Sample records for field effect devices

  1. Uniform rotating field network structure to efficiently package a magnetic bubble domain memory

    NASA Technical Reports Server (NTRS)

    Murray, Glen W. (Inventor); Chen, Thomas T. (Inventor); Wolfshagen, Ronald G. (Inventor); Ypma, John E. (Inventor)

    1978-01-01

    A unique and compact open coil rotating magnetic field network structure to efficiently package an array of bubble domain devices is disclosed. The field network has a configuration which effectively enables selected bubble domain devices from the array to be driven in a vertical magnetic field and in an independent and uniform horizontal rotating magnetic field. The field network is suitably adapted to minimize undesirable inductance effects, improve capabilities of heat dissipation, and facilitate repair or replacement of a bubble device.

  2. Position-dependent performance of copper phthalocyanine based field-effect transistors by gold nanoparticles modification.

    PubMed

    Luo, Xiao; Li, Yao; Lv, Wenli; Zhao, Feiyu; Sun, Lei; Peng, Yingquan; Wen, Zhanwei; Zhong, Junkang; Zhang, Jianping

    2015-01-21

    A facile fabrication and characteristics of copper phthalocyanine (CuPc)-based organic field-effect transistor (OFET) using the gold nanoparticles (Au NPs) modification is reported, thereby achieving highly improved performance. The effect of Au NPs located at three different positions, that is, at the SiO2/CuPc interface (device B), embedding in the middle of CuPc layer (device C), and on the top of CuPc layer (device D), is investigated, and the results show that device D has the best performance. Compared with the device without Au NPs (reference device A), device D displays an improvement of field-effect mobility (μ(sat)) from 1.65 × 10(-3) to 5.51 × 10(-3) cm(2) V(-1) s(-1), and threshold voltage decreases from -23.24 to -16.12 V. Therefore, a strategy for the performance improvement of the CuPc-based OFET with large field-effect mobility and saturation drain current is developed, on the basis of the concept of nanoscale Au modification. The model of an additional electron transport channel formation by FET operation at the Au NPs/CuPc interface is therefore proposed to explain the observed performance improvement. Optimum CuPc thickness is confirmed to be about 50 nm in the present study. The device-to-device uniformity and time stability are discussed for future application.

  3. Short-channel field-effect transistors with 9-atom and 13-atom wide graphene nanoribbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Llinas, Juan Pablo; Fairbrother, Andrew; Borin Barin, Gabriela

    Bottom-up synthesized graphene nanoribbons and graphene nanoribbon heterostructures have promising electronic properties for high-performance field-effect transistors and ultra-low power devices such as tunneling field-effect transistors. However, the short length and wide band gap of these graphene nanoribbons have prevented the fabrication of devices with the desired performance and switching behavior. Here, by fabricating short channel (L ch ~ 20 nm) devices with a thin, high-κ gate dielectric and a 9-atom wide (0.95 nm) armchair graphene nanoribbon as the channel material, we demonstrate field-effect transistors with high on-current (I on > 1 μA at V d = -1 V) and highmore » I on /I off ~ 10 5 at room temperature. We find that the performance of these devices is limited by tunneling through the Schottky barrier at the contacts and we observe an increase in the transparency of the barrier by increasing the gate field near the contacts. Our results thus demonstrate successful fabrication of high-performance short-channel field-effect transistors with bottom-up synthesized armchair graphene nanoribbons.« less

  4. Short-channel field-effect transistors with 9-atom and 13-atom wide graphene nanoribbons

    DOE PAGES

    Llinas, Juan Pablo; Fairbrother, Andrew; Borin Barin, Gabriela; ...

    2017-09-21

    Bottom-up synthesized graphene nanoribbons and graphene nanoribbon heterostructures have promising electronic properties for high-performance field-effect transistors and ultra-low power devices such as tunneling field-effect transistors. However, the short length and wide band gap of these graphene nanoribbons have prevented the fabrication of devices with the desired performance and switching behavior. Here, by fabricating short channel (L ch ~ 20 nm) devices with a thin, high-κ gate dielectric and a 9-atom wide (0.95 nm) armchair graphene nanoribbon as the channel material, we demonstrate field-effect transistors with high on-current (I on > 1 μA at V d = -1 V) and highmore » I on /I off ~ 10 5 at room temperature. We find that the performance of these devices is limited by tunneling through the Schottky barrier at the contacts and we observe an increase in the transparency of the barrier by increasing the gate field near the contacts. Our results thus demonstrate successful fabrication of high-performance short-channel field-effect transistors with bottom-up synthesized armchair graphene nanoribbons.« less

  5. PLASMA DEVICE

    DOEpatents

    Gow, J.D.; Wilcox, J.M.

    1961-12-26

    A device is designed for producing and confining highenergy plasma from which neutrons are generated in copious quantities. A rotating sheath of electrons is established in a radial electric field and axial magnetic field produced within the device. The electron sheath serves as a strong ionizing medium to gas introdueed thereto and also functions as an extremely effective heating mechanism to the resulting plasma. In addition, improved confinement of the plasma is obtained by ring magnetic mirror fields produced at the ends of the device. Such ring mirror fields are defined by the magnetic field lines at the ends of the device diverging radially outward from the axis of the device and thereafter converging at spatial annular surfaces disposed concentrically thereabout. (AFC)

  6. Magnetic-field-dosimetry system

    DOEpatents

    Lemon, D.K.; Skorpik, J.R.; Eick, J.L.

    1981-01-21

    A device is provided for measuring the magnetic field dose and peak field exposure. The device includes three Hall-effect sensors all perpendicular to each other, sensing the three dimensional magnetic field and associated electronics for data storage, calculating, retrieving and display.

  7. Underwater unidirectional acoustic transmission through a plate with bilateral asymmetric gratings

    NASA Astrophysics Data System (ADS)

    Song, Ailing; Chen, Tianning; Wang, Xiaopeng; Xi, Yanhui; Liang, Qingxuan

    2018-04-01

    In this paper, a novel underwater unidirectional acoustic transmission (UAT) device consisting of a plate with bilateral asymmetric gratings is proposed and numerically investigated. The transmission spectra, the acoustic intensity field distributions, and the displacement field distributions are numerically calculated based on the finite element method. The transmission spectra show that the proposed device exhibits different UAT effects in three bands. The acoustic intensity field distributions demonstrate that the proposed device can realize UAT, which agree well with the transmission spectra. The mechanism is discussed by analyzing the displacement field distributions, and the UAT is attributed to the symmetric mode excited in brass plate. Furthermore, the effects of the lattice constant, the upper slit width, and the lower slit width on bands are discussed. Our design provides a good reference for designing underwater UAT devices and has potential applications in some fields, such as medical ultrasonic devices, acoustic barrier, and noise insulation.

  8. The role of electric field in microfluidic heating induced by standing surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Zheng, Tengfei; Wang, Chaohui; Hu, Qiao; Wei, Shoupeng

    2018-06-01

    The heating mechanism of standing surface acoustic waves (SSAWs) on a LiNbO3 substrate has been experimentally studied. Three devices with different substrates were used to heat the drops with NaCl concentrations ranging from 0 to 1 g/l, respectively. The device with a glass substrate was used to shield acoustic waves. The device with an Au layer between the LiNbO3 substrate and the droplet was used to shield the alternating current field. The results show that the thermal effect induced by SSAWs on the LiNbO3 substrate is composed of the acoustothermal effect due to SSAWs and the electric field thermal effect (Joule heat) due to the alternating current field. The electric field thermal effect which is ignored in SSAW devices previously plays an important role in the thermal effect induced by SSAWs. These results provide a meaningful insight into the mechanism of SSAW-based heating, which is of great help to guide the effective use of the SSAW-based heating technique for various applications.

  9. Magnetic bead detection using domain wall-based nanosensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corte-León, H., E-mail: hector.corte@npl.co.uk; Royal Holloway University of London, Egham TW20 0EX; Krzysteczko, P.

    2015-05-07

    We investigate the effect of a single magnetic bead (MB) on the domain wall (DW) pinning/depinning fields of a DW trapped at the corner of an L-shaped magnetic nanodevice. DW propagation across the device is investigated using magnetoresistance measurements. DW pinning/depinning fields are characterized in as-prepared devices and after placement of a 1 μm-sized MB (Dynabeads{sup ®} MyOne{sup ™}) at the corner. The effect of the MB on the DW dynamics is seen as an increase in the depinning field for specific orientations of the device with respect to the external magnetic field. The shift of the depinning field, ΔB{sub dep} = 4.5–27.0 mT,more » is highly stable and reproducible, being significantly above the stochastic deviation which is about 0.5 mT. The shift in the deppinning field is inversely proportional to the device width and larger for small negative angles between the device and the external magnetic field. Thus, we demonstrate that DW-based devices can be successfully used for detection of single micron size MB.« less

  10. Effects of electrode modification using calcium on the performance of alternating current field-induced polymer electroluminescent devices

    NASA Astrophysics Data System (ADS)

    Xia, Yingdong; Chen, Yonghua; Smith, Gregory M.; Li, Yuan; Huang, Wenxiao; Carroll, David L.

    2013-06-01

    In this work, the effects of electrode modification by calcium (Ca) on the performance of AC field induced polymer electroluminescence (FIPEL) devices are studied. The FIPEL device with Ca/Al electrode exhibits 550 cd m-2, which is 27.5 times higher than that of the device with only an Al electrode (20 cd m-2). Both holes and electrons are injected from one electrode in our FIPEL device. We found that the electron injection can be significantly enhanced by a Ca modification on the Al electrode without greatly affecting the hole injection. Therefore, the electrons and holes can be effectively recombined in the emissive layer to form more excitons under the AC voltage, leading to effective light emission. The device emitted much brighter light than other AC-based organic EL devices. This result provides an easy and effective way to improve FIPEL performance.

  11. Near-Infrared to Visible Organic Upconversion Devices Based on Organic Light-Emitting Field Effect Transistors.

    PubMed

    Li, Dongwei; Hu, Yongsheng; Zhang, Nan; Lv, Ying; Lin, Jie; Guo, Xiaoyang; Fan, Yi; Luo, Jinsong; Liu, Xingyuan

    2017-10-18

    The near-infrared (NIR) to visible upconversion devices have attracted great attention because of their potential applications in the fields of night vision, medical imaging, and military security. Herein, a novel all-organic upconversion device architecture has been first proposed and developed by incorporating a NIR absorption layer between the carrier transport layer and the emission layer in heterostructured organic light-emitting field effect transistors (OLEFETs). The as-prepared devices show a typical photon-to-photon upconversion efficiency as high as 7% (maximum of 28.7% under low incident NIR power intensity) and millisecond-scale response time, which are the highest upconversion efficiency and one of the fastest response time among organic upconversion devices as referred to the previous reports up to now. The high upconversion performance mainly originates from the gain mechanism of field-effect transistor structures and the unique advantage of OLEFETs to balance between the photodetection and light emission. Meanwhile, the strategy of OLEFETs also offers the advantage of high integration so that no extra OLED is needed in the organic upconversion devices. The results would pave way for low-cost, flexible and portable organic upconversion devices with high efficiency and simplified processing.

  12. Rapid Transition of the Hole Rashba Effect from Strong Field Dependence to Saturation in Semiconductor Nanowires

    NASA Astrophysics Data System (ADS)

    Luo, Jun-Wei; Li, Shu-Shen; Zunger, Alex

    2017-09-01

    The electric field manipulation of the Rashba spin-orbit coupling effects provides a route to electrically control spins, constituting the foundation of the field of semiconductor spintronics. In general, the strength of the Rashba effects depends linearly on the applied electric field and is significant only for heavy-atom materials with large intrinsic spin-orbit interaction under high electric fields. Here, we illustrate in 1D semiconductor nanowires an anomalous field dependence of the hole (but not electron) Rashba effect (HRE). (i) At low fields, the strength of the HRE exhibits a steep increase with the field so that even low fields can be used for device switching. (ii) At higher fields, the HRE undergoes a rapid transition to saturation with a giant strength even for light-atom materials such as Si (exceeding 100 meV Å). (iii) The nanowire-size dependence of the saturation HRE is rather weak for light-atom Si, so size fluctuations would have a limited effect; this is a key requirement for scalability of Rashba-field-based spintronic devices. These three features offer Si nanowires as a promising platform for the realization of scalable complementary metal-oxide-semiconductor compatible spintronic devices.

  13. Light-Stimulated Synaptic Devices Utilizing Interfacial Effect of Organic Field-Effect Transistors.

    PubMed

    Dai, Shilei; Wu, Xiaohan; Liu, Dapeng; Chu, Yingli; Wang, Kai; Yang, Ben; Huang, Jia

    2018-06-14

    Synaptic transistors stimulated by light waves or photons may offer advantages to the devices, such as wide bandwidth, ultrafast signal transmission, and robustness. However, previously reported light-stimulated synaptic devices generally require special photoelectric properties from the semiconductors and sophisticated device's architectures. In this work, a simple and effective strategy for fabricating light-stimulated synaptic transistors is provided by utilizing interface charge trapping effect of organic field-effect transistors (OFETs). Significantly, our devices exhibited highly synapselike behaviors, such as excitatory postsynaptic current (EPSC) and pair-pulse facilitation (PPF), and presented memory and learning ability. The EPSC decay, PPF curves, and forgetting behavior can be well expressed by mathematical equations for synaptic devices, indicating that interfacial charge trapping effect of OFETs can be utilized as a reliable strategy to realize organic light-stimulated synapses. Therefore, this work provides a simple and effective strategy for fabricating light-stimulated synaptic transistors with both memory and learning ability, which enlightens a new direction for developing neuromorphic devices.

  14. Spin-dependent transport and current modulation in a current-in-plane spin-valve field-effect transistor

    NASA Astrophysics Data System (ADS)

    Kanaki, Toshiki; Koyama, Tomohiro; Chiba, Daichi; Ohya, Shinobu; Tanaka, Masaaki

    2016-10-01

    We propose a current-in-plane spin-valve field-effect transistor (CIP-SV-FET), which is composed of a ferromagnet/nonferromagnet/ferromagnet trilayer structure and a gate electrode. This is a promising device alternative to spin metal-oxide-semiconductor field-effect transistors. Here, we fabricate a ferromagnetic-semiconductor GaMnAs-based CIP-SV-FET and demonstrate its basic operation of the resistance modulation both by the magnetization configuration and by the gate electric field. Furthermore, we present the electric-field-assisted magnetization reversal in this device.

  15. Clinical efficacy and effectiveness of 3D printing: a systematic review

    PubMed Central

    Diment, Laura E; Thompson, Mark S; Bergmann, Jeroen H M

    2017-01-01

    Objective To evaluate the clinical efficacy and effectiveness of using 3D printing to develop medical devices across all medical fields. Design Systematic review compliant with Preferred Reporting Items for Systematic Reviews and Meta-Analyses. Data sources PubMed, Web of Science, OVID, IEEE Xplore and Google Scholar. Methods A double-blinded review method was used to select all abstracts up to January 2017 that reported on clinical trials of a three-dimensional (3D)-printed medical device. The studies were ranked according to their level of evidence, divided into medical fields based on the International Classification of Diseases chapter divisions and categorised into whether they were used for preoperative planning, aiding surgery or therapy. The Downs and Black Quality Index critical appraisal tool was used to assess the quality of reporting, external validity, risk of bias, risk of confounding and power of each study. Results Of the 3084 abstracts screened, 350 studies met the inclusion criteria. Oral and maxillofacial surgery contained 58.3% of studies, and 23.7% covered the musculoskeletal system. Only 21 studies were randomised controlled trials (RCTs), and all fitted within these two fields. The majority of RCTs were 3D-printed anatomical models for preoperative planning and guides for aiding surgery. The main benefits of these devices were decreased surgical operation times and increased surgical accuracy. Conclusions All medical fields that assessed 3D-printed devices concluded that they were clinically effective. The fields that most rigorously assessed 3D-printed devices were oral and maxillofacial surgery and the musculoskeletal system, both of which concluded that the 3D-printed devices outperformed their conventional comparators. However, the efficacy and effectiveness of 3D-printed devices remain undetermined for the majority of medical fields. 3D-printed devices can play an important role in healthcare, but more rigorous and long-term assessments are needed to determine if 3D-printed devices are clinically relevant before they become part of standard clinical practice. PMID:29273650

  16. Multilevel resistance switching effect in Au/La2/3Ba1/3MnO3/Pt heterostructure manipulated by external fields

    NASA Astrophysics Data System (ADS)

    Wen, Jiahong; Zhao, Xiaoyu; Li, Qian; Zhang, Sheng; Wang, Dunhui; Du, Youwei

    2018-04-01

    Multilevel resistance switching (RS) effect has attracted more and more attention due to its promising potential for the increase of storage density in memory devices. In this work, the transport properties are investigated in an Au/La2/3Ba1/3MnO3 (LBMO)/Pt heterostructure. Taking advantage of the strong interplay among the spin, charge, orbital and lattice of LBMO, the Au/LBMO/Pt device can exhibit bipolar RS effect and magnetoresistance effect simultaneously. Under the coaction of electric field and magnetic field, four different resistance states are achieved in this device. These resistance states show excellent repeatability and retentivity and can be switched between any two states, which suggest the potential applications in the multilevel RS memory devices with enhanced storage density.

  17. Space electric field concentrated effect for Zr:SiO2 RRAM devices using porous SiO2 buffer layer

    PubMed Central

    2013-01-01

    To improve the operation current lowing of the Zr:SiO2 RRAM devices, a space electric field concentrated effect established by the porous SiO2 buffer layer was investigated and found in this study. The resistive switching properties of the low-resistance state (LRS) and high-resistance state (HRS) in resistive random access memory (RRAM) devices for the single-layer Zr:SiO2 and bilayer Zr:SiO2/porous SiO2 thin films were analyzed and discussed. In addition, the original space charge limited current (SCLC) conduction mechanism in LRS and HRS of the RRAM devices using bilayer Zr:SiO2/porous SiO2 thin films was found. Finally, a space electric field concentrated effect in the bilayer Zr:SiO2/porous SiO2 RRAM devices was also explained and verified by the COMSOL Multiphysics simulation model. PMID:24330524

  18. Single walled carbon nanotubes functionally adsorbed to biopolymers for use as chemical sensors

    DOEpatents

    Johnson, Jr., Alan T.; Gelperin, Alan [Princeton, NJ; Staii, Cristian [Madison, WI

    2011-07-12

    Chemical field effect sensors comprising nanotube field effect devices having biopolymers such as single stranded DNA functionally adsorbed to the nanotubes are provided. Also included are arrays comprising the sensors and methods of using the devices to detect volatile compounds.

  19. Fabrication of a liquid-gated enzyme field effect device for sensitive glucose detection.

    PubMed

    Fathollahzadeh, M; Hosseini, M; Haghighi, B; Kolahdouz, M; Fathipour, M

    2016-06-14

    This study presents fabrication of a liquid-gated enzyme field effect device and its implementation as a glucose biosensor. The device consisted of four electrodes on a glass substrate with a channel functionalized by carboxylated multi-walled carbon nanotubes-polyaniline nanocomposite (MWCNTCOOH/PAn) and glucose oxidase. The resistance of functionalized channel increased with increasing the concentration of glucose when an electric field was applied to the liquid gate. The most effective and stable performance was obtained at the applied electric field of 100 mV. The device resistance, R, exhibited a linear relationship with the logarithm of glucose concentration in the range between 0.005 and 500 mM glucose. The detection limit (S/N = 3) for glucose was about 0.5 μM. Large effective area and good conductivity properties of MWCNTCOOH/PAn nanocomposite were the key features of the fabricated sensitive and stable glucose biosensor. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Biological effects and physical safety aspects of NMR imaging and in vivo spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tenforde, T.S.; Budinger, T.F.

    1985-08-01

    An assessment is made of the biological effects and physical hazards of static and time-varying fields associated with the NMR devices that are being used for clinical imaging and in vivo spectroscopy. A summary is given of the current state of knowledge concerning the mechanisms of interaction and the bioeffects of these fields. Additional topics that are discussed include: (1) physical effects on pacemakers and metallic implants such as aneurysm clips, (2) human health studies related to the effects of exposure to nonionizing electromagnetic radiation, and (3) extant guidelines for limiting exposure of patients and medical personnel to the fieldsmore » produced by NMR devices. On the basis of information available at the present time, it is concluded that the fields associated with the current generation of NMR devices do not pose a significant health risk in themselves. However, rigorous guidelines must be followed to avoid the physical interaction of these fields with metallic implants and medical electronic devices. 476 refs., 5 figs., 2 tabs.« less

  1. Free-layer size dependence of anisotropy field in nanoscale CoFeB/MgO magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Shinozaki, Motoya; Igarashi, Junta; Sato, Hideo; Ohno, Hideo

    2018-04-01

    We investigate free-layer size D dependence of effective anisotropy field in nanoscale CoFeB/MgO magnetic tunnel junctions by homodyne-detected ferromagnetic resonance. The effective anisotropy field HK\\text{eff} monotonically increases with decreasing D for a device with the reference-layer size much larger than the free-layer size. In contrast, HK\\text{eff} does not increase in a monotonic manner for a device with the reference-layer size comparable to the free-layer size. We reveal that the difference can be explained by the variation of the anisotropy field in the vicinity of the device edge.

  2. Homo-junction ferroelectric field-effect-transistor memory device using solution-processed lithium-doped zinc oxide thin films

    NASA Astrophysics Data System (ADS)

    Nayak, Pradipta K.; Caraveo-Frescas, J. A.; Bhansali, Unnat. S.; Alshareef, H. N.

    2012-06-01

    High performance homo-junction field-effect transistor memory devices were prepared using solution processed transparent lithium-doped zinc oxide thin films for both the ferroelectric and semiconducting active layers. A highest field-effect mobility of 8.7 cm2/Vs was obtained along with an Ion/Ioff ratio of 106. The ferroelectric thin film transistors showed a low sub-threshold swing value of 0.19 V/dec and a significantly reduced device operating voltage (±4 V) compared to the reported hetero-junction ferroelectric transistors, which is very promising for low-power non-volatile memory applications.

  3. Single walled carbon nanotubes with functionally adsorbed biopolymers for use as chemical sensors

    DOEpatents

    Johnson, Jr., Alan T

    2013-12-17

    Chemical field effect sensors comprising nanotube field effect devices having biopolymers such as single stranded DNA or RNA functionally adsorbed to the nanotubes are provided. Also included are arrays comprising the sensors and methods of using the devices to detect volatile compounds.

  4. Rapid Transition of the Hole Rashba Effect from Strong Field Dependence to Saturation in Semiconductor Nanowires.

    PubMed

    Luo, Jun-Wei; Li, Shu-Shen; Zunger, Alex

    2017-09-22

    The electric field manipulation of the Rashba spin-orbit coupling effects provides a route to electrically control spins, constituting the foundation of the field of semiconductor spintronics. In general, the strength of the Rashba effects depends linearly on the applied electric field and is significant only for heavy-atom materials with large intrinsic spin-orbit interaction under high electric fields. Here, we illustrate in 1D semiconductor nanowires an anomalous field dependence of the hole (but not electron) Rashba effect (HRE). (i) At low fields, the strength of the HRE exhibits a steep increase with the field so that even low fields can be used for device switching. (ii) At higher fields, the HRE undergoes a rapid transition to saturation with a giant strength even for light-atom materials such as Si (exceeding 100 meV Å). (iii) The nanowire-size dependence of the saturation HRE is rather weak for light-atom Si, so size fluctuations would have a limited effect; this is a key requirement for scalability of Rashba-field-based spintronic devices. These three features offer Si nanowires as a promising platform for the realization of scalable complementary metal-oxide-semiconductor compatible spintronic devices.

  5. Conduction at a ferroelectric interface

    DOE PAGES

    Marshall, Matthew S. J.; Malashevich, Andrei; Disa, Ankit S.; ...

    2014-11-05

    Typical logic elements utilizing the field effect rely on the change in carrier concentration due to the field in the channel region of the device. Ferroelectric-field-effect devices provide a nonvolatile version of this effect due to the stable polarization order parameter in the ferroelectric. In this study, we describe an oxide/oxide ferroelectric heterostructure device based on (001)-oriented PbZr₀̣.₂Ti₀.₈O₃-LaNiO₃ where the dominant change in conductivity is a result of a significant mobility change in the interfacial channel region. The effect is confined to a few atomic layers at the interface and is reversible by switching the ferroelectric polarization. More interestingly, inmore » one polarization state, the field effect induces a 1.7 eV shift of the interfacial bands to create a new conducting channel in the interfacial PbO layer of the ferroelectric.« less

  6. Conjugated polymers and their use in optoelectronic devices

    DOEpatents

    Marks, Tobin J.; Guo, Xugang; Zhou, Nanjia; Chang, Robert P. H.; Drees, Martin; Facchetti, Antonio

    2016-10-18

    The present invention relates to certain polymeric compounds and their use as organic semiconductors in organic and hybrid optical, optoelectronic, and/or electronic devices such as photovoltaic cells, light emitting diodes, light emitting transistors, and field effect transistors. The present compounds can provide improved device performance, for example, as measured by power conversion efficiency, fill factor, open circuit voltage, field-effect mobility, on/off current ratios, and/or air stability when used in photovoltaic cells or transistors. The present compounds can have good solubility in common solvents enabling device fabrication via solution processes.

  7. Short-channel field-effect transistors with 9-atom and 13-atom wide graphene nanoribbons.

    PubMed

    Llinas, Juan Pablo; Fairbrother, Andrew; Borin Barin, Gabriela; Shi, Wu; Lee, Kyunghoon; Wu, Shuang; Yong Choi, Byung; Braganza, Rohit; Lear, Jordan; Kau, Nicholas; Choi, Wonwoo; Chen, Chen; Pedramrazi, Zahra; Dumslaff, Tim; Narita, Akimitsu; Feng, Xinliang; Müllen, Klaus; Fischer, Felix; Zettl, Alex; Ruffieux, Pascal; Yablonovitch, Eli; Crommie, Michael; Fasel, Roman; Bokor, Jeffrey

    2017-09-21

    Bottom-up synthesized graphene nanoribbons and graphene nanoribbon heterostructures have promising electronic properties for high-performance field-effect transistors and ultra-low power devices such as tunneling field-effect transistors. However, the short length and wide band gap of these graphene nanoribbons have prevented the fabrication of devices with the desired performance and switching behavior. Here, by fabricating short channel (L ch  ~ 20 nm) devices with a thin, high-κ gate dielectric and a 9-atom wide (0.95 nm) armchair graphene nanoribbon as the channel material, we demonstrate field-effect transistors with high on-current (I on  > 1 μA at V d  = -1 V) and high I on /I off  ~ 10 5 at room temperature. We find that the performance of these devices is limited by tunneling through the Schottky barrier at the contacts and we observe an increase in the transparency of the barrier by increasing the gate field near the contacts. Our results thus demonstrate successful fabrication of high-performance short-channel field-effect transistors with bottom-up synthesized armchair graphene nanoribbons.Graphene nanoribbons show promise for high-performance field-effect transistors, however they often suffer from short lengths and wide band gaps. Here, the authors use a bottom-up synthesis approach to fabricate 9- and 13-atom wide ribbons, enabling short-channel transistors with 10 5 on-off current ratio.

  8. Magnetic field effects in hybrid perovskite devices

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Sun, D.; Sheng, C.-X.; Zhai, Y. X.; Mielczarek, K.; Zakhidov, A.; Vardeny, Z. V.

    2015-05-01

    Magnetic field effects have been a successful tool for studying carrier dynamics in organic semiconductors as the weak spin-orbit coupling in these materials gives rise to long spin relaxation times. As the spin-orbit coupling is strong in organic-inorganic hybrid perovskites, which are promising materials for photovoltaic and light-emitting applications, magnetic field effects are expected to be negligible in these optoelectronic devices. We measured significant magneto-photocurrent, magneto-electroluminescence and magneto-photoluminescence responses in hybrid perovskite devices and thin films, where the amplitude and shape are correlated to each other through the electron-hole lifetime, which depends on the perovskite film morphology. We attribute these responses to magnetic-field-induced spin-mixing of the photogenerated electron-hole pairs with different g-factors--the Δg model. We validate this model by measuring large Δg (~ 0.65) using field-induced circularly polarized photoluminescence, and electron-hole pair lifetime using picosecond pump-probe spectroscopy.

  9. Graphene field-effect devices

    NASA Astrophysics Data System (ADS)

    Echtermeyer, T. J.; Lemme, M. C.; Bolten, J.; Baus, M.; Ramsteiner, M.; Kurz, H.

    2007-09-01

    In this article, graphene is investigated with respect to its electronic properties when introduced into field effect devices (FED). With the exception of manual graphene deposition, conventional top-down CMOS-compatible processes are applied. Few and monolayer graphene sheets are characterized by scanning electron microscopy, atomic force microscopy and Raman spectroscopy. The electrical properties of monolayer graphene sandwiched between two silicon dioxide films are studied. Carrier mobilities in graphene pseudo-MOS structures are compared to those obtained from double-gated Graphene-FEDs and silicon metal-oxide-semiconductor field-effect-transistors (MOSFETs).

  10. Scaling Laws for NanoFET Sensors

    NASA Astrophysics Data System (ADS)

    Wei, Qi-Huo; Zhou, Fu-Shan

    2008-03-01

    In this paper, we report our numerical studies of the scaling laws for nanoplate field-effect transistor (FET) sensors by simplifying the nanoplates as random resistor networks. Nanowire/tube FETs are included as the limiting cases where the device width goes small. Computer simulations show that the field effect strength exerted by the binding molecules has significant impact on the scaling behaviors. When the field effect strength is small, nanoFETs have little size and shape dependence. In contrast, when the field-effect strength becomes stronger, there exists a lower detection threshold for charge accumulation FETs and an upper detection threshold for charge depletion FET sensors. At these thresholds, the nanoFET devices undergo a transition between low and large sensitivities. These thresholds may set the detection limits of nanoFET sensors. We propose to eliminate these detection thresholds by employing devices with very short source-drain distance and large width.

  11. Highly air stable passivation of graphene based field effect devices.

    PubMed

    Sagade, Abhay A; Neumaier, Daniel; Schall, Daniel; Otto, Martin; Pesquera, Amaia; Centeno, Alba; Elorza, Amaia Zurutuza; Kurz, Heinrich

    2015-02-28

    The sensitivity of graphene based devices to surface adsorbates and charge traps at the graphene/dielectric interface requires proper device passivation in order to operate them reproducibly under ambient conditions. Here we report on the use of atomic layer deposited aluminum oxide as passivation layer on graphene field effect devices (GFETs). We show that successful passivation produce hysteresis free DC characteristics, low doping level GFETs stable over weeks though operated and stored in ambient atmosphere. This is achieved by selecting proper seed layer prior to deposition of encapsulation layer. The passivated devices are also demonstrated to be robust towards the exposure to chemicals and heat treatments, typically used during device fabrication. Additionally, the passivation of high stability and reproducible characteristics is also shown for functional devices like integrated graphene based inverters.

  12. Confinement-induced InAs/GaSb heterojunction electron-hole bilayer tunneling field-effect transistor

    NASA Astrophysics Data System (ADS)

    Padilla, J. L.; Medina-Bailon, C.; Alper, C.; Gamiz, F.; Ionescu, A. M.

    2018-04-01

    Electron-Hole Bilayer Tunneling Field-Effect Transistors are typically based on band-to-band tunneling processes between two layers of opposite charge carriers where tunneling directions and gate-induced electric fields are mostly aligned (so-called line tunneling). However, the presence of intense electric fields associated with the band bending required to trigger interband tunneling, along with strong confinement effects, has made these types of devices to be regarded as theoretically appealing but technologically impracticable. In this work, we propose an InAs/GaSb heterostructure configuration that, although challenging in terms of process flow design and fabrication, could be envisaged for alleviating the electric fields inside the channel, whereas, at the same time, making quantum confinement become the mechanism that closes the broken gap allowing the device to switch between OFF and ON states. The utilization of induced doping prevents the harmful effect of band tails on the device performance. Simulation results lead to extremely steep slope characteristics endorsing its potential interest for ultralow power applications.

  13. Recent Advance in Organic Spintronics and Magnetic Field Effect

    NASA Astrophysics Data System (ADS)

    Valy Vardeny, Z.

    2013-03-01

    In this talk several important advances in the field of Organic Spintronics and magnetic field effect (MFE) of organic films and optoelectronic devices that have occurred during the past two years from the Utah group will be surveyed and discussed. (i) Organic Spintronics: We demonstrated spin organic light emitting diode (spin-OLED) using two FM injecting electrodes, where the electroluminescence depends on the mutual orientation of the electrode magnetization directions. This development has opened up research studies into organic spin-valves (OSV) in the space-charge limited current regime. (ii) Magnetic field effect: We demonstrated that the photoinduced absorption spectrum in organic films (where current is not involved) show pronounced MFE. This unravels the underlying mechanism of the MFE in organic devices, to be more in agreement with the field of MFE in Biochemistry. (iii) Spin effects in organic optoelectronic devices: We demonstrated that certain spin 1/2 radical additives to donor-acceptor blends substantially enhance the power conversion efficiency of organic photovoltaic (OPV) solar cells. This effect shows that studies of spin response and MFE in OPV devices are promising. In collaboration with T. Nguyen, E. Ehrenfreund, B. Gautam, Y. Zhang and T. Basel. Supported by the DOE grant 04ER46109 ; NSF Grant # DMR-1104495 and MSF-MRSEC program DMR-1121252 [2,3].

  14. Magneto-transport phenomena in metal/SiO2/n(p)-Si hybrid structures

    NASA Astrophysics Data System (ADS)

    Volkov, N. V.; Tarasov, A. S.; Rautskii, M. V.; Lukyanenko, A. V.; Bondarev, I. A.; Varnakov, S. N.; Ovchinnikov, S. G.

    2018-04-01

    Present review touches upon a subject of magnetotransport phenomena in hybrid structures which consist of ferromagnetic or nonmagnetic metal layer, layer of silicon oxide and silicon substrate with n- or p-type conductivity. Main attention will be paid to a number gigantic magnetotransport effects discovered in the devices fabricated on the base of the M/SiO2/n(p)-Si (M is ferromagnetic or paramagnetic metal) hybrid structures. These effects include bias induced dc magnetoresistance, gigantic magnetoimpedance, dc magnetoresistance induced by an optical irradiation and lateral magneto-photo-voltaic effect. The magnetoresistance ratio in ac and dc modes for some of our devices can exceed 106% in a magnetic field below 1 T. For lateral magneto-photo-voltaic effect, the relative change of photo-voltage in magnetic field can reach 103% at low temperature. Two types of mechanisms are responsible for sensitivity of the transport properties of the silicon based hybrid structures to magnetic field. One is related to transformation of the energy structure of the (donor) acceptor states including states near SiO2/n(p)-Si interface in magnetic field. Other mechanism is caused by the Lorentz force action. The features in behaviour of magnetotransport effects in concrete device depend on composition of the used structure, device topology and experimental conditions (bias voltage, optical radiation and others). Obtained results can be base for design of some electronic devices driven by a magnetic field. They can also provide an enhancement of the functionality for existing sensors.

  15. Clinical efficacy and effectiveness of 3D printing: a systematic review.

    PubMed

    Diment, Laura E; Thompson, Mark S; Bergmann, Jeroen H M

    2017-12-21

    To evaluate the clinical efficacy and effectiveness of using 3D printing to develop medical devices across all medical fields. Systematic review compliant with Preferred Reporting Items for Systematic Reviews and Meta-Analyses. PubMed, Web of Science, OVID, IEEE Xplore and Google Scholar. A double-blinded review method was used to select all abstracts up to January 2017 that reported on clinical trials of a three-dimensional (3D)-printed medical device. The studies were ranked according to their level of evidence, divided into medical fields based on the International Classification of Diseases chapter divisions and categorised into whether they were used for preoperative planning, aiding surgery or therapy. The Downs and Black Quality Index critical appraisal tool was used to assess the quality of reporting, external validity, risk of bias, risk of confounding and power of each study. Of the 3084 abstracts screened, 350 studies met the inclusion criteria. Oral and maxillofacial surgery contained 58.3% of studies, and 23.7% covered the musculoskeletal system. Only 21 studies were randomised controlled trials (RCTs), and all fitted within these two fields. The majority of RCTs were 3D-printed anatomical models for preoperative planning and guides for aiding surgery. The main benefits of these devices were decreased surgical operation times and increased surgical accuracy. All medical fields that assessed 3D-printed devices concluded that they were clinically effective. The fields that most rigorously assessed 3D-printed devices were oral and maxillofacial surgery and the musculoskeletal system, both of which concluded that the 3D-printed devices outperformed their conventional comparators. However, the efficacy and effectiveness of 3D-printed devices remain undetermined for the majority of medical fields. 3D-printed devices can play an important role in healthcare, but more rigorous and long-term assessments are needed to determine if 3D-printed devices are clinically relevant before they become part of standard clinical practice. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  16. Effect of direct current sputtering power on the behavior of amorphous indium-gallium-zinc-oxide thin-film transistors under negative bias illumination stress: A combination of experimental analyses and device simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jang, Jun Tae; Kim, Dong Myong; Choi, Sung-Jin

    The effect of direct current sputtering power of indium-gallium-zinc-oxide (IGZO) on the performance and stability of the corresponding thin-film transistor devices was studied. The field effect mobility increases as the IGZO sputter power increases, at the expense of device reliability under negative bias illumination stress (NBIS). Device simulation based on the extracted sub-gap density of states indicates that the field effect mobility is improved as a result of the number of acceptor-like states decreasing. The degradation by NBIS is suggested to be induced by the formation of peroxides in IGZO rather than charge trapping.

  17. Current conduction in junction gate field effect transistors. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Kim, C.

    1970-01-01

    The internal physical mechanism that governs the current conduction in junction-gate field effect transistors is studied. A numerical method of analyzing the devices with different length-to-width ratios and doping profiles is developed. This method takes into account the two dimensional character of the electric field and the field dependent mobility. Application of the method to various device models shows that the channel width and the carrier concentration in the conductive channel decrease with increasing drain-to-source voltage for conventional devices. It also shows larger differential drain conductances for shorter devices when the drift velocity is not saturated. The interaction of the source and the drain gives the carrier accumulation in the channel which leads to the space-charge-limited current flow. The important parameters for the space-charge-limited current flow are found to be the L/L sub DE ratio and the crossover voltage.

  18. Fused thiophene-based conjugated polymers and their use in optoelectronic devices

    DOEpatents

    Facchetti, Antonio; Marks, Tobin J; Takai, Atsuro; Seger, Mark; Chen, Zhihua

    2015-11-03

    The present teachings relate to certain polymeric compounds and their use as organic semiconductors in organic and hybrid optical, optoelectronic, and/or electronic devices such as photovoltaic cells, light emitting diodes, light emitting transistors, and field effect transistors. The disclosed compounds can provide improved device performance, for example, as measured by power conversion efficiency, fill factor, open circuit voltage, field-effect mobility, on/off current ratios, and/or air stability when used in photovoltaic cells or transistors. The disclosed compounds can have good solubility in common solvents enabling device fabrication via solution processes.

  19. Fabricating photoswitches and field-effect transistors from self-assembled tetra(2-isopropyl-5-methyphenoxy) copper phthalocyanines nanowires.

    PubMed

    Cheng, Chuanwei; Gao, Junshan; Xu, Guoyue; Zhang, Haiqian; Li, Yingying; Luo, Yan

    2009-05-01

    Tetra(2-isopropyl-5-methyphenoxy) copper phthalocyanine (CuPc) nanowires synthesized by a facile, low temperature self-assembled route, were incorporated into nano-devices: photoswitch and organic field-effect transistor. The devices were capable of switching on/off reversibly and fast by turning the 808 nm infrared light on/off. And the carrier mobility micro of CuPc nanowires incorporated in the devices was -0.02 cm2/V x s. The prelimenary results in this study show the potential application of metal phthalocyanine nanowires in low-cost fabrication of nano photo-electric devices.

  20. Effect of CO on the field emission properties of tetrapod zinc oxide cathode.

    PubMed

    Wang, Jinchan; Zhang, Xiaobing; Lei, Wei; Mao, Fuming; Cui, Yunkang; Xiao, Mei

    2012-08-01

    Tetrapod zinc oxide (T-ZnO), being a kind of nano-material, has large specific surface area and surface binding energy, which will make it sensitive to the ambient gas condition. So the field emission properties will be influenced by the gas adsorption when being applied as the cathode materials of field emission devices. Carbon monoxide is the main residual gas in T-ZnO field emission devices. In this paper, carbon monoxide was introduced into a field emission device with T-ZnO emitters. The field emission currents of tetrapod ZnO were compared before and after exposure to CO.

  1. Recent progress in nanostructured next-generation field emission devices

    NASA Astrophysics Data System (ADS)

    Mittal, Gaurav; Lahiri, Indranil

    2014-08-01

    Field emission has been known to mankind for more than a century, and extensive research in this field for the last 40-50 years has led to development of exciting applications such as electron sources, miniature x-ray devices, display materials, etc. In the last decade, large-area field emitters were projected as an important material to revolutionize healthcare and medical devices, and space research. With the advent of nanotechnology and advancements related to carbon nanotubes, field emitters are demonstrating highly enhanced performance and novel applications. Next-generation emitters need ultra-high emission current density, high brightness, excellent stability and reproducible performance. Novel design considerations and application of new materials can lead to achievement of these capabilities. This article presents an overview of recent developments in this field and their effects on improved performance of field emitters. These advancements are demonstrated to hold great potential for application in next-generation field emission devices.

  2. Medical devices; radiology devices; reclassification of full-field digital mammography system. Final rule.

    PubMed

    2010-11-05

    The Food and Drug Administration (FDA) is announcing the reclassification of the full-field digital mammography (FFDM) system from class III (premarket approval) to class II (special controls). The device type is intended to produce planar digital x-ray images of the entire breast; this generic type of device may include digital mammography acquisition software, full-field digital image receptor, acquisition workstation, automatic exposure control, image processing and reconstruction programs, patient and equipment supports, component parts, and accessories. The special control that will apply to the device is the guidance document entitled "Class II Special Controls Guidance Document: Full-Field Digital Mammography System." FDA is reclassifying the device into class II (special controls) because general controls along with special controls will provide a reasonable assurance of safety and effectiveness of the device. Elsewhere in this issue of the Federal Register, FDA is announcing the availability of the guidance document that will serve as the special control for this device.

  3. Verification of Fowler-Nordheim electron tunneling mechanism in Ni/SiO2/n-4H SiC and n+ poly-Si/SiO2/n-4H SiC MOS devices by different models

    NASA Astrophysics Data System (ADS)

    Kodigala, Subba Ramaiah

    2016-11-01

    This article emphasizes verification of Fowler-Nordheim electron tunneling mechanism in the Ni/SiO2/n-4H SiC MOS devices by developing three different kinds of models. The standard semiconductor equations are categorically solved to obtain the change in Fermi energy level of semiconductor with effect of temperature and field that extend support to determine sustainable and accurate tunneling current through the oxide layer. The forward and reverse bias currents with variation of electric field are simulated with help of different models developed by us for MOS devices by applying adequate conditions. The latter is quite different from former in terms of tunneling mechanism in the MOS devices. The variation of barrier height with effect of quantum mechanical, temperature, and fields is considered as effective barrier height for the generation of current-field (J-F) curves under forward and reverse biases but quantum mechanical effect is void in the latter. In addition, the J-F curves are also simulated with variation of carrier concentration in the n-type 4H SiC semiconductor of MOS devices and the relation between them is established.

  4. Giant switchable photovoltaic effect in organometal trihalide perovskite devices

    NASA Astrophysics Data System (ADS)

    Xiao, Zhengguo; Yuan, Yongbo; Shao, Yuchuan; Wang, Qi; Dong, Qingfeng; Bi, Cheng; Sharma, Pankaj; Gruverman, Alexei; Huang, Jinsong

    2015-02-01

    Organolead trihalide perovskite (OTP) materials are emerging as naturally abundant materials for low-cost, solution-processed and highly efficient solar cells. Here, we show that, in OTP-based photovoltaic devices with vertical and lateral cell configurations, the photocurrent direction can be switched repeatedly by applying a small electric field of <1 V μm-1. The switchable photocurrent, generally observed in devices based on ferroelectric materials, reached 20.1 mA cm-2 under one sun illumination in OTP devices with a vertical architecture, which is four orders of magnitude larger than that measured in other ferroelectric photovoltaic devices. This field-switchable photovoltaic effect can be explained by the formation of reversible p-i-n structures induced by ion drift in the perovskite layer. The demonstration of switchable OTP photovoltaics and electric-field-manipulated doping paves the way for innovative solar cell designs and for the exploitation of OTP materials in electrically and optically readable memristors and circuits.

  5. ION MAGNETRON

    DOEpatents

    Gow, J.D.; Layman, R.W.

    1962-10-31

    A magnetohydrodynamic device or plasma generator of the ion magnetron class is described wherein a long central electrode is disposed along the axis of an evacuated cylinder. A radial electric field and an axial magnetic field are provided between the cylsnder and the electrode, forming a plasma trapping and heating region. For maximum effectiveness, neutral particles from the cylinder wall must be prevented from entering such region This is effected by forming a cylindrical sheath of electrons near the cylinder wall for ionizing undesired neutral particles, which are then trapped and removed by the magnetic field. An annular filament at one end of the device provides the electrons, which follow the axial magnetic field to a reflecting electrode at the opposite end of the device. (AEC)

  6. A pilot study of the efficacy of the POLARGEN® ultrahigh-frequency electric field (40.68 MHz) radiofrequency device in the treatment of facial contouring.

    PubMed

    Kim, Miri; Lim, Jihong; Bae, Jung Min; Park, Hyun Jeong

    2017-11-01

    Various radiofrequency (RF) devices are used to treat skin laxity and face contouring, but few studies have examined ultrahigh-frequency (UHF) electric field (40.68 MHz) RF devices. To evaluate the efficacy and safety of a UHF electric field (40.68 MHz) RF device for skin tightening and face contouring. Ten patients each underwent four sessions of UHF electric field RF device treatment at 2-week intervals. Clinical improvement was evaluated with the patient satisfaction score using a six-point scale, and clinical photographs taken at every visit and 2 months after the RF treatment were assessed. Skin biopsies were obtained from one patient before the first treatment and immediately after the last treatment. Adverse reactions were recorded at every follow-up visit. All patients were women with a mean age of 51.7 ± 7.2 years. The mean satisfaction score was 4.5 ± 0.9 immediately after the last treatment session. Cheek, jawline, and neck enhancement and tightening were apparent in all patients. Side effects were minimal, and there were no burns or major complications. The UHF electric field RF device was effective for skin tightening and facial contouring, without significant adverse reactions.

  7. Long-term stability assessment of AlGaN/GaN field effect transistors modified with peptides: Device characteristics vs. surface properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rohrbaugh, Nathaniel; Bryan, Isaac; Bryan, Zachary

    AlGaN/GaN Field Effect Transistors (FETs) are promising biosensing devices. Functionalization of these devices is explored in this study using an in situ approach with phosphoric acid etchant and a phosphonic acid derivative. Devices are terminated on peptides and soaked in water for up to 168 hrs to examine FETs for both device responses and surface chemistry changes. Measurements demonstrated threshold voltage shifting after the functionalization and soaking processes, but demonstrated stable FET behavior throughout. X-ray photoelectron spectroscopy and atomic force microscopy confirmed peptides attachment to device surfaces before and after water soaking. Results of this work point to the stabilitymore » of peptide coated functionalized AlGaN/GaN devices in solution and support further research of these devices as disposable, long term, in situ biosensors.« less

  8. Field evaluation of the Off! Clip-on Mosquito Repellent (metofluthrin) against Aedes albopictus and Aedes taeniorhynchus (Diptera: Culicidae) in northeastern Florida.

    PubMed

    Xue, Rui-De; Qualls, Whitney A; Smith, Michael L; Gaines, Marcia K; Weaver, James H; Debboun, Mustapha

    2012-05-01

    Repellent efficacy of the Off! Clip-on Mosquito Repellent device (S. C. Johnson and Son, Inc., Racine, WI) containing Metofluthrin was evaluated on six human volunteers against the container-breeding mosquito Aedes albopictus (Skuse) and the salt marsh mosquito Aedes taeniorhynchus (Wiedemann) at two field locations in northeastern Florida. The device repelled mosquitoes by releasing a vaporized form of the pyrethroid insecticide metofluthrin ([AI] 31.2%) and provided 70% protection from Ae. albopictus bites for > 3 h. For the second field trial, a repellent device that was used in the first trial was tested after being open for >1 wk. This device provided 79% protection from Ae. taeniorhynchus bites for 3 h. Our field results showed that the repellent device was 70 and 79% effective at repelling Ae. albopictus and Ae. taeniorhynchus from human test subjects in both field locations in northeastern Florida.

  9. Using Consumer Electronics and Apps in Industrial Environments - Development of a Framework for Dynamic Feature Deployment and Extension by Using Apps on Field Devices

    NASA Astrophysics Data System (ADS)

    Schmitt, Mathias

    2014-12-01

    The aim of this paper is to give a preliminary insight regarding the current work in the field of mobile interaction in industrial environments by using established interaction technologies and metaphors from the consumer goods industry. The major objective is the development and implementation of a holistic app-framework, which enables dynamic feature deployment and extension by using mobile apps on industrial field devices. As a result, field device functionalities can be updated and adapted effectively in accordance with well-known appconcepts from consumer electronics to comply with the urgent requirements of more flexible and changeable factory systems of the future. In addition, a much more user-friendly and utilizable interaction with field devices can be realized. Proprietary software solutions and device-stationary user interfaces can be overcome and replaced by uniform, cross-vendor solutions

  10. 3D modeling of dual-gate FinFET.

    PubMed

    Mil'shtein, Samson; Devarakonda, Lalitha; Zanchi, Brian; Palma, John

    2012-11-13

    The tendency to have better control of the flow of electrons in a channel of field-effect transistors (FETs) did lead to the design of two gates in junction field-effect transistors, field plates in a variety of metal semiconductor field-effect transistors and high electron mobility transistors, and finally a gate wrapping around three sides of a narrow fin-shaped channel in a FinFET. With the enhanced control, performance trends of all FETs are still challenged by carrier mobility dependence on the strengths of the electrical field along the channel. However, in cases when the ratio of FinFET volume to its surface dramatically decreases, one should carefully consider the surface boundary conditions of the device. Moreover, the inherent non-planar nature of a FinFET demands 3D modeling for accurate analysis of the device performance. Using the Silvaco modeling tool with quantization effects, we modeled a physical FinFET described in the work of Hisamoto et al. (IEEE Tran. Elec. Devices 47:12, 2000) in 3D. We compared it with a 2D model of the same device. We demonstrated that 3D modeling produces more accurate results. As 3D modeling results came close to experimental measurements, we made the next step of the study by designing a dual-gate FinFET biased at Vg1 >Vg2. It is shown that the dual-gate FinFET carries higher transconductance than the single-gate device.

  11. 3D modeling of dual-gate FinFET

    NASA Astrophysics Data System (ADS)

    Mil'shtein, Samson; Devarakonda, Lalitha; Zanchi, Brian; Palma, John

    2012-11-01

    The tendency to have better control of the flow of electrons in a channel of field-effect transistors (FETs) did lead to the design of two gates in junction field-effect transistors, field plates in a variety of metal semiconductor field-effect transistors and high electron mobility transistors, and finally a gate wrapping around three sides of a narrow fin-shaped channel in a FinFET. With the enhanced control, performance trends of all FETs are still challenged by carrier mobility dependence on the strengths of the electrical field along the channel. However, in cases when the ratio of FinFET volume to its surface dramatically decreases, one should carefully consider the surface boundary conditions of the device. Moreover, the inherent non-planar nature of a FinFET demands 3D modeling for accurate analysis of the device performance. Using the Silvaco modeling tool with quantization effects, we modeled a physical FinFET described in the work of Hisamoto et al. (IEEE Tran. Elec. Devices 47:12, 2000) in 3D. We compared it with a 2D model of the same device. We demonstrated that 3D modeling produces more accurate results. As 3D modeling results came close to experimental measurements, we made the next step of the study by designing a dual-gate FinFET biased at V g1 > V g2. It is shown that the dual-gate FinFET carries higher transconductance than the single-gate device.

  12. ROTATING PLASMA DEVICE

    DOEpatents

    Boyer, K.; Hammel, J.E.; Longmire, C.L.; Nagle, D.E.; Ribe, F.L.; Tuck, J.L.

    1961-10-24

    ABS>A method and device are described for obtaining fusion reactions. The basic concept is that of using crossed electric and magnetic fields to induce a plasma rotation in which the ionized particles follow a circumferential drift orbit on wldch a cyclotron mode of motion is superimposed, the net result being a cycloidal motion about the axis of symmetry. The discharge tube has a radial electric field and a longitudinal magnetic field. Mirror machine geometry is utilized. The device avoids reliance on the pinch effect and its associated instability problems. (AEC)

  13. Lorentz factor determination for local electric fields in semiconductor devices utilizing hyper-thin dielectrics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McPherson, J. W., E-mail: mcpherson.reliability@yahoo.com

    The local electric field (the field that distorts, polarizes, and weakens polar molecular bonds in dielectrics) has been investigated for hyper-thin dielectrics. Hyper-thin dielectrics are currently required for advanced semiconductor devices. In the work presented, it is shown that the common practice of using a Lorentz factor of L = 1/3, to describe the local electric field in a dielectric layer, remains valid for hyper-thin dielectrics. However, at the very edge of device structures, a rise in the macroscopic/Maxwell electric field E{sub diel} occurs and this causes a sharp rise in the effective Lorentz factor L{sub eff}. At capacitor and transistor edges,more » L{sub eff} is found to increase to a value 2/3 < L{sub eff} < 1. The increase in L{sub eff} results in a local electric field, at device edge, that is 50%–100% greater than in the bulk of the dielectric. This increase in local electric field serves to weaken polar bonds thus making them more susceptible to breakage by standard Boltzmann and/or current-driven processes. This has important time-dependent dielectric breakdown (TDDB) implications for all electronic devices utilizing polar materials, including GaN devices that suffer from device-edge TDDB.« less

  14. Drain Current Modulation of a Single Drain MOSFET by Lorentz Force for Magnetic Sensing Application.

    PubMed

    Chatterjee, Prasenjit; Chow, Hwang-Cherng; Feng, Wu-Shiung

    2016-08-30

    This paper reports a detailed analysis of the drain current modulation of a single-drain normal-gate n channel metal-oxide semiconductor field effect transistor (n-MOSFET) under an on-chip magnetic field. A single-drain n-MOSFET has been fabricated and placed in the center of a square-shaped metal loop which generates the on-chip magnetic field. The proposed device designed is much smaller in size with respect to the metal loop, which ensures that the generated magnetic field is approximately uniform. The change of drain current and change of bulk current per micron device width has been measured. The result shows that the difference drain current is about 145 µA for the maximum applied magnetic field. Such changes occur from the applied Lorentz force to push out the carriers from the channel. Based on the drain current difference, the change in effective mobility has been detected up to 4.227%. Furthermore, a detailed investigation reveals that the device behavior is quite different in subthreshold and saturation region. A change of 50.24 µA bulk current has also been measured. Finally, the device has been verified for use as a magnetic sensor with sensitivity 4.084% (29.6 T(-1)), which is very effective as compared to other previously reported works for a single device.

  15. Detecting a pronounced delocalized state in third-harmonic generation phenomenon; a quantum chaos approach

    NASA Astrophysics Data System (ADS)

    Behnia, S.; Ziaei, J.; Khodavirdizadeh, M.

    2018-06-01

    Nonlinear optics (NLO) deserves special attention in new optical devices, making it possible to generate coherent light more efficiently. Among the various NLO phenomena the third-harmonic generation (THG) is at the core of the effective operating mechanism of broadband wavelength conversion, in all-optical devices. Here, we aim to understand how the third-order susceptibility and the electric field may be effectively effect on the localization properties of the light in the THG process when included in a two-mode cavity coherently perturbed by a classical field. We address a stable-unstable transition due to the combination effect of the aforementioned factors. We report a reliable evidence confirming the appearance of chaos in THG under suitable conditions. By tracing the signatures of adjacent-spectral-spacing-ratio (ASSR) distribution and participation ratio, we also find a critical point (ɛc ,κc) =(3 . 1 , 0 . 35) for which a pronounced delocalized response is seen. This study may have profound findings for practical devices, and ushers in new opportunities for practical exploitation of the electric field and the third-order susceptibility effect in nonlinear optical devices.

  16. Interaction of solid organic acids with carbon nanotube field effect transistors

    NASA Astrophysics Data System (ADS)

    Klinke, Christian; Afzali, Ali; Avouris, Phaedon

    2006-10-01

    A series of solid organic acids were used to p-dope carbon nanotubes. The extent of doping is shown to be dependent on the pKa value of the acids. Highly fluorinated carboxylic acids and sulfonic acids are very effective in shifting the threshold voltage and making carbon nanotube field effect transistors to be more p-type devices. Weaker acids like phosphonic or hydroxamic acids had less effect. The doping of the devices was accompanied by a reduction of the hysteresis in the transfer characteristics. In-solution doping survives standard fabrication processes and renders p-doped carbon nanotube field effect transistors with good transport characteristics.

  17. Near Field and Far Field Effects in the Taguchi-Optimized Design of AN InP/GaAs-BASED Double Wafer-Fused Mqw Long-Wavelength Vertical-Cavity Surface-Emitting Laser

    NASA Astrophysics Data System (ADS)

    Menon, P. S.; Kandiah, K.; Mandeep, J. S.; Shaari, S.; Apte, P. R.

    Long-wavelength VCSELs (LW-VCSEL) operating in the 1.55 μm wavelength regime offer the advantages of low dispersion and optical loss in fiber optic transmission systems which are crucial in increasing data transmission speed and reducing implementation cost of fiber-to-the-home (FTTH) access networks. LW-VCSELs are attractive light sources because they offer unique features such as low power consumption, narrow beam divergence and ease of fabrication for two-dimensional arrays. This paper compares the near field and far field effects of the numerically investigated LW-VCSEL for various design parameters of the device. The optical intensity profile far from the device surface, in the Fraunhofer region, is important for the optical coupling of the laser with other optical components. The near field pattern is obtained from the structure output whereas the far-field pattern is essentially a two-dimensional fast Fourier Transform (FFT) of the near-field pattern. Design parameters such as the number of wells in the multi-quantum-well (MQW) region, the thickness of the MQW and the effect of using Taguchi's orthogonal array method to optimize the device design parameters on the near/far field patterns are evaluated in this paper. We have successfully increased the peak lasing power from an initial 4.84 mW to 12.38 mW at a bias voltage of 2 V and optical wavelength of 1.55 μm using Taguchi's orthogonal array. As a result of the Taguchi optimization and fine tuning, the device threshold current is found to increase along with a slight decrease in the modulation speed due to increased device widths.

  18. Field-modulation spectroscopy of pentacene thin films using field-effect devices: Reconsideration of the excitonic structure

    NASA Astrophysics Data System (ADS)

    Haas, Simon; Matsui, Hiroyuki; Hasegawa, Tatsuo

    2010-10-01

    We report pure electric-field effects on the excitonic absorbance of pentacene thin films as measured by unipolar field-effect devices that allowed us to separate the charge accumulation effects. The field-modulated spectra between 1.8 and 2.6 eV can be well fitted with the first derivative curve of Frenkel exciton absorption and its vibronic progression, and at higher energy a field-induced feature appears at around 2.95 eV. The results are in sharp contrast to the electroabsorption spectra reported by Sebastian in previous studies [Chem. Phys. 61, 125 (1981)10.1016/0301-0104(81)85055-0], and leads us to reconsider the excitonic structure including the location of charge-transfer excitons. Nonlinear π -electronic response is discussed based on second-order electro-optic (Kerr) spectra.

  19. Producing smart sensing films by means of organic field effect transistors.

    PubMed

    Manunza, Ileana; Orgiu, Emanuele; Caboni, Alessandra; Barbaro, Massimo; Bonfiglio, Annalisa

    2006-01-01

    We have fabricated the first example of totally flexible field effect device for chemical detection based on an organic field effect transistor (OFET) made by pentacene films grown on flexible plastic structures. The ion sensitivity is achieved by employing a thin Mylar foil as gate dielectric. A sensitivity of the device to the pH of the electrolyte solution has been observed A similar structure can be used also for detecting mechanical deformations on flexible surfaces. Thanks to the flexibility of the substrate and the low cost of the employed technology, these devices open the way for the production of flexible chemical and strain gauge sensors that can be employed in a variety of innovative applications such as wearable electronics, e-textiles, new man-machine interfaces.

  20. Current crowding mediated large contact noise in graphene field-effect transistors

    PubMed Central

    Karnatak, Paritosh; Sai, T. Phanindra; Goswami, Srijit; Ghatak, Subhamoy; Kaushal, Sanjeev; Ghosh, Arindam

    2016-01-01

    The impact of the intrinsic time-dependent fluctuations in the electrical resistance at the graphene–metal interface or the contact noise, on the performance of graphene field-effect transistors, can be as adverse as the contact resistance itself, but remains largely unexplored. Here we have investigated the contact noise in graphene field-effect transistors of varying device geometry and contact configuration, with carrier mobility ranging from 5,000 to 80,000 cm2 V−1 s−1. Our phenomenological model for contact noise because of current crowding in purely two-dimensional conductors confirms that the contacts dominate the measured resistance noise in all graphene field-effect transistors in the two-probe or invasive four-probe configurations, and surprisingly, also in nearly noninvasive four-probe (Hall bar) configuration in the high-mobility devices. The microscopic origin of contact noise is directly linked to the fluctuating electrostatic environment of the metal–channel interface, which could be generic to two-dimensional material-based electronic devices. PMID:27929087

  1. Current crowding mediated large contact noise in graphene field-effect transistors

    NASA Astrophysics Data System (ADS)

    Karnatak, Paritosh; Sai, T. Phanindra; Goswami, Srijit; Ghatak, Subhamoy; Kaushal, Sanjeev; Ghosh, Arindam

    2016-12-01

    The impact of the intrinsic time-dependent fluctuations in the electrical resistance at the graphene-metal interface or the contact noise, on the performance of graphene field-effect transistors, can be as adverse as the contact resistance itself, but remains largely unexplored. Here we have investigated the contact noise in graphene field-effect transistors of varying device geometry and contact configuration, with carrier mobility ranging from 5,000 to 80,000 cm2 V-1 s-1. Our phenomenological model for contact noise because of current crowding in purely two-dimensional conductors confirms that the contacts dominate the measured resistance noise in all graphene field-effect transistors in the two-probe or invasive four-probe configurations, and surprisingly, also in nearly noninvasive four-probe (Hall bar) configuration in the high-mobility devices. The microscopic origin of contact noise is directly linked to the fluctuating electrostatic environment of the metal-channel interface, which could be generic to two-dimensional material-based electronic devices.

  2. Ordered polymer nanofibers enhance output brightness in bilayer light-emitting field-effect transistors.

    PubMed

    Hsu, Ben B Y; Seifter, Jason; Takacs, Christopher J; Zhong, Chengmei; Tseng, Hsin-Rong; Samuel, Ifor D W; Namdas, Ebinazar B; Bazan, Guillermo C; Huang, Fei; Cao, Yong; Heeger, Alan J

    2013-03-26

    Polymer light emitting field effect transistors are a class of light emitting devices that reveal interesting device physics. Device performance can be directly correlated to the most fundamental polymer science. Control over surface properties of the transistor dielectric can dramatically change the polymer morphology, introducing ordered phase. Electronic properties such as carrier mobility and injection efficiency on the interface can be promoted by ordered nanofibers in the polymer. Moreover, by controlling space charge in the polymer interface, the recombination zone can be spatially extended and thereby enhance the optical output.

  3. Super-Alfvénic translation of a field-reversed configuration into a large-bore dielectric chamber

    NASA Astrophysics Data System (ADS)

    Sekiguchi, J.; Asai, T.; Takahashi, T.

    2018-01-01

    An experimental device to demonstrate additional heating and control methods for a field-reversed configuration (FRC) has been developed. The newly developed device, named FRC Amplification via Translation (FAT), has a field-reversed theta-pinch plasma source and a low-elongation dielectric (transparent quartz) confinement chamber with quasi-static confinement field. In the initial experiments on the FAT device, FRC translation and trapping were successfully demonstrated. Although the typical elongation of the trapped FRC in the confinement region was roughly three, no disruptive global instability, such as tilt, was observed. The FAT device increases the latitude to perform translation-related experiments, such as those concerning inductive current drive, equivalent neutral beam injection effects, and wave applications.

  4. Effect of dielectric layers on device stability of pentacene-based field-effect transistors.

    PubMed

    Di, Chong-an; Yu, Gui; Liu, Yunqi; Guo, Yunlong; Sun, Xiangnan; Zheng, Jian; Wen, Yugeng; Wang, Ying; Wu, Weiping; Zhu, Daoben

    2009-09-07

    We report stable organic field-effect transistors (OFETs) based on pentacene. It was found that device stability strongly depends on the dielectric layer. Pentacene thin-film transistors based on the bare or polystyrene-modified SiO(2) gate dielectrics exhibit excellent electrical stabilities. In contrast, the devices with the octadecyltrichlorosilane (OTS)-treated SiO(2) dielectric layer showed the worst stabilities. The effects of the different dielectrics on the device stabilities were investigated. We found that the surface energy of the gate dielectric plays a crucial role in determining the stability of the pentacene thin film, device performance and degradation of electrical properties. Pentacene aggregation, phase transfer and film morphology are also important factors that influence the device stability of pentacene devices. As a result of the surface energy mismatch between the dielectric layer and organic semiconductor, the electronic performance was degraded. Moreover, when pentacene was deposited on the OTS-treated SiO(2) dielectric layer with very low surface energy, pentacene aggregation occurred and resulted in a dramatic decrease of device performance. These results demonstrated that the stable OFETs could be obtained by using pentacene as a semiconductor layer.

  5. Fringing-field dielectrophoretic assembly of ultrahigh-density semiconducting nanotube arrays with a self-limited pitch

    NASA Astrophysics Data System (ADS)

    Cao, Qing; Han, Shu-Jen; Tulevski, George S.

    2014-09-01

    One key challenge of realizing practical high-performance electronic devices based on single-walled carbon nanotubes is to produce electronically pure nanotube arrays with both a minuscule and uniform inter-tube pitch for sufficient device-packing density and homogeneity. Here we develop a method in which the alternating voltage-fringing electric field formed between surface microelectrodes and the substrate is utilized to assemble semiconducting nanotubes into well-aligned, ultrahigh-density and submonolayered arrays, with a consistent pitch as small as 21±6 nm determined by a self-limiting mechanism, based on the unique field focusing and screening effects of the fringing field. Field-effect transistors based on such nanotube arrays exhibit record high device transconductance (>50 μS μm-1) and decent on current per nanotube (~1 μA per tube) together with high on/off ratios at a drain bias of -1 V.

  6. Perovskites for Photovoltaics in the Spotlight: Photoinduced Physical Changes and Their Implications.

    PubMed

    Gottesman, Ronen; Zaban, Arie

    2016-02-16

    Organic-inorganic halide perovskites are in consensus to revolutionize the field of photovoltaics and optoelectronic devices due to their superior optical and electronic properties which are unprecedented in comparison to those of other solution processed semiconductors. These hybrid materials are used as light absorbers and also as charge carriers which makes them very versatile to be implemented and studied in a multitude of fields. Traditionally, the working paradigm in solar cells and optoelectronic devices' characterization has been that the properties of photovoltaic materials remain stable following illumination of varying times and intensities. However, recently there has been a growing number of reports on prolonged illumination-dependent physical changes in perovskite films and perovskite based devices. The changes are reversible and range from structural transformations and differences in optical characteristics, to an increase in optoelectronic properties and physical parameters. In this Account, we review the physical changes in three reported model systems which display changes under prolonged illumination of light intensities of ∼0.01-1 sun. The three systems are (i) a free-standing perovskite film on a glass substrate, (ii) a symmetrical system with nonselective electrical contacts, and (iii) a working perovskite solar cell (either a planar or a porous structure). We examine each model system and discuss its photoinduced physical changes and conclude with the implications on future experimentation design, data analysis, and characterization that involve organic-inorganic halide perovskites illumination. Since hybrid perovskites are considered to be mixed ionic-electronic conductors in nature, ions that migrate in the perovskite under electrical fields can influence its properties. Therefore, an important distinction is made between photoinduced effects and photo and electric field induced effects. Thus, photoinduced effects are designated as observed effects in illuminated free-standing films or symmetrical devices without selective contacts. In contrast, photo- and electric field induced effects are designated as observed effects under open-circuit potential or during voltage scanning (internal electrical field exists across the device). In the latter case, the two effects are superimposed and it is difficult to evaluate the relative influence of each one (light or electric field). However, we show that the magnitude and the importance of the photoinduced effect are substantial.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moghadam, Reza M.; Xiao, Zhiyong; Ahmadi-Majlan, Kamyar

    The epitaxial growth of multifunctional oxides on semiconductors has opened a pathway to introduce new functionalities to semiconductor device technologies. In particular, ferroelectric materials integrated on semiconductors could lead to low-power field-effect devices that can be used for logic or memory. Essential to realizing such field-effect devices is the development of ferroelectric metal-oxide-semiconductor (MOS) capacitors, in which the polarization of a ferroelectric gate is coupled to the surface potential of a semiconducting channel. Here we demonstrate that ferroelectric MOS capacitors can be realized using single crystalline SrZrxTi1-xO3 (x= 0.7) that has been epitaxially grown on Ge. We find that themore » ferroelectric properties of SrZrxTi1-xO3 are exceptionally robust, as gate layers as thin as 5 nm give rise to hysteretic capacitance-voltage characteristics that are 2 V in width. The development of ferroelectric MOS capacitors with gate thicknesses that are technologically relevant opens a pathway to realize scalable ferroelectric field-effect devices.« less

  8. Large contact noise in graphene field-effect transistors

    NASA Astrophysics Data System (ADS)

    Karnatak, Paritosh; Sai, Phanindra; Goswami, Srijit; Ghatak, Subhamoy; Kaushal, Sanjeev; Ghosh, Arindam

    Fluctuations in the electrical resistance at the interface of atomically thin materials and metals, or the contact noise, can adversely affect the device performance but remains largely unexplored. We have investigated contact noise in graphene field effect transistors of varying device geometry and contact configuration, with channel carrier mobility ranging from 5,000 to 80,000 cm2V-1s-1. A phenomenological model developed for contact noise due to current crowding for two dimensional conductors, shows a dominant contact contribution to the measured resistance noise in all graphene field effect transistors when measured in the two-probe or invasive four probe configurations, and surprisingly, also in nearly noninvasive four probe (Hall bar) configuration in the high mobility devices. We identify the fluctuating electrostatic environment of the metal-channel interface as the major source of contact noise, which could be generic to two dimensional material-based electronic devices. The work was financially supported by the Department of Science and Technology, India and Tokyo Electron Limited.

