR-linac. Deviation between the film and the IC PROFILER™ data was caused by the noise in the film, indicating correct performance of the IC PROFILER™ in the transverse 1.5 T magnetic field.

  9. Separation of Opiate Isomers Using Electrospray Ionization and Paper Spray Coupled to High-Field Asymmetric Waveform Ion Mobility Spectrometry

    NASA Astrophysics Data System (ADS)

    Manicke, Nicholas E.; Belford, Michael

    2015-05-01

    One limitation in the growing field of ambient or direct analysis methods is reduced selectivity caused by the elimination of chromatographic separations prior to mass spectrometric analysis. We explored the use of high-field asymmetric waveform ion mobility spectrometry (FAIMS), an ambient pressure ion mobility technique, to separate the closely related opiate isomers of morphine, hydromorphone, and norcodeine. These isomers cannot be distinguished by tandem mass spectrometry. Separation prior to MS analysis is, therefore, required to distinguish these compounds, which are important in clinical chemistry and toxicology. FAIMS was coupled to a triple quadrupole mass spectrometer, and ionization was performed using either a pneumatically assisted heated electrospray ionization source (H-ESI) or paper spray, a direct analysis method that has been applied to the direct analysis of dried blood spots and other complex samples. We found that FAIMS was capable of separating the three opiate structural isomers using both H-ESI and paper spray as the ionization source.

  10. Ionization and dissociation of CH3I in intense laser field

    NASA Astrophysics Data System (ADS)

    Liu, Hongtao; Yang, Zheng; Gao, Zhen; Tang, Zichao

    2007-01-01

    The ionization-dissociation of methyl iodide in intense laser field has been studied using a reflection time-of-flight mass spectrometry (RTOF-MS), at a laser intensity of ⩽6.6×1014W/cm2, λ =798nm, and a pulse width of 180fs. With the high resolution of RTOF-MS, the fragment ions with the same M /z but from different dissociation channels are resolved in the mass spectra, and the kinetic energy releases (KERs) of the fragment ions such as Iq + (q=1-6), CHm+ (m =0-3), C2+, and C3+ are measured. It is found that the KERs of the fragment ions are independent of the laser intensity. The fragments CH3+ and I + with very low KERs (<1eV for CH3+ and <0.07eV for I +) are assigned to be produced by the multiphoton dissociation of CH3I +. For the fragments CH3+ and I + from CH3I2+, they are produced by the Coulomb explosion of CH3I2+ with the interaction from the covalent force of the remaining valence electrons. The split of the KER of the fragments produced from CH3I2+ dissociation is observed experimentally and explained with the energy split of I +(P23) and I+(P0,13). The dissociation CH3I3+→CH3++I2+ is caused by Coulomb explosion. The valid charge distance Rc between I2+ and CH3+, at which enhanced ionization of methyl iodide occurs, is obtained to be 3.7Å by the measurements of the KERs of the fragments CH3+ and I2+. For the CH3In + (n⩾3), the KERs of the fragment ions CH3p + and Iq + are attributed to the Coulomb repulsion between CH3p + and Iq + from Rc≈3.7Å. The dissociation of the fragment CH3+ is also discussed. By the enhanced ionization mechanism and using the measured KER of Iq +, all the possible Coulomb explosion channels are identified. By comparing the abundance of fragment ions in mass spectrum, it is found that the asymmetric dissociation channels with more charges on iodine, q >p, are the dominant channels.

  11. Correction factors for ionization chamber dosimetry in CyberKnife: Machine-specific, plan-class, and clinical fields

    SciTech Connect

    Gago-Arias, Araceli; Antolin, Elena; Fayos-Ferrer, Francisco; Simon, Rocio; Gonzalez-Castano, Diego M.; Palmans, Hugo; Sharpe, Peter; Gomez, Faustino; Pardo-Montero, Juan

    2013-01-15

    Purpose: The aim of this work is the application of the formalism for ionization chamber reference dosimetry of small and nonstandard fields [R. Alfonso, P. Andreo, R. Capote, M. S. Huq, W. Kilby, P. Kjaell, T. R. Mackie, H. Palmans, K. Rosser, J. Seuntjens, W. Ullrich, and S. Vatnitsky, 'A new formalism for reference dosimetry of small and nonstandard fields,' Med. Phys. 35, 5179-5186 (2008)] to the CyberKnife robotic radiosurgery system. Correction factors for intermediate calibration fields, a machine-specific reference field (msr) and two plan-class specific reference fields (pcsr), have been studied. Furthermore, the applicability of the new formalism to clinical dosimetry has been analyzed through the investigation of two clinical treatments. Methods: PTW31014 and Scanditronix-Wellhofer CC13 ionization chamber measurements were performed for the fields under investigation. Absorbed dose to water was determined using alanine reference dosimetry, and experimental correction factors were calculated from alanine to ionization chamber readings ratios. In addition, correction factors were calculated for the intermediate calibration fields and one of the clinical treatment fields using the Monte Carlo method and these were compared with the experimental values. Results: Overall correction factors deviating from unity by approximately 2% were obtained from both measurements and simulations, with values below and above unity for the studied intermediate calibration fields and clinical fields for the ionization chambers under consideration. Monte Carlo simulations yielded correction factors comparable with those obtained from measurements for the machine-specific reference field, although differences from 1% to 3.3% were observed between measured and calculated correction factors for the composite intermediate calibration fields. Dose distribution inhomogeneities are thought to be responsible for such discrepancies. Conclusions: The differences found between overall

  12. Suppression of strong field ionization in diatomic molecules with triplet ground states

    NASA Astrophysics Data System (ADS)

    Dewitt, M. J.; Wells, E.; Jones, R. R.

    2001-05-01

    The ionization rates of S_2, SO, and F2 when subjected to 800 nm, 100 fs laser pulses are measured as a function of laser pulse intensity and compared to those of Xe and Ar. Contrary to recent theoretical predictions, the ionization behavior of F2 is observed to be nearly identical to that of both N2 and Ar, and therefore behaves as would be predicted by a structureless, atom-like ionization model. The ionization rates of triplet S2 and SO are shown to be suppressed, much like triplet O_2, relative to expectations based solely on their ionization potentials. Measurements made with 1360 nm, 80 fs laser pulses show that the ionization suppression of S2 and SO persists at longer wavelengths.

  13. Double occupancy in dynamical mean-field theory and the dual boson approach

    NASA Astrophysics Data System (ADS)

    van Loon, Erik G. C. P.; Krien, Friedrich; Hafermann, Hartmut; Stepanov, Evgeny A.; Lichtenstein, Alexander I.; Katsnelson, Mikhail I.

    2016-04-01

    We discuss the calculation of the double occupancy using dynamical mean-field theory in finite dimensions. The double occupancy can be determined from the susceptibility of the auxiliary impurity model or from the lattice susceptibility. The former method typically overestimates, whereas the latter underestimates the double occupancy. We illustrate this for the square-lattice Hubbard model. We propose an approach for which both methods lead to identical results by construction and which resolves this ambiguity. This self-consistent dual boson scheme results in a double occupancy that is numerically close to benchmarks available in the literature.

  14. Using PFI-ZEKE spectroscopy to study excited states of molecular ions: implications for state selection through pulsed field ionization

    NASA Astrophysics Data System (ADS)

    Martin, James D.; Alcaraz, Christian; Mank, A.; Kong, Wei; Hepburn, John W.

    1995-09-01

    The introduction of the pulsed field ionization zero kinetic energy photoelectron spectroscopy technique (referred to as PFI-ZEKE spectroscopy) has resulted in a revolution in photoelectron spectroscopy, because of the tremendous improvement in resolution. This method of threshold photoelectron spectroscopy is based on field ionization of metastable high principal quantum number Rydberg states using a pulsed electric field, delayed from the laser excitation. The detailed mechanism for stabilization of the high principal quantum number Rydberg states has been the subject of a great deal of recent discussion in the literature, and is still somewhat controversial. It is well known that Rydberg state lifetimes scale as n-3, for fluorescence, autoionization, or predissociation, under ideal conditions. This means that for a Rydberg series that can decay by autoionization, if the lifetime of a 5p Rydberg state is 10-12 s, the lifetime of a 150p state will be 10-7 s, which is an order of magnitude shorter than typical delay times used in PFI-ZEKE. The 150p state will be field ionized by an electric field of 0.7 to 1.5 V/cm, which is typical of the pulsed fields used for Stark ionization. This question about Rydberg state lifetimes becomes quite important if one wishes to carry out PFI-ZEKE spectroscopy of ion states well above the lowest ionization threshold, as many decay channels will be available to the Rydberg states converging to the high energy states, resulting in shorter lifetimes for these high energy Rydberg states. Our work in this area has focused largely on PFI-ZEKE spectroscopy at excited state thresholds in molecular ions, where problems of autoionization will be most severe. To reach these high energy thresholds, we have usually used single photon excitation with coherent vacuum ultraviolet light. This excitation method has many advantages.

  15. Ionization at a solid-water interface in an applied electric field: Charge regulation

    NASA Astrophysics Data System (ADS)

    Okamoto, Ryuichi; Onuki, Akira

    2016-09-01

    We investigate ionization at a solid-water interface in an applied electric field. We attach an electrode to a dielectric film bearing silanol or carboxyl groups with an areal density Γ0, where the degree of dissociation α is determined by the proton density in water close to the film. We show how α depends on the density n0 of NaOH in water and the surface charge density σm on the electrode. For σm > 0, the protons are expelled away from the film, leading to an increase in α. In particular, in the range 0 < σm < eΓ0, self-regulation occurs to realize α ≅ σm/eΓ0 for n0 ≪ nc, where nc is 0.01 mol/L for silica surfaces and is 2 × 10-5 mol/L for carboxyl-bearing surfaces. We also examine the charge regulation with decreasing the cell thickness H below the Debye length κ-1, where a crossover occurs at the Gouy-Chapman length. In particular, when σm ˜ eΓ0 and H ≪ κ-1, the surface charges remain only partially screened by ions, leading to a nonvanishing electric field in the interior.

  16. Perturbation theory for electric-field amplitude and phase ripple transfer in frequency doubling and tripling

    NASA Astrophysics Data System (ADS)

    Auerbach, Jerome M.; L, L.; Eimerl, David; Milam, David; Milonni, Peter W.

    1997-01-01

    A theory is presented for the transfer of a perturbation of the electric field from the input to the output of a frequency converter. The transfer relationship for the field ripple is shown to depend on the plane-wave operating parameters of the converter. Predictions of the theory are shown to be in excellent agreement with full numerical simulations of doubling and tripling and experiments measuring ripple transfer in frequency doubling.

  17. Effect of Chromatin Structure on the Extent and Distribution of DNA Double Strand Breaks Produced by Ionizing Radiation; Comparative Study of hESC and Differentiated Cells Lines.

    PubMed

    Venkatesh, Priyanka; Panyutin, Irina V; Remeeva, Evgenia; Neumann, Ronald D; Panyutin, Igor G

    2016-01-02

    Chromatin structure affects the extent of DNA damage and repair. Thus, it has been shown that heterochromatin is more protective against DNA double strand breaks (DSB) formation by ionizing radiation (IR); and that DNA DSB repair may proceed differently in hetero- and euchromatin regions. Human embryonic stem cells (hESC) have a more open chromatin structure than differentiated cells. Here, we study the effect of chromatin structure in hESC on initial DSB formation and subsequent DSB repair. DSB were scored by comet assay; and DSB repair was assessed by repair foci formation via 53BP1 antibody staining. We found that in hESC, heterochromatin is confined to distinct regions, while in differentiated cells it is distributed more evenly within the nuclei. The same dose of ionizing radiation produced considerably more DSB in hESC than in differentiated derivatives, normal human fibroblasts; and one cancer cell line. At the same time, the number of DNA repair foci were not statistically different among these cells. We showed that in hESC, DNA repair foci localized almost exclusively outside the heterochromatin regions. We also noticed that exposure to ionizing radiation resulted in an increase in heterochromatin marker H3K9me3 in cancer HT1080 cells, and to a lesser extent in IMR90 normal fibroblasts, but not in hESCs. These results demonstrate the importance of chromatin conformation for DNA protection and DNA damage repair; and indicate the difference of these processes in hESC.

  18. Field ionization model implemented in Particle In Cell code and applied to laser-accelerated carbon ions

    SciTech Connect

    Nuter, R.; Gremillet, L.; Lefebvre, E.; Levy, A.; Ceccotti, T.; Martin, P.

    2011-03-15

    A novel numerical modeling of field ionization in PIC (Particle In Cell) codes is presented. Based on the quasistatic approximation of the ADK (Ammosov Delone Krainov) theory and implemented through a Monte Carlo scheme, this model allows for multiple ionization processes. Two-dimensional PIC simulations are performed to analyze the cut-off energies of the laser-accelerated carbon ions measured on the UHI 10 Saclay facility. The influence of the target and the hydrocarbon pollutant composition on laser-accelerated carbon ion energies is demonstrated.

  19. Measurement of scintillation and ionization yield with high-pressure gaseous mixtures of Xe and TMA for improved neutrinoless double beta decay and dark matter searches

    NASA Astrophysics Data System (ADS)

    Nakajima, Y.; Goldschmidt, A.; Matis, H. S.; Miller, T.; Nygren, D. R.; Oliveira, C. A. B.; Renner, J.

    2016-03-01

    The gaseous Xenon(Xe) time projection chamber (TPC) is an attractive detector technique for neutrinoless double beta decay and WIMP dark matter searches. While it is less dense compared to Liquid Xe detectors, it has intrinsic advantages in tracking capability and better energy resolution. The performance of gaseous Xe can be further improved by molecular additives such as trimethylamine(TMA), which is expected to (1) cool down the ionization electrons, (2) convert Xe excitation energy to TMA ionizations through Penning transfer, and (3) produce scintillation and electroluminescence light in a more easily detectable wavelength (300 nm). In order to test the feasibility of the performance improvements with TMA, we made the first direct measurement of Penning and fluorescence transfer efficiency with gaseous mixtures of Xe and TMA. While we observed a Penning transfer efficiency up to ~35%, we found strong suppression of primary scintillation light with TMA. We also found that the primary scintillation light with Xe and TMA mixture can be well characterized by ~3% fluorescence transfer from Xe to TMA, with further suppression due to TMA self-quenching. No evidence of the scintillation light produced by recombination of TMA ions was found. This strong suppression of scintillation light makes dark matter searches quite challenging, while the possibility of improved neutrinoless double beta decay searches remains open. This work has been carried out within the context of the NEXT collaboration.

  20. Selective-field-ionization dynamics of a lithium m=2 Rydberg state: Landau-Zener model versus quantal approach

    SciTech Connect

    Foerre, M.; Hansen, J.P.

    2003-05-01

    The selective-field-ionization (SFI) dynamics of a Rydberg state of lithium with magnetic quantum number m=2 is studied in detail based on two different theoretical models: (1) a close coupling integration of the Schroedinger equation and (2) the multichannel (incoherent) Landau-Zener (MLZ) model. The m=2 states are particularly interesting, since they define a border zone between fully adiabatic (m=0,1) and fully diabatic (m>2) ionization dynamics. Both sets of calculations are performed up to, and above, the classical ionization limit. It is found that the MLZ model is excellent in the description of the fully diabatic dynamics while certain discrepancies between the time dependent quantal amplitudes appear when the dynamics become involved. Thus, in this region, the analysis of experimental SFI spectra should be performed with care.

  1. Exposure to electromagnetic fields (non-ionizing radiation) and its relationship with childhood leukemia: a systematic review.

    PubMed

    Calvente, I; Fernandez, M F; Villalba, J; Olea, N; Nuñez, M I

    2010-07-15

    Childhood exposure to physical contamination, including non-ionizing radiation, has been implicated in numerous diseases, raising concerns about the widespread and increasing sources of exposure to this type of radiation. The primary objective of this review was to analyze the current state of knowledge on the association between environmental exposure to non-ionizing radiation and the risk of childhood leukemia. Scientific publications between 1979 and 2008 that include examination of this association have been reviewed using the MEDLINE/PubMed database. Studies to date have not convincingly confirmed or ruled out an association between non-ionizing radiation and the risk of childhood leukemia. Discrepancies among the conclusions of the studies may also be influenced by confounding factors, selection bias, and misclassification. Childhood defects can result from genetic or epigenetic damage and from effects on the embryo or fetus, which may both be related to environmental exposure of the parent before conception or during the pregnancy. It is therefore critical for researchers to define a priori the type and "window" of exposure to be assessed. Methodological problems to be solved include the proper diagnostic classification of individuals and the estimated exposure to non-ionizing radiation, which may act through various mechanisms of action. There appears to be an urgent need to reconsider exposure limits for low frequency and static magnetic fields, based on combined experimental and epidemiological research into the relationship between exposure to non-ionizing radiation and adverse human health effects.

  2. Photoionization of isooctane and n-octane in intense laser fields. I. Effect of irradiance on ionization rates.

    PubMed

    Healy, Andrew T; Lipsky, Sanford; Blank, David A

    2007-12-07

    The population of ejected electrons following multiphoton ionization of neat liquids isooctane and n-octane is investigated over a large range of ionizing irradiance I(ex). Transient absorption (TA) at 1200 nm in both neat liquids is measured in a 60 mum path at time delays of 0.7 and 2.5 ps following an intense 400 nm (3.1 eV) ionizing pulse. As the irradiance of this pulse is varied over the range from 4 to 410 TWcm(2), the dependence of TA on I(ex) exhibits the periodic structure theoretically predicted for multiphoton channel openings and closings. At low I(ex) (<9 TWcm(2)), TA in isooctane is proportional to I(ex) (n) where n=3, consistent with nonresonant, near threshold ionization (liquid phase ionization potential=8.6 eV). At I(ex)>9 TWcm(2), n declines with increasing I(ex) up to I(ex)=13 TWcm(2), at which point n abruptly increases to 4. The pattern is repeated at I(ex)>13 TWcm(2), albeit with n declining from 4 and then abruptly increasing to 5 as I(ex) becomes greater than 100 TWcm(2). A similar trend is observed in n-octane. The dependence of the TA on I(ex) in the regions of channel openings and closings is compared to the nonperturbative, strong field approximation developed by Reiss [Phys. Rev. A 22, 1786 (1980)].

  3. Photoionization of isooctane and n-octane in intense laser fields. I. Effect of irradiance on ionization rates

    NASA Astrophysics Data System (ADS)

    Healy, Andrew T.; Lipsky, Sanford; Blank, David A.

    2007-12-01

    The population of ejected electrons following multiphoton ionization of neat liquids isooctane and n-octane is investigated over a large range of ionizing irradiance Iex. Transient absorption (TA) at 1200nm in both neat liquids is measured in a 60μm path at time delays of 0.7 and 2.5ps following an intense 400nm (3.1eV) ionizing pulse. As the irradiance of this pulse is varied over the range from 4to410TW/cm2, the dependence of TA on Iex exhibits the periodic structure theoretically predicted for multiphoton channel openings and closings. At low Iex (<9TW/cm2), TA in isooctane is proportional to Iexn where n =3, consistent with nonresonant, near threshold ionization (liquid phase ionization potential=8.6eV). At Iex>9TW/cm2, n declines with increasing Iex up to Iex=13TW/cm2, at which point n abruptly increases to 4. The pattern is repeated at Iex>13TW/cm2, albeit with n declining from 4 and then abruptly increasing to 5 as Iex becomes greater than 100TW/cm2. A similar trend is observed in n-octane. The dependence of the TA on Iex in the regions of channel openings and closings is compared to the nonperturbative, strong field approximation developed by Reiss [Phys. Rev. A 22, 1786 (1980)].

  4. Cluster formation and distributions in field ionization of coadsorbed methanol and water on platinum

    NASA Astrophysics Data System (ADS)

    Rothfuss, C. J.; Medvedev, V. K.; Stuve, E. M.

    2016-08-01

    Pure and mixed clusters of methanol and water were examined with pulsed field desorption time-of-flight mass spectrometry (TOF-MS) as a function of adlayer composition varying from pure water to nominally pure methanol. The experiments were performed on a Pt tip at 165 K and total pressure of approximately 5 × 10-6 Torr. Protonated clusters of up 7 water molecules and up to 4 methanol molecules were detected. For mixed adlayers, mixed clusters involving 1 or 2 water and methanol molecules were observed. The hydronium cluster (H2O)H+ exhibited unusual behavior in that its maximum intensity occurred for an approximately equimolar mixture. This was attributed to direct ionization of a methanol monohydrate species, (CH3OH ṡ H2O). Water production was observed in methanol-rich layers and ascribed to scission of the C-O bond to produce CH3 and OH. The TOF-MS data exhibited significant time lags for most higher mass clusters. The time lags for pure H2O were analyzed in terms of a two-step mechanism involving a trade-off of ion cluster emission and growth, from which the rate constant for cluster growth was estimated as 9 × 10-6 s-1.

  5. High-resolution pulsed-field ionization photoelectron study of O{sub 2}

    SciTech Connect

    Hsu, C.W.; Evans, M.; Stimson, S.

    1997-04-01

    There have been numerous photoionization studies of O{sub 2} over the past 10 years. Using the pulsed field ionization (PFI) photoelectron spectroscopy (PES) technique, the electronic ground state of O{sub 2}{sup +} (X{sup 2}{Pi}{sub g}{sup {minus}}) has been well studied on the rotationally resolved level by several groups. However, due to the difficulty of producing photon energies above 18 eV using the tunable lasers, the electronic excited states of O{sub 2}{sup +} have been mostly studied on the vibrationally resolved level using the threshold photoelectron spectroscopy (TPES) and the synchrotron radiation. Recently, the authors developed a new technique for performing the PFI-PE experiments using multi-bunch synchrotron radiation at the Chemical Dynamics Beamline of the Advanced Light Source (ALS). Using the high resolution VUV light from the ALS, they have obtained the PFI-PE spectra of O{sub 2} between 12 and 24 eV. In this abstract, the authors report for the first time the rotationally resolved spectra of O{sub 2}{sup +} (b{sup 4}{Sigma}{sub g}{sup {minus}}, v{sup +}=0).

  6. Isolated high-harmonic XUV photon absorption and NIR strong-field tunnel ionization

    NASA Astrophysics Data System (ADS)

    Bryan, W. A.; Frassetto, F.; Froud, C. A.; Turcu, I. C. E.; King, R. B.; Calvert, C. R.; Nemeth, G. R. A. J.; Villoresi, P.; Poletto, L.; Springate, E.

    2012-01-01

    Extreme ultraviolet (XUV) pulses with a duration of tens of femtoseconds initiate 4s-1 or 4p-1 photoionization of krypton, which populates highly excited satellite states through the electron correlation. The excited ions are then tunnel ionized to Kr2+4s-14p-1 or 4p-2 by a strong-field near-infrared (NIR) pulse of a similar duration. The XUV pulses are produced by high harmonic generation in a gas jet and we employ a state-of-the-art time-preserving monochromator to isolate individual XUV harmonic orders. An enhancement of the Kr2+ yield as a function of harmonic photon energy and XUV-pump NIR-probe delay is observed and compared with a two-step model, which allows the population of the satellite states to be inferred. Furthermore, relative 4s and 4p satellite excitation cross-sections are predicted at the photon energies studied. This proof-of-principle experiment demonstrates that isolated harmonics can be employed to pump specific electronic states, which will be highly complementary to synchrotron, attosecond and x-ray free-electron laser studies of complex systems.

  7. Signature of superradiance from a nitrogen-gas plasma channel produced by strong-field ionization

    NASA Astrophysics Data System (ADS)

    Li, Guihua; Jing, Chenrui; Zeng, Bin; Xie, Hongqiang; Yao, Jinping; Chu, Wei; Ni, Jielei; Zhang, Haisu; Xu, Huailiang; Cheng, Ya; Xu, Zhizhan

    2014-03-01

    Recently, Yao et al. demonstrated the creation of coherent emissions in nitrogen gas with two-color (800 nm + 400 nm) ultrafast laser pulses [J. Yao, G. Li, C. Jing, B. Zeng, W. Chu, J. Ni, H. Zhang, H. Xie, C. Zhang, H. Li, H. Xu, S. L. Chin, Y. Cheng, and Z. Xu, New J. Phys. 15, 023046 (2013), 10.1088/1367-2630/15/2/023046]. Based on this two-color scheme, here we report on systematic investigation of temporal characteristics of the radiation emitted at 391 nm [N2+: B2Σu+(ν =0) -X2Σg+(ν =0)] by experimentally examining its temporal profiles with the increase of the plasma channel induced by the intense 800-nm femtosecond laser pulses at a nitrogen-gas pressure of ˜25 mbar. We reveal unexpected temporal profiles of the coherent emissions, which show significant superradiance signatures owing to the cooperation of an ensemble of excited N2+ molecules that are coherently radiating in phase. Our findings shed more light on the mechanisms behind the coherent laserlike emissions induced by strong-field ionization of molecules.

  8. Combined vacuum ultraviolet laser and synchrotron pulsed field ionization study of CH2BrCl.

    PubMed

    Li, Juan; Yang, Jie; Mo, Yuxiang; Lau, K C; Qian, X M; Song, Y; Liu, Jianbo; Ng, C Y

    2007-05-14

    The pulsed field ionization-photoelectron (PFI-PE) spectrum of bromochloromethane (CH2BrCl) in the region of 85,320-88,200 cm-1 has been measured using vacuum ultraviolet laser. The vibrational structure resolved in the PFI-PE spectrum was assigned based on ab initio quantum chemical calculations and Franck-Condon factor predictions. At energies 0-1400 cm-1 above the adiabatic ionization energy (IE) of CH2BrCl, the Br-C-Cl bending vibration progression (nu1+=0-8) of CH2BrCl+ is well resolved and constitutes the major structure in the PFI-PE spectrum, whereas the spectrum at energies 1400-2600 cm-1 above the IE(CH2BrCl) is found to exhibit complex vibrational features, suggesting perturbation by the low lying excited CH2BrCl+(A 2A") state. The assignment of the PFI-PE vibrational bands gives the IE(CH2BrCl)=85,612.4+/-2.0 cm-1 (10.6146+/-0.0003 eV) and the bending frequencies nu1+(a1')=209.7+/-2.0 cm-1 for CH2BrCl+(X2A'). We have also examined the dissociative photoionization process, CH2BrCl+hnu-->CH2Cl++Br+e-, in the energy range of 11.36-11.57 eV using the synchrotron based PFI-PE-photoion coincidence method, yielding the 0 K threshold or appearance energy AE(CH2Cl+)=11.509+/-0.002 eV. Combining the 0 K AE(CH2Cl+) and IE(CH2BrCl) values obtained in this study, together with the known IE(CH2Cl), we have determined the 0 K bond dissociation energies (D0) for CH2Cl+-Br (0.894+/-0.002 eV) and CH2Cl-Br (2.76+/-0.01 eV). We have also performed CCSD(T, full)/complete basis set (CBS) calculations with high-level corrections for the predictions of the IE(CH2BrCl), AE(CH2Cl+), IE(CH2Cl), D0(CH2Cl+-Br), and D0(CH2Cl-Br). The comparison between the theoretical predictions and experimental determinations indicates that the CCSD(T, full)/CBS calculations with high-level corrections are highly reliable with estimated error limits of <17 meV.

  9. [Saccharomyces cerevisiae as a model organism for studying the carcinogenicity of non-ionizing electromagnetic fields and radiation].

    PubMed

    Voĭchuk, S I

    2014-01-01

    Medical and biological aspects of the effects of non-ionizing electromagnetic (EM) fields and radiation on human health are the important issues that have arisen as a result of anthropogenic impact on the biosphere. Safe use of man-made sources of non-ionizing electromagnetic fields and radiation in a broad range of frequencies--static, radio-frequency and microwave--is a subject of discussions and speculations. The main problem is the lack of understanding of the mechanism(s) of reception of EMFs by living organisms. In this review we have analyzed the existing literature data regarding the effects of the electromagnetic radiation on the model eukaryotic organism--yeast Saccharomyces cerevisiae. An attempt was made to estimate the probability of induction of carcinogenesis in humans under the influence of magnetic fields and electromagnetic radiation of extremely low frequency, radio frequency and microwave ranges.

  10. Modeling weakly-ionized plasmas in magnetic field: A new computationally-efficient approach

    SciTech Connect

    Parent, Bernard; Macheret, Sergey O.; Shneider, Mikhail N.

    2015-11-01

    Despite its success at simulating accurately both non-neutral and quasi-neutral weakly-ionized plasmas, the drift-diffusion model has been observed to be a particularly stiff set of equations. Recently, it was demonstrated that the stiffness of the system could be relieved by rewriting the equations such that the potential is obtained from Ohm's law rather than Gauss's law while adding some source terms to the ion transport equation to ensure that Gauss's law is satisfied in non-neutral regions. Although the latter was applicable to multicomponent and multidimensional plasmas, it could not be used for plasmas in which the magnetic field was significant. This paper hence proposes a new computationally-efficient set of electron and ion transport equations that can be used not only for a plasma with multiple types of positive and negative ions, but also for a plasma in magnetic field. Because the proposed set of equations is obtained from the same physical model as the conventional drift-diffusion equations without introducing new assumptions or simplifications, it results in the same exact solution when the grid is refined sufficiently while being more computationally efficient: not only is the proposed approach considerably less stiff and hence requires fewer iterations to reach convergence but it yields a converged solution that exhibits a significantly higher resolution. The combined faster convergence and higher resolution is shown to result in a hundredfold increase in computational efficiency for some typical steady and unsteady plasma problems including non-neutral cathode and anode sheaths as well as quasi-neutral regions.

