Science.gov

Sample records for field emission-auger electron

  1. High resolution imaging and analysis of grain boundaries in steel using a field emission auger microprobe

    NASA Astrophysics Data System (ADS)

    Walmsley, J. C.; Jones, G.; Lee, B. J.; Wild, R. K.

    1997-02-01

    A standard cast low alloy steel sample, with known levels of grain boundary phosphorus and tin segregation, has been analysed after impact-fracture in a dedicated Auger microprobe. The instrument utilised a thermally assisted, Schottky diode field emission electron source. The examination illustrates the extra information that can be obtained by the high spatial resolution, in both secondary electron imaging and Auger electron spectroscopy and imaging, offered by this kind of source, when compared with more conventional tungsten and lanthanum hexaboride filaments. Cavities, with diameters of less than 1 μm, are observed on a proportion of the grain surfaces. Where cavitation occurs, tin is found to be present within the cavities and phosphorus on the areas of smooth grain boundary surface between them. During previous examinations of the same material, in a number of different laboratories, these features had not been resolved. In addition, elemental Auger mapping and analysis with a spatial resolution down to a few tens of nanometres are demonstrated by elemental imaging and spectroscopy of individual boron nitride particles on the cavitated grain boundary surfaces. It is suggested that, in the material examined, localised creep cavitation occurs during heat treatment. This is driven by residual stresses from the initial solution treatment and water quenching.

  2. Field emission electron source

    DOEpatents

    Zettl, Alexander Karlwalter; Cohen, Marvin Lou

    2000-01-01

    A novel field emitter material, field emission electron source, and commercially feasible fabrication method is described. The inventive field emission electron source produces reliable electron currents of up to 400 mA/cm.sup.2 at 200 volts. The emitter is robust and the current it produces is not sensitive to variability of vacuum or the distance between the emitter tip and the cathode. The novel emitter has a sharp turn-on near 100 volts.

  3. Unbalanced field RF electron gun

    DOEpatents

    Hofler, Alicia

    2013-11-12

    A design for an RF electron gun having a gun cavity utilizing an unbalanced electric field arrangement. Essentially, the electric field in the first (partial) cell has higher field strength than the electric field in the second (full) cell of the electron gun. The accompanying method discloses the use of the unbalanced field arrangement in the operation of an RF electron gun in order to accelerate an electron beam.

  4. Electronic field permeameter

    DOEpatents

    Chandler, Mark A.; Goggin, David J.; Horne, Patrick J.; Kocurek, Gary G.; Lake, Larry W.

    1989-01-01

    For making rapid, non-destructive permeability measurements in the field, a portable minipermeameter of the kind having a manually-operated gas injection tip is provided with a microcomputer system which operates a flow controller to precisely regulate gas flow rate to a test sample, and reads a pressure sensor which senses the pressure across the test sample. The microcomputer system automatically turns on the gas supply at the start of each measurement, senses when a steady-state is reached, collects and records pressure and flow rate data, and shuts off the gas supply immediately after the measurement is completed. Preferably temperature is also sensed to correct for changes in gas viscosity. The microcomputer system may also provide automatic zero-point adjustment, sensor calibration, over-range sensing, and may select controllers, sensors, and set-points for obtaining the most precise measurements. Electronic sensors may provide increased accuracy and precision. Preferably one microcomputer is used for sensing instrument control and data collection, and a second microcomputer is used which is dedicated to recording and processing the data, selecting the sensors and set-points for obtaining the most precise measurements, and instructing the user how to set-up and operate the minipermeameter. To provide mass data collection and user-friendly operation, the second microcomputer is preferably a lap-type portable microcomputer having a non-volatile or battery-backed CMOS memory.

  5. The electron signature of parallel electric fields

    NASA Astrophysics Data System (ADS)

    Burch, J. L.; Gurgiolo, C.; Menietti, J. D.

    1990-12-01

    Dynamics Explorer I High-Altitude Plasma Instrument electron data are presented. The electron distribution functions have characteristics expected of a region of parallel electric fields. The data are consistent with previous test-particle simulations for observations within parallel electric field regions which indicate that typical hole, bump, and loss-cone electron distributions, which contain evidence for parallel potential differences both above and below the point of observation, are not expected to occur in regions containing actual parallel electric fields.

  6. Atomic electron correlations in intense laser fields

    SciTech Connect

    Agostini, P A; DiMauro, L F; Kulander, K; Sheehy, B; Walker, B

    1998-09-03

    Abstract. This talk examines two distinct cases in strong opbical fields where electron correlation plays an important role in the dynamic.s. In the first. example, strong coupling in a two-electron-like system is manifested as an intensity-dependent splitting in the ionized electron energy distribution. This two-electron phenomenon (dubbed continuum-continuum Autler-Townes effect) is analogous to a strongly coupled two- level, one-electron atom but raises some intriguing questions regarding the exact nature of electron-electron correlation. The second case examines the evidence for two-electron ionization in the strong-field tunneling limit. Although our ability to describe the one- electron dynamics has obtained a quantitative level of understanding, a description of the two (multiple) electron ionization remains unc

  7. Atomic electron correlations in intense laser fields

    SciTech Connect

    DiMauro, L.F.; Sheehy, B.; Walker, B. Agostini, P.A. Kulander, K.C.

    1999-06-01

    This talk examines two distinct cases in strong optical fields where electron correlation plays an important role in the dynamics. In the first example, strong coupling in a two-electron-like system is manifested as an intensity-dependent splitting in the ionized electron energy distribution. This two-electron phenomenon (dubbed continuum-continuum Autler-Townes effect) is analogous to a strongly coupled two-level, one-electron atom but raises some intriguing questions regarding the exact nature of electron-electron correlation. The second case examines the evidence for two-electron ionization in the strong-field tunneling limit. Although our ability to describe the one-electron dynamics has obtained a quantitative level of understanding, a description of the two (multiple) electron ionization remains unclear. {copyright} {ital 1999 American Institute of Physics.}

  8. Atomic electron correlations in intense laser fields

    SciTech Connect

    DiMauro, L.F.; Sheehy, B.; Walker, B.; Agostini, P.A.; Kulander, K.C.

    1998-11-01

    This talk examines two distinct cases in strong optical fields where electron correlation plays an important role in the dynamics. In the first example, strong coupling in a two-electron-like system is manifested as an intensity-dependent splitting in the ionized electron energy distribution. This two-electron phenomenon (dubbed continuum-continuum Autler-Townes effect) is analogous to a strongly coupled two-level, one-electron atom but raises some intriguing questions regarding the exact nature of electron-electron correlation. The second case examines the evidence for two-electron ionization in the strong-field tunneling limit. Although their ability to describe the one-electron dynamics has obtained a quantitative level of understanding, a description of the two (multiple) electron ionization remains unclear.

  9. Atomic electron correlations in intense laser fields

    SciTech Connect

    DiMauro, L. F.; Sheehy, B.; Walker, B.; Agostini, P. A.; Kulander, K. C.

    1999-06-11

    This talk examines two distinct cases in strong optical fields where electron correlation plays an important role in the dynamics. In the first example, strong coupling in a two-electron-like system is manifested as an intensity-dependent splitting in the ionized electron energy distribution. This two-electron phenomenon (dubbed continuum-continuum Autler-Townes effect) is analogous to a strongly coupled two-level, one-electron atom but raises some intriguing questions regarding the exact nature of electron-electron correlation. The second case examines the evidence for two-electron ionization in the strong-field tunneling limit. Although our ability to describe the one-electron dynamics has obtained a quantitative level of understanding, a description of the two (multiple) electron ionization remains unclear.

  10. Nongyrotropic Electrons in Guide Field Reconnection

    NASA Technical Reports Server (NTRS)

    Wendel, D. E.; Hesse, M.; Bessho, N.; Adrian, M. L.; Kuznetsova, M.

    2016-01-01

    We apply a scalar measure of nongyrotropy to the electron pressure tensor in a 2D particle-in-cell simulation of guide field reconnection and assess the corresponding electron distributions and the forces that account for the nongyrotropy. The scalar measure reveals that the nongyrotropy lies in bands that straddle the electron diffusion region and the separatrices, in the same regions where there are parallel electric fields. Analysis of electron distributions and fields shows that the nongyrotropy along the inflow and outflow separatrices emerges as a result of multiple populations of electrons influenced differently by large and small-scale parallel electric fields and by gradients in the electric field. The relevant parallel electric fields include large-scale potential ramps emanating from the x-line and sub-ion inertial scale bipolar electron holes. Gradients in the perpendicular electric field modify electrons differently depending on their phase, thus producing nongyrotropy. Magnetic flux violation occurs along portions of the separatrices that coincide with the parallel electric fields. An inductive electric field in the electron EB drift frame thus develops, which has the effect of enhancing nongyrotropies already produced by other mechanisms and under certain conditions producing their own nongyrotropy. Particle tracing of electrons from nongyrotropic populations along the inflows and outflows shows that the striated structure of nongyrotropy corresponds to electrons arriving from different source regions. We also show that the relevant parallel electric fields receive important contributions not only from the nongyrotropic portion of the electron pressure tensor but from electron spatial and temporal inertial terms as well.

  11. Nongyrotropic Electrons in Guide Field Reconnection

    NASA Technical Reports Server (NTRS)

    Wendel, D. E.; Hesse, M.; Bessho, N.; Adrian, M. L.; Kuznetsova, M.

    2016-01-01

    We apply a scalar measure of nongyrotropy to the electron pressure tensor in a 2D particle-in-cell simulation of guide field reconnection and assess the corresponding electron distributions and the forces that account for the nongyrotropy. The scalar measure reveals that the nongyrotropy lies in bands that straddle the electron diffusion region and the separatrices, in the same regions where there are parallel electric fields. Analysis of electron distributions and fields shows that the nongyrotropy along the inflow and outflow separatrices emerges as a result of multiple populations of electrons influenced differently by large and small-scale parallel electric fields and by gradients in the electric field. The relevant parallel electric fields include large-scale potential ramps emanating from the x-line and sub-ion inertial scale bipolar electron holes. Gradients in the perpendicular electric field modify electrons differently depending on their phase, thus producing nongyrotropy. Magnetic flux violation occurs along portions of the separatrices that coincide with the parallel electric fields. An inductive electric field in the electron EB drift frame thus develops, which has the effect of enhancing nongyrotropies already produced by other mechanisms and under certain conditions producing their own nongyrotropy. Particle tracing of electrons from nongyrotropic populations along the inflows and outflows shows that the striated structure of nongyrotropy corresponds to electrons arriving from different source regions. We also show that the relevant parallel electric fields receive important contributions not only from the nongyrotropic portion of the electron pressure tensor but from electron spatial and temporal inertial terms as well.

  12. Relativistic electron in curved magnetic fields

    NASA Technical Reports Server (NTRS)

    An, S.

    1985-01-01

    Making use of the perturbation method based on the nonlinear differential equation theory, the author investigates the classical motion of a relativistic electron in a class of curved magnetic fields which may be written as B=B(O,B sub phi, O) in cylindrical coordinates (R. phi, Z). Under general astrophysical conditions the author derives the analytical expressions of the motion orbit, pitch angle, etc., of the electron in their dependence upon parameters characterizing the magnetic field and electron. The effects of non-zero curvature of magnetic field lines on the motion of electrons and applicabilities of these results to astrophysics are also discussed.

  13. Magnetic monopole field exposed by electrons

    NASA Astrophysics Data System (ADS)

    Béché, Armand; van Boxem, Ruben; van Tendeloo, Gustaaf; Verbeeck, Jo

    2014-01-01

    The experimental search for magnetic monopole particles has, so far, been in vain. Nevertheless, these elusive particles of magnetic charge have fuelled a rich field of theoretical study. Here, we created an approximation of a magnetic monopole in free space at the end of a long, nanoscopically thin magnetic needle. We experimentally demonstrate that the interaction of this approximate magnetic monopole field with a beam of electrons produces an electron vortex state, as theoretically predicted for a true magnetic monopole. This fundamental quantum mechanical scattering experiment is independent of the speed of the electrons and has consequences for all situations where electrons meet such monopole magnetic fields, as, for example, in solids. The set-up not only shows an attractive way to produce electron vortex states but also provides a unique insight into monopole fields and shows that electron vortices might well occur in unexplored solid-state physics situations.

  14. Electron acceleration during guide field magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Wan, Weigang; Lapenta, Giovanni; Delzanno, Gian Luca; Egedal, Jan

    2008-03-01

    Particle-in-cell simulations of the guide field intermittent magnetic reconnection are performed to study electron acceleration and pitch angle distributions. During the growing stage of reconnection, the power-law distribution function for the high-energy electrons and the pitch angle distributions of the low-energy electrons are obtained and compare favorably with observations by the Wind spacecraft. Direct evidence is found for the secondary acceleration during the later reconnection stage. A correlation between the generation of energetic electrons and the induced reconnection electric field is found. Energetic electrons are accelerated first around the X line, and then in the region outside the diffusion region, when the reconnection electric field has a bipolar structure. The physical mechanisms of these accelerations are discussed. The in-plane electrostatic field that traps the low-energy electrons and causes the anisotropic pitch angle distributions has been observed.

  15. The Fields of Electronics: Understanding Electronics Using Basic Physics

    NASA Astrophysics Data System (ADS)

    Morrison, Ralph

    2002-03-01

    A practical new approach that brings together circuit theory and field theory for the practicing engineer To put it frankly, the traditional education of most engineers and scientists leaves them often unprepared to handle many of the practical problems they encounter. The Fields of Electronics: Understanding Electronics Using Basic Physics offers a highly original correction to this state of affairs. Most engineers learn circuit theory and field theory separately. Electromagnetic field theory is an important part of basic physics, but because it is a very mathematical subject, the connection to everyday problems is not emphasized. Circuit theory, on the other hand, is by its nature very practical. However, circuit theory cannot describe the nature of a facility, the interconnection of many pieces of hardware, or the power grid that interfaces each piece of hardware. The Fields of Electronics offers a unique approach that brings the physics and the circuit theory together into a seamless whole for today's practicing engineers. With a clear focus on the real-world problems confronting the practitioner in the field, the book thoroughly details the principles that apply to: * Capacitors, inductors, resistors, and transformers * Utility power and circuit concepts * Grounding and shielding * Radiation * Analog and digital signals * Facilities and sites Written with very little mathematics, and requiring only some background in electronics, this book provides an eminently useful new way to understand the subject of electronics that will simplify the work of every novice, experienced engineer, and scientist.

  16. Single-electron solitons in magnetic field

    NASA Astrophysics Data System (ADS)

    Rudenko, M.; Svintsov, D.; Filippov, S.; Vyurkov, V.

    2016-12-01

    Single-electron solitons (or movable polarons) can originate near a metal surface owing to interaction with image charges. Image charges (really, surface charges) appear in response to the `instant' electron density (probability density). Interaction with metal electrodes (as well as any polarization of the environment) much affects a charge qubits functioning. To verify this theory we propose a crucial experiment based on the motion of electrons in a magnetic field in presence of weak and strong polarization.

  17. Electron holes in inhomogeneous magnetic field: Electron heating and electron hole evolution

    SciTech Connect

    Vasko, I. Y.; Agapitov, O. V.; Mozer, F. S.; Artemyev, A. V.; Drake, J. F.

    2016-05-15

    Electron holes are electrostatic non-linear structures widely observed in the space plasma. In the present paper, we analyze the process of energy exchange between electrons trapped within electron hole, untrapped electrons, and an electron hole propagating in a weakly inhomogeneous magnetic field. We show that as the electron hole propagates into the region with stronger magnetic field, trapped electrons are heated due to the conservation of the first adiabatic invariant. At the same time, the electron hole amplitude may increase or decrease in dependence on properties of distribution functions of trapped and untrapped resonant electrons. The energy gain of trapped electrons is due to the energy losses of untrapped electrons and/or decrease of the electron hole energy. We stress that taking into account the energy exchange with untrapped electrons increases the lifetime of electron holes in inhomogeneous magnetic field. We illustrate the suggested mechanism for small-amplitude Schamel's [Phys. Scr. T2, 228–237 (1982)] electron holes and show that during propagation along a positive magnetic field gradient their amplitude should grow. Neglect of the energy exchange with untrapped electrons would result in the electron hole dissipation with only modest heating factor of trapped electrons. The suggested mechanism may contribute to generation of suprathermal electron fluxes in the space plasma.

  18. Electron accumulation layer in ultrastrong magnetic field

    NASA Astrophysics Data System (ADS)

    Sammon, M.; Fu, Han; Shklovskii, B. I.

    2017-02-01

    When a three-dimensional electron gas is subjected to a very strong magnetic field, it can reach a quasi-onedimensional state in which all electrons occupy the lowest Landau level. This state is referred to as the extreme quantum limit ( EQL ) and has been studied in the physics of pulsars and bulk semiconductors. Here we present a theory of the EQL phase in electron accumulation layers created by an external electric field E at the surface of a semiconductor with a large Bohr radius such as InSb , PbTe , SrTiO 3 ( STO ) , and particularly in the LaA 1 O 3 / SrTiO 3 ( LAO / STO ) heterostructure. The phase diagram of the electron gas in the plane of the magnetic field strength and the electron surface concentration is found for different orientations of the magnetic field. We find that in addition to the quasi-classical metallic phase ( M ), there is a metallic EQL phase, as well as an insulating Wigner crystal state ( WC ). Within the EQL phase, the Thomas-Fermi approximation is used to find the electron density and the electrostatic potential profiles of the accumulation layer. Additionally, the quantum capacitance for each phase is calculated as a tool for experimental study of these phase diagrams.

  19. Landauer fields in electron transport and electromigration

    NASA Astrophysics Data System (ADS)

    Sorbello, R. S.

    1998-03-01

    Landauer's classic 1957 paper on electron transport in the presence of localized scatterers has provided a powerful approach for analysing the local transport field and the driving force for electromigration in metals. This approach leads to local fields which are associated with residual resistivity dipoles and with carrier density modulation, and these Landauer fields contribute to the electromigration driving force. The nature of these fields and their role in electromigration are critically examined and comparisons are made with the results of more elaborate quantum-mechanical theories.

  20. Reconceptualizing Electronic Field Trips: A Deweyian Perspective

    ERIC Educational Resources Information Center

    Cassady, Jerrell C.; Mullen, Laurie J.

    2006-01-01

    Electronic field tripping is a relatively new form of large-scale distance education that attempts to provide contextually rich learning materials embedded within a coherent educational content base. Using Dewey's (1943) framework for the natural learning impulses of children, we describe the potential pedagogical benefits afforded by electronic…

  1. Reconceptualizing Electronic Field Trips: A Deweyian Perspective

    ERIC Educational Resources Information Center

    Cassady, Jerrell C.; Mullen, Laurie J.

    2006-01-01

    Electronic field tripping is a relatively new form of large-scale distance education that attempts to provide contextually rich learning materials embedded within a coherent educational content base. Using Dewey's (1943) framework for the natural learning impulses of children, we describe the potential pedagogical benefits afforded by electronic…

  2. Quantitative annular dark field electron microscopy using single electron signals.

    PubMed

    Ishikawa, Ryo; Lupini, Andrew R; Findlay, Scott D; Pennycook, Stephen J

    2014-02-01

    One of the difficulties in analyzing atomic resolution electron microscope images is that the sample thickness is usually unknown or has to be fitted from parameters that are not precisely known. An accurate measure of thickness, ideally on a column-by-column basis, parameter free, and with single atom accuracy, would be of great value for many applications, such as matching to simulations. Here we propose such a quantification method for annular dark field scanning transmission electron microscopy by using the single electron intensity level of the detector. This method has the advantage that we can routinely quantify annular dark field images operating at both low and high beam currents, and under high dynamic range conditions, which is useful for the quantification of ultra-thin or light-element materials. To facilitate atom counting at the atomic scale we use the mean intensity in an annular dark field image averaged over a primitive cell, with no free parameters to be fitted. To illustrate the potential of our method, we demonstrate counting the number of Al (or N) atoms in a wurtzite-type aluminum nitride single crystal at each primitive cell over the range of 3-99 atoms.

  3. Small Field: dosimetry in electron disequilibrium region

    NASA Astrophysics Data System (ADS)

    Zhu, Timothy C.

    2010-11-01

    Small fields are more commonly used for radiation therapy because of the development of IMRT, stereotactic radiosurgery, and other special equipments such as Cyberknife and Tomotherapy. The dosimetry in the sub-centimeter field can result in substantial uncertainties because of the presence of electron disequilibrium due to the large dose gradients in the field. It is further complicated by the introduction of various radiation detectors, which usually perturb the conditions of disequilibrium. Hence additional corrections are required to maintain the dosimetric accuracy previously achieved for standard radiation dosimetry. A review of small field dosimetry provides some insights into the methods to characterize the detector convolution kernel and other methods to characterize detector perturbation effect.

  4. Electron energy relaxation of electron swarms in RF fields

    SciTech Connect

    Bzenic, S.A.; Petrovic, Z.Lj.; Maeda, K.; Makabe, T.

    1995-12-31

    Efficient modeling of RF discharges requires approximate treatment of non-local transport of electrons both in time and space. Exact solution of space and time dependent Boltzmann equation is both very difficult and time consuming when taken in conjunction with self consistent calculation of the development of electric field and so are the Monte Carlo simulations. Therefore approximate methods have been developed based on fluid models which make modeling of one dimensional RF plasmas tractable and modeling of two dimensional plasmas becomes possible. The crucial problem in such numerical models is the non local electron transport and it is treated by different approximate schemes, one of the most successful being the Relaxation Continuum Theory (RCT). Critical part of the RCT scheme is application of relaxation times for various processes. The most important is the energy relaxation lifetime but it is of limited value when high energy electrons are important component of the energy distribution function. In addition behavior of different inelastic processes will depend not on the threshold energy and energy distribution time dependence above that threshold. In this paper we follow the relaxation of the mean energy and other properties of electron swarms in the high frequency RF field. We use both the specially developed Monte Carlo simulation technique-(MCS) and the direct numeric procedure for solving the Boltzmann equation. As the basis for calculations we use the cross section set for the Reid`s ramp model which has been used extensively in tests of numerical techniques and thus the accurate values of the transport coefficients are very well known.

  5. Electric fields in Scanning Electron Microscopy simulations

    NASA Astrophysics Data System (ADS)

    Arat, K. T.; Bolten, J.; Klimpel, T.; Unal, N.

    2016-03-01

    The electric field distribution and charging effects in Scanning Electron Microscopy (SEM) were studied by extending a Monte-Carlo based SEM simulator by a fast and accurate multigrid (MG) based 3D electric field solver. The main focus is on enabling short simulation times with maintaining sufficient accuracy, so that SEM simulation can be used in practical applications. The implementation demonstrates a gain in computation speed, when compared to a Gauss-Seidel based reference solver is roughly factor of 40, with negligible differences in the result (~10-6 𝑉). In addition, the simulations were compared with experimental SEM measurements using also complex 3D sample, showing that i) the modelling of e-fields improves the simulation accuracy, and ii) multigrid method provide a significant benefit in terms of simulation time.

  6. Electron field emission for ultrananocrystalline diamond films

    NASA Astrophysics Data System (ADS)

    Krauss, A. R.; Auciello, O.; Ding, M. Q.; Gruen, D. M.; Huang, Y.; Zhirnov, V. V.; Givargizov, E. I.; Breskin, A.; Chechen, R.; Shefer, E.; Konov, V.; Pimenov, S.; Karabutov, A.; Rakhimov, A.; Suetin, N.

    2001-03-01

    Ultrananocrystalline diamond (UNCD) films 0.1-2.4 μm thick were conformally deposited on sharp single Si microtip emitters, using microwave CH4-Ar plasma-enhanced chemical vapor deposition in combination with a dielectrophoretic seeding process. Field-emission studies exhibited stable, extremely high (60-100 μA/tip) emission current, with little variation in threshold fields as a function of film thickness or Si tip radius. The electron emission properties of high aspect ratio Si microtips, coated with diamond using the hot filament chemical vapor deposition (HFCVD) process were found to be very different from those of the UNCD-coated tips. For the HFCVD process, there is a strong dependence of the emission threshold on both the diamond coating thickness and Si tip radius. Quantum photoyield measurements of the UNCD films revealed that these films have an enhanced density of states within the bulk diamond band gap that is correlated with a reduction in the threshold field for electron emission. In addition, scanning tunneling microscopy studies indicate that the emission sites from UNCD films are related to minima or inflection points in the surface topography, and not to surface asperities. These data, in conjunction with tight binding pseudopotential calculations, indicate that grain boundaries play a critical role in the electron emission properties of UNCD films, such that these boundaries: (a) provide a conducting path from the substrate to the diamond-vacuum interface, (b) produce a geometric enhancement in the local electric field via internal structures, rather than surface topography, and (c) produce an enhancement in the local density of states within the bulk diamond band gap.

  7. The Electron Losses and Fields Investigation

    NASA Astrophysics Data System (ADS)

    Bingley, L.; Angelopoulos, V.; Caron, R.; Zarifian, A.; Miller, J.; Gildemeister, A.; Schoen, B.; Tsai, E.; Berger, S.; Zhang, F.; Subramanian, A.; Chung, M.; Runov, A.; Cruce, P. R.

    2015-12-01

    The Electron Losses and Fields Investigation (ELFIN), is a joint NASA/NSF funded project at the University of California, Los Angeles focusing on eliminating the current deficit in the understanding of the innate physical processes behind geomagnetic storms. Set to launch in 2017, the mission takes advantage of a 3U+ CubeSat design to reduce cost and complexity traditionally associated with a space weather mission of this kind. This mission seeks to quantify the precipitation of relativistic electrons from the radiation belts using a pair of energetic particle detectors (EPDs). The spacecraft will also fly a fluxgate magnetometer (FGM) for determining the pitch angle distribution of the particles, which in conjunction with the EPDs will provide insight to the mechanisms responsible for their loss. Electromagnetic Ion Cyclotron (EMIC) waves are thought to be a significant contributor to the precipitation of electrons trapped in the magnetosphere; however without direct measurement to verify the exact energy range of the particles with high angular resolution, the precise role of these waves is as yet undetermined. ELFIN is unique as it is the first spacecraft that will perform direct pitch angle measurements of the high-energy electrons at the region in the ionosphere where the particles are being lost. Together with correlative measurements from THEMIS, Van Allen Probes and the upcoming ERG mission, ELFIN will provide a unique dataset of magnetospheric wave-particle interactions that will be able to contribute to a marked increase in the fidelity of current space weather models.

  8. Monte Carlo simulation of large electron fields

    PubMed Central

    Faddegon, Bruce A; Perl, Joseph; Asai, Makoto

    2010-01-01

    Two Monte Carlo systems, EGSnrc and Geant4, the latter with two different “physics lists,” were used to calculate dose distributions in large electron fields used in radiotherapy. Source and geometry parameters were adjusted to match calculated results to measurement. Both codes were capable of accurately reproducing the measured dose distributions of the 6 electron beams available on the accelerator. Depth penetration matched the average measured with a diode and parallel-plate chamber to 0.04 cm or better. Calculated depth dose curves agreed to 2% with diode measurements in the buildup region, although for the lower beam energies there was a discrepancy of up to 5% in this region when calculated results are compared to parallel-plate measurements. Dose profiles at the depth of maximum dose matched to 2-3% in the central 25 cm of the field, corresponding to the field size of the largest applicator. A 4% match was obtained outside the central region. The discrepancy observed in the bremsstrahlung tail in published results that used EGS4 is no longer evident. Simulations with the different codes and physics lists used different source energies, incident beam angles, thicknesses of the primary foils, and distance between the primary and secondary foil. The true source and geometry parameters were not known with sufficient accuracy to determine which parameter set, including the energy of the source, was closest to the truth. These results underscore the requirement for experimental benchmarks of depth penetration and electron scatter for beam energies and foils relevant to radiotherapy. PMID:18296775

  9. Field-Sequential Electronic Stereoscopic Projector

    NASA Astrophysics Data System (ADS)

    Lipton, Lenny

    1989-07-01

    Culminating a research and development project spanning many years, StereoGraphics Corporation has succeeded in bringing to market the first field-sequential electronic stereoscopic projector. The product is based on a modification of Electrohome and Barco projectors. Our design goal was to produce a projector capable of displaying an image on a six-foot (or larger) diagonal screen for an audience of 50 or 60 people, or for an individual using a simulator. A second goal was to produce an image that required only passive polarizing glasses rather than powered, tethered visors. Two major design challenges posed themselves. First, it was necessary to create an electro-optical modulator which could switch the characteristic of polarized light at field rate, and second, it was necessary to produce a bright green CRT with short persistence to prevent crosstalk between left and right fields. To solve the first problem, development was undertaken to produce the required electro-optical modulator. The second problem was solved with the help of a vendor specializing in high performance CRT's.

  10. Electron beam assisted field evaporation of insulating nanowires/tubes

    SciTech Connect

    Blanchard, N. P. Niguès, A.; Choueib, M.; Perisanu, S.; Ayari, A.; Poncharal, P.; Purcell, S. T.; Siria, A.; Vincent, P.

    2015-05-11

    We demonstrate field evaporation of insulating materials, specifically BN nanotubes and undoped Si nanowires, assisted by a convergent electron beam. Electron irradiation leads to positive charging at the nano-object's apex and to an important increase of the local electric field thus inducing field evaporation. Experiments performed both in a transmission electron microscope and in a scanning electron microscope are presented. This technique permits the selective evaporation of individual nanowires in complex materials. Electron assisted field evaporation could be an interesting alternative or complementary to laser induced field desorption used in atom probe tomography of insulating materials.

  11. Space charge effect simulation at electrons channeling in laser fields

    NASA Astrophysics Data System (ADS)

    Frolov, E. N.; Dik, A. V.; Dabagov, S. B.

    2017-07-01

    In this work we present simulation results for electron beam channeling in ponderomotive potential of laser fields, calculated with a newly created code for electron beam dynamics taking into account space charge effect. It is shown that the use of laser field allows the electron beam to be shaped including focusing and collimation.

  12. Modified electron acoustic field and energy applied to observation data

    SciTech Connect

    Abdelwahed, H. G. E-mail: hgomaa-eg@mans.edu.eg; El-Shewy, E. K.

    2016-08-15

    Improved electrostatic acoustic field and energy have been debated in vortex trapped hot electrons and fluid of cold electrons with pressure term plasmas. The perturbed higher-order modified-Korteweg-de Vries equation (PhomKdV) has been worked out. The effect of trapping and electron temperatures on the electro-field and energy properties in auroral plasmas has been inspected.

  13. Guiding-center equations for electrons in ultraintense laser fields

    NASA Astrophysics Data System (ADS)

    Moore, Joel E.; Fisch, Nathaniel J.

    1994-05-01

    The guiding-center equations are derived for electrons in arbitrarily intense laser fields also subject to external fields and ponderomotive forces. Exhibiting the relativistic mass increase of the oscillating electrons, a simple frame-invariant equation is shown to govern the behavior of the electrons for sufficiently weak background fields and ponderomotive forces. The parameter regime for which such a formulation is valid is made precise, and some predictions of the equation are checked by numerical simulation.

  14. Guiding-center equations for electrons in ultraintense laser fields

    SciTech Connect

    Moore, J.E.; Fisch, N.J.

    1994-01-01

    The guiding-center equations are derived for electrons in arbitrarily intense laser fields also subject to external fields and ponderomotive forces. Exhibiting the relativistic mass increase of the oscillating electrons, a simple frame-invariant equation is shown to govern the behavior of the electrons for sufficiently weak background fields and ponderomotive forces. The parameter regime for which such a formulation is valid is made precise, and some predictions of the equation are checked by numerical simulation.

  15. Beam induced electron cloud resonances in dipole magnetic fields

    NASA Astrophysics Data System (ADS)

    Calvey, J. R.; Hartung, W.; Makita, J.; Venturini, M.

    2016-07-01

    The buildup of low energy electrons in an accelerator, known as electron cloud, can be severely detrimental to machine performance. Under certain beam conditions, the beam can become resonant with the cloud dynamics, accelerating the buildup of electrons. This paper will examine two such effects: multipacting resonances, in which the cloud development time is resonant with the bunch spacing, and cyclotron resonances, in which the cyclotron period of electrons in a magnetic field is a multiple of bunch spacing. Both resonances have been studied directly in dipole fields using retarding field analyzers installed in the Cornell Electron Storage Ring. These measurements are supported by both analytical models and computer simulations.

  16. Electron Dynamics in Nanostructures in Strong Laser Fields

    SciTech Connect

    Kling, Matthias

    2014-09-11

    The goal of our research was to gain deeper insight into the collective electron dynamics in nanosystems in strong, ultrashort laser fields. The laser field strengths will be strong enough to extract and accelerate electrons from the nanoparticles and to transiently modify the materials electronic properties. We aimed to observe, with sub-cycle resolution reaching the attosecond time domain, how collective electronic excitations in nanoparticles are formed, how the strong field influences the optical and electrical properties of the nanomaterial, and how the excitations in the presence of strong fields decay.

  17. Classical electron mass and fields 2

    NASA Technical Reports Server (NTRS)

    Spaniol, Craig; Sutton, John F.

    1991-01-01

    Continued here is the development of a model of the electron (HYDRA), which includes rotational and magnetic terms. The atomic electron state is discussed and a comparison is made with a simple harmonic oscillator. Experimental data is reviewed that supports the possibility of a new lepton.

  18. Photon-induced near field electron microscopy

    NASA Astrophysics Data System (ADS)

    Park, Sang Tae; Zewail, Ahmed H.

    2013-09-01

    Ultrafast electron microscopy in the space and time domains utilizes a pulsed electron probe to directly map structural dynamics of nanomaterials initiated by an optical pump pulse, in imaging, di raction, spectroscopy, and their combinations. It has demonstrated its capability in the studies of phase transitions, mechanical vibrations, and chemical reactions. Moreover, electrons can directly interact with photons via the near eld component of light scattering by nanostructures, and either gain or lose light quanta discretely in energy. By energetically selecting those electrons that exchanged photon energies, we can map this photon-electron interaction, and the technique is termed photon-induced near eld electron microscopy (PINEM). Here, we give an account of the theoretical understanding of PINEM. Experimentally, nanostructures such as a sphere, cylinder, strip, and triangle have been investigated. Theoretically, time-dependent Schrodinger and Dirac equations for an electron under light are directly solved to obtain analytical solutions. The interaction probability is expressed by the mechanical work done by an optical wave on a traveling electron, which can be evaluated analytically by the near eld components of the Rayleigh scattering for small spheres and thin cylinders, and numerically by the discrete dipole approximation for other geometries. Application in visualization of plasmon elds is discussed.

  19. Bubble core field modification by residual electrons inside the bubble

    SciTech Connect

    Wu Haicheng; Xie Baisong; Zhao Xueyan; Zhang Shan; Hong Xueren; Liu Mingping

    2010-11-15

    Bubble core field modification due to the nondepleted electrons present inside the bubble is investigated theoretically. These residual electrons induce charge and current densities that can induce the bubble core field modification as well as the bubble shape change. It is found that the electrons entering into the bubble move backward at almost light speed and would weaken the transverse bubble fields. This reduces the ratio of longitudinal to transverse radius of the bubble. For the longitudinal bubble field, two effects compensate with each other because of their competition between the enhancement by the shortening of bubble shape and the reduction by the residual electrons. Therefore the longitudinal field is hardly changeable. As a comparison we perform particle-in-cell simulations and it is found that the results from theoretical consideration are consistent with simulation results. Implication of the modification of fields on bubble electron acceleration is also discussed briefly.

  20. Photon-induced near-field electron microscopy.

    PubMed

    Barwick, Brett; Flannigan, David J; Zewail, Ahmed H

    2009-12-17

    In materials science and biology, optical near-field microscopies enable spatial resolutions beyond the diffraction limit, but they cannot provide the atomic-scale imaging capabilities of electron microscopy. Given the nature of interactions between electrons and photons, and considering their connections through nanostructures, it should be possible to achieve imaging of evanescent electromagnetic fields with electron pulses when such fields are resolved in both space (nanometre and below) and time (femtosecond). Here we report the development of photon-induced near-field electron microscopy (PINEM), and the associated phenomena. We show that the precise spatiotemporal overlap of femtosecond single-electron packets with intense optical pulses at a nanostructure (individual carbon nanotube or silver nanowire in this instance) results in the direct absorption of integer multiples of photon quanta (nhomega) by the relativistic electrons accelerated to 200 keV. By energy-filtering only those electrons resulting from this absorption, it is possible to image directly in space the near-field electric field distribution, obtain the temporal behaviour of the field on the femtosecond timescale, and map its spatial polarization dependence. We believe that the observation of the photon-induced near-field effect in ultrafast electron microscopy demonstrates the potential for many applications, including those of direct space-time imaging of localized fields at interfaces and visualization of phenomena related to photonics, plasmonics and nanostructures.

  1. Field shaping in electron beam therapy.

    PubMed

    Khan, F M; Moore, V C; Levitt, S H

    1976-10-01

    In the treatment of superficial lesions with 8-13 MeV electrons, lead shields are often used to protect the underlying tissue. Measurements were made with film and ion chamber to analyse various aspects of external and internal shielding in electron beam therapy. Data were obtained on the thickness of lead required for shielding, the effect of blocking on dose-rate, electron-backscattering from lead and X-ray contamination. Practical applications of a lead clay for shielding are discussed.

  2. Dosimetry of small fields for Therac 20 electron beams.

    PubMed

    Sharma, S C; Wilson, D L; Jose, B

    1984-01-01

    The Therac 20 medical linear accelerator produces electron beams of 6, 9, 13, 17, and 20 MeV. We measured depth dose, isodose curves, and output factors for small electron fields using an ionization chamber, film, and thermoluminescent dosimeters. Tables and graphs were generated from these measurements for accurate treatment planning of various blocked and open fields.

  3. An electron Talbot-Lau interferometer and magnetic field sensing

    SciTech Connect

    Bach, Roger; Batelaan, Herman; Gronniger, Glen

    2013-12-16

    We present a demonstration of a three grating Talbot-Lau interferometer for electrons. As a proof of principle, the interferometer is used to measure magnetic fields. The device is similar to the classical Moiré deflectometer. The possibility to extend this work to build a scaled-up electron deflectometer or interferometer for sensitive magnetic field sensing is discussed.

  4. Electron Rescattering in a Bicircular Laser Field

    NASA Astrophysics Data System (ADS)

    Hasović, E.; Becker, W.; Milošević, D. B.

    2017-04-01

    We investigate high-order above-threshold ionization (HATI) of krypton atoms by a bicircular laser field, which consists of two coplanar co- or counter-rotating circularly polarized fields of frequencies rw and sw. We show that the photoelectron spectra in the HATI process, presented in the momentum plane, exhibit the same discrete rotational symmetry as the driving field. We also analyze HATI spectra for various combinations of the intensities of two field components for co- and counter-rotating fields. We find that the appearance of high-energy plateau for the counter-rotating case is vary sensitive to the laser intensity ratio, while the plateau is always absent for the co-rotating bicircular field.

  5. Generation of superhot electrons by intense field structures

    SciTech Connect

    Salomaa, R. R. E.; Karttunen, S. J.; Paettikangas, T. J. H.; Mulser, P.; Schneider, W.

    1998-02-20

    Strong, localized electrostatic fields created in laser plasma interactions act as a source of hot electrons. We have derived analytical formulas based on adiabatic invariants for explaining of the main characteristics of the electron spectra found in test particle calculations and in full wave-particle simulations. The electrons are treated relativistically. Simple models for phenomenological description of nonlinear wave damping are discussed.

  6. Field emitted electron trajectories for the CEBAF cavity

    SciTech Connect

    Yunn, B.C.; Sundelin, R.M.

    1993-06-01

    Electromagnetic fields of the superconducting 5-cell CEBAF cavity with its fundamental power coupler are solved numerically with URMEL and MAFIA codes. Trajectories of field emitted electrons following the Fowler-Nordheim relation are studied with a numerical program which accepts the URMEL/MAFIA fields. Emission sites and gradients are determined for those electrons which can reach the cold ceramic window either directly or by an energetic backscattering. The peak and average impact energy and current are found. The generation of dark current by field emitted electrons has also been studied, and its relevance to CEBAF operation is briefly discussed.

  7. Intense electron beam propagation across a magnetic field

    SciTech Connect

    Zhang, X.; Striffler, C.D.; Yao, R.L.; Destler, W.W.; Reiser, M.P.

    1989-01-01

    In this paper we consider the propagation of an intense electron-ion beam across an applied magnetic field. In the absence of the applied field, the beam system is in a Bennett equilibrium state that involves electrons with both large axial and thermal velocities and a cold stationary space-charge neutralizing ion species. Typical parameters under consideration are V{sub o} {approximately} 1 MV, I {approximately} 5 kA, T{sub e} {approximately} 100 keV, and beam radii {approximately} 1 cm. We find that in the intense beam regime, the propagation is limited due to space-charge depression caused by the deflection of the electron beam by the transverse field. This critical field is of the order of the peak self-magnetic field of the electron beam which is substantially higher than the single particle cut-off field. 8 refs., 3 figs.

  8. Electron trajectories in pulsed radiation fields

    SciTech Connect

    Einwohner, T.; Lippmann, B.A.

    1987-05-01

    The work reported here analyzes the dynamical behavior of an electron, initially at rest, when subjected to a radiation pulse of arbitrary, but integrable, shape. This is done by a general integration procedure that has been programmed in VAXIMA. Upon choosing a specific shape for the pulse, VAXIMA finds both the space-time trajectory and the four-momentum of the electron. These are obtained in analytic or numerical form - or both - at the choice of the user. Several examples of analytical and numerical solutions, for different pulse shapes, are given.

  9. EFFECT OF SOLENOID FIELD ERRORS ON ELECTRON BEAM TEMPERATURES IN THE RHIC ELECTRON COOLER.

    SciTech Connect

    MONTAG,C.KEWISCH,J.

    2003-05-12

    As part of a future upgrade to the Relativistic Heavy Ion Collider (RHIC), electron cooling is foreseen to decrease ion beam emittances. Within the electron cooling section, the ''hot'' ion beam is immersed in a ''cold'' electron beam. The cooling effect is further enhanced by a solenoid field in the cooling section, which forces the electrons to spiral around the field lines with a (Larmor) radius of 10 micrometers, reducing the effective transverse temperature by orders of magnitude. Studies of the effect of solenoid field errors on electron beam temperatures are reported.

  10. Emittance of a Field Emission Electron Source

    DTIC Science & Technology

    2010-01-05

    mode within the wiggler in order for the laser threshold to be reached. The mode is characterized by a waist radius w and a divergence , the product...the field line red or curved compared to a massive particle trajectory blue or straight. The field lines originate on the surface at s ,zs and...emitter surface s ,zs and along the evalu- ation plane h ,zh. The equivalent sphere characterized by a , is also shown. The red curved line

  11. Enhancement of fast electron energy deposition by external magnetic fields

    NASA Astrophysics Data System (ADS)

    Honrubia, J. J.; Murakami, M.; Mima, K.; Johzaki, T.; Sunahara, A.; Nagatomo, H.; Fujioka, S.; Shiraga, H.; Azechi, H.

    2016-03-01

    Recently, generation of external magnetic fields of a few kT has been reported [Fujioka et al. Scientific Reports 2013 3 1170]. These fields can be used in fast ignition to mitigate the large fast electron divergence. In this summary, two fast ignition applications are briefly outlined. The first one deals with electron guiding by external B-fields applied at the end of the shell implosion of a re-entrant cone target. Preliminary results show that the B-field strength at the time of peak ρR may be sufficiently high for fast electron guiding. The second application deals with guiding of fast electrons in magnetized wires surrounded by plasma. Results show a significant enhancement of electron energy deposition at the end of the wire, which is particularly important for low-Z wires.

  12. Wearable magnetic field sensors for flexible electronics.

    PubMed

    Melzer, Michael; Mönch, Jens Ingolf; Makarov, Denys; Zabila, Yevhen; Cañón Bermúdez, Gilbert Santiago; Karnaushenko, Daniil; Baunack, Stefan; Bahr, Falk; Yan, Chenglin; Kaltenbrunner, Martin; Schmidt, Oliver G

    2015-02-18

    Highly flexible bismuth Hall sensors on polymeric foils are fabricated, and the key optimization steps that are required to boost their sensitivity to the bulk value are identified. The sensor can be bent around the wrist or positioned on the finger to realize an interactive pointing device for wearable electronics. Furthermore, this technology is of great interest for the rapidly developing market of -eMobility, for optimization of eMotors and magnetic bearings.

  13. Electron transport in argon in crossed electric and magnetic fields

    PubMed

    Ness; Makabe

    2000-09-01

    An investigation of electron transport in argon in the presence of crossed electric and magnetic fields is carried out over a wide range of values of electric and magnetic field strengths. Values of mean energy, ionization rate, drift velocity, and diffusion tensor are reported here. Two unexpected phenomena arise; for certain values of electric and magnetic field we find regions where the swarm mean energy decreases with increasing electric fields for a fixed magnetic field and regions where swarm mean energy increases with increasing magnetic field for a fixed electric field.

  14. An Electronic Weather Vane for Field Science

    ERIC Educational Resources Information Center

    Burman, J.; Talbert, R.; Carlton, K.

    2014-01-01

    This paper details the construction of a weather vane for the measurement of wind direction in field situations. The purpose of its construction was to analyse how wind direction affected the attractiveness of an insect pheromone in a dynamic outdoor environment, where wind could be a significant contributor to odour movement. The apparatus…

  15. An Electronic Weather Vane for Field Science

    ERIC Educational Resources Information Center

    Burman, J.; Talbert, R.; Carlton, K.