  9. Improving the radiation hardness of graphene field effect transistors

    DOE PAGES

    Alexandrou, Konstantinos; Masurkar, Amrita; Edrees, Hassan; ...

    2016-10-11

    Ionizing radiation poses a significant challenge to the operation and reliability of conventional silicon-based devices. In this paper, we report the effects of gamma radiation on graphene field-effect transistors (GFETs), along with a method to mitigate those effects by developing a radiation-hardened version of our back-gated GFETs. We demonstrate that activated atmospheric oxygen from the gamma ray interaction with air damages the semiconductor device, and damage to the substrate contributes additional threshold voltage instability. Our radiation-hardened devices, which have protection against these two effects, exhibit minimal performance degradation, improved stability, and significantly reduced hysteresis after prolonged gamma radiation exposure. Finally,more » we believe this work provides an insight into graphene's interactions with ionizing radiation that could enable future graphene-based electronic devices to be used for space, military, and other radiation-sensitive applications.« less

  10. Improving the radiation hardness of graphene field effect transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexandrou, Konstantinos; Masurkar, Amrita; Edrees, Hassan

    Ionizing radiation poses a significant challenge to the operation and reliability of conventional silicon-based devices. In this paper, we report the effects of gamma radiation on graphene field-effect transistors (GFETs), along with a method to mitigate those effects by developing a radiation-hardened version of our back-gated GFETs. We demonstrate that activated atmospheric oxygen from the gamma ray interaction with air damages the semiconductor device, and damage to the substrate contributes additional threshold voltage instability. Our radiation-hardened devices, which have protection against these two effects, exhibit minimal performance degradation, improved stability, and significantly reduced hysteresis after prolonged gamma radiation exposure. Finally,more » we believe this work provides an insight into graphene's interactions with ionizing radiation that could enable future graphene-based electronic devices to be used for space, military, and other radiation-sensitive applications.« less

  11. Giant switchable photovoltaic effect in organometal trihalide perovskite devices

    DOE PAGES

    Xiao, Zhengguo; Yuan, Yongbo; Shao, Yuchuan; ...

    2014-12-08

    Organolead trihalide perovskite (OTP) materials are emerging as naturally abundant materials for low-cost, solution-processed and highly efficient solar cells. Here, we show that, in OTP-based photovoltaic devices with vertical and lateral cell configurations, the photocurrent direction can be switched repeatedly by applying a small electric field of <1 V μm –1. The switchable photocurrent, generally observed in devices based on ferroelectric materials, reached 20.1 mA cm –2 under one sun illumination in OTP devices with a vertical architecture, which is four orders of magnitude larger than that measured in other ferroelectric photovoltaic devices. This field-switchable photovoltaic effect can be explainedmore » by the formation of reversible p–i–n structures induced by ion drift in the perovskite layer. Furthermore, the demonstration of switchable OTP photovoltaics and electric-field-manipulated doping paves the way for innovative solar cell designs and for the exploitation of OTP materials in electrically and optically readable memristors and circuits.« less

  12. Experimental identification of p-type conduction in fluoridized boron nitride nanotube

    NASA Astrophysics Data System (ADS)

    Zhao, Jing; Li, Wuxia; Tang, Chengchun; Li, Lin; Lin, Jing; Gu, Changzhi

    2013-04-01

    The transport properties of F-doped boron nitride nanotube (BNNT) top-gate field effect devices were investigated to demonstrate the realization of p-type BNNTs by F-doping. The drain current was found to increase substantially with the applied negative gate voltage, suggesting these devices persist significant field effect with holes predominated; it also suggests that F-doping remarkably modified the band gap with F atoms preferred to be absorbed on B sites. Parameters, including the resistivity, charge concentration, and mobility, were further retrieved from the I-V curves. Our results indicate that device characterization is an effective method to reveal the specific properties of BNNTs.

  13. MAGNETIC END CLOSURES FOR PLASMA CONFINING AND HEATING DEVICES

    DOEpatents

    Post, R.F.

    1963-08-20

    More effective magnetic closure field regions for various open-ended containment magnetic fields used in fusion reactor devices are provided by several spaced, coaxially-aligned solenoids utilized to produce a series of nodal field regions of uniform or, preferably, of incrementally increasing intensity separated by lower intensity regions outwardly from the ends of said containment zone. Plasma sources may also be provided to inject plasma into said lower intensity areas to increase plasma density therein. Plasma may then be transported, by plasma diffusion mechanisms provided by the nodal fields, into the containment field. With correlated plasma densities and nodal field spacings approximating the mean free partl cle collision path length in the zones between the nodal fields, optimum closure effectiveness is obtained. (AEC)

  14. Guide Catheter Extension Device Is Effective in Renal Angioplasty for Severely Calcified Lesions.

    PubMed

    Sugimoto, Takeshi; Nomura, Tetsuya; Hori, Yusuke; Yoshioka, Kenichi; Kubota, Hiroshi; Miyawaki, Daisuke; Urata, Ryota; Kikai, Masakazu; Keira, Natsuya; Tatsumi, Tetsuya

    2017-05-23

    BACKGROUND The GuideLiner catheter extension device is a monorail-type "Child" support catheter that facilitates coaxial alignment with the guide catheter and provides an appropriate back-up force. This device has been developed in the field of coronary intervention, and now is becoming widely applied in the field of endovascular treatment. However, there has been no report on the effectiveness of the guide catheter extension device in percutaneous transluminal renal angioplasty (PTRA). CASE REPORT We encountered a case of atherosclerotic subtotal occlusion at the ostium of the left renal artery. Due to the severely calcified orifice and weaker back-up force provided by a JR4 guide catheter, we could not pass any guidewires through the target lesion. Therefore, we introduced a guide catheter extension device, the GuideLiner catheter, through the guide catheter and achieved good guidewire maneuverability. We finally deployed 2 balloon-expandable stents and successfully performed all PTRA procedures. CONCLUSIONS The guide catheter extension device can be effective in PTRA for severely calcified subtotal occlusion.

  15. Influence of Electric, Magnetic, and Electromagnetic Fields on the Circadian System: Current Stage of Knowledge

    PubMed Central

    Żak, Arkadiusz

    2014-01-01

    One of the side effects of each electrical device work is the electromagnetic field generated near its workplace. All organisms, including humans, are exposed daily to the influence of different types of this field, characterized by various physical parameters. Therefore, it is important to accurately determine the effects of an electromagnetic field on the physiological and pathological processes occurring in cells, tissues, and organs. Numerous epidemiological and experimental data suggest that the extremely low frequency magnetic field generated by electrical transmission lines and electrically powered devices and the high frequencies electromagnetic radiation emitted by electronic devices have a potentially negative impact on the circadian system. On the other hand, several studies have found no influence of these fields on chronobiological parameters. According to the current state of knowledge, some previously proposed hypotheses, including one concerning the key role of melatonin secretion disruption in pathogenesis of electromagnetic field induced diseases, need to be revised. This paper reviews the data on the effect of electric, magnetic, and electromagnetic fields on melatonin and cortisol rhythms—two major markers of the circadian system as well as on sleep. It also provides the basic information about the nature, classification, parameters, and sources of these fields. PMID:25136557

  16. Accelerated life testing and temperature dependence of device characteristics in GaAs CHFET devices

    NASA Technical Reports Server (NTRS)

    Gallegos, M.; Leon, R.; Vu, D. T.; Okuno, J.; Johnson, A. S.

    2002-01-01

    Accelerated life testing of GaAs complementary heterojunction field effect transistors (CHFET) was carried out. Temperature dependence of single and synchronous rectifier CHFET device characteristics were also obtained.

  17. Radiation hardening of MOS devices by boron. [for stabilizing gate threshold potential of field effect device

    NASA Technical Reports Server (NTRS)

    Danchenko, V. (Inventor)

    1974-01-01

    A technique is described for radiation hardening of MOS devices and specifically for stabilizing the gate threshold potential at room temperature of a radiation subjected MOS field-effect device with a semiconductor substrate, an insulating layer of oxide on the substrate, and a gate electrode disposed on the insulating layer. The boron is introduced within a layer of the oxide of about 100 A-300 A thickness immediately adjacent the semiconductor-insulator interface. The concentration of boron in the oxide layer is preferably maintained on the order of 10 to the 18th power atoms/cu cm. The technique serves to reduce and substantially annihilate radiation induced positive gate charge accumulations.

  18. Intrinsic Electron Mobility Exceeding 10³ cm²/(V s) in Multilayer InSe FETs.

    PubMed

    Sucharitakul, Sukrit; Goble, Nicholas J; Kumar, U Rajesh; Sankar, Raman; Bogorad, Zachary A; Chou, Fang-Cheng; Chen, Yit-Tsong; Gao, Xuan P A

    2015-06-10

    Graphene-like two-dimensional (2D) materials not only are interesting for their exotic electronic structure and fundamental electronic transport or optical properties but also hold promises for device miniaturization down to atomic thickness. As one material belonging to this category, InSe, a III-VI semiconductor, not only is a promising candidate for optoelectronic devices but also has potential for ultrathin field effect transistor (FET) with high mobility transport. In this work, various substrates such as PMMA, bare silicon oxide, passivated silicon oxide, and silicon nitride were used to fabricate multilayer InSe FET devices. Through back gating and Hall measurement in four-probe configuration, the device's field effect mobility and intrinsic Hall mobility were extracted at various temperatures to study the material's intrinsic transport behavior and the effect of dielectric substrate. The sample's field effect and Hall mobilities over the range of 20-300 K fall in the range of 0.1-2.0 × 10(3) cm(2)/(V s), which are comparable or better than the state of the art FETs made of widely studied 2D transition metal dichalcogenides.

  19. Unusual electro-optical behavior in a wide-temperature BPIII cell.

    PubMed

    Chen, Hui-Yu; Lu, Sheng-Feng; Hsieh, Yi-Chun

    2013-04-22

    A low driving voltage and fast response blue phase III (BPIII) liquid-crystal device with very low dielectric anisotropy is demonstrated. To stabilize BPIII in a wide temperature range (> 15°C), a chiral molecule with good solubility was chosen. By studying field-dependent polarization state of the transmitting light, it was found that the field-induced birefringence becomes saturated in the high field. However, the transmitting intensity exhibits a tendency to increase as the electric field increases. This indicates that the electro-optical behavior in BPIII device may be from the flexoelectric effect, which induces tilted optical axis and then induces birefringence. Because the phase transition from BPIII to chiral nematic phase does not happen, the device shows no hysteresis effect and no residual birefringence, exhibits fast response, and can be a candidate for fast photonic application.

  20. Methods for growth of relatively large step-free SiC crystal surfaces

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G. (Inventor); Powell, J. Anthony (Inventor)

    2002-01-01

    A method for growing arrays of large-area device-size films of step-free (i.e., atomically flat) SiC surfaces for semiconductor electronic device applications is disclosed. This method utilizes a lateral growth process that better overcomes the effect of extended defects in the seed crystal substrate that limited the obtainable step-free area achievable by prior art processes. The step-free SiC surface is particularly suited for the heteroepitaxial growth of 3C (cubic) SiC, AlN, and GaN films used for the fabrication of both surface-sensitive devices (i.e., surface channel field effect transistors such as HEMT's and MOSFET's) as well as high-electric field devices (pn diodes and other solid-state power switching devices) that are sensitive to extended crystal defects.

  1. Electrical Tuning of Exciton-Plasmon Polariton Coupling in Monolayer MoS2 Integrated with Plasmonic Nanoantenna Lattice.

    PubMed

    Lee, Bumsu; Liu, Wenjing; Naylor, Carl H; Park, Joohee; Malek, Stephanie C; Berger, Jacob S; Johnson, A T Charlie; Agarwal, Ritesh

    2017-07-12

    Active control of light-matter interactions in semiconductors is critical for realizing next generation optoelectronic devices with real-time control of the system's optical properties and hence functionalities via external fields. The ability to dynamically manipulate optical interactions by applied fields in active materials coupled to cavities with fixed geometrical parameters opens up possibilities of controlling the lifetimes, oscillator strengths, effective mass, and relaxation properties of a coupled exciton-photon (or plasmon) system. Here, we demonstrate electrical control of exciton-plasmon coupling strengths between strong and weak coupling limits in a two-dimensional semiconductor integrated with plasmonic nanoresonators assembled in a field-effect transistor device by electrostatic doping. As a result, the energy-momentum dispersions of such an exciton-plasmon coupled system can be altered dynamically with applied electric field by modulating the excitonic properties of monolayer MoS 2 arising from many-body effects. In addition, evidence of enhanced coupling between charged excitons (trions) and plasmons was also observed upon increased carrier injection, which can be utilized for fabricating Fermionic polaritonic and magnetoplasmonic devices. The ability to dynamically control the optical properties of a coupled exciton-plasmonic system with electric fields demonstrates the versatility of the coupled system and offers a new platform for the design of optoelectronic devices with precisely tailored responses.

  2. Silicon on ferroelectic insulator field effect transistor (SOF-FET) a new device for the next generation ultra low power circuits

    NASA Astrophysics Data System (ADS)

    Es-Sakhi, Azzedin D.

    Field effect transistors (FETs) are the foundation for all electronic circuits and processors. These devices have progressed massively to touch its final steps in sub-nanometer level. Left and right proposals are coming to rescue this progress. Emerging nano-electronic devices (resonant tunneling devices, single-atom transistors, spin devices, Heterojunction Transistors rapid flux quantum devices, carbon nanotubes, and nanowire devices) took a vast share of current scientific research. Non-Si electronic materials like III-V heterostructure, ferroelectric, carbon nanotubes (CNTs), and other nanowire based designs are in developing stage to become the core technology of non-classical CMOS structures. FinFET present the current feasible commercial nanotechnology. The scalability and low power dissipation of this device allowed for an extension of silicon based devices. High short channel effect (SCE) immunity presents its major advantage. Multi-gate structure comes to light to improve the gate electrostatic over the channel. The new structure shows a higher performance that made it the first candidate to substitute the conventional MOSFET. The device also shows a future scalability to continue Moor's Law. Furthermore, the device is compatible with silicon fabrication process. Moreover, the ultra-low-power (ULP) design required a subthreshold slope lower than the thermionic-emission limit of 60mV/ decade (KT/q). This value was unbreakable by the new structure (SOI-FinFET). On the other hand most of the previews proposals show the ability to go beyond this limit. However, those pre-mentioned schemes have publicized a very complicated physics, design difficulties, and process non-compatibility. The objective of this research is to discuss various emerging nano-devices proposed for ultra-low-power designs and their possibilities to replace the silicon devices as the core technology in the future integrated circuit. This thesis proposes a novel design that exploits the concept of negative capacitance. The new field effect transistor (FET) based on ferroelectric insulator named Silicon-On-Ferroelectric Insulator Field Effect Transistor (SOF-FET). This proposal is a promising methodology for future ultra-low-power applications, because it demonstrates the ability to replace the silicon-bulk based MOSFET, and offers subthreshold swing significantly lower than 60mV/decade and reduced threshold voltage to form a conducting channel. The SOF-FET can also solve the issue of junction leakage (due to the presence of unipolar junction between the top plate of the negative capacitance and the diffused areas that form the transistor source and drain). In this device the charge hungry ferroelectric film already limits the leakage.

  3. Liquid crystal-on-organic field-effect transistor sensory devices for perceptive sensing of ultralow intensity gas flow touch.

    PubMed

    Seo, Jooyeok; Park, Soohyeong; Nam, Sungho; Kim, Hwajeong; Kim, Youngkyoo

    2013-01-01

    We demonstrate liquid crystal-on-organic field-effect transistor (LC-on-OFET) sensory devices that can perceptively sense ultralow level gas flows. The LC-on-OFET devices were fabricated by mounting LC molecules (4-cyano-4'-pentylbiphenyl - 5CB) on the polymer channel layer of OFET. Results showed that the presence of LC molecules on the channel layer resulted in enhanced drain currents due to a strong dipole effect of LC molecules. Upon applying low intensity nitrogen gas flows, the drain current was sensitively increased depending on the intensity and time of nitrogen flows. The present LC-on-OFET devices could detect extremely low level nitrogen flows (0.7 sccm-11 μl/s), which could not be felt by human skins, thanks to a synergy effect between collective behavior of LC molecules and charge-sensitive channel layer of OFET. The similar sensation was also achieved using the LC-on-OFET devices with a polymer film skin, suggesting viable practical applications of the present LC-on-OFET sensory devices.

  4. Magnetic field controlled electronic state and electric field controlled magnetic state in α-Fe1.6Ga0.4O3 oxide

    NASA Astrophysics Data System (ADS)

    Lone, Abdul Gaffar; Bhowmik, R. N.

    2018-04-01

    We have prepared α-Fe1.6Ga0.4O3 (Ga doped α-Fe2O3) system in rhombohedral phase. The material has shown room temperature ferroelectric and ferromagnetic properties. The existence of magneto-electric coupling at room temperature has been confirmed by the experimental observation of magnetic field controlled electric properties and electric field controlled magnetization. The current-voltage characteristics were controlled by external magnetic field. The magnetic state switching and exchange bias effect are highly sensitive to the polarity and ON and OFF modes of external electric field. Such materials can find novel applications in magneto-electronic devices, especially in the field of electric field controlled spintronics devices and energy storage devices which need low power consumption.

  5. Electron transport through magnetic quantum point contacts

    NASA Astrophysics Data System (ADS)

    Day, Timothy Ellis

    Spin-based electronics, or spintronics, has generated a great deal of interest as a possible next-generation integrated circuit technology. Recent experimental and theoretical work has shown that these devices could exhibit increased processing speed, decreased power consumption, and increased integration densities as compared with conventional semiconductor devices. The spintronic device that was designed, fabricated, and tested throughout the course of this work aimed to study the generation of spin-polarized currents in semiconductors using magnetic fringe fields. The device scheme relied on the Zeeman effect in combination with a quantum mechanical barrier to generate spin-polarized currents. The Zeeman effect was used to break the degeneracy of spin-up and spin-down electrons and the quantum mechanical potential to transmit one while rejecting the other. The design was dictated by the drive to maximize the strength of the magnetic fringe field and in turn maximize the energy separation of the two spin species. The device was fabricated using advanced techniques in semiconductor processing including electron beam lithography and DC magnetron sputtering. Measurements were performed in a 3He cryostat equipped with a superconducting magnet at temperatures below 300 mK. Preliminary characterization of the device revealed magnetoconductance oscillations produced by the effect of the transverse confining potential on the density of states and the mobility. Evidence of the effect of the magnetic fringe fields on the transport properties of electrons in the device were observed in multiple device measurements. An abrupt washout of the quantized conductance steps was observed over a minute range of the applied magnetic field. The washout was again observed as electrons were shifted closer to the magnetic gates. In addition, bias spectroscopy demonstrated that the washout occurred despite stronger electron confinement, as compared to a non-magnetic split-gate. Thus, the measurements indicated that conductance quantization breaks down in a non-uniform magnetic field, possibly due to changes to the stationary Landau states. It was also demonstrated that non-integer conductance plateaus at high source-drain bias are not caused by a macroscopic asymmetry in the potential drop.

  6. Germanium Based Field-Effect Transistors: Challenges and Opportunities

    PubMed Central

    Goley, Patrick S.; Hudait, Mantu K.

    2014-01-01

    The performance of strained silicon (Si) as the channel material for today’s metal-oxide-semiconductor field-effect transistors may be reaching a plateau. New channel materials with high carrier mobility are being investigated as alternatives and have the potential to unlock an era of ultra-low-power and high-speed microelectronic devices. Chief among these new materials is germanium (Ge). This work reviews the two major remaining challenges that Ge based devices must overcome if they are to replace Si as the channel material, namely, heterogeneous integration of Ge on Si substrates, and developing a suitable gate stack. Next, Ge is compared to compound III-V materials in terms of p-channel device performance to review how it became the first choice for PMOS devices. Different Ge device architectures, including surface channel and quantum well configurations, are reviewed. Finally, state-of-the-art Ge device results and future prospects are also discussed. PMID:28788569

  7. Extended-gate organic field-effect transistor for the detection of histamine in water

    NASA Astrophysics Data System (ADS)

    Minamiki, Tsukuru; Minami, Tsuyoshi; Yokoyama, Daisuke; Fukuda, Kenjiro; Kumaki, Daisuke; Tokito, Shizuo

    2015-04-01

    As part of our ongoing research program to develop health care sensors based on organic field-effect transistor (OFET) devices, we have attempted to detect histamine using an extended-gate OFET. Histamine is found in spoiled or decayed fish, and causes foodborne illness known as scombroid food poisoning. The new OFET device possesses an extended gate functionalized by carboxyalkanethiol that can interact with histamine. As a result, we have succeeded in detecting histamine in water through a shift in OFET threshold voltage. This result indicates the potential utility of the designed OFET devices in food freshness sensing.

  8. Magnetic-Field-Tunable Superconducting Rectifier

    NASA Technical Reports Server (NTRS)

    Sadleir, John E.

    2009-01-01

    Superconducting electronic components have been developed that provide current rectification that is tunable by design and with an externally applied magnetic field to the circuit component. The superconducting material used in the device is relatively free of pinning sites with its critical current determined by a geometric energy barrier to vortex entry. The ability of the vortices to move freely inside the device means this innovation does not suffer from magnetic hysteresis effects changing the state of the superconductor. The invention requires a superconductor geometry with opposite edges along the direction of current flow. In order for the critical current asymmetry effect to occur, the device must have different vortex nucleation conditions at opposite edges. Alternative embodiments producing the necessary conditions include edges being held at different temperatures, at different local magnetic fields, with different current-injection geometries, and structural differences between opposite edges causing changes in the size of the geometric energy barrier. An edge fabricated with indentations of the order of the coherence length will significantly lower the geometric energy barrier to vortex entry, meaning vortex passage across the device at lower currents causing resistive dissipation. The existing prototype is a two-terminal device consisting of a thin-film su - perconducting strip operating at a temperature below its superconducting transition temperature (Tc). Opposite ends of the strip are connected to electrical leads made of a higher Tc superconductor. The thin-film lithographic process provides an easy means to alter edge-structures, current-injection geo - metries, and magnetic-field conditions at the edges. The edge-field conditions can be altered by using local field(s) generated from dedicated higher Tc leads or even using the device s own higher Tc superconducting leads.

  9. Field-effect control of superconductivity and Rashba spin-orbit coupling in top-gated LaAlO3/SrTiO3 devices

    PubMed Central

    Hurand, S.; Jouan, A.; Feuillet-Palma, C.; Singh, G.; Biscaras, J.; Lesne, E.; Reyren, N.; Barthélémy, A.; Bibes, M.; Villegas, J. E.; Ulysse, C.; Lafosse, X.; Pannetier-Lecoeur, M.; Caprara, S.; Grilli, M.; Lesueur, J.; Bergeal, N.

    2015-01-01

    The recent development in the fabrication of artificial oxide heterostructures opens new avenues in the field of quantum materials by enabling the manipulation of the charge, spin and orbital degrees of freedom. In this context, the discovery of two-dimensional electron gases (2-DEGs) at LaAlO3/SrTiO3 interfaces, which exhibit both superconductivity and strong Rashba spin-orbit coupling (SOC), represents a major breakthrough. Here, we report on the realisation of a field-effect LaAlO3/SrTiO3 device, whose physical properties, including superconductivity and SOC, can be tuned over a wide range by a top-gate voltage. We derive a phase diagram, which emphasises a field-effect-induced superconductor-to-insulator quantum phase transition. Magneto-transport measurements show that the Rashba coupling constant increases linearly with the interfacial electric field. Our results pave the way for the realisation of mesoscopic devices, where these two properties can be manipulated on a local scale by means of top-gates. PMID:26244916

  10. Effects of Various Passivation Layers on Electrical Properties of Multilayer MoS₂ Transistors.

    PubMed

    Ma, Jiyeon; Yoo, Geonwook

    2018-09-01

    So far many of research on transition metal dichalcogenides (TMDCs) are based on a bottomgate device structure due to difficulty with depositing a dielectric film on top of TMDs channel layer. In this work, we study different effects of various passivation layers on electrical properties of multilayer MoS2 transistors: spin-coated CYTOP, SU-8, and thermal evaporated MoOX. The SU-8 passivation layer alters device performance least significantly, and MoOX induces positive threshold voltage shift of ~8.0 V due to charge depletion at the interface, and the device with CYTOP layer exhibits decreased field-effect mobility by ~50% due to electric dipole field effect of C-F bonds in the end groups. Our results imply that electrical properties of the multilayer MoS2 transistors can be modulated using a passivation layer, and therefore a proper passivation layer should be considered for MoS2 device structures.

  11. Improvement in the performance of graphene nanoribbon p-i-n tunneling field effect transistors by applying lightly doped profile on drain region

    NASA Astrophysics Data System (ADS)

    Naderi, Ali

    2017-12-01

    In this paper, an efficient structure with lightly doped drain region is proposed for p-i-n graphene nanoribbon field effect transistors (LD-PIN-GNRFET). Self-consistent solution of Poisson and Schrödinger equation within Nonequilibrium Green’s function (NEGF) formalism has been employed to simulate the quantum transport of the devices. In proposed structure, source region is doped by constant doping density, channel is an intrinsic GNR, and drain region contains two parts with lightly and heavily doped doping distributions. The important challenge in tunneling devices is obtaining higher current ratio. Our simulations demonstrate that LD-PIN-GNRFET is a steep slope device which not only reduces the leakage current and current ratio but also enhances delay, power delay product, and cutoff frequency in comparison with conventional PIN GNRFETs with uniform distribution of impurity and with linear doping profile in drain region. Also, the device is able to operate in higher drain-source voltages due to the effectively reduced electric field at drain side. Briefly, the proposed structure can be considered as a more reliable device for low standby-power logic applications operating at higher voltages and upper cutoff frequencies.

  12. Electric-Field-Induced Magnetization Reversal in a Ferromagnet-Multiferroic Heterostructure

    NASA Astrophysics Data System (ADS)

    Heron, J. T.; Trassin, M.; Ashraf, K.; Gajek, M.; He, Q.; Yang, S. Y.; Nikonov, D. E.; Chu, Y.-H.; Salahuddin, S.; Ramesh, R.

    2011-11-01

    A reversal of magnetization requiring only the application of an electric field can lead to low-power spintronic devices by eliminating conventional magnetic switching methods. Here we show a nonvolatile, room temperature magnetization reversal determined by an electric field in a ferromagnet-multiferroic system. The effect is reversible and mediated by an interfacial magnetic coupling dictated by the multiferroic. Such electric-field control of a magnetoelectric device demonstrates an avenue for next-generation, low-energy consumption spintronics.

  13. Electric-field-induced magnetization reversal in a ferromagnet-multiferroic heterostructure.

    PubMed

    Heron, J T; Trassin, M; Ashraf, K; Gajek, M; He, Q; Yang, S Y; Nikonov, D E; Chu, Y-H; Salahuddin, S; Ramesh, R

    2011-11-18

    A reversal of magnetization requiring only the application of an electric field can lead to low-power spintronic devices by eliminating conventional magnetic switching methods. Here we show a nonvolatile, room temperature magnetization reversal determined by an electric field in a ferromagnet-multiferroic system. The effect is reversible and mediated by an interfacial magnetic coupling dictated by the multiferroic. Such electric-field control of a magnetoelectric device demonstrates an avenue for next-generation, low-energy consumption spintronics.

  14. Low reflection and field localization over surface plasmon device with subwavelength patterned aluminum film

    NASA Astrophysics Data System (ADS)

    Yuan, Ying; Peng, Sha; Long, Huabao; Liu, Runhan; Wei, Dong; Zhang, Xinyu; Wang, Haiwei; Xie, Changsheng

    2018-02-01

    In this paper, we propose a new device composed of patterned sub-wavelength arrays to investigate surface plasmons (SPs) over sub-wavelength metal nano-structures. The device consists of silicon substrate and sub-wavelength patterns fabricated on a layer of aluminum film with nanometer thickness. Each sub-wavelength pattern formed in aluminum film is composed of a basic nano-square and twelve triangles for shaping single nano-pattern, which are uniformly distributed on the four sides of each square. Reflectance spectra and electric field distribution in infrared region are simulated. Numerical simulation results demonstrate that the device can efficiently lower its reflectance in infrared spectrum, and the response frequency can be controlled by only changing the device parameters such as square side length and then triangle vertex angle. Besides, the simulated electric field distribution of the device shows obviously field localization effect at the edges of aluminum film nano-structure. The electric filed around the tips of aluminum triangles is localized into sub-wavelength scale, so as to be beyond the common diffraction limitation. Our work will help to reveal the interesting properties of SPs device, and also bring new prospect of photonic device.

  15. Ferroelectric Material Application: Modeling Ferroelectric Field Effect Transistor Characteristics from Micro to Nano

    NASA Technical Reports Server (NTRS)

    MacLeod, Todd, C.; Ho, Fat Duen

    2006-01-01

    All present ferroelectric transistors have been made on the micrometer scale. Existing models of these devices do not take into account effects of nanoscale ferroelectric transistors. Understanding the characteristics of these nanoscale devices is important in developing a strategy for building and using future devices. This paper takes an existing microscale ferroelectric field effect transistor (FFET) model and adds effects that become important at a nanoscale level, including electron velocity saturation and direct tunneling. The new model analyzed FFETs ranging in length from 40,000 nanometers to 4 nanometers and ferroelectric thickness form 200 nanometers to 1 nanometer. The results show that FFETs can operate on the nanoscale but have some undesirable characteristics at very small dimensions.

  16. GRC-2011-C-03754

    NASA Image and Video Library

    2007-09-26

    Molecular Electronics; Polymeric Films; Two-Terminal and Three-Terminal Devices Intended for the Development and/or Demonstration of Molecular Electronics Devices such as Field Effect Transistors, FETs

  17. Molecular hyperfine fields in organic magnetoresistance devices

    NASA Astrophysics Data System (ADS)

    Giro, Ronaldo; Rosselli, Flávia P.; dos Santos Carvalho, Rafael; Capaz, Rodrigo B.; Cremona, Marco; Achete, Carlos A.

    2013-03-01

    We calculate molecular hyperfine fields in organic magnetoresistance (OMAR) devices using ab initio calculations. To do so, we establish a protocol for the accurate determination of the average hyperfine field Bhf and apply it to selected molecular ions: NPB, TPD, and Alq3. Then, we make devices with precisely the same molecules and perform measurements of the OMAR effect, in order to address the role of hole-transport layer in the characteristic magnetic field B0 of OMAR. Contrary to common belief, we find that molecular hyperfine fields are not only caused by hydrogen nuclei. We also find that dipolar contributions to the hyperfine fields can be comparable to the Fermi contact contributions. However, such contributions are restricted to nuclei located in the same molecular ion as the charge carrier (intramolecular), as extramolecular contributions are negligible.

  18. Front and backside processed thin film electronic devices

    DOEpatents

    Evans, Paul G [Madison, WI; Lagally, Max G [Madison, WI; Ma, Zhenqiang [Middleton, WI; Yuan, Hao-Chih [Lakewood, CO; Wang, Guogong [Madison, WI; Eriksson, Mark A [Madison, WI

    2012-01-03

    This invention provides thin film devices that have been processed on their front- and backside. The devices include an active layer that is sufficiently thin to be mechanically flexible. Examples of the devices include back-gate and double-gate field effect transistors, double-sided bipolar transistors and 3D integrated circuits.

  19. Transport properties of field-effect transistor with Langmuir-Blodgett films of C60 dendrimer and estimation of impurity levels

    NASA Astrophysics Data System (ADS)

    Kawasaki, Naoko; Nagano, Takayuki; Kubozono, Yoshihiro; Sako, Yuuki; Morimoto, Yu; Takaguchi, Yutaka; Fujiwara, Akihiko; Chu, Chih-Chien; Imae, Toyoko

    2007-12-01

    Field-effect transistor (FET) device has been fabricated with Langmuir-Blodgett films of C60 dendrimer. The device showed n-channel normally off characteristics with the field-effect mobility of 2.7×10-3cm2V-1s-1 at 300K, whose value is twice as high as that (1.4×10-3cm2V-1s-1) for the FET with spin-coated films of C60 dendrimer. This originates from the formation of ordered π-conduction network of C60 moieties. From the temperature dependence of field-effect mobility, a structural phase transition has been observed at around 300K. Furthermore, the density of states for impurity levels was estimated in the Langmuir-Blodgett films.

  20. STORM INLET FILTRATION DEVICE

    EPA Science Inventory

    Five field tests were conducted to evaluate the effectiveness of the Storm and Groundwater Enhancement Systems (SAGES) device for removing contaminants from stormwater. The SAGES device is a three-stage filtering system that could be used as a best management practices (BMP) retr...

  1. Device considerations for development of conductance-based biosensors

    PubMed Central

    Lee, Kangho; Nair, Pradeep R.; Scott, Adina; Alam, Muhammad A.; Janes, David B.

    2009-01-01

    Design and fabrication of electronic biosensors based on field-effect-transistor (FET) devices require understanding of interactions between semiconductor surfaces and organic biomolecules. From this perspective, we review practical considerations for electronic biosensors with emphasis on molecular passivation effects on FET device characteristics upon immobilization of organic molecules and an electrostatic model for FET-based biosensors. PMID:24753627

  2. Near-field nano-Raman imaging of Si device structures

    NASA Astrophysics Data System (ADS)

    Atesang, Jacob; Geer, Robert

    2005-05-01

    Apertureless-based, near-field Raman imaging holds the potential for nanoscale stress metrology in emerging Si devices. Preliminary application of near-field Raman imaging on Si device structures has demonstrated the potential for stress measurements. However, detailed investigations have not been published regarding the effect of tip radius on observed near-field enhancement. Such investigations are important to understand the fundamental limits regarding the signal-to-noise ratio of the measurement and the spatial resolution that can potentially be achieved before wide application to semiconductor metrology can be considered. Investigations are presented into near-field enhancement of Raman scattering from Si device structures using a modified near-field optical microscope (NSOM). The nano-Raman system utilizes an off-axis (45°) backscattering NSOM geometry with free-space collection optics. The spectroscopic configuration utilizes a single-bounce spectrometer incorporating a holographic notch filter assembly utilized as a secondary beam-splitter for an apertureless backscattering collection geometry. Near-field enhancement is observed for both Al- and Ag-coated probes. An inverse square power-law relationship is observed between near-field enhancement factor and tip radius.

  3. Scattering effects on the performance of carbon nanotube field effect transistor in a compact model

    NASA Astrophysics Data System (ADS)

    Hamieh, S. D.; Desgreys, P.; Naviner, J. F.

    2010-01-01

    Carbon nanotube field-effect transistors (CNTFET) are being extensively studied as possible successors to CMOS. Device simulators have been developed to estimate their performance in sub-10-nm and device structures have been fabricated. In this work, a new compact model of single-walled semiconducting CNTFET is proposed implementing the calculation of energy conduction sub-band minima and the treatment of scattering effects through energy shift in CNTFET. The developed model has been used to simulate I-V characteristics using VHDL-AMS simulator.

  4. Complementary junction heterostructure field-effect transistor

    DOEpatents

    Baca, Albert G.; Drummond, Timothy J.; Robertson, Perry J.; Zipperian, Thomas E.

    1995-01-01

    A complimentary pair of compound semiconductor junction heterostructure field-effect transistors and a method for their manufacture are disclosed. The p-channel junction heterostructure field-effect transistor uses a strained layer to split the degeneracy of the valence band for a greatly improved hole mobility and speed. The n-channel device is formed by a compatible process after removing the strained layer. In this manner, both types of transistors may be independently optimized. Ion implantation is used to form the transistor active and isolation regions for both types of complimentary devices. The invention has uses for the development of low power, high-speed digital integrated circuits.

  5. Complementary junction heterostructure field-effect transistor

    DOEpatents

    Baca, A.G.; Drummond, T.J.; Robertson, P.J.; Zipperian, T.E.

    1995-12-26

    A complimentary pair of compound semiconductor junction heterostructure field-effect transistors and a method for their manufacture are disclosed. The p-channel junction heterostructure field-effect transistor uses a strained layer to split the degeneracy of the valence band for a greatly improved hole mobility and speed. The n-channel device is formed by a compatible process after removing the strained layer. In this manner, both types of transistors may be independently optimized. Ion implantation is used to form the transistor active and isolation regions for both types of complimentary devices. The invention has uses for the development of low power, high-speed digital integrated circuits. 10 figs.

  6. Recent progress in photoactive organic field-effect transistors.

    PubMed

    Wakayama, Yutaka; Hayakawa, Ryoma; Seo, Hoon-Seok

    2014-04-01

    Recent progress in photoactive organic field-effect transistors (OFETs) is reviewed. Photoactive OFETs are divided into light-emitting (LE) and light-receiving (LR) OFETs. In the first part, LE-OFETs are reviewed from the viewpoint of the evolution of device structures. Device performances have improved in the last decade with the evolution of device structures from single-layer unipolar to multi-layer ambipolar transistors. In the second part, various kinds of LR-OFETs are featured. These are categorized according to their functionalities: phototransistors, non-volatile optical memories, and photochromism-based transistors. For both, various device configurations are introduced: thin-film based transistors for practical applications, single-crystalline transistors to investigate fundamental physics, nanowires, multi-layers, and vertical transistors based on new concepts.

  7. Voltage control of ferromagnetic resonance

    NASA Astrophysics Data System (ADS)

    Zhou, Ziyao; Peng, Bin; Zhu, Mingmin; Liu, Ming

    2016-05-01

    Voltage control of magnetism in multiferroics, where the ferromagnetism and ferroelectricity are simultaneously exhibiting, is of great importance to achieve compact, fast and energy efficient voltage controllable magnetic/microwave devices. Particularly, these devices are widely used in radar, aircraft, cell phones and satellites, where volume, response time and energy consumption is critical. Researchers realized electric field tuning of magnetic properties like magnetization, magnetic anisotropy and permeability in varied multiferroic heterostructures such as bulk, thin films and nanostructure by different magnetoelectric (ME) coupling mechanism: strain/stress, interfacial charge, spin-electromagnetic (EM) coupling and exchange coupling, etc. In this review, we focus on voltage control of ferromagnetic resonance (FMR) in multiferroics. ME coupling-induced FMR change is critical in microwave devices, where the electric field tuning of magnetic effective anisotropic field determines the tunability of the performance of microwave devices. Experimentally, FMR measurement technique is also an important method to determine the small effective magnetic field change in small amount of magnetic material precisely due to its high sensitivity and to reveal the deep science of multiferroics, especially, voltage control of magnetism in novel mechanisms like interfacial charge, spin-EM coupling and exchange coupling.

  8. Vacuum-processed polyethylene as a dielectric for low operating voltage organic field effect transistors

    PubMed Central

    Kanbur, Yasin; Irimia-Vladu, Mihai; Głowacki, Eric D.; Voss, Gundula; Baumgartner, Melanie; Schwabegger, Günther; Leonat, Lucia; Ullah, Mujeeb; Sarica, Hizir; Erten-Ela, Sule; Schwödiauer, Reinhard; Sitter, Helmut; Küçükyavuz, Zuhal; Bauer, Siegfried; Sariciftci, Niyazi Serdar

    2012-01-01

    We report on the fabrication and performance of vacuum-processed organic field effect transistors utilizing evaporated low-density polyethylene (LD-PE) as a dielectric layer. With C60 as the organic semiconductor, we demonstrate low operating voltage transistors with field effect mobilities in excess of 4 cm2/Vs. Devices with pentacene showed a mobility of 0.16 cm2/Vs. Devices using tyrian Purple as semiconductor show low-voltage ambipolar operation with equal electron and hole mobilities of ∼0.3 cm2/Vs. These devices demonstrate low hysteresis and operational stability over at least several months. Grazing-angle infrared spectroscopy of evaporated thin films shows that the structure of the polyethylene is similar to solution-cast films. We report also on the morphological and dielectric properties of these films. Our experiments demonstrate that polyethylene is a stable dielectric supporting both hole and electron channels. PMID:23483783

  9. Magnetoconductivity and magnetoluminescence studies in bipolar and almost hole-only sandwich devices made from films of a π-conjugated molecule

    PubMed Central

    Duc Nguyen, Tho; Sheng, Yugang; Rybicki, James E; Wohlgenannt, Markus

    2008-01-01

    We present magnetoconductivity and magnetoluminescence measurements in sandwich devices made from films of a π-conjugated molecule and demonstrate effects of more than 30 and 50% magnitude, respectively, in fields of 100 mT at room-temperature. It has previously been recognized that the effect is caused by hyperfine coupling, and that it is phenomenologically similar to other magnetic field effects that act on electron–hole pairs, which are well-known in spin-chemistry. However, we show that the very large magnitude of the effect contradicts present knowledge of the electron–hole pair recombination processes in electroluminescent π-conjugated molecules, and that the effect persists even in almost hole-only devices. Therefore, this effect is likely caused by the interaction of radical pairs of equal charge. PMID:27877957

  10. Effect of Discontinuities and Penetrations on the Shielding Efficacy of High Temperature Superconducting Magnetic Shields

    NASA Astrophysics Data System (ADS)

    Hatwar, R.; Kvitkovic, J.; Herman, C.; Pamidi, S.

    2015-12-01

    High Temperature Superconducting (HTS) materials have been demonstrated to be suitable for applications in shielding of both DC and AC magnetic fields. Magnetic shielding is required for protecting sensitive instrumentation from external magnetic fields and for preventing the stray magnetic fields produced by high power density equipment from affecting neighbouring devices. HTS shields have high current densities at relatively high operating temperatures (40-77 K) and can be easily fabricated using commercial HTS conductor. High current densities in HTS materials allow design and fabrication of magnetic shields that are lighter and can be incorporated into the body and skin of high power density devices. HTS shields are particularly attractive for HTS devices because a single cryogenic system can be used for cooling the device and the associated shield. Typical power devices need penetrations for power and signal cabling and the penetrations create discontinuities in HTS shields. Hence it is important to assess the effect of the necessary discontinuities on the efficacy of the shields and the design modifications necessary to accommodate the penetrations.

  11. Electric-field-induced extremely large change in resistance in graphene ferromagnets

    NASA Astrophysics Data System (ADS)

    Song, Yu

    2018-01-01

    A colossal magnetoresistance (˜100×10^3% ) and an extremely large magnetoresistance (˜1×10^6% ) have been previously explored in manganite perovskites and Dirac materials, respectively. However, the requirement of an extremely strong magnetic field (and an extremely low temperature) makes them not applicable for realistic devices. In this work, we propose a device that can generate even larger changes in resistance in a zero-magnetic field and at a high temperature. The device is composed of graphene under two strips of yttrium iron garnet (YIG), where two gate voltages are applied to cancel the heavy charge doping in the YIG-induced half-metallic ferromagnets. By calculations using the Landauer-Büttiker formalism, we demonstrate that, when a proper gate voltage is applied on the free ferromagnet, changes in resistance up to 305×10^6% (16×10^3% ) can be achieved at the liquid helium (nitrogen) temperature and in a zero magnetic field. We attribute such a remarkable effect to a gate-induced full-polarization reversal in the free ferromagnet, which results in a metal-state to insulator-state transition in the device. We also find that the proposed effect can be realized in devices using other magnetic insulators, such as EuO and EuS. Our work should be helpful for developing a realistic switching device that is energy saving and CMOS-technology compatible.

  12. Investigation of InP/InGaAs metamorphic co-integrated complementary doping-channel field-effect transistors for logic application

    NASA Astrophysics Data System (ADS)

    Tsai, Jung-Hui

    2014-01-01

    DC performance of InP/InGaAs metamorphic co-integrated complementary doping-channel field-effect transistors (DCFETs) grown on a low-cost GaAs substrate is first demonstrated. In the complementary DCFETs, the n-channel device was fabricated on the InxGa1-xP metamorphic linearly graded buffer layer and the p-channel field-effect transistor was stacked on the top of the n-channel device. Particularly, the saturation voltage of the n-channel device is substantially reduced to decrease the VOL and VIH values attributed that two-dimensional electron gas is formed and could be modulated in the n-InGaAs channel. Experimentally, a maximum extrinsic transconductance of 215 (17) mS/mm and a maximum saturation current density of 43 (-27) mA/mm are obtained in the n-channel (p-channel) device. Furthermore, the noise margins NMH and NML are up to 0.842 and 0.330 V at a supply voltage of 1.5 V in the complementary logic inverter application.

  13. Method for manufacturing compound semiconductor field-effect transistors with improved DC and high frequency performance

    DOEpatents

    Zolper, John C.; Sherwin, Marc E.; Baca, Albert G.

    2000-01-01

    A method for making compound semiconductor devices including the use of a p-type dopant is disclosed wherein the dopant is co-implanted with an n-type donor species at the time the n-channel is formed and a single anneal at moderate temperature is then performed. Also disclosed are devices manufactured using the method. In the preferred embodiment n-MESFETs and other similar field effect transistor devices are manufactured using C ions co-implanted with Si atoms in GaAs to form an n-channel. C exhibits a unique characteristic in the context of the invention in that it exhibits a low activation efficiency (typically, 50% or less) as a p-type dopant, and consequently, it acts to sharpen the Si n-channel by compensating Si donors in the region of the Si-channel tail, but does not contribute substantially to the acceptor concentration in the buried p region. As a result, the invention provides for improved field effect semiconductor and related devices with enhancement of both DC and high-frequency performance.

  14. Homogeneous illusion device exhibiting transformed and shifted scattering effect

    NASA Astrophysics Data System (ADS)

    Mei, Jin-Shuo; Wu, Qun; Zhang, Kuang; He, Xun-Jun; Wang, Yue

    2016-06-01

    Based on the theory of transformation optics, a type of homogeneous illusion device exhibiting transformed and shifted scattering effect is proposed in this paper. The constitutive parameters of the proposed device are derived, and full-wave simulations are performed to validate the electromagnetic properties of transformed and shifted scattering effect. The simulation results show that the proposed device not only can visually shift the image of target in two dimensions, but also can visually transform the shape of target. It is expected that such homogeneous illusion device could possess potential applications in military camouflage and other field of electromagnetic engineering.

  15. Field-effect transistors (2nd revised and enlarged edition)

    NASA Astrophysics Data System (ADS)

    Bocharov, L. N.

    The design, principle of operation, and principal technical characteristics of field-effect transistors produced in the USSR are described. Problems related to the use of field-effect transistors in various radioelectronic devices are examined, and tables of parameters and mean statistical characteristics are presented for the main types of field-effect transistors. Methods for calculating various circuit components are discussed and illustrated by numerical examples.

  16. Scalable ferroelectric MOS capacitors comprised of single crystalline SrZrxTi1-xO3 on Ge.

    NASA Astrophysics Data System (ADS)

    Moghadam, Reza; Xiao, Z.-Y.; Ahmadi-Majlan, K.; Grimley, E.; Ong, P. V.; Lebeau, J. M.; Chambers, S. A.; Hong, X.; Sushko, P.; Ngai, J. H.

    The epitaxial growth of multifunctional oxides on semiconductors has opened a pathway to introduce new functionalities to semiconductor device technologies. In particular, ferroelectric materials integrated on semiconductors could lead to field-effect devices that require very little power to operate, or that possess both logic and memory functionalities. The development of metal-oxide-semiconductor (MOS) capacitors in which the polarization of a ferroelectric gate is coupled to the surface potential of a semiconducting channel is essential in order to realize such field-effect devices. Here we demonstrate that scalable, ferroelectric MOS capacitors can be realized using single crystalline SrZrxTi1-xO3 (x = 0.7) that has been epitaxially grown on Ge. Single crystalline SrZrxTi1-xO3 exhibits characteristics that are ideal for a ferroelectric gate material, namely, a type-I band offset with respect to Ge, large coercive fields and polarization that can be enhanced with electric field. The latter characteristic stems from the relaxor nature of SrZrxTi1-xO3. These properties enable MOS capacitors with 5 nm thick SrZrxTi1-xO3 layers to exhibit a nearly 2 V wide hysteretic window in the capacitance-voltage characteristics. The realization of ferroelectric MOS capacitors with technologically relevant gate thicknesses opens the pathway to practical field effect devices. NSF DMR 1508530.

  17. Improving performance of armchair graphene nanoribbon field effect transistors via boron nitride doping

    NASA Astrophysics Data System (ADS)

    Goharrizi, A. Yazdanpanah; Sanaeepur, M.; Sharifi, M. J.

    2015-09-01

    Device performance of 10 nm length armchair graphene nanoribbon field effect transistors with 1.5 nm and 4 nm width (13 and 33 atoms in width respectively) are compared in terms of Ion /Ioff , trans-conductance, and sub-threshold swing. While narrow devices suffer from edge roughness wider devices are subject to more substrate surface roughness and reduced bandgap. Boron Nitride doping is employed to compensate reduced bandgap in wider devices. Simultaneous effects of edge and substrate surface roughness are considered. Results show that in the presence of both the edge and substrate surface roughness the 4 nm wide device with boron nitride doping shows improved performance with respect to the 1.5 nm one (both of which incorporate the same bandgap AGNR as channel material). Electronic simulations are performed via NEGF method along with tight-binding Hamiltonian. Edge and surface roughness are created by means of one and two dimensional auto correlation functions respectively. Electronic characteristics are averaged over a large number of devices due to statistic nature of both the edge and surface roughness.

  18. Ultrathin solution-processed single crystals of thiophene-phenylene co-oligomers for organic field-effect devices

    NASA Astrophysics Data System (ADS)

    Glushkova, Anastasia V.; Poimanova, Elena Yu.; Bruevich, Vladimir V.; Luponosov, Yuriy N.; Ponomarenko, Sergei A.; Paraschuk, Dmitry Yu.

    2017-08-01

    Thiophene-phenylene co-oligomers (TPCO) single crystals are promising materials for organic light-emitting devices, e.g., light-emitting transistors (OLETs), due to their ability to combine high luminescence and efficient charge transport. However, optical confinement in platy single crystals strongly decreases light emission from their top surface degrading the device performance. To avoid optical waveguiding, single crystals thinner than 100 nm would be beneficial. Herein, we report on solution-processed ultrathin single crystals of TPCO and study their charge transport properties. As materials we used 1,4-bis(5'-hexyl-2,2'-bithiophene-5-yl)benzene (DH-TTPTT) and 1,4-bis(5'-decyl-2,2'-bithiophene-5-yl)benzene (DD-TTPTT). The ultrathin single crystals were studied by optical polarization, atomic-force, and transmission electron microscopies, and as active layers in organic field effect transistors (OFET). The OFET hole mobility was increased tenfold for the oligomer with longer alkyl substituents (DD-TTPTT) reaching 0.2 cm2/Vs. Our studies of crystal growth indicate that if the substrate is wetted, it has no significant effect on the crystal growth. We conclude that solution-processed ultrathin TPCO single crystals are a promising platform for organic optoelectronic field-effect devices.

  19. Theoretical Investigation of Device Aspects of Semiconductor Superlattices.

    DTIC Science & Technology

    1983-09-01

    n-i-p-i devices include bulk field effect transistors, ultrasensitive or ultrafast IR photodetectors , tunable light-emitting devices, and ultrafast...transistor4 ultrasensitive or ultrafast IR photodetectors , tunable light-emitt tg devices, and ultrafast optical modulators. Particularlylppealing...differential conductivity ( NDC ) ......................... 19 3.2.2. Spontaneous and stimulated FIR emission from interlayer transitions

  20. Self aligned hysteresis free carbon nanotube field-effect transistors

    NASA Astrophysics Data System (ADS)

    Shlafman, M.; Tabachnik, T.; Shtempluk, O.; Razin, A.; Kochetkov, V.; Yaish, Y. E.

    2016-04-01

    Hysteresis phenomenon in the transfer characteristics of carbon nanotube field effect transistor (CNT FET) is being considered as the main obstacle for successful realization of electronic devices based on CNTs. In this study, we prepare four kinds of CNTFETs and explore their hysteretic behavior. Two kinds of devices comprise on-surface CNTs (type I) and suspended CNTs (type II) with thin insulating layer underneath and a single global gate which modulates the CNT conductance. The third and fourth types (types III and IV) consist of suspended CNT over a metallic local gate underneath, where for type IV the local gate was patterned self aligned with the source and drain electrodes. The first two types of devices, i.e., type I and II, exhibit substantial hysteresis which increases with scanning range and sweeping time. Under high vacuum conditions and moderate electric fields ( |E |>4 ×106 V /cm ), the hysteresis for on-surface devices cannot be eliminated, as opposed to suspended devices. Interestingly, type IV devices exhibit no hysteresis at all at ambient conditions, and from the different roles which the global and local gates play for the four types of devices, we could learn about the hysteresis mechanism of this system. We believe that these self aligned hysteresis free FETs will enable the realization of different electronic devices and sensors based on CNTs.

  1. The 20 GHz power GaAs FET development

    NASA Technical Reports Server (NTRS)

    Crandell, M.

    1986-01-01

    The development of power Field Effect Transistors (FET) operating in the 20 GHz frequency band is described. The major efforts include GaAs FET device development (both 1 W and 2 W devices), and the development of an amplifier module using these devices.

  2. Cryogenetically Cooled Field Effect Transistors for Low-Noise Systems

    NASA Technical Reports Server (NTRS)

    Wollack, Edward J.; Rabin, Douglas M. (Technical Monitor)

    2002-01-01

    Recent tends in the design, fabrication and use of High-Electron-Mobility-Transistors (HEMT) in low noise amplifiers are reviewed. Systems employing these devices have achieved the lowest system noise for wavelengths greater than three millimeters with relatively modest cryogenic cooling requirements in a variety of ground and space based applications. System requirements which arise in employing such devices in imaging applications are contrasted with other leading coherent detector candidates at microwave wavelengths. Fundamental and practical limitations which arise in the context of microwave application of field effect devices at cryogenic temperatures will be discussed from a component and systems point of view.

  3. Cryogenically Cooled Field Effect Transistors for Low-Noise Systems

    NASA Technical Reports Server (NTRS)

    Wollack, Edward J.

    2002-01-01

    Recent tends in the design, fabrication and use of High-Electron-Mobility-Transistors (HEMT) in low noise amplifiers are reviewed. Systems employing these devices have achieved the lowest system noise for wavelengths greater than three millimeters with relatively modest cryogenic cooling requirements in a variety of ground and space based applications. System requirements which arise in employing such devices in imaging applications are contrasted with other leading coherent detector candidates at microwave wavelengths. Fundamental and practical limitations which arise in the context of microwave application of field effect devices at cryogenic temperatures will be discussed from a component and systems point of view.

  4. Fabrication of 1-dimension nano-material-based device and its electrical characteristics

    NASA Astrophysics Data System (ADS)

    Yang, Xing; Zhou, Zhaoying; Zheng, Fuzhong; Zhang, Min

    2008-12-01

    In recent years, many kinds of 1-dimension nano-materials (Carbon nanotube, ZnO nanobelt and nanowire etc.) continue to emerge which exhibit distinct and unique electromechanical, piezoelectric, photoelectrical properties. In this paper, a 1-dimension nano-materials-based device was proposed. The bottom-up and top-down combined process were used for constructing CNT-array-based device and ZnO nanowire device. The electrical characteristics of the 1D nano-materials-based devices were also investigated. The measurement results of electrical characteristics demonstrate that it is ohm electrical contact behavior between the nano-material and micro-electrodes in the proposed device which also have the field effect. The proposed 1D nano-material-based device shows the application potential in the sensing fields.

  5. Review and perspectives of electrostatic turbulence and transport studies in the basic plasma physics device TORPEX

    NASA Astrophysics Data System (ADS)

    Avino, Fabio; Bovet, Alexandre; Fasoli, Ambrogio; Furno, Ivo; Gustafson, Kyle; Loizu, Joaquim; Ricci, Paolo; Theiler, Christian

    2012-10-01

    TORPEX is a basic plasma physics toroidal device located at the CRPP-EPFL in Lausanne. In TORPEX, a vertical magnetic field superposed on a toroidal field creates helicoidal field lines with both ends terminating on the torus vessel. We review recent advances in the understanding and control of electrostatic interchange turbulence, associated structures and their effect on suprathermal ions. These advances are obtained using high-resolution diagnostics of plasma parameters and wave fields throughout the whole device cross-section, fluid models and numerical simulations. Furthermore, we discuss future developments including the possibility of generating closed field line configurations with rotational transform using an internal toroidal wire carrying a current. This system will also allow the study of innovative fusion-relevant configurations, such as the snowflake divertor.

  6. Evaluation of semiconductor devices for Electric and Hybrid Vehicle (EHV) ac-drive applications, volume 2

    NASA Technical Reports Server (NTRS)

    Lee, F. C.; Chen, D. Y.; Jovanic, M.; Hopkins, D. C.

    1985-01-01

    Test data of switching times characterization of bipolar transistors, of field effect transistor's switching times on-resistance and characterization, comparative data of field effect transistors, and test data of field effect transistor's parallel operation characterization are given. Data is given in the form of graphs.

  7. High performance Si nanowire field-effect-transistors based on a CMOS inverter with tunable threshold voltage.

    PubMed

    Van, Ngoc Huynh; Lee, Jae-Hyun; Sohn, Jung Inn; Cha, Seung Nam; Whang, Dongmok; Kim, Jong Min; Kang, Dae Joon

    2014-05-21

    We successfully fabricated nanowire-based complementary metal-oxide semiconductor (NWCMOS) inverter devices by utilizing n- and p-type Si nanowire field-effect-transistors (NWFETs) via a low-temperature fabrication processing technique. We demonstrate that NWCMOS inverter devices can be operated at less than 1 V, a significantly lower voltage than that of typical thin-film based complementary metal-oxide semiconductor (CMOS) inverter devices. This low-voltage operation was accomplished by controlling the threshold voltage of the n-type Si NWFETs through effective management of the nanowire (NW) doping concentration, while realizing high voltage gain (>10) and ultra-low static power dissipation (≤3 pW) for high-performance digital inverter devices. This result offers a viable means of fabricating high-performance, low-operation voltage, and high-density digital logic circuits using a low-temperature fabrication processing technique suitable for next-generation flexible electronics.

  8. Design and fabrication of high-performance diamond triple-gate field-effect transistors

    PubMed Central

    Liu, Jiangwei; Ohsato, Hirotaka; Wang, Xi; Liao, Meiyong; Koide, Yasuo

    2016-01-01

    The lack of large-area single-crystal diamond wafers has led us to downscale diamond electronic devices. Here, we design and fabricate a hydrogenated diamond (H-diamond) triple-gate metal-oxide-semiconductor field-effect transistor (MOSFET) to extend device downscaling and increase device output current. The device’s electrical properties are compared with those of planar-type MOSFETs, which are fabricated simultaneously on the same substrate. The triple-gate MOSFET’s output current (174.2 mA mm−1) is much higher than that of the planar-type device (45.2 mA mm−1), and the on/off ratio and subthreshold swing are more than 108 and as low as 110 mV dec−1, respectively. The fabrication of these H-diamond triple-gate MOSFETs will drive diamond electronic device development forward towards practical applications. PMID:27708372

  9. Ultralow-power non-volatile memory cells based on P(VDF-TrFE) ferroelectric-gate CMOS silicon nanowire channel field-effect transistors.

    PubMed

    Van, Ngoc Huynh; Lee, Jae-Hyun; Whang, Dongmok; Kang, Dae Joon

    2015-07-21

    Nanowire-based ferroelectric-complementary metal-oxide-semiconductor (NW FeCMOS) nonvolatile memory devices were successfully fabricated by utilizing single n- and p-type Si nanowire ferroelectric-gate field effect transistors (NW FeFETs) as individual memory cells. In addition to having the advantages of single channel n- and p-type Si NW FeFET memory, Si NW FeCMOS memory devices exhibit a direct readout voltage and ultralow power consumption. The reading state power consumption of this device is less than 0.1 pW, which is more than 10(5) times lower than the ON-state power consumption of single-channel ferroelectric memory. This result implies that Si NW FeCMOS memory devices are well suited for use in non-volatile memory chips in modern portable electronic devices, especially where low power consumption is critical for energy conservation and long-term use.

  10. Field Performance versus Standard Test Condition Efficiency of Tandem Solar Cells and the Singular Case of Perovskites/Silicon Devices.

    PubMed

    Dupré, Olivier; Niesen, Bjoern; De Wolf, Stefaan; Ballif, Christophe

    2018-01-18

    Multijunction cells may offer a cost-effective route to boost the efficiency of industrial photovoltaics. For any technology to be deployed in the field, its performance under actual operating conditions is extremely important. In this perspective, we evaluate the impact of spectrum, light intensity, and module temperature variations on the efficiency of tandem devices with crystalline silicon bottom cells with a particular focus on perovskite top cells. We consider devices with different efficiencies and calculate their energy yields using field data from Denver. We find that annual losses due to differences between operating conditions and standard test conditions are similar for single-junction and four-terminal tandem devices. The additional loss for the two-terminal tandem configuration caused by current mismatch reduces its performance ratio by only 1.7% when an optimal top cell bandgap is used. Additionally, the unusual bandgap temperature dependence of perovskites is shown to have a positive, compensating effect on current mismatch.

  11. A Study of the Effects of Fieldbus Network Induced Delays on Control Systems

    ERIC Educational Resources Information Center

    Mainoo, Joseph

    2012-01-01

    Fieldbus networks are all-digital, two-way, multi-drop communication systems that are used to connect field devices such as sensors and actuators, and controllers. These fieldbus network systems are also called networked control systems (NCS). Although, there are different varieties of fieldbus networks such as Foundation Field Bus, DeviceNet, and…

  12. Total-dose radiation effects data for semiconductor devices, volume 1. [radiation resistance of components for the Galileo Project

    NASA Technical Reports Server (NTRS)

    Price, W. E.; Martin, K. E.; Nichols, D. K.; Gauthier, M. K.; Brown, S. F.

    1981-01-01

    Steady-state, total-dose radiation test data are provided in graphic format, for use by electronic designers and other personnel using semiconductor devices in a radiation environment. Data are presented by JPL for various NASA space programs on diodes, bipolar transistors, field effect transistors, silicon-controlled rectifiers, and optical devices. A vendor identification code list is included along with semiconductor device electrical parameter symbols and abbreviations.

  13. Charge transport and trapping in organic field effect transistors exposed to polar analytes

    NASA Astrophysics Data System (ADS)

    Duarte, Davianne; Sharma, Deepak; Cobb, Brian; Dodabalapur, Ananth

    2011-03-01

    Pentacene based organic thin-film transistors were used to study the effects of polar analytes on charge transport and trapping behavior during vapor sensing. Three sets of devices with differing morphology and mobility (0.001-0.5 cm2/V s) were employed. All devices show enhanced trapping upon exposure to analyte molecules. The organic field effect transistors with different mobilities also provide evidence for morphology dependent partition coefficients. This study helps provide a physical basis for many reports on organic transistor based sensor response.

  14. Microscopic origin of low frequency noise in MoS{sub 2} field-effect transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghatak, Subhamoy; Jain, Manish; Ghosh, Arindam

    2014-09-01

    We report measurement of low frequency 1/f noise in molybdenum di-sulphide (MoS{sub 2}) field-effect transistors in multiple device configurations including MoS{sub 2} on silicon dioxide as well as MoS{sub 2}-hexagonal boron nitride (hBN) heterostructures. All as-fabricated devices show similar magnitude of noise with number fluctuation as the dominant mechanism at high temperatures and density, although the calculated density of traps is two orders of magnitude higher than that at the SiO{sub 2} interface. Measurements on the heterostructure devices with vacuum annealing and dual gated configuration reveals that along with the channel, metal-MoS{sub 2} contacts also play a significant role inmore » determining noise magnitude in these devices.« less

  15. Three fundamental devices in one: a reconfigurable multifunctional device in two-dimensional WSe2

    NASA Astrophysics Data System (ADS)

    Dhakras, Prathamesh; Agnihotri, Pratik; Lee, Ji Ung

    2017-06-01

    The three pillars of semiconductor device technologies are (1) the p-n diode, (2) the metal-oxide-semiconductor field-effect transistor and (3) the bipolar junction transistor. They have enabled the unprecedented growth in the field of information technology that we see today. Until recently, the technological revolution for better, faster and more efficient devices has been governed by scaling down the device dimensions following Moore’s Law. With the slowing of Moore’s law, there is a need for alternative materials and computing technologies that can continue the advancement in functionality. Here, we describe a single, dynamically reconfigurable device that implements these three fundamental device functions. The device uses buried gates to achieve n- and p-channels and fits into a larger effort to develop devices with enhanced functionalities, including logic functions, over device scaling. As they are all surface conducting devices, we use one material parameter, the interface trap density of states, to describe the key figure-of-merit of each device.

  16. Extracting the field-effect mobilities of random semiconducting single-walled carbon nanotube networks: A critical comparison of methods

    NASA Astrophysics Data System (ADS)

    Schießl, Stefan P.; Rother, Marcel; Lüttgens, Jan; Zaumseil, Jana

    2017-11-01

    The field-effect mobility is an important figure of merit for semiconductors such as random networks of single-walled carbon nanotubes (SWNTs). However, owing to their network properties and quantum capacitance, the standard models for field-effect transistors cannot be applied without modifications. Several different methods are used to determine the mobility with often very different results. We fabricated and characterized field-effect transistors with different polymer-sorted, semiconducting SWNT network densities ranging from low (≈6 μm-1) to densely packed quasi-monolayers (≈26 μm-1) with a maximum on-conductance of 0.24 μS μm-1 and compared four different techniques to evaluate the field-effect mobility. We demonstrate the limits and requirements for each method with regard to device layout and carrier accumulation. We find that techniques that take into account the measured capacitance on the active device give the most reliable mobility values. Finally, we compare our experimental results to a random-resistor-network model.

  17. Scalable fabrication of a hybrid field-effect and acousto-electric device by direct growth of monolayer MoS2/LiNbO3

    PubMed Central

    Preciado, Edwin; Schülein, Florian J.R.; Nguyen, Ariana E.; Barroso, David; Isarraraz, Miguel; von Son, Gretel; Lu, I-Hsi; Michailow, Wladislaw; Möller, Benjamin; Klee, Velveth; Mann, John; Wixforth, Achim; Bartels, Ludwig; Krenner, Hubert J.

    2015-01-01

    Lithium niobate is the archetypical ferroelectric material and the substrate of choice for numerous applications including surface acoustic wave radio frequencies devices and integrated optics. It offers a unique combination of substantial piezoelectric and birefringent properties, yet its lack of optical activity and semiconducting transport hamper application in optoelectronics. Here we fabricate and characterize a hybrid MoS2/LiNbO3 acousto-electric device via a scalable route that uses millimetre-scale direct chemical vapour deposition of MoS2 followed by lithographic definition of a field-effect transistor structure on top. The prototypical device exhibits electrical characteristics competitive with MoS2 devices on silicon. Surface acoustic waves excited on the substrate can manipulate and probe the electrical transport in the monolayer device in a contact-free manner. We realize both a sound-driven battery and an acoustic photodetector. Our findings open directions to non-invasive investigation of electrical properties of monolayer films. PMID:26493867

  18. Evaluation of magnetic field's uniformity inside electromagnetic coils using graphene

    NASA Astrophysics Data System (ADS)

    Amanatiadis, Stamatios A.; Kantartzis, Nikolaos V.; Ohtani, Tadao; Kanai, Yasushii

    2018-05-01

    The distribution of the magnetic field in electromagnetic coils, such as those employed in magnetic resonance imaging (MRI), is evaluated in this paper, through graphene gyrotropic properties. Initially, the rotation of an incident linearly polarized plane wave, due to an infinite graphene layer, is studied theoretically via the extraction of the perpendicular, to the polarization, electric component of the transmitted wave. Moreover, the influence of the magnetic bias field strength on this component is, also, examined, indicating the eligibility of graphene to detect magnetostatic field variations. To this aim, a specific device is proposed, consisting of a high frequency source, an electric field detector, and a finite graphene sheet that differs from the infinite one of the analytical case. To quantify the distance that the gyrotropic effects are detectable, the effective region is introduced and extracted via a properly modified finite-difference time-domain (FDTD) algorithm. The featured device is verified through a setup comprising a uniform electromagnetic coil, where the generated magnetostatic field is calculated at several cross-sections of the coil and compared to actual field values. Results indicate the accuracy and sensitivity of the designed device for the unambiguous regions.

