Science.gov

Sample records for field double ionization

  1. Mechanisms underlying strong-field double ionization of argon dimers

    SciTech Connect

    Manschwetus, B.; Rottke, H.; Steinmeyer, G.; Sandner, W.; Foucar, L.; Czasch, A.; Schmidt-Boecking, H.

    2010-07-15

    We investigate double ionization of argon dimers in high-intensity ultrashort Ti:sapphire laser pulses. We are able to identify several strong-field excitation pathways of the dimer that terminate in atomic ion pairs from a Coulomb explosion. The explosion starts from two-site double-ionized dimers and from one-site double-ionized ones after radiative charge transfer at small internuclear separation. One-site double ionization is accomplished by laser-induced charge transfer in the high-intensity laser pulse following two-site double ionization. The highest energy ion pairs we observed can be attributed to ''frustrated triple ionization'' of the argon dimer.

  2. Mechanisms of Strong-Field Double Ionization of Xe

    NASA Astrophysics Data System (ADS)

    Sun, Xufei; Li, Min; Ye, Difa; Xin, Guoguo; Fu, Libin; Xie, Xiguo; Deng, Yongkai; Wu, Chengyin; Liu, Jie; Gong, Qihuang; Liu, Yunquan

    2014-09-01

    We perform a fully differential measurement on strong-field double ionization of Xe by 25 fs, 790 nm laser pulses in intensity region (0.4-3)×1014 W/cm2. We observe that the two-dimensional correlation momentum spectra along the laser polarization direction show a nonstructured distribution for double ionization of Xe when decreasing the laser intensity from 3×1014 to 4×1013 W /cm2. The electron correlation behavior is remarkably different with the low-Z rare gases, i.e., He, Ne, and Ar. We find that the electron energy cutoffs increase from 2.9Up to 7.8Up when decreasing the laser intensities from the sequential double ionization to the nonsequential double ionization regime. The experimental observation indicates that multiple rescatterings play an important role for the generation of high energy photoelectrons. We have further studied the shielding effect on the strong-field double ionization of high-Z atoms.

  3. Time-Resolved Quantum Dynamics of Double Ionization in Strong Laser Fields

    SciTech Connect

    Prauzner-Bechcicki, Jakub S.; Sacha, Krzysztof; Zakrzewski, Jakub; Eckhardt, Bruno

    2007-05-18

    Quantum calculations of a (1+1)-dimensional model for double ionization in strong laser fields are used to trace the time evolution from the ground state through ionization and rescattering to the two-electron escape. The subspace of symmetric escape, a prime characteristic of nonsequential double ionization, remains accessible by a judicious choice of 1D coordinates for the electrons. The time-resolved ionization fluxes show the onset of single and double ionization, the sequence of events during the pulse, and the influences of pulse duration and reveal the relative importance of sequential and nonsequential double ionization, even when ionization takes place during the same field cycle.

  4. Dynamics of Strong-Field Double Ionization in Two-Color Counterrotating Fields

    NASA Astrophysics Data System (ADS)

    Chaloupka, Jan L.; Hickstein, Daniel D.

    2016-04-01

    The double ionization of helium in bichromatic, circularly polarized intense laser fields is analyzed with a classical ensemble approach. It is found that counterrotating fields produce significant nonsequential double-ion yield and drive novel ionization dynamics. It is shown that distinct pathways to ionization can be modified by altering the relative intensities of the two colors, allowing for unique control of strong-field processes. Electrons are observed to return to the ion at different angles from the angle of ionization, opening new possibilities for probing electronic and molecular structure on the ultrafast time scale.

  5. Strong Field Double Ionization: The Phase Space Perspective

    SciTech Connect

    Mauger, F.; Chandre, C.; Uzer, T.

    2009-05-01

    We identify the phase-space structures that regulate atomic double ionization in strong ultrashort laser pulses. The emerging dynamical picture complements the recollision scenario by clarifying the distinct roles played by the recolliding and core electrons, and leads to verifiable predictions on the characteristic features of the 'knee', a hallmark of the nonsequential process.

  6. Controlling Nonsequential Double Ionization in Two-Color Circularly Polarized Femtosecond Laser Fields

    NASA Astrophysics Data System (ADS)

    Mancuso, Christopher A.; Dorney, Kevin M.; Hickstein, Daniel D.; Chaloupka, Jan L.; Ellis, Jennifer L.; Dollar, Franklin J.; Knut, Ronny; Grychtol, Patrik; Zusin, Dmitriy; Gentry, Christian; Gopalakrishnan, Maithreyi; Kapteyn, Henry C.; Murnane, Margaret M.

    2016-09-01

    Atoms undergoing strong-field ionization in two-color circularly polarized femtosecond laser fields exhibit unique two-dimensional photoelectron trajectories and can emit bright circularly polarized extreme ultraviolet and soft-x-ray beams. In this Letter, we present the first experimental observation of nonsequential double ionization in these tailored laser fields. Moreover, we can enhance or suppress nonsequential double ionization by changing the intensity ratio and helicity of the two driving laser fields to maximize or minimize high-energy electron-ion rescattering. Our experimental results are explained through classical simulations, which also provide insight into how to optimize the generation of circularly polarized high harmonic beams.

  7. Double ionization of He in an intense laser field via a rescattering process

    SciTech Connect

    Ishikawa, T.; Toshima, N.; Tong, X. M.

    2010-09-15

    We investigate the ratio of double to single ionization of He in an intense laser field based on the rescattering model. Folding the rescattering energy spectra with the electron impact inelastic cross sections, we obtain the probability of double ionization due to the nonsequential ionization process. Our results are in reasonable agreement with the experiment [Walker et al., Phys. Rev. Lett. 73, 1227 (1994)]. Furthermore, we investigate the physical insights of the nonsequential double ionization by analyzing the rescattering energy spectra at different intensities and the contributions from individual returns. This study confirms the reliability of the rescattering energy spectra obtained from ab initio calculations. The rescattering information can be used to analyze many other dynamical processes in intense laser-matter interactions, such as molecular imaging.

  8. Classical description of strong-field double ionization by elliptical laser pulses

    NASA Astrophysics Data System (ADS)

    Zhou, Yueming; Zhang, Qingbin; Huang, Cheng; Lu, Peixiang

    2012-10-01

    Sequential double ionization of argon induced by elliptically polarized laser pulses at the over-the-barrier ionization regime is investigated with a fully classical model. We provide futher detail beyond that found in our previous paper [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.109.053004 109, 053004 (2012)] and show that all of the experimental observations, including the evolution of the ion momentum spectra as a function of laser intensity, the intensity-dependent ratio for the parallel and antiparallel electron emissions, and the release times of both electrons for various laser pulses, are excellently reproduced by our classical model. Our results indicate that the classical treatment is very valid and accurate in describing strong-field ionization, providing a simple and intuitive way to investigate the complex electron correlations in strong-field double and multiple ionizations.

  9. From Recollisions to the Knee: A Road Map for Double Ionization in Intense Laser Fields

    SciTech Connect

    Mauger, F.; Chandre, C.; Uzer, T.

    2010-01-29

    We examine the nature and statistical properties of electron-electron collisions in the recollision process in a strong laser field. The separation of the double ionization yield into sequential and nonsequential components leads to a bell-shaped curve for the nonsequential probability and a monotonically rising one for the sequential process. We identify key features of the nonsequential process and connect our findings in a simplified model which reproduces the knee shape for the probability of double ionization with laser intensity and associated trends.

  10. Quantum theory of recollisional (e, 2e) process in strong field nonsequential double ionization of helium.

    PubMed

    Chen, Zhangjin; Liang, Yaqiu; Lin, C D

    2010-06-25

    Based on the full quantal recollision model and field-free electron impact ionization theory, we calculate the correlated momentum spectra of the two outgoing electrons in strong field nonsequential double ionization (NSDI) of helium to compare with recent experiments. By analyzing the relative strength of binary versus recoil collisions exhibited in the photoelectron spectra, we confirm that the observed fingerlike structure in the experiment is a consequence of the Coulomb interaction between the two emitted electrons. Our result supports the recollision mechanism of strong field NSDI at the most fundamental level.

  11. Binary and Recoil Collisions in Strong Field Double Ionization of Helium

    SciTech Connect

    Staudte, A.; Villeneuve, D. M.; Corkum, P. B.; Ruiz, C.; Becker, A.; Schoeffler, M.; Schoessler, S.; Meckel, M.; Doerner, R.; Zeidler, D.; Weber, Th.

    2007-12-31

    We have investigated the correlated momentum distribution of both electrons from nonsequential double ionization of helium in a 800 nm, 4.5x10{sup 14} W/cm{sup 2} laser field. Using very high resolution coincidence techniques, we find a so-far unobserved fingerlike structure in the correlated electron momentum distribution. The structure can be interpreted as a signature of the microscopic dynamics in the recollision process. We identify features corresponding to the binary and recoil lobe in field-free (e,2e) collisions. This interpretation is supported by analyzing ab initio solutions of a fully correlated three-dimensional helium model.

  12. Double Ionization of H2 in Intense Short-Pulse Laser Fields

    NASA Astrophysics Data System (ADS)

    Guan, Xiaoxu; Bartschat Bartschat, Klaus; Schneider, Barry I.

    2010-03-01

    We report our development of a nonperturbative time-dependent method to treat one- and two-photon double ionization of the hydrogen molecule by intense ultrashort laser pulses. The two-center two-electron system is discretized in prolate spheroidal coordinates combined with a FE-DVR basis. The solution to the time-dependent laser-driven problem is obtained in the Born-Oppenheimer approximation by propagating the initial state using an effective Arnoldi algorithm. We discuss the dependence of the fully differential cross section for double ionization on the directions of both the molecular and the laser polarization axes. Our results are compared with other recent theoretical predictions.

  13. Experimental and theoretical study on nonsequential double ionization of carbon disulfide in strong near-IR laser fields

    NASA Astrophysics Data System (ADS)

    Zuo, Wanlong; Ben, Shuai; Lv, Hang; Zhao, Lei; Guo, Jing; Liu, Xue-Shen; Xu, Haifeng; Jin, Mingxing; Ding, Dajun

    2016-05-01

    Nonsequential double ionization (NSDI) of carbon disulfide CS2 in strong 800-nm laser fields is studied experimentally and theoretically. A knee structure is observed in the intensity-dependent double ionization (DI) yield in linearly polarized laser fields, which exhibits a strong dependence on the laser ellipticity. The electron momentum distributions and energy trajectories after DI in both linearly and circularly polarized laser fields are investigated by employing the two-dimensional classical ensemble method. The results clearly show the evidence of NSDI in the strong-field DI of CS2 molecules. It is demonstrated that, similar to that of atoms, NSDI of CS2 molecules is produced via laser-driven electron recollision with the ion core and presents electron-electron correlations in the process. Analysis indicates that both mechanisms in atomic strong-field NSDI, i.e., recollision impact ionization and recollision excitation with subsequent ionization, may also be contributed to NSDI of CS2 in strong laser fields. Further studies are no doubt necessary for a full understanding of the underlying physical mechanism of molecular strong-field NSDI, due to the multicenter character of the molecular structure and the complex molecular excited states that could be involved in the ionization.

  14. Double-ionization mechanisms of the argon dimer in intense laser fields

    SciTech Connect

    Ulrich, B.; Vredenborg, A.; Malakzadeh, A.; Meckel, M.; Cole, K.; Jahnke, T.; Doerner, R.; Smolarski, M.; Chang, Z.

    2010-07-15

    We have measured the two-site double ionization of argon dimers by ultrashort laser pulses leading to fragmentation into two singly charged argon ions. Contrary to the expectations from a pure Coulomb explosion following rapid removal of one electron from each of the atoms, we find three distinct peaks in the kinetic energy release (KER) distribution. By measuring the angular distribution of the fragment ions and the vector momentum of one of the emitted electrons for circular and linear laser polarization, we are able to unravel the ionization mechanisms leading to the three features in the KER. The most abundant one results from tunnel ionization at one site followed by charge-enhanced tunnel ionization of the second atom. The second mechanism, which leads to a higher KER we identify as sequential tunnel ionization of both atoms accompanied by excitation. The third mechanism is present with linearly polarized light only. It is most likely a frustrated triple ionization, where the third electron does not escape but is trapped in a Rydberg state.

  15. Influence of magnetic field strength on potential well in the ionization stage of a double stage Hall thruster

    SciTech Connect

    Yu Daren; Song Maojiang; Liu Hui; Zhang Xu; Li Hong

    2012-07-15

    Similar to a single stage Hall thruster, the magnetic field, which controls electron trajectory and electric field distribution, is the most important factor determining the performance of a double stage Hall thruster. Especially, a potential well, which is helpful to reduce the ion loss on the thruster walls, is shaped in the ionization stage due to the existence of an annular magnetic field topology there. In this paper, the influence of magnetic field strength in the ionization stage on the potential well is researched with both experiments and particle-in-cell simulations. It is found that the depth of potential well increases with the magnetic field strength as a result of enhanced magnetic confinement and lowered electron conductivity. Consequently, the plasma density as well as the ion current entering the acceleration stage increases. However, an excessive magnetic field strength leads to an excess of ion loss on the walls of the acceleration stage. Therefore, there is an appropriate magnetic field strength in the ionization stage that results in a proper potential well and consequently an optimal performance of a double stage Hall thruster.

  16. Photo-double ionization of molecular hydrogen

    NASA Astrophysics Data System (ADS)

    Walter, Michael; Briggs, John

    1999-06-01

    The angular distribution of the correlated electron pair emitted in single-photon double ionization of the hydrogen molecule is analysed and calculated using a variety of approximations. Attention is directed particularly towards the differences between the molecular angular distribution and that of the corresponding `united atom', i.e. that arising from the double ionization of helium. Qualitative agreement is obtained with recent experiments on photo-double ionization of the hydrogen molecule. The major effects arising from the two-centre nuclear field of the molecule and the orientation of the axis at the moment of photon absorption are exposed in the simpler problem of photoionization of the H2+ ion.

  17. Intensity dependence of nonsequential double ionization of helium in IR+XUV two-color laser fields

    NASA Astrophysics Data System (ADS)

    Jin, Facheng; Chen, Jing; Yang, Yujun; Yan, Zong-Chao; Wang, Bingbing

    2016-10-01

    By applying the frequency-domain theory, we investigate the dependence of momentum spectra on laser intensity in a nonsequential double ionization (NSDI) process of helium in infrared (IR) and extreme ultraviolet (XUV) two-color laser fields. We find that the two-color laser fields play distinct roles in an NSDI process, where the IR laser field mainly determines the width of each band, and the XUV laser field mainly plays a role on the NSDI probability. Furthermore, an NSDI process can be decoupled into a two-step process: an above-threshold ionization (ATI), followed by a laser-assisted collision (LAC). It is found that, the IR laser field is responsible for broadening the peak in the ATI process and providing additional momenta to the two ionized electrons in the LAC process; while the XUV laser field plays a crucial role on the strength of the spectrum in the ATI process, and influences the radii of orbits in momentum space in the LAC process.

  18. Numerical simulation of the double-to-single ionization ratio for the helium atom in strong laser fields

    NASA Astrophysics Data System (ADS)

    Chen, Zhangjin; Zheng, Yanyan; Yang, Weifeng; Song, Xiaohong; Xu, Junliang; DiMauro, L. F.; Zatsarinny, Oleg; Bartschat, Klaus; Morishita, Toru; Zhao, Song-Feng; Lin, C. D.

    2015-12-01

    We present calculations on the ratio between double and single ionization of helium by a strong laser pulse at a wavelength of 780 nm using the quantitative rescattering (QRS) model. According to this model, the yield for the doubly charged ion He+2 can be obtained by multiplying the returning electron wave packet (RWP) with the total cross sections (TCSs) for electron impact ionization and electron impact excitation of +He in the singlet spin channel. The singlet constraint was imposed since the interaction of the helium atom with the laser and the recollision processes both preserve the total spin of the system. An R -matrix (close-coupling) code is used to obtain accurate TCSs, while the RWPs, according to the QRS, are calculated by the strong-field approximation for high-energy photoelectrons. The laser field, which lowers the required energy for the electron to escape from the nucleus at the time of recollision, is also taken into account. The simulated results are in good agreement with the measured He+2/+He ratio over a broad range of laser intensities. The result demonstrates that the QRS approach based on the rescattering model is fully capable of quantitatively interpreting nonsequential double ionization processes.

  19. Nonsequential double ionization of molecules

    SciTech Connect

    Prauzner-Bechcicki, Jakub S.; Sacha, Krzysztof; Zakrzewski, Jakub; Eckhardt, Bruno

    2005-03-01

    Double ionization of diatomic molecules by short linearly polarized laser pulses is analyzed. We consider the final stage of the ionization process, that is the decay of a highly excited two electron molecule, which is formed after rescattering. The saddles of the effective adiabatic potential energy close to which simultaneous escape of electrons takes place are identified. Numerical simulations of the ionization of molecules show that the process can be dominated by either sequential or nonsequential events. In order to increase the ratio of nonsequential to sequential ionizations very short laser pulses should be applied.

  20. Strong Laser Field Fragmentation of H{sub 2}: Coulomb Explosion without Double Ionization

    SciTech Connect

    Manschwetus, B.; Nubbemeyer, T.; Gorling, K.; Steinmeyer, G.; Rottke, H.; Eichmann, U.; Sandner, W.

    2009-03-20

    We observe fragmentation of H{sub 2} molecules exposed to strong laser fields into excited neutral atoms. The measured excited neutral fragment spectrum resembles the ionic fragmentation spectrum including peaks due to bond softening and Coulomb explosion. To explain the occurrence of excited neutral fragments and their high kinetic energy, we argue that the recently investigated phenomenon of frustrated tunnel ionization is also at work in the neutralization of H{sup +} ions into excited H* atoms. In this process the tunneled electron does not gain enough drift energy from the laser field to escape the Coulomb potential and is recaptured. Calculation of classical trajectories as well as a correlated detection measurement of neutral excited H* and H{sup +} ions support the mechanism.

  1. Ultrafast Electronuclear Dynamics of H2 Double Ionization

    NASA Astrophysics Data System (ADS)

    Saugout, Sébastien; Cornaggia, Christian; Suzor-Weiner, Annick; Charron, Eric

    2007-06-01

    The ultrafast electronic and nuclear dynamics of H2 laser-induced double ionization is studied using a time-dependent wave packet approach that goes beyond the fixed nuclei approximation. The double ionization pathways are analyzed by following the evolution of the total wave function during and after the pulse. The rescattering of the first ionized electron produces a coherent superposition of excited molecular states which presents a pronounced transient H+H- character. This attosecond excitation is followed by field-induced double ionization and by the formation of short-lived autoionizing states which decay via double ionization. These two double ionization mechanisms may be identified by their signatures imprinted in the kinetic-energy distribution of the ejected protons.

  2. Correlated Two-Electron Momentum Spectra for Strong-Field Nonsequential Double Ionization of He at 800 nm

    SciTech Connect

    Rudenko, A.; Ergler, Th.; Zrost, K.; Feuerstein, B.; Schroeter, C. D.; Moshammer, R.; Ullrich, J.; Jesus, V. L. B. de

    2007-12-31

    We report on a kinematically complete experiment on nonsequential double ionization of He by 25 fs 800 nm laser pulses at 1.5 PW/cm{sup 2}. The suppression of the recollision-induced excitation at this high intensity allows us to address in a clean way direct (e,2e) ionization by the recolliding electron. In contrast with earlier experimental results, but in agreement with various theoretical predictions, the two-electron momentum distributions along the laser polarization axis exhibit a pronounced V-shaped structure, which can be explained by the role of Coulomb repulsion and typical (e,2e) kinematics.

  3. Recollisions and Correlated Double Ionization with Circularly Polarized Light

    SciTech Connect

    Mauger, F.; Chandre, C.; Uzer, T.

    2010-08-20

    It is generally believed that the recollision mechanism of atomic nonsequential double ionization is suppressed in circularly polarized laser fields because the returning electron is unlikely to encounter the core. On the contrary, we find that recollision can and does significantly enhance double ionization, even to the extent of forming a ''knee,'' the signature of the nonsequential process. Using a classical model, we explain two apparently contradictory experiments, the absence of a knee for helium and its presence for magnesium.

  4. Two-center interference effects on the orientation dependence of the strong-field double-ionization yields for hydrogen molecules

    NASA Astrophysics Data System (ADS)

    Li, W.; Liu, J.

    2012-09-01

    In the present paper we investigate the orientation dependence of the nonsequential double ionization (NSDI) of a hydrogen molecule (H2) exposed to a strong laser field analytically within the strong-field approximation. Our calculations demonstrate that the NSDI yields can increase with the increase of the molecular alignment angle; i.e., the alignment dependence of the NSDI yields exhibit a reversed tendency compared to that of the single-ionization yields. This striking phenomenon is identified as a signal of quantum interference, which arises from the two-center structure of the diatomic molecule and can lead to the dramatic suppression of the NSDI rates at small alignment angles. Moreover, the interference effect can be altered by both laser intensity and internuclear distance. The above finding indicates that the two-center interference can affect NSDI yields dramatically in certain cases and therefore suggests a feasible way to observe the interference effect indirectly in NSDI experiments.

  5. Probing Angular Correlations in Sequential Double Ionization

    SciTech Connect

    Fleischer, A.; Woerner, H. J.; Arissian, L.; Liu, L. R.; Meckel, M.; Rippert, A.; Doerner, R.; Villeneuve, D. M.; Corkum, P. B.; Staudte, A.

    2011-09-09

    We study electron correlation in sequential double ionization of noble gas atoms and HCl in intense, femtosecond laser pulses. We measure the photoelectron angular distributions of Ne{sup +} relative to the first electron in a pump-probe experiment with 8 fs, 800 nm, circularly polarized laser pulses at a peak intensity of a few 10{sup 15} W/cm{sup 2}. Using a linear-linear pump-probe setup, we further study He, Ar, and HCl. We find a clear angular correlation between the two ionization steps in the sequential double ionization intensity regime.

  6. Single-shot carrier-envelope-phase-tagged ion-momentum imaging of nonsequential double ionization of argon in intense 4-fs laser fields

    SciTech Connect

    Johnson, Nora G.; Herrwerth, O.; Wirth, A.; De, S.; Ben-Itzhak, I.; Lezius, M.; Bergues, B.; Kling, M. F.; Senftleben, A.; Schroeter, C. D.; Moshammer, R.; Ullrich, J.; Betsch, K. J.; Jones, R. R.; Sayler, A. M.; Rathje, T.; Ruehle, K.; Mueller, W.; Paulus, G. G.

    2011-01-15

    Single-shot carrier-envelope-phase (CEP) tagging is combined with a reaction mircoscope (REMI) to investigate CEP-dependent processes in atoms. Excellent experimental stability and data acquisition longevity are achieved. Using this approach, we study the CEP effects for nonsequential double ionization of argon in 4-fs laser fields at 750 nm and an intensity of 1.6x10{sup 14} W/cm{sup 2}. The Ar{sup 2+} ionization yield shows a pronounced CEP dependence which compares well with recent theoretical predictions employing quantitative rescattering theory [S. Micheau et al., Phys. Rev. A 79, 013417 (2009)]. Furthermore, we find strong CEP influences on the Ar{sup 2+} momentum spectra along the laser polarization axis.

  7. Double ionization of helium by particle impact

    NASA Technical Reports Server (NTRS)

    Jacobsen, Finn M.

    1990-01-01

    Experimental results are reviewed of the ratio, R sq., of double to single ionization of He by proton, antiproton, electron and positron impact in the energy range from 0.15 to about 10 MeV/amu. At high velocities (greater than 1 to 2 MeV/amu) values of R sq. caused by electron impact merge with those for the proton with the antiproton, electron values being up to a factor of 2 greater than that for the p, positron. At these velocities the single ionization cross sections caused by impact of any of these four particles are indistinguishable.

  8. Electron-impact double ionization of magnesium

    SciTech Connect

    Ford, M.J.; El-Marji, B.; Doering, J.P.; Moore, J.H.; Coplan, M.A.; Cooper, J.W.

    1998-01-01

    Electron-impact double-ionization cross sections differential in the angles of the two ejected electrons have been measured at impact energies of 422 and 1052 eV. The energies of the ejected electrons were fixed at 100 eV each. The cross sections are very different at the two incident energies. At 1052 eV the ejected electrons are preferentially found in the forward direction with respect to the incident beam. At 422 eV they are found in the forward and backward directions with approximately equal probability. The 422-eV cross sections are largest when the incident-electron and ejected-electron momentum vectors lie in a common plane. The observations are discussed in the context of several models for double ionization. {copyright} {ital 1998} {ital The American Physical Society}

  9. Exploration of strong-field multiphoton double ionization, rescattering, and electron angular distribution of He atoms in intense long-wavelength laser fields: The coupled coherent-state approach

    SciTech Connect

    Guo Jing; Liu Xueshen; Chu, Shih-I

    2010-08-15

    We extend the coupled coherent-state (CCS) approach to simulate the strong-field ionization of helium atoms at long wavelengths. This approach uses a basis of trajectories guided by frozen Gaussian coherent states, sampled from a Monte Carlo distribution, as the initial states of the quantum time-dependent Schroedinger equations. The CCS trajectories move over averaged potentials, which can remove the Columbic singularities exactly. The low-energy structure is predicted by our CCS calculation and a ''rescattering'' event is clearly identified in the higher-energy regime. In addition, the nonsequential double ionization is also explored and the rescattering event can be identified as the major mechanism. Finally, we also study the electron angular distribution of helium. It is found that the maximum angle between the electron and electric field directions becomes smaller with increase in the laser intensity and wavelength.

  10. Anode Sheath and Double Layer Solutions with Ionization

    NASA Astrophysics Data System (ADS)

    Scheiner, Brett S.; Baalrud, Scott D.

    2014-10-01

    When an electrode in a plasma is biased more positive than the plasma potential it attracts electrons and repels ions forming a region of negative space charge (electron sheath). Ballistic electrons moving towards this anode gain energy equal to the difference in electrostatic potential energy, Δϕ = ϕ (x) -ϕplasma , with a maximum of ϕanode -ϕplasma . When ϕanode is large enough, electrons can gain enough energy to ionize neutral atoms through electron impact ionization. This leads to a layer of increased ion density near the anode, which can exceed the local electron density at large enough anode biases forming a double layer. We model the sheath potential profile using Poisson's equation with a fluid model for the electron density in the case without ionization and formulate an integral equation for the case with ionization where the ion density depends on an integral from ϕ (x) to ϕanode. An analytic form of the sheath electric field is obtained for the case without ionization and we demonstrate that it asymptotically agrees with the Child-Langmuir solution. We numerically obtain double layer solutions when including ionization and show that the potential profile expands beyond that of the Child-Langmuir solution. This work was supported by the Office of Fusion Science at the U.S. Department of Energy under Contract DE-AC04-94SL85000.

  11. Frustrated double ionization in two-electron triatomic molecules

    NASA Astrophysics Data System (ADS)

    Chen, A.; Price, H.; Staudte, A.; Emmanouilidou, A.

    2016-10-01

    Using a semiclassical model, we investigate frustrated double ionization (FDI) in D3+ , a two-electron triatomic molecule, when driven by an intense, linearly polarized, near-infrared (800 nm) laser field. We compute the kinetic energy release of the nuclei and find a good agreement between experiment and our model. We explore the two pathways of FDI and show that, with increasing field strength, over-the-barrier ionization overtakes tunnel ionization as the underlying mechanism of FDI. Moreover, we compute the angular distribution of the ion fragments for FDI and identify a feature that can potentially be observed experimentally and is a signature of only one of the two pathways of FDI.

  12. Classical cutoffs for laser-induced nonsequential double ionization

    SciTech Connect

    Milosevic, D.B.; Becker, W.

    2003-12-01

    Classical cutoffs for the momenta of electrons ejected in laser-induced nonsequential double ionization are derived for the recollision-impact-ionization scenario. Such simple cutoff laws can aid in the interpretation of the observed electron spectra.

  13. Attosecond-resolved electron emission in nonsequential double ionization

    NASA Astrophysics Data System (ADS)

    Chen, Liangyuan; Zhou, Yueming; Huang, Cheng; Zhang, Qingbin; Lu, Peixiang

    2013-10-01

    We have investigated the correlated electron dynamics in nonsequential double ionization (NSDI) of xenon by the orthogonally polarized two-color pulses consisting of 800- and 1600-nm laser fields. The two-electron momentum distributions are sensitively dependent on the relative phase of the two pulses. By tracing the history of double ionization trajectories, we find that the revisit time of the returning electron wave packet is controlled with attosecond accuracy. After recollision, one electron is ionized immediately while the other electron is either released immediately or excited with subsequent field ionization. The release time of the excited electron is also steered with attosecond resolution by changing the relative phase of the orthogonal two-color pulses. The attosecond-resolved control of the revisit time of the returning electron wave packet and the release time of the excited electron is responsible for the phase dependence of the correlated behaviors of the two electrons. These results indicate that we can trace the emission of the two electrons in NSDI on attosecond time scales.

  14. Two- and three-photon double ionization of lithium

    NASA Astrophysics Data System (ADS)

    Armstrong, G.; Schuricke, M.; Veeravalli, G.; Dornes, Ch.; Zhu, G.; Joachimsmeyer, K.; Treusch, R.; Dorn, A.; Colgan, J.

    2012-06-01

    Motivated by current FEL experiments at FLASH, we present triple differential cross sections and recoil ion momentum distributions for two- and three-photon double ionization of the 1s^22s ^2S ground state of lithium at a photon energy of 50 eV. The time-dependent close-coupling (TDCC) method is used to solve the two-electron time-dependent Schr"odinger equation in full dimensionality. The double ionization process is treated as a two-active-electron process, where the ``active'' 1s and 2s electrons move in the field of the ``frozen-core'' Li^2+ 1s state. Recent experimental measurements of recoil ion momentum distributions have observed features associated with the absorption of both two and three photons. This work provides the first TDCC calculations to date of such two- and three-photon double ionization processes in lithium. The accurate treatment of these processes requires a detailed description of the final continuum containing both singlet and triplet S, P, D and F waves. We examine triple differential cross sections as a function of electron energy sharing for a variety of angular configurations. We also compare our calculated recoil ion momentum distributions with experimental measurements, providing the first such comparison for two- and three-photon processes.

  15. Multiphoton double ionization of the He atom

    NASA Astrophysics Data System (ADS)

    Li, Y.; Pindzola, M. S.

    2016-05-01

    Time-dependent close-coupling (TDCC) calculations are made for the multiphoton double ionization of the He atom under the influence of a fast pulse XUV laser. One set of TDCC calculations employs l1m1l2m2 coupling on a 2D (r1 ,r2) numerical lattice, a second set of TDCC calculations employs m1m2 coupling on a 4D (r1 ,θ1 ,r2 ,θ2) numerical lattice, and a third set of TDCC calculations employs m1m2 coupling on a 4D (ρ1 ,z1 ,ρ2 ,z2) numerical lattice. Studies are made to see which TDCC method is the most efficient at explaining measurements as the number of photons absorbed is increased. Work supported in part by Grants from NASA, NSF, and DOE.

  16. Double ionization of H2 by intense attosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Lee, Teck-Ghee; Pindzola, M. S.; Robicheaux, F.

    2010-08-01

    We present calculations of the double ionization of H2 induced by an intense attosecond laser pulse at a photon energy of 40 eV using the time-dependent close-coupling method within the fixed nuclei approximation. We focus on two-photon absorption processes and examine how the response of the ejected electrons, in particular the single- and the double-energy differential probabilities, is affected by linear and circular polarizations at laser-field intensities ranging from 10^{15}\\; \\rm W\\,cm^{-2} to 10^{16}\\; \\rm W\\,cm^{-2} . In general, we find that for both linearly and circularly polarized pulses, sequential peaks and non-sequential wells that appear in both the single- and double-energy differential probabilities are akin to the analogous two-electron photoemission processes in the helium atom driven by intense attosecond pulses. In addition, for the case of a linearly polarized pulse, a clear signature of the sequential double-electron above the threshold ionization process can be seen in these spectra.

  17. Extracting amplitudes for single and double ionization from a time-dependent wave packet

    SciTech Connect

    Palacios, A.; Rescigno, T. N.; McCurdy, C. W.

    2007-10-15

    A method is described for extracting double ionization amplitudes from a quantum wave packet for an atom after a short radiation pulse, but while the electrons are still interacting. The procedure involves the use of exterior complex scaling to effectively propagate the field-free solution to infinite times, and allows the use of existing integral formulas for double ionization amplitudes for two electron atoms and molecules.

  18. Cross sections for short pulse single and double ionization ofhelium

    SciTech Connect

    Palacios, Alicia; Rescigno, Thomas N.; McCurdy, C. William

    2007-11-27

    In a previous publication, procedures were proposed for unambiguously extracting amplitudes for single and double ionization from a time-dependent wavepacket by effectively propagating for an infinite time following a radiation pulse. Here we demonstrate the accuracy and utility of those methods for describing two-photon single and one-photon double ionization of helium. In particular it is shown how narrow features corresponding to autoionizing states are easily resolved with these methods.

  19. Double ionization of CO2 by photon impact

    NASA Technical Reports Server (NTRS)

    Samson, J. A. R.; Kemeny, P. C.; Haddad, G. N.

    1977-01-01

    Double ionization of CO2 by photon impact from the double-ionization threshold at energies of 36.2 eV (342 A) to 110 eV (113 A) has been observed. The ratio of doubly to singly charged ions shows a linear rise with photon energy for approximately 15 eV above the threshold and reaches a constant value of about 2% between 67 and 110 eV.

  20. Signatures of bound-state-assisted nonsequential double ionization

    SciTech Connect

    Sukiasyan, Suren; McDonald, Chris; Van Vlack, Cole; Destefani, Carlos; Fennel, Thomas; Brabec, Thomas; Ivanov, Misha

    2009-07-15

    The time-dependent multiconfiguration Hartree method is optimized for intense laser dynamics and applied to nonsequential double ionization in a two-electron diatomic model molecule with two dimensions per electron. The efficiency of our method brings these calculations from the realm of large scale computation facilities to single processor machines. The resulting two-electron spectrum exhibits pronounced signatures from which the ionic bound states involved in nonsequential double ionization are retrieved with the help of a semiclassical model. A mechanism for the ionization dynamics is suggested.

  1. Double ionization of water molecules induced by swift protons

    NASA Astrophysics Data System (ADS)

    Tavares, A. C.; Luna, H.; Wolff, W.; Montenegro, E. C.

    2015-09-01

    Experimental cross sections for single and double ionization of H2O by swift H+ with energy ranging from 0.3 to 2.0 MeV are reported. In this energy range the ionization is the dominant collision process and charge transfer reactions can be disregarded. A multihit coincidence technique is used to measure the H++OH+ and H++O+ fragmentation channels. Single- and double-hit differential measurements together with a semiempirical calculation allow separating quantitatively the prompt and Auger-like decay contributions to fragmentation following a vacancy in the 2 a1 molecular orbital. Concerning the double-ionization channel, it is found that for lower energies the mechanism of a sequential double-electron removal, known as TS2, dominates. For energies above above 750 keV/u ionization resulting from a single vacancy followed by an Auger like deexcitation takes over the TS2, becoming the main contribution to the double-ionization cross section. Our results are compared to the electron-impact data within the same velocity range and also with theoretical calculations available in the literature.

  2. Angular distributions for two-photon double ionization of lithium

    NASA Astrophysics Data System (ADS)

    Armstrong, G. S. J.; Colgan, J.

    2012-08-01

    We present angular distributions for two-photon double ionization of lithium at photon energies of 50 eV (λ = 25 nm) and 59 eV (λ = 21 nm). The results are obtained from full-dimensional solution of the two-active-electron time-dependent Schrödinger equation using the time-dependent close-coupling method. We investigate two different double ionization mechanisms. First, we consider direct double ionization of the Li ground state following the absorption of two photons. Secondly, we consider an initial photoexcitation of the 1s2s2p doubly excited state, followed by photoionization of the 2s and 2p electrons. We find significant differences between the angular distributions obtained for these two distinct processes. We also compare the characteristics of the angular distributions for Li with those of other two-electron atoms.

  3. Ionization and dissociation dynamics of molecules in strong laser fields

    NASA Astrophysics Data System (ADS)

    Lai, Wei

    The fast advancement of ultrashort-pulsed high-intensity laser technology allows for generating an electric field equivalent to the Coulomb field inside an atom or a molecule (e.g., EC=5.14x109 V/cm at the 1s orbit radius a0=0.0529 nm of the hydrogen atom, which corresponds to an intensity of 3.54x1016 W/cm2). Atoms and molecules exposed in such a field will easily be ionized, as the external field is strong enough to remove the electrons from the core. This is usually referred to "strong field". Strong fields provide a new tool for studying the interaction of atoms and molecules with light in the nonlinear nonperturbative regime. During the past three decades, significant progress has been made in the strong field science. Today, most phenomena involving atoms in strong fields have been relatively well understood by the single-active-electron (SAE) approximation. However, the interpretation of these responses in molecules has encountered great difficulties. Not like atoms that only undergo excitation and ionization, various dissociation channels accompanying excitation and ionization can occur in molecules during the laser pulse interaction, which imparts further complexity to the study of molecules in strong fields. Previous studies have shown that molecules can behave significantly different from rare gas atoms in phenomena as simple as single and double ionization. Molecular dissociation following ionization also presents challenges in strong fields compared to what we have learned in the weak-field regime. This dissertation focuses on experimental studies on ionization and dissociation of some commonly-seen small molecules in strong laser fields. Previous work of molecules in strong fields will be briefly reviewed, particularly on some open questions about multiple dissociation channels, nonsequential double ionization, enhanced ionization and molecular alignment. The identification of various molecular dissociation channels by recent experimental technical

  4. Nonsequential double ionization as a completely classical photoelectric effect.

    PubMed

    Ho, Phay J; Panfili, R; Haan, S L; Eberly, J H

    2005-03-11

    We introduce a unified and simplified theory of atomic double ionization. Our results show that at high laser intensities (I>/=10(14) W/cm(2)) purely classical correlation is strong enough to account for all of the main features observed in experiments to date.

  5. Elucidating the mechanisms of double ionization using intense half-cycle, single-cycle, and double half-cycle pulses

    SciTech Connect

    Kamta, G. Lagmago; Starace, Anthony F.

    2003-10-01

    We investigate the interaction of a two-active electron system (Li{sup -}) with intense single-cycle and double half-cycle pulses. The 'intensity' and 'frequency' considered correspond to the 'multiphoton above-barrier regime'. For the single-cycle pulse (SCP), the electric field changes sign once, allowing electron wave packets created during the first half cycle to recollide with the parent ion when driven back by the field. For the double half-cycle pulse (DHP), however, the electric field does not change sign, and electron wave packets created during the first half cycle are not driven back to the parent ion. We find that both single and double ionization are significantly larger for the SCP than for the DHP, thereby elucidating the role of the rescattering mechanism. On the other hand, doubly ionized electrons produced by a half-cycle pulse and a DHP are found to have angular distributions in which one electron is ejected in the direction of the pulse field, and the other in the opposite direction. This clear signature of electron correlations suggests that 'shake-off', 'knockout', and, possibly, 'multiphoton-sharing' processes are alternative contributing mechanisms for double ionization in this regime.

  6. Transition of correlated-electron emission in nonsequential double ionization of Ar atoms.

    PubMed

    Zhang, Zilong; Zhang, Jingtao; Bai, Lihua; Wang, Xu

    2015-03-23

    Emission of the two electrons released from nonsequential double ionization of argon atoms is anticorrelated at lower laser intensities but is correlated at higher laser intensities. Such a transition is caused by the momentum change of recollision-induced-ionization (RII) electrons. At lower laser intensities, the Coulomb repulsion between the two RII electrons dominates the motion of electrons and pushes them leaving the laser field back-to-back. At higher laser intensities, the drift momentum obtained from the laser field dominates the motion of electrons and drives them leaving the laser field side-by-side.

  7. Double field theory inspired cosmology

    SciTech Connect

    Wu, Houwen; Yang, Haitang E-mail: hyanga@scu.edu.cn

    2014-07-01

    Double field theory proposes a generalized spacetime action possessing manifest T-duality on the level of component fields. We calculate the cosmological solutions of double field theory with vanishing Kalb-Ramond field. It turns out that double field theory provides a more consistent way to construct cosmological solutions than the standard string cosmology. We construct solutions for vanishing and non-vanishing symmetry preserving dilaton potentials. The solutions assemble the pre- and post-big bang evolutions in one single line element. Our results show a smooth evolution from an anisotropic early stage to an isotropic phase without any special initial conditions in contrast to previous models. In addition, we demonstrate that the contraction of the dual space automatically leads to both an inflation phase and a decelerated expansion of the ordinary space during different evolution stages.

  8. Ultrastrong Field Ionization of Ne{sup n+} (n{<=}8): Rescattering and the Role of the Magnetic Field

    SciTech Connect

    Palaniyappan, S.; Di Chiara, A.; Chowdhury, E.; Falkowski, A.; Ongadi, G.; Huskins, E.L.; Walker, B.C.

    2005-06-24

    Ne{sup +} to Ne{sup 8+} ionization yields in 10{sup 14} W/cm{sup 2} to 10{sup 18} W/cm{sup 2} laser fields are reported over a 10{sup 9} dynamic range. A 3D relativistic rescattering model incorporating (e,2e) and (e,3e) electron impact ionization, single- and double-excitation is compared to the data. For double ionization the agreement is excellent; however, for higher charge states the model accounts for only 15% of multielectron nonsequential ionization. Rescattering is not affected by the laser magnetic field until 10{sup 17} W/cm{sup 2}.

  9. Fragmentation of long-lived hydrocarbons after strong field ionization

    NASA Astrophysics Data System (ADS)

    Larimian, Seyedreza; Erattupuzha, Sonia; Lötstedt, Erik; Szidarovszky, Tamás; Maurer, Raffael; Roither, Stefan; Schöffler, Markus; Kartashov, Daniil; Baltuška, Andrius; Yamanouchi, Kaoru; Kitzler, Markus; Xie, Xinhua

    2016-05-01

    We experimentally and theoretically investigated the deprotonation process on nanosecond to microsecond timescales in ethylene and acetylene molecules following their double ionization by a strong femtosecond laser field. In our experiments we utilized coincidence detection with the reaction microscope technique. We found that both the lifetime of the long-lived ethylene dication leading to the delayed deprotonation and the relative channel strength of the delayed deprotonation compared to the prompt one have no evident dependence on the laser pulse duration and the laser peak intensity. Quantum chemical simulations suggest that the observed delayed fragmentation process originates from the tunneling from near-dissociation-threshold C-H stretch vibrational states on a dicationic electronic state. These vibrational states can be populated through strong field double-ionization-induced vibrational excitation on an electronically excited state in the case of ethylene, and through a spin-flip transition from electronically excited singlet states to the triplet ground state in the case of acetylene.

  10. Topics in Double Field Theory

    NASA Astrophysics Data System (ADS)

    Kwak, Seung Ki

    The existence of momentum and winding modes of closed string on a torus leads to a natural idea that the field theoretical approach of string theory should involve winding type coordinates as well as the usual space-time coordinates. Recently developed double field theory is motivated from this idea and it implements T-duality manifestly by doubling the coordinates. In this thesis we will mainly focus on the double field theory formulation of different string theories in its low energy limit: bosonic, heterotic, type II and its massive extensions, and N = 1 supergravity theory. In chapter 2 of the thesis we study the equivalence of different formulations of double field theory. There are three different formulations of double field theory: background field E formulation, generalized metric H formulation, and frame field EAM formulation. Starting from the frame field formalism and choosing an appropriate gauge, the equivalence of the three formulations of bosonic theory are explicitly verified. In chapter 3 we construct the double field theory formulation of heterotic strings. The global symmetry enlarges to O( D, D + n) for heterotic strings and the enlarged generalized metric features this symmetry. The structural form of bosonic theory can directly be applied to the heterotic theory with the enlarged generalized metric. In chapter 4 we develop a unified framework of double field theory for type II theories. The Ramond-Ramond potentials fit into spinor representations of the duality group O( D, D) and the theory displays Spin+( D, D) symmetry with its self-duality relation. For a specific form of RR 1-form the theory reduces to the massive deformation of type IIA theory due to Romans. In chapter 5 we formulate the N = 1 supersymmetric extension of double field theory including the coupling to n abelian vector multiplets. This theory features a local O(1, 9 + n) x O(1, 9) tangent space symmetry under which the fermions transform. (Copies available exclusively from

  11. Field ionizing elements and applications thereof

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T. (Inventor)

    2003-01-01

    A field ionizing element formed of a membrane that houses electrodes therein that are located closer to one another than the mean free path of the gas being ionized. The membrane includes a supporting portion, and a non supporting portion where the ions are formed. The membrane may be used as the front end for a number of different applications including a mass spectrometer, a thruster, an ion mobility element, or an electrochemical device such as a fuel cell.

  12. Double Ionization of Hydrogen Molecule by Intense Attosecond Laser Pulses

    NASA Astrophysics Data System (ADS)

    Lee, Teck-Ghee; Pindzola, M. S.; Robicheaux, F.

    2010-03-01

    Time-dependent close-coupling calculations within the fixed nuclei approximation are carried out for the double ionization of H2 induced by an intense attosecond laser pulse at a photon energy of 40 eV. We consider here the two-photon absorption processes and examine the response of the ejected electrons, particularly the single- and the double-electron energy distributions, to linearly and circularly polarized pulse at laser intensities between 10^15 W/cm^2 and 10^16 W/cm^2. We find that, for both the linearly and circularly polarized pulses, sequential peaks and non-sequential wells appear in both the single- and double-electron energy distributions that are generally akin to the analogous two electrons photoemission processes in He atom driven by a linearly polarized intense attosecond pulse [1,2]. Furthermore, a clear signature of the sequential double-electron above threshold ionization process can be seen in the single- and double-electron energy distributions when a linearly polarized pulse is being used.[4pt] [1] I. F. Barna, J. Wang, and J. Burgdorfer, Phys. Rev. A. 73, 023402 (2006) [0pt] [2] T-G Lee, M. S. Pindzola and F. Robicheaux, Phys. Rev. A. 79, 053420 (2009)

  13. Few-Photon Double Ionization of He and H2

    NASA Astrophysics Data System (ADS)

    Jiang, Wei-Chao; Xiong, Wei-Hao; Geng, Ji-Wei; Gong, Qihuang; Peng, Liang-You

    Studies on the few-photon double ionization of helium atom and hydrogen molecule have fundamental significances on the electronic correlation. In recent years, many theoretical efforts have been put on the numerical solution to the corresponding time-dependent Schrödinger equation (TDSE) in the real space. These ab initio calculations promise to produce accurate numerical results that can be directly compared with the experimental observations. With further developments of free electron lasers (FEL) and high harmonic generation (HHG) sources and relevant coincidence measurement techniques, these theoretical predictions have a greater chance to be experimentally checked. In this chapter, we will first introduce our numerical methodologies to solve the TDSE and then provide some numerical results for the few-photon double ionization of helium atom and hydrogen molecule. At the same time, existing experimental results will be reviewed briefly.

  14. Fully differential single-photon double ionization of magnesium

    NASA Astrophysics Data System (ADS)

    Yip, Frank L.; Rescigno, Thomas N.; McCurdy, C. William

    2016-05-01

    The valence-shell double ionization of atomic magnesium is calculated using a grid-based representation of the 3s2 electron configuration in the presence of a fully-occupied frozen-core configuration. Atomic orbitals are constructed from an underlying finite element discrete variable representation (FEM-DVR) that facilitate accurate representation of the interaction between the inner shell electrons with those entering the continuum. Comparison between the similar processes of double ionization of the ns2 atoms helium, beryllium and magnesium are presented to further illuminate the role of valence-shell electron correlation in atomic targets with analogous configurations and symmetries. Both a time-independent and time-dependent formalism for evaluating double ionization amplitudes is applied to these many-electron targets. Results are compared with recent theoretical calculations and experimental measurements. Work supported by the US Dept. of Energy, Division of Chemical Sciences Contract DE-AC02-05CH11231 and the National Science Foundation, No. PHY-1509971.

  15. Nondipole effects in strong-field ionization

    NASA Astrophysics Data System (ADS)

    Ivanov, I. A.; Dubau, J.; Kim, Kyung Taec

    2016-09-01

    We present a study of the relativistic nondipole effects in strong-field tunneling ionization process driven by a linearly polarized laser pulse. We consider the role of these effects in breaking the symmetry with respect to the inversion of the momentum component perpendicular to the laser-field polarization direction, which the dipole differential ionization probabilities possess. The study is based on the solution of a three-dimensional time-dependent Schrödinger equation taking into account the leading-order relativistic corrections.

  16. H2 double ionization with few-cycle laser pulses

    NASA Astrophysics Data System (ADS)

    Saugout, S.; Charron, E.; Cornaggia, C.

    2008-02-01

    The temporal dynamics of double ionization of H2 has been investigated both experimentally and theoretically with few-cycle laser pulses. The main observables are the proton spectra associated with the H++H+ fragmentation channel. The model is based on the time-dependent Schrödinger equation and treats the electronic and nuclear coordinates on the same level. Therefore it allows the ultrafast nuclear dynamics to be followed as a function of the laser pulse duration, carrier-envelope phase offset, and peak intensity. We mainly report results in the sequential double-ionization regime above 2×1014Wcm-2 . The proton spectra are shifted to higher energies as the pulse duration is reduced from 40 down to 10 fs. The good agreement between the model predictions and the experimental data at 10 fs permits a theoretical study with pulse durations down to a few femtoseconds. We demonstrate the very fast nuclear dynamics of the H2+ ion for a pulse duration as short as 1 fs between the two ionization events, giving H2+ from H2 and H++H+ from H2+ . The carrier-envelope phase offset plays a significant role only for pulse durations shorter than 4 fs. At 10 fs, the laser intensity dependence of the proton spectra is fairly well reproduced by the model.

  17. Origin of double-line structure in nonsequential double ionization by few-cycle laser pulses.

    PubMed

    Huang, Cheng; Zhong, Mingmin; Wu, Zhengmao

    2016-07-28

    We investigate nonsequential double ionization (NSDI) of molecules by few-cycle laser pulses at the laser intensity of 1.2-1.5 × 10(14) W/cm(2) using the classical ensemble model. The same double-line structure as the lower intensity (1.0 × 10(14) W/cm(2)) is also observed in the correlated electron momentum spectra for 1.2-1.4 × 10(14) W/cm(2). However, in contrast to the lower intensity where NSDI proceeds only through the recollision-induced double excitation with subsequent ionization (RDESI) mechanism, here, the recollision-induced excitation with subsequent ionization (RESI) mechanism has a more significant contribution to NSDI. This indicates that RDESI is not necessary for the formation of the double-line structure and RESI can give rise to the same type of structure independently. Furthermore, we explore the ultrafast dynamics underlying the formation of the double-line structure in RESI. PMID:27475356

  18. Direct two-photon double ionization of H2

    NASA Astrophysics Data System (ADS)

    Simonsen, A. S.; Sørngård, S. A.; Nepstad, R.; Førre, M.

    2012-06-01

    We have studied the process of direct (nonsequential) two-photon double ionization of molecular hydrogen (H2). Solving the time-dependent Schrödinger equation by an ab initio method, total (generalized) and single-differential cross sections are obtained at photon energies from 26 to 33 eV. Both parallel and perpendicular orientation of the molecule with respect to the laser polarization direction are considered, and the results are compared with previously calculated cross sections at 30 eV, as well as the predictions of a simple model.

  19. Strong-Field Tunneling without Ionization

    SciTech Connect

    Nubbemeyer, T.; Gorling, K.; Saenz, A.; Eichmann, U.; Sandner, W.

    2008-12-05

    In the tunneling regime of strong laser field ionization we measure a substantial fraction of neutral atoms surviving the laser pulse in excited states. The measured excited neutral atom yield extends over several orders of magnitude as a function of laser intensity. Our findings are compatible with the strong-field tunneling-plus-rescattering model, confirming the existence of a widely unexplored neutral exit channel (frustrated tunneling ionization). Strong experimental support for this mechanism as origin of excited neutral atoms stems from the dependence of the excited neutral yield on the laser ellipticity, which is as expected for a rescattering process. Theoretical support for the proposed mechanism comes from the agreement of the neutral excited state distribution centered at n=6-10 obtained from both, a full quantum mechanical and a semiclassical calculation, in agreement with the experimental results.

  20. Strongly magnetized antihydrogen and its field ionization.

    PubMed

    Vrinceanu, D; Granger, B E; Parrott, R; Sadeghpour, H R; Cederbaum, L; Mody, A; Tan, J; Gabrielse, G

    2004-04-01

    Internal orbits of experimentally analyzed antihydrogen (H) atoms depend as much on an external magnetic field as on the Coulomb force. A circular "guiding center atom" model is used to understand their field ionization. This useful model, assumed in the theory of three-body H recombination so far, ignores the important coupling between internal and center-of-mass motion. A conserved pseudomomentum, effective potential, saddle point analysis, and numerical simulation show where the simple model is valid and classify the features of the general case, including "giant dipole states."

  1. Direct detection of enhanced ionization in CO and N2 in strong fields

    NASA Astrophysics Data System (ADS)

    Lai, Wei; Guo, Chunlei

    2014-09-01

    Enhanced ionization (EI) of molecules has been extensively studied over the past two decades as a common process in molecular dissociative ionization in strong laser fields. Direct evidence for EI has been found only in I2 and H2. However, in this work we perform a direct study of EI in CO and N2, and find enhanced ionization in an alternate dissociation channel in each of these two molecules following double ionization. Surprisingly, EI does not happen in the commonly seen dissociation channels that were previously assigned undergoing EI. Instead, EI occurs only in the alternate channels seen here with a lower kinetic-energy release.

  2. Ionization potential optimized double-hybrid density functional approximations

    NASA Astrophysics Data System (ADS)

    Margraf, Johannes T.; Verma, Prakash; Bartlett, Rodney J.

    2016-09-01

    Double-hybrid density functional approximations (DH-DFAs) provide an accurate description of the electronic structure of molecules by semiempirically mixing density functional and wavefunction theory. In this paper, we investigate the properties of the potential used in such approximations. By using the optimized effective potential approach, the consistent Kohn-Sham (KS) potential for a double-hybrid functional (including the second-order perturbational contribution) can be generated. This potential is shown to provide an improved description of orbital energies as vertical ionization potentials (IPs), relative to the perturbation-free KS potential typically used. Based on this observation, we suggest that DH-DFAs should be constructed in such a way that the potential provides accurate orbital energies. As a proof of principle, the B2-PLYP functional is reparameterized to obtain the IP-optimized B2IP-PLYP functional, using a small set of vertical IPs and atomization energies as reference data. This functional is shown to outperform B2-PLYP in a wide range of benchmarks and is en par with the related B2GP-PLYP. In particular, it is shown to be the most reliable choice in electronically difficult and multireference cases.

  3. Ionization potential optimized double-hybrid density functional approximations.

    PubMed

    Margraf, Johannes T; Verma, Prakash; Bartlett, Rodney J

    2016-09-14

    Double-hybrid density functional approximations (DH-DFAs) provide an accurate description of the electronic structure of molecules by semiempirically mixing density functional and wavefunction theory. In this paper, we investigate the properties of the potential used in such approximations. By using the optimized effective potential approach, the consistent Kohn-Sham (KS) potential for a double-hybrid functional (including the second-order perturbational contribution) can be generated. This potential is shown to provide an improved description of orbital energies as vertical ionization potentials (IPs), relative to the perturbation-free KS potential typically used. Based on this observation, we suggest that DH-DFAs should be constructed in such a way that the potential provides accurate orbital energies. As a proof of principle, the B2-PLYP functional is reparameterized to obtain the IP-optimized B2IP-PLYP functional, using a small set of vertical IPs and atomization energies as reference data. This functional is shown to outperform B2-PLYP in a wide range of benchmarks and is en par with the related B2GP-PLYP. In particular, it is shown to be the most reliable choice in electronically difficult and multireference cases. PMID:27634250

  4. Relativistic effects on giant resonances in electron-impact double ionization

    SciTech Connect

    Pindzola, M.S.

    1987-06-01

    The electron-impact double-ionization cross section for Fr/sup +/ is calculated in the distorted-wave Born approximation. A giant resonance in the 5d subshell ionization-autoionization contribution to the cross section is found to be quite sensitive to changes in the double-well potential caused by relativistic effects on bound-state wave functions.

  5. Double metric, generalized metric, and α' -deformed double field theory

    NASA Astrophysics Data System (ADS)

    Hohm, Olaf; Zwiebach, Barton

    2016-03-01

    We relate the unconstrained "double metric" of the "α' -geometry" formulation of double field theory to the constrained generalized metric encoding the spacetime metric and b -field. This is achieved by integrating out auxiliary field components of the double metric in an iterative procedure that induces an infinite number of higher-derivative corrections. As an application, we prove that, to first order in α' and to all orders in fields, the deformed gauge transformations are Green-Schwarz-deformed diffeomorphisms. We also prove that to first order in α' the spacetime action encodes precisely the Green-Schwarz deformation with Chern-Simons forms based on the torsionless gravitational connection. This seems to be in tension with suggestions in the literature that T-duality requires a torsionful connection, but we explain that these assertions are ambiguous since actions that use different connections are related by field redefinitions.

  6. Double-electron above-threshold ionization resonances as interference phenomena

    NASA Astrophysics Data System (ADS)

    Armstrong, G. S. J.; Parker, J. S.; Taylor, K. T.

    2011-01-01

    We report calculations of double-ionization energy spectra and momentum distributions of laser-driven helium due to few-cycle pulses of wavelength 195 nm. The results are obtained from full-dimensional numerical integration of the two-electron time-dependent Schrödinger equation. A momentum-space analysis of doubly ionizing wavepackets shows that the concentric-ring structure of above-threshold double ionization, together with the associated structure of peaks in the total kinetic energy spectrum, may be attributed to wavepacket interference effects, where at least two doubly ionizing wavepackets from different recollision events populate the same spatial hemisphere.

  7. Electron dynamics of molecular double ionization by circularly polarized laser pulses

    SciTech Connect

    Tong, Aihong; Zhou, Yueming; Huang, Cheng; Lu, Peixiang

    2013-08-21

    Using the classical ensemble method, we have investigated double ionization (DI) of diatomic molecules driven by circularly polarized laser pulses with different internuclear distances (R). The results show that the DI mechanism changes from sequential double ionization (SDI) to nonsequential double ionization (NSDI) as the internuclear distance increases. In SDI range, the structure of the electron momentum distribution changes seriously as R increases, which indicates the sensitive dependence of the release times of the two electrons on R. For NSDI, because of the circular polarization, the ionization of the second electron is not through the well-known recollision process but through a process where the first electron ionizes over the inner potential barrier of the molecule, moves directly towards the other nucleus, and kicks out the second electron.

  8. Effects of autoionizing states on two-photon double ionization of the H2 molecule

    NASA Astrophysics Data System (ADS)

    Guan, Xiaoxu; Bartschat, Klaus; Koesterke, Lars; Schneider, Barry I.

    2014-04-01

    We report angle-resolved and angle-integrated cross sections for two-photon double-ionization of H by a strong laser pulse. The effect of doubly excited states on the predicted cross sections is addressed.

  9. Ionization Time and Exit Momentum in Strong-Field Tunnel Ionization.

    PubMed

    Teeny, Nicolas; Yakaboylu, Enderalp; Bauke, Heiko; Keitel, Christoph H

    2016-02-12

    Tunnel ionization belongs to the fundamental processes of atomic physics. The so-called two-step model, which describes the ionization as instantaneous tunneling at the electric field maximum and classical motion afterwards with zero exit momentum, is commonly employed to describe tunnel ionization in adiabatic regimes. In this contribution, we show by solving numerically the time-dependent Schrödinger equation in one dimension and employing a virtual detector at the tunnel exit that there is a nonvanishing positive time delay between the electric field maximum and the instant of ionization. Moreover, we find a nonzero exit momentum in the direction of the electric field. To extract proper tunneling times from asymptotic momentum distributions of ionized electrons, it is essential to incorporate the electron's initial momentum in the direction of the external electric field.

  10. Electric fields and double layers in plasmas

    NASA Technical Reports Server (NTRS)

    Singh, Nagendra; Thiemann, H.; Schunk, R. W.

    1987-01-01

    Various mechanisms for driving double layers in plasmas are briefly described, including applied potential drops, currents, contact potentials, and plasma expansions. Some dynamical features of the double layers are discussed. These features, as seen in simulations, laboratory experiments, and theory, indicate that double layers and the currents through them undergo slow oscillations which are determined by the ion transit time across an effective length of the system in which double layers form. It is shown that a localized potential dip forms at the low potential end of a double layer, which interrupts the electron current through it according to the Langmuir criterion, whenever the ion flux into the double is disrupted. The generation of electric fields perpendicular to the ambient magnetic field by contact potentials is also discussed. Two different situations were considered; in one, a low-density hot plasma is sandwiched between high-density cold plasmas, while in the other a high-density current sheet permeates a low-density background plasma. Perpendicular electric fields develop near the contact surfaces. In the case of the current sheet, the creation of parallel electric fields and the formation of double layers are also discussed when the current sheet thickness is varied. Finally, the generation of electric fields and double layers in an expanding plasma is discussed.

  11. Classical and quantum-mechanical treatments of nonsequential double ionization with few-cycle laser pulses

    NASA Astrophysics Data System (ADS)

    Figueira de Morisson Faria, C.; Liu, X.; Sanpera, A.; Lewenstein, M.

    2004-10-01

    We address nonsequential double ionization induced by strong, linearly polarized laser fields of only a few cycles, considering a physical mechanism in which the second electron is dislodged by the inelastic collision of the first electron with its parent ion. The problem is treated classically, using an ensemble model, and quantum mechanically, within the strong-field and uniform saddle-point approximations. In the latter case, the results are interpreted in terms of “quantum orbits,” which can be related to the trajectories of a classical electron in an electric field. We obtain highly asymmetric electron momentum distributions, which strongly depend on the absolute phase, i.e., on the phase difference between the pulse envelope and its carrier frequency. Around a particular value of this parameter, the distributions shift from the region of positive to that of negative momenta, or vice versa, in a radical fashion. This behavior is investigated in detail for several driving-field parameters, and provides a very efficient method for measuring the absolute phase. Both models yield very similar distributions, which share the same physical explanation. There exist, however, minor discrepancies due to the fact that, beyond the region for which electron-impact ionization is classically allowed, the yields from the quantum-mechanical computation decay exponentially, whereas their classical counterparts vanish.

  12. Generalized metric formulation of double field theory

    NASA Astrophysics Data System (ADS)

    Hohm, Olaf; Hull, Chris; Zwiebach, Barton

    2010-08-01

    The generalized metric is a T-duality covariant symmetric matrix constructed from the metric and two-form gauge field and arises in generalized geometry. We view it here as a metric on the doubled spacetime and use it to give a simple formulation with manifest T-duality of the double field theory that describes the massless sector of closed strings. The gauge transformations are written in terms of a generalized Lie derivative whose commutator algebra is defined by a double field theory extension of the Courant bracket.

  13. Precise description of single and double ionization of hydrogen molecule in intense laser pulses

    NASA Astrophysics Data System (ADS)

    Vafaee, Mohsen; Sami, Firoozeh; Shokri, Babak; Buzari, Behnaz; Sabzyan, Hassan

    2012-07-01

    A new simulation box setup is introduced for the precise description of the wavepacket evolution of two electronic systems in intense laser pulses. In this box, the regions of the hydrogen molecule H2, and singly and doubly ionized species, H2^+ and H2^{+2}, are well discernible and their time-dependent populations are calculated at different laser field intensities. In addition, some new regions are introduced and characterized as quasi-double ionization and their time-dependencies on the laser field intensity are calculated and analyzed. The adopted simulation box setup is special in that it assures proper evaluation of the second ionization. In this study, the dynamics of the electrons and nuclei of the hydrogen molecule are separated based on the adiabatic approximation. The time-dependent Schrödinger and Newton equations are solved simultaneously for the electrons and the nuclei, respectively. Laser pulses of 390 nm wavelength at four different intensities (i.e., 1 × 1014, 5 × 1014, 1 × 1015, and 5 × 1015 W cm-2) are used in these simulations. Details of the central H2 region are also presented and discussed. This region is divided into four sub-regions related to the ionic state H+H- and covalent (natural) state HH. The effect of the motion of nuclei on the enhanced ionization is discussed. Finally, some different time-dependent properties are calculated, their dependencies on the intensity of the laser pulse are studied, and their correlations with the populations of different regions are analyzed.

  14. Integrated atom detector based on field ionization near carbon nanotubes

    SciTech Connect

    Gruener, B.; Jag, M.; Stibor, A.; Visanescu, G.; Haeffner, M.; Kern, D.; Guenther, A.; Fortagh, J.

    2009-12-15

    We demonstrate an atom detector based on field ionization and subsequent ion counting. We make use of field enhancement near tips of carbon nanotubes to reach extreme electrostatic field values of up to 9x10{sup 9} V/m, which ionize ground-state rubidium atoms. The detector is based on a carpet of multiwall carbon nanotubes grown on a substrate and used for field ionization, and a channel electron multiplier used for ion counting. We measure the field enhancement at the tips of carbon nanotubes by field emission of electrons. We demonstrate the operation of the field ionization detector by counting atoms from a thermal beam of a rubidium dispenser source. By measuring the ionization rate of rubidium as a function of the applied detector voltage we identify the field ionization distance, which is below a few tens of nanometers in front of nanotube tips. We deduce from the experimental data that field ionization of rubidium near nanotube tips takes place on a time scale faster than 10{sup -10} s. This property is particularly interesting for the development of fast atom detectors suitable for measuring correlations in ultracold quantum gases. We also describe an application of the detector as partial pressure gauge.

  15. The Role of Nuclear Motion in the Photo-Double Ionization ofMolecular Hydrogen

    SciTech Connect

    Horner, Daniel A.; Vanroose, Wim; Rescigno, Thomas N.; Martin,Fernando; McCurdy, C. William

    2006-10-26

    We examine the origin of recently observed variations with internuclear distance (R) of the fully differential cross sections for double ionization of aligned H2 by absorption of a single photon. Using the results of fully converged numerical solutions of the Schroedinger equation, we show that these variations arise primarily from pronounced differences in the R-dependence of the parallel and perpendicular components of the ionization amplitude. We also predict that R-dependences should be readily observable in the asymmetry parameter for photo-double ionization, even in experimental measurements that are not differential in the energy sharings between ejected photo-electrons.

  16. Double electron ionization in Compton scattering of high energy photons by helium atoms

    SciTech Connect

    Amusia, M.Y.; Mikhailov, A.I.