    2014-01-01

    This paper details the construction of a weather vane for the measurement of wind direction in field situations. The purpose of its construction was to analyse how wind direction affected the attractiveness of an insect pheromone in a dynamic outdoor environment, where wind could be a significant contributor to odour movement. The apparatus…

  16. Amplification of Relativistic Electron Bunches by Acceleration in Laser Fields

    NASA Astrophysics Data System (ADS)

    Braenzel, J.; Andreev, A. A.; Abicht, F.; Ehrentraut, L.; Platonov, K.; Schnürer, M.

    2017-01-01

    Direct acceleration of electrons in a coherent, intense light field is revealed by a remarkable increase of the electron number in the MeV energy range. Laser irradiation of thin polymer foils with a peak intensity of ˜1 ×1020 W /cm2 releases electron bunches along the laser propagation direction that are postaccelerated in the partly transmitted laser field. They are decoupled from the laser field at high kinetic energies, when a second foil target at an appropriate distance prevents their subsequent deceleration in the declining laser field. The scheme is established with laser pulses of high temporal contrast (1010 peak to background ratio) and two ultrathin polymer foils at a distance of 500 μ m . 2D particle in cell simulations and an analytical model confirm a significant change of the electron spectral distribution due to the double foil setup, which leads to an amplification of about 3 times of the electron number around a peak at 1 MeV electron energy. The result verifies a theoretical concept of direct electron bunch acceleration in a laser field that is scalable to extreme acceleration potential gradients. This method can be used to enhance the density and energy spread of electron bunches injected into postaccelerator stages of laser driven radiation sources.

  17. Deficiencies of active electronic radiation protection dosimeters in pulsed fields.

    PubMed

    Ankerhold, U; Hupe, O; Ambrosi, P

    2009-07-01

    Nowadays nearly all radiation fields used for X-ray diagnostics are pulsed. These fields are characterised by a high dose rate during the pulse and a short pulse duration in the range of a few milliseconds. The use of active electronic dosimeters has increased in the past few years, but these types of dosimeters might possibly not measure reliably in pulsed radiation fields. Not only personal dosimeters but also area dosimeters that are used mainly for dose rate measurements are concerned. These cannot be substituted by using passive dosimeter types. The characteristics of active electronic dosimeters determined in a continuous radiation field cannot be transferred to those in pulsed fields. Some provisional measurements with typical electronic dosimeters in pulsed radiation fields are presented to reveal this basic problem.

  18. Attosecond Electron Wave Packet Dynamics in Strong Laser Fields

    SciTech Connect

    Johnsson, P.; Remetter, T.; Varju, K.; L'Huillier, A.; Lopez-Martens, R.; Valentin, C.; Balcou, Ph.; Kazamias, S.; Mauritsson, J.; Gaarde, M. B.; Schafer, K. J.; Mairesse, Y.; Wabnitz, H.; Salieres, P.

    2005-07-01

    We use a train of sub-200 attosecond extreme ultraviolet (XUV) pulses with energies just above the ionization threshold in argon to create a train of temporally localized electron wave packets. We study the energy transfer from a strong infrared (IR) laser field to the ionized electrons as a function of the delay between the XUV and IR fields. When the wave packets are born at the zero crossings of the IR field, a significant amount of energy ({approx}20 eV) is transferred from the field to the electrons. This results in dramatically enhanced above-threshold ionization in conditions where the IR field alone does not induce any significant ionization. Because both the energy and duration of the wave packets can be varied independently of the IR laser, they are valuable tools for studying and controlling strong-field processes.

  19. Evolution of electron phase space holes in inhomogeneous magnetic fields

    NASA Astrophysics Data System (ADS)

    Kuzichev, I. V.; Vasko, I. Y.; Agapitov, O. V.; Mozer, F. S.; Artemyev, A. V.

    2017-03-01

    Electron phase space holes (EHs) are electrostatic solitary waves that are widely observed in the space plasma often permeated by inhomogeneous magnetic fields. Understanding of the EH evolution in inhomogeneous magnetic fields is critical for accurate interpretations of spacecraft data. To study this evolution, we use 1.5-D gyrokinetic electrostatic Vlasov code (magnetized electrons and immobile ions) with periodic boundary conditions. We find that EHs propagating into stronger (weaker) magnetic field are decelerated (accelerated) with deceleration (acceleration) rate dependent on the magnetic field gradient. Remarkably, decelerating EHs are reflected at the magnetic field dependent only on EH parameters (independent of the magnetic field gradient). A magnetic field inhomogeneity results in development of a net potential drop along EHs. Our simulations suggest that slow EHs recently observed in the plasma sheet boundary layer can appear due to braking of initially fast EHs by magnetic field gradients and that a large number of even fast EHs can contribute to macroscopic parallel potential drops.

  20. Electron holography for fields in solids: problems and progress.

    PubMed

    Lichte, Hannes; Börrnert, Felix; Lenk, Andreas; Lubk, Axel; Röder, Falk; Sickmann, Jan; Sturm, Sebastian; Vogel, Karin; Wolf, Daniel

    2013-11-01

    Electron holography initially was invented by Dennis Gabor for solving the problems raised by the aberrations of electron lenses in Transmission Electron Microscopy. Nowadays, after hardware correction of aberrations allows true atomic resolution of the structure, for comprehensive understanding of solids, determination of electric and magnetic nanofields is the most challenging task. Since fields are phase objects in the TEM, electron holography is the unrivaled method of choice. After more than 40 years of experimental realization and steady improvement, holography is increasingly contributing to these highly sophisticated and essential questions in materials science, as well to the understanding of electron waves and their interaction with matter.

  1. Dynamics of emitting electrons in strong laser fields

    SciTech Connect

    Sokolov, Igor V.; Naumova, Natalia M.; Nees, John A.; Yanovsky, Victor P.; Mourou, Gerard A.

    2009-09-15

    A new derivation of the motion of a radiating electron is given, leading to a formulation that differs from the Lorentz-Abraham-Dirac equation and its published modifications. It satisfies the proper conservation laws. Particularly, it conserves the generalized momentum, eliminating the symmetry-breaking runaway solution. The equation allows a consistent calculation of the electron current, the radiation effect on the electron momentum, and the radiation itself, for a single electron or plasma electrons in strong electromagnetic fields. The equation is then applied to a simulation of a strong laser pulse interaction with a plasma target. Some analytical solutions are also provided.

  2. Graphene based field effect transistors: Efforts made towards flexible electronics

    NASA Astrophysics Data System (ADS)

    Sharma, Bhupendra K.; Ahn, Jong-Hyun

    2013-11-01

    The integration of flexibility in existing electronics has been realized as a key point for practical application of unusual format electronics that can extend the application limit of biomedical equipments and of course daily routine kind of electronic devices. Graphene showed the great potentiality for flexible format owing to its excellent electronic, mechanical and optical properties. Field effect transistor (FET) is a basic unit for digital and analog electronics thus enormous efforts have been attempted to fabricate the flexible FETs in order to get the high performance. This article reviews the recent development of graphene based FETs including the fabrication and active layers material compatibility in flexible format.

  3. An electronic weather vane for field science

    NASA Astrophysics Data System (ADS)

    Burman, J.; Talbert, R.; Carlton, K.

    2014-01-01

    This paper details the construction of a weather vane for the measurement of wind direction in field situations. The purpose of its construction was to analyse how wind direction affected the attractiveness of an insect pheromone in a dynamic outdoor environment, where wind could be a significant contributor to odour movement. The apparatus described provides a cheap and easy-to-construct alternative to commercial wind vanes, and was shown to provide accurate and continuous measurement of wind direction.

  4. Kinetics of plasma electrons in static and rf fields

    SciTech Connect

    Ivanov, Y.A.; Lebedev, Y.A.; Polak, L.S.

    1980-01-01

    The effect of the frequency of the field producing a plasma on the isotropic part of the electron energy distribution is analyzed. Analytic solutions of the Boltzmann equation are derived for high-energy tail of the electron energy distribution for static and rf fields. The results show that the shape of the tail of the distribution can be effectively controlled by changing the ratio of the field frequency to the effective frequency with which electrons collide with heavy particles and by choosing the appropriate dependence of the cross section for elastic scattering of electrons by heavy particles on the electron energy (by appropriate choice of the gas from which the plasma is formed). These results agree with experimental results in the literature.

  5. Potential scattering of electrons in a quantized radiation field

    NASA Astrophysics Data System (ADS)

    Bergou, J.; Ehlotzky, F.

    1986-05-01

    Potential scattering of electrons in a strong laser field is reconsidered. The laser beam is described by a quantized single-mode plane-wave field with a finite number of quanta in the mode. The scattering amplitude is expanded in powers of the potential, and the first two Born terms are considered. It is shown that in the limit of an infinite number of field quanta, the Kroll-Watson approximation is recovered. Additional insight is gained into the validity of this low-frequency theorem. The approach rests on the introduction of electron-dressed quantized-field states. Relations to earlier work are indicated.

  6. Applications of 1 MV field-emission transmission electron microscope.

    PubMed

    Tonomura, Akira

    2003-01-01

    A newly developed 1 MV field-emission transmission electron microscope has recently been applied to the field of superconductivity by utilizing its bright and monochromatic field-emission electron beam. This microscope allows individual magnetic vortices inside high-Tc superconductors to be observed, thus, opening the way to investigate the unusual behaviour of vortices, which reflects the anisotropic layered structure of these superconducting materials. One example is the observation of the arrangements of chain vortex lines that are formed when a magnetic field is applied obliquely to the layer plane of the materials.

  7. Electron-Ion collisions in relativistically strong laser fields

    SciTech Connect

    Balakin, A. A.

    2008-04-15

    Electron-ion collisions in relativistically strong electromagnetic fields are considered. Analytical and numerical analyses both show that all qualitative effects characteristic of collisions in nonrelativistic strong fields [1-3] occur at relativistic intensities of an electromagnetic wave as well. Expressions for Joule plasma heating and for the energy distributions of fast particles are derived from simple analytic considerations and are confirmed by numerical simulations. It is found, in particular, that, due to the relativistic increase in the mass of a scattered electron, Joule heating in ultrarelativistic fields becomes more intense as the field amplitude grows.

  8. Radiation from electrons in graphene in strong electric field

    SciTech Connect

    Yokomizo, N.

    2014-12-15

    We study the interaction of electrons in graphene with the quantized electromagnetic field in the presence of an applied uniform electric field using the Dirac model of graphene. Electronic states are represented by exact solutions of the Dirac equation in the electric background, and amplitudes of first-order Feynman diagrams describing the interaction with the photon field are calculated for massive Dirac particles in both valleys. Photon emission probabilities from a single electron and from a many-electron system at the charge neutrality point are derived, including the angular and frequency dependence, and several limiting cases are analyzed. The pattern of photon emission at the Dirac point in a strong field is determined by an interplay between the nonperturbative creation of electron–hole pairs and spontaneous emission, allowing for the possibility of observing the Schwinger effect in measurements of the radiation emitted by pristine graphene under DC voltage.

  9. Localized electron heating by strong guide-field magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Guo, Xuehan; Inomoto, Michiaki; Sugawara, Takumichi; Yamasaki, Kotaro; Ushiki, Tomohiko; Ono, Yasushi

    2015-10-01

    Localized electron heating of magnetic reconnection was studied under strong guide-field using two merging spherical tokamak plasmas in the University of Tokyo Spherical Tokamak experiment. Our new slide-type two-dimensional Thomson scattering system is documented for the first time the electron heating localized around the X-point. Shape of the high electron temperature area does not agree with that of energy dissipation term Et.jt . If we include a guide-field effect term Bt/(Bp+αBt) for Et.jt , the energy dissipation area becomes localized around the X-point, suggesting that the electrons are accelerated by the reconnection electric field parallel to the magnetic field and thermalized around the X-point.

  10. Collisional excitation of electron Landau levels in strong magnetic fields

    NASA Technical Reports Server (NTRS)

    Langer, S. H.

    1981-01-01

    The cross sections for the excitation and deexcitation of the quantized transverse energy levels of an electron in a magnetic field are calculated for electron-proton and electron-electron collisions in light of the importance of the cross sections for studies of X-ray pulsar emission. First-order matrix elements are calculated using the Dirac theory of the electron, thus taking into account relativistic effects, which are believed to be important in accreting neutron stars. Results for the collisional excitation of ground state electrons by protons are presented which demonstrate the importance of proton recoil and relativistic effects, and it is shown that electron-electron excitations may contribute 10 to 20% of the excitation rate from electron-proton scattering in a Maxwellian plasma. Finally, calculations of the cross section for electron-proton small-angle scattering are presented which lead to relaxation rates for the electron velocity distribution which are modified by the magnetic field, and to a possible increase in the value of the Coulomb logarithm.

  11. Positional control of plasmonic fields and electron emission

    SciTech Connect

    Word, R. C.; Fitzgerald, J. P. S.; Könenkamp, R.

    2014-09-15

    We report the positional control of plasmonic fields and electron emission in a continuous gap antenna structure of sub-micron size. We show experimentally that a nanoscale area of plasmon-enhanced electron emission can be motioned by changing the polarization of an exciting optical beam of 800 nm wavelength. Finite-difference calculations are presented to support the experiments and to show that the plasmon-enhanced electric field distribution of the antenna can be motioned precisely and predictively.

  12. Electric fields and electron acceleration above discrete auroras

    NASA Astrophysics Data System (ADS)

    Kropotkin, A. P.

    1981-08-01

    It is shown that, above the auroral ionosphere, the appearance of anomalous resistance on various sections of the field lines during the passage of longitudinal current must give rise to a pattern of electric fields with a strong transverse component of about 1 V/m that does not penetrate into the ionosphere. Spectrograms of the electron precipitations must have the form of inverted 'V's'. The energy flux transported by accelerated electrons is proportional to the square of the accelerating potential.

  13. Modeling and Electrostatic Focusing for a Field Emission Electron Source

    DTIC Science & Technology

    2013-06-01

    mechanisms of the beam formation, transport, field emission energy distributions, the effects of the emission properties, and parametric studies are...metals, the valence electrons possess the conduction energy band and are described by Sommerfeld free electron gas model with Fermi- Dirac statistics...which defines the electrons energy distribution. For the emission from not electrical conductors the Sommerfeld theory of metals with Fermi- Dirac

  14. Electron acceleration and kinetic energy tailoring via ultrafast terahertz fields.

    PubMed

    Greig, S R; Elezzabi, A Y

    2014-11-17

    We propose a mechanism for tuning the kinetic energy of surface plasmon generated electron pulses through control of the time delay between a pair of externally applied terahertz pulses. Varying the time delay results in translation, compression, and broadening of the kinetic energy spectrum of the generated electron pulse. We also observe that the electrons' kinetic energy dependence on the carrier envelope phase of the surface plasmon is preserved under the influence of a terahertz electric field.

  15. Relativistic electron vortex beams in a constant magnetic field

    NASA Astrophysics Data System (ADS)

    Rajabi, Ahmad; Berakdar, Jamal

    2017-06-01

    We present solutions for the Dirac equation in the form of Bessel or Laguerre-Gaussian beams for, respectively, a free electron or an electron subject to a longitudinal constant magnetic field. We calculate the probability and the current distributions and find a strong dependence on the spin angular momentum and the orbital angular momentum of the relativistic electron beam. The role of the intrinsic spin-orbital coupling is investigated.

  16. Nonponderomotive electron acceleration in ultrashort surface-plasmon fields

    SciTech Connect

    Racz, Peter; Dombi, Peter

    2011-12-15

    We investigate the nonponderomotive nature of ultrafast plasmonic electron acceleration in strongly decaying electromagnetic fields generated by few-cycle and single-cycle femtosecond laser pulses. We clearly identify the conditions contributing to nonponderomotive acceleration and establish fundamental scaling laws and carrier-envelope phase effects. These all-optically accelerated compact, femtosecond electron sources can be utilized in contemporary ultrafast methods.

  17. Polarization of radiation of electrons in highly turbulent magnetic fields

    NASA Astrophysics Data System (ADS)

    Prosekin, A. Yu.; Kelner, S. R.; Aharonian, F. A.

    2016-09-01

    We study the polarization properties of the jitter and synchrotron radiation produced by electrons in highly turbulent anisotropic magnetic fields. The net polarization is provided by the geometry of the magnetic field the directions of which are parallel to a certain plane. Such conditions may appear in the relativistic shocks during the amplification of the magnetic field through the so-called Weibel instability. While the polarization properties of the jitter radiation allows extraction of direct information on the turbulence spectrum as well as the geometry of magnetic field, the polarization of the synchrotron radiation reflects the distribution of the magnetic field over its strength. For the isotropic distribution of monoenergetic electrons, we found that the degree of polarization of the synchrotron radiation is larger than the polarization of the jitter radiation. For the power-law energy distribution of electrons the relation between the degree of polarization of synchrotron and jitter radiation depends on the spectral index of the distribution.

  18. Magnetic field effects in electron systems with imperfect nesting

    NASA Astrophysics Data System (ADS)

    Sboychakov, A. O.; Rakhmanov, A. L.; Kugel, K. I.; Rozhkov, A. V.; Nori, Franco

    2017-01-01

    We analyze the effects of an applied magnetic field on the phase diagram of a weakly correlated electron system with imperfect nesting. The Hamiltonian under study describes two bands: electron and hole ones. Both bands have spherical Fermi surfaces, whose radii are slightly mismatched due to doping. These types of models are often used in the analysis of magnetic states in chromium and its alloys, superconducting iron pnictides, AA-type bilayer graphene, borides, etc. At zero magnetic field, the uniform ground state of the system turns out to be unstable against electronic phase separation. The applied magnetic field affects the phase diagram in several ways. In particular, the Zeeman term stabilizes new antiferromagnetic phases. It also significantly shifts the boundaries of inhomogeneous (phase-separated) states. At sufficiently high fields, the Landau quantization gives rise to oscillations of the order parameters and of the Néel temperature as a function of the magnetic field.

  19. Magnetic field measurement and compensation in the Recycler Electron Cooler

    SciTech Connect

    Tupikov, V.; Kazakevich, Grigory M.; Kroc, T.K.; Nagaitsev, S.; Prost, L.; Shemyakin, A.; Schmidt, C.W.; Sutherland, M.; Warner, A.; /Fermilab

    2005-09-01

    Cooling of 8.9-GeV/c antiprotons in the Recycler Electron Cooler requires a round 4.34-MeV electron beam with a small angular spread propagating through a 20-m long cooling section. To confine the electron beam tightly and to keep its total transverse angles below 0.2 mrad the cooling section is immersed in a solenoidal field of 50-200 G. The field was measured with a compass-based sensor (transversal) and a hall-probe (longitudinal) after installation of the solenoids into the Recycler tunnel. For the field strength of 105 G, the transverse field components were compensated to the level that provided corresponding dipole beam oscillations below 0.1 mrad, which in turn allowed the first cooling of antiprotons in the GeV energy range. This paper discusses the field measurements and compensation scheme including the results of dipole oscillation measurements.

  20. Magnetic Field Measurement and Compensation in the Recycler Electron Cooler

    SciTech Connect

    Tupikov, V.; Kroc, T. K.; Nagaitsev, S.; Prost, L.; Shemyakin, A.; Schmidt, C. W.; Sutherland, M.; Warner, A.; Kazakevich, G.

    2006-03-20

    Cooling of 8.9-GeV/c antiprotons in the Recycler Electron Cooler requires a round 4.34-MeV electron beam with a small angular spread propagating through a 20-m long cooling section. To confine the electron beam tightly and to keep its total transverse angles below 0.2 mrad the cooling section is immersed in a solenoidal field of 50-200 G. The field was measured with a compass-based sensor (transversal) and a hall-probe (longitudinal) after installation of the solenoids into the Recycler tunnel. For the field strength of 105 G, the transverse field components were compensated to the level that provided corresponding dipole beam oscillations below 0.1 mrad, which in turn allowed the first cooling of antiprotons in the GeV energy range. This paper discusses the field measurements and compensation scheme including the results of dipole oscillation measurements.

  1. Photo-enhanced field electron emission of cadmium sulfide nanowires

    NASA Astrophysics Data System (ADS)

    Zhang, Jinling; Lv, Yinghua; Liu, Ning; Li, Yanqing; Gao, Peng; Bai, Xuedong

    2011-11-01

    The response of field electron emission of cadmium sulfide (CdS) nanowires (NWs) to visible light has been investigated. It is found that, upon light illumination, the turn-on voltage drops, emission current increases obviously, and the Fowler-Nordheim behavior deviates from a straight line. A process of field emission coupled with semiconducting properties of CdS NWs is proposed. Photon-excited electron transition from the valence band to the conductance band of CdS nanowires increases the quantity of emitting electrons, and the photoemission decreases the effective work function of CdS emitters, which largely enhances the field emission performance. The response of field emission of CdS NWs to light illumination suggests an approach for tuning field emission of semiconductor emitters.

  2. High-field electron transport in doped ZnO

    NASA Astrophysics Data System (ADS)

    Ardaravičius, L.; Kiprijanovič, O.; Liberis, J.; Ramonas, M.; Šermukšnis, E.; Matulionis, A.; Toporkov, M.; Avrutin, V.; Özgür, Ü.; Morkoç, H.

    2017-06-01

    Current-voltage characteristics have been measured for ZnO:Ga and Zn:Sb epitaxial layers with electron densities ranging from 1.4× {{10}17} cm-3 to 1.1× {{10}20} cm-3. Two-terminal samples with coplanar electrodes demonstrate virtually ohmic behavior until thermal effects come into play. Soft damage of the samples takes place at high currents. The threshold power (per electron) for the damage is nearly inversely proportional to the electron density over a wide range of electron densities. Pulsed voltage is applied in order to minimize the thermal effects, and thus an average electric field of 150 kV cm-1 is reached in some samples subjected to 2 ns voltage pulses. The results are treated in terms of electron drift velocity estimated from the data on current and electron density under the assumption of uniform electric field. The highest velocity of  ˜1.5× {{10}7} cm s-1 is found at an electric field of  ˜100 kV cm-1 for the sample with an electron density of 1.4× {{10}17} cm-3. The non-ohmic behavior due to hot-electron effects is weak, and the dependence of the electron drift velocity on the doping resembles the variation of mobility.

  3. Electron holographic visualization of collective motion of electrons through electric field variation.

    PubMed

    Shindo, Daisuke; Aizawa, Shinji; Akase, Zentaro; Tanigaki, Toshiaki; Murakami, Yasukazu; Park, Hyun Soon

    2014-08-01

    This study demonstrates the accumulation of electron-induced secondary electrons by utilizing a simple geometrical configuration of two branches of a charged insulating biomaterial. The collective motion of these secondary electrons between the branches has been visualized by analyzing the reconstructed amplitude images obtained using in situ electron holography. In order to understand the collective motion of secondary electrons, the trajectories of these electrons around the branches have also been simulated by taking into account the electric field around the charged branches on the basis of Maxwell's equations.

  4. Electrons Confined with an Axially Symmetric Magnetic Mirror Field

    SciTech Connect

    Higaki, H.; Ito, K.; Kira, K.; Okamoto, H.

    2008-08-08

    Low energy non-neutral electron plasmas were confined with an axially symmetric magnetic mirror field and an electrostatic potential to investigate the basic confinement properties of a simple magnetic mirror trap. As expected the confinement time became longer as a function of the mirror ratio. The axial electrostatic oscillations of a confined electron plasma were also observed. Obtained results suggested an improved scheme to accumulate low energy charged particles with the use of a magnetic mirror field, which would enable the investigation of electron-positron plasmas.

  5. Mott scattering of polarized electrons in a strong laser field

    SciTech Connect

    Manaut, B.; Taj, S.; Attaourti, Y.

    2005-04-01

    We present analytical and numerical results of the relativistic calculation of the transition matrix element S{sub fi} and differential cross sections for Mott scattering of initially polarized Dirac particles (electrons) in the presence of a strong laser field with linear polarization. We use exact Dirac-Volkov wave functions to describe the dressed electrons and the collision process is treated in the first Born approximation. The influence of the laser field on the degree of polarization of the scattered electron is reported.

  6. ELECTRON COOLING IN THE PRESENCE OF UNDULATOR FIELDS

    SciTech Connect

    FEDOTOV,A.; BEN-ZVI, I.; ET AL.

    2007-06-25

    The design of the higher-energy cooler for Relativistic Heavy Ion Collider (RHIC) recently adopted a non-magnetized approach which requires a low temperature electron beam. However, to avoid significant loss of heavy ions due to recombination with electrons in the cooling section, the temperature of the electron beam should be high. These two contradictory requirements are satisfied in the design of the RWIC cooler with the help of the undulator fields. The model of the friction force in the presence of an undulator field was benchmarked vs. direct numerical simulations with an excellent agreement. Here, we discuss cooling dynamics simulations with a helical undulator, including recombination suppression and resulting luminosities.

  7. Influence of oblique magnetic field on electron cross-field transport in a Hall effect thruster

    SciTech Connect

    Miedzik, Jan; Daniłko, Dariusz; Barral, Serge

    2015-04-15

    The effects of the inclination of the magnetic field with respect to the channel walls in a Hall effect thruster are numerically studied with the use of a one-dimensional quasi-neutral Particle-In-Cell model with guiding center approximation of electron motion along magnetic lines. Parametric studies suggest that the incidence angle strongly influences electron transport across the magnetic field. In ion-focusing magnetic topologies, electrons collide predominantly on the side of the magnetic flux tube closer to the anode, thus increasing the electron cross-field drift. The opposite effect is observed in ion-defocussing topology.

  8. Radiation of Electron in the Field of Plane Light Wave

    SciTech Connect

    Zelinsky, A.; Drebot, I.V.; Grigorev, Yu.N.; Zvonareva, O.D.; Tatchyn, R.; /SLAC

    2006-02-24

    Results of integration of a Lorentz equation for a relativistic electron moving in the field of running, plane, linear polarized electromagnetic wave are presented in the paper. It is shown that electron velocities in the field of the wave are almost periodic functions of time. For calculations of angular spectrum of electron radiation intensity expansion of the electromagnetic field in a wave zone into generalized Fourier series was used. Expressions for the radiation intensity spectrum are presented in the paper. Derived results are illustrated for electron and laser beam parameters of NSC KIPT X-ray generator NESTOR. It is shown that for low intensity of the interacting electromagnetic wave the results of energy and angular spectrum calculations in the frame of classical electrodynamics completely coincide with calculation results produced using quantum electrodynamics. Simultaneously, derived expressions give possibilities to investigate dependence of energy and angular Compton radiation spectrum on phase of interaction and the interacting wave intensity.

  9. A free-electron laser in a uniform magnetic field

    NASA Technical Reports Server (NTRS)

    Ride, S. K.; Colson, W. B.

    1979-01-01

    The study shows that a free-electron laser can operate in a uniform, longitudinal magnetic field. The fully relativistic Lorentz force equations are examined and solved order by order in a radiation field strength to obtain analytic expressions for the electron trajectory and energy as functions of initial electron position within a wavelength of light. Analytic expressions for the longitudinal and transverse bunching and for laser gain are found. The bunching of this laser process is compared to the bunching processes involved in (1) a Stanford free-electron laser and (2) a cyclotron maser. The results received can be useful in exploring light amplification in astrophysical magnetic fields, the magnetosphere, and in laboratory devices.

  10. Phase-space dynamics of runaway electrons in magnetic fields

    DOE PAGES

    Guo, Zehua; McDevitt, Christopher Joseph; Tang, Xian-Zhu

    2017-02-16

    Dynamics of runaway electrons in magnetic fields are governed by the competition of three dominant physics: parallel electric field acceleration, Coulomb collision, and synchrotron radiation. Examination of the energy and pitch-angle flows reveals that the presence of local vortex structure and global circulation is crucial to the saturation of primary runaway electrons. Models for the vortex structure, which has an O-point to X-point connection, and the bump of runaway electron distribution in energy space have been developed and compared against the simulation data. Lastly, identification of these velocity-space structures opens a new venue to re-examine the conventional understanding of runawaymore » electron dynamics in magnetic fields.« less

  11. Phase-space dynamics of runaway electrons in magnetic fields

    NASA Astrophysics Data System (ADS)

    Guo, Zehua; McDevitt, Christopher J.; Tang, Xian-Zhu

    2017-04-01

    Dynamics of runaway electrons in magnetic fields are governed by the competition of three dominant physics: parallel electric field acceleration, Coulomb collision, and synchrotron radiation. Examination of the energy and pitch-angle flows reveals that the presence of local vortex structure and global circulation is crucial to the saturation of primary runaway electrons. Models for the vortex structure, which has an O-point to X-point connection, and the bump of runaway electron distribution in energy space have been developed and compared against the simulation data. Identification of these velocity-space structures opens a new venue to re-examine the conventional understanding of runaway electron dynamics in magnetic fields.

  12. Radiation-reaction trapping of electrons in extreme laser fields.

    PubMed

    Ji, L L; Pukhov, A; Kostyukov, I Yu; Shen, B F; Akli, K

    2014-04-11

    A radiation-reaction trapping (RRT) of electrons is revealed in the near-QED regime of laser-plasma interaction. Electrons quivering in laser pulse experience radiation reaction (RR) recoil force by radiating photons. When the laser field reaches the threshold, the RR force becomes significant enough to compensate for the expelling laser ponderomotive force. Then electrons are trapped inside the laser pulse instead of being scattered off transversely and form a dense plasma bunch. The mechanism is demonstrated both by full three-dimensional particle-in-cell simulations using the QED photonic approach and numerical test-particle modeling based on the classical Landau-Lifshitz formula of RR force. Furthermore, the proposed analysis shows that the threshold of laser field amplitude for RRT is approximately the cubic root of laser wavelength over classical electron radius. Because of the pinching effect of the trapped electron bunch, the required laser intensity for RRT can be further reduced.

  13. Effective critical electric field for runaway-electron generation.

    PubMed

    Stahl, A; Hirvijoki, E; Decker, J; Embréus, O; Fülöp, T

    2015-03-20

    In this Letter we investigate factors that influence the effective critical electric field for runaway-electron generation in plasmas. We present numerical solutions of the kinetic equation and discuss the implications for the threshold electric field. We show that the effective electric field necessary for significant runaway-electron formation often is higher than previously calculated due to both (1) extremely strong dependence of primary generation on temperature and (2) synchrotron radiation losses. We also address the effective critical field in the context of a transition from runaway growth to decay. We find agreement with recent experiments, but show that the observation of an elevated effective critical field can mainly be attributed to changes in the momentum-space distribution of runaways, and only to a lesser extent to a de facto change in the critical field.

  14. Magnetic Field Generation and Electron Acceleration in Relativistic Laser Channel

    SciTech Connect

    I.Yu. Kostyukov; G. Shvets; N.J. Fisch; J.M. Rax

    2001-12-12

    The interaction between energetic electrons and a circularly polarized laser pulse inside an ion channel is studied. Laser radiation can be resonantly absorbed by electrons executing betatron oscillations in the ion channel and absorbing angular momentum from the laser. The absorbed angular momentum manifests itself as a strong axial magnetic field (inverse Faraday effect). The magnitude of this magnetic field is calculated and related to the amount of the absorbed energy. Absorbed energy and generated magnetic field are estimated for the small and large energy gain regimes. Qualitative comparisons with recent experiments are also made.

  15. Excellent oxidation endurance of boron nitride nanotube field electron emitters

    SciTech Connect

    Song, Yenan; Song, Yoon-Ho; Milne, William I.; Jin Lee, Cheol

    2014-04-21

    Boron nitride nanotubes (BNNTs) are considered as a promising cold electron emission material owing to their negative electron affinity. BNNT field emitters show excellent oxidation endurance after high temperature thermal annealing of 600 °C in air ambient. There is no damage to the BNNTs after thermal annealing at a temperature of 600 °C and also no degradation of field emission properties. The thermally annealed BNNTs exhibit a high maximum emission current density of 8.39 mA/cm{sup 2} and show very robust emission stability. The BNNTs can be a promising emitter material for field emission devices under harsh oxygen environments.

  16. Field measurements in the Fermilab electron cooling solenoid prototype

    SciTech Connect

    A. C. Crawford et al.

    2003-10-02

    To increase the Tevatron luminosity, Fermilab is developing a high-energy electron cooling system [1] to cool 8.9-GeV/c antiprotons in the Recycler ring. The schematic layout of the Recycler Electron Cooling (REC) system is shown in Figure 1. Cooling of antiprotons requires a round electron beam with a small angular spread propagating through a cooling section with a kinetic energy of 4.3 MeV. To confine the electron beam tightly and to keep its transverse angles below 10{sup -4} rad, the cooling section will be immersed into a solenoidal field of 50-150G. As part of the R&D effort, a cooling section prototype consisting of 9 modules (90% of the total length of a future section) was assembled and measured. This paper describes the technique of measuring and adjusting the magnetic field quality in the cooling section and presents preliminary results of solenoid prototype field measurements. The design of the cooling section solenoid is discussed in Chapter 2. Chapter 3 describes details of a dedicated measurement system, capable of measuring small transverse field components, while the system's measurement errors are analyzed in Chapter 4. Chapter 5 contains measured field distributions of individual elements of the cooling section as well as an evaluation of the magnetic shielding efficiency. An algorithm of field adjustments for providing lowest possible electron trajectory perturbations is proposed in Chapter 6; also, this chapter shows the results of our first attempts of implementing the algorithm.

  17. Brownian motion of electrons in time-dependent magnetic fields.

    NASA Technical Reports Server (NTRS)

    Iverson, G. J.; Williams, R. M.

    1973-01-01

    The behavior of a weakly ionized plasma in slowly varying time-dependent magnetic fields is studied through an extension of Williamson's stochastic theory. In particular, attention is focused on the properties of electron diffusion in the plane perpendicular to the direction of the magnetic field, when the field strength is large. It is shown that, in the strong field limit, the classical 1/B-squared dependence of the perpendicular diffusion coefficient is obtained for two models in which the field B(t) is monotonic in t and for two models in which B(t) possesses at least one turning point.

  18. Magnetic field modification to the relativistic runaway electron avalanche length

    NASA Astrophysics Data System (ADS)

    Cramer, E. S.; Dwyer, J. R.; Rassoul, H. K.

    2016-11-01

    This paper explores the impact of the geomagnetic field on the relativistic runaway electron avalanche length, λe-. Coleman and Dwyer (2006) developed an analytical fit to Monte Carlo simulations using the Runaway Electron Avalanche Model. In this work, we repeat this process but with the addition of the geomagnetic field in the range of [100,900]/n μT, where n is the ratio of the density of air at altitude to the sea level density. As the ambient electric field approaches the runaway threshold field (Eth≈284 kV/m sea level equivalent), it is shown that the magnetic field has an impact on the orientation of the resulting electron beam. The runaway electrons initially follow the vertically oriented electric field but then are deflected in the v × B direction, and as such, the electrons experience more dynamic friction due to the increase in path length. This will be shown to result in a difference in the avalanche length from the case where B = 0. It will also be shown that the average energy of the runaway electrons will decrease while the required electric field to produce runaway electrons increases. This study is also important in understanding the physics of terrestrial gamma ray flashes (TGFs). Not only will this work impact relativistic feedback rates determined from simulations, it may also be useful in studying spectroscopy of TGFs observed from balloon and aircraft measurements. These models may also be used in determining beaming properties of TGFs originating in the tropical regions seen from orbiting spacecraft.

  19. Practical considerations for electron beam small field size dosimetry

    SciTech Connect

    Sharma, Subhash C.; Johnson, Martin W.; Gossman, Michael S. . E-mail: GossmanMS@erlanger.org

    2005-06-30

    Special care of superficial lesions surrounding critical structures, such as an eye, may require tight margins. When this is the case, small megavoltage electron treatment fields and nonstandard treatment distances become necessary. When the field size is found to be less than the practical range of the electron beam, dosimetric measurements should be performed. This research includes data proving that very small electron fields can be employed for treatment with appropriate beam flatness and penumbra. This is accomplished by first coning down the incident beam to a small field size, then secondly by adding a single lead sheet to the patient's skin surface. The aperture of the sheet is required to be greater than 2 x 2 cm{sup 2} in size, and must be cut properly to adequately confine the treatment area.

  20. Counterstreaming solar wind halo electron events on open field lines?

    NASA Technical Reports Server (NTRS)

    Gosling, J. T.; Mccomas, D. J.; Phillips, J. L.

    1992-01-01

    Counterstreaming solar wind halo electron events have been identified as a common 1 AU signature of coronal mass ejection events, and have generally been interpreted as indicative of closed magnetic field topologies, i.e., magnetic loops or flux ropes rooted at both ends in the Sun, or detached plasmoids. In this paper we examine the possibility that these events may instead occur preferentially on open field lines, and that counterstreaming results from reflection or injection behind interplanetary shocks or from mirroring from regions of compressed magnetic field farther out in the heliosphere. We conclude that neither of these suggested sources of counterstreaming electron beams is viable and that the best interpretation of observed counterstreaming electron events in the solar wind remains that of passage of closed field structures.

  1. Bicircular-laser-field-assisted electron-ion radiative recombination

    NASA Astrophysics Data System (ADS)

    Odžak, S.; Milošević, D. B.

    2015-11-01

    Electron-ion radiative recombination assisted by a bicircular laser field that consists of two circularly polarized fields counterrotating in the x y plane and having the frequencies r ω and s ω , which are integer multiples of the fundamental frequency ω , is considered using the S -matrix theory. The energy and polarization of soft x rays generated in this process are analyzed as functions of the incident electron energy and incident electron angle with respect to the x axis. Numerical results for the process of direct recombination of electrons with He+ ionic targets are presented. Abrupt cutoffs of the plateau structures in the emitted x-ray energy spectra are explained by classical analysis. Simpler or more complex oscillatory structures in the spectrum may appear as a result of the interference of a different number of classical orbits. Symmetry analysis and the numerical results show that the x-ray power spectrum and ellipticity are invariant with respect to a rotation of the incident electron momentum by the angle 2 π /(r +s ) . We have visualized this by presenting the logarithm of the differential power spectrum and polarization of the emitted x rays in false colors as functions of the incident electron angle and the x-ray energy. We have also shown that the change of the relative phase of the bicircular field is equivalent to the change of the incident electron angle. By controlling this relative phase it is possible to control the polarization of the emitted soft x rays.

  2. Self-fields in free-electron lasers

    SciTech Connect

    Roberson, C.W.; Hafizi, B.

    1995-12-31

    We have analyzed the free-electron laser (FEL) interaction in the high gain Compton regime. The theory has been extended to include self field effects on FEL operation. These effects are particularly important in compact, low voltage FELs. The theory applies to the case where the optical beam is guided by the electron beam by gain focusing and maintains a constant profile through the wiggler. The finite-emittance electron beam, in turn, is matched to the wiggler. The bitatron motion of the electrons is determined by (i) the focusing force due to wiggler gradients and, (ii) the repulsive force due to self-fields. Based on the single-electron equations, it can be shown that self-field forces tend to increase the period of transverse oscillations of electrons in the wiggler. In the limit, the flow of electrons is purely laminar, with a uniform axial velocity along and across the wiggler resulting in an improved beam quality. We shall also discuss the effects of beam compression on growth rate.

  3. TOPICAL REVIEW: Electron dynamics in inhomogeneous magnetic fields

    NASA Astrophysics Data System (ADS)

    Nogaret, Alain

    2010-06-01

    This review explores the dynamics of two-dimensional electrons in magnetic potentials that vary on scales smaller than the mean free path. The physics of microscopically inhomogeneous magnetic fields relates to important fundamental problems in the fractional quantum Hall effect, superconductivity, spintronics and graphene physics and spins out promising applications which will be described here. After introducing the initial work done on electron localization in random magnetic fields, the experimental methods for fabricating magnetic potentials are presented. Drift-diffusion phenomena are then described, which include commensurability oscillations, magnetic channelling, resistance resonance effects and magnetic dots. We then review quantum phenomena in magnetic potentials including magnetic quantum wires, magnetic minibands in superlattices, rectification by snake states, quantum tunnelling and Klein tunnelling. The third part is devoted to spintronics in inhomogeneous magnetic fields. This covers spin filtering by magnetic field gradients and circular magnetic fields, electrically induced spin resonance, spin resonance fluorescence and coherent spin manipulation.

  4. Magnetic field contribution to the last electron-photon scattering

    NASA Astrophysics Data System (ADS)

    Giovannini, Massimo

    2010-11-01

    When the cosmic microwave photons scatter electrons just prior to the decoupling of matter and radiation, magnetic fields do contribute to the Stokes matrix as well as to the scalar, vector and tensor components of the transport equations for the brightness perturbations. The magnetized electron-photon scattering is hereby discussed in general terms by including, for the first time, the contribution of magnetic fields with arbitrary direction and in the presence of the scalar, vector and tensor modes of the geometry. The propagation of relic vectors and relic gravitons is discussed for a varying magnetic field orientation and for different photon directions. The source terms of the transport equations in the presence of the relativistic fluctuations of the geometry are also explicitly averaged over the magnetic field orientations and the problem of a consistent account of the small-scale and large-scale magnetic field is briefly outlined.

  5. Theory of Carbon Nanotube (CNT)-Based Electron Field Emitters

    PubMed Central

    Bocharov, Grigory S.; Eletskii, Alexander V.

    2013-01-01

    Theoretical problems arising in connection with development and operation of electron field emitters on the basis of carbon nanotubes are reviewed. The physical aspects of electron field emission that underlie the unique emission properties of carbon nanotubes (CNTs) are considered. Physical effects and phenomena affecting the emission characteristics of CNT cathodes are analyzed. Effects given particular attention include: the electric field amplification near a CNT tip with taking into account the shape of the tip, the deviation from the vertical orientation of nanotubes and electrical field-induced alignment of those; electric field screening by neighboring nanotubes; statistical spread of the parameters of the individual CNTs comprising the cathode; the thermal effects resulting in degradation of nanotubes during emission. Simultaneous consideration of the above-listed effects permitted the development of the optimization procedure for CNT array in terms of the maximum reachable emission current density. In accordance with this procedure, the optimum inter-tube distance in the array depends on the region of the external voltage applied. The phenomenon of self-misalignment of nanotubes in an array has been predicted and analyzed in terms of the recent experiments performed. A mechanism of degradation of CNT-based electron field emitters has been analyzed consisting of the bombardment of the emitters by ions formed as a result of electron impact ionization of the residual gas molecules.

  6. Theory of Carbon Nanotube (CNT)-Based Electron Field Emitters.

    PubMed

    Bocharov, Grigory S; Eletskii, Alexander V

    2013-07-17

    Theoretical problems arising in connection with development and operation of electron field emitters on the basis of carbon nanotubes are reviewed. The physical aspects of electron field emission that underlie the unique emission properties of carbon nanotubes (CNTs) are considered. Physical effects and phenomena affecting the emission characteristics of CNT cathodes are analyzed. Effects given particular attention include: the electric field amplification near a CNT tip with taking into account the shape of the tip, the deviation from the vertical orientation of nanotubes and electrical field-induced alignment of those; electric field screening by neighboring nanotubes; statistical spread of the parameters of the individual CNTs comprising the cathode; the thermal effects resulting in degradation of nanotubes during emission. Simultaneous consideration of the above-listed effects permitted the development of the optimization procedure for CNT array in terms of the maximum reachable emission current density. In accordance with this procedure, the optimum inter-tube distance in the array depends on the region of the external voltage applied. The phenomenon of self-misalignment of nanotubes in an array has been predicted and analyzed in terms of the recent experiments performed. A mechanism of degradation of CNT-based electron field emitters has been analyzed consisting of the bombardment of the emitters by ions formed as a result of electron impact ionization of the residual gas molecules.

  7. Magnetic Field Would Reduce Electron Backstreaming in Ion Thrusters

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2003-01-01

    The imposition of a magnetic field has been proposed as a means of reducing the electron backstreaming problem in ion thrusters. Electron backstreaming refers to the backflow of electrons into the ion thruster. Backstreaming electrons are accelerated by the large potential difference that exists between the ion-thruster acceleration electrodes, which otherwise accelerates positive ions out of the engine to develop thrust. The energetic beam formed by the backstreaming electrons can damage the discharge cathode, as well as other discharge surfaces upstream of the acceleration electrodes. The electron-backstreaming condition occurs when the center potential of the ion accelerator grid is no longer sufficiently negative to prevent electron diffusion back into the ion thruster. This typically occurs over extended periods of operation as accelerator-grid apertures enlarge due to erosion. As a result, ion thrusters are required to operate at increasingly negative accelerator-grid voltages in order to prevent electron backstreaming. These larger negative voltages give rise to higher accelerator grid erosion rates, which in turn accelerates aperture enlargement. Electron backstreaming due to accelerator-gridhole enlargement has been identified as a failure mechanism that will limit ionthruster service lifetime. The proposed method would make it possible to not only reduce the electron backstreaming current at and below the backstreaming voltage limit, but also reduce the backstreaming voltage limit itself. This reduction in the voltage at which electron backstreaming occurs provides operating margin and thereby reduces the magnitude of negative voltage that must be placed on the accelerator grid. Such a reduction reduces accelerator- grid erosion rates. The basic idea behind the proposed method is to impose a spatially uniform magnetic field downstream of the accelerator electrode that is oriented transverse to the thruster axis. The magnetic field must be sufficiently

  8. Quantum synchrotron spectra from semirelativistic electrons in teragauss magnetic fields

    NASA Technical Reports Server (NTRS)

    Brainerd, J. J.