  11. Improved field emission properties of carbon nanotubes grown on stainless steel substrate and its application in ionization gauge

    NASA Astrophysics Data System (ADS)

    Li, Detian; Cheng, Yongjun; Wang, Yongjun; Zhang, Huzhong; Dong, Changkun; Li, Da

    2016-03-01

    Vertically aligned carbon nanotube (CNT) arrays were fabricated by chemical vapor deposition (CVD) technique on different substrates. Microstructures and field emission characteristics of the as-grown CNT arrays were investigated systematically, and its application in ionization gauge was also evaluated preliminarily. The results indicate that the as-grown CNT arrays are vertically well-aligned relating to the substrate surfaces, but the CNTs grown on stainless steel substrate are longer and more crystalline than the ones grown on silicon wafer substrate. The field emission behaviors of the as-grown CNT arrays are strongly dependent upon substrate properties. Namely, the CNT array grown on stainless steel substrate has better field emission properties, including lower turn on and threshold fields, better emission stability and repeatability, compared with the one grown on silicon wafer substrate. The superior field emission properties of the CNT array grown on stainless steel substrate are mainly attributed to low contact resistance, high thermal conductivity, good adhesion strength, etc. In addition, the metrological behaviors of ionization gauge with the CNT array grown on stainless steel substrate as an electron source were investigated, and this novel cathode ionization gauge extends the lower limit of linear pressure measurement to 10-8 Pa, which is one order of magnitude lower than the result reported for the same of gauge with CNT cathode.

  12. L. V. Keldysh's "Ionization in the Field of a Strong Electromagnetic Wave" and modern physics of atomic interaction with a strong laser field

    NASA Astrophysics Data System (ADS)

    Fedorov, M. V.

    2016-03-01

    Basic premises, approximations, and results of L.V. Keldysh's 1964 work on multiphoton ionization of atoms are discussed, as well as its influence on the modern science of the interaction of atomic-molecular systems with a strong laser field.

  13. Motion of ionized electrons under the intense electromagnetic field of the beam

    SciTech Connect

    Kamiya, Y.

    1983-09-01

    The motion of an electron ionized from residual gas by the beam becomes relativistic in the case of a high-density beam as in SLC, while the ions produced by the beam remain nonrelativistic. The ionized relativistic electron will be dragged by the beam, and will go away from the beam (electron beam) before the beam passes, even for the very short bunch of SLC. In this note, we discuss the motions of electrons ionized by the electron beam or by the positron beam. We assume that the density of the beam is uniform and the shape cylindrical (transversely round and longitudinally rectangular).

  14. Dissociation and Ionization of Quasi-Periodically Vibrating H2+ in Intense Few-Cycle Mid-Infrared Laser Fields

    PubMed Central

    Jiang, Shicheng; Yu, Chao; Yuan, Guanglu; Wu, Tong; Lu, Ruifeng

    2017-01-01

    Using quantum mechanics calculations, we theoretically study the dissociation and ionization dynamics of the hydrogen-molecule ion in strong laser fields. Having prepared the nuclear wave packet of H2+ in a specific vibrational state, a pump laser is used to produce a vibrational excitation, leading to quasi-periodical vibration without ionization. Then, a time-delayed few-cycle laser is applied to trigger the dissociation or ionization of H2+. Both the time delay and the intensity of the probe laser alter the competition between dissociation and ionization. We also explore the dependence of kinetic-energy release spectra of fragments on the time delay, showing that the channels of above-threshold dissociation and below-threshold dissociation are opened and closed periodically. Also, dissociation from different channels is influenced by nuclear motion. The dissociation mechanism has been described in detail using the Floquet picture. This work provides a useful method for steering the electronic and nuclear dynamics of diatomic molecules in intense laser fields. PMID:28165034

  15. Dissociation and Ionization of Quasi-Periodically Vibrating H2+ in Intense Few-Cycle Mid-Infrared Laser Fields

    NASA Astrophysics Data System (ADS)

    Jiang, Shicheng; Yu, Chao; Yuan, Guanglu; Wu, Tong; Lu, Ruifeng

    2017-02-01

    Using quantum mechanics calculations, we theoretically study the dissociation and ionization dynamics of the hydrogen-molecule ion in strong laser fields. Having prepared the nuclear wave packet of H2+ in a specific vibrational state, a pump laser is used to produce a vibrational excitation, leading to quasi-periodical vibration without ionization. Then, a time-delayed few-cycle laser is applied to trigger the dissociation or ionization of H2+. Both the time delay and the intensity of the probe laser alter the competition between dissociation and ionization. We also explore the dependence of kinetic-energy release spectra of fragments on the time delay, showing that the channels of above-threshold dissociation and below-threshold dissociation are opened and closed periodically. Also, dissociation from different channels is influenced by nuclear motion. The dissociation mechanism has been described in detail using the Floquet picture. This work provides a useful method for steering the electronic and nuclear dynamics of diatomic molecules in intense laser fields.

  16. Dynamical features and electric field strengths of double layers driven by currents. [in auroras

    NASA Technical Reports Server (NTRS)

    Singh, N.; Thiemann, H.; Schunk, R. W.

    1985-01-01

    In recent years, a number of papers have been concerned with 'ion-acoustic' double layers. In the present investigation, results from numerical simulations are presented to show that the shapes and forms of current-driven double layers evolve dynamically with the fluctuations in the current through the plasma. It is shown that double layers with a potential dip can form even without the excitation of ion-acoustic modes. Double layers in two-and one-half-dimensional simulations are discussed, taking into account the simulation technique, the spatial and temporal features of plasma, and the dynamical behavior of the parallel potential distribution. Attention is also given to double layers in one-dimensional simulations, and electrical field strengths predicted by two-and one-half-dimensional simulations.

  17. Analytical model for calibrating laser intensity in strong-field-ionization experiments

    NASA Astrophysics Data System (ADS)

    Zhao, Song-Feng; Le, Anh-Thu; Jin, Cheng; Wang, Xu; Lin, C. D.

    2016-02-01

    The interaction of an intense laser pulse with atoms and molecules depends extremely nonlinearly on the laser intensity. Yet experimentally there still exists no simple reliable methods for determining the peak laser intensity within the focused volume. Here we present a simple method, based on an improved Perelomov-Popov-Terent'ev model, that would allow the calibration of laser intensities from the measured ionization signals of atoms or molecules. The model is first examined by comparing ionization probabilities (or signals) of atoms and several simple diatomic molecules with those from solving the time-dependent Schrödinger equation. We then show the possibility of using this method to calibrate laser intensities for atoms, diatomic molecules as well as large polyatomic molecules, for laser intensities from the multiphoton ionization to tunneling ionization regimes.

  18. Double layer field shaping systems for toroidal plasmas

    DOEpatents

    Ohyabu, Nobuyoshi

    1982-01-01

    Methods and apparatus for plasma generation, confinement and control such as Tokamak plasma systems are described having a two layer field shaping coil system comprising an inner coil layer close to the plasma and an outer coil layer to minimize the current in the inner coil layer.

  19. Nonequilibrium evolution of strong-field anisotropic ionized electrons towards a delayed plasma-state.

    PubMed

    Pasenow, B; Moloney, J V; Koch, S W; Chen, S H; Becker, A; Jaroń-Becker, A

    2012-01-30

    Rigorous quantum calculations of the femtosecond ionization of hydrogen atoms in air lead to highly anisotropic electron and ion angular (momentum) distributions. A quantum Monte-Carlo analysis of the subsequent many-body dynamics reveals two distinct relaxation steps, first to a nearly isotropic hot nonequilibrium and then to a quasi-equilibrium configuration. The collective isotropic plasma state is reached on a picosecond timescale well after the ultrashort ionizing pulse has passed.

  20. Electric-field-dependent photoconductivity in CdS nanowires and nanobelts: exciton ionization, Franz-Keldysh, and Stark effects.

    PubMed

    Li, Dehui; Zhang, Jun; Zhang, Qing; Xiong, Qihua

    2012-06-13

    We report on the electric-field-dependent photoconductivity (PC) near the band-edge region of individual CdS nanowires and nanobelts. The quasi-periodic oscillations above the band edge in nanowires and nanobelts have been attributed to a Franz-Keldesh effect. The exciton peaks in PC spectra of the nanowires and thinner nanobelts show pronounced red-shifting due to the Stark effect as the electric field increases, while the exciton ionization is mainly facilitated by strong electron-longitudinal optical (LO) phonon coupling. However, the band-edge transition of thick nanobelts blue-shifts due to the field-enhanced exciton ionization, suggesting partial exciton ionization as the electron-LO phonon coupling is suppressed in the thicker belts. Large Stark shifts, up to 48 meV in the nanowire and 12 meV in the thinner nanobelts, have been achieved with a moderate electric field on the order of kV/cm, indicating a strong size and dimensionality implication due to confinement and surface depletion.

  1. Multiphoton and tunneling ionization of atoms in an intense laser field

    NASA Astrophysics Data System (ADS)

    Fu, Yan-Zhuo; Zhao, Song-Feng; Zhou, Xiao-Xin

    2012-11-01

    We study the ionization probabilities of atoms by a short laser pulse with three different theoretical methods, i.e., the numerical solution of the time-dependent Schrödinger equation (TDSE), the Perelomov—Popov—Terent'ev (PPT) theory, and the Ammosov—Delone—Krainov (ADK) theory. Our results show that laser intensity dependent ionization probabilities of several atoms (i.e., H, He, and Ne) obtained from the PPT theory accord quite well with the TDSE results both in the multiphoton and tunneling ionization regimes, while the ADK results fit well to the TDSE data only in the tunneling ionization regime. Our calculations also show that laser intensity dependent ionization probabilities of a H atom at three different laser wavelengths of 600 nm, 800 nm, and 1200 nm obtained from the PPT theory are also in good agreement with those from the TDSE, while the ADK theory fails to give the wavelength dependence of ionization probability. Only when the laser wavelength is long enough, will the results of ADK be close to those of TDSE.

  2. Determination of small-field correction factors for cylindrical ionization chambers using a semiempirical method

    NASA Astrophysics Data System (ADS)

    Park, Kwangwoo; Bak, Jino; Park, Sungho; Choi, Wonhoon; Park, Suk Won

    2016-02-01

    A semiempirical method based on the averaging effect of the sensitive volumes of different air-filled ionization chambers (ICs) was employed to approximate the correction factors for beam quality produced from the difference in the sizes of the reference field and small fields. We measured the output factors using several cylindrical ICs and calculated the correction factors using a mathematical method similar to deconvolution; in the method, we modeled the variable and inhomogeneous energy fluence function within the chamber cavity. The parameters of the modeled function and the correction factors were determined by solving a developed system of equations as well as on the basis of the measurement data and the geometry of the chambers. Further, Monte Carlo (MC) computations were performed using the Monaco® treatment planning system to validate the proposed method. The determined correction factors (k{{Q\\text{msr}},Q}{{f\\text{smf}}, {{f}\\text{ref}}} ) were comparable to the values derived from the MC computations performed using Monaco®. For example, for a 6 MV photon beam and a field size of 1  ×  1 cm2, k{{Q\\text{msr}},Q}{{f\\text{smf}}, {{f}\\text{ref}}} was calculated to be 1.125 for a PTW 31010 chamber and 1.022 for a PTW 31016 chamber. On the other hand, the k{{Q\\text{msr}},Q}{{f\\text{smf}}, {{f}\\text{ref}}} values determined from the MC computations were 1.121 and 1.031, respectively; the difference between the proposed method and the MC computation is less than 2%. In addition, we determined the k{{Q\\text{msr}},Q}{{f\\text{smf}}, {{f}\\text{ref}}} values for PTW 30013, PTW 31010, PTW 31016, IBA FC23-C, and IBA CC13 chambers as well. We devised a method for determining k{{Q\\text{msr}},Q}{{f\\text{smf}}, {{f}\\text{ref}}} from both the measurement of the output factors and model-based mathematical computation. The proposed method can be useful in case the MC simulation would not be applicable for the clinical settings.

  3. Ionization and electric field properties of auroral arcs during magnetic quiescence

    SciTech Connect

    Robinson, R.M.; Mende, S.B. )

    1990-12-01

    Studies of the morphology of auroral precipitation during times of magnetic quiescence indicate that the polar cap shrinks and becomes distorted into a teardrop or pear-shaped region. On November 16, 1987, incoherent scatter radar and all-sky imaging photometer measurements were made of auroral arcs over Sondre Stromfjord, Greenland. The arcs were generally oriented in a geographic east-west direction which is approximately Sun aligned at a local time just after dusk. Kp was 1, and the interlplanetary magnetic field was northward during the time of observation, so tha the arcs occurred under magnetically quiet conditions. The Sondrestrom radar measurements were used to determine the electron density and plasma drifts associated with the arcs; the all-sky imaging photometer data were used to relate the radar measurements to the arc morphology. Assuming the arcs were produced by precipitating electrons, the height profiles of electron density indicate average energies less than about 2 keV and energy fluxes of 1 erg/(cm{sup 2}s). F region electron densities were high in the polar cap north of the arcs and low within the region of the arcs. The poleward boundary of the arc system was a convection reversal boundary across which plasma exited the polar cap region moving antisunward and then turned sunward (westward). The observed arc-associated convection is consistent with that expected under these geomagnetic conditions. Comparison of these results with the electrodynamic properties of other arcs observed in the afternoon and early evening suggests that there is a system of arcs that delineates the afternoon convection cell. The observed gradient in F region electron density across the arc can be explained in terms of the recombination of ionization drifting in response to the arc-associated convection pattern.

  4. Strong-field ionization rates of linear polyenes simulated with time-dependent configuration interaction with an absorbing potential

    SciTech Connect

    Krause, Pascal; Schlegel, H. Bernhard

    2014-11-07

    The strong field ionization rates for ethylene, trans 1,3-butadiene, and trans,trans 1,3,5-hexatriene have been calculated using time-dependent configuration interaction with single excitations and a complex absorbing potential (TDCIS-CAP). The calculations used the aug-cc-pVTZ basis set with a large set of diffuse functions (3 s, 2 p, 3 d, and 1 f) on each atom. The absorbing boundary was placed 3.5 times the van der Waals radius from each atom. The simulations employed a seven-cycle cosine squared pulse with a wavelength of 800 nm. Ionization rates were calculated for intensities ranging from 0.3 × 10{sup 14} W/cm{sup 2} to 3.5 × 10{sup 14} W/cm{sup 2}. Ionization rates along the molecular axis increased markedly with increasing conjugation length. By contrast, ionization rates perpendicular to the molecular axis were almost independent of the conjugation length.

  5. Low-dose ionizing irradiation triggers a 53BP1 response to DNA double strand breaks in mouse spermatogonial stem cells.

    PubMed

    Le, Wei; Qi, Lixin; Li, Jiaxuan; Wu, DengIong; Xu, Jun; Zhang, Jinfu

    2016-01-01

    The present study aims to examine the effect of low-dose ionizing irradiation on DNA double strand breaks (DSB) in mouse spermatogonial stem cells (SSCs) and reveal the underlying pathways for the DNA repair for DSB in SSCs. Eighteen one-month-old mice were divided into 6 groups and sacrificed separately at 45 minutes, 2 hours, 24 hours, 48 hours, and 72 hours after 0.1Gy X-ray irradiation (mice without receiving ionizing irradiation served as control). After perfusion fixation, testes were removed, sectioned, and followed by staining of γH2AX, 53BP1, Caspase 3, and promyelocytic leukemia zinc-finger (PLZF) for analysis among the different groups. The staining was observed by immunofluorescence visualized by confocal laser scanning. After low-dose irradiation, only 53BP1, but not Caspase3 or γH2AX was upregulated in PLZF positive SSCs within 45 minutes. The expression level of 53BP1 gradually decreased 24 hours after irradiation. Moreover, low-dose irradiation had no effect on the cell number and apoptotic status of SSCs. However other spermatogenic cells highly expressed γH2AX shortly after irradiation which was dramatically reduced following the events of DNA repair. It appears that low-dose ionizing irradiation may cause the DNA DSB of mouse spermatogenic cells. 53BP1, but not γH2AX, is involved in the DNA repair for DSB in SSCs. Our data indicates that 53BP1 plays an important role in the pathophysiological repair of DNA DSB in SSCs. This may open a new avenue to understanding the mechanisms of DNA repair of SSCs and male infertility.

  6. Nonlinear Dichroism in Back-to-Back Double Ionization of He by an Intense Elliptically Polarized Few-Cycle Extreme Ultraviolet Pulse.

    PubMed

    Ngoko Djiokap, J M; Manakov, N L; Meremianin, A V; Hu, S X; Madsen, L B; Starace, Anthony F

    2014-11-28

    Control of double ionization of He by means of the polarization and carrier-envelope phase (CEP) of an intense, few-cycle extreme ultraviolet (XUV) pulse is demonstrated numerically by solving the six-dimensional two-electron, time-dependent Schrödinger equation for He interacting with an elliptically polarized XUV pulse. Guided by perturbation theory (PT), we predict the existence of a nonlinear dichroic effect (∝I^{3/2}) that is sensitive to the CEP, ellipticity, peak intensity I, and temporal duration of the pulse. This dichroic effect (i.e., the difference of the two-electron angular distributions for opposite helicities of the ionizing XUV pulse) originates from interference of first- and second-order PT amplitudes, allowing one to probe and control S- and D-wave channels of the two-electron continuum. We show that the back-to-back in-plane geometry with unequal energy sharing is an ideal one for observing this dichroic effect that occurs only for an elliptically polarized, few-cycle attosecond pulse.

  7. Ionization chamber

    DOEpatents

    Walenta, Albert H.

    1981-01-01

    An ionization chamber has separate drift and detection regions electrically isolated from each other by a fine wire grid. A relatively weak electric field can be maintained in the drift region when the grid and another electrode in the chamber are connected to a high voltage source. A much stronger electric field can be provided in the detection region by connecting wire electrodes therein to another high voltage source. The detection region can thus be operated in a proportional mode when a suitable gas is contained in the chamber. High resolution output pulse waveforms are provided across a resistor connected to the detection region anode, after ionizing radiation enters the drift region and ionize the gas.

  8. Electron-impact double ionization of He by applying the Jacobi matrix approach to the Faddeev-Merkuriev equations

    SciTech Connect

    Mengoue, M. Silenou; Njock, M. G. Kwato; Piraux, B.; Popov, Yu. V.; Zaytsev, S. A.

    2011-05-15

    We apply the Jacobi matrix method to the Faddeev-Merkuriev differential equations in order to calculate the three-body wave function that describes the double continuum of an atomic two-electron system. This function is used to evaluate within the first-order Born approximation, the fully differential cross sections for (e,3e) processes in helium. The calculations are performed in the case of a coplanar geometry in which the incident electron is fast and both ejected electrons are slow. Quite unexpectedly, the results obtained by reducing our double-continuum wave function to its asymptotic expression are in satisfactory agreement with all the experimental data of Lahmam-Bennani et al.[A. Lahaman-Bennani et al., Phys. Rev. A 59, 3548 (1999); A. Kheifets et al., J. Phys. B 32, 5047 (1999).] without any need for renormalizing the data. When the full double-continuum wave function is used, the agreement of the results with the experimental data improves significantly. However, a detailed analysis of the calculations shows that full convergence in terms of the basis size is not reached. This point is discussed in detail.

  9. Wide-field LOFAR imaging of the field around the double-double radio galaxy B1834+620. A fresh view on a restarted AGN and doubeltjes

    NASA Astrophysics Data System (ADS)

    Orrù, E.; van Velzen, S.; Pizzo, R. F.; Yatawatta, S.; Paladino, R.; Iacobelli, M.; Murgia, M.; Falcke, H.; Morganti, R.; de Bruyn, A. G.; Ferrari, C.; Anderson, J.; Bonafede, A.; Mulcahy, D.; Asgekar, A.; Avruch, I. M.; Beck, R.; Bell, M. E.; van Bemmel, I.; Bentum, M. J.; Bernardi, G.; Best, P.; Breitling, F.; Broderick, J. W.; Brüggen, M.; Butcher, H. R.; Ciardi, B.; Conway, J. E.; Corstanje, A.; de Geus, E.; Deller, A.; Duscha, S.; Eislöffel, J.; Engels, D.; Frieswijk, W.; Garrett, M. A.; Grießmeier, J.; Gunst, A. W.; Hamaker, J. P.; Heald, G.; Hoeft, M.; van der Horst, A. J.; Intema, H.; Juette, E.; Kohler, J.; Kondratiev, V. I.; Kuniyoshi, M.; Kuper, G.; Loose, M.; Maat, P.; Mann, G.; Markoff, S.; McFadden, R.; McKay-Bukowski, D.; Miley, G.; Moldon, J.; Molenaar, G.; Munk, H.; Nelles, A.; Paas, H.; Pandey-Pommier, M.; Pandey, V. N.; Pietka, G.; Polatidis, A. G.; Reich, W.; Röttgering, H.; Rowlinson, A.; Scaife, A.; Schoenmakers, A.; Schwarz, D.; Serylak, M.; Shulevski, A.; Smirnov, O.; Steinmetz, M.; Stewart, A.; Swinbank, J.; Tagger, M.; Tasse, C.; Thoudam, S.; Toribio, M. C.; Vermeulen, R.; Vocks, C.; van Weeren, R. J.; Wijers, R. A. M. J.; Wise, M. W.; Wucknitz, O.

    2015-12-01

    Context. The existence of double-double radio galaxies (DDRGs) is evidence for recurrent jet activity in active galactic nuclei (AGN), as expected from standard accretion models. A detailed study of these rare sources provides new perspectives for investigating the AGN duty cycle, AGN-galaxy feedback, and accretion mechanisms. Large catalogues of radio sources, on the other hand, provide statistical information about the evolution of the radio-loud AGN population out to high redshifts. Aims: Using wide-field imaging with the LOFAR telescope, we study both a well-known DDRG as well as a large number of radio sources in the field of view. Methods: We present a high resolution image of the DDRG B1834+620 obtained at 144 MHz using LOFAR commissioning data. Our image covers about 100 square degrees and contains over 1000 sources. Results: The four components of the DDRG B1834+620 have been resolved for the first time at 144 MHz. Inner lobes were found to point towards the direction of the outer lobes, unlike standard FR II sources. Polarized emission was detected at +60 rad m-2 in the northern outer lobe. The high spatial resolution allows the identification of a large number of small double-lobed radio sources; roughly 10% of all sources in the field are doubles with a separation smaller than 1'. Conclusions: The spectral fit of the four components is consistent with a scenario in which the outer lobes are still active or the jets recently switched off, while emission of the inner lobes is the result of a mix-up of new and old jet activity. From the presence of the newly extended features in the inner lobes of the DDRG, we can infer that the mechanism responsible for their formation is the bow shock that is driven by the newly launched jet. We find that the density of the small doubles exceeds the density of FR II sources with similar properties at 1.4 GHz, but this difference becomes smaller for low flux densities. Finally, we show that the significant challenges of

  10. Dosimetric Verification and Validation of Conformal and IMRT Treatments Fields with an Ionization Chamber 2D-Array

    SciTech Connect

    Evangelina, Figueroa M.; Gabriel, Resendiz G.; Miguel, Perez P.

    2008-08-11

    A three-dimensional treatment planning system requires comparisons of calculated and measured dose distributions. It is necessary to confirm by means of patient specific QA that the dose distributions are correctly calculated, and that the patient data is correctly transferred to and delivered by the treatment machine. We used an analysis software for bi-dimensional dosimetric verification of conformal treatment and IMRT fields using as objective criterion the gamma index. An ionization chamber bi-dimensional array was used for absolute dose measurement in the complete field area.

  11. Role of Photoexcitation and Field Ionization in the Measurement of Accurate Oxide Stoichiometry by Laser-Assisted Atom Probe Tomography

    SciTech Connect

    Devaraj, Arun; Colby, Robert J.; Hess, Wayne P.; Perea, Daniel E.; Thevuthasan, Suntharampillai

    2013-03-06

    Pulsed lasers extend the high spatial and mass resolution of atom probe tomography (APT) to non-conducting materials, such as oxides. For prototypical metal oxide MgO, measured stoichiometry depends strongly upon pulse energy and applied voltage. Very low laser energies (0.02 pJ) and high electric fields yield optimal stoichiometric accuracy, attributed to the field-dependent ionization of photo-desorbed O or O2 neutrals. This emphasizes the importance of considering electronic excitations in APT analysis of oxides ionic materials.

  12. Pulsed-field ionization spectroscopy of high Rydberg states (n=50-200) of bis(ɛ6-benzene)chromium

    NASA Astrophysics Data System (ADS)

    Choi, Kyo-Won; Choi, Sunyoung; Baek, Sun Jong; Kim, Sang Kyu

    2007-01-01

    The ionization behavior of the high Rydberg states of bis(η6-benzene)chromium in the presence of ac and/or dc fields has been explored. The application of an ac scrambling field at the time of laser excitation lengthens the lifetime of the Rydberg state by almost two orders of magnitude. The lifetime enhancement by the scrambling field is much more effective for n <100 than it is for n >100 Rydberg states. The pulsed-field ionization of Rydberg states of n <100 shows the typical diabatic ionization behavior for low n. The two distinct ionization behaviors observed for the relatively low (n=50-100) and high (n=100-200) Rydberg states suggest that the former originate from the optically accessed nf Rydberg series, whereas the latter are due to np Rydberg series. Based on the understanding of the ionization behavior of bis(η6-benzene)chromium, the accurate ionization potential is deduced to give IP =5.4665±0.0003eV. Optimization of the various electric field conditions greatly enhances the spectral sensitivity of the mass-analyzed threshold ionization (MATI) spectroscopy. The high-resolution MATI spectrum of the title molecule obtained here provides precise cationic vibrational frequencies for many skeletal and benzene ring modes. A number of vibrational modes are newly identified, and the ambiguity regarding to some mode assignments is now clearly resolved through the Frank-Condon analysis based on ab initio calculations.

  13. Pulsed-field ionization zero electron kinetic energy spectrum of the ground electronic state of BeOBe+.

    PubMed

    Antonov, Ivan O; Barker, Beau J; Heaven, Michael C

    2011-01-28

    The ground electronic state of BeOBe(+) was probed using the pulsed-field ionization zero electron kinetic energy photoelectron technique. Spectra were rotationally resolved and transitions to the zero-point level, the symmetric stretch fundamental and first two bending vibrational levels were observed. The rotational state symmetry selection rules confirm that the ground electronic state of the cation is (2)Σ(g)(+). Detachment of an electron from the HOMO of neutral BeOBe results in little change in the vibrational or rotational constants, indicating that this orbital is nonbonding in nature. The ionization energy of BeOBe [65480(4) cm(-1)] was refined over previous measurements. Results from recent theoretical calculations for BeOBe(+) (multireference configuration interaction) were found to be in good agreement with the experimental data.

  14. Impurity-related nonlinear optical rectification in double quantum dot under electric field

    NASA Astrophysics Data System (ADS)

    Bejan, D.

    2016-11-01

    The characteristics of donor-impurity-related nonlinear optical rectification in asymmetric double quantum dot under electric field are investigated within the compact density-matrix formalism and the effective mass approximation. The results show that: (i) the binding energy of the ground state varies strongly with the impurity position and it is raised or decreased by the applied field, depending on the impurity position; (ii) the optical rectification spectra are rather sensitive to the impurity position and the electric field intensity; (iii) the changes in the impurity position within the double quantum dot and the electric field value may induce red or blue shift of the resonant peaks of the nonlinear optical rectification.

  15. Dynamics of perturbations in Double Field Theory & non-relativistic string theory

    NASA Astrophysics Data System (ADS)

    Ko, Sung Moon; Melby-Thompson, Charles M.; Meyer, René; Park, Jeong-Hyuck

    2015-12-01

    Double Field Theory provides a geometric framework capable of describing string theory backgrounds that cannot be understood purely in terms of Riemannian geometry — not only globally (`non-geometry'), but even locally (`non-Riemannian'). In this work, we show that the non-relativistic closed string theory of Gomis and Ooguri [1] arises precisely as such a non-Riemannian string background, and that the Gomis-Ooguri sigma model is equivalent to the Double Field Theory sigma model of [2] on this background. We further show that the target-space formulation of Double Field Theory on this non-Riemannian background correctly reproduces the appropriate sector of the Gomis-Ooguri string spectrum. To do this, we develop a general semi-covariant formalism describing perturbations in Double Field Theory. We derive compact expressions for the linearized equations of motion around a generic on-shell background, and construct the corresponding fluctuation Lagrangian in terms of novel completely covariant second order differential operators. We also present a new non-Riemannian solution featuring Schrödinger conformal symmetry.

  16. Measurement of transverse emittance and coherence of double-gate field emitter array cathodes.

    PubMed

    Tsujino, Soichiro; Das Kanungo, Prat; Monshipouri, Mahta; Lee, Chiwon; Miller, R J Dwayne

    2016-12-23

    Achieving small transverse beam emittance is important for high brightness cathodes for free electron lasers and electron diffraction and imaging experiments. Double-gate field emitter arrays with on-chip focussing electrode, operating with electrical switching or near infrared laser excitation, have been studied as cathodes that are competitive with photocathodes excited by ultraviolet lasers, but the experimental demonstration of the low emittance has been elusive. Here we demonstrate this for a field emitter array with an optimized double-gate structure by directly measuring the beam characteristics. Further we show the successful application of the double-gate field emitter array to observe the low-energy electron beam diffraction from suspended graphene in minimal setup. The observed low emittance and long coherence length are in good agreement with theory. These results demonstrate that our all-metal double-gate field emitters are highly promising for applications that demand extremely low-electron bunch-phase space volume and large transverse coherence.