  19. Personal medical electronic devices and walk-through metal detector security systems: assessing electromagnetic interference effects.

    PubMed

    Guag, Joshua; Addissie, Bisrat; Witters, Donald

    2017-03-20

    There have been concerns that Electromagnetic security systems such as walk-through metal detectors (WTMDs) can potentially cause electromagnetic interference (EMI) in certain active medical devices including implantable cardiac pacemakers and implantable neurostimulators. Incidents of EMI between WTMDs and active medical devices also known as personal medical electronic devices (PMED) continue to be reported. This paper reports on emission measurements of sample WTMDs and testing of 20 PMEDs in a WTMD simulation system. Magnetic fields from sample WTMD systems were characterized for emissions and exposure of certain PMEDs. A WTMD simulator system designed and evaluated by FDA in previous studies was used to mimic the PMED exposures to the waveform from sample WTMDs. The simulation system allows for controlled PMED exposure enabling careful study with adjustable magnetic field strengths and exposure duration, and provides flexibility for PMED exposure at elevated levels in order to study EMI effects on the PMED. The PMED samples consisted of six implantable cardiac pacemakers, six implantable cardioverter defibrillators (ICD), five implantable neurostimulators, and three insulin pumps. Each PMED was exposed in the simulator to the sample WTMD waveforms using methods based on appropriate consensus test standards for each of the device type. Testing the sample PMEDs using the WTMD simulator revealed EMI effects on two implantable pacemakers and one implantable neurostimulator for exposure field strength comparable to actual WTMD field strength. The observed effects were transient and the PMEDs returned to pre-exposure operation within a few seconds after removal from the simulated WTMD exposure fields. No EMI was observed for the sample ICDs or insulin pumps. The findings are consistent with earlier studies where certain sample PMEDs exhibited EMI effects. Clinical implications were not addressed in this study. Additional studies are needed to evaluate potential PMED EMI susceptibilities over a broader range of security systems.

  20. Aluminum nitride insulating films for MOSFET devices

    NASA Technical Reports Server (NTRS)

    Lewicki, G. W.; Maserjian, J.

    1972-01-01

    Application of aluminum nitrides as electrical insulator for electric capacitors is discussed. Electrical properties of aluminum nitrides are analyzed and specific use with field effect transistors is defined. Operational limits of field effect transistors are developed.

  1. A charge-based model of Junction Barrier Schottky rectifiers

    NASA Astrophysics Data System (ADS)

    Latorre-Rey, Alvaro D.; Mudholkar, Mihir; Quddus, Mohammed T.; Salih, Ali

    2018-06-01

    A new charge-based model of the electric field distribution for Junction Barrier Schottky (JBS) diodes is presented, based on the description of the charge-sharing effect between the vertical Schottky junction and the lateral pn-junctions that constitute the active cell of the device. In our model, the inherently 2-D problem is transformed into a simple but accurate 1-D problem which has a closed analytical solution that captures the reshaping and reduction of the electric field profile responsible for the improved electrical performance of these devices, while preserving physically meaningful expressions that depend on relevant device parameters. The validation of the model is performed by comparing calculated electric field profiles with drift-diffusion simulations of a JBS device showing good agreement. Even though other fully 2-D models already available provide higher accuracy, they lack physical insight making the proposed model an useful tool for device design.

  2. Fiber-optic evanescent-field sensor for attitude measurement

    NASA Astrophysics Data System (ADS)

    Liu, Yun; Chen, Shimeng; Liu, Zigeng; Guang, Jianye; Peng, Wei

    2017-11-01

    We proposed a new approach to attitude measurement by an evanescent field-based optical fiber sensing device and demonstrated a liquid pendulum. The device consisted of three fiber-optic evanescent-filed sensors which were fabricated by tapered single mode fibers and immersed in liquid. Three fiber Bragg gratings were used to measure the changes in evanescent field. And their reflection peaks were monitored in real time as measurement signals. Because every set of reflection responses corresponded to a unique attitude, the attitude of the device could be measured by the three fiber-optic evanescent-filed sensors. After theoretical analysis, computerized simulation and experimental verification, regular responses were obtained using this device for attitude measurement. The measurement ranges of dihedral angle and direction angle were 0°-50° and 0°-360°. The device is based on cost-effective power-referenced scheme. It can be used in electromagnetic or nuclear radiation environment.

  3. Emerging ferroelectric transistors with nanoscale channel materials: the possibilities, the limitations

    NASA Astrophysics Data System (ADS)

    Hong, Xia

    2016-03-01

    Combining the nonvolatile, locally switchable polarization field of a ferroelectric thin film with a nanoscale electronic material in a field effect transistor structure offers the opportunity to examine and control a rich variety of mesoscopic phenomena and interface coupling. It is also possible to introduce new phases and functionalities into these hybrid systems through rational design. This paper reviews two rapidly progressing branches in the field of ferroelectric transistors, which employ two distinct classes of nanoscale electronic materials as the conducting channel, the two-dimensional (2D) electron gas graphene and the strongly correlated transition metal oxide thin films. The topics covered include the basic device physics, novel phenomena emerging in the hybrid systems, critical mechanisms that control the magnitude and stability of the field effect modulation and the mobility of the channel material, potential device applications, and the performance limitations of these devices due to the complex interface interactions and challenges in achieving controlled materials properties. Possible future directions for this field are also outlined, including local ferroelectric gate control via nanoscale domain patterning and incorporating other emergent materials in this device concept, such as the simple binary ferroelectrics, layered 2D transition metal dichalcogenides, and the 4d and 5d heavy metal compounds with strong spin-orbit coupling.

  4. Effects of Gold Nanoparticles on Pentacene Organic Field-Effect Transistors

    NASA Astrophysics Data System (ADS)

    Lee, Keanchuan; Weis, Martin; Ou-Yang, Wei; Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa

    2011-04-01

    The effect of gold nanoparticles (NPs) on pentacene organic field-effect transistors (OFETs) was being investigated by both DC and AC methods, which are current-voltage (I-V) measurements in steady-state and impedance spectroscopy (IS) respectively. Here poly(vinyl alcohol) (PVA) and PVA blended with Au NPs as composite are spin-coated on SiO2 as gate-insulator for top-contact pentacene OFET. The characteristics of the device were being investigated based on the contact resistance, trapped charges, effective mobility and threshold voltage based on transfer characteristics of OFET. Results revealed that OFET with NPs exhibited larger hysteresis and higher contact resistance at high voltage region. IS measurements were performed and the fitting of results by the Maxwell-Wagner equivalent circuit showed that for device with NPs a series of capacitance and resistance which represents trapping must be introduced in order to have agreeable fitting. The fitting had helped to clarify the reason behind the higher contact resistance and bigger hysteresis which was mainly caused by the space charge field formed by the traps when Au NPs were introduced into the device.

  5. Monte Carlo simulations of spin transport in a strained nanoscale InGaAs field effect transistor

    NASA Astrophysics Data System (ADS)

    Thorpe, B.; Kalna, K.; Langbein, F. C.; Schirmer, S.

    2017-12-01

    Spin-based logic devices could operate at a very high speed with a very low energy consumption and hold significant promise for quantum information processing and metrology. We develop a spintronic device simulator by combining an in-house developed, experimentally verified, ensemble self-consistent Monte Carlo device simulator with spin transport based on a Bloch equation model and a spin-orbit interaction Hamiltonian accounting for Dresselhaus and Rashba couplings. It is employed to simulate a spin field effect transistor operating under externally applied voltages on a gate and a drain. In particular, we simulate electron spin transport in a 25 nm gate length In0.7Ga0.3As metal-oxide-semiconductor field-effect transistor with a CMOS compatible architecture. We observe a non-uniform decay of the net magnetization between the source and the gate and a magnetization recovery effect due to spin refocusing induced by a high electric field between the gate and the drain. We demonstrate a coherent control of the polarization vector of the drain current via the source-drain and gate voltages, and show that the magnetization of the drain current can be increased twofold by the strain induced into the channel.

  6. Field Effect Sensors for Nucleic Acid Detection: Recent Advances and Future Perspectives

    PubMed Central

    Veigas, Bruno; Fortunato, Elvira; Baptista, Pedro V.

    2015-01-01

    In the last decade the use of field-effect-based devices has become a basic structural element in a new generation of biosensors that allow label-free DNA analysis. In particular, ion sensitive field effect transistors (FET) are the basis for the development of radical new approaches for the specific detection and characterization of DNA due to FETs’ greater signal-to-noise ratio, fast measurement capabilities, and possibility to be included in portable instrumentation. Reliable molecular characterization of DNA and/or RNA is vital for disease diagnostics and to follow up alterations in gene expression profiles. FET biosensors may become a relevant tool for molecular diagnostics and at point-of-care. The development of these devices and strategies should be carefully designed, as biomolecular recognition and detection events must occur within the Debye length. This limitation is sometimes considered to be fundamental for FET devices and considerable efforts have been made to develop better architectures. Herein we review the use of field effect sensors for nucleic acid detection strategies—from production and functionalization to integration in molecular diagnostics platforms, with special focus on those that have made their way into the diagnostics lab. PMID:25946631

  7. Thick layered semiconductor devices with water top-gates: High on-off ratio field-effect transistors and aqueous sensors.

    PubMed

    Huang, Yuan; Sutter, Eli; Wu, Liangmei; Xu, Hong; Bao, Lihong; Gao, Hong-Jun; Zhou, Xingjiang; Sutter, Peter

    2018-06-21

    Layered semiconductors show promise as channel materials for field-effect transistors (FETs). Usually, such devices incorporate solid back or top gate dielectrics. Here, we explore de-ionized (DI) water as a solution top gate for field-effect switching of layered semiconductors including SnS2, MoS2, and black phosphorus. The DI water gate is easily fabricated, can sustain rapid bias changes, and its efficient coupling to layered materials provides high on-off current ratios, near-ideal sub-threshold swing, and enhanced short-channel behavior even for FETs with thick, bulk-like channels where such control is difficult to realize with conventional back-gating. Screening by the high-k solution gate eliminates hysteresis due to surface and interface trap states and substantially enhances the field-effect mobility. The onset of water electrolysis sets the ultimate limit to DI water gating at large negative gate bias. Measurements in this regime show promise for aqueous sensing, demonstrated here by the amperometric detection of glucose in aqueous solution. DI water gating of layered semiconductors can be harnessed in research on novel materials and devices, and it may with further development find broad applications in microelectronics and sensing.

  8. Nanostructured p-type semiconducting transparent oxides: promising materials for nano-active devices and the emerging field of "transparent nanoelectronics".

    PubMed

    Banerjee, Arghya; Chattopadhyay, Kalyan K

    2008-01-01

    Transparent conducting oxides (TCO) with p-type semiconductivity have recently gained renewed interest for the fabrication of all-oxide transparent junctions, having potential applications in the emerging field of 'Transparent' or 'Invisible Electronics'. This kind of transparent junctions can be used as a "functional" window, which will transmit visible portion of solar radiation, but generates electricity by the absorption of the UV part. Therefore, these devices can be used as UV shield as well as UV cells. In this report, a brief review on the research activities on various p-TCO materials is furnished along-with the fabrication of different transparent p-n homojunction, heterojunction and field-effect transistors. Also the reason behind the difficulties in obtaining p-TCO materials and possible solutions are discussed in details. Considerable attention is given in describing the various patent generations on the field of p-TCO materials as well as transparent p-n junction diodes and light emitting devices. Also, most importantly, a detailed review and patenting activities on the nanocrystalline p-TCO materials and transparent nano-active device fabrication are furnished with considerable attention. And finally, a systematic description on the fabrication and characterization of nanocrystalline, p-type transparent conducting CuAlO(2) thin film, deposited by cost-effective low-temperature DC sputtering technique, by our group, is furnished in details. These p-TCO micro/nano-materials have wide range of applications in the field of optoelectronics, nanoelectronics, space sciences, field-emission displays, thermoelectric converters and sensing devices.

  9. Ferroelectric-Driven Performance Enhancement of Graphene Field-Effect Transistors Based on Vertical Tunneling Heterostructures.

    PubMed

    Yuan, Shuoguo; Yang, Zhibin; Xie, Chao; Yan, Feng; Dai, Jiyan; Lau, Shu Ping; Chan, Helen L W; Hao, Jianhua

    2016-12-01

    A vertical graphene heterostructure field-effect transistor (VGHFET) using an ultrathin ferroelectric film as a tunnel barrier is developed. The heterostructure is capable of providing new degrees of tunability and functionality via coupling between the ferroelectricity and the tunnel current of the VGHFET, which results in a high-performance device. The results pave the way for developing novel atomic-scale 2D heterostructures and devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Optical field dissipation in heterostructures for nanophotovoltaic devices

    NASA Astrophysics Data System (ADS)

    Villa-Angulo, Carlos; Sauceda-Carvajal, Daniel; Villa-Angulo, José R.; Villa-Angulo, Rafael

    2016-10-01

    In heterostructures for nanophotovoltaic (NPV) devices, a number of layers are concatenated in a multilayer configuration. In the analysis of a multilayer configuration, it is commonly assumed that the intensity of the optical field has an exponential decrease along the direction of propagation inside the structure. Effects such as reflections and interference are neglected. These neglected effects become especially important ones once the layer dimension reaches several nanometers. At this width regimen, quantum effects are present since layers are thin compared with the penetration depth and the wavelength of the incident light. Quantum effects influence photon absorption and affect the optical field dissipation that controls electron-hole pairs generation. Hence, dissipation of the optical field inside an NPV device is an important aspect to consider in studying and determining performance properties. We employed the one-dimensional optical transfer matrix theory and the quantum well theory to analyze the optical field dissipation in the active layer of heterostructures for NPV devices. Illumination of 100 mW·cm-2 air mass 1.5 global (AM 1.5G) standard was considered for the analysis. The study was extended to low-dimensional heterostructures of the binary compound CdS/CdSe/CdS, the ternary compound Ga0.9Al0.1As/GaAs/Ga0.9Al0.1As, and the quaternary compound In0.85Ga0.15As0.30P0.70/In0.7Ga0.3As0.6P0.4/In0.85Ga0.15As0.30P0.70.

  11. Velocity overshoot decay mechanisms in compound semiconductor field-effect transistors with a submicron characteristic length

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jyegal, Jang, E-mail: jjyegal@inu.ac.kr

    Velocity overshoot is a critically important nonstationary effect utilized for the enhanced performance of submicron field-effect devices fabricated with high-electron-mobility compound semiconductors. However, the physical mechanisms of velocity overshoot decay dynamics in the devices are not known in detail. Therefore, a numerical analysis is conducted typically for a submicron GaAs metal-semiconductor field-effect transistor in order to elucidate the physical mechanisms. It is found that there exist three different mechanisms, depending on device bias conditions. Specifically, at large drain biases corresponding to the saturation drain current (dc) region, the velocity overshoot suddenly begins to drop very sensitively due to the onsetmore » of a rapid decrease of the momentum relaxation time, not the mobility, arising from the effect of velocity-randomizing intervalley scattering. It then continues to drop rapidly and decays completely by severe mobility reduction due to intervalley scattering. On the other hand, at small drain biases corresponding to the linear dc region, the velocity overshoot suddenly begins to drop very sensitively due to the onset of a rapid increase of thermal energy diffusion by electrons in the channel of the gate. It then continues to drop rapidly for a certain channel distance due to the increasing thermal energy diffusion effect, and later completely decays by a sharply decreasing electric field. Moreover, at drain biases close to a dc saturation voltage, the mechanism is a mixture of the above two bias conditions. It is suggested that a large secondary-valley energy separation is essential to increase the performance of submicron devices.« less

  12. Field assessment and enhancement of cognitive performance: development of an ambulatory vigilance monitor.

    PubMed

    Lieberman, Harris R; Kramer, F Matthew; Montain, Scott J; Niro, Philip

    2007-05-01

    Limited opportunities to study human cognitive performance in non-laboratory, ambulatory situations exist. However, advances in technology make it possible to extend behavioral assessments to the field. One of the first devices to measure human behavior in the field was the wrist-worn actigraph. This device acquires minute-by-minute information on an individual's physical activity and can distinguish sleep from waking, the most basic aspect of behavior. Our laboratory developed a series of wrist-worn devices, not much larger than a watch, which assess reaction time, vigilance and memory. The devices concurrently assess motor activity with greater temporal resolution than standard actigraphs. They also continuously monitor multiple environmental variables including temperature, humidity, sound, and light. These monitors have been employed during training and simulated military operations to collect behavioral and environmental information that would typically be unavailable under such circumstances. Development of the vigilance monitor, and how each successive version extended capabilities of the device are described. Data from several studies are presented, including studies conducted in harsh field environments during a simulated infantry assault, an officer training course. The monitors simultaneously documented environmental conditions, patterns of sleep and activity and effects of nutritional manipulations on cognitive performance. They provide a new method to relate cognitive performance to real world environmental conditions and assess effects of various interventions on human behavior in the field. They can also monitor cognitive performance in real time, and if it is degraded, attempt to intervene to maintain

  13. Potentiometric Detection of Pathogens

    DTIC Science & Technology

    2012-01-01

    nanosize organic electrode (conducting polymer top-layer) surface. This approach has then been changed to the gate modification in ion sensitive field...electrode (conducting polymer top-layer) surface. This approach has then been changed to the gate modification in ion sensitive field effect transistors, in...the conducting polymer top-layer, which makes the devices very functional and competitive. Secondly, the device development is discussed and finally

  14. Temperature-Dependent Electric Field Poling Effects in CH3NH3PbI3 Optoelectronic Devices.

    PubMed

    Zhang, Chuang; Sun, Dali; Liu, Xiaojie; Sheng, Chuan-Xiang; Vardeny, Zeev Valy

    2017-04-06

    Organo-lead halide perovskites show excellent optoelectronic properties; however, the unexpected inconsistency in forward-backward I-V characteristics remains a problem for fabricating solar panels. Here we have investigated the reasons behind this "hysteresis" by following the changes in photocurrent and photoluminescence under electric field poling in transverse CH 3 NH 3 PbI 3 -based devices from 300 to 10 K. We found that the hysteresis disappears at cryogenic temperatures, indicating the "freeze-out" of the ionic diffusion contribution. When the same device is cooled under continuous poling, the built-in electric field from ion accumulation brings significant photovoltaic effect even at 10 K. From the change of photoluminescence upon polling, we found a second dipole-related mechanism which enhances radiative recombination upon the alignment of the organic cations. The ionic origin of hysteresis was also verified by applying a magnetic field to affect the ion diffusion. These findings reveal the coexistence of ionic and dipole-related mechanisms for the hysteresis in hybrid perovskites.

  15. Magnetoresistance devices based on single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Hod, Oded; Rabani, Eran; Baer, Roi

    2005-08-01

    We demonstrate the physical principles for the construction of a nanometer-sized magnetoresistance device based on the Aharonov-Bohm effect [Phys. Rev. 115, 485 (1959)]. The proposed device is made of a short single-walled carbon nanotube (SWCNT) placed on a substrate and coupled to a tip/contacts. We consider conductance due to the motion of electrons along the circumference of the tube (as opposed to the motion parallel to its axis). We find that the circumference conductance is sensitive to magnetic fields threading the SWCNT due to the Aharonov-Bohm effect, and show that by retracting the tip/contacts, so that the coupling to the SWCNT is reduced, very high sensitivity to the threading magnetic field develops. This is due to the formation of a narrow resonance through which the tunneling current flows. Using a bias potential the resonance can be shifted to low magnetic fields, allowing the control of conductance with magnetic fields of the order of 1 T.

  16. Primary experimental study on safety of deep brain stimulation in RF electromagnetic field.

    PubMed

    Jun, Xu; Luming, Li; Hongwei, Hao

    2009-01-01

    With the rapid growth of clinical application of Deep Brain Stimulation, its safety and functional concern in the electromagnetic field, another pollution becoming much more serious, has become more and more significant. Meanwhile, the measuring standards on Electromagnetic Compatibility (EMC) for DBS are still incomplete. Particularly, the knowledge of the electromagnetic field induced signals on the implanted lead is ignorant while some informal reports some side effects. This paper briefly surmised the status of EMC standards on implantable medical devices. Based on the EMC experiments of DBS device we developed, two experiments for measuring the induced voltage of the deep brain stimulator in RF electromagnetic field were reported. The measured data showed that the induced voltage in some frequency was prominent, for example over 2V. As a primary research, we think these results would be significant to cause researcher to pay more attention to the EMC safety problem and biological effects of the induced voltage in deep brain stimulation and other implantable devices.

  17. Degradation Mechanisms for GaN and GaAs High Speed Transistors

    PubMed Central

    Cheney, David J.; Douglas, Erica A.; Liu, Lu; Lo, Chien-Fong; Gila, Brent P.; Ren, Fan; Pearton, Stephen J.

    2012-01-01

    We present a review of reliability issues in AlGaN/GaN and AlGaAs/GaAs high electron mobility transistors (HEMTs) as well as Heterojunction Bipolar Transistors (HBTs) in the AlGaAs/GaAs materials systems. Because of the complex nature and multi-faceted operation modes of these devices, reliability studies must go beyond the typical Arrhenius accelerated life tests. We review the electric field driven degradation in devices with different gate metallization, device dimensions, electric field mitigation techniques (such as source field plate), and the effect of device fabrication processes for both DC and RF stress conditions. We summarize the degradation mechanisms that limit the lifetime of these devices. A variety of contact and surface degradation mechanisms have been reported, but differ in the two device technologies: For HEMTs, the layers are thin and relatively lightly doped compared to HBT structures and there is a metal Schottky gate that is directly on the semiconductor. By contrast, the HBT relies on pn junctions for current modulation and has only Ohmic contacts. This leads to different degradation mechanisms for the two types of devices.

  18. HgNO3 sensitivity of AlGaN/GaN field effect transistors functionalized with phytochelating peptides

    NASA Astrophysics Data System (ADS)

    Rohrbaugh, Nathaniel; Hernandez-Balderrama, Luis; Kaess, Felix; Kirste, Ronny; Collazo, Ramon; Ivanisevic, Albena

    2016-06-01

    This study examined the conductance sensitivity of AlGaN/GaN field effect transistors in response to varying Hg/HNO3 solutions. FET surfaces were covalently functionalized with phytochelatin-5 peptides in order to detect Hg in solution. Results showed a resilience of peptide-AlGaN/GaN bonds in the presence of strong HNO3 aliquots, with significant degradation in FET ID signal. However, devices showed strong and varied response to Hg concentrations of 1, 10, 100, and 1000 ppm. The gathered statistically significant results indicate that peptide terminated AlGaN/GaN devices are capable of differentiating between Hg solutions and demonstrate device sensitivity.

  19. Performance analysis of InGaAs/GaAsP heterojunction double gate tunnel field effect transistor

    NASA Astrophysics Data System (ADS)

    Ahish, S.; Sharma, Dheeraj; Vasantha, M. H.; Kumar, Y. B. N.

    2017-03-01

    In this paper, analog/RF performance of InGaAs/GaAsP heterojunction double gate tunnel field effect transistor (HJTFET) has been explored. A highly doped n+ layer is placed at the Source-Channel junction in order to improve the horizontal electric field component and thus, improve the realiability of the device. The analog performance of the device is analysed by extracting current-voltage characteristics, transcondutance (gm), gate-to-drain capacitance (Cgd) and gate-to-source capacitance (Cgs). Further, RF performance of the device is evaluated by obtaining cut-off frequency (fT) and Gain Bandwidth (GBW) product. ION /IOFF ratio equal to ≈ 109, subthreshold slope of 27 mV/dec, maximum fT of 2.1 THz and maximum GBW of 484 GHz were achieved. Also, the impact of temperature variation on the linearity performance of the device has been investigated. Furthermore, the circuit level performance of the device is performed by implementing a Common Source (CS) amplifier; maximum gain of 31.11 dB and 3-dB cut-off frequency equal to 91.2 GHz were achieved for load resistance (RL) = 17.5 KΩ.

  20. Response of adult mosquitoes to light emitting diodes placed in resting boxes and in the field.

    USDA-ARS?s Scientific Manuscript database

    Resting boxes are passive devices used to attract and capture mosquitoes seeking shelter. Increasing the attractiveness of these devices could improve their effectiveness. Light emitting diodes (LEDs) can be attractive to mosquitoes when used together with other trapping devices. Therefore restin...

  1. Effects of V2O5/Au bi-layer electrodes on the top contact Pentacene-based organic thin film transistors

    NASA Astrophysics Data System (ADS)

    Borthakur, Tribeni; Sarma, Ranjit

    2017-05-01

    Top-contact Pentacene-based organic thin film transistors (OTFTs) with a thin layer of Vanadium Pent-oxide between Pentacene and Au layer are fabricated. Here we have found that the devices with V2O5/Au bi-layer source-drain electrode exhibit better field-effect mobility, high on-off ratio, low threshold voltage and low sub-threshold slope than the devices with Au only. The field-effect mobility, current on-off ratio, threshold voltage and sub-threshold slope of V2O5/Au bi-layer OTFT estimated from the device with 15 nm thick V2O5 layer is .77 cm2 v-1 s-1, 7.5×105, -2.9 V and .36 V/decade respectively.

  2. Variability and reliability analysis in self-assembled multichannel carbon nanotube field-effect transistors

    NASA Astrophysics Data System (ADS)

    Hu, Zhaoying; Tulevski, George S.; Hannon, James B.; Afzali, Ali; Liehr, Michael; Park, Hongsik

    2015-06-01

    Carbon nanotubes (CNTs) have been widely studied as a channel material of scaled transistors for high-speed and low-power logic applications. In order to have sufficient drive current, it is widely assumed that CNT-based logic devices will have multiple CNTs in each channel. Understanding the effects of the number of CNTs on device performance can aid in the design of CNT field-effect transistors (CNTFETs). We have fabricated multi-CNT-channel CNTFETs with an 80-nm channel length using precise self-assembly methods. We describe compact statistical models and Monte Carlo simulations to analyze failure probability and the variability of the on-state current and threshold voltage. The results show that multichannel CNTFETs are more resilient to process variation and random environmental fluctuations than single-CNT devices.

  3. A manufacturable process integration approach for graphene devices

    NASA Astrophysics Data System (ADS)

    Vaziri, Sam; Lupina, Grzegorz; Paussa, Alan; Smith, Anderson D.; Henkel, Christoph; Lippert, Gunther; Dabrowski, Jarek; Mehr, Wolfgang; Östling, Mikael; Lemme, Max C.

    2013-06-01

    In this work, we propose an integration approach for double gate graphene field effect transistors. The approach includes a number of process steps that are key for future integration of graphene in microelectronics: bottom gates with ultra-thin (2 nm) high-quality thermally grown SiO2 dielectrics, shallow trench isolation between devices and atomic layer deposited Al2O3 top gate dielectrics. The complete process flow is demonstrated with fully functional GFET transistors and can be extended to wafer scale processing. We assess, through simulation, the effects of the quantum capacitance and band bending in the silicon substrate on the effective electric fields in the top and bottom gate oxide. The proposed process technology is suitable for other graphene-based devices such as graphene-based hot electron transistors and photodetectors.

  4. Mobility overestimation due to gated contacts in organic field-effect transistors

    PubMed Central

    Bittle, Emily G.; Basham, James I.; Jackson, Thomas N.; Jurchescu, Oana D.; Gundlach, David J.

    2016-01-01

    Parameters used to describe the electrical properties of organic field-effect transistors, such as mobility and threshold voltage, are commonly extracted from measured current–voltage characteristics and interpreted by using the classical metal oxide–semiconductor field-effect transistor model. However, in recent reports of devices with ultra-high mobility (>40 cm2 V−1 s−1), the device characteristics deviate from this idealized model and show an abrupt turn-on in the drain current when measured as a function of gate voltage. In order to investigate this phenomenon, here we report on single crystal rubrene transistors intentionally fabricated to exhibit an abrupt turn-on. We disentangle the channel properties from the contact resistance by using impedance spectroscopy and show that the current in such devices is governed by a gate bias dependence of the contact resistance. As a result, extracted mobility values from d.c. current–voltage characterization are overestimated by one order of magnitude or more. PMID:26961271

  5. A microfluidic device for study of the effect of tumor vascular structures on the flow field and HepG2 cellular flow behaviors.

    PubMed

    Ke, Ming; Cai, Shaoxi; Zou, Misha; Zhao, Yi; Li, Bo; Chen, Sijia; Chen, Longcong

    2018-01-29

    To build a microfluidic device with various morphological features of the tumor vasculature for study of the effects of tumor vascular structures on the flow field and tumor cellular flow behaviors. The designed microfluidic device was able to approximatively simulate the in vivo structures of tumor vessels and the flow within it. In this models, the influences of the angle of bifurcation, the number of branches, and the narrow channels on the flow field and the influence of vorticity on the retention of HepG2 cells were significant. Additionally, shear stress below physiological conditions of blood circulation has considerable effect on the formation of the lumen-like structures (LLSs) of HepG2 cells. These results can provide some data and reference in the understanding of the interaction between hemorheological properties and tumor vascular structures in solid tumors. Copyright © 2018. Published by Elsevier Inc.

  6. Features of the piezo-phototronic effect on optoelectronic devices based on wurtzite semiconductor nanowires.

    PubMed

    Yang, Qing; Wu, Yuanpeng; Liu, Ying; Pan, Caofeng; Wang, Zhong Lin

    2014-02-21

    The piezo-phototronic effect, a three way coupling effect of piezoelectric, semiconductor and photonic properties in non-central symmetric semiconductor materials, utilizing the piezo-potential as a "gate" voltage to tune the charge transport/generation/recombination and modulate the performance of optoelectronic devices, has formed a new field and attracted lots of interest recently. The mechanism was verified in various optoelectronic devices such as light emitting diodes (LEDs), photodetectors and solar cells etc. The fast development and dramatic increasing interest in the piezo-phototronic field not only demonstrate the way the piezo-phototronic effects work, but also indicate the strong need for further research in the physical mechanism and potential applications. Furthermore, it is important to distinguish the contribution of the piezo-phototronic effect from other factors induced by external strain such as piezoresistance, band shifting or contact area change, which also affect the carrier behaviour and device performance. In this perspective, we review our recent progress on piezo-phototronics and especially focus on pointing out the features of piezo-phototronic effect in four aspects: I-V characteristics; c-axis orientation; influence of illumination; and modulation of carrier behaviour. Finally we proposed several criteria for describing the contribution made by the piezo-phototronic effect to the performance of optoelectronic devices. This systematic analysis and comparison will not only help give an in-depth understanding of the piezo-phototronic effect, but also work as guide for the design of devices in related areas.

  7. Analogue spin-orbit torque device for artificial-neural-network-based associative memory operation

    NASA Astrophysics Data System (ADS)

    Borders, William A.; Akima, Hisanao; Fukami, Shunsuke; Moriya, Satoshi; Kurihara, Shouta; Horio, Yoshihiko; Sato, Shigeo; Ohno, Hideo

    2017-01-01

    We demonstrate associative memory operations reminiscent of the brain using nonvolatile spintronics devices. Antiferromagnet-ferromagnet bilayer-based Hall devices, which show analogue-like spin-orbit torque switching under zero magnetic fields and behave as artificial synapses, are used. An artificial neural network is used to associate memorized patterns from their noisy versions. We develop a network consisting of a field-programmable gate array and 36 spin-orbit torque devices. An effect of learning on associative memory operations is successfully confirmed for several 3 × 3-block patterns. A discussion on the present approach for realizing spintronics-based artificial intelligence is given.

  8. Polymer-based electrocaloric cooling devices

    DOEpatents

    Zhang, Qiming; Lu, Sheng-Guo; Li, Xinyu; Gorny, Lee; Cheng, Jiping; Neese, Bret P; Chu, Baojin

    2014-10-28

    Cooling devices (i.e., refrigerators or heat pumps) based on polymers which exhibit a temperature change upon application or removal of an electrical field or voltage, (e.g., fluoropolymers or crosslinked fluoropolymers that exhibit electrocaloric effect).

  9. Lead iodide perovskite light-emitting field-effect transistor

    PubMed Central

    Chin, Xin Yu; Cortecchia, Daniele; Yin, Jun; Bruno, Annalisa; Soci, Cesare

    2015-01-01

    Despite the widespread use of solution-processable hybrid organic–inorganic perovskites in photovoltaic and light-emitting applications, determination of their intrinsic charge transport parameters has been elusive due to the variability of film preparation and history-dependent device performance. Here we show that screening effects associated to ionic transport can be effectively eliminated by lowering the operating temperature of methylammonium lead iodide perovskite (CH3NH3PbI3) field-effect transistors. Field-effect carrier mobility is found to increase by almost two orders of magnitude below 200 K, consistent with phonon scattering-limited transport. Under balanced ambipolar carrier injection, gate-dependent electroluminescence is also observed from the transistor channel, with spectra revealing the tetragonal to orthorhombic phase transition. This demonstration of CH3NH3PbI3 light-emitting field-effect transistors provides intrinsic transport parameters to guide materials and solar cell optimization, and will drive the development of new electro-optic device concepts, such as gated light-emitting diodes and lasers operating at room temperature. PMID:26108967

  10. Effect of substrate and temperature on the electronic properties of monolayer molybdenum disulfide field-effect transistors

    NASA Astrophysics Data System (ADS)

    Yang, Qizhi; Fang, Jiajia; Zhang, Guangru; Wang, Quan

    2018-03-01

    The use of two-dimensional nanostructured molybdenum disulfide (MoS2) films in field-effect transistors (FETs) in place of graphene was investigated. Monolayer MoS2 films were fabricated by chemical vapor deposition. The output and transfer curves of supported and suspended MoS2 FETs were measured. The mobility of the suspended device reached 364.2 cm2 V-1 s-1 at 150 °C. The hysteresis of the supported device in transfer curves was much larger than that of the suspended device, and it increased at higher temperatures. These results indicate that the device mobility was limited by Coulomb scattering at ambient temperature, and surface/interface phonon scattering at 150 °C, and the injection of electrons, via quantum tunneling through the Schottky barrier at the contact, was enhanced at higher temperatures and led to the increase of the hysteresis. The suspended MoS2 films show potential for application as a channel material in electronic devices, and further understanding the causes of hysteresis in a material is important for its use in technologies, such as memory devices and sensing cells.

  11. Guide Catheter Extension Device Is Effective in Renal Angioplasty for Severely Calcified Lesions

    PubMed Central

    Sugimoto, Takeshi; Nomura, Tetsuya; Hori, Yusuke; Yoshioka, Kenichi; Kubota, Hiroshi; Miyawaki, Daisuke; Urata, Ryota; Kikai, Masakazu; Keira, Natsuya; Tatsumi, Tetsuya

    2017-01-01

    Patient: Male, 69 Final Diagnosis: Atherosclerotic renal artery stenosis Symptoms: None Medication: — Clinical Procedure: — Specialty: Radiology Objective: Unusual setting of medical care Background: The GuideLiner catheter extension device is a monorail-type “Child” support catheter that facilitates coaxial alignment with the guide catheter and provides an appropriate back-up force. This device has been developed in the field of coronary intervention, and now is becoming widely applied in the field of endovascular treatment. However, there has been no report on the effectiveness of the guide catheter extension device in percutaneous transluminal renal angioplasty (PTRA). Case Report: We encountered a case of atherosclerotic subtotal occlusion at the ostium of the left renal artery. Due to the severely calcified orifice and weaker back-up force provided by a JR4 guide catheter, we could not pass any guide-wires through the target lesion. Therefore, we introduced a guide catheter extension device, the GuideLiner catheter, through the guide catheter and achieved good guidewire maneuverability. We finally deployed 2 balloon-expandable stents and successfully performed all PTRA procedures. Conclusions: The guide catheter extension device can be effective in PTRA for severely calcified subtotal occlusion. PMID:28533503

  12. Electromagnetic interference of endodontic equipments with cardiovascular implantable electronic device.

    PubMed

    Dadalti, Manoela Teixeira de Sant'Anna; da Cunha, Antônio José Ledo Alves; de Araújo, Marcos César Pimenta; de Moraes, Luis Gustavo Belo; Risso, Patrícia de Andrade

    2016-03-01

    Assess the electromagnetic interference (EMI) of endodontic equipment with cardiovascular implantable electronic devices (CIEDs) and related factors. The laser device, electronic apex locators (EAL), optical microscope, endodontic rotary motors, gutta-percha heat carrier (GH), gutta-percha gun and ultrasonic device were tested next to CIEDs (Medtronic and Biotronik) with varied sensitivity settings and distances. CIEDs were immersed in a saline solution to simulate the electrical resistence of the human body. The endodontic equipment was tested in both horizontal and vertical positions in relation to the components of the CIED. The tests were performed on a dental chair in order to assess the cumulative effect of electromagnetic fields. It was found no EMI with the Biotronik pacemaker. EALs caused EMI with Medtronic PM at a 2 cm distance, with the NSK(®) EAL also affecting the Medtronic defibrillator. GH caused EMI at 2 cm and 5 cm from the Medtronic defibrillator. EMI occurred when devices were horizontally positioned to the CIED. In the majority of the cases, EMI occurred when the pacemaker was set to maximum sensitivity. There was cumulative effect of electromagnetic fields between GH and dental chair. EALs and GH caused EMI which ranged according to type and sensitivity setting of the CIEDs and the distance. However, no endodontic equipment caused permanent damage to the CIED. The use of GH caused a cumulative effect of electromagnetic fields. It suggests that during the treatment of patients with CIEDs, only the necessary equipments should be kept turned on. Patients with CIEDs may be subject to EMI from electronic equipment used in dental offices, as they remain turned on throughout the treatment. This is the first article assessing the cumulative effect of electromagnetic fields. Copyright © 2016. Published by Elsevier Ltd.

  13. Micro-/nanoscale multi-field coupling in nonlinear photonic devices

    NASA Astrophysics Data System (ADS)

    Yang, Qing; Wang, Yubo; Tang, Mingwei; Xu, Pengfei; Xu, Yingke; Liu, Xu

    2017-08-01

    The coupling of mechanics/electronics/photonics may improve the performance of nanophotonic devices not only in the linear region but also in the nonlinear region. This review letter mainly presents the recent advances on multi-field coupling in nonlinear photonic devices. The nonlinear piezoelectric effect and piezo-phototronic effects in quantum wells and fibers show that large second-order nonlinear susceptibilities can be achieved, and second harmonic generation and electro-optic modulation can be enhanced and modulated. Strain engineering can tune the lattice structures and induce second order susceptibilities in central symmetry semiconductors. By combining the absorption-based photoacoustic effect and intensity-dependent photobleaching effect, subdiffraction imaging can be achieved. This review will also discuss possible future applications of these novel effects and the perspective of their research. The review can help us develop a deeper knowledge of the substance of photon-electron-phonon interaction in a micro-/nano- system. Moreover, it can benefit the design of nonlinear optical sensors and imaging devices with a faster response rate, higher efficiency, more sensitivity and higher spatial resolution which could be applied in environmental detection, bio-sensors, medical imaging and so on.

  14. New Materials, Techniques and Device Concepts for Organic NLO Chromophore-based Electrooptic Devices. Part 1

    DTIC Science & Technology

    2006-08-23

    polarization the electric field vector is parallel to the substrate, for TM polarization the magnetic field vector is parallel to the substrate. Figure...section can be obtained for the case of the two electromagnetic field polarization vectors λ and µ describing the two photons being absorbed (of the same or... polarization effects on two-photon absorption as investigated by the technique of thermal lensing detected absorption of a mode- locked laser beam. This

  15. From nanoelectronics to nano-spintronics.

    PubMed

    Wang, Kang L; Ovchinnikov, Igor; Xiu, Faxian; Khitun, Alex; Bao, Ming

    2011-01-01

    Today's electronics uses electron charge as a state variable for logic and computing operation, which is often represented as voltage or current. In this representation of state variable, carriers in electronic devices behave independently even to a few and single electron cases. As the scaling continues to reduce the physical feature size and to increase the functional throughput, two most outstanding limitations and major challenges, among others, are power dissipation and variability as identified by ITRS. This paper presents the expose, in that collective phenomena, e.g., spintronics using appropriate order parameters of magnetic moment as a state variable may be considered favorably for a new room-temperature information processing paradigm. A comparison between electronics and spintronics in terms of variability, quantum and thermal fluctuations will be presented. It shows that the benefits of the scalability to smaller sizes in the case of spintronics (nanomagnetics) include a much reduced variability problem as compared with today's electronics. In addition, another advantage of using nanomagnets is the possibility of constructing nonvolatile logics, which allow for immense power savings during system standby. However, most of devices with magnetic moment usually use current to drive the devices and consequently, power dissipation is a major issue. We will discuss approaches of using electric-field control of ferromagnetism in dilute magnetic semiconductor (DMS) and metallic ferromagnetic materials. With the DMSs, carrier-mediated transition from paramagnetic to ferromagnetic phases make possible to have devices work very much like field effect transistor, plus the non-volatility afforded by ferromagnetism. Then we will describe new possibilities of the use of electric field for metallic materials and devices: Spin wave devices with multiferroics materials. We will also further describe a potential new method of electric field control of metallic ferromagnetism via field effect of the Thomas Fermi surface layer.

  16. Tunable SnSe2 /WSe2 Heterostructure Tunneling Field Effect Transistor.

    PubMed

    Yan, Xiao; Liu, Chunsen; Li, Chao; Bao, Wenzhong; Ding, Shijin; Zhang, David Wei; Zhou, Peng

    2017-09-01

    The burgeoning 2D semiconductors can maintain excellent device electrostatics with an ultranarrow channel length and can realize tunneling by electrostatic gating to avoid deprivation of band-edge sharpness resulting from chemical doping, which make them perfect candidates for tunneling field effect transistors. Here this study presents SnSe 2 /WSe 2 van der Waals heterostructures with SnSe 2 as the p-layer and WSe 2 as the n-layer. The energy band alignment changes from a staggered gap band offset (type-II) to a broken gap (type-III) when changing the negative back-gate voltage to positive, resulting in the device operating as a rectifier diode (rectification ratio ~10 4 ) or an n-type tunneling field effect transistor, respectively. A steep average subthreshold swing of 80 mV dec -1 for exceeding two decades of drain current with a minimum of 37 mV dec -1 at room temperature is observed, and an evident trend toward negative differential resistance is also accomplished for the tunneling field effect transistor due to the high gate efficiency of 0.36 for single gate devices. The I ON /I OFF ratio of the transfer characteristics is >10 6 , accompanying a high ON current >10 -5 A. This work presents original phenomena of multilayer 2D van der Waals heterostructures which can be applied to low-power consumption devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Predictive simulations and optimization of nanowire field-effect PSA sensors including screening

    NASA Astrophysics Data System (ADS)

    Baumgartner, Stefan; Heitzinger, Clemens; Vacic, Aleksandar; Reed, Mark A.

    2013-06-01

    We apply our self-consistent PDE model for the electrical response of field-effect sensors to the 3D simulation of nanowire PSA (prostate-specific antigen) sensors. The charge concentration in the biofunctionalized boundary layer at the semiconductor-electrolyte interface is calculated using the propka algorithm, and the screening of the biomolecules by the free ions in the liquid is modeled by a sensitivity factor. This comprehensive approach yields excellent agreement with experimental current-voltage characteristics without any fitting parameters. Having verified the numerical model in this manner, we study the sensitivity of nanowire PSA sensors by changing device parameters, making it possible to optimize the devices and revealing the attributes of the optimal field-effect sensor.

  18. Magnetic force driven magnetoelectric effect in Mn-Zn-ferrite/PZT composites

    NASA Astrophysics Data System (ADS)

    Zhang, Ru; Jin, Lei; Wu, Gaojian; Zhang, Ning

    2017-03-01

    Several magnetoelectric devices with different structures were prepared using Mn-Zn-ferrite/PZT composite. Its magnetoelectric effect, which arose from piezoelectric effects driven by magnetic force between ferromagnets, has been studied. Experiments showed that the magnetoelectric effects in these devices are much stronger than that observed from the samples relied on magnetostrictive effect. Additionally, the magnetoelectric effect obtained from the devices based on bending piezoelectric effect at resonant point is about one order of magnitude larger than that resulted from ones that rely on stretch mode. Furthermore, magnetoelectric voltage coefficient as high as 7 V cm-1 Oe-1 with zero bias magnetic field was observed in the device with cantilever structure, which was also based on bending piezoelectric effect.

  19. Radiation Effects on Optoelectronic Devices in Space Missions

    NASA Technical Reports Server (NTRS)

    Johnston, Allan H.

    2006-01-01

    Radiation degradation of optoelectronic devices is discussed, including effects on optical emitters, detectors and optocouplers. The importance of displacement damage is emphasized, including the limitations of non-ionizing energy loss (NIEL) in normalizing damage. Failures of optoelectronics in fielded space systems are discussed, along with testing and qualification methods.

  20. GaN metal-oxide-semiconductor field-effect transistors on AlGaN/GaN heterostructure with recessed gate

    NASA Astrophysics Data System (ADS)

    Wang, Qingpeng; Ao, Jin-Ping; Wang, Pangpang; Jiang, Ying; Li, Liuan; Kawaharada, Kazuya; Liu, Yang

    2015-04-01

    GaN metal-oxide-semiconductor field-effect transistors (MOSFETs) on AlGaN/GaN heterostructure with a recess gate were fabricated and characterized. The device showed good pinch-off characteristics and a maximum field-effect mobility of 145.2 cm2·V-1·s-1. The effects of etching gas of Cl2 and SiCl4 were investigated in the gate recess process. SiCl4-etched devices showed higher channel mobility and lower threshold voltage. Atomic force microscope measurement was done to investigate the etching profile with different etching protection mask. Compared with photoresist, SiO2-masked sample showed lower surface roughness and better profile with stepper sidewall and weaker trenching effect resulting in higher channel mobility in the MOSFET.

  1. Gate bias stress in pentacene field-effect-transistors: Charge trapping in the dielectric or semiconductor

    NASA Astrophysics Data System (ADS)

    Häusermann, R.; Batlogg, B.

    2011-08-01

    Gate bias stress instability in organic field-effect transistors (OFETs) is a major conceptual and device issue. This effect manifests itself by an undesirable shift of the transfer characteristics and is associated with long term charge trapping. We study the role of the dielectric and the semiconductor separately by producing OFETs with the same semiconductor (pentacene) combined with different dielectrics (SiO2 and Cytop). We show that it is possible to fabricate devices which are immune to gate bias stress. For other material combinations, charge trapping occurs in the semiconductor alone or in the dielectric.

  2. Graphene field-effect transistors as room-temperature terahertz detectors.

    PubMed

    Vicarelli, L; Vitiello, M S; Coquillat, D; Lombardo, A; Ferrari, A C; Knap, W; Polini, M; Pellegrini, V; Tredicucci, A

    2012-10-01

    The unique optoelectronic properties of graphene make it an ideal platform for a variety of photonic applications, including fast photodetectors, transparent electrodes in displays and photovoltaic modules, optical modulators, plasmonic devices, microcavities, and ultra-fast lasers. Owing to its high carrier mobility, gapless spectrum and frequency-independent absorption, graphene is a very promising material for the development of detectors and modulators operating in the terahertz region of the electromagnetic spectrum (wavelengths in the hundreds of micrometres), still severely lacking in terms of solid-state devices. Here we demonstrate terahertz detectors based on antenna-coupled graphene field-effect transistors. These exploit the nonlinear response to the oscillating radiation field at the gate electrode, with contributions of thermoelectric and photoconductive origin. We demonstrate room temperature operation at 0.3 THz, showing that our devices can already be used in realistic settings, enabling large-area, fast imaging of macroscopic samples.

  3. Anisotropic Laminar Piezocomposite Actuator Incorporating Machined PMN-PT Single Crystal Fibers

    NASA Technical Reports Server (NTRS)

    Wilkie, W. Keats; Inman, Daniel J.; Lloyd, Justin M.; High, James W.

    2006-01-01

    The design, fabrication, and testing of a flexible, laminar, anisotropic piezoelectric composite actuator utilizing machined PMN-32%PT single crystal fibers is presented. The device consists of a layer of rectangular single crystal piezoelectric fibers in an epoxy matrix, packaged between interdigitated electrode polyimide films. Quasistatic free-strain measurements of the single crystal device are compared with measurements from geometrically identical specimens incorporating polycrystalline PZT-5A and PZT-5H piezoceramic fibers. Free-strain actuation of the single crystal actuator at low bipolar electric fields (+/- 250 V/mm) is approximately 400% greater than that of the baseline PZT-5A piezoceramic device, and 200% greater than that of the PZT-5H device. Free-strain actuation under high unipolar electric fields (0-4kV/mm) is approximately 200% of the PZT-5A baseline device, and 150% of the PZT-5H alternate piezoceramic device. Performance increases at low field are qualitatively consistent with predicted increases based on scaling the low-field d33 piezoelectric constants of the respective piezoelectric materials. High-field increases are much less than scaled d33 estimates, but appear consistent with high-field freestrain measurements reported for similar bulk single-crystal and piezoceramic compositions. Measurements of single crystal actuator capacitance and coupling coefficient are also provided. These properties were poorly predicted using scaled bulk material dielectric and coupling coefficient data. Rules-of-mixtures calculations of the effective elastic properties of the single crystal device and estimated actuation work energy densities are also presented. Results indicate longitudinal stiffnesses significantly lower (50% less) than either piezoceramic device. This suggests that single-crystal piezocomposite actuators will be best suited to low induced-stress, high strain and deflection applications.

  4. Anisotropic Piezocomposite Actuator Incorporating Machined PMN-PT Single Crystal Fibers

    NASA Technical Reports Server (NTRS)

    Wilkie, W. Keats; Inman, Daniel J.; Lloyd, Justin M.; High, James W.

    2004-01-01

    The design, fabrication, and testing of a flexible, planar, anisotropic piezoelectric composite actuator utilizing machined PMN-32%PT single crystal fibers is presented. The device consists of a layer of rectangular single crystal piezoelectric fibers in an epoxy matrix, packaged between interdigitated electrode polyimide films. Quasistatic free-strain measurements of the single crystal device are compared with measurements from geometrically identical specimens incorporating polycrystalline PZT-5A and PZT-5H piezoceramic fibers. Free-strain actuation of the single crystal actuator at low bipolar electric fields (+/- 250 V/mm) is approximately 400% greater than that of the baseline PZT-5A piezoceramic device, and 200% greater than that of the PZT-5H device. Free-strain actuation under high unipolar electric fields (0-4kV/mm) is approximately 200% of the PZT-5A baseline device, and 150% of the PZT-5H alternate piezoceramic device. Performance increases at low field are qualitatively consistent with predicted increases based on scaling the low-field d(sub 33) piezoelectric constants of the respective piezoelectric materials. High-field increases are much less than scaled d(sub 33) estimates, but appear consistent with high-field freestrain measurements reported for similar bulk single-crystal and piezoceramic compositions. Measurements of single crystal actuator capacitance and coupling coefficient are also provided. These properties were poorly predicted using scaled bulk material dielectric and coupling coefficient data. Rules-of-mixtures calculations of the effective elastic properties of the single crystal device and estimated actuation work energy densities are also presented. Results indicate longitudinal stiffnesses significantly lower (50% less) than either piezoceramic device. This suggests that single-crystal piezocomposite actuators will be best suited to low induced-stress, high strain and deflection applications.

  5. Risk assessment of electromagnetic fields exposure with metallic orthopedic implants: a cadaveric study.

    PubMed

    Crouzier, D; Selek, L; Martz, B-A; Dabouis, V; Arnaud, R; Debouzy, J-C

    2012-02-01

    Metallic materials are well known to strongly interact with electromagnetic fields. While biological effects of such field have been extensively studied, only few works dealt with the interactions of electromagnetic waves with passive metallic device implanted in biological system. Hence only several numerical and phantom simulation studies were focusing on this aspect, whereas no in situ anatomic experiment has been previously performed. In this study the effect of electromagnetic waves on eight different orthopaedic medical devices (six plates from 55 to 318mm length, a total knee and a total hip prosthesis) were explored on six human cadavers. To mimic a random environmental exposure resulting from the most common frequencies band used in domestic environment and medical applications (TV and radio broadcasting, cell phone communication, MRI, diathermy treatment), a multifrequency generator emitting in VHF, UHF, GSM and GCS frequency bands was used. The different medical devices were exposed to an electromagnetic field at 50W/m(2) and 100W/m(2). After 6min exposure, the temperature was measured on three points close to each medical device, and the induced currents were estimated. No significant temperature increase (<0.2°C) was finally detected; beside, a slight induced tension (up to 1.1V) was recorded but would appear too low to induce any biological side effect. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  6. Hybrid finite element/waveguide mode analysis of passive RF devices

    NASA Astrophysics Data System (ADS)

    McGrath, Daniel T.

    1993-07-01

    A numerical solution for time-harmonic electromagnetic fields in two-port passive radio frequency (RF) devices has been developed, implemented in a computer code, and validated. Vector finite elements are used to represent the fields in the device interior, and field continuity across waveguide apertures is enforced by matching the interior solution to a sum of waveguide modes. Consequently, the mesh may end at the aperture instead of extending into the waveguide. The report discusses the variational formulation and its reduction to a linear system using Galerkin's method. It describes the computer code, including its interface to commercial CAD software used for geometry generation. It presents validation results for waveguide discontinuities, coaxial transitions, and microstrip circuits. They demonstrate that the method is an effective and versatile tool for predicting the performance of passive RF devices.

  7. CdS nanorods/organic hybrid LED array and the piezo-phototronic effect of the device for pressure mapping.

    PubMed

    Bao, Rongrong; Wang, Chunfeng; Dong, Lin; Shen, Changyu; Zhao, Kun; Pan, Caofeng

    2016-04-21

    As widely applied in light-emitting diodes and optical devices, CdS has attracted the attention of many researchers due to its nonlinear properties and piezo-electronic effect. Here, we demonstrate a LED array composed of PSS and CdS nanorods and research the piezo-photonic effect of the array device. The emission intensity of the device depends on the electron-hole recombination at the interface of the p-n junction which can be adjusted using the piezo-phototronic effect and can be used to map the pressure applied on the surface of the device with spatial resolution as high as 1.5 μm. A flexible LED device array has been prepared using a CdS nanorod array on a Au/Cr/kapton substrate. This device may be used in the field of strain mapping using its high pressure spatial-resolution and flexibility.

  8. Experimental quantification of the fluid dynamics in blood-processing devices through 4D-flow imaging: A pilot study on a real oxygenator/heat-exchanger module.

    PubMed

    Piatti, Filippo; Palumbo, Maria Chiara; Consolo, Filippo; Pluchinotta, Francesca; Greiser, Andreas; Sturla, Francesco; Votta, Emiliano; Siryk, Sergii V; Vismara, Riccardo; Fiore, Gianfranco Beniamino; Lombardi, Massimo; Redaelli, Alberto

    2018-02-08

    The performance of blood-processing devices largely depends on the associated fluid dynamics, which hence represents a key aspect in their design and optimization. To this aim, two approaches are currently adopted: computational fluid-dynamics, which yields highly resolved three-dimensional data but relies on simplifying assumptions, and in vitro experiments, which typically involve the direct video-acquisition of the flow field and provide 2D data only. We propose a novel method that exploits space- and time-resolved magnetic resonance imaging (4D-flow) to quantify the complex 3D flow field in blood-processing devices and to overcome these limitations. We tested our method on a real device that integrates an oxygenator and a heat exchanger. A dedicated mock loop was implemented, and novel 4D-flow sequences with sub-millimetric spatial resolution and region-dependent velocity encodings were defined. Automated in house software was developed to quantify the complex 3D flow field within the different regions of the device: region-dependent flow rates, pressure drops, paths of the working fluid and wall shear stresses were computed. Our analysis highlighted the effects of fine geometrical features of the device on the local fluid-dynamics, which would be unlikely observed by current in vitro approaches. Also, the effects of non-idealities on the flow field distribution were captured, thanks to the absence of the simplifying assumptions that typically characterize numerical models. To the best of our knowledge, our approach is the first of its kind and could be extended to the analysis of a broad range of clinically relevant devices. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Inert gas annealing effect in solution-processed amorphous indium-gallium-zinc-oxide thin-film transistors

    NASA Astrophysics Data System (ADS)

    Lee, Seungwoon; Jeong, Jaewook

    2017-08-01

    In this paper, the annealing effect of solution-processed amorphous indium-gallium-zinc-oxide thin-film transistors (a-IGZO TFTs), under ambient He (He-device), is systematically analyzed by comparison with those under ambient O2 (O2-device) and N2 (N2-device), respectively. The He-device shows high field-effect mobility and low subthreshold slope owing to the minimization of the ambient effect. The degradation of the O2- and N2-device performances originate from their respective deep acceptor-like and shallow donor-like characteristics, which can be verified by comparison with the He-device. However, the three devices show similar threshold voltage instability under prolonged positive bias stress due to the effect of excess oxygen. Therefore, annealing in ambient He is the most suitable method for the fabrication of reference TFTs to study the various effects of the ambient during the annealing process in solution-processed a-IGZO TFTs.

  10. Elmo bumpy square plasma confinement device

    DOEpatents

    Owen, L.W.

    1985-01-01

    The invention is an Elmo bumpy type plasma confinement device having a polygonal configuration of closed magnet field lines for improved plasma confinement. In the preferred embodiment, the device is of a square configuration which is referred to as an Elmo bumpy square (EBS). The EBS is formed by four linear magnetic mirror sections each comprising a plurality of axisymmetric assemblies connected in series and linked by 90/sup 0/ sections of a high magnetic field toroidal solenoid type field generating coils. These coils provide corner confinement with a minimum of radial dispersion of the confined plasma to minimize the detrimental effects of the toroidal curvature of the magnetic field. Each corner is formed by a plurality of circular or elliptical coils aligned about the corner radius to provide maximum continuity in the closing of the magnetic field lines about the square configuration confining the plasma within a vacuum vessel located within the various coils forming the square configuration confinement geometry.

  11. Device optimization and scaling properties of a gate-on-germanium source tunnel field-effect transistor

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Avik; Mallik, Abhijit; Omura, Yasuhisa

    2015-06-01

    A gate-on-germanium source (GoGeS) tunnel field-effect transistor (TFET) shows great promise for low-power (sub-0.5 V) applications. A detailed investigation, with the help of a numerical device simulator, on the effects of variation in different structural parameters of a GoGeS TFET on its electrical performance is reported in this paper. Structural parameters such as κ-value of the gate dielectric, length and κ-value of the spacer, and doping concentrations of both the substrate and source are considered. A low-κ symmetric spacer and a high-κ gate dielectric are found to yield better device performance. The substrate doping influences only the p-i-n leakage floor. The source doping is found to significantly affect performance parameters such as OFF-state current, ON-state current and subthreshold swing, in addition to a threshold voltage shift. Results of the investigation on the gate length scaling of such devices are also reported in this paper.

  12. Magnetic-field-controlled reconfigurable semiconductor logic.

    PubMed

    Joo, Sungjung; Kim, Taeyueb; Shin, Sang Hoon; Lim, Ju Young; Hong, Jinki; Song, Jin Dong; Chang, Joonyeon; Lee, Hyun-Woo; Rhie, Kungwon; Han, Suk Hee; Shin, Kyung-Ho; Johnson, Mark

    2013-02-07

    Logic devices based on magnetism show promise for increasing computational efficiency while decreasing consumed power. They offer zero quiescent power and yet combine novel functions such as programmable logic operation and non-volatile built-in memory. However, practical efforts to adapt a magnetic device to logic suffer from a low signal-to-noise ratio and other performance attributes that are not adequate for logic gates. Rather than exploiting magnetoresistive effects that result from spin-dependent transport of carriers, we have approached the development of a magnetic logic device in a different way: we use the phenomenon of large magnetoresistance found in non-magnetic semiconductors in high electric fields. Here we report a device showing a strong diode characteristic that is highly sensitive to both the sign and the magnitude of an external magnetic field, offering a reversible change between two different characteristic states by the application of a magnetic field. This feature results from magnetic control of carrier generation and recombination in an InSb p-n bilayer channel. Simple circuits combining such elementary devices are fabricated and tested, and Boolean logic functions including AND, OR, NAND and NOR are performed. They are programmed dynamically by external electric or magnetic signals, demonstrating magnetic-field-controlled semiconductor reconfigurable logic at room temperature. This magnetic technology permits a new kind of spintronic device, characterized as a current switch rather than a voltage switch, and provides a simple and compact platform for non-volatile reconfigurable logic devices.

  13. A new real-time non-coherent to coherent light image converter - The hybrid field effect liquid crystal light valve

    NASA Technical Reports Server (NTRS)

    Grinberg, J.; Jacobson, A.; Bleha, W.; Miller, L.; Fraas, L.; Boswell, D.; Myer, G.

    1975-01-01

    A new, high-performance device has been developed for application to real-time coherent optical data processing. The new device embodies a CdS photoconductor, a CdTe light-absorbing layer, a dielectric mirror, and a liquid crystal layer sandwiched between indium-tin-oxide transparent electrodes deposited on optical quality glass flats. The noncoherent image is directed onto the photoconductor; this reduces the impedance of the photoconductor, thereby switching the ac voltage that is impressed across the electrodes onto the liquid crystal to activate the device. The liquid crystal is operated in a hybrid field effect mode. It utilizes the twisted nematic effect to create a dark off-state and the optical birefringence effect to create the bright on-state. The liquid crystal modulates the polarization of the coherent read-out light so an analyzer must be used to create an intensity modulated output beam.

  14. Effect of cation amount in the electrolyte on characteristics of Ag/TiO2 based threshold switching devices.

    PubMed

    Yoo, Jongmyung; Song, Jeonghwan; Hwang, Hyunsang

    2018-06-18

    In this study, we investigate the effect of cation amount in electrolyte on Ag/TiO2 based threshold switching devices based on field-induced nucleation theory. For this purpose, normal Ag/TiO2, annealed Ag/TiO2, and Ag-Te/TiO2 based TS devices are prepared, which have different cation amounts in their electrolytes during the switching process. First, we find that all of the prepared TS devices follow the field-induced nucleation theory with different nucleation barrier energy (W0) by investigating the delay time dependency at various voltages and temperatures. Based on the investigation, we reveal that the amount of cations in the electrolyte during the switching process is the control parameter that affects the W0 values, which are found to be inversely proportional to the turn-off speed of the TS devices. This implies that the turn-off speed of the TS devices can be modulated by controlling the amount of cations in the matrix. © 2018 IOP Publishing Ltd.

  15. Interface trap of p-type gate integrated AlGaN/GaN heterostructure field effect transistors

    NASA Astrophysics Data System (ADS)

    Kim, Kyu Sang

    2017-09-01

    In this work, the impact of trap states at the p-(Al)GaN/AlGaN interface has been investigated for the normally-off mode p-(Al)GaN/AlGaN/GaN heterostructure field-effect transistors (HFETs) by means of frequency dependent conductance. From the current-voltage (I-V) measurement, it was found that the p-AlGaN gate integrated device has higher drain current and lower gate leakage current compared to the p-GaN gate integrated device. We obtained the interface trap density and the characteristic time constant for the p-type gate integrated HFETs under the forward gate voltage of up to 6 V. As a result, the interface trap density (characteristic time constant) of the p-GaN gate device was lower (longer) than that of the p-AlGaN. Furthermore, it was analyzed that the trap state energy level of the p-GaN gate device was located at the shallow level relative to the p-AlGaN gate device, which accounts for different gate leakage current of each devices.

  16. Origin of threshold voltage fluctuation caused by ion implantation to source and drain extensions of silicon-on-insulator triple-gate fin-type field-effect transistors using three-dimensional process and device simulations

    NASA Astrophysics Data System (ADS)

    Tsutsumi, Toshiyuki

    2018-06-01

    The threshold voltage (V th) fluctuation induced by ion implantation (I/I) in the source and drain extensions (SDEs) of a silicon-on-insulator (SOI) triple-gate (Tri-Gate) fin-type field-effect transistor (FinFET) was analyzed by both three-dimensional (3D) process and device simulations collaboratively. The origin of the V th fluctuation induced by the SDE I/I is basically a variation of a bottleneck barrier height (BBH) due to implanted arsenic (As+) ions. In particular, a very low and broad V th distribution in the saturation region is due to percolative conduction in addition to the BBH variation. Moreover, it is surprisingly found that the V th fluctuation is mostly characterized by the BBH of only a top surface center line of a Si fin of the device. Our collaborative approach by 3D process and device simulations is dispensable for the accurate investigation of variability-tolerant devices. The obtained results are beneficial for the research and development of such future devices.

  17. A Field-Based Cleaning Protocol for Sampling Devices Used in Life-Detection Studies

    NASA Astrophysics Data System (ADS)

    Eigenbrode, Jennifer; Benning, Liane G.; Maule, Jake; Wainwright, Norm; Steele, Andrew; Amundsen, Hans E. F.

    2009-06-01

    Analytical approaches to extant and extinct life detection involve molecular detection often at trace levels. Thus, removal of biological materials and other organic molecules from the surfaces of devices used for sampling is essential for ascertaining meaningful results. Organic decontamination to levels consistent with null values on life-detection instruments is particularly challenging at remote field locations where Mars analog field investigations are carried out. Here, we present a seven-step, multi-reagent decontamination method that can be applied to sampling devices while in the field. In situ lipopolysaccharide detection via low-level endotoxin assays and molecular detection via gas chromatography-mass spectrometry were used to test the effectiveness of the decontamination protocol for sampling of glacial ice with a coring device and for sampling of sediments with a rover scoop during deployment at Arctic Mars-analog sites in Svalbard, Norway. Our results indicate that the protocols and detection technique sufficiently remove and detect low levels of molecular constituents necessary for life-detection tests.

  18. A field-based cleaning protocol for sampling devices used in life-detection studies.

    PubMed

    Eigenbrode, Jennifer; Benning, Liane G; Maule, Jake; Wainwright, Norm; Steele, Andrew; Amundsen, Hans E F

    2009-06-01

    Analytical approaches to extant and extinct life detection involve molecular detection often at trace levels. Thus, removal of biological materials and other organic molecules from the surfaces of devices used for sampling is essential for ascertaining meaningful results. Organic decontamination to levels consistent with null values on life-detection instruments is particularly challenging at remote field locations where Mars analog field investigations are carried out. Here, we present a seven-step, multi-reagent decontamination method that can be applied to sampling devices while in the field. In situ lipopolysaccharide detection via low-level endotoxin assays and molecular detection via gas chromatography-mass spectrometry were used to test the effectiveness of the decontamination protocol for sampling of glacial ice with a coring device and for sampling of sediments with a rover scoop during deployment at Arctic Mars-analog sites in Svalbard, Norway. Our results indicate that the protocols and detection technique sufficiently remove and detect low levels of molecular constituents necessary for life-detection tests.

  19. Analytic model for low-frequency noise in nanorod devices.

    PubMed

    Lee, Jungil; Yu, Byung Yong; Han, Ilki; Choi, Kyoung Jin; Ghibaudo, Gerard

    2008-10-01

    In this work analytic model for generation of excess low-frequency noise in nanorod devices such as field-effect transistors are developed. In back-gate field-effect transistors where most of the surface area of the nanorod is exposed to the ambient, the surface states could be the major noise source via random walk of electrons for the low-frequency or 1/f noise. In dual gate transistors, the interface states and oxide traps can compete with each other as the main noise source via random walk and tunneling, respectively.

  20. Fabrication and Electrical Characterization of Correlated Oxide Field Effect Switching Devices for High Speed Electronics

    DTIC Science & Technology

    2015-11-19

    Shriram Ramanathan HARVARD COLLEGE PRESIDENT & FELLOWS OF Final Report 11/19/2015 DISTRIBUTION A: Distribution approved for public release. AF Office... Harvard University 29 Oxford St, Pierce Hall, Cambridge, MA 02138 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S...characterization of correlated oxide field effect switching devices for  high speed electronics  PI: Shriram Ramanathan,  Harvard  University  AFOSR Grant FA9550‐12‐1

  1. Growth of nanotubes and chemical sensor applications

    NASA Astrophysics Data System (ADS)

    Hone, James; Kim, Philip; Huang, X. M. H.; Chandra, B.; Caldwell, R.; Small, J.; Hong, B. H.; Someya, T.; Huang, L.; O'Brien, S.; Nuckolls, Colin P.

    2004-12-01

    We have used a number of methods to grow long aligned single-walled carbon nanotubes. Geometries include individual long tubes, dense parallel arrays, and long freely suspended nanotubes. We have fabricated a variety of devices for applications such as multiprobe resistance measurement and high-current field effect transistors. In addition, we have measured conductance of single-walled semiconducting carbon nanotubes in field-effect transistor geometry and investigated the device response to water and alcoholic vapors. We observe significant changes in FET drain current when the device is exposed to various kinds of different solvent. These responses are reversible and reproducible over many cycles of vapor exposure. Our experiments demonstrate that carbon nanotube FETs are sensitive to a wide range of solvent vapors at concentrations in the ppm range.