    1987-01-01

    Synchrotron spectra are calculated from quantum electrodynamic transition rates for thermal and power-law electron distributions. It is shown that quantum effects appear in thermal spectra when the photon energy is greater than the electron temperature, and in power-law spectra when the electron energy in units of the electron rest mass times the magnetic field strength in units of the critical field strength is of order unity. These spectra are compared with spectra calculated from the ultrarelativistic approximation for synchrotron emission. It is found that the approximation for the power-law spectra is good, and the approximation for thermal spectra produces the shape of the spectrum accurately but fails to give the correct normalization. Single photon pair creation masks the quantum effects for power-law distributions, so only modifications to thermal spectra are important for gamma-ray bursts.

  9. Electron emission and fragmentation of molecules in intense laser fields

    NASA Astrophysics Data System (ADS)

    Ueda, K.; Prümper, G.; Hatamoto, T.; Okunishi, M.; Mathur, D.

    2007-06-01

    We have constructed an apparatus for high-resolution electron spectroscopy and electron-ion coincidence experiments on gas-phase molecules in intense laser fields. The apparatus comprises an electron time-of-flight (TOF) spectrometer and an ion TOF spectrometer with a position detector, placed on either side of an effusive molecular beam. The ionizing radiation is either the fundamental (800 nm wavelength) of a Ti:sapphire laser or frequency doubled 400-nm light, with pulse durations of ~ 150 fs and the repetition rate of 1 kHz. We have investigated the electron emission and fragmentation of linear alcohol molecules, methanol, ethanol and 1-propanol, in laser fields with peak intensities up to ~ 1×10 14 W/cm2. Details of our apparatus are described along with an overview of some recent results.

  10. Quantum synchrotron spectra from semirelativistic electrons in teragauss magnetic fields

    NASA Technical Reports Server (NTRS)

    Brainerd, J. J.

    1987-01-01

    Synchrotron spectra are calculated from quantum electrodynamic transition rates for thermal and power-law electron distributions. It is shown that quantum effects appear in thermal spectra when the photon energy is greater than the electron temperature, and in power-law spectra when the electron energy in units of the electron rest mass times the magnetic field strength in units of the critical field strength is of order unity. These spectra are compared with spectra calculated from the ultrarelativistic approximation for synchrotron emission. It is found that the approximation for the power-law spectra is good, and the approximation for thermal spectra produces the shape of the spectrum accurately but fails to give the correct normalization. Single photon pair creation masks the quantum effects for power-law distributions, so only modifications to thermal spectra are important for gamma-ray bursts.

  11. Effect of Secondary Electron Emission on Electron Cross-Field Current in ExB Discharges

    NASA Astrophysics Data System (ADS)

    Raitses, Yevgeny; Kaganovich, Igor D.; Khrabrov, Alex V.; Campanell, Michael D.; Tokluoglu, Erinc; Sydorenko, Dmytro; Smolyakov, Andrei

    2012-10-01

    This paper reviews recent experimental, theoretical, and numerical studies of plasma-wall interaction in a weakly collisional magnetized plasma bounded with channel walls made from different materials [1-3]. A low-pressure E x B plasma discharge of the Hall thruster was used to characterize the electron current across the magnetic field and its dependence on the applied voltage and the electron-induced secondary electron emission (SEE) from the channel wall [1]. The presence of a depleted anisotropic electron energy distribution function with beams of secondary electrons was predicted to explain the enhancement of the electron cross-field current observed in experiments. Without the SEE, the electron cross-field transport can be reduced from anomalously high to nearly classical collisional level. The suppression of the SEE was achieved using an engineered carbon-velvet material for the channel walls [3]. Both theoretically and experimentally, it is shown that the electron emission from the walls can limit the maximum achievable electric field in the magnetized plasma. [4pt] [1] Y. Raitses, et al, IEEE Trans. on Plasma Scie. 39, 995 (2011). [0pt] [2] M. D. Campanell, et al, Phys. Rev. Lett. 108, 235001 (2012). [0pt] [3] Y. Raitses, et al, J.Appl. Phys. 99, 036103 (2006).

  12. Effect of Secondary Electron Emission on Electron Cross-Field Current in E×B Discharges

    SciTech Connect

    Yevgeny Raitses, Igor D. Kaganovich, Alexander Khrabrov, Dmytro Sydorenko, Nathaniel J. Fisch and Andrei Smolyakov

    2011-02-10

    This paper reviews and discusses recent experimental, theoretical, and numerical studies of plasma-wall interaction in a weakly collisional magnetized plasma bounded with channel walls made from different materials. A lowpressure ExB plasma discharge of the Hall thruster was used to characterize the electron current across the magnetic field and its dependence on the applied voltage and electron-induced secondary electron emission (SEE) from the channel wall. The presence of a depleted, anisotropic electron energy distribution function with beams of secondary electrons was predicted to explain the enhancement of the electron cross-field current observed in experiments. Without the SEE, the electron crossfield transport can be reduced from anomalously high to nearly classical collisional level. The suppression of SEE was achieved using an engineered carbon velvet material for the channel walls. Both theoretically and experimentally, it is shown that the electron emission from the walls can limit the maximum achievable electric field in the magnetized plasma. With nonemitting walls, the maximum electric field in the thruster can approach a fundamental limit for a quasineutral plasma.

  13. Field electron emission from pencil-drawn cold cathodes

    SciTech Connect

    Chen, Jiangtao; Yang, Bingjun; Liu, Xiahui; Yang, Juan; Yan, Xingbin

    2016-05-09

    Field electron emitters with flat, curved, and linear profiles are fabricated on flexible copy papers by direct pencil-drawing method. This one-step method is free of many restricted conditions such as high-temperature, high vacuum, organic solvents, and multistep. The cold cathodes display good field emission performance and achieve high emission current density of 78 mA/cm{sup 2} at an electric field of 3.73 V/μm. The approach proposed here would bring a rapid, low-cost, and eco-friendly route to fabricate but not limited to flexible field emitter devices.

  14. Electric field effects on electronic characteristics of arsenene nanoribbons

    NASA Astrophysics Data System (ADS)

    Luo, Yanwei; Li, Yuxiao; Wang, Fei; Guo, Peng; Jia, Yu

    2017-10-01

    By using the first-principles calculations, we investigate the effects of electric field on electronic structures of armchair and zigzag arsenene nanoribbons (AsNRs) with different widths. The results show that for each case, quantum size effects induce a smaller band gap in larger AsNRs. Moreover, electric field can reduce effectively the band gap of AsNRs. In addition, the electric field can induce only the transition of band structures in the A-AsNRs or Z-AsNRs with narrow size. The band gap decrease more rapidly and the threshold electric field induced metal becomes smaller in the wider AsNRs.

  15. Electron acceleration by parallel and perpendicular electric fields during magnetic reconnection without guide field

    NASA Astrophysics Data System (ADS)

    Bessho, N.; Chen, L.-J.; Germaschewski, K.; Bhattacharjee, A.

    2015-11-01

    Electron acceleration due to the electric field parallel to the background magnetic field during magnetic reconnection with no guide field is investigated by theory and two-dimensional electromagnetic particle-in-cell simulations and compared with acceleration due to the electric field perpendicular to the magnetic field. The magnitude of the parallel electric potential shows dependence on the ratio of the plasma frequency to the electron cyclotron frequency as (ωpe/Ωe)-2 and on the background plasma density as nb-1/2. In the Earth's magnetotail, the parameter ωpe/Ωe˜9 and the background (lobe) density can be of the order of 0.01 cm-3, and it is expected that the parallel electric potential is not large enough to accelerate electrons up to 100 keV. Therefore, we must consider the effect of the perpendicular electric field to account for electron energization in excess of 100 keV in the Earth's magnetotail. Trajectories for high-energy electrons are traced in a simulation to demonstrate that acceleration due to the perpendicular electric field in the diffusion region is the dominant acceleration mechanism, rather than acceleration due to the parallel electric fields in the exhaust regions. For energetic electrons accelerated near the X line due to the perpendicular electric field, pitch angle scattering converts the perpendicular momentum to the parallel momentum. On the other hand, for passing electrons that are mainly accelerated by the parallel electric field, pitch angle scattering converting the parallel momentum to the perpendicular momentum occurs. In this way, particle acceleration and pitch angle scattering will generate heated electrons in the exhaust regions.

  16. Electric field by pick-up ions and electrons

    NASA Astrophysics Data System (ADS)

    Yamauchi, Masatoshi; Behar, Etienne; Nilsson, Hans; Holmstrom, Mats

    2016-04-01

    Observations by the Rosetta Plasma Consortium (RPC) showed increasing distortion of the solar wind flow as Rosetta approached the Sun, i.e., as the density of the newly born ions increased. This indicates azimuthal momentum transfer from the solar wind to the newly born ions because they are displaced by the solar wind electric field up to the ion gyroradius this the solar wind velocity, and conservation of the momentum (center of the mass) makes the solar wind to azimuthally shift by "counter action" of these pick-up ion motions. To understand this azimuthal momentum transfer, it is inevitable to model the electric field by the displacement of these pick-up ions and electrons. Although the E×B drift does not make charge separation when the scale size is larger than the ion gyroradius, ions and electrons move in the opposite direction to each other within the short distance up to a gyroradius, and therefore, the charge separation occurs. Thus, the newly-ionized neutrals (ion-electron pairs) create the electric field in the opposite (shielding) direction to the solar wind electric field (like the ionopause of Venus and Mars). However, such a newly induced "shielding" electric field will simultaneously be weakened by the solar wind electrons because the solar wind is also moved by this shielding electric field to reduce it, in the same way as the plasma oscillation (time scale of about 10-4 s). In other words, the solar wind tries to maintain the solar wind electric field as far as the momentum allows. These two opposite effects must be combined when modelling the azimuthal electric field, and resultant ion/electron motions within a gyroradius, like the case for ROSETTA. Furthermore, the effect of the induced electric field by the pick-up ions and electrons will be different when the newly born ions are created as the result of photo-ionization and of the charge exchange because the electron effect is different between them. In the presentation, we model the

  17. Peculiarities of the Field Electron Emission from Dust Grains

    SciTech Connect

    Richterova, I.; Beranek, M.; Pavlu, J.; Nemecek, Z.; Safrankova, J.

    2008-09-07

    The goal of the paper is investigation of the electron field emission that limits the attainable grain charge and can prevent electrostatic fragmentation of loosely bounded aggregates of dust grains. We have found that the effective work function of the spherical amorphous carbon grains does not depend on the relative beam energy. Preliminary results on an influence of the ion treatment/cleaning using the simultaneous electron and ion bombardments are discussed.

  18. Cooling electrons by magnetic-field tuning of Andreev reflection.

    PubMed

    Giazotto, Francesco; Taddei, Fabio; Governale, Michele; Castellana, Carlo; Fazio, Rosario; Beltram, Fabio

    2006-11-10

    A solid-state cooling principle based on magnetic-field-driven tunable suppression of Andreev reflection in superconductor/two-dimensional electron gas nanostructures is proposed. This cooling mechanism can lead to very large heat fluxes per channel up to 10;{4} times greater than currently achieved with superconducting tunnel junctions. This efficacy and its availability in a two-dimensional electron system make this method of particular relevance for the implementation of quantum nanostructures operating at cryogenic temperatures.

  19. The Role of Field Electron Emission in Polypropylene/Aluminum Nanodielectrics Under High Electric Fields.

    PubMed

    Zhang, Guoqiang; Li, Yue; Tang, Saide; Thompson, Rhett D; Zhu, Lei

    2017-03-09

    Polymer/metallic particle nanocomposites or nanodielectrics can exhibit colossal dielectric constants with a relatively low dissipation factor under low electric fields and thus seem to be promising for high-energy density dielectric capacitors. To study this possibility, this work focused on the dielectric performance and loss mechanisms in polypropylene (PP)/aluminum nanoparticle (nAl NP) composites under high electric fields. Phosphonic acid-terminated poly(ethylene-co-1-butene) was grafted to the Al2O3 surface layer on the nAl NPs in order to achieve reasonable dispersion in the PP matrix. The dielectric breakdown study showed that the breakdown strength decreased to nearly 1/20 that of the neat PP film as the nAl content increased to 25.0 vol %. The leakage current study revealed three electronic conduction mechanisms in the PP/100 nm nAl nanocomposites, namely, ohmic conduction at low fields, hopping conduction at intermediate fields, and Fowler-Nordheim (FN) field electron emission above a critical field, depending on the filler content. Compared to the 100 nm nAl NPs, smaller (e.g., 18 nm) nAl NPs needed a much higher electric field to exhibit FN field electron emission. It was the FN electron tunneling that induced a substantial reduction in breakdown strength for the PP/nAl nanocomposites. Meanwhile, electron-tunneling injected space charges (electrons) from nAl NPs into the PP matrix, and internal electronic conduction led to significant dielectric nonlinearity at high poling fields. Although polymer/metallic NP composites are not suitable for high-field electric applications, they can be good candidates for electrical switches and quantum tunneling composites operated at relatively low electric fields.

  20. Electron beam tomography of magnetic recording head fields

    NASA Astrophysics Data System (ADS)

    Ferrier, R. P.; Liu, Y.; Martin, J. L.; Arnoldussen, T. C.

    1995-09-01

    The quantitative evaluation of the 3D form of the magnetic field from a thin film recording head has been achieved by electron beam tomography. The data sets for tomographic reconstruction were obtained using the differential phase contrast mode of Lorentz electron microscopy applied in a 200 kV (scanning) transmission instrument. The high accelerating voltage and a novel method of mounting the head in the microscope offer advantages over previous experiments. The two reconstruction algorithms, which have been used previously, have been implemented and the results of their application are compared for theoretical data derived from a model head field and for data obtained experimentally from a production recording head.

  1. Quasi-equilibrium electron density along a magnetic field line

    SciTech Connect

    Mao, Hann-Shin; Wirz, Richard

    2012-11-26

    A methodology is developed to determine the density of high-energy electrons along a magnetic field line for a low-{beta} plasma. This method avoids the expense and statistical noise of traditional particle tracking techniques commonly used for high-energy electrons in bombardment plasma generators. By preserving the magnetic mirror and assuming a mixing timescale, typically the elastic collision frequency with neutrals, a quasi-equilibrium electron distribution can be calculated. Following the transient decay, the analysis shows that both the normalized density and the reduction fraction due to collision converge to a single quasi-equilibrium solution.

  2. Two-dimensional electron gas magnetic field sensors

    NASA Astrophysics Data System (ADS)

    Heremans, J.; Partin, D. L.; Morelli, D. T.; Fuller, B. K.; Thrush, C. M.

    1990-07-01

    We describe the use of accumulation layers of electron charge in applications as magnetoresistive devices. We consider two such systems: an InGaAs/InP heterostructure in which we identify a two-dimensional electron gas from the observation of the quantum Hall effect, and InAs films, in which a strong surface accumulation of charge is inferred from depth profiling studies of the galvanomagnetic coefficients. Magnetoresistive devices fabricated from these materials exhibit outstanding field sensitivity and temperature stability due to the existence of electrons of relatively high density and mobility in the accumulation regions. We also model the magnetosensitivity of our devices.

  3. Acceleration of electrons by the wake field of proton bunches

    SciTech Connect

    Ruggiero, A.G.

    1986-01-01

    This paper discusses a novel idea to accelerate low-intensity bunches of electrons (or positrons) by the wake field of intense proton bunches travelling along the axis of a cylindrical rf structure. Accelerating gradients in excess of 100 MeV/m and large ''transformer ratios'', which allow for acceleration of electrons to energies in the TeV range, are calculated. A possible application of the method is an electron-positron linear collider with luminosity of 10/sup 33/ cm/sup -2/ s/sup -1/. The relatively low cost and power consumption of the method is emphasized.

  4. Evaluations of carbon nanotube field emitters for electron microscopy

    NASA Astrophysics Data System (ADS)

    Nakahara, Hitoshi; Kusano, Yoshikazu; Kono, Takumi; Saito, Yahachi

    2009-11-01

    Brightness of carbon nanotube (CNT) emitters was already reported elsewhere. However, brightness of electron emitter is affected by a virtual source size of the emitter, which strongly depends on electron optical configuration around the emitter. In this work, I- V characteristics and brightness of a CNT emitter are measured under a practical field emission electron gun (e-gun) configuration to investigate availability of CNT for electron microscopy. As a result, it is obtained that an emission area of MWNT is smaller than its tip surface area, and the emission area corresponds to a five-membered-ring with 2nd nearest six-membered-rings on the MWNT cap surface. Reduced brightness of MWNT is measured as at least 2.6×109 A/m 2 sr V. It is concluded that even a thick MWNT has enough brightness under a practical e-gun electrode configuration and suitable for electron microscopy.

  5. Localized Electron Heating by Strong Guide-Field Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Guo, Xuehan; Sugawara, Takumichi; Inomoto, Michiaki; Yamasaki, Kotaro; Ono, Yasushi; UTST Team

    2015-11-01

    Localized electron heating of magnetic reconnection was studied under strong guide-field (typically Bt 15Bp) using two merging spherical tokamak plasmas in Univ. Tokyo Spherical Tokamak (UTST) experiment. Our new slide-type two-dimensional Thomson scattering system documented for the first time the electron heating localized around the X-point. The region of high electron temperature, which is perpendicular to the magnetic field, was found to have a round shape with radius of 2 [cm]. Also, it was localized around the X-point and does not agree with that of energy dissipation term Et .jt . When we include a guide-field effect term Bt / (Bp + αBt) for Et .jt where α =√{ (vin2 +vout2) /v∥2 } , the energy dissipation area becomes localized around the X-point, suggesting that the electrons are accelerated by the reconnection electric field parallel to the magnetic field and thermalized around the X-point. This work was supported by JSPS A3 Foresight Program ``Innovative Tokamak Plasma Startup and Current Drive in Spherical Torus,'' a Grant-in-Aid from the Japan Society for the Promotion of Science (JSPS) Fellows 15J03758.

  6. Scanning Electron Microscopy with Samples in an Electric Field

    PubMed Central

    Frank, Ludĕk; Hovorka, Miloš; Mikmeková, Šárka; Mikmeková, Eliška; Müllerová, Ilona; Pokorná, Zuzana

    2012-01-01

    The high negative bias of a sample in a scanning electron microscope constitutes the “cathode lens” with a strong electric field just above the sample surface. This mode offers a convenient tool for controlling the landing energy of electrons down to units or even fractions of electronvolts with only slight readjustments of the column. Moreover, the field accelerates and collimates the signal electrons to earthed detectors above and below the sample, thereby assuring high collection efficiency and high amplification of the image signal. One important feature is the ability to acquire the complete emission of the backscattered electrons, including those emitted at high angles with respect to the surface normal. The cathode lens aberrations are proportional to the landing energy of electrons so the spot size becomes nearly constant throughout the full energy scale. At low energies and with their complete angular distribution acquired, the backscattered electron images offer enhanced information about crystalline and electronic structures thanks to contrast mechanisms that are otherwise unavailable. Examples from various areas of materials science are presented.

  7. Superfluorescence from dense electron hole plasmas under high magnetic fields

    NASA Astrophysics Data System (ADS)

    Jho, Y. D.; Wang, X.; Kono, J.; Reitze, D. H.; Wei, X.; Belyanin, A. A.; Kocharovsky, V. V.; Kocharovsky, Vl. V.; Solomon, G. S.

    Ultrafast optical excitation of a dense electron hole plasma in InxGa1-xAs multiple quantum wells in high magnetic fields (>20T) produces cooperative radiative recombination between conduction and valence band Landau levels (LL). Above a critical threshold, the emission is characterized by very narrow LL line widths, superlinear increase with increasing field and laser excitation fluence, and stochastic directionality from shot to shot. Here, we investigate the effects of temperature and excitation geometry on the emission properties.

  8. Electron states and electron Raman scattering in semiconductor step-quantum well: Electric field effect

    NASA Astrophysics Data System (ADS)

    Betancourt-Riera, Ri.; Betancourt-Riera, Re.; Ferrer-Moreno, L. A.; Jalil, J. M. Nieto

    2017-04-01

    In this work we determine and show the expressions of the electron states of a step-quantum well with the presence of an external electric field, developed in a GaAs / AlGaAs matrix. The electron states are obtained using the envelope function approximation. In this work it is only necessary to consider a single conduction band, which due to the confinement is divided into a subband system, with T = 0K . Expressions for the electron states and the differential cross-section for an intraband electron Raman scattering process of are presented, the net Raman gain is also calculated. In addition, the interpretation of the singularities found in the emission or excitation spectra is given, since several dispersion configurations are discussed. Furthermore, the effects of an electric field on the electron states and on the differential cross section are studied.

  9. Phosphorene Nanoribbons: Electronic Structure and Electric Field Modulation

    NASA Astrophysics Data System (ADS)

    Soleimanikahnoj, Sina; Knezevic, Irena

    Phosphorene, a newcomer among the 2D van der Waals materials, has attracted the attention of many scientists due to its promising electronic properties. Monolayer phosphorene has a direct band gap of 2 eV located at the Gamma point of the Brillouin zone. Increasing the number of layers reduces the bandgap due to the van der Waals interaction. The direct nature of the bandgap makes phosphorene particularly favorable for electronic transport and optoelectronic applications. While multilayer phosphorene sheets have been studied, the electronic properties of their 1D counterparts are still unexplored. An accurate tight-binding model was recently proposed for multilayer phosphorene nanoribbons. Employing this model along with the non-equilibrium Green's function method, we calculate the band structure and electronic properties of phosphorene nanoribbons. We show that, depending on the edge termination, phosphorene nanoribbons can be metallic or semiconducting. Our analysis also shows that the electronic properties of phosphorene nanoribbons are highly tunable by in-plane and out-of-plane electric fields. In metallic ribbons, the conductance can be switched off by a threshold electric field, similar to field effect devices. Support by the NSF through the University of Wisconsin MRSEC Seed (NSF Award DMR-1121288).

  10. Probability and critical electric field for electron runaway

    NASA Astrophysics Data System (ADS)

    Liu, Chang; Brennan, Dylan; Boozer, Allen; Bhattacharjee, Amitava

    2015-11-01

    It is very important that we understand the physics of the runaway electron avalanche, both due to the need for runaway mitigation in disruptions in ITER, and the pure scientific merit. In this work we developed a new method to obtain the probability of an electron in momentum space to run away, by solving a time-independent PDE, alleviating the need for Monte-Carlo simulation. This PDE turns out to be adjoint to the electron kinetic equation. The new method is applied to calculate the avalanche growth rate and the threshold electric field. The results show that in the presence of synchrotron radiation and pitch angle scattering, the threshold electric field for the avalanche growth will increase to a value that is higher than the Connor-Hastie electric field. A series of kinetic simulations are conducted which confirms the findings. We also did a time-dependent simulation with increasing plasma density to simulate the gas-puffing runaway electron experiments in DIII-D, and the hard X-ray signal result shows qualitative agreement with the experiments for the threshold electric field.

  11. Nonlinear growth of electron holes in cross-field wakes

    NASA Astrophysics Data System (ADS)

    Hutchinson, Ian; Haakonsen, C. B.; Zhou, C.

    2015-11-01

    Cross-field plasma flow past an obstacle is key to the physics underlying Mach-probes, space-craft charging, and the wakes of non-magnetic bodies: the solar-wind wake of the moon is a typical example. We report associated new nonlinear instability mechanisms. Ions are accelerated along the B-field into the wake, forming two beams, but they are not initially unstable to ion two-stream instabilities. Electron Langmuir waves become unstable much earlier because of an electron velocity-distribution distortion called the ``dimple''. The magnetic field, perpendicular to the flow, defines the 1-D direction of particle dynamics. In high-fidelity PIC simulations at realistic mass ratio, small electron holes--non-linearly self-binding electron density deficits--are spawned by the dimple in fe (v) near the phase-space separatrix. Most holes accelerate rapidly out of the wake, along B. However, some remain at very low speed, and grow until they are large enough to disrupt the two ion-streams, well before the ions are themselves linearly unstable. This non-linear hole growth is caused by the same mechanism that causes the dimple: cross-field drift from a lower to a higher density. Related mechanisms cause plasma near magnetized Langmuir probes to be unsteady. Partially supported by the NSF/DOE Basic Plasma Science Partnership grant DE-SC0010491.

  12. Epidermal electronics with advanced capabilities in near-field communication.

    PubMed

    Kim, Jeonghyun; Banks, Anthony; Cheng, Huanyu; Xie, Zhaoqian; Xu, Sheng; Jang, Kyung-In; Lee, Jung Woo; Liu, Zhuangjian; Gutruf, Philipp; Huang, Xian; Wei, Pinghung; Liu, Fei; Li, Kan; Dalal, Mitul; Ghaffari, Roozbeh; Feng, Xue; Huang, Yonggang; Gupta, Sanjay; Paik, Ungyu; Rogers, John A

    2015-02-25

    Epidermal electronics with advanced capabilities in near field communications (NFC) are presented. The systems include stretchable coils and thinned NFC chips on thin, low modulus stretchable adhesives, to allow seamless, conformal contact with the skin and simultaneous capabilities for wireless interfaces to any standard, NFC-enabled smartphone, even under extreme deformation and after/during normal daily activities.

  13. Nonlinear electron acoustic waves in presence of shear magnetic field

    SciTech Connect

    Dutta, Manjistha; Khan, Manoranjan; Ghosh, Samiran; Chakrabarti, Nikhil

    2013-12-15

    Nonlinear electron acoustic waves are studied in a quasineutral plasma in the presence of a variable magnetic field. The fluid model is used to describe the dynamics of two temperature electron species in a stationary positively charged ion background. Linear analysis of the governing equations manifests dispersion relation of electron magneto sonic wave. Whereas, nonlinear wave dynamics is being investigated by introducing Lagrangian variable method in long wavelength limit. It is shown from finite amplitude analysis that the nonlinear wave characteristics are well depicted by KdV equation. The wave dispersion arising in quasineutral plasma is induced by transverse magnetic field component. The results are discussed in the context of plasma of Earth's magnetosphere.

  14. Evidence for Field-parallel Electron Acceleration in Solar Flares

    NASA Astrophysics Data System (ADS)

    Haerendel, G.

    2017-10-01

    It is proposed that the coincidence of higher brightness and upward electric current observed by Janvier et al. during a flare indicates electron acceleration by field-parallel potential drops sustained by extremely strong field-aligned currents of the order of 104 A m‑2. A consequence of this is the concentration of the currents in sheets with widths of the order of 1 m. The high current density suggests that the field-parallel potential drops are maintained by current-driven anomalous resistivity. The origin of these currents remains a strong challenge for theorists.

  15. Attosecond electron emission probes of ultrafast nanolocalized fields

    NASA Astrophysics Data System (ADS)

    Kling, Matthias

    2011-05-01

    Ongoing experimental and theoretical work on the temporal and spatial characterization of nanolocalized plasmonic fields will be presented. Because of their broad spectral bandwidth, plasmons in metal nanoparticles undergo ultrafast dynamics with timescales as short as a few hundred attoseconds. So far, the spatiotemporal dynamics of optical fields localized on the nanoscale has been hidden from direct access in the real space and time domain. Our ultimate goal is to characterize the nanoplasmonic fields not only on a nanometer spatial scale but also on ~100 attosecond temporal scale. Information about the nanoplasmonic fields, which are excited by few-cycle laser pulses with stable electric field waveform, can be obtained by the measurement of photoemitted electrons. We will present recent results on the large acceleration of recollision electrons in nanolocalized fields near dielectric nanoparticles following the excitation by 5-fs near-infrared laser pulses with controlled electric field waveforms. This work has been carried out in collaboration with Th. Fennel (University of Rostock), E. Ruehl (FU Berlin), and M.I. Stockman (GSU Atlanta). We acknowledge support by the DFG via Emmy-Noether program and SPP1391.

  16. Nanotube field electron emission: principles, development, and applications.

    PubMed

    Li, Yunhan; Sun, Yonghai; Yeow, J T W

    2015-06-19

    There is a growing trend to apply field emission (FE) electron sources in vacuum electronic devices due to their fast response, high efficiency and low energy consumption compared to thermionic emission ones. Carbon nanotubes (CNTs) have been regarded as a promising class of electron field emitters since the 1990s and have promoted the development of FE technology greatly because of their high electrical and thermal conductivity, chemical stability, high aspect ratio and small size. Recent studies have shown that FE from CNTs has the potential to replace conventional thermionic emission in many areas and that it exhibits advanced features in practical applications. Consequently, FE from nanotubes and applications thereof have attracted much attention. This paper provides a comprehensive review of both recent advances in CNT field emitters and issues related to applications of CNT based FE. FE theories and principles are introduced, and the early development of field emitters is related. CNT emitter types and their FE performance are discussed. The current situation for applications based on nanotube FE is reviewed. Although challenges remain, the tremendous progress made in CNT FE over the past ten years indicates the field's development potential.

  17. Electron acceleration by laser fields in a gas

    NASA Astrophysics Data System (ADS)

    Fontana, J. R.

    1991-09-01

    The strong fields lasers can produce allow high energy acceleration of charged particles. As the phase velocity of the fields cannot be matched in vacuum to the particle velocity, cumulative interaction over arbitrarily long straight trajectories is impossible. However, over limited regions a large energy gain as well as considerable focusing action can be achieved with suitably shaped laser beams. Away from boundaries, all laser fields consist of superpositions of plane wave components. We describe the properties of several practical configurations, beginning with a single plane wave. Only straight particle trajectories are considered in this analysis and it is assumed the energy is large enough so their speed is nearly constant and very close to that of light. The particles considered are electrons. The physical limitation of the interaction region may be obtained by reflecting surfaces which generate no evanescent waves, with the electron beam crossing the boundaries through holes small enough not to disturb the fields. The laser power density over these reflectors could impose a practical limit to field intensity in the interaction region. An alternative way to limit the interaction range is by bending magnets to deflect the electrons; but the energy radiated must then be taken into consideration. In the rest of this paper, no further discussion is given of interaction region boundaries, although they must be present in every case. This paper contains a quantitative analysis of the acceleration and focusing properties of a particular laser configuration, and discusses means of extending the useful interaction range by phase compensation surfaces.

  18. Electron heat transport from stochastic fields in gyrokinetic simulations

    SciTech Connect

    Wang, E.; Nevins, W. M.; Candy, J.; Hatch, D.; Terry, P.; Guttenfelder, W.

    2011-05-15

    GYRO is used to examine the perturbed magnetic field structure generated by electromagnetic gyrokinetic simulations of the CYCLONE base case as {beta}{sub e} is varied from 0.1% to 0.7%, as investigated by J. Candy [Phys. Plasmas 12, 072307 (2005)]. Poincare surface of section plots obtained from integrating the self-consistent magnetic field demonstrates widespread stochasticity for all nonzero values of {beta}{sub e}. Despite widespread stochasticity of the perturbed magnetic fields, no significant increase in electron transport is observed. The magnetic diffusion, d{sub m}[A. B. Rechester and M. N. Rosenbluth, Phys. Rev. Lett 40, 38 (1978)], is used to quantify the degree of stochasticity and related to the electron heat transport for hundreds of time slices in each simulation.

  19. Electron heat transport from stochastic fields in gyrokinetic simulationsa)

    NASA Astrophysics Data System (ADS)

    Wang, E.; Nevins, W. M.; Candy, J.; Hatch, D.; Terry, P.; Guttenfelder, W.

    2011-05-01

    GYRO is used to examine the perturbed magnetic field structure generated by electromagnetic gyrokinetic simulations of the CYCLONE base case as βe is varied from 0.1% to 0.7%, as investigated by J. Candy [Phys. Plasmas 12, 072307 (2005)]. Poincare surface of section plots obtained from integrating the self-consistent magnetic field demonstrates widespread stochasticity for all nonzero values of βe. Despite widespread stochasticity of the perturbed magnetic fields, no significant increase in electron transport is observed. The magnetic diffusion, dm [A. B. Rechester and M. N. Rosenbluth, Phys. Rev. Lett 40, 38 (1978)], is used to quantify the degree of stochasticity and related to the electron heat transport for hundreds of time slices in each simulation.

  20. Fast electrons from electron-ion collisions in strong laser fields

    NASA Astrophysics Data System (ADS)

    Kull, H.-J.; Tikhonchuk, V. T.

    2005-06-01

    Electron-ion collisions in the presence of a strong laser field lead to a distribution of fast electrons with maximum energy Emax=(k0+2v0)2/2(a.u.), where k0 is the impact and v0 the quiver velocity of the electron. The energy spectrum is calculated by two approaches: (1) The time-dependent Schrödinger equation is numerically solved for wave packet scattering from a one-dimensional softcore Coulomb potential. Multiphoton energy spectra are obtained demonstrating a separation of the energy spectrum into an exponential distribution for transmission and a plateau distribution for reflection. (2) The energy spectrum is analytically calculated in the framework of classical instantaneous Coulomb collisions with random impact parameters and random phases of the laser field. An exact solution for the energy spectrum is obtained from which the fraction of fast electrons in the plateau region can be estimated.

  1. Silicane nanoribbons: electronic structure and electric field modulation

    NASA Astrophysics Data System (ADS)

    Fang, D. Q.; Zhang, Y.; Zhang, S. L.

    2014-11-01

    We present electronic band structure, Gibbs free energy of formation, and electric field modulation calculations for silicane nanoribbons (NRs), i.e., completely hydrogenated or fluorinated silicene NRs, using density functional theory. We find that although the completely hydrogenated silicene (H-silicane) sheet in the chair-like configuration is an indirect-band-gap semiconductor, a direct band gap can be achieved in the zigzag H-silicane NRs by using Brillouin-zone folding. Compared to H-silicane NRs, the band gaps of completely fluorinated silicene (F-silicane) NRs reduce at least by half. For all silicane NRs considered here, the Gibbs free energy of formation is negative but shows different trends by changing the ribbon width for H-silicane NRs and F-silicane NRs. Furthermore, by analyzing the effect of transverse electric fields on the electronic properties of silicane NRs, we show that an external electric field can make the electrons and holes states spatially separated and even render silicane NRs self-doped. The tunable electronic properties of silicane NRs make them suitable for nanotechnology application.

  2. Electronic transport in graphene sheets in a random magnetic field

    NASA Astrophysics Data System (ADS)

    Lewenkopf, Caio; Burgos, Rhonald; Warnes, Jesus; Lima, Leandro

    2014-03-01

    We present a theoretical study of the effect of ripples and strain fields in the transport properties of diffusive deposited graphene flakes. Defects in the crystalline structure, adsorbed atomic impurities and charge inhomogeneities at the substrate are believed to be the dominant disorder sources for the electronic transport in graphene at low temperatures. We show that intrinsic ripples also effect the conductivity, in particular, its quantum corrections. To this end, we analyze recent experimental results on the conductivity of rippled monolayer graphene sheets subjected to a strong magnetic field parallel to the graphene-substrate interface, B∥ [M. B. Lundeberg and J. A. Folk, Phys. Rev. Lett. 105, 146804 (2010)]. In this setting, B∥ gives rise to a random magnetic field normal to graphene sheet, that depends on the local curvature of the smooth disordered ripples. The analysis of the weak localization corrections of the magnetoconductance allows to establish the dependence of electronic dephasing rate on the magnitude of the random magnetic field. We compare the results for B∥ with the conductivity and weak localization corrections due to the pseudo-magnetic fields originated by intrinsic ripples and strain fields.

  3. Field programmable chemistry: integrated chemical and electronic processing of informational molecules towards electronic chemical cells.

    PubMed

    Wagler, Patrick F; Tangen, Uwe; Maeke, Thomas; McCaskill, John S

    2012-07-01

    The topic addressed is that of combining self-constructing chemical systems with electronic computation to form unconventional embedded computation systems performing complex nano-scale chemical tasks autonomously. The hybrid route to complex programmable chemistry, and ultimately to artificial cells based on novel chemistry, requires a solution of the two-way massively parallel coupling problem between digital electronics and chemical systems. We present a chemical microprocessor technology and show how it can provide a generic programmable platform for complex molecular processing tasks in Field Programmable Chemistry, including steps towards the grand challenge of constructing the first electronic chemical cells. Field programmable chemistry employs a massively parallel field of electrodes, under the control of latched voltages, which are used to modulate chemical activity. We implement such a field programmable chemistry which links to chemistry in rather generic, two-phase microfluidic channel networks that are separated into weakly coupled domains. Electric fields, produced by the high-density array of electrodes embedded in the channel floors, are used to control the transport of chemicals across the hydrodynamic barriers separating domains. In the absence of electric fields, separate microfluidic domains are essentially independent with only slow diffusional interchange of chemicals. Electronic chemical cells, based on chemical microprocessors, exploit a spatially resolved sandwich structure in which the electronic and chemical systems are locally coupled through homogeneous fine-grained actuation and sensor networks and play symmetric and complementary roles. We describe how these systems are fabricated, experimentally test their basic functionality, simulate their potential (e.g. for feed forward digital electrophoretic (FFDE) separation) and outline the application to building electronic chemical cells. Copyright © 2012 Elsevier Ireland Ltd. All rights

  4. Comparative study of supertips for electron field emitters

    NASA Astrophysics Data System (ADS)

    Koops, Hans W. P.; Weber, Mark A.; Urban, J.; Schoessler, C.

    1995-09-01

    A numerical study of tips and supertips prone for fieldemission sources is performed using a 3D numerical electron optics package. Special supertips are fabricated with additive lithography under computer control. Different materials are used to generate amorphous or nanocrystalline tips. Its performance is simulated. Additive lithography using electron beam induced deposition allows to design base radii from 50 to 1000 nm. Tip radii and tip length of similar dimensions can be generated. Supertips on top of a deposited tip can have a radius as small as 5 nm. This is achieved using a high resolution scanning electron microscope with a cold field emission source. Gold-tips are constructed on top of Pt/Ir-wire tips. The positioning accuracy is 20 nm. Tips are routinely produced with aspect ratios of 5 to 10 and give an additional field enhancement factor. The influence of the nanocrystallinity of the deposited material to the field enhancement is investigated. Nanocrystals at the tip enhance the field up to a factor of 4. This effect explains the high emission current obtained in experiments from nanocrystalline tips.

  5. Nanotube field electron emission: principles, development, and applications

    NASA Astrophysics Data System (ADS)

    Li, Yunhan; Sun, Yonghai; Yeow, J. T. W.

    2015-06-01

    There is a growing trend to apply field emission (FE) electron sources in vacuum electronic devices due to their fast response, high efficiency and low energy consumption compared to thermionic emission ones. Carbon nanotubes (CNTs) have been regarded as a promising class of electron field emitters since the 1990s and have promoted the development of FE technology greatly because of their high electrical and thermal conductivity, chemical stability, high aspect ratio and small size. Recent studies have shown that FE from CNTs has the potential to replace conventional thermionic emission in many areas and that it exhibits advanced features in practical applications. Consequently, FE from nanotubes and applications thereof have attracted much attention. This paper provides a comprehensive review of both recent advances in CNT field emitters and issues related to applications of CNT based FE. FE theories and principles are introduced, and the early development of field emitters is related. CNT emitter types and their FE performance are discussed. The current situation for applications based on nanotube FE is reviewed. Although challenges remain, the tremendous progress made in CNT FE over the past ten years indicates the field’s development potential.

  6. Potential therapeutic misadministration due to inappropriate electron beam field shaping.

    PubMed

    Olch, A J; Fallen, R; Conrad, J; Lavey, R S

    2000-01-01

    Lead or cerrobend blocking strips are used to shape electron treatment fields when an appropriate custom insert is not available. For the Varian 2100C accelerator, the structural supports of the electron applicators impede the free placement of these field-shaping strips on the open custom insert frame while placement at the top of the applicator is unimpeded. We have investigated the dosimetric ramifications of placing field shaping strips at the top level of the 15x15 applicator for 6, 9, and 16 MeV electrons. Our results demonstrate as much as a 30% dose decrease and 2 cm penumbral increase when this is done compared to field shaping at the insert level. The magnitude of this dosimetric error qualifies as a therapeutic misadministration in many states depending on how many treatments are delivered in this manner. Based on this finding, we recommend that routine use of lead strip blocking be discouraged in favor of custom inserts due to the potential for inappropriate placement on some linear accelerators.

  7. Performance of a carbon nanotube field emission electron gun

    NASA Astrophysics Data System (ADS)

    Getty, Stephanie A.; King, Todd T.; Bis, Rachael A.; Jones, Hollis H.; Herrero, Federico; Lynch, Bernard A.; Roman, Patrick; Mahaffy, Paul

    2007-04-01

    A cold cathode field emission electron gun (e-gun) based on a patterned carbon nanotube (CNT) film has been fabricated for use in a miniaturized reflectron time-of-flight mass spectrometer (RTOF MS), with future applications in other charged particle spectrometers, and performance of the CNT e-gun has been evaluated. A thermionic electron gun has also been fabricated and evaluated in parallel and its performance is used as a benchmark in the evaluation of our CNT e-gun. Implications for future improvements and integration into the RTOF MS are discussed.

  8. Electromagnetic field strength levels surrounding electronic article surveillance (EAS) systems.

    PubMed

    Harris, C; Boivin, W; Boyd, S; Coletta, J; Kerr, L; Kempa, K; Aronow, S

    2000-01-01

    Electronic article surveillance (EAS) is used in many applications throughout the world to prevent theft. EAS systems produce electromagnetic (EM) energy around exits to create an EM interrogation zone through which protected items must pass before leaving the establishment. Specially designed EAS tags are attached to these items and must either be deactivated or removed prior to passing through the EAS EM interrogation zone to prevent the alarm from sounding. Recent reports in the scientific literature have noted the possibility that EM energy transmitted by EAS systems may interfere with the proper operation of sensitive electronic medical devices. The Food and Drug Administration has the regulatory responsibility to ensure the safety and effectiveness of medical devices. Because of the possibility of electromagnetic interference (EMI) between EAS systems and electronic medical devices, in situ measurements of the electric and magnetic fields were made around various types of EAS systems. Field strength levels were measured around four types of EAS systems: audio frequency magnetic, pulsed magnetic resonant, radio frequency, and microwave. Field strengths from these EAS systems varied with magnetic fields as high as 1073.6 Am(-1) (in close proximity to the audio frequency magnetic EAS system towers), and electric fields up to 23.8 Vm(-1) (in close proximity to the microwave EAS system towers). Medical devices are only required to withstand 3 Vm(-1) by the International Electrotechnical Commission's current medical device standards. The modulation scheme of the signal transmitted by some types of EAS systems (especially the pulsed magnetic resonant) has been shown to be more likely to cause EMI with electronic medical devices. This study complements other work in the field by attaching specific characteristics to EAS transmitted EM energy. The quantitative data could be used to relate medical device EMI with specific field strength levels and signal waveforms

  9. Tomography of particle plasmon fields from electron energy loss spectroscopy.

    PubMed

    Hörl, Anton; Trügler, Andreas; Hohenester, Ulrich

    2013-08-16

    We theoretically investigate electron energy loss spectroscopy (EELS) of metallic nanoparticles in the optical frequency domain. Using a quasistatic approximation scheme together with a plasmon eigenmode expansion, we show that EELS can be rephrased in terms of a tomography problem. For selected single and coupled nanoparticles we extract the three-dimensional plasmon fields from a collection of rotated EELS maps. Our results pave the way for a fully three-dimensional plasmon-field tomography and establish EELS as a quantitative measurement device for plasmonics.

  10. Electric field stimulation setup for photoemission electron microscopes

    SciTech Connect

    Buzzi, M.; Vaz, C. A. F.; Raabe, J.; Nolting, F.

    2015-08-15

    Manipulating magnetisation by the application of an electric field in magnetoelectric multiferroics represents a timely issue due to the potential applications in low power electronics and the novel physics involved. Thanks to its element sensitivity and high spatial resolution, X-ray photoemission electron microscopy is a uniquely suited technique for the investigation of magnetoelectric coupling in multiferroic materials. In this work, we present a setup that allows for the application of in situ electric and magnetic fields while the sample is analysed in the microscope. As an example of the performances of the setup, we present measurements on Ni/Pb(Mg{sub 0.66}Nb{sub 0.33})O{sub 3}-PbTiO{sub 3} and La{sub 0.7}Sr{sub 0.3}MnO{sub 3}/PMN-PT artificial multiferroic nanostructures.

  11. Electric field stimulation setup for photoemission electron microscopes.

    PubMed

    Buzzi, M; Vaz, C A F; Raabe, J; Nolting, F

    2015-08-01

    Manipulating magnetisation by the application of an electric field in magnetoelectric multiferroics represents a timely issue due to the potential applications in low power electronics and the novel physics involved. Thanks to its element sensitivity and high spatial resolution, X-ray photoemission electron microscopy is a uniquely suited technique for the investigation of magnetoelectric coupling in multiferroic materials. In this work, we present a setup that allows for the application of in situ electric and magnetic fields while the sample is analysed in the microscope. As an example of the performances of the setup, we present measurements on Ni/Pb(Mg(0.66)Nb(0.33))O3-PbTiO3 and La(0.7)Sr(0.3)MnO3/PMN-PT artificial multiferroic nanostructures.

  12. Electric field stimulation setup for photoemission electron microscopes

    NASA Astrophysics Data System (ADS)

    Buzzi, M.; Vaz, C. A. F.; Raabe, J.; Nolting, F.

    2015-08-01

    Manipulating magnetisation by the application of an electric field in magnetoelectric multiferroics represents a timely issue due to the potential applications in low power electronics and the novel physics involved. Thanks to its element sensitivity and high spatial resolution, X-ray photoemission electron microscopy is a uniquely suited technique for the investigation of magnetoelectric coupling in multiferroic materials. In this work, we present a setup that allows for the application of in situ electric and magnetic fields while the sample is analysed in the microscope. As an example of the performances of the setup, we present measurements on Ni/Pb(Mg0.66Nb0.33)O3-PbTiO3 and La0.7Sr0.3MnO3/PMN-PT artificial multiferroic nanostructures.