    1995-08-01

    The cross section for double-electron ionization of two-electron atoms and ions in Compton scattering of high energy photons is calculated. It is demonstrated that its dependence on the incoming photon frequency is the same as that for single-electron ionization. The ratio of {open_quotes}double-to-single{close_quotes} ionization in Compton scattering was found to be energy independent and almost identical with the corresponding value for photoionization. For the He atom it is 1.68%. This surprising result deserves experimental verification.

  17. Strong-field ionization in classical and quantum dynamics

    SciTech Connect

    Ritchie, B. ); Bowden, C.M.; Sung, C.C.; Li, Y.Q. )

    1990-06-01

    Classical and quantum results for the strong-electromagnetic-field ionization of the ground state of a generic model are compared. Quantum results are also presented for the strong-field ionization of the hydrogen atom. These results demonstrate that ionization depends strongly on the phase of the field in such a way that the interaction potential acts as a barrier or well at large distances from the binding region, producing effectively a closed or open gate'' to the region of space outside the atom. The open gate is analogous to a strong, static electric field applied to an atom such that the atom ionizes classically. Quantum and classical ensemble results for the ionization probability are found to show close qualitative agreement. Other comparisons are made for classical versus quantum wave-packet trajectories.

  18. Complete characterization of single-cycle double ionization of argon from the nonsequential to the sequential ionization regime

    NASA Astrophysics Data System (ADS)

    Kübel, M.; Burger, C.; Kling, Nora G.; Pischke, T.; Beaufore, L.; Ben-Itzhak, I.; Paulus, G. G.; Ullrich, J.; Pfeifer, T.; Moshammer, R.; Kling, M. F.; Bergues, B.

    2016-05-01

    Selected features of nonsequential double ionization have been qualitatively reproduced by a multitude of different (quantum and classical) approaches. In general, however, the typical uncertainty of laser pulse parameters and the restricted number of observables measured in individual experiments leave room for adjusting theoretical results to match the experimental data. While this has been hampering the assessment of different theoretical approaches leading to conflicting interpretations, comprehensive experimental data that would allow such an ultimate and quantitative assessment have been missing so far. To remedy this situation we have performed a kinematically complete measurement of single-cycle multiple ionization of argon over a one order of magnitude range of intensity. The momenta of electrons and ions resulting from the ionization of the target gas are measured in coincidence, while each ionization event is tagged with the carrier-envelope phase and intensity of the 4-fs laser pulse driving the process. The acquired highly differential experimental data provide a benchmark for a rigorous test of the many competing theoretical models used to describe nonsequential double ionization.

  19. Relativistic contributions to single and double core electron ionization energies of noble gases.

    PubMed

    Niskanen, J; Norman, P; Aksela, H; Agren, H

    2011-08-01

    We have performed relativistic calculations of single and double core 1s hole states of the noble gas atoms in order to explore the relativistic corrections and their additivity to the ionization potentials. Our study unravels the interplay of progression of relaxation, dominating in the single and double ionization potentials of the light elements, versus relativistic one-electron effects and quantum electrodynamic effects, which dominate toward the heavy end. The degree of direct relative additivity of the relativistic corrections for the single electron ionization potentials to the double electron ionization potentials is found to gradually improve toward the heavy elements. The Dirac-Coulomb Hamiltonian is found to predict a scaling ratio of ∼4 for the relaxation induced relativistic energies between double and single ionization. Z-scaling of the computed quantities were obtained by fitting to power law. The effects of nuclear size and form were also investigated and found to be small. The results indicate that accurate predictions of double core hole ionization potentials can now be made for elements across the full periodic table.

  20. Relativistic contributions to single and double core electron ionization energies of noble gases

    SciTech Connect

    Niskanen, J.; Norman, P.; Aksela, H.; Aagren, H.

    2011-08-07

    We have performed relativistic calculations of single and double core 1s hole states of the noble gas atoms in order to explore the relativistic corrections and their additivity to the ionization potentials. Our study unravels the interplay of progression of relaxation, dominating in the single and double ionization potentials of the light elements, versus relativistic one-electron effects and quantum electrodynamic effects, which dominate toward the heavy end. The degree of direct relative additivity of the relativistic corrections for the single electron ionization potentials to the double electron ionization potentials is found to gradually improve toward the heavy elements. The Dirac-Coulomb Hamiltonian is found to predict a scaling ratio of {approx}4 for the relaxation induced relativistic energies between double and single ionization. Z-scaling of the computed quantities were obtained by fitting to power law. The effects of nuclear size and form were also investigated and found to be small. The results indicate that accurate predictions of double core hole ionization potentials can now be made for elements across the full periodic table.

  1. Double layers on auroral field lines

    NASA Technical Reports Server (NTRS)

    Hudson, M. K.; Lotko, W.; Witt, E.

    1982-01-01

    Time-stationary solutions to the Vlasov-Poisson equation for ion holes and double layers were examined along with particle simulations which pertain to recent observations of small amplitude (e phi)/t sub e approx. 1 electric field structures on auroral field lines. Both the time-stationary analysis and the simulations suggest that double layers evolve from holes in ion phase space when their amplitude reaches (e phi)/t sub e approx. 1. Multiple small amplitude double layers which are seen in long simulation systems and are seen to propagate past spacecraft may account for the acceleration of plasma sheet electrons to produce the discrete aurora.

  2. Towards weakly constrained double field theory

    NASA Astrophysics Data System (ADS)

    Lee, Kanghoon

    2016-08-01

    We show that it is possible to construct a well-defined effective field theory incorporating string winding modes without using strong constraint in double field theory. We show that X-ray (Radon) transform on a torus is well-suited for describing weakly constrained double fields, and any weakly constrained fields are represented as a sum of strongly constrained fields. Using inverse X-ray transform we define a novel binary operation which is compatible with the level matching constraint. Based on this formalism, we construct a consistent gauge transform and gauge invariant action without using strong constraint. We then discuss the relation of our result to the closed string field theory. Our construction suggests that there exists an effective field theory description for massless sector of closed string field theory on a torus in an associative truncation.

  3. Attosecond double-ionization dynamics of aligned H2: Two-dimensional quantum simulations

    NASA Astrophysics Data System (ADS)

    Wang, Shang; Chen, Yanjun

    2015-08-01

    A fully quantum procedure, based on the numerical solution of the time-dependent Schrödinger equation (TDSE) with two spatial dimensions for every electron, is developed to study the attosecond double-ionization (DI) dynamics from aligned H2 molecules in strong laser fields. Our simulations are able to reproduce the orientation dependence of DI, as observed for N2 in experiments [D. Zeidler et al., Phys. Rev. Lett. 95, 203003 (2005)], 10.1103/PhysRevLett.95.203003. Our TDSE analyses reveal the important roles of the lateral motion of the electron and two-center interference in the orientation-dependent DI. Our results give suggestions on the ultrafast probing of the dynamics of DI from aligned molecules.

  4. Towards non-sequential double ionization of Ne and Ar using a femtosecond laser oscillator.

    PubMed

    Liu, Yunquan; Tschuch, Sebastian; Dürr, Martin; Rudenko, Artem; Moshammer, Robert; Ullrich, Joachim; Siegel, Martin; Morgner, Uwe

    2007-12-24

    We report on first proof-of-principles results on non-sequential double ionization of argon and neon achieved by using a newly developed long-cavity Ti:sapphire femtosecond oscillator with a pulse duration of 45 fs and a repetition of 6.2 MHz combined with a dedicated reaction microscope. Under optimized experimental conditions, peak intensities larger than 2.310(14) W/cm(2) have been achieved. Ion momentum distributions were recorded for both rare gases and show significantly different features for single as well as for double ionization. For single ionization of neon a spike of zero-momentum electrons is found when decreasing the laser intensity towards the lowest ionization rate we can measure which is attributed to a non-resonant ionization channel. As to double ionization, the longitudinal momentum distribution for Ne(2+) displays a clear double-hump structure whereas this feature is found to be smoothened out with a maximum at zero momentum for Ar(2+).

  5. Doubly resonant three-photon double ionization of Ar atoms induced by an EUV free-electron laser

    SciTech Connect

    Gryzlova, E. V.; Ma, Ri; Fukuzawa, H.; Motomura, K.; Yamada, A.; Ueda, K.; Grum-Grzhimailo, A. N.; Strakhova, S. I.; Kabachnik, N. M.; Rouzee, A.; Hundermark, A.; Vrakking, M. J. J.; Johnsson, P.; Nagaya, K.; Yase, S.; Mizoguchi, Y.; Yao, M.; Nagasono, M.; Tono, K.; Yabashi, M.; and others

    2011-12-15

    A mechanism for three-photon double ionization of atoms by extreme-ultraviolet free-electron laser pulses is revealed, where in a sequential process the second ionization step, proceeding via resonant two-photon ionization of ions, is strongly enhanced by the excitation of ionic autoionizing states. In contrast to the conventional model, the mechanism explains the observed relative intensities of photoelectron peaks and their angular dependence in three-photon double ionization of argon.

  6. Dynamical core polarization in strong-field ionization

    NASA Astrophysics Data System (ADS)

    Zhao, Zengxiu; Zhang, Bin; Yuan, Jianmin

    2014-05-01

    Core polarization plays an important role in both ionization and high harmonic generation processes of molecules driven by strong laser fields. With our recently developed three-dimensional time-dependent Hartree-Fock method, we investigate the orientation-dependent ionization of CO molecules. It is found that the full ionization results are in good agreement with the recent experiment. The comparisons between the full method and the single-active-orbital method show that although the core electrons are generally more tightly bound and contribute little to the total ionization yields, their dynamics cannot be ignored, which effectively modifies the behavior of electrons in the HOMO. By incorporating it into the SAO method, we identify that the dynamic core polarization plays an important role in the tunneling ionization of CO molecules, which is helpful for the future development of the tunneling ionization theory beyond the single active electron approximation. In order to further verify the role of core polarization, exact calculations are performed for the ionization of two-electron model systems by strong laser fields. The limitations of HF and the SAE are quantified and the tunneling ionization rate is shown improved with the core-polarization induced correction.

  7. Enhanced Avalanche Ionization by RF Fields Creating an Ultracold Plasma

    NASA Astrophysics Data System (ADS)

    Robinson, M. P.; Gallagher, T. F.; Laburthe Tolra, B.; Pillet, P.

    2001-05-01

    Ultracold plasmas have been shown to evolve from initially frozen Rydberg gases held in magneto-optical traps.(M.P. Robinson, B. Laburthe Tolra, Michael W. Noel, T.F. Gallagher, and P. Pillet, Phys. Rev. Lett. 85), 4466 (2000) We report the enhancement of the avalanche ionization process by application of radiofrequency fields. An initial slow ionization rate is observed in the Rydberg sample due to black body ionization and ionizing collisions with hot Rydberg atoms. This produces an overall posititve space charge of cold ions as the hot electrons leave the sample. Once a threshold density of positive charges is built up, the hot electrons become trapped to the sample, leading to avalance ionization due to electron-Rydberg collisions. The mechanism of the ionization remains unclear. However, the application of radiofrequency fields, in the 1 V/cm, 100 MHz range, dramatically enhances the rate of avalanche ionization without changing the threshold density at which it occurs. Apparently, the limiting parameter is the rate of collisional ionization of Rydberg atoms by electrons.

  8. A compact neutron generator using a field ionization source

    SciTech Connect

    Persaud, Arun; Waldmann, Ole; Kapadia, Rehan; Takei, Kuniharu; Javey, Ali; Schenkel, Thomas

    2012-02-15

    We study field ionization as a means to create ions for compact and rugged neutron source. Arrays of carbon nano-fibers promise the high field-enhancement factors required for efficient field ionization. We report on the fabrication of arrays of field emitters with a density up to 106 tips/cm2 and measure their performance characteristics using electron field emission. Lastly, the critical issue of uniformity is discussed, as are efforts towards coating the nano-fibers to enhance their lifetime and surface properties.

  9. A double faced ionization chamber for quality control in diagnostic radiology beams.

    PubMed

    Silva, Jonas O; Caldas, Linda V E

    2012-07-01

    The development of new radiation detectors of low cost but with adequate materials is a very important task for countries that have to import ionization chambers such as Brazil. A special double faced ionization chamber was developed for use in conventional diagnostic radiology beams and computed tomography energy ranges. The results show that this new chamber present applicability in conventional diagnostic radiology and computed tomography quality control programs.

  10. Higher spin double field theory: a proposal

    NASA Astrophysics Data System (ADS)

    Bekaert, Xavier; Park, Jeong-Hyuck

    2016-07-01

    We construct a double field theory coupled to the fields present in Vasiliev's equations. Employing the "semi-covariant" differential geometry, we spell a functional in which each term is completely covariant with respect to O(4, 4) T-duality, doubled diffeomorphisms, Spin(1, 3) local Lorentz symmetry and, separately, HS(4) higher spin gauge symmetry. We identify a minimal set of BPS-like conditions whose solutions automatically satisfy the full Euler-Lagrange equations. As such a solution, we derive a linear dilaton vacuum. With extra algebraic constraints further supplemented, the BPS-like conditions reduce to the bosonic Vasiliev equations.

  11. Large gauge transformations in double field theory

    NASA Astrophysics Data System (ADS)

    Hohm, Olaf; Zwiebach, Barton

    2013-02-01

    Finite gauge transformations in double field theory can be defined by the exponential of generalized Lie derivatives. We interpret these transformations as `generalized coordinate transformations' in the doubled space by proposing and testing a formula that writes large transformations in terms of derivatives of the coordinate maps. Successive generalized coordinate transformations give a generalized coordinate transformation that differs from the direct composition of the original two. Instead, it is constructed using the Courant bracket. These transformations form a group when acting on fields but, intriguingly, do not associate when acting on coordinates.

  12. Auger spectrum of a water molecule after single and double core ionization.

    PubMed

    Inhester, L; Burmeister, C F; Groenhof, G; Grubmüller, H

    2012-04-14

    The high intensity of free electron lasers opens up the possibility to perform single-shot molecule scattering experiments. However, even for small molecules, radiation damage induced by absorption of high intense x-ray radiation is not yet fully understood. One of the striking effects which occurs under intense x-ray illumination is the creation of double core ionized molecules in considerable quantity. To provide insight into this process, we have studied the dynamics of water molecules in single and double core ionized states by means of electronic transition rate calculations and ab initio molecular dynamics (MD) simulations. From the MD trajectories, photoionization and Auger transition rates were computed based on electronic continuum wavefunctions obtained by explicit integration of the coupled radial Schrödinger equations. These rates served to solve the master equations for the populations of the relevant electronic states. To account for the nuclear dynamics during the core hole lifetime, the calculated electron emission spectra for different molecular geometries were incoherently accumulated according to the obtained time-dependent populations, thus neglecting possible interference effects between different decay pathways. We find that, in contrast to the single core ionized water molecule, the nuclear dynamics for the double core ionized water molecule during the core hole lifetime leaves a clear fingerprint in the resulting electron emission spectra. The lifetime of the double core ionized water was found to be significantly shorter than half of the single core hole lifetime.

  13. Auger spectrum of a water molecule after single and double core ionization

    SciTech Connect

    Inhester, L.; Burmeister, C. F.; Groenhof, G.; Grubmueller, H.

    2012-04-14

    The high intensity of free electron lasers opens up the possibility to perform single-shot molecule scattering experiments. However, even for small molecules, radiation damage induced by absorption of high intense x-ray radiation is not yet fully understood. One of the striking effects which occurs under intense x-ray illumination is the creation of double core ionized molecules in considerable quantity. To provide insight into this process, we have studied the dynamics of water molecules in single and double core ionized states by means of electronic transition rate calculations and ab initio molecular dynamics (MD) simulations. From the MD trajectories, photoionization and Auger transition rates were computed based on electronic continuum wavefunctions obtained by explicit integration of the coupled radial Schroedinger equations. These rates served to solve the master equations for the populations of the relevant electronic states. To account for the nuclear dynamics during the core hole lifetime, the calculated electron emission spectra for different molecular geometries were incoherently accumulated according to the obtained time-dependent populations, thus neglecting possible interference effects between different decay pathways. We find that, in contrast to the single core ionized water molecule, the nuclear dynamics for the double core ionized water molecule during the core hole lifetime leaves a clear fingerprint in the resulting electron emission spectra. The lifetime of the double core ionized water was found to be significantly shorter than half of the single core hole lifetime.

  14. Fully differential single-photon double ionization of neon and argon.

    PubMed

    Yip, F L; Rescigno, T N; McCurdy, C W; Martín, F

    2013-04-26

    Triply differential cross sections are calculated for one-photon double ionization of neon and argon at various photon energies and electron energy sharings by using a frozen-core treatment to represent the remaining electrons of the residual ion. Angular distributions agree well with all existing experimental data, showing that in spite of its simplicity the method can treat the double ionization of complex targets reliably. A comparison of the cross sections for helium, neon, and argon into the same final state symmetry at the same relative excess energies reveals a distinctive signature of the role of electron correlation in each target.

  15. Device for remote viewing of objects in ionizing radiation fields

    SciTech Connect

    Ivanov, B.I.; Ivanov, N.M.; Malakhov, I.K.; Motin, J.D.; Reformatsky, I.A.; Sinitsyn, P.R.

    1980-10-21

    A device is described for remote viewing of objects in ionizing radiation fields, wherein a fibre-optics channel for transmitting the image of an object under observation beyond the biological shield against ionizing radiation comprises an entrance lens in whose immediate vicinity there is placed one of the ends of a bundle of optic fibres, the other end of the bundle being beyond the biological shield. The fibre-optics channel also comprises a source of heat to maintain at least only the fibre bundle at a temperature ensuring thermostabilization of its light conducting properties in the presence of the ionizing radiation.

  16. Multiphoton ionization of hydrogen by a strong multimode field

    SciTech Connect

    Basile, S.; Trombetta, F.; Ferrante, G.; Burlon, R.; Leone, C.

    1988-02-01

    Multiphoton ionization of hydrogen atoms by a strong multimode field when several final continuum states are populated is treated theoretically within a model based on the S-matrix formalism. The field is taken in dipole approximation, with zero bandwidth. Field-dressed Coulomb wave functions are used for the electron final states. Ionization rates are calculated for different numbers of photons absorbed in excess of the minimum number required to go into the continuum. In general, the calculated quantities are in good qualitative agreement with the corresponding experimental observations.

  17. Ionization of highly excited helium atoms in an electric field

    SciTech Connect

    van de Water, W.; Mariani, D.R.; Koch, P.M.

    1984-11-01

    We present detailed measurements of ionization of highly excited triplet helium atoms in a static electric field. The atoms were prepared in states with energy E close to the saddle-point threshold E = -2(F(a.u.))/sup 1/2/. The electric field F was sufficiently strong for the states to be characterized by total spin S and absolute value of the magnetic quantum number M/sub L/. For M/sub L/ = 0 states the experiments measured ionization properties of adiabatic states. In another case, Vertical BarM/sub L/Vertical Bar = 2, they predominantly measured those of diabatic states. In both cases the ionization rate was found to be a highly nonmonotonic function of the field strength. The observations are analyzed in terms of a theory of the helium density of states in an electric field. A companion paper (D. A. Harmin, Phys. Rev. A 30, 2413 (1984)) develops in detail the general theory, which uses quantum defects to parametrize the effect of the core interaction. The agreement between measured and calculated ionization curves is good, indicating that the field ionization of a nonhydrogenic atom can now be understood in a detailed, quantitative, and predictive sense.

  18. Two-photon double ionization of the helium atom by ultrashort pulses

    SciTech Connect

    Palacios, Alicia; Horner, Daniel A; Rescigno, Thomas N; McCurdy, C William

    2010-05-14

    Two-photon double ionization of the helium atom was the subject of early experiments at FLASH and will be the subject of future benchmark measurements of the associated electron angular and energy distributions. As the photon energy of a single femtosecond pulse is raised from the threshold for two-photon double ionization at 39.5 eV to beyond the sequential ionization threshold at 54.4 eV, the electron ejection dynamics change from the highly correlated motion associated with nonsequential absorption to the much less correlated sequential ionization process. The signatures of both processes have been predicted in accurate \\textit{ab initio} calculations of the joint angular and energy distributions of the electrons, and those predictions contain some surprises. The dominant terms that contribute to sequential ionization make their presence apparent several eV below that threshold. In two-color pump probe experiments with short pulses whose central frequencies require that the sequential ionization process necessarily dominates, a two-electron interference pattern emerges that depends on the pulse delay and the spin state of the atom.

  19. Two photon double ionization of H2 using exterior complex scaling

    NASA Astrophysics Data System (ADS)

    Morales, F.; Martín, F.; Horner, D. A.; Rescigno, T. N.; McCurdy, C. W.

    2009-11-01

    We report converged calculations of fully, singly differential and total cross sections for two-photon double ionization of the hydrogen molecule in the range of 26-30 eV. These results have been obtained by using the method of exterior complex scaling combined with the use of DVR basis set.

  20. Two-photon double ionization of H2 using exterior complex scaling

    SciTech Connect

    Horner, Daniel A; Morales, F; Martin, F; Rescigno, T N; Mccurdy, C W

    2009-03-09

    We report converged calculations of fully, singly differential and total cross sections for two-photon double ionization of the hydrogen molecule in the range of 26-30 eV. These results have been obtained by using the method of exterior complex scaling combined with the use of DVR basis set.

  1. Collision-induced dissociation reactions and pulsed field ionization photoelectron

    SciTech Connect

    Stimson, S.

    1999-02-12

    This report summarized the four parts of the research study and describes the general conclusions. Individual chapters have been removed for separate processing. The chapter titles are: A study of the dissociation of CH{sub 3}SH{sup +} by collisional activation: Observation of non-statistical behavior; High resolution vacuum ultraviolet pulsed field ionization photoelectron band for OCS{sup +}(X{sup 2}{Pi}): An experimental and theoretical study; Rotationally resolved pulsed field ionization photoelectron bands of H{sub 2}{sup +} ({Chi}{sup 2}{Sigma}{sup +}{sub g}, v{sup +} = 0--18); and Rotationally resolved pulsed field ionization photoelectron bands of HD{sup +} ({Chi}{sup 2}{Sigma}{sup +}, v{sup +} = 0--21).

  2. Ionization with diclofenac sodium in rheumatic disorders: a double-blind placebo-controlled trial.

    PubMed

    Vecchini, L; Grossi, E

    1984-01-01

    A double-blind randomized study was performed to compare ionization with diclofenac sodium (150 mg) and ionization with saline solution in two groups of patients with scapulo-humeral periarthritis or elbow epicondylitis. The subjects of both groups were treated with 20 ionization sessions each lasting 30 minutes during a 1-month period. There was a significantly greater improvement in pain at rest, pain on pressure, pain on movement and joint swelling in the eleven patients treated with diclofenac compared with the thirteen placebo-treated patients, but no significant differences between the two treatments as regards functional impairment. However, placebo treatment produced a slight but significant improvement in pain on pressure, pain on movement and functional impairment. Further studies are needed to assess the relative role of the current and of autosuggestion in saline ionization response since both have well-known therapeutic effects on chronic rheumatic pain.

  3. Perturbative quantum gravity in double field theory

    NASA Astrophysics Data System (ADS)

    Boels, Rutger H.; Horst, Christoph

    2016-04-01

    We study perturbative general relativity with a two-form and a dilaton using the double field theory formulation which features explicit index factorisation at the Lagrangian level. Explicit checks to known tree level results are performed. In a natural covariant gauge a ghost-like scalar which contributes even at tree level is shown to decouple consistently as required by perturbative unitarity. In addition, a lightcone gauge is explored which bypasses the problem altogether. Using this gauge to study BCFW on-shell recursion, we can show that most of the D-dimensional tree level S-matrix of the theory, including all pure graviton scattering amplitudes, is reproduced by the double field theory. More generally, we argue that the integrand may be reconstructed from its single cuts and provide limited evidence for off-shell cancellations in the Feynman graphs. As a straightforward application of the developed technology double field theory-like expressions for four field string corrections are derived.

  4. Low-Pressure, Field-Ionizing Mass Spectrometer

    NASA Technical Reports Server (NTRS)

    Hartley, Frank; Smith, Steven

    2009-01-01

    A small mass spectrometer utilizing a miniature field ionization source is now undergoing development. It is designed for use in a variety of applications in which there are requirements for a lightweight, low-power-consumption instrument that can analyze the masses of a wide variety of molecules and ions. The device can operate without need for a high-vacuum, carrier-gas feed radioactive ionizing source, or thermal ionizer. This mass spectrometer can operate either in the natural vacuum of outer space or on Earth at any ambient pressure below 50 torr (below about 6.7 kPa) - a partial vacuum that can easily be reached by use of a small sampling pump. This mass spectrometer also has a large dynamic range - from singly charged small gas ions to deoxyribonucleic acid (DNA) fragments larger than 104 atomic mass units - with sensitivity adequate for detecting some molecules and ions at relative abundances of less than one part per billion. This instrument (see figure) includes a field ionizer integrated with a rotating-field mass spectrometer (RFMS). The field ionizer effects ionization of a type characterized as "soft" in the art because it does not fragment molecules or initiate avalanche arcing. What makes the "soft" ionization mode possible is that the distance between the ionizing electrodes is less than mean free path for ions at the maximum anticipated operating pressure, so that the ionizer always operates on the non-breakdown side of the applicable Paschen curve (a standard plot of breakdown potential on the ordinate and pressure electrode separation on the abscissa). The field ionizer in this instrument is fabricated by micromachining a submicron-thick membrane out of an electrically nonconductive substrate, coating the membrane on both sides to form electrodes, then micromachining small holes through the electrodes and membrane. Because of the submicron electrode separation, even a potential of only 1 V applied between the electrodes gives rise to an electric

  5. Direct three-photon triple ionization of Li and double ionization of Li+

    NASA Astrophysics Data System (ADS)

    Emmanouilidou, A.; Hakobyan, V.; Lambropoulos, P.

    2013-06-01

    We explore the three-photon triple ionization from the ground state of Li with short wavelength free electron lasers. We calculate and discuss the cross sections used in the relevant rate equations and the dependence of the ion yields on laser intensity and pulse duration. In addition to the three-photon 3e ejection we also discuss two- and three-photon 2e ejection in Li+, which occurs as a by-product in the sequence of the channels active in the overall interaction. We conclude by assessing the requirements for the observability of the above-mentioned direct three-photon multielectron processes.

  6. ENERGY DISTRIBUTION OF TWO-ELECTRON IONIZATION OF HELIUM IN AN INTENSE LASER FIELD.

    SciTech Connect

    LAFON,R.; CHALOUPKA,J.L.; SHEEHY,B.; DIMAURO,L.F.; PAUL,P.M.; AGOSTINI,P.; KULANDER,K.C.

    2000-09-24

    It is well known that a neutral atom interacting with a strong laser field will ionize at sufficiently high intensity even for photon energies well below the ionization threshold. When the required number of photons becomes very large, this process is best described by the suppression of the Coulomb barrier by the laser's oscillating electric field, allowing the electron to tunnel into the continuum. As the laser intensity is increased, more tightly bound electrons may be successively liberated by this mechanism. Such a sequential multiple ionization, long accepted as a reasonable approach to the formidable problem of a multielectron atom interacting nonperturbatively with an intense electromagnetic field, provides fair estimates of the various charge state appearance intensities while the tunneling rates are in excellent agreement with single ionization yields. However, more accurate measurements revealed systematic and very large deviations from the tunneling rates: near appearance intensity under standard experimental conditions, the observed double ion yield is several orders of magnitude larger than predicted by the sequential rate. It soon became clear that electrons could not be considered as independent and that electron-electron correlation had to be taken into account. Dynamic correlations have been considered in several theories. First qualitatively in the shakeoff model; then empirically through the e-2e cross-section in the quantum/classical three-step model (tunnel ionization, acceleration by the oscillating electric field and e-2e recollision with the ion); recently through the so-called intense field many-body-S-matrix theory and a purely empirical model of collective tunnel ionization. The validity of these ideas has been examined using numerical models. The measurement of total ion yields over a dynamic range exceeding ten orders of magnitude, a major breakthrough made possible by the availability of high-repetition rate lasers at the beginning of

  7. Enhanced one-photon double ionization of atoms and molecules in an environment of different species.

    PubMed

    Stumpf, V; Kryzhevoi, N V; Gokhberg, K; Cederbaum, L S

    2014-05-16

    The correlated nature of electronic states in atoms and molecules is manifested in the simultaneous emission of two electrons after absorption of a single photon close to the respective threshold. Numerous observations in atoms and small molecules demonstrate that the double ionization efficiency close to threshold is rather small. In this Letter we show that this efficiency can be dramatically enhanced in the environment. To be specific, we concentrate on the case where the species in question has one or several He atoms as neighbors. The enhancement is achieved by an indirect process, where a He atom of the environment absorbs a photon and the resulting He(+) cation is neutralized fast by a process known as electron transfer mediated decay, producing thereby doubly ionized species. The enhancement of the double ionization is demonstrated in detail for the example of the Mg · He cluster. We show that the double ionization cross section of Mg becomes 3 orders of magnitude larger than the respective cross section of the isolated Mg atom. The impact of more neighbors is discussed and the extension to other species and environments is addressed.

  8. Fragmentation of Small Molecules by Photo-Double Ionization

    NASA Astrophysics Data System (ADS)

    Osipov, Timur

    2008-05-01

    Molecular structure, formation, breakup pathways and recombination formed the subject of many theoretical and experimental studies. Among molecular species like H2, CO, N2, O2 recently great attention has been paid to the dynamics of the fragmentations and rearrangements of C2H2 molecule. Nature's smallest stable hydrocarbon, the symmetric linear acetylene molecule, C2H2, is an important polyatomic system for the study of photo initiated processes. Important features of the intramolecular dynamics in neutral acetylene have been revealed over many years through numerous spectroscopic studies. More recently, the availability of synchrotron radiation and intense laser sources has lead to intriguing studies of the ionization, isomerization and breakup dynamics of acetylene ions. Of particular interest are the yields into the symmetric (CH^+/CH^+), deprotonation (HCC^+/H^+) and quasi-symmetric (HHC^+/C^+) channels, the latter involving isomerization from the neutral acetylene structure into the vinylidene configuration prior to breakup. One expects that the products of dissociation, their kinetic energy releases (KER) and the isomerization times will depend on the particular initial electronic states of the dication involved, but such detailed information has heretofore not been available. We will present the results of the experiment where the dication of acetylene is prepared by Auger decay following core-level X-ray photoionization. Cold Target Recoil Ion Momentum Spectroscopy technique was used to measure the corresponding 3d momentum vectors of Auger electrons and recoil ions in coincidence. We will show that this experimental approach, in combination with ab initio quantum mechanical calculations, can yield a comprehensive map of the two-body dissociation pathways including transition through different electronic energy surfaces, barriers to direct dissociation and the associated rearrangement channels. Work done in collaboration with T. Rescigno, T. Weber, S

  9. Two-photon double ionization of the H2 molecule: Cross sections and amplitude analysis

    NASA Astrophysics Data System (ADS)

    Ivanov, I. A.; Kheifets, A. S.

    2013-02-01

    We perform time-dependent calculations of triply differential cross sections (TDCS) of two-photon double-electron ionization of the aligned H2 molecule. Our TDCS results for equal energy sharing between photoelectrons agree quite well with a recent time-dependent calculation by Guan [X. Guan, K. Bartschat, and B. I. Schneider, Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.77.043421 77, 043421 (2008)] who employed a slightly different numerical technique. We supplement these studies by calculating TDCS at an unequal energy sharing and by generating symmetrized ionization amplitudes.

  10. Effects of autoionizing states on two-photon double ionization of the H2 molecule

    NASA Astrophysics Data System (ADS)

    Guan, Xiaoxu; Bartschat, Klaus; Schneider, Barry I.; Koesterke, Lars

    2014-04-01

    Treating the effects of autoionizing intermediate states on two-photon double ionization (DI) of the H2 molecule using time-dependent laser pulses is a significant computational challenge. Relatively long exposure times are critical to understanding the dynamics. Using the fixed-nuclei approximation, we demonstrate how the doubly excited states enhance the angle-integrated generalized cross sections in H2, and how they affect the angular distribution pattern of the ejected electrons. As the energy approaches the threshold for sequential DI, there is a sharp rise in the cross section due to virtual sequential ionization.

  11. Strong-field atomic ionization in an elliptically polarized laser field and a constant magnetic field

    NASA Astrophysics Data System (ADS)

    Rylyuk, V. M.

    2016-05-01

    Within the framework of the quasistationary quasienergy state (QQES) formalism, the tunneling and multiphoton ionization of atoms and ions subjected to a perturbation by a high intense laser radiation field of an arbitrary polarization and a constant magnetic field are considered. On the basis of the exact solution of the Schrödinger equation and the Green's function for the electron moving in an arbitrary laser field and crossed constant electric and magnetic fields, the integral equation for the complex quasienergy and the energy spectrum of the ejected electron are derived. Using the "imaginary-time" method, the extremal subbarrier trajectory of the photoelectron moving in a nonstationary laser field and a constant magnetic field are considered. Within the framework of the QQES formalism and the quasiclassical perturbation theory, ionization rates when the Coulomb interaction of the photoelectron with the parent ion is taken into account at arbitrary values of the Keldysh parameter are derived. The high accuracy of rates is confirmed by comparison with the results of numerical calculations. Simple analytical expressions for the ionization rate with the Coulomb correction in the tunneling and multiphoton regimes in the case of an elliptically polarized laser beam propagating at an arbitrary angle to the constant magnetic field are derived and discussed. The limits of small and large magnetic fields and low and high frequency of a laser field are considered in details. It is shown that in the presence of a nonstationary laser field perturbation, the constant magnetic field may either decrease or increase the ionization rate. The analytical consideration and numerical calculations also showed that the difference between the ionization rates for an s electron in the case of right- and left-elliptically polarized laser fields is especially significant in the multiphoton regime for not-too-high magnetic fields and decreases as the magnetic field increases. The paper

  12. Effects of Astrophysical Magnetic Fields in Partially Ionized Gases

    NASA Astrophysics Data System (ADS)

    Arge, Charles Nickolos

    1997-11-01

    Magnetic field studies in astrophysics are usually carried out with the assumptions that (i) the plasma is fully ionized, and (ii) ideal MHD applies. These assumptions are justified in many astrophysical contexts. However, here, we focus on two environments composed of partially ionized gas, and where dissipation processes due to departures from complete ionization have significant effects. Using detailed numerical computations, we quantify these non-ideal MHD effects and compare them with astrophysical data. First we consider the structure of an MHD shock as it relates to the interaction between the heliosphere and the local interstellar medium (LISM). We ask: does the heliosphere generate a bow shock as it moves through the LISM? Since the LISM is only partially ionized, ion-atom interactions provide a dissipation mechanism which may smooth out an otherwise abrupt transition between the LISM and the heliospheric material. To investigate this possibility, we develop a two-fluid code that computes the structure of one-dimensional transverse MHD shock fronts. We find existence of extensive areas of permissible parameter space where ion-atom mediation is strong enough to smear out the bow shock over hundreds of AU. This is relevant to a recent interpretation of Hubble Space Telescope spectra suggesting that the heliospheric bow shock does not exist. Next, we study the two-dimensional behavior of partially ionized gas in magnetized regions of the solar atmosphere. The highly time-dependent nature of solar magnetic fields frequently produces interacting oppositely directed magnetic fields. Since in partially ionized gases the ions 'feel' the field more than the atoms, the gas which emerges from such interacting fields may have a different ion/atom ratio than the ambient medium. By extending the ZEUS-3D code to apply to a partially ionized gas, we have quantified this effect. Our simulations show that enhancements in ion/atom ratios may be as large as a factor of almost

  13. Quadratic α‧-corrections to heterotic double field theory

    NASA Astrophysics Data System (ADS)

    Lee, Kanghoon

    2015-10-01

    We investigate α‧-corrections of heterotic double field theory up to quadratic order in the language of supersymmetric O (D, D + dim ⁡ G) gauged double field theory. After introducing double-vielbein formalism with a parametrization which reproduces heterotic supergravity, we show that supersymmetry for heterotic double field theory up to leading order α‧-correction is obtained from supersymmetric gauged double field theory. We discuss the necessary modifications of the symmetries defined in supersymmetric gauged double field theory. Further, we construct supersymmetric completion at quadratic order in α‧.

  14. Intermediate ionization continua for double charge exchange at high impact energies

    NASA Astrophysics Data System (ADS)

    Belkić, D.ževad

    1993-05-01

    We investigate the problem of two-electron capture from heliumlike atomic systems by bare nuclei ZP+(ZTe1,e2)i-->(ZPe1,e2)f+ZT at high incident energies, using the four-body formalism of the first- and second-order theories. Our goal is to establish the relative importance of the intermediate ionization continua of the two electrons in comparison with the usual direct path of the double electron transfer. For this purpose we presently introduce the boundary-corrected continuum-intermediate-state (BCIS) approximation, which preserves all the features of two-electron capture as a genuine four-body problem. The proposed second-order theory provides a fully adequate description of the fact that, in an intermediate stage of collision, both electrons move in the field of the two Coulomb centers. The previously devised boundary-corrected first Born (CB1) approximation can be obtained as a further simplification of the BCIS model if the invoked two-electron Coulomb waves are replaced by their long-range logarithmic phase factors defined in terms of the corresponding interaggregate separation R. The BCIS method is implemented on the symmetric resonant double charge exchange in collisions between α particles and He(1s2) at impact energies E>=900 keV. The obtained results for the differential and total cross sections are compared with the available experimental data and satisfactory agreement is recorded. As the incident energy increases, a dramatic improvement is obtained in going from the CB1 to the BCIS approximation, since the latter closely follows the measurement, whereas the former overestimates the observed total cross sections by two orders of magnitude.

  15. The second Born approximation for the double ionization of N2 by electron impact

    NASA Astrophysics Data System (ADS)

    Lamy, P.; Dal Cappello, C.; Charpentier, I.; Ruiz-Lopez, M. F.; Hervieux, P. A.

    2016-07-01

    In their (e,3e) and (e,3-1e) experiments of the double ionization (DI) of the outermost orbital of N2, Li et al (2012 J. Phys. B: At. Mol. Opt. Phys. 45 135201) recently showed that the process is largely dominated by a two-step-2 mechanism, which is a double interaction of the incident electron with the target. From a theoretical point of view, this should entail the use of the second Born approximation. In the past, very few theoretical calculations had been carried out this way because it requires a difficult numerical triple integration. We propose here to take into account the second Born approximation for the DI of N2 by using the closure approximation. The initial state is described by a single-center wave function derived from the usual multi-center wave function obtained in the self-consistent-field Hartree-Fock method using the linear combination of atomic orbitals-molecular orbital (LCAO-MO) approximation. The final state describes the interaction between each of the ejected electrons and the target by a Coulomb wave and the interaction between the two ejected electrons with the use of the Gamow factor. We calculate differential cross sections using the same kinematic conditions as Li et al (intermediate incident energy about 600 eV) for (e,3e) and (e,3-1e) DI of N2. The results show that the model does not allow a shift of the variation of the four-fold differential cross section near the momentum transfer to be obtained nor its opposite when we include the contribution given by the second Born approximation, as in (e,3-1e) experiments.

  16. The second Born approximation for the double ionization of N2 by electron impact

    NASA Astrophysics Data System (ADS)

    Lamy, P.; Dal Cappello, C.; Charpentier, I.; Ruiz-Lopez, M. F.; Hervieux, P. A.

    2016-07-01

    In their (e,3e) and (e,3-1e) experiments of the double ionization (DI) of the outermost orbital of N2, Li et al (2012 J. Phys. B: At. Mol. Opt. Phys. 45 135201) recently showed that the process is largely dominated by a two-step-2 mechanism, which is a double interaction of the incident electron with the target. From a theoretical point of view, this should entail the use of the second Born approximation. In the past, very few theoretical calculations had been carried out this way because it requires a difficult numerical triple integration. We propose here to take into account the second Born approximation for the DI of N2 by using the closure approximation. The initial state is described by a single-center wave function derived from the usual multi-center wave function obtained in the self-consistent-field Hartree–Fock method using the linear combination of atomic orbitals-molecular orbital (LCAO-MO) approximation. The final state describes the interaction between each of the ejected electrons and the target by a Coulomb wave and the interaction between the two ejected electrons with the use of the Gamow factor. We calculate differential cross sections using the same kinematic conditions as Li et al (intermediate incident energy about 600 eV) for (e,3e) and (e,3-1e) DI of N2. The results show that the model does not allow a shift of the variation of the four-fold differential cross section near the momentum transfer to be obtained nor its opposite when we include the contribution given by the second Born approximation, as in (e,3-1e) experiments.

  17. DNA Damage by Ionizing Radiation: Tandem Double Lesions by Charged Particles

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Chaban, Galina M.; Wang, Dunyou; Dateo, Christopher E.

    2005-01-01

    Oxidative damages by ionizing radiation are the source of radiation-induced carcinogenesis, damage to the central nervous system, lowering of the immune response, as well as other radiation-induced damages to human health. Monte Carlo track simulations and kinetic modeling of radiation damages to the DNA employ available molecular and cellular data to simulate the biological effect of high and low LET radiation io the DNA. While the simulations predict single and double strand breaks and base damages, so far all complex lesions are the result of stochastic coincidence from independent processes. Tandem double lesions have not yet been taken into account. Unlike the standard double lesions that are produced by two separate attacks by charged particles or radicals, tandem double lesions are produced by one single attack. The standard double lesions dominate at the high dosage regime. On the other hand, tandem double lesions do not depend on stochastic coincidences and become important at the low dosage regime of particular interest to NASA. Tandem double lesions by hydroxyl radical attack of guanine in isolated DNA have been reported at a dosage of radiation as low as 10 Gy. The formation of two tandem base lesions was found to be linear with the applied doses, a characteristic of tandem lesions. However, tandem double lesions from attack by a charged particle have not been reported.

  18. Ionizing gas breakdown waves in strong electric fields.

    NASA Technical Reports Server (NTRS)

    Klingbeil, R.; Tidman, D. A.; Fernsler, R. F.

    1972-01-01

    A previous analysis by Albright and Tidman (1972) of the structure of an ionizing potential wave driven through a dense gas by a strong electric field is extended to include atomic structure details of the background atoms and radiative effects, especially, photoionization. It is found that photoionization plays an important role in avalanche propagation. Velocities, electron densities, and temperatures are presented as a function of electric field for both negative and positive breakdown waves in nitrogen.

  19. Properties of Hollow Molecules Probed by Single-Photon Double Ionization

    SciTech Connect

    Lablanquie, P.; Penent, F.; Palaudoux, J.; Selles, P.; Carniato, S.; Andric, L.; Bucar, K.; Zitnik, M.; Huttula, M.; Eland, J. H. D.; Shigemasa, E.; Soejima, K.; Hikosaka, Y.; Suzuki, I. H.; Nakano, M.; Ito, K.

    2011-02-11

    The formation of hollow molecules (with a completely empty K shell in one constituent atom) through single-photon core double ionization has been demonstrated using a sensitive magnetic bottle experimental technique combined with synchrotron radiation. Detailed properties are presented such as the spectroscopy, formation, and decay dynamics of the N{sub 2}{sup 2+} K{sup -2} main and satellite states and the strong chemical shifts of double K holes on an oxygen atom in CO, CO{sub 2}, and O{sub 2} molecules.

  20. Resonance effects in two-photon double ionization of H2 by femtosecond XUV laser pulses

    NASA Astrophysics Data System (ADS)

    Guan, Xiaoxu; Bartschat, Klaus; Schneider, Barry I.; Koesterke, Lars

    2013-10-01

    We investigate the effect of the pulse length on the two-photon double ionization (DI) of H2 in the direct domain, for a femtosecond (fs) laser with a polarization vector oriented along the molecular axis. In the fixed-nuclei approximation, we find that the doubly excited Q11Σu+ states manifest themselves as resonances in the angle-integrated cross sections if the laser interaction lasts longer than about 3 fs. Decay into single-ionization channels does not significantly affect the shape of the angular distribution. A sharp rise in the probability for DI, due to virtual sequential ionization, occurs when the photon energy approaches the threshold for sequential DI.

  1. Energy and angle differential cross sections for the electron-impact double ionization of helium

    SciTech Connect

    Colgan, James P; Pindzola, M S; Robicheaux, F

    2008-01-01

    Energy and angle differential cross sections for the electron-impact double ionization of helium are calculated using a non-perturbative time-dependent close-coupling method. Collision probabilities are found by projection of a time evolved nine dimensional coordinate space wave function onto fully antisymmetric products of spatial and spin functions representing three outgoing Coulomb waves. At an incident energy of 106 eV, we present double energy differential cross sections and pentuple energy and angle differential cross sections. The pentuple energy and angle differential cross sections are found to be in relative agreement with the shapes observed in recent (e,3e) reaction microscope experiments. Integration of the differential cross sections over all energies and angles yields a total ionization cross section that is also in reasonable agreement with absolute crossed-beams experiments.

  2. Optical field ionization of atoms and ions using ultrashort laser pulses

    SciTech Connect

    Fittinghoff, D.N.

    1993-12-01

    This dissertation research is an investigation of the strong optical field ionization of atoms and ions by 120-fs, 614-run laser pulses and 130-fs, 800-nm laser pulses. The experiments have shown ionization that is enhanced above the predictions of sequential tunneling models for He{sup +2}, Ne{sup +2} and Ar{sup +2}. The ion yields for He{sup +l}, Ne{sup +l} and Ar{sup +l} agree well with the theoretical predictions of optical tunneling models. Investigation of the polarization dependence of the ionization indicates that the enhancements are consistent with a nonsequential ionization mechanism in which the linearly polarized field drives the electron wavefunction back toward the ion core and causes double ionization through inelastic e-2e scattering. These investigations have initiated a number of other studies by other groups and are of current scientific interest in the fields of high-irradiance laser-matter interactions and production of high-density plasmas. This work involved: (1) Understanding the characteristic nature of the ion yields produced by tunneling ionization through investigation of analytic solutions for tunneling at optical frequencies. (2) Extensive characterization of the pulses produced by 614-nm and 800-ran ultrashort pulse lasers. Absolute calibration of the irradiance scale produced shows the practicality of the inverse problem--measuring peak laser irradiance using ion yields. (3) Measuring the ion yields for three noble gases using linear, circular and elliptical polarizations of laser pulses at 614-nm and 800-nm. The measurements are some of the first measurements for pulse widths as low as 120-fs.

  3. Double ionization of single oriented water molecules by electron impact: Second-order Born description

    SciTech Connect

    Dal Cappello, C.; Champion, C.; Kada, I.; Mansouri, A.

    2011-06-15

    The double ionization of isolated water molecules fixed in space is investigated within a theoretical approach based on the second-order Born approximation. Electron angular distributions have been studied for specific kinematical conditions. The three usual mechanisms, the shake-off and the two two-step mechanisms, have been identified. A significant contribution of the two-step mechanism is clearly visible for some particular kinematics.

  4. Perturbative calculation of two-photon double electron ionization of helium

    NASA Astrophysics Data System (ADS)

    Ivanov, I. A.; Kheifets, A. S.

    2008-05-01

    We report the total integrated cross-section (TICS) of two-photon double ionization of helium in the photon energy range from 40 to 54 eV. We compute the TICS in the lowest order perturbation theory (LOPT) using the length and Kramers-Henneberger gauges of the electromagnetic interaction. Our findings indicate that the LOPT gives results for the TICS in agreement with our earlier non-perturbative calculations.

  5. Two-Electron Time-Delay Interference in Atomic Double Ionization by Attosecond Pulses

    SciTech Connect

    Palacios, A.; Rescigno, T. N.; McCurdy, C. W.

    2009-12-18

    A two-color two-photon atomic double ionization experiment using subfemtosecond uv pulses can be designed such that the sequential two-color process dominates and one electron is ejected by each pulse. Nonetheless, ab initio calculations show that, for sufficiently short pulses, a prominent interference pattern in the joint energy distribution of the sequentially ejected electrons can be observed that is due to their indistinguishability and the exchange symmetry of the wave function.

  6. Two-electron time-delay interference in atomic double ionization by attosecond pulses

    SciTech Connect

    Rescigno, Thomas N

    2009-10-04

    A two-color two-photon atomic double ionization experiment using subfemtosecond UV pulses can be designed such that the sequential two-color process dominates and one electron is ejected by each pulse. Nonetheless, ab initio calculations show that, for sufficiently short pulses, a prominent interference pattern in the joint energy distribution of the sequentially ejected electrons can be observed that is due to their indistinguishability and the exchange symmetry of the wave function.

  7. Generalized eikonal approximation for strong-field ionization

    NASA Astrophysics Data System (ADS)

    Cajiao Vélez, F.; Krajewska, K.; Kamiński, J. Z.

    2015-05-01

    We develop the eikonal perturbation theory to describe the strong-field ionization by finite laser pulses. This approach in the first order with respect to the binding potential (the so-called generalized eikonal approximation) avoids a singularity at the potential center. Thus, in contrast to the ordinary eikonal approximation, it allows one to treat rescattering phenomena in terms of quantum trajectories. We demonstrate how the first Born approximation and its domain of validity follow from eikonal perturbation theory. Using this approach, we study the coherent interference patterns in photoelectron energy spectra and their modifications induced by the interaction of photoelectrons with the atomic potential. Along with these first results, we discuss the prospects of using the generalized eikonal approximation to study strong-field ionization from multicentered atomic systems and to study other strong-field phenomena.

  8. Adaptive finite-element ballooning analysis of bipolar ionized fields

    SciTech Connect

    Al-Hamouz, Z.M.

    1995-12-31

    This paper presents an adaptive finite-element iterative method for the analysis of the ionized field around high-voltage bipolar direct-current (HVDC) transmission line conductors without resort to Deutsch`s assumption. A new iterative finite-element ballooning technique is proposed to solve Poisson`s equation wherein the commonly used artificial boundary around the transmission line conductors is simulated at infinity. Unlike all attempts reported in the literature for the solution of ionized field, the constancy of the conductors` surface field at the corona onset value is directly implemented in the finite-element formulation. In order to investigate the effectiveness of the proposed method, a laboratory model was built. It has been found that the calculated V-I characteristics and the ground-plane current density agreed well with those measured experimentally. The simplicity in computer programming in addition to the low number of iterations required to achieve convergence characterize this method of analysis.

  9. Empirical formulas for direct double ionization by bare ions: Z = - 1 to 92

    DOE PAGESBeta

    DuBois, R. D.; Santos, A. C. F.; Manson, S. T.

    2014-11-25

    Experimental cross sections and cross-section ratios reported in the literature for direct double ionization of the outer shells of helium, neon, and argon atoms resulting from bare ions ranging from protons to uranium and for antiprotons are analyzed in terms of a first- and second-order interference model originally proposed by McGuire [J. H. McGuire, Phys. Rev. Lett. 49, 1153 (1982)]. Empirical formulas for the various contributions to double ionization plus information about the phase difference between the first- and second-order mechanisms are extracted from the data. Projectile and target scalings are also extracted. Total cross sections and their ratios determinedmore » using these formulas and scalings are shown to be in very good agreement with experimental data for lower-Z projectiles and impact velocities larger than 1 a.u. For very-high-Z projectiles, the amount of double ionization is overestimated, probably due to saturation of probabilities that is not accounted for in scaling formulas.« less

  10. Electric fields and double layers in plasmas

    NASA Technical Reports Server (NTRS)

    Singh, Nagendra; Thiemann, H.; Schunk, R. W.

    1987-01-01

    Various mechanisms for driving double layers (DLs) in plasmas are described, including applied potential drops, currents, contact potentials, and plasma expansions. Somne dynamic features of the DLs are discussed; and it is demonstrated that DLs and the currents through them undergo slow oscillations, determined by the ion transit time across an effective length of the system in which the DLs form. It is shown that a localized potential dip forms at the low potential end of a DL, which interrupts the electron current through it according to the Langmuir criterion whenever the ion flux into the DL is disrupted. Also considered is the generation of electric fields perpendicular to the ambient magnetic field by contact potentials.

  11. Double field theory on group manifolds

    NASA Astrophysics Data System (ADS)

    Blumenhagen, Ralph; Hassler, Falk; Lüst, Dieter

    2015-02-01

    A new version of double field theory (DFT) is derived for the exactly solvable background of an in general left-right asymmetric WZW model in the large level limit. This generalizes the original DFT that was derived via expanding closed string field theory on a torus up to cubic order. The action and gauge transformations are derived for fluctuations around the generalized group manifold background up to cubic order, revealing the appearance of a generalized Lie derivative and a corresponding C-bracket upon invoking a new version of the strong constraint. In all these quantities a background dependent covariant derivative appears reducing to the partial derivative for a toroidal background. This approach sheds some new light on the conceptual status of DFT, its background (in-)dependence and the up-lift of non-geometric Scherk-Schwarz reductions.

  12. N1s and O1s double ionization of the NO and N{sub 2}O molecules

    SciTech Connect

    Hedin, L.; Zhaunerchyk, V.; Karlsson, L.; Pernestål, K.; Feifel, R.; Tashiro, M.; Ehara, M.; Linusson, P.; Eland, J. H. D.; Ueda, K.

    2014-01-28

    Single-site N1s and O1s double core ionisation of the NO and N{sub 2}O molecules has been studied using a magnetic bottle many-electron coincidence time-of-flight spectrometer at photon energies of 1100 eV and 1300 eV. The double core hole energies obtained for NO are 904.8 eV (N1s{sup −2}) and 1179.4 eV (O1s{sup −2}). The corresponding energies obtained for N{sub 2}O are 896.9 eV (terminal N1s{sup −2}), 906.5 eV (central N1s{sup −2}), and 1174.1 eV (O1s{sup −2}). The ratio between the double and single ionisation energies are in all cases close or equal to 2.20. Large chemical shifts are observed in some cases which suggest that reorganisation of the electrons upon the double ionization is significant. Δ-self-consistent field and complete active space self-consistent field (CASSCF) calculations were performed for both molecules and they are in good agreement with these results. Auger spectra of N{sub 2}O, associated with the decay of the terminal and central N1s{sup −2} as well as with the O1s{sup −2} dicationic states, were extracted showing the two electrons emitted as a result of filling the double core holes. The spectra, which are interpreted using CASSCF and complete active space configuration interaction calculations, show atomic-like character. The cross section ratio between double and single core hole creation was estimated as 1.6 × 10{sup −3} for nitrogen at 1100 eV and as 1.3 × 10{sup −3} for oxygen at 1300 eV.

  13. Fluctuations of the intergalactic ionization field at redshift z ~ 2

    NASA Astrophysics Data System (ADS)

    Agafonova, I. I.; Levshakov, S. A.; Reimers, D.; Hagen, H.-J.; Tytler, D.

    2013-04-01

    Aims: To probe the spectral energy distribution (SED) of the ionizing background radiation at z ≲ 2 and to specify the sources contributing to the intergalactic radiation field. Methods: The spectrum of a bright quasar HS 1103+6416 (zem = 2.19) contains five successive metal-line absorption systems at zabs = 1.1923, 1.7193, 1.8873, 1.8916, and 1.9410. The systems are optically thin and reveal multiple lines of different metal ions with the ionization potentials lying in the extreme ultraviolet (EUV) range (~1 Ryd to ~0.2 keV). For each system, the EUV SED of the underlying ionization field is reconstructed by means of a special technique developed for solving the inverse problem in spectroscopy. For the zabs = 1.8916 system, the analysis also involves the He I resonance lines of the Lyman series and the He iλ504 Å continuum, which are seen for the first time in any cosmic object except the Sun. Results: From one system to another, the SED of the ionizing continuum changes significantly, indicating that the intergalactic ionization field at z ≲ 2 fluctuates at the scale of at least Δz ~ 0.004. This is consistent with Δz ≲ 0.01 estimated from He II and H I Lyman-α forest measurements between the redshifts 2 and 3. A radiation intensity break by approximately an order of magnitude at E = 4 Ryd in SEDs restored for the zabs = 1.1923, 1.8873, 1.8916, and 1.9410 systems points to quasars as the main sources of the ionizing radiation. The SED variability is mostly caused by a small number of objects contributing at any given redshift to the ionizing background; at scales Δz ≳ 0.05, the influence of local radiation sources becomes significant. A remarkable SED restored for the zabs = 1.7193 system, with a sharp break shifted to E ~ 3.5 Ryd and a subsequent intensity decrease by ~1.5 dex, indicates a source with comparable inputs of both hard (active galactic nuclei, AGN) and soft (stellar) radiation components. Such a continuum can be emitted by (ultra

  14. New Interpretations of Measured Antihydrogen Velocities and Field Ionization Spectra

    SciTech Connect

    Pohl, T.; Sadeghpour, H. R.; Gabrielse, G.

    2006-10-06

    We present extensive Monte Carlo simulations, showing that cold antihydrogen (H) atoms are produced when antiprotons (p) are gently heated in the side wells of a nested Penning trap. The observed H with high energies, that had seemed to indicate otherwise, are instead explained by a surprisingly effective charge-exchange mechanism. We shed light on the previously measured field-ionization spectrum, and reproduce both the characteristic low-field power law as well as the enhanced H production at higher fields. The latter feature is shown to arise from H atoms too deeply bound to be described as guiding center atoms, atoms with internally chaotic motion.

  15. New interpretations of measured antihydrogen velocities and field ionization spectra.

    PubMed

    Pohl, T; Sadeghpour, H R; Gabrielse, G

    2006-10-01

    We present extensive Monte Carlo simulations, showing that cold antihydrogen (H) atoms are produced when antiprotons (p) are gently heated in the side wells of a nested Penning trap. The observed H with high energies, that had seemed to indicate otherwise, are instead explained by a surprisingly effective charge-exchange mechanism. We shed light on the previously measured field-ionization spectrum, and reproduce both the characteristic low-field power law as well as the enhanced H production at higher fields. The latter feature is shown to arise from H toms too deeply bound to be described as guiding center atoms, atoms with internally chaotic motion.

  16. Multielectron effects in strong field ionization of molecules

    NASA Astrophysics Data System (ADS)

    Jaron-Becker, Agnieszka; Xia, Yuqing

    2014-05-01

    Multielectron effects are studied for strong field ionization of di- and polyatomic molecules at their equilibrium geometries, using time dependent density functional theory. Strong field ionization of molecules have been previously often analyzed using ``single active electron'' (SAE) approximation based theories such as for example Intense Field Many Body S-matrix Theory and typically the contributions from inner valence orbitals and multielectron effects were concluded to be of less importance. For several di- and polyatomic molecules we show that ionization rate from inner valence orbitals can increase dramatically due to a novel resonant coupling which influences the molecular dynamics. We discuss the dependence of the results on the orientation of the molecules and laser parameters. Moreover we show how such a mechanism can lead to localization of electron depending on the symmetry of the orbitals involved. Finally, we propose how the novel mechanism can be observed experimentally and show how the multi-electron effects can help explain several experimental results which have shown disagreement with SAE approximation based theories. Supported by NSF (Grants No. PHY-1068706 and PHY-1125844).

  17. Multielectron coincidence study of the double Auger decay of 3d-ionized krypton

    SciTech Connect

    Andersson, E.; Hedin, L.; Rubensson, J.-E.; Karlsson, L.; Feifel, R.; Fritzsche, S.; Linusson, P.; Eland, J. H. D.

    2010-10-15

    Multielectron coincidence data for triple ionization of krypton have been recorded above the 3d ionization threshold at two photon energies (140 and 150 eV). Three principal transition pathways have been observed, two involving double Auger transitions from Kr{sup +}, and one involving single Auger transitions from Kr{sup 2+} created by direct single-photon double ionization. The decay of the 3d{sup 9} {sup 2}D{sub 5/2,3/2} states in Kr{sup +} has been analyzed in some detail and is found to be strongly dominated by cascade processes where two electrons with well-defined energies are emitted. The decay paths leading to the 4s{sup 2}4p{sup 3} {sup 4}S, {sup 2}D, and {sup 2}P states of Kr{sup 3+} are analyzed and energies of seven intermediate states in Kr{sup 2+} are given. A preliminary investigation of the decay paths from Kr{sup +} 3d{sup 9}4p{sup 5}nl shake-up states has also been carried out.

  18. Ab initio calculation of the double ionization of helium in a few-cycle laser pulse beyond the one-dimensional approximation.

    PubMed

    Ruiz, Camilo; Plaja, Luis; Roso, Luis; Becker, Andreas

    2006-02-10

    We present ab initio computations of the ionization of two-electron atoms by short pulses of intense linearly polarized Ti:sapphire laser radiation beyond the one-dimensional approximation. In the model the electron correlation is included in its full dimensionality, while the center-of-mass motion is restricted along the polarization axis. Our results exhibit a rich double ionization quantum dynamics in the direction transversal to the field polarization, which is neglected in the previous models based on the one-dimensional approximation.

  19. Characterization of a CT ionization chamber for radiation field mapping.

    PubMed

    Perini, Ana P; Neves, Lucio P; Vivolo, Vitor; Xavier, Marcos; Khoury, Helen J; Caldas, Linda V E

    2012-07-01

    A pencil-type ionization chamber, developed at Instituto de Pesquisas Energéticas e Nucleares (IPEN), was characterized with the objective to verify the possibility of its application in radiation field mapping procedures. The characterization tests were evaluated, and the results were satisfactory. The results obtained for the X radiation field mapping with the homemade chamber were compared with those of a PTW Farmer-type chamber (TN 30011-1). The maximum difference observed in this comparison was only 1.25%, showing good agreement.

  20. Breakdown of the dipole approximation in strong-field ionization.

    PubMed

    Ludwig, A; Maurer, J; Mayer, B W; Phillips, C R; Gallmann, L; Keller, U

    2014-12-12

    We report the breakdown of the electric dipole approximation in the long-wavelength limit in strong-field ionization with linearly polarized few-cycle mid-infrared laser pulses at intensities on the order of 10¹³ W/cm². Photoelectron momentum distributions were recorded by velocity map imaging and projected onto the beam propagation axis. We observe an increasing shift of the peak of this projection opposite to the beam propagation direction with increasing laser intensities. From a comparison with semiclassical simulations, we identify the combined action of the magnetic field of the laser pulse and the Coulomb potential as the origin of our observations. PMID:25541770

  1. Semiclassical two-step model for strong-field ionization

    NASA Astrophysics Data System (ADS)

    Shvetsov-Shilovski, N. I.; Lein, M.; Madsen, L. B.; Räsänen, E.; Lemell, C.; Burgdörfer, J.; Arbó, D. G.; Tőkési, K.

    2016-07-01

    We present a semiclassical two-step model for strong-field ionization that accounts for path interferences of tunnel-ionized electrons in the ionic potential beyond perturbation theory. Within the framework of a classical trajectory Monte Carlo representation of the phase-space dynamics, the model employs the semiclassical approximation to the phase of the full quantum propagator in the exit channel. By comparison with the exact numerical solution of the time-dependent Schrödinger equation for strong-field ionization of hydrogen, we show that for suitable choices of the momentum distribution after the first tunneling step, the model yields good quantitative agreement with the full quantum simulation. The two-dimensional photoelectron momentum distributions, the energy spectra, and the angular distributions are found to be in good agreement with the corresponding quantum results. Specifically, the model quantitatively reproduces the fanlike interference patterns in the low-energy part of the two-dimensional momentum distributions, as well as the modulations in the photoelectron angular distributions.

  2. Electron correlation in two-photon double ionization of helium from attosecond to FEL pulses

    SciTech Connect

    Collins, Lee

    2009-01-01

    We investigate the role of electron correlation in the two-photon double ionization of helium for ultrashort pulses in the extreme ultraviolet (XUV) regime with durations ranging from a hundred attoseconds to a few femtoseconds. We perform time-dependent ab initio calculations for pulses with mean frequencies in the so-called 'sequential' regime ({Dirac_h}{omega} > 54.4 eV). Electron correlation induced by the time correlation between emission events manifests itself in the angular distribution of the ejected electrons, which strongly depends on the energy sharing between them. We show that for ultrashort pulses two-photon double ionization probabilities scale non-uniformly with pulse duration depending on the energy sharing between the electrons. Most interestingly we find evidence for an interference between direct ('nonsequential') and indirect ('sequential') double photoionization with intermediate shake-up states, the strength of which is controlled by the pulse duration. This observation may provide a route towards measuring the pulse duration of x-ray free-electron laser (XFEL) pulses.

  3. Ionization of ethane, butane, and octane in strong laser fields

    SciTech Connect

    Palaniyappan, Sasi; Mitchell, Rob; Ekanayake, N.; Watts, A. M.; White, S. L.; Sauer, Rob; Howard, L. E.; Videtto, M.; Mancuso, C.; Wells, S. J.; Stanev, T.; Wen, B. L.; Decamp, M. F.; Walker, B. C.

    2010-10-15

    Strong-field photoionization of ethane, butane, and octane are reported at intensities from 10{sup 14} to 10{sup 17} W/cm{sup 2}. The molecular fragment ions, C{sup +} and C{sup 2+}, are created in an intensity window from 10{sup 14} to 10{sup 15} W/cm{sup 2} and have intensity-dependent yields similar to the molecular fragments C{sub m}H{sub n}{sup +} and C{sub m}H{sub n}{sup 2+}. In the case of C{sup +}, the yield is independent of the molecular parent chain length. The ionization of more tightly bound valence electrons in carbon (C{sup 3+} and C{sup 4+}) has at least two contributing mechanisms, one influenced by the parent molecule size and one resulting from the tunneling ionization of the carbon ion.

  4. Integrated reservoir management doubles Nigerian field reserves

    SciTech Connect

    Akinlawon, Y.; Nwosu, T.; Satter, A.; Jespersen, R.

    1996-10-01

    An integrated alliance across disciplines, companies and countries enabled Texaco to conduct a comprehensive reservoir analysis of the North Apoi/Funiwa field in Nigeria. Recommendations implemented in 3 months doubled the book reserves of this mature field. The paper discusses the objectives, the integration of organizations, reservoir analysis, and conclusions. The conclusions made from the integrated study are: (1) 3-D seismic data dramatically improved reservoir description. (2) OOIP is considerably more than the booked values and reserves additions are substantial. (3) Significant value has been added to TOPCON`s assets as a result of teamwork and a multidisciplinary approach to evaluating the reservoirs and optimizing the scenarios for reservoir management. (4) Teamwork and integration of professionals, data, technology and tools was critical to the projects success. (5) The study set an example for effective and expeditious technology transfer and applications. (6) Partnering of TOPCON, DPR, NAPIMS, EPTD and SSI resulted in a quick cycle time and set an excellent example of integration and alliance.