  2. Investigation of transport properties of coronene.TCNQ cocrystal microrods with coronene microrods and TCNQ microsheets

    NASA Astrophysics Data System (ADS)

    Wu, Hao-Di; Wang, Feng-Xia; Zhang, Meng; Pan, Ge-Bo

    2015-07-01

    Coronene.TCNQ cocrystal microrods, coronene microrods, and TCNQ microsheets were constructed by a drop-casting method. Prototype devices were fabricated and their field-effect-transistor (FET) performances were investigated. It is found that coronene.TCNQ microrods had exhibited an n-type characteristic and showed better FET performances than TCNQ microsheets.Coronene.TCNQ cocrystal microrods, coronene microrods, and TCNQ microsheets were constructed by a drop-casting method. Prototype devices were fabricated and their field-effect-transistor (FET) performances were investigated. It is found that coronene.TCNQ microrods had exhibited an n-type characteristic and showed better FET performances than TCNQ microsheets. Electronic supplementary information (ESI) available: Device fabrication and measurements. See DOI: 10.1039/c5nr02778k

  3. Design of double gate vertical tunnel field effect transistor using HDB and its performance estimation

    NASA Astrophysics Data System (ADS)

    Seema; Chauhan, Sudakar Singh

    2018-05-01

    In this paper, we demonstrate the double gate vertical tunnel field-effect transistor using homo/hetero dielectric buried oxide (HDB) to obtain the optimized device characteristics. In this concern, the existence of double gate, HDB and electrode work-function engineering enhances DC performance and Analog/RF performance. The use of electrostatic doping helps to achieve higher on-current owing to occurrence of higher tunneling generation rate of charge carriers at the source/epitaxial interface. Further, lightly doped drain region and high- k dielectric below channel and drain region are responsible to suppress the ambipolar current. Simulated results clarifies that proposed device have achieved the tremendous performance in terms of driving current capability, steeper subthreshold slope (SS), drain induced barrier lowering (DIBL), hot carrier effects (HCEs) and high frequency parameters for better device reliability.

  4. Resonant Tunneling Spin Pump

    NASA Technical Reports Server (NTRS)

    Ting, David Z.

    2007-01-01

    The resonant tunneling spin pump is a proposed semiconductor device that would generate spin-polarized electron currents. The resonant tunneling spin pump would be a purely electrical device in the sense that it would not contain any magnetic material and would not rely on an applied magnetic field. Also, unlike prior sources of spin-polarized electron currents, the proposed device would not depend on a source of circularly polarized light. The proposed semiconductor electron-spin filters would exploit the Rashba effect, which can induce energy splitting in what would otherwise be degenerate quantum states, caused by a spin-orbit interaction in conjunction with a structural-inversion asymmetry in the presence of interfacial electric fields in a semiconductor heterostructure. The magnitude of the energy split is proportional to the electron wave number. Theoretical studies have suggested the possibility of devices in which electron energy states would be split by the Rashba effect and spin-polarized currents would be extracted by resonant quantum-mechanical tunneling.

  5. A pH sensor based on electric properties of nanotubes on a glass substrate

    PubMed Central

    Nakamura, Motonori; Ishii, Atsushi; Subagyo, Agus; Hosoi, Hirotaka; Sueoka, Kazuhisa; Mukasa, Koichi

    2007-01-01

    We fabricated a pH-sensitive device on a glass substrate based on properties of carbon nanotubes. Nanotubes were immobilized specifically on chemically modified areas on a substrate followed by deposition of metallic source and drain electrodes on the area. Some nanotubes connected the source and drain electrodes. A top gate electrode was fabricated on an insulating layer of silane coupling agent on the nanotube. The device showed properties of ann-type field effect transistor when a potential was applied to the nanotube from the top gate electrode. Before fabrication of the insulating layer, the device showed that thep-type field effect transistor and the current through the source and drain electrodes depend on the buffer pH. The current increases with decreasing pH of the CNT solution. This device, which can detect pH, is applicable for use as a biosensor through modification of the CNT surface. PMID:21806848

  6. Mechanical-magnetic-electric coupled behaviors for stress-driven Terfenol-D energy harvester

    NASA Astrophysics Data System (ADS)

    Cao, Shuying; Zheng, Jiaju; Wang, Bowen; Pan, Ruzheng; Zhao, Ran; Weng, Ling; Sun, Ying; Liu, Chengcheng

    2017-05-01

    The stress-driven Terfernol-D energy harvester exhibits the nonlinear mechanical-magnetic-electric coupled (MMEC) behaviors and the eddy current effects. To analyze and design the device, it is necessary to establish an accurate model of the device. Based on the effective magnetic field expression, the constitutive equations with eddy currents and variable coefficients, and the dynamic equations, a nonlinear dynamic MMEC model for the device is founded. Comparisons between the measured and calculated results show that the model can describe the nonlinear coupled curves of magnetization versus stress and strain versus stress under different bias fields, and can provide the reasonable data trends of piezomagnetic coefficients, Young's modulus and relative permeability for Terfenol-D. Moreover, the calculated power results show that the model can determine the optimal bias conditions, optimal resistance, suitable proof mass, suitable slices for the maximum energy extraction of the device under broad stress amplitude and broad frequency.

  7. Strong Ferromagnetically-Coupled Spin Valve Sensor Devices for Droplet Magnetofluidics

    PubMed Central

    Lin, Gungun; Makarov, Denys; Schmidt, Oliver G.

    2015-01-01

    We report a magnetofluidic device with integrated strong ferromagnetically-coupled and hysteresis-free spin valve sensors for dynamic monitoring of ferrofluid droplets in microfluidics. The strong ferromagnetic coupling between the free layer and the pinned layer of spin valve sensors is achieved by reducing the spacer thickness, while the hysteresis of the free layer is eliminated by the interplay between shape anisotropy and the strength of coupling. The increased ferromagnetic coupling field up to the remarkable 70 Oe, which is five-times larger than conventional solutions, brings key advantages for dynamic sensing, e.g., a larger biasing field giving rise to larger detection signals, facilitating the operation of devices without saturation of the sensors. Studies on the fundamental effects of an external magnetic field on the evolution of the shape of droplets, as enabled by the non-visual monitoring capability of the device, provides crucial information for future development of a magnetofluidic device for multiplexed assays. PMID:26024419

  8. Photo-Nernst current in graphene

    NASA Astrophysics Data System (ADS)

    Cao, Helin; Aivazian, Grant; Fei, Zaiyao; Ross, Jason; Cobden, David H.; Xu, Xiaodong

    2016-03-01

    Photocurrent measurements provide a powerful means of studying the spatially resolved optoelectronic and electrical properties of a material or device. Generally speaking there are two classes of mechanism for photocurrent generation: those involving separation of electrons and holes, and thermoelectric effects driven by electron temperature gradients. Here we introduce a new member in the latter class: the photo-Nernst effect. In graphene devices in a perpendicular magnetic field we observe photocurrent generated uniformly along the free edges, with opposite sign at opposite edges. The signal is antisymmetric in field, shows a peak versus gate voltage at the neutrality point flanked by wings of opposite sign at low fields, and exhibits quantum oscillations at higher fields. These features are all explained by the Nernst effect associated with laser-induced electron heating. This `photo-Nernst’ current provides a simple and clear demonstration of the Shockley-Ramo nature of long-range photocurrent generation in a gapless material.

  9. Omniview motionless camera orientation system

    NASA Technical Reports Server (NTRS)

    Zimmermann, Steven D. (Inventor); Martin, H. Lee (Inventor)

    1999-01-01

    A device for omnidirectional image viewing providing pan-and-tilt orientation, rotation, and magnification within a hemispherical field-of-view that utilizes no moving parts. The imaging device is based on the effect that the image from a fisheye lens, which produces a circular image of at entire hemispherical field-of-view, which can be mathematically corrected using high speed electronic circuitry. More specifically, an incoming fisheye image from any image acquisition source is captured in memory of the device, a transformation is performed for the viewing region of interest and viewing direction, and a corrected image is output as a video image signal for viewing, recording, or analysis. As a result, this device can accomplish the functions of pan, tilt, rotation, and zoom throughout a hemispherical field-of-view without the need for any mechanical mechanisms. The preferred embodiment of the image transformation device can provide corrected images at real-time rates, compatible with standard video equipment. The device can be used for any application where a conventional pan-and-tilt or orientation mechanism might be considered including inspection, monitoring, surveillance, and target acquisition.

  10. Submicron Silicon MOSFET

    NASA Technical Reports Server (NTRS)

    Daud, T.

    1986-01-01

    Process for making metal-oxide/semiconductor field-effect transistors (MOSFET's) results in gate-channel lengths of only few hundred angstroms about 100 times as small as state-of-the-art devices. Gates must be shortened to develop faster MOSFET's; proposed fabrication process used to study effects of size reduction in MOS devices and eventually to build practical threedimensional structures.

  11. Inventions Utilizing Microfluidics and Colloidal Particles

    NASA Technical Reports Server (NTRS)

    Marr, David W.; Gong, Tieying; Oakey, John; Terray, Alexander V.; Wu, David T.

    2009-01-01

    Several related inventions pertain to families of devices that utilize microfluidics and/or colloidal particles to obtain useful physical effects. The families of devices can be summarized as follows: (1) Microfluidic pumps and/or valves wherein colloidal-size particles driven by electrical, magnetic, or optical fields serve as the principal moving parts that propel and/or direct the affected flows. (2) Devices that are similar to the aforementioned pumps and/or valves except that they are used to manipulate light instead of fluids. The colloidal particles in these devices are substantially constrained to move in a plane and are driven to spatially order them into arrays that function, variously, as waveguides, filters, or switches for optical signals. (3) Devices wherein the ultra-laminar nature of microfluidic flows is exploited to effect separation, sorting, or filtering of colloidal particles or biological cells in suspension. (4) Devices wherein a combination of confinement and applied electrical and/or optical fields forces the colloidal particles to become arranged into three-dimensional crystal lattices. Control of the colloidal crystalline structures could be exploited to control diffraction of light. (5) Microfluidic devices, incorporating fluid waveguides, wherein switching of flows among different paths would be accompanied by switching of optical signals.

  12. Direct probing of electron and hole trapping into nano-floating-gate in organic field-effect transistor nonvolatile memories

    NASA Astrophysics Data System (ADS)

    Cui, Ze-Qun; Wang, Shun; Chen, Jian-Mei; Gao, Xu; Dong, Bin; Chi, Li-Feng; Wang, Sui-Dong

    2015-03-01

    Electron and hole trapping into the nano-floating-gate of a pentacene-based organic field-effect transistor nonvolatile memory is directly probed by Kelvin probe force microscopy. The probing is straightforward and non-destructive. The measured surface potential change can quantitatively profile the charge trapping, and the surface characterization results are in good accord with the corresponding device behavior. Both electrons and holes can be trapped into the nano-floating-gate, with a preference of electron trapping than hole trapping. The trapped charge quantity has an approximately linear relation with the programming/erasing gate bias, indicating that the charge trapping in the device is a field-controlled process.

  13. “Playing around” with Field-Effect Sensors on the Basis of EIS Structures, LAPS and ISFETs

    PubMed Central

    Schöning, Michael J.

    2005-01-01

    Microfabricated semiconductor devices are becoming increasingly relevant, also for the detection of biological and chemical quantities. Especially, the “marriage” of biomolecules and silicon technology often yields successful new sensor concepts. The fabrication techniques of such silicon-based chemical sensors and biosensors, respectively, will have a distinct impact in different fields of application such as medicine, food technology, environment, chemistry and biotechnology as well as information processing. Moreover, scientists and engineers are interested in the analytical benefits of miniaturised and microfabricated sensor devices. This paper gives a survey on different types of semiconductor-based field-effect structures that have been recently developed in our laboratory.

  14. Electrically Tunable Energy Bandgap in Dual-Gated Ultra-Thin Black Phosphorus Field Effect Transistors

    NASA Astrophysics Data System (ADS)

    Yan, Shi-Li; Xie, Zhi-Jian; Chen, Jian-Hao; Taniguchi, Takashi; Watanabe, Kenji

    2017-03-01

    The energy bandgap is an intrinsic character of semiconductors, which largely determines their properties. The ability to continuously and reversibly tune the bandgap of a single device during real time operation is of great importance not only to device physics but also to technological applications. Here we demonstrate a widely tunable bandgap of few-layer black phosphorus (BP) by the application of vertical electric field in dual-gated BP field-effect transistors. A total bandgap reduction of 124 meV is observed when the electrical displacement field is increased from 0.10V/nm to 0.83V/nm. Our results suggest appealing potential for few-layer BP as a tunable bandgap material in infrared optoelectronics, thermoelectric power generation and thermal imaging.

  15. Defect and field-enhancement characterization through electron-beam-induced current analysis

    NASA Astrophysics Data System (ADS)

    Umezawa, Hitoshi; Gima, Hiroki; Driche, Khaled; Kato, Yukako; Yoshitake, Tsuyoshi; Mokuno, Yoshiaki; Gheeraert, Etienne

    2017-05-01

    To investigate the effects of defects and field enhancement in diamond power devices, a biased Schottky barrier diode was characterized by electron-beam-induced current (EBIC) analysis. The nonuniform distribution of the electrical field was revealed by bright spots on the laterally expanded depletion layer of the EBIC intensity map when the applied electrical field exceeded 0.95 MV/cm. The nonuniformity is partly due to a structural effect: the roughness at the edge of the Schottky electrode, induced by lithography and lift-off processes. A second family of spots was shown to increase the leakage current of the device. The time constant associated with this second spot family was 0.98 ms, which is three orders of magnitude shorter than that for defects previously characterized by deep-level transient spectroscopy.

  16. Precision measurement of magnetic characteristics of an article with nullification of external magnetic fields

    NASA Technical Reports Server (NTRS)

    Honess, Shawn B. (Inventor); Narvaez, Pablo (Inventor); Mcauley, James M. (Inventor)

    1992-01-01

    An apparatus for characterizing the magnetic field of a device under test is discussed. The apparatus is comprised of five separate devices: (1) a device for nullifying the ambient magnetic fields in a test environment area with a constant applied magnetic field; (2) a device for rotating the device under test in the test environment area; (3) a device for sensing the magnetic field (to obtain a profile of the magnetic field) at a sensor location which is along the circumference of rotation; (4) a memory for storing the profiles; and (5) a processor coupled to the memory for characterizing the magnetic field of the device from the magnetic field profiles thus obtained.

  17. Magnetic field effect in organic films and devices

    NASA Astrophysics Data System (ADS)

    Gautam, Bhoj Raj

    In this work, we focused on the magnetic field effect in organic films and devices, including organic light emitting diodes (OLEDs) and organic photovoltaic (OPV) cells. We measured magnetic field effect (MFE) such as magnetoconductance (MC) and magneto-electroluminescence (MEL) in OLEDs based on several pi- conjugated polymers and small molecules for fields |B|<100 mT. We found that both MC(B) and MEL(B) responses in bipolar devices and MC(B) response in unipolar devices are composed of two B-regions: (i) an 'ultra-small' region at |B| < 1-2 mT, and (ii) a monotonic response region at |B| >˜2mT. Magnetic field effect (MFE) measured on three isotopes of Poly (dioctyloxy) phenylenevinylene (DOO-PPV) showed that both regular and ultra-small effects are isotope dependent. This indicates that MFE response in OLED is mainly due to the hyperfine interaction (HFI). We also performed spectroscopy of the MFE including magneto-photoinduced absorption (MPA) and magneto-photoluminescence (MPL) at steady state conditions in several systems. This includes pristine Poly[2-methoxy-5-(2-ethylhexyl-oxy)-1,4-phenylene-vinylene] (MEH-PPV) films, MEH-PPV films subjected to prolonged illumination, and MEH-PPV/[6,6]-Phenyl C61 butyric acid methyl ester (PCBM) blend, as well as annealed and pristine C60 thin films. For comparison, we also measured MC and MEL in organic diodes based on the same materials. By directly comparing the MPA and MPL responses in films to MC and MEL in organic diodes based on the same active layers, we are able to relate the MFE in organic diodes to the spin densities of the excitations formed in the device, regardless of whether they are formed by photon absorption or carrier injection from the electrodes. We also studied magneto-photocurrent (MPC) and power conversion efficiency (PCE) of a 'standard' Poly (3-hexylthiophene)/PCBM device at various Galvinoxyl radical wt%. We found that the MPC reduction with Galvinoxyl wt% follows the same trend as that of the PCE enhancement. In addition, we also measured the MPC response of a series of OPV cells. We attribute the observed broad MPC to short-lived charge transfer complex species, where spin mixing is caused by the difference, Deltag of the donor/acceptor g factors; whereas narrow MPC is due to HFI within long-lived polaron-pairs.

  18. Value-based procurement of medical devices: Application to devices for mechanical thrombectomy in ischemic stroke.

    PubMed

    Trippoli, Sabrina; Caccese, Erminia; Marinai, Claudio; Messori, Andrea

    2018-03-01

    In the acute ischemic stroke, endovascular devices have shown promising clinical results and are also likely to represent value for money, as several modeling studies have shown. Pharmacoeconomic evaluations in this field, however, have little impact on the procurement of these devices. The present study explored how complex pharmacoeconomic models that evaluate effectiveness and cost can be incorporated into the in-hospital procurement of thrombectomy devices. As regards clinical modeling, we extracted outcomes at three months from randomized trials conducted for four thrombectomy devices, and we projected long-term results using standard Markov modeling. In estimating QALYs, the same model was run for the four devices. As regards economic modeling, we firstly estimated for each device the net monetary benefit (NMB) per patient (threshold = $60,000 per QALY); then, we simulated a competitive tender across the four products by determining the tender-based score (on a 0-to-100 scale). Prices of individual devices were obtained from manufacturers. Extensive sensitivity testing was applied to our analyses. For the four devices (Solitaire, Trevo, Penumbra, Solumbra), QALYs were 1.86, 1.52, 1,79, 1.35, NMB was $101,824, $83,546, $101,923, $69,440, and tender-based scores were 99.70, 43.43, 100, 0, respectively. Sensitivity analysis confirmed findings from base-case. Our results indicate that, in the field of thrombectomy devices, incorporating the typical tools of cost-effectiveness into the processes of tenders and procurement is feasible. Bridging the methodology of cost-effectiveness with the every-day practice of in-hospital procurement can contribute to maximizing the health returns that are generated by in-hospital expenditures for medical devices. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Future opportunities for advancing glucose test device electronics.

    PubMed

    Young, Brian R; Young, Teresa L; Joyce, Margaret K; Kennedy, Spencer I; Atashbar, Massood Z

    2011-09-01

    Advancements in the field of printed electronics can be applied to the field of diabetes testing. A brief history and some new developments in printed electronics components applicable to personal test devices, including circuitry, batteries, transmission devices, displays, and sensors, are presented. Low-cost, thin, and lightweight materials containing printed circuits with energy storage or harvest capability and reactive/display centers, made using new printing/imaging technologies, are ideal for incorporation into personal-use medical devices such as glucose test meters. Semicontinuous rotogravure printing, which utilizes flexible substrates and polymeric, metallic, and/or nano "ink" composite materials to effect rapidly produced, lower-cost printed electronics, is showing promise. Continuing research advancing substrate, "ink," and continuous processing development presents the opportunity for research collaboration with medical device designers. © 2011 Diabetes Technology Society.

  20. Electromagnetic interference in cardiac rhythm management devices.

    PubMed

    Sweesy, Mark W; Holland, James L; Smith, Kerry W

    2004-01-01

    Clinicians caring for cardiac device patients with implanted pacemakers or cardioverter defibrillators (ICDs) are frequently asked questions by their patients concerning electromagnetic interference (EMI) sources and the devices. EMI may be radiated or conducted and may be present in many different forms including (but not limited to) radiofrequency waves, microwaves, ionizing radiation, acoustic radiation, static and pulsed magnetic fields, and electric currents. Manufacturers have done an exemplary job of interference protection with device features such as titanium casing, signal filtering, interference rejection circuits, feedthrough capacitors, noise reversion function, and programmable parameters. Nevertheless, EMI remains a real concern and a potential danger. Many factors influence EMI including those which the patient can regulate (eg, distance from and duration of exposure) and some the patient cannot control (eg, intensity of the EMI field, signal frequency). Potential device responses are many and range from simple temporary oversensing to permanent device damage Several of the more common EMI-generating devices and their likely effects on cardiac devices are considered in the medical, home, and daily living and work environments.

  1. The phenomenon of voltage controlled switching in disordered superconductors.

    PubMed

    Ghosh, Sanjib; De Munshi, D

    2014-01-15

    The superconductor-to-insulator transition (SIT) is a phenomenon occurring in highly disordered superconductors and may be useful in the development of superconducting switches. The SIT has been demonstrated to be induced by different external parameters: temperature, magnetic field, electric field, etc. However, the electric field induced SIT (ESIT), which has been experimentally demonstrated for some specific materials, holds particular promise for practical device development. Here, we demonstrate, from theoretical considerations, the occurrence of the ESIT. We also propose a general switching device architecture using the ESIT and study some of its universal behavior, such as the effects of sample size, disorder strength and temperature on the switching action. This work provides a general framework for the development of such a device.

  2. Mobile selected ion flow tube mass spectrometry (SIFT-MS) devices and their use for pollution exposure monitoring in breath and ambient air-pilot study.

    PubMed

    Storer, Malina; Salmond, Jennifer; Dirks, Kim N; Kingham, Simon; Epton, Michael

    2014-09-01

    Studies of health effects of air pollution exposure are limited by inability to accurately determine dose and exposure of air pollution in field trials. We explored the feasibility of using a mobile selected ion flow tube mass spectrometry (SIFT-MS) device, housed in a van, to determine ambient air and breath levels of benzene, xylene and toluene following exercise in areas of high motor vehicle traffic. The breath toluene, xylene and benzene concentration of healthy subjects were measured before and after exercising close to a busy road. The concentration of the volatile organic compounds (VOCs), in ambient air were also analysed in real time. Exercise close to traffic pollution is associated with a two-fold increase in breath VOCs (benzene, xylene and toluene) with levels returning to baseline within 20 min. This effect is not seen when exercising away from traffic pollution sources. Situating the testing device 50 m from the road reduced any confounding due to VOCs in the inspired air prior to the breath testing manoeuvre itself. Real-time field testing for air pollution exposure is possible using a mobile SIFT-MS device. This device is suitable for exploring exposure and dose relationships in a number of large scale field test scenarios.

  3. Wafer-scale solution-derived molecular gate dielectrics for low-voltage graphene electronics

    NASA Astrophysics Data System (ADS)

    Sangwan, Vinod K.; Jariwala, Deep; Everaerts, Ken; McMorrow, Julian J.; He, Jianting; Grayson, Matthew; Lauhon, Lincoln J.; Marks, Tobin J.; Hersam, Mark C.

    2014-02-01

    Graphene field-effect transistors are integrated with solution-processed multilayer hybrid organic-inorganic self-assembled nanodielectrics (SANDs). The resulting devices exhibit low-operating voltage (2 V), negligible hysteresis, current saturation with intrinsic gain >1.0 in vacuum (pressure < 2 × 10-5 Torr), and overall improved performance compared to control devices on conventional SiO2 gate dielectrics. Statistical analysis of the field-effect mobility and residual carrier concentration demonstrate high spatial uniformity of the dielectric interfacial properties and graphene transistor characteristics over full 3 in. wafers. This work thus establishes SANDs as an effective platform for large-area, high-performance graphene electronics.

  4. Temperature dependence of frequency response characteristics in organic field-effect transistors

    NASA Astrophysics Data System (ADS)

    Lu, Xubing; Minari, Takeo; Liu, Chuan; Kumatani, Akichika; Liu, J.-M.; Tsukagoshi, Kazuhito

    2012-04-01

    The frequency response characteristics of semiconductor devices play an essential role in the high-speed operation of electronic devices. We investigated the temperature dependence of dynamic characteristics in pentacene-based organic field-effect transistors and metal-insulator-semiconductor capacitors. As the temperature decreased, the capacitance-voltage characteristics showed large frequency dispersion and a negative shift in the flat-band voltage at high frequencies. The cutoff frequency shows Arrhenius-type temperature dependence with different activation energy values for various gate voltages. These phenomena demonstrate the effects of charge trapping on the frequency response characteristics, since decreased mobility prevents a fast charge response for alternating current signals at low temperatures.

  5. Characterization Of Graphene-Ferroelectric Superlattice Hybrid Devices

    NASA Astrophysics Data System (ADS)

    Yusuf, Mohammed; Du, Xu; Dawber, Matthew

    2013-03-01

    Ferroelectric materials possess a spontaneous electrical polarization, which can be controlled by an electric field. A good interface between ferroelectric surface and graphene sheets can introduce a new generation of multifunctional devices, in which the ferroelectric material can be used to control the properties of graphene. In our approach, problems encountered in previous efforts to combine ferroelectric/carbon systems are overcome by the use of artificially layered superlattice materials grown in the form of epitaxial thin films. In these materials the phase transition temperature and dielectric response of the material can be tailored, allowing us to avoid polarization screening by surface absorbates, whilst maintaining an atomically smooth surface and optimal charge doping properties. Using ferroelectric PbTiO3/SrTiO3 superlattices, we have shown ultra-low-voltage operation of graphene field effect devices within +/- 1 V at room temperature. The switching of the graphene field effect transistors is characterized by pronounced resistance hysteresis, suitable for ultra-fast non-volatile electronics. Low temperature characterization confirmed that the coercive field required for the ferroelectric domain switching increases significantly with decreasing temperatures. National Science Foundation (NSF) (grant number 1105202)

  6. Detecting dark-matter waves with a network of precision-measurement tools

    NASA Astrophysics Data System (ADS)

    Derevianko, Andrei

    2018-04-01

    Virialized ultralight fields (VULFs) are viable cold dark-matter candidates and include scalar and pseudoscalar bosonic fields, such as axions and dilatons. Direct searches for VULFs rely on low-energy precision-measurement tools. While previous proposals have focused on detecting coherent oscillations of the VULF signals at the VULF Compton frequencies for individual devices, here I consider a network of such devices. Virialized ultralight fields are essentially dark-matter waves and as such they carry both temporal and spatial phase information. Thereby, the discovery reach can be improved by using networks of precision-measurement tools. To formalize this idea, I derive a spatiotemporal two-point correlation function for the ultralight dark-matter fields in the framework of the standard halo model. Due to VULFs being Gaussian random fields, the derived two-point correlation function fully determines N -point correlation functions. For a network of ND devices within the coherence length of the field, the sensitivity compared to a single device can be improved by a factor of √{ND}. Further, I derive a VULF dark-matter signal profile for an individual device. The resulting line shape is strongly asymmetric due to the parabolic dispersion relation for massive nonrelativistic bosons. I discuss the aliasing effect that extends the discovery reach to VULF frequencies higher than the experimental sampling rate. I present sensitivity estimates and develop a stochastic field signal-to-noise ratio statistic. Finally, I consider an application of the formalism developed to atomic clocks and their networks.

  7. Establishing Mobility Measures to Assess the Effectiveness of Night Vision Devices: Results of a Pilot Study

    ERIC Educational Resources Information Center

    Zebehazy, Kim T.; Zimmerman, George J.; Bowers, Alex R.; Luo, Gang; Peli, Eli

    2005-01-01

    In addition to their restricted peripheral fields, persons with retinitis pigmentosa (RP) report significant problems seeing in low levels of illumination, which causes difficulty with night travel. Several devices have been developed to support the visual needs of persons who have night blindness. These devices include wide-angle flashlights,…

  8. Robust and Soft Elastomeric Electronics Tolerant to Our Daily Lives.

    PubMed

    Sekiguchi, Atsuko; Tanaka, Fumiaki; Saito, Takeshi; Kuwahara, Yuki; Sakurai, Shunsuke; Futaba, Don N; Yamada, Takeo; Hata, Kenji

    2015-09-09

    Clothes represent a unique textile, as they simultaneously provide robustness against our daily activities and comfort (i.e., softness). For electronic devices to be fully integrated into clothes, the devices themselves must be as robust and soft as the clothes themselves. However, to date, no electronic device has ever possessed these properties, because all contain components fabricated from brittle materials, such as metals. Here, we demonstrate robust and soft elastomeric devices where every component possesses elastomeric characteristics with two types of single-walled carbon nanotubes added to provide the necessary electronic properties. Our elastomeric field effect transistors could tolerate every punishment our clothes experience, such as being stretched (elasticity: ∼ 110%), bent, compressed (>4.0 MPa, by a car and heels), impacted (>6.26 kg m/s, by a hammer), and laundered. Our electronic device provides a novel design principle for electronics and wide range applications even in research fields where devices cannot be used.

  9. High-k dielectric Al2O3 nanowire and nanoplate field effect sensors for improved pH sensing

    PubMed Central

    Reddy, Bobby; Dorvel, Brian R.; Go, Jonghyun; Nair, Pradeep R.; Elibol, Oguz H.; Credo, Grace M.; Daniels, Jonathan S.; Chow, Edmond K. C.; Su, Xing; Varma, Madoo; Alam, Muhammad A.

    2011-01-01

    Over the last decade, field-effect transistors (FETs) with nanoscale dimensions have emerged as possible label-free biological and chemical sensors capable of highly sensitive detection of various entities and processes. While significant progress has been made towards improving their sensitivity, much is yet to be explored in the study of various critical parameters, such as the choice of a sensing dielectric, the choice of applied front and back gate biases, the design of the device dimensions, and many others. In this work, we present a process to fabricate nanowire and nanoplate FETs with Al2O3 gate dielectrics and we compare these devices with FETs with SiO2 gate dielectrics. The use of a high-k dielectric such as Al2O3 allows for the physical thickness of the gate dielectric to be thicker without losing sensitivity to charge, which then reduces leakage currents and results in devices that are highly robust in fluid. This optimized process results in devices stable for up to 8 h in fluidic environments. Using pH sensing as a benchmark, we show the importance of optimizing the device bias, particularly the back gate bias which modulates the effective channel thickness. We also demonstrate that devices with Al2O3 gate dielectrics exhibit superior sensitivity to pH when compared to devices with SiO2 gate dielectrics. Finally, we show that when the effective electrical silicon channel thickness is on the order of the Debye length, device response to pH is virtually independent of device width. These silicon FET sensors could become integral components of future silicon based Lab on Chip systems. PMID:21203849

  10. Scaling laws for nanoFET sensors

    NASA Astrophysics Data System (ADS)

    Zhou, Fu-Shan; Wei, Qi-Huo

    2008-01-01

    The sensitive conductance change of semiconductor nanowires and carbon nanotubes in response to the binding of charged molecules provides a novel sensing modality which is generally denoted as nanoFET sensors. In this paper, we study the scaling laws of nanoplate FET sensors by simplifying nanoplates as random resistor networks with molecular receptors sitting on lattice sites. Nanowire/tube FETs are included as the limiting cases where the device width goes small. Computer simulations show that the field effect strength exerted by the binding molecules has significant impact on the scaling behaviors. When the field effect strength is small, nanoFETs have little size and shape dependence. In contrast, when the field effect strength becomes stronger, there exists a lower detection threshold for charge accumulation FETs and an upper detection threshold for charge depletion FET sensors. At these thresholds, the nanoFET devices undergo a transition between low and large sensitivities. These thresholds may set the detection limits of nanoFET sensors, while they could be eliminated by designing devices with very short source-drain distance and large width.

  11. All-Graphene Planar Self-Switching MISFEDs, Metal-Insulator-Semiconductor Field-Effect Diodes

    PubMed Central

    Al-Dirini, Feras; Hossain, Faruque M.; Nirmalathas, Ampalavanapillai; Skafidas, Efstratios

    2014-01-01

    Graphene normally behaves as a semimetal because it lacks a bandgap, but when it is patterned into nanoribbons a bandgap can be introduced. By varying the width of these nanoribbons this band gap can be tuned from semiconducting to metallic. This property allows metallic and semiconducting regions within a single Graphene monolayer, which can be used in realising two-dimensional (2D) planar Metal-Insulator-Semiconductor field effect devices. Based on this concept, we present a new class of nano-scale planar devices named Graphene Self-Switching MISFEDs (Metal-Insulator-Semiconductor Field-Effect Diodes), in which Graphene is used as the metal and the semiconductor concurrently. The presented devices exhibit excellent current-voltage characteristics while occupying an ultra-small area with sub-10 nm dimensions and an ultimate thinness of a single atom. Quantum mechanical simulation results, based on the Extended Huckel method and Nonequilibrium Green's Function Formalism, show that a Graphene Self-Switching MISFED with a channel as short as 5 nm can achieve forward-to-reverse current rectification ratios exceeding 5000. PMID:24496307

  12. Real-time detection of mercury ions in water using a reduced graphene oxide/DNA field-effect transistor with assistance of a passivation layer

    DOE PAGES

    Chang, Jingbo; Zhou, Guihua; Gao, Xianfeng; ...

    2015-08-01

    Field-effect transistor (FET) sensors based on reduced graphene oxide (rGO) for detecting chemical species provide a number of distinct advantages, such as ultrasensitivity, label-free, and real-time response. However, without a passivation layer, channel materials directly exposed to an ionic solution could generate multiple signals from ionic conduction through the solution droplet, doping effect, and gating effect. Therefore, a method that provides a passivation layer on the surface of rGO without degrading device performance will significantly improve device sensitivity, in which the conductivity changes solely with the gating effect. In this work, we report rGO FET sensor devices with Hg 2+-dependentmore » DNA as a probe and the use of an Al 2O 3 layer to separate analytes from conducting channel materials. The device shows good electronic stability, excellent lower detection limit (1 nM), and high sensitivity for real-time detection of Hg 2+ in an underwater environment. Our work shows that optimization of an rGO FET structure can provide significant performance enhancement and profound fundamental understanding for the sensor mechanism.« less

  13. Electromagnetism of Bacterial Growth

    NASA Astrophysics Data System (ADS)

    Ainiwaer, Ailiyasi

    2011-10-01

    There has been increasing concern from the public about personal health due to the significant rise in the daily use of electrical devices such as cell phones, radios, computers, GPS, video games and television. All of these devices create electromagnetic (EM) fields, which are simply magnetic and electric fields surrounding the appliances that simultaneously affect the human bio-system. Although these can affect the human system, obstacles can easily shield or weaken the electrical fields; however, magnetic fields cannot be weakened and can pass through walls, human bodies and most other objects. The present study was conducted to examine the possible effects of bacteria when exposed to magnetic fields. The results indicate that a strong causal relationship is not clear, since different magnetic fields affect the bacteria differently, with some causing an increase in bacterial cells, and others causing a decrease in the same cells. This phenomenon has yet to be explained, but the current study attempts to offer a mathematical explanation for this occurrence. The researchers added cultures to the magnetic fields to examine any effects to ion transportation. Researchers discovered ions such as potassium and sodium are affected by the magnetic field. A formula is presented in the analysis section to explain this effect.

  14. Hyperfine spin interactions between polarons and nuclei in organic light emitting diodes: Magneto-EL measurements

    NASA Astrophysics Data System (ADS)

    Crooker, S. A.; Kelley, M. R.; Martinez, N.; Nie, W.; Mohite, A. D.; Smith, D. L.; Tretiak, S.; Ruden, P. P.

    2014-03-01

    Considerable attention in recent years has focused on the effects of applied magnetic fields on the conductance, photocurrent, electroluminescence (EL), and photoluminescence of nominally nonmagnetic organic semiconductor materials and devices. These magnetic field effects have proven useful in revealing the underlying physical mechanisms and relevant spin interactions that influence the electrical and optical properties in these organic systems (e.g., hyperfine coupling, exchange interactions, and spin-orbit coupling). Here we study the field-dependent properties of organic light-emitting diode (OLEDs) based on MTDATA/LiF/Bphen layered structures, in which exciplex recombination at the interface dominates the EL spectra. Small applied magnetic fields (~10 mT) are found to boost the net EL yield by up to 10%, due to a suppression of the mixing between singlet and triplet polaron pairs which, in turn, arises from hyperfine spin coupling of the polarons to the underlying nuclei of the host molecules. We discuss the dependence of these field-induced effects on the LiF barrier thickness, device bias, and on the orientation of the applied magnetic field, as well as the mechanisms responsible.

  15. Investigations on the effects of electrode materials on the device characteristics of ferroelectric memory thin film transistors fabricated on flexible substrates

    NASA Astrophysics Data System (ADS)

    Yang, Ji-Hee; Yun, Da-Jeong; Seo, Gi-Ho; Kim, Seong-Min; Yoon, Myung-Han; Yoon, Sung-Min

    2018-03-01

    For flexible memory device applications, we propose memory thin-film transistors using an organic ferroelectric poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] gate insulator and an amorphous In-Ga-Zn-O (a-IGZO) active channel. The effects of electrode materials and their deposition methods on the characteristics of memory devices exploiting the ferroelectric field effect were investigated for the proposed ferroelectric memory thin-film transistors (Fe-MTFTs) at flat and bending states. It was found that the plasma-induced sputtering deposition and mechanical brittleness of the indium-tin oxide (ITO) markedly degraded the ferroelectric-field-effect-driven memory window and bending characteristics of the Fe-MTFTs. The replacement of ITO electrodes with metal aluminum (Al) electrodes prepared by plasma-free thermal evaporation greatly enhanced the memory device characteristics even under bending conditions owing to their mechanical ductility. Furthermore, poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate) (PEDOT:PSS) was introduced to achieve robust bending performance under extreme mechanical stress. The Fe-MTFTs using PEDOT:PSS source/drain electrodes were successfully fabricated and showed the potential for use as flexible memory devices. The suitable choice of electrode materials employed for the Fe-MTFTs is concluded to be one of the most important control parameters for highly functional flexible Fe-MTFTs.

  16. Cell Phones: Current Research Results

    MedlinePlus

    ... possibly carcinogenic to humans": Coffee Extremely low frequency electromagnetic fields (power line frequency) Talc-based body powder ... Effects of Wireless Communication Devices World Health Organization: Electromagnetic Fields and Public Health: Mobile Phones International Agency ...

  17. Radiation Effects on Current Field Programmable Technologies

    NASA Technical Reports Server (NTRS)

    Katz, R.; LaBel, K.; Wang, J. J.; Cronquist, B.; Koga, R.; Penzin, S.; Swift, G.

    1997-01-01

    Manufacturers of field programmable gate arrays (FPGAS) take different technological and architectural approaches that directly affect radiation performance. Similar y technological and architectural features are used in related technologies such as programmable substrates and quick-turn application specific integrated circuits (ASICs). After analyzing current technologies and architectures and their radiation-effects implications, this paper includes extensive test data quantifying various devices total dose and single event susceptibilities, including performance degradation effects and temporary or permanent re-configuration faults. Test results will concentrate on recent technologies being used in space flight electronic systems and those being developed for use in the near term. This paper will provide the first extensive study of various configuration memories used in programmable devices. Radiation performance limits and their impacts will be discussed for each design. In addition, the interplay between device scaling, process, bias voltage, design, and architecture will be explored. Lastly, areas of ongoing research will be discussed.

  18. Non-Contact Stiffness Measurement of a Suspended Single Walled Carbon Nanotube Device

    NASA Technical Reports Server (NTRS)

    Zheng, Yun; Su, Chanmin; Getty, Stephanie

    2010-01-01

    A new nanoscale electric field sensor was developed for studying triboelectric charging in terrestrial and Martian dust devils. This sensor is capable to measure the large electric fields for large dust devils without saturation. However, to quantify the electric charges and the field strength it is critical to calibrate the mechanical stiffness of the sensor devices. We performed a technical feasibility study of the Nano E-field Sensor stiffness by a non-contact stiffness measurement method. The measurement is based on laser Doppler vibrometer measurement of the thermal noise due to energy flunctuations in the devices. The experiment method provides a novel approach to acquire data that is essential in analyzing the quantitative performance of the E-field Nano Sensor. To carry out the non-contact stiffness measurement, we fabricated a new Single-Walled Carbon Nanotube (SWCNT) E-field sensor with different SWCNTs suspension conditions. The power spectra of the thermal induced displacement in the nano E-field sensor were measured at the accuracy of picometer. The power spectra were then used to derive the mechanical stiffness of the sensors. Effect of suspension conditions on stiffness and sensor sensitivty was discussed. After combined deformation and resistivity measurement, we can compare with our laboratory testing and field testing results. This new non-contact measurement technology can also help to explore to other nano and MEMS devices in the future.

  19. A computational study of a novel graphene nanoribbon field effect transistor

    NASA Astrophysics Data System (ADS)

    Ghoreishi, Seyed Saleh; Yousefi, Reza

    2017-04-01

    In this paper, using gate structure engineering and modification of channel dopant profile, we propose a new double gate graphene nanoribbon field effect transistor (DG-GNRFET) mainly to suppress the band-to-band tunneling (BTBT) of carriers. In the new device, the intrinsic part of the channel is replaced by an intrinsic-lightly doped-intrinsic (I -N--I) configuration in a way that only the intrinsic parts are covered by the gate contact. Transport characteristics of the device are investigated theoretically using the nonequilibrium Green’s function (NEGF) formalism. Numerical simulations show that off-current, ambipolar behavior, on/off-current ratio and the switching characteristics such as intrinsic delay and power-delay product are improved. In addition, the new device demonstrates better sub-threshold swing and less drain-induced barrier lowering (DIBL).

  20. Tunnel Field-Effect Transistors in 2-D Transition Metal Dichalcogenide Materials

    NASA Astrophysics Data System (ADS)

    Ilatikhameneh, Hesameddin; Tan, Yaohua; Novakovic, Bozidar; Klimeck, Gerhard; Rahman, Rajib; Appenzeller, Joerg

    2015-12-01

    In this work, the performance of Tunnel Field-Effect Transistors (TFETs) based on two-dimensional Transition Metal Dichalcogenide (TMD) materials is investigated by atomistic quantum transport simulations. One of the major challenges of TFETs is their low ON-currents. 2D material based TFETs can have tight gate control and high electric fields at the tunnel junction, and can in principle generate high ON-currents along with a sub-threshold swing smaller than 60 mV/dec. Our simulations reveal that high performance TMD TFETs, not only require good gate control, but also rely on the choice of the right channel material with optimum band gap, effective mass and source/drain doping level. Unlike previous works, a full band atomistic tight binding method is used self-consistently with 3D Poisson equation to simulate ballistic quantum transport in these devices. The effect of the choice of TMD material on the performance of the device and its transfer characteristics are discussed. Moreover, the criteria for high ON-currents are explained with a simple analytic model, showing the related fundamental factors. Finally, the subthreshold swing and energy-delay of these TFETs are compared with conventional CMOS devices.

  1. Stopping electric field extension in a modified nanostructure based on SOI technology - A comprehensive numerical study

    NASA Astrophysics Data System (ADS)

    Anvarifard, Mohammad K.; Orouji, Ali A.

    2017-11-01

    This article has related a particular knowledge in order to reduce short channel effects (SCEs) in nano-devices based on silicon-on-insulator (SOI) MOSFETs. The device under study has been designed in 22 nm node technology with embedding Si3N4 extra oxide as a stopping layer of electric field and a useful heatsink for transferring generated heat. Two important subjects (DC characteristics and RF characteristics) have been investigated, simultaneously. Stopping electric field extension and enhancement of channel thermal conduction are introduced as an entrance gateway for this work so that improve the electrical characteristics, eventually. The inserted extra oxide made by the Si3N4 material has a vital impact on the modification of the electrical and thermal features in the proposed device. An immense comparison between the proposed SOI and conventional SOI showed that the proposed structure has higher electrical and thermal proficiency than the conventional structure in terms of main parameters such as short channel effects (SCEs), leakage current, floating body effect (FBE), self-heating effect (SHE), voltage gain, ratio of On-current to Off- current, transconductance, output conductance, minimum noise figure and power gain.

  2. Spin-orbit proximity effect in graphene

    NASA Astrophysics Data System (ADS)

    Avsar, A.; Tan, J. Y.; Taychatanapat, T.; Balakrishnan, J.; Koon, G. K. W.; Yeo, Y.; Lahiri, J.; Carvalho, A.; Rodin, A. S.; O'Farrell, E. C. T.; Eda, G.; Castro Neto, A. H.; Özyilmaz, B.

    2014-09-01

    The development of spintronics devices relies on efficient generation of spin-polarized currents and their electric-field-controlled manipulation. While observation of exceptionally long spin relaxation lengths makes graphene an intriguing material for spintronics studies, electric field modulation of spin currents is almost impossible due to negligible intrinsic spin-orbit coupling of graphene. In this work, we create an artificial interface between monolayer graphene and few-layer semiconducting tungsten disulphide. In these devices, we observe that graphene acquires spin-orbit coupling up to 17 meV, three orders of magnitude higher than its intrinsic value, without modifying the structure of the graphene. The proximity spin-orbit coupling leads to the spin Hall effect even at room temperature, and opens the door to spin field effect transistors. We show that intrinsic defects in tungsten disulphide play an important role in this proximity effect and that graphene can act as a probe to detect defects in semiconducting surfaces.

  3. Device and circuit-level performance of carbon nanotube field-effect transistor with benchmarking against a nano-MOSFET.

    PubMed

    Tan, Michael Loong Peng; Lentaris, Georgios; Amaratunga Aj, Gehan

    2012-08-19

    The performance of a semiconducting carbon nanotube (CNT) is assessed and tabulated for parameters against those of a metal-oxide-semiconductor field-effect transistor (MOSFET). Both CNT and MOSFET models considered agree well with the trends in the available experimental data. The results obtained show that nanotubes can significantly reduce the drain-induced barrier lowering effect and subthreshold swing in silicon channel replacement while sustaining smaller channel area at higher current density. Performance metrics of both devices such as current drive strength, current on-off ratio (Ion/Ioff), energy-delay product, and power-delay product for logic gates, namely NAND and NOR, are presented. Design rules used for carbon nanotube field-effect transistors (CNTFETs) are compatible with the 45-nm MOSFET technology. The parasitics associated with interconnects are also incorporated in the model. Interconnects can affect the propagation delay in a CNTFET. Smaller length interconnects result in higher cutoff frequency.

  4. Geometrical Dependence of Domain-Wall Propagation and Nucleation Fields in Magnetic-Domain-Wall Sensors

    NASA Astrophysics Data System (ADS)

    Borie, B.; Kehlberger, A.; Wahrhusen, J.; Grimm, H.; Kläui, M.

    2017-08-01

    We study the key domain-wall properties in segmented nanowire loop-based structures used in domain-wall-based sensors. The two reasons for device failure, namely, distribution of the domain-wall propagation field (depinning) and the nucleation field are determined with magneto-optical Kerr effect and giant-magnetoresistance (GMR) measurements for thousands of elements to obtain significant statistics. Single layers of Ni81 Fe19 , a complete GMR stack with Co90 Fe10 /Ni81Fe19 as a free layer, and a single layer of Co90 Fe10 are deposited and industrially patterned to determine the influence of the shape anisotropy, the magnetocrystalline anisotropy, and the fabrication processes. We show that the propagation field is influenced only slightly by the geometry but significantly by material parameters. Simulations for a realistic wire shape yield a curling-mode type of magnetization configuration close to the nucleation field. Nonetheless, we find that the domain-wall nucleation fields can be described by a typical Stoner-Wohlfarth model related to the measured geometrical parameters of the wires and fitted by considering the process parameters. The GMR effect is subsequently measured in a substantial number of devices (3000) in order to accurately gauge the variation between devices. This measurement scheme reveals a corrected upper limit to the nucleation fields of the sensors that can be exploited for fast characterization of the working elements.

  5. Floating electrode dielectrophoresis.

    PubMed

    Golan, Saar; Elata, David; Orenstein, Meir; Dinnar, Uri

    2006-12-01

    In practice, dielectrophoresis (DEP) devices are based on micropatterned electrodes. When subjected to applied voltages, the electrodes generate nonuniform electric fields that are necessary for the DEP manipulation of particles. In this study, electrically floating electrodes are used in DEP devices. It is demonstrated that effective DEP forces can be achieved by using floating electrodes. Additionally, DEP forces generated by floating electrodes are different from DEP forces generated by excited electrodes. The floating electrodes' capabilities are explained theoretically by calculating the electric field gradients and demonstrated experimentally by using test-devices. The test-devices show that floating electrodes can be used to collect erythrocytes (red blood cells). DEP devices which contain many floating electrodes ought to have fewer connections to external signal sources. Therefore, the use of floating electrodes may considerably facilitate the fabrication and operation of DEP devices. It can also reduce device dimensions. However, the key point is that DEP devices can integrate excited electrodes fabricated by microtechnology processes and floating electrodes fabricated by nanotechnology processes. Such integration is expected to promote the use of DEP devices in the manipulation of nanoparticles.

  6. Nanoscale memory elements based on the superconductor-ferromagnet proximity effect and spin-transfer torque magnetization switching

    NASA Astrophysics Data System (ADS)

    Baek, Burm

    Superconducting-ferromagnetic hybrid devices have potential for a practical memory technology compatible with superconducting logic circuits and may help realize energy-efficient, high-performance superconducting computers. We have developed Josephson junction devices with pseudo-spin-valve barriers. We observed changes in Josephson critical current depending on the magnetization state of the barrier (parallel or anti-parallel) through the superconductor-ferromagnet proximity effect. This effect persists to nanoscale devices in contrast to the remanent field effect. In nanopillar devices, the magnetization states of the pseudo-spin-valve barriers could also be switched with applied bias currents at 4 K, which is consistent with the spin-transfer torque effect in analogous room-temperature spin valve devices. These results demonstrate devices that combine major superconducting and spintronic effects for scalable read and write of memory states, respectively. Further challenges and proposals towards practical devices will also be discussed.In collaboration with: William Rippard, NIST - Boulder, Matthew Pufall, NIST - Boulder, Stephen Russek, NIST-Boulder, Michael Schneider, NIST - Boulder, Samuel Benz, NIST - Boulder, Horst Rogalla, NIST-Boulder, Paul Dresselhaus, NIST - Boulder

  7. Three-terminal graphene negative differential resistance devices.

    PubMed

    Wu, Yanqing; Farmer, Damon B; Zhu, Wenjuan; Han, Shu-Jen; Dimitrakopoulos, Christos D; Bol, Ageeth A; Avouris, Phaedon; Lin, Yu-Ming

    2012-03-27

    A new mechanism for negative differential resistance (NDR) is discovered in three-terminal graphene devices based on a field-effect transistor configuration. This NDR effect is a universal phenomenon for graphene and is demonstrated in devices fabricated with different types of graphene materials and gate dielectrics. Operation of conventional NDR devices is usually based on quantum tunneling or intervalley carrier transfer, whereas the NDR behavior observed here is unique to the ambipolar behavior of zero-bandgap graphene and is associated with the competition between electron and hole conduction as the drain bias increases. These three terminal graphene NDR devices offer more operation flexibility than conventional two-terminal devices based on tunnel diodes, Gunn diodes, or molecular devices, and open up new opportunities for graphene in microwave to terahertz applications. © 2012 American Chemical Society

  8. Monolayer borophene electrode for effective elimination of both the Schottky barrier and strong electric field effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, L. Z., E-mail: lzliu@nju.edu.cn, E-mail: hkxlwu@nju.edu.cn; Xiong, S. J.; Wu, X. L., E-mail: lzliu@nju.edu.cn, E-mail: hkxlwu@nju.edu.cn

    2016-08-08

    The formation of Schottky barriers between 2D semiconductors and traditional metallic electrodes has greatly limited the application of 2D semiconductors in nanoelectronic and optoelectronic devices. In this study, metallic borophene was used as a substitute for the traditional noble metal electrode to contact with the 2D semiconductor. Theoretical calculations demonstrated that no Schottky barrier exists in the borophene/2D semiconductor heterostructure. The contact remains ohmic even with a strong electric field applied. This finding provides a way to construct 2D electronic devices and sensors with greatly enhanced performance.

  9. Multi-step resistive switching behavior of Li-doped ZnO resistance random access memory device controlled by compliance current

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Chun-Cheng; Department of Mathematic and Physical Sciences, R.O.C. Air Force Academy, Kaohsiung 820, Taiwan; Tang, Jian-Fu

    2016-06-28

    The multi-step resistive switching (RS) behavior of a unipolar Pt/Li{sub 0.06}Zn{sub 0.94}O/Pt resistive random access memory (RRAM) device is investigated. It is found that the RRAM device exhibits normal, 2-, 3-, and 4-step RESET behaviors under different compliance currents. The transport mechanism within the device is investigated by means of current-voltage curves, in-situ transmission electron microscopy, and electrochemical impedance spectroscopy. It is shown that the ion transport mechanism is dominated by Ohmic behavior under low electric fields and the Poole-Frenkel emission effect (normal RS behavior) or Li{sup +} ion diffusion (2-, 3-, and 4-step RESET behaviors) under high electric fields.

  10. Storage Reliability of Missile Materiel Program, Monolithic Bipolar SSI/ MSI Digital and Linear Integrated Circuit Analysis

    DTIC Science & Technology

    1978-01-01

    Beam Lead Sealed Junction (ELSJ) devices, the silicon nitride seals the devices from sodium and since the platinum silicide and titanium metals also...improve the surface stability of bipolar devices. These materials act as gettering agents for sodium ions, thus making the contamination far less...electric field, can cause appreciable device parameter instability. Silicon nitride has been shown to be an effective barrier to sodium migration. In

  11. Some limitations on processing materials in acoustic levitation devices

    NASA Technical Reports Server (NTRS)

    Oran, W. A.; Witherow, W. K.; Ross, B. B.; Rush, J. E.

    1979-01-01

    The spot heating of samples, suspended in an acoustic field, was investigated to determine if the technique could be used to process materials. A single axis resonance device operating in air at 25 C with an rms pressure maximum of 160 to 170 db was used in the experiments. The heat flow from a hot object suspended in a levitation node is dominated by the effects of the field, with the heat loss approximately 20 times larger than that due to natural convection. The acoustic forces which suspend the body at a node also serve to eject the heated air. The coupling between the locally heated region around the body and the acoustic field results in instabilities in both the pressure wave and force field. The investigations indicated the extreme difficulties in developing a materials processing device based on acoustic/spot heating for use in a terrestrial environment.

  12. A new method to determine the 2DEG density distribution for passivated AlGaN/AlN/GaN heterostructure field-effect transistors

    NASA Astrophysics Data System (ADS)

    Fu, Chen; Lin, Zhaojun; Cui, Peng; Lv, Yuanjie; Zhou, Yang; Dai, Gang; Luan, Chongbiao; Liu, Huan; Cheng, Aijie

    2018-01-01

    A new method to determine the two-dimensional electron gas (2DEG) density distribution of the AlGaN/AlN/GaN heterostructure field-effect transistors (HFETs) after the Si3N4 passivation process has been presented. Detailed device characteristics were investigated and better transport properties have been observed for the passivated devices. The strain variation and the influence of the surface trapping states were analyzed. By using the polarization Coulomb field (PCF) scattering theory, the 2DEG density after passivation was both quantitively and qualitatively determined, which has been increased by 45% under the access regions and decreased by 2% under the gate region.

  13. Design of affordable and ruggedized biomedical devices using virtual instrumentation.

    PubMed

    Mathern, Ryan Michael; Schopman, Sarah; Kalchthaler, Kyle; Mehta, Khanjan; Butler, Peter

    2013-05-01

    Abstract This paper presents the designs of four low-cost and ruggedized biomedical devices, including a blood pressure monitor, thermometer, weighing scale and spirometer, designed for the East African context. The design constraints included a mass-production price point of $10, accuracy and precision comparable to commercial devices and ruggedness to function effectively in the harsh environment of East Africa. The blood pressure device, thermometer and weighing scale were field-tested in Kenya and each recorded data within 6% error of the measurements from commercial devices and withstood the adverse climate and rough handling. The spirometer functioned according to specifications, but a re-design is needed to improve operability and usability by patients. This article demonstrates the feasibility of designing and commercializing virtual instrumentation-based biomedical devices in resource-constrained environments through context-driven design. The next steps for the devices include designing them such that they can be more easily manufactured, use standardized materials, are easily calibrated in the field and have more user-friendly software programs that can be updated remotely.

  14. Guest concentration, bias current, and temperature-dependent sign inversion of magneto-electroluminescence in thermally activated delayed fluorescence devices

    NASA Astrophysics Data System (ADS)

    Deng, Junquan; Jia, Weiyao; Chen, Yingbing; Liu, Dongyu; Hu, Yeqian; Xiong, Zuhong

    2017-03-01

    Non-emissive triplet excited states in devices that undergo thermally activated delayed fluorescence (TADF) can be up-converted to singlet excited states via reverse intersystem crossing (RISC), which leads to an enhanced electroluminescence efficiency. Exciton-based fluorescence devices always exhibit a positive magneto-electroluminescence (MEL) because intersystem crossing (ISC) can be suppressed effectively by an external magnetic field. Conversely, TADF devices should exhibit a negative MEL because RISC is suppressed by the external magnetic field. Intriguingly, we observed a positive MEL in TADF devices. Moreover, the sign of the MEL was either positive or negative, and depended on experimental conditions, including doping concentration, current density and temperature. The MEL observed from our TADF devices demonstrated that ISC in the host material and RISC in the guest material coexisted. These competing processes were affected by the experimental conditions, which led to the sign change of the MEL. This work gives important insight into the energy transfer processes and the evolution of excited states in TADF devices.

  15. Integration of micro-/nano-/quantum-scale photonic devices: scientific and technological considerations

    NASA Astrophysics Data System (ADS)

    Lee, El-Hang; Lee, Seung-Gol; O, Beom Hoan; Park, Se Geun

    2004-08-01

    Scientific and technological issues and considerations regarding the integration of miniaturized microphotonic devices, circuits and systems in micron, submicron, and quantum scale, are presented. First, we examine the issues regarding the miniaturization of photonic devices including the size effect, proximity effect, energy confinement effect, microcavity effect, optical and quantum interference effect, high field effect, nonlinear effect, noise effect, quantum optical effect, and chaotic effect. Secondly, we examine the issues regarding the interconnection including the optical alignment, minimizing the interconnection losses, and maintaining optical modes. Thirdly, we address the issues regarding the two-dimensional or three-dimensional integration either in a hybrid format or in a monolithic format between active devices and passive devices of varying functions. We find that the concept of optical printed circuit board (O-PCB) that we propose is highly attractive as a platform for micro/nano/quantum-scale photonic integration. We examine the technological issues to be addressed in the process of fabrication, characterization, and packaging for actual implementation of the miniaturization, interconnection and integration. Devices that we have used for our study include: mode conversion schemes, micro-ring and micro-racetrack resonator devices, multimode interference devices, lasers, vertical cavity surface emitting microlasers, and their arrays. Future prospects are also discussed.

  16. Current trends in nanomaterial embedded field effect transistor-based biosensor.

    PubMed

    Nehra, Anuj; Pal Singh, Krishna

    2015-12-15

    Recently, as metal-, polymer-, and carbon-based biocompatible nanomaterials have been increasingly incorporated into biosensing applications, with various nanostructures having been used to increase the efficacy and sensitivity of most of the detecting devices, including field effect transistor (FET)-based devices. These nanomaterial-based methods also became the ideal for the amalgamation of biomolecules, especially for the fabrication of ultrasensitive, low-cost, and robust FET-based biosensors; these are categorically very successful at binding the target specified entities in the confined gated micro-region for high functionality. Furthermore, the contemplation of nanomaterial-based FET biosensors to various applications encompasses the desire for detection of many targets with high selectivity, and specificity. We assess how such devices have empowered the achievement of elevated biosensor performance in terms of high sensitivity, selectivity and low detection limits. We review the recent literature here to illustrate the diversity of FET-based biosensors, based on various kinds of nanomaterials in different applications and sum up that graphene or its assisted composite based FET devices are comparatively more efficient and sensitive with highest signal to noise ratio. Lastly, the future prospects and limitations of the field are also discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Focusing electrode and coaxial reflector used for reducing the guiding magnetic field of the Ku-band foilless transit-time oscillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ling, Junpu; Zhang, Jiande; He, Juntao, E-mail: hejuntao12@163.com

    2014-08-15

    Based on the theoretical analysis of the intense relativistic electron beam propagation in the coaxial drift-tube, a focusing electrode and a coaxial reflector is proposed to lessen the demand of the coaxial Ku-band foilless transit-time oscillator (TTO) for the guiding magnetic field. Moreover, a Ku-band TTO with the focusing electrode and the coaxial reflector is designed and studied by particle in cell simulation. When the diode voltage is 390 kV, the beam current 7.8 kA, and the guiding magnetic field is only 0.3 T, the device can output 820 MW microwave pulse at 14.25 GHz by means of the simulation.more » However, for the device without them, the output power is only 320 MW. The primary experiments are also carried out. When the guiding magnetic field is 0.3 T, the output power of the device with the focusing electrode and the coaxial reflector is double that of the one without them. The simulation and experimental results prove that the focusing electrode and the coaxial reflector are effective on reducing the guiding magnetic field of the device.« less

  18. Electrically Addressable Optical Devices Using A System Of Composite Layered Flakes Suspended In A Fluid Host To Obtain Angularly Depende

    DOEpatents

    Kosc, Tanya Z.; Marshall, Kenneth L.; Jacobs, Stephen D.

    2004-12-07

    Composite or layered flakes having a plurality of layers of different materials, which may be dielectric materials, conductive materials, or liquid crystalline materials suspended in a fluid host and subjected to an electric field, provide optical effects dependent upon the angle or orientation of the flakes in the applied electric field. The optical effects depend upon the composition and thickness of the layers, producing reflectance, interference, additive and/or subtractive color effects. The composition of layered flakes may also be selected to enhance and/or alter the dielectric properties of flakes, whereby flake motion in an electric field is also enhanced and/or altered. The devices are useful as active electro-optical displays, polarizers, filters, light modulators, and wherever controllable polarizing, reflecting and transmissive optical properties are desired.

  19. Top-gated field-effect LaAlO{sub 3}/SrTiO{sub 3} devices made by ion-irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hurand, S.; Jouan, A.; Feuillet-Palma, C.

    2016-02-01

    We present a method to fabricate top-gated field-effect devices in a LaAlO{sub 3}/SrTiO{sub 3} two-dimensional electron gas (2-DEG). Prior to the gate deposition, the realisation of micron size conducting channels in the 2-DEG is achieved by an ion-irradiation with high-energy oxygen ions. After identifying the ion fluence as the key parameter that determines the electrical transport properties of the channels, we demonstrate the field-effect operation. At low temperature, the normal state resistance and the superconducting T{sub c} can be tuned over a wide range by a top-gate voltage without any leakage. A superconductor-to-insulator quantum phase transition is observed for amore » strong depletion of the 2-DEG.« less

  20. [Comparative assessment of MR-semiotics of acutest intracerebral hematomas in low- and extra high-field frequency magnetic resonance tomography].

    PubMed

    Skvortsova, V I; Burenchev, D V; Tvorogova, T V; Guseva, O I; Prokhorov, A V; Smirnov, A M; Kupriianov, D A; Pirogov, Iu A

    2009-01-01

    An objective of the study was to compare sensitivity of low- and extra high-field frequency magnetic resonance (MR) tomography of acutest intracerebral hematomas (ICH) and to assess differences between symptoms in obtained images. A study was conducted using experimental ICH in rats (n=6). Hematomas were formed by two injections of autologic blood into the brain. MR-devices "Bio Spec 70/30" with magnetic field strength of 7 T and "Ellipse-150" with magnetic field strength of 0,15 T were used in the study. MR-tomography was carried out 3-5 h after the injections. Both MR-devices revealed the presence of pathological lesion in all animals. Extra highfield frequency MR-tomography showed the specific signs of ICH caused by the paramagnetic effect of deoxyhemoglobin in T2 and T2*-weighted images (WI) and low frequency MR-tomography - in T2*-WI only. The comparable sensitivity of low- and extra high-field frequency MR-devices in acutest ICH was established.

  1. APPARATUS FOR TRAPPING ENERGETIC CHARGED PARTICLES AND CONFINING THE RESULTING PLASMA

    DOEpatents

    Gibson, G.; Jordan, W.C.; Lauer, E.J.

    1963-04-01

    The present invention relates to a plasma-confining device and a particle injector therefor, the device utilizing a generally toroidal configuration with magnetic fields specifically tailored to the associated injector. The device minimizes the effects of particle end losses and particle drift to the walls with a relatively simple configuration. More particularly, the magnetic field configuration is created by a continuous array of circular, mirror field coils, disposed side-by- side, in particularly spaced relation, to form an endless, toroidal loop. The resulting magnetic field created therein has the appearance of a bumpy'' torus, from which is derived the name Bumpy Torus.'' One of the aforementioned coils is split transverse to its axis, and injection of particles is accomplished along a plane between the halves of such modified coil. The guiding center of the particles follows a constant magnetic field in the plane for a particular distance within the torus, to move therefrom onto a precessional surface which does not intersect the point of injection. (AEC)

  2. Electron spin resonance observation of charge carrier concentration in organic field-effect transistors during device operation

    NASA Astrophysics Data System (ADS)

    Tanaka, Hisaaki; Hirate, Masataka; Watanabe, Shun-ichiro; Kaneko, Kazuaki; Marumoto, Kazuhiro; Takenobu, Taishi; Iwasa, Yoshihiro; Kuroda, Shin-ichi

    2013-01-01

    Charge carrier concentration in operating organic field-effect transistors (OFETs) reflects the electric potential within the channel, acting as a key quantity to clarify the operation mechanism of the device. Here, we demonstrate a direct determination of charge carrier concentration in the operating devices of pentacene and poly(3-hexylthiophene) (P3HT) by field-induced electron spin resonance (FI-ESR) spectroscopy. This method sensitively detects polarons induced by applying gate voltage, giving a clear FI-ESR signal around g=2.003 in both devices. Upon applying drain-source voltage, carrier concentration decreases monotonically in the FET linear region, reaching about 70% of the initial value at the pinch-off point, and stayed constant in the saturation region. The observed results are reproduced well from the theoretical potential profile based on the gradual channel model. In particular, the carrier concentration at the pinch-off point is calculated to be β/(β+1) of the initial value, where β is the power exponent in the gate voltage (Vgs) dependence of the mobility (μ), expressed as μ∝Vgsβ-2, providing detailed information of charge transport. The present devices show β=2.6 for the pentacene and β=2.3 for the P3HT cases, consistent with those determined by transfer characteristics. The gate voltage dependence of the mobility, originating from the charge trapping at the device interface, is confirmed microscopically by the motional narrowing of the FI-ESR spectra.

  3. Silicon nanowire biologically sensitive field effect transistors: electrical characteristics and applications.

    PubMed

    Rim, Taiuk; Baek, Chang-Ki; Kim, Kihyun; Jeong, Yoon-Ha; Lee, Jeong-Soo; Meyyappan, M

    2014-01-01

    The interest in biologically sensitive field effect transistors (BioFETs) is growing explosively due to their potential as biosensors in biomedical, environmental monitoring and security applications. Recently, adoption of silicon nanowires in BioFETs has enabled enhancement of sensitivity, device miniaturization, decreasing power consumption and emerging applications such as the 3D cell probe. In this review, we describe the device physics and operation of the silicon nanowire BioFETs along with recent advances in the field. The silicon nanowire BioFETs are basically the same as the conventional field-effect transistors (FETs) with the exceptions of nanowire channel instead of thin film and a liquid gate instead of the conventional gate. Therefore, the silicon device physics is important to understand the operation of the BioFETs. Herein, physical characteristics of the silicon nanowire FETs are described and the operational principles of the BioFETs are classified according to the number of gates and the analysis domain of the measured signal. Even the bottom-up process has merits on low-cost fabrication; the top-down process technique is highlighted here due to its reliability and reproducibility. Finally, recent advances in the silicon nanowire BioFETs in the literature are described and key features for commercialization are discussed.

  4. Combining axial and radial nanowire heterostructures: radial Esaki diodes and tunnel field-effect transistors.

    PubMed

    Dey, Anil W; Svensson, Johannes; Ek, Martin; Lind, Erik; Thelander, Claes; Wernersson, Lars-Erik

    2013-01-01

    The ever-growing demand on high-performance electronics has generated transistors with very impressive figures of merit (Radosavljevic et al., IEEE Int. Devices Meeting 2009, 1-4 and Cho et al., IEEE Int. Devices Meeting 2011, 15.1.1-15.1.4). The continued scaling of the supply voltage of field-effect transistors, such as tunnel field-effect transistors (TFETs), requires the implementation of advanced transistor architectures including FinFETs and nanowire devices. Moreover, integration of novel materials with high electron mobilities, such as III-V semiconductors and graphene, are also being considered to further enhance the device properties (del Alamo, Nature 2011, 479, 317-323, and Liao et al., Nature 2010, 467, 305-308). In nanowire devices, boosting the drive current at a fixed supply voltage or maintaining a constant drive current at a reduced supply voltage may be achieved by increasing the cross-sectional area of a device, however at the cost of deteriorated electrostatics. A gate-all-around nanowire device architecture is the most favorable electrostatic configuration to suppress short channel effects; however, the arrangement of arrays of parallel vertical nanowires to address the drive current predicament will require additional chip area. The use of a core-shell nanowire with a radial heterojunction in a transistor architecture provides an attractive means to address the drive current issue without compromising neither chip area nor device electrostatics. In addition to design advantages of a radial transistor architecture, we in this work illustrate the benefit in terms of drive current per unit chip area and compare the experimental data for axial GaSb/InAs Esaki diodes and TFETs to their radial counterparts and normalize the electrical data to the largest cross-sectional area of the nanowire, i.e. the occupied chip area, assuming a vertical device geometry. Our data on lateral devices show that radial Esaki diodes deliver almost 7 times higher peak current, Jpeak = 2310 kA/cm(2), than the maximum peak current of axial GaSb/InAs(Sb) Esaki diodes per unit chip area. The radial TFETs also deliver high peak current densities Jpeak = 1210 kA/cm(2), while their axial counterparts at most carry Jpeak = 77 kA/cm(2), normalized to the largest cross-sectional area of the nanowire.