  13. Two-Electron Spherical Quantum Dot in a Magnetic Field

    NASA Astrophysics Data System (ADS)

    Poszwa, A.

    2016-12-01

    We investigate three-dimensional, two-electron quantum dots in an external magnetic field B. Due to mixed spherical and cylindrical symmetry the Schrödinger equation is not completely separable. Highly accurate numerical solutions, for a wide range of B, have been obtained by the expansion of wavefunctions in double-power series and by imposing on the radial functions appropriate boundary conditions. The asymptotic limit of a very strong magnetic field and the 2D approach have been considered. Ground state properties of the two-electron semiconductor quantum dots are investigated using both the 3D and 2D models. Theoretical calculations have been compared with recent experimental results.

  14. Influence of the Electric Field on Secondary Electron Emission Yield

    SciTech Connect

    Beranek, M.; Richterova, I.; Nemecek, Z.; Pavlu, J.; Safrankova, J.

    2008-09-07

    We have applied a technique based on levitation of a single charged grain in the quadrupole. We have used 3-6 micrometer spherical grains from amorphous carbon. These grains were charged by an electron beam with the energy tunable up to 10 keV and the grain charge was continuously monitored. If the grain is charged by an constant energy, its surface potential is set to the value when incident electrons are slow down to the energy where the secondary emission yield is equal to unity. Our investigations reveal that this energy changes proportionally to the grain surface field. Moreover, we have observed a shift of charging characteristics after a long-time electron bombardment.

  15. Modulation of continuous electron beams in plasma wake-fields

    SciTech Connect

    Rosenzweig, J.B.

    1988-09-08

    In this paper we discuss the interaction of a continuous electron beam with wake-field generated plasma waves. Using a one-dimensional two fluid model, a fully nonlinear analytical description of the interaction is obtained. The phenomena of continuous beam modulation and wave period shortening are discussed. The relationship between these effects and the two-stream instability is also examined. 12 refs., 1 fig.

  16. Relativistic effects in photon-induced near field electron microscopy.

    PubMed

    Park, Sang Tae; Zewail, Ahmed H

    2012-11-26

    Electrons and photons, when interacting via a nanostructure, produce a new way of imaging in space and time, termed photon-induced near field electron microscopy or PINEM [Barwick et al. Nature 2009, 462, 902]. The phenomenon was described by considering the evanescent field produced by the nanostructure, but quantification of the experimental results was achieved by solving the Schrödinger equation for the interaction of the three bodies. The question remained, is the nonrelativistic formulation sufficient for this description? Here, relativistic and nonrelativistic quantum mechanical formulations are compared for electron-photon interaction mediated by nanostructures, and it is shown that there is an exact equivalence for the two formulations. The nonrelativistic formulation was found to be valid in the relativistic regime when using in the former formulation the relativistically corrected velocity (and the corresponding values of momentum and energy). In the PINEM experiment, 200 keV electrons were utilized, giving the experimental (relativistically corrected) velocity to be 0.7c(v without relativistic correction is 0.885c). When this value (0.7c), together with those of the corresponding momentum (p(c) = mv) and energy (E(c) = (1/2)mv(2)), is used in the first order solution of the Schrödinger formulation, an exact equivalence is obtained.

  17. Modeling electron heat transport during magnetic field buildup in SSPX

    SciTech Connect

    Hua, D.D.; Hooper, E.B.; Fowler, T.K.

    1997-10-01

    A model for spheromak magnetic field buildup and electron thermal transport, including a thermal diffusivity associated with magnetic turbulence during helicity injection is applied to a SSPX equilibrium, with a maximum final magnetic field of 1.3 T. Magnetic field-buildup times of 1.0 X 10-3, 5.0 X 10-4 and 1.0 X 10-4 s were used in the model to examine their effects on electron thermal transport. It is found that at transport run time of 4 x 10-3 s, the fastest buildup-time results in the highest final temperature profile, with a core temperature of 0.93 kev while requiring the lowest input energy at 140 KJ. The results show that within the model the most rapid buildup rate generates the highest electron temperature at the fastest rate and at the lowest consumption of energy. However, the peak power requirements are large (> 600 MW for the fastest buildup case examined).

  18. The Stereo Electron Spikes and the Interplanetary Magnetic Field

    NASA Astrophysics Data System (ADS)

    Jokipii, J. R.; Sheeley, N. R., Jr.; Wang, Y. M.; Giacalone, J.

    2016-12-01

    A recent paper (Klassen etal, 2015) discussed observations of a spike event of 55-65 keV electrons which occurred very nearly simultaneously at STEREO A and STEREO B, which at the time were separated in longitude by 38 degrees. The authors associated the spikes with a flare at the Sun near the footpoint of the nominal Archimedean spiral magnetic field line passing through STEREO A. The spike at STEREO A was delayed by 2.2 minutes from that at STEREOB. We discuss the observations in terms of a model in which the electrons, accelerated at the flare, propagate without significant scattering along magnetic field lines which separate or diverge as a function of radial distance from the Sun. The near simultaneity of the spikes at the two spacecraft is a natural consequence of this model. We interpret the divergence of the magnetic field lines as a consequence of field-line random walk and flux-tube expansion. We show that the field-line random walk in the absence of flux-tube expansion produces an rms spread of field lines significantly less than that which is required to produce to observed divergence. We find that observations of the solar wind and its source region at the time of the event can account for the observations in terms of propagation along interplanetary magnetic field-lines. Klassen, A., Dresing, N., Gomez-Herrero, R, and Heber, B., A&A 580, A115 (2015) Financial support for NS and YMW was provided by NASA and CNR.

  19. Strain fields and electronic structure of CrN

    NASA Astrophysics Data System (ADS)

    Rojas, Tomas; Ulloa, Sergio E.

    Chromium nitride (CrN) has a promising future for its resistance to corrosion and hardness, and very interesting magnetic and electronic properties. CrN presents a phase transition in which the crystal structure, magnetic ordering and electronic properties change at a (Néel) temperature ~ 280 K . Thin films from different labs exhibit different conductance behavior at low temperature. We study the unusual electronic and magnetic properties of thin layers. For that purpose we develop a tight binding Hamiltonian based on the Slater-Koster approach, and estimate the interaction between the Cr-3d and N-2p orbitals, by analyzing the band structure and comparing it with ab initio calculations performed using the LSDA+U method. These calculations show the system to behave as a semiconductor below the Néel temperature. Based on our model we calculate the effective masses and analyze the effect of strain fields in the electronic structure in order to understand the electronic behavior near the phase transition. Supported by NSF DMR-1508325.

  20. ELECTRON HOLOGRAPHY OF ELECTROMAGNETIC FIELDS - RECENT THEORETICAL ADVANCES.

    SciTech Connect

    BELEGGIA,M.; POZZI, G.; TONOMURA, A.

    2007-01-01

    It has been shown in this work that the Fourier space approach can be fruitfully applied to the calculation of the fields and the associated electron optical phase shift of several magnetic and electrostatic structures, like superconducting vortices in conventional and high-T{sub c} superconductors, reverse biased p-n junctions, magnetic domains and nanoparticles. In all these cases, this novel approach has led to unexpected but extremely interesting results, very often expressed in analytical form, which allow the quantitative and reliable interpretation of the experimental data collected by means of electron holography or of more conventional Lorentz microscopy techniques. Moreover, it is worth recalling that whenever long-range electromagnetic fields are involved, a physical model of the object under investigation is necessary in order to take into account correctly the perturbation of the reference wave induced by the tail of the field protruding into the vacuum. For these reasons, we believe that the Fourier space approach for phase computations we have introduced and discussed in this chapter will represent an invaluable tool for the investigation of electromagnetic fields at the meso- and nano-scale.

  1. Bidirectional effect of magnetic field on electronic thermal transport of metals from all-electron first-principles calculations

    NASA Astrophysics Data System (ADS)

    Yang, Jia-Yue; Yue, Sheng-Ying; Hu, Ming

    2016-12-01

    Considerable discussions have occurred about the critical role played by free electrons in the transport of heat in pure metals. In principle, any environment that can influence the dynamical behaviors of electrons would have impact on electronic thermal conductivity (κel) of metals. Over the past decades, significant progress and comprehensive understanding have been gained from theoretical, as well as experimental, investigations by taking into account the effects of various conditions, typically temperature, impurities, strain, dimensionality, interface, etc. However, the effect of external magnetic field has received less attention. In this paper, the magnetic-field dependence of electron-phonon scattering, the electron's lifetime, and κel of representative metals (Al, Ni, and Nb) are investigated within the framework of all-electron spin-density functional theory. For Al and Ni, the induced magnetization vector field and difference in electron density under external magnetic-field aggregate toward the center of unit cell, leading to the enhanced electron-phonon scattering, the damped electron's lifetime, and thus the reduced κel. On the contrary, for Nb with strong intrinsic electron-phonon interaction, the electron's lifetime and κel slightly increase as external magnetic field is enhanced. This is mainly attributed to the separately distributed magnetization vector field and difference in electron density along the corner of unit cell. This paper sheds light on the origin of influence of external magnetic field on κel for pure metals and offers a new route for robust manipulation of electronic thermal transport via applying external magnetic field.

  2. Bright-field scanning confocal electron microscopy using a double aberration-corrected transmission electron microscope.

    PubMed

    Wang, Peng; Behan, Gavin; Kirkland, Angus I; Nellist, Peter D; Cosgriff, Eireann C; D'Alfonso, Adrian J; Morgan, Andrew J; Allen, Leslie J; Hashimoto, Ayako; Takeguchi, Masaki; Mitsuishi, Kazutaka; Shimojo, Masayuki

    2011-06-01

    Scanning confocal electron microscopy (SCEM) offers a mechanism for three-dimensional imaging of materials, which makes use of the reduced depth of field in an aberration-corrected transmission electron microscope. The simplest configuration of SCEM is the bright-field mode. In this paper we present experimental data and simulations showing the form of bright-field SCEM images. We show that the depth dependence of the three-dimensional image can be explained in terms of two-dimensional images formed in the detector plane. For a crystalline sample, this so-called probe image is shown to be similar to a conventional diffraction pattern. Experimental results and simulations show how the diffracted probes in this image are elongated in thicker crystals and the use of this elongation to estimate sample thickness is explored.

  3. Electron Field Emission Properties of Textured Platinum Surfaces

    NASA Technical Reports Server (NTRS)

    Sovey, James S.

    2002-01-01

    During ground tests of electric microthrusters and space tests of electrodynamic tethers the electron emitters must successfully operate at environmental pressures possibly as high as 1x10(exp -4) Pa. High partial pressures of oxygen, nitrogen, and water vapor are expected in such environments. A textured platinum surface was used in this work for field emission cathode assessments because platinum does not form oxide films at low temperatures. Although a reproducible cathode conditioning process did not evolve from this work, some short term tests for periods of 1 to 4 hours showed no degradation of emission current at an electric field of 8 V/mm and background pressures of about 1x10(exp -6) Pa. Increases of background pressure by air flow to about 3x10(exp -4) Pa yield a hostile environment for the textured platinum field emission cathode.

  4. Thermal-field-emission electron optics for nanolithography

    NASA Astrophysics Data System (ADS)

    Gesley, Mark

    1989-02-01

    A new column design for the 25-kV vector-scan Gaussian beam lithography system is described. A field-emission gun, consisting of a three-element electrostatic lens and Zr/O/W<100> cathode operated in a thermal-field mode for current stability, is combined in a demagnifying optics with a magnetic objective lens to focus a high-current-density (1000-3000 A/cm2) electron beam at high resolution (100-300 Å) at the wafer plane without a severe reduction in field size. Optimum beam semiangle, focus mode, and column magnification are determined. The modified system retains the original deflection coils and pattern-generation system which allows immediate implementation of existing subfield stitching, chip registration, and proximity correction software.

  5. Field-electron emission microscopy of carbon-saturated rhenium

    NASA Astrophysics Data System (ADS)

    Bernatskii, D. P.; Pavlov, V. G.

    2017-06-01

    The growth of carbon structures on the surface of a rhenium point field emitter has been studied by field electron microscopy (FEM). It is established that graphene formation takes place on close-packed crystal faces of rhenium and leads to decrease in their work function. For rhenium exposed in benzene vapors, the formation of graphene islands requires a much longer time than that for iridium. Heating of carbon-saturated rhenium point field emitter up to temperatures close to its melting point with subsequent cooling does not lead to changes in the work function and FEM image of the emitter surface. The observed phenomena are explained by high solubility of carbon in rhenium.

  6. Transport of solar electrons in the turbulent interplanetary magnetic field

    SciTech Connect

    Ablaßmayer, J.; Tautz, R. C.; Dresing, N.

    2016-01-15

    The turbulent transport of solar energetic electrons in the interplanetary magnetic field is investigated by means of a test-particle Monte-Carlo simulation. The magnetic fields are modeled as a combination of the Parker field and a turbulent component. In combination with the direct calculation of diffusion coefficients via the mean-square displacements, this approach allows one to analyze the effect of the initial ballistic transport phase. In that sense, the model complements the main other approach in which a transport equation is solved. The major advancement is that, by recording the flux of particles arriving at virtual detectors, intensity and anisotropy-time profiles can be obtained. Observational indications for a longitudinal asymmetry can thus be explained by tracing the diffusive spread of the particle distribution. The approach may be of future help for the systematic interpretation of observations for instance by the solar terrestrial relations observatory (STEREO) and advanced composition explorer (ACE) spacecrafts.

  7. Electron field emission in nanostructures: A first-principles study

    NASA Astrophysics Data System (ADS)

    Driscoll, Joseph Andrew

    The objective of this work was to study electron field emission from several nanostructures using a first-principles framework. The systems studied were carbon nanowires, graphene nanoribbons, and nanotubes of varying composition. These particular structures were chosen because they have recently been identified as showing novel physical phenomena, as well as having tremendous industrial applications. We examined the field emission under a variety of conditions, including laser illumination and the presence of adsorbates. The goal was to explore how these conditions affect the field emission performance. In addition to the calculations, this dissertation has presented computational developments by the author that allowed these demanding calculations to be performed. There are many possible choices for basis when performing an electronic structure calculation. Examples are plane waves, atomic orbitals, and real-space grids. The best choice of basis depends on the structure of the system being analyzed and the physical processes involved (e.g., laser illumination). For this reason, it was important to conduct rigorous tests of basis set performance, in terms of accuracy and computational efficiency. There are no existing benchmark calculations for field emission, but transport calculations for nanostructures are similar, and so provide a useful reference for evaluating the performance of various basis sets. Based on the results, for the purposes of studying a non-periodic nanostructure under field emission conditions, we decided to use a real-space grid basis which incorporates the Lagrange function approach. Once a basis was chosen, in this case a real-space grid, the issue of boundary conditions arose. The problem is that with a non-periodic system, field emitted electron density can experience non-physical reflections from the boundaries of the calculation volume, leading to inaccuracies. To prevent this issue, we used complex absorbing potentials (CAPs) to absorb

  8. Field Impact Evaluation Report on the Electronic Tabular Display Subsystem (ETABS). The Electronic Tabular Display Subsystem Field Impact Evaluation Team.

    DTIC Science & Technology

    1979-10-01

    34 X. THE ELECTRONIC TABULAR DISPLAY SUBSYSTEM FIELD IMPAC IVALIfATION TEAMA " OCT= 1179 ~Document is available to the U.S. public through -’t the...possible delay in the ETABS production contract unless this effort was expedited. 2. Reduce ambient lighting at Centers. Advantage. Reducing the... ambient lighting might reduce the glare and reflection problem. Disadvantage. Overall employee satisfaction with his working environment would deteriorate

  9. Field emission of electrons by carbon nanotube twist-yarns

    NASA Astrophysics Data System (ADS)

    Zakhidov, Al. A.; Nanjundaswamy, R.; Obraztsov, A. N.; Zhang, M.; Fang, S.; Klesch, V. I.; Baughman, R. H.; Zakhidov, A. A.

    2007-09-01

    Field emission with high current density at low operating voltage was found for the yarns obtained by solid state spinning process from forest of vertically aligned multiwall carbon nanotubes. The nanotube forest was produced catalytically by CVD method. It is found that only a small fraction of carbon nanotubes from their total amount in the yarn yields to electron emission from its free end. This led to resistive heating of the emitting tubes and limiting of the emission current. The field emission microscopy pictures of MWNT yarn in free-end geometry appears to be very different from that of the conventional non-yarn carbon nanotube-based cathodes described in all previous studies. The FEM patterns are found to consist of the set of line and arc segments rather than a set of spots. Possible explanation of this effect is presented and discussed. The field emission from the lateral side of the yarns showed the self-enhanced currents increasing with operation time. We assume that this current increase may be due to untwisting and unwrapping of yarns resulted of application of the electric field. The lowest threshold field of about 0.7 V/μm was obtained after a few cycles of applied field increase. The prototypes of cathodoluminescent lamps and alphanumerical indicators based on MWNT twist-yarn cold cathodes are demonstrated.

  10. High-field electron transport in GaN under crossed electric and magnetic fields

    NASA Astrophysics Data System (ADS)

    Kochelap, V. A.; Korotyeyev, V. V.; Syngayivska, G. I.; Varani, L.

    2015-10-01

    High-field electron transport studied in crossed electric and magnetic fields in bulk GaN with doping of 1016 cm-3, compensation around 90% at the low lattice temperature (30 K). It was found the range of the magnetic and electric fields where the non-equilibrium electron distribution function has a complicated topological structure in the momentum space with a tendency to the formation of the inversion population. Field dependences of dissipative and Hall components of the drift velocity were calculated for the samples with short- and open- circuited Hall contacts in wide ranges of applied electric (0 — 20 kV/cm) and magnetic (1 — 10 T) fields. For former sample, field dependences of dissipative and Hall components of the drift velocity have a non-monotonic behavior. The dissipative component has the inflection point which corresponds to the maximum point of the Hall component. For latter sample, the drift velocity demonstrate a usual sub-linear growth without any critical points. We found that GaN samples with controlled resistance of the Hall circuit can be utilized as a electronic high-power switch.

  11. Dynamic field-frequency lock for tracking magnetic field fluctuations in electron spin resonance experiments

    NASA Astrophysics Data System (ADS)

    Asfaw, Abraham; Tyryshkin, Alexei; Lyon, Stephen

    Global magnetic field fluctuations present significant challenges to pulsed electron spin resonance experiments on systems with long spin coherence times. We will discuss results from experiments in which we follow instantaneous changes in magnetic field by locking to the free induction decay of a proton NMR signal using a phase-locked loop. We extend conventional field-frequency locking techniques used in NMR to follow slow magnetic field drifts by using a modified Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence in which the phase of the pi-pulses follows the phase of the proton spins at all times. Hence, we retain the ability of the CPMG pulse sequence to refocus local magnetic field inhomogeneities without refocusing global magnetic field fluctuations. In contrast with conventional field-frequency locking techniques, our experiments demonstrate the potential of this method to dynamically track global magnetic field fluctuations on timescales of about 2 seconds and with rates faster than a kHz. This frequency range covers the dominant noise frequencies in our electron spin resonance experiments as previously reported.

  12. Effects of magnetic field on electron-electron intersubband scattering rates in quantum wells.

    NASA Astrophysics Data System (ADS)

    Kempa, K.; Zhou, Y.; Engelbrecht, J.; Bakshi, P.

    2001-03-01

    Electron-electron scattering dominates the physics of carrier relaxation in quantum nano-structures used as active regions of THz radiation sources. This is the limiting mechanism in achieving population inversion, and reducing its deleterious effects could clear the way to a THz laser. We study here the inter-subband relaxation processes due to the electron-electron scattering in quantum well structures, in a magnetic field. We obtain the scattering rate from the imaginary part of the electron self-energy in the random phase approximation, extending our earlier studies [1] to nonzero magnetic fields. We find that the scattering rate is peaked at two possible sets of arrangements of the Landau levels (LL) of the two subbands of interest. The first set occurs when the LL of both subbands align, and the other when the LL misalign, so that the LL of one subband lie exactly in the middle between those of the other subband. Experiments on various quantum cascade structures show that the misaligned set of transitions is completely suppressed. >From our calculations this implies that there is no population inversion in those structures. Work supported by US Army Research Office. [1] K. Kempa, P. Bakshi, J. R. Engelbrecht, and Y. Zhou, Phys. Rev. B61, 11083 (2000).

  13. Four-wave dark-field electron holography for imaging strain fields

    NASA Astrophysics Data System (ADS)

    Denneulin, T.; Hÿtch, M.

    2016-06-01

    Strain characterization by transmission electron microscopy is an active area of research especially for microelectronics applications. Two-wave dark-field electron holography (DFEH) was previously introduced as a reliable strain mapping technique. Here, DFEH with four electron waves was investigated in order to image equi-displacement lines as amplitude modulations of the holographic fringes. Two perpendicular electrostatic biprisms are used to interfere three reference waves diffracted by a substrate and one object wave diffracted by an epitaxially strained region. This technique provides a different way to represent the displacement field. It might be helpful to obtain information about the strain state during in situ experiments. A dummy p-MOSFET device with embedded SiGe source and drain is used for experimental demonstration.

  14. Electronic properties of germanane field-effect transistors

    NASA Astrophysics Data System (ADS)

    Madhushankar, B. N.; Kaverzin, A.; Giousis, T.; Potsi, G.; Gournis, D.; Rudolf, P.; Blake, G. R.; van der Wal, C. H.; van Wees, B. J.

    2017-06-01

    A new two dimensional (2D) material—germanane—has been synthesised recently with promising electrical and optical properties. In this paper we report the first realisation of germanane field-effect transistors fabricated from multilayer single crystal flakes. Our germanane devices show transport in both electron and hole doped regimes with on/off current ratio of up to 105(104) and carrier mobilities of 150 cm2 (V · s)-1(70 cm2 (V · s)-1) at 77~ K (room temperature). A significant enhancement of the device conductivity under illumination with 650~ nm red laser is observed. Our results reveal ambipolar transport properties of germanane with great potential for (opto)electronics applications.

  15. CINEMA (Cubesat for Ion, Neutral, Electron, MAgnetic fields)

    NASA Astrophysics Data System (ADS)

    Lin, R. P.; Parks, G. K.; Halekas, J. S.; Larson, D. E.; Eastwood, J. P.; Wang, L.; Sample, J. G.; Horbury, T. S.; Roelof, E. C.; Lee, D.; Seon, J.; Hines, J.; Vo, H.; Tindall, C.; Ho, J.; Lee, J.; Kim, K.

    2009-12-01

    The NSF-funded CINEMA mission will provide cutting-edge magnetospheric science and critical space weather measurements, including high sensitivity mapping and high cadence movies of ring current, >4 keV Energetic Neutral Atom (ENA), as well as in situ measurements of suprathermal electrons (>~2 keV) and ions (>~ 4 keV) in the auroral and ring current precipitation regions, all with ~1 keV FWHM resolution and uniform response up to ~100 keV. A Suprathermal Electron, Ion, Neutral (STEIN) instrument adds an electrostatic deflection system to the STEREO STE (SupraThermal Electron) 4-pixel silicon semiconductor sensor to separate ions from electrons and from ENAs up to ~20 keV. In addition, inboard and outboard (on an extendable 1m boom) magnetoresistive sensor magnetometers will provide high cadence 3-axis magnetic field measurements. A new attitude control system (ACS) uses torque coils, a solar aspect sensor and the magnetometers to de-tumble the 3u CINEMA spacecraft, then spin it up to ~1 rpm with the spin axis perpendicular to the ecliptic, so STEIN can sweep across most of the sky every minute. Ideally, CINEMA will be placed into a high inclination low earth orbit that crosses the auroral zone and cusp. An S-band transmitter will be used to provide > ~8 kbps orbit-average data downlink to the ~11m diameter antenna of the Berkeley Ground Station. Two more identical CINEMA spacecraft will be built by Kyung Hee University (KHU) in Korea under their World Class University (WCU) program, to provide stereo ENA imaging and multi-point in situ measurements. Furthermore, CINEMA’s development of miniature particle and magnetic field sensors, and cubesat-size spinning spacecraft will be important for future nanosatellite space missions.

  16. Nonadiabatic electron dynamics of single-electron transport in a perpendicular magnetic field

    SciTech Connect

    He, JianHong; Guo, HuaZhong; Gao, Jie

    2014-04-28

    We present results of our investigation into the nonadiabatic electron dynamics of a moving quantum dot assisted by surface acoustic waves (SAWs) in a perpendicular magnetic field. The measurements show the evolution of a quantized acoustoelectric current in a modulated external field, which provides direct information of the energy spectrum and the occupation of the SAW-induced elliptical dynamical quantum dot. By comparing the magnetic field dependence of the spectrum with that of a somewhat symmetric circular dot, we find the appearance of nonadiabatic excitations at low magnetic fields resulting from the anisotropy of the dot. We also detect the transitions between different quantum states of the elliptical dot, achieved by exploiting the interference of two phase-tuned SAWs. Our results demonstrate that the quantum states in an asymmetric dot are fragile and extremely sensitive to their environment.

  17. Efficient Injection of Electron Beams into Magnetic Guide Fields

    SciTech Connect

    Chorny, V.; Cooperstein, G.; Dubyna, V.; Frolov, O.; Harper-Slaboszewicz, V.; Hinshelwood, D.; Schneider, R.; Solovyov, V.; Tsepilov, H.; Vitkovitsky, I.; Ware, K,

    1999-06-08

    Preliminary experimental and modeling study of injection and transport of high current electron beams in current-neutralized background gas has been performed. Initial analysis of the results indicates that high current triaxial ring diode operates very reproducibly in the pinch mode. High current density beam can be injected efficiently into the drift region, using azimuthal guide field with reduced intensity near the injection region. This was shown to improve the effectiveness of capturing the beam for the transport. The transport length was insufficient to measure losses, such as would arise from scattering with the background gas.

  18. Vlasov simulations of electron hole dynamics in inhomogeneous magnetic field

    NASA Astrophysics Data System (ADS)

    Kuzichev, Ilya; Vasko, Ivan; Agapitov, Oleksiy; Mozer, Forrest; Artemyev, Anton

    2017-04-01

    Electron holes (EHs) or phase space vortices are solitary electrostatic waves existing due to electrons trapped within EH electrostatic potential. Since the first direct observation [1], EHs have been widely observed in the Earth's magnetosphere: in reconnecting current sheets [2], injection fronts [3], auroral region [4], and many other space plasma systems. EHs have typical spatial scales up to tens of Debye lengths, electric field amplitudes up to hundreds of mV/m and propagate along magnetic field lines with velocities of about electron thermal velocity [5]. The role of EHs in energy dissipation and supporting of large-scale potential drops is under active investigation. The accurate interpretation of spacecraft observations requires understanding of EH evolution in inhomogeneous plasma. The critical role of plasma density gradients in EH evolution was demonstrated in [6] using PIC simulations. Interestingly, up to date no studies have addressed a role of magnetic field gradients in EH evolution. In this report, we use 1.5D gyrokinetic Vlasov code to demonstrate the critical role of magnetic field gradients in EH dynamics. We show that EHs propagating into stronger (weaker) magnetic field are decelerated (accelerated) with deceleration (acceleration) rate dependent on the magnetic field gradient. Remarkably, the reflection points of decelerating EHs are independent of the average magnetic field gradient in the system and depend only on the EH parameters. EHs are decelerated (accelerated) faster than would follow from the "quasi-particle" concept assuming that EH is decelerated (accelerated) entirely due to the mirror force acting on electrons trapped within EH. We demonstrate that EH propagation in inhomogeneous magnetic fields results in development of a net potential drop along an EH, which depends on the magnetic field gradient. The revealed features will be helpful for interpreting spacecraft observations and results of advanced particle simulations. In

  19. Electron Inertia Effects in Hall-Driven Magnetic Field Penetration in Electron-Magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Richardson, Andrew; Angus, Justin; Swanekamp, Stephen; Schumer, Joseph; Ottinger, Paul

    2015-11-01

    Magnetic field penetration in electron-magnetohydrodynamics (EMHD) can be driven by density gradients through the Hall term. Here we describe the effect of electron inertia on simplified one- and two- dimensional models of a magnetic front. Nonlinear effects due to inertia cause the 1D model to develop peaked solitary waves, while in 2D a shear-driven Kelvin-Helholtz like instability causes the front to break into a series of vortices which propagate into the plasma. The combination of these two effects means that in 2D, Hall driven magnetic field penetration will typically happen in the form of complex vortex-dominated penetration, rather than as a transversely-smooth shock front. This work was supported by the Naval Research Laboratory Base Program.

  20. Thermoacoustic dosimetry of electron beam in extra field

    SciTech Connect

    Kalinichenko, A.I.; Kresnin, Yu.A.; Popov, G.F.

    1996-12-31

    The theoretical basis is elaborated for thermoacoustic dosimetry of electron beam by one-dimensional (1-D) thin target TT in extra thermal and electromagnetic fields. The basic equation joining the deposited energy distribution to the stress wave amplitude in the case when the generation coefficient is function of temperature and coordinate in material permits realizing nonlinear thermoacoustic dosimetry with regulated sensitivity. Some variants of joint employment of the thermoacoustic dosimeter and electromagnetic scanner/splitter are considered. The first variant consists in beam scanning along 1-D dosimeter body to create the moving thermoacoustic source. This regime may be used for dosimetry of long beams. The second variant consists in spectral decomposition of the beam in electromagnetic field before its directing to the dosimeter. Principle of operation for some termoelastic dosimeters on the base of 1-D TTs is considered.

  1. Silicon-based metallic micro grid for electron field emission

    NASA Astrophysics Data System (ADS)

    Kim, Jaehong; Jeon, Seok-Gy; Kim, Jung-Il; Kim, Geun-Ju; Heo, Duchang; Shin, Dong Hoon; Sun, Yuning; Lee, Cheol Jin

    2012-10-01

    A micro-scale metal grid based on a silicon frame for application to electron field emission devices is introduced and experimentally demonstrated. A silicon lattice containing aperture holes with an area of 80 × 80 µm2 and a thickness of 10 µm is precisely manufactured by dry etching the silicon on one side of a double-polished silicon wafer and by wet etching the opposite side. Because a silicon lattice is more rigid than a pure metal lattice, a thin layer of Au/Ti deposited on the silicon lattice for voltage application can be more resistant to the geometric stress caused by the applied electric field. The micro-fabrication process, the images of the fabricated grid with 88% geometric transparency and the surface profile measurement after thermal feasibility testing up to 700 °C are presented.

  2. Electron-atom collisions in a laser field

    NASA Astrophysics Data System (ADS)

    Smith, Philip H. G.; Flannery, M. R.

    1991-05-01

    Cross sections tor the 1S-2S and 1S-2P 0 transitions in laser assisted e-H(1S) collisions are calculated in both the multichannel eikonal and the Born-wave treatments as a function of impact energy and laser field intensity and phase. The laser considered is a monotonic, plane polarized CO 2 laser (photon energy = 0.117 eV), with the polarization direction parallel to the initial projectile velocity. Floquet dressing of the hydrogen atom in the soft-photon weak-field limit reveals a concise description of the laser assisted electron-atom collision. This model also links the microscopic detail of the individual collisions with the macroscopic considerations of experimental analysis.

  3. Dynamic local field factor of an uniform electron liquid

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, G.

    1988-08-01

    We present an expression for the dynamic local field factor of a uniform interacting electron liquid, as G(q, ω) = G1(q) + G2(q, ω), where G1 is the static local field factor of the STLS-theory, and G2 has a structure similar to that obtainable from the mode-coupling theory of the Memory-function approach. The q → 0 limit of the imaginary part of G, which is of interest in the time-dependent Local-density-functional theory, has the correct ω-3/2 dependence, and yields the long-wavelength plasmon damping coefficient in good agreement with diagramatic calculations as well as the mode-coupling approach; detailed numerical results are also presented.

  4. Annular dark field transmission electron microscopy for protein structure determination.

    PubMed

    Koeck, Philip J B

    2016-02-01

    Recently annular dark field (ADF) transmission electron microscopy (TEM) has been advocated as a means of recording images of biological specimens with better signal to noise ratio (SNR) than regular bright field images. I investigate whether and how such images could be used to determine the three-dimensional structure of proteins given that an ADF aperture with a suitable pass-band can be manufactured and used in practice. I develop an approximate theory of ADF-TEM image formation for weak amplitude and phase objects and test this theory using computer simulations. I also test whether these simulated images can be used to calculate a three-dimensional model of the protein using standard software and discuss problems and possible ways to overcome these.

  5. Quantum mechanical force field for water with explicit electronic polarization.

    PubMed

    Han, Jaebeom; Mazack, Michael J M; Zhang, Peng; Truhlar, Donald G; Gao, Jiali

    2013-08-07

    A quantum mechanical force field (QMFF) for water is described. Unlike traditional approaches that use quantum mechanical results and experimental data to parameterize empirical potential energy functions, the present QMFF uses a quantum mechanical framework to represent intramolecular and intermolecular interactions in an entire condensed-phase system. In particular, the internal energy terms used in molecular mechanics are replaced by a quantum mechanical formalism that naturally includes electronic polarization due to intermolecular interactions and its effects on the force constants of the intramolecular force field. As a quantum mechanical force field, both intermolecular interactions and the Hamiltonian describing the individual molecular fragments can be parameterized to strive for accuracy and computational efficiency. In this work, we introduce a polarizable molecular orbital model Hamiltonian for water and for oxygen- and hydrogen-containing compounds, whereas the electrostatic potential responsible for intermolecular interactions in the liquid and in solution is modeled by a three-point charge representation that realistically reproduces the total molecular dipole moment and the local hybridization contributions. The present QMFF for water, which is called the XP3P (explicit polarization with three-point-charge potential) model, is suitable for modeling both gas-phase clusters and liquid water. The paper demonstrates the performance of the XP3P model for water and proton clusters and the properties of the pure liquid from about 900 × 10(6) self-consistent-field calculations on a periodic system consisting of 267 water molecules. The unusual dipole derivative behavior of water, which is incorrectly modeled in molecular mechanics, is naturally reproduced as a result of an electronic structural treatment of chemical bonding by XP3P. We anticipate that the XP3P model will be useful for studying proton transport in solution and solid phases as well as across

  6. Quantum mechanical force field for water with explicit electronic polarization

    PubMed Central

    Han, Jaebeom; Mazack, Michael J. M.; Zhang, Peng; Truhlar, Donald G.; Gao, Jiali

    2013-01-01

    A quantum mechanical force field (QMFF) for water is described. Unlike traditional approaches that use quantum mechanical results and experimental data to parameterize empirical potential energy functions, the present QMFF uses a quantum mechanical framework to represent intramolecular and intermolecular interactions in an entire condensed-phase system. In particular, the internal energy terms used in molecular mechanics are replaced by a quantum mechanical formalism that naturally includes electronic polarization due to intermolecular interactions and its effects on the force constants of the intramolecular force field. As a quantum mechanical force field, both intermolecular interactions and the Hamiltonian describing the individual molecular fragments can be parameterized to strive for accuracy and computational efficiency. In this work, we introduce a polarizable molecular orbital model Hamiltonian for water and for oxygen- and hydrogen-containing compounds, whereas the electrostatic potential responsible for intermolecular interactions in the liquid and in solution is modeled by a three-point charge representation that realistically reproduces the total molecular dipole moment and the local hybridization contributions. The present QMFF for water, which is called the XP3P (explicit polarization with three-point-charge potential) model, is suitable for modeling both gas-phase clusters and liquid water. The paper demonstrates the performance of the XP3P model for water and proton clusters and the properties of the pure liquid from about 900 × 106 self-consistent-field calculations on a periodic system consisting of 267 water molecules. The unusual dipole derivative behavior of water, which is incorrectly modeled in molecular mechanics, is naturally reproduced as a result of an electronic structural treatment of chemical bonding by XP3P. We anticipate that the XP3P model will be useful for studying proton transport in solution and solid phases as well as across

  7. Fast electrons from electron-ion collisions in strong laser fields

    SciTech Connect

    Kull, H.-J.; Tikhonchuk, V.T.

    2005-06-15

    Electron-ion collisions in the presence of a strong laser field lead to a distribution of fast electrons with maximum energy E{sub max}=(k{sub 0}+2v{sub 0}){sup 2}/2(a.u.), where k{sub 0} is the impact and v{sub 0} the quiver velocity of the electron. The energy spectrum is calculated by two approaches: (1) The time-dependent Schroedinger equation is numerically solved for wave packet scattering from a one-dimensional softcore Coulomb potential. Multiphoton energy spectra are obtained demonstrating a separation of the energy spectrum into an exponential distribution for transmission and a plateau distribution for reflection. (2) The energy spectrum is analytically calculated in the framework of classical instantaneous Coulomb collisions with random impact parameters and random phases of the laser field. An exact solution for the energy spectrum is obtained from which the fraction of fast electrons in the plateau region can be estimated.

  8. Improvements in Monte Carlo Simulation of Large Electron Fields

    SciTech Connect

    Faddegon, Bruce A.; Perl, Joseph; Asai, Makoto; /SLAC

    2007-11-28

    Two Monte Carlo systems, EGSnrc and Geant4, were used to calculate dose distributions in large electron fields used in radiotherapy. Source and geometry parameters were adjusted to match calculated results with measurement. Both codes were capable of accurately reproducing the measured dose distributions of the 6 electron beams available on the accelerator. Depth penetration was matched to 0.1 cm. Depth dose curves generally agreed to 2% in the build-up region, although there is an additional 2-3% experimental uncertainty in this region. Dose profiles matched to 2% at the depth of maximum dose in the central region of the beam, out to the point of the profile where the dose begins to fall rapidly. A 3%/3mm match was obtained outside the central region except for the 6 MeV beam, where dose differences reached 5%. The discrepancy observed in the bremsstrahlung tail in published results that used EGS4 is no longer evident. The different systems required different source energies, incident beam angles, thicknesses of the exit window and primary foils, and distance between the primary and secondary foil. These results underscore the requirement for an experimental benchmark of electron scatter for beam energies and foils relevant to radiotherapy.

  9. Breakdown of adiabatic electron behavior in expanding magnetic fields

    NASA Astrophysics Data System (ADS)

    Lichko, Emily; Egedal, Jan; Daughton, William

    2015-11-01

    During magnetic reconnection the incoming magnetic flux tubes expand in the inflow region. If this expansion is sufficiently slow the results are well described by a previously developed adiabatic model. Using kinetic simulations in a simple geometry and applying rapid magnetic perturbations, this study investigates the point at which the adiabatic assumption fails. To this end a 2D VPIC simulation was constructed, where the magnetic field in a uniform plasma is perturbed by externally driven currents. By varying the onset speed of the magnetic perturbation and the electron thermal speed, we found a sharp threshold at which this model breaks down. We believe that this point is determined by the time of the magnetic pumping compared to the electron transit time through the region, i.e. ω ~ Ḃ / B ~vthe / L . This threshold was also characterized by the launching of Whistler waves and with time domain structures, such as electron holes and double layers, which agree with those seen during magnetic reconnection and may relate to similar structures in the Van Allen Belts. NSF GEM award 1405166 and NASA grant NNX14AC68G.

  10. Emergent Gauge Fields and Their Nonperturbative Effects in Correlated Electrons

    NASA Astrophysics Data System (ADS)

    Kim, Ki-Seok; Tanaka, Akihiro

    The history of modern condensed matter physics may be regarded as the competition and reconciliation between Stoner's and Anderson's physical pictures, where the former is based on momentum-space descriptions focusing on long wave-length fluctuations while the latter is based on real-space physics emphasizing emergent localized excitations. In particular, these two view points compete with each other in various nonperturbative phenomena, which range from the problem of high Tc superconductivity, quantum spin liquids in organic materials and frustrated spin systems, heavy-fermion quantum criticality, metal-insulator transitions in correlated electron systems such as doped silicons and two-dimensional electron systems, the fractional quantum Hall effect, to the recently discussed Fe-based superconductors. An approach to reconcile these competing frameworks is to introduce topologically nontrivial excitations into the Stoner's description, which appear to be localized in either space or time and sometimes both, where scattering between itinerant electrons and topological excitations such as skyrmions, vortices, various forms of instantons, emergent magnetic monopoles, and etc. may catch nonperturbative local physics beyond the Stoner's paradigm. In this review article we discuss nonperturbative effects of topological excitations on dynamics of correlated electrons. First, we focus on the problem of scattering between itinerant fermions and topological excitations in antiferromagnetic doped Mott insulators, expected to be relevant for the pseudogap phase of high Tc cuprates. We propose that nonperturbative effects of topological excitations can be incorporated within the perturbative framework, where an enhanced global symmetry with a topological term plays an essential role. In the second part, we go on to discuss the subject of symmetry protected topological states in a largely similar light. While we do not introduce itinerant fermions here, the nonperturbative

  11. Runaway electrons in a magnetized plasma in an rf electric field

    SciTech Connect

    Razdorskii, V.G.

    1982-01-01

    Runaway electrons may appear during electron-cyclotron heating of a plasma. In a constant magnetic field crossed with an rf electric field an effective acceleration of plasma electrons across the magnetic field takes place. When Coulomb collisions are taken into account, this acceleration gives rise to a stream of runaway electrons. The current in this stream is determined as a function of the amplitude of the electric field and the plasma parameters.

  12. METHOD AND APPARATUS FOR INJECTING AND TRAPPING ELECTRONS IN A MAGNETIC FIELD

    DOEpatents

    Christofilos, N.C.

    1962-05-29

    An apparatus is designed for the manipulation of electrons in an exially symmetric magnetic field region and may be employed to trap electrons in such a field by directing an electron beam into a gradientially intensified field region therein to form an annular electron moving axially in the field and along a decreasing field gradient. Dissipative loop circuits such as resistive loops are disposed along at least the decreasing field gradient so as to be inductively coupled to the electron bunch so as to extract energy of the electron bunch and provide a braking force effective to reduce the velocity of the bunch. Accordingly, the electron bunch upon entering a lower intensity magnetic field region is retained therein since the electrons no longer possess sufficient energy to escape. (AEC)

  13. Simulations of microwave electron heating on field-reversed configuration driven by rotating magnetic field

    NASA Astrophysics Data System (ADS)

    Yang, Xiaokang; Petrov, Yuri; Koehn, Alf; Cohen, Sam; Ceccherini, Francesco; Galeotti, Laura; Dettrick, Sean; Binderbauer, Michl

    2016-10-01

    The rotating magnetic field-driven field-reversed configuration (FRC), such as Rotamak or PFRC experiment, was recently proposed as a test bench at Tri Alpha Energy to experimentally pioneer the study of microwave electron heating. In order to provide guidelines to the choice of microwave frequency and antenna position, as well as the desired target plasma profile, extensive simulations have been conducted with use of the GENRAY-C ray-tracing code for a wide range of frequencies from smaller than fundamental electron cyclotron resonant (ECR) frequency up to more than 30 harmonics of ECR. Based on the operational parameters of Rotamak plasma, simulations indicate that microwaves at a frequency around 10 GHz can heat electrons inside the separatrix layer. The physics of heating mechanism is similar for both the Rotamak and the C-2U FRC plasma, meaning that the magnitude of magnetic field goes down along the direction of ray propagation, therefore the rays, after the O-X-B mode conversion, encounter a basin of high harmonic EC resonances and mostly damp the power in the vicinity of the upper-hybrid resonance layer Detailed simulation results and plans for a future test bench will be presented.

  14. Electric fields, electron production, and electron motion at the stripper foil in the Los Alamos Proton Storage Ring

    SciTech Connect

    Plum, M.

    1995-05-01

    The beam instability at the Los Alamos Proton Storage Ring (PSR) most likely involves coupled oscillations between electrons and protons. For this instability to occur, there must be a strong source of electrons. Investigation of the various sources of electrons in the PSR had begun. Copious electron production is expected in the injection section because this section contains the stripper foil. This foil is mounted near the center of the beam pipe, and both circulating and injected protons pass through it, thus allowing ample opportunity for electron production. This paper discusses various mechanisms for electron production, beam-induced electric fields, and electron motion in the vicinity of the foil.

  15. Electronic transport characteristics in silicon nanotube field-effect transistors

    NASA Astrophysics Data System (ADS)

    Shan, Guangcun; Wang, Yu; Huang, Wei

    2011-07-01

    The successful synthesis of silicon nanotubes (SiNTs) has been reported, making these nanostructures a new novel candidate for future nanodevices. By self-consistently solving the Poisson equations using the non-equilibrium Green's function (NEGF) formalism, we investigate the electronic transport and the role of gate bias in affecting the drive current of single-walled silicon nanotube (SW-SiNT) field-effect transistors (FETs). By comparison of a SW-CNT FET, it is found that the SW-SiNT with a high- k HfO gate oxide is a promising candidate for nanotube transistor with better performance. The results discussed here would serve as a versatile and powerful guideline for future experimental studies of SW-SiNT-based transistor with the purpose of exploring device application for nanoelectronics.

  16. Pulsed magnetic field-electron cyclotron resonance ion source operation

    SciTech Connect

    Muehle, C.; Ratzinger, U.; Joest, G.; Leible, K.; Schennach, S.; Wolf, B.H.

    1996-03-01

    The pulsed magnetic field (PuMa)-electron cyclotron resonance (ECR) ion source uses a pulsed coil to improve the peak current by opening the magnetic bottle along the beam axis. After demonstration of the principle of the pulsed magnetic extraction, the ion source was tested with different gases. We received promising results from helium to krypton. The influence of the current in the pulsed coil on the analyzed ion current was measured. With increased current levels within the pulsed coil not only the pulse height of the PuMa pulse, but the pulse length can also be controlled. By using the pulsed coil the maximum of the charge state distribution can be shifted to higher charge states. {copyright} {ital 1996 American Institute of Physics.}

  17. High field electron spin resonance experiments on spin - Peierls compounds

    NASA Astrophysics Data System (ADS)

    Palme, W.; Schmidt, S.; Lüthi, B.; Boucher, J. P.; Weiden, M.; Hauptmann, R.; Geibel, C.; Revcolevschi, A.; Dhalenne, G.