  17. Measurement of transverse emittance and coherence of double-gate field emitter array cathodes

    PubMed Central

    Tsujino, Soichiro; Das Kanungo, Prat; Monshipouri, Mahta; Lee, Chiwon; Miller, R.J. Dwayne

    2016-01-01

    Achieving small transverse beam emittance is important for high brightness cathodes for free electron lasers and electron diffraction and imaging experiments. Double-gate field emitter arrays with on-chip focussing electrode, operating with electrical switching or near infrared laser excitation, have been studied as cathodes that are competitive with photocathodes excited by ultraviolet lasers, but the experimental demonstration of the low emittance has been elusive. Here we demonstrate this for a field emitter array with an optimized double-gate structure by directly measuring the beam characteristics. Further we show the successful application of the double-gate field emitter array to observe the low-energy electron beam diffraction from suspended graphene in minimal setup. The observed low emittance and long coherence length are in good agreement with theory. These results demonstrate that our all-metal double-gate field emitters are highly promising for applications that demand extremely low-electron bunch-phase space volume and large transverse coherence. PMID:28008918

  18. Measurement of transverse emittance and coherence of double-gate field emitter array cathodes

    NASA Astrophysics Data System (ADS)

    Tsujino, Soichiro; Das Kanungo, Prat; Monshipouri, Mahta; Lee, Chiwon; Miller, R. J. Dwayne

    2016-12-01

    Achieving small transverse beam emittance is important for high brightness cathodes for free electron lasers and electron diffraction and imaging experiments. Double-gate field emitter arrays with on-chip focussing electrode, operating with electrical switching or near infrared laser excitation, have been studied as cathodes that are competitive with photocathodes excited by ultraviolet lasers, but the experimental demonstration of the low emittance has been elusive. Here we demonstrate this for a field emitter array with an optimized double-gate structure by directly measuring the beam characteristics. Further we show the successful application of the double-gate field emitter array to observe the low-energy electron beam diffraction from suspended graphene in minimal setup. The observed low emittance and long coherence length are in good agreement with theory. These results demonstrate that our all-metal double-gate field emitters are highly promising for applications that demand extremely low-electron bunch-phase space volume and large transverse coherence.

  19. The morphologies and magnetic field structures of six 3CR double radio galaxies

    NASA Astrophysics Data System (ADS)

    Miller, L.

    1985-08-01

    Observations of the regions of low surface brightness in six 3CR double radio galaxies (3C 98, 184.1, 192, 223, 332 and 430) have been made with the Cambridge 5-km telescope. Maps of total and polarized intensity are presented, and the projected magnetic field structures have been deduced. High fractional polarization is seen in these sources, indicating that the magnetic fields are well-ordered. A qualitative model for the formation of the magnetic field structures is presented, in which pressure gradients in the extended lobes cause bulk flow of plasma and consequent large-scale shearing of the magnetic fields.

  20. Effects of electromagnetic fields on the nonlinear optical properties of asymmetric double quantum well under intense laser field

    NASA Astrophysics Data System (ADS)

    Yesilgul, U.; Sari, H.; Ungan, F.; Martínez-Orozco, J. C.; Restrepo, R. L.; Mora-Ramos, M. E.; Duque, C. A.; Sökmen, I.

    2017-03-01

    In this study, the effects of electric and magnetic fields on the optical rectification and second and third harmonic generation in asymmetric double quantum well under the intense non-resonant laser field is theoretically investigated. We calculate the optical rectification and second and third harmonic generation within the compact density-matrix approach. The theoretical findings show that the influence of electric, magnetic, and intense laser fields leads to significant changes in the coefficients of nonlinear optical rectification, second and third harmonic generation.

  1. Multi-photon ionization of atoms in intense short-wavelength radiation fields

    NASA Astrophysics Data System (ADS)

    Meyer, Michael

    2015-05-01

    The unprecedented characteristics of XUV and X-ray Free Electron Lasers (FELs) have stimulated numerous investigations focusing on the detailed understanding of fundamental photon-matter interactions in atoms and molecules. In particular, the high intensities (up to 106 W/cm2) giving rise to non-linear phenomena in the short wavelength regime. The basic phenomenology involves the production of highly charged ions via electron emission to which both sequential and direct multi-photon absorption processes contribute. The detailed investigation of the role and relative weight of these processes under different conditions (wavelength, pulse duration, intensity) is the key element for a comprehensive understanding of the ionization dynamics. Here the results of recent investigations are presented, performed at the FELs in Hamburg (FLASH) and Trieste (FERMI) on atomic systems with electronic structures of increasing complexity (Ar, Ne and Xe). Mainly, electron spectroscopy is used to obtain quantitative information about the relevance of various multi-photon ionization processes. For the case of Ar, a variety of processes including above threshold ionization (ATI) from 3p and 3s valence shells, direct 2p two-photon ionization and resonant 2p-4p two-photon excitations were observed and their role was quantitatively determined comparing the experimental ionization yields to ab-initio calculations of the cross sections for the multi-photon processes. Using Ar as a benchmark to prove the reliability of the combined experimental and theoretical approach, the more complex and intriguing case of Xe was studied. Especially, the analysis of the two-photon ATI from the Xe 4d shell reveals new insight into the character of the 4d giant resonance, which was unresolved in the linear one-photon regime. Finally, the influence of intense XUV radiation to the relaxation dynamics of the Ne 2s-3p resonance was investigated by angle-resolved electron spectroscopy, especially be observing

  2. Ionization and Charge Exchange Reactions in Neutral Entrainment of a Field Reversed Configuration Thruster

    DTIC Science & Technology

    2012-07-16

    exchange and ionization rates for neon are plotted in Fig. 3 (right). The recombination rate is not shown as it was found, similar to helium , to be much...temperature for light gas, helium are shown in Fig. 2 (left). It can be concluded that at those temperatures and a number density on the order of 1018 m−3...process in a helium -based FRC thruster may be expected to be fairly efficient, especially for lower plasma temperatures. Note however that for

  3. Modification of the quantum mechanical flux formula for electron-hydrogen ionization through Bohm's velocity field

    NASA Astrophysics Data System (ADS)

    Randazzo, J. M.; Ancarani, L. U.

    2015-12-01

    For the single differential cross section (SDCS) for hydrogen ionization by electron impact (e -H problem), we propose a correction to the flux formula given by R. Peterkop [Theory of Ionization of Atoms by Electron Impact (Colorado Associated University Press, Boulder, 1977)]. The modification is based on an alternative way of defining the kinetic energy fraction, using Bohm's definition of velocities instead of the usual asymptotic kinematical, or geometrical, approximation. It turns out that the solution-dependent, modified energy fraction is equally related to the components of the probability flux. Compared to what is usually observed, the correction yields a finite and well-behaved SDCS value in the asymmetrical situation where one of the continuum electrons carries all the energy while the other has zero energy. We also discuss, within the S -wave model of the e -H ionization process, the continuity of the SDCS derivative at the equal energy sharing point, a property not so clearly observed in published benchmark results obtained with integral and S -matrix formulas with unequal final states.

  4. Coherent control of H2+ ionization with intense XUV+IR fields

    NASA Astrophysics Data System (ADS)

    Madsen, C. B.; Esry, B. D.

    2011-05-01

    We recently developed a method to calculate how the electron and nuclei of the H2+share the energy absorbed from an intense laser pulse. While neither the electron energy spectrum nor the nuclear energy spectrum showed much structure separately, their joint energy spectrum revealed considerable structure. It showed multiphoton absorption with the energy shared between the nuclei and the electron. A number of questions followed our initial results: Can the joint energy distribution be used to map the vibrational wave function? To what extent can we control the asymptotic energies of the ionization products? The model behind above Coulomb threshold explosion [PRL 97, 013003 (2006)] seems to give a consistent explanation for the calculated energy distributions. We present joint energy distributions of the ionization resulting from an IR+XUV pump-probe laser scheme. In this way, we may investigate the controllability of the asymptotic energies of the ionization fragments and explore the possibility of using the joint energy distribution to map the vibrational wave function. Supported by the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy.

  5. Double-electron recombination in high-order-harmonic generation driven by spatially inhomogeneous fields

    NASA Astrophysics Data System (ADS)

    Chacón, Alexis; Ciappina, Marcelo F.; Lewenstein, Maciej

    2016-10-01

    We present theoretical studies of high-order harmonic generation (HHG) driven by plasmonic fields in two-electron atomic systems. Comparing the single- and two-electron active approximation models of the hydrogen negative ion, we provide strong evidence that a nonsequential double-electron recombination mechanism appears to be mainly responsible for the HHG cutoff extension. Our analysis is carried out by means of a reduced one-dimensional numerical integration of the two-electron time-dependent Schrödinger equation, and on investigations of the classical electron trajectories, resulting from the Newton's equation of motion. Additional comparisons between the hydrogen negative ion and the helium atom suggest that the double recombination process depends distinctly on the atomic target. Our research paves the way to the understanding of strong field processes in multielectronic systems driven by spatially inhomogeneous fields.

  6. The Spin-Plane Double Probe Electric Field Instrument for MMS

    NASA Astrophysics Data System (ADS)

    Lindqvist, P.-A.; Olsson, G.; Torbert, R. B.; King, B.; Granoff, M.; Rau, D.; Needell, G.; Turco, S.; Dors, I.; Beckman, P.; Macri, J.; Frost, C.; Salwen, J.; Eriksson, A.; Åhlén, L.; Khotyaintsev, Y. V.; Porter, J.; Lappalainen, K.; Ergun, R. E.; Wermeer, W.; Tucker, S.

    2016-03-01

    The Spin-plane double probe instrument (SDP) is part of the FIELDS instrument suite of the Magnetospheric Multiscale mission (MMS). Together with the Axial double probe instrument (ADP) and the Electron Drift Instrument (EDI), SDP will measure the 3-D electric field with an accuracy of 0.5 mV/m over the frequency range from DC to 100 kHz. SDP consists of 4 biased spherical probes extended on 60 m long wire booms 90∘ apart in the spin plane, giving a 120 m baseline for each of the two spin-plane electric field components. The mechanical and electrical design of SDP is described, together with results from ground tests and calibration of the instrument.

  7. Selective reduction of C=C double bonds in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of microcystins.

    PubMed

    Deleuze, Christelle; De Pauw, Edwin; Quinton, Loic

    2010-01-01

    Cyanobacteria are photosynthetic bacteria encountered in various aquatic environments. Some of them are able to produce powerful toxins called cyanotoxins. Among cyanotoxins, microcystins (MCs) constitute a group of closely related cyclic heptapeptides. Their sequences are made up of classical amino acids as well as post- translational modified ones. Interestingly, in vivo metabolism of microcystins seems to be greatly dependent on various minor structural differences and particularly those of the seventh amino acid, which can be either dehydroalanine (or a derivative), dehydroaminobutyric acid (or a derivative), serine or alanine. As a consequence, microcystins have been classified on the basis of the nature of this singular amino acid. A major difficulty in the classification of such toxins is that some of them share the same molecular masses and the same molecular formulas. Consequently, a simple mass measurement is not sufficient to determine the structure and the class of a toxin of interest. Heavy and expensive techniques are used to classify them, such as multi-dimensional nuclear magnetic resonance and amino acid analysis. In this work, a new matrix-assisted laser desorption/ionization time-of-flight method leading to an easy classification of MCs is proposed. The methodology relies on the reductive properties of the matrix 1,5-diaminonaphtalene (1,5-DAN) which appears to be able to selectively reduce the double carbon-carbon bond belonging to the seventh amino acid. Moreover, the yield of reduction seems to be influenced by the degree of substitution of this double bond, allowing a discrimination between dehydroalanine and dehydroaminobutyric acid. This selective reduction was confirmed by the study of three synthetic peptides by mass spectrometry and tandem mass spectrometry. According to these results, the use of reductive matrices seems to be promising in the study of microcystins and in their classification. More generally, 1,5-DAN allows the selective

  8. Isotope Effect in Tunneling Ionization of Neutral Hydrogen Molecules

    NASA Astrophysics Data System (ADS)

    Wang, X.; Xu, H.; Atia-Tul-Noor, A.; Hu, B. T.; Kielpinski, D.; Sang, R. T.; Litvinyuk, I. V.

    2016-08-01

    It has been recently predicted theoretically that due to nuclear motion light and heavy hydrogen molecules exposed to strong electric field should exhibit substantially different tunneling ionization rates [O. I. Tolstikhin, H. J. Worner, and T. Morishita, Phys. Rev. A 87, 041401(R) (2013)]. We studied that isotope effect experimentally by measuring relative ionization yields for each species in a mixed H2/D2 gas jet interacting with intense femtosecond laser pulses. In a reaction microscope apparatus, we detected ionic fragments from all contributing channels (single ionization, dissociation, and sequential double ionization) and determined the ratio of total single ionization yields for H2 and D2 . The measured ratio agrees quantitatively with the prediction of the generalized weak-field asymptotic theory in an apparent failure of the frozen-nuclei approximation.

  9. Following Ultrafast Radiationless Relaxation Dynamics With Strong Field Dissociative Ionization: A Comparison Between Adenine, Uracil, and Cytosine

    SciTech Connect

    Kotur, Marija; Weinacht, Thomas C.; Zhou, Congyi; Matsika, Spiridoula

    2011-03-22

    We present the application of ultrafast time- and mass-resolved ion yield laser spectroscopy in conjunction with ab initio electronic structure calculations to track molecular excited-state dynamics. We discuss how molecular fragment ions can be associated with conformations the molecule assumes during its relaxation, and how various features of the pump-probe signal for those fragments can be used to infer details of the excited state dynamics. We present results for radiationless relaxation in DNA and RNA bases adenine, cytosine, and uracil in the gas phase, pumped near a one-photon resonance transition to an excited state, and probed via strong-field near-IR dissociative ionization.

  10. Liquid injection field desorption ionization mass spectrometry of cyclic metal carbonyl complexes with tetra-antimony ligands.

    PubMed

    Breunig, Hans J; Linden, H Bernhard; Moldovan, Ovidiu

    2013-01-01

    Reactions of (norbornadiene)Cr(CO)(4) or cis-(piperidine)(2)Mo(CO)(4) with R(2)Sb-SbR(2), and cyclo-(R'Sb)(n) (R' = Et, n-Pr; n = 4, 5) give the complexes cyclo-[M(CO)(4)(R(2)Sb-SbR'- SbR'-SbR(2))] (1: M = Cr, R = Me, R'= Et; 2: M = Mo, R = Et, R' = Et; 3: M = Mo, R = Et, R' = n-Pr). Not accessible to established characterization methods, the oily, extremely reactive unpurified mixture of 3 with scrambled ligands was characterized by mass spectrometry using liquid injection field desorption ionization (LIFDI).

  11. Determination of Optical-Field Ionization Dynamics in Plasmas through the Direct Measurement of the Optical Phase Change

    SciTech Connect

    Taylor, A.J.; Omenetto, G.; Rodriguez, G.; Siders, C.W.; Siders, J.L.W.; Downer, C.

    1999-07-16

    This is the final report of a three-year Laboratory Directed Research and Development (LDRD) Project at Los Alamos National Laboratory (LANL). The detailed dynamics of an atom in a strong laser field is rich in both interesting physics and potential applications. The goal of this project was to develop a technique for characterizing high-field laser-plasma interactions with femtosecond resolution based on the direct measurement of the phase change of an optical pulse. The authors developed the technique of Multi-pulse Interferometric Frequency Resolved Optical Gating (MI-FROG), which recovers (to all orders) the phase difference between pumped and unpumped probe pulses, enabling the determination of sub-pulsewidth time-resolved phase and frequency shifts impressed by a pump pulse on a weak probe pulse. Using MI-FROG, the authors obtained the first quantitative measurements of high-field ionization rates in noble gases and diatomic molecules. They obtained agreement between the measured ionization rates an d those calculated for the noble gases and diatomic nitrogen and hydrogen using a one-dimensional fluid model and rates derived from tunneling theory. However, much higher rates are measured for diatomic oxygen than predicted by tunneling theory calculations.

  12. Electromagnetically induced transparency in an asymmetric double quantum well under non-resonant, intense laser fields

    NASA Astrophysics Data System (ADS)

    Niculescu, E. C.

    2017-02-01

    Electromagnetically induced transparency in an asymmetric double quantum well subjected to a non-resonant, intense laser field is theoretically investigated. We found that the energy levels configuration could be switched between a Λ-type and a ladder-type scheme by varying the non-resonant radiation intensity. This effect is due to the laser-induced electron tunneling between the wells and it allows a substantial flexibility in the manipulation of the optical properties. The dependence of the susceptibilities on the control field Rabi frequency, intensity of the nonresonant laser, and the control field detuning for both configurations are discussed and compared.

  13. Cohesin phosphorylation and mobility of SMC1 at ionizing radiation-induced DNA double-strand breaks in human cells

    SciTech Connect

    Bauerschmidt, Christina; Helleday, Thomas

    2011-02-01

    Cohesin, a hetero-tetrameric complex of SMC1, SMC3, Rad21 and Scc3, associates with chromatin after mitosis and holds sister chromatids together following DNA replication. Following DNA damage, cohesin accumulates at and promotes the repair of DNA double-strand breaks. In addition, phosphorylation of the SMC1/3 subunits contributes to DNA damage-induced cell cycle checkpoint regulation. The aim of this study was to determine the regulation and consequences of SMC1/3 phosphorylation as part of the cohesin complex. We show here that the ATM-dependent phosphorylation of SMC1 and SMC3 is mediated by H2AX, 53BP1 and MDC1. Depletion of RAD21 abolishes these phosphorylations, indicating that only the fully assembled complex is phosphorylated. Comparison of wild type SMC1 and SMC1S966A in fluorescence recovery after photo-bleaching experiments shows that phosphorylation of SMC1 is required for an increased mobility after DNA damage in G2-phase cells, suggesting that ATM-dependent phosphorylation facilitates mobilization of the cohesin complex after DNA damage.

  14. Multichannel Double-Row Transmission Line Array for Human MR Imaging at Ultrahigh Fields

    PubMed Central

    Yan, Xinqiang; Pedersen, Jan Ole; Wei, Long

    2017-01-01

    Objective In microstrip transmission line (MTL) transmit/receive (transceive) arrays used for ultrahigh field MRI, the array length is often constrained by the required resonant frequency, limiting the image coverage. The purpose of this study is to increase the imaging coverage and also improve its parallel imaging capability by utilizing a double-row design. Methods A 16-channel double-row MTL transceive array was designed, constructed, and tested for human head imaging at 7 T. Array elements between two rows were decoupled by using the induced current elimination or magnetic wall decoupling technique. In vivo human head images were acquired, and g-factor results were calculated to evaluate the performance of this double-row array. Results Testing results showed that all coil elements were well decoupled with a better than −18 dB transmission coefficient between any two elements. The double-row array improves the imaging quality of the lower portion of the human head, and has low g-factors even at high acceleration rates. Conclusion Compared with a regular single-row MTL array, the double-row array demonstrated a larger imaging coverage along the z-direction with improved parallel imaging capability. Significance The proposed technique is particularly suitable for the design of large-sized transceive arrays with large channel counts, which ultimately benefits the imaging performance in human MRI. PMID:25706499

  15. Multiphoton ionization of the calcium atom by linearly and circularly polarized laser fields

    SciTech Connect

    Buica, Gabriela; Nakajima, Takashi

    2010-04-15

    We theoretically study multiphoton ionization of the Ca atom irradiated by the second (photon energy 3.1 eV) and third (photon energy 4.65 eV) harmonics of Ti:sapphire laser pulses (photon energy 1.55 eV). Because of the dense energy level structure the second and third harmonics of a Ti:sapphire laser are nearly single-photon resonant with the 4s4p {sup 1}P{sup o} and 4s5p {sup 1}P{sup o} states, respectively. Although two-photon ionization takes place through the near-resonant intermediate states with the same symmetry in both cases, it turns out that there are significant differences between them. The photoelectron energy spectra exhibit the absence or presence of substructures. More interestingly, the photoelectron angular distributions clearly show that the main contribution to the ionization processes by the third harmonic arises from the far-off-resonant 4s4p {sup 1}P{sup o} state rather than the near-resonant 4s5p {sup 1}P{sup o} state. These findings can be attributed to the fact that the dipole moment for the 4s{sup 2} {sup 1}S{sup e}-4s5p {sup 1}P{sup o} transition is much smaller than that for the 4s{sup 2} {sup 1}S{sup e}-4s4p {sup 1}P{sup o} transition.

  16. Time Resolved Studies of Interfacial Reactions of Ozone with Pulmonary Phospholipid Surfactants Using Field Induced Droplet Ionization Mass Spectrometry

    PubMed Central

    Kim, Hugh I.; Kim, Hyungjun; Shin, Young Shik; Beegle, Luther W.; Goddard, William A.; Heath, James R.; Kanik, Isik; Beauchamp, J. L.

    2013-01-01

    Field induced droplet ionization mass spectrometry (FIDI-MS) comprises a soft ionization method to sample ions from the surface of microliter droplets. A pulsed electric field stretches neutral droplets until they develop dual Taylor cones, emitting streams of positively and negatively charged submicrometer droplets in opposite directions, with the desired polarity being directed into a mass spectrometer for analysis. This methodology is employed to study the heterogeneous ozonolysis of 1-palmitoyl-2-oleoyl-sn-phosphatidylglycerol (POPG) at the air–liquid interface in negative ion mode using FIDI mass spectrometry. Our results demonstrate unique characteristics of the heterogeneous reactions at the air–liquid interface. We observe the hydroxyhydroperoxide and the secondary ozonide as major products of POPG ozonolysis in the FIDI-MS spectra. These products are metastable and difficult to observe in the bulk phase, using standard electrospray ionization (ESI) for mass spectrometric analysis. We also present studies of the heterogeneous ozonolysis of a mixture of saturated and unsaturated phospholipids at the air–liquid interface. A mixture of the saturated phospholipid 1,2-dipalmitoyl-sn-phosphatidylglycerol (DPPG) and unsaturated POPG is investigated in negative ion mode using FIDI-MS while a mixture of 1,2-dipalmitoyl-sn-phosphatidylcholine (DPPC) and 1-stearoyl-2-oleoyl-sn-phosphatidylcholine (SOPC) surfactant is studied in positive ion mode. In both cases FIDI-MS shows the saturated and unsaturated pulmonary surfactants form a mixed interfacial layer. Only the unsaturated phospholipid reacts with ozone, forming products that are more hydrophilic than the saturated phospholipid. With extensive ozonolysis only the saturated phospholipid remains at the droplet surface. Combining these experimental observations with the results of computational analysis provides an improved understanding of the interfacial structure and chemistry of a surfactant layer system

  17. Determinations of the correction factors for small fields in cylindrical ionization chambers based on measurement and numerical calculation

    NASA Astrophysics Data System (ADS)

    Park, Kwangwoo; Choi, Wonhoon; Park, Sungho; Choi, Jin Hwa; Park, Suk Won; Bak, Jino

    2015-07-01

    We investigated the volume averaging effect for air-filled cylindrical ionization chambers to determine the correction factors in a small photon field for a given chamber. We measured output factors with several cylindrical ionization chambers, and by using a mathematical method similar to deconvolution, we modeled the non-constant and inhomogeneous exposure function in the cavity of the chamber. The parameters in the exposure function and the correction factors were determined by solving a system of equations that we had developed by using the measured data and the geometry of the given chamber. The correction factors (CFs) were very similar to those obtained from Monte Carlo (MC) simulations. For example, the CFs in this study were found to be 1.116 for PTW31010 and 1.0225 for PTW31016 while the CFs obtained from MC simulations were reported as being approximately between 1.17 and 1.20 for PTW31010 and between 1.02 and 1.06 for PTW31016 in a 6-MV photon beam of 1 × 1 cm2. Furthermore, the method of deconvolution combined with the MC result for the chamber's response function showed a similar CF for PTW 30013, which was reported as 2.29 and 1.54 for a 1 × 1 cm2 and a 1.5 × 1.5 cm2 field size, respectively. The CFs from our method were similar, 2.42 and 1.54. In addition, we report CFs for PTW30013, PTW31010, PTW31016, IBA FC23-C, and IBA CC13. As a consequence, we suggest the use of our method to measure the correct output factor by using the fact that an inhomogeneous exposure causes a volume averaging effect in the cavity of air-filled cylindrical ionization chamber. The result obtained by using our method is very similar to that obtained from MC simulations. The method we developed can easily be applied in clinics.

  18. Orphan receptor TR3 enhances p53 transactivation and represses DNA double-strand break repair in hepatoma cells under ionizing radiation.

    PubMed

    Zhao, Bi-xing; Chen, Hang-zi; Du, Xiao-dan; Luo, Jie; He, Jian-ping; Wang, Rong-hao; Wang, Yuan; Wu, Rong; Hou, Ru-rong; Hong, Ming; Wu, Qiao

    2011-08-01

    In response to ionizing radiation (IR)-induced DNA double-strand breaks (DSB), cells elicit an evolutionarily conserved checkpoint response that induces cell cycle arrest and either DNA repair or apoptosis, thereby maintaining genomic stability. DNA-dependent protein kinase (DNA-PK) is a central enzyme involved in DSB repair for mammalian cells that comprises a DNA-PK catalytic subunit and the Ku protein, which act as regulatory elements. DNA-PK also functions as a signaling molecule to selectively regulate p53-dependent apoptosis in response to IR. Herein, we demonstrate that the orphan nuclear receptor TR3 suppresses DSB repair by blocking Ku80 DNA-end binding activity and promoting DNA-PK-induced p53 activity in hepatoma cells. We find that TR3 interacts with Ku80 and inhibits its binding to DNA ends, which then suppresses DSB repair. Furthermore, TR3 is a phosphorylation substrate for DNA-PK and interacts with DNA-PK catalytic subunit in a Ku80-independent manner. Phosphorylated TR3, in turn, enhances DNA-PK-induced phosphorylation and p53 transcription activity, thereby enhancing IR-induced apoptosis in hepatoma cells. Together, our findings reveal novel functions for TR3, not only in DSB repair regulation but also in IR-induced hepatoma cell apoptosis, and they suggest that TR3 is a potential target for cancer radiotherapy.

  19. Kinetic theory of low-frequency cross-field instability in a weakly ionized plasma. I

    SciTech Connect

    Dimant, Y.S.; Sudan, R.N.

    1995-04-01

    A consistent kinetic theory is developed for the description of electrons under conditions of a low-frequency two-stream {bold E}{times}{bold B} instability in collisionally dominated, weakly ionized plasmas. Starting from the Boltzmann collision integral, a simplified kinetic equation for the electron distribution function has been derived, which takes into account strong pitch-angle scattering of electrons by neutrals, velocity dependence of the electron--neutral collision frequency, etc. Linearized equations describing small oscillations of the electron distribution function and ion density are presented. For the asymptotic case of short waves, the dispersion relation of the {bold E}{times}{bold B} instability has been obtained and analyzed under conditions typical for the lower ionosphere. Under certain conditions, the rigorous kinetic consideration yields substantial changes in results compared to previous theories. The general approach may be applied to other linear and nonlinear low-frequency processes in a weakly ionized plasma. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  20. Biological effect of an alternating electric field on cell proliferation and synergistic antimitotic effect in combination with ionizing radiation

    PubMed Central

    Kim, Eun Ho; Kim, Ye Jin; Song, Hyo Sook; Jeong, Youn Kyoung; Lee, Ji Young; Sung, Jiwon; Yoo, Seung Hoon; Yoon, Myonggeun

    2016-01-01

    Alternating electric fields at an intermediate frequency (100~300 kHz), referred to as tumour-treating fields (TTF), are believed to interrupt the process of mitosis via apoptosis and to act as an inhibitor of cell proliferation. Although the existence of an antimitotic effect of TTF is widely known, the proposed apoptotic mechanism of TTF on cell function and the efficacy of TTF are controversial issues among medical experts. To resolve these controversial issues, a better understanding of the underlying molecular mechanisms of TTF on cell function and the differences between the effects of TTF alone and in combination with other treatment techniques is essential. Here, we report experimental evidence of TTF-induced apoptosis and the synergistic antimitotic effect of TTF in combination with ionizing radiation (IR). For these experiments, two human Glioblastoma multiforme (GBM) cells (U373 and U87) were treated either with TTF alone or with TTF followed by ionizing radiation (IR). Cell apoptosis, DNA damage, and mitotic abnormalities were quantified after the application of TTF, and their percentages were markedly increased when TTF was combined with IR. Our experimental results also suggested that TTF combined with IR synergistically suppressed both cell migration and invasion, based on the inhibition of MMP-9 and vimentin. PMID:27556699

  1. Strong-Field Induced Dissociative Ionization of Vinyl Bromide Probed by Femtosecond Extreme Ultraviolet (xuv) Transient Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Lin, Ming-Fu; Neumark, Daniel; Leone, Stephen R.; Gessner, Oliver

    2014-06-01

    A table-top high harmonic XUV light source (50 eV to 70 eV) has been successfully utilized to explore the ultrafast dynamics of vinyl bromide (CH2=CHBr) with electronic state specificity and elemental sensitivity. Strong-field ionization (SFI) provides a method to produce ions in different ionic states. The production and dissociation dynamics of these ionic states are investigated by femtosecond XUV transient absorption spectroscopy. The XUV photons probe the time-dependent spectroscopic features associated with transitions of the Br (3d) inner-shell electrons to vacancies in molecular and atomic valence orbitals. The experimental observation shows that two ionic states are produced by SFI. The first ionic excited state is dissociative, leading to C-Br bond dissociation which is observed in real time as a shift in the absorption energy. The results offer powerful new insights about orbital-specific electronic processes in high field ionization, coupled vibrational relaxation and dissociation dynamics, and the correlation of valence hole-state location and dissociation in polyatomic molecules, all probed simultaneously by ultrafast table-top XUV spectroscopy.