  5. Effect of Pentacene-dielectric Affinity on Pentacene Thin Film Growth Morphology in Organic Field-effect Transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S Kim; M Jang; H Yang

    2011-12-31

    Organic field-effect transistors (OFETs) are fabricated by depositing a thin film of semiconductor on the functionalized surface of a SiO{sub 2} dielectric. The chemical and morphological structures of the interface between the semiconductor and the functionalized dielectric are critical for OFET performance. We have characterized the effect of the affinity between semiconductor and functionalized dielectric on the properties of the semiconductor-dielectric interface. The crystalline microstructure/nanostructure of the pentacene semiconductor layers, grown on a dielectric substrate that had been functionalized with either poly(4-vinyl pyridine) or polystyrene (to control hydrophobicity), and grown under a series of substrate temperatures and deposition rates, weremore » characterized by X-ray diffraction, photoemission spectroscopy, and atomic force microscopy. By comparing the morphological features of the semiconductor thin films with the device characteristics (field-effect mobility, threshold voltage, and hysteresis) of the OFET devices, the effect of affinity-driven properties on charge modulation, charge trapping, and charge carrier transport could be described.« less

  6. Use of cermet thin film resistors with nitride passivated metal insulator field effect transistor

    NASA Technical Reports Server (NTRS)

    Brown, G. A.; Harrap, V.

    1971-01-01

    Film deposition of cermet resistors on same chip with metal nitride oxide silicon field effect transistors permits protection of contamination sensitive active devices from contaminants produced in cermet deposition and definition processes. Additional advantages include lower cost, greater reliability, and space savings.

  7. Performance optimization in electric field gradient focusing.

    PubMed

    Sun, Xuefei; Farnsworth, Paul B; Tolley, H Dennis; Warnick, Karl F; Woolley, Adam T; Lee, Milton L

    2009-01-02

    Electric field gradient focusing (EFGF) is a technique used to simultaneously separate and concentrate biomacromolecules, such as proteins, based on the opposing forces of an electric field gradient and a hydrodynamic flow. Recently, we reported EFGF devices fabricated completely from copolymers functionalized with poly(ethylene glycol), which display excellent resistance to protein adsorption. However, the previous devices did not provide the predicted linear electric field gradient and stable current. To improve performance, Tris-HCl buffer that was previously doped in the hydrogel was replaced with a phosphate buffer containing a salt (i.e., potassium chloride, KCl) with high mobility ions. The new devices exhibited stable current, good reproducibility, and a linear electric field distribution in agreement with the shaped gradient region design due to improved ion transport in the hydrogel. The field gradient was calculated based on theory to be approximately 5.76 V/cm(2) for R-phycoerythrin when the applied voltage was 500 V. The effect of EFGF separation channel dimensions was also investigated; a narrower focused band was achieved in a smaller diameter channel. The relationship between the bandwidth and channel diameter is consistent with theory. Three model proteins were resolved in an EFGF channel of this design. The improved device demonstrated 14,000-fold concentration of a protein sample (from 2 ng/mL to 27 microg/mL).

  8. Magnetic-field-driven electron transport in ferromagnetic/ insulator/semiconductor hybrid structures

    NASA Astrophysics Data System (ADS)

    Volkov, N. V.; Tarasov, A. S.; Rautskii, M. V.; Lukyanenko, A. V.; Varnakov, S. N.; Ovchinnikov, S. G.

    2017-10-01

    Extremely large magnetotransport phenomena were found in the simple devices fabricated on base of the Me/SiO2/p-Si hybrid structures (where Me are Mn and Fe). These effects include gigantic magnetoimpedance (MI), dc magnetoresistance (MR) and the lateral magneto-photo-voltaic effect (LMPE). The MI and MR values exceed 106% in magnetic field about 0.2 T for Mn/SiO2/p-Si Schottky diode. LMPE observed in Fe/SiO2/p-Si lateral device reaches the value of 104% in a field of 1 T. We believe that in case with the Schottky diode MR and MI effects are originate from magnetic field influence on impact ionization process by two different ways. First, the trajectory of the electron is deflected by a magnetic field, which suppresses acquisition of kinetic energy and therefore impact ionization. Second, the magnetic field gives rise to shift of the acceptor energy levels in silicon to a higher energy. As a result, the activation energy for impact ionization significantly increases and consequently threshold voltage rises. Moreover, the second mechanism (acceptor level energy shifting in magnetic field) can be responsible for giant LMPE.

  9. Effects of Lightning Injection on Power-MOSFETs

    NASA Technical Reports Server (NTRS)

    Celaya, Jose; Saha, Sankalita; Wysocki, Phil; Ely, Jay; Nguyen, Truong; Szatkowski, George; Koppen, Sandra; Mielnik, John; Vaughan, Roger; Goebel, Kai

    2009-01-01

    Lightning induced damage is one of the major concerns in aircraft health monitoring. Such short-duration high voltages can cause significant damage to electronic devices. This paper presents a study on the effects of lightning injection on power metal-oxide semiconductor field effect transistors (MOSFETs). This approach consisted of pin-injecting lightning waveforms into the gate, drain and/or source of MOSFET devices while they were in the OFF-state. Analysis of the characteristic curves of the devices showed that for certain injection modes the devices can accumulate considerable damage rendering them inoperable. Early results demonstrate that a power MOSFET, even in its off-state, can incur considerable damage due to lightning pin injection, leading to significant deviation in its behavior and performance, and to possibly early device failures.

  10. Single event burnout sensitivity of embedded field effect transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koga, R.; Crain, S.H.; Crawford, K.B.

    Observations of single event burnout (SEB) in embedded field effect transistors are reported. Both SEB and other single event effects are presented for several pulse width modulation and high frequency devices. The microscope has been employed to locate and to investigate the damaged areas. A model of the damage mechanism based on the results so obtained is described.

  11. Single event burnout sensitivity of embedded field effect transistors

    NASA Astrophysics Data System (ADS)

    Koga, R.; Crain, S. H.; Crawford, K. B.; Yu, P.; Gordon, M. J.

    1999-12-01

    Observations of single event burnout (SEB) in embedded field effect transistors are reported. Both SEB and other single event effects are presented for several pulse width modulation and high frequency devices. The microscope has been employed to locate and to investigate the damaged areas. A model of the damage mechanism based on the results so obtained is described.

  12. Grating-patterned FeCo coated surface acoustic wave device for sensing magnetic field

    NASA Astrophysics Data System (ADS)

    Wang, Wen; Jia, Yana; Xue, Xufeng; Liang, Yong; Du, Zhaofu

    2018-01-01

    This study addresses the theoretical and experimental investigations of grating-patterned magnetostrictive FeCo coated surface acoustic wave (SAW) device for sensing magnetic field. The proposed sensor is composed of a configuration of differential dual-delay-line oscillators, and a magnetostrictive FeCo grating array deposited along the SAW propagation path of the sensing device, which suppresses effectively the hysteresis effect by releasing the internal binding force in FeCo. The magnetostrictive strain and ΔE effect from the FeCo coating modulates the SAW propagation characteristic, and the corresponding shift in differential oscillation frequency was utilized to evaluate the measurant. A theoretical model is performed to investigate the wave propagation in layered structure of FeCo/LiNbO3 in the effect of magnetostrictive, and allowing determining the optimal structure. The experimental results indicate that higher sensitivity, excellent linearity, and lower hysteresis error over the typical FeCo thin-film coated sensor were achieved from the grating-patterned FeCo coated sensor successfully.

  13. Lateral energy band profile modulation in tunnel field effect transistors based on gate structure engineering

    NASA Astrophysics Data System (ADS)

    Cui, Ning; Liang, Renrong; Wang, Jing; Xu, Jun

    2012-06-01

    Choosing novel materials and structures is important for enhancing the on-state current in tunnel field-effect transistors (TFETs). In this paper, we reveal that the on-state performance of TFETs is mainly determined by the energy band profile of the channel. According to this interpretation, we present a new concept of energy band profile modulation (BPM) achieved with gate structure engineering. It is believed that this approach can be used to suppress the ambipolar effect. Based on this method, a Si TFET device with a symmetrical tri-material-gate (TMG) structure is proposed. Two-dimensional numerical simulations demonstrated that the special band profile in this device can boost on-state performance, and it also suppresses the off-state current induced by the ambipolar effect. These unique advantages are maintained over a wide range of gate lengths and supply voltages. The BPM concept can serve as a guideline for improving the performance of nanoscale TFET devices.

  14. Piezoelectric potential gated field-effect transistor based on a free-standing ZnO wire.

    PubMed

    Fei, Peng; Yeh, Ping-Hung; Zhou, Jun; Xu, Sheng; Gao, Yifan; Song, Jinhui; Gu, Yudong; Huang, Yanyi; Wang, Zhong Lin

    2009-10-01

    We report an external force triggered field-effect transistor based on a free-standing piezoelectric fine wire (PFW). The device consists of an Ag source electrode and an Au drain electrode at two ends of a ZnO PFW, which were separated by an insulating polydimethylsiloxane (PDMS) thin layer. The working principle of the sensor is proposed based on the piezoelectric potential gating effect. Once subjected to a mechanical impact, the bent ZnO PFW cantilever creates a piezoelectric potential distribution across it width at its root and simultaneously produces a local reverse depletion layer with much higher donor concentration than normal, which can dramatically change the current flowing from the source electrode to drain electrode when the device is under a fixed voltage bias. Due to the free-standing structure of the sensor device, it has a prompt response time less than 20 ms and quite high and stable sensitivity of 2%/microN. The effect from contact resistance has been ruled out.

  15. One simple DNA extraction device and its combination with modified visual loop-mediated isothermal amplification for rapid on-field detection of genetically modified organisms.

    PubMed

    Zhang, Miao; Liu, Yinan; Chen, Lili; Quan, Sheng; Jiang, Shimeng; Zhang, Dabing; Yang, Litao

    2013-01-02

    Quickness, simplicity, and effectiveness are the three major criteria for establishing a good molecular diagnosis method in many fields. Herein we report a novel detection system for genetically modified organisms (GMOs), which can be utilized to perform both on-field quick screening and routine laboratory diagnosis. In this system, a newly designed inexpensive DNA extraction device was used in combination with a modified visual loop-mediated isothermal amplification (vLAMP) assay. The main parts of the DNA extraction device included a silica gel membrane filtration column and a modified syringe. The DNA extraction device could be easily operated without using other laboratory instruments, making it applicable to an on-field GMO test. High-quality genomic DNA (gDNA) suitable for polymerase chain reaction (PCR) and isothermal amplification could be quickly isolated from plant tissues using this device within 15 min. In the modified vLAMP assay, a microcrystalline wax encapsulated detection bead containing SYBR green fluorescent dye was introduced to avoid dye inhibition and cross-contaminations from post-LAMP operation. The system was successfully applied and validated in screening and identification of GM rice, soybean, and maize samples collected from both field testing and the Grain Inspection, Packers, and Stockyards Administration (GIPSA) proficiency test program, which demonstrated that it was well-adapted to both on-field testing and/or routine laboratory analysis of GMOs.

  16. Flow-Field Measurement of Device-Induced Embedded Streamwise Vortex on a Flat Plate

    NASA Technical Reports Server (NTRS)

    Yao, Chung-Sheng; Lin, John C.; Allan, Brian G.

    2002-01-01

    Detailed flow-field measurements were performed downstream of a single vortex generator (VG) using an advanced Stereo Digital Particle Image Velocimetry system. Thc passive flow-control devices examined consisted of a low-profile VG with a device height, h, approximately equal to 20 percent of the boundary-layer thickness, sigma, and a conventional VG with h is approximately sigma. Flow-field data were taken at twelve cross-flow planes downstream of the VG to document and quantify the evolution of embedded streamwise vortex. The effects of device angle of attack on vortex development downstream were compared between the low-profile VG and the conventional VG. Key parameters including vorticity, circulation, trajectory, and half-life radius - describing concentration, strength, path, and size, respectively--of the device-induced streamwise vortex were extracted from the flow-field data. The magnitude of maximum vorticity increases as angle of attack increases for the low-profile VG, but the trend is reversed for the conventional VG, probably due to flow stalling around the larger device at higher angles of attack. Peak vorticity and circulation for the low-profile VG decays exponentially and inversely proportional to the distance downstream from the device. The device-height normalized vortex trajectories for the low-profile VG, especially in the lateral direction, follow the general trends of the conventional VG. The experimental database was used to validate the predictive capability of computational fluid dynamics (CFD). CFD accurately predicts the vortex circulation and path; however, improvements are needed for predicting the vorticity strength and vortex size.

  17. Designing Security-Hardened Microkernels For Field Devices

    NASA Astrophysics Data System (ADS)

    Hieb, Jeffrey; Graham, James

    Distributed control systems (DCSs) play an essential role in the operation of critical infrastructures. Perimeter field devices are important DCS components that measure physical process parameters and perform control actions. Modern field devices are vulnerable to cyber attacks due to their increased adoption of commodity technologies and that fact that control networks are no longer isolated. This paper describes an approach for creating security-hardened field devices using operating system microkernels that isolate vital field device operations from untrusted network-accessible applications. The approach, which is influenced by the MILS and Nizza architectures, is implemented in a prototype field device. Whereas, previous microkernel-based implementations have been plagued by poor inter-process communication (IPC) performance, the prototype exhibits an average IPC overhead for protected device calls of 64.59 μs. The overall performance of field devices is influenced by several factors; nevertheless, the observed IPC overhead is low enough to encourage the continued development of the prototype.

  18. System and method for evaluating wind flow fields using remote sensing devices

    DOEpatents

    Schroeder, John; Hirth, Brian; Guynes, Jerry

    2016-12-13

    The present invention provides a system and method for obtaining data to determine one or more characteristics of a wind field using a first remote sensing device and a second remote sensing device. Coordinated data is collected from the first and second remote sensing devices and analyzed to determine the one or more characteristics of the wind field. The first remote sensing device is positioned to have a portion of the wind field within a first scanning sector of the first remote sensing device. The second remote sensing device is positioned to have the portion of the wind field disposed within a second scanning sector of the second remote sensing device.

  19. Effect of electrode design on crosstalk between neighboring organic field-effect transistors based on one single crystal

    NASA Astrophysics Data System (ADS)

    Li, Mengjie; Tang, Qingxin; Tong, Yanhong; Zhao, Xiaoli; Zhou, Shujun; Liu, Yichun

    2018-03-01

    The design of high-integration organic circuits must be such that the interference between neighboring devices is eliminated. Here, rubrene crystals were used to study the effect of the electrode design on crosstalk between neighboring organic field-effect transistors (OFETs). Results show that a decreased source/drain interval and gate electrode width can decrease the diffraction distance of the current, and therefore can weaken the crosstalk. In addition, the inherent low carrier concentration in organic semiconductors can create a high-resistance barrier at the space between gate electrodes of neighboring devices, limiting or even eliminating the crosstalk as a result of the gate electrode width being smaller than the source/drain electrode width.

  20. Audiologic and subjective evaluation of Baha® Attract device.

    PubMed

    Pérez-Carbonell, Tomàs; Pla-Gil, Ignacio; Redondo-Martínez, Jaume; Morant-Ventura, Antonio; García-Callejo, Francisco Javier; Marco-Algarra, Jaime

    We included 9 patients implanted with Baha ® Attract. All our patients were evaluated by free field tonal audiometry, free field verbal audiometry and free field verbal audiometry with background noise, all the tests were performed with and without the device. To evaluate the subjective component of the implantation, we used the Glasgow Benefit Inventory (GBI) and Abbreviated Profile of Hearing Aid Benefit (APHAB). The auditive assessment with the device showed average auditive thresholds of 35.8dB with improvements of 25.8dB over the previous situation. Speech reception thresholds were 37dB with Baha ® Attract, showing improvements of 23dB. Maximum discrimination thresholds showed an average gain of 60dB with the device. Baha ® Attract achieves auditive improvements in patients for whom it is correctly indicated, with a consequent positive subjective evaluation. This study shows the attenuation effect in transcutaneous transmission, that prevents the device achieving greater improvements. Copyright © 2017 Elsevier España, S.L.U. and Sociedad Española de Otorrinolaringología y Cirugía de Cabeza y Cuello. All rights reserved.

  1. Charge collection and SEU mechanisms

    NASA Astrophysics Data System (ADS)

    Musseau, O.

    1994-01-01

    In the interaction of cosmic ions with microelectronic devices a dense electron-hole plasma is created along the ion track. Carriers are separated and transported by the electric field and under the action of the concentration gradient. The subsequent collection of these carriers induces a transient current at some electrical node of the device. This "ionocurrent" (single ion induced current) acts as any electrical perturbation in the device, propagating in the circuit and inducing failures. In bistable systems (registers, memories) the stored data can be upset. In clocked devices (microprocessors) the parasitic perturbation may propagate through the device to the outputs. This type of failure only effects the information, and do not degrade the functionally of the device. The purpose of this paper is to review the mechanisms of single event upset in microelectronic devices. Experimental and theoretical results are presented, and actual questions and problems are discussed. A brief introduction recalls the creation of the dense plasma of electron-hole pairs. The basic processes for charge collection in a simple np junction (drift and diffusion) are presented. The funneling-field effect is discussed and experimental results are compared to numerical simulations and semi-empirical models. Charge collection in actual microelectronic structures is then presented. Due to the parasitic elements, coupling effects are observed. Geometrical effects, in densely packed structures, results in multiple errors. Electronic couplings are due to the carriers in excess, acting as minority carriers, that trigger parasitic bipolar transistors. Single event upset of memory cells is discussed, based on numerical and experimental data. The main parameters for device characterization are presented. From the physical interpretation of charge collection mechanisms, the intrinsic sensitivity of various microelectronic technologies is determined and compared to experimental data. Scaling laws and future trends are finally discussed.

  2. Avalanche buildup and propagation effects on photon-timing jitter in Si-SPAD with non-uniform electric field

    NASA Astrophysics Data System (ADS)

    Ingargiola, Antonino; Assanelli, Mattia; Gallivanoni, Andrea; Rech, Ivan; Ghioni, Massimo; Cova, Sergio

    2009-05-01

    Improving SPAD performances, such as dark count rate and quantum efficiency, without degrading the photontiming jitter is a challenging task that requires a clear understanding of the physical mechanisms involved. In this paper we investigate the contribution of the avalanche buildup statistics and the lateral avalanche propagation to the photon-timing jitter in silicon SPAD devices. Recent works on the buildup statistics focused on the uniform electric field case, however these results can not be applied to Si SPAD devices in which field profile is far from constant. We developed a 1-D Monte Carlo (MC) simulator using the real non-uniform field profiles derived from Secondary Ion Mass Spectroscopy (SIMS) measurements. Local and non-local models for impact ionization phenomena were considered. The obtained results, in particular the mean multiplication rate and jitter of the buildup filament, allowed us to simulate the statistical spread of the avalanche current on the device active area. We included space charge effects and a detailed lumped model for the external electronics and parasitics. We found that, in agreement with some experimental evidences, the avalanche buildup contribution to the total timing jitter is non-negligible in our devices. Moreover the lateral propagation gives an additional contribution that can explain the increasing trend of the photon-timing jitter with the comparator threshold.

  3. SU-E-T-368: Effect of a Strong Magnetic Field On Select Radiation Dosimeters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathis, M; Wen, Z; Tailor, R

    Purpose: To determine the effect of a strong magnetic field on TLD-100, OSLD (Al{sub 2}O{sub 2}:C), and PRESAGE dosimetry devices. This study will help to determine which types of dosimeters can be used for quality assurance and in-vivo dosimetry measurements in a magnetic resonance imaginglinear accelerator (MRI-linac) system. Methods: The dosimeters were separated into two categories which were either exposed or not exposed to a strong magnetic field. In each category a set of dosimeters was irradiated with 0, 2, or 6 Gy. To expose the dosimeters to a magnetic field the samples in that category were place in amore » Bruker small animal magnetic resonance scanner at a field strength slightly greater than 2.5 T for at least 1 hour preirradiation and at least 1 hour post-irradiation. Irradiations were performed with a 6 MV x-ray beam from a Varian TrueBeam linac with 10×10 cm{sup 2} field at a 600 MU/min dose rate. The samples that received no radiation dose were used as control detectors. Results: The readouts of the dosimeters which were not exposed to a strong magnetic field were compared with the measurements of the dosimetry devices which were exposed to a magnetic field. No significant differences (less than 2% difference) in the performance of TLD, OSLD, or PRESAGE dosimeters due to exposure to a strong magnetic field were observed. Conclusion: Exposure to a strong magnetic field before and after irradiation does not appear to change the dosimetric properties of TLD, OSLD, or PRESAGE which indicates that these dosimeters have potential for use in quality assurance and in-vivo dosimetry in a MRI-linac. We plan to further test the effect of magnetic fields on these devices by irradiating them in the presence of a magnetic fields similar to those produced by a MRI-linac system. Elekta-MD Anderson Cancer Center Research Agreement.« less

  4. "CORKSCREW"-A DEVICE FOR CHANGING THE MAGNETIC MOMENT OF CHARGED PARTICLES IN A MAGNETIC FIELD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wingerson, R.C.

    1961-05-01

    A helical, current-carrying magnetic field source (the "corkscrew") is described; it perturbs an axial uniform magnetic field B/sub 0/ such that the transverse energy components (ET) of selected particles moving along the sxis are increased or decreased monotonically. It is noted that, since the corkscrew has no over-all effect on B/sub 0/, the change in ET must result from a change in the particle's magnetic moment. The use of pairs of these devices in magnetic mirror machines to trap particles is suggested. (T.F.H.)

  5. Electrokinetic framework of dielectrophoretic deposition devices

    NASA Astrophysics Data System (ADS)

    Burg, Brian R.; Bianco, Vincenzo; Schneider, Julian; Poulikakos, Dimos

    2010-06-01

    Numerical modeling and experiments are performed investigating the properties of a dielectrophoresis-based deposition device, in order to establish the electrokinetic framework required to understand the effects of applied inhomogeneous electric fields while moving particles to desired locations. By capacitively coupling electrodes to a conductive substrate, the controlled large-scale parallel dielectrophoretic assembly of nanostructures in individually accessible devices at a high integration density is accomplished. Thermal gradients in the solution, which give rise to local permittivity and conductivity changes, and velocity fields are solved by coupling electric, thermal, and fluid-mechanical equations. The induced electrothermal flow (ETF) causes vortices above the electrode gap, attracting particles, such as single-walled carbon nanotubes (SWNTs), before they are trapped by the dielectrophoretic force and deposit across the electrodes. Long-range carbon nanotube transport is governed by hydrodynamic effects, while local trapping is dominated by dielectrophoretic forces in low concentration SWNT dispersions. Results show that by decreasing the ac frequency ac electroosmosis on the metallic electrodes occurs due to the emergence of an electric double layer, disturbing the initial flow pattern of the system. By superimposing a dc potential offset, a generated tangential electroosmotic fluid flow in the dielectric electrode gap also disrupts the ETF. Capacitive coupling is most efficient in the high frequency regime where it is the dominating impedance contribution. Understanding the occurrence and interaction of these different effects, including a self-limiting integration mechanism for individual nanostructures, allows an increased deposition yield at overall lower electric field strengths through a prudent choice of electric field parameters. The findings provide important avenues toward gentler particle handling, without direct current throughput, a relevant aspect for limiting process effects during device fabrication, all while increasing dielectrophoretic deposition efficiency in nanostructured networks.

  6. MOSFET analog memory circuit achieves long duration signal storage

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Memory circuit maintains the signal voltage at the output of an analog signal amplifier when the input signal is interrupted or removed. The circuit uses MOSFET /Metal Oxide Semiconductor Field Effect Transistor/ devices as voltage-controlled switches, triggered by an external voltage-sensing device.

  7. Room Temperature Silicene Field-Effect Transistors

    NASA Astrophysics Data System (ADS)

    Akinwande, Deji

    Silicene, a buckled Si analogue of graphene, holds significant promise for future electronics beyond traditional CMOS. In our predefined experiments via encapsulated delamination with native electrodes approach, silicene devices exhibit an ambipolar charge transport behavior, corroborating theories on Dirac band in Ag-free silicene. Monolayer silicene device has extracted field-effect mobility within the theoretical expectation and ON/OFF ratio greater than monolayer graphene, while multilayer silicene devices show decreased mobility and gate modulation. Air-stability of silicene devices depends on the number of layers of silicene and intrinsic material structure determined by growth temperature. Few or multi-layer silicene devices maintain their ambipolar behavior for days in contrast to minutes time scale for monolayer counterparts under similar conditions. Multilayer silicene grown at different temperatures below 300oC possess different intrinsic structures and yield different electrical property and air-stability. This work suggests a practical prospect to enable more air-stable silicene devices with layer and growth condition control, which can be leveraged for other air-sensitive 2D materials. In addition, we describe quantum and classical transistor device concepts based on silicene and related buckled materials that exploit the 2D topological insulating phenomenon. The transistor device physics offer the potential for ballistic transport that is robust against scattering and can be employed for both charge and spin transport. This work was supported by the ARO.

  8. Triggering Mechanism for Neutron Induced Single-Event Burnout in Power Devices

    NASA Astrophysics Data System (ADS)

    Shoji, Tomoyuki; Nishida, Shuichi; Hamada, Kimimori

    2013-04-01

    Cosmic ray neutrons can trigger catastrophic failures in power devices. It has been reported that parasitic transistor action causes single-event burnout (SEB) in power metal-oxide-semiconductor field-effect transistors (MOSFETs) and insulated gate bipolar transistors (IGBTs). However, power diodes do not have an inherent parasitic transistor. In this paper, we describe the mechanism triggering SEB in power diodes for the first time using transient device simulation. Initially, generated electron-hole pairs created by incident recoil ions generate transient current, which increases the electron density in the vicinity of the n-/n+ boundary. The space charge effect of the carriers leads to an increase in the strength of the electric field at the n-/n+ boundary. Finally, the onset of impact ionization at the n-/n+ boundary can trigger SEB. Furthermore, this failure is closely related to diode secondary breakdown. It was clarified that the impact ionization at the n-/n+ boundary is a key point of the mechanism triggering SEB in power devices.

  9. Unexpected edge conduction in mercury telluride quantum wells under broken time-reversal symmetry

    DOE PAGES

    Ma, Eric Yue; Calvo, M. Reyes; Wang, Jing; ...

    2015-05-26

    The realization of quantum spin Hall effect in HgTe quantum wells is considered a milestone in the discovery of topological insulators. Quantum spin Hall states are predicted to allow current flow at the edges of an insulating bulk, as demonstrated in various experiments. A key prediction yet to be experimentally verified is the breakdown of the edge conduction under broken time-reversal symmetry. Here we first establish a systematic framework for the magnetic field dependence of electrostatically gated quantum spin Hall devices. We then study edge conduction of an inverted quantum well device under broken time-reversal symmetry using microwave impedance microscopy,more » and compare our findings to a non-inverted device. At zero magnetic field, only the inverted device shows clear edge conduction in its local conductivity profile, consistent with theory. Surprisingly, the edge conduction persists up to 9 T with little change. Finally, this indicates physics beyond simple quantum spin Hall model, including material-specific properties and possibly many-body effects.« less

  10. High sensitivity measurement system for the direct-current, capacitance-voltage, and gate-drain low frequency noise characterization of field effect transistors.

    PubMed

    Giusi, G; Giordano, O; Scandurra, G; Rapisarda, M; Calvi, S; Ciofi, C

    2016-04-01

    Measurements of current fluctuations originating in electron devices have been largely used to understand the electrical properties of materials and ultimate device performances. In this work, we propose a high-sensitivity measurement setup topology suitable for the automatic and programmable Direct-Current (DC), Capacitance-Voltage (CV), and gate-drain low frequency noise characterization of field effect transistors at wafer level. Automatic and programmable operation is particularly useful when the device characteristics relax or degrade with time due to optical, bias, or temperature stress. The noise sensitivity of the proposed topology is in the order of fA/Hz(1/2), while DC performances are limited only by the source and measurement units used to bias the device under test. DC, CV, and NOISE measurements, down to 1 pA of DC gate and drain bias currents, in organic thin film transistors are reported to demonstrate system operation and performances.

  11. Electrical detection of single viruses

    NASA Astrophysics Data System (ADS)

    Patolsky, Fernando; Zheng, Gengfeng; Hayden, Oliver; Lakadamyali, Melike; Zhuang, Xiaowei; Lieber, Charles M.

    2004-09-01

    We report direct, real-time electrical detection of single virus particles with high selectivity by using nanowire field effect transistors. Measurements made with nanowire arrays modified with antibodies for influenza A showed discrete conductance changes characteristic of binding and unbinding in the presence of influenza A but not paramyxovirus or adenovirus. Simultaneous electrical and optical measurements using fluorescently labeled influenza A were used to demonstrate conclusively that the conductance changes correspond to binding/unbinding of single viruses at the surface of nanowire devices. pH-dependent studies further show that the detection mechanism is caused by a field effect, and that the nanowire devices can be used to determine rapidly isoelectric points and variations in receptor-virus binding kinetics for different conditions. Lastly, studies of nanowire devices modified with antibodies specific for either influenza or adenovirus show that multiple viruses can be selectively detected in parallel. The possibility of large-scale integration of these nanowire devices suggests potential for simultaneous detection of a large number of distinct viral threats at the single virus level.

  12. Co-integration of nano-scale vertical- and horizontal-channel metal-oxide-semiconductor field-effect transistors for low power CMOS technology.

    PubMed

    Sun, Min-Chul; Kim, Garam; Kim, Sang Wan; Kim, Hyun Woo; Kim, Hyungjin; Lee, Jong-Ho; Shin, Hyungcheol; Park, Byung-Gook

    2012-07-01

    In order to extend the conventional low power Si CMOS technology beyond the 20-nm node without SOI substrates, we propose a novel co-integration scheme to build horizontal- and vertical-channel MOSFETs together and verify the idea using TCAD simulations. From the fabrication viewpoint, it is highlighted that this scheme provides additional vertical devices with good scalability by adding a few steps to the conventional CMOS process flow for fin formation. In addition, the benefits of the co-integrated vertical devices are investigated using a TCAD device simulation. From this study, it is confirmed that the vertical device shows improved off-current control and a larger drive current when the body dimension is less than 20 nm, due to the electric field coupling effect at the double-gated channel. Finally, the benefits from the circuit design viewpoint, such as the larger midpoint gain and beta and lower power consumption, are confirmed by the mixed-mode circuit simulation study.

  13. High sensitivity measurement system for the direct-current, capacitance-voltage, and gate-drain low frequency noise characterization of field effect transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giusi, G.; Giordano, O.; Scandurra, G.

    Measurements of current fluctuations originating in electron devices have been largely used to understand the electrical properties of materials and ultimate device performances. In this work, we propose a high-sensitivity measurement setup topology suitable for the automatic and programmable Direct-Current (DC), Capacitance-Voltage (CV), and gate-drain low frequency noise characterization of field effect transistors at wafer level. Automatic and programmable operation is particularly useful when the device characteristics relax or degrade with time due to optical, bias, or temperature stress. The noise sensitivity of the proposed topology is in the order of fA/Hz{sup 1/2}, while DC performances are limited only bymore » the source and measurement units used to bias the device under test. DC, CV, and NOISE measurements, down to 1 pA of DC gate and drain bias currents, in organic thin film transistors are reported to demonstrate system operation and performances.« less

  14. High-performance computing for airborne applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quinn, Heather M; Manuzzato, Andrea; Fairbanks, Tom

    2010-06-28

    Recently, there has been attempts to move common satellite tasks to unmanned aerial vehicles (UAVs). UAVs are significantly cheaper to buy than satellites and easier to deploy on an as-needed basis. The more benign radiation environment also allows for an aggressive adoption of state-of-the-art commercial computational devices, which increases the amount of data that can be collected. There are a number of commercial computing devices currently available that are well-suited to high-performance computing. These devices range from specialized computational devices, such as field-programmable gate arrays (FPGAs) and digital signal processors (DSPs), to traditional computing platforms, such as microprocessors. Even thoughmore » the radiation environment is relatively benign, these devices could be susceptible to single-event effects. In this paper, we will present radiation data for high-performance computing devices in a accelerated neutron environment. These devices include a multi-core digital signal processor, two field-programmable gate arrays, and a microprocessor. From these results, we found that all of these devices are suitable for many airplane environments without reliability problems.« less

  15. In-Operando Spatial Imaging of Edge Termination Electric Fields in GaN Vertical p-n Junction Diodes

    DOE PAGES

    Leonard, Francois; Dickerson, J. R.; King, M. P.; ...

    2016-05-03

    Control of electric fields with edge terminations is critical to maximize the performance of high-power electronic devices. We proposed a variety of edge termination designs which makes the optimization of such designs challenging due to many parameters that impact their effectiveness. And while modeling has recently allowed new insight into the detailed workings of edge terminations, the experimental verification of the design effectiveness is usually done through indirect means, such as the impact on breakdown voltages. In this letter, we use scanning photocurrent microscopy to spatially map the electric fields in vertical GaN p-n junction diodes in operando. We alsomore » reveal the complex behavior of seemingly simple edge termination designs, and show how the device breakdown voltage correlates with the electric field behavior. Modeling suggests that an incomplete compensation of the p-type layer in the edge termination creates a bilayer structure that leads to these effects, with variations that significantly impact the breakdown voltage.« less

  16. Methodological considerations in observational comparative effectiveness research for implantable medical devices: an epidemiologic perspective.

    PubMed

    Jalbert, Jessica J; Ritchey, Mary Elizabeth; Mi, Xiaojuan; Chen, Chih-Ying; Hammill, Bradley G; Curtis, Lesley H; Setoguchi, Soko

    2014-11-01

    Medical devices play a vital role in diagnosing, treating, and preventing diseases and are an integral part of the health-care system. Many devices, including implantable medical devices, enter the market through a regulatory pathway that was not designed to assure safety and effectiveness. Several recent studies and high-profile device recalls have demonstrated the need for well-designed, valid postmarketing studies of medical devices. Medical device epidemiology is a relatively new field compared with pharmacoepidemiology, which for decades has been developed to assess the safety and effectiveness of medications. Many methodological considerations in pharmacoepidemiology apply to medical device epidemiology. Fundamental differences in mechanisms of action and use and in how exposure data are captured mean that comparative effectiveness studies of medical devices often necessitate additional and different considerations. In this paper, we discuss some of the most salient issues encountered in conducting comparative effectiveness research on implantable devices. We discuss special methodological considerations regarding the use of data sources, exposure and outcome definitions, timing of exposure, and sources of bias. © The Author 2014. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Re-centering variable friction device for vibration control of structures subjected to near-field earthquakes

    NASA Astrophysics Data System (ADS)

    Ozbulut, Osman E.; Hurlebaus, Stefan

    2011-11-01

    This paper proposes a re-centering variable friction device (RVFD) for control of civil structures subjected to near-field earthquakes. The proposed hybrid device has two sub-components. The first sub-component of this hybrid device consists of shape memory alloy (SMA) wires that exhibit a unique hysteretic behavior and full recovery following post-transformation deformations. The second sub-component of the hybrid device consists of variable friction damper (VFD) that can be intelligently controlled for adaptive semi-active behavior via modulation of its voltage level. In general, installed SMA devices have the ability to re-center structures at the end of the motion and VFDs can increase the energy dissipation capacity of structures. The full realization of these devices into a singular, hybrid form which complements the performance of each device is investigated in this study. A neuro-fuzzy model is used to capture rate- and temperature-dependent nonlinear behavior of the SMA components of the hybrid device. An optimal fuzzy logic controller (FLC) is developed to modulate voltage level of VFDs for favorable performance in a RVFD hybrid application. To obtain optimal controllers for concurrent mitigation of displacement and acceleration responses, tuning of governing fuzzy rules is conducted by a multi-objective heuristic optimization. Then, numerical simulation of a multi-story building is conducted to evaluate the performance of the hybrid device. Results show that a re-centering variable friction device modulated with a fuzzy logic control strategy can effectively reduce structural deformations without increasing acceleration response during near-field earthquakes.

  18. Perspective analysis of tri gate germanium tunneling field-effect transistor with dopant segregation region at source/drain

    NASA Astrophysics Data System (ADS)

    Liu, Liang-kui; Shi, Cheng; Zhang, Yi-bo; Sun, Lei

    2017-04-01

    A tri gate Ge-based tunneling field-effect transistor (TFET) has been numerically studied with technology computer aided design (TCAD) tools. Dopant segregated Schottky source/drain is applied to the device structure design (DS-TFET). The characteristics of the DS-TFET are compared and analyzed comprehensively. It is found that the performance of n-channel tri gate DS-TFET with a positive bias is insensitive to the dopant concentration and barrier height at n-type drain, and that the dopant concentration and barrier height at a p-type source considerably affect the device performance. The domination of electron current in the entire BTBT current of this device accounts for this phenomenon and the tri-gate DS-TFET is proved to have a higher performance than its dual-gate counterpart.

  19. Characterization of X-ray fields at the center for devices and radiological health

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cerra, F.

    This talk summarizes the process undertaken by the Center for Devices and Radiological Health (CDRH) for establishing reference x-ray fields in its accredited calibration laboratory. The main considerations and their effects on the calibration parameters are discussed. The characterization of fields may be broken down into two parts: (1) the initial setup of the calibration beam spectra and (2) the ongoing measurements and controls which ensure consistency of the reference fields. The methods employed by CDRH for both these stages and underlying considerations are presented. Uncertainties associated with the various parameters are discussed. Finally, the laboratory`s performance, as evidenced bymore » ongoing measurement quality assurance results, is reported.« less

  20. Low-field magnetotransport in graphene cavity devices.

    PubMed

    Zhang, G Q; Kang, N; Li, J Y; Lin, Li; Peng, Hailin; Liu, Zhongfan; Xu, H Q

    2018-05-18

    Confinement and edge structures are known to play significant roles in the electronic and transport properties of two-dimensional materials. Here, we report on low-temperature magnetotransport measurements of lithographically patterned graphene cavity nanodevices. It is found that the evolution of the low-field magnetoconductance characteristics with varying carrier density exhibits different behaviors in graphene cavity and bulk graphene devices. In the graphene cavity devices, we observed that intravalley scattering becomes dominant as the Fermi level gets close to the Dirac point. We associate this enhanced intravalley scattering to the effect of charge inhomogeneities and edge disorder in the confined graphene nanostructures. We also observed that the dephasing rate of carriers in the cavity devices follows a parabolic temperature dependence, indicating that the direct Coulomb interaction scattering mechanism governs the dephasing at low temperatures. Our results demonstrate the importance of confinement in carrier transport in graphene nanostructure devices.

  1. Low-field magnetotransport in graphene cavity devices

    NASA Astrophysics Data System (ADS)

    Zhang, G. Q.; Kang, N.; Li, J. Y.; Lin, Li; Peng, Hailin; Liu, Zhongfan; Xu, H. Q.

    2018-05-01

    Confinement and edge structures are known to play significant roles in the electronic and transport properties of two-dimensional materials. Here, we report on low-temperature magnetotransport measurements of lithographically patterned graphene cavity nanodevices. It is found that the evolution of the low-field magnetoconductance characteristics with varying carrier density exhibits different behaviors in graphene cavity and bulk graphene devices. In the graphene cavity devices, we observed that intravalley scattering becomes dominant as the Fermi level gets close to the Dirac point. We associate this enhanced intravalley scattering to the effect of charge inhomogeneities and edge disorder in the confined graphene nanostructures. We also observed that the dephasing rate of carriers in the cavity devices follows a parabolic temperature dependence, indicating that the direct Coulomb interaction scattering mechanism governs the dephasing at low temperatures. Our results demonstrate the importance of confinement in carrier transport in graphene nanostructure devices.

  2. Evaluation of stray radiofrequency radiation emitted by electrosurgical devices

    NASA Astrophysics Data System (ADS)

    DeMarco, M.; Maggi, S.

    2006-07-01

    Electrosurgery refers to the passage of a high-frequency, high-voltage electrical current through the body to achieve the desired surgical effects. At the same time, these procedures are accompanied by a general increase of the electromagnetic field in an operating room that may expose both patients and personnel to relatively high levels of radiofrequency radiation. In the first part of this study, we have taken into account the radiation emitted by different monopolar electrosurgical devices, evaluating the electromagnetic field strength delivered by an electrosurgical handle and straying from units and other electrosurgical accessories. As a summary, in the worst case a surgeon's hands are exposed to a continuous and pulsed RF wave whose magnetic field strength is 0.75 A m-1 (E-field 400 V m-1). Occasionally stray radiation may exceed ICNIRP's occupational exposure guidelines, especially close to the patient return plate. In the second part of this paper, we have analysed areas of particular concern to prevent electromagnetic interference with some life-support devices (ventilators and electrocardiographic devices), which have failed to operate correctly. Most clinically relevant interference occurred when an electrosurgery device was used within 0.3 m of medical equipment. In the appendix, we suggest some practical recommendations intended to minimize the potential for electromagnetic hazards due to therapeutic application of RF energy.

  3. Modification of the coil-stretch transition by confinement

    NASA Astrophysics Data System (ADS)

    Doyle, Patick; Tang, Jing; Jones, Jeremy

    2010-03-01

    Large double stranded DNA are both a powerful system to study polymer dynamics at the single molecule level and also important molecules for genomic applications. While homogenous electric fields are routinely used to separate DNA in gels, DNA deformation in more complex fields has been less widely studied. We will demonstrate how micro/nanofluidic devices allow for the generation of electric fields with well-defined kinematics for trapping, stretching and then watching DNA relax back to equilibrium. The dimensions of the devices highly confine DNA and subsequently change both their conformation and dynamics. We will show how these confinements effects change the coil-stretch transition of a DNA being electrophoretically stretched in a purely elongational electrical field. We experimentally show that a two-stage coil stretch transition occurs and develop a simple dumbbell model which captures most of the relevant physics. We trace the origin of this phenomena to the modification of the effective spring law due to confinement.

  4. Total ionizing dose effect in an input/output device for flash memory

    NASA Astrophysics Data System (ADS)

    Liu, Zhang-Li; Hu, Zhi-Yuan; Zhang, Zheng-Xuan; Shao, Hua; Chen, Ming; Bi, Da-Wei; Ning, Bing-Xu; Zou, Shi-Chang

    2011-12-01

    Input/output devices for flash memory are exposed to gamma ray irradiation. Total ionizing dose has been shown great influence on characteristic degradation of transistors with different sizes. In this paper, we observed a larger increase of off-state leakage in the short channel device than in long one. However, a larger threshold voltage shift is observed for the narrow width device than for the wide one, which is well known as the radiation induced narrow channel effect. The radiation induced charge in the shallow trench isolation oxide influences the electric field of the narrow channel device. Also, the drain bias dependence of the off-state leakage after irradiation is observed, which is called the radiation enhanced drain induced barrier lowing effect. Finally, we found that substrate bias voltage can suppress the off-state leakage, while leading to more obvious hump effect.

  5. 21 CFR 886.1360 - Visual field laser instrument.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Visual field laser instrument. 886.1360 Section... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1360 Visual field laser instrument. (a) Identification. A visual field laser instrument is an AC-powered device intended to provide...

  6. 21 CFR 886.1360 - Visual field laser instrument.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Visual field laser instrument. 886.1360 Section... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1360 Visual field laser instrument. (a) Identification. A visual field laser instrument is an AC-powered device intended to provide...

  7. 21 CFR 886.1360 - Visual field laser instrument.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Visual field laser instrument. 886.1360 Section... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1360 Visual field laser instrument. (a) Identification. A visual field laser instrument is an AC-powered device intended to provide...

  8. 21 CFR 886.1360 - Visual field laser instrument.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Visual field laser instrument. 886.1360 Section... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1360 Visual field laser instrument. (a) Identification. A visual field laser instrument is an AC-powered device intended to provide...

  9. Effects of Asymmetric Local Joule Heating on Silicon Nanowire-Based Devices Formed by Dielectrophoresis Alignment Across Pt Electrodes

    NASA Astrophysics Data System (ADS)

    Ho, Hsiang-Hsi; Lin, Chun-Lung; Tsai, Wei-Che; Hong, Liang-Zheng; Lyu, Cheng-Han; Hsu, Hsun-Feng

    2018-01-01

    We demonstrate the fabrication and characterization of silicon nanowire-based devices in metal-nanowire-metal configuration using direct current dielectrophoresis. The current-voltage characteristics of the devices were found rectifying, and their direction of rectification could be determined by voltage sweep direction due to the asymmetric Joule heating effect that occurred in the electrical measurement process. The photosensing properties of the rectifying devices were investigated. It reveals that when the rectifying device was in reverse-biased mode, the excellent photoresponse was achieved due to the strong built-in electric field at the junction interface. It is expected that rectifying silicon nanowire-based devices through this novel and facile method can be potentially applied to other applications such as logic gates and sensors.

  10. Improvement in the breakdown endurance of high-κ dielectric by utilizing stacking technology and adding sufficient interfacial layer.

    PubMed

    Pang, Chin-Sheng; Hwu, Jenn-Gwo

    2014-01-01

    Improvement in the time-zero dielectric breakdown (TZDB) endurance of metal-oxide-semiconductor (MOS) capacitor with stacking structure of Al/HfO2/SiO2/Si is demonstrated in this work. The misalignment of the conduction paths between two stacking layers is believed to be effective to increase the breakdown field of the devices. Meanwhile, the resistance of the dielectric after breakdown for device with stacking structure would be less than that of without stacking structure due to a higher breakdown field and larger breakdown power. In addition, the role of interfacial layer (IL) in the control of the interface trap density (D it) and device reliability is also analyzed. Device with a thicker IL introduces a higher breakdown field and also a lower D it. High-resolution transmission electron microscopy (HRTEM) of the samples with different IL thicknesses is provided to confirm that IL is needed for good interfacial property.

  11. Effects of Bluetooth device electromagnetic field on hearing: pilot study.

    PubMed

    Balachandran, R; Prepageran, N; Prepagaran, N; Rahmat, O; Zulkiflee, A B; Hufaida, K S

    2012-04-01

    The Bluetooth wireless headset has been promoted as a 'hands-free' device with a low emission of electromagnetic radiation. To evaluate potential changes in hearing function as a consequence of using Bluetooth devices, by assessing changes in pure tone audiography and distortion production otoacoustic emissions. Prospective study. Thirty adult volunteers were exposed to a Bluetooth headset device (1) on 'standby' setting for 6 hours and (2) at full power for 10 minutes. Post-exposure hearing was evaluated using pure tone audiography and distortion production otoacoustic emission testing. There were no statistically significant changes in hearing, as measured above, following either exposure type. Exposure to the electromagnetic field emitted by a Bluetooth headset, as described above, did not decrease hearing thresholds or alter distortion product otoacoustic emissions.

  12. Electrical characteristics of Graphene based Field Effect Transistor (GFET) biosensor for ADH detection

    NASA Astrophysics Data System (ADS)

    Selvarajan, Reena Sri; Hamzah, Azrul Azlan; Majlis, Burhanuddin Yeop

    2017-08-01

    First pristine graphene was successfully produced by mechanical exfoliation and electrically characterized in 2004 by Andre Geim and Konstantin Novoselov at University of Manchester. Since its discovery in 2004, graphene also known as `super' material that has enticed many researchers and engineers to explore its potential in ultrasensitive detection of analytes in biosensing applications. Among myriad reported sensors, biosensors based on field effect transistors (FETs) have attracted much attention. Thus, implementing graphene as conducting channel material hastens the opportunities for production of ultrasensitive biosensors for future device applications. Herein, we have reported electrical characteristics of graphene based field effect transistor (GFET) for ADH detection. GFET was modelled and simulated using Lumerical DEVICE charge transport solver (DEVICE CT). Electrical characteristics comprising of transfer and output characteristics curves are reported in this study. The device shows ambipolar curve and achieved a minimum conductivity of 0.23912 e5A at Dirac point. However, the curve shifts to the left and introduces significant changes in the minimum conductivity as drain voltage is increased. Output characteristics of GFET exhibits linear Id - Vd dependence characteristics for gate voltage ranging from 0 to 1.5 V. In addition, behavior of electrical transport through GFET was analyzed for various simulation temperatures. It clearly proves that the electrical transport in GFET is dependent on the simulation temperature as it may vary the maximum resistance in channel of the device. Therefore, this unique electrical characteristics of GFET makes it as a promising candidate for ultrasensitive detection of small biomolecules such as ADH in biosensing applications.

  13. Tuning on-off current ratio and field-effect mobility in a MoS(2)-graphene heterostructure via Schottky barrier modulation.

    PubMed

    Shih, Chih-Jen; Wang, Qing Hua; Son, Youngwoo; Jin, Zhong; Blankschtein, Daniel; Strano, Michael S

    2014-06-24

    Field-effect transistor (FET) devices composed of a MoS2-graphene heterostructure can combine the advantages of high carrier mobility in graphene with the permanent band gap of MoS2 for digital applications. Herein, we investigate the electron transfer, photoluminescence, and gate-controlled carrier transport in such a heterostructure. We show that the junction is a Schottky barrier, whose height can be artificially controlled by gating or doping graphene. When the applied gate voltage (or the doping level) is zero, the photoexcited electron-hole pairs in monolayer MoS2 can be split by the heterojunction, significantly reducing the photoluminescence. By applying negative gate voltage (or p-doping) in graphene, the interlayer impedance formed between MoS2 and graphene exhibits an 100-fold increase. For the first time, we show that the gate-controlled interlayer Schottky impedance can be utilized to modulate carrier transport in graphene, significantly depleting the hole transport, but preserving the electron transport. Accordingly, we demonstrate a new type of FET device, which enables a controllable transition from NMOS digital to bipolar characteristics. In the NMOS digital regime, we report a very high room temperature on/off current ratio (ION/IOFF ∼ 36) in comparison to graphene-based FET devices without sacrificing the field-effect electron mobilities in graphene. By engineering the source/drain contact area, we further estimate that a higher value of ION/IOFF up to 100 can be obtained in the device architecture considered. The device architecture presented here may enable semiconducting behavior in graphene for digital and analogue electronics.

  14. Memory and Spin Injection Devices Involving Half Metals

    DOE PAGES

    Shaughnessy, M.; Snow, Ryan; Damewood, L.; ...

    2011-01-01

    We suggest memory and spin injection devices fabricated with half-metallic materials and based on the anomalous Hall effect. Schematic diagrams of the memory chips, in thin film and bulk crystal form, are presented. Spin injection devices made in thin film form are also suggested. These devices do not need any external magnetic field but make use of their own magnetization. Only a gate voltage is needed. The carriers are 100% spin polarized. Memory devices may potentially be smaller, faster, and less volatile than existing ones, and the injection devices may be much smaller and more efficient than existing spin injectionmore » devices.« less

  15. Phonon-Mediated Colossal Magnetoresistance in Graphene/Black Phosphorus Heterostructures.

    PubMed

    Liu, Yanpeng; Yudhistira, Indra; Yang, Ming; Laksono, Evan; Luo, Yong Zheng; Chen, Jianyi; Lu, Junpeng; Feng, Yuan Ping; Adam, Shaffique; Loh, Kian Ping

    2018-06-13

    There is a huge demand for magnetoresistance (MR) sensors with high sensitivity, low energy consumption, and room temperature operation. It is well-known that spatial charge inhomogeneity due to impurities or defects introduces mobility fluctuations in monolayer graphene and gives rise to MR in the presence of an externally applied magnetic field. However, to realize a MR sensor based on this effect is hampered by the difficulty in controlling the spatial distribution of impurities and the weak magnetoresistance effect at the monolayer regime. Here, we fabricate a highly stable monolayer graphene-on-black phosphorus (G/BP) heterostructure device that exhibits a giant MR of 775% at 9 T magnetic field and 300 K, exceeding by far the MR effects from devices made from either monolayer graphene or few-layer BP alone. The positive MR of the G/BP device decreases when the temperature is lowered, indicating a phonon-mediated process in addition to scattering by charge impurities. Moreover, a nonlocal MR of >10 000% is achieved for the G/BP device at room temperature due to an enhanced flavor Hall effect induced by the BP channel. Our results show that electron-phonon coupling between 2D material and a suitable substrate can be exploited to create giant MR effects in Dirac semimetals.

  16. ZnO nanorods for electronic and photonic device applications

    NASA Astrophysics Data System (ADS)

    Yi, Gyu-Chul; Yoo, Jinkyoung; Park, Won Il; Jung, Sug Woo; An, Sung Jin; Kim, H. J.; Kim, D. W.

    2005-11-01

    We report on catalyst-free growth of ZnO nanorods and their nano-scale electrical and optical device applications. Catalyst-free metalorganic vapor-phase epitaxy (MOVPE) enables fabrication of size-controlled high purity ZnO single crystal nanorods. Various high quality nanorod heterostructures and quantum structures based on ZnO nanorods were also prepared using the MOVPE method and characterized using scanning electron microscopy, transmission electron microscopy, and optical spectroscopy. From the photoluminescence spectra of ZnO/Zn 0.8Mg 0.2O nanorod multi-quantum-well structures, in particular, we observed a systematic blue-shift in their PL peak position due to quantum confinement effect of carriers in nanorod quantum structures. For ZnO/ZnMgO coaxial nanorod heterostructures, photoluminescence intensity was significantly increased presumably due to surface passivation and carrier confinement. In addition to the growth and characterizations of ZnO nanorods and their quantum structures, we fabricated nanoscale electronic devices based on ZnO nanorods. We report on fabrication and device characteristics of metal-oxidesemiconductor field effect transistors (MOSFETs), Schottky diodes, and metal-semiconductor field effect transistors (MESFETs) as examples of the nanodevices. In addition, electroluminescent devices were fabricated using vertically aligned ZnO nanorods grown p-type GaN substrates, exhibiting strong visible electroluminescence.

  17. Performance evaluation of electro-optic effect based graphene transistors

    NASA Astrophysics Data System (ADS)

    Gupta, Gaurav; Abdul Jalil, Mansoor Bin; Yu, Bin; Liang, Gengchiau

    2012-09-01

    Despite the advantages afforded by the unique electronic properties of graphene, the absence of a bandgap has limited its applicability in logic devices. This has led to a study on electro-optic behavior in graphene for novel device operations, beyond the conventional field effect, to meet the requirements of ultra-low power and high-speed logic transistors. Recently, two potential designs have been proposed to leverage on this effect and open a virtual bandgap for ballistic transport in the graphene channel. The first one implements a barrier in the centre of the channel, whereas the second incorporates a tilted gate junction. In this paper, we computationally evaluate the relative device performance of these two designs, in terms of subthreshold slope (SS) and ION/IOFF ratio under different temperature and voltage bias, for a defect-free graphene channel. Our calculations employ pure optical modeling for low field electron transport under the constraints of device anatomy. The calculated results show that the two designs are functionally similar and are able to provide SS smaller than 60 mV per decade. Both designs show similar device performance but marginally top one another under different operating constraints. Our results could serve as a guide to circuit designers in selecting an appropriate design as per their system specifications and requirements.

  18. Performance evaluation of electro-optic effect based graphene transistors.

    PubMed

    Gupta, Gaurav; Jalil, Mansoor Bin Abdul; Yu, Bin; Liang, Gengchiau

    2012-10-21

    Despite the advantages afforded by the unique electronic properties of graphene, the absence of a bandgap has limited its applicability in logic devices. This has led to a study on electro-optic behavior in graphene for novel device operations, beyond the conventional field effect, to meet the requirements of ultra-low power and high-speed logic transistors. Recently, two potential designs have been proposed to leverage on this effect and open a virtual bandgap for ballistic transport in the graphene channel. The first one implements a barrier in the centre of the channel, whereas the second incorporates a tilted gate junction. In this paper, we computationally evaluate the relative device performance of these two designs, in terms of subthreshold slope (SS) and I(ON)/I(OFF) ratio under different temperature and voltage bias, for a defect-free graphene channel. Our calculations employ pure optical modeling for low field electron transport under the constraints of device anatomy. The calculated results show that the two designs are functionally similar and are able to provide SS smaller than 60 mV per decade. Both designs show similar device performance but marginally top one another under different operating constraints. Our results could serve as a guide to circuit designers in selecting an appropriate design as per their system specifications and requirements.

  19. Reducing flicker noise in chemical vapor deposition graphene field-effect transistors

    NASA Astrophysics Data System (ADS)

    Arnold, Heather N.; Sangwan, Vinod K.; Schmucker, Scott W.; Cress, Cory D.; Luck, Kyle A.; Friedman, Adam L.; Robinson, Jeremy T.; Marks, Tobin J.; Hersam, Mark C.

    2016-02-01

    Single-layer graphene derived from chemical vapor deposition (CVD) holds promise for scalable radio frequency (RF) electronic applications. However, prevalent low-frequency flicker noise (1/f noise) in CVD graphene field-effect transistors is often up-converted to higher frequencies, thus limiting RF device performance. Here, we achieve an order of magnitude reduction in 1/f noise in field-effect transistors based on CVD graphene transferred onto silicon oxide substrates by utilizing a processing protocol that avoids aqueous chemistry after graphene transfer. Correspondingly, the normalized noise spectral density (10-7-10-8 μm2 Hz-1) and noise amplitude (4 × 10-8-10-7) in these devices are comparable to those of exfoliated and suspended graphene. We attribute the reduction in 1/f noise to a decrease in the contribution of fluctuations in the scattering cross-sections of carriers arising from dynamic redistribution of interfacial disorder.

  20. Controversies on electromagnetic field exposure and the nervous systems of children.

    PubMed

    Warille, Aymen A; Onger, M Emin; Turkmen, A Pinar; Deniz, Ö Gülsüm; Altun, Gamze; Yurt, K Kubra; Altunkaynak, B Zuhal; Kaplan, Süleyman

    2016-05-01

    This paper reviewed possible health effects from exposure to low levels of electromagnetic field (EMF) in children, arising from electrical power sources and mobile phones. Overall, the information about effects on developmental processes and cognitive functions is insufficient and further research on children and adolescents is critically needed. New research approaches are required focused on the effects on the developmental processes of children exposed to electromagnetic fields, using consistent protocols. When the current data were considered in detail, it was noted that children's unique vulnerabilities make them more sensitive to EMFs emitted by electronics and wireless devices, as compared to adults. Some experimental research shows a neurological impact and exposure in humans may lead to the cognitive and behavioral impairments. Because of the proliferation of wireless devices, public awareness of these dangers now is important to safeguard children's future healthy brain development.

  1. Experimental investigation on electrical characteristics and dose measurement of dielectric barrier discharge plasma device used for therapeutic application

    NASA Astrophysics Data System (ADS)

    Shahbazi Rad, Zahra; Abbasi Davani, Fereydoun

    2017-04-01

    In this research, a Dielectric Barrier Discharge (DBD) plasma device operating in air has been made. The electrical characteristics of this device like instantaneous power, dissipated power, and discharge capacitance have been measured. Also, the effects of applied voltage on the dissipated power and discharge capacitance of the device have been investigated. The determination of electrical parameters is important in DBD plasma device used in living tissue treatment for choosing the proper treatment doses and preventing the destructive effects. The non-thermal atmospheric pressure DBD plasma source was applied for studying the acceleration of blood coagulation time, in vitro and wound healing time, in vivo. The citrated blood drops coagulated within 5 s treatment time by DBD plasma. The effects of plasma temperature and electric field on blood coagulation have been studied as an affirmation of the applicability of the constructed device. Also, the effect of constructed DBD plasma on wound healing acceleration has been investigated.

  2. Experimental investigation on electrical characteristics and dose measurement of dielectric barrier discharge plasma device used for therapeutic application.

    PubMed

    Shahbazi Rad, Zahra; Abbasi Davani, Fereydoun

    2017-04-01

    In this research, a Dielectric Barrier Discharge (DBD) plasma device operating in air has been made. The electrical characteristics of this device like instantaneous power, dissipated power, and discharge capacitance have been measured. Also, the effects of applied voltage on the dissipated power and discharge capacitance of the device have been investigated. The determination of electrical parameters is important in DBD plasma device used in living tissue treatment for choosing the proper treatment doses and preventing the destructive effects. The non-thermal atmospheric pressure DBD plasma source was applied for studying the acceleration of blood coagulation time, in vitro and wound healing time, in vivo. The citrated blood drops coagulated within 5 s treatment time by DBD plasma. The effects of plasma temperature and electric field on blood coagulation have been studied as an affirmation of the applicability of the constructed device. Also, the effect of constructed DBD plasma on wound healing acceleration has been investigated.

  3. Mobile application for field data collection and query: Example from wildlife research (Invited)

    NASA Astrophysics Data System (ADS)

    Bateman, H.; Lindquist, T.; Whitehouse, R.

    2013-12-01

    Field data collection is often used in many scientific disciplines and effective approaches rely on accurate data collection and recording. We designed a smartphone and tablet application (app) for field-collected data and tested it during a study on wildlife. The objective of our study was to determine the effectiveness of mobile applications in wildlife field research. Student software developers designed applications for mobile devices on the iOS and Android operating systems. Both platforms had similar user interactions via data entry on a touch screen using pre-programmed fields, checkboxes, drop-down menus, and keypad entry. The mobile application included features to insure collection of all measurements in the field through pop-up messages and could proof entries for valid formats. We used undergraduate student subjects to compare the duration of data recording and data entry, and the frequency of errors between the mobile application and traditional (paper) techniques. We field-tested the mobile application using an existing study on wildlife. From the field, technicians could query a database stored on a mobile device to view histories of previously captured animals. Overall, we found that because the mobile application allowed us to enter data in a digital format in the field we could eliminate timely steps to process handwritten data sheets and double-checking data entries. We estimated that, for a 2-month project, using the mobile application instead of traditional data entry and proofing reduced our total project time by 10%. To our knowledge, this is the first application developed for mobile devices for wildlife users interesting in viewing animal capture histories from the field and could be developed for use in other areas of field research.

  4. Dynamic mapping of EDDL device descriptions to OPC UA

    NASA Astrophysics Data System (ADS)

    Atta Nsiah, Kofi; Schappacher, Manuel; Sikora, Axel

    2017-07-01

    OPC UA (Open Platform Communications Unified Architecture) is already a well-known concept used widely in the automation industry. In the area of factory automation, OPC UA models the underlying field devices such as sensors and actuators in an OPC UA server to allow connecting OPC UA clients to access device-specific information via a standardized information model. One of the requirements of the OPC UA server to represent field device data using its information model is to have advanced knowledge about the properties of the field devices in the form of device descriptions. The international standard IEC 61804 specifies EDDL (Electronic Device Description Language) as a generic language for describing the properties of field devices. In this paper, the authors describe a possibility to dynamically map and integrate field device descriptions based on EDDL into OPCUA.

  5. Influence of Surface Passivation on AlN Barrier Stress and Scattering Mechanism in Ultra-thin AlN/GaN Heterostructure Field-Effect Transistors.

    PubMed

    Lv, Y J; Song, X B; Wang, Y G; Fang, Y L; Feng, Z H

    2016-12-01

    Ultra-thin AlN/GaN heterostructure field-effect transistors (HFETs) with, and without, SiN passivation were fabricated by the same growth and device processes. Based on the measured DC characteristics, including the capacitance-voltage (C-V) and output current-voltage (I-V) curves, the variation of electron mobility with gate bias was found to be quite different for devices with, and without, SiN passivation. Although the AlN barrier layer is ultra thin (c. 3 nm), it was proved that SiN passivation induces no additional tensile stress and has no significant influence on the piezoelectric polarization of the AlN layer using Hall and Raman measurements. The SiN passivation was found to affect the surface properties, thereby increasing the electron density of the two-dimensional electron gas (2DEG) under the access region. The higher electron density in the access region after SiN passivation enhanced the electrostatic screening for the non-uniform distributed polarization charges, meaning that the polarization Coulomb field scattering has a weaker effect on the electron drift mobility in AlN/GaN-based devices.

  6. Current saturation and voltage gain in bilayer graphene field effect transistors.

    PubMed

    Szafranek, B N; Fiori, G; Schall, D; Neumaier, D; Kurz, H

    2012-03-14

    The emergence of graphene with its unique electrical properties has triggered hopes in the electronic devices community regarding its exploitation as a channel material in field effect transistors. Graphene is especially promising for devices working at frequencies in the 100 GHz range. So far, graphene field effect transistors (GFETs) have shown cutoff frequencies up to 300 GHz, while exhibiting poor voltage gains, another important figure of merit for analog high frequency applications. In the present work, we show that the voltage gain of GFETs can be improved significantly by using bilayer graphene, where a band gap is introduced through a vertical electric displacement field. At a displacement field of -1.7 V/nm the bilayer GFETs exhibit an intrinsic voltage gain up to 35, a factor of 6 higher than the voltage gain in corresponding monolayer GFETs. The transconductance, which limits the cutoff frequency of a transistor, is not degraded by the displacement field and is similar in both monolayer and bilayer GFETs. Using numerical simulations based on an atomistic p(z) tight-binding Hamiltonian we demonstrate that this approach can be extended to sub-100 nm gate lengths. © 2012 American Chemical Society

  7. Unconventional Josephson effect in hybrid superconductor-topological insulator devices.

    PubMed

    Williams, J R; Bestwick, A J; Gallagher, P; Hong, Seung Sae; Cui, Y; Bleich, Andrew S; Analytis, J G; Fisher, I R; Goldhaber-Gordon, D

    2012-08-03

    We report on transport properties of Josephson junctions in hybrid superconducting-topological insulator devices, which show two striking departures from the common Josephson junction behavior: a characteristic energy that scales inversely with the width of the junction, and a low characteristic magnetic field for suppressing supercurrent. To explain these effects, we propose a phenomenological model which expands on the existing theory for topological insulator Josephson junctions.

  8. Rare-Earth Ions in Niobium-Based Devices as a Quantum Memory: Magneto-Optical Effects on Room Temperature Electrical Transport

    DTIC Science & Technology

    2016-09-01

    rare-earth neodymium by ion implantation in thin films of niobium and niobium-based heterostructure devices. We model the ion implantation process...the films and devices so they can properly designed and optimized for utility as quantum memory. We find that the magnetic field has a strong effect...thin films of niobium. Simulations are made at low 1013 cm-2 and high 1014 cm-2 dose at 60 keV. At high dose, disorder induced is significantly

  9. Soldier Performance Using a Part-Task Gunnery Device (TOPGUN) and Its Effects on Institutional-Conduct of Fire Trainer (I-COFT) Proficiency

    DTIC Science & Technology

    1990-07-01

    differences were not de- tected; and (d) the overall attitude of soldiers who trained on the device was very positive. 20. DISTRIBUTION/AVAILABILITY OF...detected; and (d) the overall attitude of soldiers toward the TOPGUN device was very positive. The research was conducted by the ART Fort Knox Field...existed with Experiment 3. The overall attitudes and experiences of soldiers who trained on the TOPGUN device were positive. They enjoyed training on the

  10. Influence of geometric and material properties on artifacts generated by interventional MRI devices: Relevance to PRF-shift thermometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tatebe, Ken, E-mail: Ken.Tatebe@gmail.com; Ramsay, Elizabeth; Kazem, Mohammad

    2016-01-15

    Purpose: Magnetic resonance imaging (MRI) is capable of providing valuable real-time feedback during medical procedures, partly due to the excellent soft-tissue contrast available. Several technical hurdles still exist to seamless integration of medical devices with MRI due to incompatibility of most conventional devices with this imaging modality. In this study, the effect of local perturbations in the magnetic field caused by the magnetization of medical devices was examined using finite element analysis modeling. As an example, the influence of the geometric and material characteristics of a transurethral high-intensity ultrasound applicator on temperature measurements using proton resonance frequency (PRF)-shift thermometry wasmore » investigated. Methods: The effect of local perturbations in the magnetic field, caused by the magnetization of medical device components, was examined using finite element analysis modeling. The thermometry artifact generated by a transurethral ultrasound applicator was simulated, and these results were validated against analytic models and scans of an applicator in a phantom. Several parameters were then varied to identify which most strongly impacted the level of simulated thermometry artifact, which varies as the applicator moves over the course of an ablative high-intensity ultrasound treatment. Results: Key design parameters identified as having a strong influence on the magnitude of thermometry artifact included the susceptibility of materials and their volume. The location of components was also important, particularly when positioned to maximize symmetry of the device. Finally, the location of component edges and the inclination of the device relative to the magnetic field were also found to be important factors. Conclusions: Previous design strategies to minimize thermometry artifact were validated, and novel design strategies were identified that substantially reduce PRF-shift thermometry artifacts for a variety of device orientations. These new strategies are being incorporated into the next generation of applicators. The general strategy described in this study can be applied to the design of other interventional devices intended for use with MRI.« less

  11. Intrinsically stretchable and healable semiconducting polymer for organic transistors

    NASA Astrophysics Data System (ADS)

    Oh, Jin Young; Rondeau-Gagné, Simon; Chiu, Yu-Cheng; Chortos, Alex; Lissel, Franziska; Wang, Ging-Ji Nathan; Schroeder, Bob C.; Kurosawa, Tadanori; Lopez, Jeffrey; Katsumata, Toru; Xu, Jie; Zhu, Chenxin; Gu, Xiaodan; Bae, Won-Gyu; Kim, Yeongin; Jin, Lihua; Chung, Jong Won; Tok, Jeffrey B.-H.; Bao, Zhenan

    2016-11-01

    Thin-film field-effect transistors are essential elements of stretchable electronic devices for wearable electronics. All of the materials and components of such transistors need to be stretchable and mechanically robust. Although there has been recent progress towards stretchable conductors, the realization of stretchable semiconductors has focused mainly on strain-accommodating engineering of materials, or blending of nanofibres or nanowires into elastomers. An alternative approach relies on using semiconductors that are intrinsically stretchable, so that they can be fabricated using standard processing methods. Molecular stretchability can be enhanced when conjugated polymers, containing modified side-chains and segmented backbones, are infused with more flexible molecular building blocks. Here we present a design concept for stretchable semiconducting polymers, which involves introducing chemical moieties to promote dynamic non-covalent crosslinking of the conjugated polymers. These non-covalent crosslinking moieties are able to undergo an energy dissipation mechanism through breakage of bonds when strain is applied, while retaining high charge transport abilities. As a result, our polymer is able to recover its high field-effect mobility performance (more than 1 square centimetre per volt per second) even after a hundred cycles at 100 per cent applied strain. Organic thin-film field-effect transistors fabricated from these materials exhibited mobility as high as 1.3 square centimetres per volt per second and a high on/off current ratio exceeding a million. The field-effect mobility remained as high as 1.12 square centimetres per volt per second at 100 per cent strain along the direction perpendicular to the strain. The field-effect mobility of damaged devices can be almost fully recovered after a solvent and thermal healing treatment. Finally, we successfully fabricated a skin-inspired stretchable organic transistor operating under deformations that might be expected in a wearable device.