    1998-05-01

    The spin-Peierls (SP) transition is still one of the most challenging effects in quasi-one-dimensional magnetism. A few years ago the first inorganic spin-Peierls compound CuGeO 3 with TSP=14.3 K was discovered, and recently α‧-NaV 2O 5 was found to be another inorganic SP system with the highest transition temperature so far observed: TSP=35 K. Electron spin resonance (ESR) is the only direct way to probe electron spin dynamics in magnetic fields higher than 12 T, where a transition to an incommensurate magnetic phase can occur. We present ESR results on single crystals of pure and Si-doped CuGeO 3 and pure α‧-NaV 2O 5. Our experiments were done in a wide frequency range 35-440 GHz in magnetic fields up to 16 T, covering a large temperature range 1.5-100 K. The temperature dependence of the ESR absorption in the D-phase in α‧-NaV 2O 5 points to transitions among triplet states, which are separated from the singlet ground state by an energy gap Δ≈85 K for T →0 . In contrast to χ( T) the ESR absorption does not stay finite for T →0 . In the incommensurate phase of slightly Si-doped CuGeO 3 (0.2% Si) ESR signals were observed, but their behaviour is much different from the ones in the pure compound.

  18. Laser-driven electron acceleration in a plasma channel with an additional electric field

    SciTech Connect

    Cheng, Li-Hong; Xue, Ju-Kui; Liu, Jie

    2016-05-15

    We examine the electron acceleration in a two-dimensional plasma channel under the action of a laser field and an additional static electric field. We propose to design an appropriate additional electric field (its direction and location), in order to launch the electron onto an energetic trajectory. We find that the electron acceleration strongly depends on the coupled effects of the laser polarization, the direction, and location of the additional electric field. The additional electric field affects the electron dynamics by changing the dephasing rate. Particularly, a suitably designed additional electric field leads to a considerable energy gain from the laser pulse after the interaction with the additional electric field. The electron energy gain from the laser with the additional electric field can be much higher than that without the additional electric field. This engineering provides a possible means for producing high energetic electrons.

  19. MAGNETIC FIELD-DECAY-INDUCED ELECTRON CAPTURES: A STRONG HEAT SOURCE IN MAGNETAR CRUSTS

    SciTech Connect

    Cooper, Randall L.; Kaplan, David L. E-mail: dkaplan@kitp.ucsb.edu

    2010-01-10

    We propose a new heating mechanism in magnetar crusts. Magnetars' crustal magnetic fields are much stronger than their surface fields; therefore, magnetic pressure partially supports the crust against gravity. The crust loses magnetic pressure support as the field decays and must compensate by increasing the electron degeneracy pressure; the accompanying increase in the electron Fermi energy induces nonequilibrium, exothermic electron captures. The total heat released via field-decay electron captures is comparable to the total magnetic energy in the crust. Thus, field-decay electron captures are an important, if not the primary, mechanism powering magnetars' soft X-ray emission.

  20. Effect of metal nanoparticles decoration on electron field emission property of graphene sheets.

    PubMed

    Baby, Tessy Theres; Ramaprabhu, Sundara

    2011-10-05

    The electron field emission from metal nanoparticle decorated hydrogen exfoliated graphene (metal/HEG) occurs at low turn on and threshold fields due to its low work function and high field enhancement factor.

  1. Electron cyclotron resonance acceleration of electrons to relativistic energies by a microwave field in a mirror trap

    SciTech Connect

    Sergeichev, K. F.; Karfidov, D. M.; Lukina, N. A.

    2007-06-15

    Results are presented from experiments on the acceleration of electrons by a 2.45-GHz microwave field in an adiabatic mirror trap under electron cyclotron resonance conditions, the electric and wave vectors of the wave being orthogonal to the trap axis. At a microwave electric field of {>=}10 V/cm and air pressures of 10{sup -6}-10{sup -4} Torr (the experiments were also performed with helium and argon), a self-sustained discharge was initiated in which a fraction of plasma electrons were accelerated to energies of 0.3-0.5 MeV. After the onset of instability, the acceleration terminated; the plasma decayed; and the accelerated electrons escaped toward the chamber wall, causing the generation of X-ray emission. Estimates show that electrons can be accelerated to the above energies only in the regime of self-phased interaction with the microwave field, provided that the electrons with a relativistically increased mass penetrate into the region with a higher magnetic field. It is shown that the negative-mass instability also can contribute to electron acceleration. The dynamic friction of the fast electrons by neutral particles in the drift space between the resonance zones does not suppress electron acceleration, so the electrons pass into a runaway regime. Since the air molecules excited by relativistic runaway electrons radiate primarily in the red spectral region, this experiment can be considered as a model of high-altitude atmospheric discharges, known as 'red sprites.'.

  2. Mantle fields in the era of dynamic multileaf collimation: Field shaping and electronic tissue compensation

    SciTech Connect

    Davis, Quillin G.; Paulino, Arnold C. . E-mail: apaulino@tmh.tmc.edu; Miller, Robin M.S.; Ting, Joseph Y.

    2006-10-01

    Mantle field radiotherapy for Hodgkin's disease is complicated by significant dose gradient (up to 10-20%) across the large fields required. Many different strategies of tissue compensation have been investigated, including custom physical compensators to provide better dose distributions. We present a method using dynamic multileaf collimator (dMLC) fluence modulation to simultaneously shape the treatment field and give homogeneous dose at depth throughout the classic mantle field. Five patients were treated for early-stage Hodgkin's disease with a conventional anterior-posterior-posterior-anterior (AP-PA) mantle field. The patients were planned using the Varian Eclipse treatment planning system, version 6.1.3, and treated on a Varian 2300CD. An AP-PA dynamic MLC beam-shaped and dose-compensated plan was created for each, and compared with the conventional blocked plan. Nine dose points were calculated at midplane in each plan. Chamber measurements were taken to confirm accurate dMLC delivery of the planned doses. The mean dose per fraction, relative to a central axis dose of 1.8 Gy, was increased in the conventional plans compared with the dMLC plans in the right (R) neck, left (L) neck, R supraclavicular, L supraclavicular, and L axillary points. The mediastinum tended to be underdosed relative to central axis, with the mid-mediastinal and lower mediastinal points showing improved coverage with the dMLC plans. Measurements showed excellent agreement between planned doses and delivered doses, with less than 2% in-field variation. Dynamic MLC fluence modulation was used to effectively deliver a mantle field that is both shape- and electronically-dose-compensated with sliding window MLC. Homogeneity was significantly improved throughout the treatment field, and measurements confirmed accurate dose delivery using this technique.

  3. Influence of stochastic magnetic fields on the confinement of runaway electrons and thermal electron energy in tokamaks

    SciTech Connect

    Mynick, H.E.; Strachan, J.D.

    1980-07-01

    The ratio of the runaway electron confinement to thermal electron energy confinement is derived for tokamaks where both processes are determined by free streaming along stochastic magnetic field lines. The runaway electron confinement is enhanced at high runaway electron energies due to phase averaging over the magnetic perturbations when the runaway electron drift surfaces are dislaced from the magnetic surfaces. Comparison with experimental data from LT-3, ORMAK, PLT, ST, and TM-3 indicates that magnetic stochasticity may explain the relative transport rates of runaways and thermal electron energy.

  4. Fine structure of subauroral electric field and electron content

    NASA Astrophysics Data System (ADS)

    Makarevich, Roman A.; Bristow, W. A.

    2014-05-01

    Small-scale structure of the plasma convection and electron content within the subauroral polarization stream (SAPS) is investigated. We present ionospheric observations during the main phase of the geomagnetic storm on 17 March 2013, during which a sequence of intense, highly localized, and fast-moving electric field (EF) structures within SAPS was observed by the Super Dual Auroral Radar Network Christmas Valley West (CVW) radar. The CVW EF measurements at 60 s resolution are analyzed in context of coincident GPS measurements of the total electron content (TEC) at 30 s resolution. The strong and narrow feature of the subauroral ion drift (SAID) was observed poleward of the TEC trough, with a TEC enhancement (peak) seen in the SAPS (SAID) region. The SAPS wave activity commenced ~2 h (15 min) after first appearance of SAPS (SAID). The SAPS structures appeared near the poleward edge of the trough, propagated westward, and merged with SAID near TEC peak. The propagation velocity was comparable with convection velocity within each EF structure. The SAPS TEC exhibited a general decrease toward the end of the period. On a smaller time scale, TEC exhibited a small but appreciable decrease within EF structures. The wavelet spectra of EF and TEC showed similar variations, with wave period of ~5 min period near onset and increasing to 8-10 min toward the end of the period with significant wave activity. A scenario is discussed, in which the SAPS wave activity may modify the ionospheric conductance and TEC at small scales, with large-scale magnetosphere-ionosphere feedback acting to continuously deplete TEC where/when such activity does not occur.

  5. Resonant scattering of ultrarelativistic electrons in the strong field of a pulsed laser wave

    NASA Astrophysics Data System (ADS)

    Lebed', A. A.; Padusenko, E. A.; Roshchupkin, S. P.

    2016-02-01

    Electron-electron scattering in a strong field of a pulsed laser wave is studied theoretically. Resonant scattering kinematics at the small polar angles for electron ultrarelativistic energy is studied in detail. Compact analytical expressions for the amplitude and the differential cross section for wave elliptical polarization are obtained under resonant conditions. The resonant cross section of electron-electron scattering is shown to decrease sharply with increasing the electron ultrarelativistic energies for weak and moderately strong fields. It was demonstrated that the resonant cross section of electron-electron scattering at wave circular polarization is four times greater than the corresponding cross section at linear polarization. The resonant cross section may exceed the corresponding cross section of a field-free process: by 5-6 orders of magnitude for electron MeV-energy and petawatt optical lasers (PHELIX, Vulcan); and 8-9 orders for multipetawatt laser fields within the femtosecond range (Vulcan10, ELI).

  6. Advanced prior modeling for 3D bright field electron tomography

    NASA Astrophysics Data System (ADS)

    Sreehari, Suhas; Venkatakrishnan, S. V.; Drummy, Lawrence F.; Simmons, Jeffrey P.; Bouman, Charles A.

    2015-03-01

    Many important imaging problems in material science involve reconstruction of images containing repetitive non-local structures. Model-based iterative reconstruction (MBIR) could in principle exploit such redundancies through the selection of a log prior probability term. However, in practice, determining such a log prior term that accounts for the similarity between distant structures in the image is quite challenging. Much progress has been made in the development of denoising algorithms like non-local means and BM3D, and these are known to successfully capture non-local redundancies in images. But the fact that these denoising operations are not explicitly formulated as cost functions makes it unclear as to how to incorporate them in the MBIR framework. In this paper, we formulate a solution to bright field electron tomography by augmenting the existing bright field MBIR method to incorporate any non-local denoising operator as a prior model. We accomplish this using a framework we call plug-and-play priors that decouples the log likelihood and the log prior probability terms in the MBIR cost function. We specifically use 3D non-local means (NLM) as the prior model in the plug-and-play framework, and showcase high quality tomographic reconstructions of a simulated aluminum spheres dataset, and two real datasets of aluminum spheres and ferritin structures. We observe that streak and smear artifacts are visibly suppressed, and that edges are preserved. Also, we report lower RMSE values compared to the conventional MBIR reconstruction using qGGMRF as the prior model.

  7. Analysis of magnetically immersed electron guns with non-adiabatic fields

    NASA Astrophysics Data System (ADS)

    Pikin, Alexander; Alessi, James G.; Beebe, Edward N.; Raparia, Deepak; Ritter, John

    2016-11-01

    Electron diode guns, which have strongly varying magnetic or electric fields in a cathode-anode gap, were investigated in order to generate laminar electron beams with high current density using magnetically immersed guns. By creating a strongly varying radial electric field in a cathode-anode gap of the electron gun, it was demonstrated that the optical properties of the gun can be significantly altered, which allows the generation of a laminar, high-current electron beam with relatively low magnetic field on the cathode. The relatively high magnetic compression of the electron beam achieved by this method is important for producing electron beams with high current density. A similar result can be obtained by inducing a strong variation of the magnetic field in a cathode-anode gap. It was observed that creating a dip in the axial magnetic field in the cathode-anode gap of an adiabatic electron gun has an optical effect similar to guns with strong variation of radial electric field. By analyzing the electron trajectories angles and presenting the results in a gun performance map, different geometries of magnetically immersed electron guns with non-adiabatic fields are compared with each other and with a more traditional adiabatic electron gun. Some advantages and limitations of guns with non-adiabatic fields are outlined. The tests' results of a non-adiabatic electron gun with modified magnetic field are presented.

  8. Analysis of magnetically immersed electron guns with non-adiabatic fields

    SciTech Connect

    Pikin, Alexander; Alessi, James G.; Beebe, Edward N.; Raparia, Deepak; Ritter, John

    2016-11-08

    Electron diode guns, which have strongly varying magnetic or electric fields in a cathode-anode gap, were investigated in order to generate laminar electron beams with high current density using magnetically immersed guns. By creating a strongly varying radial electric field in a cathode-anode gap of the electron gun, it was demonstrated that the optical properties of the gun can be significantly altered, which allows the generation of a laminar, high-current electron beam with relatively low magnetic field on the cathode. The relatively high magnetic compression of the electron beam achieved by this method is important for producing electron beams with high current density. A similar result can be obtained by inducing a strong variation of the magnetic field in a cathode-anode gap. It was observed that creating a dip in the axial magnetic field in the cathode-anode gap of an adiabatic electron gun has an optical effect similar to guns with strong variation of radial electric field. By analyzing the electron trajectories angles and presenting the results in a gun performance map different geometries of magnetically immersed electron guns with non-adiabatic fields are compared with each other and with a more traditional adiabatic electron gun. Some advantages and limitations of guns with non-adiabatic fields are outlined. In conclusion, the tests results of non-adiabatic electron gun with modified magnetic field are presented.

  9. Analysis of magnetically immersed electron guns with non-adiabatic fields

    DOE PAGES

    Pikin, Alexander; Alessi, James G.; Beebe, Edward N.; ...

    2016-11-08

    Electron diode guns, which have strongly varying magnetic or electric fields in a cathode-anode gap, were investigated in order to generate laminar electron beams with high current density using magnetically immersed guns. By creating a strongly varying radial electric field in a cathode-anode gap of the electron gun, it was demonstrated that the optical properties of the gun can be significantly altered, which allows the generation of a laminar, high-current electron beam with relatively low magnetic field on the cathode. The relatively high magnetic compression of the electron beam achieved by this method is important for producing electron beams withmore » high current density. A similar result can be obtained by inducing a strong variation of the magnetic field in a cathode-anode gap. It was observed that creating a dip in the axial magnetic field in the cathode-anode gap of an adiabatic electron gun has an optical effect similar to guns with strong variation of radial electric field. By analyzing the electron trajectories angles and presenting the results in a gun performance map different geometries of magnetically immersed electron guns with non-adiabatic fields are compared with each other and with a more traditional adiabatic electron gun. Some advantages and limitations of guns with non-adiabatic fields are outlined. In conclusion, the tests results of non-adiabatic electron gun with modified magnetic field are presented.« less

  10. Correlated electric field and low-energy electron measurements in the low-altitude polar cusp

    NASA Technical Reports Server (NTRS)

    Kintner, P. M.; Ackerson, K. L.; Gurnett, D. A.; Frank, L. A.

    1978-01-01

    Correlated electric field and low-energy electron measurements are presented for two passes of Hawkeye 1 through the south polar cusp at 2000-km altitude during local morning. In one case the electric field reversal coincides with the boundary of detectable 5.2keV electron intensities and the equatorward boundary of the cusp. In the other case the electric field reversal and the 5.2 keV electron trapping boundary coincide, but the equatorward edge of the cusp as determined from the presence of 180 eV electron intensities is 5 degrees invariant latitude equatorward of the electric field reversal. It is concluded that in the second case, electron intensities associated with the polar cusp populate closed dayside field lines, and hence the corresponding equatorward edge of these electron intensities is not always an indicator of the boundary between closed dayside field lines and polar cap field lines.

  11. Correlated electric field and low-energy electron measurements in the low-altitude polar cusp

    NASA Technical Reports Server (NTRS)

    Kintner, P. M.; Ackerson, K. L.; Gurnett, D. A.; Frank, L. A.

    1978-01-01

    Correlated electric field and low-energy electron measurements are presented for two passes of Hawkeye 1 through the south polar cusp at 2000-km altitude during local morning. In one case the electric field reversal coincides with the boundary of detectable 5.2keV electron intensities and the equatorward boundary of the cusp. In the other case the electric field reversal and the 5.2 keV electron trapping boundary coincide, but the equatorward edge of the cusp as determined from the presence of 180 eV electron intensities is 5 degrees invariant latitude equatorward of the electric field reversal. It is concluded that in the second case, electron intensities associated with the polar cusp populate closed dayside field lines, and hence the corresponding equatorward edge of these electron intensities is not always an indicator of the boundary between closed dayside field lines and polar cap field lines.

  12. Manipulation of mobile spin coherence using magnetic-field-free electron spin resonance

    NASA Astrophysics Data System (ADS)

    Sanada, H.; Kunihashi, Y.; Gotoh, H.; Onomitsu, K.; Kohda, M.; Nitta, J.; Santos, P. V.; Sogawa, T.

    2013-05-01

    Electron spin resonance (ESR) has applications in the manipulation of individual electron spins for quantum information processing. In general, ESR requires two external magnetic fields: a static field (B0) to split the spin states in energy and an oscillating field (B1) with the frequency resonant to the splitting energy. However, spin manipulation methods relying on real magnetic fields--much broader than the size of individual electrons--are energetically inefficient and unsuitable for future device applications. Here we demonstrate an alternative approach where the spin-orbit interaction of trajectory-controlled electrons induces effective B0 and B1 fields. These fields are created when electron spins surf on sound waves along winding semiconductor channels. The resultant spin dynamics--mobile spin resonance--is equivalent to the usual ESR but requires neither static nor time-dependent real magnetic fields to manipulate electron spin coherence.

  13. Thermal electron acceleration by electric field spikes in the outer radiation belt: generation of field-aligned pitch angle distributions

    NASA Astrophysics Data System (ADS)

    Vasko, I.; Agapitov, O. V.; Mozer, F.; Artemyev, A.

    2015-12-01

    Van Allen Probes observations in the outer radiation belt have demonstrated an abundance non-linear electrostatic stucture called Time Domain Structures (TDS). One of the type of TDS is electrostatic electron-acoustic double layers (DL). Observed DLs are frequently accompanied by field-aligned (bi-directional) pitch angle distributions (PAD) of electrons with energies from hundred eVs up to several keV (rarely up to tens of keV). We perform numerical simulations of the DL interaction with thermal electrons making use of the test particle approach. DL parameters assumed in the simulations are adopted from observations. We show that DLs accelerate thermal electrons parallel to the magnetic field via the electrostatic Fermi mechanism, i.e. due to reflections from DL potential humps. Due to this interaction some fraction of electrons is scattered into the loss cone. The electron energy gain is larger for larger DL scalar potential amplitudes and higher propagation velocities. In addition to the Fermi mechanism electrons can be trapped by DLs in their generation region and accelerated due to transport to higher latitudes. Both mechanisms result in formation of field-aligned PADs for electrons with energies comparable to those found in observations. The Fermi mechanism provides field-aligned PADs for <1 keV electrons, while the trapping mechanism extends field-aligned PADs to higher energy electrons.

  14. Thermal electron acceleration by electric field spikes in the outer radiation belt: Generation of field-aligned pitch angle distributions

    NASA Astrophysics Data System (ADS)

    Vasko, I. Y.; Agapitov, O. V.; Mozer, F. S.; Artemyev, A. V.

    2015-10-01

    Van Allen Probes observations in the outer radiation belt have demonstrated an abundance of electrostatic electron-acoustic double layers (DL). DLs are frequently accompanied by field-aligned (bidirectional) pitch angle distributions (PAD) of electrons with energies from hundred eVs up to several keV. We perform numerical simulations of the DL interaction with thermal electrons making use of the test particle approach. DL parameters assumed in the simulations are adopted from observations. We show that DLs accelerate thermal electrons parallel to the magnetic field via the electrostatic Fermi mechanism, i.e., due to reflections from DL potential humps. The electron energy gain is larger for larger DL scalar potential amplitudes and higher propagation velocities. In addition to the Fermi mechanism, electrons can be trapped by DLs in their generation region and accelerated due to transport to higher latitudes. Both mechanisms result in formation of field-aligned PADs for electrons with energies comparable to those found in observations. The Fermi mechanism provides field-aligned PADs for <1 keV electrons, while the trapping mechanism extends field-aligned PADs to higher-energy electrons. It is shown that the Fermi mechanism can result in scattering into the loss cone of up to several tenths of percent of electrons with flux peaking at energies up to several hundred eVs.

  15. Model based iterative reconstruction for Bright Field electron tomography

    NASA Astrophysics Data System (ADS)

    Venkatakrishnan, Singanallur V.; Drummy, Lawrence F.; De Graef, Marc; Simmons, Jeff P.; Bouman, Charles A.

    2013-02-01

    Bright Field (BF) electron tomography (ET) has been widely used in the life sciences to characterize biological specimens in 3D. While BF-ET is the dominant modality in the life sciences it has been generally avoided in the physical sciences due to anomalous measurements in the data due to a phenomenon called "Bragg scatter" - visible when crystalline samples are imaged. These measurements cause undesirable artifacts in the reconstruction when the typical algorithms such as Filtered Back Projection (FBP) and Simultaneous Iterative Reconstruction Technique (SIRT) are applied to the data. Model based iterative reconstruction (MBIR) provides a powerful framework for tomographic reconstruction that incorporates a model for data acquisition, noise in the measurement and a model for the object to obtain reconstructions that are qualitatively superior and quantitatively accurate. In this paper we present a novel MBIR algorithm for BF-ET which accounts for the presence of anomalous measurements from Bragg scatter in the data during the iterative reconstruction. Our method accounts for the anomalies by formulating the reconstruction as minimizing a cost function which rejects measurements that deviate significantly from the typical Beer's law model widely assumed for BF-ET. Results on simulated as well as real data show that our method can dramatically improve the reconstructions compared to FBP and MBIR without anomaly rejection, suppressing the artifacts due to the Bragg anomalies.

  16. Electronic Model of a Ferroelectric Field Effect Transistor

    NASA Technical Reports Server (NTRS)

    MacLeod, Todd C.; Ho, Fat Duen; Russell, Larry (Technical Monitor)

    2001-01-01

    A pair of electronic models has been developed of a Ferroelectric Field Effect transistor. These models can be used in standard electrical circuit simulation programs to simulate the main characteristics of the FFET. The models use the Schmitt trigger circuit as a basis for their design. One model uses bipolar junction transistors and one uses MOSFET's. Each model has the main characteristics of the FFET, which are the current hysterisis with different gate voltages and decay of the drain current when the gate voltage is off. The drain current from each model has similar values to an actual FFET that was measured experimentally. T'he input and o Output resistance in the models are also similar to that of the FFET. The models are valid for all frequencies below RF levels. No attempt was made to model the high frequency characteristics of the FFET. Each model can be used to design circuits using FFET's with standard electrical simulation packages. These circuits can be used in designing non-volatile memory circuits and logic circuits and is compatible with all SPICE based circuit analysis programs. The models consist of only standard electrical components, such as BJT's, MOSFET's, diodes, resistors, and capacitors. Each model is compared to the experimental data measured from an actual FFET.

  17. Electronic Model of a Ferroelectric Field Effect Transistor

    NASA Technical Reports Server (NTRS)

    MacLeod, Todd C.; Ho, Fat Duen; Russell, Larry (Technical Monitor)

    2001-01-01

    A pair of electronic models has been developed of a Ferroelectric Field Effect transistor. These models can be used in standard electrical circuit simulation programs to simulate the main characteristics of the FFET. The models use the Schmitt trigger circuit as a basis for their design. One model uses bipolar junction transistors and one uses MOSFET's. Each model has the main characteristics of the FFET, which are the current hysterisis with different gate voltages and decay of the drain current when the gate voltage is off. The drain current from each model has similar values to an actual FFET that was measured experimentally. T'he input and o Output resistance in the models are also similar to that of the FFET. The models are valid for all frequencies below RF levels. No attempt was made to model the high frequency characteristics of the FFET. Each model can be used to design circuits using FFET's with standard electrical simulation packages. These circuits can be used in designing non-volatile memory circuits and logic circuits and is compatible with all SPICE based circuit analysis programs. The models consist of only standard electrical components, such as BJT's, MOSFET's, diodes, resistors, and capacitors. Each model is compared to the experimental data measured from an actual FFET.

  18. Electronic transitions, crystal field effects and phonons in UO 2

    NASA Astrophysics Data System (ADS)

    Schoenes, J.

    1980-08-01

    An extensive optical study of the 5f magnetic semiconductor UO 2 is presented. The experimental data include near normal incidence reflectivity measurements from 0.0025 to 13 eV, absorption and Faraday rotation measurements as function of temperature and of magnetic fields up to 100 kOe and photoemission results. From the data in the fundamental absorption region an energy level scheme is derived. This level scheme differs markedly from an earlier model but it is quantitatively supported by a calculation using the thermochemical Haber-Born process and also by cluster calculations. The localized nature of the 5f electrons is demonstrated. The absorption edge at 2 eV shows an abrupt shift to lower energies at the first order phase transition of UO 2 to the antiferromagnetic state. This shift is shown to be larger than expected from the lattice contraction indicating a magnetic order induced contribution to the total red shift. Below the absorption edge, intra-5f transitions and multiphonon excitations are reported, showing striking order induced effects at and below TN = 30.8 K. New results are presented for ε st, ε opt, ω TO and ω LO which fulfill the Lyddane-Sachs-Teller relation.

  19. Electrons in a relativistic-intensity laser field: generation of zeptosecond electromagnetic pulses and energy spectrum of the accelerated electrons

    SciTech Connect

    Andreev, A A; Galkin, A L; Kalashnikov, M P; Korobkin, V V; Romanovsky, Mikhail Yu; Shiryaev, O B

    2011-08-31

    We study the motion of an electron and emission of electromagnetic waves by an electron in the field of a relativistically intense laser pulse. The dynamics of the electron is described by the Newton equation with the Lorentz force in the right-hand side. It is shown that the electrons may be ejected from the interaction region with high energy. The energy spectrum of these electrons and the technique of using the spectrum to assess the maximal intensity in the focus are analysed. It is found that electromagnetic radiation of an electron moving in an intense laser field occurs within a small angle around the direction of the electron trajectory tangent. The tangent quickly changes its direction in space; therefore, electromagnetic radiation of the electron in the far-field zone in a certain direction in the vicinity of the tangent is a short pulse with a duration as short as zeptoseconds. The calculation of the temporary and spectral distribution of the radiation field is carried out. (superintense laser fields)

  20. Electrostatic discharge and field effects of electronics systems

    NASA Astrophysics Data System (ADS)

    Dicks, L. R.; Morin, G.

    1988-04-01

    The effects of static electricity on modern electronics are discussed, as well as a comprehensive approach to electrostatic discharge (ESD) protection measures in all phases of the life cycle of an electronic system. Static electricity has become a potential source of damage to electronic systems used in most applications, including aircraft, ground and shipboard installations.

  1. Quantum entanglement in a two-electron quantum dot in magnetic field

    NASA Astrophysics Data System (ADS)

    Nazmitdinov, R. G.; Chizhov, A. V.

    2012-03-01

    The properties of quantum entanglement of the ground state in an exactly solvable model of a two-electron QD have been investigated. It is shown that the degree of entanglement increases with enhancement of interaction between electrons, irrespective of the shape of electron confining potential in a QD. A magnetic field destroys electron entanglement. However, the entanglement in deformed QDs is more stable against magnetic field.

  2. Transverse electron acceleration in the field of terahertz radiation. Terahertz synchrotron

    NASA Astrophysics Data System (ADS)

    Romanovsky, M. Yu.

    2017-04-01

    We study transverse acceleration of an electron introduced to a terahertz pulse along the direction of the electromagnetic field wave vector in the presence of an external permanent magnetic field. We estimate the possible increment of the electron energy as well as the acceleration length and turn angle of the electron leaving the pulse. The developed acceleration scheme may be employed (in addition to the electron accelerator itself) in a terahertz synchrotron, possible parameters of which are estimated.

  3. The role of the electron convection term for the parallel electric field and electron acceleration in MHD simulations

    SciTech Connect

    Matsuda, K.; Terada, N.; Katoh, Y.; Misawa, H.

    2011-08-15

    There has been a great concern about the origin of the parallel electric field in the frame of fluid equations in the auroral acceleration region. This paper proposes a new method to simulate magnetohydrodynamic (MHD) equations that include the electron convection term and shows its efficiency with simulation results in one dimension. We apply a third-order semi-discrete central scheme to investigate the characteristics of the electron convection term including its nonlinearity. At a steady state discontinuity, the sum of the ion and electron convection terms balances with the ion pressure gradient. We find that the electron convection term works like the gradient of the negative pressure and reduces the ion sound speed or amplifies the sound mode when parallel current flows. The electron convection term enables us to describe a situation in which a parallel electric field and parallel electron acceleration coexist, which is impossible for ideal or resistive MHD.

  4. A shaping device for irregular electron fields for the Therac-20 accelerator.

    PubMed

    Muller-Runkel, R; Ovadia, J; Borger, F; Culbert, H; Rohowsky, B

    1985-01-01

    A device for shaping electron fields from a Therac-20 accelerator is described. The considerable advantage of continuously variable field sizes is enhanced when the shaping device is placed on the lower trimmer bars of the shorter set of electron trimmers, which remain fully adjustable. Cerrobend blocks of 1-cm thickness are sufficient for a 5% attenuation level with 20-MeV electrons and large field sizes.

  5. Cross-field transport of electrons at the magnetic throat in an annular plasma reactor

    NASA Astrophysics Data System (ADS)

    Zhang, Yunchao; Charles, Christine; Boswell, Rod

    2017-01-01

    Cross-field transport of electrons has been studied at the magnetic throat of the annular Chi-Kung reactor. This annular configuration allows the creation of a low pressure argon plasma with two distinct electron heating locations by independently operating a radio-frequency antenna surrounding the outer source tube, or an antenna housed inside the inner source tube. The two antenna cases show opposite variation trends in radial profiles of electron energy probability function, electron density, plasma potential and electron temperature. The momentum and energy transport coefficients are obtained from the electron energy probability functions, and the related electron fluxes follow the path of electron cooling across the magnetic throat.

  6. Depth dose characteristics of elongated fields for electron beams from a 20-MeV accelerator

    SciTech Connect

    Sharma, S.C.; Wilson, D.L.

    1985-07-01

    In a Therac-20 linear accelerator, 6--20 MeV electron beams are normally produced by shaping a scanned electron beam through primary x-ray collimators and secondary electron trimmers. The collimator settings range continuously from 2 to 30 cm. Depth dose and field flatness parameters were measured for small elongated fields of the various electron energies. Depth dose of narrow fields defined either by the machine's collimator or lead cutouts agreed with data predicted from small square fields using the ''square-root'' method.

  7. Depth dose characteristics of elongated fields for electron beams from a 20-MeV accelerator.

    PubMed

    Sharma, S C; Wilson, D L

    1985-01-01

    In a Therac-20 linear accelerator, 6-20 MeV electron beams are normally produced by shaping a scanned electron beam through primary x-ray collimators and secondary electron trimmers. The collimator settings range continuously from 2 to 30 cm. Depth dose and field flatness parameters were measured for small elongated fields of the various electron energies. Depth dose of narrow fields defined either by the machine's collimator or lead cutouts agreed with data predicted from small square fields using the "square-root" method.

  8. Electron field emission from composite electrodes of carbon nanotubes-boron-doped diamond and carbon felts

    NASA Astrophysics Data System (ADS)

    Rosolen, J. Mauricio; Tronto, Simone; Marchesin, Marcel S.; Almeida, Erica C.; Ferreira, Neidenei G.; Patrick Poá, C. H.; Silva, S. Ravi P.

    2006-02-01

    The electron field emission of carbon nanotube (CNT)/boron-doped diamond (BDD)/carbon felt electrodes (CNT/BDD/felt) have been investigated. The composite electrode was initially prepared with the growth of BDD on carbon felt and the subsequent growth of CNT by chemical decomposition of methanol. The composite electrodes were characterised using scanning electron microscopy and transmission electron microscopy. For the CNT/BDD/felt samples, the electron field emission was observed at macroscopic fields as low as 1.1Vμm-1. The emission current versus time plot shows significant potential for future field emission applications.

  9. Kinetics of relativistic electrons passing through quasi-periodic fields

    NASA Astrophysics Data System (ADS)

    Bulyak, Eugene; Shul'ga, Nikolay

    2017-07-01

    We report a novel method for evaluating the energy spectrum of electrons emitting hard X-rays and gamma-rays in undulators and Compton sources. The method takes into account the quantum nature of recoils undergone by the electrons emitting high energy photons. The method is susceptible to evaluate a spectrum of electrons for the whole range of the emission rates per electron-pass through of the driving force, from much less than one emitted photon on average (Compton sources and short undulators) to many emitted photons (long undulators, relatively low-energy electrons). As shown in the former limiting case, the spectrum of electrons reflects the spectrum of emitted radiation whereas it is close to the Gaussian shape in the latter case. Limitation of coherency for the sources of high-energy electromagnetic radiation caused by recoils from emitted photons is also discussed.

  10. Magnetic turbulent electron transport in a reversed field pinch

    SciTech Connect

    Schoenberg, K.; Moses, R.

    1990-01-01

    A model of magnetic turbulent electron transport is presented. The model, based on the thermal conduction theory of Rechester and Rosenbluth, entails a Boltzmann description of electron dynamics in the long mean-free-path limit and quantitatively describes the salient features of superthermal electron measurements in the RFP edge plasma. Included are predictions of the mean superthermal electron energy, current density, and power flux asymmetry. A discussion of the transport model, the assumptions implicit in the model, and the relevance of this work to more general issue of magnetic turbulent transport in toroidal systems is presented. 32 refs., 3 figs.

  11. Neutrino emissivity from electron-positron annihilation in hot matter in a strong magnetic field

    SciTech Connect

    Amsterdamski, P.; Haensel, P. )

    1990-10-15

    The neutrino emissivity due to electron-positron annihilation in a strong magnetic field is computed. A strong magnetic field can significantly increase the neutrino emissivity at {ital T}{similar to}10{sup 9} K.

  12. Quantum control via a genetic algorithm of the field ionization pathway of a Rydberg electron

    NASA Astrophysics Data System (ADS)

    Gregoric, Vincent C.; Kang, Xinyue; Liu, Zhimin Cheryl; Rowley, Zoe A.; Carroll, Thomas J.; Noel, Michael W.

    2017-08-01

    Quantum control of the pathway along which a Rydberg electron field ionizes is experimentally and computationally demonstrated. Selective field ionization is typically done with a slowly rising electric field pulse. The (1/n*)4 scaling of the classical ionization threshold leads to a rough mapping between arrival time of the electron signal and principal quantum number of the Rydberg electron. This is complicated by the many avoided level crossings that the electron must traverse on the way to ionization, which in general leads to broadening of the time-resolved field ionization signal. In order to control the ionization pathway, thus directing the signal to the desired arrival time, a perturbing electric field produced by an arbitrary wave-form generator is added to a slowly rising electric field. A genetic algorithm evolves the perturbing field in an effort to achieve the target time-resolved field ionization signal.

  13. Pressure of Degenerate and Relativistic Electrons in a Superhigh Magnetic Field

    NASA Astrophysics Data System (ADS)

    Gao, Zhi Fu; Wang, Na; Peng, Qiu He; Li, Xiang Dong; Du, Yuan Jie

    2013-11-01

    Based on our previous work, we deduce a general formula for pressure of degenerate and relativistic electrons, Pe, which is suitable for superhigh magnetic fields, discuss the quantization of Landau levels of electrons, and consider the quantum electrodynamic (QED) effects on the equations of states (EOSs) for different matter systems. The main conclusions are as follows: Pe is related to the magnetic field B, matter density ρ, and electron fraction Ye; the stronger the magnetic field, the higher the electron pressure becomes; the high electron pressure could be caused by high Fermi energy of electrons in a superhigh magnetic field; compared with a common radio pulsar, a magnetar could be a more compact oblate spheroid-like deformed neutron star (NS) due to the anisotropic total pressure; and an increase in the maximum mass of a magnetar is expected because of the positive contribution of the magnetic field energy to the EOS of the star.

  14. Communications-Electronics Utilization Field AFSC 30XX.

    DTIC Science & Technology

    1984-08-01

    needed modification in the type and amount of electronics principles training given to entry-level officers. This finding has not changed over the...intervening 10 years. The 1984 survey indicates a need to review the electronics principles blocks of instruction. While there can be no argument that

  15. Modeling of Klein Tunneling for Electron Field Emission from Graphene

    DTIC Science & Technology

    2013-10-23

    relationship. Promising applications include field effect transistors, sensors, spintronic devices, and many others in nanoelectronics. In recent...dispersion relationship. Promising applications include field effect transistors, sensors, spintronic devices, and many others in nanoelectronics. In

  16. Entanglement fidelity for elastic electron-electron scattering in a strongly coupled semiclassical plasmas under the influence of electric field

    NASA Astrophysics Data System (ADS)

    Falaye, Babatunde

    This study presents the effects of electric field, AB-flux field and uniform magnetic field directed along z-axis on electron-electron scattering encircled by a strongly coupled semiclassical plasmas. The all-inclusive effects result into a strongly repulsive system while the localizations of quantum levels change and the eigenvalues increase. We have employ perturbation formalism in our calculations. The condition | Enm(0) | > > | Enm(1) | > | Enm(2) | > | Enm(3) | > . . . . > | Enm(n) | holds. We find that, the combined effect of the fields is stronger than solitary effect and consequently, there is a substantial shift in the bound state energy of the system. We also find that to perpetuate a low-energy elastic electron-electron scattering in a strongly semiclassical plasmas, a strong electric field and a weak magnetic field are required where AB-flux field can be used as a regulator. The entanglement fidelity in the scattering process is also examined. We have used partial wave analysis to derive the entanglement fidelity. We find that for a low electric field intensity, the entanglement fidelity varies with projectile energy.

  17. Multipoint Measurements of the Electron Jet of Symmetric Magnetic Reconnection with a Moderate Guide Field

    NASA Astrophysics Data System (ADS)

    Wilder, F. D.; Ergun, R. E.; Eriksson, S.; Phan, T. D.; Burch, J. L.; Ahmadi, N.; Goodrich, K. A.; Newman, D. L.; Trattner, K. J.; Torbert, R. B.; Giles, B. L.; Strangeway, R. J.; Magnes, W.; Lindqvist, P.-A.; Khotyaintsev, Yu-V.

    2017-06-01

    We report observations from the Magnetospheric Multiscale (MMS) satellites of the electron jet in a symmetric magnetic reconnection event with moderate guide field. All four spacecraft sampled the ion diffusion region and observed the electron exhaust. The observations suggest that the presence of the guide field leads to an asymmetric Hall field, which results in an electron jet skewed towards the separatrix with a nonzero component along the magnetic field. The jet appears in conjunction with a spatially and temporally persistent parallel electric field ranging from -3 to -5 mV /m , which led to dissipation on the order of 8 nW /m3 . The parallel electric field heats electrons that drift through it, and is associated with a streaming instability and electron phase space holes.

  18. Multipoint Measurements of the Electron Jet of Symmetric Magnetic Reconnection with a Moderate Guide Field.

    PubMed

    Wilder, F D; Ergun, R E; Eriksson, S; Phan, T D; Burch, J L; Ahmadi, N; Goodrich, K A; Newman, D L; Trattner, K J; Torbert, R B; Giles, B L; Strangeway, R J; Magnes, W; Lindqvist, P-A; Khotyaintsev, Yu-V

    2017-06-30

    We report observations from the Magnetospheric Multiscale (MMS) satellites of the electron jet in a symmetric magnetic reconnection event with moderate guide field. All four spacecraft sampled the ion diffusion region and observed the electron exhaust. The observations suggest that the presence of the guide field leads to an asymmetric Hall field, which results in an electron jet skewed towards the separatrix with a nonzero component along the magnetic field. The jet appears in conjunction with a spatially and temporally persistent parallel electric field ranging from -3 to -5  mV/m, which led to dissipation on the order of 8  nW/m^{3}. The parallel electric field heats electrons that drift through it, and is associated with a streaming instability and electron phase space holes.

  19. The acceleration of electrons at a spherical coronal shock in a streamer-like coronal field

    SciTech Connect

    Kong, Xiangliang Chen, Yao; Guo, Fan

    2016-03-25

    We study the effect of large-scale coronal magnetic field on the electron acceleration at a spherical coronal shock using a test-particle method. The coronal field is approximated by an analytical solution with a streamer-like magnetic field featured by partially open magnetic field and a current sheet at the equator atop the closed region. It shows that the closed field plays the role of a trapping agency of shock-accelerated electrons, allowing for repetitive reflection and acceleration, therefore can greatly enhance the shock-electron acceleration efficiency. It is found that, with an ad hoc pitch-angle scattering, electron injected in the open field at the shock flank can be accelerated to high energies as well. In addition, if the shock is faster or stronger, a relatively harder electron energy spectrum and a larger maximum energy can be achieved.

  20. From the Gyration of Electrons to Cosmic Magnetic Fields

    ERIC Educational Resources Information Center

    Wang, Xia-Wei

    2010-01-01

    Employing Bohr's quantum theory, the author deduces three limits, which correspond to the magnetic fields of white dwarfs, neutron stars and the strongest in the universe. The author discusses the possible origins of magnetic fields due to collapse of stars, which produces a magnetic field of 10[superscript 8] T. Although the complete analysis…

  1. From the Gyration of Electrons to Cosmic Magnetic Fields

    ERIC Educational Resources Information Center

    Wang, Xia-Wei

    2010-01-01

    Employing Bohr's quantum theory, the author deduces three limits, which correspond to the magnetic fields of white dwarfs, neutron stars and the strongest in the universe. The author discusses the possible origins of magnetic fields due to collapse of stars, which produces a magnetic field of 10[superscript 8] T. Although the complete analysis…

  2. An advection-diffusion model for cross-field runaway electron transport in perturbed magnetic fields

    NASA Astrophysics Data System (ADS)

    Särkimäki, Konsta; Hirvijoki, Eero; Decker, Joan; Varje, Jari; Kurki-Suonio, Taina

    2016-12-01

    Disruption-generated runaway electrons (RE) present an outstanding issue for ITER. The predictive computational studies of RE generation rely on orbit-averaged computations and, as such, they lack the effects from the magnetic field stochasticity. Since stochasticity is naturally present in post-disruption plasma, and externally induced stochastization offers a prominent mechanism to mitigate RE avalanche, we present an advection-diffusion model that can be used to couple an orbit-following code to an orbit-averaged tool in order to capture the cross-field transport and to overcome the latter’s limitation. The transport coefficients are evaluated via a Monte Carlo method. We show that the diffusion coefficient differs significantly from the well-known Rechester-Rosenbluth result. We also demonstrate the importance of including the advection: it has a two-fold role both in modelling transport barriers created by magnetic islands and in amplifying losses in regions where the islands are not present.

  3. Transverse instability and perpendicular electric field in two-dimensional electron phase-space holes

    NASA Astrophysics Data System (ADS)

    Wu, Mingyu; Lu, Quanming; Huang, Can; Wang, Shui

    2010-10-01

    A multidimensional electron phase-space hole (electron hole) is considered to be unstable to the transverse instability. In this paper, we perform two-dimensional (2D) particle-in-cell (PIC) simulations to study the evolution of electron holes at different plasma conditions; we find that the evolution is determined by combined actions between the transverse instability and the stabilization by the background magnetic field. In very weakly magnetized plasma (Ωe $\\ll$ ωpe, where Ωe and ωpe are the electron gyrofrequency and plasma frequency, respectively), the transverse instability dominates the evolution of the electron holes. The parallel cut of the perpendicular electric field (E$\\perp$) has bipolar structures, accompanied by the kinking of the electron holes. Such structures last for only tens of electron plasma periods. With the increase of the background magnetic field, the evolution of the electron holes becomes slower. The bipolar structures of the parallel cut of E$\\perp$ in the electron holes can evolve into unipolar structures. In very strongly magnetized plasma (Ωe $\\gg$ ωpe), the unipolar structures of the parallel cut of E$\\perp$ can last for thousands of electron plasma periods. At the same time, the perpendicular electric field (E$\\perp$) in the electron holes can also influence electron trajectories passing through the electron holes, which results in variations of charge density along the direction perpendicular to the background magnetic field outside of the electron holes. When the amplitude of the electron hole is sufficiently strong, streaked structures of E$\\perp$ can be formed outside of the electron holes, which then emit electrostatic whistler waves because of the interactions between the streaked structures of E$\\perp$ and vibrations of the kinked electron holes.

  4. Transverse instability and perpendicular electric field in two-dimensional electron phase-space holes

    NASA Astrophysics Data System (ADS)

    Wu, M.; Lu, Q.; Huang, C.; Wang, S.