  5. Gas ionization sensors with carbon nanotube/nickel field emitters.

    PubMed

    Huang, Bohr-Ran; Lin, Tzu-Ching; Yang, Ying-Kan; Tzeng, Shien-Der

    2011-12-01

    Gas ionization sensors based on the field emission properties of the carbon nanotube/nickel (CNT/Ni) field emitters were first developed in this work. It is found that the breakdown electric field (E(b)) slightly decreases from 2.2 V/microm to 1.9 V/microm as the pressure of H2 gas increases from 0.5 Torr to 100 Torr. On the contrary, E(b) obviously increases from 2.9 V/microm to 6.5 V/microm as O2 gas pressure increases from 0.5 Torr to 100 Torr. This may be explained by the depression of the electron emission that caused by the adsorption of the O2 gas on the CNT emitters. The Raman spectra of the CNT/Ni emitters also show that more defects were generated on the CNTs after O2 gas sensing. The Joule heating effect under high current density as performing H2 sensing was also observed. These effects may contribute the pressure dependence on the breakdown electric field of the CNT/Ni gas ionization sensors. PMID:22409010

  6. High field - low energy muon ionization cooling channel

    NASA Astrophysics Data System (ADS)

    Kamal Sayed, Hisham; Palmer, Robert B.; Neuffer, David

    2015-09-01

    Muon beams are generated with large transverse and longitudinal emittances. In order to achieve the low emittances required by a muon collider, within the short lifetime of the muons, ionization cooling is required. Cooling schemes have been developed to reduce the muon beam 6D emittances to ≈300 μ m -rad in transverse and ≈1 - 1.5 mm in longitudinal dimensions. The transverse emittance has to be further reduced to ≈50 - 25 μ m -rad with an upper limit on the longitudinal emittance of ≈76 mm in order to meet the high-energy muon collider luminosity requirements. Earlier studies of the transverse cooling of low energy muon beams in high field magnets showed a promising performance, but did not include transverse or longitudinal matching between the stages. In this study we present the first complete design of the high field-low energy ionization cooling channel with transverse and longitudinal matching. The channel design was based on strong focusing solenoids with fields of 25-30 T and low momentum muon beam starting at 135 MeV /c and gradually decreasing. The cooling channel design presented here is the first to reach ≈50 micron scale emittance beam. We present the channel's optimized design parameters including the focusing solenoid fields, absorber parameters and the transverse and longitudinal matching.

  7. Fully differential cross sections for photo-double-ionization of D{sub 2}

    SciTech Connect

    Weber, Th.; Czasch, A.; Jagutzki, O.; Mueller, A.; Mergel, V.; Kheifets, A.; Feagin, J.; Rotenberg, E.,; Meigs, G.,; Prior, M.H.; Daveau, S.,; Landers, A.L.; Cocke, C.L.; Osipov, T.; Schmidt-Boecking, H.; Doerner, R.

    2003-07-15

    We report the first kinematically complete study of the four-body fragmentation of the D2 molecule following absorption of a single photon. For equal energy sharing of the two electrons and a photon energy of 75.5 eV, we observed the relaxation of one of the selection rules valid for He photo-double ionization and a strong dependence of the electron angular distribution on the orientation of the molecular axis. This effect is reproduced by a model in which a pair of photoionization amplitudes is introduced for the light polarization parallel and perpendicular to the molecular axis.

  8. Different escape modes in two-photon double ionization of helium

    SciTech Connect

    Kheifets, A. S.; Ivanov, A. I.; Bray, I.

    2007-02-15

    The quadrupole channel of two-photon double ionization of He exhibits two distinctly different modes of correlated motion of the photoelectron pair. The kinematics of the mode associated with the center-of-mass motion favors large total momenta maximized at parallel emission where the interelectron repulsion is strong. In contrast, the mode associated with the relative motion favors large relative momenta maximized at antiparallel emission where the interelectron repulsion is relatively weak. This difference in the interelectron repulsion allows for much wider angular correlation width in the relative motion mode as compared to the center-of-mass mode.

  9. STORAGE RING CROSS-SECTION MEASUREMENTS FOR ELECTRON IMPACT SINGLE AND DOUBLE IONIZATION OF Fe{sup 9+} AND SINGLE IONIZATION OF Fe{sup 10+}

    SciTech Connect

    Hahn, M.; Novotny, O.; Savin, D. W.; Becker, A.; Grieser, M.; Krantz, C.; Wolf, A.; Lestinsky, M.; Repnow, R.; Mueller, A.; Schippers, S.; Spruck, K.

    2012-11-20

    We have measured electron impact ionization from the ground state of Fe{sup 9+} and Fe{sup 10+} over the relative electron-ion collision energy ranges 200-1900 eV and 250-1800 eV, respectively. The ions were confined in an ion storage ring long enough for essentially all metastable levels to radiatively relax to the ground state. For single ionization, we find a number of discrepancies between the existing theoretical cross sections and our results. The calculations appear to neglect some excitation-autoionization (EA) channels, particularly from n = 3 to n' excitations, which are important near threshold, and those from n = 2 {yields} 3 excitations, which contribute at about 650 eV. Conversely, at higher energies the calculations appear to overestimate the importance of EA channels due to excitation into levels where n {>=} 4. The resulting experimental rate coefficients agree with the most recent theory for Fe{sup 9+} to within 16% and for Fe{sup 10+} to within 19% at temperatures where these ions are predicted to form in collisional ionization equilibrium. We have also measured double ionization of Fe{sup 9+} forming Fe{sup 11+} in the energy range 450-3000 eV and found that although there is an appreciable cross section for direct double ionization, the dominant mechanism appears to be through direct ionization of an inner shell electron producing an excited state that subsequently stabilizes through autoionization.

  10. Double and single ionization of He and other targets studied using cold target recoil momentum spectroscopy

    SciTech Connect

    Doerner, R.; Feagin, J. M.; Brauning, H.; Jagutzki, O.; Jung, M.; Kanter, E. P.; Khemliche, H.; Kravis, S.; Mergel, V.; Prior, M. H.; Schmidt-Boeking, H.; Spielberger, L.; Ullrich, J.; Unverzagt, M.; Vogt, T.

    1997-04-01

    Double ionization of an atom by a single photon is the simplest and most fundamental many-electron process. The ejection of two electrons following the absorption of one photon is strictly prohibited in an independent electron approximation. Thus determining the probability of double photoionization alone is already a challenging test of the understanding of electron-electron correlation. Furthermore, in the slow breakup of a bound system into three charged particles, the final state wave function must represent a high degree of few-body Coulomb correlation involving the simultaneous interaction of all three particles. The case of double photoionization is again particularly well suited to study this problem as the energy and the angular momentum delivered to the system can be very well controlled. Helium, as the most basic three body system, has been the target of extensive studies over the past decades. The purpose of this project has been to study double and single ionization using cold target recoil ion momentum spectroscopy (COLTRIMS). This technique has been widely applied within the area of ion-atom collisions to study the dynamics of energy and momentum transfer in collisions between few-electron systems, and the entire technical machinery has been transferred to photon-atom collisions. The technique uses space- and time-imaging of He{sup +} and He{sup ++} recoil ions created in photon-He collisions to measure the full momentum vector of each ion produced. Event-mode recording is used and a solid angle of nearly 4{pi} is realized, allowing an extremely high data-collection efficiency. In order to reduce the initial momentum spread of the He target a precooled supersonic He jet is used.

  11. Double field theory and mathcal{N} = {4} gauged supergravity

    NASA Astrophysics Data System (ADS)

    Geissbühler, David

    2011-11-01

    Double Field Theory describes the NS-NS sector of string theory and lives on a doubled spacetime. The theory has a local gauge symmetry generated by a generalization of the Lie derivative for doubled coordinates. For the action to be invariant under this symmetry, a differential constraint is imposed on the fields and gauge parameters, reducing their possible dependence in the doubled coordinates. We perform a Scherk-Schwarz reduction of Double Field Theory, yielding electric gaugings of half-maximal supergravity in four dimensions when integrability conditions are assumed. The residual symmetries of the compactified theory are mapped with the symmetries of the effective theory and the differential constraints of Double Field Theory are compared with the algebraic conditions on the embedding tensor. It is found that only a weaker form of the differential constraint has to be imposed on background fields to ensure the local gauge symmetry of the reduced action.

  12. Optimal control of the strong-field ionization of silver clusters in helium droplets

    SciTech Connect

    Truong, N. X.; Goede, S.; Przystawik, A.; Fennel, Th.; Bornath, Th.; Tiggesbaeumker, J.; Meiwes-Broer, K. H.; Hilse, P.; Schlanges, M.; Doeppner, T.; Gerber, G.

    2010-01-15

    Optimal control techniques combined with femtosecond laser pulse shaping are applied to steer and enhance the strong-field induced emission of highly charged atomic ions from silver clusters embedded in helium nanodroplets. With light fields shaped in amplitude and phase we observe a substantial increase of the Ag{sup q+} yield for q>10 when compared to bandwidth-limited and optimally stretched pulses. A remarkably simple double-pulse structure, containing a low-intensity prepulse and a stronger main pulse, turns out to produce the highest atomic charge states up to Ag{sup 20+}. A negative chirp during the main pulse hints at dynamic frequency locking to the cluster plasmon. A numerical optimal control study on pure silver clusters with a nanoplasma model converges to a similar pulse structure and corroborates that the optimal light field adapts to the resonant excitation of cluster surface plasmons for efficient ionization.

  13. Transport equations for partially ionized reactive plasma in magnetic field

    NASA Astrophysics Data System (ADS)

    Zhdanov, V. M.; Stepanenko, A. A.

    2016-06-01

    Transport equations for partially ionized reactive plasma in magnetic field taking into account the internal degrees of freedom and electronic excitation of plasma particles are derived. As a starting point of analysis the kinetic equation with a binary collision operator written in the Wang-Chang and Uhlenbeck form and with a reactive collision integral allowing for arbitrary chemical reactions is used. The linearized variant of Grad's moment method is applied to deduce the systems of moment equations for plasma and also full and reduced transport equations for plasma species nonequilibrium parameters.

  14. XUV Transient Absorption of Strong-Field Ionized Ferrocene

    NASA Astrophysics Data System (ADS)

    Chatterley, Adam S.; Lackner, Florian; Neumark, Daniel M.; Leone, Stephen R.; Gessner, Oliver

    2015-05-01

    Femtosecond extreme ultraviolet (XUV) transient absorption experiments are underway to study the dynamics of ferrocene following strong field ionization. Ferrocene is a textbook organometallic compound, composed of an iron atom sandwiched between two aromatic organic rings. An intense infrared (IR, 790 nm) pump pulse is used to ionize the ferrocene molecules. Femtosecond XUV pulses, created by high harmonic generation (HHG) are used to probe the induced dynamics. Iron 3p inner-shell to valence transitions (M edge, 50 eV field induced molecular dynamics from the perspective of the metal center. We will induce dissociation dynamics at high field intensities and use lower IR intensities to study dynamics of electronically and/or vibrationally excited ferrocene cations. Preliminary results will be presented, demonstrating current progress of XUV transient absorption experiments on moderately large molecular systems.

  15. Kinetic simulation of rarefied and weakly ionized hypersonic flow fields

    NASA Astrophysics Data System (ADS)

    Farbar, Erin D.

    When a vehicle enters the Earth's atmosphere at the very large velocities associated with Lunar and Mars return, a strong bow shock is formed in front of the vehicle. The shock heats the air to very high temperatures, causing collisions that are sufficiently energetic to produce ionized particles. As a result, a weakly ionized plasma is formed in the region between the bow shock and the vehicle surface. The presence of this plasma impedes the transport of radio frequency waves to the vehicle, causing the phenomenon known as "communications black out". The plasma also interacts with the neutral particles in the flow field, and contributes to the heat flux at the vehicle surface. Since it is difficult to characterize these flow fields using flight or ground based experiments, computational tools play an important role in the design of reentry vehicles. It is important to include the physical phenomena associated with the presence of the plasma in the computational analysis of the flow fields about these vehicles. Physical models for the plasma phenomena are investigated using a state of the art, Direct Simulation Monte Carlo (DSMC) code. Models for collisions between charged particles, plasma chemistry, and the self-induced electric field that currently exist in the literature are implemented. Using these baseline models, steady state flow field solutions are computed for the FIRE II reentry vehicle at two different trajectory points. The accuracy of each baseline plasma model is assessed in a systematic fashion, using one flight condition of the FIRE II vehicle as the test case. Experimental collision cross section data is implemented to model collisions of electrons with neutral particles. Theoretical and experimental reaction cross section data are implemented to model chemical reactions that involve electron impact, and an associative ionization reaction. One-dimensional Particle-In-Cell (PIC) routines are developed and coupled to the DSMC code, to assess the

  16. Two-photon double ionization of helium in the region of photon energies 42-50eV

    NASA Astrophysics Data System (ADS)

    Ivanov, I. A.; Kheifets, A. S.

    2007-03-01

    We report the total integrated cross section (TICS) of two-photon double ionization of helium in the photon energy range from 42to50eV . Our computational procedure relies on a numerical solution of the time-dependent Schrödinger equation on a square-integrable basis and subsequent projection of this solution on a set of final field-free states describing correlation in the two-electron continuum. Our results suggest that the TICS grows monotonically as a function of photon energy in the region of 42-50eV , possibly reaching a maximum in the vicinity of 50eV . We also present fully resolved triple-differential cross sections for selected photon energies.

  17. Two-photon double ionization of helium in the region of photon energies 42-50 eV

    SciTech Connect

    Ivanov, I. A.; Kheifets, A. S.

    2007-03-15

    We report the total integrated cross section (TICS) of two-photon double ionization of helium in the photon energy range from 42 to 50 eV. Our computational procedure relies on a numerical solution of the time-dependent Schroedinger equation on a square-integrable basis and subsequent projection of this solution on a set of final field-free states describing correlation in the two-electron continuum. Our results suggest that the TICS grows monotonically as a function of photon energy in the region of 42-50 eV, possibly reaching a maximum in the vicinity of 50 eV. We also present fully resolved triple-differential cross sections for selected photon energies.

  18. The dissociative single and double ionization of some simple molecules by fast ions and VUV photons

    NASA Astrophysics Data System (ADS)

    Browne, Clive Ronald Harold

    The partial cross sections for the production of energetic fragment protons/deuterons in the dissociative photoionization of HCl/DCl and H2S/D2 S have been determined using vacuum ultraviolet (VUV) photons in the 20-50eV photon energy range. Thresholds in the gross structure of the partial photoionization. cross sections were visible and these values were found to agree well with previous experimental and theoretical data corresponding to Franck-Condon excitations. The kinetic energy spectra of the fragment protons/deuterons produced in the dissociative single and double photoionization of HCl/DCl and H 2S/D2S by 20-50eV photons have been obtained for the first time. The nature of the fragment ions shown in the energy spectra confirm the important role played by indirect fragmentation mechanisms, especially in the double ionization processes. Complementary mass and kinetic energy spectra of the molecular fragment ions formed in the dissociative ionization of the CH4, C2 H2, C2H4, C2H6, and C3H8 group of hydrocarbons have been measured using fast (3-30keV) H+ and He+ ions. The observed differences, between projectiles, in the mass and energy spectra indicate that in contrast to H+, fragmentation of the molecules by He + ions is not governed by the Born approximation. An investigation has also been carried out into the energy distribution of the fragment ion-pairs produced in the dissociative double ionization of H2, D2, H2O and N2 by fast (3-30keV) ion impact. The kinetic energy spectra show ample evidence of low energy (2-7eV) ions and ion-pairs, in agreement with previous reports, supporting the suggestion that they are formed through two-electron excited autoionizing states. The energy distributions of N+N+ ion-pairs produced from the dissociative ionization of N2 by He+ ions shows considerable structure and some interesting contrasts with those produced by H+ ions.

  19. Angular Correlation of Electrons Emitted by Double Auger Decay of K-Shell Ionized Neon

    NASA Astrophysics Data System (ADS)

    Jones, Matthew Philip

    2011-12-01

    We have investigated in detail the 4-body continuum state produced when core-ionized neon undergoes Double-Auger (DA) decay, using COLd Target Recoil Ion Momentum Spectroscopy (COLTRIMS ). We conducted the experiment at the Lawrence Berkeley National Laboratory's Advanced Light Source (LBNL-ALS) beamline 11.0.2. The synchrotron operated in 2-bunch mode and outputted an elliptically polarized, pulsed photon beam (hn=872.9eV), sufficient to K-shell ionize neon just above threshold. Our analysis supports research showing that Auger electrons tend to share energy asymmetrically. We qualitatively compared this result to Photo-Double Ionization (PDI) of helium. Further, we confirm research that shows how Auger electrons that share energy symmetrically can be modeled by the elastic-like knock-out process plus Post-Collision Interaction ( PCI) effects. New observations include the angular correlation between the photo-electron and each respective Auger electron, for specific ranges of energy sharing. We identify a broad feature in the asymmetric case that shows a level of interaction between electrons that until recently, has disagreed with theory. Additionally, we consider the angular correlation between the photo-electron and the momentum sum of the Auger electrons. We observe that the angular correlation between this sum and the photo-electron in the highly asymmetric case is nearly identical to the correlation between just the fast-Auger and the photo-electron - as expected. In the case of symmetric energy sharing, the sum momentum vector appears to be isotropic, particularly for small angles of interaction. Finally, we acknowledge two novel methods of calibration. The first, uses well known line-energies to calibrate the spectrometer. These lines correspond to the decay channels of core-excited neon, Ne(1 s-13p). The second, describes a method to statistically weight list-mode data in order to calibrate it to well known physical features (e.g., isotropic distributions).

  20. Effect of primordial magnetic fields on the ionization history

    NASA Astrophysics Data System (ADS)

    Chluba, Jens; Paoletti, D.; Finelli, F.; Rubiño-Martín, J. A.

    2015-08-01

    Primordial magnetic fields (PMF) damp at scales smaller than the photon diffusion and free-streaming scale. This leads to heating of ordinary matter (electrons and baryons), which affects both the thermal and ionization history of our Universe. Here, we study the effect of heating due to ambipolar diffusion and decaying magnetic turbulence. We find that changes to the ionization history computed with recfast are significantly overestimated when compared with CosmoRec. The main physical reason for the difference is that the photoionization coefficient has to be evaluated using the radiation temperature rather than the matter temperature. A good agreement with CosmoRec is found after changing this aspect. Using Planck 2013 data and considering only the effect of PMF-induced heating, we find an upper limit on the rms magnetic field amplitude of B0 ≲ 1.1 nG (95 per cent c.l.) for a stochastic background of PMF with a nearly scale-invariant power spectrum. We also discuss uncertainties related to the approximations for the heating rates and differences with respect to previous studies. Our results are important for the derivation of constraints on the PMF power spectrum obtained from measurements of the cosmic microwave background anisotropies with full-mission Planck data. They may also change some of the calculations of PMF-induced effects on the primordial chemistry and 21cm signals.

  1. Tunneling Time and Weak Measurement in Strong Field Ionization

    NASA Astrophysics Data System (ADS)

    Zimmermann, Tomáš; Mishra, Siddhartha; Doran, Brent R.; Gordon, Daniel F.; Landsman, Alexandra S.

    2016-06-01

    Tunneling delays represent a hotly debated topic, with many conflicting definitions and little consensus on when and if such definitions accurately describe the physical observables. Here, we relate these different definitions to distinct experimental observables in strong field ionization, finding that two definitions, Larmor time and Bohmian time, are compatible with the attoclock observable and the resonance lifetime of a bound state, respectively. Both of these definitions are closely connected to the theory of weak measurement, with Larmor time being the weak measurement value of tunneling time and Bohmian trajectory corresponding to the average particle trajectory, which has been recently reconstructed using weak measurement in a two-slit experiment [S. Kocsis, B. Braverman, S. Ravets, M. J. Stevens, R. P. Mirin, L. K. Shalm, and A. M. Steinberg, Science 332, 1170 (2011)]. We demonstrate a big discrepancy in strong field ionization between the Bohmian and weak measurement values of tunneling time, and we suggest this arises because the tunneling time is calculated for a small probability postselected ensemble of electrons. Our results have important implications for the interpretation of experiments in attosecond science, suggesting that tunneling is unlikely to be an instantaneous process.

  2. Tunneling Time and Weak Measurement in Strong Field Ionization.

    PubMed

    Zimmermann, Tomáš; Mishra, Siddhartha; Doran, Brent R; Gordon, Daniel F; Landsman, Alexandra S

    2016-06-10

    Tunneling delays represent a hotly debated topic, with many conflicting definitions and little consensus on when and if such definitions accurately describe the physical observables. Here, we relate these different definitions to distinct experimental observables in strong field ionization, finding that two definitions, Larmor time and Bohmian time, are compatible with the attoclock observable and the resonance lifetime of a bound state, respectively. Both of these definitions are closely connected to the theory of weak measurement, with Larmor time being the weak measurement value of tunneling time and Bohmian trajectory corresponding to the average particle trajectory, which has been recently reconstructed using weak measurement in a two-slit experiment [S. Kocsis, B. Braverman, S. Ravets, M. J. Stevens, R. P. Mirin, L. K. Shalm, and A. M. Steinberg, Science 332, 1170 (2011)]. We demonstrate a big discrepancy in strong field ionization between the Bohmian and weak measurement values of tunneling time, and we suggest this arises because the tunneling time is calculated for a small probability postselected ensemble of electrons. Our results have important implications for the interpretation of experiments in attosecond science, suggesting that tunneling is unlikely to be an instantaneous process. PMID:27341232

  3. A finite-element analysis of bipolar ionized field

    SciTech Connect

    Abdel-Salam, M.; Al-Hamouz, Z.

    1995-05-01

    This paper describes a new iterative method for the analysis of the bipolar ionized field in HVDC transmission lines without resorting to Deutsch`s assumption. The finite-element technique (FET) is used to solve Poisson`s equation where the constancy of the conductors` surface field at the corona inception value is directly implemented in the finite-element formulation. The proposed method has been tested on laboratory and full-scale models. The calculated V-I characteristics agreed well with those calculated and measured previously. The dependence of the corona current as well as its monopolar and bipolar components on the conductor height is discussed. The simplicity in computer programming in addition to the low number of iterations required to achieve convergence characterize the proposed method of analysis.

  4. Double ionization of the water molecule: Influence of the target orientation on the secondary-electron angular distributions

    SciTech Connect

    Oubaziz, D.; Aouchiche, H.; Champion, C.

    2011-01-15

    Fivefold differential cross sections for electron-induced double ionization of isolated oriented water molecules are reported. The theoretical investigation is performed within the first Born approximation by describing the initial molecular state by means of single-center wave functions. The contributions of each final state to the double-ionization process, i.e., with target electrons ejected from similar and/or different molecular subshells, are studied and compared in terms of shape and magnitude. Furthermore, for the particular target orientations investigated, we identify clearly the signature of the main scenarios involved in (e,3e) reactions, namely, the shake-off and the two-step 1 mechanisms.

  5. Angular anisotropy parameters and recoil-ion momentum distribution in two-photon double ionization of helium

    SciTech Connect

    Kheifets, A. S.; Ivanov, I. A.; Bray, Igor

    2007-08-15

    We present convergent-close-coupling (CCC) calculations of the angular anisotropy parameters {beta}{sub 2},{beta}{sub 4} and the recoil ion momentum distribution d{sigma}/dp in two-photon double ionization (TPDI) of helium. In a stark contrast to single-photon double ionization (SPDI), where the {beta}{sub 2} parameter varies widely changing the angular distribution from isotropic to nearly dipole for slow and fast photoelectrons, respectively, the {beta} parameters for TPDI show very little change. The angular distribution of the recoil ion is fairly isotropic in TPDI as opposed to a strong alignment with the polarization of light in SPDI.

  6. Determination of the critical ionization distance and ionization zone during high-temperature field evaporation of molybdenum

    NASA Astrophysics Data System (ADS)

    Blashenkov, N. M.; Golubev, O. L.

    2016-07-01

    Steady-state field evaporation of molybdenum at high emitter temperatures ( T ˜ 2000 K) has been studied using a magnetic mass spectrometer equipped with a field ion source. Only low-charge ions (Mo+2 and Mo+) have been observed in the course of evaporation. The measured ion energies and evaporating field strengths ( F ev) were used to determine the critical ionization distances ( x cr) and ionization zones (Δ) for singly and doubly charged ions. The obtained x cr and Δ values show that the formation of ions takes place at a certain distance from the emitter surface.

  7. Two-photon double ionization of H2 in intense femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Guan, Xiaoxu; Bartschat, Klaus; Schneider, Barry I.

    2010-10-01

    Triple-differential cross sections for two-photon double ionization of molecular hydrogen are presented for a central photon energy of 30 eV. The calculations are based on a fully ab initio, nonperturbative approach to the time-dependent Schrödinger equation in prolate spheroidal coordinates, discretized by a finite-element discrete-variable representation. The wave function is propagated in time for a few femtoseconds using the short, iterative Lanczos method to study the correlated response of the two photoelectrons to short, intense laser radiation. The current results often lie in between those of Colgan [J. Phys. BJPAPEH0953-407510.1088/0953-4075/41/12/121002 41, 121002 (2008)] and Morales [J. Phys. BJPAPEH0953-407510.1088/0953-4075/42/13/134013 42, 134013 (2009)]. However, we argue that these individual predictions should not be compared directly with each other, but preferably with experimental data generated under well-defined conditions.

  8. Further studies of double ionization of He, Ne, and Ar by fast and slow antiprotons

    NASA Astrophysics Data System (ADS)

    Andersen, L. H.; Hvelplund, P.; Knudsen, H.; Møller, S. P.; Pedersen, J. O. P.; Tang-Petersen, S.; Uggerhøj, E.; Elsener, K.; Morenzoni, E.

    1989-12-01

    Measurements of the ratio R between double- and single-ionization cross sections for antiproton impact on He, Ne, and Ar targets are reported for impact energies ranging from 65 keV to 20 MeV. At high energies the results are found to merge with proton results at around 20 MeV, and the high-energy limit of the common ratio is in good agreement with recent first-Born-calculation results for the helium target. The large difference previously observed in the ratio R for protons and antiprotons at energies between 0.5 and 5 MeV is found to persist down to the lowest energies investigated here.

  9. S-model calculations for high-energy-electron-impact double ionization of helium

    NASA Astrophysics Data System (ADS)

    Gasaneo, G.; Mitnik, D. M.; Randazzo, J. M.; Ancarani, L. U.; Colavecchia, F. D.

    2013-04-01

    In this paper the double ionization of helium by high-energy electron impact is studied. The corresponding four-body Schrödinger equation is transformed into a set of driven equations containing successive orders in the projectile-target interaction. The transition amplitude obtained from the asymptotic limit of the first-order solution is shown to be equivalent to the familiar first Born approximation. The first-order driven equation is solved within a generalized Sturmian approach for an S-wave (e,3e) model process with high incident energy and small momentum transfer corresponding to published measurements. Two independent numerical implementations, one using spherical and the other hyperspherical coordinates, yield mutual agreement. From our ab initio solution, the transition amplitude is extracted, and single differential cross sections are calculated and could be taken as benchmark values to test other numerical methods in a previously unexplored energy domain.

  10. Importance of non-first-order effects in the (e,3e) double ionization of helium

    SciTech Connect

    Lahmam-Bennani, A.; Duguet, A.; Dal Cappello, C.; Nebdi, H.; Piraux, B.

    2003-01-01

    Angular distributions of the two ejected electrons resulting from the double ionization of helium by electron impact have been measured by means of a multicoincidence multiangle (e,3e) spectrometer at an incident energy of about 0.6 keV and equal outgoing energies E{sub b}=E{sub c}=11 eV. We identify various regimes of kinematical parameters where substantial differences are found with respect to the first-Born convergent close-coupling calculations: an angular shift of the position of the main lobe and the presence of additional lobes. These differences are attributed to high-order contributions in the projectile-target interaction. This conclusion is supported by recent (e,3e) calculations performed within the second-Born approximation.

  11. Double ionization of helium by bare ions: Theoretical study of the fully differential cross sections

    NASA Astrophysics Data System (ADS)

    López, S. D.; Garibotti, C. R.; Otranto, S.

    2011-06-01

    This work presents a theoretical study of fully differential cross sections (FDCSs) for the double ionization of an He target by ion impact within a distorted wave model. The initial atomic system is described by two approximated wave functions of different accuracy proposed by Bonham and Kohl. For the final channel several models are considered based upon improvements and simplifications of the well-known three-body Coulomb (3C) model. The influence of the receding projectile on the resulting fragments is also studied by implementing a model with effective charges that depend on the momenta of the four particles. The FDCSs resulting for different electron energy sharing are discussed. The sensitivity of the FDCSs to the projectile charge sign and magnitude is explored over the energy range 700 keV/amu through 6 MeV/amu.

  12. Pulse-shape-dependent strong-field ionization viewed with velocity-map imaging

    SciTech Connect

    Geissler, Dominik; Weinacht, Thomas C.; Rozgonyi, Tamas; Gonzalez-Vazquez, Jesus

    2011-11-15

    We explore strong field molecular ionization with velocity map imaging of fragment ions produced by dissociation following ionization. Our measurements and ab initio electronic structure calculations allow us to identify various electronic states of the molecular cation populated during ionization, with multiple pathways to individual states highlighted by the pulse shape dependence. In addition, we show that relative populations can be reconstructed from our measurements. The results illustrate how strong field molecular ionization can be complicated by the presence and interaction of multiple cationic states during ionization.

  13. Field Ionization of Cold Atoms near the Wall of a Single Carbon Nanotube

    SciTech Connect

    Goodsell, Anne; Ristroph, Trygve; Golovchenko, J. A.; Hau, Lene Vestergaard

    2010-04-02

    We observe the capture and field ionization of individual atoms near the side wall of a single suspended nanotube. Extremely large cross sections for ionization from an atomic beam are observed at modest voltages due to the nanotube's small radius and extended length. The effects of the field strength on both the atomic capture and the ionization process are clearly distinguished in the data, as are prompt and delayed ionizations related to the locations at which they occur. Efficient and sensitive neutral atom detectors can be based on the nanotube capture and wall ionization processes.

  14. High-order-harmonic generation in molecular sequential double ionization by intense circularly polarized laser pulses

    NASA Astrophysics Data System (ADS)

    Yuan, Kai-Jun; Lu, Huizhong; Bandrauk, André D.

    2015-08-01

    We present effects of electron energy transfer by electron collisions on high-order-harmonic generation (HHG) in molecular sequential double ionization by intense circularly polarized laser pulses. Results from numerical solutions of time-dependent Schrödinger equations for extended (large internuclear distance) H2 where electrons are entangled and hence delocalized by exchange show that HHG with cutoff energy up to Ip+24 Up can be obtained, where Ip is the molecule ionization potential and Up=I0/4 ω02 (in atomic units) is the ponderomotive energy for pulse intensity I0 and frequency ω0. A time-frequency analysis is employed to identify electron collisions for the generation of harmonics. Extended HHG arises from electron energy exchange, which agrees well with the prediction of a classical two electron collision model. Results for nonsymmetric HHe+ where initially electrons are localized on He are also compared and confirm the role of initial electron delocalization via entanglement for obtaining extended HHG plateaus.

  15. Alignment effects in two-photon double ionization of H2 in femtosecond xuv laser pulses

    NASA Astrophysics Data System (ADS)

    Guan, Xiaoxu; Bartschat, Klaus; Schneider, Barry I.

    2011-09-01

    Triple-differential cross sections for two-photon double ionization of the aligned hydrogen molecule at the equilibrium distance are presented for a central photon energy of 30 eV. The temporal response of the laser-driven molecule is investigated by solving the time-dependent Schrödinger equation in full dimensionality using two-center elliptical coordinates and a finite-element discrete-variable-representation approach. The molecular orientation is found to have a strong effect on the emission modes of the two correlated photoelectrons. This molecular effect is most noticeable when the molecular axis and the laser polarization vector are oriented parallel to each other. For intermediate cases between the parallel and perpendicular geometries, the dominant emission modes for two-electron ejection oscillate between those for the two extreme cases. The contributions from different ionization channels are also analyzed in detail. Depending on the emission direction of the reference electron, the interference contributions from the various channels can be constructive or destructive at small alignment angles, while they always contribute constructively to the triple-differential cross sections near the perpendicular geometry.

  16. The ionization rate under a general magnetic field for microwave breakdown

    NASA Astrophysics Data System (ADS)

    Wang, Huihui; Meng, Lin; Liu, Dagang; Liu, Laqun

    2014-07-01

    The ionization rate under an extra magnetic field is studied by theory and particle-in-cell/Monte Carlo Collision simulations. The result shows that a magnetic field always decreases the ionization rate if √ 3 ω < υm, while it may increase the ionization rate if √ 3 ω > υm. The effect of the magnetic field on the ionization rate fades away when the angle between the magnetic field and the electric filed approaches to zero. Furthermore, the peak ionization rate among different magnetic fields is almost independent of ω. This peak ionization rate is in direct proportion to the gas pressure in the low pressure region, while it is about in inverse proportion to the gas pressure in the high pressure region.

  17. Photo-double-ionization of H2 : Two-center interference and its dependence on the internuclear distance

    NASA Astrophysics Data System (ADS)

    Schöffler, M. S.; Kreidi, K.; Akoury, D.; Jahnke, T.; Staudte, A.; Neumann, N.; Titze, J.; Schmidt, L. Ph. H.; Czasch, A.; Jagutzki, O.; Costa Fraga, R. A.; Grisenti, R. E.; Smolarski, M.; Ranitovic, P.; Cocke, C. L.; Osipov, T.; Adaniya, H.; Lee, S.; Thompson, J. C.; Prior, M. H.; Belkacem, A.; Weber, Th.; Landers, A.; Schmidt-Böcking, H.; Dörner, R.

    2008-07-01

    We investigate photo-double-ionization of H2 by circular polarized photons at hν=160eV . The previously observed two-center interference pattern in the angular distribution of the electron sum momentum is shown to depend strongly on the internuclear distance and the summed electron momenta.

  18. scid mutation in mice confers hypersensitivity to ionizing radiation and a deficiency in DNA double-strand break repair

    SciTech Connect

    Biedermann, K.A.; Sun, J.R.; Giaccia, A.J.; Tosto, L.M.; Brown, J.M. )

    1991-02-15

    C.B-17 severe combined immunodeficient (scid) mice carry the scid mutation and are severely deficient in both T cell- and B cell-mediated immunity, apparently as a result of defective V(D)J joining of the immunoglobulin and T-cell receptor gene elements. In the present studies, we have defined the tissue, cellular, and molecular basis of another characteristic of these mice: their hypersensitivity to ionizing radiation. Bone marrow stem cells, intestinal crypt cells, and epithelial skin cells from scid mice are 2- to 3-fold more sensitive when irradiated in situ than are congenic BALB/c or C.B-17 controls. Two independently isolated embryo fibroblastic scid mouse cell lines display similar hypersensitivities to gamma-rays. In addition, these cell lines are sensitive to cell killing by bleomycin, which also produces DNA strand breaks, but not by the DNA crosslinking agent mitomycin C or UV irradiation. Measurement of the rejoining of gamma-ray-induced DNA double-strand breaks by pulsed-field gel electrophoresis indicates that these animals are defective in this repair system. This suggests that the gamma-ray sensitivity of the scid mouse fibroblasts could be the result of reduced repair of DNA double-strand breaks. Therefore, a common factor may participate in both the repair of DNA double-strand breaks as well as V(D)J rejoining during lymphocyte development. This murine autosomal recessive mutation should prove extremely useful in fundamental studies of radiation-induced DNA damage and repair.

  19. Double ionization of helium by highly-charged-ion impact analyzed within the frozen-correlation approximation

    SciTech Connect

    Ciappina, M. F.; Kirchner, T.; Schulz, M.

    2011-09-15

    We apply the frozen-correlation approximation (FCA) to analyze double ionization of helium by energetic highly charged ions. In this model the double ionization amplitude is represented in terms of single ionization amplitudes, which we evaluate within the continuum distorted wave-eikonal initial state (CDW-EIS) approach. Correlation effects are incorporated in the initial and final states, but are neglected during the time the collision process takes place. We implement the FCA using the Monte Carlo event generator technique, which allows us to generate theoretical event files and to compare theory and experiment using the same analysis tools. The comparison with previous theoretical results and with experimental data demonstrates, on the one hand, the validity of our earlier simple models to account for higher-order mechanisms, and, on the other hand, the robustness of the FCA.

  20. Storage Ring Cross Section Measurements for Electron Impact Single and Double Ionization of Fe13 + and Single Ionization of Fe16 + and Fe17 +

    NASA Astrophysics Data System (ADS)

    Hahn, M.; Becker, A.; Bernhardt, D.; Grieser, M.; Krantz, C.; Lestinsky, M.; Müller, A.; Novotný, O.; Repnow, R.; Schippers, S.; Spruck, K.; Wolf, A.; Savin, D. W.

    2013-04-01

    We report measurements of electron impact ionization for Fe13 +, Fe16 +, and Fe17 + over collision energies from below threshold to above 3000 eV. The ions were recirculated using an ion storage ring. Data were collected after a sufficiently long time that essentially all the ions had relaxed radiatively to their ground state. For single ionization of Fe13 +, we find that previous single pass experiments are more than 40% larger than our results. Compared to our work, the theoretical cross section recommended by Arnaud & Raymond is more than 30% larger, while that of Dere is about 20% greater. Much of the discrepancy with Dere is due to the theory overestimating the contribution of excitation-autoionization via n = 2 excitations. Double ionization of Fe13 + is dominated by direct ionization of an inner shell electron accompanied by autoionization of a second electron. Our results for single ionization of Fe16 + and Fe17 + agree with theoretical calculations to within the experimental uncertainties.

  1. Double-ionization energies of some n-alkyl isocyanate molecules; studies with double-charge-transfer spectrometry and ab initio propagator theory

    NASA Astrophysics Data System (ADS)

    Bayliss, M. A.; Griffiths, I. W.; Harris, F. M.; Parry, D. E.

    2003-12-01

    Double-charge-transfer (DCT) collisions of H+, OH+ and F+ 3 keV beam ions with a series of alkyl isocyanate molecules were studied using mass spectrometric techniques. Measurement of the kinetic energies of H- ions so produced enabled the determination of double-ionization energies (DIE) for transitions to singlet doubly ionized states of the target molecules; those for triplet doubly ionized states were obtained similarly from measurements of the kinetic energies of OH- and F- ions. Values up to approximately 40 eV were obtained in most cases and were found to be in close agreement with the predictions of ab initio calculations using propagator theory, also presented here. For n-butyl isocyanate (and by implication heavier molecules in the series) the density of doubly ionized states above 30 eV was both observed and predicted to be too large and featureless for meaningful analysis, so establishing an effective upper limit on molecular size for the current application of these techniques. Significant configuration interaction was predicted for the final doubly ionized states, which justified theoretical analysis with a relatively complex method that accounts well for correlation effects.

  2. Ionization signals from diamond detectors in fast-neutron fields

    NASA Astrophysics Data System (ADS)

    Weiss, C.; Frais-Kölbl, H.; Griesmayer, E.; Kavrigin, P.

    2016-09-01

    In this paper we introduce a novel analysis technique for measurements with single-crystal chemical vapor deposition (sCVD) diamond detectors in fast-neutron fields. This method exploits the unique electronic property of sCVD diamond sensors that the signal shape of the detector current is directly proportional to the initial ionization profile. In fast-neutron fields the diamond sensor acts simultaneously as target and sensor. The interaction of neutrons with the stable isotopes 12 C and 13 C is of interest for fast-neutron diagnostics. The measured signal shapes of detector current pulses are used to identify individual types of interactions in the diamond with the goal to select neutron-induced reactions in the diamond and to suppress neutron-induced background reactions as well as γ-background. The method is verified with experimental data from a measurement in a 14.3 MeV neutron beam at JRC-IRMM, Geel/Belgium, where the 13C(n, α)10Be reaction was successfully extracted from the dominating background of recoil protons and γ-rays and the energy resolution of the 12C(n, α)9Be reaction was substantially improved. The presented analysis technique is especially relevant for diagnostics in harsh radiation environments, like fission and fusion reactors. It allows to extract the neutron spectrum from the background, and is particularly applicable to neutron flux monitoring and neutron spectroscopy.

  3. A field-ionization neutral detector - FIND. [neutral particle mass spectrometer

    NASA Technical Reports Server (NTRS)

    Curtis, C. C.; Hsieh, K. C.; Fan, C. Y.; Swanson, L. W.

    1975-01-01

    The field ionization neutral detector FIND operates according to the following principle: Neutral atoms are attracted toward the field ionization tips since they are polarized by the electric field of the tips. The atoms are singly ionized and repelled by the positive potential of the tips toward the detector situated behind a grid at ground potential. The ions deposit in the detector their kinetic energies, typically 26 keV, corresponding to the potential difference between the ionization region and the detector. Laboratory results show that FIND can have the resolution, sensitivities and durability required to perform in situ measurements of neutral H and He fluxes in interplanetary space, cometary halos and exospheres.

  4. High Harmonic Spectroscopy of Multichannel Dynamics in Strong-Field Ionization

    SciTech Connect

    Mairesse, Y.; Higuet, J.; Fabre, B.; Mevel, E.; Constant, E.; Dudovich, N.; Shafir, D.; Patchkovskii, S.; Walters, Z.; Smirnova, O.; Ivanov, M. Yu.

    2010-05-28

    We perform high harmonic generation spectroscopy of aligned nitrogen molecules to characterize the attosecond dynamics of multielectron rearrangement during strong-field ionization. We use the spectrum and ellipticity of the harmonic light to reconstruct the relative phase between different ionization continua participating in the ionization, and thus determine the shape and location of the hole left in the molecule by strong-field ionization. Our interferometric technique uses transitions between the ionic states, induced by the laser field on the subcycle time scale.

  5. Investigation of electric field distribution on FAC-IR-300 ionization chamber

    NASA Astrophysics Data System (ADS)

    Mohammadi, S. M.; Tavakoli-Anbaran, H.; Zeinali, H. Z.

    2016-07-01

    One of the important parameters for establishing charge particle equilibrium (CPE) conditions of free-air ionization chamber is an electric field distribution. In this paper, electric field distribution inside the ionization chamber was investigated by finite element method. For this purpose, the effects of adding guard plate and guard strips on the electric field distribution in the ionization chamber were studied. it is necessary to apply a lead box around the ionization chamber body to avoid of scattered radiation effects on the ionization chamber operation, but the lead box changes the electric field distribution. In the following, the effect of lead box on the electric field distribution was studied. Finally, electric field distribution factor (kfield) was calculated by the simulation. The results of the simulation showed that presence of the guard plate and guard strips, and applying a suitable potential to lead box, a convergence of kfield to 1 was achieved.

  6. Experiments and theory of an upstream ionization instability excited by an accelerated electron beam through a current-free double layer

    SciTech Connect

    Aanesland, A.; Lieberman, M. A.; Charles, C.; Boswell, R. W.

    2006-12-15

    A low-frequency instability varying from 10 to 20 kHz has been discovered in the presence of a current-free double layer (DL) in a low-pressure expanding helicon plasma. The instability is observed using various electrostatic probes, such as Langmuir probes floating or biased to ion saturation and emissive probes measuring the plasma potential. A retarding field energy analyzer measuring the ion energy distribution function downstream of the double layer is used together with the LP to simultaneously observe the DL and the instability, confirming their coexistence. The frequency of the instability decreases with increasing neutral pressure, increases with increasing magnetic field in the source and increases with increasing rf power. A theory for an upstream ionization instability has been developed, in which electrons accelerated through the DL increase the ionization upstream and are responsible for the observed instability. The theory is in good agreement with the experimental results and shows that the frequency increases with the potential drop of the double layer and with decreasing chamber radius.

  7. Strong-field approximation for ionization of a diatomic molecule by a strong laser field

    SciTech Connect

    Milosevic, D. B.

    2006-12-15

    We present a theory of ionization of diatomic molecules by a strong laser field. A diatomic molecule is considered as a three-particle system, which consists of two heavy atomic (ionic) centers and an electron. After the separation of the center-of-mass coordinate, the dynamics of this system is reduced to the relative electronic and nuclear coordinates. The exact S-matrix element for ionization is presented in a form in which the laser-molecule interaction is emphasized. This form is useful for application of the molecular strong-field approximation (SFA). We introduced two forms of the molecular SFA, one with the field-free and the other with the field-dressed initial molecular bound state. We relate these two forms of our modified molecular SFA to the standard molecular SFAs, introduced previously using the length gauge and the velocity gauge. Numerical examples of the ionization rates of N{sub 2} and O{sub 2} molecules are shown and compared for all four versions of the molecular SFA and we suggest that our modified molecular SFA should be used instead of the standard molecular SFA.

  8. Differential geometry with a projection: application to double field theory

    NASA Astrophysics Data System (ADS)

    Jeon, Imtak; Lee, Kanghoon; Park, Jeong-Hyuck

    2011-04-01

    In recent development of double field theory, as for the description of the massless sector of closed strings, the spacetime dimension is formally doubled, i.e. from D to D+ D, and the T-duality is realized manifestly as a global O( D, D) rotation. In this paper, we conceive a differential geometry characterized by a O( D, D) symmetric projection, as the underlying mathematical structure of double field theory. We introduce a differential operator compatible with the projection, which, contracted with the projection, can be covariantized and may replace the ordinary derivatives in the generalized Lie derivative that generates the gauge symmetry of double field theory. We construct various gauge covariant tensors which include a scalar and a tensor carrying two O( D, D) vector indices.

  9. Using Ultrafast Pulse Shaping to Probe Electronic Interference in Strong Field Ionization

    NASA Astrophysics Data System (ADS)

    Zhao, Arthur; Sándor, Péter; Rozgonyi, Tamás; Weinacht, Thomas

    2014-05-01

    We make use of shaped ultrafast laser pulses, velocity map imaging and coincidence detection to study electron dynamics in Strong Field Ionization (SFI) of small molecules. In particular, we consider the role of interference between different pathways during ionization. In one experiment, the molecule is ionized with a phase locked pulse pair. We study the ionization yield as a function of the delay and the relative phase between pulses, and interpret its variation in terms of strong field laser molecule phase matching. The authors gratefully acknowledge support from the National Science Foundation under award number 1205397 and the Hungarian National Development Agency under grant number KTIA AIK 12-1-2012-0014.

  10. Strong-field approximation for ionization of a diatomic molecule by a strong laser field. III. High-order above-threshold ionization by an elliptically polarized field

    SciTech Connect

    Busuladzic, M.; Gazibegovic-Busuladzic, A.; Milosevic, D. B.

    2009-07-15

    We investigate high-order above-threshold ionization (HATI) of diatomic molecules having different symmetries by an elliptically polarized laser field using the modified molecular strong-field approximation. The yields of high-energy electrons contributing to the plateau region of the photoelectron spectra strongly depend on the employed ellipticity. This is more pronounced if the major axis of the polarization ellipse is parallel or perpendicular to the molecular axis and at the end of the high-energy plateau. For the O{sub 2} molecule (characterized by {pi}{sub g} symmetry) the maximum yield is observed for some value of the ellipticity {epsilon} different from zero. On the other hand, in the same circumstances, the N{sub 2} molecule ({sigma}{sub g}) behaves as an atom, i.e., the yield is maximum for {epsilon}=0. These characteristics of the photoelectron spectra remain valid in a wide region of the molecular orientations and laser peak intensities. The symmetry properties of the molecular HATI spectra are considered in detail: by changing the molecular orientation one or other type of the symmetry emerges or disappears. Presenting differential ionization spectra in the ionized electron energy-emission angle plane we have observed similar interference effects as in the HATI spectra governed by a linearly polarized field.

  11. Imaging of the umbrella motion and tunneling in ammonia molecules by strong-field ionization

    NASA Astrophysics Data System (ADS)

    Förster, Johann; Plésiat, Etienne; Magaña, Álvaro; Saenz, Alejandro

    2016-10-01

    The geometry-dependent ionization behavior of ammonia molecules is investigated. Different theoretical approaches for obtaining the ionization yield are compared, all of them showing a strong dependence of the ionization yield on the inversion coordinate at long wavelengths (≥800 nm). It is shown how this effect can be exploited to create and probe nuclear wave packets in neutral ammonia using Lochfraß. Furthermore, imaging of a wave packet tunneling through the barrier of a double-well potential in real time is discussed.

  12. Importance of the recoil contribution in Two Step 2 mechanism for the electron impact double ionization process

    NASA Astrophysics Data System (ADS)

    Li, C.; Staicu Casagrande, E. M.; Lahmam-Bennani, A.

    2014-04-01

    The second order, Two-Step-2 (TS2) mechanism for electron impact double ionization (DI) of various targets at intermediate incident energy is investigated based on a kinematical analysis which assumes the DI to result from two successive (e,2e) single ionization (SI) events. The results show that under the present kinematics, the inclusion of the recoil scattering in each of these (e,2e)-SI steps (in previous studies only the binary scattering was considered) allows a more detailed understanding of the various peaks observed in the experimental angular distributions of the ejected electrons in both (e,3-1e) and (e,3e) experiments.

  13. Investigating two-photon double ionization of D{sub 2} by XUV-pump-XUV-probe experiments

    SciTech Connect

    Jiang, Y. H.; Kurka, M.; Kuehnel, K. U.; Toppin, M.; Schroeter, C. D.; Moshammer, R.; Rudenko, A.; Foucar, L.; Perez-Torres, J. F.; Plesiat, E.; Morales, F.; Martin, F.; Herrwerth, O.; Lezius, M.; Kling, M. F.; Jahnke, T.; Doerner, R.; Sanz-Vicario, J. L.; Tilborg, J. van; Belkacem, A.

    2010-05-15

    We used a split-mirror setup attached to a reaction microscope at the free-electron laser in Hamburg (FLASH) to perform an XUV-pump-XUV-probe experiment by tracing the ultrafast nuclear wave-packet motion in the D{sub 2}{sup +}(1s{sigma}{sub g}) with <10 fs time resolution. Comparison with time-dependent calculations shows excellent agreement with the measured vibrational period of 22{+-}4 fs in D{sub 2}{sup +}, points to the importance of accurately knowing the internuclear distance-dependent ionization probability, and paves the way to control sequential and nonsequential two-photon double-ionization contributions.

  14. Evaluation of volcano-style field ionization source and field emitting cathodes for mass spectrometry and applications

    NASA Technical Reports Server (NTRS)

    Buttrill, S. E., Jr.; Spindt, C. A.

    1978-01-01

    A volcano-style field ionization source was tested with eight different gases: hydrogen, helium, ammonia, methane, argon, neon, water vapor, and hydrogen sulfide. For ammonia, hydrogen sulfide, and water, the ionization efficiency of the field ionization source was determined as a function of the electrical potential difference between the ionizer and its counterelectrode. The ionization efficiencies for the other gases were too low to be measured in the present apparatus. The operating characteristics of a field emission cathode, were studied, in the presence of the same eight gases at pressures up to 0.00001 torr. The presence of the gases caused little or no significant change in the electron emission from the cathodes. Results indicate that the field emission cathode has advantages over electrically heated cathodes as a source of an electron beam in spacecraft mass spectrometers.

  15. Electric double layer of anisotropic dielectric colloids under electric fields

    NASA Astrophysics Data System (ADS)

    Han, M.; Wu, H.; Luijten, E.

    2016-07-01

    Anisotropic colloidal particles constitute an important class of building blocks for self-assembly directed by electrical fields. The aggregation of these building blocks is driven by induced dipole moments, which arise from an interplay between dielectric effects and the electric double layer. For particles that are anisotropic in shape, charge distribution, and dielectric properties, calculation of the electric double layer requires coupling of the ionic dynamics to a Poisson solver. We apply recently proposed methods to solve this problem for experimentally employed colloids in static and time-dependent electric fields. This allows us to predict the effects of field strength and frequency on the colloidal properties.

  16. Doubled Field Theory, T-Duality and Courant-Brackets

    NASA Astrophysics Data System (ADS)

    Zwiebach, Barton

    In these lecture notes we give a simple introduction into double field theory. We show that the presence of momentum and winding excitations in toroidal backgrounds of closed string theory makes it natural to consider double field theories. A tool-kit is developed based on the Courant-bracket and generalized Lie derivatives. We construct a background independent action which represents a T-duality covariantization of the Einstein-Hilbert action for gravity coupled to an antisymmetric tensor field and a dilaton.

  17. Development of an improved field ionization detector incorporating a secondary electron stage

    NASA Astrophysics Data System (ADS)

    Fahy, A.; O'Donnell, K. M.; Barr, M.; Zhou, X. J.; Allison, W.; Dastoor, P. C.

    2011-11-01

    Field ionization from sharp tips is attracting increased attention for use in detectors for neutral atomic/molecular species. However, the direct detection of the ionized species typically results in low sensitivities due to the small acceptance angle of the receiving ion-sensitive measurement device (usually a channel electron multiplier) and can result in sputtering damage due to the relatively high mass and energy of the incident ion species. Here we present a design for a field-ionization-based neutral atom detector incorporating a simple secondary electron generating stage. The use of such a stage decouples the field-ionized species from the detected electron signal, thus eliminating any sputtering damage to the channel electron multiplier. The detector armature discussed is shown to exhibit a linear response to neutral gas pressure and a sensitivity that is improved by more than two orders of magnitude over a previous field ionization detector design.

  18. Electron Double Ionization Cross Section in Sodium Obtained from Kαh Hypersatellite Spectra

    NASA Astrophysics Data System (ADS)

    Lahtinen, J.; Keski-Rahkonen, O.

    1983-05-01

    The Kαh hypersatellite spectrum of Na metal has been measured in electron excitation with voltages from 4 to 25 kV. The spectrum shows lines with initial K-2 (Kα2h) and K-2 L-1 holes. The energies of these lines as well as the K2 binding energy have been determined and compared with theoretical calculations. The intensity of the line group with K-2 L-1 initial configuration relative to the K-2 group has been measured and found to be in agreement with simple shake-off calculation. The electron double ionization cross section (EDC) of the K-shell has been determined from both thick and thin target measurements using the method developed by Saijonmaa and Keski-Rahkonen, and found to yield equivalent results. The EDC has also been calculated theoretically using classical and quantum mechanical binary encounter approximations as devised by Saijonmaa. Theory reproduces fairly well the magnitude and the atomic number dependence of the EDC whereas the shape of the EDC-curve as function of energy deviates clearly from observed values.

  19. Kinetic Energy Release dependence in the Photo Double Ionization of H2

    NASA Astrophysics Data System (ADS)

    Weber, Th.; Miyabe, S.; Belkacem, A.; McCurdy, C. W.; Lenz, U.; Jahnke, T.; Doerner, R.; Williams, J.; Landers, A.

    2012-06-01

    In the Photo Double Ionization (PDI) of hydrogen molecules with photon energies of 150eV we were able to probe the electronic two particle density as a function of the bond length, i.e. the Kinetic Energy Release (KER) of the ions, and the orientation of the molecular axis with respect to the polarization vector of the incoming ligh. We applied the COLTRIMS technique and measured two electrons and two protons in coincidence. We found a shift in the KER for σ and π transitions. While the KER is lower when the molecular axis is aligned parallel to the linear polarization vector (σ-σ), the KER for a perpendicular orientation (σ-π) is clearly higher by a little more than 1eV. Quantum mechanical ab initio calculations are able to quantify the shift in KER and the ratio for the two different transitions (β-parameter) for a broad range of photon energies (75 to 240eV). These results reflect the dependence of the σ and π amplitudes to the bond length. This shows that a simple KER measurement for horizontal and vertical polarization can be used to extract this information; it makes measuring the β-parameter as a function of KER obsolete.

  20. Two-photon double-ionization of the H2 molecule: effects of pulse duration

    NASA Astrophysics Data System (ADS)

    Guan, Xiaoxu; Bartschat, Klaus; Koesterke, Lars; Schneider, Barry

    2013-05-01

    In previous work, we solved the time-dependent Schrödinger equation to calculate the two-photon double ionization of the hydrogen molecule induced by non-sequential absorption of photons with a central energy of 30 eV in a short laser pulse lasting for about 1.6 femtoseconds. At the equilibrium internuclear separation, however, several doubly excited 1Σg , u states lie about 30 eV above the ground X1Σg state. There is significant disagreement among various results published to date on this problem already for the angle-integrated cross section, and hence for the angular distribution as well. In the present work we address and clarify the fundamental role of those doubly excited states, which are accessible through photon absorption, on the two-photon breakup process. This can only be achieved by allowing for much longer laser pulses. Work supported by the NSF under PHY-1068140 and the XSEDE allocation PHY-090031.

  1. Histone modifications and DNA double-strand break repair after exposure to ionizing radiations.

    PubMed

    Hunt, Clayton R; Ramnarain, Deepti; Horikoshi, Nobuo; Iyengar, Puneeth; Pandita, Raj K; Shay, Jerry W; Pandita, Tej K

    2013-04-01

    Ionizing radiation exposure induces highly lethal DNA double-strand breaks (DSBs) in all phases of the cell cycle. After DSBs are detected by the cellular machinery, these breaks are repaired by either of two mechanisms: (1) nonhomologous end joining (NHEJ), which re-ligates the broken ends of the DNA and (2) homologous recombination (HR), that makes use of an undamaged identical DNA sequence as a template to maintain the fidelity of DNA repair. DNA DSB repair must occur within the context of the natural cellular DNA structure. Among the major factors influencing DNA organization are specific histone and nonhistone proteins that form chromatin. The overall chromatin structure regulates DNA damage responses since chromatin status can impede DNA damage site access by repair proteins. During the process of DNA DSB repair, several chromatin alterations are required to sense damage and facilitate accessibility of the repair machinery. The DNA DSB response is also facilitated by hierarchical signaling networks that orchestrate chromatin structural changes that may coordinate cell-cycle checkpoints involving multiple enzymatic activities to repair broken DNA ends. During DNA damage sensing and repair, histones undergo posttranslational modifications (PTMs) including phosphorylation, acetylation, methylation and ubiquitylation. Such histone modifications represent a histone code that directs the recruitment of proteins involved in DNA damage sensing and repair processes. In this review, we summarize histone modifications that occur during DNA DSB repair processes.

  2. Double ionization of helium by fast electrons with the Generalized Sturmian Functions method

    NASA Astrophysics Data System (ADS)

    Ambrosio, M. J.; Colavecchia, F. D.; Gasaneo, G.; Mitnik, D. M.; Ancarani, L. U.

    2015-03-01

    The double ionization of helium by high energy electron impact is studied. The corresponding four-body Schrödinger equation is transformed into a set of driven equations containing successive orders in the projectile-target interaction. The first order driven equation is solved with a generalized Sturmian functions approach. The transition amplitude, extracted from the asymptotic limit of the first order solution, is equivalent to the familiar first Born approximation. Fivefold differential cross sections are calculated for (e, 3e) processes within the high incident energy and small momentum transfer regimes. The results are compared with other numerical methods, and with the only absolute experimental data available. Our cross sections agree in shape and magnitude with those of the convergent close coupling method for the (10+10) eV and (4+4) eV emission energies. To date this had not been achieved by any two different numerical schemes when solving the three-body continuum problem for the fast projectile (e, 3e) process. Though agreement with the experimental data, in particular with respect to the magnitude, is not achieved, our findings partly clarify a long standing puzzle.

  3. Transverse-electron-momentum distribution in pump-probe sequential double ionization

    NASA Astrophysics Data System (ADS)

    Kheifets, A. S.; Ivanov, I. A.

    2014-09-01

    We study the transverse-electron-momentum distribution (TEMD) of the wave packets launched in a pump-probe sequential double ionization from the valence shell of a noble gas atom. Our calculations, based on an accurate numerical solution of the time-dependent Schrödinger equation (TDSE), reproduce a characteristic cusp of the TEMD which is attributed to the Coulomb singularity. The evolution of the TEMD with the time delay between the pump and probe pulses is shown to be similar to the prediction of the standard tunneling formula (TF), as was observed experimentally for argon by Fechner et al. [Phys. Rev. Lett. 112, 213001 (2014), 10.1103/PhysRevLett.112.213001]. However, TDSE calculations show a clear deviation from the TF and predict a much more complicated structure which cannot be reproduced by the target orbital momentum profile filtered by the tunneling Gaussian. The accuracy of the TF can be improved if the target momentum profile is calculated with the Coulomb waves instead of the plane waves.

  4. Two-photon double ionization of H2 at 30 eV using exterior complex scaling

    NASA Astrophysics Data System (ADS)

    Morales, F.; Martín, F.; Horner, D. A.; Rescigno, T. N.; McCurdy, C. W.

    2009-07-01

    Calculations of fully differential cross sections for two-photon double ionization of the hydrogen molecule with photons of 30 eV are reported. The results have been obtained by using the method of exterior complex scaling, which allows one to construct essentially exact wavefunctions that describe the double continuum on a large, but finite, volume. The calculated cross sections are compared with those previously obtained by Colgan et al (J. Phys. B: At. Mol. Opt. Phys. 41 121002), and discrepancies are found for specific molecular orientations and electron ejection directions.

  5. Two-photon double ionization of H2 at 30 eV using exterior complex scaling

    SciTech Connect

    Horner, Daniel A; Morales, F; Martin, F; Rescigno, T N; Mccurdy, C W

    2009-01-01

    Calculations of fully differential cross sections for two-photon double ionization of the hydrogen molecule with photons of 30 eV are reported. The results have been obtained by using the method of exterior complex scaling, which allows one to construct essentially exact wave functions that describe the double continuum on a large, but finite, volume. The calculated cross sections are compared with those previously obtained by Colgan et al [1], and discrepancies are found for specific molecular orientations and electron ejection directions.

  6. Renormalization shielding effect on the Wannier-ridge mode for double-electron continua in partially ionized dense hydrogen plasmas

    NASA Astrophysics Data System (ADS)

    Lee, Myoung-Jae; Jung, Young-Dae

    2016-01-01

    The influence of renormalization shielding on the Wannier threshold law for the double-electron escapes by the electron-impact ionization is investigated in partially ionized dense plasmas. The renormalized electron charge and Wannier exponent are obtained by considering the equation of motion in the Wannier-ridge including the renormalization shielding effect. It is found that the renormalization shielding effect reduces the magnitude of effective electron charge, especially, within the Bohr radius in partially ionized dense plasmas. The maximum position of the renormalized electron charge approaches to the center of the target atom with an increase of the renormalization parameter. In addition, the Wannier exponent increases with an increase of the renormalization parameter. The variations of the renormalized electron charge and Wannier exponent due to the renormalization shielding effect are also discussed.

  7. Molecular orientation effect on the differential cross sections for the electron-impact double ionization of oriented water molecules

    SciTech Connect

    Champion, C.; Dal Cappello, C.; Oubaziz, D.; Aouchiche, H.; Popov, Yu. V.

    2010-03-15

    Double ionization of isolated water molecules fixed in space is here investigated in a theoretical approach based on the first Born approximation. Secondary electron angular distributions are reported for particular (e,3e) kinematical conditions and compared in terms of shape and magnitude. Strong dependence of the fivefold differential cross sections on the molecular target orientation is clearly observed in (e,3-1e) as well as (e,3e) channels. Furthermore, for the major part of the kinematics considered, we identified the different mechanisms involved in the double ionization of water molecule, namely, the direct shake-off process as well as the two-step1 process. They are both discussed and analyzed with respect to the molecular target orientation.

  8. Two-photon double ionization of H2 at 30 eV using Exterior Complex Scaling

    SciTech Connect

    Morales, Felipe; Martin, Fernando; Horner, Daniel; Rescigno, Thomas N.; McCurdy, C. William

    2009-01-20

    Calculations of fully differential cross sections for two-photon double ionization of the hydrogen molecule with photons of 30 eV are reported. The results have been obtained by using the method of exterior complex scaling, which allows one to construct essentially exact wave functions that describe thedouble continuum on a large, but finite, volume. The calculated cross sections are compared with those previously obtained by Colgan et al., and discrepancies are found for specific molecular orientations and electron ejection directions.

  9. Resonance overlap criterion for H atom ionization by circularly polarized microwave fields

    SciTech Connect

    Sacha, K.; Zakrzewski, J.

    1997-01-01

    The threshold for H atom ionization by circularly polarized microwave fields is discussed within the classical mechanics framework for high microwave frequencies. The Chirikov resonance overlap criterion predictions are compared with estimates obtained adopting the renormalization method. It is shown that the ionization threshold is highly sensitive to the helicity of microwaves. Among all possible initial electronic orbits, those of medium eccentricity are the first to ionize. The results obtained indicate that collisions with the nucleus play a negligible role for the onset of ionization. {copyright} {ital 1997} {ital The American Physical Society}

  10. Reduction of the Background Magnetic Field Inhibits Ability of Drosophila melanogaster to Survive Ionizing Radiation

    PubMed Central

    Portelli, Lucas; Madapatha, Dinu; Martino, Carlos; Hernandez, Mark; Barnes, Frank

    2012-01-01

    The effects of exposure to an environment where the background magnetic field has been reduced were studied on wild-type Drosophila melanogaster by measuring its ability to survive a single exposure to ionizing radiation during its larval stage. The experimental design presented shows a timeframe, ionizing radiation dose and background magnetic field parameters that will cause a significant and reproducible reduction of survival on this insect model. These results suggest that background magnetic fields may play a fundamental role in the recovery or harm of a biological system that is exposed to single doses of ionizing radiation. PMID:22532126

  11. A note on large gauge transformations in double field theory

    NASA Astrophysics Data System (ADS)

    Naseer, Usman

    2015-06-01

    We give a detailed proof of the conjecture by Hohm and Zwiebach in double field theory. This result implies that their proposal for large gauge transformations in terms of the Jacobian matrix for coordinate transformations is, as required, equivalent to the standard exponential map associated with the generalized Lie derivative along a suitable parameter.

  12. Breakdown of the Strong-Field Approximation for Transverse Electron Momentum Distributions in Strong-Field Ionization

    NASA Astrophysics Data System (ADS)

    Sang, Robert; Calvert, J. E.; Goodall, S.; Wang, X.; Xu, H.; Palmer, A. J.; Ivanov, I. A.; Kheifets, A. S.; Kielpinski, D.; Litvinyuk, I. V.

    2015-05-01

    We investigated the transverse electron momentum distributions for the strong field ionization of atoms by laser pulses with varying ellipticity. We investigated two ionization regimes; tunelling and over the barrier ionization regimes. The over the barrier regime was accessed by using neon atoms in excited atomic metastable states and is the first such strong-field experiment to use such an atomic species. We will show that the transverse momentum distributions evolve in qualitatively different when the ellipticity of the driving laser pulses is varied. email: R.Sang@griffith.edu.au

  13. Double ionization of rare-gas dimers: NeKr+e. -->. NeKr/sup 2 +/

    SciTech Connect

    Stephan, K.; Maerk, T.D.; Helm, H.

    1982-11-01

    The existence of the doubly charged dimer ion NeKr/sup 2 +/ is substantiated by electron-impact ionization of the mixed van der Waals dimer NeKr. The stability of this doubly charged molecule is discussed with the use of semiquantative potential energy curves. The electron-impact-ionization appearance potential confirms the prediction from the potential-energy curves.