  2. The sensitivities of high-harmonic generation and strong-field ionization to coupled electronic and nuclear dynamics.

    PubMed

    Baykusheva, Denitsa; Kraus, Peter M; Zhang, Song Bin; Rohringer, Nina; Wörner, Hans Jakob

    2014-01-01

    The sensitivities of high-harmonic generation (HHG) and strong-field ionization (SFI) to coupled electronic and nuclear dynamics are studied, using the nitric oxide (NO) molecule as an example. A coherent superposition of electronic and rotational states of NO is prepared by impulsive stimulated Raman scattering and probed by simultaneous detection of HHG and SFI yields. We observe a fourfold higher sensitivity of high-harmonic generation to electronic dynamics and attribute it to the presence of inelastic quantum paths connecting coherently related electronic states [Kraus et al., Phys. Rev. Lett.111, 243005 (2013)]. Whereas different harmonic orders display very different sensitivities to rotational or electronic dynamics, strong-field ionization is found to be most sensitive to electronic motion. We introduce a general theoretical formalism for high-harmonic generation from coupled nuclear-electronic wave packets. We show that the unequal sensitivities of different harmonic orders to electronic or rotational dynamics result from the angle dependence of the photorecombination matrix elements which encode several autoionizing and shape resonances in the photoionization continuum of NO. We further study the dependence of rotational and electronic coherences on the intensity of the excitation pulse and support the observations with calculations.

  3. Observations of the Ion Signatures of Double Merging and the Formation of Newly Closed Field Lines

    NASA Technical Reports Server (NTRS)

    Chandler, Michael O.; Avanov, Levon A.; Craven, Paul D.

    2007-01-01

    Observations from the Polar spacecraft, taken during a period of northward interplanetary magnetic field (IMF) show magnetosheath ions within the magnetosphere with velocity distributions resulting from multiple merging sites along the same field line. The observations from the TIDE instrument show two separate ion energy-time dispersions that are attributed to two widely separated (-20Re) merging sites. Estimates of the initial merging times show that they occurred nearly simultaneously (within 5 minutes.) Along with these populations, cold, ionospheric ions were observed counterstreaming along the field lines. The presence of such ions is evidence that these field lines are connected to the ionosphere on both ends. These results are consistent with the hypothesis that double merging can produce closed field lines populated by solar wind plasma. While the merging sites cannot be unambiguously located, the observations and analyses favor one site poleward of the northern cusp and a second site at low latitudes.

  4. Study of acoustic field modulation in the regenerator by double loudspeakers method.

    PubMed

    Zhou, Lihua; Xie, Xiujuan; Li, Qing

    2011-11-01

    A model to modulate acoustic field in a regenerator of a thermoacoustic system by the double loudspeakers method is presented in this paper. The equations are derived for acoustic field modulation. They represent the relations among acoustic field (complex pressure p(0), complex velocity u(0), and acoustic impedance Z(0)), driving parameters of loudspeakers (voltage amplitude and its phase difference), and operating parameters involved in a matrix H (frequency, temperature of regenerator). The range of acoustic field is adjustable and limited by the maximal driving voltages of loudspeakers according to driving parameters. The range is simulated and analyzed in the amplitude-phase and complex coordinate planes for a given or variable H. The simulated results indicate that the range has its intrinsic characteristics. The expected acoustic field in a regenerator can be obtained feasibly by the modulation.

  5. Matter-Wave Fields for Double-Slit Atom Interferometry: Variational Versus Exact Solitons

    NASA Astrophysics Data System (ADS)

    Ndifon Ngek, Isaiah; Moïse Dikandé, Alain; Moubissi, Alain Brice

    2016-12-01

    A major challenge in the theoretical modeling of double-slit interferometry involving matter-wave fields is the appropriate waveform to be assigned to this field. While all the studies carried out to date on this issue deal with variational fields, experiments suggest that the optical field is generated by splitting a single-hump Bose-Einstein condensate into two spatially and temporally entangled pulses indicating the possibility of fully controlling the subsequent motion of the two output pulses. To probe the consistency of variational and exact soliton solutions to the field equation, we solve the Gross-Pitaevskii equation with an optical potential barrier assumed to act as a beam splitter, while including gravity. The exact solution is compared with the two most common variational wavefunctions, namely, the Hermite-Gaussian and super-sech modes. From numerical simulations, evidence is given of the exact solution as being the most appropriate matter-wave structure that provides a coherent description of the generation and spatio-temporal evolution of matter-wave optical fields in a hypothetical implementation of double-slit atom interferometry.

  6. PFI-ZEKE (Pulsed Field Ionization-Zero Electron Kinetic Energy) para el estudio de iones

    NASA Astrophysics Data System (ADS)

    Castaño, F.; Fernández, J. A.; Basterretxea, A. Longarte. F.; Sánchez Rayo, M. N.; Martínez, R.

    Entre las áreas hacia donde ha evolucionado la Química en los últimos años están los estudios de sistemas con especies reactivas de alta energía y los dominados por fuerzas intermoleculares débiles, con energías de unas pocas kcal/mol. En efecto, el estudio de las propiedades de los iones, comenzando por su relación con la molécula neutra de la que procede, la energía de ionización, los estados vibracionales y rotacionales, energías de enlace de Van der Waals entre el ión y una amplia variedad de otras moléculas, sus confórmeros o isómeros y sus reacciones o semi-reacciones químicas están en la raíz de la necesidad de la espectroscopía conocida como PFI-ZEKE, Pulsed Field Ionization-Zero Electron Kinetic Energy. Entre las aplicaciones que requieren estos conocimientos se encuentran la generación de plasmas para la fabricación de semiconductores, memorias magnéticas, etc, así como los sistemas astrofísicos, la ionosfera terrestre, etc. La espectroscopía ZEKE es una evolución de las de fluorescencia inducida por láser, LIF, ionización multifotónica acrecentada por resonancia, REMPI, con uno y dos colores y acoplada a un sistema de tiempo de vuelo, REMPI-TOF-MS, y las espectroscopías de doble resonancia IR-UV y UV-UV. Sus espectros y la ayuda de cálculos ab inicio permite determinar las energías de enlace de complejos de van der Waals en estados fundamental y excitados, identificar confórmeros e isómeros, obtener energías de ionización experimentales aproximadas (100 cm-1) y otras variables de interés. Al igual que con LIF, REMPI y dobles resonancias, es posible utilizar muestras gaseosas, pero los espectros están muy saturados de bandas y su interpretación es difícil o imposible. Se evitan estas dificultades estudiando las moléculas o complejos en expansiones supersónicas, donde la T de los grados de libertad solo alcanzan unos pocos K. Para realizar experimentos de ZEKE hay que utilizar una propiedad recientemente

  7. Highly Charged Ions from Laser-Cluster Interactions: Local-Field-Enhanced Impact Ionization and Frustrated Electron-Ion Recombination

    SciTech Connect

    Fennel, Thomas; Ramunno, Lora; Brabec, Thomas

    2007-12-07

    Our molecular dynamics analysis of Xe{sub 147-5083} clusters identifies two mechanisms that contribute to the yet unexplained observation of extremely highly charged ions in intense laser cluster experiments. First, electron impact ionization is enhanced by the local cluster electric field, increasing the highest charge states by up to 40%; a corresponding theoretical method is developed. Second, electron-ion recombination after the laser pulse is frustrated by acceleration electric fields typically used in ion detectors. This increases the highest charge states by up to 90%, as compared to the usual assumption of total recombination of all cluster-bound electrons. Both effects together augment the highest charge states by up to 120%, in reasonable agreement with experiments.

  8. Numerical study of electric potential formation in a weakly ionized plasma flowing supersonically through open magnetic field lines

    NASA Astrophysics Data System (ADS)

    Laosunthara, Ampan; Takeda, Jun; Akatsuka, Hiroshi

    2017-01-01

    We investigate the mechanism of space potential formation due to a diverging magnetic field on a rarefied weakly ionized plasma flowing supersonically by performing a hybrid simulation. Ions and neutrals are treated by the particle-based direct simulation Monte Carlo method, while electrons are treated as a fluid to save time and memory. We apply an electron continuity equation in order to treat the electron velocity independently of the ion velocity. We find the number density of ions (and electrons) distributed along the magnetic field. We also find electron rotation along the flowing direction. Since we remove the current-free condition assumed in our previous study, we find that the longitudinal variation in the space potential agrees reasonably well with our previous experimental results.

  9. Highly charged ions from laser-cluster interactions: local-field-enhanced impact ionization and frustrated electron-ion recombination.

    PubMed

    Fennel, Thomas; Ramunno, Lora; Brabec, Thomas

    2007-12-07

    Our molecular dynamics analysis of Xe_{147-5083} clusters identifies two mechanisms that contribute to the yet unexplained observation of extremely highly charged ions in intense laser cluster experiments. First, electron impact ionization is enhanced by the local cluster electric field, increasing the highest charge states by up to 40%; a corresponding theoretical method is developed. Second, electron-ion recombination after the laser pulse is frustrated by acceleration electric fields typically used in ion detectors. This increases the highest charge states by up to 90%, as compared to the usual assumption of total recombination of all cluster-bound electrons. Both effects together augment the highest charge states by up to 120%, in reasonable agreement with experiments.

  10. Multielectron ultrastrong laser field ionization of Arn+, Krm+ and Xel+ (n <= 9, m <= 9, l <= 12) at intensities from 1015 W cm-2 to 1018 W cm-2

    NASA Astrophysics Data System (ADS)

    Palaniyappan, S.; Di Chiara, A.; Ghebregziabher, I.; Huskins, E. L.; Falkowski, A.; Pajerowski, D.; Walker, B. C.

    2006-07-01

    Ionization yields are reported for Ar, Kr and Xe in ultrastrong fields from 1015 W cm-2 to 1018 W cm-2. Non-sequential ionization (NSI) is shown to be a robust and general feature in ultrahigh field ionization. NSI yields measured are consistent with the trends predicted by a rescattering model, but as one proceeds to higher Z atoms more NSI is observed than predicted theoretically. Additional recollision mechanisms that may need to be considered in future theories of ultrastrong field-atom interactions include 'chain' NSI, NSI from excited states of the atom (e.g. Rydberg states or inner-shell holes) and the possibility of ultrastrong field enhanced recollision/impact processes.

  11. Kinetic theory of low-frequency cross-field instability in a weakly ionized plasma. II

    SciTech Connect

    Dimant, Y.S.; Sudan, R.N.

    1995-04-01

    The consistent kinetic approach developed in Paper I [Ya. S. Dimant and R. N. Sudan, Phys. Plasmas {bold 2}, 1157 (1995)] is applied to obtain the general dispersion relation of the two-stream {bold E}{times}{bold B} instability in collisionally dominated weakly ionized plasmas for wave frequencies small compared to the ion--neutral collision frequency. This dispersion relation covers the whole low-frequency band from the asymptotic short-wave limit studied in Paper I to the long-wave limit. Previous theories employing simplified kinetic theory or fluid equations for electron behavior are only correct in the long-wave limit. The principal new results are that the threshold conditions for this instability and the growth rates are altered from those predicted by earlier simplified theories. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  12. Argon/propane ionization-chamber dosimetry for mixed x-ray/neutron fields.

    PubMed

    Schulz, R J

    1978-01-01

    The photoneutrons produced by high-energy x-ray machines can diffuse through the mazes usually employed at the treatment-room entrance and readily penetrate the lead-lined doors used for x-ray shielding. The measurement of these neutrons in the presence of x-rays and the determination of dose equivalent poses a problem for which there is currently no standard method of solution. In order to separate x-ray dose from neutron dose, the author employed an ionization chamber alternately filled with argon or propane. The response characteristics of this chamber to x-ray and neutrons are described. Quality factors were determined from a calculated neutron spectrum. As a result of these measurements, a 10-in. polyethylene door was added to the entranceway of a 25-MV linear accelerator.

  13. Energy deficit of pulsed-laser field-ionized and field-emitted ions from non-metallic nano-tips

    SciTech Connect

    Arnoldi, L.; Silaeva, E. P.; Gaillard, A.; Vurpillot, F.; Blum, I.; Rigutti, L.; Deconihout, B.; Vella, A.

    2014-05-28

    The energy deficit of pulsed-laser field-evaporated ions and field-ionized atoms of an inert gas from the surface of a non-metallic nano-metric tip is reported as a function of the laser intensity, ion current, and temperature. A new model is proposed to explain these results, taking into account the resistive properties of non-metallic nano-tips. A good agreement between the theoretical predictions and the experimental results is obtained for all parameters investigated experimentally. This model is also used to discuss the evaporation behavior of oxides analyzed in laser-assisted atom probe tomography. New insight into the contribution of the electrostatic field and the laser illumination on the evaporation process of non-metallic materials is given.

  14. Semi-quantitative proteomics of mammalian cells upon short-term exposure to non-ionizing electromagnetic fields

    PubMed Central

    Laffeber, Charlie; Eppink, Berina; Bezstarosti, Karel; Dekkers, Dick; Woelders, Henri; Zwamborn, A. Peter M.; Demmers, Jeroen; Lebbink, Joyce H. G.; Kanaar, Roland

    2017-01-01

    The potential effects of non-ionizing electromagnetic fields (EMFs), such as those emitted by power-lines (in extremely low frequency range), mobile cellular systems and wireless networking devices (in radio frequency range) on human health have been intensively researched and debated. However, how exposure to these EMFs may lead to biological changes underlying possible health effects is still unclear. To reveal EMF-induced molecular changes, unbiased experiments (without a priori focusing on specific biological processes) with sensitive readouts are required. We present the first proteome-wide semi-quantitative mass spectrometry analysis of human fibroblasts, osteosarcomas and mouse embryonic stem cells exposed to three types of non-ionizing EMFs (ELF 50 Hz, UMTS 2.1 GHz and WiFi 5.8 GHz). We performed controlled in vitro EMF exposures of metabolically labeled mammalian cells followed by reliable statistical analyses of differential protein- and pathway-level regulations using an array of established bioinformatics methods. Our results indicate that less than 1% of the quantitated human or mouse proteome responds to the EMFs by small changes in protein abundance. Further network-based analysis of the differentially regulated proteins did not detect significantly perturbed cellular processes or pathways in human and mouse cells in response to ELF, UMTS or WiFi exposure. In conclusion, our extensive bioinformatics analyses of semi-quantitative mass spectrometry data do not support the notion that the short-time exposures to non-ionizing EMFs have a consistent biologically significant bearing on mammalian cells in culture. PMID:28234898

  15. Semi-quantitative proteomics of mammalian cells upon short-term exposure to non-ionizing electromagnetic fields.

    PubMed

    Kuzniar, Arnold; Laffeber, Charlie; Eppink, Berina; Bezstarosti, Karel; Dekkers, Dick; Woelders, Henri; Zwamborn, A Peter M; Demmers, Jeroen; Lebbink, Joyce H G; Kanaar, Roland

    2017-01-01

    The potential effects of non-ionizing electromagnetic fields (EMFs), such as those emitted by power-lines (in extremely low frequency range), mobile cellular systems and wireless networking devices (in radio frequency range) on human health have been intensively researched and debated. However, how exposure to these EMFs may lead to biological changes underlying possible health effects is still unclear. To reveal EMF-induced molecular changes, unbiased experiments (without a priori focusing on specific biological processes) with sensitive readouts are required. We present the first proteome-wide semi-quantitative mass spectrometry analysis of human fibroblasts, osteosarcomas and mouse embryonic stem cells exposed to three types of non-ionizing EMFs (ELF 50 Hz, UMTS 2.1 GHz and WiFi 5.8 GHz). We performed controlled in vitro EMF exposures of metabolically labeled mammalian cells followed by reliable statistical analyses of differential protein- and pathway-level regulations using an array of established bioinformatics methods. Our results indicate that less than 1% of the quantitated human or mouse proteome responds to the EMFs by small changes in protein abundance. Further network-based analysis of the differentially regulated proteins did not detect significantly perturbed cellular processes or pathways in human and mouse cells in response to ELF, UMTS or WiFi exposure. In conclusion, our extensive bioinformatics analyses of semi-quantitative mass spectrometry data do not support the notion that the short-time exposures to non-ionizing EMFs have a consistent biologically significant bearing on mammalian cells in culture.

  16. Charge and energy-dependence of the Gaussian description of the triply differential cross sections for equal-energy sharing photo-double-ionization of two-electrons ions

    SciTech Connect

    Otranto, S.; Garibotti, C.R.

    2005-03-01

    We evaluate triply differential cross sections (TDCSs) for the photo-double-ionization (PDI) of He-like ions, and equal electron energy sharing, by using the SC3 model for the three-body final state. These cross sections are fitted with the usual dipolar Gaussian form which is found able to describe the theoretical TDCS, and could be applied for the interpretation of experimental data even at intermediate photon energies. We determine the dependence of the correlation factor on the excess energy (E{sub f}) and target nuclear charge (Z). We find that its width has an E{sub f}{sup 1/4} dependence near the atomic double-ionization threshold but departs from this law and attains a plateau as the excess energy increases. We compare our results with the predictions of classical and semiclassical Wannier approaches.

  17. Non-mean-field theory of anomalously large double layer capacitance.

    PubMed

    Loth, M S; Skinner, Brian; Shklovskii, B I

    2010-07-01

    Mean-field theories claim that the capacitance of the double layer formed at a metal/ionic conductor interface cannot be larger than that of the Helmholtz capacitor, whose width is equal to the radius of an ion. However, in some experiments the apparent width of the double layer capacitor is substantially smaller. We propose an alternate non-mean-field theory of the ionic double layer to explain such large capacitance values. Our theory allows for the binding of discrete ions to their image charges in the metal, which results in the formation of interface dipoles. We focus primarily on the case where only small cations are mobile and other ions form an oppositely charged background. In this case, at small temperature and zero applied voltage dipoles form a correlated liquid on both contacts. We show that at small voltages the capacitance of the double layer is determined by the transfer of dipoles from one electrode to the other and is therefore limited only by the weak dipole-dipole repulsion between bound ions so that the capacitance is very large. At large voltages the depletion of bound ions from one of the capacitor electrodes triggers a collapse of the capacitance to the much smaller mean-field value, as seen in experimental data. We test our analytical predictions with a Monte Carlo simulation and find good agreement. We further argue that our "one-component plasma" model should work well for strongly asymmetric ion liquids. We believe that this work also suggests an improved theory of pseudocapacitance.

  18. Comparison of the bromodeoxyuridine-mediated sensitization effects between low-LET and high-LET ionizing radiation on DNA double-strand breaks.

    PubMed

    Fujii, Yoshihiro; Genet, Matthew D; Roybal, Erica J; Kubota, Nobuo; Okayasu, Ryuichi; Miyagawa, Kiyoshi; Fujimori, Akira; Kato, Takamitsu A

    2013-06-01

    The incorporation of halogenated pyrmidines such as bromo- and iodo-deoxyuridines (BrdU, IdU) into DNA as thymidine analogs enhances cellular radiosensitivity when high-linear energy transfer (LET) radiation is not used. Although it is known that high-LET ionizing radiation confers fewer biological effects resulting from halogenated pyrimidine incorporation, the exact mechanisms of reduced radiosensitivity with high-LET radiation are not clear. We investigated the radiosensitization effects of halogenated pyrimidines with high-LET radiation using accelerated carbon and iron ions. Cells synchronized into the G1 phase after unifilar (1 cell cycle) and bifilar (2 cell cycles) substitution with 10 µM BrdU were exposed to various degrees of LET with heavy ions and X-rays. We then carried out a colony formation assay to measure cell survival. The γ-H2AX focus formation assay provided a measure of DNA double-strand break (DSB) formation and repair kinetics. Chromosomal aberration formations for the first post-irradiation metaphase were also scored. For both low-LET X-rays and carbon ions (13 keV/µm), BrdU incorporation led to impaired DNA repair kinetics, a larger initial number of DNA DSBs more frequent chromosomal aberrations at the first post-irradiated metaphase, and increased radiosensitivity for cell lethality. The enhancement ratio was higher after bifilar substitution. In contrast, no such synergistic enhancements were observed after high-LET irradiation with carbon and iron ions (70 and 200 keV/µm, respectively), even after bifilar substitution. Our results suggest that BrdU substitution did not modify the number and quality of DNA DSBs produced by high-LET radiation. The incorporation of halogenated pyrimidines may produce more complex/clustered DNA damage along with radicals formed by low-LET ionizing radiation. In contrast, the severity of damage produced by high-LET radiation may undermine the effects of BrdU and account for the observed minimal

  19. Comparison of a Double Poling Ergometer and Field Test for Elite Cross Country Sit Skiers

    PubMed Central

    Forbes, Scott C.; Craven, Bruce; Bhambhani, Yagesh

    2010-01-01

    Background Sport specific ergometers are important for laboratory testing (i.e. peak oxygen consumption (VO2)) and out of season training. Objectives The purpose of this study was to compare cardiorespiratory variables during exercise on a double poling ergometer to a field test in elite sit skiers. Methods Three male and four female athletes from the Canadian National / Developmental team (17-54 years of age, six with complete paraplegia and one with cerebral palsy) completed a field test and a double poling ergometer protocol separated by at least 24 hours. Both protocols consisted of three maximal trials of skiing of three minutes duration separated by 1.5 minutes of rest. A wireless metabolic system and heart rate monitor were used to measure cardiorespiratory responses [peak heart rate, peak VO2, and peak respiratory exchange ratio (RER)] during each test. Arterialized blood lactate was measured before the beginning of exercise, after each trial and at 5, 10 and 15 minutes post exercise. Results No significant differences existed between the field and ergometer tests for peak oxygen consumption (VO2) (field=34.7±5.5 mL·kg−1·min−1 vs. ergometer=33.4±6.9 mL·kg−1·min−1). Significantly higher peak heart rate and RER were found during the ergometer test. Significantly higher lactates were found during the ergometer test after trial 2 and trial 3. Conclusion The double poling ergometer is similar to a field test for evaluating peak VO2 in elite cross country sit skiers; however, the ergometer test elicits a higher heart rate and anaerobic response. PMID:21589660

  20. Effective field study of ising model on a double perovskite structure

    NASA Astrophysics Data System (ADS)

    Ngantso, G. Dimitri; El Amraoui, Y.; Benyoussef, A.; El Kenz, A.

    2017-02-01

    By using the effective field theory (EFT), the mixed spin-1/2 and spin-3/2 Ising ferrimagnetic model adapted to a double perovskite structure has been studied. The EFT calculations have been carried out from Ising Hamiltonian by taking into account first and second nearest-neighbors interactions and the crystal and external magnetic fields. Both first- and second-order phase transitions have been found in phase diagrams of interest. Depending on crystal-field values, the thermodynamic behavior of total magnetization indicated the compensation phenomenon existence. The hysteresis behaviors are studied by investigating the reduced magnetic field dependence of total magnetization and a series of hysteresis loops are shown for different reduced temperatures around the critical one.

  1. Magnetic-field-induced charge redistribution in disordered graphene double quantum dots

    NASA Astrophysics Data System (ADS)

    Chiu, K. L.; Connolly, M. R.; Cresti, A.; Griffiths, J. P.; Jones, G. A. C.; Smith, C. G.

    2015-10-01

    We have studied the transport properties of a large graphene double quantum dot under the influence of a background disorder potential and a magnetic field. At low temperatures, the evolution of the charge-stability diagram as a function of the B field is investigated up to 10 T. Our results indicate that the charging energy of the quantum dot is reduced, and hence the effective size of the dot increases at a high magnetic field. We provide an explanation of our results using a tight-binding model, which describes the charge redistribution in a disordered graphene quantum dot via the formation of Landau levels and edge states. Our model suggests that the tunnel barriers separating different electron/hole puddles in a dot become transparent at high B fields, resulting in the charge delocalization and reduced charging energy observed experimentally.

  2. Simulation of the Mg(Ar) ionization chamber currents by different Monte Carlo codes in benchmark gamma fields

    NASA Astrophysics Data System (ADS)

    Lin, Yi-Chun; Liu, Yuan-Hao; Nievaart, Sander; Chen, Yen-Fu; Wu, Shu-Wei; Chou, Wen-Tsae; Jiang, Shiang-Huei

    2011-10-01

    High energy photon (over 10 MeV) and neutron beams adopted in radiobiology and radiotherapy always produce mixed neutron/gamma-ray fields. The Mg(Ar) ionization chambers are commonly applied to determine the gamma-ray dose because of its neutron insensitive characteristic. Nowadays, many perturbation corrections for accurate dose estimation and lots of treatment planning systems are based on Monte Carlo technique. The Monte Carlo codes EGSnrc, FLUKA, GEANT4, MCNP5, and MCNPX were used to evaluate energy dependent response functions of the Exradin M2 Mg(Ar) ionization chamber to a parallel photon beam with mono-energies from 20 keV to 20 MeV. For the sake of validation, measurements were carefully performed in well-defined (a) primary M-100 X-ray calibration field, (b) primary 60Co calibration beam, (c) 6-MV, and (d) 10-MV therapeutic beams in hospital. At energy region below 100 keV, MCNP5 and MCNPX both had lower responses than other codes. For energies above 1 MeV, the MCNP ITS-mode greatly resembled other three codes and the differences were within 5%. Comparing to the measured currents, MCNP5 and MCNPX using ITS-mode had perfect agreement with the 60Co, and 10-MV beams. But at X-ray energy region, the derivations reached 17%. This work shows us a better insight into the performance of different Monte Carlo codes in photon-electron transport calculation. Regarding the application of the mixed field dosimetry like BNCT, MCNP with ITS-mode is recognized as the most suitable tool by this work.

  3. Pulsed-field ionization electron spectroscopy and binding energies of alkali metal-dimethyl ether and -dimethoxyethane complexes

    NASA Astrophysics Data System (ADS)

    Sohnlein, Bradford R.; Li, Shenggang; Fuller, Jason F.; Yang, Dong-Sheng

    2005-07-01

    Lithium and sodium complexes of dimethyl ether (DME) and dimethoxyethane (DXE) were produced by reactions of laser-vaporized metal atoms with organic vapors in a pulsed nozzle cluster source. The mono-ligand complexes were studied by photoionization and pulsed field ionization zero electron kinetic energy (ZEKE) spectroscopy. Vibrationally resolved ZEKE spectra were obtained for Li(DME), Na(DME) and Li(DXE) and a photoionization efficiency spectrum for Na(DXE). The ZEKE spectra were analyzed by comparing with the spectra of other metal-ether complexes and with electronic structure calculations and spectral simulations. Major vibrations measured for the M(DME) (M=Li,Na) ions were M-O and C-O stretches and M-O-C and C-O-C bends. These vibrations and additional O-Li-O and O-C-C-O bends were observed for the Li(DXE) ion. The M(DME) complexes were in C2v symmetry with the metal atom binding to oxygen, whereas Li(DXE) was in a C2 ring configuration with the Li atom attaching to both oxygen atoms. Moreover, the ionization energies of these complexes were measured from the ZEKE or photoionization spectra and bond dissociation energies were derived from a thermodynamic cycle.

  4. Skin explosion of double-layer conductors in fast-rising high magnetic fields

    SciTech Connect

    Chaikovsky, S. A. Datsko, I. M.; Labetskaya, N. A.; Ratakhin, N. A.

    2014-04-15

    An experiment has been performed to study the electrical explosion of thick cylindrical conductors using the MIG pulsed power generator capable of producing a peak current of 2.5 MA within 100 ns rise time. The experimental goal was to compare the skin explosion of a solid conductor with that of a double-layer conductor whose outer layer had a lower conductivity than the inner one. It has been shown that in magnetic fields of peak induction up to 300 T and average induction rise rate 3 × 10{sup 9} T/s, the double-layer structure of a conductor makes it possible to achieve higher magnetic induction at the conductor surface before it explodes. This can be accounted for, in particular, by the reduction of the ratio of the Joule heat density to the energy density of the magnetic field at the surface of a double-layer conductor due to redistribution of the current density over the conductor cross section.

  5. Skin explosion of double-layer conductors in fast-rising high magnetic fields

    NASA Astrophysics Data System (ADS)

    Chaikovsky, S. A.; Oreshkin, V. I.; Datsko, I. M.; Labetskaya, N. A.; Ratakhin, N. A.

    2014-04-01

    An experiment has been performed to study the electrical explosion of thick cylindrical conductors using the MIG pulsed power generator capable of producing a peak current of 2.5 MA within 100 ns rise time. The experimental goal was to compare the skin explosion of a solid conductor with that of a double-layer conductor whose outer layer had a lower conductivity than the inner one. It has been shown that in magnetic fields of peak induction up to 300 T and average induction rise rate 3 × 109 T/s, the double-layer structure of a conductor makes it possible to achieve higher magnetic induction at the conductor surface before it explodes. This can be accounted for, in particular, by the reduction of the ratio of the Joule heat density to the energy density of the magnetic field at the surface of a double-layer conductor due to redistribution of the current density over the conductor cross section.

  6. Femtosecond Coherent Spectroscopy at 800nm: MI-FROG Measures High-Field Ionization Rates in Gases

    SciTech Connect

    Siders, C.W.; Siders, J.L.W.; Taylor, A.J.

    1999-05-24

    The authors report the first quantitative phase-sensitive measurement of ultrafast ionization rates in gases using Multi-phase Interferometric Frequency-Resolved Optical Gating. Ultrafast probe depletion via frequency mixing in the ionization front is observed.