    2010-12-01

    A multi-dimensional electron phase-space hole (electron hole) is considered to be unstable to the transverse instability. In this paper, we perform two-dimensional (2D) particle-in-cell (PIC) simulations to study the evolution of electron holes at different plasma conditions, and find that the evolution is determined by combined actions between the transverse instability and the stabilization of the background magnetic field. In very weakly magnetized plasma (Ωe<<ωpe, where Ωe andωpe are the electron gyrofrequency and plasma frequency, respectively), the transverse instability dominates the evolution of the electron holes. Accompanied by the kinking of the electron holes, the parallel cut of the perpendicular electric field (E⊥) has bipolar structures. Such structures last for only tens of electron plasma periods. With the increase of the background magnetic field, the evolution of the electron holes becomes slower. The bipolar structures of the parallel cut of E⊥ in the electron holes can evolve into unipolar structures. In very strongly magnetized plasma (Ωe>>ωpe), the unipolar structures of the parallel cut of E⊥ can last for thousands of electron plasma periods. At the same time, the perpendicular electric field (E⊥) in electron holes can also influence electron trajectories passing through the electron holes, which results in the variations of charge density along the direction perpendicular to the background magnetic field outside of the electron holes. When the amplitude of the electron hole is sufficiently strong, streaked structures of E⊥ can be formed outside of the electron holes, which then emit electrostatic whistler waves due to the interactions between the streaked structures of E⊥ and vibrations of the kinked electron hole.

  5. The Martian Dust Devil Electron Avalanche: Laboratory Measurements of the E-Field Fortifying Effects of Dust-Electron Absorption

    NASA Technical Reports Server (NTRS)

    Farrell, W. M.; McLain, J. L.; Collier, M. R.; Keller, J. W.

    2017-01-01

    Analogous to terrestrial dust devils, charged dust in Mars dust devils should become vertically stratified in the convective features, creating large scale E-fields. This E-field in a Martian-like atmosphere has been shown to stimulate the development of a Townsend discharge (electron avalanche) that acts to dissipate charge in regions where charge build-up occurs. While the stratification of the charged dust is a source of the electrical energy, the uncharged particulates in the dust population may absorb a portion of these avalanching electrons, thereby inhibiting dissipation and leading to the development of anomalously large E-field values. We performed a laboratory study that does indeed show the presence of enhanced E-field strengths between an anode and cathode when dust-absorbing filaments (acting as particulates) are placed in the avalanching electron flow. Further, the E-field threshold condition to create an impulsive spark discharge increases to larger values as more filaments are placed between the anode and cathode. We conclude that the spatially separated charged dust creates the charge centers and E-fields in a dust devil, but the under-charged portion of the population acts to reduce Townsend electron dissipation currents, further fortifying the development of larger-than-expected E-fields.

  6. Electronic properties of zigzag and armchair graphene nanoribbons in the external electric and magnetic fields

    NASA Astrophysics Data System (ADS)

    Afshari, F.; Ghaffarian, M.

    2017-05-01

    We explore, numerically, some electronic properties of zigzag and armchair graphene nanoribbons under the external perpendicular magnetic field and transverse electric field. Our results, in the magnetic field only, indicate that numerical Landau levels deviate from the Dirac Landau levels formula for higher levels and quantum Hall conductance curve of armchair nanoribbon shows oscillatory behavior in the high gate voltage. In the presence of transverse electric field only, it is shown that the electric dipole moment of zigzag nanoribbon increases abruptly versus the electric field in the range of low-intensity electric fields while for armchair nanoribbon this varies very slowly. This variation in stronger electric fields is staircase for armchair nanoribbon while it is smoothly for zigzag nanoribbon. In the presence of electric and magnetic fields, there are electrons and holes as charge carrier in the same proportions. Conducting electrons make a round current in the half of nanoribbons while conducting holes make a round current in the other half. Electronic vortices, which are static in the presence of magnetic field only, move along nanoribbons in the effect of the transverse electric field. By considering the curve of electric dipole moment versus the electric field, it is found that magnetic field increases the electric susceptibility of nanoribbons in the low-intensity electric fields substantially and creates considerable electric susceptibilities in several higher electric fields. So these indicate that the magnetic field increases the electric sensitivity of graphene nanoribbons.

  7. A geometrical crossover in excited states of two-electron quantum dots in a magnetic field

    NASA Astrophysics Data System (ADS)

    Nazmitdinov, R. G.; Simonović, N. S.; Plastino, A. R.; Chizhov, A. V.

    2012-11-01

    We use the entanglement measure to study the evolution of quantum correlations in two-electron axially-symmetric parabolic quantum dots under a perpendicular magnetic field. We found that the entanglement indicates on the shape transition in the density distribution of two electrons in the lowest state with zero angular momentum projection at the specific value of the applied magnetic field.

  8. Is the angular momentum of an electron conserved in a uniform magnetic field?

    PubMed

    Greenshields, Colin R; Stamps, Robert L; Franke-Arnold, Sonja; Barnett, Stephen M

    2014-12-12

    We show that an electron moving in a uniform magnetic field possesses a time-varying "diamagnetic" angular momentum. Surprisingly this means that the kinetic angular momentum of the electron may vary with time, despite the rotational symmetry of the system. This apparent violation of angular momentum conservation is resolved by including the angular momentum of the surrounding fields.

  9. Electron acceleration in three-dimensional magnetic reconnection with a guide field

    SciTech Connect

    Dahlin, J. T. Swisdak, M.; Drake, J. F.

    2015-10-15

    Kinetic simulations of 3D collisionless magnetic reconnection with a guide field show a dramatic enhancement of energetic electron production when compared with 2D systems. In the 2D systems, electrons are trapped in magnetic islands that limit their energy gain, whereas in the 3D systems the filamentation of the current layer leads to a stochastic magnetic field that enables the electrons to access volume-filling acceleration regions. The dominant accelerator of the most energetic electrons is a Fermi-like mechanism associated with reflection of charged particles from contracting field lines.

  10. Anomalous electron diffusion across a magnetic field in a beam-plasma system

    SciTech Connect

    Okuda, H.; Ono, M.; Armstrong, R.J.

    1987-10-01

    The diffusion of electrons across a magnetic field in the presence of a beam-plasma instability has been studied by means of two-dimensional numerical simulations. It is found that the beam electrons can diffuse much faster across the magnetic field than the thermal electrons. This can be explained by the fact that the electrons in the beam are in resonance with the waves excited by the beam-plasma instability so that they experience a nearly dc electric field, causing large cE x B/B/sup 2/ excursions. 8 refs., 5 figs.

  11. Residual energy in optical-field-ionized plasmas with the longitudinal motion of electrons included.

    PubMed

    He, Bin; Chang, Tie-Qiang

    2005-06-01

    The space-charge effect on the residual energy of electrons in optical-field-ionized plasmas is studied in detail by an extended simplified model and the cloud-in-cell simulation, with the longitudinal motion of electrons included. It is found that in moderate conditions the space-charge field can influence the residual energy of electrons effectively by matching the space-charge field with laser pulse. The effect of stimulated Raman scattering on electron temperature is also investigated in detail. Finally, a comparison is made between the results and experimental data.

  12. Electronic dynamics under effect of a nonlinear Morse interaction and a static electric field

    NASA Astrophysics Data System (ADS)

    Ranciaro Neto, A.; de Moura, F. A. B. F.

    2016-11-01

    Considering non-interacting electrons in a one-dimension alloy in which atoms are coupled by a Morse potential, we study the system dynamics in the presence of a static electric field. Calculations are performed assuming a quantum mechanical treatment for the electronic transport and a classical Hamiltonian model for the lattice vibrations. We report numerical evidence of the existence of a soliton-electron pair, even when the electric field is turned on, and we offer a description of how the existence of such a phase depends on the magnitude of the electric field and the electron-phonon interaction.

  13. Quantum dynamical phenomena of independent electrons in semiconductor superlattices subject to a uniform electric field

    SciTech Connect

    Bouchard, A.M.

    1994-07-27

    This report discusses the following topics: Bloch oscillations and other dynamical phenomena of electrons in semiconductor superlattices; solvable dynamical model of an electron in a one-dimensional aperiodic lattice subject to a uniform electric field; and quantum dynamical phenomena of electrons in aperiodic semiconductor superlattices.

  14. A Universal Model for Evaluating Basic Electronic Courses in Terms of Field Utilization of Training.

    ERIC Educational Resources Information Center

    Air Force Occupational Measurement Center, Lackland AFB, TX.

    The main purpose of the Air Force project was to develop a universal model to evaluate usage of basic electronic principles training. The criterion used by the model to evaluate electronic theory training is a determination of the usefulness of the training vis-a-vis the performance of assigned tasks in the various electronic career fields. Data…

  15. Motion of Electrons in Electric and Magnetic Fields: Introductory Laboratory and Computer Studies.

    ERIC Educational Resources Information Center

    Huggins, Elisha R.; Lelek, Jeffrey J.

    1979-01-01

    Describes a series of laboratory experiments and computer simulations of the motion of electrons in electric and magnetic fields. These experiments, which involve an inexpensive student-built electron gun, study the electron mean free path, magnetic focusing, and other aspects. (Author/HM)

  16. Magnetospheric Multiscale Observations of the Electron Diffusion Region of Large Guide Field Magnetic Reconnection

    NASA Technical Reports Server (NTRS)

    Eriksson, S.; Wilder, F. D.; Ergun, R. E.; Schwartz, S. J.; Cassak, P. A.; Burch, J. L.; Chen, Li-Jen; Torbert, R. B.; Phan, T. D.; Lavraud, B.; hide

    2016-01-01

    We report observations from the Magnetospheric Multiscale (MMS) satellites of a large guide field magnetic reconnection event. The observations suggest that two of the four MMS spacecraft sampled the electron diffusion region, whereas the other two spacecraft detected the exhaust jet from the event. The guide magnetic field amplitude is approximately 4 times that of the reconnecting field. The event is accompanied by a significant parallel electric field (E(sub parallel lines) that is larger than predicted by simulations. The high-speed (approximately 300 km/s) crossing of the electron diffusion region limited the data set to one complete electron distribution inside of the electron diffusion region, which shows significant parallel heating. The data suggest that E(sub parallel lines) is balanced by a combination of electron inertia and a parallel gradient of the gyrotropic electron pressure.

  17. Classical understanding of electron vortex beams in a uniform magnetic field

    NASA Astrophysics Data System (ADS)

    Han, Yeong Deok; Choi, Taeseung

    2017-04-01

    Recently, interesting observations on electron vortex beams have been made. We propose a classical model that shows vortex-like motion due to suitably-synchronized motion of each electron's cyclotron motion in a uniform magnetic field. It is shown that some basic features of electron vortex beams in a uniform magnetic field, such as azimuthal currents, the relation between energy and kinetic angular momentum, and the parallel-axis theorem are understandable by using this classical model. We also show that the time-dependence of kinetic angular momentum of electron vortex beams could be understood as an effect of a specific nonuniform distribution of classical electrons.

  18. Longitudinal Single Bunch Instability Caused by Wake Field of Electron Cloud

    NASA Astrophysics Data System (ADS)

    Liu, Yu-Dong; Yu, Cheng-Hui

    2009-02-01

    The electron cloud accumulated in the vicinity of positron beam generates longitudinal electric field during the passage of bunch. The longitudinal interaction between bunch and electron cloud can lead to the distortion of the bunch shape. We use a simple analytic formula to calculate the longitudinal electric field due to electron cloud. Based on the longitudinal wake field, the macro-particle tracking method is used to simulate the variation of bunch longitudinal profile in different electron cloud densities and the simulation also shows that the synchrotron oscillation tune is slightly shifted by the wake field. By comparing the simulation results and the analytical estimation from potential distortion theory, the longitudinal wake field from electron cloud can be seen as a potential well effect.

  19. Random walk study of electron motion in helium in crossed electromagnetic fields

    NASA Technical Reports Server (NTRS)

    Englert, G. W.

    1972-01-01

    Random walk theory, previously adapted to electron motion in the presence of an electric field, is extended to include a transverse magnetic field. In principle, the random walk approach avoids mathematical complexity and concomitant simplifying assumptions and permits determination of energy distributions and transport coefficients within the accuracy of available collisional cross section data. Application is made to a weakly ionized helium gas. Time of relaxation of electron energy distribution, determined by the random walk, is described by simple expressions based on energy exchange between the electron and an effective electric field. The restrictive effect of the magnetic field on electron motion, which increases the required number of collisions per walk to reach a terminal steady state condition, as well as the effect of the magnetic field on electron transport coefficients and mean energy can be quite adequately described by expressions involving only the Hall parameter.

  20. ENERGY MODULATION OF THE ELECTRONS BY THE LASER FIELD IN THEWIGGLER MAGNET: ANALYSIS AND EXPERIMENT

    SciTech Connect

    Zholents, A.A.; Holldack, K.

    2006-08-20

    Energy modulation of the electron beam after the interactionwith the laser field in the wiggler magnet can be calculated usinginterference of the laser field and the field of spontaneous emission inthe far field region of wiggler radiation. Quite often this approachgives a deeper insight on the process than traditional calculations wherethe effect of the laser field on the electron energy is integrated alongthe electron trajectory in the wiggler. We demonstrate it by showing theagreement between the analytical model and the experiment involvingwiggler scan measurements with large detuning from the FEL resonanceproducing more than one order of magnitude variations in the amplitude ofthe energy modulation. The high sensitivity was achieved using the THzradiation from a sub-mm dip in the electron density that energy modulatedelectrons leave behind while propagating along the storage ring lattice.All measurements were performed at the BESSY-II electron storagering.

  1. Resistance oscillations of two-dimensional electrons in crossed electric and tilted magnetic fields

    NASA Astrophysics Data System (ADS)

    Mayer, William; Vitkalov, Sergey; Bykov, A. A.

    2016-06-01

    The effect of dc electric field on transport of highly mobile two-dimensional electrons is studied in wide GaAs single quantum wells placed in titled magnetic fields. The study shows that in perpendicular magnetic field resistance oscillates due to electric-field induced Landau-Zener transitions between quantum levels that correspond to geometric resonances between cyclotron orbits and periodic modulation of electron density of states. Magnetic field tilt inverts these oscillations. Surprisingly the strongest inverted oscillations are observed at a tilt corresponding to nearly absent modulation of the electron density of states in regime of magnetic breakdown of semiclassical electron orbits. This phenomenon establishes an example of quantum resistance oscillations due to Landau quantization, which occur in electron systems with a constant density of states.

  2. Self-consistent Bohmian description of strong field-driven electron dynamics

    SciTech Connect

    Botheron, P.; Pons, B.

    2010-08-15

    Drawing from the Bohmian formulation of the time-dependent Schroedinger equation, we present a self-consistent hydrodynamical method to describe electron dynamics in strong field light-matter interactions. Prototypical implementation is made for one-dimensional H atom embedded in short and intense laser pulses. The method provides very accurate electron densities and yields quantum trajectories that shed light on the electron dynamics, beyond the strong-field approximation.

  3. Photoelectric charging of dust particles: Effect of spontaneous and light induced field emission of electrons

    SciTech Connect

    Sodha, M. S.; Dixit, A.

    2009-09-07

    The authors have analyzed the charging of dust particles in a plasma, taking into account the electron/ion currents to the particles, electron/ion generation and recombination, electric field emission, photoelectric emission and photoelectric field emission of electrons under the influence of light irradiation; the irradiance has been assumed to be at a level, which lets the particles retain the negative sign of the charge. Numerical results and discussion conclude the papers.

  4. The influences of solar wind pressure and interplanetary magnetic field on global magnetic field and outer radiation belt electrons

    NASA Astrophysics Data System (ADS)

    Yu, J.; Li, L. Y.; Cao, J. B.; Reeves, G. D.; Baker, D. N.; Spence, H.

    2016-07-01

    Using the Van Allen Probe in situ measured magnetic field and electron data, we examine the solar wind dynamic pressure and interplanetary magnetic field (IMF) effects on global magnetic field and outer radiation belt relativistic electrons (≥1.8 MeV). The dynamic pressure enhancements (>2 nPa) cause the dayside magnetic field increase and the nightside magnetic field reduction, whereas the large southward IMFs (Bz-IMF < -2nT) mainly lead to the decrease of the nightside magnetic field. In the dayside increased magnetic field region (magnetic local time (MLT) ~ 06:00-18:00, and L > 4), the pitch angles of relativistic electrons are mainly pancake distributions with a flux peak around 90° (corresponding anisotropic index A > 0.1), and the higher-energy electrons have stronger pancake distributions (the larger A), suggesting that the compression-induced betatron accelerations enhance the dayside pancake distributions. However, in the nighttime decreased magnetic field region (MLT ~ 18:00-06:00, and L ≥ 5), the pitch angles of relativistic electrons become butterfly distributions with two flux peaks around 45° and 135° (A < 0). The spatial range of the nighttime butterfly distributions is almost independent of the relativistic electron energy, but it depends on the magnetic field day-night asymmetry and the interplanetary conditions. The dynamic pressure enhancements can make the nighttime butterfly distribution extend inward. The large southward IMFs can also lead to the azimuthal expansion of the nighttime butterfly distributions. These variations are consistent with the drift shell splitting and/or magnetopause shadowing effect.

  5. The influences of solar wind pressure and interplanetary magnetic field on global magnetic field and outer radiation belt electrons

    DOE PAGES

    Yu, J.; Li, L. Y.; Cao, J. B.; ...

    2016-07-28

    Using the Van Allen Probe in situ measured magnetic field and electron data, we examine the solar wind dynamic pressure and interplanetary magnetic field (IMF) effects on global magnetic field and outer radiation belt relativistic electrons (≥1.8 MeV). The dynamic pressure enhancements (>2 nPa) cause the dayside magnetic field increase and the nightside magnetic field reduction, whereas the large southward IMFs (Bz-IMF < –2nT) mainly lead to the decrease of the nightside magnetic field. In the dayside increased magnetic field region (magnetic local time (MLT) ~ 06:00–18:00, and L > 4), the pitch angles of relativistic electrons are mainly pancakemore » distributions with a flux peak around 90° (corresponding anisotropic index A > 0.1), and the higher-energy electrons have stronger pancake distributions (the larger A), suggesting that the compression-induced betatron accelerations enhance the dayside pancake distributions. However, in the nighttime decreased magnetic field region (MLT ~ 18:00–06:00, and L ≥ 5), the pitch angles of relativistic electrons become butterfly distributions with two flux peaks around 45° and 135° (A < 0). The spatial range of the nighttime butterfly distributions is almost independent of the relativistic electron energy, but it depends on the magnetic field day-night asymmetry and the interplanetary conditions. The dynamic pressure enhancements can make the nighttime butterfly distribution extend inward. The large southward IMFs can also lead to the azimuthal expansion of the nighttime butterfly distributions. As a result, these variations are consistent with the drift shell splitting and/or magnetopause shadowing effect.« less

  6. The influences of solar wind pressure and interplanetary magnetic field on global magnetic field and outer radiation belt electrons

    SciTech Connect

    Yu, J.; Li, L. Y.; Cao, J. B.; Reeves, Geoffrey D.; Baker, D. N.; Spence, H.

    2016-07-28

    Using the Van Allen Probe in situ measured magnetic field and electron data, we examine the solar wind dynamic pressure and interplanetary magnetic field (IMF) effects on global magnetic field and outer radiation belt relativistic electrons (≥1.8 MeV). The dynamic pressure enhancements (>2 nPa) cause the dayside magnetic field increase and the nightside magnetic field reduction, whereas the large southward IMFs (Bz-IMF < –2nT) mainly lead to the decrease of the nightside magnetic field. In the dayside increased magnetic field region (magnetic local time (MLT) ~ 06:00–18:00, and L > 4), the pitch angles of relativistic electrons are mainly pancake distributions with a flux peak around 90° (corresponding anisotropic index A > 0.1), and the higher-energy electrons have stronger pancake distributions (the larger A), suggesting that the compression-induced betatron accelerations enhance the dayside pancake distributions. However, in the nighttime decreased magnetic field region (MLT ~ 18:00–06:00, and L ≥ 5), the pitch angles of relativistic electrons become butterfly distributions with two flux peaks around 45° and 135° (A < 0). The spatial range of the nighttime butterfly distributions is almost independent of the relativistic electron energy, but it depends on the magnetic field day-night asymmetry and the interplanetary conditions. The dynamic pressure enhancements can make the nighttime butterfly distribution extend inward. The large southward IMFs can also lead to the azimuthal expansion of the nighttime butterfly distributions. As a result, these variations are consistent with the drift shell splitting and/or magnetopause shadowing effect.

  7. The influences of solar wind pressure and interplanetary magnetic field on global magnetic field and outer radiation belt electrons

    SciTech Connect

    Yu, J.; Li, L. Y.; Cao, J. B.; Reeves, Geoffrey D.; Baker, D. N.; Spence, H.

    2016-07-28

    Using the Van Allen Probe in situ measured magnetic field and electron data, we examine the solar wind dynamic pressure and interplanetary magnetic field (IMF) effects on global magnetic field and outer radiation belt relativistic electrons (≥1.8 MeV). The dynamic pressure enhancements (>2 nPa) cause the dayside magnetic field increase and the nightside magnetic field reduction, whereas the large southward IMFs (Bz-IMF < –2nT) mainly lead to the decrease of the nightside magnetic field. In the dayside increased magnetic field region (magnetic local time (MLT) ~ 06:00–18:00, and L > 4), the pitch angles of relativistic electrons are mainly pancake distributions with a flux peak around 90° (corresponding anisotropic index A > 0.1), and the higher-energy electrons have stronger pancake distributions (the larger A), suggesting that the compression-induced betatron accelerations enhance the dayside pancake distributions. However, in the nighttime decreased magnetic field region (MLT ~ 18:00–06:00, and L ≥ 5), the pitch angles of relativistic electrons become butterfly distributions with two flux peaks around 45° and 135° (A < 0). The spatial range of the nighttime butterfly distributions is almost independent of the relativistic electron energy, but it depends on the magnetic field day-night asymmetry and the interplanetary conditions. The dynamic pressure enhancements can make the nighttime butterfly distribution extend inward. The large southward IMFs can also lead to the azimuthal expansion of the nighttime butterfly distributions. As a result, these variations are consistent with the drift shell splitting and/or magnetopause shadowing effect.

  8. Relativistic Runaway Electron Avalanches in the Presence of an External Magnetic Field

    NASA Astrophysics Data System (ADS)

    Cramer, E. S.; Dwyer, J. R.; Liu, N.; Rassoul, H.; Briggs, M. S.

    2015-12-01

    Relativistic runaway electron avalanches are known to be produced inside the high electric field regions of thunderstorms. In this work, we include the effects of an external static magnetic field. Previous studies have shown that the magnetic field has a great influence on the electron motion at higher altitudes, e.g. Lehtinen et al., 1997, and Gurevich et al., 1996. This result proves important when studying phenomena such as Terrestrial Gamma-ray Flashes, and their effects on the upper atmosphere. Therefore, electron avalanche rates, feedback rates, and electron energy distribution functions will be analyzed and compared to the results of previous studies that did not include a magnetic field. The runaway electron avalanche model (REAM) is a Monte Carlo code that simulates the generation, interactions, and propagation of relativistic runaway electrons in air [Dwyer, 2003, 2004, 2007]. We use this simulation for varying strengths and angles between the electric and magnetic fields to calculate avalanche lengths and angular distribution functions of the relativistic runaway electrons. We will also show electron distribution functions in momentum space. Finally, we will discuss the important regimes for which the magnetic field becomes significant in studying the properties of runaway electron avalanches and relativistic feedback.

  9. Advanced Electron Holography Applied to Electromagnetic Field Study in Materials Science.

    PubMed

    Shindo, Daisuke; Tanigaki, Toshiaki; Park, Hyun Soon

    2016-11-17

    Advances and applications of electron holography to the study of electromagnetic fields in various functional materials are presented. In particular, the development of split-illumination electron holography, which introduces a biprism in the illumination system of a holography electron microscope, enables highly accurate observations of electromagnetic fields and the expansion of the observable area. First, the charge distributions on insulating materials were studied by using split-illumination electron holography and including a mask in the illumination system. Second, the three-dimensional spin configurations of skyrmion lattices in a helimagnet were visualized by using a high-voltage holography electron microscope. Third, the pinning of the magnetic flux lines in a high-temperature superconductor YBa2 Cu3 O7-y was analyzed by combining electron holography and scanning ion microscopy. Finally, the dynamic accumulation and collective motions of electrons around insulating biomaterial surfaces were observed by utilizing the amplitude reconstruction processes of electron holography.

  10. Electron gun using carbon-nanofiber field emitter.

    PubMed

    Sakai, Y; Haga, A; Sugita, S; Kita, S; Tanaka, S-I; Okuyama, F; Kobayashi, N

    2007-01-01

    An electron gun constructed using carbon-nanofiber (CNF) emitters and an electrostatic Einzel lens system has been characterized for the development of a high-resolution x-ray source. The CNFs used were grown on tungsten and palladium tips by plasma-enhanced chemical-vapor deposition. Electron beams with the energies of 10electron beam extracted from the CNFs was estimated to be D<50 microm in diameter. Superior performance was realized by using CNFs with larger fiber radii (100-500 nm) grown sparsely on the metal tips, which were installed in a holder at the short length L=0.5 mm.

  11. Response of TLD-100 in mixed fields of photons and electrons.

    PubMed

    Lawless, Michael J; Junell, Stephanie; Hammer, Cliff; DeWerd, Larry A

    2013-01-01

    Thermoluminescent dosimeters (TLDs) are routinely used for dosimetric measurements of high energy photon and electron fields. However, TLD response in combined fields of photon and electron beam qualities has not been characterized. This work investigates the response of TLD-100 (LiF:Mg,Ti) to sequential irradiation by high-energy photon and electron beam qualities. TLDs were irradiated to a known dose by a linear accelerator with a 6 MV photon beam, a 6 MeV electron beam, and a NIST-traceable (60)Co beam. TLDs were also irradiated in a mixed field of the 6 MeV electron beam and the 6 MV photon beam. The average TLD response per unit dose of the TLDs for each linac beam quality was normalized to the average response per unit dose of the TLDs irradiated by the (60)Co beam. Irradiations were performed in water and in a Virtual Water™ phantom. The 6 MV photon beam and 6 MeV electron beam were used to create dose calibration curves relating TLD response to absorbed dose to water, which were applied to the TLDs irradiated in the mixed field. TLD relative response per unit dose in the mixed field was less sensitive than the relative response in the photon field and more sensitive than the relative response in the electron field. Application of the photon dose calibration curve to the TLDs irradiated in a mixed field resulted in an underestimation of the delivered dose, while application of the electron dose calibration curve resulted in an overestimation of the dose. The relative response of TLD-100 in mixed fields fell between the relative response in the photon-only and electron-only fields. TLD-100 dosimetry of mixed fields must account for this intermediate response to minimize the estimation errors associated with calibration factors obtained from a single beam quality.

  12. Complementary field-effect transistors for flexible electronics

    NASA Astrophysics Data System (ADS)

    Hilleringmann, Ulrich; Vidor, Fábio F.; Meyers, Thorsten

    2016-02-01

    Key issues for flexible complementary electronics are low temperature processing, sufficient performance of the integrated p- and n-type FET devices, and cheap semiconducting and dielectric materials. Organic semiconductors commonly depict p-type behavior, whereas metal oxide semiconductors show n-type characteristics. This paper presents a new approach for common integration of organic and ZnO transistors on transparent substrates for complementary transistor electronics. The gate dielectric consists of a special high-k resin, the metallization utilizes Au and Al films. The thermal budget for processing of the devices is limited to 120°C to enable foil substrates.

  13. Influence of the electron source distribution on field-aligned currents

    NASA Astrophysics Data System (ADS)

    Bruening, K.; Goertz, C. K.

    1985-01-01

    The field-aligned current density above a discrete auroral arc has been deduced from the downward electron flux and magnetic field measurements onboard the rocket Porcupine flight 4. Both measurements show that the field-aligned current density is, in spite of decreasing peak energies towards the edge of the arc, about 4 times higher there than in the center of the arc. This can be explained by using the single particle description for an anisotropic electron source distribution.

  14. Where Field Staff Get Information. Approaching the Electronic Times.

    ERIC Educational Resources Information Center

    Shih, Win-Yuan; Evans, James F.

    1991-01-01

    Top 3 information sources identified in a survey of 109 extension agents were extension publications, specialists, and personal files. Electronic sources such as satellite programing and bibliographic databases were used infrequently, because of lack of access, user friendliness, and ready applicability of information. (SK)

  15. Feature-rich electronic excitations of silicene in external fields

    NASA Astrophysics Data System (ADS)

    Wu, Jhao-Ying; Chen, Szu-Chao; Gumbs, Godfrey; Lin, Ming-Fa

    2016-11-01

    We develop a generalized tight-binding model to investigate the Coulomb excitations in monolayer silicene. The atomic interactions, spin-orbit coupling, magnetic and electric fields, as well as the Coulomb interactions are simultaneously included in our calculations. The magnetic field induces interband plasmons with discrete frequency dispersions restricted to quantized energy states. An intraband plasmon, with a higher intensity and continuous dispersion relation, exists in the presence of free carriers. This mode is dramatically transformed into an interband plasma excitation when the magnetic field is increased, leading to abrupt changes in the value of the plasma frequency and its intensity. Specifically, an electric field may separate the spin and valley polarizations and create additional plasmon modes, a unique feature arising from the buckled structure and the existence of noteworthy spin-orbit coupling.

  16. Calibrating MMS Electron Drift Instrument (EDI) Ambient Electron Flux Measurements and Characterizing 3D Electric Field Signatures of Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Shuster, J. R.; Torbert, R. B.; Vaith, H.; Argall, M. R.; Li, G.; Chen, L. J.; Ergun, R. E.; Lindqvist, P. A.; Marklund, G. T.; Khotyaintsev, Y. V.; Russell, C. T.; Magnes, W.; Le Contel, O.; Pollock, C. J.; Giles, B. L.

    2015-12-01

    The electron drift instruments (EDIs) onboard each MMS spacecraft are designed with large geometric factors (~0.01cm2 str) to facilitate detection of weak (~100 nA) electron beams fired and received by the two gun-detector units (GDUs) when EDI is in its "electric field mode" to determine the local electric and magnetic fields. A consequence of the large geometric factor is that "ambient mode" electron flux measurements (500 eV electrons having 0°, 90°, or 180° pitch angle) can vary depending on the orientation of the EDI instrument with respect to the magnetic field, a nonphysical effect that requires a correction. Here, we present determinations of the θ- and ø-dependent correction factors for the eight EDI GDUs, where θ (ø) is the polar (azimuthal) angle between the GDU symmetry axis and the local magnetic field direction, and compare the corrected fluxes with those measured by the fast plasma instrument (FPI). Using these corrected, high time resolution (~1,000 samples per second) ambient electron fluxes, combined with the unprecedentedly high resolution 3D electric field measurements taken by the spin-plane and axial double probes (SDP and ADP), we are equipped to accurately detect electron-scale current layers and electric field waves associated with the non-Maxwellian (anisotropic and agyrotropic) particle distribution functions predicted to exist in the reconnection diffusion region. We compare initial observations of the diffusion region with distributions and wave analysis from PIC simulations of asymmetric reconnection applicable for modeling reconnection at the Earth's magnetopause, where MMS will begin Science Phase 1 as of September 1, 2015.

  17. Nonlinear evolution of electron shear flow instabilities in the presence of an external guide magnetic field

    NASA Astrophysics Data System (ADS)

    Jain, Neeraj; Büchner, Jörg; Muñoz, Patricio A.

    2017-03-01

    The dissipation mechanism by which the magnetic field reconnects in the presence of an external (guide) magnetic field in the direction of the main current is not well understood. In thin electron current sheets (half thickness close to an electron inertial length) formed in a quasi-steady state of collisionless magnetic reconnection, electron shear flow instabilities are potential candidates for providing an anomalous dissipation mechanism which can break the frozen-in condition of the magnetic field affecting the structure and rate of reconnection. We present the results of investigations of the evolution of electron shear flow instabilities, from linear to nonlinear state, in guide field magnetic reconnection. The properties of the plasma turbulence resulting from the growth of instability and their dependence on the strength of the guide field are studied. For this sake, we utilize the three dimensional electron-magnetohydrodynamic simulations of electron current sheets. We show that, unlike the case of current sheets self-consistently embedded in anti-parallel magnetic fields, the evolution of thin electron current sheets in the presence of a finite external guide field (equal to the asymptotic value of the reconnecting magnetic field or larger) is dominated by high wave number non-tearing mode instabilities. The latter causes the development of, first, a wavy structure of the current sheet. The turbulence, developed later, consists of current filaments and electron flow vortices. As a result of the nonlinear evolution of instability, the current sheet broadens simultaneously with its flattening in the central region mimicking a viscous-like turbulent dissipation. Later, the flattened current sheet bifurcates. During the time of bifurcation, the rate of the change of mean electron flow velocity is proportional to the magnitude of the flow velocity, suggesting a resistive-like dissipation. The turbulence energy cascades to shorter wavelengths preferentially in

  18. Electron cyclotron maser instability (ECMI) in strong magnetic guide field reconnection

    NASA Astrophysics Data System (ADS)

    Treumann, Rudolf A.; Baumjohann, Wolfgang

    2017-08-01

    The ECMI model of electromagnetic radiation from electron holes is shown to be applicable to spontaneous magnetic reconnection. We apply it to reconnection in strong current-aligned magnetic guide fields. Such guide fields participate only passively in reconnection, which occurs in the antiparallel components to both sides of the guide-field-aligned current sheets with current carried by kinetic Alfvén waves. Reconnection generates long (the order of hundreds of electron inertial scales) electron exhaust regions at the reconnection site X point, which are extended perpendicular to the current and the guide fields. Exhausts contain a strongly density-depleted hot electron component and have properties similar to electron holes. Exhaust electron momentum space distributions are highly deformed, exhibiting steep gradients transverse to both the reconnecting and guide fields. Such properties suggest application of the ECMI mechanism with the fundamental ECMI X-mode emission beneath the nonrelativistic guide field cyclotron frequency in localized source regions. An outline of the mechanism and its prospects is given. Potential applications are the kilometric radiation (AKR) in auroral physics, solar radio emissions during flares, planetary emissions and astrophysical scenarios (radiation from stars and compact objects) involving the presence of strong magnetic fields and field-aligned currents. Drift of the exhausts along the guide field maps the local field and plasma properties. Escape of radiation from the exhaust and radiation source region still poses a problem. The mechanism can be studied in 2-D particle simulations of strong guide field reconnection which favours 2-D, mapping the deformation of the electron distribution perpendicular to the guide field, and using it in the numerical calculation of the ECMI growth rate. The mechanism suggests also that reconnection in general may become a source of the ECMI with or without guide fields. This is of particular

  19. Tunneling site of electrons in strong-field-enhanced ionization of molecules

    NASA Astrophysics Data System (ADS)

    Huang, Cheng; Lan, Pengfei; Zhou, Yueming; Zhang, Qingbin; Liu, Kunlong; Lu, Peixiang

    2014-10-01

    We investigated electron emissions in strong-field-enhanced ionization of asymmetric diatomic molecules by quantum calculations. It is demonstrated that the widely used intuitive physical picture, i.e., electron wave-packet direct ionization from the up-field site (DIU), is incomplete. Besides DIU, we find another two ionization channels: the field-induced excitation with subsequent ionization from the down-field site and that from the up-field site. The contributions from these channels depend on the molecular asymmetry and internuclear distance. Our work provides a more comprehensive physical picture for the long-standing issue about enhanced ionization of diatomic molecules.

  20. Formation of field-reversed-configuration plasma with punctuated-betatron-orbit electrons.

    PubMed

    Welch, D R; Cohen, S A; Genoni, T C; Glasser, A H

    2010-07-02

    We describe ab initio, self-consistent, 3D, fully electromagnetic numerical simulations of current drive and field-reversed-configuration plasma formation by odd-parity rotating magnetic fields (RMF{o}). Magnetic-separatrix formation and field reversal are attained from an initial mirror configuration. A population of punctuated-betatron-orbit electrons, generated by the RMF{o}, carries the majority of the field-normal azimuthal electrical current responsible for field reversal. Appreciable current and plasma pressure exist outside the magnetic separatrix whose shape is modulated by the RMF{o} phase. The predicted plasma density and electron energy distribution compare favorably with RMF{o} experiments.

  1. Probing microwave fields and enabling in-situ experiments in a transmission electron microscope.

    PubMed

    Goncalves, F J T; Paterson, G W; McGrouther, D; Drysdale, T; Togawa, Y; Schmool, D S; Stamps, R L

    2017-09-11

    A technique is presented whereby the performance of a microwave device is evaluated by mapping local field distributions using Lorentz transmission electron microscopy (L-TEM). We demonstrate the method by measuring the polarisation state of the electromagnetic fields produced by a microstrip waveguide as a function of its gigahertz operating frequency. The forward and backward propagating electromagnetic fields produced by the waveguide, in a specimen-free experiment, exert Lorentz forces on the propagating electron beam. Importantly, in addition to the mapping of dynamic fields, this novel method allows detection of effects of microwave fields on specimens, such as observing ferromagnetic materials at resonance.

  2. Formation of Field-reversed-Configuration Plasma with Punctuated-betatron-orbit Electrons

    SciTech Connect

    Welch, D. R.; Cohen, S. A.; Genoni, T. C.; Glasser, A. H.

    2010-06-28

    We describe ab initio, self-consistent, 3D, fully electromagnetic numerical simulations of current drive and field-reversed-configuration plasma formation by odd-parity rotating magnetic fields (RMFo). Magnetic-separatrix formation and field reversal are attained from an initial mirror configuration. A population of punctuated-betatron-orbit electrons, generated by the RMFo, carries the majority of the field-normal azimuthal electrical current responsible for field reversal. Appreciable current and plasma pressure exist outside the magnetic separatrix whose shape is modulated by the RMFo phase. The predicted plasma density and electron energy distribution compare favorably with RMFo experiments. __________________________________________________

  3. Nonclassical properties of electronic states of aperiodic chains in a homogeneous electric field

    NASA Astrophysics Data System (ADS)

    Spisak, B. J.; Wołoszyn, M.

    2009-07-01

    The electronic energy levels of one-dimensional aperiodic systems driven by a homogeneous electric field are studied by means of a phase-space description based on the Wigner distribution function. The formulation provides physical insight into the quantum nature of the electronic states for the aperiodic systems generated by the Fibonacci and Thue-Morse sequences. The nonclassical parameter for electronic states is studied as a function of the magnitude of homogeneous electric field to achieve the main result of this work, which is to prove that the nonclassical properties of the electronic states in the aperiodic systems determine the transition probability between electronic states in the region of anticrossings. The localization properties of electronic states and the uncertainty product of momentum and position variables are also calculated as functions of the electric field.

  4. Controlling the Motion of Electronic Wavepackets Using Cycle-Sculpted Two-Color Laser Fields

    NASA Astrophysics Data System (ADS)

    Kitzler, M.; Xie, X.; Roither, S.; Kartashov, D.; Baltuška, A.

    We use cycle-sculpted two-color waveforms to drive electronic wavepackets generated by strong-field ionization from helium, neon, and argon gas atoms and analyze their momentum spectra measured by electron-ion coincidence momentum spectroscopy. Varying the relative phase of the two colors allows to sculpt the ionizing field and hence to control the emission times and motion of the wavepackets on an attosecond timescale. Using semiclassical calculations, we investigate the influence of the ionic Coulomb field onto the motion of emitted electronic wavepackets. We further show that the measured electron momentum spectra contain interference patterns created by pairs of electron wavepackets that are released within a single laser-field cycle. We experimentally distinguish these subcycle interference structures from above-threshold ionization (ATI) peaks and argue that they can be used to extract the subcycle phase evolution of the laser-driven complex bound-state wavefunction.

  5. MAVEN Observations of Energy-Time Dispersed Electron Signatures in Martian Crustal Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Harada, Y.; Mitchell, D. L.; Halekas, J. S.; McFadden, J. P.; Mazelle, C.; Connerney, J. E. P.; Espley, J.; Brain, D. A.; Larson, D. E.; Lillis, R. J.; Hara, T.; Livi, R.; DiBraccio, G. A.; Ruhunusiri, S.; Jakosky, B. M.

    2016-01-01

    Energy-time dispersed electron signatures are observed by the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission in the vicinity of strong Martian crustal magnetic fields. Analysis of pitch angle distributions indicates that these dispersed electrons are typically trapped on closed field lines formed above strong crustal magnetic sources. Most of the dispersed electron signatures are characterized by peak energies decreasing with time rather than increasing peak energies. These properties can be explained by impulsive and local injection of hot electrons into closed field lines and subsequent dispersion by magnetic drift of the trapped electrons. In addition, the dispersed flux enhancements are often bursty and sometimes exhibit clear periodicity, suggesting that the injection and trapping processes are intrinsically time dependent and dynamic. These MAVEN observations demonstrate that common physical processes can operate in both global intrinsic magnetospheres and local crustal magnetic fields.

  6. Electron nuclear dynamics of LiH and HF in an intense laser field

    NASA Astrophysics Data System (ADS)

    Broeckhove, J.; Coutinho-Neto, M. D.; Deumens, E.; Öhrn, Y.

    1997-12-01

    The electron nuclear dynamics theory (END) extended to include a time-dependent external field is briefly described. The dynamical equations, in addition to the full electron nuclear coupling terms, now also contain the interactions of both the nuclei and the electrons with the external field. This extended END theory is applied to the study of vibrational excitations of the simple diatomics HF and LiH. The END results using an intense infrared laser field are compared with those of molecular dynamics as well as those from quantum wave-packet calculations. While the effect of the nonadiabatic electron-nuclear coupling terms on the vibrational dynamics is negligible for the chosen application, the electron-field coupling has a significant impact.

  7. MAVEN Observations of Energy-Time Dispersed Electron Signatures in Martian Crustal Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Harada, Y.; Mitchell, D. L.; Halekas, J. S.; McFadden, J. P.; Mazelle, C.; Connerney, J. E. P.; Espley, J.; Brain, D. A.; Larson, D. E.; Lillis, R. J.; hide

    2016-01-01

    Energy-time dispersed electron signatures are observed by the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission in the vicinity of strong Martian crustal magnetic fields. Analysis of pitch angle distributions indicates that these dispersed electrons are typically trapped on closed field lines formed above strong crustal magnetic sources. Most of the dispersed electron signatures are characterized by peak energies decreasing with time rather than increasing peak energies. These properties can be explained by impulsive and local injection of hot electrons into closed field lines and subsequent dispersion by magnetic drift of the trapped electrons. In addition, the dispersed flux enhancements are often bursty and sometimes exhibit clear periodicity, suggesting that the injection and trapping processes are intrinsically time dependent and dynamic. These MAVEN observations demonstrate that common physical processes can operate in both global intrinsic magnetospheres and local crustal magnetic fields.

  8. Enhancement of electron energy during vacuum laser acceleration in an inhomogeneous magnetic field

    SciTech Connect

    Saberi, H.; Maraghechi, B.

    2015-03-15

    In this paper, the effect of a stationary inhomogeneous magnetic field on the electron acceleration by a high intensity Gaussian laser pulse is investigated. A focused TEM (0,0) laser mode with linear polarization in the transverse x-direction that propagates along the z-axis is considered. The magnetic field is assumed to be stationary in time, but varies longitudinally in space. A linear spatial profile for the magnetic field is adopted. In other words, the axial magnetic field increases linearly in the z-direction up to an optimum point z{sub m} and then becomes constant with magnitude equal to that at z{sub m}. Three-dimensional single-particle simulations are performed to find the energy and trajectory of the electron. The electron rotates around and stays near the z-axis. It is shown that with a proper choice of the magnetic field parameters, the electron will be trapped at the focus of the laser pulse. Because of the cyclotron resonance, the electron receives enough energy from the laser fields to be accelerated to relativistic energies. Using numerical simulations, the criteria for optimum regime of the acceleration mechanism is found. With the optimized parameters, an electron initially at rest located at the origin achieves final energy of γ=802. The dynamics of a distribution of off-axis electrons are also investigated in which shows that high energy electrons with small energy and spatial spread can be obtained.

  9. Enhancement of electron energy during vacuum laser acceleration in an inhomogeneous magnetic field

    NASA Astrophysics Data System (ADS)

    Saberi, H.; Maraghechi, B.

    2015-03-01

    In this paper, the effect of a stationary inhomogeneous magnetic field on the electron acceleration by a high intensity Gaussian laser pulse is investigated. A focused TEM (0,0) laser mode with linear polarization in the transverse x-direction that propagates along the z-axis is considered. The magnetic field is assumed to be stationary in time, but varies longitudinally in space. A linear spatial profile for the magnetic field is adopted. In other words, the axial magnetic field increases linearly in the z-direction up to an optimum point z m and then becomes constant with magnitude equal to that at z m . Three-dimensional single-particle simulations are performed to find the energy and trajectory of the electron. The electron rotates around and stays near the z-axis. It is shown that with a proper choice of the magnetic field parameters, the electron will be trapped at the focus of the laser pulse. Because of the cyclotron resonance, the electron receives enough energy from the laser fields to be accelerated to relativistic energies. Using numerical simulations, the criteria for optimum regime of the acceleration mechanism is found. With the optimized parameters, an electron initially at rest located at the origin achieves final energy of γ = 802 . The dynamics of a distribution of off-axis electrons are also investigated in which shows that high energy electrons with small energy and spatial spread can be obtained.