  12. Intrinsically stretchable and healable semiconducting polymer for organic transistors.

    PubMed

    Oh, Jin Young; Rondeau-Gagné, Simon; Chiu, Yu-Cheng; Chortos, Alex; Lissel, Franziska; Wang, Ging-Ji Nathan; Schroeder, Bob C; Kurosawa, Tadanori; Lopez, Jeffrey; Katsumata, Toru; Xu, Jie; Zhu, Chenxin; Gu, Xiaodan; Bae, Won-Gyu; Kim, Yeongin; Jin, Lihua; Chung, Jong Won; Tok, Jeffrey B-H; Bao, Zhenan

    2016-11-17

    Thin-film field-effect transistors are essential elements of stretchable electronic devices for wearable electronics. All of the materials and components of such transistors need to be stretchable and mechanically robust. Although there has been recent progress towards stretchable conductors, the realization of stretchable semiconductors has focused mainly on strain-accommodating engineering of materials, or blending of nanofibres or nanowires into elastomers. An alternative approach relies on using semiconductors that are intrinsically stretchable, so that they can be fabricated using standard processing methods. Molecular stretchability can be enhanced when conjugated polymers, containing modified side-chains and segmented backbones, are infused with more flexible molecular building blocks. Here we present a design concept for stretchable semiconducting polymers, which involves introducing chemical moieties to promote dynamic non-covalent crosslinking of the conjugated polymers. These non-covalent crosslinking moieties are able to undergo an energy dissipation mechanism through breakage of bonds when strain is applied, while retaining high charge transport abilities. As a result, our polymer is able to recover its high field-effect mobility performance (more than 1 square centimetre per volt per second) even after a hundred cycles at 100 per cent applied strain. Organic thin-film field-effect transistors fabricated from these materials exhibited mobility as high as 1.3 square centimetres per volt per second and a high on/off current ratio exceeding a million. The field-effect mobility remained as high as 1.12 square centimetres per volt per second at 100 per cent strain along the direction perpendicular to the strain. The field-effect mobility of damaged devices can be almost fully recovered after a solvent and thermal healing treatment. Finally, we successfully fabricated a skin-inspired stretchable organic transistor operating under deformations that might be expected in a wearable device.

  13. Large current modulation and tunneling magnetoresistance change by a side-gate electric field in a GaMnAs-based vertical spin metal-oxide-semiconductor field-effect transistor.

    PubMed

    Kanaki, Toshiki; Yamasaki, Hiroki; Koyama, Tomohiro; Chiba, Daichi; Ohya, Shinobu; Tanaka, Masaaki

    2018-05-08

    A vertical spin metal-oxide-semiconductor field-effect transistor (spin MOSFET) is a promising low-power device for the post scaling era. Here, using a ferromagnetic-semiconductor GaMnAs-based vertical spin MOSFET with a GaAs channel layer, we demonstrate a large drain-source current I DS modulation by a gate-source voltage V GS with a modulation ratio up to 130%, which is the largest value that has ever been reported for vertical spin field-effect transistors thus far. We find that the electric field effect on indirect tunneling via defect states in the GaAs channel layer is responsible for the large I DS modulation. This device shows a tunneling magnetoresistance (TMR) ratio up to ~7%, which is larger than that of the planar-type spin MOSFETs, indicating that I DS can be controlled by the magnetization configuration. Furthermore, we find that the TMR ratio can be modulated by V GS . This result mainly originates from the electric field modulation of the magnetic anisotropy of the GaMnAs ferromagnetic electrodes as well as the potential modulation of the nonmagnetic semiconductor GaAs channel layer. Our findings provide important progress towards high-performance vertical spin MOSFETs.

  14. Demonstration of hetero-gate-dielectric tunneling field-effect transistors (HG TFETs).

    PubMed

    Choi, Woo Young; Lee, Hyun Kook

    2016-01-01

    The steady scaling-down of semiconductor device for improving performance has been the most important issue among researchers. Recently, as low-power consumption becomes one of the most important requirements, there have been many researches about novel devices for low-power consumption. Though scaling supply voltage is the most effective way for low-power consumption, performance degradation is occurred for metal-oxide-semiconductor field-effect transistors (MOSFETs) when supply voltage is reduced because subthreshold swing (SS) of MOSFETs cannot be lower than 60 mV/dec. Thus, in this thesis, hetero-gate-dielectric tunneling field-effect transistors (HG TFETs) are investigated as one of the most promising alternatives to MOSFETs. By replacing source-side gate insulator with a high- k material, HG TFETs show higher on-current, suppressed ambipolar current and lower SS than conventional TFETs. Device design optimization through simulation was performed and fabrication based on simulation demonstrated that performance of HG TFETs were better than that of conventional TFETs. Especially, enlargement of gate insulator thickness while etching gate insulator at the source side was improved by introducing HF vapor etch process. In addition, the proposed HG TFETs showed higher performance than our previous results by changing structure of sidewall spacer by high- k etching process.

  15. Strain engineering of graphene nanoribbons: pseudomagnetic versus external magnetic fields

    NASA Astrophysics Data System (ADS)

    Prabhakar, Sanjay; Melnik, Roderick; Bonilla, Luis

    2017-05-01

    Bandgap opening due to strain engineering is a key architect for making graphene's optoelectronic, straintronic, and spintronic devices. We study the bandgap opening due to strain induced ripple waves and investigate the interplay between pseudomagnetic fields and externally applied magnetic fields on the band structures and spin relaxation in graphene nanoribbons (GNRs). We show that electron-hole bands of GNRs are highly influenced (i.e. level crossing of the bands are possible) by coupling two combined effects: pseudomagnetic fields (PMF) originating from strain tensor and external magnetic fields. In particular, we show that the tuning of the spin-splitting band extends to large externally applied magnetic fields with increasing values of pseudomagnetic fields. Level crossings of the bands in strained GNRs can also be observed due to the interplay between pseudomagnetic fields and externally applied magnetic fields. We also investigate the influence of this interplay on the electromagnetic field mediated spin relaxation mechanism in GNRs. In particular, we show that the spin hot spot can be observed at approximately B = 65 T (the externally applied magnetic field) and B0 = 53 T (the magnitude of induced pseudomagnetic field due to ripple waves) which may not be considered as an ideal location for the design of straintronic devices. Our analysis might be used for tuning the bandgaps in strained GNRs and utilized to design the optoelectronic devices for straintronic applications.

  16. Surface roughness scattering of electrons in bulk mosfets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zuverink, Amanda Renee

    2015-11-01

    Surface-roughness scattering of electrons at the Si-SiO 2 interface is a very important consideration when analyzing Si metal-oxide-semiconductor field-effect transistors (MOSFETs). Scattering reduces the mobility of the electrons and degrades the device performance. 250-nm and 50-nm bulk MOSFETs were simulated with varying device parameters and mesh sizes in order to compare the effects of surface-roughness scattering in multiple devices. The simulation framework includes the ensemble Monte Carlo method used to solve the Boltzmann transport equation coupled with a successive over-relaxation method used to solve the two-dimensional Poisson's equation. Four methods for simulating the surface-roughness scattering of electrons were implemented onmore » both devices and compared: the constant specularity parameter, the momentum-dependent specularity parameter, and the real-space-roughness method with both uniform and varying electric fields. The specularity parameter is the probability of an electron scattering speculariy from a rough surface. It can be chosen as a constant, characterizing partially diffuse scattering of all electrons from the surface the same way, or it can be momentum dependent, where the size of rms roughness and the normal component of the electron wave number determine the probability of electron-momentum randomization. The real-space rough surface method uses the rms roughness height and correlation length of an actual MOSFET to simulate a rough interface. Due to their charge, electrons scatter from the electric field and not directly from the surface. If the electric field is kept uniform, the electrons do not perceive the roughness and scatter as if from a at surface. However, if the field is allowed to vary, the electrons scatter from the varying electric field as they would in a MOSFET. These methods were implemented for both the 50-nm and 250-nm MOSFETs, and using the rms roughness heights and correlation lengths for real devices. The current-voltage and mobility-electric field curves were plotted for each method on the two devices and compared. The conclusion is that the specularity-parameter methods are valuable as simple models for relatively smooth interfaces. However, they have limitations, as they cannot accurately describe the drastic reduction in the current and the electron mobility that occur in MOSFETs with very rough Si-SiO 2 interfaces.« less

  17. Electromagnetic exposure in a phantom in the near and far fields of wire and planar antennas

    NASA Astrophysics Data System (ADS)

    Mazady, Md. Anas Boksh

    Due to the wide availability and usage of wireless devices and systems there have been and are concerns regarding their effects on the human body. Respective regulatory agencies have developed safety standards based on scientific research on electromagnetic (EM) exposure from wireless devices and antennas. The metric that quantifies the exposure level is called the Specific Absorption Rate (SAR). Wireless devices must satisfy the regulatory standards before being marketed. In the past, researchers have primarily focused on investigating the EM exposure from wireless devices that are used very near to the user's head or body (less than 25 mm). But as time progressed many more wireless devices have become ubiquitous (vehicular wireless devices, laptop PCMCIA cards, Bluetooth dongles, wireless LAN routers, cordless phone base stations, and pico base stations are to name a few) and are operated at distances greater than 25 mm yet smaller than 200 mm. Given the variations in operating frequency, distance, and antenna size and type it is challenging to develop an approach using which EM exposure from a wide variety of wireless devices can be evaluated. The problem becomes more involved owing to the difficulties in identifying the antenna zone boundaries, e.g. reactive near-field, radiating near-field, far-field etc. The focus of this thesis is to investigate a large class of low and highly directive antennas and evaluate the EM exposure from them into a large elliptical phantom. The objective is to be able to predict threshold power levels that meet the SAR limits imposed by the regulatory agencies. It was observed that among the low directivity antennas at close near-field distances, electrically small antennas induced distinguishably higher SAR than electrically larger antennas. But differences in SAR were small as the phantom moved into the far-fields of the antennas. SAR induced by highly directive antennas were higher when the phantom was in the far-field of the antennas and was facing the antenna frontal plane. The same was not true when the phantom was in the near-field of the antennas. Finally, by analyzing the simulation and measurement data threshold power formulas were developed for low directivity antennas using which power levels corresponding to the safe exposure limits independent of device type or geometry can be estimated.

  18. neutron-Induced Failures in semiconductor Devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wender, Stephen Arthur

    2017-03-13

    Single Event Effects are a very significant failure mode in modern semiconductor devices that may limit their reliability. Accelerated testing is important for semiconductor industry. Considerable more work is needed in this field to mitigate the problem. Mitigation of this problem will probably come from Physicists and Electrical Engineers working together

  19. Magnetic Penetration Effects in Small Superconducting Devices

    NASA Technical Reports Server (NTRS)

    Stevenson, T. R.; Adams, J. S.; Balvin, M. A.; Bandler, S. R.; Denis, K. L.; Hsieh, W.-T.; Kelly, D. P.; Nagler, P. C.; Porst, J.-P.; Sadleir, J. E.; hide

    2011-01-01

    The temperature dependent behavior of a superconducting body in an applied magnetic field involves flux penetration/expulsion both from screening currents (within a magnetic penetration depth) and variations in the superconducting order parameter (locally to form vortices or a mixed state, or globally in the Meissner effect). The temperature dependence of the magnetic penetration depth, in particular, has been used to make highly sensitive macroscopic thermometers. For the microscopic device volumes required in sensitive low temperature photon detectors, properties of actual thin film materials, non-uniformity of applied magnetic fields, and the influence of measurement circuit dynamics are complicating factors. We discuss the various penetration effects as demonstrated in a particularly promising combination of material and geometry that we have used to make sensitive x-ray microcalorimeters.

  20. Localised polymer networks in chiral nematic liquid crystals for high speed photonic switching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tartan, Chloe C., E-mail: chloe.tartan@eng.ox.ac.uk, E-mail: steve.elston@eng.ox.ac.uk; Salter, Patrick S.; Booth, Martin J.

    2016-05-14

    Self-assembled periodic structures based upon chiral liquid crystalline materials have significant potential in the field of photonics ranging from fast-switching optoelectronic devices to low-threshold lasers. The flexoelectro-optic effect, which is observed in chiral nematic liquid crystals (LCs) when an electric field is applied perpendicular to the helical axis, has significant potential as it exhibits analogue switching in 10–100 μs. However, the major technological barrier that prohibits the commercial realisation of this electro-optic effect is the requirement of a uniform, in-plane alignment of the helix axis between glass substrates. Here, it is shown that periodic polymer structures engineered in the nematic phasemore » of a chiral nematic LC device using direct laser writing can result in the spontaneous formation of the necessary uniform lying helix (ULH) state. Specifically, two-photon polymerization is used in conjunction with a spatial light modulator so as to correct for aberrations introduced by the bounding glass substrates enabling the polymer structures to be fabricated directly into the device. The ULH state appears to be stable in the absence of an externally applied electric field, and the optimum contrast between the bright and dark states is obtained using polymer structures that have periodicities of the order of the device thickness.« less

  1. Localised polymer networks in chiral nematic liquid crystals for high speed photonic switching

    NASA Astrophysics Data System (ADS)

    Tartan, Chloe C.; Salter, Patrick S.; Booth, Martin J.; Morris, Stephen M.; Elston, Steve J.

    2016-05-01

    Self-assembled periodic structures based upon chiral liquid crystalline materials have significant potential in the field of photonics ranging from fast-switching optoelectronic devices to low-threshold lasers. The flexoelectro-optic effect, which is observed in chiral nematic liquid crystals (LCs) when an electric field is applied perpendicular to the helical axis, has significant potential as it exhibits analogue switching in 10-100 μs. However, the major technological barrier that prohibits the commercial realisation of this electro-optic effect is the requirement of a uniform, in-plane alignment of the helix axis between glass substrates. Here, it is shown that periodic polymer structures engineered in the nematic phase of a chiral nematic LC device using direct laser writing can result in the spontaneous formation of the necessary uniform lying helix (ULH) state. Specifically, two-photon polymerization is used in conjunction with a spatial light modulator so as to correct for aberrations introduced by the bounding glass substrates enabling the polymer structures to be fabricated directly into the device. The ULH state appears to be stable in the absence of an externally applied electric field, and the optimum contrast between the bright and dark states is obtained using polymer structures that have periodicities of the order of the device thickness.

  2. Semiconductor devices having a recessed electrode structure

    DOEpatents

    Palacios, Tomas Apostol; Lu, Bin; Matioli, Elison de Nazareth

    2015-05-26

    An electrode structure is described in which conductive regions are recessed into a semiconductor region. Trenches may be formed in a semiconductor region, such that conductive regions can be formed in the trenches. The electrode structure may be used in semiconductor devices such as field effect transistors or diodes. Nitride-based power semiconductor devices are described including such an electrode structure, which can reduce leakage current and otherwise improve performance.

  3. Electrical characterization of organic thin film transistors and alternative device architectures

    NASA Astrophysics Data System (ADS)

    Newman, Christopher R.

    In the last 10--15 years, organic semiconductors have evolved from experimental curiosities into viable alternatives for practical applications involving large-area and low-cost electronics such as display backplanes, electronic paper, radio frequency identification (RFID) tags, and solar cells. Many of the initially-stated goals in this field have been achieved; organic semconductors have demonstrated performance comparable to or greater than amorphous silicon (a-Si), the entrenched technology for most of the applications listed above. At present, the major obstacles remaining to commercialization of devices based on organic semiconductors involve material stability, processing considerations and optimization of the other device components (e.g. metal contacts and dielectric materials). Despite these technical achievements, significant gaps remain in our understanding of the underlying transport physics in these devices. This thesis summarizes experiments performed on organic field-effect transistors (OFETs) in an attempt to address some of these knowledge gaps. The FET, in addition to being a very useful device for practical applications (such as the driving elements in pixel backplanes), is also a very flexible architecture from an experimental standpoint. The presence of a capacitively-coupled gate electrode allows the investigation of transport physics as a function of carrier concentration. For devices in which non-idealities (i.e. carrier traps) largely dictate the observed characteristics, this is a very useful feature. Although practical OFETs are fabricated as conventional single-gate structures on an organic thin film (OTFTs), more exotic structures can often provide insights that standard OTFTs cannot. Specifically, single-crystal OFETs allow the investigation of carrier transport in the absence of grain boundaries, and double-gated OTFTs facilitate the investigation and comparison of properties across two discrete interfaces. One of the remaining challenges in terms of achieving stability inorganic semiconductors involves understanding, and hopefully minimizing, the bias stress effect of operating OTFTs. Largely ignored during the years in which research groups sought to optimize the standard device metrics of field-effect mobility, current on/off ratio, and threshold voltage, operational stability is emerging as a dominant consideration in these materials. Experiments performed with the goal of quantifying and understanding the bias-stress effect in organic semiconductors are described at the end of this thesis.

  4. Bias field tailored plasmonic nano-electrode for high-power terahertz photonic devices

    PubMed Central

    Moon, Kiwon; Lee, Il-Min; Shin, Jun-Hwan; Lee, Eui Su; Kim, Namje; Lee, Won-Hui; Ko, Hyunsung; Han, Sang-Pil; Park, Kyung Hyun

    2015-01-01

    Photoconductive antennas with nano-structured electrodes and which show significantly improved performances have been proposed to satisfy the demand for compact and efficient terahertz (THz) sources. Plasmonic field enhancement was previously considered the dominant mechanism accounting for the improvements in the underlying physics. However, we discovered that the role of plasmonic field enhancement is limited and near-field distribution of bias field should be considered as well. In this paper, we clearly show that the locally enhanced bias field due to the size effect is much more important than the plasmonic enhanced absorption in the nano-structured electrodes for the THz emitters. Consequently, an improved nano-electrode design is presented by tailoring bias field distribution and plasmonic enhancement. Our findings will pave the way for new perspectives in the design and analysis of plasmonic nano-structures for more efficient THz photonic devices. PMID:26347288

  5. Bias field tailored plasmonic nano-electrode for high-power terahertz photonic devices.

    PubMed

    Moon, Kiwon; Lee, Il-Min; Shin, Jun-Hwan; Lee, Eui Su; Kim, Namje; Lee, Won-Hui; Ko, Hyunsung; Han, Sang-Pil; Park, Kyung Hyun

    2015-09-08

    Photoconductive antennas with nano-structured electrodes and which show significantly improved performances have been proposed to satisfy the demand for compact and efficient terahertz (THz) sources. Plasmonic field enhancement was previously considered the dominant mechanism accounting for the improvements in the underlying physics. However, we discovered that the role of plasmonic field enhancement is limited and near-field distribution of bias field should be considered as well. In this paper, we clearly show that the locally enhanced bias field due to the size effect is much more important than the plasmonic enhanced absorption in the nano-structured electrodes for the THz emitters. Consequently, an improved nano-electrode design is presented by tailoring bias field distribution and plasmonic enhancement. Our findings will pave the way for new perspectives in the design and analysis of plasmonic nano-structures for more efficient THz photonic devices.

  6. High-Performance Nonvolatile Organic Field-Effect Transistor Memory Based on Organic Semiconductor Heterostructures of Pentacene/P13/Pentacene as Both Charge Transport and Trapping Layers.

    PubMed

    Li, Wen; Guo, Fengning; Ling, Haifeng; Zhang, Peng; Yi, Mingdong; Wang, Laiyuan; Wu, Dequn; Xie, Linghai; Huang, Wei

    2017-08-01

    Nonvolatile organic field-effect transistor (OFET) memory devices based on pentacene/ N , N '-ditridecylperylene-3,4,9,10-tetracarboxylic diimide (P13)/pentacene trilayer organic heterostructures have been proposed. The discontinuous n-type P13 embedded in p-type pentacene layers can not only provide electrons in the semiconductor layer that facilitates electron trapping process; it also works as charge trapping sites, which is attributed to the quantum well-like pentacene/P13/pentacene organic heterostructures. The synergistic effects of charge trapping in the discontinuous P13 and the charge-trapping property of the poly(4-vinylphenol) (PVP) layer remarkably improve the memory performance. In addition, the trilayer organic heterostructures have also been successfully applied to multilevel and flexible nonvolatile memory devices. The results provide a novel design strategy to achieve high-performance nonvolatile OFET memory devices and allow potential applications for different combinations of various organic semiconductor materials in OFET memory.

  7. 2D modeling based comprehensive analysis of short channel effects in DMG strained VSTB FET

    NASA Astrophysics Data System (ADS)

    Saha, Priyanka; Banerjee, Pritha; Sarkar, Subir Kumar

    2018-06-01

    The paper aims to develop two dimensional analytical model of the proposed dual material (DM) Vertical Super Thin Body (VSTB) strained Field Effect Transistor (FET) with focus on its short channel behaviour in nanometer regime. Electrostatic potential across gate/channel and dielectric wall/channel interface is derived by solving 2D Poisson's equation with parabolic approximation method by applying appropriate boundary conditions. Threshold voltage is then calculated by using the criteria of minimum surface potential considering both gate and dielectric wall side potential. Performance analysis of the present structure is demonstrated in terms of potential, electric field, threshold voltage characteristics and subthreshold behaviour by varying various device parameters and applied biases. Effect of application of strain in channel is further explored to establish the superiority of the proposed device in comparison to conventional VSTB FET counterpart. All analytical results are compared with Silvaco ATLAS device simulated data to substantiate the accuracy of our derived model.

  8. GASEOUS DISCHARGE DEVICE

    DOEpatents

    Gow, J.D.

    1961-01-10

    An extremely compact two-terminal gaseous discharge device is described that is capable of producing neutrons in copious quantities, relatively high energy ions, intense x rays, and the like. Principal novelty resides in the provision of a crossed electric-magnetic field region in the discharge envelope that traps electrons and accelerates them to very high energies to provide an intense ionizing medium adjacent the anode of the device for ionizing gas therein with extremely high efficiency. In addition, the crossed-field trapping region holds the electrons close to the anode whereby the acceleration of ions to the cathode is not materially effected by the electron sheath and the ions assume substantially the full energy of the anodecathode potential drop. (auth)

  9. The response of human bacteria to static magnetic field and radiofrequency electromagnetic field.

    PubMed

    Crabtree, David P E; Herrera, Brandon J; Kang, Sanghoon

    2017-10-01

    Cell phones and electronic appliances and devices are inseparable from most people in modern society and the electromagnetic field (EMF) from the devices is a potential health threat. Although the direct health effect of a cell phone and its radiofrequency (RF) EMF to human is still elusive, the effect to unicellular organisms is rather apparent. Human microbiota, including skin microbiota, has been linked to a very significant role in the health of a host human body. It is important to understand the response of human skin microbiota to the RF-EMF from cell phones and personal electronic devices, since this may be one of the potential mechanisms of a human health threat brought about by the disruption of the intimate and balanced host-microbiota relationship. Here, we investigated the response of both laboratory culture strains and isolates of skin bacteria under static magnetic field (SMF) and RF-EMF. The growth patterns of laboratory cultures of Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus epidermidis under SMF were variable per different species. The bacterial isolates of skin microbiota from 4 subjects with different cell phone usage history also showed inconsistent growth responses. These findings led us to hypothesize that cell phone level RF-EMF disrupts human skin microbiota. Thus, the results from the current study lay ground for more comprehensive research on the effect of RF-EMF on human health through the human-microbiota relationship.

  10. Analysis of Dynamic Avalanche Phenomenon in SOI Lateral High-speed Diode during Reverse Recovery and Development of a Novel Device Structure for Suppressing Dynamic Avalanche

    NASA Astrophysics Data System (ADS)

    Tokura, Norihito; Yamamoto, Takao; Kato, Hisato; Nakagawa, Akio

    We have studied the dynamic avalanche phenomenon in an SOI lateral diode during reverse recovery by using a mixed-mode device simulation. In the study, it has been found that local impact ionization occurs near an anode-side field oxide edge, where a high-density hole current flows and a high electric field appears simultaneously. We propose that a p-type anode extension region (AER) along a trench side wall effectively sweeps out stored carriers beneath an anode p-diffusion layer during reverse recovery, resulting in reduction of the electric field and remarkable suppression of the dynamic avalanche. The AER reduces the total recovery charge and does not cause any increase in the total stored charge under a forward bias operation. This effect is verified experimentally by the fabricated device with AER. Thus, the developed SOI lateral diode is promising as a high-speed and highly rugged free-wheeling diode, which can be integrated into next-generation SOI microinverters.

  11. Uniform, stable supply of medium for in vitro cell culture using a robust chamber

    NASA Astrophysics Data System (ADS)

    Wei, Juan; Liu, Chong; Jiang, Yang; Liu, Tao; Chen, Li; Liu, Bo; Li, Jingmin

    2018-06-01

    A uniform, stable supply of medium is important for in vitro cell culture. In this paper, a microfluidic device is presented for culturing cells inside a robust chamber with continuous perfusion of medium. The device consists of a main channel, two bifurcated channels and a culture chamber. The culture chamber connects to the bifurcated channels via multiple paths, and distributes symmetrically on the main channel, to improve the efficiency of medium exchange. Furthermore, regular polygonal chambers with various numbers of edges have been designed, to study the effects of chamber shape on flow fields. The finite element method has been employed to predict the effects of multiple paths on the uniformity and stability of flow fields in the culture chamber. Particle tracking technology has been used to evaluate the flow fields in the chambers, and PC-12 cells have been cultured using the microfluidic device, to test its validity. The results of simulation and experiment indicate that the microfluidic design could provide a continuous interstitial-like flow microenvironment, with a relatively stable and uniform supply of medium.

  12. Device and circuit-level performance of carbon nanotube field-effect transistor with benchmarking against a nano-MOSFET

    PubMed Central

    2012-01-01

    The performance of a semiconducting carbon nanotube (CNT) is assessed and tabulated for parameters against those of a metal-oxide-semiconductor field-effect transistor (MOSFET). Both CNT and MOSFET models considered agree well with the trends in the available experimental data. The results obtained show that nanotubes can significantly reduce the drain-induced barrier lowering effect and subthreshold swing in silicon channel replacement while sustaining smaller channel area at higher current density. Performance metrics of both devices such as current drive strength, current on-off ratio (Ion/Ioff), energy-delay product, and power-delay product for logic gates, namely NAND and NOR, are presented. Design rules used for carbon nanotube field-effect transistors (CNTFETs) are compatible with the 45-nm MOSFET technology. The parasitics associated with interconnects are also incorporated in the model. Interconnects can affect the propagation delay in a CNTFET. Smaller length interconnects result in higher cutoff frequency. PMID:22901374

  13. Effect of the application of an electric field on the performance of a two-phase loop device: preliminary results

    NASA Astrophysics Data System (ADS)

    Creatini, F.; Di Marco, P.; Filippeschi, S.; Fioriti, D.; Mameli, M.

    2015-11-01

    In the last decade, the continuous development of electronics has pointed out the need for a change in mind with regard to thermal management. In the present scenario, Pulsating Heat Pipes (PHPs) are novel promising two-phase passive heat transport devices that seem to meet all present and future thermal requirements. Nevertheless, PHPs governing phenomena are quite unique and not completely understood. In particular, single closed loop PHPs manifest several drawbacks, mostly related to the reduction of device thermal performance and reliability, i.e. the occurrence of multiple operational quasi-steady states. The present research work proposes the application of an electric field as a technique to promote the circulation of the working fluid in a preferential direction and stabilize the device operation. The tested single closed loop PHP is made of a copper tube with an inner tube diameter equal to 2.00 mm and filled with pure ethanol (60% filling ratio). The electric field is generated by a couple of wire-shaped electrodes powered with DC voltage up to 20 kV and laid parallel to the longitudinal axis of the glass tube constituting the adiabatic section. Although the electric field intensity in the working fluid region is weakened both by the polarization phenomenon of the working fluid and by the interposition of the glass tube, the experimental results highlight the influence of the electric field on the device thermal performance and encourage the continuation of the research in this direction.

  14. Multiscale modeling of nanostructured ZnO based devices for optoelectronic applications: Dynamically-coupled structural fields, charge, and thermal transport processes

    NASA Astrophysics Data System (ADS)

    Abdullah, Abdulmuin; Alqahtani, Saad; Nishat, Md Rezaul Karim; Ahmed, Shaikh; SIU Nanoelectronics Research Group Team

    Recently, hybrid ZnO nanostructures (such as ZnO deposited on ZnO-alloys, Si, GaN, polymer, conducting oxides, and organic compounds) have attracted much attention for their possible applications in optoelectronic devices (such as solar cells, light emitting and laser diodes), as well as in spintronics (such as spin-based memory, and logic). However, efficiency and performance of these hybrid ZnO devices strongly depend on an intricate interplay of complex, nonlinear, highly stochastic and dynamically-coupled structural fields, charge, and thermal transport processes at different length and time scales, which have not yet been fully assessed experimentally. In this work, we study the effects of these coupled processes on the electronic and optical emission properties in nanostructured ZnO devices. The multiscale computational framework employs the atomistic valence force-field molecular mechanics, models for linear and non-linear polarization, the 8-band sp3s* tight-binding models, and coupling to a TCAD toolkit to determine the terminal properties of the device. A series of numerical experiments are performed (by varying different nanoscale parameters such as size, geometry, crystal cut, composition, and electrostatics) that mainly aim to improve the efficiency of these devices. Supported by the U.S. National Science Foundation Grant No. 1102192.

  15. TetraMag: A compact magnetizing device based on eight rotating permanent magnets

    NASA Astrophysics Data System (ADS)

    Gilbert, M.; Mertins, H.-Ch.; Tesch, M.; Berges, O.; Feilbach, Herbert; Schneider, C. M.

    2012-02-01

    In this paper we describe a novel magnetizing device based on eight rotatable permanent magnets arranged in a quadrupolar configuration, which is termed the TetraMag. TetraMag creates stable and homogeneous magnetic fields at the sample position with a resolution of 0.02 mT tunable between -570 mT and +570 mT. The field direction is continuously rotatable between 0° and 360° within the sample plane, while the field strength is maintained. A simplified mathematical description of TetraMag is developed leading to magnetic field calculations which are in good agreement with the experimental results. This versatile device avoids electrical energy dissipation, cooling mechanisms, and hysteresis effects known from classical electromagnets. It is ultrahigh vacuum compatible and it offers a completely free optical path over 180° for magneto-optical experiments. It is suitable for scattering experiments with synchrotron radiation and neutrons and may be employed in a large class of magnetization experiments.

  16. A splitting scheme based on the space-time CE/SE method for solving multi-dimensional hydrodynamical models of semiconductor devices

    NASA Astrophysics Data System (ADS)

    Nisar, Ubaid Ahmed; Ashraf, Waqas; Qamar, Shamsul

    2016-08-01

    Numerical solutions of the hydrodynamical model of semiconductor devices are presented in one and two-space dimension. The model describes the charge transport in semiconductor devices. Mathematically, the models can be written as a convection-diffusion type system with a right hand side describing the relaxation effects and interaction with a self consistent electric field. The proposed numerical scheme is a splitting scheme based on the conservation element and solution element (CE/SE) method for hyperbolic step, and a semi-implicit scheme for the relaxation step. The numerical results of the suggested scheme are compared with the splitting scheme based on Nessyahu-Tadmor (NT) central scheme for convection step and the same semi-implicit scheme for the relaxation step. The effects of various parameters such as low field mobility, device length, lattice temperature and voltages for one-space dimensional hydrodynamic model are explored to further validate the generic applicability of the CE/SE method for the current model equations. A two dimensional simulation is also performed by CE/SE method for a MESFET device, producing results in good agreement with those obtained by NT-central scheme.

  17. Transfer characteristics and low-frequency noise in single- and multi-layer MoS{sub 2} field-effect transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Deepak; Theiss Research, Inc., La Jolla, California 92037; Department of Electrical and Computer Engineering, George Mason University, Fairfax, Virginia 22030

    Leveraging nanoscale field-effect transistors (FETs) in integrated circuits depends heavily on its transfer characteristics and low-frequency noise (LFN) properties. Here, we report the transfer characteristics and LFN in FETs fabricated with molybdenum disulfide (MoS{sub 2}) with different layer (L) counts. 4L to 6L devices showed highest I{sub ON}-I{sub OFF} ratio (≈10{sup 8}) whereas LFN was maximum for 1L device with normalized power spectral density (PSD) ≈1.5 × 10{sup −5 }Hz{sup −1}. For devices with L ≈ 6, PSD was minimum (≈2 × 10{sup −8 }Hz{sup −1}). Further, LFN for single and few layer devices satisfied carrier number fluctuation (CNF) model in both weak andmore » strong accumulation regimes while thicker devices followed Hooge's mobility fluctuation model in the weak accumulation regime and CNF model in strong accumulation regime, respectively. Transfer-characteristics and LFN experimental data are explained with the help of model incorporating Thomas-Fermi charge screening and inter-layer resistance coupling.« less

  18. The effects of magnetic nozzle configurations on plasma thrusters

    NASA Technical Reports Server (NTRS)

    York, Thomas M.

    1989-01-01

    Plasma thrusters have been operated at power levels from 10kW to 0.1MW. When these devices have had magnetic fields applied to them which form a nozzle configuration for the expanding plasma, they have shown marked increases in exhaust velocity which is in direct proportion to the magnitude of the applied field. Further, recent results have shown that electrode erosion may be influenced by applied magnetic fields. This research is directed to the experimental and computational study of the effects of applied magnetic field nozzles in the acceleration of plasma flows. Plasma source devices which eliminate the plasma interaction in normal thrusters are studied as most basic. Normal thruster configurations will be studied without applied fields and with applied magnetic nozzle fields. Unique computational studies will utilize existing codes which accurately include transport processes. Unique diagnostic studies will support the experimental studies to generate new data. Both computation and diagnostics will be combined to indicate the physical mechanisms and transport properties that are operative in order to allow scaling and accurate prediction of thruster performance.

  19. Value-added Synthesis of Graphene: Recycling Industrial Carbon Waste into Electrodes for High-Performance Electronic Devices

    PubMed Central

    Seo, Hong-Kyu; Kim, Tae-Sik; Park, Chibeom; Xu, Wentao; Baek, Kangkyun; Bae, Sang-Hoon; Ahn, Jong-Hyun; Kim, Kimoon; Choi, Hee Cheul; Lee, Tae-Woo

    2015-01-01

    We have developed a simple, scalable, transfer-free, ecologically sustainable, value-added method to convert inexpensive coal tar pitch to patterned graphene films directly on device substrates. The method, which does not require an additional transfer process, enables direct growth of graphene films on device substrates in large area. To demonstrate the practical applications of the graphene films, we used the patterned graphene grown on a dielectric substrate directly as electrodes of bottom-contact pentacene field-effect transistors (max. field effect mobility ~0.36 cm2·V−1·s−1), without using any physical transfer process. This use of a chemical waste product as a solid carbon source instead of commonly used explosive hydrocarbon gas sources for graphene synthesis has the dual benefits of converting the waste to a valuable product, and reducing pollution. PMID:26567845

  20. Monolithic integration of GaN-based light-emitting diodes and metal-oxide-semiconductor field-effect transistors.

    PubMed

    Lee, Ya-Ju; Yang, Zu-Po; Chen, Pin-Guang; Hsieh, Yung-An; Yao, Yung-Chi; Liao, Ming-Han; Lee, Min-Hung; Wang, Mei-Tan; Hwang, Jung-Min

    2014-10-20

    In this study, we report a novel monolithically integrated GaN-based light-emitting diode (LED) with metal-oxide-semiconductor field-effect transistor (MOSFET). Without additionally introducing complicated epitaxial structures for transistors, the MOSFET is directly fabricated on the exposed n-type GaN layer of the LED after dry etching, and serially connected to the LED through standard semiconductor-manufacturing technologies. Such monolithically integrated LED/MOSFET device is able to circumvent undesirable issues that might be faced by other kinds of integration schemes by growing a transistor on an LED or vice versa. For the performances of resulting device, our monolithically integrated LED/MOSFET device exhibits good characteristics in the modulation of gate voltage and good capability of driving injected current, which are essential for the important applications such as smart lighting, interconnection, and optical communication.

  1. One-Dimensional Nanostructures and Devices of II–V Group Semiconductors

    PubMed Central

    2009-01-01

    The II–V group semiconductors, with narrow band gaps, are important materials with many applications in infrared detectors, lasers, solar cells, ultrasonic multipliers, and Hall generators. Since the first report on trumpet-like Zn3P2nanowires, one-dimensional (1-D) nanostructures of II–V group semiconductors have attracted great research attention recently because these special 1-D nanostructures may find applications in fabricating new electronic and optoelectronic nanoscale devices. This article covers the 1-D II–V semiconducting nanostructures that have been synthesized till now, focusing on nanotubes, nanowires, nanobelts, and special nanostructures like heterostructured nanowires. Novel electronic and optoelectronic devices built on 1-D II–V semiconducting nanostructures will also be discussed, which include metal–insulator-semiconductor field-effect transistors, metal-semiconductor field-effect transistors, andp–nheterojunction photodiode. We intent to provide the readers a brief account of these exciting research activities. PMID:20596452

  2. Value-added Synthesis of Graphene: Recycling Industrial Carbon Waste into Electrodes for High-Performance Electronic Devices

    NASA Astrophysics Data System (ADS)

    Seo, Hong-Kyu; Kim, Tae-Sik; Park, Chibeom; Xu, Wentao; Baek, Kangkyun; Bae, Sang-Hoon; Ahn, Jong-Hyun; Kim, Kimoon; Choi, Hee Cheul; Lee, Tae-Woo

    2015-11-01

    We have developed a simple, scalable, transfer-free, ecologically sustainable, value-added method to convert inexpensive coal tar pitch to patterned graphene films directly on device substrates. The method, which does not require an additional transfer process, enables direct growth of graphene films on device substrates in large area. To demonstrate the practical applications of the graphene films, we used the patterned graphene grown on a dielectric substrate directly as electrodes of bottom-contact pentacene field-effect transistors (max. field effect mobility ~0.36 cm2·V-1·s-1), without using any physical transfer process. This use of a chemical waste product as a solid carbon source instead of commonly used explosive hydrocarbon gas sources for graphene synthesis has the dual benefits of converting the waste to a valuable product, and reducing pollution.

  3. Value-added Synthesis of Graphene: Recycling Industrial Carbon Waste into Electrodes for High-Performance Electronic Devices.

    PubMed

    Seo, Hong-Kyu; Kim, Tae-Sik; Park, Chibeom; Xu, Wentao; Baek, Kangkyun; Bae, Sang-Hoon; Ahn, Jong-Hyun; Kim, Kimoon; Choi, Hee Cheul; Lee, Tae-Woo

    2015-11-16

    We have developed a simple, scalable, transfer-free, ecologically sustainable, value-added method to convert inexpensive coal tar pitch to patterned graphene films directly on device substrates. The method, which does not require an additional transfer process, enables direct growth of graphene films on device substrates in large area. To demonstrate the practical applications of the graphene films, we used the patterned graphene grown on a dielectric substrate directly as electrodes of bottom-contact pentacene field-effect transistors (max. field effect mobility ~0.36 cm(2)·V(-1)·s(-1)), without using any physical transfer process. This use of a chemical waste product as a solid carbon source instead of commonly used explosive hydrocarbon gas sources for graphene synthesis has the dual benefits of converting the waste to a valuable product, and reducing pollution.

  4. Two dimensional analytical model for a reconfigurable field effect transistor

    NASA Astrophysics Data System (ADS)

    Ranjith, R.; Jayachandran, Remya; Suja, K. J.; Komaragiri, Rama S.

    2018-02-01

    This paper presents two-dimensional potential and current models for a reconfigurable field effect transistor (RFET). Two potential models which describe subthreshold and above-threshold channel potentials are developed by solving two-dimensional (2D) Poisson's equation. In the first potential model, 2D Poisson's equation is solved by considering constant/zero charge density in the channel region of the device to get the subthreshold potential characteristics. In the second model, accumulation charge density is considered to get above-threshold potential characteristics of the device. The proposed models are applicable for the device having lightly doped or intrinsic channel. While obtaining the mathematical model, whole body area is divided into two regions: gated region and un-gated region. The analytical models are compared with technology computer-aided design (TCAD) simulation results and are in complete agreement for different lengths of the gated regions as well as at various supply voltage levels.

  5. Removing the current-limit of vertical organic field effect transistors

    NASA Astrophysics Data System (ADS)

    Sheleg, Gil; Greenman, Michael; Lussem, Bjorn; Tessler, Nir

    2017-11-01

    The reported Vertical Organic Field Effect Transistors (VOFETs) show either superior current and switching speeds or well-behaved transistor performance, especially saturation in the output characteristics. Through the study of the relationship between the device architecture or dimensions and the device performance, we find that achieving a saturation regime in the output characteristics requires that the device operates in the injection limited regime. In current structures, the existence of the injection limited regime depends on the source's injection barrier as well as on the buried semiconductor layer thickness. To overcome the injection limit imposed by the necessity of injection barrier, we suggest a new architecture to realize VOFETs. This architecture shows better gate control and is independent of the injection barrier at the source, thus allowing for several A cm-2 for a semiconductor having a mobility value of 0.1 cm2 V-1 s-1.

  6. Vacuum Microelectronic Field Emission Array Devices for Microwave Amplification.

    NASA Astrophysics Data System (ADS)

    Mancusi, Joseph Edward

    This dissertation presents the design, analysis, and measurement of vacuum microelectronic devices which use field emission to extract an electron current from arrays of silicon cones. The arrays of regularly-spaced silicon cones, the field emission cathodes or emitters, are fabricated with an integrated gate electrode which controls the electric field at the tip of the cone, and thus the electron current. An anode or collector electrode is placed above the array to collect the emission current. These arrays, which are fabricated in a standard silicon processing facility, are developed for use as high power microwave amplifiers. Field emission has been studied extensively since it was first characterized in 1928, however due to the large electric fields required practical field emission devices are difficult to make. With the development of the semiconductor industry came the development of fabrication equipment and techniques which allow for the manufacture of the precision micron-scale structures necessary for practical field emission devices. The active region of a field emission device is a vacuum, therefore the electron travel is ballistic. This analysis of field emission devices includes electric field and electron emission modeling, development of a device equivalent circuit, analysis of the parameters in the equivalent circuit, and device testing. Variations in device structure are taken into account using a statistical model based upon device measurements. Measurements of silicon field emitter arrays at DC and RF are presented and analyzed. In this dissertation, the equivalent circuit is developed from the analysis of the device structure. The circuit parameters are calculated from geometrical considerations and material properties, or are determined from device measurements. It is necessary to include the emitter resistance in the equivalent circuit model since relatively high resistivity silicon wafers are used. As is demonstrated, the circuit model accurately predicts the magnitude of the emission current at a number of typical bias current levels when the device is operating at frequencies within the range of 10 MHz to 1 GHz. At low frequencies and at high frequencies within this range, certain parameters are negligible, and simplifications may be made in the equivalent circuit model.

  7. Alpha Channeling in Open-System Magnetic Devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisch, Nathaniel

    The Grant DE-SC0000736, Alpha Channeling in Open-System Magnetic Devices, is a continuation of the Grant DE-FG02-06ER54851, Alpha Channeling in Mirror Machines. In publications funded by DE-SC0000736, the grant DE-FG02-06ER54851 was actually credited. The key results obtained under Grant DE-SC0000736, Alpha Channeling in Open-System Magnetic Devices, appear in a series of publications. The earlier effort under DE-FG02- 06ER54851 was the subject of a previous Final Report. The theme of this later effort has been unusual confinement effects, or de-confinement effects, in open-field magnetic confinement devices. First, the possibilities in losing axisymmetry were explored. Then a number of issues in rotating plasmamore » were addressed. Most importantly, a spinoff application to plasma separations was recognized, which also resulted in a provisional patent application. (That provisional patent application, however, was not pursued further.) Alpha channeling entails injecting waves into magnetically confined plasma to release energy from one particular ion while ejecting that ion. The ejection of the ion is actually a concomitant effect in releasing energy from the ion to the wave. In rotating plasma, there is the opportunity to store the energy in a radial electric field rather than in waves. In other words, the ejected alpha particle loses its energy to the radial potential, which in turn produces plasma rotation. This is a very useful effect, since producing radial electric fields by other means are technologically more difficult. In fact, one can heat ions, and then eject them, to produce the desired radial field. In each case, there is a separation effect of different ions, which generalizes the original alpha-channeling concept of separating alpha ash from hydrogen. In a further generalization of the separation concept, a double-well filter represents a new way to produce high-throughput separations of ions, potentially useful for nuclear waste remediation.« less

  8. Immense Magnetic Response of Exciplex Light Emission due to Correlated Spin-Charge Dynamics

    NASA Astrophysics Data System (ADS)

    Wang, Yifei; Sahin-Tiras, Kevser; Harmon, Nicholas J.; Wohlgenannt, Markus; Flatté, Michael E.

    2016-01-01

    As carriers slowly move through a disordered energy landscape in organic semiconductors, tiny spatial variations in spin dynamics relieve spin blocking at transport bottlenecks or in the electron-hole recombination process that produces light. Large room-temperature magnetic-field effects (MFEs) ensue in the conductivity and luminescence. Sources of variable spin dynamics generate much larger MFEs if their spatial structure is correlated on the nanoscale with the energetic sites governing conductivity or luminescence such as in coevaporated organic blends within which the electron resides on one molecule and the hole on the other (an exciplex). Here, we show that exciplex recombination in blends exhibiting thermally activated delayed fluorescence produces MFEs in excess of 60% at room temperature. In addition, effects greater than 4000% can be achieved by tuning the device's current-voltage response curve by device conditioning. Both of these immense MFEs are the largest reported values for their device type at room temperature. Our theory traces this MFE and its unusual temperature dependence to changes in spin mixing between triplet exciplexes and light-emitting singlet exciplexes. In contrast, spin mixing of excitons is energetically suppressed, and thus spin mixing produces comparatively weaker MFEs in materials emitting light from excitons by affecting the precursor pairs. Demonstration of immense MFEs in common organic blends provides a flexible and inexpensive pathway towards magnetic functionality and field sensitivity in current organic devices without patterning the constituent materials on the nanoscale. Magnetic fields increase the power efficiency of unconditioned devices by 30% at room temperature, also showing that magnetic fields may increase the efficiency of the thermally activated delayed fluorescence process.

  9. Superconducting magnetic Wollaston prism for neutron spin encoding

    NASA Astrophysics Data System (ADS)

    Li, F.; Parnell, S. R.; Hamilton, W. A.; Maranville, B. B.; Wang, T.; Semerad, R.; Baxter, D. V.; Cremer, J. T.; Pynn, R.

    2014-05-01

    A magnetic Wollaston prism can spatially split a polarized neutron beam into two beams with different neutron spin states, in a manner analogous to an optical Wollaston prism. Such a Wollaston prism can be used to encode the trajectory of neutrons into the Larmor phase associated with their spin degree of freedom. This encoding can be used for neutron phase-contrast radiography and in spin echo scattering angle measurement (SESAME). In this paper, we show that magnetic Wollaston prisms with highly uniform magnetic fields and low Larmor phase aberration can be constructed to preserve neutron polarization using high temperature superconducting (HTS) materials. The Meissner effect of HTS films is used to confine magnetic fields produced electromagnetically by current-carrying HTS tape wound on suitably shaped soft iron pole pieces. The device is cooled to ˜30 K by a closed cycle refrigerator, eliminating the need to replenish liquid cryogens and greatly simplifying operation and maintenance. A HTS film ensures that the magnetic field transition within the prism is sharp, well-defined, and planar due to the Meissner effect. The spin transport efficiency across the device was measured to be ˜98.5% independent of neutron wavelength and energizing current. The position-dependent Larmor phase of neutron spins was measured at the NIST Center for Neutron Research facility and found to agree well with detailed simulations. The phase varies linearly with horizontal position, as required, and the neutron beam shows little depolarization. Consequently, the device has advantages over existing devices with similar functionality and provides the capability for a large neutron beam (20 mm × 30 mm) and an increase in length scales accessible to SESAME to beyond 10 μm. With further improvements of the external coupling guide field in the prototype device, a larger neutron beam could be employed.

  10. Superconducting magnetic Wollaston prism for neutron spin encoding.

    PubMed

    Li, F; Parnell, S R; Hamilton, W A; Maranville, B B; Wang, T; Semerad, R; Baxter, D V; Cremer, J T; Pynn, R

    2014-05-01

    A magnetic Wollaston prism can spatially split a polarized neutron beam into two beams with different neutron spin states, in a manner analogous to an optical Wollaston prism. Such a Wollaston prism can be used to encode the trajectory of neutrons into the Larmor phase associated with their spin degree of freedom. This encoding can be used for neutron phase-contrast radiography and in spin echo scattering angle measurement (SESAME). In this paper, we show that magnetic Wollaston prisms with highly uniform magnetic fields and low Larmor phase aberration can be constructed to preserve neutron polarization using high temperature superconducting (HTS) materials. The Meissner effect of HTS films is used to confine magnetic fields produced electromagnetically by current-carrying HTS tape wound on suitably shaped soft iron pole pieces. The device is cooled to ~30 K by a closed cycle refrigerator, eliminating the need to replenish liquid cryogens and greatly simplifying operation and maintenance. A HTS film ensures that the magnetic field transition within the prism is sharp, well-defined, and planar due to the Meissner effect. The spin transport efficiency across the device was measured to be ~98.5% independent of neutron wavelength and energizing current. The position-dependent Larmor phase of neutron spins was measured at the NIST Center for Neutron Research facility and found to agree well with detailed simulations. The phase varies linearly with horizontal position, as required, and the neutron beam shows little depolarization. Consequently, the device has advantages over existing devices with similar functionality and provides the capability for a large neutron beam (20 mm × 30 mm) and an increase in length scales accessible to SESAME to beyond 10 μm. With further improvements of the external coupling guide field in the prototype device, a larger neutron beam could be employed.

  11. Complementary Paired G4FETs as Voltage-Controlled NDR Device

    NASA Technical Reports Server (NTRS)

    Mojarradi, Mohammad; Chen, Suheng; Blalock, Ben; Britton, Chuck; Prothro, Ben; Vandersand, James; Schrimph, Ron; Cristoloveanu, Sorin; Akavardar, Kerem; Gentil, P.

    2009-01-01

    It is possible to synthesize a voltage-controlled negative-differential-resistance (NDR) device or circuit by use of a pair of complementary G4FETs (four-gate field-effect transistors). [For more information about G4FETs, please see the immediately preceding article]. As shown in Figure 1, the present voltage-controlled NDR device or circuit is an updated version of a prior NDR device or circuit, known as a lambda diode, that contains a pair of complementary junction field-effect transistors (JFETs). (The lambda diode is so named because its current-versus- voltage plot bears some resemblance to an upper-case lambda.) The present version can be derived from the prior version by substituting G4FETs for the JFETs and connecting both JFET gates of each G4FET together. The front gate terminals of the G4FETs constitute additional terminals (that is, terminals not available in the older JFET version) to which one can apply control voltages VN and VP. Circuits in which NDR devices have been used include (1) Schmitt triggers and (2) oscillators containing inductance/ capacitance (LC) resonant circuits. Figure 2 depicts such circuits containing G4FET NDR devices like that of Figure 1. In the Schmitt trigger shown here, the G4FET NDR is loaded with an ordinary inversion-mode, p-channel, metal oxide/semiconductor field-effect transistor (inversion-mode PMOSFET), the VN terminal of the G4FET NDR device is used as an input terminal, and the input terminals of the PMOSFET and the G4FET NDR device are connected. VP can be used as an extra control voltage (that is, a control voltage not available in a typical prior Schmitt trigger) for adjusting the pinch-off voltage of the p-channel G4FET and thereby adjusting the trigger-voltage window. In the oscillator, a G4FET NDR device is loaded with a conventional LC tank circuit. As in other LC NDR oscillators, oscillation occurs because the NDR counteracts the resistance in the tank circuit. The advantage of this G4FET-NDR LC oscillator over a conventional LC NDR oscillator is that one can apply a time-varying signal to one of the extra control input terminals (VN or VP) to modulate the conductance of the NDR device and thereby amplitude-modulate the output signal.

  12. Hexagonal MoTe2 with Amorphous BN Passivation Layer for Improved Oxidation Resistance and Endurance of 2D Field Effect Transistors.

    PubMed

    Sirota, Benjamin; Glavin, Nicholas; Krylyuk, Sergiy; Davydov, Albert V; Voevodin, Andrey A

    2018-06-06

    Environmental and thermal stability of two-dimensional (2D) transition metal dichalcogenides (TMDs) remains a fundamental challenge towards enabling robust electronic devices. Few-layer 2H-MoTe 2 with an amorphous boron nitride (a-BN) covering layer was synthesized as a channel for back-gated field effect transistors (FET) and compared to uncovered MoTe 2 . A systematic approach was taken to understand the effects of heat treatment in air on the performance of FET devices. Atmospheric oxygen was shown to negatively affect uncoated MoTe 2 devices while BN-covered FETs showed considerably enhanced chemical and electronic characteristic stability. Uncapped MoTe 2 FET devices, which were heated in air for one minute, showed a polarity switch from n- to p-type at 150 °C, while BN-MoTe 2 devices switched only after 200 °C of heat treatment. Time-dependent experiments at 100 °C showed that uncapped MoTe 2 samples exhibited the polarity switch after 15 min of heat treatment while the BN-capped device maintained its n-type conductivity for the maximum 60 min duration of the experiment. X-ray photoelectron spectroscopy (XPS) analysis suggests that oxygen incorporation into MoTe 2 was the primary doping mechanism for the polarity switch. This work demonstrates the effectiveness of an a-BN capping layer in preserving few-layer MoTe 2 material quality and controlling its conductivity type at elevated temperatures in an atmospheric environment.

  13. Metal-oxide-semiconductor devices using Ga2O3 dielectrics on n-type GaN

    NASA Astrophysics Data System (ADS)

    Lee, Ching-Ting; Chen, Hong-Wei; Lee, Hsin-Ying

    2003-06-01

    Using a photoelectrochemical method involving a He-Cd laser, Ga2O3 oxide layers were directly grown on n-type GaN. We demonstrated the performance of the resultant metal-oxide-semiconductor devices based on the grown Ga2O3 layer. An extremely low reverse leakage current of 200 pA was achieved when devices operated at -20 V. Furthermore, high forward and reverse breakdown electric fields of 2.80 MV/cm and 5.70 MV/cm, respectively, were obtained. Using a photoassisted current-voltage method, a low interface state density of 2.53×1011 cm-2 eV-1 was estimated. The varactor devices permit formation of inversion layers, so that they may be applied for the fabrication of metal-oxide-semiconductor field-effect transistors.

  14. Experimental demonstration of subwavelength domino plasmon devices for compact high-frequency circuit.

    PubMed

    Ma, Y G; Lan, L; Zhong, S M; Ong, C K

    2011-10-24

    In optical frequency, surface plasmons of metal provide us a prominent way to build compact photonic devices or circuits with non-diffraction limit. It is attributed by their extraordinary electromagnetic confining effect. But in the counterpart of lower frequencies, plasmonics behavior of metal is screened by eddy current induced in a certain skin depth. To amend this, spoof plasmons engineered by artificial structures have been introduced to mimic surface plasmons in these frequencies. But it is less useful for practical application due to their weak field confinement as manifested by large field decaying length in the upper dielectric space. Recently, a new type of engineered plasmons, domino plasmon was theoretically proposed to produce unusual field confinement and waveguiding capabilities that make them very attractive for ultra-compact device applications [Opt. Exp. 18, 754-764 (2010)]. In this work, we implemented these ideas and built three waveguiding devices based on domino plasmons. Their strong capabilities to produce versatile and ultra-compact devices with multiple electromagnetic functions have been experimentally verified in microwaves. And that can be extended to THz regime to pave the way for a new class of integrated wave circuits. © 2011 Optical Society of America

  15. Control of Transitional and Turbulent Flows Using Plasma-Based Actuators

    DTIC Science & Technology

    2006-06-01

    by means of asymmetric dielectric-barrier-discharge ( DBD ) actuators is presented. The flow fields are simulated employ- ing an extensively validated...effective use of DBD devices. As a consequence, meaningful computations require the use of three-dimensional large-eddy simulation approaches capable of...counter-flow DBD actuator is shown to provide an effective on-demand tripping device . This prop- erty is exploited for the suppression of laminar

  16. Effective Dose of Positioning Scans for Five CBCT Devices

    DTIC Science & Technology

    2016-05-25

    CBCT. Journal of Dental Research , Dental Clinics , Dental Prospects 2014;8(2):107-10. 26. Kim D, Rashsuren O, Kim E. Conversion coefficients for the... International Journal of Oral & Maxillofacial Implants 2014;29:55-77. 10. Brooks SL. Radiation doses of common dental radiographic examinations: A review...dose was measured with metal–oxide–semiconductor field-effect transistor (MOSFET) dosimeters for five CBCT devices in a postgraduate dental clinic

  17. Nanocrystal-mediated charge screening effects in nanowire field-effect transistors

    NASA Astrophysics Data System (ADS)

    Yoon, C. J.; Yeom, D. H.; Jeong, D. Y.; Lee, M. G.; Moon, B. M.; Kim, S. S.; Choi, C. Y.; Koo, S. M.

    2009-03-01

    ZnO nanowire field-effect transistors having an omega-shaped floating gate (OSFG) have been successfully fabricated by directly coating CdTe nanocrystals (˜6±2.5 nm) at room temperature, and compared to simultaneously prepared control devices without nanocrystals. Herein, we demonstrate that channel punchthrough may occur when the depletion from the OSFG takes place due to the trapped charges in the nanocrystals. Electrical measurements on the OSFG nanowire devices showed static-induction transistorlike behavior in the drain output IDS-VDS characteristics and a hysteresis window as large as ˜3.1 V in the gate transfer IDS-VGS characteristics. This behavior is ascribed to the presence of the CdTe nanocrystals, and is indicative of the trapping and emission of electrons in the nanocrystals. The numerical simulations clearly show qualitatively the same characteristics as the experimental data and confirm the effect, showing that the change in the potential distribution across the channel, induced by both the wrapping-around gate and the drain, affects the transport characteristics of the device. The cross-sectional energy band and potential profile of the OSFG channel corresponding to the "programed (noncharged)" and "erased (charged)" operations for the device are also discussed on the basis of the numerical capacitance-voltage simulations.

  18. Inverse spin-valve effect in nanoscale Si-based spin-valve devices

    NASA Astrophysics Data System (ADS)

    Hiep, Duong Dinh; Tanaka, Masaaki; Hai, Pham Nam

    2017-12-01

    We investigated the spin-valve effect in nano-scale silicon (Si)-based spin-valve devices using a Fe/MgO/Ge spin injector/detector deposited on Si by molecular beam epitaxy. For a device with a 20 nm Si channel, we observed clear magnetoresistance up to 3% at low temperature when a magnetic field was applied in the film plane along the Si channel transport direction. A large spin-dependent output voltage of 20 mV was observed at a bias voltage of 0.9 V at 15 K, which is among the highest values in lateral spin-valve devices reported so far. Furthermore, we observed that the sign of the spin-valve effect is reversed at low temperatures, suggesting the possibility of a spin-blockade effect of defect states in the MgO/Ge tunneling barrier.

  19. Large-eddy simulation, atmospheric measurement and inverse modeling of greenhouse gas emissions at local spatial scales

    NASA Astrophysics Data System (ADS)

    Nottrott, Anders Andelman

    Multiferroic materials and devices have attracted intensified interests due to the demonstrated strong magnetoelectric coupling in new multiferroic materials, artificial multiferroic heterostructures and devices with unique functionalities and superior performance characteristics. This offers great opportunities for achieving compact, fast, energy-efficient and voltage tunable spintronic devices. In traditional magnetic materials based magnetic random access memories (MRAM) devices, the binary information is stored as magnetization. The high coercivity of the ferromagnetic media requires large magnetic fields for switching the magnetic states thus consuming large amount of energy. In modern MRAM information writing process, spin-torque technique is utilized for minimizing the large energy for generating magnetic field by passing through a spin-polarized current directly to the magnets. However, both methods still need large current/current density to toggle the magnetic bits which consume large amount of energy. With the presence of multiferroic or magnetoelectric materials, spin is controlled by electric field which opens new opportunities for power-efficient voltage control of magnetization in spintronic devices leading to magnetoelectric random access memories (MERAM) with ultra-low energy consumption. However, state of the art multiferroic materials still have difficulty of realizing nonvolatile 180° magnetization reversal, which is desired in realizing MERAM. In a strain-mediated multiferroic system, the typical modification of the magnetism of ferromagnetic phase as a function of bipolar electric field shows a "butterfly" like behavior. This is due to the linear piezoelectricity of ferroelectric phase which has a "butterfly" like piezostrain as a function of electric field curve resulting from ferroelectric domain wall switching. In this case, the magnetization state is volatile because of the vanishing of the piezostrain at zero electric field. However, the non-volatile switching of magnetization would be more promising for information storage or MERAM devices with lower energy consumption and the magnetic state can be further controlled by voltage impulse. In this work, we first study the equivalent of direct and converse magnetoelectric effects. The resonant direct and converse magnetoelectric (ME) effects have been investigated experimentally and theoretically in FeGa/PZT/FeGa sandwich laminate composites. The frequency responses of direct and converse magnetoelectric effects were measured under the same electric and magnetic bias conditions. The resonant direct ME effect (DME) occurs at an antiresonance frequency, while resonant converse ME effect (CME) occurs at a resonance frequency. The antiresonance and resonance frequencies have close but different values under identical bias conditions. The magnitudes of resonant effective ME coefficients for direct and converse ME effects are also not equal. Based on different sets of constitutive equations of the materials for DME and CME, a new model was developed to describe the frequency response of DME and CME in laminate composite, which was in good agreement with the experimental results. Inequivalence of resonant ME effects is ascribed to the different mechanical and electrical boundary conditions for DME and CME. On the other hand, similar bias E and H field dependence was observed for both DME and CME resonance frequencies and resonant coefficients, indicating consistency between DME and CME effects. In the study of the frequency response of DME and CME, the linear piezoelectric effect is used. However, this linear piezoelectric effect in converse magnetoelectric coupling would lead to "butter-fly" like magnetization vs. electric field curve which leads to a "volatile" behavior in magnetic memory system. In the presented study, a unique ferroelastic switching pathway in ferroelectric substrates is utilized to produce two distinct, reversible and stable lattice strain states which leads to the establish of two stable magnetization states of the ferromagnetic thin film. In this process, instead of complete 180° ferromagnetic domain switching, 71°/109° ferroelastic domain wall switching is involved, where the electric polarization is switching between in-plane and out-of-plane direction. A voltage impulse induced reversible bistable magnetization switching in FeGaB/lead zirconate titanate (PZT) multiferroic heterostructures at room temperature is first demonstrated. Two reversible and stable voltage-impulse induced mechanical strain states were obtained in the PZT by applying an electric field impulse with its amplitude smaller than the electric coercive field, which led to reversible voltage impulse induced bistable magnetization switching. Direct and converse magnetoelectric effects are carefully quantified.

  20. Patterned Ferroelectric Films for Tunable Microwave Devices

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.; Mueller, Carl H.

    2008-01-01

    Tunable microwave devices based on metal terminals connected by thin ferroelectric films can be made to perform better by patterning the films to include suitably dimensioned, positioned, and oriented constrictions. The patterns can be formed during fabrication by means of selective etching processes. If the width of the ferroelectric film in such a device is reduced at one or more locations, then both the microwave field and any applied DC bias (tuning) electric field become concentrated at those locations. The magnitudes of both the permittivity and the dielectric loss of a ferroelectric material are reduced by application of a DC field. Because the concentration of the DC field in the constriction(s) magnifies the permittivity- and loss-reducing effects of the applied DC voltage, the permittivity and dielectric loss in the constriction(s) are smaller in the constriction(s) than they are in the wider parts of the ferroelectric film. Furthermore, inasmuch as displacement current must flow through either the constriction(s) or the low-loss dielectric substrate, the net effect of the constriction(s) is equivalent to that of incorporating one or more low-loss, low-permittivity region(s) in series with the high-loss, high-permittivity regions. In a series circuit, the properties of the low-capacitance series element (in this case, the constriction) dominate the overall performance. Concomitantly, the capacitance between the metal terminals is reduced. By making the capacitance between the metal terminals small but tunable, a constriction increases the upper limit of the frequency range amenable to ferroelectric tuning. The present patterning concept is expected to be most advantageous for devices and circuits that must operate at frequencies from about 4 to about 60 GHz. A constriction can be designed such that the magnitude of the microwave electric field and the effective width of the region occupied by the microwave electric field become functions of the applied DC electric field, so that tunability is enhanced. It should even be possible to design the constriction to obtain a specific tuning-versus-voltage profile.

  1. Comparing Hall Effect and Field Effect Measurements on the Same Single Nanowire.

    PubMed

    Hultin, Olof; Otnes, Gaute; Borgström, Magnus T; Björk, Mikael; Samuelson, Lars; Storm, Kristian

    2016-01-13

    We compare and discuss the two most commonly used electrical characterization techniques for nanowires (NWs). In a novel single-NW device, we combine Hall effect and back-gated and top-gated field effect measurements and quantify the carrier concentrations in a series of sulfur-doped InP NWs. The carrier concentrations from Hall effect and field effect measurements are found to correlate well when using the analysis methods described in this work. This shows that NWs can be accurately characterized with available electrical methods, an important result toward better understanding of semiconductor NW doping.

  2. A study of effects of electrode contacts on performance of organic-based light-emitting field-effect transistors

    NASA Astrophysics Data System (ADS)

    Kim, Dae-Kyu; Choi, Jong-Ho

    2018-02-01

    Herein is presented a comparative performance analysis of heterojunction organic-based light-emitting field-effect transistors (OLEFETs) with symmetric (Au only) and asymmetric (Au and LiF/Al) electrode contacts. The devices had a top source-drain contact with long-channel geometry and were produced by sequentially depositing p-type pentacene and n-type N,N‧-ditridecylperylene-3,4,9,10-tetracarboxylic diimide (P13) using a neutral cluster beam deposition apparatus. The spectroscopic, structural and morphological properties of the organic thin films were examined using photoluminescence (PL) spectroscopy, X-ray diffraction (XRD) method, laser scanning confocal and atomic force microscopy (LSCM, AFM). Based upon the growth of high-quality, well-packed crystalline thin films, the devices demonstrated ambipolar field-effect characteristics, stress-free operational stability, and light emission under ambient conditions. Various device parameters were derived from the fits of the observed characteristics. The hole mobilities were nearly equal irrespective of the electrode contacts, whereas the electron mobilities of the transistors with LiF/Al drain electrodes were higher due to the low injection barrier. For the OLEFETs with symmetric electrodes, electroluminescence (EL) occurred only in the vicinity of the hole-injecting electrode, whereas for the OLEFETs with asymmetric electrodes, the emission occurred in the vicinity of both hole- and electron-injecting electrodes. By tuning the carrier injection and transport through high- and low-work function metals, the hole-electron recombination sites could be controlled. The operating conduction and light emission mechanism are discussed with the aid of EL images obtained using a charge-coupled device (CCD) camera.

  3. Non- contacting capacitive diagnostic device

    DOEpatents

    Ellison, Timothy

    2005-07-12

    A non-contacting capacitive diagnostic device includes a pulsed light source for producing an electric field in a semiconductor or photovoltaic device or material to be evaluated and a circuit responsive to the electric field. The circuit is not in physical contact with the device or material being evaluated and produces an electrical signal characteristic of the electric field produced in the device or material. The diagnostic device permits quality control and evaluation of semiconductor or photovoltaic device properties in continuous manufacturing processes.

  4. Silicon detectors for combined MR-PET and MR-SPECT imaging

    NASA Astrophysics Data System (ADS)

    Studen, A.; Brzezinski, K.; Chesi, E.; Cindro, V.; Clinthorne, N. H.; Cochran, E.; Grošičar, B.; Grkovski, M.; Honscheid, K.; Kagan, H.; Lacasta, C.; Llosa, G.; Mikuž, M.; Stankova, V.; Weilhammer, P.; Žontar, D.