  7. Electrodynamic behavior and interface instability of double emulsion droplets under high electric field

    NASA Astrophysics Data System (ADS)

    Abbasi, Muhammad Salman; Song, Ryungeun; Kim, Jaehoon; Lee, Jinkee

    2016-11-01

    In this paper, numerical solution of electro-dynamic behavior and interface instability of double emulsion droplet is presented. Level set method and leaky dielectric model coupled with Navier-Stokes equation are used to solve the electrodynamic problem. The method is validated against the theoretical analysis and the simulation results of the other researchers. Double emulsion droplet with inner droplet (core) and outer droplet (shell) phases immersed in continuous phase is subjected to high electric field. Shell/continuous and core/shell interfaces of the droplet undergo prolate-oblate or oblate-prolate deformation depending on the extent of the penetration of electric potential and sense of charge distribution at the interfaces. The deformation of the shell deviates from theory at larger volume fraction of core for oblate-prolate case whereas it follows theory for prolate-oblate case. The interfaces showing oblate-prolate deformation split away at the poles whereas, for prolate-oblate, they split at the equator. The re-union of the two split parts under high electric field results with production of daughter droplet at the core. The large decrease in critical electric field for oblate-prolate case shows their less interface stability at larger volume fraction of core. When the core is eccentric, the electric field drives it towards the shell center or to the shell/continuous interface depending on electrical parameters.

  8. Channel-specific photoelectron angular distribution in laboratory and molecular frames for dissociative ionization of methanol in intense ultraviolet laser fields

    NASA Astrophysics Data System (ADS)

    Fukahori, Shinichi; Nakano, Motoyoshi; Yamanouchi, Kaoru; Itakura, Ryuji

    2017-03-01

    We investigate dissociative ionization of CH3OH in an intense laser field (398 nm, 76 fs, 8.9 × 1012 W/cm2) by photoelectron-photoion coincidence momentum imaging. It is revealed from the analysis of the channel-specific photoelectron angular distributions that CH3OH is decomposed into CH2OH+ + H after the four-photon ionization to the vibrationally highly excited states of the electronic ground state of CH3OH+ and into CH3+ + OH after the five-photon ionization to the second electronically excited state of CH3OH+, and that these two channels are also opened after CH3OH+, prepared by the four-photon ionization, is photoexcited further into the electronically excited states.

  9. DC and AC Electric Field Measurements by Spin-Plane Double Probes Onboard MMS

    NASA Astrophysics Data System (ADS)

    Lindqvist, P. A.; Marklund, G. T.; Khotyaintsev, Y. V.; Ergun, R. E.; Goodrich, K.; Torbert, R. B.; Argall, M. R.; Nakamura, R.

    2015-12-01

    The four spacecraft of the NASA Magnetospheric Multiscale mission (MMS) were launched on 12 March 2015 into a 1.2 x 12 Re equatorial orbit to study energy conversion processes in Earth's magnetosphere. After a 5-month commissioning period the first scientific phase starts on 1 September as the orbit enters the dusk magnetopause region. The Spin-plane Double Probe electric field instrument (SDP), part of the electric and magnetic fields instrument suite FIELDS, measures the electric field in the range 0.3 - 500 mV/m with a continuous time resolution up to 8192 samples/s. The instrument features adjustable bias currents and guard voltages to optimize the measurement performance. SDP also measures the spacecraft potential, which can be controlled by the Active Spacecraft Potential Control (ASPOC) ion emitter, and under certain conditions can be used to determine plasma density. We present observations of DC and AC electric fields in different plasma regions covered by MMS since launch including the night side flow braking region, reconnection regions at the dusk and dayside magnetopause, and in the magnetosheath. We compare the electric field measurements by SDP to other, independent determinations of the electric field, in particular by the Electron Drift Instrument (EDI), in order to assess the accuracy of the electric field measurement under different plasma conditions. We also study the influence of the currents emitted by ASPOC and EDI on the SDP measurements.

  10. Photoluminescence studies of modulation doped coupled double quantum wells in magnetic fields

    SciTech Connect

    Kim, Y.; Perry, C.H. |; Simmons, J.A.; Klem, J.F.; Jones, E.D.; Rickel, D.G.

    1996-09-01

    We have studied the photoluminescence spectra of a series of mudulation doped couple double quantum well structures in parallel and perpendicular magnetic fields to 62 tesla at 4K and 77K, for B{parallel}a, the spectra display distinct Landau level transitions which show anti-crossing with the e1-hh1 exciton. At high fields, the lowest conduction band-valence exciton approaches the extrapolated 0- 0 Landau level. About 25 Tesla, there is valence band mixing of the e1-lh1, e1-hh2, e1-hh1 transitions. The spectral peaks display a diamagnetic shift in low in-plane magnetic fields which become linear in high fields. At magnetic fields beyond 40T, spin splitting is observed for both B{parallel}z and B{perpendicular} geometries. The partial energy gap discovered in conductance measurements in in-plane fields was not conclusively observed using photoluminescence spectroscopy, although anomalies in the energy dependence of the lowest level with magnetic field were evident at similar field values.

  11. Double-arm three-dimensional ion imaging apparatus for the study of ion pair channels in resonance enhanced multiphoton ionization

    NASA Astrophysics Data System (ADS)

    Poretskiy, M. S.; Chichinin, A. I.; Maul, C.; Gericke, K.-H.

    2016-02-01

    We present a novel experimental configuration for the full quantitative characterization of the multichannel resonance enhanced multiphoton ionization (REMPI) of small molecules in cases when the ion-pair dissociation channel is important. For this purpose, a double-arm time-of-flight mass spectrometer with three-dimensional (3D) ion imaging detectors at both arms is constructed. The REMPI of HCl molecules is used to examine the constructed setup. The apparatus allows us to perform simultaneous measurements of the 3D velocity vector distributions of positive (H+, HCl+, and Cl+) and negative (Cl-) photoions. The characterization consists of the determination of "two-photon absorption cross sections" for the process HCl(X)+2hν → HCl∗, one-photon absorption cross sections for subsequent processes HCl∗ + hν → HCl∗∗, and the probability of the subsequent non-adiabatic transition HCl∗∗ → HCl(B) → H+ + Cl-, which leads to ionic pairs. All these data should be obtained from the analysis of the dependencies of the number of ions on the laser energy. The full characterization of the laser beam and the knowledge of the ion detection probability are necessary parts of the analysis. Detailed knowledge of losses of produced ions in the mass spectrometer before detection requires understanding and characterization of such processes like electron emission from metallic grids under ion bombardment or charge transfer between positive ions and the metal surface of the grids, like Cl+ + (grid) → Cl-. These important phenomena from surface science are rarely discussed in the imaging literature, and here, we try to compensate for this shortcoming.

  12. Poly(ADP-Ribose) Polymerase-1 and DNA-Dependent Protein Kinase Have Equivalent Roles in Double Strand Break Repair Following Ionizing Radiation

    SciTech Connect

    Mitchell, Jody; Smith, Graeme; Curtin, Nicola J.

    2009-12-01

    Purpose: Radiation-induced DNA double strand breaks (DSBs) are predominantly repaired by nonhomologous end joining (NHEJ), involving DNA-dependent protein kinase (DNA-PK). Poly(ADP-ribose) polymerase-1 (PARP-1), well characterized for its role in single strand break repair, may also facilitate DSB repair. We investigated the activation of these enzymes by differing DNA ends and their interaction in the cellular response to ionizing radiation (IR). Methods and Materials: The effect of PARP and DNA-PK inhibitors (KU-0058684 and NU7441) on repair of IR-induced DSBs was investigated in DNA-PK and PARP-1 proficient and deficient cells by measuring gammaH2AX foci and neutral comets. Complementary in vitro enzyme kinetics assays demonstrated the affinities of DNA-PK and PARP-1 for DSBs with varying DNA termini. Results: DNA-PK and PARP-1 both promoted the fast phase of resolution of IR-induced DSBs in cells. Inactivation of both enzymes was not additive, suggesting that PARP-1 and DNA-PK cooperate within the same pathway to promote DSB repair. The affinities of the two enzymes for oligonucleotides with blunt, 3' GGG or 5' GGG overhanging termini were similar and overlapping (K{sub dapp} = 2.6-6.4nM for DNA-PK; 1.7-4.5nM for PARP-1). DNA-PK showed a slightly greater affinity for overhanging DNA and was significantly more efficient when activated by a 5' GGG overhang. PARP-1 had a preference for blunt-ended DNA and required a separate factor for efficient stimulation by a 5' GGG overhang. Conclusion: DNA-PK and PARP-1 are both required in a pathway facilitating the fast phase of DNA DSB repair.

  13. Liquid Injection Field Desorption Ionization Mass Spectrometry of Cyclic Metal Carbonyl Complexes with Tetra-Antimony Ligands

    NASA Astrophysics Data System (ADS)

    Breunig, Hans J.; Linden, H. Bernhard; Moldovan, Ovidiu

    2013-01-01

    Reactions of (norbornadiene)Cr(CO)4 or cis-(piperidine)2Mo(CO)4 with R2Sb-SbR2, and cyclo-(R'Sb)n (R' = Et, n-Pr; n = 4, 5) give the complexes cyclo-[M(CO)4(R2Sb-SbR'- SbR'-SbR2)] ( 1: M = Cr, R = Me, R'= Et; 2: M = Mo, R = Et, R' = Et; 3: M = Mo, R = Et, R' = n-Pr). Not accessible to established characterization methods, the oily, extremely reactive unpurified mixture of 3 with scrambled ligands was characterized by mass spectrometry using liquid injection field desorption ionization (LIFDI). [Figure not available: see fulltext.

  14. Penning and associative ionization in crossed-beam Na/Na collisions assisted by strong resonant laser fields

    SciTech Connect

    Weiner, J.; Polak-Dingels, P.

    1981-01-01

    We observe the production of Na/sub 2//sup +/ and Na/sup +/ arising from single collisions between crossed beams of sodium atoms when a laser field is tuned near the Na(3p /sup 2/P/sub 3/2/) and Na(3p /sup 2/P/sub 1/2/) transitions. Measurements of ion intensity vs laser intensity show that at moderately high power true laser-induced processes dominate over purely collisional effects. Relative intensity of mass-selected ions produced at either member of the Na resonance doublet shows conclusively that Na/sup +/ does not arise simply from photodissociation of Na/sub 2//sup +/ but must result from a direct, laser-induced collisional ionization.

  15. Fabrication of high-aspect ratio Si pillars for atom probe 'lift-out' and field ionization tips.

    PubMed

    Morris, R A; Martens, R L; Zana, I; Thompson, G B

    2009-04-01

    A process for fabricating high-aspect ratio ( approximately 1:20), micron-sized Si [001] pillars using mechanical and chemical size reduction is presented. A dicing saw was used for mechanically patterning an array of square pillars with side lengths of >20mum. These pillars were then reduced in size using an aqueous NaOH and KOH solution heated to 100 degrees C. The chemical etch reduces the pillar size within the time range amenable for focus ion beam milling and/or attachment for atom probe 'lift-out' specimens. The pillars can be formed with either a flat top surface or into <100nm tip points for direct field ionization.

  16. Double layer electric fields aiding the production of superthermal electrons within magnetic reconnection exhausts

    NASA Astrophysics Data System (ADS)

    Egedal, Jan; Daughton, William; Le, Ari

    2015-11-01

    Using a kinetic simulation of magnetic reconnection it was recently shown that parallel electric fields (E∥) can be present over large spatial scales in reconnection exhausts. The largest values of E∥ are observed within double layers, which form through large parallel streaming of electrons into the reconnection region. The electron confinement, provided in part by the structure in E∥, allows sustained energization by perpendicular electric fields (E⊥). The energization is a consequence of the confined electrons' chaotic orbital motion that includes drifts aligned with the reconnection electric field. The mechanism is effective in an extended region of the reconnection exhaust allowing for the generation of superthermal electrons in reconnection scenarios, including those with only a single x-line. The numerical and analytical results agree with detailed spacecraft observations recorded during reconnection events in the Earth's magnetotail. Supported by NSF GEM award 1405166 and NASA grant NNX14AC68G.

  17. Efficient dipolar double quantum filtering under magic angle spinning without a (1)H decoupling field.

    PubMed

    Courtney, Joseph M; Rienstra, Chad M

    2016-08-01

    We present a systematic study of dipolar double quantum (DQ) filtering in (13)C-labeled organic solids over a range of magic-angle spinning rates, using the SPC-n recoupling sequence element with a range of n symmetry values from 3 to 11. We find that efficient recoupling can be achieved for values n⩾7, provided that the (13)C nutation frequency is on the order of 100kHz or greater. The decoupling-field dependence was investigated and explicit heteronuclear decoupling interference conditions identified. The major determinant of DQ filtering efficiency is the decoupling interference between (13)C and (1)H fields. For (13)C nutation frequencies greater than 75kHz, optimal performance is observed without an applied (1)H field. At spinning rates exceeding 20kHz, symmetry conditions as low as n=3 were found to perform adequately.

  18. Electric Field Double Probe Measurements on Satellites with Very Low Perigees

    NASA Technical Reports Server (NTRS)

    Pfaff, R. F., Jr.; Freundenreich, H.; Manzer, D.; Pankow, D.; Walsh, G.

    1999-01-01

    Measurements of DC and AC electric Fields at low altitudes (less than 150 km) in the Earth's ionosphere address a wide array of important scientific questions including Joule Heating, the closure of field aligned currents, and the deviation of E x B electron velocities from ion velocity vectors influenced by collisions. Double probes represent a well-proven technique for gathering high quality DC and AC electric field measurements for which the design of the boom system is of critical importance for the success of the experiment. In general, ionospheric DC electric field instruments that achieve accuracies of 0.1 mV/m or better, place sensors at large distances from the spacecraft body in order to extend well beyond the spacecraft wake and sheath and to achieve the large signal-to-noise ratios for DC and long wavelength measurements. Additional sets of sensors inboard of the primary, outermost sensors provide useful additional information, both for diagnostics of the plasma contact potentials, which particularly enhance the DC electric field measurements on non-spinning spacecraft, and for wavelength and phase velocity measurements that use the spaced receiver or "Interferometer" technique. Accurate attitude knowledge enables V x B contributions to be subtracted from the measured potentials, and permits the measured components to be rotated into meaningful geophysical reference frames. This presentation discusses the expected performance of electric field double probe experiments and their boom mechanisms on both spinning and non-spinning satellite platforms with very low perigees. Careful selection of probe surface materials, such as titanium nitride, for the low perigee environment, as well as thermal considerations are also discussed.

  19. The double-gradient magnetic instability: Stabilizing effect of the guide field

    SciTech Connect

    Korovinskiy, D. B. Semenov, V. S.; Ivanova, V. V.; Divin, A. V.; Erkaev, N. V.; Artemyev, A. V.; Lapenta, G.; Markidis, S.; Biernat, H. K.

    2015-01-15

    The role of the dawn-dusk magnetic field component in stabilizing of the magnetotail flapping oscillations is investigated in the double-gradient model framework (Erkaev et al., Phys. Rev. Lett. 99, 235003 (2007)), extended for the magnetotail-like configurations with non-zero guide field B{sub y}. Contribution of the guide field is examined both analytically and by means of linearized 2-dimensional (2D) and non-linear 3-dimensional (3D) MHD modeling. All three approaches demonstrate the same properties of the instability: stabilization of current sheet oscillations for short wavelength modes, appearing of the typical (fastest growing) wavelength λ{sub peak} of the order of the current sheet width, decrease of the peak growth rate with increasing B{sub y} value, and total decay of the mode for B{sub y}∼0.5 in the lobe magnetic field units. Analytical solution and 2D numerical simulations claim also the shift of λ{sub peak} toward the longer wavelengths with increasing guide field. This result is barely visible in 3D simulations. It may be accounted for the specific background magnetic configuration, the pattern of tail-like equilibrium provided by approximated solution of the conventional Grad-Shafranov equation. The configuration demonstrates drastically changing radius of curvature of magnetic field lines, R{sub c}. This, in turn, favors the “double-gradient” mode (λ > R{sub c}) in one part of the sheet and classical “ballooning” instability (λ < R{sub c}) in another part, which may result in generation of a “combined” unstable mode.

  20. Electro-optical properties of a nematic liquid crystal cell by double-side fringe-field switching

    NASA Astrophysics Data System (ADS)

    Xiang, C. Y.; Sun, X. W.

    2004-09-01

    The electro-optical and response properties of a nematic liquid crystal cell driven by double-side fringe-field switching [C. Y. Xiang, X. W. Sun, and X. J. Yin, Appl. Phys. Lett. 83, 5154 (2003)] have been studied. The transmission-voltage curve of the double-side fringe-field cell can be modeled by the change of the maximum twist angle. It is shown that the liquid crystal layer is linearly twisted before the transmission reaches the maximum. The threshold voltage of double-side fringe-field switching is the same as that of single-side fringe-field switching. The turn-on and turn-off response times, showing four time improvement over the single-side fringe-field switching, have been derived. The experimental turn-off times of the double-sides fringe-field switching and single-side fringe-field switching cell match with the theoretical prediction. The experimental turn-on time of the double-side fringe-field switching cell shows four times improvement over the single-side fringe-field one as predicted by the theoretical analysis.

  1. The effect of a magnetic field on the spin-selective transport in double-stranded DNA

    SciTech Connect

    Simchi, Hamidreza; Esmaeilzadeh, Mahdi Mazidabadi, Hossein

    2014-05-28

    Spin-polarization in double-stranded DNA is studied in the presence of a magnetic field applied along its helix axis using the non-equilibrium Green's function method. The spin-polarization could be tuned by changing the magnetic field. In some special cases, the double-stranded DNA behaved as a perfect spin-filter. Furthermore, the dependency of the spin-polarization on the spin-orbit strength and dephasing strength is studied.

  2. Space-time simulations of photon, lepton, ionization and nucleon trails of TGF ignition in thunderstorm electric field geometries

    NASA Astrophysics Data System (ADS)

    Connell, Paul

    2015-04-01

    The origin of high energy electrons which contribute to the Relativistic Runaway Electron Avalanche of a TGF are not precisely known, or yet observed, though the most obvious source would seem to be the products of cosmic ray showers, or electron avalanches generated in the high electric field near the tips of lightning leaders. With our new TGF simulation software package LEPTRACK we can now easily create any electric field geometry to be expected in stormclouds, any kind of electron source, and are investigating scenarios of TGF ignition, which may or may not be runaway, and in any direction - not just vertical. Vidoes, lightcurves and spectra, presenting the detailed density structure and time evolution of TGF photon, electron, neucleon and ionization trails were presented for the first time at the AGU Fall Meeting in 2014 - showing the complicated effects of changing electric field strength and air density - and the as yet unrecognized importance of the earth magnetic field in trapping electrons and positrons in the upper atmosphere at the magnetic equator - possibly giving rise to the hard tail seen in some TGF spectra observed by AGILE. We will present here an extension of this work to show the dynamics of TGF ignition scenarios of current interest - upward, downward and randomly directed - both from free electrons and from combinations of lightning leader micro-fields producing electron avalanches, which are then input to the macro-fields expected at or above thunderstorm cloudtops. We will show the spatial shape and time evolution of TGF particle structures, along with their optical and gamma ray spectra emitted, and bring to life their essential physics.

  3. Negative transconductance in double-gate germanium-on-insulator field effect transistors

    NASA Astrophysics Data System (ADS)

    Zaslavsky, A.; Soliveres, S.; Le Royer, C.; Cristoloveanu, S.; Clavelier, L.; Deleonibus, S.

    2007-10-01

    Transport in double-gate (DG) transistors offers unusual properties due to the coupling between the two channels. We report on room-temperature negative transconductance in germanium-on-insulator DG transistors in the subthreshold regime. The effect is due to the coupling between conducting channels, analogous to the velocity modulation transistor (VMT). Unlike the VMT, our effect can be induced by either of the gates and arises not from a difference in the channel mobilities but from partial electric field screening at low channel densities combined with the density dependence of mobility. The negative transconductance becomes weaker as gate length LG is reduced.

  4. Increase in the compensated field of view with a double-conjugate adaptive-optics system.

    PubMed

    Baharav, Y; Shamir, J

    1995-04-20

    We analyze and quantify the capabilities and limitations of a double-conjugate adaptive-optics system. In the proposed system the contribution of two turbulent layers is treated separately, with Rayleigh guide stars for the bottom layer, sodium guide stars for the top layer, and two adaptive mirrors conjugate to the respective layers. The system substantially increases the compensated field of view. We give calculated results for the estimated number of guide stars needed, the wave-front sensor, and the adaptive-mirror resolution. Simulation results are also presented, and the residual error remaining after correction in our proposed system is compared with a conventional single-adaptive-mirror system.

  5. Linear track estimation using double pulse sources for near-field underwater moving target

    NASA Astrophysics Data System (ADS)

    Chen, Zhifei; Hou, Hong; Yang, Jianhua; Sun, Jincai; Wang, Qian

    2013-06-01

    The double pulse sources (DPS) method is presented for linear track estimation in this work. In the field of noise identification of underwater moving target, the Doppler will distort the frequency and amplitude of the radiated noise. To eliminate this, the track estimation is necessary. In the DPS method, we first estimate bearings of two sinusoidal pulse sources installed in the moving target through baseline positioning method. Meanwhile, the emitted and recorded time of each pulse are also acquired. Then the linear track parameters will be achieved based on the geometry pattern with the help of double sources spacing. The simulated results confirm that the DPS improves the performance of the previous double source spacing method. The simulated experiments were carried out using a moving battery car to further evaluate its performance. When the target is 40-60m away, the experiment results show that biases of track azimuth and abeam distance of DPS are under 0.6o and 3.4m, respectively. And the average deviation of estimated velocity is around 0.25m/s.

  6. Strong-field ionization of clusters using two-cycle pulses at 1.8 μm

    PubMed Central

    Schütte, Bernd; Ye, Peng; Patchkovskii, Serguei; Austin, Dane R.; Brahms, Christian; Strüber, Christian; Witting, Tobias; Ivanov, Misha Yu.; Tisch, John W. G.; Marangos, Jon P.

    2016-01-01

    The interaction of intense laser pulses with nanoscale particles leads to the production of high-energy electrons, ions, neutral atoms, neutrons and photons. Up to now, investigations have focused on near-infrared to X-ray laser pulses consisting of many optical cycles. Here we study strong-field ionization of rare-gas clusters (103 to 105 atoms) using two-cycle 1.8 μm laser pulses to access a new interaction regime in the limit where the electron dynamics are dominated by the laser field and the cluster atoms do not have time to move significantly. The emission of fast electrons with kinetic energies exceeding 3 keV is observed using laser pulses with a wavelength of 1.8 μm and an intensity of 1 × 1015 W/cm2, whereas only electrons below 500 eV are observed at 800 nm using a similar intensity and pulse duration. Fast electrons are preferentially emitted along the laser polarization direction, showing that they are driven out from the cluster by the laser field. In addition to direct electron emission, an electron rescattering plateau is observed. Scaling to even longer wavelengths is expected to result in a highly directional current of energetic electrons on a few-femtosecond timescale. PMID:28009012

  7. East Meets West on "Double Star", a Joint Mission to Explore Earth's Magnetic Field

    NASA Astrophysics Data System (ADS)

    2001-07-01

    Cluster instruments has a number of advantages for both European and Chinese scientists. "By flying experiments identical to those on Cluster, we can reduce costs and development time," explained Alberto Gianolio, ESA Project Manager for Double Star. "This will minimise risk and help us to ensure that we are able to meet the spacecraft development schedule." ESA has agreed to contribute 8 million euros to the Double Star programme. This funding will be used for refurbishment and pre-integration of the European instruments, acquisition of data for 4 hours per day and coordination of scientific operations. Notes for Editors: Double Star will be the first mission launched by China to explore the Earth's magnetosphere - the magnetic bubble that surrounds our planet. As its name suggests, Double Star will involve two satellites - each designed, developed, launched and operated by the CNSA - flying in complementary orbits around the Earth. This orbital configuration will enable scientists to obtain simultaneous data on the changing magnetic field and population of electrified particles in different regions of the magnetosphere. The duo is expected to be launched by Chinese Long March 2C rockets in December 2002 and March 2003. This schedule may enable them to operate alongside ESA's Cluster mission - a mini-flotilla of four identical spacecraft launched into elliptical orbits around the Earth last summer. The "equatorial" spacecraft (DSP-1) will be launched into an elliptical orbit of 550 x 60,000 km, inclined at 28.5 degrees to the equator. This will enable it to investigate the Earth's huge magnetic tail, the region where particles are accelerated towards the planet's magnetic poles by a process known as reconnection. The "polar" satellite (DSP-2) will concentrate on physical processes taking place over the magnetic poles and the development of aurorae. It will have a 350 x 25,000 km orbit taking it round the Earth once every 7.3 hours.

  8. Double disordered YBCO coated conductors of industrial scale: high currents in high magnetic field

    NASA Astrophysics Data System (ADS)

    Abraimov, D.; Ballarino, A.; Barth, C.; Bottura, L.; Dietrich, R.; Francis, A.; Jaroszynski, J.; Majkic, G. S.; McCallister, J.; Polyanskii, A.; Rossi, L.; Rutt, A.; Santos, M.; Schlenga, K.; Selvamanickam, V.; Senatore, C.; Usoskin, A.; Viouchkov, Y. L.

    2015-11-01

    A significant increase of critical current in high magnetic field, up to 31 T, was recorded in long tapes manufactured by employing a double-disorder route. In a double-disordered high-temperature superconductor (HTS), a superimposing of intrinsic and extrinsic disorder takes place in a way that (i) the intrinsic disorder is caused by local stoichiometry deviations that lead to defects of crystallinity that serve as pining centers in the YBa2Cu3O x-δ matrix and (ii) the extrinsic disorder is introduced via embedded atoms or particles of foreign material (e.g. barium zirconate), which create a set of lattice defects. We analyzed possible technological reasons for this current gain. The properties of these tapes over a wider field-temperature range as well as field anisotropy were also studied. Record values of critical current as high as 309 A at 31 T, 500 A at 18 Tm and 1200 A at 5 T were found in 4 mm wide tape at 4.2 K and B perpendicular to tape surface. HTS layers were processed in medium-scale equipment that allows a maximum batch length of 250 m while 22 m long batches were provided for investigation. Abnormally high ratios (up to 10) of critical current density measured at 4.2 K, 19 T to critical current density measured at 77 K, self-field were observed in tapes with the highest in-field critical current. Anisotropy of the critical current as well as angular dependences of n and α values were investigated. The temperature dependence of critical current is presented for temperatures between 4.2 and 40 K. Prospects for the suppression of the dog-bone effect by Cu plating and upscale of processing chain to >500 m piece length are discussed.

  9. Sound field measurement in a double layer cavitation cluster by rugged miniature needle hydrophones.

    PubMed

    Koch, Christian

    2016-03-01

    During multi-bubble cavitation the bubbles tend to organize themselves into clusters and thus the understanding of properties and dynamics of clustering is essential for controlling technical applications of cavitation. Sound field measurements are a potential technique to provide valuable experimental information about the status of cavitation clouds. Using purpose-made, rugged, wide band, and small-sized needle hydrophones, sound field measurements in bubble clusters were performed and time-dependent sound pressure waveforms were acquired and analyzed in the frequency domain up to 20 MHz. The cavitation clusters were synchronously observed by an electron multiplying charge-coupled device (EMCCD) camera and the relation between the sound field measurements and cluster behaviour was investigated. Depending on the driving power, three ranges could be identified and characteristic properties were assigned. At low power settings no transient and no or very low stable cavitation activity can be observed. The medium range is characterized by strong pressure peaks and various bubble cluster forms. At high power a stable double layer was observed which grew with further increasing power and became quite dynamic. The sound field was irregular and the fundamental at driving frequency decreased. Between the bubble clouds completely different sound field properties were found in comparison to those in the cloud where the cavitation activity is high. In between the sound field pressure amplitude was quite small and no collapses were detected.

  10. Tuning the phase sensitivity of a double-lambda system with a static magnetic field.

    PubMed

    Xu, Xiwei; Shen, Shuo; Xiao, Yanhong

    2013-05-20

    We study the effect of a DC magnetic field on the phase sensitivity of a double-lambda system coupled by two laser fields, a probe and a pump. It is demonstrated that the gain and the refractive index of the probe can be controlled by either the magnetic field or the relative phase between the two laser fields. More interestingly, when the system reduces to a single-lambda system, turning on the magnetic field transforms the system from a phase-insensitive process to a phase-sensitive one. In the pulsed-probe regime, we observed switching between slow and fast light when the magnetic field or the relative phase was adjusted. Experiments using a coated 87Rb vapor cell produced results in good agreement with our numerical simulation. This work provides a novel and simple means to manipulate phase sensitive electromagnetically-induced-transparency or four-wave mixing, and could be useful for applications in quantum optics, nonlinear optics and magnetometery based on such systems.