  10. Electronic Field Trips as Interactive Learning Events: Promoting Student Learning at a Distance

    ERIC Educational Resources Information Center

    Cassady, Jerrell C.; Kozlowski, Alison; Kornmann, Mark

    2008-01-01

    Creating authentic digital learning experiences associated with classic field trip locations is a growing educational practice. One form of this developing field of educational programming is an electronic field trip, which involves student activities, teacher curriculum, and a live broadcast from the target location. This study provides the first…

  11. Electronic Field Trips as Interactive Learning Events: Promoting Student Learning at a Distance

    ERIC Educational Resources Information Center

    Cassady, Jerrell C.; Kozlowski, Alison; Kornmann, Mark

    2008-01-01

    Creating authentic digital learning experiences associated with classic field trip locations is a growing educational practice. One form of this developing field of educational programming is an electronic field trip, which involves student activities, teacher curriculum, and a live broadcast from the target location. This study provides the first…

  12. Electron diffusion region during magnetopause reconnection with an intermediate guide field: Magnetospheric multiscale observations

    NASA Astrophysics Data System (ADS)

    Chen, L.-J.; Hesse, M.; Wang, S.; Gershman, D.; Ergun, R. E.; Burch, J.; Bessho, N.; Torbert, R. B.; Giles, B.; Webster, J.; Pollock, C.; Dorelli, J.; Moore, T.; Paterson, W.; Lavraud, B.; Strangeway, R.; Russell, C.; Khotyaintsev, Y.; Lindqvist, P.-A.; Avanov, L.

    2017-05-01

    An electron diffusion region (EDR) in magnetic reconnection with a guide magnetic field approximately 0.2 times the reconnecting component is encountered by the four Magnetospheric Multiscale spacecraft at the Earth's magnetopause. The distinct substructures in the EDR on both sides of the reconnecting current sheet are visualized with electron distribution functions that are 2 orders of magnitude higher cadence than ever achieved to enable the following new findings: (1) Motion of the demagnetized electrons plays an important role to sustain the reconnection current and contributes to the dissipation due to the nonideal electric field, (2) the finite guide field dominates over the Hall magnetic field in an electron-scale region in the exhaust and modifies the electron flow dynamics in the EDR, (3) the reconnection current is in part carried by inflowing field-aligned electrons in the magnetosphere part of the EDR, and (4) the reconnection electric field measured by multiple spacecraft is uniform over at least eight electron skin depths and corresponds to a reconnection rate of approximately 0.1. The observations establish the first look at the structure of the EDR under a weak but not negligible guide field.

  13. Influence of the crustal magnetic field on the Mars aurora electron flux and UV brightness

    NASA Astrophysics Data System (ADS)

    Bisikalo, D. V.; Shematovich, V. I.; Gérard, J.-C.; Hubert, B.

    2017-01-01

    Observations with the SPICAM instrument on board Mars Express have shown the occasional presence of localized ultraviolet nightside emissions associated with enhanced energetic electron fluxes. These features generally occur in regions with significant radial crustal magnetic field. We use a Monte-Carlo electron transport model to investigate the role of the magnetic field on the downward and upward electron fluxes, the brightness and the emitted power of auroral emissions. Simulations based on an ASPERA-3 measured auroral electron precipitation indicate that magnetic mirroring leads to an intensification of the energy flux carried by upward moving electrons- from about 20% in the absence of crustal magnetic field up to 33-78% when magnetic field is included depending on magnetic field topology. Conservation of the particle flux in a flux tube implies that the presence of the B-field does not appreciably modify the emission rate profiles for an initially isotropic pitch angle distribution. However, we find that crustal magnetic field results in increase of the upward electron flux, and, consequently, in reduction of the total auroral brightness for given energy flux of precipitating electrons.

  14. Method of synthesizing small-diameter carbon nanotubes with electron field emission properties

    NASA Technical Reports Server (NTRS)

    Liu, Jie (Inventor); Du, Chunsheng (Inventor); Qian, Cheng (Inventor); Gao, Bo (Inventor); Qiu, Qi (Inventor); Zhou, Otto Z. (Inventor)

    2009-01-01

    Carbon nanotube material having an outer diameter less than 10 nm and a number of walls less than ten are disclosed. Also disclosed are an electron field emission device including a substrate, an optionally layer of adhesion-promoting layer, and a layer of electron field emission material. The electron field emission material includes a carbon nanotube having a number of concentric graphene shells per tube of from two to ten, an outer diameter from 2 to 8 nm, and a nanotube length greater than 0.1 microns. One method to fabricate carbon nanotubes includes the steps of (a) producing a catalyst containing Fe and Mo supported on MgO powder, (b) using a mixture of hydrogen and carbon containing gas as precursors, and (c) heating the catalyst to a temperature above 950.degree. C. to produce a carbon nanotube. Another method of fabricating an electron field emission cathode includes the steps of (a) synthesizing electron field emission materials containing carbon nanotubes with a number of concentric graphene shells per tube from two to ten, an outer diameter of from 2 to 8 nm, and a length greater than 0.1 microns, (b) dispersing the electron field emission material in a suitable solvent, (c) depositing the electron field emission materials onto a substrate, and (d) annealing the substrate.

  15. Field-stepped direct detection electron paramagnetic resonance.

    PubMed

    Yu, Zhelin; Liu, Tengzhi; Elajaili, Hanan; Rinard, George A; Eaton, Sandra S; Eaton, Gareth R

    2015-09-01

    The widest scan that had been demonstrated previously for rapid scan EPR was a 155G sinusoidal scan. As the scan width increases, the voltage requirement across the resonating capacitor and scan coils increases dramatically and the background signal induced by the rapidly changing field increases. An alternate approach is needed to achieve wider scans. A field-stepped direct detection EPR method that is based on rapid-scan technology is now reported, and scan widths up to 6200G have been demonstrated. A linear scan frequency of 5.12kHz was generated with the scan driver described previously. The field was stepped at intervals of 0.01 to 1G, depending on the linewidths in the spectra. At each field data for triangular scans with widths up to 11.5G were acquired. Data from the triangular scans were combined by matching DC offsets for overlapping regions of successive scans. This approach has the following advantages relative to CW, several of which are similar to the advantages of rapid scan. (i) In CW if the modulation amplitude is too large, the signal is broadened. In direct detection field modulation is not used. (ii) In CW the small modulation amplitude detects only a small fraction of the signal amplitude. In direct detection each scan detects a larger fraction of the signal, which improves the signal-to-noise ratio. (iii) If the scan rate is fast enough to cause rapid scan oscillations, the slow scan spectrum can be recovered by deconvolution after the combination of segments. (iv) The data are acquired with quadrature detection, which permits phase correction in the post processing. (v) In the direct detection method the signal typically is oversampled in the field direction. The number of points to be averaged, thereby improving the signal-to-noise ratio, is determined in post processing based on the desired field resolution. A degased lithium phthalocyanine sample was used to demonstrate that the linear deconvolution procedure can be employed with field

  16. Estimating the Reliability of Electronic Parts in High Radiation Fields

    NASA Technical Reports Server (NTRS)

    Everline, Chester; Clark, Karla; Man, Guy; Rasmussen, Robert; Johnston, Allan; Kohlhase, Charles; Paulos, Todd

    2008-01-01

    Radiation effects on materials and electronic parts constrain the lifetime of flight systems visiting Europa. Understanding mission lifetime limits is critical to the design and planning of such a mission. Therefore, the operational aspects of radiation dose are a mission success issue. To predict and manage mission lifetime in a high radiation environment, system engineers need capable tools to trade radiation design choices against system design and reliability, and science achievements. Conventional tools and approaches provided past missions with conservative designs without the ability to predict their lifetime beyond the baseline mission.This paper describes a more systematic approach to understanding spacecraft design margin, allowing better prediction of spacecraft lifetime. This is possible because of newly available electronic parts radiation effects statistics and an enhanced spacecraft system reliability methodology. This new approach can be used in conjunction with traditional approaches for mission design. This paper describes the fundamentals of the new methodology.

  17. Linear electronic field time-of-flight ion mass spectrometers

    DOEpatents

    Funsten, Herbert O.

    2010-08-24

    Time-of-flight mass spectrometer comprising a first drift region and a second drift region enclosed within an evacuation chamber; a means of introducing an analyte of interest into the first drift region; a pulsed ionization source which produces molecular ions from said analyte of interest; a first foil positioned between the first drift region and the second drift region, which dissociates said molecular ions into constituent atomic ions and emits secondary electrons; an electrode which produces secondary electrons upon contact with a constituent atomic ion in second drift region; a stop detector comprising a first ion detection region and a second ion detection region; and a timing means connected to the pulsed ionization source, to the first ion detection region, and to the second ion detection region.

  18. A laser accelerator. [interaction of polarized light beam with electrons in magnetic field

    NASA Technical Reports Server (NTRS)

    Colson, W. B.; Ride, S. K.

    1979-01-01

    It is shown that a laser can efficiently accelerate charged particles if a magnetic field is introduced to improve the coupling between the particle and the wave. Solving the relativistic equations of motion for an electron in a uniform magnetic field and superposed, circularly polarized electromagnetic wave, it is found that in energy-position phase space an electron traces out a curtate cycloid: it alternately gains and loses energy. If, however, the parameters are chosen so that the electron's oscillations in the two fields are resonant, it will continually accelerate or decelerate depending on its initial position within a wavelength of light. A laboratory accelerator operating under these resonant conditions appears attractive: in a magnetic field of 10,000 gauss, and the fields of a 5 x 10 to the 12th W, 10 micron wavelength laser, an optimally positioned electron would accelerate to 700 MeV in only 10 m.

  19. Guiding and collimating fast electron beam by the quasi-static electromagnetic field array

    SciTech Connect

    Wang, J.; Zhao, Z. Q.; He, W. H.; Dong, K. G.; Wu, Y. C.; Zhu, B.; Zhang, T. K.; Zhang, B.; Zhang, Z. M.; Gu, Y. Q.; Cao, L. H.

    2014-10-15

    A guidance and collimation scheme for fast electron beam in a traverse periodic quasi-static electromagnetic field array is proposed with the semi-analytic method and the particle-in-cell simulation. The sheath electric fields on the surfaces of nanowires and the magnetic fields around the nanowires form a traverse periodic quasi-static electromagnetic field array. Therefore, most of the fast electrons are confined at the nanowire surfaces and transport forward. More importantly, due to the divergent property of the beams, the magnitudes of the generated fields decrease with the target depth. The lateral momenta of the electrons convert into the forward momenta through Lorenz force, and they cannot recover their initial values. Therefore, the fast electrons can be guided and collimated efficiently in the gaps between the nanowires. In our particle-in-cell simulations, the observed guiding efficiency exceeds 80% compared with the reference target.

  20. A 3D technique for simulation of irregular electron treatment fields using a digital camera

    SciTech Connect

    Bassalow, Roustem; Sidhu, Narinder P

    2003-09-30

    Cerrobend inserts, which define electron field apertures, are manufactured at our institution using perspex templates. Contours are reproduced manually on these templates at the simulator from the field outlines drawn on the skin or mask of a patient. A previously reported technique for simulation of electron treatment fields uses a digital camera to eliminate the need for such templates. However, avoidance of the image distortions introduced by non-flat surfaces on which the electron field outlines were drawn could only be achieved by limiting the application of this technique to surfaces which were flat or near flat. We present a technique that employs a digital camera and allows simulation of electron treatment fields contoured on an anatomical surface of an arbitrary three-dimensional (3D) shape, such as that of the neck, extremities, face, or breast. The procedure is fast, accurate, and easy to perform.

  1. Experimental Verification of the Role of Electron Pressure in Fast Magnetic Reconnection with a Guide Field.

    PubMed

    Fox, W; Sciortino, F; V Stechow, A; Jara-Almonte, J; Yoo, J; Ji, H; Yamada, M

    2017-03-24

    We report detailed laboratory observations of the structure of a reconnection current sheet in a two-fluid plasma regime with a guide magnetic field. We observe and quantitatively analyze the quadrupolar electron pressure variation in the ion-diffusion region, as originally predicted by extended magnetohydrodynamics simulations. The projection of the electron pressure gradient parallel to the magnetic field contributes significantly to balancing the parallel electric field, and the resulting cross-field electron jets in the reconnection layer are diamagnetic in origin. These results demonstrate how parallel and perpendicular force balance are coupled in guide field reconnection and confirm basic theoretical models of the importance of electron pressure gradients for obtaining fast magnetic reconnection.

  2. Experimental demonstration of the role of electron pressure in fast magnetic reconnection with a guide field

    NASA Astrophysics Data System (ADS)

    Fox, W.; Sciortino, F.; von Stechow, A.; Jara-Almonte, J.; Yoo, J.; Ji, H.; Yamada, M.

    2016-10-01

    We report detailed laboratory observations of the structure of reconnection current sheets in a two-fluid plasma regime with a guide magnetic field, conducted on the Magnetic Reconnection Experiment. We observe in the laboratory for the first time the quadrupolar electron pressure variation in the ion-diffusion region, as originally predicted by extended MHD simulation. We quantitatively analyze the parallel and perpendicular force balance, and observe the projection of the electron pressure gradient parallel to the B field balances the parallel electric field. The resulting cross-field electron jets in the reconnection layer are diamagnetic in origin. Electron density variations are observed to dominate temperature variations and may provide a new diagnostic of reconnection with finite guide field for fusion experiments and spacecraft missions. Supported by Max-Planck Princeton Center for Plasma Physics.

  3. Experimental Verification of the Role of Electron Pressure in Fast Magnetic Reconnection with a Guide Field

    NASA Astrophysics Data System (ADS)

    Fox, W.; Sciortino, F.; Stechow, A. V.; Jara-Almonte, J.; Yoo, J.; Ji, H.; Yamada, M.

    2017-03-01

    We report detailed laboratory observations of the structure of a reconnection current sheet in a two-fluid plasma regime with a guide magnetic field. We observe and quantitatively analyze the quadrupolar electron pressure variation in the ion-diffusion region, as originally predicted by extended magnetohydrodynamics simulations. The projection of the electron pressure gradient parallel to the magnetic field contributes significantly to balancing the parallel electric field, and the resulting cross-field electron jets in the reconnection layer are diamagnetic in origin. These results demonstrate how parallel and perpendicular force balance are coupled in guide field reconnection and confirm basic theoretical models of the importance of electron pressure gradients for obtaining fast magnetic reconnection.

  4. Experimental verification of the role of electron pressure in fast magnetic reconnection with a guide field

    DOE PAGES

    Fox, W.; Sciortino, F.; v. Stechow, A.; ...

    2017-03-21

    We report detailed laboratory observations of the structure of a reconnection current sheet in a two-fluid plasma regime with a guide magnetic field. We observe and quantitatively analyze the quadrupolar electron pressure variation in the ion-diffusion region, as originally predicted by extended magnetohydrodynamics simulations. The projection of the electron pressure gradient parallel to the magnetic field contributes significantly to balancing the parallel electric field, and the resulting cross-field electron jets in the reconnection layer are diamagnetic in origin. Furthermore, these results demonstrate how parallel and perpendicular force balance are coupled in guide field reconnection and confirm basic theoretical models ofmore » the importance of electron pressure gradients for obtaining fast magnetic reconnection.« less

  5. Observation of the Avalanche of Runaway Electrons in Air in a Strong Electric Field

    NASA Astrophysics Data System (ADS)

    Gurevich, A. V.; Mesyats, G. A.; Zybin, K. P.; Yalandin, M. I.; Reutova, A. G.; Shpak, V. G.; Shunailov, S. A.

    2012-08-01

    The generation of an avalanche of runaway electrons is demonstrated for the first time in a laboratory experiment. Two flows of runaway electrons are formed sequentially in an extended air discharge gap at the stage of delay of a pulsed breakdown. The first, picosecond, runaway electron flow is emitted in the cathode region where the field is enhanced. Being accelerated in the gap, this beam generates electrons due to impact ionization. These secondary electrons form a delayed avalanche of runaway electrons if the field is strong enough. The properties of the avalanche correspond to the existing notions about the runaway breakdown in air. The measured current of the avalanche exceeds up to an order the current of the initiating electron beam.

  6. Observation of the avalanche of runaway electrons in air in a strong electric field.

    PubMed

    Gurevich, A V; Mesyats, G A; Zybin, K P; Yalandin, M I; Reutova, A G; Shpak, V G; Shunailov, S A

    2012-08-24

    The generation of an avalanche of runaway electrons is demonstrated for the first time in a laboratory experiment. Two flows of runaway electrons are formed sequentially in an extended air discharge gap at the stage of delay of a pulsed breakdown. The first, picosecond, runaway electron flow is emitted in the cathode region where the field is enhanced. Being accelerated in the gap, this beam generates electrons due to impact ionization. These secondary electrons form a delayed avalanche of runaway electrons if the field is strong enough. The properties of the avalanche correspond to the existing notions about the runaway breakdown in air. The measured current of the avalanche exceeds up to an order the current of the initiating electron beam.

  7. Electron evaporation from an ultracold plasma in a uniform electric field

    NASA Astrophysics Data System (ADS)

    Twedt, K. A.; Rolston, S. L.

    2010-08-01

    Electrons in an expanding ultracold plasma are expected to be in quasiequilibrium since the collision times are short compared to the plasma lifetime, yet electron evaporation is observed as the ion density decreases during expansion. A small electric field that shifts the electron cloud with respect to the ions increases the evaporation rate. Treating the electrons as a zero-temperature fluid, their spatial distribution is calculated as a function of the applied field strength and the ion density. The zero-temperature approximation gives the maximum number of electrons the plasma can hold in the absence of evaporation. By applying this calculation at all times during expansion, the flux of cold electrons from the plasma is predicted and found to be in good agreement with the observed electron signal.

  8. Energy modulation of nonrelativistic electrons in an optical near field on a metal microslit

    NASA Astrophysics Data System (ADS)

    Ishikawa, R.; Bae, J.; Mizuno, K.

    2001-04-01

    Energy modulation of nonrelativistic electrons with a laser beam using a metal microslit as an interaction circuit has been investigated. An optical near field is induced in the proximity of the microslit by illumination of the laser beam. The electrons passing close to the slit are accelerated or decelerated by an evanescent wave contained in the near field whose phase velocity is equal to the velocity of the electrons. The electron-evanescent wave interaction in the microslit has been analyzed theoretically and experimentally. The theory has predicted that electron energy can be modulated at optical frequencies. Experiments performed in the infrared region have verified theoretical predictions. The electron-energy changes of more than ±5 eV with a 10 kW CO2 laser pulse at the wavelength of 10.6 μm has been successfully observed for an electron beam with an energy of less than 80 keV.

  9. Electron Cross-field Transport in a Low Power Cylindrical Hall Thruster

    SciTech Connect

    A. Smirnov; Y. Raitses; N.J. Fisch

    2004-06-24

    Conventional annular Hall thrusters become inefficient when scaled to low power. Cylindrical Hall thrusters, which have lower surface-to-volume ratio, are therefore more promising for scaling down. They presently exhibit performance comparable with conventional annular Hall thrusters. Electron cross-field transport in a 2.6 cm miniaturized cylindrical Hall thruster (100 W power level) has been studied through the analysis of experimental data and Monte Carlo simulations of electron dynamics in the thruster channel. The numerical model takes into account elastic and inelastic electron collisions with atoms, electron-wall collisions, including secondary electron emission, and Bohm diffusion. We show that in order to explain the observed discharge current, the electron anomalous collision frequency {nu}{sub B} has to be on the order of the Bohm value, {nu}{sub B} {approx} {omega}{sub c}/16. The contribution of electron-wall collisions to cross-field transport is found to be insignificant.

  10. Parametric interference effect in electron-nucleus scattering in the field of two pulsed laser waves

    NASA Astrophysics Data System (ADS)

    Roshchupkin, S. P.; Lebed', A. A.

    2014-09-01

    Electron scattering on a nucleus in a field of two unidirectional pulsed laser waves is considered. The parametric interference effect is studied, which manifests in electron scattering within the plane formed by both the direction of laser-wave propagation and the initial electron momentum (the interference region). In this kinematics the electron emits and absorbs photons of both waves in a correlated manner. The distribution of the differential cross section of the final-electron energy for the process of electron-nucleus scattering in the field of two pulsed waves is considered. This distribution in the interference region differs qualitatively and quantitatively from the corresponding distribution in any other geometry. The appearance of the parametric interference effect may be experimentally verified by measuring the energy spectrum of final electrons in the framework of modern research projects, which use sources of pulsed laser radiation (XFEL, ELI, PHELIX).

  11. Energy efficient iron based electronic field cycling magnet.

    PubMed

    Plendl, Dirk; Fujara, Marian; Privalov, Alexei F; Fujara, Franz

    2009-06-01

    A new concept for an energy efficient electromagnet for fast field cycling NMR applications as well as its construction and first test results are presented. The magnet, which provides a rectangular sample space of 17 x 25 mm, has an iron yoke and pole pieces optimised with respect to the B(0) homogeneity. The maximum field is 0.66 T at a current of 320 A; its field inhomogeneity for a cylindrical sample (length 7 mm, diameter 6mm) is about 50 ppm. The power dissipation during polarisation at 0.55 T is as low as 1.4 kW. The magnet is powered by a commercially available power supply and can be rapidly switched with a slew rate of 0.55 T/ms. The system has shown a stability of 50 ppm/h.

  12. Effects of a Guide Field on the Larmor Electric Field and Upstream Electron Temperature Anisotropy in Collisionless Asymmetric Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Ek-In, Surapat; Malakit, Kittipat; Ruffolo, David; Shay, Michael A.; Cassak, Paul A.

    2017-08-01

    We perform the first study of the properties of the Larmor electric field (LEF) in collisionless asymmetric magnetic reconnection in the presence of an out-of-plane (guide) magnetic field for different sets of representative upstream parameters at Earth’s dayside magnetopause with an ion temperature greater than the electron temperature (the ion-to-electron temperature ratio fixed at 2) using two-dimensional particle-in-cell simulations. We show that the LEF does persist in the presence of a guide field. We study how the LEF thickness and strength change as a function of guide field and the magnetospheric temperature and reconnecting magnetic field strength. We find that the thickness of the LEF structure decreases, while its magnitude increases when a guide field is added to the reconnecting magnetic field. The added guide field makes the Larmor radius smaller, so the scaling with the magnetospheric ion Larmor radius is similar to that reported for the case without a guide field. Note, however, that the physics causing the LEF is not well understood, so future work in other parameter regimes is needed to fully predict the LEF for arbitrary conditions. We also find that a previously reported upstream electron temperature anisotropy arises in the vicinity of the LEF region both with and without a guide field. We argue that the generation of the anisotropy is linked to the existence of the LEF. The LEF can be used in combination with the electron temperature anisotropy as a signature to effectively identify dayside reconnection sites in observations.

  13. Electron Production and Collective Field Generation in Intense Particle Beams

    SciTech Connect

    Molvik, A W; Vay, J; Cohen, R; Friedman, A; Lee, E; Verboncoeur, J; Covo, M K

    2006-02-09

    Electron cloud effects (ECEs) are increasingly recognized as important, but incompletely understood, dynamical phenomena, which can severely limit the performance of present electron colliders, the next generation of high-intensity rings, such as PEP-II upgrade, LHC, and the SNS, the SIS 100/200, or future high-intensity heavy ion accelerators such as envisioned in Heavy Ion Inertial Fusion (HIF). Deleterious effects include ion-electron instabilities, emittance growth, particle loss, increase in vacuum pressure, added heat load at the vacuum chamber walls, and interference with certain beam diagnostics. Extrapolation of present experience to significantly higher beam intensities is uncertain given the present level of understanding. With coordinated LDRD projects at LLNL and LBNL, we undertook a comprehensive R&D program including experiments, theory and simulations to better understand the phenomena, establish the essential parameters, and develop mitigating mechanisms. This LDRD project laid the essential groundwork for such a program. We developed insights into the essential processes, modeled the relevant physics, and implemented these models in computational production tools that can be used for self-consistent study of the effect on ion beams. We validated the models and tools through comparison with experimental data, including data from new diagnostics that we developed as part of this work and validated on the High-Current Experiment (HCX) at LBNL. We applied these models to High-Energy Physics (HEP) and other advanced accelerators. This project was highly successful, as evidenced by the two paragraphs above, and six paragraphs following that are taken from our 2003 proposal with minor editing that mostly consisted of changing the tense. Further benchmarks of outstanding performance are: we had 13 publications with 8 of them in refereed journals, our work was recognized by the accelerator and plasma physics communities by 8 invited papers and we have 5

  14. Modeling electron transport in the presence of electric and magnetic fields.

    SciTech Connect

    Fan, Wesley C.; Drumm, Clifton Russell; Pautz, Shawn D.; Turner, C. David

    2013-09-01

    This report describes the theoretical background on modeling electron transport in the presence of electric and magnetic fields by incorporating the effects of the Lorentz force on electron motion into the Boltzmann transport equation. Electromagnetic fields alter the electron energy and trajectory continuously, and these effects can be characterized mathematically by differential operators in terms of electron energy and direction. Numerical solution techniques, based on the discrete-ordinates and finite-element methods, are developed and implemented in an existing radiation transport code, SCEPTRE.

  15. Electron emission from self-assembled quantum dots in strong magnetic fields

    NASA Astrophysics Data System (ADS)

    Schramm, A.; Schulz, S.; Schaefer, J.; Zander, T.; Heyn, Ch.; Hansen, W.

    2006-05-01

    We probe with deep level transient spectroscopy electron states in self-assembled InAs quantum dots. Two pronounced maxima are observed that we associate with emission from different quantum-dot orbital states. Fine structure clearly establishes distinct emission rates for quantum dots with one or two electrons in the s state and up to four electrons in the p-like states. In order to confirm these assignments spectra have been recorded in strong magnetic fields. The observed magnetic field dispersion of the emission energies is described with a harmonic oscillator model using an effective electron mass of m*=0.03me.

  16. Electron field emission enhancement of carbon nanowalls by plasma surface nitridation

    NASA Astrophysics Data System (ADS)

    Takeuchi, Wakana; Kondo, Hiroki; Obayashi, Tomomi; Hiramatsu, Mineo; Hori, Masaru

    2011-03-01

    Carbon nanowalls (CNWs) are two-dimensional carbon nanostructures consisting of stacked graphene sheets standing vertically on the substrate. The sharp edges of CNWs provide us with opportunities for applications as electron field emitter arrays. The effects of nitrogen plasma (NP) treatment on the surface of CNWs have been investigated in order to improve the electron field emission properties. The electron emission current from the edges of CNWs was drastically increased by the NP treatment. Morphological and chemical changes in the CNWs after the NP treatment were characterized using scanning electron microscopy, Raman spectroscopy, and x-ray photoelectron spectroscopy.

  17. Electron polar cap and the boundary of open geomagnetic field lines.

    NASA Technical Reports Server (NTRS)

    Evans, L. C.; Stone, E. C.

    1972-01-01

    A total of 333 observations of the boundary of the polar access region for electrons (energies greater than 530 keV) provides a comprehensive map of the electron polar cap. The boundary of the electron polar cap, which should occur at the latitude separating open and closed field lines, is consistent with previously reported closed field line limits determined from trapped-particle data. The boundary, which is sharply defined, seems to occur at one of three discrete latitudes. Although the electron flux is generally uniform across the polar cap, a limited region of reduced access is observed about 10% of the time.

  18. Simultaneous investigation of ultrafast structural dynamics and transient electric field by sub-picosecond electron pulses

    SciTech Connect

    Li, Run-Ze; Zhu, Pengfei; Chen, Long; Chen, Jie E-mail: jzhang1@sjtu.edu.cn; Sheng, Zheng-Ming; Zhang, Jie E-mail: jzhang1@sjtu.edu.cn; Cao, Jianming

    2014-05-14

    The ultrafast structure dynamics and surface transient electric field, which are concurrently induced by laser excited electrons of an aluminum nanofilm, have been investigated simultaneously by the same transmission electron diffraction patterns. These two processes are found to be significantly different and distinguishable by tracing the time dependent changes of electron diffraction and deflection angles, respectively. This study also provides a practical means to evaluate simultaneously the effect of transient electric field during the study of structural dynamics under low pump fluence by transmission ultrafast electron diffraction.

  19. Microelectrode for energy and current control of nanotip field electron emitters

    SciTech Connect

    Lüneburg, S.; Müller, M. Paarmann, A. Ernstorfer, R.

    2013-11-18

    Emerging experiments and applications in electron microscopy, holography, and diffraction benefit from miniaturized electron guns for compact experimental setups. We present a highly compact microelectrode integrated field emitter that consists of a tungsten nanotip coated with a few micrometers thick polyimide film followed by a several nanometers thick gold film, both positioned behind the exposed emitter apex by approximately 10–30 μm. The control of the electric field strength at the nanometer scale tip apex allows suppression, extraction, and energy tuning of field-emitted electrons. The performance of the microelectrode is demonstrated experimentally and supported by numerical simulations.

  20. Electron plasma wake field acceleration in solar coronal and chromospheric plasmas

    NASA Astrophysics Data System (ADS)

    Tsiklauri, David

    2017-07-01

    Three dimensional, particle-in-cell, fully electromagnetic simulations of electron plasma wake field acceleration applicable to the solar atmosphere are presented. It is established that injecting driving and trailing electron bunches into solar coronal and chromospheric plasmas results in electric fields ( -(20 -5 )×106 V/m), leading to acceleration of the trailing bunch up to 52 MeV, starting from initial 36 MeV. The results provide one of the potentially important mechanisms for the extremely energetic solar flare electrons, invoking plasma wake field acceleration.

  1. Comparison of measured Varian Clinac 21EX and TrueBeam accelerator electron field characteristics.

    PubMed

    Lloyd, Samantha A M; Zavgorodni, Sergei; Gagne, Isabelle M

    2015-07-08

    Dosimetric comparisons of radiation fields produced by Varian's newest linear accelerator, the TrueBeam, with those produced by older Varian accelerators are of interest from both practical and research standpoints. While photon fields have been compared in the literature, similar comparisons of electron fields have not yet been reported. In this work, electron fields produced by the TrueBeam are compared with those produced by Varian's Clinac 21EX accelerator. Diode measurements were taken of fields shaped with electron applicators and delivered at 100 cm SSD, as well as those shaped with photon MLCs without applicators and delivered at 70 cm SSD for field sizes ranging from 5 × 5 to 25 × 25 cm² at energies between 6 and 20 MeV. Additionally, EBT2 and EBT3 radio-chromic film measurements were taken of an MLC-shaped aperture with closed leaf pairs delivered at 70 cm SSD using 6 and 20 MeV electrons. The 6 MeV fields produced by the TrueBeam and Clinac 21EX were found to be almost indistinguishable. At higher energies, TrueBeam fields shaped by electron applicators were generally flatter and had less photon contamination compared to the Clinac 21EX. Differences in PDDs and profiles fell within 3% and 3 mm for the majority of measurements. The most notable differences for open fields occurred in the profile shoulders for the largest applicator field sizes. In these cases, the TrueBeam and Clinac 21EX data differed by as much as 8%. Our data indicate that an accurate electron beam model of the Clinac 21EX could be used as a starting point to simulate electron fields that are dosimetrically equivalent to those produced by the TrueBeam. Given that the Clinac 21EX shares head geometry with Varian's iX, Trilogy, and Novalis TX accelerators, our findings should also be applicable to these machines.

  2. Dynamics of photoionization from molecular electronic wavepacket states in intense pulse laser fields: A nonadiabatic electron wavepacket study

    NASA Astrophysics Data System (ADS)

    Matsuoka, Takahide; Takatsuka, Kazuo

    2017-04-01

    A theory for dynamics of molecular photoionization from nonadiabatic electron wavepackets driven by intense pulse lasers is proposed. Time evolution of photoelectron distribution is evaluated in terms of out-going electron flux (current of the probability density of electrons) that has kinetic energy high enough to recede from the molecular system. The relevant electron flux is in turn evaluated with the complex-valued electronic wavefunctions that are time evolved in nonadiabatic electron wavepacket dynamics in laser fields. To uniquely rebuild such wavefunctions with its electronic population being lost by ionization, we adopt the complex-valued natural orbitals emerging from the electron density as building blocks of the total wavefunction. The method has been implemented into a quantum chemistry code, which is based on configuration state mixing for polyatomic molecules. Some of the practical aspects needed for its application will be presented. As a first illustrative example, we show the results of hydrogen molecule and its isotope substitutes (HD and DD), which are photoionized by a two-cycle pulse laser. Photon emission spectrum associated with above threshold ionization is also shown. Another example is taken from photoionization dynamics from an excited state of a water molecule. Qualitatively significant effects of nonadiabatic interaction on the photoelectron spectrum are demonstrated.

  3. Atomic electric fields revealed by a quantum mechanical approach to electron picodiffraction.

    PubMed

    Müller, Knut; Krause, Florian F; Béché, Armand; Schowalter, Marco; Galioit, Vincent; Löffler, Stefan; Verbeeck, Johan; Zweck, Josef; Schattschneider, Peter; Rosenauer, Andreas

    2014-12-15

    By focusing electrons on probes with a diameter of 50 pm, aberration-corrected scanning transmission electron microscopy (STEM) is currently crossing the border to probing subatomic details. A major challenge is the measurement of atomic electric fields using differential phase contrast (DPC) microscopy, traditionally exploiting the concept of a field-induced shift of diffraction patterns. Here we present a simplified quantum theoretical interpretation of DPC. This enables us to calculate the momentum transferred to the STEM probe from diffracted intensities recorded on a pixel array instead of conventional segmented bright-field detectors. The methodical development yielding atomic electric field, charge and electron density is performed using simulations for binary GaN as an ideal model system. We then present a detailed experimental study of SrTiO3 yielding atomic electric fields, validated by comprehensive simulations. With this interpretation and upgraded instrumentation, STEM is capable of quantifying atomic electric fields and high-contrast imaging of light atoms.

  4. Self-field effects on electron dynamics in a three-dimensional helical wiggler free-electron laser with axial magnetic field

    NASA Astrophysics Data System (ADS)

    El-Bahi, R.; Rhimi, M. N.

    2010-04-01

    An analytic linear theory of the electron dynamics in a three-dimensional helical wiggler free electron laser (FEL) with axial magnetic field is presented. Orbits are obtained by perturbing the steady state-trajectories in order to determine the characteristic frequencies Ω± of the FEL. The effect of the self-fields on electron dynamics is studied and modified steady-state orbits and their stabilities have been analysed considering variation of electron energy and density. Among the features encountered is that in both group-I and group-II, one of the characteristic frequencies may have either signs affecting then the stability of the motion, while in group-II operation a repulsion of the frequencies at a pseudocrossing leads to highly perturbed trajectories when the wiggler frequency is approximately half the cyclotron frequency. Self-fields effects can significantly impair the stability of the electron orbits. For group-I orbits, they are more important for higher wiggler frequencies and lower beam energies. For group-II orbits, they remain less important for higher wiggler frequencies and lower beam energies before reaching the inversion zone, then they behave as for group-I orbits. It should be remarked that self-fields shift the inversion zone towards higher cyclotron frequencies the thing that is obtained by either decreasing the wiggler frequency or increasing the beam energy. It is shown that the axial velocity-induced self-magnetic field has a diamagnetic effect for both groups orbits, while the wiggler-induced self-magnetic field has a diamagnetic effect for group-I orbits and a paramagnetic effect for group-II orbits. The paramagnetic and diamagnetic effects are more important for higher beam energies and densities.

  5. Electron cyclotron resonance heating by magnetic filter field in a negative hydrogen ion source

    SciTech Connect

    Kim, June Young Cho, Won-Hwi; Dang, Jeong-Jeung; Chung, Kyoung-Jae Hwang, Y. S.

    2016-02-15

    The influence of magnetic filter field on plasma properties in the heating region has been investigated in a planar-type inductively coupled radio-frequency (RF) H{sup −} ion source. Besides filtering high energy electrons near the extraction region, the magnetic filter field is clearly observed to increase the electron temperature in the heating region at low pressure discharge. With increasing the operating pressure, enhancement of electron temperature in the heating region is reduced. The possibility of electron cyclotron resonance (ECR) heating in the heating region due to stray magnetic field generated by a filter magnet located at the extraction region is examined. It is found that ECR heating by RF wave field in the discharge region, where the strength of an axial magnetic field is approximately ∼4.8 G, can effectively heat low energy electrons. Depletion of low energy electrons in the electron energy distribution function measured at the heating region supports the occurrence of ECR heating. The present study suggests that addition of axial magnetic field as small as several G by an external electromagnet or permanent magnets can greatly increase the generation of highly ro-vibrationally excited hydrogen molecules in the heating region, thus improving the performance of H{sup −} ion generation in volume-produced negative hydrogen ion sources.

  6. The effect of magnetic field and disorders on the electronic transport in graphene nanoribbons.

    PubMed

    Kumar, S Bala; Jalil, M B A; Tan, S G; Liang, Gengchiau

    2010-09-22

    We developed a unified mesoscopic transport model for graphene nanoribbons, which combines the nonequilibrium Green's function (NEGF) formalism with the real-space π-orbital model. Based on this model, we probe the spatial distribution of electrons under a magnetic field, in order to obtain insights into the various signature Hall effects in disordered armchair graphene nanoribbons (AGNR). In the presence of a uniform perpendicular magnetic field (B[Symbol: see text]-field), a perfect AGNR shows three distinct spatial current profiles at equilibrium, depending on its width. Under nonequilibrium conditions (i.e. in the presence of an applied bias), the net electron flow is restricted to the edges and occurs in opposite directions depending on whether the Fermi level lies within the valence or conduction band. For electrons at an energy level below the conduction window, the B[Symbol: see text]-field gives rise to local electron flux circulation, although the global flux is zero. Our study also reveals the suppression of electron backscattering as a result of the edge transport which is induced by the B[Symbol: see text]-field. This phenomenon can potentially mitigate the undesired effects of disorder, such as bulk and edge vacancies, on the transport properties of AGNR. Lastly, we show that the effect of [Formula: see text]-field on electronic transport is less significant in the multimode compared to the single-mode electron transport.

  7. Electron acceleration in the inverse free electron laser with a helical wiggler by axial magnetic field and ion-channel guiding

    NASA Astrophysics Data System (ADS)

    Reza, Khazaeinezhad; Mahdi, Esmaeilzadeh

    2012-09-01

    Electron acceleration in the inverse free electron laser (IFEL) with a helical wiggler in the presence of ion-channel guiding and axial magnetic field is investigated in this article. The effects of tapering wiggler amplitude and axial magnetic field are calculated for the electron acceleration. In free electron lasers, electron beams lose energy through radiation while in IFEL electron beams gain energy from the laser. The equation of electron motion and the equation of energy exchange between a single electron and electromagnetic waves are derived and then solved numerically using the fourth order Runge-Kutta method. The tapering effects of a wiggler magnetic field on electron acceleration are investigated and the results show that the electron acceleration increases in the case of a tapered wiggler magnetic field with a proper taper constant.

  8. Effects of external field on elastic electron-ion collision in a plasma

    NASA Astrophysics Data System (ADS)

    Na, Sang-Chul; Jung, Young-Dae

    2008-12-01

    The field effects on elastic electron-ion collision are investigated in a plasma with the presence of the external field. The eikonal method and effective interaction potential including the far-field term caused by the external field is employed to obtain the eikonal phase shift and eikonal cross section as functions of the field strength, external frequency, impact parameter, collision energy, thermal energy and Debye length. The result shows that the effect of the external field on the eikonal cross section is given by the second-order eikonal phase. In addition, the external field effects suppress the eikonal cross section as well as eikonal phase for the elastic electron-ion collision. The eikonal phase and cross section are found to be increased with an increase of the frequency of the external field. It is also shown that the eikonal cross section increases with an increase of the thermal energy and Debye length.

  9. Resonant tunneling of interacting electrons in an AC electric field

    SciTech Connect

    Elesin, V. F.

    2013-11-15

    The problem of the effect of electron-electron interaction on the static and dynamic properties of a double-barrier nanostructure (resonant tunneling diode (RTD)) is studied in terms of a coherent tunneling model, which includes a set of Schrödinger and Poisson equations with open boundary conditions. Explicit analytical expressions are derived for dc and ac potentials and reduced (active and reactive) currents in the quasi-classical approximation over a wide frequency range. These expressions are used to analyze the frequency characteristics of RTD. It is shown that the interaction can radically change the form of these expressions, especially in the case of a hysteretic I-V characteristic. In this case, the active current and the ac potentials can increase sharply at both low and high frequencies. For this increase to occur, it is necessary to meet quantum regime conditions and to choose a proper working point in the I-V characteristic of RTD. The possibility of appearance of specific plasma oscillations, which can improve the high-frequency characteristics of RTD, is predicted. It is found that the active current can be comparable with the resonant dc current of RTD.

  10. Strain fields and electronic structure of antiferromagnetic CrN

    NASA Astrophysics Data System (ADS)

    Rojas, Tomas; Ulloa, Sergio E.

    2017-09-01

    We present a theoretical analysis of the role that strain plays on the electronic structure of chromium nitride (CrN) crystals. We use local spin-density approximation + U calculations to study the elastic constants, deformation potentials, and strain dependence of electron and hole masses near the fundamental gap. We consider the lowest energy antiferromagnetic models believed to describe CrN at low temperatures, and apply strain along different directions. We find relatively large deformation potentials for all models, and find increasing gaps for tensile strain along most directions. Most interestingly, we find that compressive strains should be able to close the relatively small indirect gap (≃100 meV) at moderate amplitudes ≃1.3 % . We also find large and anisotropic changes in the effective masses with strain, with principal axes closely related to the magnetic ordering of neighboring layers in the antiferromagnet. It would be interesting to consider the role that these effects may have on typical film growth on different substrates, and the possibility of monitoring optical and transport properties of thin films as strain is applied.

  11. A Smart Microwave Vacuum Electron Device (MVED) Using Field Emitters

    DTIC Science & Technology

    2012-01-31

    Stellar Lateral Emitters The original program was based on receiving lateral, nano -layer carbon emitters from Stellar Micro Devices (SMD). Stellar...Leakage current in the cathodes have been a very large problem. With an increased leakage both the heat of the cathode and voltage drop across...perfom1ance. The tleld emission arrays intended for the experiment did not meet specifications, so alternative field emission cathodes were used. While these

  12. The inner structure of collisionless magnetic reconnection: The electron-frame dissipation measure and Hall fields

    SciTech Connect

    Zenitani, Seiji; Hesse, Michael; Klimas, Alex; Black, Carrie; Kuznetsova, Masha

    2011-12-15

    It was recently proposed that the electron-frame dissipation measure, the energy transfer from the electromagnetic field to plasmas in the electron's rest frame, identifies the dissipation region of collisionless magnetic reconnection [Zenitani et al., Phys. Rev. Lett. 106, 195003 (2011)]. The measure is further applied to the electron-scale structures of antiparallel reconnection, by using two-dimensional particle-in-cell simulations. The size of the central dissipation region is controlled by the electron-ion mass ratio, suggesting that electron physics is essential. A narrow electron jet extends along the outflow direction until it reaches an electron shock. The jet region appears to be anti-dissipative. At the shock, electron heating is relevant to a magnetic cavity signature. The results are summarized to a unified picture of the single dissipation region in a Hall magnetic geometry.

  13. One-electron singular spectral features of the 1D Hubbard model at finite magnetic field

    NASA Astrophysics Data System (ADS)

    Carmelo, J. M. P.; Čadež, T.

    2017-01-01

    The momentum, electronic density, spin density, and interaction dependences of the exponents that control the (k , ω)-plane singular features of the σ = ↑ , ↓ one-electron spectral functions of the 1D Hubbard model at finite magnetic field are studied. The usual half-filling concepts of one-electron lower Hubbard band and upper Hubbard band are defined in terms of the rotated electrons associated with the model Bethe-ansatz solution for all electronic density and spin density values and the whole finite repulsion range. Such rotated electrons are the link of the non-perturbative relation between the electrons and the pseudofermions. Our results further clarify the microscopic processes through which the pseudofermion dynamical theory accounts for the one-electron matrix elements between the ground state and excited energy eigenstates.

  14. A new concept in laser-assisted chemistry - The electronic-field representation

    NASA Technical Reports Server (NTRS)

    George, T. F.; Zimmerman, I. H.; Yuan, J.-M.; Laing, J. R.; Devries, P. L.

    1977-01-01

    Electronic-field representation is proposed as a technique for laser-assisted chemistry. Specifically, it is shown that several field-assisted chemical processes can be described in terms of mixed matter-field quantum states and their associated energies. The technique may be used to analyze the effects exerted by an intense laser on both bound and unbound molecular systems, and to investigate other field-induced effects including multiphoton processes, emission, and photodissociation.

  15. A new concept in laser-assisted chemistry - The electronic-field representation

    NASA Technical Reports Server (NTRS)

    George, T. F.; Zimmerman, I. H.; Yuan, J.-M.; Laing, J. R.; Devries, P. L.

    1977-01-01

    Electronic-field representation is proposed as a technique for laser-assisted chemistry. Specifically, it is shown that several field-assisted chemical processes can be described in terms of mixed matter-field quantum states and their associated energies. The technique may be used to analyze the effects exerted by an intense laser on both bound and unbound molecular systems, and to investigate other field-induced effects including multiphoton processes, emission, and photodissociation.

  16. Investigations and applications of field- and photo-emitted electron beams from a radio frequency gun

    NASA Astrophysics Data System (ADS)

    Panuganti, Sriharsha

    Production of quality electron bunches using efficient ways of generation is a crucial aspect of accelerator technology. Radio frequency electron guns are widely used to generate and rapidly accelerate electron beams to relativistic energies. In the current work, we primarily study the charge generation processes of photoemission and field emission inside an RF gun installed at Fermilab's High Brightness Electron Source Laboratory (HBESL). Specifically, we study and characterize second-order nonlinear photoemission from a Cesium Telluride (Cs2Te) semiconductor photocathode, and field emission from carbon based cathodes including diamond field emission array (DFEA) and carbon nanotube (CNT) cathodes located in the RF gun's cavity. Finally, we discuss the application experiments conducted at the facility to produce soft x-rays via inverse Compton scattering (ICS), and to generate uniformly filled ellipsoidal bunches and temporally-shaped electron beams from the Cs 2Te photocathode.