    2013-02-01

    Silicon based devices can extend PET-MR and SPECT-MR imaging to applications, where their advantages in performance outweigh benefits of high statistical counts. Silicon is in many ways an excellent detector material with numerous advantages, among others: excellent energy and spatial resolution, mature processing technology, large signal to noise ratio, relatively low price, availability, versatility and malleability. The signal in silicon is also immune to effects of magnetic field at the level normally used in MR devices. Tests in fields up to 7 T were performed in a study to determine effects of magnetic field on positron range in a silicon PET device. The curvature of positron tracks in direction perpendicular to the field's orientation shortens the distance between emission and annihilation point of the positron. The effect can be fully appreciated for a rotation of the sample for a fixed field direction, compressing range in all dimensions. A popular Ga-68 source was used showing a factor of 2 improvement in image noise compared to zero field operation. There was also a little increase in noise as the reconstructed resolution varied between 2.5 and 1.5 mm. A speculative applications can be recognized in both emission modalities, SPECT and PET. Compton camera is a subspecies of SPECT, where a silicon based scatter as a MR compatible part could inserted into the MR bore and the secondary detector could operate in less constrained environment away from the magnet. Introducing a Compton camera also relaxes requirements of the radiotracers used, extending the range of conceivable photon energies beyond 140.5 keV of the Tc-99m. In PET, one could exploit the compressed sub-millimeter range of positrons in the magnetic field. To exploit the advantage, detectors with spatial resolution commensurate to the effect must be used with silicon being an excellent candidate. Measurements performed outside of the MR achieving spatial resolution below 1 mm are reported.

  5. Biomimetic Trehalose Biosensor Using Gustatory Receptor (Gr5a) Expressed in Drosophila Cells and Ion-Sensitive Field-Effect Transistor

    NASA Astrophysics Data System (ADS)

    Lau, Hui-Chong; Bae, Tae-Eon; Jang, Hyun-June; Kwon, Jae-Young; Cho, Won-Ju; Lim, Jeong-Ok

    2013-04-01

    The development of potential applications of biosensors using the sensory systems of vertebrates and invertebrates has progressed rapidly, especially in clinical diagnosis. The biosensor developed here involves the use of Drosophila cells expressing the gustatory receptor Gr5a and an ion-sensitive field-effect transistor (ISFET) sensor device. Gustatory receptor Gr5a is expressed abundantly in gustatory neurons and acts as a primary marker for tastants, especially sugar, in Drosophila. As a result, it could potentially serve as a good candidate for potential biomarkers of diseases in which the current knowledge of the cause and treatment is limited. The developed ISFET was based on the outstanding electrical characteristics of the metal-oxide-semiconductor field-effect transistor (MOSFET) with a subthreshold swing of 85 mV/dec, low leakage current of <10-12 and high on/off current ratio of 7.3×106. The SiO2 sensing membrane with a pH sensitivity of 34.9 mV/pH and drift rate 1.17 mV/h was sufficient for biosensing applications. In addition, the sensor device also showed significant compatibility with the Drosophila cells expressing Gr5a and their response to sugar, particularly trehalose. Moreover, the interactions between the transfected Drosophila cells and trehalose were consistent and reliable. This suggests that the developed ISFET sensor device could have potential use in the future as a screening device in diagnosis.

  6. Excitation of parasitic waves in forward-wave amplifiers with weak guiding fields.

    PubMed

    Nusinovich, G S; Romero-Talamás, C A; Han, Y

    2012-12-01

    To produce high-power coherent electromagnetic radiation at frequencies from microwaves up to terahertz, the radiation sources should have interaction circuits of large cross sections, i.e., the sources should operate in high-order modes. In such devices, the excitation of higher-order parasitic modes near cutoff where the group velocity is small and, hence, start currents are low can be a serious problem. The problem is especially severe in the sources of coherent, phase-controlled radiation, i.e., the amplifiers or phase-locked oscillators. This problem was studied earlier [Nusinovich, Sinitsyn, and Antonsen, Phys. Rev. E 82, 046404 (2010)] for the case of electron focusing by strong guiding magnetic fields. For many applications it is desirable to minimize these focusing fields. Therefore in this paper we analyze the problem of excitation of parasitic modes near cutoff in forward-wave amplifiers with weak focusing fields. First, we study the large-signal operation of such a device with a signal wave only. Then, we analyze the self-excitation conditions of parasitic waves near cutoff in the presence of the signal wave. It is shown that the main effect is the suppression of the parasitic wave in large-signal regimes. At the same time, there is a region of device parameters where the presence of signal waves can enhance excitation of parasitic modes. The role of focusing fields in such effects is studied.

  7. Electrical-field-induced magnetic Skyrmion ground state in a two-dimensional chromium tri-iodide ferromagnetic monolayer

    NASA Astrophysics Data System (ADS)

    Liu, Jie; Shi, Mengchao; Mo, Pinghui; Lu, Jiwu

    2018-05-01

    Using fully first-principles non-collinear self-consistent field density functional theory (DFT) calculations with relativistic spin-orbital coupling effects, we show that, by applying an out-of-plane electrical field on a free-standing two-dimensional chromium tri-iodide (CrI3) ferromagnetic monolayer, the Néel-type magnetic Skyrmion spin configurations become more energetically-favorable than the ferromagnetic spin configurations. It is revealed that the topologically-protected Skyrmion ground state is caused by the breaking of inversion symmetry, which induces the non-trivial Dzyaloshinskii-Moriya interaction (DMI) and the energetically-favorable spin-canting configuration. Combining the ferromagnetic and the magnetic Skyrmion ground states, it is shown that 4-level data can be stored in a single monolayer-based spintronic device, which is of practical interests to realize the next-generation energy-efficient quaternary logic devices and multilevel memory devices.

  8. Electromagnetic fields used clinically to improve bone healing also impact lymphocyte proliferation in vitro.

    PubMed

    Johnson, M T; Vanscoy-Cornett, A; Vesper, D N; Swez, J A; Chamberlain, J K; Seaward, M B; Nindl, G

    2001-01-01

    An important aspect of medical device development is the need to understand how a device produces a specific biological effect. The focus can then be on optimizing that effect by device modification and repeated testing. Several reports from this lab have targeted programmed cell death, or apoptosis, as a cellular pathway that is induced by exposure of transformed leukemic T-cells in culture to specific frequency and intensity electromagnetic fields (EMFs). An EMF delivery device capable of selectively inducing T-cell apoptosis in human tissues could be used to enhance healing by limiting the production of molecules that promote inflammatory disorders such as psoriasis and tendonitis. In the present study, we examined the normal T-cell response to EMF exposure in vitro. In the peripheral blood, 70-80% of the lymphocytes are T-cells, and thus is a rich source of normal cells that match the transformed T-cells used in other experiments (Jurkat cells). We isolated lymphocytes from the peripheral blood of humans and rats, cultured them in nutritive medium and exposed them to either a complex 1.8 mT pulsed EMF (Electrobiology, Inc.), a 0.1 mT, 60 Hz power frequency EMF or a 0.2 mT, 100 Hz sinusoidal EMF. Control lymphocytes were cultured similarly, without field exposure. Lymphocytes were then treated with T-cell mitogens and evaluated for proliferative capacity after an additional 72 hours culture. Results indicate that T-cell proliferation is modulated by in vitro exposure to defined EMFs. The potential use of an EMF delivery device capable of selectively inducing such T-cell effects is discussed.

  9. User centered integration of Internet of Things devices

    NASA Astrophysics Data System (ADS)

    Manione, Roberto

    2017-06-01

    This paper discusses an IoT framework which allows rapid and easy setup and customization of end-to-end solutions for field data collection and presentation; it is effective in the development of both informative and transactional applications for a wide range of application fields, such as home, industry and environment. On the "far-end" of the chain are the IoT devices gathering the signals; they are developed used a full Model Based approach, where programming is not required: the TaskScript technology is used to this purpose, which supports a choice of physical boards and boxes equipped with a range of Input and Output interfaces, and with a Tcp/Ip interface. The development of the needed specific IoT devices takes advantage of the available "standard" hardware; the software development of the algorithms for sampling, conditioning and uploading signals to the Cloud is supported by a graphical-only IDE. On the "near-end" of the chain is the presentation Interface, through which users can browse through the information provided by their IoT devices; it is implemented in a Conversational way, using the Bot paradigm: Bots are conversational automatons, to whom users can "chat". They are accessed via mainstream Messenger programs, such as Telegram(C), Skype(C) or others, available on smartphones, tablets or desktops; unlike apps, bots do not need installation on the user device. A message Broker has been implemented, to mediate among the far-end and the near-end of the chain, providing the needed services; its behavior is driven by a set of rules provided on a per-device basis, at configuration level; the Broker is able to store messages received from the devices, process and forward them to the specified recipient(s) according to the provided rules; finally, finally is it is able to send transactional commands, from users back to the requested device, to implement not only field observation but also field control. IoT solutions implemented with the proposed solution are user friendly: users can literally "chat with their devices", asking for information, providing commands, and receiving alert notifications, all with their favorite (mobile) terminal. To demonstrate de effectiveness of the proposed scenario, several solutions have been set up for industrial applications; such "mobile dashboards" are presently used by managers and technicians to keep track of their machines and plants.

  10. 1990 MTT-S International Microwave Symposium and Exhibition and Microwave and Millimeter-Wave Monolithic IC Symposium, Dallas, TX, May 7-10, 1990, Proceedings

    NASA Astrophysics Data System (ADS)

    McQuiddy, David N., Jr.; Sokolov, Vladimir

    1990-12-01

    The present conference discusses microwave filters, lightwave technology for microwave antennas, planar and quasi-planar guides, mixers and VCOs, cavity filters, discontinuity and coupling effects, control circuits, power dividers and phase shifters, microwave ICs, biological effects and medical applications, CAD and modeling for MMICs, directional couplers, MMIC design trends, microwave packaging and manufacturing, monolithic ICs, and solid-state devices and circuits. Also discussed are microwave and mm-wave superconducting technology, MICs for communication systems, the merging of optical and microwave technologies, microwave power transistors, ferrite devices, network measurements, advanced transmission-line structures, FET devices and circuits, field theory of IC discontinuities, active quasi-optical techniques, phased-array techniques and circuits, nonlinear CAD, sub-mm wave devices, and high power devices.

  11. USE OF SEMI-PERMEABLE MEMBRANE DEVICES TO MONITOR POLLUTANTS IN WATER AND ASSESS THEIR EFFECTS: A LABORATORY TEST AND FIELD VERIFICATION. (U915464)

    EPA Science Inventory

    Uptake of eight pesticides of different classes (organochlorines, synthetic pyrethroids, dinitroanilines, amides) by semi-permeable membrane devices (SPMDs) was studied in a laboratory continuous-flow system. After 20 days of exposure, membrane concentration factors were in th...

  12. New materials and techniques for improved mm wave devices

    NASA Technical Reports Server (NTRS)

    Alterovitz, Samuel A.

    1991-01-01

    Current research on microwave and mm wave three terminal semiconductor devices is summarized with particular attention given to the development of the pseudomorphic InGaAs modulation-doped field effect transistor (MODFET). Application of the high-indium-concentration MODFET grown on InP in the temperature range of 120-150 K is also described.

  13. The Effects of Mobile-Computer-Supported Collaborative Learning: Meta-Analysis and Critical Synthesis

    ERIC Educational Resources Information Center

    Sung, Yao-Ting; Yang, Je-Ming; Lee, Han-Yueh

    2017-01-01

    One of the trends in collaborative learning is using mobile devices for supporting the process and products of collaboration, which has been forming the field of mobile-computer-supported collaborative learning (mCSCL). Although mobile devices have become valuable collaborative learning tools, evaluative evidence for their substantial…

  14. Theoretical investigation of performance of armchair graphene nanoribbon field effect transistors

    NASA Astrophysics Data System (ADS)

    Hur, Ji-Hyun; Kim, Deok-Kee

    2018-05-01

    In this paper, we theoretically investigate the highest possible expected performance for graphene nanoribbon field effect transistors (GNRFETs) for a wide range of operation voltages and device structure parameters, such as the width of the graphene nanoribbon and gate length. We formulated a self-consistent, non-equilibrium Green’s function method in conjunction with the Poisson equation and modeled the operation of nanometer sized GNRFETs, of which GNR channels have finite bandgaps so that the GNRFET can operate as a switch. We propose a metric for competing with the current silicon CMOS high performance or low power devices and explain that this can vary greatly depending on the GNRFET structure parameters.

  15. Nonvolatile memory with graphene oxide as a charge storage node in nanowire field-effect transistors

    NASA Astrophysics Data System (ADS)

    Baek, David J.; Seol, Myeong-Lok; Choi, Sung-Jin; Moon, Dong-Il; Choi, Yang-Kyu

    2012-02-01

    Through the structural modification of a three-dimensional silicon nanowire field-effect transistor, i.e., a double-gate FinFET, a structural platform was developed which allowed for us to utilize graphene oxide (GO) as a charge trapping layer in a nonvolatile memory device. By creating a nanogap between the gate and the channel, GO was embedded after the complete device fabrication. By applying a proper gate voltage, charge trapping, and de-trapping within the GO was enabled and resulted in large threshold voltage shifts. The employment of GO with FinFET in our work suggests that graphitic materials can potentially play a significant role for future nanoelectronic applications.

  16. A 2D analytical cylindrical gate tunnel FET (CG-TFET) model: impact of shortest tunneling distance

    NASA Astrophysics Data System (ADS)

    Dash, S.; Mishra, G. P.

    2015-09-01

    A 2D analytical tunnel field-effect transistor (FET) potential model with cylindrical gate (CG-TFET) based on the solution of Laplace’s equation is proposed. The band-to-band tunneling (BTBT) current is derived by the help of lateral electric field and the shortest tunneling distance. However, the analysis is extended to obtain the subthreshold swing (SS) and transfer characteristics of the device. The dependency of drain current, SS and transconductance on gate voltage and shortest tunneling distance is discussed. Also, the effect of scaling the gate oxide thickness and the cylindrical body diameter on the electrical parameters of the device is analyzed.

  17. Theoretical investigation of performance of armchair graphene nanoribbon field effect transistors.

    PubMed

    Hur, Ji-Hyun; Kim, Deok-Kee

    2018-05-04

    In this paper, we theoretically investigate the highest possible expected performance for graphene nanoribbon field effect transistors (GNRFETs) for a wide range of operation voltages and device structure parameters, such as the width of the graphene nanoribbon and gate length. We formulated a self-consistent, non-equilibrium Green's function method in conjunction with the Poisson equation and modeled the operation of nanometer sized GNRFETs, of which GNR channels have finite bandgaps so that the GNRFET can operate as a switch. We propose a metric for competing with the current silicon CMOS high performance or low power devices and explain that this can vary greatly depending on the GNRFET structure parameters.

  18. Modeling of Gate Bias Modulation in Carbon Nanotube Field-Effect-Transistor

    NASA Technical Reports Server (NTRS)

    Toshishige, Yamada; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    The threshold voltages of a carbon-nanotube (CNT) field-effect transistor (FET) are studied. The CNT channel is so thin that there is no voltage drop perpendicular to the gate electrode plane, and this makes the device characteristics quite unique. The relation between the voltage and the electrochemical potentials, and the mass action law for electrons and holes are examined in the context of CNTs, and inversion and accumulation threshold voltages (V(sub Ti), and V(sub Ta)) are derived. V(sub Ti) of the CNTFETs has a much stronger doping dependence than that of the metal-oxide- semiconductor FETs, while V(sub Ta) of both devices depends weakly on doping with the same functional form.

  19. Effect of organic salt doping on the performance of single layer bulk heterojunction organic solar cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yap, C.C.; Yahaya, M.; Salleh, M.M.

    2011-01-15

    The effect of organic salt, tetrabutylammonium hexafluorophosphate (TBAPF{sub 6}) doping on the performance of single layer bulk heterojunction organic solar cell with ITO/MEHPPV:PCBM/Al structure was investigated where indium tin oxide (ITO) was used as anode, poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEHPPV) as donor, (6,6)-phenyl-C61 butyric acid methyl ester (PCBM) as acceptor and aluminium (Al) as cathode. In contrast to the undoped device, the electric field-treated device doped with TBAPF{sub 6} exhibited better solar cell performance under illumination with a halogen projector lamp at 100 mW/cm{sup 2}. The short circuit current density and the open circuit voltage of the doped device increased from 0.54 {mu}A/cm{supmore » 2} to 6.41 {mu}A/cm{sup 2} and from 0.24 V to 0.50 V, respectively as compared to those of the undoped device. The significant improvement was attributed to the increase of built-in electric field caused by accumulation of ionic species at the active layer/electrode interfaces. (author)« less

  20. High performance low voltage organic field effect transistors on plastic substrate for amplifier circuits

    NASA Astrophysics Data System (ADS)

    Houin, G.; Duez, F.; Garcia, L.; Cantatore, E.; Torricelli, F.; Hirsch, L.; Belot, D.; Pellet, C.; Abbas, M.

    2016-09-01

    The high performance air stable organic semiconductor small molecule dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene (DNTT) was chosen as active layer for field effect transistors built to realize flexible amplifier circuits. Initial device on rigid Si/SiO2 substrate showed appreciable performance with hysteresis-free characteristics. A number of approaches were applied to simplify the process, improve device performance and decrease the operating voltage: they include an oxide interfacial layer to decrease contact resistance; a polymer passivation layer to optimize semiconductor/dielectric interface and an anodized high-k oxide as dielectric layer for low voltage operation. The devices fabricated on plastic substrate yielded excellent electrical characteristics, showing mobility of 1.6 cm2/Vs, lack of hysteresis, operation below 5 V and on/off current ratio above 105. An OFET model based on variable ranging hopping theory was used to extract the relevant parameters from the transfer and output characteristics, which enabled us to simulate our devices achieving reasonable agreement with the measurements

  1. Optical Helicity-Manipulated Photocurrents and Photovoltages in Organic Solar Cells

    DOE PAGES

    Wei, Mengmeng; Hao, Xiaotao; Saxena, Avadh Behari; ...

    2018-05-29

    The performance of an organic functional device can be effectively improved through external field manipulation. In this study, we experimentally demonstrate the optical polarization manipulation of the photocurrent or photovoltage in organic solar cells. Through switching the incident light from a linearly polarized light to a circularly polarized one, we find a pronounced change in the photocurrent, which is not observable in normal inorganic cells. There are two competing hypotheses for the primary process underlying the circular polarization-dependent phenomena in organic materials, one involving the inverse Faraday effect (IFE) and the other a direct photon spin–electron spin interaction. By waymore » of ingenious device design and external magnetic field-induced stimuli, it is expected that the organic IFE can be a powerful experimental tool in revealing and elucidating excited-state processes occurring in organic spintronic and optoelectronic devices. Therefore, we believe that our results will potentially lead to the development of new multifunctional organic devices with integrated electronic, optical, and magnetic properties for energy conversion, optical communication, and sensing technologies.« less

  2. Optical Helicity-Manipulated Photocurrents and Photovoltages in Organic Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Mengmeng; Hao, Xiaotao; Saxena, Avadh Behari

    The performance of an organic functional device can be effectively improved through external field manipulation. In this study, we experimentally demonstrate the optical polarization manipulation of the photocurrent or photovoltage in organic solar cells. Through switching the incident light from a linearly polarized light to a circularly polarized one, we find a pronounced change in the photocurrent, which is not observable in normal inorganic cells. There are two competing hypotheses for the primary process underlying the circular polarization-dependent phenomena in organic materials, one involving the inverse Faraday effect (IFE) and the other a direct photon spin–electron spin interaction. By waymore » of ingenious device design and external magnetic field-induced stimuli, it is expected that the organic IFE can be a powerful experimental tool in revealing and elucidating excited-state processes occurring in organic spintronic and optoelectronic devices. Therefore, we believe that our results will potentially lead to the development of new multifunctional organic devices with integrated electronic, optical, and magnetic properties for energy conversion, optical communication, and sensing technologies.« less

  3. Design and Fabrication of Helmholtz Coils to Study the Effects of Pulsed Electromagnetic Fields on the Healing Process in Periodontitis: Preliminary Animal Results

    PubMed Central

    Haghnegahdar, A; Khosrovpanah, H; Andisheh-Tadbir, A; Mortazavi, Gh; Saeedi Moghadam, M; Mortazavi, SMJ; Zamani, A; Haghani, M; Shojaei Fard, M; Parsaei, H; Koohi, O

    2014-01-01

    Background: Effects of electromagnetic fields on healing have been investigated for centuries. Substantial data indicate that exposure to electromagnetic field can lead to enhanced healing in both soft and hard tissues. Helmholtz coils are devices that generate pulsed electromagnetic fields (PEMF). Objective: In this work, a pair of Helmholtz coils for enhancing the healing process in periodontitis was designed and fabricated. Method: An identical pair of square Helmholtz coils generated the 50 Hz magnetic field.  This device was made up of two parallel coaxial circular coils (100 turns in each loop, wound in series) which were separated from each other by a distance equal to the radius of one coil (12.5 cm). The windings of our Helmholtz coil was made of standard 0.95mm wire to provide the maximum possible current. The coil was powered by a function generator.  Results: The Helmholtz Coils generated a uniform magnetic field between its coils. The magnetic field strength at the center of the space between two coils was 97.6 μT. Preliminary biological studies performed on rats show that exposure of laboratory animals to pulsed electromagnetic fields enhanced the healing of periodontitis. Conclusion: Exposure to PEMFs can lead to stimulatory physiological effects on cells and tissues such as enhanced healing of periodontitis. PMID:25505775

  4. Dynamic Wavelength-Tunable Photodetector Using Subwavelength Graphene Field-Effect Transistors

    DOE PAGES

    Léonard, François; Spataru, Catalin D.; Goldflam, Michael; ...

    2017-04-04

    The holy grail of photodetector technology is dynamic wavelength tunability. Because of its atomic thickness and unique properties, graphene opens up new paradigms to realize this concept, but so far this has been elusive experimentally. We employ detailed quantum transport modeling of photocurrent in graphene field-effect transistors (including realistic electromagnetic fields) to show that wavelength tunability is possible by dynamically changing the gate voltage. We also reveal the phenomena that govern the behavior of this type of device and show significant departure from the simple expectations based on vertical transitions. We find strong focusing of the electromagnetic fields at themore » contact edges over the same length scale as the band-bending. Both of these spatially-varying potentials lead to an enhancement of non-vertical optical transitions, which dominate even in the absence of phonon or impurity scattering. Furthermore, we show that the vanishing density of states near the Dirac point leads to contact blocking and a gate-dependent modulation of the photocurrent. Several of the effects discussed here should be applicable to a broad range of one- and two-dimensional materials and devices.« less

  5. Dynamic Wavelength-Tunable Photodetector Using Subwavelength Graphene Field-Effect Transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Léonard, François; Spataru, Catalin D.; Goldflam, Michael

    The holy grail of photodetector technology is dynamic wavelength tunability. Because of its atomic thickness and unique properties, graphene opens up new paradigms to realize this concept, but so far this has been elusive experimentally. We employ detailed quantum transport modeling of photocurrent in graphene field-effect transistors (including realistic electromagnetic fields) to show that wavelength tunability is possible by dynamically changing the gate voltage. We also reveal the phenomena that govern the behavior of this type of device and show significant departure from the simple expectations based on vertical transitions. We find strong focusing of the electromagnetic fields at themore » contact edges over the same length scale as the band-bending. Both of these spatially-varying potentials lead to an enhancement of non-vertical optical transitions, which dominate even in the absence of phonon or impurity scattering. Furthermore, we show that the vanishing density of states near the Dirac point leads to contact blocking and a gate-dependent modulation of the photocurrent. Several of the effects discussed here should be applicable to a broad range of one- and two-dimensional materials and devices.« less

  6. Electric-field switching of two-dimensional van der Waals magnets

    NASA Astrophysics Data System (ADS)

    Jiang, Shengwei; Shan, Jie; Mak, Kin Fai

    2018-05-01

    Controlling magnetism by purely electrical means is a key challenge to better information technology1. A variety of material systems, including ferromagnetic (FM) metals2-4, FM semiconductors5, multiferroics6-8 and magnetoelectric (ME) materials9,10, have been explored for the electric-field control of magnetism. The recent discovery of two-dimensional (2D) van der Waals magnets11,12 has opened a new door for the electrical control of magnetism at the nanometre scale through a van der Waals heterostructure device platform13. Here we demonstrate the control of magnetism in bilayer CrI3, an antiferromagnetic (AFM) semiconductor in its ground state12, by the application of small gate voltages in field-effect devices and the detection of magnetization using magnetic circular dichroism (MCD) microscopy. The applied electric field creates an interlayer potential difference, which results in a large linear ME effect, whose sign depends on the interlayer AFM order. We also achieve a complete and reversible electrical switching between the interlayer AFM and FM states in the vicinity of the interlayer spin-flip transition. The effect originates from the electric-field dependence of the interlayer exchange bias.

  7. Optical, electrical, and magnetic field studies of organic materials for light emitting diodes and photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Basel, Tek Prasad

    We studied optical, electrical, and magnetic field responses of films and devices based on organic semiconductors that are used for organic light emitting diodes (OLEDs) and photovoltaic (OPV) solar cell applications. Our studies show that the hyperfine interaction (HFI)-mediated spin mixing is the key process underlying various magnetic field effects (MFE) and spin transport in aluminum tris(8-hydroxyquinoline)[Alq3]-based OLEDs and organic spin-valve (OSV). Conductivity-detected magnetic resonance in OLEDs and magneto-resistance (MR) in OSVs show substantial isotope dependence. In contrast, isotope-insensitive behavior in the magneto-conductance (MC) of same devices is explained by the collision of spin ½ carriers with triplet polaron pairs. We used steady state optical spectroscopy for studying the energy transfer dynamics in films and OLEDs based on host-guest blends of the fluorescent polymer and phosphorescent molecule. We have also studied the magnetic-field controlled color manipulation in these devices, which provide a strong proof for the `polaron-pair' mechanism underlying the MFE in organic devices. The critical issue that hampers organic spintronics device applications is significant magneto-electroluminescence (MEL) at room temperature (RT). Whereas inorganic spin valves (ISVs) show RT magneto-resistance, MR>80%, however, the devices do not exhibit electroluminescence (EL). In contrast, OLEDs show substantive EL emission, and are particularly attractive because of their flexibility, low cost, and potential for multicolor display. We report a conceptual novel hybrid organic/inorganic spintronics device (h-OLED), where we employ both ISV with large MR at RT, and OLED that has efficient EL emission. We investigated the charge transfer process in an OPV solar cell through optical, electrical, and magnetic field measurements of thin films and devices based on a low bandgap polymer, PTB7 (fluorinated poly-thienothiophene-benzodithiophene). We found that one of the major losses that limit the power conversion efficiency of OPV devices is the formation of triplet excitons in the polymer through recombination of charge-transfer (CT) excitons at the interface, and presented a method to suppress the dissociation of CT states by incorporating the spin ½ additive, galvinoxyl in the bulk heterojunction architecture of the active organic blend layer.

  8. Improving the Performance of Semiconductor Sensor Devices Using Surface Functionalization

    NASA Astrophysics Data System (ADS)

    Rohrbaugh, Nathaniel W.

    As production and understanding of III-nitride growth has progressed, this class of material has been used for its semiconducting properties in the fields of computer processing, microelectronics, and LEDs. As understanding of materials properties has advanced, devices were fabricated to be sensitive to environmental surroundings such as pH, gas, or ionic concentration. Simultaneously the world of pharmaceuticals and environmental science has come to the age where the use of wearable devices and active environmental sensing can not only help us learn more about our surroundings, but help save lives. At the crossroads of these two fields work has been done in marrying the high stability and electrical properties of the III-nitrides with the needs of a growing sensor field for various environments and stimuli. Device architecture can only get one so far, and thus the need for well understood surface functionalization techniques has arisen in the field of III-nitride environmental sensing. Many existing schemes for functionalization involve chemistries that may be unfriendly to a biological environment, unstable in solution, or expensive to produce. One possible solution to these issues is the work presented here, which highlights a surface modification scheme utilizing phosphonic acid based chemistry and biomolecular attachment. This dissertation presents a set of studies and experiments quantifying and analyzing the response behaviors of AlGaN/GaN field effect transistor (FET) devices via their interfacial electronic properties. Additional investigation was done on the modification of these surfaces, effects of stressful environmental conditions, and the utility of the phosphonic acid surface treatments. Signals of AlGaN/GaN FETs were measured as IDrain values and in the earliest study an average signal increase of 96.43% was observed when surfaces were incubated in a solution of a known recognition peptide sequence (SVSVGMKPSPRP). This work showed that even without a form of surface modification the devices were capable of generating a response in the presence of a charged biomolecule. Solution exposure tests done devices showed that incubating peptides on the device surfaces produced a weak interaction and following 24 hrs of soaking no signs of peptide remained via XPS analysis. Subsequent testing was done to incorporate the phosphonic acid functionalization techniques shown previously by other members of this lab to the AlGaN/GaN surfaces as a remedy to this solution instability. In this second study FETs were modified using a heated phosphoric acid:ethephon etch followed by an incubation in TAT-C peptide. Resulting IV measurements done on the samples showed a shift in threshold voltage of the FETs following the etching procedure followed by a recovery of this shift from prolonged solution exposure. In total samples were given 168 hours of soaking and showed persistent peptide presence through the N 1s peak from XPS scans. FETs modified with this phosphonic acid derivative were examined in a third study under a simulated pollutant sensing scenario by measuring varied concentrations of Hg via a phytochelatin peptide bound to FET surfaces. HNO3 used in the Hg stock solution led to degradation of the FET signal but did not remove the phytochelatin layer. This led to a compensation effect in sensing the highest levels of Hg, lower concentrations however were successfully tested and showed varied responses from the FETs relative to the Hg content. In a concluding study on devices work was done to understand broader effects on the AlGaN/GaN FETs relative to a simulated biological sensing environment. Here an effect was noted from the addition of a biological fouling solution to the FETs and an increase in this effect when the biofouling was done to a phosphonic modified FET surface. Additionally devices were modified and soaked for 5 weeks and showed no shift or degradation in signal. Lastly in controlling for gate width of the FET it was found that the shorter 50 im gates were more susceptible to environmental interference than the 100 and 150 im gated devices. Thus this work has shown that modifying AlGaN/GaN devices with phosphonic acid derivatives is a viable functionalization method that is both adaptable and stable in solution over time. In moving forward, opportunities are available for testing a larger variety of analytes in both the medical and environmental fields. The final goal for this technology would be the fabrication and design of a multi-device sensing unit leading to eventual production of these sensors on an industrial scale for the use in future personal medical devices or environmental monitoring systems.

  9. Pyroelectric energy conversion with large energy and power density in relaxor ferroelectric thin films

    NASA Astrophysics Data System (ADS)

    Pandya, Shishir; Wilbur, Joshua; Kim, Jieun; Gao, Ran; Dasgupta, Arvind; Dames, Chris; Martin, Lane W.

    2018-05-01

    The need for efficient energy utilization is driving research into ways to harvest ubiquitous waste heat. Here, we explore pyroelectric energy conversion from low-grade thermal sources that exploits strong field- and temperature-induced polarization susceptibilities in the relaxor ferroelectric 0.68Pb(Mg1/3Nb2/3)O3-0.32PbTiO3. Electric-field-driven enhancement of the pyroelectric response (as large as -550 μC m-2 K-1) and suppression of the dielectric response (by 72%) yield substantial figures of merit for pyroelectric energy conversion. Field- and temperature-dependent pyroelectric measurements highlight the role of polarization rotation and field-induced polarization in mediating these effects. Solid-state, thin-film devices that convert low-grade heat into electrical energy are demonstrated using pyroelectric Ericsson cycles, and optimized to yield maximum energy density, power density and efficiency of 1.06 J cm-3, 526 W cm-3 and 19% of Carnot, respectively; the highest values reported to date and equivalent to the performance of a thermoelectric with an effective ZT ≈ 1.16 for a temperature change of 10 K. Our findings suggest that pyroelectric devices may be competitive with thermoelectric devices for low-grade thermal harvesting.

  10. Pyroelectric energy conversion with large energy and power density in relaxor ferroelectric thin films.

    PubMed

    Pandya, Shishir; Wilbur, Joshua; Kim, Jieun; Gao, Ran; Dasgupta, Arvind; Dames, Chris; Martin, Lane W

    2018-05-01

    The need for efficient energy utilization is driving research into ways to harvest ubiquitous waste heat. Here, we explore pyroelectric energy conversion from low-grade thermal sources that exploits strong field- and temperature-induced polarization susceptibilities in the relaxor ferroelectric 0.68Pb(Mg 1/3 Nb 2/3 )O 3 -0.32PbTiO 3 . Electric-field-driven enhancement of the pyroelectric response (as large as -550 μC m -2  K -1 ) and suppression of the dielectric response (by 72%) yield substantial figures of merit for pyroelectric energy conversion. Field- and temperature-dependent pyroelectric measurements highlight the role of polarization rotation and field-induced polarization in mediating these effects. Solid-state, thin-film devices that convert low-grade heat into electrical energy are demonstrated using pyroelectric Ericsson cycles, and optimized to yield maximum energy density, power density and efficiency of 1.06 J cm -3 , 526 W cm -3 and 19% of Carnot, respectively; the highest values reported to date and equivalent to the performance of a thermoelectric with an effective ZT ≈ 1.16 for a temperature change of 10 K. Our findings suggest that pyroelectric devices may be competitive with thermoelectric devices for low-grade thermal harvesting.

  11. A comparative study of the plasmon effect in nanoelectrode THz emitters: Pulse vs. continuous-wave radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moon, Kiwon; Lee, Eui Su; Lee, Il-Min

    Plasmonic field enhancement in terahertz (THz) generation is one of the recently arisen techniques in the THz field that has attracted considerable interest. However, the reported levels of enhancement of THz output power in the literature are significantly different from each other, from less than two times to about two orders of magnitude of enhancement in power, which implies the existence of other major limiting factors yet to be revealed. In this work, the contribution of the plasmonic effect to the power enhancement of THz emitters is revisited. We show that the carrier collection efficiency in a THz emitter withmore » plasmonic nanostructures is more critical to the device performance than the plasmonic field enhancement itself. The strong reverse fields induced by the highly localized plasmonic carriers in the vicinity of the nanoelectrodes screen the carrier collections and seriously limit the power enhancement. This is supported by our experimental observations of the significantly enhanced power in a plasmonic nanoelectrode THz emitter in continuous-wave radiation mode, while the same device has limited enhancement with pulsed radiation. We hope that our study may provide an intuitive but practical guideline in adopting plasmonic nanostructures with an aim of enhancing the efficiency of optoelectronic devices.« less

  12. Physical aspects of ferroelectric semiconductors for photovoltaic solar energy conversion

    NASA Astrophysics Data System (ADS)

    Lopez-Varo, Pilar; Bertoluzzi, Luca; Bisquert, Juan; Alexe, Marin; Coll, Mariona; Huang, Jinsong; Jimenez-Tejada, Juan Antonio; Kirchartz, Thomas; Nechache, Riad; Rosei, Federico; Yuan, Yongbo

    2016-10-01

    Solar energy conversion using semiconductors to fabricate photovoltaic devices relies on efficient light absorption, charge separation of electron-hole pair carriers or excitons, and fast transport and charge extraction to counter recombination processes. Ferroelectric materials are able to host a permanent electrical polarization which provides control over electrical field distribution in bulk and interfacial regions. In this review, we provide a critical overview of the physical principles and mechanisms of solar energy conversion using ferroelectric semiconductors and contact layers, as well as the main achievements reported so far. In a ferroelectric semiconductor film with ideal contacts, the polarization charge would be totally screened by the metal layers and no charge collection field would exist. However, real materials show a depolarization field, smooth termination of polarization, and interfacial energy barriers that do provide the control of interface and bulk electric field by switchable spontaneous polarization. We explore different phenomena as the polarization-modulated Schottky-like barriers at metal/ferroelectric interfaces, depolarization fields, vacancy migration, and the switchable rectifying behavior of ferroelectric thin films. Using a basic physical model of a solar cell, our analysis provides a general picture of the influence of ferroelectric effects on the actual power conversion efficiency of the solar cell device, and we are able to assess whether these effects or their combinations are beneficial or counterproductive. We describe in detail the bulk photovoltaic effect and the contact layers that modify the built-in field and the charge injection and separation in bulk heterojunction organic cells as well as in photocatalytic and water splitting devices. We also review the dominant families of ferroelectric materials that have been most extensively investigated and have provided the best photovoltaic performance.

  13. Capacitance of graphenes

    NASA Astrophysics Data System (ADS)

    Young, Andrea; Dean, Cory; Meric, Inanc; Hone, Jim; Shepard, Ken; Kim, Philip

    2010-03-01

    Using a transfer procedure and single crystal hexagonal Boron Nitride gate dielectric, we are able to fabricate high mobility graphene devices with local top and back gates. The novel geometry of these devices allows us to measure the spatially averaged compressibility of mono- and bilayer graphene using the ``penetration field'' technique [Eisenstein, J.P. et al. Phys. Rev. Lett. 68, 674 (1992)]. In particular, we analyze the the effects of strong transverse electric fields on the compressibility of graphenes, especially as pertains to charged impurity scattering in single layer graphene and the opening of an energy gap in bilayer.

  14. Tunable electrical conductivity of individual graphene oxide sheets reduced at "low" temperatures.

    PubMed

    Jung, Inhwa; Dikin, Dmitriy A; Piner, Richard D; Ruoff, Rodney S

    2008-12-01

    Step-by-step controllable thermal reduction of individual graphene oxide sheets, incorporated into multiterminal field effect devices, was carried out at low temperatures (125-240 degrees C) with simultaneous electrical measurements. Symmetric hysteresis-free ambipolar (electron- and hole-type) gate dependences were observed as soon as the first measurable resistance was reached. The conductivity of each of the fabricated devices depended on the level of reduction (was increased more than 10(6) times as reduction progressed), strength of the external electrical field, density of the transport current, and temperature.

  15. Development of a large field-of-view KD potassium di-deuterium phosphate modulator: Center Director's Discretionary Fund

    NASA Technical Reports Server (NTRS)

    West, E. A.

    1993-01-01

    Magnetographs, which measure polarized light, allow solar astronomers to infer the magnetic field intensity on the Sun. The Marshall Space Flight Center (MSFC) Vector Magnetograph is such an imaging instrument. The instrument requires rapid modulation between polarization states to minimize seeing effects. The accuracy of those polarization measurements is dependent on stable modulators with small field-of-view errors. Although these devices are very important in ground-based telescopes, extending the field of view of electro-optical crystals such as KD*Ps (potassium di-deuterium phosphate) could encourage the development of these devices for other imaging applications. The work that was done at MSFC as part of the Center Director's Discretionary Fund (CDDF) to reduce the field-of-view errors of instruments that use KD*P modulators in their polarimeters is described.

  16. A multi-scale and multi-field coupling nonlinear constitutive theory for the layered magnetoelectric composites

    NASA Astrophysics Data System (ADS)

    Xu, Hao; Pei, Yongmao; Li, Faxin; Fang, Daining

    2018-05-01

    The magnetic, electric and mechanical behaviors are strongly coupled in magnetoelectric (ME) materials, making them great promising in the application of functional devices. In this paper, the magneto-electro-mechanical fully coupled constitutive behaviors of ME laminates are systematically studied both theoretically and experimentally. A new probabilistic domain switching function considering the surface ferromagnetic anisotropy and the interface charge-mediated effect is proposed. Then a multi-scale multi-field coupling nonlinear constitutive model for layered ME composites is developed with physical measureable parameters. The experiments were performed to compare the theoretical predictions with the experimental data. The theoretical predictions have a good agreement with experimental results. The proposed constitutive relation can be used to describe the nonlinear multi-field coupling properties of both ME laminates and thin films. Several novel coupling experimental phenomena such as the electric-field control of magnetization, and the magnetic-field tuning of polarization are observed and analyzed. Furthermore, the size-effect of the electric tuning behavior of magnetization is predicted, which demonstrates a competition mechanism between the interface strain-mediated effect and the charge-driven effect. Our study offers deep insight into the coupling microscopic mechanism and macroscopic properties of ME layered composites, which is benefit for the design of electromagnetic functional devices.

  17. Organic field-effect transistors: a combined study on short-channel effects and the influence of substrate pre-treatment on ambient stability

    NASA Astrophysics Data System (ADS)

    Klug, A.; Meingast, A.; Wurzinger, G.; Blümel, A.; Schmoltner, K.; Scherf, U.; List, E. J. W.

    2011-10-01

    For high-performance low-cost applications based on organic field-effect transistors (OFETs) and corresponding sensors essential properties of the applied semiconducting materials include solution-processability, high field-effect mobility, compatibility with adjacent layers and stability with respect to ambient conditions. In this combined study regioregular poly(3-hexylthiophene)- and pentacene-based bottom-gate bottom-contact OFETs with various channel lengths are thoroughly investigated with respect to short-channel effects and the implications of dielectric surface modification with hexamethyldisilazane (HMDS) on device performance. In addition, the influences of oxygen, moisture and HMDStreatment on the ambient stability of the devices are evaluated in detail. While OFETs without surface modification exhibited the expected degradation behavior upon air exposure mainly due to oxygen/moisture-induced doping or charge-carrier trapping, the stability of the investigated semiconductors was found to be distinctly increased when the substrate surface was hydrophobized. The presented results thoroughly summarize important issues which have to be considered when selecting semiconducting materials for high-performance OFETs and OFET-based sensors.

  18. Enhancement of helium exhaust by resonant magnetic perturbations at TEXTOR-DED and LHD

    NASA Astrophysics Data System (ADS)

    Schmitz, O.; Kobayashi, M.; Bader, A.; Brezinsek, S.; Evans, T. E.; Funaba, H.; Goto, M.; Ida, K.; Mitarai, O.; Morisaki, T.; Motojima, G.; Narushima, Y.; Nicolai, D.; Samm, U.; Tanaka, H.; Yoshinuma, M.; Xu, Y.; Textor Experiment Team; Lhd Experiment Team

    2015-11-01

    We demonstrate in this paper that resonant magnetic perturbation (RMP) fields can be used to enhance helium exhaust. Results from TEXTOR-DED as example for a tokamak with a pumped limiter and from the Large Helical Device LHD with the closed helical divertor as example for a heliotron device are presented. In both devices RMP fields are applied to generate a magnetic island located in the very plasma edge. The effective helium confinement time is decreased by up to 30% at LHD and up to 45% at TEXTOR-DED when RMP fields are applied. The measurements from both devices support that this reduction is caused by combination of enhanced outward transport of helium, improved coupling to the pumping systems yielding improved exhaust of helium from the SOL and reduced fueling efficiencies for both, injected and recycled helium. Work supported in part by JSPS KAKENHI Grant Numbers 25420893, start up funds of the Department of Engineering Physics at the University of Wisconsin - Madison, USA and U.S. DOE Contract #: DE-SC0013911.

  19. TH-CD-201-12: Preliminary Evaluation of Organic Field Effect Transistors as Radiation Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Syme, A; Lin, H; Rubio-Sanchez, J

    Purpose: To fabricate organic field effect transistors (OFETs) and evaluate their performance before and after exposure to ionizing radiation. To determine if OFETs have potential to function as radiation dosimeters. Methods: OFETs were fabricated on both Si/SiO{sub 2} wafers and flexible polymer substrates using standard processing techniques. Pentacene was used as the organic semiconductor material and the devices were fabricated in a bottom gate configuration. Devices were irradiated using an orthovoltage treatment unit (120 kVp x-rays). Threshold voltage values were measured with the devices in saturation mode and quantified as a function of cumulative dose. Current-voltage characteristics of the devicesmore » were measured using a Keithley 2614 SourceMeter SMU Instrument. The devices were connected to the reader but unpowered during irradiations. Results: Devices fabricated on Si/SiO2 wafers demonstrated excellent linearity (R{sup 2} > 0.997) with threshold voltages that ranged between 15 and 36 V. Devices fabricated on a flexible polymer substrate had substantially smaller threshold voltages (∼ 4 – 8 V) and slightly worse linearity (R{sup 2} > 0.98). The devices demonstrated excellent stability in I–V characteristics over a large number (>2000) cycles. Conclusion: OFETs have demonstrated excellent potential in radiation dosimetry applications. A key advantage of these devices is their composition, which can be substantially more tissue-equivalent at low photon energies relative to many other types of radiation detector. In addition, fabrication of organic electronics can employ techniques that are faster, simpler and cheaper than conventional silicon-based devices. These results support further development of organic electronic devices for radiation detection purposes. Funding Support, Disclosures, and Conflict of Interest: This work was funded by the Natural Sciences and Engineering Research Council of Canada.« less

  20. Epitaxial Growth of Thin Ferroelectric Polymer Films on Graphene Layer for Fully Transparent and Flexible Nonvolatile Memory.

    PubMed

    Kim, Kang Lib; Lee, Wonho; Hwang, Sun Kak; Joo, Se Hun; Cho, Suk Man; Song, Giyoung; Cho, Sung Hwan; Jeong, Beomjin; Hwang, Ihn; Ahn, Jong-Hyun; Yu, Young-Jun; Shin, Tae Joo; Kwak, Sang Kyu; Kang, Seok Ju; Park, Cheolmin

    2016-01-13

    Enhancing the device performance of organic memory devices while providing high optical transparency and mechanical flexibility requires an optimized combination of functional materials and smart device architecture design. However, it remains a great challenge to realize fully functional transparent and mechanically durable nonvolatile memory because of the limitations of conventional rigid, opaque metal electrodes. Here, we demonstrate ferroelectric nonvolatile memory devices that use graphene electrodes as the epitaxial growth substrate for crystalline poly(vinylidene fluoride-trifluoroethylene) (PVDF-TrFE) polymer. The strong crystallographic interaction between PVDF-TrFE and graphene results in the orientation of the crystals with distinct symmetry, which is favorable for polarization switching upon the electric field. The epitaxial growth of PVDF-TrFE on a graphene layer thus provides excellent ferroelectric performance with high remnant polarization in metal/ferroelectric polymer/metal devices. Furthermore, a fully transparent and flexible array of ferroelectric field effect transistors was successfully realized by adopting transparent poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] semiconducting polymer.

  1. Magnetic field-modulated photo-thermo-electric effect in Fe/GaAs film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiao, Shuang; Liu, Jihong; Yan, Guoying

    2015-11-02

    Ferromagnet/semiconductor heterostructure, such as Fe/GaAs, is always one of the key issues in spintronics due to its prerequisite for the realization of spin sensitive devices. In this letter, a lateral photoelectric effect (LPE) was observed in Fe/GaAs. Our results show that the sensitivity was not related to laser wavelength, but only proportional to laser power, suggesting that the lateral photovoltage was induced by photo-thermo-electric effect. Moreover, we also observe that the voltage signal increases with the increase in applied field due to decreasing scattering probability for spin-polarized electrons. Our finding of LPE adds another functionality to the Fe/GaAs system andmore » will be useful in development of spin-polarized voltage devices.« less

  2. Universal Correlation between Flatband Voltage and Electron Mobility in TiN/HfSiON Devices with MgO or La2O3 Incorporation and Stack Variation

    NASA Astrophysics Data System (ADS)

    Mise, Nobuyuki; Kadoshima, Masaru; Morooka, Tetsu; Eimori, Takahisa; Nara, Yasuo; Ohji, Yuzuru

    2008-10-01

    We investigated the controversial effective workfunction and electron mobility of TiN/HfSiON devices by intentionally adding MgO or La2O3 into HfSiON and by changing the material on TiN or the TiN thickness. As a result, we found a close relationship between the electron mobility at low effective field and the flatband voltage. This relationship is explained on the basis of the fixed charge in HfSiON and its neutralization. The intrinsic workfunction of TiN/HfSiON without charge is determined to be 4.3 eV from the flatband voltage when the electron mobility at low effective field is the highest.

  3. Quantum transport properties of carbon nanotube field-effect transistors with electron-phonon coupling

    NASA Astrophysics Data System (ADS)

    Ishii, Hiroyuki; Kobayashi, Nobuhiko; Hirose, Kenji

    2007-11-01

    We investigated the electron-phonon coupling effects on the electronic transport properties of metallic (5,5)- and semiconducting (10,0)-carbon nanotube devices. We calculated the conductance and mobility of the carbon nanotubes with micron-order lengths at room temperature, using the time-dependent wave-packet approach based on the Kubo-Greenwood formula within a tight-binding approximation. We investigated the scattering effects of both longitudinal acoustic and optical phonon modes on the transport properties. The electron-optical phonon coupling decreases the conductance around the Fermi energy for the metallic carbon nanotubes, while the conductance of semiconductor nanotubes is decreased around the band edges by the acoustic phonons. Furthermore, we studied the Schottky-barrier effects on the mobility of the semiconducting carbon nanotube field-effect transistors for various gate voltages. We clarified how the electron mobilities of the devices are changed by the acoustic phonon.

  4. Mesoscopic Field-Effect-Induced Devices in Depleted Two-Dimensional Electron Systems

    NASA Astrophysics Data System (ADS)

    Bachsoliani, N.; Platonov, S.; Wieck, A. D.; Ludwig, S.

    2017-12-01

    Nanoelectronic devices embedded in the two-dimensional electron system (2DES) of a GaAs /(Al ,Ga )As heterostructure enable a large variety of applications ranging from fundamental research to high-speed transistors. Electrical circuits are thereby commonly defined by creating barriers for carriers by the selective depletion of a preexisting 2DES. We explore an alternative approach: we deplete the 2DES globally by applying a negative voltage to a global top gate and screen the electric field of the top gate only locally using nanoscale gates placed on the wafer surface between the plane of the 2DES and the top gate. Free carriers are located beneath the screen gates, and their properties can be controlled by means of geometry and applied voltages. This method promises considerable advantages for the definition of complex circuits by the electric-field effect, as it allows us to reduce the number of gates and simplify gate geometries. Examples are carrier systems with ring topology or large arrays of quantum dots. We present a first exploration of this method pursuing field effect, Hall effect, and Aharonov-Bohm measurements to study electrostatic, dynamic, and coherent properties.

  5. Fully inkjet-printed two-dimensional material field-effect heterojunctions for wearable and textile electronics.

    PubMed

    Carey, Tian; Cacovich, Stefania; Divitini, Giorgio; Ren, Jiesheng; Mansouri, Aida; Kim, Jong M; Wang, Chaoxia; Ducati, Caterina; Sordan, Roman; Torrisi, Felice

    2017-10-31

    Fully printed wearable electronics based on two-dimensional (2D) material heterojunction structures also known as heterostructures, such as field-effect transistors, require robust and reproducible printed multi-layer stacks consisting of active channel, dielectric and conductive contact layers. Solution processing of graphite and other layered materials provides low-cost inks enabling printed electronic devices, for example by inkjet printing. However, the limited quality of the 2D-material inks, the complexity of the layered arrangement, and the lack of a dielectric 2D-material ink able to operate at room temperature, under strain and after several washing cycles has impeded the fabrication of electronic devices on textile with fully printed 2D heterostructures. Here we demonstrate fully inkjet-printed 2D-material active heterostructures with graphene and hexagonal-boron nitride (h-BN) inks, and use them to fabricate all inkjet-printed flexible and washable field-effect transistors on textile, reaching a field-effect mobility of ~91 cm 2  V -1  s -1 , at low voltage (<5 V). This enables fully inkjet-printed electronic circuits, such as reprogrammable volatile memory cells, complementary inverters and OR logic gates.

  6. Multi-turn transmit coil to increase b1 efficiency in current source amplification.

    PubMed

    Gudino, N; Griswold, M A

    2013-04-01

    A multi-turn transmit surface coil design was presented to improve B1 efficiency when used with current source amplification. Three different coil designs driven by an on-coil current-mode class-D amplifier with current envelope feedback were tested on the benchtop and through imaging in a 1.5 T scanner. Case temperature of the power field-effect transistor at the amplifier output stage was measured to evaluate heat dissipation for the different current levels and coil configurations. In addition, a lower power rated device was tested to exploit the potential gain in B1 obtained with the multi-turn coil. As shown both on the benchtop and in a 1.5 T scanner, B1 was increased by almost 3-fold without increasing heat dissipation on the power device at the amplifier's output using a multi-turn surface coil. Similar gain was obtained when connecting a lower power rated field-effect transistor to the multi-turn coil. In addition to reduce heat dissipation per B1 in the device, higher B1 per current efficiency allows the use of field-effect transistors with lower current ratings and lower port capacitances, which could improve the overall performance of the on-coil current source transmit system. Copyright © 2013 Wiley Periodicals, Inc.

  7. High mobility La-doped BaSnO3 on non-perovskite MgO substrate

    NASA Astrophysics Data System (ADS)

    Kim, Youjung; Shin, Juyeon; Kim, Young Mo; Char, Kookrin

    (Ba,La)SnO3 is a transparent perovskite oxide with high electron mobility and excellent oxygen stability. Field effect device with (Ba,La)SnO3 channel was reported to show good output characteristics on STO substrate. Here, we fabricated (Ba,La)SnO3\\ films and field effect devices with (Ba,La)SnO3 channel on non-perovskite MgO substrates, which are available in large size wafers. X-ray diffraction and transmission electron microscope (TEM) images of (Ba,La)SnO3\\ films on MgO substrates show that the films are epitaxial with many threading dislocations. (Ba,La)SnO3 exhibits the high mobility with 97.2 cm2/Vs at 2 % La doping on top of 150 nm thick BaSnO3 buffer layer. Excellent carrier modulation was observed in field effect devices. FET performances on MgO substrates are slightly better than those on SrTiO3 substrates in spite of the higher dislocation density on MgO than on SrTiO3 substrates. These high mobility BaSnO3 thin films and transistors on MgO substrates will accelerate development for applications in high temperature and high power electronics. Samsung Science and Technology Foundation.

  8. Field-Free Programmable Spin Logics via Chirality-Reversible Spin-Orbit Torque Switching.

    PubMed

    Wang, Xiao; Wan, Caihua; Kong, Wenjie; Zhang, Xuan; Xing, Yaowen; Fang, Chi; Tao, Bingshan; Yang, Wenlong; Huang, Li; Wu, Hao; Irfan, Muhammad; Han, Xiufeng

    2018-06-21

    Spin-orbit torque (SOT)-induced magnetization switching exhibits chirality (clockwise or counterclockwise), which offers the prospect of programmable spin-logic devices integrating nonvolatile spintronic memory cells with logic functions. Chirality is usually fixed by an applied or effective magnetic field in reported studies. Herein, utilizing an in-plane magnetic layer that is also switchable by SOT, the chirality of a perpendicular magnetic layer that is exchange-coupled with the in-plane layer can be reversed in a purely electrical way. In a single Hall bar device designed from this multilayer structure, three logic gates including AND, NAND, and NOT are reconfigured, which opens a gateway toward practical programmable spin-logic devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Ethylene Removal in Strong Electric Field Formed by Floating Multi-Electrode

    NASA Astrophysics Data System (ADS)

    Nagasawa, Takeshi

    Ethylene gas that contains the acetic acid ester element can be removed by applying the pulse voltage to the floating multi-electrode device. This phenomenon is caused in the weak discharge by the strong electric field between the narrow electrodes. This device is possible in very small electric power (<1.5Wh). When this device was installed in the container for preservation, the following results were obtained: Each removal effect of ethylene gas is 16ppm/35min for bananas 10.8kg, 14ppm/6 hour for 50 apples, and 3.5ppm/30min for 2 melons. However, ethylene gas that doesn't contain the acetic acid ester cannot be removed (ex. ethylene pure gas and Japanese apricot).

  10. Highly Stable and Tunable Chemical Doping of Multilayer WS2 Field Effect Transistor: Reduction in Contact Resistance.

    PubMed

    Khalil, Hafiz M W; Khan, Muhammad Farooq; Eom, Jonghwa; Noh, Hwayong

    2015-10-28

    The development of low resistance contacts to 2D transition-metal dichalcogenides (TMDs) is still a big challenge for the future generation field effect transistors (FETs) and optoelectronic devices. Here, we report a chemical doping technique to achieve low contact resistance by keeping the intrinsic properties of few layers WS2. The transfer length method has been used to investigate the effect of chemical doping on contact resistance. After doping, the contact resistance (Rc) of multilayer (ML) WS2 has been reduced to 0.9 kΩ·μm. The significant reduction of the Rc is mainly due to the high electron doping density, thus a reduction in Schottky barrier height, which limits the device performance. The threshold voltage of ML-WS2 FETs confirms a negative shift upon the chemical doping, as further confirmed from the positions of E(1)2g and A1g peaks in Raman spectra. The n-doped samples possess a high drain current of 65 μA/μm, with an on/off ratio of 1.05 × 10(6) and a field effect mobility of 34.7 cm(2)/(V·s) at room temperature. Furthermore, the photoelectric properties of doped WS2 flakes were also measured under deep ultraviolet light. The potential of using LiF doping in contact engineering of TMDs opens new ways to improve the device performance.

  11. A theoretical approach to study the optical sensitivity of a MESFET

    NASA Astrophysics Data System (ADS)

    Dutta, Sutanu

    2018-05-01

    A theoretical model to study the optical sensitivity of a metal-semiconductor field effect transistor has been proposed for a relatively high drain field. An analytical expression of drain current of the device has been derived for a MESFET under optical illumination considering field dependent mobility of electrons across the channel. The variation of drain current with and without optical illumination has been studied with drain and gate voltages. The optical sensitivity of the drain current has been studied for different biasing conditions and gate lengths. In addition, the shift in threshold voltage of a MESFET under optical illumination is determined and optical sensitivity of the device in terms of its threshold voltage has been studied.

  12. Evaluation of leakage flux out of a dental magnetic attachment.

    PubMed

    Nishida, M; Tegawa, Y; Kinouchi, Y

    2007-01-01

    A dental magnetic attachment is a device to retain dental prostheses such as overdentures by magnetic attraction. As compared with mechanical attachments, the magnetic attachment has a superior retention properties due to less lateral pressure to its abutment tooth, and hence it has come to be widely used, particularly for retaining overdentures. Because the dental magnetic attachments are a device used in the mouth, the tissues in the mouth are exposed to the magnetic fields leaking out of the magnetic attachments for a long time. It may therefore be important to discuss biological effects of the leakage magnetic fields. It is required at first to evaluate the strength of the leakage magnetic fields.

  13. Increasing the magnetic-field capability of the magneto-inertial fusion electrical discharge system using an inductively coupled coil

    NASA Astrophysics Data System (ADS)

    Barnak, D. H.; Davies, J. R.; Fiksel, G.; Chang, P.-Y.; Zabir, E.; Betti, R.

    2018-03-01

    Magnetized high energy density physics (HEDP) is a very active and relatively unexplored field that has applications in inertial confinement fusion, astrophysical plasma science, and basic plasma physics. A self-contained device, the Magneto-Inertial Fusion Electrical Discharge System, MIFEDS [G. Fiksel et al., Rev. Sci. Instrum. 86, 016105 (2015)], was developed at the Laboratory for Laser Energetics to conduct magnetized HEDP experiments on both the OMEGA [T. R. Boehly et al., Opt. Commun. 133, 495-506 (1997)] and OMEGA EP [J. H. Kelly et al., J. Phys. IV France 133, 75 (2006) and L. J. Waxer et al., Opt. Photonics News 16, 30 (2005)] laser systems. Extremely high magnetic fields are a necessity for magnetized HEDP, and the need for stronger magnetic fields continues to drive the redevelopment of the MIFEDS device. It is proposed in this paper that a magnetic coil that is inductively coupled rather than directly connecting to the MIFEDS device can increase the overall strength of the magnetic field for HEDP experiments by increasing the efficiency of energy transfer while decreasing the effective magnetized volume. A brief explanation of the energy delivery of the MIFEDS device illustrates the benefit of inductive coupling and is compared to that of direct connection for varying coil size and geometry. A prototype was then constructed to demonstrate a 7-fold increase in energy delivery using inductive coupling.

  14. Left Ventricular Assist Devices: The Adolescence of a Disruptive Technology.

    PubMed

    Pinney, Sean P

    2015-10-01

    Clinical outcomes for patients with advanced heart failure receiving left ventricular assist devices are driven by appropriate patient selection, refined surgical technique, and coordinated medical care. Perhaps even more important is innovative pump design. The introduction and widespread adoption of continuous-flow ventricular assist devices has led to a paradigm shift within the field of mechanical circulatory support, making the promise of lifetime device therapy closer to reality. The disruption caused by this new technology, on the one hand, produced meaningful improvements in patient survival and quality of life, but also introduced new clinical challenges, such as bleeding, pump thrombosis, and acquired valvular heart disease. Further evolution within this field will require financial investment to sustain innovation leading to a fully implantable, durable, and cost-effective pump for a larger segment of patients with advanced heart failure. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Performance analysis of FET microwave devices by use of extended spectral-element time-domain method

    NASA Astrophysics Data System (ADS)

    Sheng, Yijun; Xu, Kan; Wang, Daoxiang; Chen, Rushan

    2013-05-01

    The extended spectral-element time-domain (SETD) method is employed to analyse field effect transistor (FET) microwave devices. In order to impose the contribution of the FET microwave devices into the electromagnetic simulation, the SETD method is extended by introducing a lumped current term into the vector Helmholtz equation. The change of currents on each lumped component can be expressed by the change of voltage via corresponding models of equivalent circuit. The electric fields around the lumped component must be influenced by the change of voltage on each lumped component, and vice versa. So a global coupling about the EM-circuit can be built directly. The fully explicit solving scheme is maintained in this extended SETD method and the CPU time can be saved spontaneously. Three practical FET microwave devices are analysed in this article. The numerical results demonstrate the ability and accuracy of this method.

  16. Carrier transport and collection in fully depleted semiconductors by a combined action of the space charge field and the field due to electrode voltages

    DOEpatents

    Rehak, P.; Gatti, E.

    1984-02-24

    A semiconductor charge transport device and method for making same, characterized by providing a thin semiconductor wafer having rectifying functions on its opposing major surfaces and including a small capacitance ohmic contact, in combination with bias voltage means and associated circuit means for applying a predetermined voltage to effectively deplete the wafer in regions thereof between the rectifying junctions and the ohmic contact. A charge transport device of the invention is usable as a drift chamber, a low capacitance detector, or a charge coupled device each constructed according to the methods of the invention for making such devices. Detectors constructed according to the principles of the invention are characterized by having significantly higher particle position indicating resolution than is attainable with prior art detectors, while at the same time requiring substantially fewer readout channels to realize such high resolution.

  17. Carrier transport and collection in fully depleted semiconductors by a combined action of the space charge field and the field due to electrode voltages

    DOEpatents

    Rehak, Pavel; Gatti, Emilio

    1987-01-01

    A semiconductor charge transport device and method for making same, characterized by providing a thin semiconductor wafer having rectifying junctions on its opposing major surfaces and including a small capacitance ohmic contact, in combination with bias voltage means and associated circuit means for applying a predetermined voltage to effectively deplete the wafer in regions thereof between the rectifying junctions and the ohmic contact. A charge transport device of the invention is usable as a drift chamber, a low capacitance detector, or a charge coupled device each constructed according to the methods of the invention for making such devices. Detectors constructed according to the principles of the invention are characterized by having significantly higher particle position indicating resolution than is attainable with prior art detectors, while at the same time requiring substantially fewer readout channels to realize such high resolution.

  18. Carrier transport and collection in fully depleted semiconductors by a combined action of the space charge field and the field due to electrode voltages

    DOEpatents

    Rehak, P.; Gatti, E.

    1987-08-18

    A semiconductor charge transport device and method for making same are disclosed, characterized by providing a thin semiconductor wafer having rectifying junctions on its opposing major surfaces and including a small capacitance ohmic contact, in combination with bias voltage means and associated circuit means for applying a predetermined voltage to effectively deplete the wafer in regions thereof between the rectifying junctions and the ohmic contact. A charge transport device of the invention is usable as a drift chamber, a low capacitance detector, or a charge coupled device each constructed according to the methods of the invention for making such devices. Detectors constructed according to the principles of the invention are characterized by having significantly higher particle position indicating resolution than is attainable with prior art detectors, while at the same time requiring substantially fewer readout channels to realize such high resolution. 16 figs.

  19. Patterns of mobile device use by caregivers and children during meals in fast food restaurants.

    PubMed

    Radesky, Jenny S; Kistin, Caroline J; Zuckerman, Barry; Nitzberg, Katie; Gross, Jamie; Kaplan-Sanoff, Margot; Augustyn, Marilyn; Silverstein, Michael

    2014-04-01

    Mobile devices are a ubiquitous part of American life, yet how families use this technology has not been studied. We aimed to describe naturalistic patterns of mobile device use by caregivers and children to generate hypotheses about its effects on caregiver-child interaction. Using nonparticipant observational methods, we observed 55 caregivers eating with 1 or more young children in fast food restaurants in a single metropolitan area. Observers wrote detailed field notes, continuously describing all aspects of mobile device use and child and caregiver behavior during the meal. Field notes were then subjected to qualitative analysis using grounded theory methods to identify common themes of device use. Forty caregivers used devices during their meal. The dominant theme salient to mobile device use and caregiver-child interaction was the degree of absorption in devices caregivers exhibited. Absorption was conceptualized as the extent to which primary engagement was with the device, rather than the child, and was determined by frequency, duration, and modality of device use; child response to caregiver use, which ranged from entertaining themselves to escalating bids for attention, and how caregivers managed this behavior; and separate versus shared use of devices. Highly absorbed caregivers often responded harshly to child misbehavior. We documented a range of patterns of mobile device use, characterized by varying degrees of absorption. These themes may be used as a foundation for coding schemes in quantitative studies exploring device use and child outcomes.

  20. Exploring the Short-Channel Characteristics of Asymmetric Junctionless Double-Gate Silicon-on-Nothing MOSFET

    NASA Astrophysics Data System (ADS)

    Saha, Priyanka; Banerjee, Pritha; Dash, Dinesh Kumar; Sarkar, Subir Kumar

    2018-03-01

    This paper presents an analytical model of an asymmetric junctionless double-gate (asymmetric DGJL) silicon-on-nothing metal-oxide-semiconductor field-effect transistor (MOSFET). Solving the 2-D Poisson's equation, the expressions for center potential and threshold voltage are calculated. In addition, the response of the device toward the various short-channel effects like hot carrier effect, drain-induced barrier lowering and threshold voltage roll-off has also been examined along with subthreshold swing and drain current characteristics. Performance analysis of the present model is also demonstrated by comparing its short-channel behavior with conventional DGJL MOSFET. The effect of variation of the device features due to the variation of device parameters is also studied. The simulated results obtained using 2D device simulator, namely ATLAS, are in good agreement with the analytical results, hence validating our derived model.

  1. Performance analysis of SOI MOSFET with rectangular recessed channel

    NASA Astrophysics Data System (ADS)

    Singh, M.; Mishra, S.; Mohanty, S. S.; Mishra, G. P.

    2016-03-01

    In this paper a two dimensional (2D) rectangular recessed channel-silicon on insulator metal oxide semiconductor field effect transistor (RRC-SOI MOSFET), using the concept of groove between source and drain regions, which is one of the channel engineering technique to suppress the short channel effect (SCE). This suppression is mainly due to corner potential barrier of the groove and the simulation is carried out by using ATLAS 2D device simulator. To have further improvement of SCE in RRC-SOI MOSFET, three more devices are designed by using dual material gate (DMG) and gate dielectric technique, which results in formation of devices i.e. DMRRC-SOI,MLSMRRC-SOI, MLDMRRC-SOI MOSFET. The effect of different structures of RRC-SOI on AC and RF parameters are investigated and the importance of these devices over RRC MOSFET regarding short channel effect is analyzed.

  2. A remotely operated drug delivery system with an electrolytic pump and a thermo-responsive valve

    PubMed Central

    Yi, Ying; Zaher, Amir; Yassine, Omar; Kosel, Jurgen; Foulds, Ian G.

    2015-01-01

    Implantable drug delivery devices are becoming attractive due to their abilities of targeted and controlled dose release. Currently, two important issues are functional lifetime and non-controlled drug diffusion. In this work, we present a drug delivery device combining an electrolytic pump and a thermo-responsive valve, which are both remotely controlled by an electromagnetic field (40.5 mT and 450 kHz). Our proposed device exhibits a novel operation mechanism for long-term therapeutic treatments using a solid drug in reservoir approach. Our device also prevents undesired drug liquid diffusions. When the electromagnetic field is on, the electrolysis-induced bubble drives the drug liquid towards the Poly (N-Isopropylacrylamide) (PNIPAM) valve that consists of PNIPAM and iron micro-particles. The heat generated by the iron micro-particles causes the PNIPAM to shrink, resulting in an open valve. When the electromagnetic field is turned off, the PNIPAM starts to swell. In the meantime, the bubbles are catalytically recombined into water, reducing the pressure inside the pumping chamber, which leads to the refilling of the fresh liquid from outside the device. A catalytic reformer is included, allowing more liquid refilling during the limited valve's closing time. The amount of body liquid that refills the drug reservoir can further dissolve the solid drug, forming a reproducible drug solution for the next dose. By repeatedly turning on and off the electromagnetic field, the drug dose can be cyclically released, and the exit port of the device is effectively controlled. PMID:26339328

  3. Evaluation Method for Fieldlike-Torque Efficiency by Modulation of the Resonance Field

    NASA Astrophysics Data System (ADS)

    Kim, Changsoo; Kim, Dongseuk; Chun, Byong Sun; Moon, Kyoung-Woong; Hwang, Chanyong

    2018-05-01

    The spin Hall effect has attracted a lot of interest in spintronics because it offers the possibility of a faster switching route with an electric current than with a spin-transfer-torque device. Recently, fieldlike spin-orbit torque has been shown to play an important role in the magnetization switching mechanism. However, there is no simple method for observing the fieldlike spin-orbit torque efficiency. We suggest a method for measuring fieldlike spin-orbit torque using a linear change in the resonance field in spectra of direct-current (dc)-tuned spin-torque ferromagnetic resonance. The fieldlike spin-orbit torque efficiency can be obtained in both a macrospin simulation and in experiments by simply subtracting the Oersted field from the shifted amount of resonance field. This method analyzes the effect of fieldlike torque using dc in a normal metal; therefore, only the dc resistivity and the dimensions of each layer are considered in estimating the fieldlike spin-torque efficiency. The evaluation of fieldlike-torque efficiency of a newly emerging material by modulation of the resonance field provides a shortcut in the development of an alternative magnetization switching device.