  11. Effect of non-ionizing electromagnetic field on the alteration of ovarian follicles in rats

    PubMed Central

    Ahmadi, Seyed Shahin; Khaki, Amir Afshin; Ainehchi, Nava; Alihemmati, Alireza; Khatooni, Azam Asghari; Khaki, Arash; Asghari, Ali

    2016-01-01

    Introduction In recent years, there has been an increase in the attention paid to safety effects, environmental and society’s health, extremely low frequency electromagnetic fields (ELF-EMF), and radio frequency electromagnetic fields (RF-EMF). The aim of this research was to determine the effect of EMF on the alteration of ovarian follicles. Methods In this experimental study at Tabriz Medical University in 2015, we did EMF exposures and assessed the alteration of rats’ ovarian follicles. Thirty three-month old rats were selected randomly from laboratory animals, and, after their ages and weights were determined, they were divided randomly into three groups. The control group consisted of 10 rats without any treatment, and they were kept in normal conditions. The second group of rats was influenced by a magnetic field of 50 Hz for eight weeks (three weeks intrauterine and five weeks ectopic). The third group of rats was influenced by a magnetic field of 50 Hz for 13 weeks (three weeks intrauterine and ten weeks ectopic). Samples were fixed in 10% buffered formaldehyde and cleared with Xylol and embedded in paraffin. After sectioning and staining, samples were studied by optic microscopy. Finally, SPSS version 17, were used for data analysis. Results EMF radiation increased the harmful effects on the formation of ovarian follicles and oocytes implantation. Studies on the effects of electromagnetic fields on ovarian follicles have shown that the nuclei of the oocytes become smaller and change shape. There were significant, harmful changes in the groups affected by electromagnetic waves. Atresia of ovarian follicles was significantly significant in both study groups compared to the control group (p < 0.05). Conclusion Exposure to electromagnetic fields during embryonic development can cause morphological changes in oocytes and affect the differentiation of oocytes and folliculogenesis, resulting in decreased ovarian reserve leading to infertility or reduced

  12. Magnetic Field Strength in an Intermediate-velocity Ionized Filament in the First Galactic Quadrant

    NASA Astrophysics Data System (ADS)

    Stil, J. M.; Hryhoriw, A.

    2016-08-01

    We investigate the magnetic field in an intermediate-velocity filament for which the Hα intensity in the WHAM survey correlates with excess Faraday rotation of extragalactic radio sources over the length of the filament from b ≈ 20° to b ≈ 55°. The density-weighted mean magnetic field is 2.8 +/- 0.8 μ {{G}}, derived from rotation measures and an empirical relation between Hα emission measure and dispersion measure from Berkhuijsen et al. In view of the uncertainties in the derived magnetic field strength, we propose an alternative use of the available data, rotation measure, and emission measure, to derive a lower limit to the Alfvén speed, weighted by electron density {n}e3/2. We find lower limits to the Alfvén speed that are comparable to or larger than the sound speed in a {10}4 {{K}} plasma, and conclude that the magnetic field is dynamically important. We discuss the role of intermediate-velocity gas as a locus of Faraday rotation in the interstellar medium, and propose that this lower limit to the Alfvén speed may also be applicable to Faraday rotation by galaxy clusters.

  13. A vacuum-ultraviolet laser pulsed field ionization-photoelectron study of sulfur monoxide (SO) and its cation (SO+).

    PubMed

    Lam, Chow-Shing; Wang, Hailing; Xu, Yuntao; Lau, Kai-Chung; Ng, C Y

    2011-04-14

    Vacuum ultraviolet (VUV) laser pulsed field ionization-photoelectron (PFI-PE) spectroscopy has been applied to the study of the sulfur monoxide radical (SO) prepared by using a supersonically cooled radical beam source based on the 193 nm excimer laser photodissociation of SO(2). The vibronic VUV-PFI-PE bands for the photoionization transitions SO(+)(X(2)Π(1∕2); v(+) = 0) ← SO(X(3)Σ(-); v = 0); and SO(+)((2)Π(3∕2); v(+) = 0) ← SO(X(3)Σ(-); v = 0) have been recorded. On the basis of the semiempirical simulation of rotational branch contours observed in these PFI-PE bands, we have obtained highly precise ionization energies (IEs) of 83,034.2 ± 1.7 cm(-1) (10.2949 ± 0.0002 eV) and 83,400.4 ± 1.7 cm(-1) (10.3403 ± 0.0002 eV) for the formation of SO(+)(X(2)Π(1∕2); v(+) = 0) and SO(+)((2)Π(3∕2); v(+) = 0), respectively. The present VUV-PFI-PE measurement has enabled the direct determination of the spin-orbit coupling constant (A(0)) for SO(+)(X(2)Π(1∕2,3∕2)) to be 365.36 ± 0.12 cm(-1). We have also performed high-level ab initio quantum chemical calculations at the coupled-cluster level up to full quadruple excitations and complete basis set (CBS) extrapolation. The zero-point vibrational energy correction, the core-valence electronic correction, the spin-orbit coupling, and the high-level correction are included in the calculation. The IE[SO(+)(X(2)Π(1∕2,3∕2))] and A(0) predictions thus obtained are found to be in remarkable agreement with the experimental determinations.

  14. Communication: A vibrational study of titanium dioxide cation using the vacuum ultraviolet laser pulsed field ionization-photoelectron method.

    PubMed

    Chang, Yih-Chung; Huang, Huang; Luo, Zhihong; Ng, C Y

    2013-01-28

    We have successfully measured the vacuum ultraviolet (VUV) laser photoionization efficiency and pulsed field ionization-photoelectron (PFI-PE) spectra of cold titanium dioxide (TiO(2)) prepared by a supersonically cooled laser ablation source. The VUV-PFI-PE spectrum thus obtained exhibits long progressions of the v(2)(+)(a(1)) bending and the combination of v(1)(+)(a(1)) stretching and v(2)(+)(a(1)) bending vibrational modes of the TiO(2)(+)(X(2)B(2)) ion. The pattern of Franck-Condon factors observed indicates that the O-Ti-O bond angle of the TiO(2)(+)(X(2)B(2)) ion is significantly different from that of the TiO(2)(X(1)A(1)) neutral, whereas the change of the Ti-O bond distance is very minor upon the photoionization transition. The analysis of the PFI-PE bands has made possible the determination of the adiabatic ionization energy for TiO(2), IE(TiO(2)) = 77215.9 ± 1.2 cm(-1) (9.57355 ± 0.00015 eV), the harmonic vibrational frequencies, ω(1)(+) = 829.1 ± 2.0 cm(-1) and ω(2)(+) = 248.7 ± 0.6 cm(-1), and the anharmonic coefficients, χ(11)(+) = 5.57 ± 0.65 cm(-1), χ(22)(+) = 0.08 ± 0.06 cm(-1), and χ(12)(+) = -4.51 ± 0.30 cm(-1) for the TiO(2)(+)(X(2)B(2)) ground state.

  15. A compact field-portable double-pulse laser system to enhance laser induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Shuo; Liu, Lei; Yan, Aidong; Huang, Sheng; Huang, Xi; Chen, Rongzhang; Lu, Yongfeng; Chen, Kevin

    2017-02-01

    This paper reports the development of a compact double-pulse laser system to enhance laser induced breakdown spectroscopy (LIBS) for field applications. Pumped by high-power vertical-surface emitting lasers, the laser system that produces 16 ns pulse at 12 mJ/pulse with total weight less than 10 kg is developed. The inter-pulse delay can be adjusted from 0 μ s with 0.5 μ s increment. Several LIBS experiments were carried out on NIST standard aluminum alloy samples. Comparing with the single-pulse LIBS, up to 9 times enhancement in atomic emission line was achieved with continuum background emission reduced by 70%. This has led to up to 10 times improvement in the limit of detection. Signal stability was also improved by 128% indicating that a more robust and accurate LIBS measurement can be achieved using a compact double-pulse laser system. This paper presents a viable and field deployable laser tool to dramatically improve the sensitivity and applicability of LIBS for a wide array of applications.

  16. Low-energy structures in strong field ionization revealed by quantum orbits.

    PubMed

    Yan, Tian-Min; Popruzhenko, S V; Vrakking, M J J; Bauer, D

    2010-12-17

    Experiments on atoms in intense laser pulses and the corresponding exact ab initio solutions of the time-dependent Schrödinger equation (TDSE) yield photoelectron spectra with low-energy features that are not reproduced by the otherwise successful work horse of strong field laser physics: the "strong field approximation" (SFA). In the semiclassical limit, the SFA possesses an appealing interpretation in terms of interfering quantum trajectories. It is shown that a conceptually simple extension towards the inclusion of Coulomb effects yields very good agreement with exact TDSE results. Moreover, the Coulomb quantum orbits allow for a physically intuitive interpretation and detailed analysis of all low-energy features in the semiclassical regime, in particular, the recently discovered "low-energy structure" [C. I. Blaga, Nature Phys. 5, 335 (2009) and W. Quan, Phys. Rev. Lett. 103, 093001 (2009).

  17. Observations of a Newly "Captured" Magnetosheath Field Line: Evidence for "Double Reconnection"

    NASA Technical Reports Server (NTRS)

    Chandler, Michael O.; Avanov, Levon A.; Craven, Paul D.; Mozer, Forrest S.; Moore, Thomas E.

    2007-01-01

    We have begun an investigation of the nature of the low-latitude boundary layer in the mid-altitude cusp region using data from the Polar spacecraft. This region has been routinely sampled for about three months each year for the periods 1999-2001 and 2004-2006. The low-to-mid-energy ion instruments frequently observed dense, magnetosheath-like plasma deep (in terms of distance from the magnetopause and in invariant latitude) in the magnetosphere. One such case, taken during a period of northward interplanetary magnetic field (IMF), shows magnetosheath ions within the magnetosphere with velocity distributions resulting from two separate merging sites along the same field lines. Cold ionospheric ions were also observed counterstreaming along the field lines, evidence that these field lines were closed. These results are consistent with the hypothesis that double merging can produce closed field .lines populated by solar wind plasma. Through the use of individual cases such as this and statistical studies of a broader database we seek to understand the morphology of the LLBL as it projects from the sub-solar region into the cusp. We will present preliminary results of our ongoing study.

  18. Stark shift and field ionization of arsenic donors in {sup 28}Si-silicon-on-insulator structures

    SciTech Connect

    Lo, C. C. Morton, J. J. L.; Simmons, S.; Lo Nardo, R.; Weis, C. D.; Schenkel, T.; Tyryshkin, A. M.; Lyon, S. A.; Meijer, J.; Rogalla, D.; Bokor, J.

    2014-05-12

    We develop an efficient back gate for silicon-on-insulator (SOI) devices operating at cryogenic temperatures and measure the quadratic hyperfine Stark shift parameter of arsenic donors in isotopically purified {sup 28}Si-SOI layers using such structures. The back gate is implemented using MeV ion implantation through the SOI layer forming a metallic electrode in the handle wafer, enabling large and uniform electric fields up to 2 V/μm to be applied across the SOI layer. Utilizing this structure, we measure the Stark shift parameters of arsenic donors embedded in the {sup 28}Si-SOI layer and find a contact hyperfine Stark parameter of η{sub a} = −1.9 ± 0.7 × 10{sup −3} μm{sup 2}/V{sup 2}. We also demonstrate electric-field driven dopant ionization in the SOI device layer, measured by electron spin resonance.

  19. Hybrid Simulation of Supersonic Flow of Weakly Ionized Plasma along Open Field Magnetic Line Effect of Background Pressure

    NASA Astrophysics Data System (ADS)

    Laosunthara, Ampan; Akatsuka, Hiroshi

    2016-09-01

    In previous study, we experimentally examined physical properties of supersonic flow of weakly ionized expanding arc-jet plasma through an open magnetic field line (Bmax 0.16T). We found supersonic velocity of helium plasma up to Mach 3 and the space potential drop at the end of the magnets. To understand the plasma in numerical point of view, the flows of ion and neutral are treated by particle-based Direct Simulation Monte Carlo (DSMC) method, electron is treated as a fluid. The previous numerical study, we assumed 2 conditions. Ion and electron temperatures were the same (LTE condition). Ion and electron velocities were the same (current-free condition). We found that ion velocity decreased by collision with residual gas molecules (background pressure). We also found that space potential changing with background pressure. In other words, it was indicated that electric field exists and the current-free assumption is not proper. In this study, we add electron continuity and electron momentum equations to obtain electron velocity and space potential. We find that space potential changing with background pressure slightly. It is indicated that electron is essential to space potential formation than ion.

  20. Field-induced wooden-tip electrospray ionization mass spectrometry for high-throughput analysis of herbal medicines.

    PubMed

    Yang, Yunyun; Deng, Jiewei; Yao, Zhong-Ping

    2015-08-05

    This study demonstrates the first application of field-induced wooden-tip electrospray ionization (ESI) mass spectrometry (MS) for high-throughput analysis of herbal medicines. By application of an opposite and sample-contactless high voltage on the MS inlet rather than wooden tips, a high-throughput analysis device is easily set up, and a relatively fast analysis speed of 6 s per sample was successfully achieved. In addition, fast polarity switching between positive and negative ion detection mode is readily accomplished, which provides more complete chemical information for quality assessment and control of herbal medicines. By using the proposed method, various active ingredients present in different herbal medicines were rapidly detected, and the obtained mass spectra were served as the samples' fingerprints for tracing the origins, establishing the authenticity, and assessing the quality consistency and stability of herbal medicines. Our experimental results demonstrated that field-induced wooden-tip ESI-MS is a desirable method for high-throughput analysis of herbal medicines, with promising prospects for rapidly differentiating the origin, determining the authenticity, and assessing the overall quality of pharmaceuticals.

  1. Stabilization window and attosecond pulse train production at atom ionization in superintense laser field.

    PubMed

    Ryabikin, M; Sergeev, A

    2000-12-04

    We present the results of numerical experiments on a two-dimensional model atom driven by a high-intense laser pulse. The electron wave-packet behavior is studied in a range of laser parameters corresponding to the dynamic stabilization regime. Wave packet localization in this regime with arbitrary laser polarizations is shown to manifest itself macroscopically by high-order harmonic production in the form of long trains of attosecond pulses. Calculations for the sub-relativistic regime of laser-atom interaction are carried out without making the dipole approximation in order to take into account the Lorentz force effect in wave packet evolution. The transition from polychotomy to the magnetic-field-induced drifting at very high laser intensities is documented which results in the electron delocalization. As a consequence, the intensity dependence of the atomic survival probability as well as that of the efficiency of high-order harmonic production possess a wide "stabilization window" followed by an abrupt drop because of the magnetic field effect.

  2. A two-dimensional liquid-filled ionization chamber array prototype for small-field verification: characterization and first clinical tests

    NASA Astrophysics Data System (ADS)

    Brualla-González, Luis; Gómez, Faustino; Vicedo, Aurora; González-Castaño, Diego M.; Gago-Arias, Araceli; Pazos, Antonio; Zapata, Martín; Roselló, Joan V.; Pardo-Montero, Juan

    2012-08-01

    In this work we present the design, characterization and first clinical tests of an in-house developed two-dimensional liquid-filled ionization chamber prototype for the verification of small radiotherapy fields and treatments containing such small fields as in radiosurgery, which consists of 2 mm × 2 mm pixels arranged on a 16×8 rectangular grid. The ionization medium is isooctane. The characterization of the device included the study of depth, field-size and dose-rate dependences, which are sufficiently moderate for a good operation at therapy radiation levels. However, the detector presents an important anisotropic response, up to ≃ 12% for front versus near-lateral incidence, which can impact the verification of full treatments with different incidences. In such a case, an anisotropy correction factor can be applied. Output factors of small square fields measured with the device show a small systematic over-response, less than 1%, when compared to unshielded diode measurements. An IMRT radiosurgery treatment has been acquired with the liquid-filled ionization chamber device and compared with film dosimetry by using the gamma method, showing good agreement: over 99% passing rates for 1.2% and 1.2 mm for an incidence-per-incidence analysis; 100% passing rates for tolerances 1.8% and 1.8 mm when the whole treatment is analysed and the anisotropy correction factor is applied. The point dose verification for each incidence of the treatment performed with the liquid-filled ionization chamber agrees within 1% with a CC01 ionization chamber. This prototype has shown the utility of this kind of technology for the verification of small fields/treatments. Currently, a larger device covering a 5 cm × 5 cm area is under development.

  3. Khα1,2 X-Ray Hypersatellite Line Broadening as a Signature of K-Shell Double Photoionization Followed by Outer-Shell Ionization and Excitation

    NASA Astrophysics Data System (ADS)

    Polasik, M.; Słabkowska, K.; Rzadkiewicz, J.; Kozioł, K.; Starosta, J.; Wiatrowska-Kozioł, E.; Dousse, J.-Cl.; Hoszowska, J.

    2011-08-01

    We propose a novel approach for the theoretical analysis of the photoinduced high-resolution Khα1,2 x-ray hypersatellite spectra, which allows us to obtain reliable values of lifetimes of the doubly K-shell ionized states and fundamental information about the relative role of K-shell double photoionization (DPI) mechanisms. It is demonstrated for the first time that the Khα1,2 hypersatellite natural line broadening observed for selected metal atoms with 20≤Z≤30 can be well reproduced quantitatively by taking into account the influences of the open-shell valence configuration (adopted from predictions of the band-structure method) and the outer-shell ionization and excitation following the DPI process.

  4. Understanding the two-dimensional ionization structure in luminous infrared galaxies. A near-IR integral field spectroscopy perspective

    NASA Astrophysics Data System (ADS)

    Colina, Luis; Piqueras López, Javier; Arribas, Santiago; Riffel, Rogério; Riffel, Rogemar A.; Rodriguez-Ardila, Alberto; Pastoriza, Miriani; Storchi-Bergmann, Thaisa; Alonso-Herrero, Almudena; Sales, Dinalva

    2015-06-01

    We investigate the two-dimensional excitation structure of the interstellar medium (ISM) in a sample of luminous infrared galaxies (LIRGs) and Seyferts using near-IR integral field spectroscopy. This study extends to the near infrared the well-known optical and mid-IR emission line diagnostics used to classify activity in galaxies. Based on the spatially resolved spectroscopy of prototypes, we identify in the [FeII]1.64 μm/Brγ- H22.12 μm/Brγ plane regions dominated by the different heating sources, i.e. active galactic nuclei (AGNs), young main-sequence massive stars, and evolved stars i.e. supernovae. The ISM in LIRGs occupy a wide region in the near-IR diagnostic plane from -0.6 to +1.5 and from -1.2 to +0.8 (in log units) for the [FeII]/Brγ and H2/Brγ line ratios, respectively. The corresponding median(mode) ratios are +0.18(0.16) and +0.02(-0.04). Seyferts show on average larger values by factors ~2.5 and ~1.4 for the [FeII]/Brγ and H2/Brγ ratios, respectively. New areas and relations in the near-IR diagnostic plane are defined for the compact, high surface brightness regions dominated by AGN, young ionizing stars, and supernovae explosions, respectively. In addition to these high surface brightness regions, the diffuse regions affected by the AGN radiation field cover an area similar to that of Seyferts, but with high values in [FeII]/Brγ that are not as extreme. The extended, non-AGN diffuse regions cover a wide area in the near-IR diagnostic diagram that overlaps that of individual excitation mechanisms (i.e. AGN, young stars, and supernovae), but with its mode value to that of the young star-forming clumps. This indicates that the excitation conditions of the extended, diffuse ISM are likely due to a mixture of the different ionization sources, weighted by their spatial distribution and relative flux contribution. The integrated line ratios in LIRGs show higher excitation conditions i.e. towards AGNs, than those measured by the spatially resolved

  5. The Axial Double Probe and Fields Signal Processing for the MMS Mission

    NASA Astrophysics Data System (ADS)

    Ergun, R. E.; Tucker, S.; Westfall, J.; Goodrich, K. A.; Malaspina, D. M.; Summers, D.; Wallace, J.; Karlsson, M.; Mack, J.; Brennan, N.; Pyke, B.; Withnell, P.; Torbert, R.; Macri, J.; Rau, D.; Dors, I.; Needell, J.; Lindqvist, P.-A.; Olsson, G.; Cully, C. M.

    2016-03-01

    The Axial Double Probe (ADP) instrument measures the DC to ˜100 kHz electric field along the spin axis of the Magnetospheric Multiscale (MMS) spacecraft (Burch et al., Space Sci. Rev., 2014, this issue), completing the vector electric field when combined with the spin plane double probes (SDP) (Torbert et al., Space Sci. Rev., 2014, this issue, Lindqvist et al., Space Sci. Rev., 2014, this issue). Two cylindrical sensors are separated by over 30 m tip-to-tip, the longest baseline on an axial DC electric field ever attempted in space. The ADP on each of the spacecraft consists of two identical, 12.67 m graphite coilable booms with second, smaller 2.25 m booms mounted on their ends. A significant effort was carried out to assure that the potential field of the MMS spacecraft acts equally on the two sensors and that photo- and secondary electron currents do not vary over the spacecraft spin. The ADP on MMS is expected to measure DC electric field with a precision of ˜1 mV/m, a resolution of ˜25 μV/m, and a range of ˜±1 V/m in most of the plasma environments MMS will encounter. The Digital Signal Processing (DSP) units on the MMS spacecraft are designed to perform analog conditioning, analog-to-digital (A/D) conversion, and digital processing on the ADP, SDP, and search coil magnetometer (SCM) (Le Contel et al., Space Sci. Rev., 2014, this issue) signals. The DSP units include digital filters, spectral processing, a high-speed burst memory, a solitary structure detector, and data compression. The DSP uses precision analog processing with, in most cases, >100 dB in dynamic range, better that -80 dB common mode rejection in electric field ( E) signal processing, and better that -80 dB cross talk between the E and SCM ( B) signals. The A/D conversion is at 16 bits with ˜1/4 LSB accuracy and ˜1 LSB noise. The digital signal processing is powerful and highly flexible allowing for maximum scientific return under a limited telemetry volume. The ADP and DSP are

  6. Strong-field approximation for above-threshold ionization of polyatomic molecules. II. The role of electron rescattering off the molecular centers

    NASA Astrophysics Data System (ADS)

    Hasović, E.; Milošević, D. B.

    2014-05-01

    We consider high-order above-threshold ionization of polyatomic molecules by a strong laser field. An improved molecular strong-field approximation which takes into account the electron rescattering off the molecular centers is developed. The presented theory is applied to calculate the photoelectron energy and angular distributions for the ozone molecule. The obtained spectra exhibit pronounced minima, and this is explained as a three-point destructive interference of the rescattered electron wave packets.

  7. Coherent control of D2/H2 dissociative ionization by a mid-infrared two-color laser field

    NASA Astrophysics Data System (ADS)

    Wanie, Vincent; Ibrahim, Heide; Beaulieu, Samuel; Thiré, Nicolas; Schmidt, Bruno E.; Deng, Yunpei; Alnaser, Ali S.; Litvinyuk, Igor V.; Tong, Xiao-Min; Légaré, François

    2016-01-01

    Steering the electrons during an ultrafast photo-induced process in a molecule influences the chemical behavior of the system, opening the door to the control of photochemical reactions and photobiological processes. Electrons can be efficiently localized using a strong laser field with a well-designed temporal shape of the electric component. Consequently, many experiments have been performed with laser sources in the near-infrared region (800 nm) in the interest of studying and enhancing the electron localization. However, due to its limited accessibility, the mid-infrared (MIR) range has barely been investigated, although it allows to efficiently control small molecules and even more complex systems. To push further the manipulation of basic chemical mechanisms, we used a MIR two-color (1800 and 900 nm) laser field to ionize H2 and D2 molecules and to steer the remaining electron during the photo-induced dissociation. The study of this prototype reaction led to the simultaneous control of four fragmentation channels. The results are well reproduced by a theoretical model solving the time-dependent Schrödinger equation for the molecular ion, identifying the involved dissociation mechanisms. By varying the relative phase between the two colors, asymmetries (i.e., electron localization selectivity) of up to 65% were obtained, corresponding to enhanced or equivalent levels of control compared to previous experiments. Experimentally easier to implement, the use of a two-color laser field leads to a better electron localization than carrier-envelope phase stabilized pulses and applying the technique in the MIR range reveals more dissociation channels than at 800 nm.

  8. Nuclear mean field and double-folding model of the nucleus-nucleus optical potential

    NASA Astrophysics Data System (ADS)

    Khoa, Dao T.; Phuc, Nguyen Hoang; Loan, Doan Thi; Loc, Bui Minh

    2016-09-01

    Realistic density dependent CDM3Yn versions of the M3Y interaction have been used in an extended Hartree-Fock (HF) calculation of nuclear matter (NM), with the nucleon single-particle potential determined from the total NM energy based on the Hugenholtz-van Hove theorem that gives rise naturally to a rearrangement term (RT). Using the RT of the single-nucleon potential obtained exactly at different NM densities, the density and energy dependence of the CDM3Yn interactions was modified to account properly for both the RT and observed energy dependence of the nucleon optical potential. Based on a local density approximation, the double-folding model of the nucleus-nucleus optical potential has been extended to take into account consistently the rearrangement effect and energy dependence of the nuclear mean-field potential, using the modified CDM3Yn interactions. The extended double-folding model was applied to study the elastic 12C+12C and 16O+12C scattering at the refractive energies, where the Airy structure of the nuclear rainbow has been well established. The RT was found to affect significantly the real nucleus-nucleus optical potential at small internuclear distances, giving a potential strength close to that implied by the realistic optical model description of the Airy oscillation.

  9. Novel carbon nanotube field effect transistor with graded double halo channel

    NASA Astrophysics Data System (ADS)

    Naderi, Ali; Keshavarzi, Parviz

    2012-05-01

    A novel carbon nanotube field effect transistor with symmetric graded double halo channel (GDH-CNTFET) is presented for suppressing band to band tunneling and improving the device performance. GDH structure includes two symmetric graded haloes which are broadened throughout the channel. The doping concentration of GDH channel is at maximum level at drain/source side and is reduced gradually toward zero at the middle of channel. The doping distribution at source side of channel reduces the drain induced barrier lowering (DIBL) and the drain side suppresses the band to band tunneling effect. In addition, broadening the doping throughout the channel increases the recombination of electrons and holes and acts as an additional factor for improving the band to band tunneling. Simulation results show that applying this structure on CNTFET enhances the device performance. In comparison with double halo structure with equal saturation current, the proposed GDH structure shows better characteristics and short channel parameters. Furthermore, the delay and power delay product (PDP) analysis versus on/off current ratio shows the efficiency of the proposed GDH structure.

  10. Ionization of helium by intense XUV laser pulses: Numerical simulations on channel-resolved probabilities

    NASA Astrophysics Data System (ADS)

    Yu, Chuan; Madsen, Lars Bojer

    2016-04-01

    Ionization of a helium atom by intense extreme ultraviolet laser pulses is investigated in a frequency regime where the high-frequency stabilization condition is only fulfilled for the lowest single ionization channel. Multiphoton double ionization substantially contributes to the total ionization probability for superintense fields. As a result, no obvious stabilization against total ionization occurs. A detailed view of probabilities into different single ionization channels as a function of the field strength is presented. We find that the probabilities into some ionic channels peak at field strengths corresponding to one-photon resonances between field-dressed ionic states in the high-frequency Floquet theory. Thus we propose a sequential "ionization-excitation" mechanism in the dressed energy picture: first, one-photon absorption causes single ionization, leaving the ion in its dressed ground state; second, the ion is excited to a new state via one-photon absorption at the field strength where the resonance condition in the dressed ionic system is fulfilled. To reveal the sequential mechanism in the time domain, we also take a time-dependent view on the channel-resolved probabilities, observing the decrease of the ground-state ionic channel probability during the laser pulse when the field strength is such that a resonance condition exists between the dressed states in the ion.

  11. Electron ionization of acetylene.

    PubMed

    King, Simon J; Price, Stephen D

    2007-11-07

    Relative partial ionization cross sections and precursor specific relative partial ionization cross sections for fragment ions formed by electron ionization of C2H2 have been measured using time-of-flight mass spectrometry coupled with a 2D ion-ion coincidence technique. We report data for the formation of H+, H+2, C2+, C+/C2+ 2, CH+/C2H+2, CH+2, C+2, and C2H+ relative to the formation of C2H+2, as a function of ionizing electron energy from 30-200 eV. While excellent agreement is found between our data and one set of previously published absolute partial ionization cross sections, some discrepancies exist between the results presented here and two other recent determinations of these absolute partial ionization cross sections. We attribute these differences to the loss of some translationally energetic fragment ions in these earlier studies. Our relative precursor-specific partial ionization cross sections enable us, for the first time, to quantify the contribution to the yield of each fragment ion from single, double, and triple ionization. Analysis shows that at 50 eV double ionization contributes 2% to the total ion yield, increasing to over 10% at an ionizing energy of 100 eV. From our ion-ion coincidence data, we have derived branching ratios for charge separating dissociations of the acetylene dication. Comparison of our data to recent ab initio/RRKM calculations suggest that close to the double ionization potential C2H2+2 dissociates predominantly on the ground triplet potential energy surface (3Sigma*g) with a much smaller contribution from dissociation via the lowest singlet potential energy surface (1Delta g). Measurements of the kinetic energy released in the fragmentation reactions of C2H2+2 have been used to obtain precursor state energies for the formation of product ion pairs, and are shown to be in good agreement with available experimental data and with theory.

  12. Molecular Characterization of Organic Aerosol Using Nanospray Desorption/Electrospray Ionization Mass Spectrometry: CalNex 2010 field study

    SciTech Connect

    O'Brien, Rachel E.; Laskin, Alexander; Laskin, Julia; Liu, Shang; Weber, Robin; Russell, Lynn; Goldstein, Allen H.

    2013-04-01

    Aerosol samples from the CalNex 2010 field study were analyzed using high resolution mass spectrometry (HR-MS) coupled to a nanospray-desorption/electrospray ionization (nano-DESI) source. The samples were collected in Bakersfield, CA on June 22-23, 2010. The chemical formulas of over 1300 unique molecular species were detected in the mass range of 50-800 m/z. Our analysis focused on identification of two main groups: compounds containing only carbon, hydrogen, and oxygen (CHO only), and nitrogen-containing organic compounds (NOC). The NOC accounted for 35% (by number) of the compounds observed in the afternoon, and for 59% in the early morning samples. By comparing plausible reactant-product pairs, we propose that over 50% of the NOC in each sample could have been formed through reactions transforming carbonyls into imines. The CHO only compounds were dominant in the afternoon suggesting a photochemical source. The average O:C ratios of all observed compounds were fairly consistent throughout the day, ranging from 0.34 in the early morning to 0.37 at night. We conclude that both photooxidation and ammonia chemistry play important roles in forming the compounds observed in this mixed urban-rural environment.