  14. Strong-field high-frequency approximation to the multiphoton ionization of hydrogen

    SciTech Connect

    Trombetta, F. ); Basile, S.; Ferrante, G. )

    1990-04-01

    The strong-field multiphoton ionization of atoms is considered and a theoretical approach dealing nonperturbatively with the radiation field formulated. The general computational scheme is the conventional perturbation theory, but the intermediate states are dressed by the field. We present in detail a method to dress the continuum states and to study the dipole transitions within the continuum. In the high-frequency domain, the proposed procedure rapidly converges over a wide range of field intensity and offers an interesting framework for calculating ionization rates for arbitrary numbers of absorbed (above-threshold) photons and field polarization.

  15. Carrier-envelope-phase effects and V-like structure in nonsequential double ionization by elliptical polarization

    NASA Astrophysics Data System (ADS)

    Li, Yingbin; Yu, Benhai; Tang, Qingbin; Hua, Duanyang; Tong, Aihong; Jiang, Chenghuan; Shen, Naifeng; Li, Yongchao; Ge, Guixian; Wan, Jianguo

    2016-07-01

    The nonsequential double ionization (NSDI) of atom is revisited by elliptically polarized few-cycle laser pulse with the classical ensemble method. We focus on the events that both electrons emit into the same direction along the long and short axis of the laser polarization plane, and how do the correlated electron momentum spectra of these two events depends on the carrier-envelope-phase (CEP). We first exhibit that the double-ionization probability has a negligible dependence on CEP. Back analysis shows that the ionization dynamics of the second electron are strongly depend on the CEP, which is significantly responsible for the CEP-dependent correlated electron momentum spectra. Besides, the correlated electron momentum spectrum along the long axis of the laser polarization plane reproduces the so-called V-like structure (also called the figurelike structure) observed in experiments [A. Staudte, et al., Phys. Rev. Lett. 99, 263002 (2007); A. Rudenko, et al., Phys. Rev. Lett. 99, 263003 (2007)]. We sort the V-like shape into two regions and find that the different regions exhibit significantly different dynamics behaviors. Simultaneously, we demonstrate that the electron pairs emitted into the same direction along the short axis of the laser polarization plane is a result of the nuclear-electron attraction, and both the nuclear-electron attraction and e-e repulsion significantly contribute to the V-like structure.

  16. Multiphoton and tunneling ionization probability of atoms and molecules in an intense laser field

    NASA Astrophysics Data System (ADS)

    Zhao, Song-Feng; Liu, Lu; Zhou, Xiao-Xin

    2014-02-01

    We theoretically studied ionization of atoms exposed to an intense laser field by using three different methods, i.e., the numerical solution of the single-active-electron approximation based time-dependent Schrödinger equation (SAE-TDSE), the Perelomov-Popov-Terent'ev (PPT) model, and the Ammosov-Delone-Krainov (ADK) model. The ionization of several linear molecules in a strong laser field is also investigated with the molecular ADK (MO-ADK) and the molecular PPT (MO-PPT) model. We show that the ionization probability from the PPT and the MO-PPT model agrees well with the corresponding SAE-TDSE result in both the multiphoton and tunneling ionization regimes. By considering the volume effect of the laser field, the ionization signal obtained from the PPT and the MO-PPT model fits well the experimental data in the whole range of the multiphoton and tunneling ionization regimes. However, both the ADK and MO-ADK models seriously underestimate the ionization probabilities (or signals) in the multiphoton regime.

  17. High-precision measurements of seawater Pb isotope compositions by double spike thermal ionization mass spectrometry.

    PubMed

    Paul, Maxence; Bridgestock, Luke; Rehkämper, Mark; van DeFlierdt, Tina; Weiss, Dominik

    2015-03-10

    A new method for the determination of seawater Pb isotope compositions and concentrations was developed, which combines and optimizes previously published protocols for the separation and isotopic analysis of this element. For isotopic analysis, the procedure involves initial separation of Pb from 1 to 2L of seawater by co-precipitation with Mg hydroxide and further purification by a two stage anion exchange procedure. The Pb isotope measurements are subsequently carried out by thermal ionization mass spectrometry using a (207)Pb-(204)Pb double spike for correction of instrumental mass fractionation. These methods are associated with a total procedural Pb blank of 28±21 pg (1sd) and typical Pb recoveries of 40-60%. The Pb concentrations are determined by isotope dilution (ID) on 50 mL of seawater, using a simplified version of above methods. Analyses of multiple aliquots of six seawater samples yield a reproducibility of about ±1 to ±10% (1sd) for Pb concentrations of between 7 and 50 pmol/kg, where precision was primarily limited by the uncertainty of the blank correction (12±4 pg; 1sd). For the Pb isotope analyses, typical reproducibilities (±2sd) of 700-1500 ppm and 1000-2000 ppm were achieved for (207)Pb/(206)Pb, (208)Pb/(206)Pb and (206)Pb/(204)Pb, (207)Pb/(204)Pb, (208)Pb/(204)Pb, respectively. These results are superior to literature data that were obtained using plasma source mass spectrometry and they are at least a factor of five more precise for ratios involving the minor (204)Pb isotope. Both Pb concentration and isotope data, furthermore, show good agreement with published results for two seawater intercomparison samples of the GEOTRACES program. Finally, the new methods were applied to a seawater depth profile from the eastern South Atlantic. Both Pb contents and isotope compositions display a smooth evolution with depth, and no obvious outliers. Compared to previous Pb isotope data for seawater, the (206)Pb/(204)Pb ratios are well correlated

  18. Sandwich double gate vertical tunneling field-effect transistor

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Zhang, Wen-hao; Yu, Cheng-hao; Cao, Fei

    2016-05-01

    In this work, a sandwich vertical tunnel field effect transistor (SDG-VTFET) is presented and studied. Since the dominant carrier tunneling of SDG-VFET occurs in a direction that is in line with the gate field, high ON-state current and steep subthreshold slope are observed. Comparisons between SDG-VFET and double gate tunnel field effect transistor are made to clarify advantages of SDG-VTFET. The simulation results of our work show that SDG-VTFET has stronger gate control, steeper subthreshold slope and higher ON-state current. The device plays a promising candidate for future low power circuit applications.

  19. Investigating two-photon double ionization of D2 by XUV-Pump -- XUV-Probe experiments at FLASH

    SciTech Connect

    FLASH Collaboration; Jiang, Y.; Rudenko, A.; Perez-Torres, J.; Foucar, L.; Kurka, M.; Kuhnel, K.; Toppin, M.; Plesiat, E.; Morales, F.; Martin, F.; Herrwerth, O.; Lezius, M.; Kling, M.; Jahnke, T.; Dorner, R.; Sanz-Vicario, J.; van Tilborg, J.; Belkacem, A.; Schulz, M.; Ueda, K.; Zouros, T.; Dusterer, S.; Treusch, R.; Schroter, C.; Moshammer, R.; Ullrich, J.

    2010-08-02

    Using a novel split-mirror set-up attached to a Reaction Microscope at the Free electron LASer in Hamburg (FLASH) we demonstrate an XUV-pump -- XUV-probe ((hbar omega = 38 eV) experiment by tracing the ultra-fast nuclear wave-packet motion in the D2+ (1s sigma g-state) with<10 fs time resolution. Comparison with time-dependent calculations yields excellent agreement with the measured vibrational period of 22+-4 fs in D2+, points to the importance of the inter-nuclear distance dependent ionization probability and paves the way to control sequential and non-sequential two-photon double ionization contributions.

  20. Double-electron above-threshold ionization resonances as interference phenomena

    NASA Astrophysics Data System (ADS)

    Armstrong, G. S. J.; Parker, J. S.; Taylor, K. T.

    2012-11-01

    We present high-accuracy full-dimensionality calculations of total kinetic energy spectra of doubly-ionized helium at 195 nm. We find that the resonances in these spectra have their origins as interference phenomena.

  1. From the UV to the static-field limit: Rates and scaling laws for intense-field ionization of helium

    NASA Astrophysics Data System (ADS)

    Armstrong, G. S. J.; Parker, J. S.; Boca, M.; Taylor, K. T.

    2009-11-01

    We present high-accuracy calculations of ionization rates of helium at UV (195 nm) wavelengths. The numerical results are obtained from full-dimensional numerical integration of the two-electron time-dependent Schrödinger equation. Comparison is made between ionization rates at 195 nm with previously obtained data at 390 nm and 780 nm. In addition, we have obtained quantitatively accurate solutions of the full-dimensional time-dependent Schrödinger equation for static-field ionization of helium. We compare our numerically integrated rates with those of time-independent calculations, and obtain good agreement over a wide range of intensities.

  2. Influence of resonant charge exchange on the viscosity of partially ionized plasma in a magnetic field

    SciTech Connect

    Zhdanov, V. M. Stepanenko, A. A.

    2013-12-15

    The influence of resonant charge exchange for ion-atom interaction on the viscosity of partially ionized plasma embedded in the magnetic field is investigated. The general system of equations used to derive the viscosity coefficients for an arbitrary plasma component in the 21-moment approximation of Grad’s method is presented. The expressions for the coefficients of total and partial viscosities of a multicomponent partially ionized plasma in the magnetic field are obtained. As an example, the coefficients of the parallel and transverse viscosities for the ionic and neutral components of the partially ionized hydrogen plasma are calculated. It is shown that the account for resonant charge exchange can lead to a substantial change of the parallel and transverse viscosity of the plasma components in the region of low degrees of ionization on the order of 0.1.

  3. Detection and Repair of Ionizing Radiation-Induced DNA Double Strand Breaks: New Developments in Nonhomologous End Joining

    SciTech Connect

    Wang, Chen; Lees-Miller, Susan P.

    2013-07-01

    DNA damage can occur as a result of endogenous metabolic reactions and replication stress or from exogenous sources such as radiation therapy and chemotherapy. DNA double strand breaks are the most cytotoxic form of DNA damage, and defects in their repair can result in genome instability, a hallmark of cancer. The major pathway for the repair of ionizing radiation-induced DSBs in human cells is nonhomologous end joining. Here we review recent advances on the mechanism of nonhomologous end joining, as well as new findings on its component proteins and regulation.

  4. Field ionization of high-Rydberg fragments produced after inner-shell photoexcitation and photoionization of the methane molecule

    NASA Astrophysics Data System (ADS)

    Kivimäki, A.; Sankari, A.; Kettunen, J. A.; Strâhlman, C.; Álvarez Ruiz, J.; Richter, R.

    2015-09-01

    We have studied the production of neutral high-Rydberg (HR) fragments from the CH4 molecule at the C 1s → 3p excitation and at the C 1s ionization threshold. Neutral fragments in HR states were ionized using a pulsed electric field and the resulting ions were mass-analyzed using an ion time-of-flight spectrometer. The atomic fragments C(HR) and H(HR) dominated the spectra, but molecular fragments CHx(HR), x = 1-3, and H2(HR) were also observed. The production of HR fragments is attributed to dissociation of CH4+ and CH42+ ions in HR states. Just above the C 1s ionization threshold, such molecular ionic states are created when the C 1s photoelectron is recaptured after single or double Auger decay. Similar HR states may be reached directly following resonant Auger decay at the C 1s → 3p resonance. The energies and geometries of the parent and fragment ions have been calculated in order to gain insight into relevant dissociation pathways.

  5. Field ionization of high-Rydberg fragments produced after inner-shell photoexcitation and photoionization of the methane molecule

    SciTech Connect

    Kivimäki, A.; Sankari, A.; Kettunen, J. A.; Stråhlman, C.; Álvarez Ruiz, J.; Richter, R.

    2015-09-21

    We have studied the production of neutral high-Rydberg (HR) fragments from the CH{sub 4} molecule at the C 1s → 3p excitation and at the C 1s ionization threshold. Neutral fragments in HR states were ionized using a pulsed electric field and the resulting ions were mass-analyzed using an ion time-of-flight spectrometer. The atomic fragments C(HR) and H(HR) dominated the spectra, but molecular fragments CH{sub x}(HR), x = 1-3, and H{sub 2}(HR) were also observed. The production of HR fragments is attributed to dissociation of CH{sub 4}{sup +} and CH{sub 4}{sup 2+} ions in HR states. Just above the C 1s ionization threshold, such molecular ionic states are created when the C 1s photoelectron is recaptured after single or double Auger decay. Similar HR states may be reached directly following resonant Auger decay at the C 1s → 3p resonance. The energies and geometries of the parent and fragment ions have been calculated in order to gain insight into relevant dissociation pathways.

  6. Single-photon double ionization of H2 away from equilibrium: A showcase of two-center electron interference

    NASA Astrophysics Data System (ADS)

    Serov, Vladislav V.; Ivanov, I. A.; Kheifets, A. S.

    2012-08-01

    We demonstrate the effect of two-center interference on single-photon double ionization [double photoionization (DPI)] of the aligned H2 molecule when it shrinks or expands from the equilibrium internuclear distance. This interference affects the first stage of the DPI process in which the primary photoelectron is ejected predominantly along the polarization axis of light and its geometrical interference factor is most sensitive to the internuclear distance in the parallel (Σ) orientation of the internuclear and polarization axes. This effect is responsible for strong modification of the DPI amplitude in the parallel orientation while the corresponding amplitude for the perpendicular (Π) orientation is rather insensitive to the internuclear distance. The combination of these two factors explains the profound kinetic energy release effect on the fully differential cross sections of DPI of H2.

  7. Wave-packet analysis of strong-field ionization of sodium in the quasistatic regime*

    NASA Astrophysics Data System (ADS)

    Bunjac, Andrej; Popović, Duška B.; Simonović, Nenad S.

    2016-05-01

    Strong field ionization of the sodium atom in the tunnelling and over-the-barrier regimes is studied by examining the valence electron wave-packet dynamics in the static electric field. The lowest state energy and the ionization rate determined by this method for different strengths of the applied field agree well with the results obtained using other methods. The initial period of the nonstationary decay after switching the field on is analyzed and discussed. It is demonstrated that, if the Keldysh parameter is significantly lower than one (quasistatic regime), the probability of ionization by a laser pulse can be obtained from the static rates. Contribution to the Topical Issue "Advances in Positron and Electron Scattering", edited by Paulo Limao-Vieira, Gustavo Garcia, E. Krishnakumar, James Sullivan, Hajime Tanuma and Zoran Petrovic.

  8. Ionization of atomic hydrogen in strong infrared laser fields

    SciTech Connect

    Grum-Grzhimailo, Alexei N.; Abeln, Brant; Bartschat, Klaus; Weflen, Daniel; Urness, Timothy

    2010-04-15

    We have used the matrix iteration method of Nurhuda and Faisal [Phys. Rev. A 60, 3125 (1999)] to treat ionization of atomic hydrogen by a strong laser pulse. After testing our predictions against a variety of previous calculations, we present ejected-electron spectra as well as angular distributions for few-cycle infrared laser pulses with peak intensities of up to 10{sup 15} W/cm{sup 2}. It is shown that the convergence of the results with the number of partial waves is a serious issue, which can be managed in a satisfactory way by using the velocity form of the electric dipole operator in connection with an efficient time-propagation scheme.

  9. Photo-Double Ionization: Threshold Law and Low-Energy Behavior

    NASA Technical Reports Server (NTRS)

    Bhatia, Anand

    2008-01-01

    The threshold law for photoejection of two electrons from atoms (PDI) is derived from a modification of the Coulomb-dipole (C-D) theory. The C-D theory applies to two-electron ejection from negative ions (photo-double detachment:PDD). The modification consists of correctly accounting for the fact that in PDI that the two escaping electrons see a Coulomb field, asymptotically no matter what their relative distances from the residual ion are. We find in the contralinear spherically symmetric model that the analytic threshold law Q(E),i. e. the yield of residual ions, to be Qf(E)approaches E + CwE(sup gamma(w)) + CE(sup 5/4)sin[1/2 ln(E + theta)]/ln(E). The first and third terms are beyond the Wannier law. Our threshold law can only be rigorously justified for residual energies less than or equal to 10(exp -3) eV. Nevertheless in the present experimental range (0.1 - 4 eV), the form, even without the second term, can be fitted to experimental results of PDI for He, Li, and Be, in contrast to the Wannier law which has a larger deviation from the data for Li and Be, for both of which the data show signs of modulation.

  10. Photo-Double Ionization: Threshold Law and Low-Energy Behavior

    NASA Technical Reports Server (NTRS)

    Bhatia, A. K.; Temkin, A.

    2007-01-01

    The threshold law for photoejection of two electrons from atoms (PDI) is derived from a modification of the Coulomb-dipole (C-D) theory. The C-D theory applies to two-electron ejection from negative ions (photo-double detachment:PDD). The modification consists of correctly accounting for the fact that in PDI that the two escaping electrons see a Coulomb field, asymptotically no matter what their relative distances from the residual ion are. We find in the contralinear spherically symmetric model that the analytic threshold law Q(E), i.e. the yield of residual ions, to be Q Integral of (E) varies as E + (C(sub w) E(sup gamma W)) +CE(sup 5/4) sin [1/2 ln E + phi]/ln(E). The first and third terms are beyond the Wannier law. Our threshold law can only be rigorously justified for residual energies <= 10(exp -3) eV. Nevertheless in the present experimental range (0.1 - 4 eV), the form, even without the second term, can be fitted to experimental results of PDI for He, Li, and Be, in contrast to the Wannier law which has a larger deviation from the data for Li and Be.

  11. Instrumentation and method for ultrahigh resolution field desorption ionization fourier transform ion cyclotron resonance mass spectrometry of nonpolar species.

    PubMed

    Schaub, Tanner M; Hendrickson, Christopher L; Quinn, John P; Rodgers, Ryan P; Marshall, Alan G

    2005-03-01

    We describe the construction and application of a 9.4-T FT-ICR mass spectrometer interfaced to a commercial field desorption ion source for high-resolution, high-mass accuracy measurements of nonpolar species. The FT-ICR MS instrument includes a liquid injection field desorption ionization source, octopole ion guides, external octopole ion trap capable of an axial potential gradient for ion ejection, capacitively coupled open cylindrical ion trap, and pulsed gas valve for ion cooling. Model compound responses with regard to various source and instrument conditions provide a basis for interpretation of broadband mass spectra of complex mixtures. As an example, we demonstrate broadband speciation of a Gulf Coast crude oil, with respect to numerous heteroatomic classes, compound types (rings plus double bonds), and carbon number distributions.

  12. The design of double electrostatic-lens optics for resonance enhanced multiphoton ionization and photoelectron imaging experiments

    SciTech Connect

    Qu, Zehua; Li, Chunsheng; Qin, Zhengbo E-mail: xfzheng@mail.ahnu.edu.cn; Zheng, Xianfeng E-mail: xfzheng@mail.ahnu.edu.cn; Yao, Guanxin; Zhang, Xianyi; Cui, Zhifeng

    2015-06-15

    Compared to single ion/electron-optics for velocity-map imaging, a double-focusing lens assembly designed not only allows for mapping velocity imaging of photoelectrons but also allows for investigating the vibrational structure of the intermediate states of neutral species in resonance enhanced multiphoton ionization (REMPI) spectra. In this presentation, in order to record REMPI and photoelectron spectra separately, we have constructed a compact photoelectron velocity-map imaging (VMI) apparatus combined with an opposite linear Wiley-Mclaren time-of-flight mass spectrometer (TOFMS). A mass resolution (m/Δm) of ∼1300 for TOFMS and electron energy resolution (ΔE/E) of 2.4% for VMI have been achieved upon three-photon ionization of Xe atom at 258.00 nm laser wavelength. As a benchmark, in combination of one-color (1 + 1) REMPI and photoelectron imaging of benzene via 6{sup 1} and 6{sup 1}1{sup 1} vibronic levels in the S{sub 1} state, the vibrational structures of the cation and photoelectron angular anisotropy are unraveled. In addition, two-color (1 + 1′) REMPI and photoelectron imaging of aniline was used to complete the accurate measurement of ionization potential (62 271 ± 3 cm{sup −1}). The results suggest that the apparatus is a powerful tool for studying photoionization dynamics in the photoelectron imaging using vibrational-state selected excitation to the intermediate states of neutrals based on REMPI technique.

  13. The design of double electrostatic-lens optics for resonance enhanced multiphoton ionization and photoelectron imaging experiments.

    PubMed

    Qu, Zehua; Li, Chunsheng; Qin, Zhengbo; Zheng, Xianfeng; Yao, Guanxin; Zhang, Xianyi; Cui, Zhifeng

    2015-06-01

    Compared to single ion/electron-optics for velocity-map imaging, a double-focusing lens assembly designed not only allows for mapping velocity imaging of photoelectrons but also allows for investigating the vibrational structure of the intermediate states of neutral species in resonance enhanced multiphoton ionization (REMPI) spectra. In this presentation, in order to record REMPI and photoelectron spectra separately, we have constructed a compact photoelectron velocity-map imaging (VMI) apparatus combined with an opposite linear Wiley-Mclaren time-of-flight mass spectrometer (TOFMS). A mass resolution (m/Δm) of ∼1300 for TOFMS and electron energy resolution (ΔE/E) of 2.4% for VMI have been achieved upon three-photon ionization of Xe atom at 258.00 nm laser wavelength. As a benchmark, in combination of one-color (1 + 1) REMPI and photoelectron imaging of benzene via 6(1) and 6(1)1(1) vibronic levels in the S1 state, the vibrational structures of the cation and photoelectron angular anisotropy are unraveled. In addition, two-color (1 + 1') REMPI and photoelectron imaging of aniline was used to complete the accurate measurement of ionization potential (62,271 ± 3 cm(-1)). The results suggest that the apparatus is a powerful tool for studying photoionization dynamics in the photoelectron imaging using vibrational-state selected excitation to the intermediate states of neutrals based on REMPI technique. PMID:26133827

  14. The design of double electrostatic-lens optics for resonance enhanced multiphoton ionization and photoelectron imaging experiments

    NASA Astrophysics Data System (ADS)

    Qu, Zehua; Li, Chunsheng; Qin, Zhengbo; Zheng, Xianfeng; Yao, Guanxin; Zhang, Xianyi; Cui, Zhifeng

    2015-06-01

    Compared to single ion/electron-optics for velocity-map imaging, a double-focusing lens assembly designed not only allows for mapping velocity imaging of photoelectrons but also allows for investigating the vibrational structure of the intermediate states of neutral species in resonance enhanced multiphoton ionization (REMPI) spectra. In this presentation, in order to record REMPI and photoelectron spectra separately, we have constructed a compact photoelectron velocity-map imaging (VMI) apparatus combined with an opposite linear Wiley-Mclaren time-of-flight mass spectrometer (TOFMS). A mass resolution (m/Δm) of ˜1300 for TOFMS and electron energy resolution (ΔE/E) of 2.4% for VMI have been achieved upon three-photon ionization of Xe atom at 258.00 nm laser wavelength. As a benchmark, in combination of one-color (1 + 1) REMPI and photoelectron imaging of benzene via 61 and 6111 vibronic levels in the S1 state, the vibrational structures of the cation and photoelectron angular anisotropy are unraveled. In addition, two-color (1 + 1') REMPI and photoelectron imaging of aniline was used to complete the accurate measurement of ionization potential (62 271 ± 3 cm-1). The results suggest that the apparatus is a powerful tool for studying photoionization dynamics in the photoelectron imaging using vibrational-state selected excitation to the intermediate states of neutrals based on REMPI technique.

  15. Quantum control of a molecular ionization process by using Fourier-synthesized laser fields

    NASA Astrophysics Data System (ADS)

    Ohmura, Hideki; Saito, Naoaki

    2015-11-01

    In photoexcitation processes, if the motion of excited electrons can be precisely steered by the instantaneous electric field of an arbitrary waveform of a Fourier-synthesized laser field, the resultant matter response can be achieved within one optical cycle, usually within the attosecond (1 as =10-18s) regime. Fourier synthesis of laser fields has been achieved in various ways. However, the general use of Fourier-synthesized laser fields for the control of matter is extremely limited. Here, we report the quantum control of a nonlinear response of a molecular ionization process by using Fourier-synthesized laser fields. The directionally asymmetric molecular tunneling ionization induced by intense (5.0 ×1012W /c m2) Fourier-synthesized laser fields consisting of fundamental, second-, third-, and fourth-harmonic light achieves the orientation-selective ionization; we utilized the orientation-selective ionization for measurement of the relative phase differences between the fundamental and each harmonic light. Our findings impact not only light-wave engineering but also the control of matter, possibly triggering the creation and establishment of a new methodology that uses Fourier-synthesized laser fields.

  16. Double Ionization Gauge for Atmosphere Density/Pressure Measurements On Board the Rocket

    NASA Astrophysics Data System (ADS)

    Yushkov, V.; Shturkov, O.; Balugin, N.; Zhurin, S.; Kusov, A.

    2015-09-01

    A description of the ionization gauge for atmospheric density/pressure measurements on board a Russian meteorological rocket is presented. Its operation is based on the principle employed in an ionization gauge. The measuring density/pressure range is 1 06 102 kg/m3 / 10 ~ - 10 mm Hg. There are two output channels for ion and electron current measurements, respectively. The calibration curves are in a fairly good agreement with the classical electron impact ionization theory. The calibration error is less than 7%, that has been definitely confirmed through laboratory bench calibration. This rocket-borne device does not require pre-flight sealing. It greatly simplifies the design of the flight device. The ionization source is an electron flux emitted from the surface of a semi-impermeable metal plate under the influence of vacuum ultraviolet (VUV) radiation. The vUv radiation source is a portable glow-discharge krypton lamp. The flight instrument has been tested for shock loads up to 200 g for rocket measurement applications.

  17. Letter Report on 500 nA Pulsed Current from Field Ionization Source

    SciTech Connect

    Ellsworth, Jennifer L.

    2013-12-12

    We recently produced a milestone 500 nA of pulsed current using 40 Ir field ionizer electrodes in our ion source. In conclusion, we have produced the milestone pulsed current of 500 nA using 40 electrochemically etched iridium tips in a field ionization source. The pulsed current output is repeatable and scales as expected with gas fill pressure and bias voltage. We expect these current will be sufficient to produce neutral yields of 1∙107 DT n/s.

  18. Background-free observation of cold antihydrogen with field-ionization analysis of its states.

    PubMed

    Gabrielse, G; Bowden, N S; Oxley, P; Speck, A; Storry, C H; Tan, J N; Wessels, M; Grzonka, D; Oelert, W; Schepers, G; Sefzick, T; Walz, J; Pittner, H; Hänsch, T W; Hessels, E A

    2002-11-18

    A background-free observation of cold antihydrogen atoms is made using field ionization followed by antiproton storage, a detection method that provides the first experimental information about antihydrogen atomic states. More antihydrogen atoms can be field ionized in an hour than all the antimatter atoms that have been previously reported, and the production rate per incident high energy antiproton is higher than ever observed. The high rate and the high Rydberg states suggest that the antihydrogen is formed via three-body recombination.

  19. Dressed-state strong-field approximation for laser-induced molecular ionization

    SciTech Connect

    Becker, W.; Chen, J.; Chen, S. G.; Milosevic, D. B.

    2007-09-15

    In the customary formulation of the strong-field approximation (SFA) for laser-induced ionization, the initial bound state is taken as field-free. In the formulation of a length-gauge SFA for ionization of a molecule described by a two-center binding potential with sufficiently large internuclear separation, we argue that the initial state has to be dressed in order to account for the different scalar potentials at the various centers. We propose a 'dressed-state' SFA to this end.

  20. Keldysh theory of strong field ionization: history, applications, difficulties and perspectives

    NASA Astrophysics Data System (ADS)

    Popruzhenko, S. V.

    2014-10-01

    The history and current status of the Keldysh theory of strong field ionization are reviewed. The focus is on the fundamentals of the theory, its most important applications and those aspects which still raise difficulties and remain under discussion. The Keldysh theory is compared with other nonperturbative analytic methods of strong field atomic physics and its important generalizations are discussed. Among the difficulties, the gauge invariance problem, the tunneling time concept, the conditions of applicability and the application of the theory to ionization of systems more complex than atoms, including molecules and dielectrics, are considered. Possible prospects for the future development of the theory are also discussed.

  1. Classical Monte-Carlo simulation for Rydberg states ionization in strong field

    NASA Astrophysics Data System (ADS)

    Carrat, Vincent; Magnuson, Eric; Gallagher, Thomas

    2016-05-01

    The resilience of Rydberg states against ionization has fascinated physicists for a long time. One might expect that the loosely bound electron would be ionized by modest electromagnetic field. However, experiments show that a notable fraction of neutral atoms survive in Rydberg states when exposed to strong microwave or laser fields. Energy transfer between the field and the photoelectron occurs when the electron is close to the ionic core and depends on the phase of the field. Since those states have orbital times that can be larger than the field pulse duration, these energy exchanges will only occur a few times. While we can experimentally control the initial time when we create the Rydberg states and as a consequence the initial energy transfer from the field, our classical calculation suggests that the phase when the electron is returning to the ionic core on the next orbit is chaotic. Statistically the electron only has a 50% chance to gain energy which may lead to ionization. Additionally the population tends to accumulate in very high n states where ionization is less likely due to fewer rescattering events. Though incomplete, this classical Monte­-Carlo simulation provides useful insights for understanding the experimental observations. This work has been entirely performed at University of Virginia and is supported by the U. S. Department of Energy, Office of Basic energy Sciences.

  2. Numerical simulations of double layers and auroral electric fields

    NASA Technical Reports Server (NTRS)

    Singh, N.; Schunk, R. W.; Thiemann, H.

    1984-01-01

    Recent one-dimensional and two-dimensional numerical simulations of double layers (DLs) in the electric fields of the auroral plasma are reviewed, with reference to observational data. It is found that two-dimensional DLs driven by current sheets of finite thickness have different characteristics, depending on whether the layer thickness is less than or much greater than the ion gyroradius: When thickness is less than ion gyroradius, V-shaped DLs form with nearly equal parallel and perpendicular potential drops; when layer thickness is much greater than ion gyroradius the major parallel potential drop occurs outside the current sheet and the perpendicular electric fields are localized at the edges of the current sheet. It is shown that some features of the simulated fields, such as the amplitudes and scale lengths, are qualitatively similar to those observed in space.

  3. Towards an invariant geometry of double field theory

    NASA Astrophysics Data System (ADS)

    Hohm, Olaf; Zwiebach, Barton

    2013-03-01

    We introduce a geometrical framework for double field theory in which generalized Riemann and torsion tensors are defined without reference to a particular basis. This invariant geometry provides a unifying framework for the frame-like and metric-like formulations developed before. We discuss the relation to generalized geometry and give an "index-free" proof of the algebraic Bianchi identity. Finally, we analyze to what extent the generalized Riemann tensor encodes the curvatures of Riemannian geometry. We show that it contains the conventional Ricci tensor and scalar curvature but not the full Riemann tensor, suggesting the possibility of a further extension of this framework.

  4. From the UV to the static-field limit: rates and scaling laws of intense-field ionization of helium

    NASA Astrophysics Data System (ADS)

    Parker, J. S.; Armstrong, G. S. J.; Boca, M.; Taylor, K. T.

    2009-07-01

    We present high-accuracy calculations of ionization rates of helium at UV (195 nm) wavelengths. The data are obtained from full-dimensionality integrations of the helium-laser time-dependent Schrödinger equation. Comparison is made with our previously obtained data at 390 nm and 780 nm. We show that scaling laws introduced by Parker et al extend unmodified from the near-infrared limit into the UV limit. Static-field ionization rates of helium are also obtained, again from time-dependent full-dimensionality integrations of the helium Schrödinger equation. We compare the static-field ionization results with those of Scrinzi et al and Themelis et al, who also treat the full-dimensional helium atom, but with time-independent methods. Good agreement is obtained.

  5. Field-dependent molecular ionization and excitation energies: Implications for electrically insulating liquids

    NASA Astrophysics Data System (ADS)

    Davari, N.; Åstrand, P.-O.; Unge, M.; Lundgaard, L. E.; Linhjell, D.

    2014-03-01

    The molecular ionization potential has a relatively strong electric-field dependence as compared to the excitation energies which has implications for electrical insulation since the excited states work as an energy sink emitting light in the UV/VIS region. At some threshold field, all the excited states of the molecule have vanished and the molecule is a two-state system with the ground state and the ionized state, which has been hypothesized as a possible origin of different streamer propagation modes. Constrained density-functional theory is used to calculate the field-dependent ionization potential of different types of molecules relevant for electrically insulating liquids. The low singlet-singlet excitation energies of each molecule have also been calculated using time-dependent density functional theory. It is shown that low-energy singlet-singlet excitation of the type n → π* (lone pair to unoccupied π* orbital) has the ability to survive at higher fields. This type of excitation can for example be found in esters, diketones and many color dyes. For alkanes (as for example n-tridecane and cyclohexane) on the other hand, all the excited states, in particular the σ → σ* excitations vanish in electric fields higher than 10 MV/cm. Further implications for the design of electrically insulating dielectric liquids based on the molecular ionization potential and excitation energies are discussed.

  6. Photon Energy Deposition in Strong-Field Single Ionization of Multielectron Molecules

    NASA Astrophysics Data System (ADS)

    Zhang, Wenbin; Li, Zhichao; Lu, Peifen; Gong, Xiaochun; Song, Qiying; Ji, Qinying; Lin, Kang; Ma, Junyang; He, Feng; Zeng, Heping; Wu, Jian

    2016-09-01

    Molecules exposed to strong laser fields may coherently absorb multiple photons and deposit the energy into electrons and nuclei, triggering the succeeding dynamics as the primary stage of the light-molecule interaction. We experimentally explore the electron-nuclear sharing of the absorbed photon energy in above-threshold multiphoton single ionization of multielectron molecules. Using CO as a prototype, vibrational and orbital resolved electron-nuclear sharing of the photon energy is observed. Different from the simplest one- or two-electron systems, the participation of the multiple orbitals and the coupling of various electronic states in the strong-field ionization and dissociation processes alter the photon energy deposition dynamics of the multielectron molecule. The population of numerous vibrational states of the molecular cation as the energy reservoir in the ionization process plays an important role in photon energy sharing between the emitted electron and the nuclear fragments.

  7. Photon Energy Deposition in Strong-Field Single Ionization of Multielectron Molecules.

    PubMed

    Zhang, Wenbin; Li, Zhichao; Lu, Peifen; Gong, Xiaochun; Song, Qiying; Ji, Qinying; Lin, Kang; Ma, Junyang; He, Feng; Zeng, Heping; Wu, Jian

    2016-09-01

    Molecules exposed to strong laser fields may coherently absorb multiple photons and deposit the energy into electrons and nuclei, triggering the succeeding dynamics as the primary stage of the light-molecule interaction. We experimentally explore the electron-nuclear sharing of the absorbed photon energy in above-threshold multiphoton single ionization of multielectron molecules. Using CO as a prototype, vibrational and orbital resolved electron-nuclear sharing of the photon energy is observed. Different from the simplest one- or two-electron systems, the participation of the multiple orbitals and the coupling of various electronic states in the strong-field ionization and dissociation processes alter the photon energy deposition dynamics of the multielectron molecule. The population of numerous vibrational states of the molecular cation as the energy reservoir in the ionization process plays an important role in photon energy sharing between the emitted electron and the nuclear fragments. PMID:27636472

  8. Photon Energy Deposition in Strong-Field Single Ionization of Multielectron Molecules.

    PubMed

    Zhang, Wenbin; Li, Zhichao; Lu, Peifen; Gong, Xiaochun; Song, Qiying; Ji, Qinying; Lin, Kang; Ma, Junyang; He, Feng; Zeng, Heping; Wu, Jian

    2016-09-01

    Molecules exposed to strong laser fields may coherently absorb multiple photons and deposit the energy into electrons and nuclei, triggering the succeeding dynamics as the primary stage of the light-molecule interaction. We experimentally explore the electron-nuclear sharing of the absorbed photon energy in above-threshold multiphoton single ionization of multielectron molecules. Using CO as a prototype, vibrational and orbital resolved electron-nuclear sharing of the photon energy is observed. Different from the simplest one- or two-electron systems, the participation of the multiple orbitals and the coupling of various electronic states in the strong-field ionization and dissociation processes alter the photon energy deposition dynamics of the multielectron molecule. The population of numerous vibrational states of the molecular cation as the energy reservoir in the ionization process plays an important role in photon energy sharing between the emitted electron and the nuclear fragments.

  9. Effects of inner electrons on atomic strong-field-ionization dynamics

    NASA Astrophysics Data System (ADS)

    Rapp, J.; Bauer, D.

    2014-03-01

    The influence of inner electrons on the ionization dynamics in strong laser fields is investigated in a wavelength regime where the inner electron dynamics is usually assumed to be negligible. The role of inner electrons is of particular interest for the application of frozen-core approximations and pseudopotentials in time-dependent density functional theory (TDDFT) and the single-active-electron (SAE) approximation in strong-field laser physics. Results of TDDFT and SAE calculations are compared with exact ones obtained by the numerical ab initio solution of the three-electron time-dependent Schrödinger equation for a lithium model atom. It is found that dynamical antiscreening, i.e., a particular form of dynamical core polarization, may substantially alter the ionization rate in the single-photon regime. Requirements for the validity of the approximations in the single and multiphoton ionization domain are identified.

  10. Field ionization characteristics of an ion source array for neutron generators

    NASA Astrophysics Data System (ADS)

    Bargsten Johnson, B.; Schwoebel, P. R.; Resnick, P. J.; Holland, C. E.; Hertz, K. L.; Chichester, D. L.

    2013-11-01

    A new deuterium ion source is being developed to improve the performance of existing compact neutron generators. The ion source is a microfabricated array of metal tips with an integrated gate (i.e., grid) and produces deuterium ions by field ionizing (or field desorbing) a supply of deuterium gas. Deuterium field ion currents from arrays at source temperatures of 77 K and 293 K are studied. Ion currents from single etched-wire tips operating under the same conditions are used to help understand array results. I-F characteristics of the arrays were found to follow trends similar to those of the better understood single etched-wire tip results; however, the fields achieved by the arrays are limited by electrical breakdown of the structure. Neutron production by field ionization at 293 K was demonstrated for the first time from microfabricated array structures with integrated gates.

  11. Field ionization characteristics of an ion source array for neutron generators

    SciTech Connect

    B. Bargsten Johnson; P. R. Schwoebel; P. J. Resnick; C. E. Holland; L. Hertz; D. L. Chichester

    2013-11-01

    A new deuterium ion source is being developed to improve the performance of existing compact neutron generators. The ion source is a microfabricated array of metal tips with an integrated gate (i.e., grid) and produces deuterium ions by field ionizing (or field desorbing) a supply of deuterium gas. Deuterium field ion currents from arrays at source temperatures of 77?K and 293?K are studied. Ion currents from single etched-wire tips operating under the same conditions are used to help understand array results. I-F characteristics of the arrays were found to follow trends similar to those of the better understood single etched-wire tip results; however, the fields achieved by the arrays are limited by electrical breakdown of the structure. Neutron production by field ionization at 293?K was demonstrated for the first time from microfabricated array structures with integrated gates.

  12. Field ionization characteristics of an ion source array for neutron generators

    SciTech Connect

    Bargsten Johnson, B.; Schwoebel, P. R.; Resnick, P. J.; Holland, C. E.; Hertz, K. L.; Chichester, D. L.

    2013-11-07

    A new deuterium ion source is being developed to improve the performance of existing compact neutron generators. The ion source is a microfabricated array of metal tips with an integrated gate (i.e., grid) and produces deuterium ions by field ionizing (or field desorbing) a supply of deuterium gas. Deuterium field ion currents from arrays at source temperatures of 77 K and 293 K are studied. Ion currents from single etched-wire tips operating under the same conditions are used to help understand array results. I-F characteristics of the arrays were found to follow trends similar to those of the better understood single etched-wire tip results; however, the fields achieved by the arrays are limited by electrical breakdown of the structure. Neutron production by field ionization at 293 K was demonstrated for the first time from microfabricated array structures with integrated gates.

  13. Terahertz-field-induced ionization effect in a single nano island

    NASA Astrophysics Data System (ADS)

    Seo, Minah

    2016-03-01

    In this report, we present a novel approach to exploit the nonlinear response of terahertz (THz) field allowing the observation of ionization phenomenon in a single metal nano island. Because it is not easy to access such high power THz source to generate field over the threshold of the materials, fundamental studies on nonlinear terahertz waves and their applications in spectroscopy have been limited thus far. We are able to overcome this limitation through the use of a metallic nano island embedded in a slot antenna which strongly confines the terahertz electric field driving the system into a highly nonlinear regime. The structure, composed of a nano slot antenna and a nano island located at the center, highly confines THz electromagnetic field at the center of the structure, resulting in huge field enhancement by orders of magnitude at a specific frequency. Electrons on a metallic surface experience a ponderomotive force in a highly confined and enhanced THz electric field directed towards the weak field area by a field gradient. As a result, the accelerated electrons acquire enough energy to ionize ambient carbon atoms. It has to be stressed that it is the first time to observe the ionization of atoms induced by the enhanced terahertz radiation.

  14. Applicability of post-ionization theory to laser-assisted field evaporation of magnetite

    SciTech Connect

    Schreiber, Daniel K.; Chiaramonti, Ann N.; Gordon, Lyle M.; Kruska, Karen

    2014-12-15

    Analysis of the mean Fe ion charge state from laser-assisted field evaporation of magnetite (Fe3O4) reveals unexpected trends as a function of laser pulse energy that break from conventional post-ionization theory for metals. For Fe ions evaporated from magnetite, the effects of post-ionization are partially offset by the increased prevalence of direct evaporation into higher charge states with increasing laser pulse energy. Therefore the final charge state is related to both the field strength and the laser pulse energy, despite those variables themselves being intertwined when analyzing at a constant detection rate. Comparison of data collected at different base temperatures also show that the increased prevalence of Fe2+ at higher laser energies is possibly not a direct thermal effect. Conversely, the ratio of 16O+:16O2+ is well-correlated with field strength and unaffected by laser pulse energy on its own, making it a better overall indicator of the field evaporation conditions than the mean Fe charge state. Plotting the normalized field strength versus laser pulse energy also elucidates a non-linear dependence, in agreement with previous observations on semiconductors, that suggests a field-dependent laser absorption efficiency. Together these observations demonstrate that the field evaporation process for laser-pulsed oxides exhibits fundamental differences from metallic specimens that cannot be completely explained by post-ionization theory. Further theoretical studies, combined with detailed analytical observations, are required to understand fully the field evaporation process of non-metallic samples.

  15. Studying interfacial reactions of cholesterol sulfate in an unsaturated phosphatidylglycerol layer with ozone using field induced droplet ionization mass spectrometry.

    PubMed

    Ko, Jae Yoon; Choi, Sun Mi; Rhee, Young Min; Beauchamp, J L; Kim, Hugh I

    2012-01-01

    Field-induced droplet ionization (FIDI) is a recently developed ionization technique that can transfer ions from the surface of microliter droplets to the gas phase intact. The air-liquid interfacial reactions of cholesterol sulfate (CholSO(4)) in a 1-palmitoyl-2-oleoyl-sn-phosphatidylglycerol (POPG) surfactant layer with ozone (O(3)) are investigated using field-induced droplet ionization mass spectrometry (FIDI-MS). Time-resolved studies of interfacial ozonolysis of CholSO(4) reveal that water plays an important role in forming oxygenated products. An epoxide derivative is observed as a major product of CholSO(4) oxidation in the FIDI-MS spectrum after exposure of the droplet to O(3) for 5 s. The abundance of the epoxide product then decreases with continued O(3) exposure as the finite number of water molecules at the air-liquid interface becomes exhausted. Competitive oxidation of CholSO(4) and POPG is observed when they are present together in a lipid surfactant layer at the air-liquid interface. Competitive reactions of CholSO(4) and POPG with O(3) suggest that CholSO(4) is present with POPG as a well-mixed interfacial layer. Compared with CholSO(4) and POPG alone, the overall ozonolysis rates of both CholSO(4) and POPG are reduced in a mixed layer, suggesting the double bonds of both molecules are shielded by additional hydrocarbons from one another. Molecular dynamics simulations of a monolayer comprising POPG and CholSO(4) correlate well with experimental observations and provide a detailed picture of the interactions between CholSO(4), lipids, and water molecules in the interfacial region.

  16. Creation of multihole molecular wave packets via strong-field ionization

    SciTech Connect

    Geissler, Dominik; Weinacht, Thomas; Rozgonyi, Tamas; Gonzalez-Vazquez, Jesus; Gonzalez, Leticia; Nichols, Sarah

    2010-07-15

    We demonstrate the creation of vibrational wave packets on multiple electronic states of a molecule via strong-field ionization. Furthermore, we show that the relative contribution of the different electronic states depends on the shape of the laser pulse which launches the wave packets.

  17. Electron impact ionization in the Martian atmosphere: Interplay between scattering and crustal magnetic field effects

    NASA Astrophysics Data System (ADS)

    Lillis, Robert J.; Fang, Xiaohua

    2015-07-01

    Precipitating electrons are typically the dominant source of energy input into Mars' nighttime upper atmosphere, with consequences for atmospheric and ionospheric structure, composition, chemistry, and electrodynamics. Mars' spatially heterogeneous crustal magnetic fields affect the fluxes of precipitating electrons, via both the magnetic mirror force and Gauss' law of conservation of magnetic flux. We use a kinetic electron transport model to examine ionization rate profiles that result from the combination of these magnetic effects and elastic and inelastic scattering by atmospheric neutrals. Specifically, we calculate ionization rates as a function of altitude, crustal magnetic field strength, and the initial energy and pitch angle of the precipitating electrons, covering the relevant ranges of these parameters. Several complex behaviors are exhibited, including bifurcating ionization peaks with distinct characteristics and energy-dependent and crustal field strength-dependent increases in ionization with decreasing pitch angle. Elucidating such behavior is important for understanding the effect of Mars' unique crustal fields on the Mars upper atmosphere and ionosphere, both to predict the consequences of measured electron precipitation and to enable, for the first time, downward coupling of global plasma models with thermosphere-ionosphere models.

  18. Field ionization kinetic and electron impact studies of gas phase transition states - The cyclic bromonium ion

    NASA Technical Reports Server (NTRS)

    Green, M. M.; Giguere, R. J.; Falick, A. M.; Aberth, W.; Burlingame, A. L.

    1978-01-01

    Cis- and trans-isomers of 4-t-butylcyclohexyl bromide were studied to determine the mechanism of cyclic bromonium ion formation. The field ionization kinetic and electron impact data indicate that the formation of the cyclic structure occurs simultaneously with loss of the neutral fragment. The data also show that little or no gas-phase cis-trans isomerization occurs.

  19. Electric Field Double Probe Measurements for Ionospheric Space Plasma Experiments

    NASA Technical Reports Server (NTRS)

    Pfaff, R.

    1999-01-01

    Double probes represent a well-proven technique for gathering high quality DC and AC electric field measurements in a variety of space plasma regimes including the magnetosphere, ionosphere, and mesosphere. Such experiments have been successfully flown on a variety of spacecraft including sounding rockets and satellites. Typical instrument designs involve a series of trades, depending on the science objectives, type of platform (e.g., spinning or 3-axis stabilized), expected plasma regime where the measurements will be made, available telemetry, budget, etc. In general, ionospheric DC electric field instruments that achieve accuracies of 0.1 mV/m or better, place spherical sensors at large distances (10m or more) from the spacecraft body in order to extend well beyond the spacecraft wake and sheath and to achieve large signal-to-noise ratios for DC and long wavelength measurements. Additional sets of sensors inboard of the primary, outermost sensors provide useful additional information, both for diagnostics of the plasma contact potentials, which particularly enhance the DC electric field measurements on non-spinning spacecraft, and for wavelength and phase velocity measurements that use the spaced receiver or "interferometer" technique. Accurate attitude knowledge enables B times V contributions to be subtracted from the measured potentials, and permits the measured components to be rotated into meaningful geophysical reference frames. We review the measurement technique for both DC and wave electric field measurements in the ionosphere discussing recent advances involving high resolution burst memories, multiple baseline double probes, new sensor surface materials, biasing techniques, and other considerations.

  20. Double-to-single target ionization ratio for electron capture in fast p-He collisions.

    PubMed

    Schmidt, H T; Fardi, A; Schuch, R; Schwartz, S H; Zettergren, H; Cederquist, H; Bagge, L; Danared, H; Källberg, A; Jensen, J; Rensfelt, K-G; Mergel, V; Schmidt, L; Schmidt-Böcking, H; Cocke, C L

    2002-10-14

    We have used the ion storage ring CRYRING and its internal gas-jet target and recoil-ion-momentum spectrometer to measure absolute cross sections for transfer ionization (TI: p+He-->H0+He2++e(-)) in 2.5-4.5 MeV p-He collisions with separate Thomas (TTI) and kinematic (KTI) TI contributions. The probability for electron emission in kinematical capture decreases with increasing velocity and appears to approach the photoionization shakeoff value (1.63%) [T. Aberg, Phys. Rev. A 2, 1726 (1970)

  1. X-ray laser studies using plasmas created by optical field ionization

    SciTech Connect

    Krushelnick, K.M.; Tighe, W.; Suckewer, S.

    1995-01-01

    X-ray laser experiments involving the creation of fast recombining plasmas by optical field ionization of preformed targets were conducted. A nonlinear increase in the intensity of the 13.5nm Lyman-{alpha} line in Li III with the length of the target plasma was observed but only for distances less than the laser confocal parameter and for low plasma electron temperatures. Multiphoton pumping of resonant atomic transitions was also examined and the process of multiphoton ionization of FIII was found to be more probable than multiphoton excitation.

  2. Optical radiation and ionization of hydrogen atoms in heterogeneous exothermal reactions proceeding in an electric field

    NASA Astrophysics Data System (ADS)

    Blashenkov, N. M.; Lavrent'ev, G. Ya.

    2009-09-01

    Optical radiation related to the Balmer series (Hα, Hβ, Hγ) of hydrogen atoms is discovered when studying the isothermal reaction of trimeric acetone peroxide decomposition on the surface of oxidized tungsten in a static electric field with a strength of up to 4 × 106 V/cm at T = 300 K. The distance from the surface over which desorbing excited hydrogen atoms radiate is determined from the Stark splitting of the lines. Electronically excited atoms remaining on the surface ionize according to the surface ionization mechanism.

  3. Double differential distribution of electron emission in the ionization of water molecules by fast bare oxygen ions

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Shamik; Biswas, Shubhadeep; Bagdia, Chandan; Roychowdhury, Madhusree; Nandi, Saikat; Misra, Deepankar; Monti, J. M.; Tachino, C. A.; Rivarola, R. D.; Champion, C.; Tribedi, Lokesh C.

    2016-03-01

    The doubly differential distributions of low-energy electron emission in the ionization of water molecules under the impact of fast bare oxygen ions with energy of 48 MeV are measured. The measured data are compared with two quantum-mechanical models, i.e. the post and prior versions of the continuum distorted wave-eikonal initial state (CDW-EIS) approximation, and the first-order Born approximation with initial and final wavefunctions verifying correct boundary conditions (CB1). An overall excellent qualitative agreement is found between the data and the CDW-EIS models whereas the CB1 model showed substantial deviation. However, the detailed angular distributions display some discrepancies with both CDW-EIS models. The single differential and total cross-sections exhibit good agreement with the CDW-EIS models. The present detailed data set could also be used as an input for modeling highly charged ion induced radiation damage in living tissues, whose most abundant component is water. Similar measurements are also carried out for a projectile energy of 60 MeV. However, since the double differential cross-section data show similar results the details are not provided here, except for the total ionization cross-sections results.

  4. p53 binding protein 1 foci as a biomarker of DNA double strand breaks induced by ionizing radiation

    NASA Astrophysics Data System (ADS)

    Ng, C. K. M.; Wong, M. Y. P.; Lam, R. K. K.; Ho, J. P. Y.; Chiu, S. K.; Yu, K. N.

    2011-12-01

    Foci of p53 binding protein 1 (53 BP1) have been used as a biomarker of DNA double-strand breaks (DSBs) in cells induced by ionizing radiations. 53 BP1 was shown to relocalize into foci shortly after irradiation, with the number of foci closely paralleling the number of DNA DSBs. However, consensus on criteria in terms of the numbers of 53 BP1 foci to define cells damaged by direct irradiation or by bystander signals has not been reached, which is partly due to the presence of 53 BP1 also in normal cells. The objective of the present work was to study the changes in the distribution of cells with different numbers of 53 BP1 foci in a cell population after low-dose ionizing irradiation (<0.1 Gy) provided by alpha particles, with a view to propose feasible criteria for defining cells damaged by direct irradiation or by bystander signals. It was proposed that the change in the percentage of cells with 1-3 foci should be used for such purposes. The underlying reasons were discussed.

  5. Using the charge-stabilization technique in the double ionization potential equation-of-motion calculations with dianion references.

    PubMed

    Kuś, Tomasz; Krylov, Anna I

    2011-08-28

    The charge-stabilization method is applied to double ionization potential equation-of-motion (EOM-DIP) calculations to stabilize unstable dianion reference functions. The auto-ionizing character of the dianionic reference states spoils the numeric performance of EOM-DIP limiting applications of this method. We demonstrate that reliable excitation energies can be computed by EOM-DIP using a stabilized resonance wave function instead of the lowest energy solution corresponding to the neutral + free electron(s) state of the system. The details of charge-stabilization procedure are discussed and illustrated by examples. The choice of optimal stabilizing Coulomb potential, which is strong enough to stabilize the dianion reference, yet, minimally perturbs the target states of the neutral, is the crux of the approach. Two algorithms of choosing optimal parameters of the stabilization potential are presented. One is based on the orbital energies, and another--on the basis set dependence of the total Hartree-Fock energy of the reference. Our benchmark calculations of the singlet-triplet energy gaps in several diradicals show a remarkable improvement of the EOM-DIP accuracy in problematic cases. Overall, the excitation energies in diradicals computed using the stabilized EOM-DIP are within 0.2 eV from the reference EOM spin-flip values.

  6. Alignment effects in two-photon double ionization of H{sub 2} in femtosecond xuv laser pulses

    SciTech Connect

    Guan Xiaoxu; Bartschat, Klaus; Schneider, Barry I.

    2011-09-15

    Triple-differential cross sections for two-photon double ionization of the aligned hydrogen molecule at the equilibrium distance are presented for a central photon energy of 30 eV. The temporal response of the laser-driven molecule is investigated by solving the time-dependent Schroedinger equation in full dimensionality using two-center elliptical coordinates and a finite-element discrete-variable-representation approach. The molecular orientation is found to have a strong effect on the emission modes of the two correlated photoelectrons. This molecular effect is most noticeable when the molecular axis and the laser polarization vector are oriented parallel to each other. For intermediate cases between the parallel and perpendicular geometries, the dominant emission modes for two-electron ejection oscillate between those for the two extreme cases. The contributions from different ionization channels are also analyzed in detail. Depending on the emission direction of the reference electron, the interference contributions from the various channels can be constructive or destructive at small alignment angles, while they always contribute constructively to the triple-differential cross sections near the perpendicular geometry.

  7. Electron-impact dissociative double ionization of N2 and CO: Dependence of transition probability on impact energy

    NASA Astrophysics Data System (ADS)

    Pandey, A.; Kumar, P.; Banerjee, S. B.; Subramanian, K. P.; Bapat, B.

    2016-04-01

    We present an experimental and computational analysis of dissociative double ionization of N2 and CO molecules under electron impact. Experiments are performed at three energies, viz. 1, 3, and 5 keV, in order to observe the effect of impact energy on the dissociative ionization kinematics. We compare the kinetic energy release (KER) distributions of the charge symmetric dissociation channels of N22 + and CO2 + at these impact energies. An approximately linear trend between the transition energy and the expected KER values is inferred on the basis of the calculated potential energy curves of the dications. Experimentally, the normalized differential KER cross sections for these channels show an increasing trend in the low KER range and a decreasing trend in the high KER range as the electron-impact energy is increased. This observation indicates that the transition probability for excitation to different molecular ion states is not only a function of energy difference between the ground and excited states, but also a complicated function of the impact energy. In addition, nature of the observed trend in the differential KER cross sections differs significantly from their differential transition probability, which are calculated using inelastic collision model for fast-electron-impact case.

  8. A hierarchy of local coupled cluster singles and doubles response methods for ionization potentials.

    PubMed

    Wälz, Gero; Usvyat, Denis; Korona, Tatiana; Schütz, Martin

    2016-02-28

    We present a hierarchy of local coupled cluster (CC) linear response (LR) methods to calculate ionization potentials (IPs), i.e., excited states with one electron annihilated relative to a ground state reference. The time-dependent perturbation operator V(t), as well as the operators related to the first-order (with respect to V(t)) amplitudes and multipliers, thus are not number conserving and have half-integer particle rank m. Apart from calculating IPs of neutral molecules, the method offers also the possibility to study ground and excited states of neutral radicals as ionized states of closed-shell anions. It turns out that for comparable accuracy IPs require a higher-order treatment than excitation energies; an IP-CC LR method corresponding to CC2 LR or the algebraic diagrammatic construction scheme through second order performs rather poorly. We therefore systematically extended the order with respect to the fluctuation potential of the IP-CC2 LR Jacobian up to IP-CCSD LR, keeping the excitation space of the first-order (with respect to V(t)) cluster operator restricted to the m=½⊕3/2 subspace and the accuracy of the zero-order (ground-state) amplitudes at the level of CC2 or MP2. For the more expensive diagrams beyond the IP-CC2 LR Jacobian, we employ local approximations. The implemented methods are capable of treating large molecular systems with hundred atoms or more.

  9. High-resolution field desorption/ionization fourier transform ion cyclotron resonance mass analysis of nonpolar molecules.

    PubMed

    Schaub, Tanner M; Hendrickson, Christopher L; Qian, Kuangnan; Quinn, John P; Marshall, Alan G

    2003-05-01

    We report the first field desorption ionization broadband high-resolution (m/Deltam(50%) approximately 65 000) mass spectra. We have interfaced a field ionization/field desorption source to a home-built 9.4-T FT-ICR mass spectrometer. The instrumental configuration employs convenient sample introduction (in-source liquid injection) and external ion accumulation. We demonstrate the utility of this configuration by generating high-resolution positive-ion mass spectra of C(60) and a midboiling crude oil distillate. The latter contains species not accessible by common soft-ionization methods, for example, low-voltage electron ionization, electrospray ionization, and matrix-assisted laser desorption/ionization. The present work demonstrates significant advantages of FI/FD FT-ICR MS for analysis of nonpolar molecules in complex mixtures.

  10. Ionization equilibrium of hydrogen in strong magnetic field with allowance for pressure effects

    SciTech Connect

    Bulik, P.; Pavlov, G. ); Potekhin, A.

    1992-01-01

    The ionization equilibrium in highly magnetized (B = 10[sup 10] to 10[sup 12]G) hydrogen is investigated at temperatures from 5 eV to 50 keV and densities in the range 10[sup [minus]3] to 10[sup 3] g/cm[sup 3]. We have used the occupation probability formalism in order to take into account the pressure and density effects. The occupation probabilities used are slightly modified as compared to those derived by Hummer and Mihalas. We find that pressure ionization degree varies with the form of microfield distribution function. The non-ionized fraction is increased by the magnetic field in most of the parameter space. It is large enough so that the bound-free absorption must be taken into account in realistic models of neutron star atmospheres.

  11. Nonadiabatic dynamics in strong field molecular ionization with few cycle laser pulses

    NASA Astrophysics Data System (ADS)

    Tagliamonti, Vincent; Sándor, Péter; Zhao, Arthur; Rozgonyi, Tamás; Marquetand, Philipp; Weinacht, Thomas

    2016-05-01

    We study strong field ionization in several small molecules using few (4-10) cycle laser pulses. Using a supercontinuum light source, we are able to tune the laser wavelength (photon energy) over ~ 200 nm (500 meV). We measure the photoelectron spectrum as a function of laser intensity, frequency, and bandwidth and demonstrate some control over the final state of the molecule in the ionization process. We find that intermediate multiphoton resonances and coupled electron nuclear dynamics result in ionization to different ionic continua. Interestingly, not only do these resonances strongly influence the final states produced in the cation, they can also dominate the PES whether the bandwidth is broad or narrow. This work has been supported by the National Science Foundation under Grant Number 1505679.

  12. Ultrafast Electron and Ion Dynamics in Strong-Field-Ionized Liquid Water

    NASA Astrophysics Data System (ADS)

    Loh, Zhi-Heng; Li, Jialin; Nie, Zhaogang; Zheng, Yi Ying; Dong, Shuo; Low, Pei Jiang

    2016-05-01

    The ionization of liquid water functions as the principal trigger for a myriad of phenomena that are relevant to radiation chemistry and biology. The earliest events that follow the ionization of water, however, remain relatively unknown. Here, femtosecond coherence spectroscopy is combined with polarization anisotropy measurements to elucidate the ultrafast electron and ion dynamics in ionized water. The results show that strong-field ionization of liquid water produces an aligned p electron distribution. Furthermore oscillations observed in the polarization anisotropy are suggestive of valence electron motion in the highly reactive H2 O+ radical cation, whose lifetime with respect to proton transfer is found to be 196 +/- 5 fs. Coherent intermolecular motions that signal initial solvent reorganization and subsequent long-lived ballistic proton transport that involves the H3 O+ end-product are also detected in the time domain. These results offer new insight into the elementary dynamics of ionized liquid water. This work is supported by the Ministry of Education (MOE2014-T2-2-052), A*Star (122-PSF-0011), and the Nanyang Assistant Professorship.

  13. Ionization of H{sub 2}{sup +} in intense laser fields

    SciTech Connect

    Mies, F.H.; Giusti-Suzor, A.; Kulander, K.C.; Schafer, K.J.

    1993-01-01

    The motivation for the present ionization calculations is to test the reliability of a recent study of H{sub 2}{sup +} photodissociation which employed such a two electronic state model and neglected any competition with ionization. The photodissociation calculations indicate that in intense short pulsed laser fields appreciable populations of stable vibrational states can survive the pulse. This survival effect can be attributed to the trapping of portions of the initial vibrational wavepacket in transient laser-induced potential wells at intermediate R{approx}3--4au distances. Since the calculated ionization rates exhibit a marked decrease at short R, they already lend some credence to the vibrational trapping effect. Having accurate R-dependent rates enables us to estimate the competitive influence of the ionization on the stabilized population, and may ultimately allow us to predict the contribution of the Coulomb ``explosion`` channel to observed proton kinetic energy distributions. In this paper we will demonstrate the effectiveness of the two-state length gauge model in interpreting the ionization rates that we extract from the numerically exact solutions of the time-dependent Schroedinger Equation. A more elaborate presentation of the theory and the results for the full range of distances and wavelengths will be presented elsewhere.

  14. Ionization distances of Rydberg atoms approaching solid surfaces in the presence of weak electric fields

    SciTech Connect

    Nedeljkovic, N.N.; Nedeljkovic, Lj.D.

    2005-09-15

    The ionization distances R{sub c}{sup I} of slow hydrogenlike Rydberg atoms approaching solid surfaces in the presence of a weak external electric field are calculated. The ionization is treated as resonant electron tunneling in the very vicinity of the top of the potential barrier, created between the ionic core and polarized solid. We obtain both the complex energies and the ionization distances by solving the energy eigenvalue problem under the outgoing wave boundary condition towards the solid. The eigenvalue problem is studied in parabolic coordinates within the framework of an etalon equation method adapted to include the confluence of turning points. It is demonstrated that in a critical region R{approx_equal}R{sub c}{sup I}>>1 a.u. of ion-surface distances R, parabolic quantum numbers n{sub 1}, n{sub 2}, and m can serve as approximate, but 'sufficiently good' quantum numbers, at least for lower n{sub 1} values. The method offers asymptotically exact analytical expressions for the ionization rates and energies, which follow the theoretical predictions of the complex scaling method (CSM). It is also found that the resulting ionization distances R{sub c}{sup I} are in very good agreement with the results of CSM. The implications of using obtained results in analyzing the recent xenon experimental data for R{sub c}{sup I} are briefly discussed.

  15. Improved strong-field approximation and quantum-orbit theory: Application to ionization by a bicircular laser field

    NASA Astrophysics Data System (ADS)

    Milošević, D. B.; Becker, W.

    2016-06-01

    A theory of above-threshold ionization of atoms by a strong laser field is formulated. Two versions of the strong-field approximation (SFA) are considered, the direct SFA and the improved SFA, which do not and do, respectively, take into account rescattering of the freed electron off the parent ion. The atomic bound state is included in two different ways: as an expansion in terms of Slater-type orbitals or as an asymptotic wave function. Even though we are using the single-active-electron approximation, multielectron effects are taken into account in two ways: by a proper choice of the ground state and by an adequate definition of the ionization rate. For the case of the asymptotic bound-state wave functions, using the saddle-point method, a simple expression for the T -matrix element is derived for both the direct and the improved SFA. The theory is applied to ionization by a bicircular field, which consists of two coplanar counterrotating circularly polarized components with frequencies that are integer multiples of a fundamental frequency ω . Special emphasis is on the ω -2 ω case. In this case, the threefold rotational symmetry of the field carries over to the velocity map of the liberated electrons, for both the direct and the improved SFA. The results obtained are analyzed in detail using the quantum-orbit formalism, which gives good physical insight into the above-threshold ionization process. For this purpose, a specific classification of the saddle-point solutions is introduced for both the backward-scattered and the forward-scattered electrons. The high-energy backward-scattering quantum orbits are similar to those discovered for high-order harmonic generation. The short forward-scattering quantum orbits for a bicircular field are similar to those of a linearly polarized field. The conclusion is that these orbits are universal, i.e., they do not depend much on the shape of the laser field.

  16. Breakdown voltage reduction by field emission in multi-walled carbon nanotubes based ionization gas sensor

    SciTech Connect

    Saheed, M. Shuaib M.; Muti Mohamed, Norani; Arif Burhanudin, Zainal

    2014-03-24

    Ionization gas sensors using vertically aligned multi-wall carbon nanotubes (MWCNT) are demonstrated. The sharp tips of the nanotubes generate large non-uniform electric fields at relatively low applied voltage. The enhancement of the electric field results in field emission of electrons that dominates the breakdown mechanism in gas sensor with gap spacing below 14 μm. More than 90% reduction in breakdown voltage is observed for sensors with MWCNT and 7 μm gap spacing. Transition of breakdown mechanism, dominated by avalanche electrons to field emission electrons, as decreasing gap spacing is also observed and discussed.

  17. Compact deuterium-tritium neutron generator using a novel field ionization source

    SciTech Connect

    Ellsworth, J. L. Falabella, S.; Sanchez, J.; Tang, V.; Wang, H.