  4. Magnetic field effects of photocarrier generation in bulk heterojunctions at low temperature.

    PubMed

    Tajima, H; Nishioka, Y; Sato, S; Suzuki, T; Kimata, M

    2016-11-14

    We report an experimental investigation of the magnetic field effect (MFE) in polymer bulk heterojunction devices at temperatures below 10 K using photocarrier extraction by linearly increasing voltages. The examined devices were composed of an active layer of poly(3-hexylthiophene) and [6,6]-phenyl-C 61 -butyric acid methyl ester. In the experiments, the delay time (t d ) dependence of the MFE was investigated in detail. For t d < 80 μs, a positive MFE was observed in the field region B < 0.1 T and a negative MFE was observed for B > 0.2 T. For t d > 8 ms, only a positive MFE proportional to B 2 was observed. For the photocurrent pulse detected immediately after light irradiation, the MFE was negligibly small. In a high magnetic field of 15 T, a significant MFE exceeding 80% was observed at 1.8 K for t d = 800 ms. We discuss the results based on a model of triplet-singlet (or singlet-triplet) conversion in the magnetic field and estimate the exchange integral for the charge-transfer exciton in this photovoltaic cell.

  5. Simulation study of a high power density rectenna array for biomedical implantable devices

    NASA Astrophysics Data System (ADS)

    Day, John; Yoon, Hargsoon; Kim, Jaehwan; Choi, Sang H.; Song, Kyo D.

    2016-04-01

    The integration of wireless power transmission devices using microwaves into the biomedical field is close to a practical reality. Implanted biomedical devices need a long lasting power source or continuous power supply. Recent development of high efficiency rectenna technology enables continuous power supply to these implanted devices. Due to the size limit of most of medical devices, it is imperative to minimize the rectenna as well. The research reported in this paper reviews the effects of close packing the rectenna elements which show the potential of directly empowering the implanted devices, especially within a confined area. The rectenna array is tested in the X band frequency range.

  6. Patterning technology for solution-processed organic crystal field-effect transistors

    PubMed Central

    Li, Yun; Sun, Huabin; Shi, Yi; Tsukagoshi, Kazuhito

    2014-01-01

    Organic field-effect transistors (OFETs) are fundamental building blocks for various state-of-the-art electronic devices. Solution-processed organic crystals are appreciable materials for these applications because they facilitate large-scale, low-cost fabrication of devices with high performance. Patterning organic crystal transistors into well-defined geometric features is necessary to develop these crystals into practical semiconductors. This review provides an update on recentdevelopment in patterning technology for solution-processed organic crystals and their applications in field-effect transistors. Typical demonstrations are discussed and examined. In particular, our latest research progress on the spin-coating technique from mixture solutions is presented as a promising method to efficiently produce large organic semiconducting crystals on various substrates for high-performance OFETs. This solution-based process also has other excellent advantages, such as phase separation for self-assembled interfaces via one-step spin-coating, self-flattening of rough interfaces, and in situ purification that eliminates the impurity influences. Furthermore, recommendations for future perspectives are presented, and key issues for further development are discussed. PMID:27877656

  7. Micromixer utilizing electrokinetic instability-induced shedding effect.

    PubMed

    Tai, Chang-Hsien; Yang, Ruey-Jen; Huang, Min-Zhong; Liu, Chia-Wei; Tsai, Chien-Hsiung; Fu, Lung-Ming

    2006-12-01

    This paper presents a T-shaped micromixer featuring 45 degrees parallelogram barriers (PBs) within the mixing channel. The presented device obtains a rapid mixing of two sample fluids with conductivity ratio of 10:1 (sample concentration:running buffer concentration) by means of the electrokinetic instability-induced shedding effects which are produced when a direct current (DC) electric field of an appropriate intensity is applied. The presented device uses a single high-voltage power source to simultaneously drive and mix the sample fluids. The effectiveness of the mixer is characterized experimentally as a function of the applied electrical field intensity and the extent to which the PBs obstruct the mixing channel. The experimental results indicate that the mixing performance reaches 91% at a cross-section located 2.3 mm downstream of the T-junction when the barriers obstruct 4/5 of the channel width and an electrical field of 300 V/cm is applied. The micromixing method presented in this study provides a simple low-cost solution to mixing problems in lab-on-a-chip systems.

  8. Low-frequency (1/f) noise in nanocrystal field-effect transistors.

    PubMed

    Lai, Yuming; Li, Haipeng; Kim, David K; Diroll, Benjamin T; Murray, Christopher B; Kagan, Cherie R

    2014-09-23

    We investigate the origins and magnitude of low-frequency noise in high-mobility nanocrystal field-effect transistors and show the noise is of 1/f-type. Sub-band gap states, in particular, those introduced by nanocrystal surfaces, have a significant influence on the 1/f noise. By engineering the device geometry and passivating nanocrystal surfaces, we show that in the linear and saturation regimes the 1/f noise obeys Hooge's model of mobility fluctuations, consistent with transport of a high density of accumulated carriers in extended electronic states of the NC thin films. In the subthreshold regime, the Fermi energy moves deeper into the mobility gap and sub-band gap trap states give rise to a transition to noise dominated by carrier number fluctuations as described in McWhorter's model. CdSe nanocrystal field-effect transistors have a Hooge parameter of 3 × 10(-2), comparable to other solution-deposited, thin-film devices, promising high-performance, low-cost, low-noise integrated circuitry.

  9. Analysing black phosphorus transistors using an analytic Schottky barrier MOSFET model.

    PubMed

    Penumatcha, Ashish V; Salazar, Ramon B; Appenzeller, Joerg

    2015-11-13

    Owing to the difficulties associated with substitutional doping of low-dimensional nanomaterials, most field-effect transistors built from carbon nanotubes, two-dimensional crystals and other low-dimensional channels are Schottky barrier MOSFETs (metal-oxide-semiconductor field-effect transistors). The transmission through a Schottky barrier-MOSFET is dominated by the gate-dependent transmission through the Schottky barriers at the metal-to-channel interfaces. This makes the use of conventional transistor models highly inappropriate and has lead researchers in the past frequently to extract incorrect intrinsic properties, for example, mobility, for many novel nanomaterials. Here we propose a simple modelling approach to quantitatively describe the transfer characteristics of Schottky barrier-MOSFETs from ultra-thin body materials accurately in the device off-state. In particular, after validating the model through the analysis of a set of ultra-thin silicon field-effect transistor data, we have successfully applied our approach to extract Schottky barrier heights for electrons and holes in black phosphorus devices for a large range of body thicknesses.

  10. Analysing black phosphorus transistors using an analytic Schottky barrier MOSFET model

    PubMed Central

    Penumatcha, Ashish V.; Salazar, Ramon B.; Appenzeller, Joerg

    2015-01-01

    Owing to the difficulties associated with substitutional doping of low-dimensional nanomaterials, most field-effect transistors built from carbon nanotubes, two-dimensional crystals and other low-dimensional channels are Schottky barrier MOSFETs (metal-oxide-semiconductor field-effect transistors). The transmission through a Schottky barrier-MOSFET is dominated by the gate-dependent transmission through the Schottky barriers at the metal-to-channel interfaces. This makes the use of conventional transistor models highly inappropriate and has lead researchers in the past frequently to extract incorrect intrinsic properties, for example, mobility, for many novel nanomaterials. Here we propose a simple modelling approach to quantitatively describe the transfer characteristics of Schottky barrier-MOSFETs from ultra-thin body materials accurately in the device off-state. In particular, after validating the model through the analysis of a set of ultra-thin silicon field-effect transistor data, we have successfully applied our approach to extract Schottky barrier heights for electrons and holes in black phosphorus devices for a large range of body thicknesses. PMID:26563458

  11. A Novel Wireless Wearable Volatile Organic Compound (VOC) Monitoring Device with Disposable Sensors.

    PubMed

    Deng, Yue; Chen, Cheng; Xian, Xiaojun; Tsow, Francis; Verma, Gaurav; McConnell, Rob; Fruin, Scott; Tao, Nongjian; Forzani, Erica S

    2016-12-03

    A novel portable wireless volatile organic compound (VOC) monitoring device with disposable sensors is presented. The device is miniaturized, light, easy-to-use, and cost-effective. Different field tests have been carried out to identify the operational, analytical, and functional performance of the device and its sensors. The device was compared to a commercial photo-ionization detector, gas chromatography-mass spectrometry, and carbon monoxide detector. In addition, environmental operational conditions, such as barometric change, temperature change and wind conditions were also tested to evaluate the device performance. The multiple comparisons and tests indicate that the proposed VOC device is adequate to characterize personal exposure in many real-world scenarios and is applicable for personal daily use.

  12. A Novel Wireless Wearable Volatile Organic Compound (VOC) Monitoring Device with Disposable Sensors

    PubMed Central

    Deng, Yue; Chen, Cheng; Xian, Xiaojun; Tsow, Francis; Verma, Gaurav; McConnell, Rob; Fruin, Scott; Tao, Nongjian; Forzani, Erica S.

    2016-01-01

    A novel portable wireless volatile organic compound (VOC) monitoring device with disposable sensors is presented. The device is miniaturized, light, easy-to-use, and cost-effective. Different field tests have been carried out to identify the operational, analytical, and functional performance of the device and its sensors. The device was compared to a commercial photo-ionization detector, gas chromatography-mass spectrometry, and carbon monoxide detector. In addition, environmental operational conditions, such as barometric change, temperature change and wind conditions were also tested to evaluate the device performance. The multiple comparisons and tests indicate that the proposed VOC device is adequate to characterize personal exposure in many real-world scenarios and is applicable for personal daily use. PMID:27918484

  13. Probing organic field effect transistors in situ during operation using SFG.

    PubMed

    Ye, Hongke; Abu-Akeel, Ashraf; Huang, Jia; Katz, Howard E; Gracias, David H

    2006-05-24

    In this communication, we report results obtained using surface-sensitive IR+Visible Sum Frequency Generation (SFG) nonlinear optical spectroscopy on interfaces of organic field effect transistors during operation. We observe remarkable correlations between trends in the surface vibrational spectra and electrical properties of the transistor, with changes in gate voltage (VG). These results suggest that field effects on electronic conduction in thin film organic semiconductor devices are correlated to interfacial nonlinear optical characteristics and point to the possibility of using SFG spectroscopy to monitor electronic properties of OFETs.

  14. Modified Reference SPS with Solid State Transmitting Antenna

    NASA Technical Reports Server (NTRS)

    Woodcock, G. R.; Sperber, B. R.

    1980-01-01

    The development of solid state microwave power amplifiers for a solar power satellite transmitting antenna is discussed. State-of-the-art power-added efficiency, gain, and single device power of various microwave solid state devices are compared. The GaAs field effect transistors and the Si-bipolar transistors appear potentially feasible for solar power satellite use. The integration of solid state devices into antenna array elements is examined and issues concerning antenna integration and consequent satellite configurations are examined.

  15. Hybrid semiconductor nanomagnetoelectronic devices

    NASA Astrophysics Data System (ADS)

    Bae, Jong Uk

    2007-12-01

    The subject of this dissertation is the exploration of a new class of hybrid semiconductor nanomagnetoelectronic devices. In these studies, single-domain nanomagnets are used as the gate in a transistor structure, and the spatially non-uniform magnetic fields that they generate provide an additional means to modulate the channel conductance. A quantum wire etched in a high-mobility GaAs/AlGaAs quantum well serves as the channel of this device and the current flow through it is modulated by a high-aspect-ratio Co nanomagnet. The conductance of this device exhibits clear hysteresis in a magnetic field, which is significantly enhanced when the nanomagnet is used as a gate to form a local tunnel barrier in the semiconductor channel. A simple theoretical model, which models the tunnel barrier as a simple harmonic saddle, is able to account for the experimentallyobserved behavior. Further improvements in the tunneling magneto-resistance of this device should be possible in the future by optimizing the gate and channel geometries. In addition to these investigations, we have also explored the hysteretic magnetoresistance of devices in which the tunnel barrier is absent and the behavior is instead dominated by the properties of the magnetic barrier alone. We show experimentally how quantum corrections to the conductance of the quantum wire compete against the magneto-transport effects induced by the non-uniform magnetic field.

  16. Design and fabrication of a magnetically actuated non-invasive reusable drug delivery device.

    PubMed

    Dsa, Joyline; Goswami, Manish; Singh, B R; Bhatt, Nidhi; Sharma, Pankaj; Chauhan, Meenakshi K

    2018-07-01

    We present a novel approach of designing and fabricating a noninvasive drug delivery device which is capable of delivering the drug to the target site in a controlled manner. The device utilizes a reservoir which can be reused once the drug has completely diffused from it. This micro-reservoir based fabricated device has been successfully tested using niosomes of insulin drug filled in, which was then sealed with a magnetic membrane of 20 µm thick and was actuated by applying magnetic field. The deflection of the membrane on application of magnetic field results in the drug release from the reservoir. The discharge of the drug solution and the release rates was controlled by external magnetic field. The simulation of the membrane deflection using COMSOL software was carried out to optimize the concentration of the ferrous nanopowder in PDMS matrix. The characterization of the devices was implemented in-vitro on water and in-vivo on Wistar rats. It was also validated using high-performance liquid chromatography (HPLC) by observing characteristic peak of insulin. The blood samples showed the retention time of 2.79 min at λ max of 280 nm which further authenticated the effectiveness of the proposed work. This noninvasive fabricated device provides reusability, precise control and can enable the patient or a physician to actively administrate the drug when required.

  17. Influence of gate width on gate-channel carrier mobility in AlGaN/GaN heterostructure field-effect transistors

    NASA Astrophysics Data System (ADS)

    Yang, Ming; Ji, Qizheng; Gao, Zhiliang; Zhang, Shufeng; Lin, Zhaojun; Yuan, Yafei; Song, Bo; Mei, Gaofeng; Lu, Ziwei; He, Jihao

    2017-11-01

    For the fabricated AlGaN/GaN heterostructure field-effect transistors (HFETs) with different gate widths, the gate-channel carrier mobility is experimentally obtained from the measured current-voltage and capacitance-voltage curves. Under each gate voltage, the mobility gets lower with gate width increasing. Analysis shows that the phenomenon results from the polarization Coulomb field (PCF) scattering, which originates from the irregularly distributed polarization charges at the AlGaN/GaN interface. The device with a larger gate width is with a larger PCF scattering potential and a stronger PCF scattering intensity. As a function of gate width, PCF scattering potential shows a same trend with the mobility variation. And the theoretically calculated mobility values fits well with the experimentally obtained values. Varying gate widths will be a new perspective for the improvement of device characteristics by modulating the gate-channel carrier mobility.

  18. Raman Scattering in the Magnetized Semiconductor Plasma

    NASA Astrophysics Data System (ADS)

    Jankauskas, Zigmantas; Kvedaras, Vygaudas; Balevičius, Saulius

    2005-04-01

    Radio frequency (RF) magnetoplasmic waves known as helicons will propagate in solid-state plasmas when a strong magnetic field is applied. In our device the helicons were excited by RFs (the range 100-2000 MHz) much higher than the helicon generation frequency (the main peak at 20 MHz). The excitation of helicons in this case may be described by the effect similar to the Combination Scattering (Raman effect) when a part of the high RF wave energy that passes through the active material is absorbed and re-emitted by the magnetized solid-state plasma. It is expedient to call this experimental device a Helicon Maser (HRM) and the higher frequency e/m field - a pumping field. In full analogy with the usual Raman maser (or laser) the magnetized semiconductor sample plays the role of active material and the connecting cable - the role of high quality external resonator.

  19. Raman Scattering in the Magnetized Semiconductor Plasma

    NASA Astrophysics Data System (ADS)

    Jankauskas, Zigmantas; Kvedaras, Vygaudas; Balevičius, Saulius

    Radio frequency (RF) magnetoplasmic waves known as helicons will propagate in solid-state plasmas when a strong magnetic field is applied. In our device the helicons were excited by RFs (the range 100-2000 MHz) much higher than the helicon generation frequency (the main peak at 20 MHz). The excitation of helicons in this case may be described by the effect similar to the Combination Scattering (Raman effect) when a part of the high RF wave energy that passes through the active material is absorbed and re-emitted by the magnetized solid-state plasma. It is expedient to call this experimental device a Helicon Maser (HRM) and the higher frequency e/m field - a pumping field. In full analogy with the usual Raman maser (or laser) the magnetized semiconductor sample plays the role of active material and the connecting cable - the role of high quality external resonator.

  20. Models of second-order effects in metal-oxide-semiconductor field-effect transistors for computer applications

    NASA Technical Reports Server (NTRS)

    Benumof, Reuben; Zoutendyk, John; Coss, James

    1988-01-01

    Second-order effects in metal-oxide-semiconductor field-effect transistors (MOSFETs) are important for devices with dimensions of 2 microns or less. The short and narrow channel effects and drain-induced barrier lowering primarily affect threshold voltage, but formulas for drain current must also take these effects into account. In addition, the drain current is sensitive to channel length modulation due to pinch-off or velocity saturation and is diminished by electron mobility degradation due to normal and lateral electric fields in the channel. A model of a MOSFET including these considerations and emphasizing charge conservation is discussed.

  1. Recent advances in plasma devices based on plasma lens configuration for manipulating high-current heavy ion beams.

    PubMed

    Dobrovolskiy, A; Dunets, S; Evsyukov, A; Goncharov, A; Gushenets, V; Litovko, I; Oks, E

    2010-02-01

    We describe new results of development of novel generation cylindrical plasma devices based on the electrostatic plasma lens configuration and concept of electrons magnetic insulation. The crossed electric and magnetic fields plasma lens configuration provides us with the attractive and suitable method for establishing a stable plasma discharge at low pressure. Using plasma lens configuration in this way some cost-effective plasma devices were developed for ion treatment and deposition of exotic coatings and the effective lens was first proposed for manipulating high-current beams of negatively charged particles. Here we describe operation and features of these plasma devices, and results of theoretical consideration of mechanisms determining their optimal operation conditions.

  2. JFET/SOS (Junction Field-Effect Transistor/Silicon-on-Sapphire) Devices: Gamma-Radiation-Induced Effects.

    DTIC Science & Technology

    1988-03-01

    Results, ATR-86A(8501)-1, The Aerospace Corporation: El Segundo, Calif. (20 May 1987). 3. D. Neaman , W. Shedd, and B. Buchanan, "Permanently Ionizing...Radiation Effects in Dielectrically Bounded Field-Effect Transistors," IEEE Trans.. Nucl. Sci. NS-20 [6], 158-165 (Decembe. 1973). 4. D. Neaman , W. Shedd...1974). 5. D. Neaman , W. Shedd, and B. Buchanan, "Silicon-Sapphire Interface Charge Trapping -- Effects of Sapphire Type and Epi Growth Conditions

  3. Advancements in medicine from aerospace research

    NASA Technical Reports Server (NTRS)

    Wooten, F. T.

    1972-01-01

    A program designed to find second applications for space technology in the medical field is described. Illustrative examples and clinical test results are included for prosthetic urethral devices, ear oximeter for monitoring leukemia patients, devices for measuring low level CO effects on automobile drivers, radiation dosimeter probe for detecting radiation levels in cancerous areas, and electromyographic muscle trainer.

  4. Enhancing Learning Effectiveness in Digital Design Courses through the Use of Programmable Logic Boards

    ERIC Educational Resources Information Center

    Zhu, Yi; Weng, T.; Cheng, Chung-Kuan

    2009-01-01

    Incorporating programmable logic devices (PLD) in digital design courses has become increasingly popular. The advantages of using PLDs, such as complex programmable logic devices (CPLDs) and field programmable gate arrays (FPGA), have been discussed before. However, previous studies have focused on the experiences from the point of view of the…

  5. Front and backside processed thin film electronic devices

    DOEpatents

    Yuan, Hao-Chih; Wang, Guogong; Eriksson, Mark A.; Evans, Paul G.; Lagally, Max G.; Ma, Zhenqiang

    2010-10-12

    This invention provides methods for fabricating thin film electronic devices with both front- and backside processing capabilities. Using these methods, high temperature processing steps may be carried out during both frontside and backside processing. The methods are well-suited for fabricating back-gate and double-gate field effect transistors, double-sided bipolar transistors and 3D integrated circuits.

  6. High-pressure oxygen annealing of Al2O3 passivation layer for performance enhancement of graphene field-effect transistors

    NASA Astrophysics Data System (ADS)

    Kim, Yun Ji; Kim, Seung Mo; Heo, Sunwoo; Lee, Hyeji; In Lee, Ho; Chang, Kyoung Eun; Lee, Byoung Hun

    2018-02-01

    High-pressure annealing in oxygen ambient at low temperatures (∼300 °C) was effective in improving the performance of graphene field-effect transistors. The field-effect mobility was improved by 45% and 83% for holes and electrons, respectively. The improvement in the quality of Al2O3 and the reduction in oxygen-related charge generation at the Al2O3-graphene interface, are suggested as the reasons for this improvement. This process can be useful for the commercial implementation of graphene-based electronic devices.

  7. Band structure effects on resonant tunneling in III-V quantum wells versus two-dimensional vertical heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, Philip M., E-mail: philip.campbell@gatech.edu; Electronic Systems Laboratory, Georgia Tech Research Institute, Atlanta, Georgia 30332; Tarasov, Alexey

    Since the invention of the Esaki diode, resonant tunneling devices have been of interest for applications including multi-valued logic and communication systems. These devices are characterized by the presence of negative differential resistance in the current-voltage characteristic, resulting from lateral momentum conservation during the tunneling process. While a large amount of research has focused on III-V material systems, such as the GaAs/AlGaAs system, for resonant tunneling devices, poor device performance and device-to-device variability have limited widespread adoption. Recently, the symmetric field-effect transistor (symFET) was proposed as a resonant tunneling device incorporating symmetric 2-D materials, such as transition metal dichalcogenides (TMDs),more » separated by an interlayer barrier, such as hexagonal boron-nitride. The achievable peak-to-valley ratio for TMD symFETs has been predicted to be higher than has been observed for III-V resonant tunneling devices. This work examines the effect that band structure differences between III-V devices and TMDs has on device performance. It is shown that tunneling between the quantized subbands in III-V devices increases the valley current and decreases device performance, while the interlayer barrier height has a negligible impact on performance for barrier heights greater than approximately 0.5 eV.« less

  8. N-Channel field-effect transistors with floating gates for extracellular recordings.

    PubMed

    Meyburg, Sven; Goryll, Michael; Moers, Jürgen; Ingebrandt, Sven; Böcker-Meffert, Simone; Lüth, Hans; Offenhäusser, Andreas

    2006-01-15

    A field-effect transistor (FET) for recording extracellular signals from electrogenic cells is presented. The so-called floating gate architecture combines a complementary metal oxide semiconductor (CMOS)-type n-channel transistor with an independent sensing area. This concept allows the transistor and sensing area to be optimised separately. The devices are robust and can be reused several times. The noise level of the devices was smaller than of comparable non-metallised gate FETs. In addition to the usual drift of FET devices, we observed a long-term drift that has to be controlled for future long-term measurements. The device performance for extracellular signal recording was tested using embryonic rat cardiac myocytes cultured on fibronectin-coated chips. The extracellular cell signals were recorded before and after the addition of the cardioactive isoproterenol. The signal shapes of the measured action potentials were comparable to the non-metallised gate FETs previously used in similar experiments. The fabrication of the devices involved the process steps of standard CMOS that were necessary to create n-channel transistors. The implementation of a complete CMOS process would facilitate the integration of the logical circuits necessary for signal pre-processing on a chip, which is a prerequisite for a greater number of sensor spots in future layouts.

  9. Solution-Processed Wide-Bandgap Organic Semiconductor Nanostructures Arrays for Nonvolatile Organic Field-Effect Transistor Memory.

    PubMed

    Li, Wen; Guo, Fengning; Ling, Haifeng; Liu, Hui; Yi, Mingdong; Zhang, Peng; Wang, Wenjun; Xie, Linghai; Huang, Wei

    2018-01-01

    In this paper, the development of organic field-effect transistor (OFET) memory device based on isolated and ordered nanostructures (NSs) arrays of wide-bandgap (WBG) small-molecule organic semiconductor material [2-(9-(4-(octyloxy)phenyl)-9H-fluoren-2-yl)thiophene]3 (WG 3 ) is reported. The WG 3 NSs are prepared from phase separation by spin-coating blend solutions of WG 3 /trimethylolpropane (TMP), and then introduced as charge storage elements for nonvolatile OFET memory devices. Compared to the OFET memory device with smooth WG 3 film, the device based on WG 3 NSs arrays exhibits significant improvements in memory performance including larger memory window (≈45 V), faster switching speed (≈1 s), stable retention capability (>10 4 s), and reliable switching properties. A quantitative study of the WG 3 NSs morphology reveals that enhanced memory performance is attributed to the improved charge trapping/charge-exciton annihilation efficiency induced by increased contact area between the WG 3 NSs and pentacene layer. This versatile solution-processing approach to preparing WG 3 NSs arrays as charge trapping sites allows for fabrication of high-performance nonvolatile OFET memory devices, which could be applicable to a wide range of WBG organic semiconductor materials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Novel H+-Ion Sensor Based on a Gated Lateral BJT Pair

    PubMed Central

    Yuan, Heng; Zhang, Jixing; Cao, Chuangui; Zhang, Gangyuan; Zhang, Shaoda

    2015-01-01

    An H+-ion sensor based on a gated lateral bipolar junction transistor (BJT) pair that can operate without the classical reference electrode is proposed. The device is a special type of ion-sensitive field-effect transistor (ISFET). Classical ISFETs have the advantage of miniaturization, but  they are difficult to fabricate by a single fabrication process because of the bulky and brittle reference electrode materials. Moreover, the reference electrodes need to be separated from the sensor device in some cases. The proposed device is composed of two gated lateral BJT components, one of which had a silicide layer while the other was without the layer. The two components were operated under the metal-oxide semiconductor field-effect transistor (MOSFET)-BJT hybrid mode, which can be controlled by emitter voltage and base current. Buffer solutions with different pH values were used as the sensing targets to verify the characteristics of the proposed device. Owing to their different sensitivities, both components could simultaneously detect the H+-ion concentration and function as a reference to each other. Per the experimental results, the sensitivity of the proposed device was found to be approximately 0.175 μA/pH. This experiment demonstrates enormous potential to lower the cost of the ISFET-based sensor technology. PMID:26703625

  11. Demonstration of β-(AlxGa1-x)2O3/Ga2O3 double heterostructure field effect transistors

    NASA Astrophysics Data System (ADS)

    Zhang, Yuewei; Joishi, Chandan; Xia, Zhanbo; Brenner, Mark; Lodha, Saurabh; Rajan, Siddharth

    2018-06-01

    In this work, we demonstrate modulation-doped β-(AlxGa1-x)2O3/Ga2O3 double heterostructure field effect transistors. The maximum sheet carrier density for a two-dimensional electron gas (2DEG) in a β-(AlxGa1-x)2O3/Ga2O3 heterostructure is limited by the conduction band offset and parasitic channel formation in the barrier layer. We demonstrate a double heterostructure to realize a β-(AlxGa1-x)2O3/Ga2O3/(AlxGa1-x)2O3 quantum well, where electrons can be transferred from below and above the β-Ga2O3 quantum well. The confined 2DEG charge density of 3.85 × 1012 cm-2 was estimated from the low-temperature Hall measurement, which is higher than that achievable in a single heterostructure. Hall mobilities of 1775 cm2/V.s at 40 K and 123 cm2/V.s at room temperature were measured. Modulation-doped double heterostructure field effect transistors showed a maximum drain current of IDS = 257 mA/mm, a peak transconductance (gm) of 39 mS/mm, and a pinch-off voltage of -7.0 V at room temperature. The three-terminal off-state breakdown measurement on the device with a gate-drain spacing (LGD) of 1.55 μm showed a breakdown voltage of 428 V, corresponding to an average breakdown field of 2.8 MV/cm. The breakdown measurement on the device with a scaled gate-drain spacing of 196 nm indicated an average breakdown field of 3.2 MV/cm. The demonstrated modulation-doped β-(AlxGa1-x)2O3/Ga2O3 double heterostructure field effect transistor could act as a promising candidate for high power and high frequency device applications.

  12. The Use of Ferroelectrics and Dipeptides as Insulators in Organic Field-Effect Transistor Devices

    NASA Astrophysics Data System (ADS)

    Knotts, Grant

    While the electrical transport characteristics of organic electronic devices are generally inferior to their inorganic counterparts, organic materials offer many advantages over inorganics. The materials used in organic devices can often be deposited using cheap and simple processing techniques such as spincoating, inkjet printing, or roll-to-roll processing; allow for large-scale, flexible devices; and can have the added benefits of being transparent or biodegradable. In this manuscript, we examine the role of solvents in the performance of pentacene-based devices using the ferroelectric copolymer polyvinylidene fluoride-trifluoroethylene (PVDF-TrFe) as a gate insulating layer. High dipole moment solvents, such as dimethyl sulfoxide, used to dissolve the copolymer for spincoating increase the charge carrier mobility in field-effect transistors (FETs) by nearly an order of magnitude as compared to lower dipole moment solvents. The polarization in Al/PVDF-TrFe/Au metal-ferroelectric-metal devices also shows an increase in remnant polarization of 20% in the sample using dimethyl sulfoxide as the solvent for the ferroelectric. Interestingly, at low applied electric fields of 100 MV/m a remnant polarization is seen in the high dipole moment device that is nearly 3.5 times larger than the value observed in the lower dipole moment samples, suggesting that the degree of dipolar order is higher at low operating voltages for the high dipole moment device. We will also discuss the use of peptide-based nanostructures derived from natural amino acids as building blocks for biocompatible devices. These peptides can be used in a bottom-up process without the need for expensive lithography. Thin films of L,L-diphenylalanine micro/nanostructures (FF-MNSs) were used as the dielectric layer in pentacene-based FETs and metal-insulator-semiconductor diodes both in bottom-gate and top-gate structures. It is demonstrated that the FFMNSs can be functionalized for detection of enzyme-analyte interactions. This work opens up a novel and facile route towards scalable organic electronics using peptide nanostructures as scaffolding and as a platform for biosensing.

  13. Carrier trajectory tracking equations for Simple-band Monte Carlo simulation of avalanche multiplication processes

    NASA Astrophysics Data System (ADS)

    Ong, J. S. L.; Charin, C.; Leong, J. H.

    2017-12-01

    Avalanche photodiodes (APDs) with steep electric field gradients generally have low excess noise that arises from carrier multiplication within the internal gain of the devices, and the Monte Carlo (MC) method is among popular device simulation tools for such devices. However, there are few articles relating to carrier trajectory modeling in MC models for such devices. In this work, a set of electric-field-gradient-dependent carrier trajectory tracking equations are developed and used to update the positions of carriers along the path during Simple-band Monte Carlo (SMC) simulations of APDs with non-uniform electric fields. The mean gain and excess noise results obtained from the SMC model employing these equations show good agreement with the results reported for a series of silicon diodes, including a p+n diode with steep electric field gradients. These results confirm the validity and demonstrate the feasibility of the trajectory tracking equations applied in SMC models for simulating mean gain and excess noise in APDs with non-uniform electric fields. Also, the simulation results of mean gain, excess noise, and carrier ionization positions obtained from the SMC model of this work agree well with those of the conventional SMC model employing the concept of a uniform electric field within a carrier free-flight. These results demonstrate that the electric field variation within a carrier free-flight has an insignificant effect on the predicted mean gain and excess noise results. Therefore, both the SMC model of this work and the conventional SMC model can be used to predict the mean gain and excess noise in APDs with highly non-uniform electric fields.

  14. Flexoelectric effect in an in-plane switching (IPS) liquid crystal cell for low-power consumption display devices

    NASA Astrophysics Data System (ADS)

    Kim, Min Su; Bos, Philip J.; Kim, Dong-Woo; Yang, Deng-Ke; Lee, Joong Hee; Lee, Seung Hee

    2016-10-01

    Technology of displaying static images in portable displays, advertising panels and price tags pursues significant reduction in power consumption and in product cost. Driving at a low-frequency electric field in fringe-field switching (FFS) mode can be one of the efficient ways to save powers of the recent portable devices, but a serious drop of image-quality, so-called image-flickering, has been found in terms of the coupling of elastic deformation to not only quadratic dielectric effect but linear flexoelectric effect. Despite of the urgent requirement of solving the issue, understanding of such a phenomenon is yet vague. Here, we thoroughly analyze and firstly report the flexoelectric effect in in-plane switching (IPS) liquid crystal cell. The effect takes place on the area above electrodes due to splay and bend deformations of nematic liquid crystal along oblique electric fields, so that the obvious spatial shift of the optical transmittance is experimentally observed and is clearly demonstrated based on the relation between direction of flexoelectric polarization and electric field polarity. In addition, we report that the IPS mode has inherent characteristics to solve the image-flickering issue in the low-power consumption display in terms of the physical property of liquid crystal material and the electrode structure.

  15. Flexoelectric effect in an in-plane switching (IPS) liquid crystal cell for low-power consumption display devices.

    PubMed

    Kim, Min Su; Bos, Philip J; Kim, Dong-Woo; Yang, Deng-Ke; Lee, Joong Hee; Lee, Seung Hee

    2016-10-12

    Technology of displaying static images in portable displays, advertising panels and price tags pursues significant reduction in power consumption and in product cost. Driving at a low-frequency electric field in fringe-field switching (FFS) mode can be one of the efficient ways to save powers of the recent portable devices, but a serious drop of image-quality, so-called image-flickering, has been found in terms of the coupling of elastic deformation to not only quadratic dielectric effect but linear flexoelectric effect. Despite of the urgent requirement of solving the issue, understanding of such a phenomenon is yet vague. Here, we thoroughly analyze and firstly report the flexoelectric effect in in-plane switching (IPS) liquid crystal cell. The effect takes place on the area above electrodes due to splay and bend deformations of nematic liquid crystal along oblique electric fields, so that the obvious spatial shift of the optical transmittance is experimentally observed and is clearly demonstrated based on the relation between direction of flexoelectric polarization and electric field polarity. In addition, we report that the IPS mode has inherent characteristics to solve the image-flickering issue in the low-power consumption display in terms of the physical property of liquid crystal material and the electrode structure.

  16. The electro-optic mechanism and infrared switching dynamic of the hybrid multilayer VO2/Al:ZnO heterojunctions.

    PubMed

    Zhang, Peng; Zhang, Wu; Wang, Junyong; Jiang, Kai; Zhang, Jinzhong; Li, Wenwu; Wu, Jiada; Hu, Zhigao; Chu, Junhao

    2017-06-30

    Active and widely controllable phase transition optical materials have got rapid applications in energy-efficient electronic devices, field of meta-devices and so on. Here, we report the optical properties of the vanadium dioxide (VO 2 )/aluminum-doped zinc oxide (Al:ZnO) hybrid n-n type heterojunctions and the corresponding electro-optic performances of the devices. Various structures are fabricated to compare the discrepancy of the optical and electrical characteristics. It was found that the reflectance spectra presents the wheel phenomenon rather than increases monotonically with temperature at near-infrared region range. The strong interference effects was found in the hybrid multilayer heterojunction. In addition, the phase transition temperature decreases with increasing the number of the Al:ZnO layer, which can be ascribed to the electron injection to the VO 2 film from the Al:ZnO interface. Affected by the double layer Al:ZnO, the abnormal Raman vibration mode was presented in the insulator region. By adding the external voltage on the Al 2 O 3 /Al:ZnO/VO 2 /Al:ZnO, Al 2 O 3 /Al:ZnO/VO 2 and Al 2 O 3 /VO 2 /Al:ZnO thin-film devices, the infrared optical spectra of the devices can be real-time manipulated by an external voltage. The main effect of joule heating and assistant effect of electric field are illustrated in this work. It is believed that the results will add a more thorough understanding in the application of the VO 2 /transparent conductive film device.

  17. Dual field effects in electrolyte-gated spinel ferrite: electrostatic carrier doping and redox reactions.

    PubMed

    Ichimura, Takashi; Fujiwara, Kohei; Tanaka, Hidekazu

    2014-07-24

    Controlling the electronic properties of functional oxide materials via external electric fields has attracted increasing attention as a key technology for next-generation electronics. For transition-metal oxides with metallic carrier densities, the electric-field effect with ionic liquid electrolytes has been widely used because of the enormous carrier doping capabilities. The gate-induced redox reactions revealed by recent investigations have, however, highlighted the complex nature of the electric-field effect. Here, we use the gate-induced conductance modulation of spinel ZnxFe₃₋xO₄ to demonstrate the dual contributions of volatile and non-volatile field effects arising from electronic carrier doping and redox reactions. These two contributions are found to change in opposite senses depending on the Zn content x; virtual electronic and chemical field effects are observed at appropriate Zn compositions. The tuning of field-effect characteristics via composition engineering should be extremely useful for fabricating high-performance oxide field-effect devices.

  18. Electrically controlled adjustable-resistance exercise equipment employing magnetorheological fluid

    NASA Astrophysics Data System (ADS)

    Lukianovich, Alex; Ashour, Osama N.; Thurston, Wilbert L.; Rogers, Craig A.; Chaudhry, Zaffir A.

    1996-05-01

    Magnetorheological (MR) fluids consist of stable suspensions of magnetic particles in a carrying fluid. The magnetorheological effect is one of the direct influences on the mechanical properties of a fluid. It represents a reversible increase, due to an external magnetic field, of the effective viscosity. Besides the variation of the rheological properties (viscosity, elasticity, and plasticity), the magnetic properties of the fluid (permeability and susceptibility), as well as the thermal and acoustic properties, are strongly influenced when an external magnetic field is applied. MR fluids have many appealing applications in the area of vibration control. The distinguishing feature of any MR fluid device is the absence of moving mechanical parts and the extreme simplicity of construction and technology. The most important element of any MR fluid device is an MR valve, which is functionally a controllable hydraulic resistance. As a demonstration of such devices, two commercially available pieces of exercise equipment, a cross stepper and a bench press, were modified to incorporate MR fluid and an external MR valve. As the magnetic field strength operating across the MR valve is adjusted, the viscosity of the flowing MR fluid changes and, accordingly, the needed force is adjusted.

  19. Towards standardized assessment of endoscope optical performance: geometric distortion

    NASA Astrophysics Data System (ADS)

    Wang, Quanzeng; Desai, Viraj N.; Ngo, Ying Z.; Cheng, Wei-Chung; Pfefer, Joshua

    2013-12-01

    Technological advances in endoscopes, such as capsule, ultrathin and disposable devices, promise significant improvements in safety, clinical effectiveness and patient acceptance. Unfortunately, the industry lacks test methods for preclinical evaluation of key optical performance characteristics (OPCs) of endoscopic devices that are quantitative, objective and well-validated. As a result, it is difficult for researchers and developers to compare image quality and evaluate equivalence to, or improvement upon, prior technologies. While endoscope OPCs include resolution, field of view, and depth of field, among others, our focus in this paper is geometric image distortion. We reviewed specific test methods for distortion and then developed an objective, quantitative test method based on well-defined experimental and data processing steps to evaluate radial distortion in the full field of view of an endoscopic imaging system. Our measurements and analyses showed that a second-degree polynomial equation could well describe the radial distortion curve of a traditional endoscope. The distortion evaluation method was effective for correcting the image and can be used to explain other widely accepted evaluation methods such as picture height distortion. Development of consensus standards based on promising test methods for image quality assessment, such as the method studied here, will facilitate clinical implementation of innovative endoscopic devices.

  20. Vertical field-effect transistor based on wave-function extension

    NASA Astrophysics Data System (ADS)

    Sciambi, A.; Pelliccione, M.; Lilly, M. P.; Bank, S. R.; Gossard, A. C.; Pfeiffer, L. N.; West, K. W.; Goldhaber-Gordon, D.

    2011-08-01

    We demonstrate a mechanism for a dual layer, vertical field-effect transistor, in which nearly depleting one layer will extend its wave function to overlap the other layer and increase tunnel current. We characterize this effect in a specially designed GaAs/AlGaAs device, observing a tunnel current increase of two orders of magnitude at cryogenic temperatures, and we suggest extrapolations of the design to other material systems such as graphene.

  1. Multimode Silicon Nanowire Transistors

    PubMed Central

    2014-01-01

    The combined capabilities of both a nonplanar design and nonconventional carrier injection mechanisms are subject to recent scientific investigations to overcome the limitations of silicon metal oxide semiconductor field effect transistors. In this Letter, we present a multimode field effect transistors device using silicon nanowires that feature an axial n-type/intrinsic doping junction. A heterostructural device design is achieved by employing a self-aligned nickel-silicide source contact. The polymorph operation of the dual-gate device enabling the configuration of one p- and two n-type transistor modes is demonstrated. Not only the type but also the carrier injection mode can be altered by appropriate biasing of the two gate terminals or by inverting the drain bias. With a combined band-to-band and Schottky tunneling mechanism, in p-type mode a subthreshold swing as low as 143 mV/dec and an ON/OFF ratio of up to 104 is found. As the device operates in forward bias, a nonconventional tunneling transistor is realized, enabling an effective suppression of ambipolarity. Depending on the drain bias, two different n-type modes are distinguishable. The carrier injection is dominated by thermionic emission in forward bias with a maximum ON/OFF ratio of up to 107 whereas in reverse bias a Schottky tunneling mechanism dominates the carrier transport. PMID:25303290

  2. Buffer transport mechanisms in intentionally carbon doped GaN heterojunction field effect transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uren, Michael J.; Cäsar, Markus; Kuball, Martin

    2014-06-30

    Temperature dependent pulsed and ramped substrate bias measurements are used to develop a detailed understanding of the vertical carrier transport in the buffer layers in a carbon doped GaN power heterojunction field effect transistor. Carbon doped GaN and multiple layers of AlGaN alloy are used in these devices to deliver an insulating and strain relieved buffer with high breakdown voltage capability. However, understanding of the detailed physical mechanism for its operation is still lacking. At the lowest electric fields (<10 MV/m), charge redistribution within the C doped layer is shown to occur by hole conduction in the valence band withmore » activation energy 0.86 eV. At higher fields, leakage between the two-dimensional electron gas and the buffer dominates occurring by a Poole-Frenkel mechanism with activation energy ∼0.65 eV, presumably along threading dislocations. At higher fields still, the strain relief buffer starts to conduct by a field dependent process. Balancing the onset of these leakage mechanisms is essential to allow the build-up of positive rather than negative space charge, and thus minimize bulk-related current-collapse in these devices.« less

  3. Performance of three different artificial swimmers in Newtonian and complex fluids

    NASA Astrophysics Data System (ADS)

    Godinez, F.; Zenit, R.; Lauga, E.

    2012-11-01

    We present an experimental investigation of three simple swimming devices at low Reynolds number. Each swimmer is composed of a magnetic head attached to a propulsive tail. The robots are driven by an external magnetic field and three different kinds of tails are used: (i) a flexible filament periodically oscillated (the flexible oar mechanism); (ii) a rigid helical filament rotated by the external field (the corkscrew mechanism); (iii) a flexible filament that, when rotated by the field, acquires a conical helical shape (a hybrid case). Each swimmer is tested in two different fluids with the same shear viscosity, a Newtonian and a Boger fluid. Surprisingly, even though the tests were conducted with the same fluid, the results for the viscoelastic fluid are contrastingly different. The device based on flexible oar mechanism swims faster in the Boger fluid than in the Newtonian one; on the contrary, the hybrid device swims at lower speeds in the Boger fluid than in the Newtonian one. And unexpectedly, the device based on the corkscrew mechanism practically swims at the same velocity in both fluids. These results, suggest that the swimming performance of a biomimetic device strongly depends on the details of the swimming actuation. We can conclude that a general viscoelastic effect.

  4. Sample-to-answer palm-sized nucleic acid testing device towards low-cost malaria mass screening.

    PubMed

    Choi, Gihoon; Prince, Theodore; Miao, Jun; Cui, Liwang; Guan, Weihua

    2018-05-19

    The effectiveness of malaria screening and treatment highly depends on the low-cost access to the highly sensitive and specific malaria test. We report a real-time fluorescence nucleic acid testing device for malaria field detection with automated and scalable sample preparation capability. The device consists a compact analyzer and a disposable microfluidic reagent compact disc. The parasite DNA sample preparation and subsequent real-time LAMP detection were seamlessly integrated on a single microfluidic compact disc, driven by energy efficient non-centrifuge based magnetic field interactions. Each disc contains four parallel testing units which could be configured either as four identical tests or as four species-specific tests. When configured as species-specific tests, it could identify two of the most life-threatening malaria species (P. falciparum and P. vivax). The NAT device is capable of processing four samples simultaneously within 50 min turnaround time. It achieves a detection limit of ~0.5 parasites/µl for whole blood, sufficient for detecting asymptomatic parasite carriers. The combination of the sensitivity, specificity, cost, and scalable sample preparation suggests the real-time fluorescence LAMP device could be particularly useful for malaria screening in the field settings. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Hybrid quantum dot-tin disulfide field-effect transistors with improved photocurrent and spectral responsivity

    DOE PAGES

    Cotlet, Mircea; Huang, Yuan Zang; Chen, Jia -Shiang; ...

    2016-03-24

    We report an improved photosensitivity in few-layer tin disulfide (SnS 2) field-effect transistors(FETs) following doping with CdSe/ZnS core/shell quantum dots(QDs). The hybrid QD-SnS 2 FET devices achieve more than 500% increase in the photocurrent response compared with the starting SnS 2-only FET device and a spectral responsivity reaching over 650 A/W at 400 nm wavelength. The negligible electrical conductance in a control QD-only FET device suggests that the energy transfer between QDs and SnS 2 is the main mechanism responsible for the sensitization effect, which is consistent with the strong spectral overlap between QDphotoluminescence and SnS 2 optical absorption asmore » well as the large nominal donor-acceptor interspacing between QD core and SnS 2. Furthermore, we also find enhanced charge carrier mobility in hybrid QD-SnS 2 FETs which we attribute to a reduced contact Schottky barrier width due to an elevated background charge carrier density.« less

  6. Biological processes, quantum mechanics and electromagnetic fields: the possibility of device-encapsulated human intention in medical therapies.

    PubMed

    Kohane, M J; Tiller, W A

    2001-06-01

    The general hypothesis that quantum mechanics (QM) and thermodynamic concepts relate to biological systems is discussed and applied to the biological influence of: (1) electromagnetic fields (EMFs); and (2) EMFs that have been exposed to human intention. We illustrate our hypothesis with experiments involving four simultaneous treatments: exposure to ambient EMFs in the laboratory environment (C), exposure in a Faraday cage (F) and exposure in a Faraday cage with either: (i) an electronic device (IIED) which had been exposed to a specific human intention (d,j); or (ii) a non-exposed, physically identical, device (d,o). Experimental systems were fitness and energy metabolism in Drosophila melanogaster, in vitro enzyme activity and molecular concentration variability over time. Results indicated that shielding from ambient EMFs via a Faraday cage (F) made a significant difference relative to the unshielded control (C). Further, (d,o) had a significant lowering effect in the shielded environment. Finally, there was a strong 'intention' effect with the IIED (d,j) producing significant and positive effects in comparison to (d,o) in each experimental system. Copyright 2001 Harcourt Publishers Ltd.

  7. Effect of increased crystallinity of single-walled carbon nanotubes used as field emitters on their electrical properties

    NASA Astrophysics Data System (ADS)

    Shimoi, Norihiro

    2015-12-01

    Single-walled carbon nanotubes (SWCNTs) synthesized by arc discharge are expected to exhibit good field emission (FE) properties at a low driving voltage. We used a coating containing homogeneously dispersed highly crystalline SWCNTs produced by a high-temperature annealing process to fabricate an FE device by a wet-coating process at a low cost. Using the coating, we succeeded in reducing the power consumption of field emitters for planar lighting devices. SWCNTs synthesized by arc discharge have crystal defects in the carbon network, which are considered to induce inelastic electron tunneling that deteriorates the electrical conductivity of the SWCNTs. In this study, the blocking of the transport of electrons in SWCNTs with crystal defects is simulated using an inelastic electron tunneling model. We succeeded in clarifying the mechanism underlying the electrical conductivity of SWCNTs by controlling their crystallinity. In addition, it was confirmed that field emitters using highly crystalline SWCNTs can lead to new applications operating with low power consumption and new devices that may change our daily lives in the future.

  8. Effect of increased crystallinity of single-walled carbon nanotubes used as field emitters on their electrical properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimoi, Norihiro, E-mail: shimoi@mail.kankyo.tohoku.ac.jp

    2015-12-07

    Single-walled carbon nanotubes (SWCNTs) synthesized by arc discharge are expected to exhibit good field emission (FE) properties at a low driving voltage. We used a coating containing homogeneously dispersed highly crystalline SWCNTs produced by a high-temperature annealing process to fabricate an FE device by a wet-coating process at a low cost. Using the coating, we succeeded in reducing the power consumption of field emitters for planar lighting devices. SWCNTs synthesized by arc discharge have crystal defects in the carbon network, which are considered to induce inelastic electron tunneling that deteriorates the electrical conductivity of the SWCNTs. In this study, themore » blocking of the transport of electrons in SWCNTs with crystal defects is simulated using an inelastic electron tunneling model. We succeeded in clarifying the mechanism underlying the electrical conductivity of SWCNTs by controlling their crystallinity. In addition, it was confirmed that field emitters using highly crystalline SWCNTs can lead to new applications operating with low power consumption and new devices that may change our daily lives in the future.« less

  9. A comparative study of graphene and graphite-based field effect transistor on flexible substrate

    NASA Astrophysics Data System (ADS)

    Bhatt, Kapil; Rani, Cheenu; Vaid, Monika; Kapoor, Ankit; Kumar, Pramod; Kumar, Sandeep; Shriwastawa, Shilpi; Sharma, Sandeep; Singh, Randhir; Tripathi, C. C.

    2018-06-01

    In the present era, there has been a great demand of cost-effective, biodegradable, flexible and wearable electronics which may open the gate to many applications like flexible displays, RFID tags, health monitoring devices, etc. Due to the versatile nature of plastic substrates, they have been extensively used in packaging, printing, etc. However, the fabrication of electronic devices requires specially prepared substrates with high quality surfaces, chemical compositions and solutions to the related fabrication issues along with its non-biodegradable nature. Therefore, in this report, a cost-effective, biodegradable cellulose paper as an alternative dielectric substrate material for the fabrication of flexible field effect transistor (FET) is presented. The graphite and liquid phase exfoliated graphene have been used as the material for the realisation of source, drain and channel on cellulose paper substrate for its comparative analysis. The mobility of fabricated FETs was calculated to be 83 cm2/V s (holes) and 33 cm2/V s (electrons) for graphite FET and 100 cm2/V s (holes) and 52 cm2/V s (electrons) for graphene FET, respectively. The output characteristic of the device demonstrates the linear behaviour and a comprehensive increase in conductance as a function of gate voltages. The fabricated FETs may be used for strain sensing, health care monitoring devices, human motion detection, etc.

  10. Recent Progress on Stretchable Electronic Devices with Intrinsically Stretchable Components.

    PubMed

    Trung, Tran Quang; Lee, Nae-Eung

    2017-01-01

    Stretchable electronic devices with intrinsically stretchable components have significant inherent advantages, including simple fabrication processes, a high integrity of the stacked layers, and low cost in comparison with stretchable electronic devices based on non-stretchable components. The research in this field has focused on developing new intrinsically stretchable components for conductors, semiconductors, and insulators. New methodologies and fabrication processes have been developed to fabricate stretchable devices with intrinsically stretchable components. The latest successful examples of stretchable conductors for applications in interconnections, electrodes, and piezoresistive devices are reviewed here. Stretchable conductors can be used for electrode or sensor applications depending on the electrical properties of the stretchable conductors under mechanical strain. A detailed overview of the recent progress in stretchable semiconductors, stretchable insulators, and other novel stretchable materials is also given, along with a discussion of the associated technological innovations and challenges. Stretchable electronic devices with intrinsically stretchable components such as field-effect transistors (FETs), photodetectors, light-emitting diodes (LEDs), electronic skins, and energy harvesters are also described and a new strategy for development of stretchable electronic devices is discussed. Conclusions and future prospects for the development of stretchable electronic devices with intrinsically stretchable components are discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. High-performance multilayer WSe 2 field-effect transistors with carrier type control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pudasaini, Pushpa Raj; Oyedele, Akinola; Zhang, Cheng

    In this paper, high-performance multilayer WSe 2 field-effect transistor (FET) devices with carrier type control are demonstrated via thickness modulation and a remote oxygen plasma surface treatment. Carrier type control in multilayer WSe 2 FET devices with Cr/Au contacts is initially demonstrated by modulating the WSe 2 thickness. The carrier type evolves with increasing WSe 2 channel thickness, being p-type, ambipolar, and n-type at thicknesses <3, ~4, and >5 nm, respectively. The thickness-dependent carrier type is attributed to changes in the bandgap of WSe 2 as a function of the thickness and the carrier band offsets relative to the metalmore » contacts. Furthermore, we present a strong hole carrier doping effect via remote oxygen plasma treatment. It non-degenerately converts n-type characteristics into p-type and enhances field-effect hole mobility by three orders of magnitude. Finally, this work demonstrates progress towards the realization of high-performance multilayer WSe 2 FETs with carrier type control, potentially extendable to other transition metal dichalcogenides, for future electronic and optoelectronic applications.« less

  12. High-performance multilayer WSe 2 field-effect transistors with carrier type control

    DOE PAGES

    Pudasaini, Pushpa Raj; Oyedele, Akinola; Zhang, Cheng; ...

    2017-07-06

    In this paper, high-performance multilayer WSe 2 field-effect transistor (FET) devices with carrier type control are demonstrated via thickness modulation and a remote oxygen plasma surface treatment. Carrier type control in multilayer WSe 2 FET devices with Cr/Au contacts is initially demonstrated by modulating the WSe 2 thickness. The carrier type evolves with increasing WSe 2 channel thickness, being p-type, ambipolar, and n-type at thicknesses <3, ~4, and >5 nm, respectively. The thickness-dependent carrier type is attributed to changes in the bandgap of WSe 2 as a function of the thickness and the carrier band offsets relative to the metalmore » contacts. Furthermore, we present a strong hole carrier doping effect via remote oxygen plasma treatment. It non-degenerately converts n-type characteristics into p-type and enhances field-effect hole mobility by three orders of magnitude. Finally, this work demonstrates progress towards the realization of high-performance multilayer WSe 2 FETs with carrier type control, potentially extendable to other transition metal dichalcogenides, for future electronic and optoelectronic applications.« less

  13. Pioneer Design of Non-contact Synchronized Measurement Devices Using Electric and Magnetic Field Sensors

    DOE PAGES

    Yao, Wenxuan; Zhang, Yingchen; Liu, Yong; ...

    2017-04-10

    Traditional synchrophasors rely on CTs and PTs physically connected to transmission lines or buses to acquire input signals for phasor measurement. However, it is challenging to install and maintain traditional phasor measurement units in some remote areas due to lack of facilities. Since transmission lines naturally generate alternating electrical and magnetic fields in the surrounding atmosphere, this paper presents two innovative designs for non-contact synchronized measurement devices (NCSMD), including an electric field sensor based non-contact SMD (E-NCSMD) and a magnetic field sensor based non-contact SMD (M-NCSMD). Compared with conventional synchrophasors, E-NCSMD and M-NCSMD are much more flexible to be deployedmore » and have much lower costs, making E-NCSMDs and M-NCSMD highly accessible and useful for a wide array of phasor measurement applications. Laboratory and field experiment results verified the effectiveness of the designs of both E-NCSMD and M-NCSMD.« less

  14. Creating and optimizing interfaces for electric-field and photon-induced charge transfer.

    PubMed

    Park, Byoungnam; Whitham, Kevin; Cho, Jiung; Reichmanis, Elsa

    2012-11-27

    We create and optimize a structurally well-defined electron donor-acceptor planar heterojunction interface in which electric-field and/or photon-induced charge transfer occurs. Electric-field-induced charge transfer in the dark and exciton dissociation at a pentacene/PCBM interface were probed by in situ thickness-dependent threshold voltage shift measurements in field-effect transistor devices during the formation of the interface. Electric-field-induced charge transfer at the interface in the dark is correlated with development of the pentacene accumulation layer close to PCBM, that is, including interface area, and dielectric relaxation time in PCBM. Further, we demonstrate an in situ test structure that allows probing of both exciton diffusion length and charge transport properties, crucial for optimizing optoelectronic devices. Competition between the optical absorption length and the exciton diffusion length in pentacene governs exciton dissociation at the interface. Charge transfer mechanisms in the dark and under illumination are detailed.

  15. Pioneer Design of Non-contact Synchronized Measurement Devices Using Electric and Magnetic Field Sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Wenxuan; Zhang, Yingchen; Liu, Yong

    Traditional synchrophasors rely on CTs and PTs physically connected to transmission lines or buses to acquire input signals for phasor measurement. However, it is challenging to install and maintain traditional phasor measurement units in some remote areas due to lack of facilities. Since transmission lines naturally generate alternating electrical and magnetic fields in the surrounding atmosphere, this paper presents two innovative designs for non-contact synchronized measurement devices (NCSMD), including an electric field sensor based non-contact SMD (E-NCSMD) and a magnetic field sensor based non-contact SMD (M-NCSMD). Compared with conventional synchrophasors, E-NCSMD and M-NCSMD are much more flexible to be deployedmore » and have much lower costs, making E-NCSMDs and M-NCSMD highly accessible and useful for a wide array of phasor measurement applications. Laboratory and field experiment results verified the effectiveness of the designs of both E-NCSMD and M-NCSMD.« less

  16. Dynamic carrier transport modulation for constructing advanced devices with improved performance by piezotronic and piezo-phototronic effects: a brief review

    NASA Astrophysics Data System (ADS)

    Guo, Zhen; Pan, Haixi; Li, Chuanyu; Zhang, Lili; Yan, Shuai; Zhang, Wei; Yao, Jia; Tang, Yuguo; Yang, Hongbo; Wu, Yihui; Feng, Liping; Zhou, Lianqun

    2017-08-01

    Carrier generation, transport, separation, and recombination behaviors can be modulated for improving the performance of semiconductor devices by using piezotronic and piezo-phototronic effects with creating piezopotential in crystals based on non-centrosymmetric semiconductor materials such as group II-VI and III-V semiconductors and transition metal dichalcogenides (TMDCs), which have emerged as attractive materials for electronic/photonic applications because of their novel properties. Until now, much effort has been devoted to improving the performance of devices based on the aforementioned materials through modulation of the carrier behavior. However, due to existing drawbacks, it has been difficult to further enhance the device performance for a built structure. However, effective exploration of the piezotronic and piezo-phototronic effects in these semiconducting materials could pave the way to the realization of high-performance devices. In general, the effective modulation of carrier behavior dynamically in devices such as light-emitting diodes, photodetectors, solar cells, nanogenerators, and so on, remains a key challenge. Due to the polarization of ions in semiconductor materials with noncentral symmetry under external strain, a piezopotential is created considering piezotronic and piezo-photoronic effects, which could dynamically modulate charge carrier transport behaviors across p-n junctions or metal-semiconductor interfaces. Through a combination of these effects and semiconductor properties, the performance of the related devices could be improved and new types of devices such as piezoelectric field-effect transistors and sensors have emerged, with potential applications in self-driven devices for effective energy harvesting and biosensing with high sensitivity, which are different from those traditionally designed and may have potential applications in strained triggered devices. The objective of this review is to briefly introduce the corresponding mechanisms for modulating carrier behavior on the basis of piezotronic and piezo-phototronic effects in materials such as group II-VI and group III-V semiconductors and TMDCs, as well as to discuss possible solutions to effectively enhance the performance of the devices via carrier modulation.

  17. Low-voltage self-assembled monolayer field-effect transistors on flexible substrates.

    PubMed

    Schmaltz, Thomas; Amin, Atefeh Y; Khassanov, Artoem; Meyer-Friedrichsen, Timo; Steinrück, Hans-Georg; Magerl, Andreas; Segura, Juan José; Voitchovsky, Kislon; Stellacci, Francesco; Halik, Marcus

    2013-08-27

    Self-assembled monolayer field-effect transistors (SAMFETs) of BTBT functionalized phosphonic acids are fabricated. The molecular design enables device operation with charge carrier mobilities up to 10(-2) cm(2) V(-1) s(-1) and for the first time SAMFETs which operate on rough, flexible PEN substrates even under mechanical substrate bending. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Label-free detection of biomolecules with Ta2O5-based field effect devices

    NASA Astrophysics Data System (ADS)

    Branquinho, Rita Maria Mourao Salazar

    Field-effect-based devices (FEDs) are becoming a basic structural element in a new generation of micro biosensors. Their numerous advantages such as small size, labelfree response and versatility, together with the possibility of on-chip integration of biosensor arrays with a future prospect of low-cost mass production, make their development highly desirable. The present thesis focuses on the study and optimization of tantalum pentoxide (Ta2O5) deposited by rf magnetron sputtering at room temperature, and their application as sensitive layer in biosensors based on field effect devices (BioFEDs). As such, the influence of several deposition parameters and post-processing annealing temperature and surface plasma treatment on the film¡¦s properties was investigated. Electrolyte-insulator-semiconductor (EIS) field-effect-based sensors comprising the optimized Ta2O5 sensitive layer were applied to the development of BioFEDs. Enzyme functionalized sensors (EnFEDs) were produced for penicillin detection. These sensors were also applied to the label free detection of DNA and the monitoring of its amplification via polymerase chain reaction (PCR), real time PCR (RT-PCR) and loop mediated isothermal amplification (LAMP). Ion sensitive field effect transistors (ISFETs) based on semiconductor oxides comprising the optimized Ta2O5 sensitive layer were also fabricated. EIS sensors comprising Ta2O5 films produced with optimized conditions demonstrated near Nernstian pH sensitivity, 58+/-0.3 mV/pH. These sensors were successfully applied to the label-free detection of penicillin and DNA. Penicillinase functionalized sensors showed a 29+/-7 mV/mM sensitivity towards penicillin detection up to 4 mM penicillin concentration. DNA detection was achieved with 30 mV/mugM sensitivity and DNA amplification monitoring with these sensors showed comparable results to those obtained with standard fluorescence based methods. Semiconductor oxides-based ISFETs with Ta2O5 sensitive layer were also produced. Finally, the high quality and sensitivity demonstrated by Ta2O5 thin films produced at low temperature by rf magnetron sputtering allows for their application as sensitive layer in field effect sensors.

  19. MOSFET's for Cryogenic Amplifiers

    NASA Technical Reports Server (NTRS)

    Dehaye, R.; Ventrice, C. A.

    1987-01-01

    Study seeks ways to build transistors that function effectively at liquid-helium temperatures. Report discusses physics of metaloxide/semiconductor field-effect transistors (MOSFET's) and performances of these devices at cryogenic temperatures. MOSFET's useful in highly sensitive cryogenic preamplifiers for infrared astronomy.

  20. EDITORIAL: Reigniting innovation in the transistor Reigniting innovation in the transistor

    NASA Astrophysics Data System (ADS)

    Demming, Anna

    2012-09-01

    Today the transistor is integral to the electronic circuitry that wires our lives. When Bardeen and Brattain first observed an amplified signal by connecting electrodes to a germanium crystal they saw that their 'semiconductor triode' could prove a useful alternative to the more cumbersome vacuum tubes used at the time [1]. But it was perhaps William Schottky who recognized the extent of the transistor's potential. A basic transistor has three or more terminals and current across one pair of terminals can switch or amplify current through another pair. Bardeen, Brattain and Schottky were jointly awarded a Nobel Prize in 1956 'for their researches on semiconductors and their discovery of the transistor effect' [2]. Since then many new forms of the transistor have been developed and understanding of the underlying properties is constantly advancing. In this issue Chen and Shih and colleagues at Taiwan National University and Drexel University report a pyroelectrics transistor. They show how a novel optothermal gating mechanism can modulate the current, allowing a range of developments in nanoscale optoelectronics and wireless devices [3]. The explosion of interest in nanoscale devices in the 1990s inspired electronics researchers to look for new systems that can act as transistors, such as carbon nanotube [4] and silicon nanowire [5] transistors. Generally these transistors function by raising and lowering an energy barrier of kBT -1, but researchers in the US and Canada have demonstrated that the quantum interference between two electronic pathways through aromatic molecules can also modulate the current flow [6]. The device has advantages for further miniaturization where energy dissipation in conventional systems may eventually cause complications. Interest in transistor technology has also led to advances in fabrication techniques for achieving high production quantities, such as printing [7]. Researchers in Florida in the US demonstrated field effect transistor behaviour in devices fabricated from chemically reduced graphene oxide. The work provided an important step forward for graphene electronics, which has been hampered by difficulties in scaling up the mechanical exfoliation techniques required to produce the high-quality graphene often needed for functioning devices [8]. In Sweden, researchers have developed a transistor design that they fabricate using standard III-V parallel processing, which also has great promise for scaling up production. Their transistor is based on a vertical array of InAs nanowires, which provide high electron mobility and the possibility of high-speed and low-power operation [9]. Different fabrication techniques and design parameters can influence the properties of transistors. Researchers in Belgium used a new method based on high-vacuum scanning spreading resistance microscopy to study the effect of diameter on carrier profile in nanowire transistors [10]. They then used experimental data and simulations to gain a better understanding of how this influenced the transistor performance. In Japan, Y Ohno and colleagues at Nagoya University have reported how atomic layer deposition of an insulating layer of HfO2 on carbon nanotube field effect transistors can change the carrier from p-type to n-type [11]. Carrier type switching—'ambipolar behaviour'—and hysteresis of carbon nanotube network transistors can make achieving reliable device performance challenging. However studies have also suggested that the hysteretic properties may be exploited in non-volatile memory applications. A collaboration of researchers in Italy and the US demonstrated transistor and memory cell behaviour in a system based on a carbon nanotube network [13]. Their device had relatively fast programming, good endurance and the charge retention was successfully enhanced by limiting exposure to air. Progress in understanding transistor behaviour has inspired other innovations in device applications. Nanowires are notoriously sensitive to gases such as CO, opening opportunities for applications in sensing using one-dimensional nanostructure transistors [12]. The pyroelectric transistor reported in this issue represents an intriguing development for device applications of this versatile and ubiquitous electronics component [3]. As the researchers point out, 'By combining the photocurrent feature and optothermal gating effect, the wide range of response to light covering ultraviolet and infrared radiation can lead to new nanoscale optoelectronic devices that are suitable for remote or wireless applications.' In nanotechnology research and development, often the race is on to achieve reliable device behaviour in the smallest possible systems. But sometimes it is the innovations in the approach used that revolutionize technology in industry. The pyroelectric transistor reported in this issue is a neat example of the ingenious innovations in this field of research. While in research the race is never really over, as this work demonstrates the journey itself remains an inspiration. References [1] Bardeen J and Brattain W H 1948 The transistor, a semi-conductor triode Phys. Rev 74 230-1 [2] Shockley W B, Bardeen J and Brattain W H 1956 The nobel prize in physics www.nobelprize.org/nobel_prizes/physics/laureates/1956/# [3] Hsieh C-Y, Lu M-L, Chen J-Y, Chen Y-T, Chen Y-F, Shih W Y and Shih W-H 2012 Single ZnO nanowire-PZT optothermal field effect transistors Nanotechnology 23 355201 [4] Tans S J, Verschueren A R M and Dekker C 1998 Room-temperature transistor based on a single carbon nanotube Nature 393 49-52 [5] Cui Y, Zhong Z, Wang D, Wang W U and Lieber C M 2003 High performance silicon nanowire field effect transistors Nano Lett. 3 149-52 [6]Stafford C A, Cardamone D M and Mazumdar S 2007 The quantum interference effect transistor Nanotechnology 18 424014 [7] Garnier F, Hajlaoui R, Yassar A and Srivastava P 1994 All-polymer field-effect transistor realized by printing techniques Science 265 1684-6 [8] Joung D, Chunder A, Zhai L and Khondaker S I 2010 High yield fabrication of chemically reduced graphene oxide field effect transistors by dielectrophoresis Nanotechnology 21 165202 [9] Bryllert T, Wernersson L-E, L¨owgren T and Samuelson L 2006 Vertical wrap-gated nanowire transistors Nanotechnology 17 S227-30 [10] Schulze A et al 2011 Observation of diameter dependent carrier distribution in nanowire-based transistors Nanotechnology 22 185701 [11] Moriyama N, Ohno Y, Kitamura T, Kishimoto S and Mizutani T 2010 Change in carrier type in high-k gate carbon nanotube field-effect transistors by interface fixed charges Nanotechnology 21 165201 [12] Bartolomeo A D, Rinzan M, Boyd A K, Yang Y, Guadagno L, Giubileo F and Barbara P 2010 Electrical properties and memory effects of field-effect transistors from networks of single-and double-walled carbon nanotubes Nanotechnology 21 115204 [13] Liao L et al 2009 Multifunctional CuO nanowire devices: P-type field effect transistors and CO gas sensors Nanotechnology 20 085203

Top