  13. Multiple ionization of neon atoms in collisions with bare and dressed ions: A mean-field description considering target response

    NASA Astrophysics Data System (ADS)

    Schenk, Gerald; Kirchner, Tom

    2015-05-01

    We investigate projectile-charge-state-differential electron removal from neon atoms by impact of He2+, Li3+, B2+, and C3+ ions at intermediate projectile energies (25 keV/u to 1 MeV/u ). The many-electron problem is described with an independent electron model in which active electrons at both collision centers are propagated in a common mean-field potential. Response to electron removal is taken into account in terms of a time-dependent screening potential, and a Slater-determinant-based method is used for the final-state analysis. Total cross sections for net recoil ion production, multiple ionization, and capture channels are mostly in good agreement with published experimental data. Results from equicharged bare and dressed ions are compared and the net recoil ion production cross section is broken down into contributions associated with different final projectile charge states in order to shed light on the role of the projectile electrons.

  14. Enhancement of proton acceleration field in laser double-layer target interaction

    SciTech Connect

    Gu, Y. J.; Kong, Q.; Li, X. F.; Yu, Q.; Wang, P. X.; Kawata, S.; Izumiyama, T.; Ma, Y. Y.

    2013-07-15

    A mechanism is proposed to enhance a proton acceleration field in laser plasma interaction. A double-layer plasma with different densities is illuminated by an intense short pulse. Electrons are accelerated to a high energy in the first layer by the wakefield. The electrons accelerated by the laser wakefield induce the enhanced target normal sheath (TNSA) and breakout afterburner (BOA) accelerations through the second layer. The maximum proton energy reaches about 1 GeV, and the total charge with an energy higher than 100 MeV is about several tens of μC/μm. Both the acceleration gradient and laser energy transfer efficiency are higher than those in single-target-based TNSA or BOA. The model has been verified by 2.5D-PIC simulations.

  15. Enhancement of proton acceleration field in laser double-layer target interaction

    NASA Astrophysics Data System (ADS)

    Gu, Y. J.; Kong, Q.; Kawata, S.; Izumiyama, T.; Li, X. F.; Yu, Q.; Wang, P. X.; Ma, Y. Y.

    2013-07-01

    A mechanism is proposed to enhance a proton acceleration field in laser plasma interaction. A double-layer plasma with different densities is illuminated by an intense short pulse. Electrons are accelerated to a high energy in the first layer by the wakefield. The electrons accelerated by the laser wakefield induce the enhanced target normal sheath (TNSA) and breakout afterburner (BOA) accelerations through the second layer. The maximum proton energy reaches about 1 GeV, and the total charge with an energy higher than 100 MeV is about several tens of μC/μm. Both the acceleration gradient and laser energy transfer efficiency are higher than those in single-target-based TNSA or BOA. The model has been verified by 2.5D-PIC simulations.

  16. Pulsed-field gel electrophoresis analysis of multicellular DNA double-strand break damage and repair.

    PubMed

    Joshi, Nina; Grant, Stephen G

    2014-01-01

    This assay quantifies the extent of double-strand break (DSB) DNA damage in cell populations embedded in agarose and analyzed for migratory DNA using pulsed-field gel electrophoresis with ethidium bromide staining. The assay can measure preexisting damage as well as induction of DSB by chemical (e.g., bleomycin), physical (e.g., X-irradiation), or biological (e.g., restriction enzymes) agents. By incubating the cells under physiological conditions prior to processing, the cells can be allowed to repair DSB, primarily via the process of nonhomologous end joining. The amount of repair, corresponding to the repair capacity of the treated cells, is then quantified by determining the ratio of the fractions of activity released in the lanes in comparison to the total amount of DNA fragmentation following determination of an optimal exposure for maximum initial fragmentation. Repair kinetics can also be analyzed through a time-course regimen.

  17. Mg/Al double-metal hydroxide regeneration of anion exchange resin by electric field intensification.

    PubMed

    Wang, Ying; Li, Zhun; Li, Yansheng; Liu, Zhigang

    2017-03-01

    Fouled anion exchange resins were regenerated by electric field intensification of Mg/Al double-metal hydroxides. Regenerative experiments were performed with varying voltages (10-30 V) and dosages of Mg/Al hydroxides (0.045-0.135 mol and 0.015-0.045 mol, respectively) for 1-5 h. Optimal results were obtained under the following regenerative conditions: 20 V, 4 h, and 0.09/0.03 mol of Mg/Al hydroxides. The maximum regenerative capacity of resins was increased to 41.07%. The regenerative mechanism was presented by Fourier-transform infrared spectrum of resins and Mg/Al hydroxides, and the regenerative degree was analyzed with respect to conductivity, pH value, and electric current. Mg/Al hydroxides were also recycled after the regeneration. This method was proven to be cost-effective and environmentally friendly.

  18. Double Quarter Wave Crab Cavity Field Profile Analysis and Higher Order Mode Characterization

    SciTech Connect

    Marques, Carlos; Xiao, B. P.; Belomestnykh, S.

    2014-06-01

    The Large Hadron Collider (LHC) is underway for a major upgrade to increase its luminosity by an order of magnitude beyond its original design specifications. This novel machine configuration known as the High Luminosity LHC (HL-LHC) will rely on various innovative technologies including very compact and ultra-precise superconducting crab cavities for beam rotation. A double quarter wave crab cavity (DQWCC) has been designed at Brookhaven National Laboratory for the HL-LHC. This cavity as well as the structural support components were fabricated and assembled at Niowave. The field profile of the crabbing mode for the DQWCC was investigated using a phase shift bead pulling technique and compared with simulated results to ensure proper operation or discover discrepancies from modeled results and/or variation in fabrication tolerances. Higher-Order Mode (HOM) characterization was also performed and correlated with simulations.

  19. The merging dwarf galaxy UM 448: chemodynamics of the ionized gas from VLT integral field spectroscopy

    NASA Astrophysics Data System (ADS)

    James, B. L.; Tsamis, Y. G.; Barlow, M. J.; Walsh, J. R.; Westmoquette, M. S.

    2013-01-01

    Using Very Large Telescope/Fibre Large Array Multi Element Spectrograph optical integral field unit observations, we present a detailed study of UM 448, a nearby blue compact galaxy (BCG) previously reported to have an anomalously high N/O abundance ratio. New Technology Telescope/Superb-Seeing Imager images reveal a morphology suggestive of a merger of two systems of contrasting colour, whilst our Hα emission maps resolve UM 448 into three separate regions that do not coincide with the stellar continuum peaks. UM 448 exhibits complex emission line profiles, with most lines consisting of a narrow [full width at half-maximum (FWHM) ≲ 100 km s-1], central component, an underlying broad component (FWHM ˜ 150-300 km s-1) and a third, narrow blueshifted component. Radial velocity maps of all three components show signs of solid body rotation across UM 448, with a projected rotation axis that correlates with the continuum morphology of the galaxy. A spatially resolved, chemodynamical analysis, based on the [O iii] λλ4363, 4959, [N ii] λ6584, [S ii] λλ6716, 6731 and [Ne iii] λ3868 line maps, is presented. Whilst the eastern tail of UM 448 has electron temperatures (Te) that are typical of BCGs, we find a region within the main body of the galaxy where the narrow and broad [O iii] λ4363 line components trace temperatures differing by 5000 K and oxygen abundances differing by 0.4 dex. We measure spatially resolved and integrated ionic and elemental abundances for O, N, S and Ne throughout UM 448, and find that they do not agree, possibly due the flux weighting of Te from the integrated spectrum. This has significant implications for abundances derived from long-slit and integrated spectra of star-forming galaxies in the nearby and distant universe. A region of enhanced N/O ratio is indeed found, extended over a ˜0.6 kpc2 region within the main body of the galaxy. Contrary to previous studies, however, we do not find evidence for a large Wolf-Rayet (WR

  20. Electric double layer at the interface of ionic liquid-dielectric liquid under electric field.

    PubMed

    Lee, D W; Im, D J; Kang, I S

    2013-02-12

    The structure of the electric double layer (EDL) is analyzed in order to understand the electromechanical behavior of the interface of ionic liquid-dielectric liquid. The modified Poisson-Boltzmann equation proposed by Bazant et al. is solved to see the crowding and the overscreening effects that are the characteristics of an ionic liquid (Bazant, M. Z.; Storey, B. D.; Kornyshev, A. A. Double layer in ionic liquids: Overscreening versus crowding. Phys. Rev. Lett. 2011, 106, 046102.). From the simple one-dimensional (1-D) analysis, it is found that the changes of the composition and the material properties in the EDL are negligible except under some extreme conditions such as strong electric field over O(10(8)) V/m. From the electromechanical view points, an ionic liquid behaves like a pure conductor at the interface with a dielectric liquid. Based on these findings, three specific application problems are considered. In the first, a new method is suggested for measuring the interfacial tension of an ionic liquid-dielectric liquid system. The deformation of a charged ionic liquid droplet translating between two electrodes is used for this measurement. The second is for the Taylor cone problem, which includes an extreme electric field condition near the tip. The size of the critical region, where the EDL effect should be considered, is estimated by using the 1-D analysis result. Numerical computation is also performed to see the profiles of electric potential and the electric stress along the interface of the Taylor cone. Lastly, the electrowetting problem of the ionic liquid is considered. The discrepancies in the results of previous workers are interpreted by using the results of the present work. It is shown that all the results might be consistent if the leaking of the dielectric layer and/or the adsorption of ions is considered.

  1. Stellar magnetic-field measurement with a double-beam polarimeter fitted with a photoelastic modulator.

    NASA Astrophysics Data System (ADS)

    Weiss, W.; Malanushenko, V. P.; Shakovskoj, N. M.

    Methods and apparatus are described for measuring the fields from hydrogen lines. The circular polarization in Hβ is measured with a double-beam polarimeter, which has two measurement channels, which operate the photon counting, and a control channel. In each channel, the light passes through the corresponding arms of a compound photoelastic modulator, which is excited by a crystal oscillator and which modulates the form of the polarization at 35 kHz. The signal from the control channel is used to switch the counters for the photomultiplier pulses in the measurement channels and to regulate the modulation amplitude. Interference filters with passbands of 6 Å are located in the measurement channels, with the passbands displaced by tilting the filters. The recording system is interfaced to the local computer network. Trial observations have been made on the magnetic fields of 4 Ap stars, and wide-band measurements have been made on the circular polarization of the polar AM Her. The method and apparatus give reliable measurements of fields of about 500 - 10000 Gauss for stars down to magnitude 7 - 8 and wide-band circular polarization measurements for fainter stars.

  2. A combined VUV synchrotron pulsed field ionization-photoelectron and IR-VUV laser photoion depletion study of ammonia.

    PubMed

    Bahng, Mi-Kyung; Xing, Xi; Baek, Sun Jong; Qian, Ximei; Ng, C Y

    2006-07-13

    The synchrotron based vacuum ultraviolet-pulsed field ionization-photoelectron (VUV-PFI-PE) spectrum of ammonia (NH(3)) has been measured in the energy range 10.12-12.12 eV using a room-temperature NH(3) sample. In addition to extending the VUV-PFI-PE measurement to include the v(2)(+) = 0, 10, 11, 12, and 13 and the v(1)(+) + nv(2)(+) (n = 4-9) vibrational bands, the present study also reveals photoionization transition line strengths for higher rotational levels of NH(3), which were not examined in previous PFI-PE studies. Here, v(1)(+) and v(2)(+) represent the N-H symmetric stretching and inversion vibrational modes of the ammonia cation (NH(3)(+)), respectively. The relative PFI-PE band intensities for NH(3)(+)(v(2)(+)=0-13) are found to be in general agreement with the calculated Franck-Condon factors. However, rotational simulation indicates that rotational photoionization transitions of the P-branches, particularly those for the lower v(2)(+) PFI-PE bands, are strongly enhanced by forced rotational autoionization. For the synchrotron based VUV-PFI-PE spectrum of the origin band of NH(3)(+), rotational transition intensities of the P-branch are overwhelming compared to those of other rotational branches. Similar to that observed for the nv(2)(+) (n = 0-13) levels, the v(1)(+) + nv(2)(+) (n = 4-9) levels are found to have a positive anharmonicity constant; i.e., the vibrational spacing increases as n is increased. The VUV laser PFI-PE measurement of the origin band has also been made using a supersonically cooled NH(3) sample. The analysis of this band has allowed the direct determination of the ionization energy of NH(3) as 82158.2 +/- 1.0 cm(-1), which is in good accord with the previous PFI-PE and photoionization efficiency measurements. Using the known nd(v(2)(+)=1,1(0)<--0(0)) Rydberg series of NH(3) as an example, we have demonstrated a valuable method based on two-color infrared-VUV-photoion depletion measurements for determining the rotational

  3. Strong-field above-threshold ionization in laser-irradiated C60: The signatures of orbital symmetry and intramolecular interference

    NASA Astrophysics Data System (ADS)

    Usachenko, Vladimir; Kim, Vyacheslav; Pyak, Pavel

    2015-05-01

    We report about the results of our theoretical study of strong-field (multiphoton) above-threshold ionization (ATI) in laser-irradiated carbon fullerene molecule C60 under condition of relevant experiment. The problem is addressed within the velocity-gauge (VG) formulation of molecular strong-field approximation (SFA) essentially exploiting the density-functional-theory (DFT) method for numerical composition of initial (laser-free) molecular state using the routines of GAUSSIAN-03 code. The results of our present VG-SFA calculation for C60 photoelectron energy spectra (PES) demonstrate two distinct (well-separated) and pronounced local interference minima - in the low-energy and the high-energy domains of produced PES - both arising due to destructive intramolecular (multislit) quantum interference of strong-field ionization corresponding to photoelectron emission from multiple separate atomic centers.

  4. Double Layers in Astrophysics

    NASA Technical Reports Server (NTRS)

    Williams, Alton C. (Editor); Moorehead, Tauna W. (Editor)

    1987-01-01

    Topics addressed include: laboratory double layers; ion-acoustic double layers; pumping potential wells; ion phase-space vortices; weak double layers; electric fields and double layers in plasmas; auroral double layers; double layer formation in a plasma; beamed emission from gamma-ray burst source; double layers and extragalactic jets; and electric potential between plasma sheet clouds.

  5. Direct observation of ring-opening dynamics in strong-field ionized selenophene using femtosecond inner-shell absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Lackner, Florian; Chatterley, Adam S.; Pemmaraju, C. D.; Closser, Kristina D.; Prendergast, David; Neumark, Daniel M.; Leone, Stephen R.; Gessner, Oliver

    2016-12-01

    Femtosecond extreme ultraviolet transient absorption spectroscopy is used to explore strong-field ionization induced dynamics in selenophene (C4H4Se). The dynamics are monitored in real-time from the viewpoint of the Se atom by recording the temporal evolution of element-specific spectral features near the Se 3d inner-shell absorption edge (˜58 eV). The interpretation of the experimental results is supported by first-principles time-dependent density functional theory calculations. The experiments simultaneously capture the instantaneous population of stable molecular ions, the emergence and decay of excited cation states, and the appearance of atomic fragments. The experiments reveal, in particular, insight into the strong-field induced ring-opening dynamics in the selenophene cation, which are traced by the emergence of non-cyclic molecules as well as the liberation of Se+ ions within an overall time scale of approximately 170 fs. We propose that both products may be associated with dynamics on the same electronic surfaces but with different degrees of vibrational excitation. The time-dependent inner-shell absorption features provide direct evidence for a complex relaxation mechanism that may be approximated by a two-step model, whereby the initially prepared, excited cyclic cation decays within τ1 = 80 ± 30 fs into a transient molecular species, which then gives rise to the emergence of bare Se+ and ring-open cations within an additional τ2 = 80 ± 30 fs. The combined experimental and theoretical results suggest a close relationship between σ* excited cation states and the observed ring-opening reactions. The findings demonstrate that the combination of femtosecond time-resolved core-level spectroscopy with ab initio estimates of spectroscopic signatures provide new insights into complex, ultrafast photochemical reactions such as ring-opening dynamics in organic molecules in real-time and with simultaneous sensitivity for electronic and structural

  6. Plasma potential of a moving ionization zone in DC magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Panjan, Matjaž; Anders, André

    2017-02-01

    Using movable emissive and floating probes, we determined the plasma and floating potentials of an ionization zone (spoke) in a direct current magnetron sputtering discharge. Measurements were recorded in a space and time resolved manner, which allowed us to make a three-dimensional representation of the plasma potential. From this information we could derive the related electric field, space charge, and the related spatial distribution of electron heating. The data reveal the existence of strong electric fields parallel and perpendicular to the target surface. The largest E-fields result from a double layer structure at the leading edge of the ionization zone. We suggest that the double layer plays a crucial role in the energization of electrons since electrons can gain several 10 eV of energy when crossing the double layer. We find sustained coupling between the potential structure, electron heating, and excitation and ionization processes as electrons drift over the magnetron target. The brightest region of an ionization zone is present right after the potential jump, where drifting electrons arrive and where most local electron heating occurs. The ionization zone intensity decays as electrons continue to drift in the Ez × B direction, losing energy by inelastic collisions; electrons become energized again as they cross the potential jump. This results in the elongated, arrowhead-like shape of the ionization zone. The ionization zone moves in the -Ez × B direction from which the to-be-heated electrons arrive and into which the heating region expands; the zone motion is dictated by the force of the local electric field on the ions at the leading edge of the ionization zone. We hypothesize that electron heating caused by the potential jump and physical processes associated with the double layer also apply to magnetrons at higher discharge power, including high power impulse magnetron sputtering.

  7. The magnetic field of the double-lined spectroscopic binary system HD 5550

    NASA Astrophysics Data System (ADS)

    Alecian, E.; Tkachenko, A.; Neiner, C.; Folsom, C. P.; Leroy, B.

    2016-05-01

    Context. The origin of fossil fields in intermediate- and high-mass stars is poorly understood, as is the interplay between binarity and magnetism during stellar evolution. Thus we have begun a study of the magnetic properties of a sample of intermediate-mass and massive short-period binary systems as a function of binarity properties. Aims: This paper specifically aims to characterise the magnetic field of HD 5550, a double-lined spectroscopic binary system of intermediate mass. Methods: We gathered 25 high-resolution spectropolarimetric observations of HD 5550 using the instrument Narval. We first fitted the intensity spectra using Zeeman/ATLAS9 LTE synthetic spectra to estimate the effective temperatures, microturbulent velocities, and the abundances of some elements of both components, as well as the light ratio of the system. We then applied the multi-line least-square deconvolution (LSD) technique to the intensity and circularly polarised spectra, which provided us with mean LSD I and V line profiles. We fitted the Stokes I line profiles to determine the radial and projected rotational velocities of both stars. We then analysed the shape and evolution of the V profiles using the oblique rotator model to characterise the magnetic fields of both stars. Results: We confirm the Ap nature of the primary, which has previously been reported, and find that the secondary displays spectral characteristics typical of an Am star. While a magnetic field is clearly detected in the lines of the primary, no magnetic field is detected in the secondary in any of our observations. If a dipolar field were present at the surface of the Am star, its polar strength must be below 40 G. The faint variability observed in the Stokes V profiles of the Ap star allowed us to propose a rotation period of 6.84-0.39+0.61 d, which is close to the orbital period (~6.82 d), suggesting that the star is synchronised with its orbit. By fitting the variability of the V profiles, we propose that the

  8. Intensity dependence of the H{sub 2}{sup +} ionization rates in Ti:sapphire laser fields above the Coulomb-explosion threshold

    SciTech Connect

    Sabzyan, Hassan; Vafaee, Mohsen

    2005-06-15

    Ionization rates of the hydrogen molecular ion H{sub 2}{sup +} under linearly polarized pulse of intense laser fields are simulated by direct solution of the fixed-nuclei time-dependent Schroedinger equation for the Ti:sapphire laser lines {lambda}=790 and 800 nm at high intensities starting from just above the Coulomb explosion threshold (i.e., 6.0x10{sup 13}, 1.0x10{sup 14}, 3.2x10{sup 14}, and 1.4x10{sup 15} W cm{sup -2}). Results obtained in this research exhibit a high degree of complexity for the R-dependent enhanced ionization rates for the H{sub 2}{sup +} system in these intense laser fields. The R-dependent ionization peaks move towards small internuclear distances and their structure becomes simpler and smoother with the increase in the intensity of the laser pulse, i.e., with the decrease in the Keldysh parameter. Results obtained in this research are comparable to and even more reliable than the results of other theoretical calculations reported recently and successfully simulate the experimental ionization data.

  9. Precision Mass Sensing by Tunable Double Optomechanically Induced Transparency with Squeezed Field in a Coupled Optomechanical System

    NASA Astrophysics Data System (ADS)

    Wang, Qiong; Li, Wen-Juan

    2017-04-01

    We present a scheme for all-optical precision mass sensing with squeezed field in a system consisting of an optomechanical cavity coupled to a charged nanomechanical resonator (NAMR) in terms of tunable double optomechanically induced transparency (OMIT) . We demonstrate that the accreted mass landing on NAMR can be achieved by measuring the splitting of the two transparency windows of the double OMIT. Moreover, our work shows this scheme for the quantized fields can be robust against temperature and cavity decay in somehow. Specifically, the precision measurement is from the noise spectrum, for these reasons, our scheme may provide a new paradigm for precision measurement based on the noise in the optomechanical system.

  10. Precision Mass Sensing by Tunable Double Optomechanically Induced Transparency with Squeezed Field in a Coupled Optomechanical System

    NASA Astrophysics Data System (ADS)

    Wang, Qiong; Li, Wen-Juan

    2017-01-01

    We present a scheme for all-optical precision mass sensing with squeezed field in a system consisting of an optomechanical cavity coupled to a charged nanomechanical resonator (NAMR) in terms of tunable double optomechanically induced transparency (OMIT) . We demonstrate that the accreted mass landing on NAMR can be achieved by measuring the splitting of the two transparency windows of the double OMIT. Moreover, our work shows this scheme for the quantized fields can be robust against temperature and cavity decay in somehow. Specifically, the precision measurement is from the noise spectrum, for these reasons, our scheme may provide a new paradigm for precision measurement based on the noise in the optomechanical system.

  11. An historical overview of the activities in the field of exposure and risk assessment of non-ionizing radiation in Bulgaria.

    PubMed

    Israel, Michel

    2015-09-01

    The exposure and risk evaluation process in Bulgaria concerning non-ionizing radiation health and safety started in the early 1970s. Then, the first research laboratory "Electromagnetic fields in the working environment" was founded in the framework of the Centre of Hygiene, belonging to the Medical Academy, Sofia. The main activities were connected with developing legislation, new equipment for measurement of electromagnetic fields, new methods for measurement and exposure assessment, in vivo and human studies for developing methods, studying the effect of non-ionizing radiation on human body, developing exposure limits. Most of the occupations as metal industry, plastic welding, energetics, physiotherapy, broadcasting, telephone stations, computer industry, etc., have been covered by epidemiological investigations and risk evaluation. In 1986, the ANSI standard for safe use of lasers has been implemented as national legislation that gave the start for studies in the field of risk assessment concerning the use of lasers in industry and medicine. The environmental exposure studies started in 1991 following the very fast implementation of the telecommunication technologies. Now, funds for research are very insignificant, and studies in the field of risk assessment are very few. Nevertheless, Bulgaria has been an active member of the WHO International EMF Project, since 1997, and that gives good opportunity for collaboration with other Member states, and for implementation of new approach in the EMF policy for workers and people's protection against non-ionizing radiation exposure.

  12. Three-Dimensional Resolution Doubling in Wide-Field Fluorescence Microscopy by Structured Illumination

    PubMed Central

    Gustafsson, Mats G. L.; Shao, Lin; Carlton, Peter M.; Wang, C. J. Rachel; Golubovskaya, Inna N.; Cande, W. Zacheus; Agard, David A.; Sedat, John W.

    2008-01-01

    Structured illumination microscopy is a method that can increase the spatial resolution of wide-field fluorescence microscopy beyond its classical limit by using spatially structured illumination light. Here we describe how this method can be applied in three dimensions to double the axial as well as the lateral resolution, with true optical sectioning. A grating is used to generate three mutually coherent light beams, which interfere in the specimen to form an illumination pattern that varies both laterally and axially. The spatially structured excitation intensity causes normally unreachable high-resolution information to become encoded into the observed images through spatial frequency mixing. This new information is computationally extracted and used to generate a three-dimensional reconstruction with twice as high resolution, in all three dimensions, as is possible in a conventional wide-field microscope. The method has been demonstrated on both test objects and biological specimens, and has produced the first light microscopy images of the synaptonemal complex in which the lateral elements are clearly resolved. PMID:18326650

  13. Electric-double-layer field-effect transistors with ionic liquids.

    PubMed

    Fujimoto, Takuya; Awaga, Kunio

    2013-06-21

    Charge carrier control is a key issue in the development of electronic functions of semiconductive materials. Beyond the simple enhancement of conductivity, high charge carrier accumulation can realize various phenomena, such as chemical reaction, phase transition, magnetic ordering, and superconductivity. Electric double layers (EDLs), formed at solid-electrolyte interfaces, induce extremely large electric fields. This results in a high charge carrier accumulation in the solid, much more effectively than solid dielectric materials. In the present review, we describe recent developments in the field-effect transistors (FETs) with gate dielectrics of ionic liquids, which have attracted much attention due to their wide electrochemical windows, low vapor pressures, and high chemical and physical stability. We explain the capacitance effects of ionic liquids, and describe the various combinations of ionic liquids and organic and inorganic semiconductors that are used to achieve such effects as high transistor performance, insulator-metal transitions, superconductivity, and ferromagnetism, in addition to the applications of the ionic-liquid EDL-FETs in logic devices. We discuss the factors controlling the mobility and threshold voltage in these types of FETs, and show the ionic liquid dependence of the transistor performance.

  14. Phase transitions and interface fluctuations in double wedges and bi-pyramids with competing surface fields

    NASA Astrophysics Data System (ADS)

    Müller, M.; Milchev, A.; Binder, K.; Landau, D. P.

    2008-08-01

    The interplay between surface and interface effects on binary AB mixtures that are confined in unconventional geometries is investigated by Monte Carlo simulations and phenomenological considerations. Both double-wedge and bi-pyramid confinements are considered and competing surface fields are applied at the two opposing halves of the system. Below the bulk critical temperature, domains of opposite order parameter are stabilized at the corresponding corners and an interface runs across the middle of the bi-partite geometry. Upon decreasing the temperature further one encounters a phase transition at which the AB symmetry is broken. The interface is localized in one of the two wedges or pyramids, respectively, and the order parameter is finite. In both cases, the transition becomes discontinuous in the thermodynamic limit but it is not a first-order phase transition. In an antisymmetric double wedge geometry the transition is closely related to the wedge-filling transition. Choosing the ratio of the cross-section L × L of the wedge and its length L y according to L y / L 3 = const., simulations and phenomenological consideration show that the new type of phase transition is characterized by critical exponents α = 3/4, β = 0, and γ = 5/4 for the specific heat, order parameter, and susceptibility, respectively. In an antisymmetric bi-pyramid the transition occurs at the cone-filling transition of a single pyramid. The important critical fluctuations are associated with the uniform translation of the interface and they can be described by a Landau-type free energy. Monte Carlo results provide evidence that the coefficients of this Landau-type free energy exhibit a system-size dependence, which gives rise to critical amplitudes that diverge with system size and result in a transition that becomes discontinuous in the thermodynamic limit.

  15. Uniform magnetic fields and double-wrapped coil systems: improved techniques for the design of bioelectromagnetic experiments.

    PubMed

    Kirschvink, J L

    1992-01-01

    A common mistake in biomagnetic experimentation is the assumption that Helmholtz coils provide uniform magnetic fields; this is true only for a limited volume at their center. Substantial improvements on this design have been made during the past 140 years with systems of three, four, and five coils. Numerical comparisons of the field uniformity generated by these designs are made here, along with a table of construction details and recommendations for their use in experiments in which large volumes of uniform intensity magnetic exposures are needed. Double-wrapping, or systems of bifilar windings, can also help control for the non-magnetic effects of the electric coils used in many experiments. In this design, each coil is wrapped in parallel with two separate, adjacent strands of copper wire, rather than the single strand used normally. If currents are flowing in antiparallel directions, the magnetic fields generated by each strand will cancel and yield virtually no external magnetic field, whereas parallel currents will yield an external field. Both cases will produce similar non-magnetic effects of ohmic heating, and simple measures can reduce the small vibration and electric field differences. Control experiments can then be designed such that the only major difference between treated and untreated groups is the presence or absence of the magnetic field. Double-wrapped coils also facilitate the use of truly double-blind protocol, as the same apparatus can be used either for experimental or control groups.