    2014-11-21

    Active interrogation using neutrons is an effective method for detecting shielded nuclear material. A lightweight, lunch-box-sized, battery-operated neutron source would enable new concepts of operation in the field. We have developed at-scale components for a highly portable, completely self-contained, pulsed Deuterium-Tritium (DT) neutron source producing 14 MeV neutrons with average yields of 10{sup 7} n/s. A gated, field ionization ion source using etched electrodes has been developed that produces pulsed ion currents up to 500 nA. A compact Cockcroft-Walton high voltage source is used to accelerate deuterons into a metal hydride target for neutron production. The results of full scale DT tests using the field ionization source are presented.

  18. Computer study of convection of weakly ionized plasma in a nonuniform magnetic field.

    NASA Technical Reports Server (NTRS)

    Shiau, J. N.

    1972-01-01

    A weakly ionized plasma in a strong and nonuniform magnetic field exhibits an instability analogous to the flute instability in a fully ionized plasma. The instability sets in at a critical magnetic field. To study the final state of the plasma after the onset of the instability, the plasma equations are integrated numerically assuming a certain initial spectrum of small disturbances. In the regime studied, numerical results indicate a final steadily oscillating state consisting of a single finite amplitude mode together with a time-independent modification of the original equilibrium. These results agree with the analytic results obtained by Simon in the slightly supercritical regime. As the magnetic field is increased further, the wavelength of the final oscillation becomes nonunique. There exists a subinterval in the unstable wave band. Final stable oscillation with a wavelength in this subinterval can be established if the initial disturbance has a sufficiently strong component at the particular wavelength.

  19. Double binding energy differences: Mean-field or pairing effect?

    NASA Astrophysics Data System (ADS)

    Qi, Chong

    2012-10-01

    In this Letter we present a systematic analysis on the average interaction between the last protons and neutrons in atomic nuclei, which can be extracted from the double differences of nuclear binding energies. The empirical average proton-neutron interaction Vpn thus derived from experimental data can be described in a very simple form as the interplay of the nuclear mean field and the pairing interaction. It is found that the smooth behavior as well as the local fluctuations of the Vpn in even-even nuclei with N ≠ Z are dominated by the contribution from the proton-neutron monopole interactions. A strong additional contribution from the isoscalar monopole interaction and isovector proton-neutron pairing interaction is seen in the Vpn for even-even N = Z nuclei and for the adjacent odd-A nuclei with one neutron or proton being subtracted.

  20. Heterotic α'-corrections in Double Field Theory

    NASA Astrophysics Data System (ADS)

    Bedoya, Oscar A.; Marqués, Diego; Núñez, Carmen

    2014-12-01

    We extend the generalized flux formulation of Double Field Theory to include all the first order bosonic contributions to the α' expansion of the heterotic string low energy effective theory. The generalized tangent space and duality group are enhanced by α' corrections, and the gauge symmetries are generated by the usual (gauged) generalized Lie derivative in the extended space. The generalized frame receives derivative corrections through the spin connection with torsion, which is incorporated as a new degree of freedom in the extended bein. We compute the generalized fluxes and find the Riemann curvature tensor with torsion as one of their components. All the four-derivative terms of the action, Bianchi identities and equations of motion are reproduced. Using this formalism, we obtain the first order α' corrections to the heterotic Buscher rules. The relation of our results to alternative formulations in the literature is discussed and future research directions are outlined.

  1. Resonance Enhanced Multi-Photon Ionization (rempi) and Double Resonance Uv-Uv and Ir-Uv Spectroscopic Investigation Isocytosine

    NASA Astrophysics Data System (ADS)

    Lee, Seung Jun; Min, Ahreum; Ahn, Ahreum; Moon, Cheol Joo; Choi, Myong Yong; Ishiuchi, Shun-Ichi; Miyazaki, Mitsuhiko; Fujii, Masaaki

    2013-06-01

    Isocytosine(iC), 2-aminouracil, is a non-natural nucleobase and its functional group's positions resemble those of guanine; therefore, its spectroscopic investigation is worthy of attention especially for the natural/unnatural base pairs with guanine and isoguanine. In this study, resonance enhanced multi-photon ionization (REMPI) and UV/IR-UV double resonance spectra of iC in the gas phase are presented. The collaboration work between Tokyo Institute of Technology, Japan and Gyeongsang National University, Korea using laser ablation and thermal evaporation, respectively, for producing jet-cooled iC is presented and discussed. The REMPI spectrum of iC monomers is recorded in the spectral range of 35000 to 36400cm-1, showing very congested π-π* vibronic bands. UV-UV hole burning spectroscopy is further conducted to investigate the conformational landscapes of iC monomers. Moreover, the presence of free OH band from IR-UV double resonance spectroscopy in combination with quantum chemical calculations convinces that the iC monomer in free-jet expansion experiment is an enol tautomer. However, a possible presence of a keto tautomer of iC may be provided by employing a pico-second experiment on iC.

  2. Gauge transformation of double field theory for open string

    NASA Astrophysics Data System (ADS)

    Ma, Chen-Te

    2015-09-01

    We combine symmetry structures of ordinary (parallel directions) and dual (transversal directions) coordinates to construct the Dirac-Born-Infeld theory. The ordinary coordinates are associated with the Neumann boundary conditions and the dual coordinates are associated with the Dirichlet boundary conditions. Gauge fields become scalar fields by exchanging the ordinary and dual coordinates. A gauge transformation of a generalized metric is governed by the generalized Lie derivative. The gauge transformation of the massless closed string theory gives the C -bracket, but the gauge transformation of the open string theory gives the F -bracket. The F -bracket with the strong constraints is different from the Courant bracket by an exact one-form. This exact one-form should come from the one-form gauge field. Based on a symmetry point of view, we deduce a suitable action with a nonzero H -flux at the low-energy level. From an equation of motion of the scalar dilaton, it defines a generalized scalar curvature. Finally, we construct a double sigma model with a boundary term and show that this model with constraints is classically equivalent to the ordinary sigma model.

  3. Unraveling nonadiabatic ionization and Coulomb potential effect in strong-field photoelectron holography

    NASA Astrophysics Data System (ADS)

    Song, Xiaohong; Lin, Cheng; Sheng, Zhihao; Liu, Peng; Chen, Zhangjin; Yang, Weifeng; Hu, Shilin; Lin, C. D.; Chen, Jing

    2016-06-01

    Strong field photoelectron holography has been proposed as a means for interrogating the spatial and temporal information of electrons and ions in a dynamic system. After ionization, part of the electron wave packet may directly go to the detector (the reference wave), while another part may be driven back and scatters off the ion(the signal wave). The interference hologram of the two waves may be used to extract target information embedded in the collision process. Unlike conventional optical holography, however, propagation of the electron wave packet is affected by the Coulomb potential as well as by the laser field. In addition, electrons are emitted over the whole laser pulse duration, thus multiple interferences may occur. In this work, we used a generalized quantum-trajectory Monte Carlo method to investigate the effect of Coulomb potential and the nonadiabatic subcycle ionization on the photoelectron hologram. We showed that photoelectron hologram can be well described only when the effect of nonadiabatic ionization is accounted for, and Coulomb potential can be neglected only in the tunnel ionization regime. Our results help paving the way for establishing photoelectron holography for probing spatial and dynamic properties of atoms and molecules.

  4. Unraveling nonadiabatic ionization and Coulomb potential effect in strong-field photoelectron holography

    PubMed Central

    Song, Xiaohong; Lin, Cheng; Sheng, Zhihao; Liu, Peng; Chen, Zhangjin; Yang, Weifeng; Hu, Shilin; Lin, C. D.; Chen, Jing

    2016-01-01

    Strong field photoelectron holography has been proposed as a means for interrogating the spatial and temporal information of electrons and ions in a dynamic system. After ionization, part of the electron wave packet may directly go to the detector (the reference wave), while another part may be driven back and scatters off the ion(the signal wave). The interference hologram of the two waves may be used to extract target information embedded in the collision process. Unlike conventional optical holography, however, propagation of the electron wave packet is affected by the Coulomb potential as well as by the laser field. In addition, electrons are emitted over the whole laser pulse duration, thus multiple interferences may occur. In this work, we used a generalized quantum-trajectory Monte Carlo method to investigate the effect of Coulomb potential and the nonadiabatic subcycle ionization on the photoelectron hologram. We showed that photoelectron hologram can be well described only when the effect of nonadiabatic ionization is accounted for, and Coulomb potential can be neglected only in the tunnel ionization regime. Our results help paving the way for establishing photoelectron holography for probing spatial and dynamic properties of atoms and molecules. PMID:27329071

  5. Unraveling nonadiabatic ionization and Coulomb potential effect in strong-field photoelectron holography.

    PubMed

    Song, Xiaohong; Lin, Cheng; Sheng, Zhihao; Liu, Peng; Chen, Zhangjin; Yang, Weifeng; Hu, Shilin; Lin, C D; Chen, Jing

    2016-01-01

    Strong field photoelectron holography has been proposed as a means for interrogating the spatial and temporal information of electrons and ions in a dynamic system. After ionization, part of the electron wave packet may directly go to the detector (the reference wave), while another part may be driven back and scatters off the ion(the signal wave). The interference hologram of the two waves may be used to extract target information embedded in the collision process. Unlike conventional optical holography, however, propagation of the electron wave packet is affected by the Coulomb potential as well as by the laser field. In addition, electrons are emitted over the whole laser pulse duration, thus multiple interferences may occur. In this work, we used a generalized quantum-trajectory Monte Carlo method to investigate the effect of Coulomb potential and the nonadiabatic subcycle ionization on the photoelectron hologram. We showed that photoelectron hologram can be well described only when the effect of nonadiabatic ionization is accounted for, and Coulomb potential can be neglected only in the tunnel ionization regime. Our results help paving the way for establishing photoelectron holography for probing spatial and dynamic properties of atoms and molecules. PMID:27329071

  6. Unraveling nonadiabatic ionization and Coulomb potential effect in strong-field photoelectron holography

    DOE PAGESBeta

    Song, Xiaohong; Lin, Cheng; Sheng, Zhihao; Liu, Peng; Chen, Zhangjin; Yang, Weifeng; Hu, Shilin; Lin, C. D.; Chen, Jing

    2016-06-22

    Strong field photoelectron holography has been proposed as a means for interrogating the spatial and temporal information of electrons and ions in a dynamic system. After ionization, part of the electron wave packet may directly go to the detector (the reference wave), while another part may be driven back and scatters off the ion(the signal wave). The interference hologram of the two waves may be used to extract target information embedded in the collision process. Unlike conventional optical holography, however, propagation of the electron wave packet is affected by the Coulomb potential as well as by the laser field. Inmore » addition, electrons are emitted over the whole laser pulse duration, thus multiple interferences may occur. In this work, we used a generalized quantum-trajectory Monte Carlo method to investigate the effect of Coulomb potential and the nonadiabatic subcycle ionization on the photoelectron hologram. Here, we showed that photoelectron hologram can be well described only when the effect of nonadiabatic ionization is accounted for, and Coulomb potential can be neglected only in the tunnel ionization regime. Our results help paving the way for establishing photoelectron holography for probing spatial and dynamic properties of atoms and molecules.« less

  7. Characterization of Wax Esters by Electrospray Ionization Tandem Mass Spectrometry: Double Bond Effect and Unusual Product Ions

    PubMed Central

    Chen, Jianzhong; Green, Kari B; Nichols, Kelly K

    2015-01-01

    A series of different types of wax esters (represented by RCOOR′) were systematically studied by using electrospray ionization (ESI) collision-induced dissociation tandem mass spectrometry (MS/MS) along with pseudo MS3 (in-source dissociation combined with MS/MS) on a quadrupole time-of-flight (Q-TOF) mass spectrometer. The tandem mass spectra patterns resulting from dissociation of ammonium/proton adducts of these wax esters were influenced by the wax ester type and the collision energy applied. The product ions [RCOOH2]+, [RCO]+ and [RCO – H2O]+ that have been reported previously were detected; however, different primary product ions were demonstrated for the three wax ester types including: 1) [RCOOH2]+ for saturated wax esters, 2) [RCOOH2]+, [RCO]+ and [RCO – H2O]+ for unsaturated wax esters containing only one double bond in the fatty acid moiety or with one additional double bond in the fatty alcohol moiety, and 3) [RCOOH2]+ and [RCO]+ for unsaturated wax esters containing a double bond in the fatty alcohol moiety alone. Other fragments included [R′]+ and several series of product ions for all types of wax esters. Interestingly, unusual product ions were detected, such as neutral molecule (including water, methanol and ammonia) adducts of [RCOOH2]+ ions for all types of wax esters and [R′ – 2H]+ ions for unsaturated fatty acyl-containing wax esters. The patterns of tandem mass spectra for different types of wax esters will inform future identification and quantification approaches of wax esters in biological samples as supported by a preliminary study of quantification of isomeric wax esters in human meibomian gland secretions. PMID:26178197

  8. Characterization of Wax Esters by Electrospray Ionization Tandem Mass Spectrometry: Double Bond Effect and Unusual Product Ions.

    PubMed

    Chen, Jianzhong; Green, Kari B; Nichols, Kelly K

    2015-08-01

    A series of different types of wax esters (represented by RCOOR') were systematically studied by using electrospray ionization (ESI) collision-induced dissociation tandem mass spectrometry (MS/MS) along with pseudo MS(3) (in-source dissociation combined with MS/MS) on a quadrupole time-of-flight (Q-TOF) mass spectrometer. The tandem mass spectra patterns resulting from dissociation of ammonium/proton adducts of these wax esters were influenced by the wax ester type and the collision energy applied. The product ions [RCOOH2](+), [RCO](+) and [RCO-H2O](+) that have been reported previously were detected; however, different primary product ions were demonstrated for the three wax ester types including: (1) [RCOOH2](+) for saturated wax esters, (2) [RCOOH2](+), [RCO](+) and [RCO-H2O](+) for unsaturated wax esters containing only one double bond in the fatty acid moiety or with one additional double bond in the fatty alcohol moiety, and (3) [RCOOH2](+) and [RCO](+) for unsaturated wax esters containing a double bond in the fatty alcohol moiety alone. Other fragments included [R'](+) and several series of product ions for all types of wax esters. Interestingly, unusual product ions were detected, such as neutral molecule (including water, methanol and ammonia) adducts of [RCOOH2](+) ions for all types of wax esters and [R'-2H](+) ions for unsaturated fatty acyl-containing wax esters. The patterns of tandem mass spectra for different types of wax esters will inform future identification and quantification approaches of wax esters in biological samples as supported by a preliminary study of quantification of isomeric wax esters in human meibomian gland secretions.

  9. Towards reference dosimetry for the MR-linac: magnetic field correction of the ionization chamber reading.

    PubMed

    Smit, K; van Asselen, B; Kok, J G M; Aalbers, A H L; Lagendijk, J J W; Raaymakers, B W

    2013-09-01

    In the UMC Utrecht a prototype MR-linac has been installed. The system consists of a 6 MV Elekta (Crawley, UK) linear accelerator and a 1.5 T Philips (Best, The Netherlands) Achieva MRI system. This paper investigates the feasibility to correct the ionization chamber reading for the magnetic field within the dosimetry calibration method described by Almond et al (1999 Med. Phys. 26 1847-70). Firstly, the feasibility of using an ionization chamber in an MR-linac was assessed by investigating possible influences of the magnetic field on NE2571 Farmer-type ionization chamber characteristics: linearity, repeatability, orientation in the magnetic field; and AAPM TG51 correction factor for voltage polarity and ion recombination. We found that these AAPM correction factors for the NE2571 chamber were not influenced by the magnetic field. Secondly, the influence of the permanent 1.5 T magnetic field on the NE2571 chamber reading was quantified. The reading is influenced by the magnetic field; therefore, a correction factor has been added. For the standardized setup used in this paper, the NE2571 chamber reading increases by 4.9% (± 0.2%) due to the transverse 1.5 T magnetic field. Dosimetry measurements in an MR-linac are feasible, if a setup-specific magnetic field correction factor (P1.5 T) for the charge reading is introduced. For the setup investigated in this paper, the P1.5 T has a value of 0.953.

  10. Towards reference dosimetry for the MR-linac: magnetic field correction of the ionization chamber reading.

    PubMed

    Smit, K; van Asselen, B; Kok, J G M; Aalbers, A H L; Lagendijk, J J W; Raaymakers, B W

    2013-09-01

    In the UMC Utrecht a prototype MR-linac has been installed. The system consists of a 6 MV Elekta (Crawley, UK) linear accelerator and a 1.5 T Philips (Best, The Netherlands) Achieva MRI system. This paper investigates the feasibility to correct the ionization chamber reading for the magnetic field within the dosimetry calibration method described by Almond et al (1999 Med. Phys. 26 1847-70). Firstly, the feasibility of using an ionization chamber in an MR-linac was assessed by investigating possible influences of the magnetic field on NE2571 Farmer-type ionization chamber characteristics: linearity, repeatability, orientation in the magnetic field; and AAPM TG51 correction factor for voltage polarity and ion recombination. We found that these AAPM correction factors for the NE2571 chamber were not influenced by the magnetic field. Secondly, the influence of the permanent 1.5 T magnetic field on the NE2571 chamber reading was quantified. The reading is influenced by the magnetic field; therefore, a correction factor has been added. For the standardized setup used in this paper, the NE2571 chamber reading increases by 4.9% (± 0.2%) due to the transverse 1.5 T magnetic field. Dosimetry measurements in an MR-linac are feasible, if a setup-specific magnetic field correction factor (P1.5 T) for the charge reading is introduced. For the setup investigated in this paper, the P1.5 T has a value of 0.953. PMID:23938362

  11. Towards reference dosimetry for the MR-linac: magnetic field correction of the ionization chamber reading

    NASA Astrophysics Data System (ADS)

    Smit, K.; van Asselen, B.; Kok, J. G. M.; Aalbers, A. H. L.; Lagendijk, J. J. W.; Raaymakers, B. W.

    2013-09-01

    In the UMC Utrecht a prototype MR-linac has been installed. The system consists of a 6 MV Elekta (Crawley, UK) linear accelerator and a 1.5 T Philips (Best, The Netherlands) Achieva MRI system. This paper investigates the feasibility to correct the ionization chamber reading for the magnetic field within the dosimetry calibration method described by Almond et al (1999 Med. Phys. 26 1847-70). Firstly, the feasibility of using an ionization chamber in an MR-linac was assessed by investigating possible influences of the magnetic field on NE2571 Farmer-type ionization chamber characteristics: linearity, repeatability, orientation in the magnetic field; and AAPM TG51 correction factor for voltage polarity and ion recombination. We found that these AAPM correction factors for the NE2571 chamber were not influenced by the magnetic field. Secondly, the influence of the permanent 1.5 T magnetic field on the NE2571 chamber reading was quantified. The reading is influenced by the magnetic field; therefore, a correction factor has been added. For the standardized setup used in this paper, the NE2571 chamber reading increases by 4.9% (± 0.2%) due to the transverse 1.5 T magnetic field. Dosimetry measurements in an MR-linac are feasible, if a setup-specific magnetic field correction factor (P1.5 T) for the charge reading is introduced. For the setup investigated in this paper, the P1.5 T has a value of 0.953.

  12. Molecular ionization of cyclohexanone in femtosecond laser fields: An application of ADK theory

    NASA Astrophysics Data System (ADS)

    Wang, Q. Q.; Mineo, H.; Wu, D.; Jin, M. X.; Chin, C. H.; Teranishi, Y.; Chao, S. D.; Ding, D.; Lin, S. H.

    2009-08-01

    The mechanisms of ionization and dissociation of cyclohexanone (C6H10O) in a 90 fs, 788 nm linearly polarized laser field ranging from 1013 to 1014 W/cm2 by a time-of-flight mass spectrometer (TOF-MS) have been investigated. The ion yields as a function of laser intensity have been measured experimentally. By comparison with the Ammosov-Delone-Krainov (ADK) theory based on a hydrogen-like model, the ionization mechanism of cyclohexanone in this intense femtosecond laser field has been understood. Considering the importance of molecular nuclear motions, we propose that the Franck-Condon (F-C) factor can provide the excess vibrational energy in the molecular ion. This energy is required for the decomposition of the molecular ion which finally results in the observed mass spectrum.

  13. Nonperturbative treatments of nonresonant multiphoton ionization of the hydrogen atom: weak field limit

    SciTech Connect

    Trombetta, F.; Basile, S.; Ferrante, G.

    1989-04-01

    A nonperturbative treatment of the multiphoton ionization of the hydrogen atom based on the S matrix and devised for nonresonant strong-field situations is analyzed in the weak-field limit. Comparisons are presented with other S matrices as well as other nonperturbative approaches. Our treatment is found to perform generally better than similar S-matrix treatments. The usual perturbative results are recovered provided that the photon wavelengths are sufficiently short and are off resonance with the atomic transitions. Important indications are obtained as to the role of the atomic structure, the relevance of the gauge consistency, and the reliability and improvement of the present nonperturbative treatment. The results represent a significant step toward an assessment of the S-matrix-based treatments of multiphoton ionization.

  14. Vacuum Ultraviolet Pulsed Field Ionization-Photoelectron and Infrared-Photoinduced Rydberg Ionization Study of trans-1,3-butadiene

    SciTech Connect

    Hou, Yu; Woo, H. K.; Wang, P.; Xing, X.; Ng, Cheuk-Yiu; Lau, Kai Chung

    2008-09-17

    The research described in this product was performed in part in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. The vacuum ultraviolet (VUV) laser pulsed field ionization-photoelectron (PFI-PE) spectrum of trans-1,3-butadiene (trans-CH2==CHCH==CH2+) has been measured in the region of 0–1700 cm-1 above its ionization energy (IE) to probe the vibrational modes vi + (i=1–18) of trans-CH2==CHCH==CH2 +. The high-frequency vibrational modes vi + (i=19, 22, and 23) of trans-CH2==CHCH==CH2 + have also been probed by the VUV-infrared-photoinduced Rydberg ionization (VUV-IR-PIRI) measurement. On the basis of the semiempirical simulation of the origin VUV-PFI-PE band, the IE(trans-CH2==CHCH==CH2) is determined to be 73 150.1±1.5 cm-1 (9.06946±0.00019 eV). This value has been used to benchmark the state-of-the-art theoretical IE prediction based on the CCSD(T,Full)/CBS procedures, the calculation of which is reported in the present study. The vibrational bands observed in the VUV-PFI-PE and VUV-IR-PIRI spectra were assigned based on ab initio anharmonic vibrational frequencies and Franck–Condon factor calculations for the photoionization transitions. Combining the VUV-PFI-PE and VUV-IR-PIRI measurements, 17 fundamental vibrational frequencies of trans-CH2==CHCH==CH2 + have been determined, including v1 +=182±3, v2 +=300±3, v3 +=428±3, v4 +=514±3, v5 +=554±5, v6 + =901±3, v7 +=928±5, v8 +=994±3, v

  15. Heating, ionization and upward discharges in the mesosphere due to intense quasi-electrostatic thundercloud fields

    NASA Technical Reports Server (NTRS)

    Pasko, Victor P.; Inan, Umran S.; Taranenko, Yuri N.; Bell, Timothy F.

    1995-01-01

    Quasi-electrostatic (QE) fields that temporarily exist at high altitudes following the sudden removal (e.g., by a lightning discharge) of thundercloud charge at low altitudes are found to significantly heat mesospheric electrons and produce ionization and light. The intensity, spatial extent, duration and spectra of optical emissions produced are consistent with the observed features of the Red Sprite type of upward discharges.

  16. Intelligent monitor functional model with ionization chamber for mixed nuclear radiation field measurements

    SciTech Connect

    Valcov, N.; Purghel, L.; Celarel, A.

    1998-12-31

    By using the statistical discrimination technique, the components of an ionization current, due to a mixed radiation field, may be simultaneously measured. A functional model, including a series manufactured gamma-ray ratemeter was done, as an intermediate step in the design of specialized nuclear instrumentation, in order to check the concept of statistical discrimination method. The obtained results are in good agreement with the estimations of the statistical discrimination method.

  17. NON-EQUILIBRIUM CHEMISTRY OF DYNAMICALLY EVOLVING PRESTELLAR CORES. II. IONIZATION AND MAGNETIC FIELD

    SciTech Connect

    Tassis, Konstantinos; Willacy, Karen; Yorke, Harold W.; Turner, Neal J.

    2012-07-20

    We study the effect that non-equilibrium chemistry in dynamical models of collapsing molecular cloud cores has on measurements of the magnetic field in these cores, the degree of ionization, and the mean molecular weight of ions. We find that OH and CN, usually used in Zeeman observations of the line-of-sight magnetic field, have an abundance that decreases toward the center of the core much faster than the density increases. As a result, Zeeman observations tend to sample the outer layers of the core and consistently underestimate the core magnetic field. The degree of ionization follows a complicated dependence on the number density at central densities up to 10{sup 5} cm{sup -3} for magnetic models and 10{sup 6} cm{sup -3} in non-magnetic models. At higher central densities, the scaling approaches a power law with a slope of -0.6 and a normalization which depends on the cosmic-ray ionization rate {zeta} and the temperature T as ({zeta}T){sup 1/2}. The mean molecular weight of ions is systematically lower than the usually assumed value of 20-30, and, at high densities, approaches a value of 3 due to the asymptotic dominance of the H{sup +}{sub 3} ion. This significantly lower value implies that ambipolar diffusion operates faster.

  18. Collisional and electric-field ionization of laser-prepared Rydberg states in an ion trap mass spectrometer

    SciTech Connect

    Ramsey, J.M.; Whitten, W.B.; Goeringer, D.E.; Buckley, B.T.

    1990-01-01

    Rydberg states of rubidium are selectively generated by one and two photon laser excitation in a quadrupole ion trap mass spectrometer. Collisional and electric-field ionization is investigated in trapping device. CCl{sub 4} is studied as a target for ionization of Rydberg states through electron attachment.

  19. The doubling dose of ionizing radiation for drosophilia, mice, and humans

    SciTech Connect

    Neel, J.V.

    1997-10-01

    It is part of the lore of radiation genetics that Drosophila is much more resistant to the genetic effects of radiation than the mouse. For across-species comparisons and risk setting, an estimate of the mutational doubling dose (DD) for human germ cells (immature oocytes and spermatogonia) was approximately 2 Sv equivalents. Neel and Lewis suggested that the population DD for mouse spermatogonia was approximately 1.3 Sv equivalents, with the rate for immature oocytes even higher, because of the failure to recover mutations in the late litters of radiated females. With the incorporation of cluster mutations into the mouse DD estimate, as discussed by Selby here last year, these mouse DD can only go higher. Given the relative agreement between these two mammals, I have now reviewed all the pertinent Drosophila data, the results of which review will be presented. There are many difficulties to combining the results of the various relevant Drosophila studies, but, to a first approximation, a population DD of approximately 4 Gy emerges. There is, thus, given the uncertainties in such estimates, agreement within a factor of 2 between the three species, with such different life histories. The coincidence, to what extent a simple function of target size, and to what extent the result of an evolutionary adjustment by virtue of which induced mutation rates (i.e., repair inefficiencies) are proportional to generation length rather than absolute time.

  20. Double-electron capture by highly-ionized atoms isolated at very low energy

    NASA Astrophysics Data System (ADS)

    Fogwell Hoogerheide, Shannon; Dreiling, Joan M.; Sahiner, Arda; Tan, Joseph N.

    2016-05-01

    Charge exchange with background gases, also known as electron capture processes, is important in the study of comets, controlled fusion energy, anti-matter atoms, and proposed one-electron ions in Rydberg states. However, there are few experiments in the very low energy regime that could be useful for further theoretical development. At NIST, highly-charged ions extracted from an electron-beam ion trap can be isolated with energy < 10 eV in a compact Penning trap. By controlling the background gas pressure and composition, the charge exchange rates can be studied. Fully stripped neon or other ions are held in the trap for varying lengths of time and allowed to interact with different background gases at multiple pressures. The ions are then pulsed to a time-of-flight detector to count the population of each charge state. Analysis using a system of rate equations yields information about the ion cloud expansion and single-electron capture rates. A substantial amount of double-electron capture is also observed. We present the relative rates and discuss the error budget. SFH and JMD were funded by National Research Council Research Associateship Awards during some of this work.

  1. High-resolution pulsed-field ionization photoelectron spectroscopy using multi-bunch synchrotron radiation

    SciTech Connect

    Hsu, C.W.; Evans, M.; Ng, C.Y.; Heimann, P.

    1997-04-01

    BL9.0.2.2 is the newly constructed experimental End Station 2 at the Chemical Dynamics Beamline 9.0.2 of the Advanced Light Source (ALS). It is dedicated to the high resolution photoionization study of molecules of interest to atmospheric and combustion chemistry. This End Station is equipped with a high resolution scanning monochromator, which has been demonstrated to have a world record resolution of E/{delta}E=70,000. Taking the advantage of the high resolution ALS light, the authors have improved the energy resolution in threshold photoelectron spectroscopy (TPES) to 0.8 meV. The TPES is a popular technique for photoionization experiments at all synchrotron radiation facilities due to its high energy resolution as compared to that of traditional photoelectron spectroscopy (PES). TPES achieves higher energy resolution by preferentially detecting near zero kinetic energy photoelectrons resulting from threshold photoionization. However, the spectra obtained from the TPES technique generally are complicated by the simultaneous detection of electrons with nonzero kinetic energy, which are not fully discriminated against. On the other hand, the spectra obtained from pulsed field ionization photoelectron spectroscopy (PFI-PES) are completely free of the contamination from kinetic electrons. The PFI-PE technique basically involves the detection of the photoelectrons from field ionization of the very high-n Rydberg states, a few cm{sup {minus}1} below the ionization energy (IE), by applying a delayed pulsed electric field. Within a delay of a few microseconds, all the prompt electrons formed from direct ionization will escape from the photoionization region and will not be collected. The authors have recently overcome problems with energy resolution of an electron time-of-flight technique, and incorporated the PFI-PE technique with multi-bunch VUV synchrotron radiation.

  2. Melatonin sensitizes human breast cancer cells to ionizing radiation by downregulating proteins involved in double-strand DNA break repair.

    PubMed

    Alonso-González, Carolina; González, Alicia; Martínez-Campa, Carlos; Gómez-Arozamena, José; Cos, Samuel

    2015-03-01

    Radiation and adjuvant endocrine therapy are nowadays considered a standard treatment option after surgery in breast cancer. Melatonin exerts oncostatic actions on human breast cancer cells. In the current study, we investigated the effects of a combination of radiotherapy and melatonin on human breast cancer cells. Melatonin (1 mm, 10 μm and 1 nm) significantly inhibited the proliferation of MCF-7 cells. Radiation alone inhibited the MCF-7 cell proliferation in a dose-dependent manner. Pretreatment of breast cancer cells with melatonin 1 wk before radiation led to a significantly greater decrease of MCF-7 cell proliferation compared with radiation alone. Melatonin pretreatment before radiation also decreased G2 -M phase arrest compared with irradiation alone, with a higher percentage of cells in the G0 -G1 phase and a lower percentage of cells in S phase. Radiation alone diminished RAD51 and DNA-protein kinase (PKcs) mRNA expression, two main proteins involved in double-strand DNA break repair. Treatment with melatonin for 7 days before radiation led to a significantly greater decrease in RAD51 and DNA-PKcs mRNA expression compared with radiation alone. Our findings suggest that melatonin pretreatment before radiation sensitizes breast cancer cells to the ionizing effects of radiation by decreasing cell proliferation, inducing cell cycle arrest and downregulating proteins involved in double-strand DNA break repair. These findings may have implications for designing clinical trials using melatonin and radiotherapy. PMID:25623566

  3. Effect of the ionizing radiation on the rain-time atmospheric electric field

    NASA Astrophysics Data System (ADS)

    Yamauchi, Masatoshi; Takeda, Masahiko; Makino, Masahiko; Owada, Takeshi

    2013-04-01

    The atmospheric electric field, or potential gradient (PG) at Kakioka, 150 southwest of the Fukushima Nuclear Power Plant (NPP) shows peculiar behaviors after the accident, March 2012 due to the conductivity enhancement in the air by the ionizing radiation. This means that the PG provides significant information on the dynamics of the radioactive materials. During last EGU assembly 2012, we showed that the fine-weather PG decreased by one-two orders of magnitudes at the arrival of the radioactive plume, and that the PG recovered in various way depending on various types of re-suspension processes in addition to the physical decay of the deposited radioactive materials. We extended this work to the rain-time PG, which is very simple because of high variability of the PG depending on the cloud types and distribution. We yet found a statistical difference between rain-time PGs before and after the Fukushima NPP Accident: one-hour averaged rain-time PG during the first 45 days after the accident is not as much scattered to the negative side as those during the same period of different years or during 40 days before accident. Further examination of one-minute averaged data (1 Hz sampling) during the second half March for 2006-2012 revealed that this difference comes from short time-spans of negative peaks rather than the peak value after the accident compared to those before the accident. On the other hand, characteristics of positive peaks (cloud without rain) are unchanged. The results suggest either (1) the effect on the local charges in the rain cloud is narrowed under high dose of ionized radiation, making positive charges in the cloud less shielded by the negative charges, or (2) negative charge of ionized aerosol decays much faster under higher dose of ionized radiation due to the shortened time constant of the ionized aerosol (? 1-?, where ? is the atmospheric electric conductivity).

  4. The ionized electron return phenomenon of Rydberg atom in crossed-fields

    NASA Astrophysics Data System (ADS)

    Dong, Chengwei; Wang, Peijie; Du, Mengli; Uzer, Turgay; Lan, Yueheng

    2016-05-01

    Rydberg atom is highly excited with one valence electron being in a high quantum state, which is very far away from the nucleus. The energy level is similar to that of the hydrogen atom. Introducing externally perpendicular electric and magnetic fields breaks the rotation symmetry and the traditional view is that the ionized electron crosses from the bound into the unbound region and will never return. However, we find that when the field is strong enough, the electron does not move off to infinity and there is a certain possibility of return. Three new periodic orbits are found by the variational method and the physical significance of the phenomenon is also discussed.

  5. Development of a compact neutron source based on field ionization processes

    SciTech Connect

    Persaud, Arun; Allen, Ian; Dickinson, Michael R.; Schenkel, Thomas; Kapadia, Rehan; Takei, Kuniharu; Javey, Ali

    2010-11-25

    The authors report on the use of carbon nanofiber nanoemitters to ionize deuterium atoms for the generation of neutrons in a deuterium-deuterium reaction in a preloaded target. Acceleration voltages in the range of 50-80 kV are used. Field emission of electrons is investigated to characterize the emitters. The experimental setup and sample preparation are described and first data of neutron production are presented. Ongoing experiments to increase neutron production yields by optimizing the field emitter geometry and surface conditions are discussed.

  6. Threshold for Thermal Ionization of an Aluminum Surface by Pulsed Megagauss Magnetic Field

    SciTech Connect

    Awe, T. J.; Bauer, B. S.; Fuelling, S.; Siemon, R. E.

    2010-01-22

    The first measurement of the threshold for thermal ionization of the surface of thick metal by pulsed magnetic field (B) is reported. Thick aluminum - with depth greater than the magnetic skin layer - was pulsed with partial derivB/partial derivt from 30-80 MG/mus. Novel loads avoided nonthermal plasma (from electron avalanche, or energetic particles or photons from arcs). Thermal plasma forms from 6061-alloy aluminum when the surface magnetic field reaches 2.2 MG, in qualitative agreement with numerical simulation results by Garanin et al.[J. Appl. Mech. Tech. Phys. 46, 153 (2005)].

  7. Electric and magnetic field measurements inside a high-velocity neutral beam undergoing ionization

    NASA Technical Reports Server (NTRS)

    Kelley, M. C.; Swenson, C. M.; Brenning, N.; Baker, K.; Pfaff, R.

    1991-01-01

    Vector electric field measurements were made inside two ionizing, high-velocity streams of barium atoms in the earth's ionosphere, and a variety of electrical phenomena across the frequency spectrum are reported. A very large quasi-dc electric field was detected antiparallel to the beam velocity at a roughly 45 deg angle with the magnetic field B0. A very large component of E is found parallel to B0. The fluctuating electric fields are also quite large, of the same order of magnitude as the quasi-dc pulse. The wave energy maximizes at frequencies below the barium lower hybrid frequency and includes strong signatures of the oxygen cyclotron frequency. Measurements made on a subpayload separated across B0 by several hundred meters and along B0 by several km do not show the large pulse. Very large amplitude magnetic field fluctuations were observed in both bursts.

  8. Angle-dependent strong-field molecular ionization rates with tuned range-separated time-dependent density functional theory

    NASA Astrophysics Data System (ADS)

    Sissay, Adonay; Abanador, Paul; Mauger, François; Gaarde, Mette; Schafer, Kenneth J.; Lopata, Kenneth

    2016-09-01

    Strong-field ionization and the resulting electronic dynamics are important for a range of processes such as high harmonic generation, photodamage, charge resonance enhanced ionization, and ionization-triggered charge migration. Modeling ionization dynamics in molecular systems from first-principles can be challenging due to the large spatial extent of the wavefunction which stresses the accuracy of basis sets, and the intense fields which require non-perturbative time-dependent electronic structure methods. In this paper, we develop a time-dependent density functional theory approach which uses a Gaussian-type orbital (GTO) basis set to capture strong-field ionization rates and dynamics in atoms and small molecules. This involves propagating the electronic density matrix in time with a time-dependent laser potential and a spatial non-Hermitian complex absorbing potential which is projected onto an atom-centered basis set to remove ionized charge from the simulation. For the density functional theory (DFT) functional we use a tuned range-separated functional LC-PBE*, which has the correct asymptotic 1/r form of the potential and a reduced delocalization error compared to traditional DFT functionals. Ionization rates are computed for hydrogen, molecular nitrogen, and iodoacetylene under various field frequencies, intensities, and polarizations (angle-dependent ionization), and the results are shown to quantitatively agree with time-dependent Schrödinger equation and strong-field approximation calculations. This tuned DFT with GTO method opens the door to predictive all-electron time-dependent density functional theory simulations of ionization and ionization-triggered dynamics in molecular systems using tuned range-separated hybrid functionals.

  9. Angle-dependent strong-field molecular ionization rates with tuned range-separated time-dependent density functional theory.

    PubMed

    Sissay, Adonay; Abanador, Paul; Mauger, François; Gaarde, Mette; Schafer, Kenneth J; Lopata, Kenneth

    2016-09-01

    Strong-field ionization and the resulting electronic dynamics are important for a range of processes such as high harmonic generation, photodamage, charge resonance enhanced ionization, and ionization-triggered charge migration. Modeling ionization dynamics in molecular systems from first-principles can be challenging due to the large spatial extent of the wavefunction which stresses the accuracy of basis sets, and the intense fields which require non-perturbative time-dependent electronic structure methods. In this paper, we develop a time-dependent density functional theory approach which uses a Gaussian-type orbital (GTO) basis set to capture strong-field ionization rates and dynamics in atoms and small molecules. This involves propagating the electronic density matrix in time with a time-dependent laser potential and a spatial non-Hermitian complex absorbing potential which is projected onto an atom-centered basis set to remove ionized charge from the simulation. For the density functional theory (DFT) functional we use a tuned range-separated functional LC-PBE*, which has the correct asymptotic 1/r form of the potential and a reduced delocalization error compared to traditional DFT functionals. Ionization rates are computed for hydrogen, molecular nitrogen, and iodoacetylene under various field frequencies, intensities, and polarizations (angle-dependent ionization), and the results are shown to quantitatively agree with time-dependent Schrödinger equation and strong-field approximation calculations. This tuned DFT with GTO method opens the door to predictive all-electron time-dependent density functional theory simulations of ionization and ionization-triggered dynamics in molecular systems using tuned range-separated hybrid functionals.

  10. Angle-dependent strong-field molecular ionization rates with tuned range-separated time-dependent density functional theory.

    PubMed

    Sissay, Adonay; Abanador, Paul; Mauger, François; Gaarde, Mette; Schafer, Kenneth J; Lopata, Kenneth

    2016-09-01

    Strong-field ionization and the resulting electronic dynamics are important for a range of processes such as high harmonic generation, photodamage, charge resonance enhanced ionization, and ionization-triggered charge migration. Modeling ionization dynamics in molecular systems from first-principles can be challenging due to the large spatial extent of the wavefunction which stresses the accuracy of basis sets, and the intense fields which require non-perturbative time-dependent electronic structure methods. In this paper, we develop a time-dependent density functional theory approach which uses a Gaussian-type orbital (GTO) basis set to capture strong-field ionization rates and dynamics in atoms and small molecules. This involves propagating the electronic density matrix in time with a time-dependent laser potential and a spatial non-Hermitian complex absorbing potential which is projected onto an atom-centered basis set to remove ionized charge from the simulation. For the density functional theory (DFT) functional we use a tuned range-separated functional LC-PBE*, which has the correct asymptotic 1/r form of the potential and a reduced delocalization error compared to traditional DFT functionals. Ionization rates are computed for hydrogen, molecular nitrogen, and iodoacetylene under various field frequencies, intensities, and polarizations (angle-dependent ionization), and the results are shown to quantitatively agree with time-dependent Schrödinger equation and strong-field approximation calculations. This tuned DFT with GTO method opens the door to predictive all-electron time-dependent density functional theory simulations of ionization and ionization-triggered dynamics in molecular systems using tuned range-separated hybrid functionals. PMID:27608987

  11. Electron residual energy due to stochastic heating in field-ionized plasma

    SciTech Connect

    Khalilzadeh, Elnaz; Yazdanpanah, Jam Chakhmachi, Amir; Jahanpanah, Jafar; Yazdani, Elnaz

    2015-11-15

    The electron residual energy originated from the stochastic heating in under-dense field-ionized plasma is investigated here. Initially, the optical response of plasma is modeled by using two counter-propagating electromagnetic waves. In this case, the solution of motion equation of a single electron indicates that by including the ionization, the electron with higher residual energy compared with that without ionization could be obtained. In agreement with chaotic nature of the motion, it is found that the electron residual energy will be significantly changed by applying a minor change in the initial conditions. Extensive kinetic 1D-3V particle-in-cell simulations have been performed in order to resolve full plasma reactions. In this way, two different regimes of plasma behavior are observed by varying the pulse length. The results indicate that the amplitude of scattered fields in a proper long pulse length is high enough to act as a second counter-propagating wave and trigger the stochastic electron motion. On the contrary, the analyses of intensity spectrum reveal the fact that the dominant scattering mechanism tends to Thomson rather than Raman scattering by increasing the pulse length. A covariant formalism is used to describe the plasma heating so that it enables us to measure electron temperature inside and outside of the pulse region.

  12. Strong-field ionization inducing multi-electron-hole coherence probed by attosecond pulses

    NASA Astrophysics Data System (ADS)

    Zhao, Jing; Yuan, Jianmin; Zhao, Zengxiu

    2016-05-01

    Recent advances in attosecond spectroscopy has enabled resolving electron-hole dynamics in real time. The correlated electron-hole dynamics and the resulted coherence are directly related to how fast the ionization is completed. How the laser-induced electron-hole coherence evolves and whether it can be utilized to probe the core dynamics are among the key questions in attosecond physics or even attosecond chemistry. In this work, we propose a new scenario to apply IR-pump-XUV-probe schemes to resolving strong field ionization induced and attosecond pulse driven electron-hole dynamics and coherence in real time. The coherent driving of both the infrared laser and the attosecond pulse correlates the dynamics of the core-hole and the valence-hole which leads to the otherwise forbidden absorption and emission of XUV photon. An analytical model is developed based on the strong-field approximation by taking into account of the essential multielectron configurations. The emission spectra from the core-valence transition and the core-hole recombination are found modulating strongly as functions of the time delay between the two pulses, which provides a unique insight into the instantaneous ionization and the interplay of the multi-electron-hole coherence.

  13. Pre-Exposure to Ionizing Radiation Stimulates DNA Double Strand Break End Resection, Promoting the Use of Homologous Recombination Repair

    PubMed Central

    Oike, Takahiro; Okayasu, Ryuichi; Murakami, Takeshi; Nakano, Takashi; Shibata, Atsushi

    2015-01-01

    The choice of DNA double strand break (DSB) repair pathway is determined at the stage of DSB end resection. Resection was proposed to control the balance between the two major DSB repair pathways, homologous recombination (HR) and non-homologous end joining (NHEJ). Here, we examined the regulation of DSB repair pathway choice at two-ended DSBs following ionizing radiation (IR) in G2 phase of the cell cycle. We found that cells pre-exposed to low-dose IR preferred to undergo HR following challenge IR in G2, whereas NHEJ repair kinetics in G1 were not affected by pre-IR treatment. Consistent with the increase in HR usage, the challenge IR induced Replication protein A (RPA) foci formation and RPA phosphorylation, a marker of resection, were enhanced by pre-IR. However, neither major DNA damage signals nor the status of core NHEJ proteins, which influence the choice of repair pathway, was significantly altered in pre-IR treated cells. Moreover, the increase in usage of HR due to pre-IR exposure was prevented by treatment with ATM inhibitor during the incubation period between pre-IR and challenge IR. Taken together, the results of our study suggest that the ATM-dependent damage response after pre-IR changes the cellular environment, possibly by regulating gene expression or post-transcriptional modifications in a manner that promotes resection. PMID:25826455

  14. Ionizations and fragmentations of benzene, methylbenzene, and chlorobenzene in strong IR and UV laser fields

    NASA Astrophysics Data System (ADS)

    Zhang, Jun-Feng; Lü, Hang; Zuo, Wan-Long; Xu, Hai-Feng; Jin, Ming-Xing; Ding, Da-Jun

    2015-11-01

    Ionizations and fragmentations of benzene, methylbenzene, and chlorobenzene are studied in linearly polarized 50-fs, 800-nm and 400-nm strong laser fields using a time-of-flight mass spectrometer. It is shown that at low laser intensity, the parent ions are dominant for any one of the molecules in an 800-nm strong laser field, while extensive fragmentation is observed in a 400-nm laser field, which can be understood by the resonant photon absorption of molecular cations. The ratio of the yield of the parent ion to the yield of the total ion for each molecule is measured as a function of laser intensity in a range from 1.0 × 1013 W/cm2 to 4.0 × 1014 W/cm2, in either the 800-nm or 400-nm laser field. The results show that the fragmentation of the aromatic molecules increases significantly as the laser intensity is increased. Possible mechanisms for fragmentation in strong laser fields are discussed. Finally, the saturation intensity of ionization of the titled molecules is also determined. Project supported by the National Basic Research Program of China (Grant No. 2013CB922200) and the National Natural Science Foundation of China (Grant No. 11274140).

  15. Electric field and ionization-gradient effects on inertial-confinement-fusion implosions

    NASA Astrophysics Data System (ADS)

    Amendt, P. A.; Milovich, J. L.; Wilks, S. C.; Li, C. K.; Petrasso, R. D.; Séguin, F. H.

    2009-12-01

    The generation of strong, self-generated electric fields (108-109 V m-1) in direct-drive, inertial-confinement-fusion capsules has been reported (Li et al 2008 Phys. Rev. Lett. 100 225001). Various models are considered herein to explain the observed electric field evolution, including the potential roles of electron pressure gradients near the fuel-pusher interface and plasma polarization effects that are predicted to occur across shock fronts (Zel'dovich and Raizer 2002 Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Mineola, NY: Dover) p 522). In the latter case, strong fields in excess of 1010 V m-1 and localized to 10-100 nm may be consistent with the data obtained from proton radiography. Such field strengths are similar in magnitude to the criterion for runaway electron generation that could lead to plasma kinetic effects and potential shock-front broadening. The observed electric field generation may also be partly due to plasma ionization gradients localized near the fuel-pusher interface. A model is proposed that allows for differing electron- and ion-density gradient scale lengths in the presence of ionization gradients while preserving overall charge neutrality. Such a redistribution of electrons compared with standard, charge-neutral, single-fluid radiation-hydrodynamics modelling may affect the interpretation of imploded-core x-ray diagnostics as well as alter alpha particle deposition in the thermonuclear fuel.

  16. Superelastic rescattering in single ionization of helium in strong laser fields

    NASA Astrophysics Data System (ADS)

    Li, Zhi-Chao; Jaron-Becker, Agnieszka; He, Feng

    2016-10-01

    Rescattering is a central process in ultrafast physics, in which an electron, freed from an atom and accelerated by a laser field, loses its energy by producing high-order harmonics or multiple ionization. Here, taking helium as a prototypical atom, we demonstrate numerically superelastic rescattering in single ionization of an atom. In this scenario, the absorption of a high-energy extreme ultraviolet photon leads to emission of one electron and excitation of the second one into its first excited state, forming He+*. A time-delayed midinfrared laser pulse accelerates the freed electron, drives it back to the He+*, and induces the transition of the bound electron to the ground state of the ion. Identification of the superelastic rescattering process in the photoelectron momentum spectra provides a means to determine the photoelectron momentum at the time of rescattering without using any information of the time-delayed probe laser pulse.

  17. Respiratory Monitoring by a Field Ionization Sensor Based on Trichel Pulses

    PubMed Central

    Deng, Fucheng; Ye, Lingyun; Song, Kaichen

    2014-01-01

    In this paper, a novel method for respiratory monitoring is presented. The method is based on Trichel pulses (TPs) using a simple field ionization sensor which consists of a needle electrode and a plate electrode. Experiments have been conducted to demonstrate that different respiratory patterns, including normal, ultra-fast, deep breaths, and apnea could be easily monitored in real time by detecting the changes in the TP frequency. The vital capacity could also be assessed by calculating the variation of TP frequency. It is found that the operation principle of the proposed sensor is based on the effects of breath airflow and the atomized water in exhaled air on the TP frequency by changing the ionization process and the dynamics of charged particles in the short gap. The influences of applied voltage and ambient parameters have also been investigated. PMID:24926694

  18. Bio-effects of non-ionizing electromagnetic fields in context of cancer therapy.

    PubMed

    Saliev, Timur; Tachibana, Katsuro; Bulanin, Denis; Mikhalovsky, Sergey; Whitby, Ray D L

    2014-01-01

    Bio-effects mediated by non-ionizing electromagnetic fields (EMF) have become a hot topic of research in the last decades. This interest has been triggered by a growing public concern about the rapid expansion of telecommunication devices and possible consequences of their use on human health. Despite a feasibility study of potential negative impacts, the therapeutic advantages of EMF could be effectively harnessed for the treatment of cancer and other diseases. This review aims to examine recent findings relating to the mechanisms of action underlying the bio-effects induced by non-ionizing EMF. The potential of non-thermal and thermal effects is discussed in the context of possible applications for the induction of apoptosis, formation of reactive oxygen species, and increase of membrane permeability in malignant cells. A special emphasis has been put on the combination of EMF with magnetic nano-particles and ultrasound for cancer treatment. The review encompasses both human and animal studies.

  19. Ionization effects in the generation of wake-fields by ultra-high contrast femtosecond laser pulses in argon gas

    NASA Astrophysics Data System (ADS)

    Makito, K.; Zhidkov, A.; Hosokai, T.; Shin, J.-H.; Masuda, S.; Kodama, R.

    2012-10-01

    Difference in mechanisms of wake-field generation and electron self-injection by high contrast femtosecond laser pulses in an initially neutral Argon gas and in pre-ionized plasma without ionization is studied via 2D particle-in-cell simulations including optical ionization of the media. For shorter laser pulses, 40 fs, ionization results only in an increase of the charge of accelerated electrons by factor of ˜3 with qualitatively the same energy distribution. For longer pulses, 80 fs, a more stable wake field structure is observed in the neutral gas with the maximal energy of the accelerated electrons exceeding that in the fixed density plasma. In higher density Argon, an ionizing laser pulse converts itself to a complex system of solitons at a self-induced, critical density ramp.

  20. Ionization effects in the generation of wake-fields by ultra-high contrast femtosecond laser pulses in argon gas

    SciTech Connect

    Makito, K.; Shin, J.-H.; Zhidkov, A.; Hosokai, T.; Masuda, S.; Kodama, R.

    2012-10-15

    Difference in mechanisms of wake-field generation and electron self-injection by high contrast femtosecond laser pulses in an initially neutral Argon gas and in pre-ionized plasma without ionization is studied via 2D particle-in-cell simulations including optical ionization of the media. For shorter laser pulses, 40 fs, ionization results only in an increase of the charge of accelerated electrons by factor of {approx}3 with qualitatively the same energy distribution. For longer pulses, 80 fs, a more stable wake field structure is observed in the neutral gas with the maximal energy of the accelerated electrons exceeding that in the fixed density plasma. In higher density Argon, an ionizing laser pulse converts itself to a complex system of solitons at a self-induced, critical density ramp.

  1. STORAGE RING CROSS SECTION MEASUREMENTS FOR ELECTRON IMPACT SINGLE AND DOUBLE IONIZATION OF Fe{sup 13+} AND SINGLE IONIZATION OF Fe{sup 16+} AND Fe{sup 17+}

    SciTech Connect

    Hahn, M.; Novotny, O.; Savin, D. W.; Becker, A.; Grieser, M.; Krantz, C.; Repnow, R.; Wolf, A.; Bernhardt, D.; Mueller, A.; Schippers, S.; Spruck, K.; Lestinsky, M.

    2013-04-10

    We report measurements of electron impact ionization for Fe{sup 13+}, Fe{sup 16+}, and Fe{sup 17+} over collision energies from below threshold to above 3000 eV. The ions were recirculated using an ion storage ring. Data were collected after a sufficiently long time that essentially all the ions had relaxed radiatively to their ground state. For single ionization of Fe{sup 13+}, we find that previous single pass experiments are more than 40% larger than our results. Compared to our work, the theoretical cross section recommended by Arnaud and Raymond is more than 30% larger, while that of Dere is about 20% greater. Much of the discrepancy with Dere is due to the theory overestimating the contribution of excitation-autoionization via n = 2 excitations. Double ionization of Fe{sup 13+} is dominated by direct ionization of an inner shell electron accompanied by autoionization of a second electron. Our results for single ionization of Fe{sup 16+} and Fe{sup 17+} agree with theoretical calculations to within the experimental uncertainties.

  2. Standing striations as a series of double layers induced in a positive column by a transverse magnetic field

    SciTech Connect

    Toma, M.; Biborosch, L.; Curteanu, M.

    1995-12-31

    It was experimentally proved that the action of a static transverse magnetic field (TMF) on a cylindrical positive column (PC) can change its internal structure. As a result, a succession of luminous structures known as standing striations are observed. The excitation of striations in a PC (frequently in molecular gases) is usually explained taking into account the periodic changes in ionised rate. It is known that the ionization rate is a strong function of the electron temperature (more precisely, kinetic energy). Thus, the standing striations being the spatial periodic change in the ionization rate, are affected by electron velocity. It can easily observed that in a striated PC there is a periodic change in light intensity. This means that beside ionization processes there is also a periodic change in excitation processes. It was showed that standing striations are, in fact spatial sequences of space charge structures known as double layers (Dls). In the last time it was proved that there is a direct connection between the excitation processes and the ordered spatial arrangement of the electric charges inside the DLs. The aim of this paper is to emphasize that the appearance of standing striations can be adequately described by the model of DL generation in a collisional plasma, that takes into account the electron-neutral excitation processes.

  3. Improving the accuracy of ionization chamber dosimetry in small megavoltage x-ray fields

    NASA Astrophysics Data System (ADS)

    McNiven, Andrea L.

    The dosimetry of small x-ray fields is difficult, but important, in many radiation therapy delivery methods. The accuracy of ion chambers for small field applications, however, is limited due to the relatively large size of the chamber with respect to the field size, leading to partial volume effects, lateral electronic disequilibrium and calibration difficulties. The goal of this dissertation was to investigate the use of ionization chambers for the purpose of dosimetry in small megavoltage photon beams with the aim of improving clinical dose measurements in stereotactic radiotherapy and helical tomotherapy. A new method for the direct determination of the sensitive volume of small-volume ion chambers using micro computed tomography (muCT) was investigated using four nominally identical small-volume (0.56 cm3) cylindrical ion chambers. Agreement between their measured relative volume and ionization measurements (within 2%) demonstrated the feasibility of volume determination through muCT. Cavity-gas calibration coefficients were also determined, demonstrating the promise for accurate ion chamber calibration based partially on muCT. The accuracy of relative dose factor measurements in 6MV stereotactic x-ray fields (5 to 40mm diameter) was investigated using a set of prototype plane-parallel ionization chambers (diameters of 2, 4, 10 and 20mm). Chamber and field size specific correction factors ( CSFQ ), that account for perturbation of the secondary electron fluence, were calculated using Monte Carlo simulation methods (BEAM/EGSnrc simulations). These correction factors (e.g. CSFQ = 1.76 (2mm chamber, 5mm field) allow for accurate relative dose factor (RDF) measurement when applied to ionization readings, under conditions of electronic disequilibrium. With respect to the dosimetry of helical tomotherapy, a novel application of the ion chambers was developed to characterize the fan beam size and effective dose rate. Characterization was based on an adaptation of the

  4. Spatially resolved integral field spectroscopy of the ionized gas in IZw18

    NASA Astrophysics Data System (ADS)

    Kehrig, C.; Vílchez, J. M.; Pérez-Montero, E.; Iglesias-Páramo, J.; Hernández-Fernández, J. D.; Duarte Puertas, S.; Brinchmann, J.; Durret, F.; Kunth, D.

    2016-07-01

    We present a detailed 2D study of the ionized ionized interstellar medium (ISM) of IZw18 using new Potsdam Multi-Aperture Spectrophotometer-integral field unit (PMAS-IFU) optical observations. IZw18 is a high-ionization galaxy which is among the most metal-poor starbursts in the local Universe. This makes IZw18 a local benchmark for understanding the properties most closely resembling those prevailing at distant starbursts. Our IFU aperture (˜1.4 × 1.4 kpc2) samples the entire IZw18 main body and an extended region of its ionized gas. Maps of relevant emission lines and emission line ratios show that higher-excitation gas is preferentially located close to the north-west knot and thereabouts. We detect a Wolf-Rayet feature near the north-west knot. We derive spatially resolved and integrated physical-chemical properties for the ionized gas in IZw18. We find no dependence between the metallicity indicator R23 and the ionization parameter (as traced by [O III]/[O II]) across IZw18. Over ˜0.30 kpc2, using the [O III] λ4363 line, we compute Te[O III] values (˜15 000-25 000 K), and oxygen abundances are derived from the direct determinations of Te[O III]. More than 70 per cent of the higher-Te[O III] (≳22 000 K) spaxels are He IIλ4686-emitting spaxels too. From a statistical analysis, we study the presence of variations in the ISM physical-chemical properties. A galaxy-wide homogeneity, across hundreds of parsecs, is seen in O/H. Based on spaxel-by-spaxel measurements, the error-weighted mean of 12 + log(O/H) = 7.11 ± 0.01 is taken as the representative O/H for IZw18. Aperture effects on the derivation of O/H are discussed. Using our IFU data we obtain, for the first time, the IZw18 integrated spectrum.

  5. Cross-Field Current Instabilities in Thin Ionization Layers and the Enhanced Aurora

    SciTech Connect

    Jay R. Johnson and Hideo Okuda

    2008-05-20

    Nearly half of the time, auroral displays exhibit thin, bright layers known as \\enhanced aurora." There is a substantial body of evidence that connects these displays with thin, dense, heavy ion layers in the E-region. Based on the spectral characteristics of the enhanced layers, it is believed that they result when wave-particle interaction heats ambient electrons to energies at or just above the 17 eV ionization energy of N2. While there are several possible instabilities that could produce suprathermal electrons in thin layers, there has been no clear theoretical investigation which examines in detail how wave instabilities in the thin ionization layers could develop and produce the suprathermal electrons. We examine instabilities which would occur in thin, dense, heavy ion layers using extensive analytical analysis combined with particle simulations. We analyze a cross field current instability that is found to be strongly unstable in the heavy ion layers. Electrostatic simulations show that substantial heating of the ambient electrons occurs with energization at or above the N2 ionization energy.

  6. Plasma ionization source for atmospheric pressure mass spectrometry imaging using near-field optical laser ablation.

    PubMed

    Nudnova, Maryia M; Sigg, Jérôme; Wallimann, Pascal; Zenobi, Renato

    2015-01-20

    Mass spectrometry imaging (MSI) at ambient pressures with submicrometer resolution is challenging, due to the very low amount of material available for mass spectrometric analysis. In this work, we present the development and characterization of a method for MSI based on pulsed laser ablation via a scanning near-field optical microscopy (SNOM) aperture tip. SNOM allows laser ablation of material from surfaces with submicrometer spatial resolution, which can be ionized for further chemical analysis with MS. Efficient ionization is realized here with a custom-built capillary plasma ionization source. We show the applicability of this setup for mass spectrometric analysis of three common MALDI matrices, α-4-hydroxycyanocinnamic acid, 3-aminobenzoic acid, and 2,5-dihydroxybenzoic acid. Although the ultimate goal has been to optimize sensitivity for detecting material ablated from submicrometer diameter craters, the effective lateral resolution is currently limited by the sensitivity of the MS detection system. In our case, the sensitivity of the MS was about 1 fmol, which allowed us to achieve a spatial resolution of 2 μm. We also characterize the analytical figures of merit of our method. In particular, we demonstrate good reproducibility, a repetition rate in the range of only a few seconds, and we determined the amount of substance required to achieve optimal resolution and sensitivity. Moreover, the sample topography is available from SNOM scans, a parameter that is missing in common MSI methods.

  7. Calculation of correction factors for ionization chamber measurements with small fields in low-density media.

    PubMed

    Pisaturo, O; Pachoud, M; Bochud, F O; Moeckli, R

    2012-07-21

    The quantity of interest for high-energy photon beam therapy recommended by most dosimetric protocols is the absorbed dose to water. Thus, ionization chambers are calibrated in absorbed dose to water, which is the same quantity as what is calculated by most treatment planning systems (TPS). However, when measurements are performed in a low-density medium, the presence of the ionization chamber generates a perturbation at the level of the secondary particle range. Therefore, the measured quantity is close to the absorbed dose to a volume of water equivalent to the chamber volume. This quantity is not equivalent to the dose calculated by a TPS, which is the absorbed dose to an infinitesimally small volume of water. This phenomenon can lead to an overestimation of the absorbed dose measured with an ionization chamber of up to 40% in extreme cases. In this paper, we propose a method to calculate correction factors based on the Monte Carlo simulations. These correction factors are obtained by the ratio of the absorbed dose to water in a low-density medium □D(w,Q,V1)(low) averaged over a scoring volume V₁ for a geometry where V₁ is filled with the low-density medium and the absorbed dose to water □D(w,QV2)(low) averaged over a volume V₂ for a geometry where V₂ is filled with water. In the Monte Carlo simulations, □D(w,QV2)(low) is obtained by replacing the volume of the ionization chamber by an equivalent volume of water, according to the definition of the absorbed dose to water. The method is validated in two different configurations which allowed us to study the behavior of this correction factor as a function of depth in phantom, photon beam energy, phantom density and field size.

  8. Empirical formulas for direct double ionization by bare ions: Z = - 1 to 92

    SciTech Connect

    DuBois, R. D.; Santos, A. C. F.; Manson, S. T.

    2014-11-25

    Experimental cross sections and cross-section ratios reported in the literature for direct double ionization of the outer shells of helium, neon, and argon atoms resulting from bare ions ranging from protons to uranium and for antiprotons are analyzed in terms of a first- and second-order interference model originally proposed by McGuire [J. H. McGuire, Phys. Rev. Lett. 49, 1153 (1982)]. Empirical formulas for the various contributions to double ionization plus information about the phase difference between the first- and second-order mechanisms are extracted from the data. Projectile and target scalings are also extracted. Total cross sections and their ratios determined using these formulas and scalings are shown to be in very good agreement with experimental data for lower-Z projectiles and impact velocities larger than 1 a.u. For very-high-Z projectiles, the amount of double ionization is overestimated, probably due to saturation of probabilities that is not accounted for in scaling formulas.

  9. Dc to ac field conversion due to leaky-wave excitation in a plasma slab behind an ionization front

    NASA Astrophysics Data System (ADS)

    Kostin, V. A.; Vvedenskii, N. V.

    2015-03-01

    We present a way for generating coherent tunable electromagnetic radiation through dc to ac field conversion by an ionization front. The conversion is caused by the excitation of leaky waves behind the transversely limited ionization front propagating in a uniform electrostatic field. This differs significantly from the well-known dc-to-ac-radiation-converter models which consider Doppler-like frequency conversion by a transversely unlimited ionization front propagating in a spatially periodic electric field. We explore the dispersion properties and excitation of these leaky waves radiated through the transverse plasma boundary at the Cherenkov angle to the direction of propagation of a superluminal ionization front as dependent on the parameters of the plasma produced and on the speed of the ionization front. It is shown that not only the center frequency but also the duration and waveform of the generated pulse may significantly depend on the speed of the ionization front. The results indicate the possibility of using such converters based on planar photoconductive antennas to create sources of microwave and terahertz radiation with controllable waveforms that are transformed from video to radio pulse when the angle of incident ionizing radiation is tuned.

  10. H-atom ionization by elliptically polarized microwave fields: The overlap criterion

    SciTech Connect

    Sacha, K.; Zakrzewski, J.

    1997-07-01

    The threshold for H-atom ionization by elliptically polarized microwave fields is discussed within the classical-mechanics framework using the Chirikov overlap criterion. It is shown that the trends observed in the recent experiment [M. R. W. Bellermann {ital et al.} Phys. Rev. Lett. {bold 76}, 892 (1996)] are qualitatively reproduced by the theory; the origin of the remaining discrepancy is discussed. Increased stability of some orbits with respect to the perturbation due to the elliptically polarized microwaves has been related to vanishing widths of the corresponding resonance islands. Analytic Chirikov overlap prediction is compared with results of numerical simulations. {copyright} {ital 1997} {ital The American Physical Society}

  11. Modeling and simulation of ionizing radiation effect on ferroelectric field-effect transistor

    NASA Astrophysics Data System (ADS)

    Yan, Shaoan; Li, Gang; Guo, Hongxia; Zhao, Wen; Xiong, Ying; Tang, Minghua; Li, Zheng; Xiao, Yongguang; Zhang, Wanli; Lei, Zhifeng

    2016-04-01

    A theoretical model is developed to investigate the ionizing radiation effect on electrical characteristics of a metal-ferroelectric-insulator-semiconductor structure ferroelectric gate field-effect transistor (MFIS FeFET). Modeling results show that gate capacitance versus gate voltage curves and transfer characteristic curves shift significantly and the memory window becomes worse with the total dose. Moreover, the drain current and I ON/I OFF ratio exhibit a considerable decrease under high incident dose rates. Finally, it is found that radiation-induced degradations can be affected strongly by the insulator layer thickness, and that MFIS FeFETs with a thin insulator buffer layer show a high radiation tolerance.