  16. Application and field test of a mobile thermal desorption - single photon ionization - ion trap mass spectrometer (TD-SPI-ITMS) for trace detection of security relevant substances

    NASA Astrophysics Data System (ADS)

    Schramm, Elisabeth; Heindl, Thomas; Hölzer, Jasper; McNeish, Alexander; Puetz, Michael; Ries, Hermann; Schall, Patricia; Schulte-Ladbeck, Rasmus; Schultze, Rainer; Sklorz, Martin; Spieker, Gerd; Trebbe, Roman; Ulrich, Andreas; Wieser, Jochen; Zimmermann, Ralf

    2009-05-01

    The objective of this accomplished project funded by the German BMBF was to develop a single photon ionization ion trap mass spectrometer (SPI-ITMS) for detection of security relevant substances in complex matrices at low concentrations. The advantage of such a soft ionization technique is a reduction of target ion fragmentation allowing identification of signals from complex matrices and enabling MS/MS capability. To obtain low detection limits, the applied photon energy has to be below the ionization potential (IP) of the bulk matrix components. Therefore, photon energies between 8 eV (155 nm) and 12 eV (103 nm) are necessary which was achieved with newly developed electron beam excimer lamps (EBEL). They generate light at different wavelengths depending on the selected rare gas emitting wavelengths adapted to the analyzed substances. So, e.g. with a krypton-EBEL with 8.4 eV photon energy most narcotics can be ionized without notable fragmentation. Due to their higher IPs, EBEL with higher photon energy have to be used for most explosives. Very low false-positive and false-negative rates have been achieved using MS/MS studies. First field tests of a demonstrator provided the proof of principle.

  17. Photo-ionization cross-section of donor-related in (In,Ga)N/GaN core/shell under hydrostatic pressure and electric field effects

    NASA Astrophysics Data System (ADS)

    El Ghazi, Haddou; John Peter, A.

    2017-04-01

    Hydrogenic-like donor-impurity related self and induced polarizations, bending energy and photo-ionization cross section in spherical core/shell zinc blende (In,Ga)N/GaN are computed. Based on the variational approach and within effective-mass and one parabolic approximations, the calculations are made under finite potential barrier taking into account of the discontinuity of the effective-mass and the constant dielectric. The photo-ionization cross section is studied according to the photon incident energy considering the effects of hydrostatic pressure, applied electric field, structure's radius, impurity's position and indium composition in the core. It is obtained that the influences mentioned above lead to either blue shifts or redshifts of the resonant peak of the photo-ionization cross section spectrum. The unusual behavior related to the structure radius is discussed which is as a consequence of the finite potential confinement. We have shown that the photo-ionization cross section can be controlled with adjusting the internal and external factors. These properties can be useful for producing some device applications such as quantum dot infrared photodetectors.

  18. Multidimensional high harmonic spectroscopy of polyatomic molecules: detecting sub-cycle laser-driven hole dynamics upon ionization in strong mid-IR laser fields.

    PubMed

    Bruner, Barry D; Mašín, Zdeněk; Negro, Matteo; Morales, Felipe; Brambila, Danilo; Devetta, Michele; Faccialà, Davide; Harvey, Alex G; Ivanov, Misha; Mairesse, Yann; Patchkovskii, Serguei; Serbinenko, Valeria; Soifer, Hadas; Stagira, Salvatore; Vozzi, Caterina; Dudovich, Nirit; Smirnova, Olga

    2016-12-16

    High harmonic generation (HHG) spectroscopy has opened up a new frontier in ultrafast science, where electronic dynamics can be measured on an attosecond time scale. The strong laser field that triggers the high harmonic response also opens multiple quantum pathways for multielectron dynamics in molecules, resulting in a complex process of multielectron rearrangement during ionization. Using combined experimental and theoretical approaches, we show how multi-dimensional HHG spectroscopy can be used to detect and follow electronic dynamics of core rearrangement on sub-laser cycle time scales. We detect the signatures of laser-driven hole dynamics upon ionization and reconstruct the relative phases and amplitudes for relevant ionization channels in a CO2 molecule on a sub-cycle time scale. Reconstruction of channel-resolved complex ionization amplitudes on attosecond time scales has been a long-standing goal of high harmonic spectroscopy. Our study brings us one step closer to fulfilling this initial promise and developing robust schemes for sub-femtosecond imaging of multielectron rearrangement in complex molecular systems.

  19. Anomalous temperature relaxation and particle transport in a strongly non-unifrom, fully in ionized Plasma in a stromg mangnetic field

    NASA Astrophysics Data System (ADS)

    Øien, Alf H.

    1995-02-01

    In classical kinetic and transport theory for a fully ionized plasma in a magnetic field, collision integrals from a uniform theory without fields are used. When the magnetic field is so strong that electrons may gyrate during electron—electron and electron—ion interactions, the form of the collision integrals will be modified. Another modification will stem from strong non-uniformities transverse to the magnetic field B. Using collision terms that explicitly incorporate these effects, we derive in particular the temperature relaxation between electrons and ions and the particle transport transverse to the magnetic field. In both cases collisions between gyrating electrons, which move along the magnetic field, and non-gyrating ions, which move in arbitrary directions at a distance transverse to B from the electrons larger than the electron Larmor radius but smaller than the Debye length, give rise to enhancement factors in the corresponding classical expressions of order In (mion/mel).

  20. Double electron capture between an α particle and a helium atom in the presence of an intense laser field

    NASA Astrophysics Data System (ADS)

    Li, Shu-Min; Miao, Yan-Gang; Zhou, Zi-Fang; Chen, Ji; Liu, Yao-Yang

    1998-05-01

    In the first Born approximation, the symmetrical double-electron-capture collision between an α particle and a helium atom in the presence of an intense laser field is studied. The capture cross section is promoted considerably and is an increasing function of the ratio of the laser amplitude to frequency. With increasing impact energy, the dressing modification becomes notable.

  1. Role of the electric double layer in the ice nucleation of water droplets under an electric field

    NASA Astrophysics Data System (ADS)

    Zhang, Xiang-Xiong; Li, Xin-Hao; Chen, Min

    2016-09-01

    Figuring out the mechanism of ice nucleation on charged aerosols or in thunderstorms is of fundamental importance in atmospheric science. However, findings on whether the electric field promotes or suppresses heterogeneous ice nucleation are conflicting. In this work, we design an apparatus and test the influence of the electric field on ice nucleation by freezing a series of deionized water droplets resting on solid surfaces with an electric field perpendicular to the substrates. Results show that ice nucleation is obviously promoted under the electric field and is independent of the field direction. Theoretic analyses show that the promotion is due to the reduction of Gibbs free energy which can be partially rationalized by the electric field sustained in the electric double layer at the solid-water interface, with strength about two orders higher than that of the external electric field. Moreover, water-droplet deformation under the electric field is not expected to be the cause of the ice-nucleation promotion.

  2. Quantum states of charge carriers and longitudinal conductivity in double periodic n-type semiconductor lattice structures in electric field

    SciTech Connect

    Perov, A. A. Penyagin, I. V.

    2015-07-15

    Quantum states of charge carriers in double periodic semiconductor superlattices of n-type quantum dots with Rashba spin–orbit coupling in an electron gas have been calculated in the one-electron approximation in the presence of mutually perpendicular electric and magnetic fields. For these structures in weak constant electric field, the solution to the quasi-classical kinetic Boltzmann equation shows that the states of carriers in magnetic Landau minibands with negative differential conductivity are possible.

  3. Investigation of single- and double-Λ hypernuclei using a beyond-mean-field approach

    NASA Astrophysics Data System (ADS)

    Cui, Ji-Wei; Zhou, Xian-Rong; Guo, Li-Xin; Schulze, Hans-Josef

    2017-02-01

    A beyond-mean-field approach consisting of angular momentum projection techniques and generator coordinate method based on Skyrme-Hartree-Fock calculations is employed to investigate single- and double-Λ hypernuclear systems. The density-dependent N Λ interactions derived from the Nijmegen soft-core potentials are used. Rotational energy spectra and electric-quadrupole transition strengths B (E 2 ) of the hypernuclei 13CΛ, 14CΛ Λ, 21Ne21Λ, and 22NeΛ Λ are presented and compared with those of the corresponding core nuclei 12C and 20Ne. The shrinkage effect of the Λ s is demonstrated by the B (E 2 ) values, the charge radii, and the shape deformation β of the nuclear core. It is found that the reduction of the B (E 2 ) values in 13CΛ and 14CΛΛ is mainly caused by the shrinkage of the charge radii of the nuclear cores, while the reduced shape deformations also play important roles; but the contrary is the case in Ne21Λ and 22NeΛΛ. Comparison between this and other theoretical models are made, and the differences between them are illuminated.

  4. Kinematic Properties of Double-barred Galaxies: Simulations versus Integral-field Observations

    NASA Astrophysics Data System (ADS)

    Du, Min; Debattista, Victor P.; Shen, Juntai; Cappellari, Michele

    2016-09-01

    Using high-resolution N-body simulations, we recently reported that a dynamically cool inner disk embedded in a hotter outer disk can naturally generate a steady double-barred (S2B) structure. Here we study the kinematics of these S2B simulations, and compare them to integral-field observations from ATLAS 3D and SAURON. We show that S2B galaxies exhibit several distinct kinematic features, namely: (1) significantly distorted isovelocity contours at the transition region between the two bars, (2) peaks in σ LOS along the minor axis of inner bars, which we term “σ-humps,” that are often accompanied by ring/spiral-like features of increased σ LOS, (3) {h}3{--}\\bar{v} anti-correlations in the region of the inner bar for certain orientations, and (4) rings of positive h 4 when viewed at low inclinations. The most impressive of these features are the σ-humps these evolve with the inner bar, oscillating in strength just as the inner bar does as it rotates relative to the outer bar. We show that, in cylindrical coordinates, the inner bar has similar streaming motions and velocity dispersion properties as normal large-scale bars, except for σ z , which exhibits peaks on the minor axis, i.e., humps. These σ z humps are responsible for producing the σ-humps. For three well-resolved early-type S2Bs (NGC 2859, NGC 2950, and NGC 3941) and a potential S2B candidate (NGC 3384), the S2B model qualitatively matches the integral-field data well, including the “σ-hollows” previously identified. We also discuss the kinematic effect of a nuclear disk in S2Bs.

  5. Guided Discharge Path by Weak Ionized Region between Two Plasmas Produced by YAG Laser in Atmospheric Air Gap with Non-Uniform DC Electric Field

    NASA Astrophysics Data System (ADS)

    Okano, Daisuke

    1998-11-01

    Guided Discharge Path by Weak Ionized Region between Two Plasmas Produced by YAG Laser in Atmospheric Air Gap with Non-Uniform DC Electric Field*, Daisuke Okano, Kyushu Tokai University, 9-1-1 Toroku, Kumamoto, Japan. -----We have studied on guiding discharge path by weak ionized region between plasmas produced by a visible laser, that is, a YAG laser with wavelength 532nm, in an atmospheric air gap with DC non-uniform electric field using a rod-to-plate electrode. We succeeded in capturing the framing images in the temporal evolution on guiding discharge along the YAG laser light path. From the results of experiments, the region between two plasmas produced by a YAG laser can guide a discharge path, and the region between two plasmas on the laser light path is considered as well as a weak ionized one [1] produced by an excimer laser. [1]J.Sasaki, S.Kubodera, R.Ozaki and T.Uchiyama, J. Appl. Phys., 60 (1986) 3845. *This work was supported by Grant-in-Aid for Scientific Research (C)-no.10650295 of The Ministry of education, Science Sports and Culture in japan.

  6. Phase field modelling on the growth dynamics of double voids of different sizes during czochralski silicon crystal growth

    NASA Astrophysics Data System (ADS)

    Guan, X. J.; Wang, J.

    2017-02-01

    To investigate their dynamics and interaction mechanisms, the growth process of the two voids with different sizes during Czochralski silicon crystal growth were simulated by use of an established phase field model and its corresponding program code. On the basis of the several phase field numerical simulation cases, the evolution laws of the double voids were acquired as follows: the phase field model is capable to simulate the growth process of double voids with different sizes; there are two modes of their growth, that is, either mutual integration or competitive growth; the exact moment of their fusion can be also captured, and it is τ of 7.078 (simulation time step of 14156) for the initial vacancy concentration of 0.02 and the initial space between two void centers of 44Δx.

  7. LETTER TO THE EDITOR: H2+ in intense laser field pulses: ionization versus dissociation within moving nucleus simulations

    NASA Astrophysics Data System (ADS)

    Rotenberg, Benjamin; Taïeb, Richard; Véniard, Valérie; Maquet, Alfred

    2002-09-01

    The theory of the interaction of the H2+ molecular ion with an intense short laser pulse is modelled by solving the time-dependent Schrödinger equation for the electronic degree of freedom while the nuclear motion is described classically. This method allows us to discuss the influence of the pulse duration on the respective weights of ionization and dissociation.

  8. Gemini Near Infrared Field Spectrograph Observations of the Seyfert 2 Galaxy Mrk 573: In Situ Acceleration of Ionized and Molecular Gas off Fueling Flows

    NASA Astrophysics Data System (ADS)

    Fischer, Travis C.; Machuca, C.; Diniz, M. R.; Crenshaw, D. M.; Kraemer, S. B.; Riffel, R. A.; Schmitt, H. R.; Baron, F.; Storchi-Bergmann, T.; Straughn, A. N.; Revalski, M.; Pope, C. L.

    2017-01-01

    We present near-infrared and optical emission-line and stellar kinematics of the Seyfert 2 galaxy Mrk 573 using the Near-Infrared Field Spectrograph (NIFS) at Gemini North and Dual Imaging Spectrograph at Apache Point Observatory, respectively. By obtaining full kinematic maps of the infrared ionized and molecular gas and stellar kinematics in a ∼700 × 2100 pc2 circumnuclear region of Mrk 573, we find that kinematics within the Narrow-Line Region are largely due to a combination of both rotation and in situ acceleration of material originating in the host disk. Combining these observations with large-scale, optical long-slit spectroscopy that traces ionized gas emission out to several kpcs, we find that rotation kinematics dominate the majority of the gas. We find that outflowing gas extends to distances less than 1 kpc, suggesting that outflows in Seyfert galaxies may not be powerful enough to evacuate their entire bulges.

  9. The effects of electric field and gate bias pulse on the migration and stability of ionized oxygen vacancies in amorphous In–Ga–Zn–O thin film transistors

    PubMed Central

    Oh, Young Jun; Noh, Hyeon-Kyun; Chang, Kee Joo

    2015-01-01

    Oxygen vacancies have been considered as the origin of threshold voltage instability under negative bias illumination stress in amorphous oxide thin film transistors. Here we report the results of first-principles molecular dynamics simulations for the drift motion of oxygen vacancies. We show that oxygen vacancies, which are initially ionized by trapping photoexcited hole carriers, can easily migrate under an external electric field. Thus, accumulated hole traps near the channel/dielectric interface cause negative shift of the threshold voltage, supporting the oxygen vacancy model. In addition, we find that ionized oxygen vacancies easily recover their neutral defect configurations by capturing electrons when the Fermi level increases. Our results are in good agreement with the experimental observation that applying a positive gate bias pulse of short duration eliminates hole traps and thus leads to the recovery of device stability from persistent photoconductivity. PMID:27877799

  10. Laserspray and Matrix-Assisted Ionization Inlet Coupled to High-Field FT-ICR Mass Spectrometry for Peptide and Protein Analysis

    NASA Astrophysics Data System (ADS)

    Nyadong, Leonard; Inutan, Ellen D.; Wang, Xu; Hendrickson, Christopher L.; Trimpin, Sarah; Marshall, Alan G.

    2013-03-01

    We present the first coupling of laser spray ionization inlet (LSII) and matrix assisted ionization inlet (MAII) to high-field Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) for generation of electrospray-like ions to take advantage of increased sensitivity, mass range, and mass resolving power afforded by multiple charging. We apply the technique to top-down protein analysis and characterization of metalloproteins. We also present a novel method for generation of multiply-charged copper-peptide complexes with varying degrees of copper adduction by LSII. We show an application of the generated copper-peptide complexes for protein charge state and molecular weight determination, particularly useful for an instrument such as a linear ion trap mass analyzer. [Figure not available: see fulltext.

  11. The effects of electric field and gate bias pulse on the migration and stability of ionized oxygen vacancies in amorphous In-Ga-Zn-O thin film transistors

    NASA Astrophysics Data System (ADS)

    Oh, Young Jun; Noh, Hyeon-Kyun; Chang, Kee Joo

    2015-06-01

    Oxygen vacancies have been considered as the origin of threshold voltage instability under negative bias illumination stress in amorphous oxide thin film transistors. Here we report the results of first-principles molecular dynamics simulations for the drift motion of oxygen vacancies. We show that oxygen vacancies, which are initially ionized by trapping photoexcited hole carriers, can easily migrate under an external electric field. Thus, accumulated hole traps near the channel/dielectric interface cause negative shift of the threshold voltage, supporting the oxygen vacancy model. In addition, we find that ionized oxygen vacancies easily recover their neutral defect configurations by capturing electrons when the Fermi level increases. Our results are in good agreement with the experimental observation that applying a positive gate bias pulse of short duration eliminates hole traps and thus leads to the recovery of device stability from persistent photoconductivity.

  12. The effects of electric field and gate bias pulse on the migration and stability of ionized oxygen vacancies in amorphous In-Ga-Zn-O thin film transistors.

    PubMed

    Oh, Young Jun; Noh, Hyeon-Kyun; Chang, Kee Joo

    2015-06-01

    Oxygen vacancies have been considered as the origin of threshold voltage instability under negative bias illumination stress in amorphous oxide thin film transistors. Here we report the results of first-principles molecular dynamics simulations for the drift motion of oxygen vacancies. We show that oxygen vacancies, which are initially ionized by trapping photoexcited hole carriers, can easily migrate under an external electric field. Thus, accumulated hole traps near the channel/dielectric interface cause negative shift of the threshold voltage, supporting the oxygen vacancy model. In addition, we find that ionized oxygen vacancies easily recover their neutral defect configurations by capturing electrons when the Fermi level increases. Our results are in good agreement with the experimental observation that applying a positive gate bias pulse of short duration eliminates hole traps and thus leads to the recovery of device stability from persistent photoconductivity.

  13. Ultrafast dynamics of strong-field dissociative ionization ofCH2Br2 probed by femtosecond soft x-ray transient absorptionspectroscopy

    SciTech Connect

    Loh, Zhi-Heng; Leone, Stephen R.

    2008-01-15

    Femtosecond time-resolved soft x-ray transient absorption spectroscopy based on a high-order harmonic generation source is used to investigate the dissociative ionization of CH{sub 2}Br{sub 2} induced by 800 nm strong-field irradiation. At moderate peak intensities (2.0 x 10{sup 14} W/cm{sup 2}), strong-field ionization is accompanied by ultrafast C-Br bond dissociation, producing both neutral Br ({sup 2}P{sub 3/2}) and Br* ({sup 2}P{sub 1/2}) atoms together with the CH{sub 2}Br{sup +} fragment ion. The measured rise times for Br and Br* are 130 {+-} 22 fs and 74 {+-} 10 fs, respectively. The atomic bromine quantum state distribution shows that the Br/Br* population ratio is 8.1 {+-} 3.8 and that the Br {sup 2}P{sub 3/2} state is not aligned. The observed product distribution and the timescales of the photofragment appearances suggest that multiple field-dressed potential energy surfaces are involved in the dissociative ionization process. In addition, the transient absorption spectrum of CH{sub 2}Br{sub 2}{sup +} suggests that the alignment of the molecule relative to the polarization axis of the strong-field ionizing pulse determines the electronic symmetry of the resulting ion; alignment of the Br-Br, H-H, and C{sub 2} axis of the molecule along the polarization axis results in the production of the ion {tilde X}({sup 2}B{sub 2}), {tilde B}({sup 2}B{sub 1}) and {tilde C}({sup 2}A{sub 1}) states, respectively. At higher peak intensities (6.2 x 10{sup 14} W/cm{sup 2}), CH{sub 2}Br{sub 2}{sup +} undergoes sequential ionization to form the metastable CH{sub 2}Br{sub 2}{sup 2+} dication. These results demonstrate the potential of core-level probing with high-order harmonic transient absorption spectroscopy for studying ultrafast molecular dynamics.

  14. Double-Diffusive Finger Convection: Flow Field Evolution in a Hele-Shaw Cell

    SciTech Connect

    COOPER,CLAY A.; GLASS JR.,ROBERT J.; TYLER,SCOTT W.

    2000-12-21

    Double-diffusive finger convection is a hydrodynamic instability that can occur when two components with different diffusivities are oppositely stratified with respect to the fluid density gradient as a critical condition is exceeded. Laboratory experiments were designed using sodium chloride and sucrose solutions in a Hele-Shaw cell. A high resolution, full field, light transmission technique was used to study the development of the instability. The initial buoyancy ratio (R{sub p}), which is a ratio of fluid density contributions by the two solutes, was varied systematically in the experiments so that the range of parameter space spanned conditions that were nearly stable (R{sub p} = 2.8) to those that were moderately unstable (R{sub p} = 1.4). In systems of low R{sub p}, fingers develop within several minutes, merge with adjacent fingers, form conduits, and stall before newer-generated fingers travel through the conduits and continue the process. Solute fluxes in low R{sub p} systems quickly reach steady state and are on the order of 10{sup {minus}6} m{sup 2} sec{sup {minus}1}. In the higher R{sub p} experiments, fingers are slower to evolve and do not interact as dynamically as in the lower R{sub p} systems. Our experiment with initial R{sub p} = 2.8 exhibited flux on the order of that expected for a similar diffusive system (i.e., 10{sup {minus}7} m{sup 2} sec{sup {minus}1}), although the structures were very different than the pattern of transport expected in a diffusing system. Mass flux decayed as t{sup 1/2} in two experiments each with initial R{sub p} = 2.4 and 2.8.

  15. The persistence length of double stranded DNA determined using dark field tethered particle motion.

    PubMed

    Brinkers, Sanneke; Dietrich, Heidelinde R C; de Groote, Frederik H; Young, Ian T; Rieger, Bernd

    2009-06-07

    The wormlike chain model describes the micromechanics of semiflexible polymers by introducing the persistence length. We propose a method of measuring the persistence length of DNA in a controllable near-native environment. Using a dark field microscope, the projected positions of a gold nanoparticle undergoing constrained Brownian motion are captured. The nanoparticle is tethered to a substrate using a single double stranded DNA (dsDNA) molecule and immersed in buffer. No force is exerted on the DNA. We carried out Monte Carlo simulations of the experiment, which give insight into the micromechanics of the DNA and can be used to interpret the motion of the nanoparticle. Our simulations and experiments demonstrate that, unlike other similar experiments, the use of nanometer instead of micrometer sized particles causes particle-substrate and particle-DNA interactions to be of negligible effect on the position distribution of the particle. We also show that the persistence length of the tethering DNA can be estimated with a statistical error of 2 nm, by comparing the statistics of the projected position distribution of the nanoparticle to the Monte Carlo simulations. The persistence lengths of 45 single molecules of four different lengths of dsDNA were measured under the same environmental conditions at high salt concentration. The persistence lengths we found had a mean value of 35 nm (standard error of 2.8 nm), which compares well to previously found values using similar salt concentrations. Our method can be used to directly study the effect of the environmental conditions (e.g., buffer and temperature) on the persistence length.

  16. Short-term turnover of soil organic matter after tillage proven by Pyrolysis-field ionization MS

    NASA Astrophysics Data System (ADS)

    Fiedler, Sebastian; Jurasinski, Gerald; Leinweber, Peter; Glatzel, Stephan

    2015-04-01

    Knowledge about the composition and the turnover dynamics of soil organic matter (SOM) is crucial to the fertility of agricultural soils. Even short-term changes of SOM are of fundamental importance. Tillage changes the decomposition and the mineralisation of SOM. By disrupting macroaggregates, tillage induces an increased turnover and hampers the aggregation of SOM. As a consequence, mineralisation of SOM is stimulated which may imply an additional efflux of CO2 and N2O from soil. Pyrolysis-field ionization mass spectrometry (Py-FIMS) has been developed as a key method for SOM research. This powerful analytical tool allows a rapid, global and objective determination of the majority of chemical compound classes and is an appropriate method for the analysis of even small differences of biogeochemical matters. Hence, Py-FIMS may allow for a precise detection of the turnover of SOM and the involved compounds that are affected by tillage in the short-term. Py-FIMS measurements along with the determination of the CO2 and N2O effluxes from soil after tillage at the same site may give new insights into the compounds of SOM which are mineralised and consequently contribute to fundamental processes such as respiration, nitrification and denitrification. We applied Py-FIMS to soil samples from a stagnic Luvisol taken before and after tillage from a harvested maize field in Northern Germany. The samples were taken from two treatments amended with mineral fertiliser (MF) and biogas residues (BR), respectively, and also from an unfertilised control (UC). Tillage was conducted by disc harrowing, followed by mouldboard ploughing up to 30 cm. Simultaneously the soil efflux of CO2 and N2O was measured with a dynamic chamber technique. Before tillage, the mass spectra showed distinct differences in the relative ion intensities: the BR treatment showed much more volatilised matter during pyrolysis indicating an increased amount of SOM. Furthermore, in this treatment, the proportions

  17. Ionizing radiation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter gives a comprehensive review on ionizing irradiation of fresh fruits and vegetables. Topics include principles of ionizing radiation, its effects on pathogenic and spoilage microorganisms, shelf-life, sensory quality, nutritional and phytochemical composition, as well as physiologic and...

  18. Particle-in-cell modeling of spacecraft-plasma interaction effects on double-probe electric field measurements

    NASA Astrophysics Data System (ADS)

    Miyake, Y.; Usui, H.

    2016-12-01

    The double-probe technique, commonly used for electric field measurements in magnetospheric plasmas, is susceptible to environmental perturbations caused by spacecraft-plasma interactions. To better model the interactions, we have extended the existing particle-in-cell simulation technique so that it accepts very small spacecraft structures, such as thin wire booms, by incorporating an accurate potential field solution calculated based on the boundary element method. This immersed boundary element approach is effective for quantifying the impact of geometrically small but electrically large spacecraft elements on the formation of sheaths or wakes. The developed model is applied to the wake environment near a Cluster satellite for three distinctive plasma conditions: the solar wind, the tail lobe, and just outside the plasmapause. The simulations predict the magnitudes and waveforms of wake-derived spurious electric fields, and these are in good agreement with in situ observations. The results also reveal the detailed structure of potential around the double probes. It shows that any probes hardly experience a negative wake potential in their orbit, and instead, they experience an unbalanced drop rate of a large potential hill that is created by the spacecraft and boom bodies. As a by-product of the simulations, we also found a photoelectron short-circuiting effect that is analogous to the well-known short-circuiting effect due to the booms of a double-probe instrument. The effect is sustained by asymmetric photoelectron distributions that cancel out the external electric field.

  19. Pressurized H2 rf Cavities in Ionizing Beams and Magnetic Fields

    SciTech Connect

    Chung, M.; Collura, M. G.; Flanagan, G.; Freemire, B.; Hanlet, P. M.; Jana, M. R.; Johnson, R. P.; Kaplan, D. M.; Leonova, M.; Moretti, A.; Popovic, M.; Schwarz, T.; Tollestrup, A.; Torun, Y.; Yonehara, K.

    2013-10-01

    A major technological challenge in building a muon cooling channel is operating RF cavities in multi-tesla external magnetic fields. We report the first experimental characterization of a high pressure gas-filled 805 MHz RF cavity for use with intense ionizing beams and strong external magnetic fields. RF power consumption by beam-induced plasma was investigated with hydrogen and deuterium gases with pressures between 20 and 100 atm and peak RF gradients between 5 and 50 MV/m. The energy absorption per ion pair-RF cycle ranges from 10-18 to 10-16 J. The low pressure case agrees well with an analytical model based on electron and ion mobilities. Varying concentrations of oxygen gas were investigated to remove free electrons from the cavity and reduce the RF power consumption. Measurements of the electron attachment time to oxygen and rate of ion-ion recombination were also made. Additionally, we demonstrate the operation of the gas-filled RF cavity in a solenoidal field of up to 3 T, finding no major magnetic field dependence. These results indicate that a high pressure gas-filled cavity is potentially a viable technology for muon ionization cooling.

  20. Specific inhibition of Wee1 kinase and Rad51 recombinase: A strategy to enhance the sensitivity of leukemic T-cells to ionizing radiation-induced DNA double-strand breaks

    SciTech Connect

    Havelek, Radim; Cmielova, Jana; Kralovec, Karel; Bruckova, Lenka; Bilkova, Zuzana; Fousova, Ivana; Sinkorova, Zuzana; Vavrova, Jirina; Rezacova, Martina

    2014-10-24

    Highlights: • Pre-treatment with the inhibitors increased the sensitivity of Jurkat cells to irradiation. • Combining both inhibitors together resulted in a G2 cell cycle arrest abrogation in Jurkat. • Jurkat cells pre-treated with inhibitors were positive for γH2AX foci 24 h upon irradiation. • Pre-treatment with Rad51 RI-1 had no effect on apoptosis induction in MOLT-4 cells. • When dosed together, the combination decreased MOLT-4 cell survival. - Abstract: Present-day oncology sees at least two-thirds of cancer patients receiving radiation therapy as a part of their anticancer treatment. The objectives of the current study were to investigate the effects of the small molecule inhibitors of Wee1 kinase II (681641) and Rad51 (RI-1) on cell cycle progression, DNA double-strand breaks repair and apoptosis following ionizing radiation exposure in human leukemic T-cells Jurkat and MOLT-4. Pre-treatment with the Wee1 681641 or Rad51 RI-1 inhibitor alone increased the sensitivity of Jurkat cells to irradiation, however combining both inhibitors together resulted in a further enhancement of apoptosis. Jurkat cells pre-treated with inhibitors were positive for γH2AX foci 24 h upon irradiation. MOLT-4 cells were less affected by inhibitors application prior to ionizing radiation exposure. Pre-treatment with Rad51 RI-1 had no effect on apoptosis induction; however Wee1 681641 increased ionizing radiation-induced cell death in MOLT-4 cells.