  12. Sprites as Luminous Columns of Ionization Produced by Quasi-Electrostatic Thundercloud Fields

    NASA Technical Reports Server (NTRS)

    Pasko, V. P.; Inan, U. S.; Bell, T. F.

    1996-01-01

    Quasi-electrostatic (QE) fields which exist above thunderclouds after lightning discharges can lead to the formation of columnar channels of breakdown ionization and carrot-like vertical luminous structures with typical transverse dimension approximately 5-10 km spaning an altitude range from approximately 80 km to well below approximately 50 km. The carrot-like forms closely resemble those observed in sprites. Results indicate that the appearance of optical emissions can be significantly delayed in time (approx. 1-20 ms) with respect to the causative lightning discharge.

  13. Multiplateau structure in photoemission spectra of strong-field ionization of dense media

    NASA Astrophysics Data System (ADS)

    Wilke, M.; Al-Obaidi, R.; Kiyan, I. Yu.; Aziz, E. F.

    2016-09-01

    Strong-field ionization of dense molecular gases in a short infrared laser pulse is studied by means of photoelectron spectroscopy combined with a liquid microjet technique. By increasing the gas density, we observe how the laser-assisted electron scattering on neighboring particles becomes a dominant mechanism of hot electron emission. The angle-resolved energy distributions of rescattered electrons are obtained by analyzing the density dependency of emission spectra. A semiclassical consideration of electron trajectories is shown to provide a good description of experimental spectra. The model predicts the existence of four energy plateaus. Two cutoffs at higher energies are evident in the spectra.

  14. Kinematic origin for near-zero energy structures in mid-IR strong field ionization

    NASA Astrophysics Data System (ADS)

    Pisanty, Emilio; Ivanov, Misha

    2016-05-01

    We propose and discuss a kinematic mechanism underlying the recently discovered ‘near-zero energy structure’ in the photoionization of atoms in strong mid-infrared laser fields, based on trajectories which revisit the ion at low velocities exactly analogous to the series responsible for low-energy structures. The different scaling of the new series, as E∼ {I}p2/{U}p, suggests that the near-zero energy structure can be lifted to higher energies, where it can be better resolved and studied, using harder targets with higher ionization potential.

  15. Correlation effects in strong-field ionization of heteronuclear diatomic molecules

    NASA Astrophysics Data System (ADS)

    Larsson, H. R.; Bauch, S.; Sørensen, L. K.; Bonitz, M.

    2016-01-01

    We develop a time-dependent theory to investigate electron dynamics and photoionization processes of diatomic molecules interacting with strong laser fields including electron-electron correlation effects. We combine the recently formulated time-dependent generalized-active-space configuration interaction theory [D. Hochstuhl and M. Bonitz, Phys. Rev. A 86, 053424 (2012), 10.1103/PhysRevA.86.053424; S. Bauch et al., Phys. Rev. A 90, 062508 (2014), 10.1103/PhysRevA.90.062508] with a prolate spheroidal basis set including localized orbitals and continuum states to describe the bound electrons and the outgoing photoelectron. As an example, we study the strong-field ionization of the two-center four-electron lithium hydride molecule in different intensity regimes. By using single-cycle pulses, two orientations of the asymmetric heteronuclear molecule are investigated: Li-H, with the electrical field pointing from H to Li, and the opposite case of H-Li. The preferred orientation for ionization is determined and we find a transition from H-Li, for low intensity, to Li-H, for high intensity. The influence of electron correlations is studied at different levels of approximation, and we find a significant change in the preferred orientation. For certain intensity regimes, even an interchange of the preferred configuration is observed, relative to the uncorrelated simulations. Further insight is provided by detailed comparisons of photoelectron angular distributions with and without correlation effects taken into account.

  16. High-field plasma acceleration in a high-ionization-potential gas

    NASA Astrophysics Data System (ADS)

    Corde, S.; Adli, E.; Allen, J. M.; An, W.; Clarke, C. I.; Clausse, B.; Clayton, C. E.; Delahaye, J. P.; Frederico, J.; Gessner, S.; Green, S. Z.; Hogan, M. J.; Joshi, C.; Litos, M.; Lu, W.; Marsh, K. A.; Mori, W. B.; Vafaei-Najafabadi, N.; Walz, D.; Yakimenko, V.

    2016-06-01

    Plasma accelerators driven by particle beams are a very promising future accelerator technology as they can sustain high accelerating fields over long distances with high energy efficiency. They rely on the excitation of a plasma wave in the wake of a drive beam. To generate the plasma, a neutral gas can be field-ionized by the head of the drive beam, in which case the distance of acceleration and energy gain can be strongly limited by head erosion. Here we overcome this limit and demonstrate that electrons in the tail of a drive beam can be accelerated by up to 27 GeV in a high-ionization-potential gas (argon), boosting their initial 20.35 GeV energy by 130%. Particle-in-cell simulations show that the argon plasma is sustaining very high electric fields, of ~150 GV m-1, over ~20 cm. The results open new possibilities for the design of particle beam drivers and plasma sources.

  17. High-field plasma acceleration in a high-ionization-potential gas

    DOE PAGESBeta

    Corde, S.; Adli, E.; Allen, J. M.; An, W.; Clarke, C. I.; Clausse, B.; Clayton, C. E.; Delahaye, J. P.; Frederico, J.; Gessner, S.; et al

    2016-06-17

    Plasma accelerators driven by particle beams are a very promising future accelerator technology as they can sustain high accelerating fields over long distances with high energy efficiency. They rely on the excitation of a plasma wave in the wake of a drive beam. To generate the plasma, a neutral gas can be field-ionized by the head of the drive beam, in which case the distance of acceleration and energy gain can be strongly limited by head erosion. In our research, we overcome this limit and demonstrate that electrons in the tail of a drive beam can be accelerated by upmore » to 27 GeV in a high-ionization-potential gas (argon), boosting their initial 20.35 GeV energy by 130%. Particle-in-cell simulations show that the argon plasma is sustaining very high electric fields, of ~150 GV m-1, over ~20 cm. Lastly, the results open new possibilities for the design of particle beam drivers and plasma sources.« less

  18. High-field plasma acceleration in a high-ionization-potential gas

    PubMed Central

    Corde, S.; Adli, E.; Allen, J. M.; An, W.; Clarke, C. I.; Clausse, B.; Clayton, C. E.; Delahaye, J. P.; Frederico, J.; Gessner, S.; Green, S. Z.; Hogan, M. J.; Joshi, C.; Litos, M.; Lu, W.; Marsh, K. A.; Mori, W. B.; Vafaei-Najafabadi, N.; Walz, D.; Yakimenko, V.

    2016-01-01

    Plasma accelerators driven by particle beams are a very promising future accelerator technology as they can sustain high accelerating fields over long distances with high energy efficiency. They rely on the excitation of a plasma wave in the wake of a drive beam. To generate the plasma, a neutral gas can be field-ionized by the head of the drive beam, in which case the distance of acceleration and energy gain can be strongly limited by head erosion. Here we overcome this limit and demonstrate that electrons in the tail of a drive beam can be accelerated by up to 27 GeV in a high-ionization-potential gas (argon), boosting their initial 20.35 GeV energy by 130%. Particle-in-cell simulations show that the argon plasma is sustaining very high electric fields, of ∼150 GV m−1, over ∼20 cm. The results open new possibilities for the design of particle beam drivers and plasma sources. PMID:27312720

  19. High-field plasma acceleration in a high-ionization-potential gas.

    PubMed

    Corde, S; Adli, E; Allen, J M; An, W; Clarke, C I; Clausse, B; Clayton, C E; Delahaye, J P; Frederico, J; Gessner, S; Green, S Z; Hogan, M J; Joshi, C; Litos, M; Lu, W; Marsh, K A; Mori, W B; Vafaei-Najafabadi, N; Walz, D; Yakimenko, V

    2016-01-01

    Plasma accelerators driven by particle beams are a very promising future accelerator technology as they can sustain high accelerating fields over long distances with high energy efficiency. They rely on the excitation of a plasma wave in the wake of a drive beam. To generate the plasma, a neutral gas can be field-ionized by the head of the drive beam, in which case the distance of acceleration and energy gain can be strongly limited by head erosion. Here we overcome this limit and demonstrate that electrons in the tail of a drive beam can be accelerated by up to 27 GeV in a high-ionization-potential gas (argon), boosting their initial 20.35 GeV energy by 130%. Particle-in-cell simulations show that the argon plasma is sustaining very high electric fields, of ∼150 GV m(-1), over ∼20 cm. The results open new possibilities for the design of particle beam drivers and plasma sources. PMID:27312720

  20. Fragmentation and Ionization Dynamics of C{sub 60} in Elliptically Polarized Femtosecond Laser Fields

    SciTech Connect

    Hertel, I. V.; Shchatsinin, I.; Laarmann, T.; Zhavoronkov, N.; Ritze, H.-H.; Schulz, C. P.

    2009-01-16

    Ionization and fragmentation of C{sub 60} fullerenes is studied in elliptically polarized, intense fs laser fields at 797 nm [I=(0.5-4.3)x10{sup 14} W cm{sup -2}] and contrasted with Xe{sup +}, utilizing time-of-flight mass spectrometry. Very pronounced changes of parent and fragment ion yield as a function of ellipticity are observed. At lower intensities reduction of the ion yield for circular polarization establishes a coherent two-photon process connected with the key role of the LUMO+1(t{sub 1g})'doorway state' and multielectron dynamics. Comparison with the behavior at 399 nm corroborates this finding. At high intensities enhanced fragmentation is observed which is tentatively attributed to returning loops of electron trajectories by the combined action of the C{sub 60}{sup +} field and the circular laser field.

  1. Electrochemical Etching and Characterization of Sharp Field Emission Points for Electron Impact Ionization.

    PubMed

    Van Well, Tyler L; Redshaw, Matthew; Gamage, Nadeesha D; Kandegedara, R M Eranjan B

    2016-01-01

    A new variation of the drop-off method for fabricating field emission points by electrochemically etching tungsten rods in a NaOH solution is described. The results of studies in which the etching current and the molarity of the NaOH solution used in the etching process were varied are presented. The investigation of the geometry of the tips, by imaging them with a scanning electron microscope, and by operating them in field emission mode is also described. The field emission tips produced are intended to be used as an electron beam source for ion production via electron impact ionization of background gas or vapor in Penning trap mass spectrometry applications. PMID:27500824

  2. Intense field double detachment of atomic versus molecular anions

    NASA Astrophysics Data System (ADS)

    Albeck, Y.; Lerner, G.; Kandhasamy, D. M.; Chandrasekaran, V.; Strasser, D.

    2015-12-01

    The interaction of intense ultrafast laser pulses with atomic F- and with molecular S F6 - anions is directly compared. The double-detachment mechanism is investigated by a systematic variation of peak intensity, polarization ellipticity, and pulse shape. For both systems, the observed weak polarization ellipticity dependence is not consistent with a rescattering-based mechanism. A double-detachment saturation intensity of 22 ±4 ×1013W /c m2 is determined for the atomic anion, which is significantly higher than the 9 ±2 ×1013W /c m2 of the analogous molecular system. The different atomic and molecular responses to spectral chirp and third-order dispersion induced pulse shapes are discussed in the context of the double-detachment time scale.

  3. Influence of field size on a PTW type 23342 plane-parallel ionization chamber's response

    SciTech Connect

    Austerlitz, C.; Villar, H.P.; Santos, M.A.P.

    2004-12-01

    The response of a PTW type 23342 plane-parallel ionization chamber, both in air and in phantom, was evaluated for x-ray tube potentials between 30 and 100 kV and radiation field diameters ranging from 30 to 70 mm. The experiments were performed with a calibrated Pantak x-ray machine and made use of the same set of x-ray qualities adopted by the PTB primary laboratory for the calibration of such chambers. A Plexiglas registered phantom (1.18 g cm{sup -3}) 110 mm long, 110 mm wide, and 80 mm deep was used for phantom measurements. X-ray qualities were characterized by using 99.99% pure aluminum filters. On the basis of the IAEA's TRS 398, the article discusses the dependence of the plane-parallel ionization chamber readings with field size in air and in phantom, its implication with regard to clinical dosimetry, cross-calibration, and dissemination of calibration factors.

  4. High-rate axial-field ionization chamber for particle identification of radioactive beams

    NASA Astrophysics Data System (ADS)

    Vadas, J.; Singh, Varinderjit; Visser, G.; Alexander, A.; Hudan, S.; Huston, J.; Wiggins, B. B.; Chbihi, A.; Famiano, M.; Bischak, M. M.; deSouza, R. T.

    2016-11-01

    The design, construction and performance characteristics of a simple axial-field ionization chamber suitable for identifying ions in a radioactive beam are presented. Optimized for use with low-energy radioactive beams (< 5 MeV / A) the detector presents only three 0.5 μm/cm2 foils to the beam in addition to the detector gas. A fast charge sensitive amplifier (CSA) integrated into the detector design is also described. Coupling this fast CSA to the axial field ionization chamber produces an output pulse with a risetime of 60-70 ns and a fall time of 100 ns, making the detector capable of sustaining a relatively high rate and providing a time resolution of 6-8 ns. Tests with an α source establish the detector energy resolution as ∼ 8 % for an energy deposit of ∼3.5 MeV. The energy resolution with beams of 2.5 and 4.0 MeV/A 39K ions and the dependence of the energy resolution on beam intensity is measured. At an instantaneous rate of 3×105 ions/s the energy resolution has degraded to 14% with a pileup of 12%. The good energy resolution of this detector at rates up to 3×105 ions/s makes it an effective tool in the characterization of low-energy radioactive beams.

  5. The Nonlinear Ohm's Law: Plasma Heating by Strong Electric Fields and its Effects on the Ionization Balance in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Okuzumi, Satoshi; Inutsuka, Shu-ichiro

    2015-02-01

    The ionization state of the gas plays a key role in the magnetohydrodynamics (MHD) of protoplanetary disks. However, the ionization state can depend on the gas dynamics, because electric fields induced by MHD turbulence can heat up plasmas and thereby affect the ionization balance. To study this nonlinear feedback, we construct an ionization model that includes plasma heating by electric fields and impact ionization by heated electrons, as well as charging of dust grains. We show that when plasma sticking onto grains is the dominant recombination process, the electron abundance in the gas decreases with increasing electric field strength. This is a natural consequence of electron-grain collisions whose frequency increases with the electron's random velocity. The decreasing electron abundance may lead to a self-regulation of MHD turbulence. In some cases, not only the electron abundance but also the electric current decreases with increasing field strength in a certain field range. The resulting N-shaped current-field relation violates the fundamental assumption of the non-relativistic MHD that the electric field is uniquely determined by the current density. At even higher field strengths, impact ionization causes an abrupt increase of the electric current as expected by previous studies. We find that this discharge current is multi-valued (i.e., the current-field relation is S-shaped) under some circumstances, and that the intermediate branch is unstable. The N/S-shaped current-field relations may yield hysteresis in the evolution of MHD turbulence in some parts of protoplanetary disks.

  6. THE NONLINEAR OHM'S LAW: PLASMA HEATING BY STRONG ELECTRIC FIELDS AND ITS EFFECTS ON THE IONIZATION BALANCE IN PROTOPLANETARY DISKS

    SciTech Connect

    Okuzumi, Satoshi; Inutsuka, Shu-ichiro

    2015-02-10

    The ionization state of the gas plays a key role in the magnetohydrodynamics (MHD) of protoplanetary disks. However, the ionization state can depend on the gas dynamics, because electric fields induced by MHD turbulence can heat up plasmas and thereby affect the ionization balance. To study this nonlinear feedback, we construct an ionization model that includes plasma heating by electric fields and impact ionization by heated electrons, as well as charging of dust grains. We show that when plasma sticking onto grains is the dominant recombination process, the electron abundance in the gas decreases with increasing electric field strength. This is a natural consequence of electron-grain collisions whose frequency increases with the electron's random velocity. The decreasing electron abundance may lead to a self-regulation of MHD turbulence. In some cases, not only the electron abundance but also the electric current decreases with increasing field strength in a certain field range. The resulting N-shaped current-field relation violates the fundamental assumption of the non-relativistic MHD that the electric field is uniquely determined by the current density. At even higher field strengths, impact ionization causes an abrupt increase of the electric current as expected by previous studies. We find that this discharge current is multi-valued (i.e., the current-field relation is S-shaped) under some circumstances, and that the intermediate branch is unstable. The N/S-shaped current-field relations may yield hysteresis in the evolution of MHD turbulence in some parts of protoplanetary disks.

  7. Properties of long-term optical variability of active galactic nuclei with double-peaked broad low-ionization emission lines

    NASA Astrophysics Data System (ADS)

    Zhang, Xue-Guang; Feng, Long-Long

    2016-10-01

    In this manuscript, we study properties of long-term optical variability of a large sample of 106 SDSS spectroscopically confirmed AGN with double-peaked broad low-ionization emission lines (double-peaked emitters). The long-term optical light curves over 8 years are collected from the Catalina Sky Surveys Data Release 2. And, the Damped Random Walk (DRW) process is applied to describe the long-term variability of the double-peaked emitters. Meanwhile, the same DRW process is applied to long-term optical light curves of more than 7000 spectroscopically confirmed normal quasars in the SDSS Stripe82 Database. Then, we can find that the DRW process determined rest-frame intrinsic variability timescales ln (τ/days) are about 5.8 and about 4.8 for the double-peaked emitters and for the normal quasars, respectively. The statistically longer intrinsic variability timescales can be confirmed in the double-peaked emitters, after considerations of necessary effects, such as the effects from different distributions of redshift, BH mass and accretion rate between the double-peaked emitters and the normal quasars. Moreover, a radial dependence of accretion rate dot{m}_R ∝ R^β with larger values of β could be an acceptable interpretation of the longer intrinsic variability timescales in the double-peaked emitters. Therefore, there are different intrinsic properties of emission regions between the double-peaked emitters and the normal quasars. The double-peaked emitters can be well treated as an unique subclass of AGN.

  8. Neutron production using a pyroelectric driven target coupled with a gated field ionization source

    SciTech Connect

    Ellsworth, J. L.; Tang, V.; Falabella, S.; Naranjo, B.; Putterman, S.

    2013-04-19

    A palm sized, portable neutron source would be useful for widespread implementation of detection systems for shielded, special nuclear material. We present progress towards the development of the components for an ultracompact neutron generator using a pulsed, meso-scale field ionization source, a deuterated (or tritiated) titanium target driven by a negative high voltage lithium tantalate crystal. Neutron production from integrated tests using an ion source with a single, biased tungsten tip and a 3 Multiplication-Sign 1 cm, vacuum insulated crystal with a plastic deuterated target are presented. Component testing of the ion source with a single tip produces up to 3 nA of current. Dielectric insulation of the lithium tantalate crystals appears to reduce flashover, which should improve the robustness. The field emission losses from a 3 cm diameter crystal with a plastic target and 6 cm diameter crystal with a metal target are compared.

  9. Electron spin polarization in strong-field ionization of xenon atoms

    NASA Astrophysics Data System (ADS)

    Hartung, Alexander; Morales, Felipe; Kunitski, Maksim; Henrichs, Kevin; Laucke, Alina; Richter, Martin; Jahnke, Till; Kalinin, Anton; Schöffler, Markus; Schmidt, Lothar Ph. H.; Ivanov, Misha; Smirnova, Olga; Dörner, Reinhard

    2016-08-01

    As a fundamental property of the electron, the spin plays a decisive role in the electronic structure of matter, from solids to molecules and atoms, for example, by causing magnetism. Yet, despite its importance, the spin dynamics of the electrons released during the interaction of atoms with strong ultrashort laser pulses has remained experimentally unexplored. Here, we report the experimental detection of electron spin polarization by the strong-field ionization of xenon atoms and support our results with theoretical analysis. We found up to 30% spin polarization changing its sign with electron energy. This work opens the new dimension of spin to strong-field physics. It paves the way to the production of sub-femtosecond spin-polarized electron pulses with applications ranging from probing the magnetic properties of matter at ultrafast timescales to testing chiral molecular systems with sub-femtosecond temporal and sub-ångström spatial resolutions.

  10. Selective ionization/dissociation of oriented N2O molecules by asymmetric fs laser field.

    PubMed

    Kotsina, N; Kaziannis, S; Danakas, S; Kosmidis, C

    2013-09-14

    We report on the selective ionization of oriented nitrous oxide (N2O) molecules in gas phase by the use of an intense asymmetric two-color ω/2ω 40 fs laser field. By means of a time-of-flight mass spectrometer the induced N2O mass spectra have been recorded as a function of the relative phase of the two-color laser fields. It is found that the applied method facilitates the distinction of different dissociation channels that result in fragments with the same mass and kinetic energy. Thus, the potential of the employed technique for phase control of the molecular excitation for the case of N2O is explored.

  11. Generation of electric fields and currents by neutral flows in weakly ionized plasmas through collisional dynamos

    NASA Astrophysics Data System (ADS)

    Dimant, Y. S.; Oppenheim, M. M.; Fletcher, A. C.

    2016-08-01

    In weakly ionized plasmas neutral flows drag plasma across magnetic field lines generating intense electric fields and currents. An example occurs in the Earth's ionosphere near the geomagnetic equator. Similar processes take place in the Solar chromosphere and magnetohydrodynamic generators. This paper argues that not all convective neutral flows generate electric fields and currents and it introduces the corresponding universal criterion for their formation, ∇×(U ×B )≠∂B /∂t , where U is the neutral flow velocity, B is the magnetic field, and t is time. This criterion does not depend on the conductivity tensor, σ ̂ . For many systems, the displacement current, ∂B /∂t , is negligible making the criterion even simpler. This theory also shows that the neutral-dynamo driver that generates E-fields and currents plays the same role as the DC electric current plays for the generation of the magnetic field in the Biot-Savart law.

  12. Localization of double bonds in triacylglycerols using high-performance liquid chromatography/atmospheric pressure chemical ionization ion-trap mass spectrometry.

    PubMed

    Háková, Eva; Vrkoslav, Vladimír; Míková, Radka; Schwarzová-Pecková, Karolina; Bosáková, Zuzana; Cvačka, Josef

    2015-07-01

    A method for localizing double bonds in triacylglycerols using high-performance liquid chromatography-tandem mass spectrometry with atmospheric pressure chemical ionization (APCI) was developed. The technique was based on collision-induced dissociation or pulsed Q collision-induced dissociation of the C3H5N(+•) adducts ([M + 55](+•)) formed in the presence of acetonitrile in the APCI source. The spectra were investigated using a large series of standards obtained from commercial sources and prepared by randomization. The fragmentation spectra made it possible to determine (i) the total number of carbons and double bonds in the molecule, (ii) the number of carbons and double bonds in acyls, (iii) the acyl in the sn-2 position on the glycerol backbone, and (iv) the double-bond positions in acyls. The double-bond positions were determined based on two types of fragments (alpha and omega ions) formed by cleavages of C-C bonds vinylic to the original double bond. The composition of the acyls and their positions on glycerol were established from the masses and intensities of the ions formed by the elimination of fatty acids from the [M + 55](+•) precursor. The method was applied for the analysis of triacylglycerols in olive oil and vernix caseosa.

  13. Effects of field fluctuation on impact ionization rates in semiconductor devices due to the discreteness and distribution of dopants

    SciTech Connect

    Arnold, D.; Kim, K.; Hess, K.

    1987-02-15

    Field fluctuations due to dopants in a p/sup +/-n junction have been calculated and used to study the effects on the impact ionization rate with a Monte Carlo simulation. Results are plotted along the direction normal to the interface. We report that the field fluctuations have no effect on the ionization rate in the dead space and a small and spatially delayed effect in the region after the dead space even though the field shows large and rapid fluctuations. A similar ''averaged-out'' effect is also shown for the average electron energy. The enhancement in the ionization rate due to the field fluctuations which Shockley expected in his pioneering research is shown to be negligibly small.

  14. INTEGRAL-FIELD STELLAR AND IONIZED GAS KINEMATICS OF PECULIAR VIRGO CLUSTER SPIRAL GALAXIES

    SciTech Connect

    Cortés, Juan R.; Hardy, Eduardo; Kenney, Jeffrey D. P. E-mail: ehardy@nrao.cl

    2015-01-01

    We present the stellar and ionized gas kinematics of 13 bright peculiar Virgo cluster galaxies observed with the DensePak Integral Field Unit at the WIYN 3.5 m telescope in order to look for kinematic evidence that these galaxies have experienced gravitational interactions or gas stripping. Two-dimensional maps of the stellar velocity V, stellar velocity dispersion σ, and the ionized gas velocity (Hβ and/or [O III]) are presented for the galaxies in the sample. The stellar rotation curves and velocity dispersion profiles are determined for 13 galaxies, and the ionized gas rotation curves are determined for 6 galaxies. Misalignments between the optical and kinematical major axes are found in several galaxies. While in some cases this is due to a bar, in other cases it seems to be associated with gravitational interaction or ongoing ram pressure stripping. Non-circular gas motions are found in nine galaxies, with various causes including bars, nuclear outflows, or gravitational disturbances. Several galaxies have signatures of kinematically distinct stellar components, which are likely signatures of accretion or mergers. For all of our galaxies, we compute the angular momentum parameter λ {sub R}. An evaluation of the galaxies in the λ {sub R} ellipticity plane shows that all but two of the galaxies have significant support from random stellar motions, and have likely experienced gravitational interactions. This includes some galaxies with very small bulges and truncated/compact Hα morphologies, indicating that such galaxies cannot be fully explained by simple ram pressure stripping, but must have had significant gravitational encounters. Most of the sample galaxies show evidence for ICM-ISM stripping as well as gravitational interactions, indicating that the evolution of a significant fraction of cluster galaxies is likely strongly impacted by both effects.

  15. Cluster size dependence of double ionization energy spectra of spin-polarized aluminum and sodium clusters: All-electron spin-polarized GW+T -matrix method

    NASA Astrophysics Data System (ADS)

    Noguchi, Yoshifumi; Ohno, Kaoru; Solovyev, Igor; Sasaki, Taizo

    2010-04-01

    The double ionization energy (DIE) spectra are calculated for the spin-polarized aluminum and sodium clusters by means of the all-electron spin-polarized GW+T -matrix method based on the many-body perturbation theory. Our method using the one- and two-particle Green’s functions enables us to determine the whole spectra at once in a single calculation. The smaller is the size of the cluster, the larger the difference between the minimal double ionization energy and the twice of the ionization potential. This is because the strong Coulomb repulsion between two holes becomes dominant in small confined geometry. Due to Pauli’s exclusion principle, the parallel spin DIE is close to or smaller than the antiparallel spin DIE except for Na4 that has well-separated highest and second highest occupied molecular-orbital levels calculated by the spin-dependent GW calculation. In this paper, we compare the results calculated for aluminum and sodium clusters and discuss the spin-polarized effect and the cluster size dependence of the resulting spectra in detail.

  16. Alignment and pulse-duration effects in two-photon double ionization of H2 by femtosecond XUV laser pulses

    NASA Astrophysics Data System (ADS)

    Guan, Xiaoxu; Bartschat, Klaus; Schneider, Barry I.; Koesterke, Lars

    2014-10-01

    We present calculations for the dependence of the two-photon double ionization (DI) of H2 on the relative orientation of the linear laser polarization to the internuclear axis and the length of the pulse. We use the fixed-nuclei approximation at the equilibrium distance of 1.4 a0, where a0=0.529 ×10-10m is the Bohr radius. Central photon energies cover the entire direct DI domain from 26.5 to 34.0 eV. In contrast to the parallel geometry studied earlier [X. Guan, K. Bartschat, B. I. Schneider, and L. Koesterke, Phys. Rev. A 83, 043403 (2011), 10.1103/PhysRevA.83.043403], the effect of the pulse duration is almost negligible for the case when the two axes are perpendicular to each other. This is a consequence of the symmetry rules for dipole excitation in the two cases. In the parallel geometry, doubly excited states of 1Σu+ symmetry affect the cross section, while in the perpendicular geometry only much longer-lived 1Πu states are present. This accounts for the different convergence patterns observed in the calculated cross sections as a function of the pulse length. When the photon energy approaches the threshold of sequential DI, a sharp increase of the generalized total cross section (GTCS) with increasing pulse duration is also observed in the perpendicular geometry, very similar to the case of the molecular axis being oriented along the laser polarization direction. Our results differ from those of Colgan et al. [J. Colgan, M. S. Pindzola, and F. Robicheaux, J. Phys. B 41, 121002 (2008), 10.1088/0953-4075/41/12/121002] and Morales et al. [F. Morales, F. Martín, D. A. Horner, T. N. Rescigno, and C. W. McCurdy, J. Phys. B 42, 134013 (2009), 10.1088/0953-4075/42/13/134013], but are in excellent agreement with the GTCSs of Simonsen et al. [A. S. Simonsen, S. A. Sørngård, R. Nepstad, and M. Førre, Phys. Rev. A 85, 063404 (2012), 10.1103/PhysRevA.85.063404] over the entire domain of direct DI.

  17. Theoretical investigation of the competitive mechanism between dissociation and ionization of H₂⁺ in intense field.

    PubMed

    Yao, Hongbin; Zhao, Guangjiu

    2014-10-01

    The competitive mechanism between dissociation and ionization of hydrogen molecular ion in intense field has been theoretically investigated by using an accurate non-Born-Oppenheimer method. The relative yield of fragments indicates that the dissociation and ionization channels are competitive with the increasing laser intensity from 5.0 × 10(13) to 2.0 × 10(14) W/cm(2). In the case of intensity lower than 1.0 × 10(14) W/cm(2), the dissociation channel is dominant, with a minor contribution from ionization. The mechanism of dissociation includes the contributions from the bond softening, bond hardening, below-threshold dissociation, and above-threshold dissociation, which are strongly dependent on the laser intensity and initial vibrational state. Furthermore, the ionization dominates over the dissociation channel at the highest intensity of 2.0 × 10(14) W/cm(2). The reasonable origin of ionization is ascribed as the above-threshold Coulomb explosion, which has been demonstrated by the space-time dependent ionization rate. Moreover, the competition mechanism between dissociation and ionization channels are displayed on the total kinetic energy resolved (KER) spectra, which could be tested at current experimental conditions.

  18. Ionization, Charging and Electric Field Effects on Cloud Particles in the CLOUD Experiment

    NASA Astrophysics Data System (ADS)

    Nichman, L.; Järvinen, E.; Wagner, R.; Dorsey, J.; Dias, A. M.; Ehrhart, S.; Kirkby, J.; Gallagher, M. W.; Saunders, C. P.

    2015-12-01

    Ice crystals and frozen droplets play an important role in atmospheric charging and electrification processes, particularly by collision and aggregation. The dynamics of charged particles in the atmosphere can be modulated by Galactic Cosmic Rays (GCR). High electric fields also affect the alignment of charged particles, allowing more time for interactions. The CLOUD (Cosmics Leaving OUtdoor Droplets) experiment at CERN has the ability to conduct ionization, charging and high electric field experiments on liquid or ice clouds created in the chamber by adiabatic pressure reductions. A pion secondary beam from the CERN Proton Synchrotron is used to ionize the molecules in the chamber, and Ar+ Corona Ion Generator for Atmospheric Research (CIGAR) is used to inject unipolar charged ions directly into the chamber. A pressurized airgun provides rapid pressure shocks inside the chamber and induces charged ice nucleation. The cloud chamber is accompanied by a variety of analysing instruments e.g. a 3View Cloud Particle Imager (3V-CPI) coupled with an induction ring, a Scattering Intensity Measurements for the Optical detection of icE (SIMONE) and a Nano-aerosol and Air Ion Spectrometer (NAIS). Using adiabatic expansion and high electric fields we can replicate the ideal conditions for adhesion, sintering and interlocking between ice crystals. Charged cloud particles produced measurable variations in the total induced current pulse on the induction ring. The most influential factors comprised initial temperature, lapse rate and charging mechanism. The ions produced in the chamber may deposit onto larger particles and form dipoles during ice nucleation and growth. The small ion concentration was monitored by the NAIS during these runs. Possible short-term aggregates or alignment of particles were observed in-situ with the SIMONE. These and future chamber measurements of charging and aggregation could shed more light on the ambient conditions and dynamics for electrification

  19. Mechanism of enhanced ionization of linear H+3 in intense laser fields

    NASA Astrophysics Data System (ADS)

    Kawata, I.; Kono, H.; Bandrauk, A. D.

    2001-10-01

    We investigate the mechanism of enhanced ionization that occurs at a critical internuclear distance Rc in the two-electron symmetric linear triatomic molecule H+3 subjected to an ultrashort, intense laser pulse by solving exactly the time-dependent Schrödinger equation for a one-dimensional model of H+3. Results of the simulations are analyzed by using three essential adiabatic field states \\|1>, \\|2>, and \\|3> that are adiabatically connected with the lowest three electronic states X1Σ+g, B1Σ+u, and E1Σ+g of the field free ion. We give also a simple MO (molecular orbital) picture in terms of these three states to illustrate the important electronic configurations in an intense field. The states \\|1>, \\|2>, and \\|3> are shown to be composed mainly of the configurations HHH+, HH+H, and H+HH, respectively in the presence of the field. We conclude that the overall level dynamics is governed mainly by transitions at the zero-field energy quasicrossings of these three states. The response of H+3 to a laser field can be classified into two regimes. In the adiabatic regime (RRc), internuclear electron transfer is suppressed due to electron repulsion and laser induced localization. In the intermediate (R~=Rc) region, where enhanced ionization occurs, the state \\|3> is most efficiently created by the field-induced nonadiabatic transitions between the states at quasicrossing points. The ``quasistatic'' laser-induced potential barriers are low enough for the electron to tunnel from the ascending (upper) well, thus confirming the quasistatic model at high intensities. Analytic expressions for the critical distance Rc are obtained from this model and collective electron motion is inferred from the detailed time-dependent two-electron distributions.

  20. Above-Threshold Ionization of Quasiperiodic Structures by Low-Frequency Laser Fields

    NASA Astrophysics Data System (ADS)

    Catoire, F.; Bachau, H.

    2015-10-01

    We investigate the theoretical problem of the photoelectron cutoff change in periodical structures induced by an infrared laser field. We use a one-dimensional Kronig-Penney potential including a finite number of wells, and the analysis is fulfilled by resolving the time-dependent Schrödinger equation. The electron spectra, calculated for an increasing number of wells, clearly show that a plateau quickly appears as the periodic nature of the potential builds up, even at a moderate intensity (10 TW /cm2 ). Varying the intensity from 10 to 30 TW /cm2 we observe a net increase of both the yield and accessible energy range of the ionization spectrum. In order to gain insight into the dynamics of the system at these intensities, we use an analytical approach, based on exact solutions of the full Hamiltonian in a periodic potential. We show that the population transfers efficiently from lower to upper bands when the Bloch and laser frequencies become comparable. The model leads to a quantitative prediction of the intensity range where ionization enters the nonperturbative regime. Moreover, it reveals the physics underlying the increase of the photoelectron energy cutoff at moderate intensities, as observed experimentally.

  1. Intense-field ionization of atoms and molecules: Spatially resolved ion detection and ultrashort optical vortices

    NASA Astrophysics Data System (ADS)

    Strohaber, James

    The interaction of light and matter has for many years provided a venue in which scientists have been able to increase their understanding of fundamental quantum mechanics and electromagnetism. The advent of the laser in the early sixties significantly changed the way in which experiments were performed. These coherent sources of radiation played a pivotal role in the investigations of new phenomenon such as multiphoton ionization. As time progressed many significant advances have been made in laser technology. For instance, the development of mode-locking techniques such as Q-switching and the nonlinear Kerr effect have made pulsed lasers possible (now down to ˜ 5 fs), the discovery of Chirped-Pulse-Amplification allowed for these ultrashort pulses to be amplified up to Joules in energy per pulse. As a result of these new advances in laser technology, new and exciting physics have been illuminated. When ultrashort intense laser fields interact with matter, one possible outcome is the ionization of the target into its constituents (atoms, molecules, electrons or photons). Because the constituents are usually ions which may have different masses and charges, time-of-flight (TOF) techniques are often employed in the analysis of the ionization yields. In these experiments, the usual quantity of physical interest is the ionization probability as a function of a well known intensity. However, in reality the impinging laser radiation possesses a distribution of intensities. To further add to this annoyance, it is difficult for a TOF spectrometer to distinguish between ions created at different intensities and the usual course of action is to integrate ions from over the entire focal volume. The inevitable result of this so-called spatial averaging is to limit information about the underlying physical process. Additionally, coherent sources of radiation have captured the attention of researchers whose main interests are in spatially modulating the phase and amplitude of

  2. Nonadiabatic tunnel ionization of current-carrying orbitals of prealigned linear molecules in strong circularly polarized laser fields

    NASA Astrophysics Data System (ADS)

    Liu, Kunlong; Barth, Ingo

    2016-10-01

    We derive the analytical formula of the ratio of the ionization rates of degenerate valence π± orbitals of prealigned linear molecules in strong circularly polarized (CP) laser fields. Interestingly, our theory shows that the ionization ratio for molecular orbitals with opposite azimuthal quantum numbers ±|m | (e.g., π±) is identical to that for atomic orbitals with the same ±|m | (e.g., p±). In general, the electron counter-rotating to the CP laser field tunnels more easily, not only for atoms but also for linear molecules. Our theoretical predictions are then verified by numerically solving the three-dimensional time-dependent Schrödinger equation for the ionization of the prealigned nitric oxide (NO) molecule in strong CP laser fields. Due to the spin-orbital coupling in the electronic ground state of NO and the sensitivity of ionization to the sense of electron rotation, the ionization of NO in CP fields can produce spin-polarized photoelectrons with high controllability of spin polarization up to 100 % .

  3. Connecting the dots: a correlation between ionizing radiation and cloud mass-loss rate traced by optical integral field spectroscopy

    NASA Astrophysics Data System (ADS)

    McLeod, A. F.; Gritschneder, M.; Dale, J. E.; Ginsburg, A.; Klaassen, P. D.; Mottram, J. C.; Preibisch, T.; Ramsay, S.; Reiter, M.; Testi, L.

    2016-11-01

    We present an analysis of the effect of feedback from O- and B-type stars with data from the integral field spectrograph Multi Unit Spectroscopic Explorer (MUSE) mounted on the Very Large Telescope of pillar-like structures in the Carina Nebular Complex, one of the most massive star-forming regions in the Galaxy. For the observed pillars, we compute gas electron densities and temperatures maps, produce integrated line and velocity maps of the ionized gas, study the ionization fronts at the pillar tips, analyse the properties of the single regions, and detect two ionized jets originating from two distinct pillar tips. For each pillar tip, we determine the incident ionizing photon flux Q0, pil originating from the nearby massive O- and B-type stars and compute the mass-loss rate dot{M} of the pillar tips due to photoevaporation caused by the incident ionizing radiation. We combine the results of the Carina data set with archival MUSE data of a pillar in NGC 3603 and with previously published MUSE data of the Pillars of Creation in M16, and with a total of 10 analysed pillars, find tight correlations between the ionizing photon flux and the electron density, the electron density and the distance from the ionizing sources, and the ionizing photon flux and the mass-loss rate. The combined MUSE data sets of pillars in regions with different physical conditions and stellar content therefore yield an empirical quantification of the feedback effects of ionizing radiation. In agreement with models, we find that dot{M}∝ Q_0,pil^{1/2}.

  4. Hydrogen and fluorine migration in photo double ionization of 1,1-difluoroethylene (C2H2F2)

    NASA Astrophysics Data System (ADS)

    Gaire, B.; Rist, J.; Sturm, F.; Gehrken, N.; Belkacem, A.; Weber, Th.; Berry, B.; Zohrabi, M.; Ben-Itzhak, I.; Keiling, M.; Moradmand, A.; Landers, A.; Schoeffler, M.; Jahnke, T.; Sann, H.; Kunitski, M.; Doerner, R.

    2013-05-01

    Dissociative and nondissociative ionization of 1,1-C2H2F2 is studied with single photons of energies between 40 to 70 eV by employing the Cold Target Recoil Ion Momentum Spectroscopy (COLTRIMS) method. We present the branching ratio of nondissociative and two-body dissociative ionization channels as a function of photon energy. The yield of nondissociative ionization decreases significantly with higher photon energies. We have observed the migration of hydrogen and fluorine ions in some of the two-body dissociative ionization channels. The small yield of the H2+ + C2F2+ production indicates some interesting mechanisms for the formation of H2 molecules. This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, and by the Division of Chemical Sciences, Geosciences, and Biosciences of the U.S. Department of Energy at LBNL under Contract No. DE-AC02-05CH11231.

  5. Non-adiabatic imprints on the electron wave packet in strong field ionization with circular polarization

    NASA Astrophysics Data System (ADS)

    Hofmann, C.; Zimmermann, T.; Zielinski, A.; Landsman, A. S.

    2016-04-01

    The validity of the adiabatic approximation in strong field ionization under typical experimental conditions has recently become a topic of great interest. Experimental results have been inconclusive, in part, due to the uncertainty in experimental calibration of intensity. Here we turn to the time-dependent Schrödinger equation, where all the laser parameters are known exactly. We find that the centre of the electron momentum distribution (typically used for calibration of elliptically and circularly polarized light) is sensitive to non-adiabatic effects, leading to intensity shifts in experimental data that can significantly affect the interpretation of results. On the other hand, the transverse momentum spread in the plane of polarization is relatively insensitive to such effects, even in the Keldysh parameter regime approaching γ ≈ 3. This suggests the transverse momentum spread in the plane of polarization as a good alternative to the usual calibration method, particularly for experimental investigation of non-adiabatic effects using circularly polarized light.

  6. First-order correction terms in the weak-field asymptotic theory of tunneling ionization in many-electron systems

    NASA Astrophysics Data System (ADS)

    Trinh, Vinh H.; Tolstikhin, Oleg I.; Morishita, Toru

    2016-10-01

    The many-electron weak-field asymptotic theory of tunneling ionization including the first-order correction terms in the asymptotic expansion of the ionization rate in field strength was highlighted in our recent fast track communication (Trinh et al 2015 J. Phys. B: At. Mol. Opt. Phys. 48 061003) by demonstrating its performance for two-electron atoms. Here we present a thorough derivation of the first-order terms omitted in the previous publication and provide additional numerical illustrations of the theory.

  7. Time-dependent density-functional-theory calculation of strong-field ionization rates of H2

    NASA Astrophysics Data System (ADS)

    Chu, Xi

    2010-08-01

    We report a numerical study of strong-field ionization rates of the H2 molecule using time-dependent density-functional theory (TDDFT). In the dc field limit, TDDFT results for the rate of tunneling ionization agree with molecular Ammosov-Delone-Kralnov (MO-ADK) predictions, as well as results from a complex scaling method at the full configuration interaction level. Our study demonstrates the effect of photon energy, molecular vibration, and orientation on the ionization. Calculated rates for 800-nm lasers are about four times greater than the values predicted by the slowly varying field approximation for tunneling ionization. The rate for the ground vibrational state is higher than that of the fixed nuclei value at the equilibrium distance. This difference decreases with increasing field intensity. When the field intensity is sufficiently high, the two rates are very similar, and the fixed nuclear distance rate may be used to approximate the ground-vibrational-state rate. TDDFT methods predict an anisotropy slightly larger than the prediction obtained from the MO-ADK method. We also find that the field intensity plays a role in the anisotropy, which the MO-ADK results do not show.

  8. The double ionization of H{sub 2} by fast electron impact: Influence of the final state electron-electron correlation

    SciTech Connect

    Chuluunbaatar, O. Gusev, A. A.; Joulakian, B. B.

    2013-02-15

    We have determined fully differential cross sections of the (e, 3e) double ionization of H{sub 2} by employing correlated initial- and final-state wave functions. We have constructed for the description of the two slow ejected electrons a symmetrized product of a correlation function and two-center continuum wave functions, which fulfill the correct boundary conditions asymptotically up to the order O((kr){sup -2}). We have shown that the introduction of the correlated part of the final-state wave function improves the results on the (e, 3-1e) of H{sub 2}.

  9. The non-ionizing electromagnetic field: Derivation of valid biological exposure metrics from Maxwell's equations of electromagnetism

    NASA Astrophysics Data System (ADS)

    Lundquist, Marjorie

    2003-03-01

    Standards for protecting health from exposure to non-ionizing electromagnetic radiation treat the power density (magnitude of Poynting vector) as the biological exposure metric. For a static electric or magnetic field, the presumed metric is field strength. Scientifically valid expressions for such exposure metrics have been derived theoretically [1]. Three regimes exist for which different expressions are obtained: high frequencies (where electric and magnetic fields are tightly coupled), low frequencies (where these fields are separable), and static fields (where time derivatives are zero). Unexpected results are obtained: * There are two exposure metrics: one for thermal, another for athermal effects. * In general, these two metrics are different. Only for a plane wave is the same metric (power density) valid for both effects. * Exposure metrics used today for static fields are invalid! These findings also apply in the ionizing portion of the electromagnetic spectrum. [1] Wireless Phones and Health II: State of the Science. G. Carlo, ed. NY: Kluwer Academic Publishers, 2000; Chapter 4.

  10. Chemical ionization mass spectrometry using carbon nanotube field emission electron sources.

    PubMed

    Radauscher, Erich J; Keil, Adam D; Wells, Mitch; Amsden, Jason J; Piascik, Jeffrey R; Parker, Charles B; Stoner, Brian R; Glass, Jeffrey T

    2015-11-01

    A novel chemical ionization (CI) source has been developed based on a carbon nanotube (CNT) field emission electron source. The CNT-based electron source was evaluated and compared with a standard filament thermionic electron source in a commercial explosives trace detection desktop mass spectrometer. This work demonstrates the first reported use of a CNT-based ion source capable of collecting CI mass spectra. Both positive and negative modes were investigated. Spectra were collected for a standard mass spectrometer calibration compound, perfluorotributylamine (PFTBA), as well as trace explosives including trinitrotoluene (TNT), Research Department explosive (RDX), and pentaerythritol tetranitrate (PETN). The electrical characteristics, lifetime at operating pressure, and power requirements of the CNT-based electron source are reported. The CNT field emission electron sources demonstrated an average lifetime of 320 h when operated in constant emission mode under elevated CI pressures. The ability of the CNT field emission source to cycle on and off can provide enhanced lifetime and reduced power consumption without sacrificing performance and detection capabilities. Graphical Abstract ᅟ. PMID:26133527

  11. Chemical Ionization Mass Spectrometry Using Carbon Nanotube Field Emission Electron Sources

    NASA Astrophysics Data System (ADS)

    Radauscher, Erich J.; Keil, Adam D.; Wells, Mitch; Amsden, Jason J.; Piascik, Jeffrey R.; Parker, Charles B.; Stoner, Brian R.; Glass, Jeffrey T.

    2015-11-01

    A novel chemical ionization (CI) source has been developed based on a carbon nanotube (CNT) field emission electron source. The CNT-based electron source was evaluated and compared with a standard filament thermionic electron source in a commercial explosives trace detection desktop mass spectrometer. This work demonstrates the first reported use of a CNT-based ion source capable of collecting CI mass spectra. Both positive and negative modes were investigated. Spectra were collected for a standard mass spectrometer calibration compound, perfluorotributylamine (PFTBA), as well as trace explosives including trinitrotoluene (TNT), Research Department explosive (RDX), and pentaerythritol tetranitrate (PETN). The electrical characteristics, lifetime at operating pressure, and power requirements of the CNT-based electron source are reported. The CNT field emission electron sources demonstrated an average lifetime of 320 h when operated in constant emission mode under elevated CI pressures. The ability of the CNT field emission source to cycle on and off can provide enhanced lifetime and reduced power consumption without sacrificing performance and detection capabilities.

  12. Performance of a multi-axis ionization chamber array in a 1.5 T magnetic field.

    PubMed

    Smit, K; Kok, J G M; Lagendijk, J J W; Raaymakers, B W

    2014-04-01

    At the UMC Utrecht a prototype MR-linac has been installed. The system consists of an 8 MV Elekta linear accelerator and a 1.5 T Philips MRI system. This paper investigates the performance of the IC PROFILER™, a multi-axis ionization chamber array, in a 1.5 T magnetic field. The influence of the magnetic field on the IC PROFILER™ reproducibility, dose response linearity, pulse rate frequency dependence, power to electronics, panel orientation and ionization chamber shape were investigated. The linearity, reproducibility, pulse rate frequency dependence, panel orientation and ionization chamber shape are unaffected by the magnetic field. When the measurements results are normalized to the centre reference chamber, the measurements can commence unaltered. Orientation of the ionization chambers in the magnetic field is of importance, therefore caution must be taken when comparing or normalizing results from several different axes. IC PROFILER™ dose profiles were compared with film dose profiles obtained simultaneously in the MR-linac. Deviation between the film and the IC PROFILER™ data was caused by the noise in the film, indicating correct performance of the IC PROFILER™ in the transverse 1.5 T magnetic field.

  13. Performance of a multi-axis ionization chamber array in a 1.5 T magnetic field.

    PubMed

    Smit, K; Kok, J G M; Lagendijk, J J W; Raaymakers, B W

    2014-04-01

    At the UMC Utrecht a prototype MR-linac has been installed. The system consists of an 8 MV Elekta linear accelerator and a 1.5 T Philips MRI system. This paper investigates the performance of the IC PROFILER™, a multi-axis ionization chamber array, in a 1.5 T magnetic field. The influence of the magnetic field on the IC PROFILER™ reproducibility, dose response linearity, pulse rate frequency dependence, power to electronics, panel orientation and ionization chamber shape were investigated. The linearity, reproducibility, pulse rate frequency dependence, panel orientation and ionization chamber shape are unaffected by the magnetic field. When the measurements results are normalized to the centre reference chamber, the measurements can commence unaltered. Orientation of the ionization chambers in the magnetic field is of importance, therefore caution must be taken when comparing or normalizing results from several different axes. IC PROFILER™ dose profiles were compared with film dose profiles obtained simultaneously in the MR-linac. Deviation between the film and the IC PROFILER™ data was caused by the noise in the film, indicating correct performance of the IC PROFILER™ in the transverse 1.5 T magnetic field. PMID:24625540

  14. Performance of a multi-axis ionization chamber array in a 1.5 T magnetic field

    NASA Astrophysics Data System (ADS)

    Smit, K.; Kok, J. G. M.; Lagendijk, J. J. W.; Raaymakers, B. W.

    2014-04-01

    At the UMC Utrecht a prototype MR-linac has been installed. The system consists of an 8 MV Elekta linear accelerator and a 1.5 T Philips MRI system. This paper investigates the performance of the IC PROFILER™, a multi-axis ionization chamber array, in a 1.5 T magnetic field. The influence of the magnetic field on the IC PROFILER™ reproducibility, dose response linearity, pulse rate frequency dependence, power to electronics, panel orientation and ionization chamber shape were investigated. The linearity, reproducibility, pulse rate frequency dependence, panel orientation and ionization chamber shape are unaffected by the magnetic field. When the measurements results are normalized to the centre reference chamber, the measurements can commence unaltered. Orientation of the ionization chambers in the magnetic field is of importance, therefore caution must be taken when comparing or normalizing results from several different axes. IC PROFILER™ dose profiles were compared with film dose profiles obtained simultaneously in the MR-linac. Deviation between the film and the IC PROFILER™ data was caused by the noise in the film, indicating correct performance of the IC PROFILER™ in the transverse 1.5 T magnetic field.

  15. Calculations of rates for strong-field ionization of alkali-metal atoms in the quasistatic regime

    NASA Astrophysics Data System (ADS)

    Milošević, M. Z.; Simonović, N. S.

    2015-02-01

    Tunneling and over-the-barrier ionization of alkali-metal atoms in strong electromagnetic fields are studied using the single-electron model (valence electron plus atomic core) and the frozen-core approximation. The lowest-state energies and widths (ionization rates) at different values of applied field, obtained using the Stark shift expansion and the Ammosov-Delone-Krainov formula, respectively, are compared with the corresponding values determined numerically by the complex rotation method. Good agreement for the energies is obtained at the field strengths corresponding to the tunneling regime. In contrast, the rates obtained by the Ammosov-Delone-Krainov formula significantly overestimate numerical results. After introducing a correction in the formula that accounts for the dependence of the binding energy on the field strength, good agreement in the tunneling regime is obtained for the rates too. A disagreement that still remains in the over-the-barrier ionization regime indicates that at stronger fields further corrections of the rate formula, such as those related to the form of the bound-state wave function, are required. Finally, it is demonstrated that numerically determined ionization rates are not too sensitive to the choice of model for the effective core potential and good results can be obtained using a simple local pseudopotential.

  16. Influence of field emission on the propagation of cylindrical fast ionization wave in atmospheric-pressure nitrogen

    NASA Astrophysics Data System (ADS)

    Levko, Dmitry; Raja, Laxminarayan L.

    2016-04-01

    The influence of field emission of electrons from surfaces on the fast ionization wave (FIW) propagation in high-voltage nanosecond pulse discharge in the atmospheric-pressure nitrogen is studied by a one-dimensional Particle-in-Cell Monte Carlo Collisions model. A strong influence of field emission on the FIW dynamics and plasma parameters is obtained. Namely, the accounting for the field emission makes possible the bridging of the cathode-anode gap by rather dense plasma (˜1013 cm-3) in less than 1 ns. This is explained by the generation of runaway electrons from the field emitted electrons. These electrons are able to cross the entire gap pre-ionizing it and promoting the ionization wave propagation. We have found that the propagation of runaway electrons through the gap cannot be accompanied by the streamer propagation, because the runaway electrons align the plasma density gradients. In addition, we have obtained that the field enhancement factor allows controlling the speed of ionization wave propagation.

  17. Separation of Opiate Isomers Using Electrospray Ionization and Paper Spray Coupled to High-Field Asymmetric Waveform Ion Mobility Spectrometry

    NASA Astrophysics Data System (ADS)

    Manicke, Nicholas E.; Belford, Michael

    2015-05-01

    One limitation in the growing field of ambient or direct analysis methods is reduced selectivity caused by the elimination of chromatographic separations prior to mass spectrometric analysis. We explored the use of high-field asymmetric waveform ion mobility spectrometry (FAIMS), an ambient pressure ion mobility technique, to separate the closely related opiate isomers of morphine, hydromorphone, and norcodeine. These isomers cannot be distinguished by tandem mass spectrometry. Separation prior to MS analysis is, therefore, required to distinguish these compounds, which are important in clinical chemistry and toxicology. FAIMS was coupled to a triple quadrupole mass spectrometer, and ionization was performed using either a pneumatically assisted heated electrospray ionization source (H-ESI) or paper spray, a direct analysis method that has been applied to the direct analysis of dried blood spots and other complex samples. We found that FAIMS was capable of separating the three opiate structural isomers using both H-ESI and paper spray as the ionization source.

  18. Ionization in orthogonal two-color laser fields: Origin and phase dependences of trajectory-resolved Coulomb effects

    NASA Astrophysics Data System (ADS)

    Richter, Martin; Kunitski, Maksim; Schöffler, Markus; Jahnke, Till; Schmidt, Lothar Ph. H.; Dörner, Reinhard

    2016-09-01

    We report on electron momentum distributions from single ionization of Ar in strong orthogonally polarized two-color (OTC) laser fields measured with the COLTRIMS technique. We study the effect of Coulomb focusing whose signature is a cusplike feature in the center of the electron momentum spectrum. While the direct electrons show the expected strong dependence on the phase between the two colors, surprisingly the Coulomb-focused structure is almost not influenced by the weak second harmonic streaking field. This effect is explained by the use of a CTMC simulation which describes the tunneled electron wave packet in terms of classical trajectories under the influence of the combined Coulomb and OTC laser field. We find a subtle interplay between the initial momentum of the electron upon tunneling, the ionization phase and the action of the Coulomb field that makes the Coulomb focused part of the momentum spectrum apparently insensitive to the weaker streaking field.

  19. Dynamical features and electric field strengths of double layers driven by currents. [in auroras

    NASA Technical Reports Server (NTRS)

    Singh, N.; Thiemann, H.; Schunk, R. W.

    1985-01-01

    In recent years, a number of papers have been concerned with 'ion-acoustic' double layers. In the present investigation, results from numerical simulations are presented to show that the shapes and forms of current-driven double layers evolve dynamically with the fluctuations in the current through the plasma. It is shown that double layers with a potential dip can form even without the excitation of ion-acoustic modes. Double layers in two-and one-half-dimensional simulations are discussed, taking into account the simulation technique, the spatial and temporal features of plasma, and the dynamical behavior of the parallel potential distribution. Attention is also given to double layers in one-dimensional simulations, and electrical field strengths predicted by two-and one-half-dimensional simulations.

  20. Correction factors for ionization chamber dosimetry in CyberKnife: Machine-specific, plan-class, and clinical fields

    SciTech Connect

    Gago-Arias, Araceli; Antolin, Elena; Fayos-Ferrer, Francisco; Simon, Rocio; Gonzalez-Castano, Diego M.; Palmans, Hugo; Sharpe, Peter; Gomez, Faustino; Pardo-Montero, Juan

    2013-01-15

    Purpose: The aim of this work is the application of the formalism for ionization chamber reference dosimetry of small and nonstandard fields [R. Alfonso, P. Andreo, R. Capote, M. S. Huq, W. Kilby, P. Kjaell, T. R. Mackie, H. Palmans, K. Rosser, J. Seuntjens, W. Ullrich, and S. Vatnitsky, 'A new formalism for reference dosimetry of small and nonstandard fields,' Med. Phys. 35, 5179-5186 (2008)] to the CyberKnife robotic radiosurgery system. Correction factors for intermediate calibration fields, a machine-specific reference field (msr) and two plan-class specific reference fields (pcsr), have been studied. Furthermore, the applicability of the new formalism to clinical dosimetry has been analyzed through the investigation of two clinical treatments. Methods: PTW31014 and Scanditronix-Wellhofer CC13 ionization chamber measurements were performed for the fields under investigation. Absorbed dose to water was determined using alanine reference dosimetry, and experimental correction factors were calculated from alanine to ionization chamber readings ratios. In addition, correction factors were calculated for the intermediate calibration fields and one of the clinical treatment fields using the Monte Carlo method and these were compared with the experimental values. Results: Overall correction factors deviating from unity by approximately 2% were obtained from both measurements and simulations, with values below and above unity for the studied intermediate calibration fields and clinical fields for the ionization chambers under consideration. Monte Carlo simulations yielded correction factors comparable with those obtained from measurements for the machine-specific reference field, although differences from 1% to 3.3% were observed between measured and calculated correction factors for the composite intermediate calibration fields. Dose distribution inhomogeneities are thought to be responsible for such discrepancies. Conclusions: The differences found between overall

  1. Particle localization in a double-well potential by pseudo-supersymmetric fields

    SciTech Connect

    Bagrov, V. G. Samsonov, B. F.; Shamshutdinova, V. V.

    2011-06-15

    We study properties of a particle moving in a double-well potential in the two-level approximation placed in an additional external time-dependent field. Using previously established property (J. Phys. A 41, 244023 (2008)) that any two-level system possesses a pseudo-supersymmetry we introduce the notion of pseudo-supersymmetric field. It is shown that these fields, even if their time dependence is not periodical, may produce the effect of localization of the particle in one of the wells of the double-well potential.

  2. Ionization at a solid-water interface in an applied electric field: Charge regulation

    NASA Astrophysics Data System (ADS)

    Okamoto, Ryuichi; Onuki, Akira

    2016-09-01

    We investigate ionization at a solid-water interface in an applied electric field. We attach an electrode to a dielectric film bearing silanol or carboxyl groups with an areal density Γ0, where the degree of dissociation α is determined by the proton density in water close to the film. We show how α depends on the density n0 of NaOH in water and the surface charge density σm on the electrode. For σm > 0, the protons are expelled away from the film, leading to an increase in α. In particular, in the range 0 < σm < eΓ0, self-regulation occurs to realize α ≅ σm/eΓ0 for n0 ≪ nc, where nc is 0.01 mol/L for silica surfaces and is 2 × 10-5 mol/L for carboxyl-bearing surfaces. We also examine the charge regulation with decreasing the cell thickness H below the Debye length κ-1, where a crossover occurs at the Gouy-Chapman length. In particular, when σm ˜ eΓ0 and H ≪ κ-1, the surface charges remain only partially screened by ions, leading to a nonvanishing electric field in the interior.

  3. Intense field induced excitation and ionization of an atom confined in a dense quantum plasma

    NASA Astrophysics Data System (ADS)

    Lumb, Shalini; Lumb, Sonia; Munjal, D.; Prasad, V.

    2015-09-01

    Exponential cosine screened Coulomb potential (ECSCP) has been widely used in various branches of physics e.g., solid-state physics, nuclear physics and plasma physics. The atomic photoionization processes under plasma shielding can serve as an efficient tool for study of plasma properties in various environments ranging from nano-scale devices to astrophysical objects. In the present study, ECSCP has been used to characterize a dense quantum plasma and its effect on the spectrum of an atom encaged in a spherical box has been investigated. The work has further been extended to study the response of such a system to a periodic laser field. Photoexcitation and ionization probabilities of the system have been studied as a function of applied laser field parameters using the non-perturbative Floquet technique. As the Floquet method requires exact energy values and oscillator strengths, the spectrum of confined system has been calculated using Bernstein-polynomial method. The variation of energy spectrum and oscillator strengths with screening as well as confinement parameters has also been explored.

  4. Effect of Chromatin Structure on the Extent and Distribution of DNA Double Strand Breaks Produced by Ionizing Radiation; Comparative Study of hESC and Differentiated Cells Lines

    PubMed Central

    Venkatesh, Priyanka; Panyutin, Irina V.; Remeeva, Evgenia; Neumann, Ronald D.; Panyutin, Igor G.

    2016-01-01

    Chromatin structure affects the extent of DNA damage and repair. Thus, it has been shown that heterochromatin is more protective against DNA double strand breaks (DSB) formation by ionizing radiation (IR); and that DNA DSB repair may proceed differently in hetero- and euchromatin regions. Human embryonic stem cells (hESC) have a more open chromatin structure than differentiated cells. Here, we study the effect of chromatin structure in hESC on initial DSB formation and subsequent DSB repair. DSB were scored by comet assay; and DSB repair was assessed by repair foci formation via 53BP1 antibody staining. We found that in hESC, heterochromatin is confined to distinct regions, while in differentiated cells it is distributed more evenly within the nuclei. The same dose of ionizing radiation produced considerably more DSB in hESC than in differentiated derivatives, normal human fibroblasts; and one cancer cell line. At the same time, the number of DNA repair foci were not statistically different among these cells. We showed that in hESC, DNA repair foci localized almost exclusively outside the heterochromatin regions. We also noticed that exposure to ionizing radiation resulted in an increase in heterochromatin marker H3K9me3 in cancer HT1080 cells, and to a lesser extent in IMR90 normal fibroblasts, but not in hESCs. These results demonstrate the importance of chromatin conformation for DNA protection and DNA damage repair; and indicate the difference of these processes in hESC. PMID:26729112

  5. Effect of Chromatin Structure on the Extent and Distribution of DNA Double Strand Breaks Produced by Ionizing Radiation; Comparative Study of hESC and Differentiated Cells Lines.

    PubMed

    Venkatesh, Priyanka; Panyutin, Irina V; Remeeva, Evgenia; Neumann, Ronald D; Panyutin, Igor G

    2016-01-02

    Chromatin structure affects the extent of DNA damage and repair. Thus, it has been shown that heterochromatin is more protective against DNA double strand breaks (DSB) formation by ionizing radiation (IR); and that DNA DSB repair may proceed differently in hetero- and euchromatin regions. Human embryonic stem cells (hESC) have a more open chromatin structure than differentiated cells. Here, we study the effect of chromatin structure in hESC on initial DSB formation and subsequent DSB repair. DSB were scored by comet assay; and DSB repair was assessed by repair foci formation via 53BP1 antibody staining. We found that in hESC, heterochromatin is confined to distinct regions, while in differentiated cells it is distributed more evenly within the nuclei. The same dose of ionizing radiation produced considerably more DSB in hESC than in differentiated derivatives, normal human fibroblasts; and one cancer cell line. At the same time, the number of DNA repair foci were not statistically different among these cells. We showed that in hESC, DNA repair foci localized almost exclusively outside the heterochromatin regions. We also noticed that exposure to ionizing radiation resulted in an increase in heterochromatin marker H3K9me3 in cancer HT1080 cells, and to a lesser extent in IMR90 normal fibroblasts, but not in hESCs. These results demonstrate the importance of chromatin conformation for DNA protection and DNA damage repair; and indicate the difference of these processes in hESC.

  6. Double layer field shaping systems for toroidal plasmas

    DOEpatents

    Ohyabu, Nobuyoshi

    1982-01-01

    Methods and apparatus for plasma generation, confinement and control such as Tokamak plasma systems are described having a two layer field shaping coil system comprising an inner coil layer close to the plasma and an outer coil layer to minimize the current in the inner coil layer.

  7. Measurement of scintillation and ionization yield with high-pressure gaseous mixtures of Xe and TMA for improved neutrinoless double beta decay and dark matter searches

    NASA Astrophysics Data System (ADS)

    Nakajima, Y.; Goldschmidt, A.; Matis, H. S.; Miller, T.; Nygren, D. R.; Oliveira, C. A. B.; Renner, J.

    2016-03-01

    The gaseous Xenon(Xe) time projection chamber (TPC) is an attractive detector technique for neutrinoless double beta decay and WIMP dark matter searches. While it is less dense compared to Liquid Xe detectors, it has intrinsic advantages in tracking capability and better energy resolution. The performance of gaseous Xe can be further improved by molecular additives such as trimethylamine(TMA), which is expected to (1) cool down the ionization electrons, (2) convert Xe excitation energy to TMA ionizations through Penning transfer, and (3) produce scintillation and electroluminescence light in a more easily detectable wavelength (300 nm). In order to test the feasibility of the performance improvements with TMA, we made the first direct measurement of Penning and fluorescence transfer efficiency with gaseous mixtures of Xe and TMA. While we observed a Penning transfer efficiency up to ~35%, we found strong suppression of primary scintillation light with TMA. We also found that the primary scintillation light with Xe and TMA mixture can be well characterized by ~3% fluorescence transfer from Xe to TMA, with further suppression due to TMA self-quenching. No evidence of the scintillation light produced by recombination of TMA ions was found. This strong suppression of scintillation light makes dark matter searches quite challenging, while the possibility of improved neutrinoless double beta decay searches remains open. This work has been carried out within the context of the NEXT collaboration.

  8. Species doubling and transfer matrices for fermionic fields

    NASA Astrophysics Data System (ADS)

    Creutz, Michael

    1987-02-01

    The transfer-matrix formalism for relating Hamiltonian quantum mechanics and Euclidean path integrals is discussed in the context of fermionic fields. Particular emphasis is placed on the extra fermionic species encountered with the naive discretization of time. When both particles and antiparticles are present, the Wilson projection-operator formalism arises naturally for the temporal coordinate. We discuss in detail how the Hilbert space must be enlarged to remove these projections.

  9. Standardization of terminology in field of ionizing radiations and their measurements

    NASA Astrophysics Data System (ADS)

    Yudin, M. F.; Karaveyev, F. M.

    1984-03-01

    A new standard terminology was introduced on 1 January 1982 by the Scientific-Technical Commission on All-Union State Standards to cover ionizing radiations and their measurements. It is based on earlier standards such as GOST 15484-74/81, 18445-70/73, 19849-74, 22490-77 as well as the latest recommendations by international committees. One hundred eighty-six terms and definitions in 14 paragraphs are contained. Fundamental concepts, sources and forms of ionizing radiations, characteristics and parameters of ionizing radiations, and methods of measuring their characteristics and parameters are covered. New terms have been added to existing ones. The equivalent English, French, and German terms are also given. The terms measurement of ionizing radiation and transfer of ionizing particles (equivalent of particle fluence of energy fluence) are still under discussion.

  10. Nonadiabatic dynamics and multiphoton resonances in strong-field molecular ionization with few-cycle laser pulses

    NASA Astrophysics Data System (ADS)

    Tagliamonti, Vincent; Sándor, Péter; Zhao, Arthur; Rozgonyi, Tamás; Marquetand, Philipp; Weinacht, Thomas

    2016-05-01

    We study strong-field molecular ionization using few- (four to ten) cycle laser pulses. Employing a supercontinuum light source, we are able to tune the optical laser wavelength (photon energy) over a range of ˜200 nm (500 meV). We measure the photoelectron spectrum for a series of different molecules as a function of laser intensity, frequency, and bandwidth and illustrate how the ionization dynamics vary with these parameters. We find that multiphoton resonances and nonadiabatic dynamics (internal conversion) play an important role and result in ionization to different ionic continua. Interestingly, while nuclear dynamics can be "frozen" for sufficiently short laser pulses, we find that resonances strongly influence the photoelectron spectrum and final cationic state of the molecule regardless of pulse duration—even for pulses that are less than four cycles in duration.

  11. Near infrared (NIR) strong field ionization and imaging of C₆₀ sputtered molecules: overcoming matrix effects and improving sensitivity.

    PubMed

    Kucher, Andrew; Jackson, Lauren M; Lerach, Jordan O; Bloom, A N; Popczun, N J; Wucher, Andreas; Winograd, Nicholas

    2014-09-01

    Strong field ionization (SFI) was applied for the secondary neutral mass spectrometry (SNMS) of patterned rubrene films, mouse brain sections, and Botryococcus braunii algal cell colonies. Molecular ions of rubrene, cholesterol, C31 diene/triene, and three wax monoesters were detected, representing some of the largest organic molecules ever ionized intact by a laser post-ionization experiment. In rubrene, the SFI SNMS molecular ion signal was ~4 times higher than in the corresponding secondary-ion mass spectroscopy (SIMS) analysis. In the biological samples, the achieved signal improvements varied among molecules and sampling locations, with SFI SNMS, in some cases, revealing analytes made completely undetectable by the influence of matrix effects in SIMS. PMID:25109240

  12. Photoionization of isooctane and n-octane in intense laser fields. I. Effect of irradiance on ionization rates

    NASA Astrophysics Data System (ADS)

    Healy, Andrew T.; Lipsky, Sanford; Blank, David A.

    2007-12-01

    The population of ejected electrons following multiphoton ionization of neat liquids isooctane and n-octane is investigated over a large range of ionizing irradiance Iex. Transient absorption (TA) at 1200nm in both neat liquids is measured in a 60μm path at time delays of 0.7 and 2.5ps following an intense 400nm (3.1eV) ionizing pulse. As the irradiance of this pulse is varied over the range from 4to410TW/cm2, the dependence of TA on Iex exhibits the periodic structure theoretically predicted for multiphoton channel openings and closings. At low Iex (<9TW/cm2), TA in isooctane is proportional to Iexn where n =3, consistent with nonresonant, near threshold ionization (liquid phase ionization potential=8.6eV). At Iex>9TW/cm2, n declines with increasing Iex up to Iex=13TW/cm2, at which point n abruptly increases to 4. The pattern is repeated at Iex>13TW/cm2, albeit with n declining from 4 and then abruptly increasing to 5 as Iex becomes greater than 100TW/cm2. A similar trend is observed in n-octane. The dependence of the TA on Iex in the regions of channel openings and closings is compared to the nonperturbative, strong field approximation developed by Reiss [Phys. Rev. A 22, 1786 (1980)].

  13. Evaluation of dosimetric characteristics of multi-leaf and conventional collimated radiation fields using a scanning liquid ionization chamber EPID.

    PubMed

    Mohammadi, M; Bezak, E

    2008-12-01

    The characteristics of radiation fields set up using conventional and Multi-Leaf collimators were investigated using a Scanning Liquid Ionization Chamber Electronic Portal Imaging Device (SLIC-EPID). Results showed that the radiation fields set up using MLCs are generally larger than those set up using conventional collimators. A significant difference was observed between the penumbra width for conventional and MLC radiation fields. SLIC-EPID was found to be a sensitive device to evaluate the characteristics of the radiation fields generated with MLCs.

  14. High-resolution pulsed-field ionization photoelectron study of O{sub 2}

    SciTech Connect

    Hsu, C.W.; Evans, M.; Stimson, S.

    1997-04-01

    There have been numerous photoionization studies of O{sub 2} over the past 10 years. Using the pulsed field ionization (PFI) photoelectron spectroscopy (PES) technique, the electronic ground state of O{sub 2}{sup +} (X{sup 2}{Pi}{sub g}{sup {minus}}) has been well studied on the rotationally resolved level by several groups. However, due to the difficulty of producing photon energies above 18 eV using the tunable lasers, the electronic excited states of O{sub 2}{sup +} have been mostly studied on the vibrationally resolved level using the threshold photoelectron spectroscopy (TPES) and the synchrotron radiation. Recently, the authors developed a new technique for performing the PFI-PE experiments using multi-bunch synchrotron radiation at the Chemical Dynamics Beamline of the Advanced Light Source (ALS). Using the high resolution VUV light from the ALS, they have obtained the PFI-PE spectra of O{sub 2} between 12 and 24 eV. In this abstract, the authors report for the first time the rotationally resolved spectra of O{sub 2}{sup +} (b{sup 4}{Sigma}{sub g}{sup {minus}}, v{sup +}=0).

  15. Cluster formation and distributions in field ionization of coadsorbed methanol and water on platinum

    NASA Astrophysics Data System (ADS)

    Rothfuss, C. J.; Medvedev, V. K.; Stuve, E. M.

    2016-08-01

    Pure and mixed clusters of methanol and water were examined with pulsed field desorption time-of-flight mass spectrometry (TOF-MS) as a function of adlayer composition varying from pure water to nominally pure methanol. The experiments were performed on a Pt tip at 165 K and total pressure of approximately 5 × 10-6 Torr. Protonated clusters of up 7 water molecules and up to 4 methanol molecules were detected. For mixed adlayers, mixed clusters involving 1 or 2 water and methanol molecules were observed. The hydronium cluster (H2O)H+ exhibited unusual behavior in that its maximum intensity occurred for an approximately equimolar mixture. This was attributed to direct ionization of a methanol monohydrate species, (CH3OH ṡ H2O). Water production was observed in methanol-rich layers and ascribed to scission of the C-O bond to produce CH3 and OH. The TOF-MS data exhibited significant time lags for most higher mass clusters. The time lags for pure H2O were analyzed in terms of a two-step mechanism involving a trade-off of ion cluster emission and growth, from which the rate constant for cluster growth was estimated as 9 × 10-6 s-1.

  16. [Saccharomyces cerevisiae as a model organism for studying the carcinogenicity of non-ionizing electromagnetic fields and radiation].

    PubMed

    Voĭchuk, S I

    2014-01-01

    Medical and biological aspects of the effects of non-ionizing electromagnetic (EM) fields and radiation on human health are the important issues that have arisen as a result of anthropogenic impact on the biosphere. Safe use of man-made sources of non-ionizing electromagnetic fields and radiation in a broad range of frequencies--static, radio-frequency and microwave--is a subject of discussions and speculations. The main problem is the lack of understanding of the mechanism(s) of reception of EMFs by living organisms. In this review we have analyzed the existing literature data regarding the effects of the electromagnetic radiation on the model eukaryotic organism--yeast Saccharomyces cerevisiae. An attempt was made to estimate the probability of induction of carcinogenesis in humans under the influence of magnetic fields and electromagnetic radiation of extremely low frequency, radio frequency and microwave ranges. PMID:24800516

  17. [Saccharomyces cerevisiae as a model organism for studying the carcinogenicity of non-ionizing electromagnetic fields and radiation].

    PubMed

    Voĭchuk, S I

    2014-01-01

    Medical and biological aspects of the effects of non-ionizing electromagnetic (EM) fields and radiation on human health are the important issues that have arisen as a result of anthropogenic impact on the biosphere. Safe use of man-made sources of non-ionizing electromagnetic fields and radiation in a broad range of frequencies--static, radio-frequency and microwave--is a subject of discussions and speculations. The main problem is the lack of understanding of the mechanism(s) of reception of EMFs by living organisms. In this review we have analyzed the existing literature data regarding the effects of the electromagnetic radiation on the model eukaryotic organism--yeast Saccharomyces cerevisiae. An attempt was made to estimate the probability of induction of carcinogenesis in humans under the influence of magnetic fields and electromagnetic radiation of extremely low frequency, radio frequency and microwave ranges.

  18. Effective ionization coefficients, limiting electric fields, and electron energy distributions in CF3I + CF4 + Ar ternary gas mixtures

    NASA Astrophysics Data System (ADS)

    Tezcan, S. S.; Dincer, M. S.; Bektas, S.

    2016-07-01

    This paper reports on the effective ionization coefficients, limiting electric fields, electron energy distribution functions, and mean energies in ternary mixtures of (Trifluoroiodomethane) CF3I + CF4 + Ar in the E/N range of 100-700 Td employing a two-term solution of the Boltzmann equation. In the ternary mixture, CF3I component is increased while the CF4 component is reduced accordingly and the 40% Ar component is kept constant. It is seen that the electronegativity of the mixture increases with increased CF3I content and effective ionization coefficients decrease while the limiting electric field values increase. Synergism in the mixture is also evaluated in percentage using the limiting electric field values obtained. Furthermore, it is possible to control the mean electron energy in the ternary mixture by changing the content of CF3I component.

  19. Modeling weakly-ionized plasmas in magnetic field: A new computationally-efficient approach

    NASA Astrophysics Data System (ADS)

    Parent, Bernard; Macheret, Sergey O.; Shneider, Mikhail N.

    2015-11-01

    Despite its success at simulating accurately both non-neutral and quasi-neutral weakly-ionized plasmas, the drift-diffusion model has been observed to be a particularly stiff set of equations. Recently, it was demonstrated that the stiffness of the system could be relieved by rewriting the equations such that the potential is obtained from Ohm's law rather than Gauss's law while adding some source terms to the ion transport equation to ensure that Gauss's law is satisfied in non-neutral regions. Although the latter was applicable to multicomponent and multidimensional plasmas, it could not be used for plasmas in which the magnetic field was significant. This paper hence proposes a new computationally-efficient set of electron and ion transport equations that can be used not only for a plasma with multiple types of positive and negative ions, but also for a plasma in magnetic field. Because the proposed set of equations is obtained from the same physical model as the conventional drift-diffusion equations without introducing new assumptions or simplifications, it results in the same exact solution when the grid is refined sufficiently while being more computationally efficient: not only is the proposed approach considerably less stiff and hence requires fewer iterations to reach convergence but it yields a converged solution that exhibits a significantly higher resolution. The combined faster convergence and higher resolution is shown to result in a hundredfold increase in computational efficiency for some typical steady and unsteady plasma problems including non-neutral cathode and anode sheaths as well as quasi-neutral regions.

  20. Improved field emission properties of carbon nanotubes grown on stainless steel substrate and its application in ionization gauge

    NASA Astrophysics Data System (ADS)

    Li, Detian; Cheng, Yongjun; Wang, Yongjun; Zhang, Huzhong; Dong, Changkun; Li, Da

    2016-03-01

    Vertically aligned carbon nanotube (CNT) arrays were fabricated by chemical vapor deposition (CVD) technique on different substrates. Microstructures and field emission characteristics of the as-grown CNT arrays were investigated systematically, and its application in ionization gauge was also evaluated preliminarily. The results indicate that the as-grown CNT arrays are vertically well-aligned relating to the substrate surfaces, but the CNTs grown on stainless steel substrate are longer and more crystalline than the ones grown on silicon wafer substrate. The field emission behaviors of the as-grown CNT arrays are strongly dependent upon substrate properties. Namely, the CNT array grown on stainless steel substrate has better field emission properties, including lower turn on and threshold fields, better emission stability and repeatability, compared with the one grown on silicon wafer substrate. The superior field emission properties of the CNT array grown on stainless steel substrate are mainly attributed to low contact resistance, high thermal conductivity, good adhesion strength, etc. In addition, the metrological behaviors of ionization gauge with the CNT array grown on stainless steel substrate as an electron source were investigated, and this novel cathode ionization gauge extends the lower limit of linear pressure measurement to 10-8 Pa, which is one order of magnitude lower than the result reported for the same of gauge with CNT cathode.

  1. Wide-field LOFAR imaging of the field around the double-double radio galaxy B1834+620. A fresh view on a restarted AGN and doubeltjes

    NASA Astrophysics Data System (ADS)

    Orrù, E.; van Velzen, S.; Pizzo, R. F.; Yatawatta, S.; Paladino, R.; Iacobelli, M.; Murgia, M.; Falcke, H.; Morganti, R.; de Bruyn, A. G.; Ferrari, C.; Anderson, J.; Bonafede, A.; Mulcahy, D.; Asgekar, A.; Avruch, I. M.; Beck, R.; Bell, M. E.; van Bemmel, I.; Bentum, M. J.; Bernardi, G.; Best, P.; Breitling, F.; Broderick, J. W.; Brüggen, M.; Butcher, H. R.; Ciardi, B.; Conway, J. E.; Corstanje, A.; de Geus, E.; Deller, A.; Duscha, S.; Eislöffel, J.; Engels, D.; Frieswijk, W.; Garrett, M. A.; Grießmeier, J.; Gunst, A. W.; Hamaker, J. P.; Heald, G.; Hoeft, M.; van der Horst, A. J.; Intema, H.; Juette, E.; Kohler, J.; Kondratiev, V. I.; Kuniyoshi, M.; Kuper, G.; Loose, M.; Maat, P.; Mann, G.; Markoff, S.; McFadden, R.; McKay-Bukowski, D.; Miley, G.; Moldon, J.; Molenaar, G.; Munk, H.; Nelles, A.; Paas, H.; Pandey-Pommier, M.; Pandey, V. N.; Pietka, G.; Polatidis, A. G.; Reich, W.; Röttgering, H.; Rowlinson, A.; Scaife, A.; Schoenmakers, A.; Schwarz, D.; Serylak, M.; Shulevski, A.; Smirnov, O.; Steinmetz, M.; Stewart, A.; Swinbank, J.; Tagger, M.; Tasse, C.; Thoudam, S.; Toribio, M. C.; Vermeulen, R.; Vocks, C.; van Weeren, R. J.; Wijers, R. A. M. J.; Wise, M. W.; Wucknitz, O.

    2015-12-01

    Context. The existence of double-double radio galaxies (DDRGs) is evidence for recurrent jet activity in active galactic nuclei (AGN), as expected from standard accretion models. A detailed study of these rare sources provides new perspectives for investigating the AGN duty cycle, AGN-galaxy feedback, and accretion mechanisms. Large catalogues of radio sources, on the other hand, provide statistical information about the evolution of the radio-loud AGN population out to high redshifts. Aims: Using wide-field imaging with the LOFAR telescope, we study both a well-known DDRG as well as a large number of radio sources in the field of view. Methods: We present a high resolution image of the DDRG B1834+620 obtained at 144 MHz using LOFAR commissioning data. Our image covers about 100 square degrees and contains over 1000 sources. Results: The four components of the DDRG B1834+620 have been resolved for the first time at 144 MHz. Inner lobes were found to point towards the direction of the outer lobes, unlike standard FR II sources. Polarized emission was detected at +60 rad m-2 in the northern outer lobe. The high spatial resolution allows the identification of a large number of small double-lobed radio sources; roughly 10% of all sources in the field are doubles with a separation smaller than 1'. Conclusions: The spectral fit of the four components is consistent with a scenario in which the outer lobes are still active or the jets recently switched off, while emission of the inner lobes is the result of a mix-up of new and old jet activity. From the presence of the newly extended features in the inner lobes of the DDRG, we can infer that the mechanism responsible for their formation is the bow shock that is driven by the newly launched jet. We find that the density of the small doubles exceeds the density of FR II sources with similar properties at 1.4 GHz, but this difference becomes smaller for low flux densities. Finally, we show that the significant challenges of

  2. Orientation dependence of the ionization of CO and NO in an intense femtosecond two-color laser field

    NASA Astrophysics Data System (ADS)

    Li, Hui; Ray, Dipanwita; de, Sankar; Cao, Wei; Laurent, Guillaume; Wang, Zhenhua; Thu Le, Anh; Cocke, C. Lewis; Znakovskaya, Irina; Kling, Matthias

    2012-06-01

    Two-color (800 nm and 400 nm) ultrashort (30±10 fs) laser pulses were used to ionize and dissociate CO and NO. The emission of C^+q, N^+q and O^+ fragments were measured with a velocity-map-imaging (VMI) system. The data show that the ionization rate is dependent on the orientation of the molecules with respect to the laser polarization. Both molecules ionize more easily when the electric field points from C to O in CO and from N to O in NO. The asymmetry of emission is much higher for CO than for NO. The sign of the asymmetry is not strongly dependent on kinetic energy release (KER). The favored ionization orientation is in agreement with the expectation of the molecular orbital Ammosov-Delone-Krainov (MO-ADK) [1] theory and with a Stark-corrected version of a strong-field-approximation (SFA) calculation [2]. [4pt] [1] X.M. Tong, et al., Phys. Rev. A 66, 033402 (2002).[0pt] [2] H. Li, et al., Phys. Rev. A 84, 043429 (2011).

  3. Radiation fields of intermediate-age stellar populations with binaries as ionizing sources of H II regions

    NASA Astrophysics Data System (ADS)

    Zhang, F.; Li, L.; Cheng, L.; Wang, L.; Kang, X.; Zhuang, Y.; Han, Z.

    2015-02-01

    Radiation fields emitted by O- and B-type stars or young stellar populations (SPs) are generally considered as significant central ionizing sources (CISs) of classic H II regions. In our previous studies, we showed that the inclusion of binary interactions in stellar population synthesis models can significantly increase the ultraviolet spectrum hardness and the number of ionizing photons of intermediate-age (IA) SPs (7 ≲ log(t/yr) ≲ 8). In this work, we present photoionization models of H II regions ionized by radiation fields emitted by IA SPs, including binary systems, and show that these fields are in theory possible candidates for significant CISs of classic H II regions. When radiation fields of IA SPs comprising binary systems are used as the CISs of classic H II regions, the theoretical strengths of a number of lines (such as [O III] λ4959', [S II] λ6716', etc.), which are weaker than observations, are increased; the border or selection-criterion lines between star-forming galaxies and active galactic nuclei (AGNs) in the diagnostic diagrams (for example, [N II] λ6583/Hα versus [O III] λ5007/Hβ), move into the region occupied originally by AGNs; and the He II λ1640 line, observed in Lyman break and high-redshift gravitationally lensed galaxies, also can be produced.

  4. Determination of small-field correction factors for cylindrical ionization chambers using a semiempirical method

    NASA Astrophysics Data System (ADS)

    Park, Kwangwoo; Bak, Jino; Park, Sungho; Choi, Wonhoon; Park, Suk Won

    2016-02-01

    A semiempirical method based on the averaging effect of the sensitive volumes of different air-filled ionization chambers (ICs) was employed to approximate the correction factors for beam quality produced from the difference in the sizes of the reference field and small fields. We measured the output factors using several cylindrical ICs and calculated the correction factors using a mathematical method similar to deconvolution; in the method, we modeled the variable and inhomogeneous energy fluence function within the chamber cavity. The parameters of the modeled function and the correction factors were determined by solving a developed system of equations as well as on the basis of the measurement data and the geometry of the chambers. Further, Monte Carlo (MC) computations were performed using the Monaco® treatment planning system to validate the proposed method. The determined correction factors (k{{Q\\text{msr}},Q}{{f\\text{smf}}, {{f}\\text{ref}}} ) were comparable to the values derived from the MC computations performed using Monaco®. For example, for a 6 MV photon beam and a field size of 1  ×  1 cm2, k{{Q\\text{msr}},Q}{{f\\text{smf}}, {{f}\\text{ref}}} was calculated to be 1.125 for a PTW 31010 chamber and 1.022 for a PTW 31016 chamber. On the other hand, the k{{Q\\text{msr}},Q}{{f\\text{smf}}, {{f}\\text{ref}}} values determined from the MC computations were 1.121 and 1.031, respectively; the difference between the proposed method and the MC computation is less than 2%. In addition, we determined the k{{Q\\text{msr}},Q}{{f\\text{smf}}, {{f}\\text{ref}}} values for PTW 30013, PTW 31010, PTW 31016, IBA FC23-C, and IBA CC13 chambers as well. We devised a method for determining k{{Q\\text{msr}},Q}{{f\\text{smf}}, {{f}\\text{ref}}} from both the measurement of the output factors and model-based mathematical computation. The proposed method can be useful in case the MC simulation would not be applicable for the clinical settings.

  5. Measurement of the delta34S value in methionine by double spike multi-collector thermal ionization mass spectrometry using Carius tube digestion.

    PubMed

    Mann, Jacqueline L; Kelly, W Robert

    2010-09-15

    Methionine is an essential amino acid and is the primary source of sulfur for humans. Using the double spike ((33)S-(36)S) multi-collector thermal ionization mass spectrometry (MC-TIMS) technique, three sample bottles of a methionine material obtained from the Institute for Reference Materials and Measurements have been measured for delta(34)S and sulfur concentration. The mean delta(34)S value, relative to Vienna Canyon Diablo Troilite (VCDT), determined was 10.34 +/- 0.11 per thousand (n = 9) with the uncertainty reported as expanded uncertainties (U). These delta(34)S measurements include a correction for blank which has been previously ignored in studies of sulfur isotopic composition. The sulfur concentrations for the three bottles range from 56 to 88 microg/g. The isotope composition and concentration results demonstrate the high accuracy and precision of the DS-MC-TIMS technique for measuring sulfur in methionine.

  6. Integral Field Unit Observations of NGC 4302: Kinematics of the Diffuse Ionized Gas Halo

    NASA Astrophysics Data System (ADS)

    Heald, George H.; Rand, Richard J.; Benjamin, Robert A.; Bershady, Matthew A.

    2007-07-01

    We present moderate-resolution spectroscopy of extraplanar diffuse ionized gas (EDIG) emission in the edge-on spiral galaxy NGC 4302. The spectra were obtained with the SparsePak integral field unit (IFU) at the WIYN Observatory. The wavelength coverage of the observations includes the [N II] λ6548, 6583, Hα, and [S II] λ6716, 6731 emission lines. The spatial coverage of the IFU includes the entirety of the EDIG emission noted in previous imaging studies of this galaxy. The spectra are used to construct position-velocity (PV) diagrams at several ranges of heights above the midplane. Azimuthal velocities are directly extracted from the PV diagrams using the envelope-tracing method and indicate an extremely steep drop-off in rotational velocity with increasing height, with magnitude ~30 km s-1 kpc-1. We find evidence for a radial variation in the velocity gradient on the receding side. We have also performed artificial observations of galaxy models in an attempt to match the PV diagrams. The results of a statistical analysis also favor a gradient of ~30 km s-1 kpc-1. We compare these results with an entirely ballistic model of disk-halo flow and find a strong dichotomy between the observed kinematics and those predicted by the model. The disagreement is worse than we have found for other galaxies in previous studies. The conclusions of this paper are compared to results for two other galaxies, NGC 5775 and NGC 891. We find that the vertical gradient in rotation speed, per unit EDIG scale height, for all three galaxies is consistent with a constant magnitude (within the errors) of approximately 15-25 km s-1 per scale height, independent of radius. This relationship is also true within the galaxy NGC 4302. We also discuss how the gradient depends on the distribution and morphology of the EDIG and the star formation rates of the galaxies, and consequences for the origin of the gas.

  7. Ionization and electric field properties of auroral arcs during magnetic quiescence

    SciTech Connect

    Robinson, R.M.; Mende, S.B. )

    1990-12-01

    Studies of the morphology of auroral precipitation during times of magnetic quiescence indicate that the polar cap shrinks and becomes distorted into a teardrop or pear-shaped region. On November 16, 1987, incoherent scatter radar and all-sky imaging photometer measurements were made of auroral arcs over Sondre Stromfjord, Greenland. The arcs were generally oriented in a geographic east-west direction which is approximately Sun aligned at a local time just after dusk. Kp was 1, and the interlplanetary magnetic field was northward during the time of observation, so tha the arcs occurred under magnetically quiet conditions. The Sondrestrom radar measurements were used to determine the electron density and plasma drifts associated with the arcs; the all-sky imaging photometer data were used to relate the radar measurements to the arc morphology. Assuming the arcs were produced by precipitating electrons, the height profiles of electron density indicate average energies less than about 2 keV and energy fluxes of 1 erg/(cm{sup 2}s). F region electron densities were high in the polar cap north of the arcs and low within the region of the arcs. The poleward boundary of the arc system was a convection reversal boundary across which plasma exited the polar cap region moving antisunward and then turned sunward (westward). The observed arc-associated convection is consistent with that expected under these geomagnetic conditions. Comparison of these results with the electrodynamic properties of other arcs observed in the afternoon and early evening suggests that there is a system of arcs that delineates the afternoon convection cell. The observed gradient in F region electron density across the arc can be explained in terms of the recombination of ionization drifting in response to the arc-associated convection pattern.

  8. Near-Forward Rescattering Photoelectron Holography in Strong-Field Ionization: Extraction of the Phase of the Scattering Amplitude

    NASA Astrophysics Data System (ADS)

    Zhou, Yueming; Tolstikhin, Oleg I.; Morishita, Toru

    2016-04-01

    We revisit the concept of near-forward rescattering strong-field photoelectron holography introduced by Y. Huismans et al. [Science 331, 61 (2011)]. The recently developed adiabatic theory is used to show how the phase of the scattering amplitude for near-forward rescattering of an ionized electron by the parent ion is encoded in and can be read out from the corresponding interference pattern in photoelectron momentum distributions (PEMDs) produced in the ionization of atoms and molecules by intense laser pulses. A procedure to extract the phase is proposed. Its application to PEMDs obtained by solving the time-dependent Schrödinger equation for a model atom yields results in good agreement with scattering calculations. This establishes a novel general approach to extracting structural information from strong-field observables capable of providing time-resolved imaging of ultrafast processes.

  9. Nonlinear Dichroism in Back-to-Back Double Ionization of He by an Intense Elliptically Polarized Few-Cycle Extreme Ultraviolet Pulse.

    PubMed

    Ngoko Djiokap, J M; Manakov, N L; Meremianin, A V; Hu, S X; Madsen, L B; Starace, Anthony F

    2014-11-28

    Control of double ionization of He by means of the polarization and carrier-envelope phase (CEP) of an intense, few-cycle extreme ultraviolet (XUV) pulse is demonstrated numerically by solving the six-dimensional two-electron, time-dependent Schrödinger equation for He interacting with an elliptically polarized XUV pulse. Guided by perturbation theory (PT), we predict the existence of a nonlinear dichroic effect (∝I^{3/2}) that is sensitive to the CEP, ellipticity, peak intensity I, and temporal duration of the pulse. This dichroic effect (i.e., the difference of the two-electron angular distributions for opposite helicities of the ionizing XUV pulse) originates from interference of first- and second-order PT amplitudes, allowing one to probe and control S- and D-wave channels of the two-electron continuum. We show that the back-to-back in-plane geometry with unequal energy sharing is an ideal one for observing this dichroic effect that occurs only for an elliptically polarized, few-cycle attosecond pulse.

  10. Nonlinear Dichroism in Back-to-Back Double Ionization of He by an Intense Elliptically Polarized Few-Cycle Extreme Ultraviolet Pulse.

    PubMed

    Ngoko Djiokap, J M; Manakov, N L; Meremianin, A V; Hu, S X; Madsen, L B; Starace, Anthony F

    2014-11-28

    Control of double ionization of He by means of the polarization and carrier-envelope phase (CEP) of an intense, few-cycle extreme ultraviolet (XUV) pulse is demonstrated numerically by solving the six-dimensional two-electron, time-dependent Schrödinger equation for He interacting with an elliptically polarized XUV pulse. Guided by perturbation theory (PT), we predict the existence of a nonlinear dichroic effect (∝I^{3/2}) that is sensitive to the CEP, ellipticity, peak intensity I, and temporal duration of the pulse. This dichroic effect (i.e., the difference of the two-electron angular distributions for opposite helicities of the ionizing XUV pulse) originates from interference of first- and second-order PT amplitudes, allowing one to probe and control S- and D-wave channels of the two-electron continuum. We show that the back-to-back in-plane geometry with unequal energy sharing is an ideal one for observing this dichroic effect that occurs only for an elliptically polarized, few-cycle attosecond pulse. PMID:25494069

  11. Toroidal magnetic fields for protecting astronauts from ionizing radiation in long duration deep space missions

    NASA Astrophysics Data System (ADS)

    Papini, Paolo; Spillantini, Piero

    2014-11-01

    Among the configurations of superconducting magnet structures proposed for protecting manned spaceships or manned deep space bases from ionizing radiation, toroidal ones are the most appealing for the efficient use of the magnetic field, being most of the incoming particle directions perpendicular to the induction lines of the field. The parameters of the toroid configuration essentially depend from the shape and volume of the habitat to be protected and the level of protection to be guaranteed. Two options are considered: (1) the magnetic system forming with the habitat a unique complex (compact toroid) to be launched as one piece; (2) the magnetic system to be launched separately from the habitat and assembled around it in space (large toroid). In first option the system habitat+toroid is assumed to have a cylindrical shape, with the toroid surrounding a cylindrical habitat, and launched with its axis on the axis of the launching system. The outer diameter is limited by the diameter of the shroud, which for present and foreseeable launching systems cannot be more than 9 m. The habitat is assumed to be 10 m long and have a 4 m diameter, leaving about 2 m all around for the protecting magnetic field. The volume of the habitat results about 100 m3, barely sufficient to a somewhat small crew (4-5 members) for a long duration (≅2 years) mission. Technological problems and the huge magnetic pressure exerted on the inner cylindrical conductor of the toroid limit to not more than 4 T the maximum intensity of the magnetic field. With these parameters the mitigation of the dose inside the habitat due to the galactic cosmic rays (GCRs) is about 70% at minimum solar activity, while also most intense solar events cannot significantly contribute to the dose. The toroidal magnetic field can be produced by a large number of windings of the superconducting cable, arranged in cylindrical symmetry around the habitat to form continuous inner and outer cylindrical surfaces

  12. Validation of the neutron and gamma fields in the JSI TRIGA reactor using in-core fission and ionization chambers.

    PubMed

    Žerovnik, Gašper; Kaiba, Tanja; Radulović, Vladimir; Jazbec, Anže; Rupnik, Sebastjan; Barbot, Loïc; Fourmentel, Damien; Snoj, Luka

    2015-02-01

    CEA developed fission chambers and ionization chambers were utilized at the JSI TRIGA reactor to measure neutron and gamma fields. The measured axial fission rate distributions in the reactor core are generally in good agreement with the calculated values using the Monte Carlo model of the reactor thus verifying both the computational model and the fission chambers. In future, multiple absolutely calibrated fission chambers could be used for more accurate online reactor thermal power monitoring. PMID:25479432

  13. Validation of the neutron and gamma fields in the JSI TRIGA reactor using in-core fission and ionization chambers.

    PubMed

    Žerovnik, Gašper; Kaiba, Tanja; Radulović, Vladimir; Jazbec, Anže; Rupnik, Sebastjan; Barbot, Loïc; Fourmentel, Damien; Snoj, Luka

    2015-02-01

    CEA developed fission chambers and ionization chambers were utilized at the JSI TRIGA reactor to measure neutron and gamma fields. The measured axial fission rate distributions in the reactor core are generally in good agreement with the calculated values using the Monte Carlo model of the reactor thus verifying both the computational model and the fission chambers. In future, multiple absolutely calibrated fission chambers could be used for more accurate online reactor thermal power monitoring.

  14. Dosimetric parameters for small field sizes using Fricke xylenol gel, thermoluminescent and film dosimeters, and an ionization chamber.

    PubMed

    Calcina, Carmen S Guzmán; de Oliveira, Lucas N; de Almeida, Carlos E; de Almeida, Adelaide

    2007-03-01

    Dosimetric measurements in small therapeutic x-ray beam field sizes, such as those used in radiosurgery, that have dimensions comparable to or smaller than the build-up depth, require special care to avoid incorrect interpretation of measurements in regions of high gradients and electronic disequilibrium. These regions occur at the edges of any collimated field, and can extend to the centre of small fields. An inappropriate dosimeter can result in an underestimation, which would lead to an overdose to the patient. We have performed a study of square and circular small field sizes of 6 MV photons using a thermoluminescent dosimeter (TLD), Fricke xylenol gel (FXG) and film dosimeters. PMMA phantoms were employed to measure lateral beam profiles (1 x 1, 3 x 3 and 5 x 5 cm2 for square fields and 1, 2 and 4 cm diameter circular fields), the percentage depth dose, the tissue maximum ratio and the output factor. An ionization chamber (IC) was used for calibration and comparison. Our results demonstrate that high resolution FXG, TLD and film dosimeters agree with each other, and that an ionization chamber, with low lateral resolution, underestimates the absorbed dose. Our results show that, when planning small field radiotherapy, dosimeters with adequate lateral spatial resolution and tissue equivalence are required to provide an accurate basic beam data set to correctly calculate the absorbed dose in regions of electronic disequilibrium.

  15. Strong-field ionization rates of linear polyenes simulated with time-dependent configuration interaction with an absorbing potential.

    PubMed

    Krause, Pascal; Schlegel, H Bernhard

    2014-11-01

    The strong field ionization rates for ethylene, trans 1,3-butadiene, and trans,trans 1,3,5-hexatriene have been calculated using time-dependent configuration interaction with single excitations and a complex absorbing potential (TDCIS-CAP). The calculations used the aug-cc-pVTZ basis set with a large set of diffuse functions (3 s, 2 p, 3 d, and 1 f) on each atom. The absorbing boundary was placed 3.5 times the van der Waals radius from each atom. The simulations employed a seven-cycle cosine squared pulse with a wavelength of 800 nm. Ionization rates were calculated for intensities ranging from 0.3 × 10(14) W/cm(2) to 3.5 × 10(14) W/cm(2). Ionization rates along the molecular axis increased markedly with increasing conjugation length. By contrast, ionization rates perpendicular to the molecular axis were almost independent of the conjugation length. PMID:25381499

  16. Strong-field ionization rates of linear polyenes simulated with time-dependent configuration interaction with an absorbing potential

    SciTech Connect

    Krause, Pascal; Schlegel, H. Bernhard

    2014-11-07

    The strong field ionization rates for ethylene, trans 1,3-butadiene, and trans,trans 1,3,5-hexatriene have been calculated using time-dependent configuration interaction with single excitations and a complex absorbing potential (TDCIS-CAP). The calculations used the aug-cc-pVTZ basis set with a large set of diffuse functions (3 s, 2 p, 3 d, and 1 f) on each atom. The absorbing boundary was placed 3.5 times the van der Waals radius from each atom. The simulations employed a seven-cycle cosine squared pulse with a wavelength of 800 nm. Ionization rates were calculated for intensities ranging from 0.3 × 10{sup 14} W/cm{sup 2} to 3.5 × 10{sup 14} W/cm{sup 2}. Ionization rates along the molecular axis increased markedly with increasing conjugation length. By contrast, ionization rates perpendicular to the molecular axis were almost independent of the conjugation length.

  17. A simplified electrospray ionization source based on electrostatic field induction for mass spectrometric analysis of droplet samples.

    PubMed

    Lu, Xiaohui; Chen, Hong; Li, Xiang; Chen, Jianmin; Yang, Xin

    2012-12-21

    A simplified electrospray ionization source based on electrostatic field induction is introduced in this paper. The electrostatic field induced spray ionization, termed EFISI, is easily performed using a needle electrode and a capillary, and it does not require heat, gas, a syringe pump or any other equipment. A high voltage is applied to a needle electrode which does not contact the sample. The capillary is used as a sample spray emitter without any electrical contact or tip modification. As only a 1 μL sample droplet is needed for analysis with no or little pretreatment, the EFISI source is particularly suitable for the mass spectrometric analysis of microlitre volume samples. The change of charge distribution in the droplet solution, by the induction of an external electrostatic field from the needle electrode, is proposed to be the main cause of ion formation. We demonstrate its feasibility for the characterization of a wide range of organic compounds and biomolecules in pure solutions or complex matrices. The influence of sample capillary length and droplet solvent composition on the ionization process are also discussed. PMID:23095821

  18. Electron-impact double ionization of He by applying the Jacobi matrix approach to the Faddeev-Merkuriev equations

    SciTech Connect

    Mengoue, M. Silenou; Njock, M. G. Kwato; Piraux, B.; Popov, Yu. V.; Zaytsev, S. A.

    2011-05-15

    We apply the Jacobi matrix method to the Faddeev-Merkuriev differential equations in order to calculate the three-body wave function that describes the double continuum of an atomic two-electron system. This function is used to evaluate within the first-order Born approximation, the fully differential cross sections for (e,3e) processes in helium. The calculations are performed in the case of a coplanar geometry in which the incident electron is fast and both ejected electrons are slow. Quite unexpectedly, the results obtained by reducing our double-continuum wave function to its asymptotic expression are in satisfactory agreement with all the experimental data of Lahmam-Bennani et al.[A. Lahaman-Bennani et al., Phys. Rev. A 59, 3548 (1999); A. Kheifets et al., J. Phys. B 32, 5047 (1999).] without any need for renormalizing the data. When the full double-continuum wave function is used, the agreement of the results with the experimental data improves significantly. However, a detailed analysis of the calculations shows that full convergence in terms of the basis size is not reached. This point is discussed in detail.

  19. Near-field surface plasmon effects on Au-double-slit diffraction for polychromatic light

    PubMed Central

    2014-01-01

    The surface plasmon effects on near-field diffraction for polychromatic light are studied. An Au-double-slit is used as the model and Fresnel integral is employed to perform the theoretic analysis. The results are illustrated with numerical examples and they show that, compared with the normal double-slit, the plasmon effect changes the spectral shift from redshift to blueshift and also enhances the intensity peak. This effect can be used in optical data transmission or specific spectral selectors. PMID:25386100

  20. Double-electron recombination in high-order-harmonic generation driven by spatially inhomogeneous fields

    NASA Astrophysics Data System (ADS)

    Chacón, Alexis; Ciappina, Marcelo F.; Lewenstein, Maciej

    2016-10-01

    We present theoretical studies of high-order harmonic generation (HHG) driven by plasmonic fields in two-electron atomic systems. Comparing the single- and two-electron active approximation models of the hydrogen negative ion, we provide strong evidence that a nonsequential double-electron recombination mechanism appears to be mainly responsible for the HHG cutoff extension. Our analysis is carried out by means of a reduced one-dimensional numerical integration of the two-electron time-dependent Schrödinger equation, and on investigations of the classical electron trajectories, resulting from the Newton's equation of motion. Additional comparisons between the hydrogen negative ion and the helium atom suggest that the double recombination process depends distinctly on the atomic target. Our research paves the way to the understanding of strong field processes in multielectronic systems driven by spatially inhomogeneous fields.

  1. Two-dimensional double layer in plasma in a diverging magnetic field

    SciTech Connect

    Saha, S. K.; Raychaudhuri, S.; Chowdhury, S.; Janaki, M. S.; Hui, A. K.

    2012-09-15

    Plasma created by an inductive RF discharge is allowed to expand along a diverging magnetic field. Measurement of the axial plasma potential profile reveals the formation of an electric double layer near the throat of the expansion chamber. An accelerated ion beam has been detected in the downstream region, confirming the presence of the double layer. The 2-D nature of the ion energy distribution function of the downstream plasma has been studied by a movable ion energy analyser, which shows that the beam radius increases along the axial distance. The 2-D structure of the plasma potential has been studied by a movable emissive probe. The existence of a secondary lobe in the contour plot of plasma equipotential is a new observation. It is also an interesting observation that the most diverging magnetic field line not intercepting the junction of the discharge tube and the expansion chamber has an electric field aligned with it.

  2. Photoionization of isooctane and n-octane in intense laser fields. I. Effect of irradiance on ionization rates

    SciTech Connect

    Healy, Andrew T.; Lipsky, Sanford; Blank, David A.

    2007-12-07

    The population of ejected electrons following multiphoton ionization of neat liquids isooctane and n-octane is investigated over a large range of ionizing irradiance I{sub ex}. Transient absorption (TA) at 1200 nm in both neat liquids is measured in a 60 {mu}m path at time delays of 0.7 and 2.5 ps following an intense 400 nm (3.1 eV) ionizing pulse. As the irradiance of this pulse is varied over the range from 4 to 410 TW/cm{sup 2}, the dependence of TA on I{sub ex} exhibits the periodic structure theoretically predicted for multiphoton channel openings and closings. At low I{sub ex} (<9 TW/cm{sup 2}), TA in isooctane is proportional to I{sub ex}{sup n} where n=3, consistent with nonresonant, near threshold ionization (liquid phase ionization potential=8.6 eV). At I{sub ex}>9 TW/cm{sup 2}, n declines with increasing I{sub ex} up to I{sub ex}=13 TW/cm{sup 2}, at which point n abruptly increases to 4. The pattern is repeated at I{sub ex}>13 TW/cm{sup 2}, albeit with n declining from 4 and then abruptly increasing to 5 as I{sub ex} becomes greater than 100 TW/cm{sup 2}. A similar trend is observed in n-octane. The dependence of the TA on I{sub ex} in the regions of channel openings and closings is compared to the nonperturbative, strong field approximation developed by Reiss [Phys. Rev. A 22, 1786 (1980)].

  3. Role of Photoexcitation and Field Ionization in the Measurement of Accurate Oxide Stoichiometry by Laser-Assisted Atom Probe Tomography

    SciTech Connect

    Devaraj, Arun; Colby, Robert J.; Hess, Wayne P.; Perea, Daniel E.; Thevuthasan, Suntharampillai

    2013-03-06

    Pulsed lasers extend the high spatial and mass resolution of atom probe tomography (APT) to non-conducting materials, such as oxides. For prototypical metal oxide MgO, measured stoichiometry depends strongly upon pulse energy and applied voltage. Very low laser energies (0.02 pJ) and high electric fields yield optimal stoichiometric accuracy, attributed to the field-dependent ionization of photo-desorbed O or O2 neutrals. This emphasizes the importance of considering electronic excitations in APT analysis of oxides ionic materials.

  4. Empirical model of the Martian dayside ionosphere: Effects of crustal magnetic fields and solar ionizing flux at higher altitudes

    NASA Astrophysics Data System (ADS)

    Němec, F.; Morgan, D. D.; Gurnett, D. A.; Andrews, D. J.

    2016-02-01

    We use electron density profiles measured by the Mars Advanced Radar for Subsurface and Ionosphere Sounding instrument on board the Mars Express spacecraft to investigate the effects of possible controlling parameters unconsidered in the empirical model of Němec et al. (2011, hereafter N11). Specifically, we focus on the effects of crustal magnetic fields and F10.7 proxy of the solar ionizing flux at higher altitudes. It is shown that while peak electron densities are nearly unaffected by crustal magnetic fields, electron densities at higher altitudes are significantly increased in areas of stronger magnetic fields. The magnetic field inclination appears to have only a marginal effect. Moreover, while the N11 empirical model accounted for the variable solar ionizing flux at low altitudes, the high-altitude diffusive region was parameterized only by the solar zenith angle and the altitude. It is shown that this can lead to considerable inaccuracies. A simple correction of the N11 model, which takes into account both the crustal magnetic field magnitude and the effect of F10.7 at higher altitudes, is suggested.

  5. Ionization chamber

    DOEpatents

    Walenta, Albert H.

    1981-01-01

    An ionization chamber has separate drift and detection regions electrically isolated from each other by a fine wire grid. A relatively weak electric field can be maintained in the drift region when the grid and another electrode in the chamber are connected to a high voltage source. A much stronger electric field can be provided in the detection region by connecting wire electrodes therein to another high voltage source. The detection region can thus be operated in a proportional mode when a suitable gas is contained in the chamber. High resolution output pulse waveforms are provided across a resistor connected to the detection region anode, after ionizing radiation enters the drift region and ionize the gas.

  6. Ionization chamber

    DOEpatents

    Walenta, A.H.

    An ionization chamber is described which has separate drift and detection regions electrically isolated from each other by a fine wire grid. A relatively weak electric field can be maintained in the drift region when the grid and another electrode in the chamber are connected to a high voltage source. A much stronger electric field can be provided in the detection region by connecting wire electrodes therein to another high voltage source. The detection region can thus be operated in a proportional mode when a suitable gas is contained in the chamber. High resolution output pulse waveforms are provided across a resistor connected to the detection region anode, after ionizing radiation enters the drift region and ionizes the gas.

  7. IONIZED GAS KINEMATICS AT HIGH RESOLUTION. II. DISCOVERY OF A DOUBLE INFRARED CLUSTER IN II Zw 40

    SciTech Connect

    Beck, Sara; Lahad, Ohr; Turner, Jean; Lacy, John; Greathouse, Thomas

    2013-04-10

    The nearby dwarf galaxy II Zw 40 hosts an intense starburst. At the center of the starburst is a bright compact radio and infrared source, thought to be a giant dense H II region containing Almost-Equal-To 14, 000 O stars. Radio continuum images suggest that the compact source is actually a collection of several smaller emission regions. We accordingly use the kinematics of the ionized gas to probe the structure of the radio-infrared emission region. With TEXES on the NASA-IRTF we measured the 10.5 {mu}m [S IV] emission line with effective spectral resolutions, including thermal broadening, of {approx}25 and {approx}3 km s{sup -1} and spatial resolution {approx}1''. The line profile shows two distinct, spatially coextensive, emission features. The stronger feature is at galactic velocity and has FWHM 47 km s{sup -1}. The second feature is {approx}44 km s{sup -1} redward of the first and has FWHM 32 km s{sup -1}. We argue that these are two giant embedded clusters, and estimate their masses to be Almost-Equal-To 3 Multiplication-Sign 10{sup 5} M{sub Sun} and Almost-Equal-To 1.5 Multiplication-Sign 10{sup 5} M{sub Sun }. The velocity shift is unexpectedly large for such a small spatial offset. We suggest that it may arise in a previously undetected kinematic feature remaining from the violent merger that formed the galaxy.

  8. Exploring petroleum hydrocarbons in groundwater by double solid phase extraction coupled to gas chromatography-flame ionization detector.

    PubMed

    Pindado Jiménez, Oscar; Pérez Pastor, Rosa Ma; Escolano Segovia, Olga; del Reino Querencia, Susana

    2015-01-01

    This work proposes an analytical procedure for measuring aliphatic and aromatic hydrocarbons fractions present in groundwater. In this method, hydrocarbons are solid phase extracted (SPE) twice from the groundwater and the resulting fractions are analyzed by gas chromatography with flame ionization detection. The first SPE disposes the hydrocarbons present in groundwater in organic solvents and the second SPE divides them into aliphatic and aromatic hydrocarbons. The validation study is carried out and its uncertainties are discussed. Identifying the main sources of uncertainty is evaluated through applying the bottom-up approach. Limits of detection for hydrocarbons ranges are below 5 µg L(-1), precision is not above of 30%, and acceptable recoveries are reached for aliphatic and aromatic fractions studied. The uncertainty due to volume of the sample, factor of calibration and recovery are the highest contributions. The expanded uncertainty range from 13% to 26% for the aliphatic hydrocarbons ranges and from 14% to 23% for the aromatic hydrocarbons ranges. As application, the proposed method is satisfactorily applied to a set of groundwater samples collected in a polluted area where there is evidence to present a high degree of hydrocarbons. The results have shown the range of aliphatic hydrocarbons >C21-C35 is the most abundant, with values ranging from 215 µg L(-1) to 354 µg L(-1), which it is associated to a contamination due to diesel.

  9. Lattice-induced double-valley degeneracy lifting in graphene by a magnetic field.

    PubMed

    Luk'yanchuk, Igor A; Bratkovsky, Alexander M

    2008-05-01

    We show that the recently discovered double-valley splitting of the Landau levels in the quantum Hall effect in graphene can be explained as the perturbative orbital interaction of intravalley and intervalley microscopic orbital currents with a magnetic field. This effect is facilitated by the translationally noninvariant terms that correspond to graphene's crystallographic honeycomb symmetry but do not exist in the relativistic theory of massless Dirac fermions in quantum electrodynamics. We discuss recent data in view of these findings.

  10. Explicit drain current model of junctionless double-gate field-effect transistors

    NASA Astrophysics Data System (ADS)

    Yesayan, Ashkhen; Prégaldiny, Fabien; Sallese, Jean-Michel

    2013-11-01

    This paper presents an explicit drain current model for the junctionless double-gate metal-oxide-semiconductor field-effect transistor. Analytical relationships for the channel charge densities and for the drain current are derived as explicit functions of applied terminal voltages and structural parameters. The model is validated with 2D numerical simulations for a large range of channel thicknesses and is found to be very accurate for doping densities exceeding 1018 cm-3, which are actually used for such devices.

  11. The double-gradient magnetic instability: Stabilizing effect of the guide field

    NASA Astrophysics Data System (ADS)

    Korovinskiy, D. B.; Divin, A. V.; Erkaev, N. V.; Semenov, V. S.; Artemyev, A. V.; Ivanova, V. V.; Ivanov, I. B.; Lapenta, G.; Markidis, S.; Biernat, H. K.

    2015-01-01

    The role of the dawn-dusk magnetic field component in stabilizing of the magnetotail flapping oscillations is investigated in the double-gradient model framework (Erkaev et al., Phys. Rev. Lett. 99, 235003 (2007)), extended for the magnetotail-like configurations with non-zero guide field By. Contribution of the guide field is examined both analytically and by means of linearized 2-dimensional (2D) and non-linear 3-dimensional (3D) MHD modeling. All three approaches demonstrate the same properties of the instability: stabilization of current sheet oscillations for short wavelength modes, appearing of the typical (fastest growing) wavelength λpeak of the order of the current sheet width, decrease of the peak growth rate with increasing By value, and total decay of the mode for By˜0.5 in the lobe magnetic field units. Analytical solution and 2D numerical simulations claim also the shift of λpeak toward the longer wavelengths with increasing guide field. This result is barely visible in 3D simulations. It may be accounted for the specific background magnetic configuration, the pattern of tail-like equilibrium provided by approximated solution of the conventional Grad-Shafranov equation. The configuration demonstrates drastically changing radius of curvature of magnetic field lines, Rc. This, in turn, favors the "double-gradient" mode (λ > Rc) in one part of the sheet and classical "ballooning" instability (λ < Rc) in another part, which may result in generation of a "combined" unstable mode.

  12. Consistent compactification of double field theory on non-geometric flux backgrounds

    NASA Astrophysics Data System (ADS)

    Hassler, Falk; Lüst, Dieter

    2014-05-01

    In this paper, we construct non-trivial solutions to the 2 D-dimensional field equations of Double Field Theory (DFT) by using a consistent Scherk-Schwarz ansatz. The ansatz identifies 2( D - d) internal directions with a twist U M N which is directly connected to the covariant fluxes ABC . It exhibits 2( D - d) linear independent generalized Killing vectors K I J and gives rise to a gauged supergravity in d dimensions. We analyze the covariant fluxes and the corresponding gauged supergravity with a Minkowski vacuum. We calculate fluctuations around such vacua and show how they gives rise to massive scalars field and vectors field with a non-abelian gauge algebra. Because DFT is a background independent theory, these fields should directly correspond the string excitations in the corresponding background. For ( D - d) = 3 we perform a complete scan of all allowed covariant fluxes and find two different kinds of backgrounds: the single and the double elliptic case. The later is not T-dual to a geometric background and cannot be transformed to a geometric setting by a field redefinition either. While this background fulfills the strong constraint, it is still consistent with the Killing vectors depending on the coordinates and the winding coordinates, thereby giving a non-geometric patching. This background can therefore not be described in Supergravity or Generalized Geometry.

  13. Observations of the Ion Signatures of Double Merging and the Formation of Newly Closed Field Lines

    NASA Technical Reports Server (NTRS)

    Chandler, Michael O.; Avanov, Levon A.; Craven, Paul D.

    2007-01-01

    Observations from the Polar spacecraft, taken during a period of northward interplanetary magnetic field (IMF) show magnetosheath ions within the magnetosphere with velocity distributions resulting from multiple merging sites along the same field line. The observations from the TIDE instrument show two separate ion energy-time dispersions that are attributed to two widely separated (-20Re) merging sites. Estimates of the initial merging times show that they occurred nearly simultaneously (within 5 minutes.) Along with these populations, cold, ionospheric ions were observed counterstreaming along the field lines. The presence of such ions is evidence that these field lines are connected to the ionosphere on both ends. These results are consistent with the hypothesis that double merging can produce closed field lines populated by solar wind plasma. While the merging sites cannot be unambiguously located, the observations and analyses favor one site poleward of the northern cusp and a second site at low latitudes.

  14. The effect of cosmic magnetic fields on the metagalactic ionization background inferred from the Lyman α forest

    NASA Astrophysics Data System (ADS)

    Chongchitnan, Sirichai; Meiksin, Avery

    2014-02-01

    The sources which reionized the intergalactic medium by redshift ˜6 are still unknown. A severe constraint on the ionization process is the low emissivity required to maintain the ionization in the Lyα forest. Simulation-calibrated observations suggest a production rate of at most only a few photons per baryon. In this work, we present a new solution to this `photon-starvation' problem using a weak background of cosmic magnetic fields, which may be present as a consequence of early-Universe physics and subsequent magneto-hydrodynamical amplification. If present, such magnetic fields can induce density perturbations which are dominant on scales comparable to those probed by measurements of hydrogen-absorption lines at redshifts z ˜ 2-5. We show that a subnanoGauss magnetic field, coherent on scale ˜1 Mpc with an almost scale-invariant spectrum, is sufficient to produce significant impact on the effective optical depth, the appearance of the Lyα forest on quasar spectra, the pixel-flux statistics and the power spectrum of transmitted flux. We also show that such magnetic field signatures are effectively erased when the metagalactic photoionization rate is increased, hence relaxing the constraint on the cosmic photon budget available for reionization.

  15. Possible demonstration of ionization cooling using absorbers in a solenoidal field

    SciTech Connect

    Richard C. Fernow; Juan C. Gallardo; H. G. Kirk; T. Kycia; Y. Y. Lee; L. Littenberg; Robert B. Palmer; V. Polychronakos; I. Stumer; David Neuffer; David Winn; R. Thun; R. Ball; M. Marx; Yagmur Torun; M. Zeller

    1994-11-01

    Ionization cooling may play an important role in reducing the phase space volume of muons for a future muon-muon collider. We describe a possible experiment to demonstrate transverse emittance cooling using a muon beam at the AGS at Brookhaven National Laboratory. The experiment uses device dimensions and parameters and beam conditions similar to what is expected in an actual muon-muon collider.

  16. Dressed-bound-state molecular strong-field approximation: Application to above-threshold ionization of heteronuclear diatomic molecules

    SciTech Connect

    Hasovic, E.; Busuladzic, M.; Becker, W.; Milosevic, D. B.

    2011-12-15

    The molecular strong-field approximation (MSFA), which includes dressing of the molecular bound state, is introduced and applied to above-threshold ionization of heteronuclear diatomic molecules. Expressions for the laser-induced molecular dipole and polarizability as functions of the laser parameters (intensity and frequency) and molecular parameters [molecular orientation, dipole, and parallel and perpendicular polarizabilities of the highest occupied molecular orbital (HOMO)] are presented. Our previous MSFA theory, which incorporates the rescattering effects, is generalized from homonuclear to heteronuclear diatomic molecules. Angle- and energy-resolved high-order above-threshold ionization spectra of oriented heteronuclear diatomic molecules, exemplified by the carbon monoxide (CO) molecule, exhibit pronounced minima, which can be related to the shape of their HOMO-electron-density distribution. For the CO molecule we have found an analytical condition for the positions of these minima. We have also shown that the effect of the dressing of the HOMO is twofold: (i) the laser-induced Stark shift decreases the ionization yield and (ii) the laser-induced time-dependent dipole and polarizability change the oscillatory structure of the spectra.

  17. Multicomponent dynamics of coupled quantum subspaces and field-induced molecular ionizations

    SciTech Connect

    Nguyen-Dang, Thanh-Tung; Viau-Trudel, Jérémy

    2013-12-28

    To describe successive ionization steps of a many-electron atom or molecule driven by an ultrashort, intense laser pulse, we introduce a hierarchy of successive two-subspace Feshbach partitions of the N-electron Hilbert space, and solve the partitioned time-dependent Schrödinger equation by a short-time unitary algorithm. The partitioning scheme allows one to use different level of theory to treat the many-electron dynamics in different subspaces. We illustrate the procedure on a simple two-active-electron model molecular system subjected to a few-cycle extreme Ultra-Violet (XUV) pulse to study channel-resolved photoelectron spectra as a function of the pulse's central frequency and duration. We observe how the momentum and kinetic-energy distributions of photoelectrons accompanying the formation of the molecular cation in a given electronic state (channel) change as the XUV few-cycle pulse's width is varied, from a form characteristic of an impulsive ionization regime, corresponding to the limit of a delta-function pulse, to a form characteristic of multiphoton above-threshold ionization, often associated with continuous-wave infinitely long pulse.

  18. Modification of the quantum mechanical flux formula for electron-hydrogen ionization through Bohm's velocity field

    NASA Astrophysics Data System (ADS)

    Randazzo, J. M.; Ancarani, L. U.

    2015-12-01

    For the single differential cross section (SDCS) for hydrogen ionization by electron impact (e -H problem), we propose a correction to the flux formula given by R. Peterkop [Theory of Ionization of Atoms by Electron Impact (Colorado Associated University Press, Boulder, 1977)]. The modification is based on an alternative way of defining the kinetic energy fraction, using Bohm's definition of velocities instead of the usual asymptotic kinematical, or geometrical, approximation. It turns out that the solution-dependent, modified energy fraction is equally related to the components of the probability flux. Compared to what is usually observed, the correction yields a finite and well-behaved SDCS value in the asymmetrical situation where one of the continuum electrons carries all the energy while the other has zero energy. We also discuss, within the S -wave model of the e -H ionization process, the continuity of the SDCS derivative at the equal energy sharing point, a property not so clearly observed in published benchmark results obtained with integral and S -matrix formulas with unequal final states.

  19. Compartment Shape Anisotropy (CSA) Revealed by Double Pulsed Field Gradient MR

    PubMed Central

    Özarslan, Evren

    2009-01-01

    The multiple scattering extensions of the pulsed field gradient (PFG) experiments can be used to characterize restriction-induced anisotropy at different length scales. In double-PFG acquisitions that involve two pairs of diffusion gradient pulses, the dependence of the MR signal attenuation on the angle between the two gradients is a signature of restriction that can be observed even at low gradient strengths. In this article, a comprehensive theoretical treatment of the double-PFG observation of restricted diffusion is presented. In the first part of the article, the problem is treated for arbitrarily shaped pores under idealized experimental conditions, comprising infinitesimally narrow gradient pulses with long separation times and long or vanishing mixing times. New insights are obtained when the treatment is applied to simple pore shapes of spheres, ellipsoids, and capped cylinders. The capped cylinder geometry is considered in the second part of the article where the solution for a double-PFG experiment with arbitrary experimental parameters is introduced. Although compartment shape anisotropy (CSA) is emphasized here, the findings of this article can be used in gleaning the volume, eccentricity, and orientation distribution function associated with ensembles of anisotropic compartments using double-PFG acquisitions with arbitrary experimental parameters. PMID:19398210

  20. In-field frequencies and characteristics of oilseed rape with double herbicide resistance.

    PubMed

    Dietz-Pfeilstetter, Antje; Zwerger, Peter

    2009-01-01

    When growing different transgenic herbicide-resistant oilseed rape cultivars side by side, seeds with multiple herbicide resistance can arise, possibly causing problems for the management of volunteer plants. Large-scale field experiments were performed in the years 1999/2000 and 2000/2001 in order to investigate the frequencies and the consequences of the transfer of herbicide resistance genes from transgenic oilseed rape to cultivars grown on neighboring agricultural fields. Transgenic oilseed rape with resistance to glufosinate-ammonium (LibertyLink, LL) and with glyphosate resistance (RoundupReady, RR), respectively, was sown in adjacent 0.5 ha plots, surrounded by about 8 ha non-transgenic oilseed rape. The plots and the field were either in direct contact (0.5 m gap width) or they were separated by 10 m of fallow land. Seed samples taken during harvest in the transgenic plots at different distances were investigated for progeny with resistance to the respective other herbicide. It was found that outcrossing frequencies were reduced to different extents by a 10 m isolation distance. In addition to pollen-mediated transgene flow as a result of outcrossing, we found considerable seed-mediated gene flow by adventitious dispersal of transgenic seeds through the harvesting machine. Volunteer plants with double herbicide resistance emerging in the transgenic plots after harvest were selected by suitable applications of the complementary herbicides Basta and Roundup Ultra. In both years, double-resistant volunteers were largely restricted to the inner edges of the plots. Expression analysis under controlled laboratory conditions of double-resistant plants generated by manual crosses revealed stability of transgene expression even at elevated temperatures. Greenhouse tests with double-resistant oilseed rape plants gave no indication that the sensitivity to a range of different herbicides is changed as compared to non-transgenic oilseed rape.

  1. Non-mean-field theory of anomalously large double layer capacitance

    NASA Astrophysics Data System (ADS)

    Loth, M. S.; Skinner, Brian; Shklovskii, B. I.

    2010-07-01

    Mean-field theories claim that the capacitance of the double layer formed at a metal/ionic conductor interface cannot be larger than that of the Helmholtz capacitor, whose width is equal to the radius of an ion. However, in some experiments the apparent width of the double layer capacitor is substantially smaller. We propose an alternate non-mean-field theory of the ionic double layer to explain such large capacitance values. Our theory allows for the binding of discrete ions to their image charges in the metal, which results in the formation of interface dipoles. We focus primarily on the case where only small cations are mobile and other ions form an oppositely charged background. In this case, at small temperature and zero applied voltage dipoles form a correlated liquid on both contacts. We show that at small voltages the capacitance of the double layer is determined by the transfer of dipoles from one electrode to the other and is therefore limited only by the weak dipole-dipole repulsion between bound ions so that the capacitance is very large. At large voltages the depletion of bound ions from one of the capacitor electrodes triggers a collapse of the capacitance to the much smaller mean-field value, as seen in experimental data. We test our analytical predictions with a Monte Carlo simulation and find good agreement. We further argue that our “one-component plasma” model should work well for strongly asymmetric ion liquids. We believe that this work also suggests an improved theory of pseudocapacitance.

  2. In-field frequencies and characteristics of oilseed rape with double herbicide resistance.

    PubMed

    Dietz-Pfeilstetter, Antje; Zwerger, Peter

    2009-01-01

    When growing different transgenic herbicide-resistant oilseed rape cultivars side by side, seeds with multiple herbicide resistance can arise, possibly causing problems for the management of volunteer plants. Large-scale field experiments were performed in the years 1999/2000 and 2000/2001 in order to investigate the frequencies and the consequences of the transfer of herbicide resistance genes from transgenic oilseed rape to cultivars grown on neighboring agricultural fields. Transgenic oilseed rape with resistance to glufosinate-ammonium (LibertyLink, LL) and with glyphosate resistance (RoundupReady, RR), respectively, was sown in adjacent 0.5 ha plots, surrounded by about 8 ha non-transgenic oilseed rape. The plots and the field were either in direct contact (0.5 m gap width) or they were separated by 10 m of fallow land. Seed samples taken during harvest in the transgenic plots at different distances were investigated for progeny with resistance to the respective other herbicide. It was found that outcrossing frequencies were reduced to different extents by a 10 m isolation distance. In addition to pollen-mediated transgene flow as a result of outcrossing, we found considerable seed-mediated gene flow by adventitious dispersal of transgenic seeds through the harvesting machine. Volunteer plants with double herbicide resistance emerging in the transgenic plots after harvest were selected by suitable applications of the complementary herbicides Basta and Roundup Ultra. In both years, double-resistant volunteers were largely restricted to the inner edges of the plots. Expression analysis under controlled laboratory conditions of double-resistant plants generated by manual crosses revealed stability of transgene expression even at elevated temperatures. Greenhouse tests with double-resistant oilseed rape plants gave no indication that the sensitivity to a range of different herbicides is changed as compared to non-transgenic oilseed rape. PMID:19833077

  3. Cohesin phosphorylation and mobility of SMC1 at ionizing radiation-induced DNA double-strand breaks in human cells

    SciTech Connect

    Bauerschmidt, Christina; Helleday, Thomas

    2011-02-01

    Cohesin, a hetero-tetrameric complex of SMC1, SMC3, Rad21 and Scc3, associates with chromatin after mitosis and holds sister chromatids together following DNA replication. Following DNA damage, cohesin accumulates at and promotes the repair of DNA double-strand breaks. In addition, phosphorylation of the SMC1/3 subunits contributes to DNA damage-induced cell cycle checkpoint regulation. The aim of this study was to determine the regulation and consequences of SMC1/3 phosphorylation as part of the cohesin complex. We show here that the ATM-dependent phosphorylation of SMC1 and SMC3 is mediated by H2AX, 53BP1 and MDC1. Depletion of RAD21 abolishes these phosphorylations, indicating that only the fully assembled complex is phosphorylated. Comparison of wild type SMC1 and SMC1S966A in fluorescence recovery after photo-bleaching experiments shows that phosphorylation of SMC1 is required for an increased mobility after DNA damage in G2-phase cells, suggesting that ATM-dependent phosphorylation facilitates mobilization of the cohesin complex after DNA damage.

  4. Optical-field-ionization effects on the propagation of an ultraintense laser pulse in high- Z gas jets.

    PubMed

    Zhidkov, A; Koga, J; Esirkepov, T; Hosokai, T; Uesaka, M; Tajima, T

    2004-06-01

    Interaction of an ultraintense, a(0) >1, laser pulse with an underdense Ar plasma is analyzed via a two-dimensional particle-in-cell simulation which self-consistently includes optical-field ionization. In spite of rapid growth of ion charge Z and, hence, electron density at the laser front, relativistic self-focusing is shown to persist owing to a reduction of the expected plasma defocusing resulting from the weak radial dependence of the ion charge on laser intensity (even for Z/gamma>1 where gamma is the electron relativistic factor).

  5. Determination of Optical-Field Ionization Dynamics in Plasmas through the Direct Measurement of the Optical Phase Change

    SciTech Connect

    Taylor, A.J.; Omenetto, G.; Rodriguez, G.; Siders, C.W.; Siders, J.L.W.; Downer, C.

    1999-07-16

    This is the final report of a three-year Laboratory Directed Research and Development (LDRD) Project at Los Alamos National Laboratory (LANL). The detailed dynamics of an atom in a strong laser field is rich in both interesting physics and potential applications. The goal of this project was to develop a technique for characterizing high-field laser-plasma interactions with femtosecond resolution based on the direct measurement of the phase change of an optical pulse. The authors developed the technique of Multi-pulse Interferometric Frequency Resolved Optical Gating (MI-FROG), which recovers (to all orders) the phase difference between pumped and unpumped probe pulses, enabling the determination of sub-pulsewidth time-resolved phase and frequency shifts impressed by a pump pulse on a weak probe pulse. Using MI-FROG, the authors obtained the first quantitative measurements of high-field ionization rates in noble gases and diatomic molecules. They obtained agreement between the measured ionization rates an d those calculated for the noble gases and diatomic nitrogen and hydrogen using a one-dimensional fluid model and rates derived from tunneling theory. However, much higher rates are measured for diatomic oxygen than predicted by tunneling theory calculations.

  6. Grain in weakly ionized plasma in the presence of an external magnetic field: Charging by plasma currents and effective potential

    SciTech Connect

    Momot, A. I.

    2013-07-15

    The problem of grain screening is solved numerically for the case of weakly ionized plasma in the presence of an external magnetic field. The plasma dynamics is described within the drift-diffusion approximation under the assumption that the grain absorbs all encountered electrons and ions. We also assume that the plasma current through the grain surface is equal to zero in the stationary state. This condition is used to perform self-consistent calculations of the grain charge. The spatial distribution of the screened grain potential is studied and compared with the analytical estimates. It is shown that at the distances larger than the Debye length such potential has the Coulomb-like asymptotics with the effective charge dependent on the angle between the radius vector and the external magnetic field direction. The numerical solutions show that in the direction parallel to the external magnetic field the effective potential can have nonmonotonic behavior.

  7. Isotope Effect in Tunneling Ionization of Neutral Hydrogen Molecules

    NASA Astrophysics Data System (ADS)

    Wang, X.; Xu, H.; Atia-Tul-Noor, A.; Hu, B. T.; Kielpinski, D.; Sang, R. T.; Litvinyuk, I. V.

    2016-08-01

    It has been recently predicted theoretically that due to nuclear motion light and heavy hydrogen molecules exposed to strong electric field should exhibit substantially different tunneling ionization rates [O. I. Tolstikhin, H. J. Worner, and T. Morishita, Phys. Rev. A 87, 041401(R) (2013)]. We studied that isotope effect experimentally by measuring relative ionization yields for each species in a mixed H2/D2 gas jet interacting with intense femtosecond laser pulses. In a reaction microscope apparatus, we detected ionic fragments from all contributing channels (single ionization, dissociation, and sequential double ionization) and determined the ratio of total single ionization yields for H2 and D2 . The measured ratio agrees quantitatively with the prediction of the generalized weak-field asymptotic theory in an apparent failure of the frozen-nuclei approximation.

  8. Isotope Effect in Tunneling Ionization of Neutral Hydrogen Molecules.

    PubMed

    Wang, X; Xu, H; Atia-Tul-Noor, A; Hu, B T; Kielpinski, D; Sang, R T; Litvinyuk, I V

    2016-08-19

    It has been recently predicted theoretically that due to nuclear motion light and heavy hydrogen molecules exposed to strong electric field should exhibit substantially different tunneling ionization rates [O. I. Tolstikhin, H. J. Worner, and T. Morishita, Phys. Rev. A 87, 041401(R) (2013)]. We studied that isotope effect experimentally by measuring relative ionization yields for each species in a mixed H_{2}/D_{2} gas jet interacting with intense femtosecond laser pulses. In a reaction microscope apparatus, we detected ionic fragments from all contributing channels (single ionization, dissociation, and sequential double ionization) and determined the ratio of total single ionization yields for H_{2} and D_{2}. The measured ratio agrees quantitatively with the prediction of the generalized weak-field asymptotic theory in an apparent failure of the frozen-nuclei approximation. PMID:27588855

  9. Isotope Effect in Tunneling Ionization of Neutral Hydrogen Molecules.

    PubMed

    Wang, X; Xu, H; Atia-Tul-Noor, A; Hu, B T; Kielpinski, D; Sang, R T; Litvinyuk, I V

    2016-08-19

    It has been recently predicted theoretically that due to nuclear motion light and heavy hydrogen molecules exposed to strong electric field should exhibit substantially different tunneling ionization rates [O. I. Tolstikhin, H. J. Worner, and T. Morishita, Phys. Rev. A 87, 041401(R) (2013)]. We studied that isotope effect experimentally by measuring relative ionization yields for each species in a mixed H_{2}/D_{2} gas jet interacting with intense femtosecond laser pulses. In a reaction microscope apparatus, we detected ionic fragments from all contributing channels (single ionization, dissociation, and sequential double ionization) and determined the ratio of total single ionization yields for H_{2} and D_{2}. The measured ratio agrees quantitatively with the prediction of the generalized weak-field asymptotic theory in an apparent failure of the frozen-nuclei approximation.

  10. Skin explosion of double-layer conductors in fast-rising high magnetic fields

    SciTech Connect

    Chaikovsky, S. A. Datsko, I. M.; Labetskaya, N. A.; Ratakhin, N. A.

    2014-04-15

    An experiment has been performed to study the electrical explosion of thick cylindrical conductors using the MIG pulsed power generator capable of producing a peak current of 2.5 MA within 100 ns rise time. The experimental goal was to compare the skin explosion of a solid conductor with that of a double-layer conductor whose outer layer had a lower conductivity than the inner one. It has been shown that in magnetic fields of peak induction up to 300 T and average induction rise rate 3 × 10{sup 9} T/s, the double-layer structure of a conductor makes it possible to achieve higher magnetic induction at the conductor surface before it explodes. This can be accounted for, in particular, by the reduction of the ratio of the Joule heat density to the energy density of the magnetic field at the surface of a double-layer conductor due to redistribution of the current density over the conductor cross section.

  11. Two-photon double-ionization of the H2 molecule in light perpindicular to the internuclear axis: effects of pulse duration

    NASA Astrophysics Data System (ADS)

    Guan, Xiaoxu; Bartschat, Klaus; Schneider, Barry; Koesterke, Lars

    2014-05-01

    Earlier, we solved the time-dependent Schrödinger equation to calculate the two-photon double ionization of the hydrogen molecule induced by non-sequential absorption of photons with a central energy of 30 eV in a short laser pulse lasting for about 1.6 femtoseconds. The linear polarization of the radiation was aligned with the internuclear axis. At the equilibrium distance Req, several doubly excited 1Σg , u states, accessible through photon absorption,lie about 30 eV above the X1Σg ground state. These states are likely responsible for the significant disagreement seen in the literature for previous results on both angle-integrated and angle-differential cross sections. Here we continue to explore the fundamental role of doubly excited states on the two-photon break-up process,now for the even more difficult problem of laser polarization perpendicular to the internuclear axis. Such studies require relatively long laser pulses, thus making the calculations computationally very challenging.

  12. 3D Coincidence Imaging Disentangles Intense Field Double Detachment of SF6(–).

    PubMed

    Kandhasamy, Durai Murugan; Albeck, Yishai; Jagtap, Krishna; Strasser, Daniel

    2015-07-23

    The efficient intense field double detachment of molecular anions observed in SF6(–) is studied by 3D coincidence imaging of the dissociation products. The dissociation anisotropy and kinetic energy release distributions are determined for the energetically lowest double detachment channel by virtue of disentangling the SF5(+) + F fragmentation products. The observed nearly isotropic dissociation with respect to the linear laser polarization and surprisingly high kinetic energy release events suggest that the dissociation occurs on a highly excited state. Rydberg (SF6(+))* states composed of a highly repulsive dication core and a Rydberg electron are proposed to explain the observed kinetic energy release, accounting also for the efficient production of all possible cationic fragments at equivalent laser intensities.

  13. O(D, D) covariant Noether currents and global charges in double field theory

    NASA Astrophysics Data System (ADS)

    Park, Jeong-Hyuck; Rey, Soo-Jong; Rim, Woohyun; Sakatani, Yuho

    2015-11-01

    Double field theory is an approach for massless modes of string theory, unifying and geometrizing all gauge invariance in manifest O( D, D) covariant manner. In this approach, we derive off-shell conserved Noether current and corresponding Noether potential associated with unified gauge invariance. We add Wald-type counter two-form to the Noether potential and define conserved global charges as surface integral. We check our O( D, D) covariant formula against various string backgrounds, both geometric and non-geometric. In all cases we examined, we find perfect agreements with previous results. Our formula facilitates to evaluate momenta along not only ordinary spacetime directions but also dual spacetime directions on equal footing. From this, we confirm recent assertion that null wave in doubled spacetime is the same as macroscopic fundamental string in ordinary spacetime.

  14. Multiphoton ionization of the calcium atom by linearly and circularly polarized laser fields

    SciTech Connect

    Buica, Gabriela; Nakajima, Takashi

    2010-04-15

    We theoretically study multiphoton ionization of the Ca atom irradiated by the second (photon energy 3.1 eV) and third (photon energy 4.65 eV) harmonics of Ti:sapphire laser pulses (photon energy 1.55 eV). Because of the dense energy level structure the second and third harmonics of a Ti:sapphire laser are nearly single-photon resonant with the 4s4p {sup 1}P{sup o} and 4s5p {sup 1}P{sup o} states, respectively. Although two-photon ionization takes place through the near-resonant intermediate states with the same symmetry in both cases, it turns out that there are significant differences between them. The photoelectron energy spectra exhibit the absence or presence of substructures. More interestingly, the photoelectron angular distributions clearly show that the main contribution to the ionization processes by the third harmonic arises from the far-off-resonant 4s4p {sup 1}P{sup o} state rather than the near-resonant 4s5p {sup 1}P{sup o} state. These findings can be attributed to the fact that the dipole moment for the 4s{sup 2} {sup 1}S{sup e}-4s5p {sup 1}P{sup o} transition is much smaller than that for the 4s{sup 2} {sup 1}S{sup e}-4s4p {sup 1}P{sup o} transition.

  15. Electric field measurements on Cluster: comparing the double-probe and electron drift techniques

    NASA Astrophysics Data System (ADS)

    Eriksson, A. I.; André, M.; Klecker, B.; Laakso, H.; Lindqvist, P.-A.; Mozer, F.; Paschmann, G.; Pedersen, A.; Quinn, J.; Torbert, R.; Torkar, K.; Vaith, H.

    2006-03-01

    The four Cluster satellites each carry two instruments designed for measuring the electric field: a double-probe instrument (EFW) and an electron drift instrument (EDI). We compare data from the two instruments in a representative sample of plasma regions. The complementary merits and weaknesses of the two techniques are illustrated. EDI operations are confined to regions of magnetic fields above 30 nT and where wave activity and keV electron fluxes are not too high, while EFW can provide data everywhere, and can go far higher in sampling frequency than EDI. On the other hand, the EDI technique is immune to variations in the low energy plasma, while EFW sometimes detects significant nongeophysical electric fields, particularly in regions with drifting plasma, with ion energy (in eV) below the spacecraft potential (in volts). We show that the polar cap is a particularly intricate region for the double-probe technique, where large nongeophysical fields regularly contaminate EFW measurments of the DC electric field. We present a model explaining this in terms of enhanced cold plasma wake effects appearing when the ion flow energy is higher than the thermal energy but below the spacecraft potential multiplied by the ion charge. We suggest that these conditions, which are typical of the polar wind and occur sporadically in other regions containing a significant low energy ion population, cause a large cold plasma wake behind the spacecraft, resulting in spurious electric fields in EFW data. This interpretation is supported by an analysis of the direction of the spurious electric field, and by showing that use of active potential control alleviates the situation.

  16. Determinations of the correction factors for small fields in cylindrical ionization chambers based on measurement and numerical calculation

    NASA Astrophysics Data System (ADS)

    Park, Kwangwoo; Choi, Wonhoon; Park, Sungho; Choi, Jin Hwa; Park, Suk Won; Bak, Jino

    2015-07-01

    We investigated the volume averaging effect for air-filled cylindrical ionization chambers to determine the correction factors in a small photon field for a given chamber. We measured output factors with several cylindrical ionization chambers, and by using a mathematical method similar to deconvolution, we modeled the non-constant and inhomogeneous exposure function in the cavity of the chamber. The parameters in the exposure function and the correction factors were determined by solving a system of equations that we had developed by using the measured data and the geometry of the given chamber. The correction factors (CFs) were very similar to those obtained from Monte Carlo (MC) simulations. For example, the CFs in this study were found to be 1.116 for PTW31010 and 1.0225 for PTW31016 while the CFs obtained from MC simulations were reported as being approximately between 1.17 and 1.20 for PTW31010 and between 1.02 and 1.06 for PTW31016 in a 6-MV photon beam of 1 × 1 cm2. Furthermore, the method of deconvolution combined with the MC result for the chamber's response function showed a similar CF for PTW 30013, which was reported as 2.29 and 1.54 for a 1 × 1 cm2 and a 1.5 × 1.5 cm2 field size, respectively. The CFs from our method were similar, 2.42 and 1.54. In addition, we report CFs for PTW30013, PTW31010, PTW31016, IBA FC23-C, and IBA CC13. As a consequence, we suggest the use of our method to measure the correct output factor by using the fact that an inhomogeneous exposure causes a volume averaging effect in the cavity of air-filled cylindrical ionization chamber. The result obtained by using our method is very similar to that obtained from MC simulations. The method we developed can easily be applied in clinics.

  17. Time resolved studies of interfacial reactions of ozone with pulmonary phospholipid surfactants using field induced droplet ionization mass spectrometry.

    PubMed

    Kim, Hugh I; Kim, Hyungjun; Shin, Young Shik; Beegle, Luther W; Goddard, William A; Heath, James R; Kanik, Isik; Beauchamp, J L

    2010-07-29

    Field induced droplet ionization mass spectrometry (FIDI-MS) comprises a soft ionization method to sample ions from the surface of microliter droplets. A pulsed electric field stretches neutral droplets until they develop dual Taylor cones, emitting streams of positively and negatively charged submicrometer droplets in opposite directions, with the desired polarity being directed into a mass spectrometer for analysis. This methodology is employed to study the heterogeneous ozonolysis of 1-palmitoyl-2-oleoyl-sn-phosphatidylglycerol (POPG) at the air-liquid interface in negative ion mode using FIDI mass spectrometry. Our results demonstrate unique characteristics of the heterogeneous reactions at the air-liquid interface. We observe the hydroxyhydroperoxide and the secondary ozonide as major products of POPG ozonolysis in the FIDI-MS spectra. These products are metastable and difficult to observe in the bulk phase, using standard electrospray ionization (ESI) for mass spectrometric analysis. We also present studies of the heterogeneous ozonolysis of a mixture of saturated and unsaturated phospholipids at the air-liquid interface. A mixture of the saturated phospholipid 1,2-dipalmitoyl-sn-phosphatidylglycerol (DPPG) and unsaturated POPG is investigated in negative ion mode using FIDI-MS while a mixture of 1,2-dipalmitoyl-sn-phosphatidylcholine (DPPC) and 1-stearoyl-2-oleoyl-sn-phosphatidylcholine (SOPC) surfactant is studied in positive ion mode. In both cases FIDI-MS shows the saturated and unsaturated pulmonary surfactants form a mixed interfacial layer. Only the unsaturated phospholipid reacts with ozone, forming products that are more hydrophilic than the saturated phospholipid. With extensive ozonolysis only the saturated phospholipid remains at the droplet surface. Combining these experimental observations with the results of computational analysis provides an improved understanding of the interfacial structure and chemistry of a surfactant layer system when

  18. The sensitivities of high-harmonic generation and strong-field ionization to coupled electronic and nuclear dynamics.

    PubMed

    Baykusheva, Denitsa; Kraus, Peter M; Zhang, Song Bin; Rohringer, Nina; Wörner, Hans Jakob

    2014-01-01

    The sensitivities of high-harmonic generation (HHG) and strong-field ionization (SFI) to coupled electronic and nuclear dynamics are studied, using the nitric oxide (NO) molecule as an example. A coherent superposition of electronic and rotational states of NO is prepared by impulsive stimulated Raman scattering and probed by simultaneous detection of HHG and SFI yields. We observe a fourfold higher sensitivity of high-harmonic generation to electronic dynamics and attribute it to the presence of inelastic quantum paths connecting coherently related electronic states [Kraus et al., Phys. Rev. Lett.111, 243005 (2013)]. Whereas different harmonic orders display very different sensitivities to rotational or electronic dynamics, strong-field ionization is found to be most sensitive to electronic motion. We introduce a general theoretical formalism for high-harmonic generation from coupled nuclear-electronic wave packets. We show that the unequal sensitivities of different harmonic orders to electronic or rotational dynamics result from the angle dependence of the photorecombination matrix elements which encode several autoionizing and shape resonances in the photoionization continuum of NO. We further study the dependence of rotational and electronic coherences on the intensity of the excitation pulse and support the observations with calculations.

  19. Tracking dissociation dynamics of strong-field ionized 1,2-dibromoethane with femtosecond XUV transient absorption spectroscopy.

    PubMed

    Chatterley, Adam S; Lackner, Florian; Neumark, Daniel M; Leone, Stephen R; Gessner, Oliver

    2016-06-01

    Using femtosecond time-resolved extreme ultraviolet absorption spectroscopy, the dissociation dynamics of the haloalkane 1,2-dibromoethane (DBE) have been explored following strong field ionization by femtosecond near infrared pulses at intensities between 7.5 × 10(13) and 2.2 × 10(14) W cm(-2). The major elimination products are bromine atoms in charge states of 0, +1, and +2. The charge state distribution is strongly dependent on the incident NIR intensity. While the yield of neutral fragments is essentially constant for all measurements, charged fragment yields grow rapidly with increasing NIR intensities with the most pronounced effect observed for Br(++). However, the appearance times of all bromine fragments are independent of the incident field strength; these are found to be 320 fs, 70 fs, and 30 fs for Br˙, Br(+), and Br(++), respectively. Transient molecular ion features assigned to DBE(+) and DBE(++) are observed, with dynamics linked to the production of Br(+) products. Neutral Br˙ atoms are produced on a timescale consistent with dissociation of DBE(+) ions on a shallow potential energy surface. The appearance of Br(+) ions by dissociative ionization is also seen, as evidenced by the simultaneous decay of a DBE(+) ionic species. Dicationic Br(++) products emerge within the instrument response time, presumably from Coulomb explosion of triply charged DBE. PMID:27183104

  20. Enhanced field emission properties of screen-printed doubled-walled carbon nanotubes by polydimethylsiloxane elastomer

    NASA Astrophysics Data System (ADS)

    Ding, Hui; Feng, Tao; Zhang, Zhejuan; Wang, Kai; Qian, Min; Chen, Yiwei; Sun, Zhuo

    2010-09-01

    Field emission (FE) properties of double-walled carbon nanotubes (DWCNTs) treated by polydimethylsiloxane (PDMS) elastomer with different heating temperature have been systematically studied. The current density of treated DWCNT films decreases with the increase of heating temperature. The screen-printed DWCNTs treated by PDMS elastomer with drying temperature 150 °C for 20 min have the best FE performance with a marvelous field enhancement factor ( β = 20194). The optimized FE performance is attributed to the morphological change of DWCNT films after PDMS elastomer treatment and the change of separation energy for the CNT-substrate interface. It is proved that the PDMS treatment is a facile and effective method for field emission display (FED) application, especially for low-temperature FED preparation.

  1. Efficient dipolar double quantum filtering under magic angle spinning without a (1)H decoupling field.

    PubMed

    Courtney, Joseph M; Rienstra, Chad M

    2016-08-01

    We present a systematic study of dipolar double quantum (DQ) filtering in (13)C-labeled organic solids over a range of magic-angle spinning rates, using the SPC-n recoupling sequence element with a range of n symmetry values from 3 to 11. We find that efficient recoupling can be achieved for values n⩾7, provided that the (13)C nutation frequency is on the order of 100kHz or greater. The decoupling-field dependence was investigated and explicit heteronuclear decoupling interference conditions identified. The major determinant of DQ filtering efficiency is the decoupling interference between (13)C and (1)H fields. For (13)C nutation frequencies greater than 75kHz, optimal performance is observed without an applied (1)H field. At spinning rates exceeding 20kHz, symmetry conditions as low as n=3 were found to perform adequately.

  2. Efficient dipolar double quantum filtering under magic angle spinning without a 1H decoupling field

    NASA Astrophysics Data System (ADS)

    Courtney, Joseph M.; Rienstra, Chad M.

    2016-08-01

    We present a systematic study of dipolar double quantum (DQ) filtering in 13C-labeled organic solids over a range of magic-angle spinning rates, using the SPC-n recoupling sequence element with a range of n symmetry values from 3 to 11. We find that efficient recoupling can be achieved for values n ⩾ 7, provided that the 13C nutation frequency is on the order of 100 kHz or greater. The decoupling-field dependence was investigated and explicit heteronuclear decoupling interference conditions identified. The major determinant of DQ filtering efficiency is the decoupling interference between 13C and 1H fields. For 13C nutation frequencies greater than 75 kHz, optimal performance is observed without an applied 1H field. At spinning rates exceeding 20 kHz, symmetry conditions as low as n = 3 were found to perform adequately.

  3. Efficient dipolar double quantum filtering under magic angle spinning without a (1)H decoupling field.

    PubMed

    Courtney, Joseph M; Rienstra, Chad M

    2016-08-01

    We present a systematic study of dipolar double quantum (DQ) filtering in (13)C-labeled organic solids over a range of magic-angle spinning rates, using the SPC-n recoupling sequence element with a range of n symmetry values from 3 to 11. We find that efficient recoupling can be achieved for values n⩾7, provided that the (13)C nutation frequency is on the order of 100kHz or greater. The decoupling-field dependence was investigated and explicit heteronuclear decoupling interference conditions identified. The major determinant of DQ filtering efficiency is the decoupling interference between (13)C and (1)H fields. For (13)C nutation frequencies greater than 75kHz, optimal performance is observed without an applied (1)H field. At spinning rates exceeding 20kHz, symmetry conditions as low as n=3 were found to perform adequately. PMID:27314744

  4. Sequential Double lonization: The Timing of Release

    NASA Astrophysics Data System (ADS)

    Pfeiffer, A.

    2011-05-01

    The timing of electron release in strong field double ionization poses great challenges both for conceptual definition and for conducting experimental measurement. Here we present coincidence momentum measurements of the doubly charged ion and of the two electrons arising from double ionization of Argon using elliptically (close to circularly) polarized laser pulses. Based on a semi-classical model, the ionization times are calculated from the measured electron momenta across a large intensity range. Exploiting the attoclock technique we have direct access to timings on a coarse and on a fine scale, similar to the hour and the minute hand of a clock. In our attoclock, the magnitude of the electron momenta follows the envelope of the laser pulse and gives a coarse timing for the electron releases (the hour hand), while the fine timing (the minute hand) is provided by the emission angle of the electrons. The first of our findings is that due to depletion the averaged ionization time moves towards the beginning of the pulse with increasing intensity, confirming the results of Maharjan et al., and that the ion momentum distribution projected onto the minor polarization axis shows a bifurcation from a 3-peak to a 4-peak structure. This effect can be fully understood by modeling the process semi-classically in the independent electron approximation following the simple man's model. The ionization time measurement performed with the attoclock shows that the release time of the first electron is in good agreement with the semi-classical simulation performed on the basis of Sequential Double lonization (SDI), whereas the ionization of the second electron occurs significantly earlier than predicted. This observation suggests that electron correlation and other Non-Sequential Double lonization (NSDI) mechanisms may play an important role also in the case of strong field double ionization by close-to-circularly polarized laser pulses. The timing of electron release in strong

  5. PFI-ZEKE (Pulsed Field Ionization-Zero Electron Kinetic Energy) para el estudio de iones

    NASA Astrophysics Data System (ADS)

    Castaño, F.; Fernández, J. A.; Basterretxea, A. Longarte. F.; Sánchez Rayo, M. N.; Martínez, R.

    Entre las áreas hacia donde ha evolucionado la Química en los últimos años están los estudios de sistemas con especies reactivas de alta energía y los dominados por fuerzas intermoleculares débiles, con energías de unas pocas kcal/mol. En efecto, el estudio de las propiedades de los iones, comenzando por su relación con la molécula neutra de la que procede, la energía de ionización, los estados vibracionales y rotacionales, energías de enlace de Van der Waals entre el ión y una amplia variedad de otras moléculas, sus confórmeros o isómeros y sus reacciones o semi-reacciones químicas están en la raíz de la necesidad de la espectroscopía conocida como PFI-ZEKE, Pulsed Field Ionization-Zero Electron Kinetic Energy. Entre las aplicaciones que requieren estos conocimientos se encuentran la generación de plasmas para la fabricación de semiconductores, memorias magnéticas, etc, así como los sistemas astrofísicos, la ionosfera terrestre, etc. La espectroscopía ZEKE es una evolución de las de fluorescencia inducida por láser, LIF, ionización multifotónica acrecentada por resonancia, REMPI, con uno y dos colores y acoplada a un sistema de tiempo de vuelo, REMPI-TOF-MS, y las espectroscopías de doble resonancia IR-UV y UV-UV. Sus espectros y la ayuda de cálculos ab inicio permite determinar las energías de enlace de complejos de van der Waals en estados fundamental y excitados, identificar confórmeros e isómeros, obtener energías de ionización experimentales aproximadas (100 cm-1) y otras variables de interés. Al igual que con LIF, REMPI y dobles resonancias, es posible utilizar muestras gaseosas, pero los espectros están muy saturados de bandas y su interpretación es difícil o imposible. Se evitan estas dificultades estudiando las moléculas o complejos en expansiones supersónicas, donde la T de los grados de libertad solo alcanzan unos pocos K. Para realizar experimentos de ZEKE hay que utilizar una propiedad recientemente

  6. The double-gradient magnetic instability: Stabilizing effect of the guide field

    SciTech Connect

    Korovinskiy, D. B. Semenov, V. S.; Ivanova, V. V.; Divin, A. V.; Erkaev, N. V.; Artemyev, A. V.; Lapenta, G.; Markidis, S.; Biernat, H. K.

    2015-01-15

    The role of the dawn-dusk magnetic field component in stabilizing of the magnetotail flapping oscillations is investigated in the double-gradient model framework (Erkaev et al., Phys. Rev. Lett. 99, 235003 (2007)), extended for the magnetotail-like configurations with non-zero guide field B{sub y}. Contribution of the guide field is examined both analytically and by means of linearized 2-dimensional (2D) and non-linear 3-dimensional (3D) MHD modeling. All three approaches demonstrate the same properties of the instability: stabilization of current sheet oscillations for short wavelength modes, appearing of the typical (fastest growing) wavelength λ{sub peak} of the order of the current sheet width, decrease of the peak growth rate with increasing B{sub y} value, and total decay of the mode for B{sub y}∼0.5 in the lobe magnetic field units. Analytical solution and 2D numerical simulations claim also the shift of λ{sub peak} toward the longer wavelengths with increasing guide field. This result is barely visible in 3D simulations. It may be accounted for the specific background magnetic configuration, the pattern of tail-like equilibrium provided by approximated solution of the conventional Grad-Shafranov equation. The configuration demonstrates drastically changing radius of curvature of magnetic field lines, R{sub c}. This, in turn, favors the “double-gradient” mode (λ > R{sub c}) in one part of the sheet and classical “ballooning” instability (λ < R{sub c}) in another part, which may result in generation of a “combined” unstable mode.

  7. Highly Charged Ions from Laser-Cluster Interactions: Local-Field-Enhanced Impact Ionization and Frustrated Electron-Ion Recombination

    SciTech Connect

    Fennel, Thomas; Ramunno, Lora; Brabec, Thomas

    2007-12-07

    Our molecular dynamics analysis of Xe{sub 147-5083} clusters identifies two mechanisms that contribute to the yet unexplained observation of extremely highly charged ions in intense laser cluster experiments. First, electron impact ionization is enhanced by the local cluster electric field, increasing the highest charge states by up to 40%; a corresponding theoretical method is developed. Second, electron-ion recombination after the laser pulse is frustrated by acceleration electric fields typically used in ion detectors. This increases the highest charge states by up to 90%, as compared to the usual assumption of total recombination of all cluster-bound electrons. Both effects together augment the highest charge states by up to 120%, in reasonable agreement with experiments.

  8. Simulation of the above-threshold-ionization experiment using the molecular strong-field approximation: The choice of gauge

    SciTech Connect

    Busuladzic, M.; Milosevic, D. B.

    2010-07-15

    We investigate how various versions of the molecular strong-field approximation (MSFA) agree with the experiment by Grasbon et al. [Phys. Rev. A 63, 041402(R) (2001)], in which the suppression of the ionization yield in the low-energy spectrum of the O{sub 2} molecule, compared to the spectrum of its companion atom Xe, was observed. In this experiment, it was also found that the spectrum of the N{sub 2} molecule is comparable to the corresponding spectrum of its companion atom Ar. We show that the length-gauge version of the MSFA with the initial state dressed by the laser field gives the best agreement with the experimental data for both O{sub 2} and N{sub 2} molecules.

  9. Electron ionization of acetylene

    NASA Astrophysics Data System (ADS)

    King, Simon J.; Price, Stephen D.

    2007-11-01

    Relative partial ionization cross sections and precursor specific relative partial ionization cross sections for fragment ions formed by electron ionization of C2H2 have been measured using time-of-flight mass spectrometry coupled with a 2D ion-ion coincidence technique. We report data for the formation of H+, H2+, C2+, C+/C22+, CH +/C2H22+, CH2+, C2+, and C2H + relative to the formation of C2H2+, as a function of ionizing electron energy from 30-200eV. While excellent agreement is found between our data and one set of previously published absolute partial ionization cross sections, some discrepancies exist between the results presented here and two other recent determinations of these absolute partial ionization cross sections. We attribute these differences to the loss of some translationally energetic fragment ions in these earlier studies. Our relative precursor-specific partial ionization cross sections enable us, for the first time, to quantify the contribution to the yield of each fragment ion from single, double, and triple ionization. Analysis shows that at 50eV double ionization contributes 2% to the total ion yield, increasing to over 10% at an ionizing energy of 100eV. From our ion-ion coincidence data, we have derived branching ratios for charge separating dissociations of the acetylene dication. Comparison of our data to recent ab initio/RRKM calculations suggest that close to the double ionization potential C2H22+ dissociates predominantly on the ground triplet potential energy surface (Σg-3) with a much smaller contribution from dissociation via the lowest singlet potential energy surface (Δg1). Measurements of the kinetic energy released in the fragmentation reactions of C2H22+ have been used to obtain precursor state energies for the formation of product ion pairs, and are shown to be in good agreement with available experimental data and with theory.

  10. The effect of a magnetic field on the spin-selective transport in double-stranded DNA

    SciTech Connect

    Simchi, Hamidreza; Esmaeilzadeh, Mahdi Mazidabadi, Hossein

    2014-05-28

    Spin-polarization in double-stranded DNA is studied in the presence of a magnetic field applied along its helix axis using the non-equilibrium Green's function method. The spin-polarization could be tuned by changing the magnetic field. In some special cases, the double-stranded DNA behaved as a perfect spin-filter. Furthermore, the dependency of the spin-polarization on the spin-orbit strength and dephasing strength is studied.

  11. Electric-field-induced mid-infrared birefringence of the double quantum wells

    NASA Astrophysics Data System (ADS)

    Vinnichenko, M. Ya; Babich, V. M.; Balagula, R. M.; Sofronov, A. N.; Firsov, D. A.; Vorobjev, L. E.

    2016-08-01

    Birefringence in double tunnel-coupled GaAs/AlGaAs quantum wells was studied in the mid-infrared spectral range close to the intersubband resonance. Phase-sensitive optical studies allowed us to deduce simultaneously the differences of the refraction index and absorption coefficient for the normal waves polarized in the plane of the structure and along the structure growth, including electric-field induced effects. The optical absorption data are in a good agreement with the direct optical transmission measurements.

  12. A pH sensor with a double-gate silicon nanowire field-effect transistor

    NASA Astrophysics Data System (ADS)

    Ahn, Jae-Hyuk; Kim, Jee-Yeon; Seol, Myeong-Lok; Baek, David J.; Guo, Zheng; Kim, Chang-Hoon; Choi, Sung-Jin; Choi, Yang-Kyu

    2013-02-01

    A pH sensor composed of a double-gate silicon nanowire field-effect transistor (DG Si-NW FET) is demonstrated. The proposed DG Si-NW FET allows the independent addressing of the gate voltage and hence improves the sensing capability through an application of asymmetric gate voltage between the two gates. One gate is a driving gate which controls the current flow, and the other is a supporting gate which amplifies the shift of the threshold voltage, which is a sensing metric, and which arises from changes in the pH. The pH signal is also amplified through modulation of the gate oxide thickness.

  13. Transient gain-absorption of the probe field in triple quantum dots coupled by double tunneling

    NASA Astrophysics Data System (ADS)

    Tian, Si-Cong; Zhang, Xiao-Jun; Wan, Ren-Gang; Zhao, Shuai; Wu, Hao; Shu, Shi-Li; Wang, Li-Jie; Tong, Cun-Zhu

    2016-06-01

    The transient gain-absorption property of the probe field in a linear triple quantum dots coupled by double tunneling is investigated. It is found that the additional tunneling can dramatically affect the transient behaviors under the transparency condition. The dependence of transient behaviors on other parameters, such as probe detuning, the pure dephasing decay rate of the quantum dots and the initial conditions of the population, are also discussed. The results can be explained by the properties of the dressed states generated by the additional tunneling. The scheme may have important application in quantum information network and communication.

  14. Increase in the compensated field of view with a double-conjugate adaptive-optics system.

    PubMed

    Baharav, Y; Shamir, J

    1995-04-20

    We analyze and quantify the capabilities and limitations of a double-conjugate adaptive-optics system. In the proposed system the contribution of two turbulent layers is treated separately, with Rayleigh guide stars for the bottom layer, sodium guide stars for the top layer, and two adaptive mirrors conjugate to the respective layers. The system substantially increases the compensated field of view. We give calculated results for the estimated number of guide stars needed, the wave-front sensor, and the adaptive-mirror resolution. Simulation results are also presented, and the residual error remaining after correction in our proposed system is compared with a conventional single-adaptive-mirror system.

  15. Energy deficit of pulsed-laser field-ionized and field-emitted ions from non-metallic nano-tips

    SciTech Connect

    Arnoldi, L.; Silaeva, E. P.; Gaillard, A.; Vurpillot, F.; Blum, I.; Rigutti, L.; Deconihout, B.; Vella, A.

    2014-05-28

    The energy deficit of pulsed-laser field-evaporated ions and field-ionized atoms of an inert gas from the surface of a non-metallic nano-metric tip is reported as a function of the laser intensity, ion current, and temperature. A new model is proposed to explain these results, taking into account the resistive properties of non-metallic nano-tips. A good agreement between the theoretical predictions and the experimental results is obtained for all parameters investigated experimentally. This model is also used to discuss the evaporation behavior of oxides analyzed in laser-assisted atom probe tomography. New insight into the contribution of the electrostatic field and the laser illumination on the evaporation process of non-metallic materials is given.

  16. Multielectron ultrastrong laser field ionization of Arn+, Krm+ and Xel+ (n <= 9, m <= 9, l <= 12) at intensities from 1015 W cm-2 to 1018 W cm-2

    NASA Astrophysics Data System (ADS)

    Palaniyappan, S.; Di Chiara, A.; Ghebregziabher, I.; Huskins, E. L.; Falkowski, A.; Pajerowski, D.; Walker, B. C.

    2006-07-01

    Ionization yields are reported for Ar, Kr and Xe in ultrastrong fields from 1015 W cm-2 to 1018 W cm-2. Non-sequential ionization (NSI) is shown to be a robust and general feature in ultrahigh field ionization. NSI yields measured are consistent with the trends predicted by a rescattering model, but as one proceeds to higher Z atoms more NSI is observed than predicted theoretically. Additional recollision mechanisms that may need to be considered in future theories of ultrastrong field-atom interactions include 'chain' NSI, NSI from excited states of the atom (e.g. Rydberg states or inner-shell holes) and the possibility of ultrastrong field enhanced recollision/impact processes.

  17. Double disordered YBCO coated conductors of industrial scale: high currents in high magnetic field

    NASA Astrophysics Data System (ADS)

    Abraimov, D.; Ballarino, A.; Barth, C.; Bottura, L.; Dietrich, R.; Francis, A.; Jaroszynski, J.; Majkic, G. S.; McCallister, J.; Polyanskii, A.; Rossi, L.; Rutt, A.; Santos, M.; Schlenga, K.; Selvamanickam, V.; Senatore, C.; Usoskin, A.; Viouchkov, Y. L.

    2015-11-01

    A significant increase of critical current in high magnetic field, up to 31 T, was recorded in long tapes manufactured by employing a double-disorder route. In a double-disordered high-temperature superconductor (HTS), a superimposing of intrinsic and extrinsic disorder takes place in a way that (i) the intrinsic disorder is caused by local stoichiometry deviations that lead to defects of crystallinity that serve as pining centers in the YBa2Cu3O x-δ matrix and (ii) the extrinsic disorder is introduced via embedded atoms or particles of foreign material (e.g. barium zirconate), which create a set of lattice defects. We analyzed possible technological reasons for this current gain. The properties of these tapes over a wider field-temperature range as well as field anisotropy were also studied. Record values of critical current as high as 309 A at 31 T, 500 A at 18 Tm and 1200 A at 5 T were found in 4 mm wide tape at 4.2 K and B perpendicular to tape surface. HTS layers were processed in medium-scale equipment that allows a maximum batch length of 250 m while 22 m long batches were provided for investigation. Abnormally high ratios (up to 10) of critical current density measured at 4.2 K, 19 T to critical current density measured at 77 K, self-field were observed in tapes with the highest in-field critical current. Anisotropy of the critical current as well as angular dependences of n and α values were investigated. The temperature dependence of critical current is presented for temperatures between 4.2 and 40 K. Prospects for the suppression of the dog-bone effect by Cu plating and upscale of processing chain to >500 m piece length are discussed.

  18. Sound field measurement in a double layer cavitation cluster by rugged miniature needle hydrophones.

    PubMed

    Koch, Christian

    2016-03-01

    During multi-bubble cavitation the bubbles tend to organize themselves into clusters and thus the understanding of properties and dynamics of clustering is essential for controlling technical applications of cavitation. Sound field measurements are a potential technique to provide valuable experimental information about the status of cavitation clouds. Using purpose-made, rugged, wide band, and small-sized needle hydrophones, sound field measurements in bubble clusters were performed and time-dependent sound pressure waveforms were acquired and analyzed in the frequency domain up to 20 MHz. The cavitation clusters were synchronously observed by an electron multiplying charge-coupled device (EMCCD) camera and the relation between the sound field measurements and cluster behaviour was investigated. Depending on the driving power, three ranges could be identified and characteristic properties were assigned. At low power settings no transient and no or very low stable cavitation activity can be observed. The medium range is characterized by strong pressure peaks and various bubble cluster forms. At high power a stable double layer was observed which grew with further increasing power and became quite dynamic. The sound field was irregular and the fundamental at driving frequency decreased. Between the bubble clouds completely different sound field properties were found in comparison to those in the cloud where the cavitation activity is high. In between the sound field pressure amplitude was quite small and no collapses were detected.

  19. Tuning the phase sensitivity of a double-lambda system with a static magnetic field.

    PubMed

    Xu, Xiwei; Shen, Shuo; Xiao, Yanhong

    2013-05-20

    We study the effect of a DC magnetic field on the phase sensitivity of a double-lambda system coupled by two laser fields, a probe and a pump. It is demonstrated that the gain and the refractive index of the probe can be controlled by either the magnetic field or the relative phase between the two laser fields. More interestingly, when the system reduces to a single-lambda system, turning on the magnetic field transforms the system from a phase-insensitive process to a phase-sensitive one. In the pulsed-probe regime, we observed switching between slow and fast light when the magnetic field or the relative phase was adjusted. Experiments using a coated 87Rb vapor cell produced results in good agreement with our numerical simulation. This work provides a novel and simple means to manipulate phase sensitive electromagnetically-induced-transparency or four-wave mixing, and could be useful for applications in quantum optics, nonlinear optics and magnetometery based on such systems.

  20. Resonance enhanced multiphoton ionization photoelectron spectroscopy and pulsed field ionization via the F 1Delta 2(vscript=0) and f 3Delta 2(vscript=0) Rydberg states of HCl

    NASA Astrophysics Data System (ADS)

    de Beer, E.; Buma, W. J.; de Lange, C. A.

    1993-09-01

    In this paper, we report the first rotationally resolved one- and two-color resonance enhanced multiphoton ionization photoelectron spectroscopy (REMPI-PES) study of the HCl molecule. The agreement between our experimental branching ratios and theoretical investigations is excellent. We also report the first zero kinetic energy pulsed field ionization (ZEKE-PFI) experiments carried out in a ``magnetic bottle'' electron spectrometer. A direct comparison is made between ZEKE-PFI and REMPI-PES spectra for ionization via several rotational levels of the F 1Δ2(v'=0) and f 3Δ2(v'=0) Rydberg states of HCl. Large differences in both the spin-orbit and rotational branching ratios are found between the ZEKE-PFI and REMPI-PES spectra. These differences can be understood qualitatively on the basis of rotational and spin-orbit autoionization mechanisms.

  1. Single Photon K-2 and K-1K-1 Double Core Ionization in C2H2n (n=1-3), CO, and N2 as a Potential New Tool for Chemical Analysis

    NASA Astrophysics Data System (ADS)

    Nakano, M.; Penent, F.; Tashiro, M.; Grozdanov, T. P.; Žitnik, M.; Carniato, S.; Selles, P.; Andric, L.; Lablanquie, P.; Palaudoux, J.; Shigemasa, E.; Iwayama, H.; Hikosaka, Y.; Soejima, K.; Suzuki, I. H.; Kouchi, N.; Ito, K.

    2013-04-01

    We have observed single photon double K-shell photoionization in the C2H2n (n=1-3) hydrocarbon sequence and in N2 and CO, using synchrotron radiation and electron coincidence spectroscopy. Our previous observations of the K-2 process in these molecules are extended by the observations of a single photon double photoionization with one core hole created at each of the two neighboring atoms in the molecule (K-1K-1 process). In the C2H2n sequence, the spectroscopy of K-1K-1 states is much more sensitive to the bond length than conventional electron spectroscopy for chemical analysis spectroscopy based on single K-shell ionization. The cross section variation for single photon K-1K-1 double core ionization in the C2H2n sequence and in the isoelectronic C2H2, N2 and CO molecules validates a knock-out mechanism in which a primary ionized 1s photoelectron ejects another 1s electron of the neighbor atom. The specific Auger decay from such states is clearly observed in the CO case.

  2. Magnetic field line reconnection experiments. V - Current disruptions and double layers

    NASA Technical Reports Server (NTRS)

    Stenzel, R. L.; Gekelman, W.; Wild, N.

    1983-01-01

    An investigation is conducted of the stability of a large laboratory plasma current sheet, which has been generated in the process of magnetic field line reconnection, with respect to local current increases. Magnetic flux variations in regions remote from the current sheet generate an inductive voltage in the current loop that drops off inside the plasma in the form of a potential double layer, leading to particle acceleration with velocities much larger than those expected from the steady state electric fields in the plasma. A model for the mechanism of the current disruptions is formulated in which the potential structure leads to ion expulsion, creating a localized density drop. The associated current drop in an inductive circuit drives the potential structure, providing feedback for the disruptive instability. Similarities to, and differences from, magnetospheric substorm phenomena are noted.

  3. Femtosecond Coherent Spectroscopy at 800nm: MI-FROG Measures High-Field Ionization Rates in Gases

    SciTech Connect

    Siders, C.W.; Siders, J.L.W.; Taylor, A.J.

    1999-05-24

    The authors report the first quantitative phase-sensitive measurement of ultrafast ionization rates in gases using Multi-phase Interferometric Frequency-Resolved Optical Gating. Ultrafast probe depletion via frequency mixing in the ionization front is observed.

  4. Poly(ADP-Ribose) Polymerase-1 and DNA-Dependent Protein Kinase Have Equivalent Roles in Double Strand Break Repair Following Ionizing Radiation

    SciTech Connect

    Mitchell, Jody; Smith, Graeme; Curtin, Nicola J.

    2009-12-01

    Purpose: Radiation-induced DNA double strand breaks (DSBs) are predominantly repaired by nonhomologous end joining (NHEJ), involving DNA-dependent protein kinase (DNA-PK). Poly(ADP-ribose) polymerase-1 (PARP-1), well characterized for its role in single strand break repair, may also facilitate DSB repair. We investigated the activation of these enzymes by differing DNA ends and their interaction in the cellular response to ionizing radiation (IR). Methods and Materials: The effect of PARP and DNA-PK inhibitors (KU-0058684 and NU7441) on repair of IR-induced DSBs was investigated in DNA-PK and PARP-1 proficient and deficient cells by measuring gammaH2AX foci and neutral comets. Complementary in vitro enzyme kinetics assays demonstrated the affinities of DNA-PK and PARP-1 for DSBs with varying DNA termini. Results: DNA-PK and PARP-1 both promoted the fast phase of resolution of IR-induced DSBs in cells. Inactivation of both enzymes was not additive, suggesting that PARP-1 and DNA-PK cooperate within the same pathway to promote DSB repair. The affinities of the two enzymes for oligonucleotides with blunt, 3' GGG or 5' GGG overhanging termini were similar and overlapping (K{sub dapp} = 2.6-6.4nM for DNA-PK; 1.7-4.5nM for PARP-1). DNA-PK showed a slightly greater affinity for overhanging DNA and was significantly more efficient when activated by a 5' GGG overhang. PARP-1 had a preference for blunt-ended DNA and required a separate factor for efficient stimulation by a 5' GGG overhang. Conclusion: DNA-PK and PARP-1 are both required in a pathway facilitating the fast phase of DNA DSB repair.

  5. Double-arm three-dimensional ion imaging apparatus for the study of ion pair channels in resonance enhanced multiphoton ionization.

    PubMed

    Poretskiy, M S; Chichinin, A I; Maul, C; Gericke, K-H

    2016-02-01

    We present a novel experimental configuration for the full quantitative characterization of the multichannel resonance enhanced multiphoton ionization (REMPI) of small molecules in cases when the ion-pair dissociation channel is important. For this purpose, a double-arm time-of-flight mass spectrometer with three-dimensional (3D) ion imaging detectors at both arms is constructed. The REMPI of HCl molecules is used to examine the constructed setup. The apparatus allows us to perform simultaneous measurements of the 3D velocity vector distributions of positive (H(+), HCl(+), and Cl(+)) and negative (Cl(-)) photoions. The characterization consists of the determination of "two-photon absorption cross sections" for the process HCl(X)+2hν → HCl*, one-photon absorption cross sections for subsequent processes HCl* + hν → HCl*, and the probability of the subsequent non-adiabatic transition HCl* → HCl(B) → H(+) + Cl(-), which leads to ionic pairs. All these data should be obtained from the analysis of the dependencies of the number of ions on the laser energy. The full characterization of the laser beam and the knowledge of the ion detection probability are necessary parts of the analysis. Detailed knowledge of losses of produced ions in the mass spectrometer before detection requires understanding and characterization of such processes like electron emission from metallic grids under ion bombardment or charge transfer between positive ions and the metal surface of the grids, like Cl(+) + (grid) → Cl(-). These important phenomena from surface science are rarely discussed in the imaging literature, and here, we try to compensate for this shortcoming. PMID:26931834

  6. Observations of a Newly "Captured" Magnetosheath Field Line: Evidence for "Double Reconnection"

    NASA Technical Reports Server (NTRS)

    Chandler, Michael O.; Avanov, Levon A.; Craven, Paul D.; Mozer, Forrest S.; Moore, Thomas E.

    2007-01-01

    We have begun an investigation of the nature of the low-latitude boundary layer in the mid-altitude cusp region using data from the Polar spacecraft. This region has been routinely sampled for about three months each year for the periods 1999-2001 and 2004-2006. The low-to-mid-energy ion instruments frequently observed dense, magnetosheath-like plasma deep (in terms of distance from the magnetopause and in invariant latitude) in the magnetosphere. One such case, taken during a period of northward interplanetary magnetic field (IMF), shows magnetosheath ions within the magnetosphere with velocity distributions resulting from two separate merging sites along the same field lines. Cold ionospheric ions were also observed counterstreaming along the field lines, evidence that these field lines were closed. These results are consistent with the hypothesis that double merging can produce closed field .lines populated by solar wind plasma. Through the use of individual cases such as this and statistical studies of a broader database we seek to understand the morphology of the LLBL as it projects from the sub-solar region into the cusp. We will present preliminary results of our ongoing study.

  7. Modulation of Field Electron Emission from Carbon Nanotubes by Double layer Charging

    NASA Astrophysics Data System (ADS)

    Zakhidov, Anvar

    2005-03-01

    Field emission from carbon nanotubes is well known phenomenon. In this work we present a novel method of modulating the current densities and threshold voltages. We studied field emission characteristics of HIPCO Single Walled Nanotube (SWNT) paper charged in NaCl electrolyte. The charge injection was by double layer electro chemical doping and it showed significant change in the threshold electric fields and the current densities. This was attributed mostly to a change in the work function and partially due to the change in the field enhancement factor beta. The turn on field (for 1microA of emission current) was seen to change from 1.04 V/micron to 0.82 V/micron for the negatively charged paper (Na ions) and similarly on the positively charged (Cl ions) it increased from 1.01 V/micron to 2.1 V/micron. Calculated values of the work function were compared with values from Kelvin Probe measurements. The work function values showed a significant decrease in the negatively charged samples and a sharp increase in the positively charged samples as compared to the uncharged ones. Experiments were repeated by varying the charging time from 2000 sec to 3 hrs with the current being kept constant.

  8. Two-Source Double-Slit Interference in Angle-Resolved High-Energy Above-Threshold Ionization Spectra of Diatoms

    SciTech Connect

    Okunishi, M.; Itaya, R.; Shimada, K.; Pruemper, G.; Ueda, K.; Busuladzic, M.; Gazibegovic-Busuladzic, A.; Milosevic, D. B.; Becker, W.

    2009-07-24

    When an electron from a diatomic molecule undergoes tunneling-rescattering ionization, a novel form of destructive interference can be realized that involves all four geometric orbits that are available to the electron when it is freed, because both ionization and rescattering may take place at the same or at different centers. We find experimentally and confirm theoretically that in orientation-averaged angle-resolved high-order above-threshold ionization spectra the corresponding destructive interference is visible for O{sub 2} but not for N{sub 2}. This effect is different from the suppression of ionization that is well known to occur for O{sub 2}.

  9. High Energy Proton Ejection from Hydrocarbon Molecules Driven by Highly Efficient Field Ionization

    NASA Astrophysics Data System (ADS)

    Roither, S.; Xie, X.; Kartashov, D.; Zhang, L.; Schöffler, M.; Xu, H.; Iwasaki, A.; Okino, T.; Yamanouchi, K.; Baltuška, A.; Kitzler, M.

    We report on the ejection of protons with surprisingly high kinetic energies up to 60 eV from a series of polyatomic hydrocarbon molecules exposed to Titanium-Sapphire laser pulses with moderate laser peak intensities of a few 1014 W/cm2. Using multi-particle coincidence imaging we are able to decompose the observed proton energy spectra into the contributions of individual fragmentation channels. It is shown that the molecules can completely fragment into bare atomic ions already at relatively low peak intensities, and that the protons are ejected in a concerted Coulomb explosion from unexpectedly high charge states. We propose that a thus far undescribed process, namely that enhanced ionization (EI) taking place at all C-H bonds in parallel, is responsible for the high charge states and high proton energies. The proposition is successfully tested by using (stretched) few-cycle pulses with a bandwidth limited duration as short as 4.3 fs, for which the C-H nuclear motion is too slow to reach the critical internuclear distance for EI.

  10. Analysis of estimation of electromagnetic dosimetric values from non-ionizing radiofrequency fields in conventional road vehicle environments.

    PubMed

    Aguirre, Erik; Iturri, Peio Lopez; Azpilicueta, Leire; de Miguel-Bilbao, Silvia; Ramos, Victoria; Gárate, Uxue; Falcone, Francisco

    2015-03-01

    A high number of wireless technologies can be found operating in vehicular environments with the aim of offering different services. The dosimetric evaluation of this kind of scenarios must be performed in order to assess their compatibility with current exposure limits. In this work, a dosimetric evaluation inside a conventional car is performed, with the aid of an in-house 3D Ray Launching computational code, which has been compared with measurement results of wireless sensor networks located inside the vehicle. These results can aid in an adequate assessment of human exposure to non-ionizing radiofrequency fields, taking into account the impact of the morphology and the topology of the vehicle for current as well as for future exposure limits.

  11. Momentum Distribution of Near-Zero-Energy Photoelectrons in the Strong-Field Tunneling Ionization in the Long Wavelength Limit

    PubMed Central

    Xia, Q. Z.; Ye, D. F.; Fu, L. B.; Han, X. Y.; Liu, J.

    2015-01-01

    We investigate the ionization dynamics of Argon atoms irradiated by an ultrashort intense laser of a wavelength up to 3100 nm, addressing the momentum distribution of the photoelectrons with near-zero-energy. We find a surprising accumulation in the momentum distribution corresponding to meV energy and a “V”-like structure at the slightly larger transverse momenta. Semiclassical simulations indicate the crucial role of the Coulomb attraction between the escaping electron and the remaining ion at an extremely large distance. Tracing back classical trajectories, we find the tunneling electrons born in a certain window of the field phase and transverse velocity are responsible for the striking accumulation. Our theoretical results are consistent with recent meV-resolved high-precision measurements. PMID:26081971

  12. Nonadiabatic tunnel ionization in strong circularly polarized laser fields: counterintuitive angular shifts in the photoelectron momentum distribution.

    PubMed

    Li, Yang; Lan, Pengfei; Xie, Hui; He, Mingrui; Zhu, Xiaosong; Zhang, Qingbin; Lu, Peixiang

    2015-11-01

    We perform time-dependent calculation of strong-field ionization of neon, initially prepared in 2p(-1) and 2p(+1) states, with intense near-circularly polarized laser pulses. By solving the three-dimensional time-dependent Schrödinger equation, we find clear different offset angles of the maximum in the photoelectron momentum distribution in the polarization plane of the laser pulses for the two states. We provide clear interpretation that this different angular offset is linked to the sign of the magnetic quantum number, thus it can be used to map out the orbital angular momentum of the initial state. Our results provide a potential tool for studying orbital symmetry in atomic and molecular systems. PMID:26561149

  13. The effects of emitter-tied field plates on lateral PNP ionizing radiation response

    SciTech Connect

    Barnaby, H.J.; Schrimpf, R.D.; Cirba, C.R.; Pease, R.L.; Fleetwood, D.M.; Kosier, S.L.

    1998-03-01

    Radiation response comparisons of lateral PNP bipolar technologies reveal that device hardening may be achieved by extending the emitter contact over the active base. The emitter-tied field plate suppresses recombination of carriers with interface traps.

  14. The Axial Double Probe and Fields Signal Processing for the MMS Mission

    NASA Astrophysics Data System (ADS)

    Ergun, R. E.; Tucker, S.; Westfall, J.; Goodrich, K. A.; Malaspina, D. M.; Summers, D.; Wallace, J.; Karlsson, M.; Mack, J.; Brennan, N.; Pyke, B.; Withnell, P.; Torbert, R.; Macri, J.; Rau, D.; Dors, I.; Needell, J.; Lindqvist, P.-A.; Olsson, G.; Cully, C. M.

    2016-03-01

    The Axial Double Probe (ADP) instrument measures the DC to ˜100 kHz electric field along the spin axis of the Magnetospheric Multiscale (MMS) spacecraft (Burch et al., Space Sci. Rev., 2014, this issue), completing the vector electric field when combined with the spin plane double probes (SDP) (Torbert et al., Space Sci. Rev., 2014, this issue, Lindqvist et al., Space Sci. Rev., 2014, this issue). Two cylindrical sensors are separated by over 30 m tip-to-tip, the longest baseline on an axial DC electric field ever attempted in space. The ADP on each of the spacecraft consists of two identical, 12.67 m graphite coilable booms with second, smaller 2.25 m booms mounted on their ends. A significant effort was carried out to assure that the potential field of the MMS spacecraft acts equally on the two sensors and that photo- and secondary electron currents do not vary over the spacecraft spin. The ADP on MMS is expected to measure DC electric field with a precision of ˜1 mV/m, a resolution of ˜25 μV/m, and a range of ˜±1 V/m in most of the plasma environments MMS will encounter. The Digital Signal Processing (DSP) units on the MMS spacecraft are designed to perform analog conditioning, analog-to-digital (A/D) conversion, and digital processing on the ADP, SDP, and search coil magnetometer (SCM) (Le Contel et al., Space Sci. Rev., 2014, this issue) signals. The DSP units include digital filters, spectral processing, a high-speed burst memory, a solitary structure detector, and data compression. The DSP uses precision analog processing with, in most cases, >100 dB in dynamic range, better that -80 dB common mode rejection in electric field ( E) signal processing, and better that -80 dB cross talk between the E and SCM ( B) signals. The A/D conversion is at 16 bits with ˜1/4 LSB accuracy and ˜1 LSB noise. The digital signal processing is powerful and highly flexible allowing for maximum scientific return under a limited telemetry volume. The ADP and DSP are

  15. Space-time simulations of photon, lepton, ionization and nucleon trails of TGF ignition in thunderstorm electric field geometries

    NASA Astrophysics Data System (ADS)

    Connell, Paul

    2015-04-01

    The origin of high energy electrons which contribute to the Relativistic Runaway Electron Avalanche of a TGF are not precisely known, or yet observed, though the most obvious source would seem to be the products of cosmic ray showers, or electron avalanches generated in the high electric field near the tips of lightning leaders. With our new TGF simulation software package LEPTRACK we can now easily create any electric field geometry to be expected in stormclouds, any kind of electron source, and are investigating scenarios of TGF ignition, which may or may not be runaway, and in any direction - not just vertical. Vidoes, lightcurves and spectra, presenting the detailed density structure and time evolution of TGF photon, electron, neucleon and ionization trails were presented for the first time at the AGU Fall Meeting in 2014 - showing the complicated effects of changing electric field strength and air density - and the as yet unrecognized importance of the earth magnetic field in trapping electrons and positrons in the upper atmosphere at the magnetic equator - possibly giving rise to the hard tail seen in some TGF spectra observed by AGILE. We will present here an extension of this work to show the dynamics of TGF ignition scenarios of current interest - upward, downward and randomly directed - both from free electrons and from combinations of lightning leader micro-fields producing electron avalanches, which are then input to the macro-fields expected at or above thunderstorm cloudtops. We will show the spatial shape and time evolution of TGF particle structures, along with their optical and gamma ray spectra emitted, and bring to life their essential physics.

  16. Zircon U-Th-Pb-He double dating of the Merlin kimberlite field, Northern Territory, Australia

    NASA Astrophysics Data System (ADS)

    McInnes, Brent I. A.; Evans, Noreen J.; McDonald, Brad J.; Kinny, Peter D.; Jakimowicz, Janusz

    2009-11-01

    This paper discusses the development of a combined U/Pb and (U-Th)/He geochronology method for single zircon grains and the potential application of this technique in diamond exploration. Zircon entrained within kimberlite deposits should have distinctive U-Th-Pb-He signatures compared to those found in the host terrane. To investigate the application of zircon double dating to kimberlite diamond exploration, we analysed zircon from the Sacramore kimberlite pipe located in the Merlin field in the Northern Territory of Australia. We also conducted a double dating study of detrital zircon from a regional sample of the Bukalara Sandstone, the principal host rock for the Merlin field. Repeated analysis of Fish Canyon zircon verified that the ion microprobe sputtering process used for U/Pb dating does not disturb the He content of the sample. The zircon U/Pb age for the Sacramore pipe ( n = 14) ranged from 1541-2433 Ma, consistent with the Mesoproterozoic formation of the North Australian Craton and indicating that the zircon obtained from the kimberlite is of xenocrystic origin. (U-Th)/He thermochronometry of these kimberlite zircon xenocrysts ( n = 33) yielded a mean weighted average age of 368 ± 4 Ma (2 σ), concordant with a previously determined phlogopite Rb-Sr age of 367 ± 4 Ma for the Merlin field. The U/Pb age (1472-2939 Ma; n = 41) of detrital zircon from the Bukalara Sandstone is statistically indistinguishable from that of the kimberlite zircon xenocrysts, while the detrital (U-Th)/He ages range from 459 to 1279 Ma. The double dating study indicates that the majority of the zircon grains in the Sacramore kimberlite pipe had their helium clocks reset to the time of kimberlite emplacement. Thermal resetting of the zircon xenocrysts may have been caused by either one or a combination of these processes: (i) the grains originated from lower- to mid-crustal depths (> 6 km) where ambient geothermal temperatures allowed the helium to diffuse out of the zircon as

  17. Nuclear mean field and double-folding model of the nucleus-nucleus optical potential

    NASA Astrophysics Data System (ADS)

    Khoa, Dao T.; Phuc, Nguyen Hoang; Loan, Doan Thi; Loc, Bui Minh

    2016-09-01

    Realistic density dependent CDM3Yn versions of the M3Y interaction have been used in an extended Hartree-Fock (HF) calculation of nuclear matter (NM), with the nucleon single-particle potential determined from the total NM energy based on the Hugenholtz-van Hove theorem that gives rise naturally to a rearrangement term (RT). Using the RT of the single-nucleon potential obtained exactly at different NM densities, the density and energy dependence of the CDM3Yn interactions was modified to account properly for both the RT and observed energy dependence of the nucleon optical potential. Based on a local density approximation, the double-folding model of the nucleus-nucleus optical potential has been extended to take into account consistently the rearrangement effect and energy dependence of the nuclear mean-field potential, using the modified CDM3Yn interactions. The extended double-folding model was applied to study the elastic 12C+12C and 16O+12C scattering at the refractive energies, where the Airy structure of the nuclear rainbow has been well established. The RT was found to affect significantly the real nucleus-nucleus optical potential at small internuclear distances, giving a potential strength close to that implied by the realistic optical model description of the Airy oscillation.

  18. Effect of non-ionizing electromagnetic field on the alteration of ovarian follicles in rats

    PubMed Central

    Ahmadi, Seyed Shahin; Khaki, Amir Afshin; Ainehchi, Nava; Alihemmati, Alireza; Khatooni, Azam Asghari; Khaki, Arash; Asghari, Ali

    2016-01-01

    Introduction In recent years, there has been an increase in the attention paid to safety effects, environmental and society’s health, extremely low frequency electromagnetic fields (ELF-EMF), and radio frequency electromagnetic fields (RF-EMF). The aim of this research was to determine the effect of EMF on the alteration of ovarian follicles. Methods In this experimental study at Tabriz Medical University in 2015, we did EMF exposures and assessed the alteration of rats’ ovarian follicles. Thirty three-month old rats were selected randomly from laboratory animals, and, after their ages and weights were determined, they were divided randomly into three groups. The control group consisted of 10 rats without any treatment, and they were kept in normal conditions. The second group of rats was influenced by a magnetic field of 50 Hz for eight weeks (three weeks intrauterine and five weeks ectopic). The third group of rats was influenced by a magnetic field of 50 Hz for 13 weeks (three weeks intrauterine and ten weeks ectopic). Samples were fixed in 10% buffered formaldehyde and cleared with Xylol and embedded in paraffin. After sectioning and staining, samples were studied by optic microscopy. Finally, SPSS version 17, were used for data analysis. Results EMF radiation increased the harmful effects on the formation of ovarian follicles and oocytes implantation. Studies on the effects of electromagnetic fields on ovarian follicles have shown that the nuclei of the oocytes become smaller and change shape. There were significant, harmful changes in the groups affected by electromagnetic waves. Atresia of ovarian follicles was significantly significant in both study groups compared to the control group (p < 0.05). Conclusion Exposure to electromagnetic fields during embryonic development can cause morphological changes in oocytes and affect the differentiation of oocytes and folliculogenesis, resulting in decreased ovarian reserve leading to infertility or reduced

  19. Field ionization of strongly magnetized rydberg positronium: A new physical mechanism for positron accumulation

    PubMed

    Estrada; Roach; Tan; Yesley; Gabrielse

    2000-01-31

    Magnetized Rydberg positronium forms when an energetic positron ( e(+)) slows within a tungsten crystal and picks up an electron ( e(-)) as it emerges in a strong magnetic field. The signature is equal numbers of e(+) and e(-) when a weak electric field is applied, either of which can be accumulated and counted. The new e(+) accumulation technique is simple, robust, and much more efficient than any other demonstrated to be compatible with a cryogenic vacuum. Possible applications include the study of cold single component plasmas of e(+) and the formation of cold antihydrogen.

  20. Enhancement of proton acceleration field in laser double-layer target interaction

    NASA Astrophysics Data System (ADS)

    Gu, Y. J.; Kong, Q.; Kawata, S.; Izumiyama, T.; Li, X. F.; Yu, Q.; Wang, P. X.; Ma, Y. Y.

    2013-07-01

    A mechanism is proposed to enhance a proton acceleration field in laser plasma interaction. A double-layer plasma with different densities is illuminated by an intense short pulse. Electrons are accelerated to a high energy in the first layer by the wakefield. The electrons accelerated by the laser wakefield induce the enhanced target normal sheath (TNSA) and breakout afterburner (BOA) accelerations through the second layer. The maximum proton energy reaches about 1 GeV, and the total charge with an energy higher than 100 MeV is about several tens of μC/μm. Both the acceleration gradient and laser energy transfer efficiency are higher than those in single-target-based TNSA or BOA. The model has been verified by 2.5D-PIC simulations.