  17. Double-electron recombination in high-order-harmonic generation driven by spatially inhomogeneous fields

    NASA Astrophysics Data System (ADS)

    Chacón, Alexis; Ciappina, Marcelo F.; Lewenstein, Maciej

    2016-10-01

    We present theoretical studies of high-order harmonic generation (HHG) driven by plasmonic fields in two-electron atomic systems. Comparing the single- and two-electron active approximation models of the hydrogen negative ion, we provide strong evidence that a nonsequential double-electron recombination mechanism appears to be mainly responsible for the HHG cutoff extension. Our analysis is carried out by means of a reduced one-dimensional numerical integration of the two-electron time-dependent Schrödinger equation, and on investigations of the classical electron trajectories, resulting from the Newton's equation of motion. Additional comparisons between the hydrogen negative ion and the helium atom suggest that the double recombination process depends distinctly on the atomic target. Our research paves the way to the understanding of strong field processes in multielectronic systems driven by spatially inhomogeneous fields.

  18. The Effect of Magnetic Field of Multicusp and Wall Material on Electron Trajectories

    NASA Astrophysics Data System (ADS)

    Khodadadi Azadboni, Fatemeh; Sedaghatizade, Mahmood

    2010-04-01

    In this paper, the effect of electron confinement with magnetic fields in the multicusp ion source has been investigated. That is, electron confinement with magnetic fields plays a very important role for the generation of negative ions at plasma. Three-dimensional spatial distributions of electrons production are obtained for a multicusp ion source. The electron confinement of magnetic fields from various surface materials (such as Al2O3, Al, Au, Cu, w and stainless-steel) have been compared in a multicusp plasma source. The electron confinement effect becomes stronger with increasing N (the number of rows of permanent magnets) and using Al for plasma chamber wall material. The results of investigations have demonstrated good correspondence with experimental data, and therefore the adequacy of the developed approach and the possibility to build more effective source on this basis.

  19. Electron motion of an annular beam in a low-magnetic-field drift tube

    SciTech Connect

    Wu, Ping; Ye, Hu; Tan, Weibing; Sun, Jun; Hu, Chengbao

    2014-12-15

    Foil-less diodes and annular electron beams are widely adopted in high power microwave systems, and the electron beam is usually constrained by a guiding magnetic field to pass through the downstream drift tube and beam-wave interaction region. The electron beam, however, will present obvious radial motion when a low magnetic field is adopted, which will prominently influence the beam transmission and beam-wave interaction. This paper focuses on the radial motion of the electron beam in a low-magnetic-field drift tube. A spatial period is demonstrated with methods of theoretical analysis, single-particle calculations, particle-in-cell simulations, and experiments. The results obtained with different methods show good coherency, indicating that the real spatial period of the electron beam can be predicted by a simple formula which is based on single-particle motion regardless of space-charge effect.

  20. Monte Carlo characterization of clinical electron beams in transverse magnetic fields.

    PubMed

    Lee, M C; Ma, C M

    2000-10-01

    Monte Carlo simulations were employed to study the characteristics of the electron beams of a clinical linear accelerator in the presence of 1.5 and 3.0 T transverse magnetic fields and to assess the possibility of using magnetic fields in conjunction with modulated electron radiation therapy (MERT). The starting depth of the magnetic field was varied over several centimetres. It was found that peak doses of as much as 2.7 times the surface dose could be achieved with a 1.5 T magnetic field. The magnetic field was shown to reduce the 80% and 20% dose drop-off distance by 50% to 80%. The distance between the 80% dose levels of the pseudo-Bragg peak induced by the magnetic field was found to be extremely narrow, generally less than 1 cm. However, by modulating the energy and intensity of the electron fields while simultaneously moving the magnetic field, a homogeneous dose distribution with low surface dose and a sharp dose fall-off was generated. Heterogeneities are shown to change the effective range of the electron beams, but not eliminate the advantages of a sharp depth dose drop-off or high peak-to-surface dose ratio. This suggests the applicability of MERT with magnetic fields in heterogeneous media. The results of this study demonstrate the ability to use magnetic fields in MERT to produce highly desirable dose distributions.

  1. Review of lightning properties from electron field and TV observations

    NASA Astrophysics Data System (ADS)

    Rakov, Vladimir A.; Uman, Martin A.; Thottappillil, Rajeev

    1994-05-01

    From analysis of simultaneous electric field and TV records of 76 negative cloud-to-ground lightning flashes in Florida, various lightning properties have been determined and several new facets of lightning behavior inferred. Only 17 % of the flashes were single-stroke flashes, less than half the commonly claimed percentage (e.g., Anderson and Eriksson, 1980). The initial electric field peak (and, by inference, current peak) for the only strokes in single-stroke flashes was smaller than for first strokes in multiple-stroke flashes. Half of all flashes, single and multiple stroke, struck ground at more than one point, with the spatial separation between the channel terminations being up to many kilometers. One third of multiple-stroke flashes had at least one subsequent stroke whose distance-normalized initial electric field peak exceeded that of the first stroke in the flash. Thus such flashes are not unusual, contrary to the implication of most lightning protection and lightning test standards. Subsequent strokes of the order of 2 through 4 were more likely to create a new channel termination on ground than strokes of the order of 5 and higher. Further, leaders of lower-order subsequent strokes following previously formed and not-too-aged (100 ms or less) channels were more likely to show stepping, as opposed to continuous propagation (i.e., to be dart-stepped leaders rather than dart leaders), than were leaders of higher-order strokes. Finally, lower-order subsequent return strokes exhibited a larger initial electric field peak than did higher-order strokes. The second leader of the flash (the first subsequent leader) encounters the least favorable propagation conditions of all subsequent strokes: more than half of the second leaders either deflected from the previously formed path to ground or propagated in a stepped, as opposed to a continuous, fashion along the lowest part of that path. It is important to note that interstroke intervals preceding second

  2. Asymptotic electron trajectories and an adiabatic invariant for a helical-wiggler free electron laser with weak self-fields

    NASA Astrophysics Data System (ADS)

    Wang, L.; Kevorkian, J.

    1996-03-01

    The dynamics of a relativistic electron in the field configuration consisting of a constant-amplitude helical-wiggler magnetic field, a uniform axial magnetic field, and the equilibrium self-fields is described by a near-integrable three-degree-of-freedom Hamiltonian system. The system is solved asymptotically for small ɛ by the method of averaging, where ɛ measures the strength of the self-fields. Because the Hamiltonian does not depend on one of the coordinates, it immediately reduces to a two-degree-of-freedom system. For ɛ=0, this reduced system is integrable, but is not in standard form. The action-angle transformation to standard form is derived explicitly in terms of elliptic functions, thus enabling the application of the averaging procedure. For almost all regular electron trajectories the solution is explicitly derived in asymptotic form and an adiabatic invariant is constructed, both results are in a form that remains uniformly valid over the time interval for electrons to transit the laser. The analytical results are verified by numerical calculations for an example problem.

  3. Hybrid quantum magnetic-field sensor with an electron spin and a nuclear spin in diamond

    NASA Astrophysics Data System (ADS)

    Matsuzaki, Yuichiro; Shimo-Oka, Takaaki; Tanaka, Hirotaka; Tokura, Yasuhiro; Semba, Kouichi; Mizuochi, Norikazu

    2016-11-01

    Recently, magnetic-field sensors based on an electron spin of a nitrogen vacancy center in diamond have been studied both from an experimental and theoretical point of view. This system provides a nanoscale magnetometer, and it is possible to detect a precession of a single spin. In this paper, we propose a sensor consisting of an electron spin and a nuclear spin in diamond. Although the electron spin has a reasonable interaction strength with magnetic field, the coherence time of the spin is relatively short. On the other hand, the nuclear spin has a longer lifetime while the spin has a negligible interaction with magnetic fields. We show that, through the combination of such two different spins via the hyperfine interaction, it is possible to construct a magnetic-field sensor with the sensitivity far beyond that of previous sensors using just a single electron spin.

  4. Peculiarities of the electron field emission from quantum-size structures

    NASA Astrophysics Data System (ADS)

    Litovchenko, V. G.; Evtukh, A. A.; Litvin, Yu. M.; Goncharuk, N. M.; Hartnagel, H.; Yilmazoglu, O.; Pavlidis, D.

    2003-06-01

    The electron field emission from semiconductor based layered structures has been investigated. Among studied structures were silicon tips coated with ultra-thin DLC layer, multilayer structures Si-SiO 2-Si ∗-SiO 2 with delta-doped Si ∗ layer, nanocomposite layers SiO xN y(Si) with Si nanocrystals embedded in SiO xN y matrix, GaN layers and Si-SiGe heterostructures. All of them have such peculiarities of electron field emission as peaks on emission current-voltage characteristics and corresponding Fowler-Nordheim plots. A physical model is proposed for explanation of experimental results. All emitters have layer, cluster wire or dot with quantum-size restriction in it. As a result, the quantum well with splitted electron levels exists or appears at electric field. Additional mechanism of electron emission-resonance tunneling is realized at definite electric fields.

  5. Electron dynamics of a He atom in strong, oscillating magnetic fields

    NASA Astrophysics Data System (ADS)

    Sadhukhan, M.; Deb, B. M.

    2014-04-01

    The present numerical, time-dependent density-functional study of a He atom interacting with strong, oscillating magnetic fields shows that this scenario is quite different from the case of a laser electric field-He atom interaction. Signatures of sluggish electron dynamics are found in this study, while through a mechanical analogy the flow of electron density under such conditions has been explained. These calculations take into account both exchange and correlation. Through several calculated dynamical quantities, we have shown that, in contrast to the case of the (one-electron) H atom studied earlier, the nonlinear dependence of interelectronic repulsions (a combination of Coulomb, exchange and correlation terms) on the magnetic field plays a significant role in this strong-field electron dynamics in the He atom, which cannot be explained by a perturbative approach.

  6. Pulsed-field ionization zero electron kinetic energy spectrum of the ground electronic state of BeOBe+.

    PubMed

    Antonov, Ivan O; Barker, Beau J; Heaven, Michael C

    2011-01-28

    The ground electronic state of BeOBe(+) was probed using the pulsed-field ionization zero electron kinetic energy photoelectron technique. Spectra were rotationally resolved and transitions to the zero-point level, the symmetric stretch fundamental and first two bending vibrational levels were observed. The rotational state symmetry selection rules confirm that the ground electronic state of the cation is (2)Σ(g)(+). Detachment of an electron from the HOMO of neutral BeOBe results in little change in the vibrational or rotational constants, indicating that this orbital is nonbonding in nature. The ionization energy of BeOBe [65480(4) cm(-1)] was refined over previous measurements. Results from recent theoretical calculations for BeOBe(+) (multireference configuration interaction) were found to be in good agreement with the experimental data.

  7. Electron runaway across a magnetic field in a collisional high-atomic-number plasma

    SciTech Connect

    Mosher, D.; Welch, D.R.

    1995-12-31

    Nonthermal x-ray spectra observed in high-atomic-number z-pinch plasmas indicate that electrons with energies greatly in excess of the plasma temperature are present. A favorite mechanism for the production of these nonthermal electrons is acceleration in inductive electric fields produced by localized collapse of plasma into pinch spots. One problem with this acceleration mechanism is the presence of intense azimuthal magnetic fields embedded in the plasma which impede the runaway of electrons along the electric field. In this work, a fluid model for nonthermal electron flow in dense, high-atomic-number plasmas is employed to determine how collisions affect their energy gain in crossed electric and magnetic fields. The simple scaling laws derived from this model are compared with IPRPO particle-in-cell simulations of the same plasma environment. Large cross-field energy gains are calculated by both models for high-atomic number plasmas where the electron scattering (momentum-transfer) frequency v{sub s} is of order Zv{sub e}, where v{sub e} is the rate associated with collisional energy loss and Z is the plasma ionization level. Once a threshold electric field is exceeded, a large number of scattering collisions across the magnetic field and along the electric field can occur in an energy-loss time and much larger energy gains are possible than in hydrogenic plasmas.

  8. A diagrammatic quantum field approach to localized-electron systems

    NASA Astrophysics Data System (ADS)

    Bonev, Stanimir; Ashcroft, Neil W.

    2002-03-01

    We present a diagrammatic language for the variational evaluation of the energy of systems with localized electrons. It is used to develop a convergent series expansion for the energy in powers of overlap integrals of single-particle orbitals. This method gives intuitive and practical rules for writing down the expansion to arbitrary order of overlap, and can be applied to any spin configuration, and to any dimension. Our approach extends previous work by van Dijk and Vertogen,(L. G. J. van Dijk and G. Vertogen, J. Phys.: Condens. Matter 3), 7763 (1991). Abarenkov,(I. V. Abarenkov, J. Phys.: Condens. Matter 5) 2341 (1993). and Moulopoulos and Ashcroft.(K. Moulopoulos and N. W. Ashcroft, Phys. Rev. B 48) 11646 (1993).

  9. Qualitative analysis of irregular fields delivered with dual electron multileaf collimator: A Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Inyang, Samuel Okon; Chamberlain, Alan

    2016-03-01

    The use of a dual electron multileaf collimator (eMLC) to collimate therapeutic electron beam without the use of cutouts has been previously shown to be feasible. Further Monte Carlo simulations were performed in this study to verify the nature and appearance of the isodose distribution in water phantom of irregular electron beams delivered by the eMLC. Electron fields used in this study were selected to reflect those used in electron beam therapy. Results of this study show that the isodose distribution in a water phantom obtained from the simulation of irregular electron beams through the eMLC conforms to the pattern of the eMLC used in the delivery of the beam. It is therefore concluded that the dual eMLC could deliver isodose distributions reflecting the pattern of the eMLC field that was used in the delivery of the beam.

  10. The Mechanisms of Electron Acceleration During Multiple X Line Magnetic Reconnection with a Guide Field

    NASA Astrophysics Data System (ADS)

    Wang, Huanyu; Lu, Quanming; Huang, Can; Wang, Shui

    2016-04-01

    The interactions between magnetic islands are considered to play an important role in electron acceleration during magnetic reconnection. In this paper, two-dimensional particle-in-cell simulations are performed to study electron acceleration during multiple X line reconnection with a guide field. Because the electrons remain almost magnetized, we can analyze the contributions of the parallel electric field, Fermi, and betatron mechanisms to electron acceleration during the evolution of magnetic reconnection through comparison with a guide-center theory. The results show that with the magnetic reconnection proceeding, two magnetic islands are formed in the simulation domain. Next, the electrons are accelerated by both the parallel electric field in the vicinity of the X lines and the Fermi mechanism due to the contraction of the two magnetic islands. Then, the two magnetic islands begin to merge into one, and, in such a process, the electrons can be accelerated by both the parallel electric field and betatron mechanisms. During the betatron acceleration, the electrons are locally accelerated in the regions where the magnetic field is piled up by the high-speed flow from the X line. At last, when the coalescence of the two islands into one big island finishes, the electrons can be further accelerated by the Fermi mechanism because of the contraction of the big island. With the increase of the guide field, the contributions of the Fermi and betatron mechanisms to electron acceleration become less and less important. When the guide field is sufficiently large, the contributions of the Fermi and betatron mechanisms are almost negligible.

  11. THE MECHANISMS OF ELECTRON ACCELERATION DURING MULTIPLE X LINE MAGNETIC RECONNECTION WITH A GUIDE FIELD

    SciTech Connect

    Wang, Huanyu; Lu, Quanming; Huang, Can; Wang, Shui

    2016-04-20

    The interactions between magnetic islands are considered to play an important role in electron acceleration during magnetic reconnection. In this paper, two-dimensional particle-in-cell simulations are performed to study electron acceleration during multiple X line reconnection with a guide field. Because the electrons remain almost magnetized, we can analyze the contributions of the parallel electric field, Fermi, and betatron mechanisms to electron acceleration during the evolution of magnetic reconnection through comparison with a guide-center theory. The results show that with the magnetic reconnection proceeding, two magnetic islands are formed in the simulation domain. Next, the electrons are accelerated by both the parallel electric field in the vicinity of the X lines and the Fermi mechanism due to the contraction of the two magnetic islands. Then, the two magnetic islands begin to merge into one, and, in such a process, the electrons can be accelerated by both the parallel electric field and betatron mechanisms. During the betatron acceleration, the electrons are locally accelerated in the regions where the magnetic field is piled up by the high-speed flow from the X line. At last, when the coalescence of the two islands into one big island finishes, the electrons can be further accelerated by the Fermi mechanism because of the contraction of the big island. With the increase of the guide field, the contributions of the Fermi and betatron mechanisms to electron acceleration become less and less important. When the guide field is sufficiently large, the contributions of the Fermi and betatron mechanisms are almost negligible.

  12. Statistical relationship between large-scale upward field-aligned currents and electron precipitation

    NASA Astrophysics Data System (ADS)

    Korth, Haje; Zhang, Yongliang; Anderson, Brian J.; Sotirelis, Thomas; Waters, Colin L.

    2014-08-01

    Simultaneous observations of Birkeland currents by the constellation of Iridium satellites and N2 Lyman-Birge-Hopfield (LBH) auroral emissions measured by the Global Ultraviolet Imager (GUVI) onboard the Thermosphere, Ionosphere, and Mesosphere Energetics and Dynamics (TIMED) satellite are used to establish relationships between large-scale upward field-aligned currents and electron precipitation during stable current configurations. The electron precipitation was inferred from GUVI data using a statistical relationship between LBH intensity and electron energy flux. LBH emissions with >5% contribution from protons, identified by Lyman-alpha intensity, were excluded from the analysis. The Birkeland currents were derived with a spatial resolution of 3° in latitude and 2 h in local time. For southward interplanetary magnetic field (IMF), the electron precipitation occurred primarily within and near large-scale upward currents. The correspondence was less evident for northward IMF, presumably because the spatial variability is large compared to the areas of interest so that the number of events identified is smaller and the derived statistical distributions are less reliable. At dusk, the correlation between upward current and precipitation was especially high, where a larger fraction of the electron precipitation is accelerated downward by a field-aligned potential difference. Unaccelerated electron precipitation dominated in the morning sector, presumably induced by scattering of eastward-drifting energetic electrons into the loss cone through interaction with whistler-mode waves (diffuse precipitation) rather than by field-aligned acceleration. In the upward Region 1 on the dayside, where the electron precipitation is almost exclusively due to field-aligned acceleration, a quadratic relationship between current density and electron energy flux was observed, implying a linear current-voltage relationship in this region. Current density and electron energy flux in

  13. Study of intermittent field hardware failure data in digital electronics

    NASA Technical Reports Server (NTRS)

    Oneill, E. J.; Halverson, J. R.

    1980-01-01

    The collection and analysis of data concerning intermittent dailures in digital devices was performed using data from a computer design for shipboard usage. The failure data consisted of actual field failures classified by failure mechanisms and their likelihood of having been intermittent, potentially intermittent, or hard. Each class was studies with respect to computer operation in the ranges of 0 to 2,000 hours, 0 to 5, hours, and 0 to 10,000 hours. The study was done at the computer level as well as the microcircuit level. Results indicate that as age increases, the quasi-intermittent failure rate increases and the mean time to failure descreases.

  14. Plasma sheath model in the presence of field-induced electron emission

    NASA Astrophysics Data System (ADS)

    Dahal, Jiba; Ayyaswamy, Venkattraman

    2016-10-01

    Microplasmas have become an active area of research during the last two decades with several applications including nanomaterial synthesis, electronics, lighting, biomedicine, and metamaterials for controlling electromagnetic waves. The advances in micro/nanofabrication and the further miniaturization of plasma devices have contributed to the increasing role of new physical mechanisms that were previously neglected. Electric field-induced emission of electrons is one such mechanism that is gaining significance particularly with the discovery of novel electrodes that demonstrate excellent field emission properties. These field emitted electrons and their interaction with microdischarges has shown to affect both pre-breakdown and post-breakdown regimes of operation. The current work focuses on the development of self-consistent sheath model that includes the effects of field-induced electron emission. Sheath models presented earlier accounts for other emission mechanisms such as thermionic and secondary electron emission, the strong influence of electric field on electron emission is shown to lead to unique interplay. The results obtained from the sheath model for various parameters including current-voltage characteristics, and ion/electron number density are validated with PIC-MCC results.

  15. Trap Characterization in High Field, High Temperature Stressed Gallium Nitride High Electron Mobility Transistors

    DTIC Science & Technology

    2013-03-01

    CHARACTERIZATION IN HIGH FIELD, HIGH TEMPERATURE STRESSED GALLIUM NITRIDE HIGH ELECTRON MOBILITY TRANSISTORS by Kevin B. Pham March 2013 Thesis...TEMPERATURE STRESSED GALLIUM NITRIDE HIGH ELECTRON MOBILITY TRANSISTORS 5. FUNDING NUMBERS 6. AUTHOR(S) Kevin B. Pham 7. PERFORMING ORGANIZATION...ABSTRACT (maximum 200 words) Gallium Nitride (GaN) high electron mobility transistors (HEMTs) offer higher power output over existing technology. However

  16. Study of electric fields parallel to the magnetic lines of force using artificially injected energetic electrons

    NASA Technical Reports Server (NTRS)

    Wilhelm, K.; Bernstein, W.; Whalen, B. A.

    1980-01-01

    Electron beam experiments using rocket-borne instrumentation will be discussed. The observations indicate that reflections of energetic electrons may occur at possible electric field configurations parallel to the direction of the magnetic lines of force in an altitude range of several thousand kilometers above the ionosphere.

  17. The Role of Localized Inductive Electric Fields in Electron Injections Around Dipolarizing Flux Bundles

    NASA Astrophysics Data System (ADS)

    Gabrielse, C.; Harris, C.; Angelopoulos, V.; Runov, A.

    2015-12-01

    We study energetic electron injections using an analytical model that describes self-consistent electric and magnetic field perturbations of a transient, localized dipolarizing flux bundle (DFB). This simple model can reproduce most injection signatures at multiple locations simultaneously, reaffirming earlier findings that an earthward-traveling DFB can both transport and accelerate electrons to suprathermal energies, and can thus be considered as the primary driver of short-lived (~<10 min) injections. We find that energetic electron drift paths are greatly influenced by the sharp magnetic field gradients around the localized DFB. If the gradients are weak the energetic electrons initiating at reconnection will drift out of the flow channel such that the observed injection is comprised mostly of plasma sheet electrons. However, if the duskward magnetic field gradients on the DFB's dawn flank are strong they can cause electrons to drift further earthward from the reconnection site than due to E x B alone. Similarly, strong dawnward magnetic field gradients on the DFB's dusk flank can extract energetic electrons from the inner magnetosphere out to the plasma sheet, where they can either be recirculated earthward or remain at higher L-shells. Therefore, the source of electrons observed during injection depends sensitively on the spacecraft location relative to the DFB and on the DFB's properties.

  18. Effect of Precipitating Electrons on Stormtime Inner Magnetospheric Electric Fields during the 17 March 2013 Storm

    NASA Astrophysics Data System (ADS)

    Chen, M.; Lemon, C. L.; Sazykin, S. Y.; Wolf, R.; Hecht, J. H.; Walterscheid, R. L.; Boyd, A. J.; Turner, D. L.

    2015-12-01

    We investigate how scattering of electrons by waves in the plasma sheet and plasmasphere affects precipitating energy flux distributions and how the precipitating electrons modify the ionospheric conductivity and electric potentials during the large 17 March 2013 magnetic storm. Of particular interest is how electron precipitation in the evening sector affects the development of the Sub-auroral Polarization Stream (SAPS) electric field that is observed at sub-auroral latitudes in that sector. Our approach is to use the magnetically and electrically self-consistent Rice Convection Model - Equilibrium (RCM-E) of the inner magnetosphere to simulate the stormtime precipitating electron distributions and the electric field. We use parameterized rates of whistler-generated electron pitch-angle scattering from Orlova and Shprits [JGR, 2014] that depend on equatorial radial distance, magnetic activity (Kp), and magnetic local time (MLT) outside the simulated plasmasphere. Inside the plasmasphere, parameterized scattering rates due to hiss [Orlova et al., GRL, 2014] are used. We compare simulated trapped and precipitating electron flux distributions with measurements from Van Allen Probes/MagEIS, POES/TED and MEPED, respectively, to validate the electron loss model. Ground-based (SuperDARN) and in-situ (Van Allen Probes/EFW) observations of electric fields are compared with the simulation results. We discuss the effect of precipitating electrons on the SAPS and inner magnetospheric electric field through the data-model comparisons.

  19. Local electric field direct writing – Electron-beam lithography and mechanism

    DOE PAGES

    Jiang, Nan; Su, Dong; Spence, John C. H.

    2017-08-24

    Local electric field induced by a focused electron probe in silicate glass thin films is evaluated in this paper by the migration of cations. Extremely strong local electric fields can be obtained by the focused electron probe from a scanning transmission electron microscope. As a result, collective atomic displacements occur. This newly revised mechanism provides an efficient tool to write patterned nanostructures directly, and thus overcome the low efficiency of the conventional electron-beam lithography. Applying this technique to silicate glass thin films, as an example, a grid of rods of nanometer dimension can be efficiently produced by rapidly scanning amore » focused electron probe. This nanopatterning is achieved through swift phase separation in the sample, without any post-development processes. The controlled phase separation is induced by massive displacements of cations (glass modifiers) within the glass-former network, driven by the strong local electric fields. The electric field is induced by accumulated charge within the electron probed region, which is generated by the excitation of atomic electrons by the incident electron. Throughput is much improved compared to other scanning probe techniques. Finally, the half-pitch spatial resolution of nanostructure in this particular specimen is 2.5 nm.« less

  20. A multifrequency high-field pulsed electron paramagnetic resonance/electron-nuclear double resonance spectrometer

    NASA Astrophysics Data System (ADS)

    Morley, Gavin W.; Brunel, Louis-Claude; van Tol, Johan

    2008-06-01

    We describe a pulsed electron paramagnetic resonance spectrometer operating at several frequencies in the range of 110-336GHz. The microwave source at all frequencies consists of a multiplier chain starting from a solid state synthesizer in the 12-15GHz range. A fast p-i-n-switch at the base frequency creates the pulses. At all frequencies a Fabry-Pérot resonator is employed and the π /2 pulse length ranges from ˜100ns at 110GHzto˜600ns at 334GHz. Measurements of a single crystal containing dilute Mn2+ impurities at 12T illustrate the effects of large electron spin polarizations. The capabilities also allow for pulsed electron-nuclear double resonance (ENDOR) experiments as demonstrated by Mims ENDOR of K39 nuclei in Cr :K3NbO8.

  1. Ion and Electron Acceleration in the Field Reversed Configuration with an Odd-Parity Rotating Magnetic Field

    NASA Astrophysics Data System (ADS)

    Glasser, Alan H.

    2001-10-01

    I will discuss a new method for accelerating ions and electrons in the Field Reversed Configuration (FRC), using an odd-parity Rotating Magnetic Field (RMF). Our approach is based on numerical integration of individual full particle orbits for tens of thousands of cyclotron periods, using a highly accurate adaptive integrator. Odd parity of the RMF about the mid-plane rigorously preserves flux surface closure, contrary to the previously-used even-parity RMF, resulting in improved particle confinement. Strong ion heating occurs for RMF frequencies in the Ion Cyclotron Range of Frequencies (ICRF), reaching thermonuclear conditions in a modest-sized FRC. Strong variation of the magnetic field strength over the confinement region prevents a true cyclotron resonance, resulting in stochastic though effective heating. Electrons are also effectively accelerated with the same ICRF RMF, by an entirely different mechanism. An azimuthal component of the electric field near the O-point null line, induced only by odd-parity RMF, accelerates electrons, primarily in the neighborhood of the magnetic axis. At this very low frequency, the electrons feel the electric field as nearly stationary, accelerating to high energy during half of their revolution about the axis of symmetry, then decelerating during the other half, resulting in energy spikes. The magnetic moment is not conserved at the z-extrema of the flux surface, which isotropizes the energy and results in incomplete deceleration and ratcheting up the energy. An inward drift is produced by a proper choice of the sense of rotation of the RMF, improving confinement. Both ion and electron motion can be used to drive current, sustaining the FRC. Initiation of an FRC from a mirror field using only an RMF is being studied. Lyapunov exponents are computed to demonstrate chaotic orbits.

  2. Constraints on the origins of lunar magnetism from electron reflection measurements of surface magnetic fields

    NASA Technical Reports Server (NTRS)

    Lin, R. P.

    1979-01-01

    The paper describes a new method of detecting lunar surface magnetic fields, summarizes electron reflection measurements and correlations of surface field anomalies to moon geologic features, and discusses the constraints on the origin of lunar magnetism. Apollo 15 and 16 measurements of lunar surface magnetic fields by the electron reflection method show patches of strong surface fields distributed over the lunar surface, and a positive statistical correlation is found in lunar mare regions between the surface field strength and the geologic age of the surface. However, there is a lack of correlation of surface field with impact craters indicating that the mare does not have a strong large-scale uniform magnetization as may be expected from an ancient lunar dynamo. Fields were found in lunar highlands which imply that the rille has a strong magnetization associated with it as intrusive, magnetized rock or as a gap in a uniformly magnetic layer of rock.

  3. Constraints on the origins of lunar magnetism from electron reflection measurements of surface magnetic fields

    NASA Technical Reports Server (NTRS)

    Lin, R. P.

    1979-01-01

    The paper describes a new method of detecting lunar surface magnetic fields, summarizes electron reflection measurements and correlations of surface field anomalies to moon geologic features, and discusses the constraints on the origin of lunar magnetism. Apollo 15 and 16 measurements of lunar surface magnetic fields by the electron reflection method show patches of strong surface fields distributed over the lunar surface, and a positive statistical correlation is found in lunar mare regions between the surface field strength and the geologic age of the surface. However, there is a lack of correlation of surface field with impact craters indicating that the mare does not have a strong large-scale uniform magnetization as may be expected from an ancient lunar dynamo. Fields were found in lunar highlands which imply that the rille has a strong magnetization associated with it as intrusive, magnetized rock or as a gap in a uniformly magnetic layer of rock.

  4. On the Electron Diffusion Region in Asymmetric Reconnection with a Guide Magnetic Field

    NASA Technical Reports Server (NTRS)

    Hesse, Michael; Liu, Yi-Hsin; Chen, Li-Jen; Bessho, Naoki; Kuznetsova, Masha; Birn, Joachim; Burch, James L.

    2016-01-01

    Particle-in-cell simulations in a 2.5-D geometry and analytical theory are employed to study the electron diffusion region in asymmetric reconnection with a guide magnetic field. The analysis presented here demonstrates that similar to the case without guide field, in-plane flow stagnation and null of the in-plane magnetic field are well separated. In addition, it is shown that the electric field at the local magnetic X point is again dominated by inertial effects, whereas it remains dominated by nongyrotropic pressure effects at the in-plane flow stagnation point. A comparison between local electron Larmor radii and the magnetic gradient scale lengths predicts that distribution should become nongyrotropic in a region enveloping both field reversal and flow stagnation points. This prediction is verified by an analysis of modeled electron distributions, which show clear evidence of mixing in the critical region.

  5. On the Electron Diffusion Region in Asymmetric Reconnection with a Guide Magnetic Field

    NASA Technical Reports Server (NTRS)

    Hesse, Michael; Liu, Yi-Hsin; Chen, Li-Jen; Bessho, Naoki; Kuznetsova, Masha; Birn, Joachim; Burch, James L.

    2016-01-01

    Particle-in-cell simulations in a 2.5-D geometry and analytical theory are employed to study the electron diffusion region in asymmetric reconnection with a guide magnetic field. The analysis presented here demonstrates that similar to the case without guide field, in-plane flow stagnation and null of the in-plane magnetic field are well separated. In addition, it is shown that the electric field at the local magnetic X point is again dominated by inertial effects, whereas it remains dominated by nongyrotropic pressure effects at the in-plane flow stagnation point. A comparison between local electron Larmor radii and the magnetic gradient scale lengths predicts that distribution should become nongyrotropic in a region enveloping both field reversal and flow stagnation points. This prediction is verified by an analysis of modeled electron distributions, which show clear evidence of mixing in the critical region.

  6. On the electron diffusion region in asymmetric reconnection with a guide magnetic field

    NASA Astrophysics Data System (ADS)

    Hesse, Michael; Liu, Yi-Hsin; Chen, Li-Jen; Bessho, Naoki; Kuznetsova, Masha; Birn, Joachim; Burch, James L.

    2016-03-01

    Particle-in-cell simulations in a 2.5-D geometry and analytical theory are employed to study the electron diffusion region in asymmetric reconnection with a guide magnetic field. The analysis presented here demonstrates that similar to the case without guide field, in-plane flow stagnation and null of the in-plane magnetic field are well separated. In addition, it is shown that the electric field at the local magnetic X point is again dominated by inertial effects, whereas it remains dominated by nongyrotropic pressure effects at the in-plane flow stagnation point. A comparison between local electron Larmor radii and the magnetic gradient scale lengths predicts that distribution should become nongyrotropic in a region enveloping both field reversal and flow stagnation points. This prediction is verified by an analysis of modeled electron distributions, which show clear evidence of mixing in the critical region.

  7. Dependence of field-aligned electron precipitation occurrence on season and altitude

    NASA Technical Reports Server (NTRS)

    Berko, F. W.; Hoffman, R. A.

    1974-01-01

    An examination of factors affecting the occurrence of field-aligned 2.3-keV electron precipitation has been performed by using data from more than 7500 orbits of the polar-orbiting satellite Ogo 4. Both season and altitude were found to be parameters that are directly related to the probability of occurrence. The highest probabilities occurred when the measurements were made at altitudes from 800 km to apogee (914 km), except during summer. In this altitude interval, the electron precipitation was more likely to be field-aligned during winter than during any other season. The analysis suggests the establishment by electrostatic charge layers of localized electric fields parallel to the magnetic field. The resulting potential distribution focuses the electron beam along the field lines in the region between the charge layers but destroys the focused beam below the lower layer, and thus an altitude dependence is created.

  8. Fiber optic probe of free electron evanescent fields in the optical frequency range

    SciTech Connect

    So, Jin-Kyu MacDonald, Kevin F.; Zheludev, Nikolay I.

    2014-05-19

    We introduce an optical fiber platform which can be used to interrogate proximity interactions between free-electron evanescent fields and photonic nanostructures at optical frequencies in a manner similar to that in which optical evanescent fields are sampled using nanoscale aperture probes in scanning near-field microscopy. Conically profiled optical fiber tips functionalized with nano-gratings are employed to couple electron evanescent fields to light via the Smith-Purcell effect. We demonstrate the interrogation of medium energy (30–50 keV) electron fields with a lateral resolution of a few micrometers via the generation and detection of visible/UV radiation in the 700–300 nm (free-space) wavelength range.

  9. Breakdown of electron-pairs in the presence of an electric field of a superconducting ring.

    PubMed

    Pandey, Bradraj; Dutta, Sudipta; Pati, Swapan K

    2016-05-18

    The quantum dynamics of quasi-one-dimensional ring with varying electron filling factors is investigated in the presence of an external electric field. The system is modeled within a Hubbard Hamiltonian with attractive Coulomb correlation, which results in a superconducting ground state when away from half-filling. The electric field is induced by applying time-dependent Aharonov-Bohm flux in the perpendicular direction. To explore the non-equilibrium phenomena arising from the field, we adopt exact diagonalization and the Crank-Nicolson numerical method. With an increase in electric field strength, the electron pairs, a signature of the superconducting phase, start breaking and the system enters into a metallic phase. However, the strength of the electric field for this quantum phase transition depends on the electronic correlation. This phenomenon has been confirmed by flux-quantization of time-dependent current and pair correlation functions.

  10. Electron Acceleration at Coronal Shocks Propagating Through a Large-scale Streamer-like Magnetic Field

    NASA Astrophysics Data System (ADS)

    Kong, X.

    2015-12-01

    Solar type II radio bursts are generally believed to be excited by energetic electrons that are accelerated at solar eruption-driven shocks. Some recent studies have pointed out that coronal streamers may be important on the generation of type II bursts and the morphology of radio dynamic spectra. In our previous study, it was found that closed field of the streamer can play the role of an electron trap via which electrons would receive multiple reflection and acceleration. We further developed a numerical model consisting of a spherical coronal shock moving through a large-scale streamer-like coronal magnetic field. The complex local shock geometry should affect both the efficiency of electron acceleration and properties of accelerated electrons. By examining the injection and escape locations of energetic electrons, it is found that shock electron acceleration is most efficient mainly in two different regions, one is at the shock flank (foreshock regions) when the shock is at lower altitude, the other is at the shock nose (apexes of closed loops) at higher altitude. The effects of large-scale coronal field, pitch-angle scattering and shock compression ratio on the distribution of energetic electrons and electron energy spectrum are also investigated.

  11. Dependence of magnetic field and electronic transport of Mn4 Single-molecule magnet in a Single-Electron Transistor

    NASA Astrophysics Data System (ADS)

    Rodriguez, Alvar; Singh, Simranjeet; Haque, Firoze; Del Barco, Enrique; Nguyen, Tu; Christou, George

    2012-02-01

    Dependence of magnetic field and electronic transport of Mn4 Single-molecule magnet in a Single-Electron Transistor A. Rodriguez, S. Singh, F. Haque and E. del Barco Department of Physics, University of Central Florida, 4000 Central Florida Blvd., Orlando, Florida 32816 USA T. Nguyen and G. Christou Department of Chemistry, University of Florida, Gainesville, Florida 32611 USA Abstract We have performed single-electron transport measurements on a series of Mn-based low-nuclearity single-molecule magnets (SMM) observing Coulomb blockade. SMMs with well isolated and low ground spin states, i.e. S = 9/2 (Mn4) and S = 6 (Mn3) were chosen for these studies, such that the ground spin multiplet does not mix with levels of other excited spin states for the magnetic fields (H = 0-8 T) employed in the experiments. Different functionalization groups were employed to change the mechanical, geometrical and transport characteristics of the molecules when deposited from liquid solution on the transistors. Electromigration-broken three-terminal single-electron transistors were used. Results obtained at temperatures down to 240 mK and in the presence of high magnetic fields will be shown.

  12. Multi-field electron emission pattern of 2D emitter: Illustrated with graphene

    NASA Astrophysics Data System (ADS)

    Luo, Ma; Li, Zhibing

    2016-11-01

    The mechanism of laser-assisted multi-field electron emission of two-dimensional emitters is investigated theoretically. The process is basically a cold field electron emission but having more controllable components: a uniform electric field controls the emission potential barrier, a magnetic field controls the quantum states of the emitter, while an optical field controls electron populations of specified quantum states. It provides a highly orientational vacuum electron line source whose divergence angle over the beam plane is inversely proportional to square root of the emitter height. Calculations are carried out for graphene with the armchair emission edge, as a concrete example. The rate equation incorporating the optical excitation, phonon scattering, and thermal relaxation is solved in the quasi-equilibrium approximation for electron population in the bands. The far-field emission patterns, that inherit the features of the Landau bands, are obtained. It is found that the optical field generates a characteristic structure at one wing of the emission pattern.

  13. The role of localized inductive electric fields in electron injections around dipolarizing flux bundles

    NASA Astrophysics Data System (ADS)

    Gabrielse, Christine; Harris, Camilla; Angelopoulos, Vassilis; Artemyev, Anton; Runov, Andrei

    2016-10-01

    We study energetic electron injections by using an analytical model that self-consistently describes electric and magnetic field perturbations of a transient, localized dipolarizing flux bundle (DFB). This simple model reproduces most injection signatures at multiple locations simultaneously, reaffirming earlier findings that an earthward-traveling DFB can both transport and accelerate electrons to suprathermal energies, and can thus be considered an important driver of short-lived ( < 10 min) injections. We find that energetic electron drift paths are greatly influenced by the sharp magnetic field gradients around a localized DFB. Because a DFB is so localized (only a few RE wide across the tail), there are strong duskward magnetic field gradients on the DFB's dawn flank and strong dawnward magnetic field gradients on its dusk flank. Electrons on the DFB's dawnside therefore ∇B drift farther earthward from the reconnection site, whereas electrons on its duskside can potentially evacuate the inner magnetosphere by ∇B drifting tailward. This results in flux decrease at the front's duskside. As a result, the source of electrons observed during injection depends sensitively on the spacecraft location relative to the DFB and on the DFB's properties. We similarly find that the process of electron energization depends on how the electrons interact with the DFB. The initial injection signature is from electrons that interact with the front and gain the majority of their energy from the increasing magnetic field (∂B/∂t), whereas populations that arrive later gain most of their energy from ∇B drifting across the flow channel and against the DFB's electric fields.

  14. Retarding Field Analysis of Long Pulse Electron Beams Through Combined Bifurcated Bifilar Wiggler and Guide Magnetic Fields.

    NASA Astrophysics Data System (ADS)

    Pearce, Kelly Douglas

    In the past several years, the free electron laser (FEL) has been used to produce frequency tunable coherent radiation in the millimeter to submillimeter wavelength range. The reasonably high efficiency and power levels already achieved have spurred further work to refine and improve the FEL, particularly for lower wavelength applications. In a free electron laser, the electron beam is given a substantial transverse velocity component by passing it through a transverse periodic magnetic field commonly referred to as a wiggler. Recent work includes analytical and experimental investigations of beam propagation dynamics in the wiggler field. The present investigation is an experimental and numerical study of a type of wiggler called the bifurcated bifilar wiggler. In the present investigation a retarding field energy analysis is performed upon a long-pulse, mildly relativistic electron beam after it passes through combined bifurcated bifilar wiggler and axial magnetic fields. A 5-mus, 75-kV, 0-20 A, square output pulse electron beam is generated by a 3-stage, crowbarred Marx generator with a 10-90% risetime of less than 1 mus. The electron gun contains a lanthanum hexaboride (LaB6) cathode which is heated by electron bombardment in a Pierce electron-gun geometry. The cathode is immersed in a collimating axial guide field of 1.1 kG which extends over the length of the beam. The variable pitch wiggler has an entrance pitch of 5.65 cm and is 30 cm long. Diagnostics include a resistive-divider beam voltage monitor, a Pearson coil cathode current monitor, and a post-wiggler current collector. An aperture in the current collector allows part of the beam to enter a newly-developed retarding potential velocity analyzer. This analyzer is able to operate at full beam voltage of up to 85 kV. Numerical methods were used to produce computer generated retarding potential curves for operation at various combinations of system parameters. It was shown by simulation that the analyzer

  15. Final Technical Report- Back-gate Field Emission-based Cathode RF Electron Gun

    SciTech Connect

    McGuire, Gary; Martin, Allen; Noonan, John

    2010-10-30

    The objective was to complete the design of an electron gun which utilizes a radio frequency (RF) power source to apply a voltage to a field emission (FE) cathode, a so called cold cathode, in order to produce an electron beam. The concept of the RF electron gun was originally conceived at Argonne National Laboratory but never reduced to practice. The research allowed the completion of the design based upon the integration of the FE electron source. Compared to other electron guns, the RF gun is very compact, less than one third the size of other comparable guns, and produces a high energy (to several MeV), high quality, high power electron beam with a long focal length with high repetition rates. The resultant electron gun may be used in welding, materials processing, analytical equipment and waste treatment.

  16. Effect of electron-beam irradiation on graphene field effect devices

    NASA Astrophysics Data System (ADS)

    Childres, Isaac; Jauregui, Luis A.; Foxe, Michael; Tian, Jifa; Jalilian, Romaneh; Jovanovic, Igor; Chen, Yong P.

    2010-10-01

    Electron beam exposure is a commonly used tool for fabricating and imaging graphene-based devices. Here, we present a study of the effects of electron-beam irradiation on the electronic transport properties of graphene and the operation of graphene field-effect transistors (GFETs). Exposure to a 30 keV electron-beam caused negative shifts in the charge-neutral point (CNP) of the GFET, interpreted as due to n-doping in the graphene from the interaction of the energetic electron beam with the substrate. The shift in the CNP is substantially reduced for suspended graphene devices. The electron beam is seen to also decrease the carrier mobilities and minimum conductivity, indicating defects created in the graphene. The findings are valuable for understanding the effects of radiation damage on graphene and for the development of radiation-hard graphene-based electronics.

  17. Dynamics of valence-shell electrons and nuclei probed by strong-field holography and rescattering

    NASA Astrophysics Data System (ADS)

    Walt, Samuel G.; Bhargava Ram, Niraghatam; Atala, Marcos; Shvetsov-Shilovski, Nikolay I.; von Conta, Aaron; Baykusheva, Denitsa; Lein, Manfred; Wörner, Hans Jakob

    2017-06-01

    Strong-field photoelectron holography and laser-induced electron diffraction (LIED) are two powerful emerging methods for probing the ultrafast dynamics of molecules. However, both of them have remained restricted to static systems and to nuclear dynamics induced by strong-field ionization. Here we extend these promising methods to image purely electronic valence-shell dynamics in molecules using photoelectron holography. In the same experiment, we use LIED and photoelectron holography simultaneously, to observe coupled electronic-rotational dynamics taking place on similar timescales. These results offer perspectives for imaging ultrafast dynamics of molecules on femtosecond to attosecond timescales.

  18. Transport of electrons in a GaAs quantum well in high electric fields

    SciTech Connect

    Pozela, J. Pozela, K.; Raguotis, R.; Juciene, V.

    2009-09-15

    The rates of intrasubband and intersubband scattering of electrons by polar optical and intervalley phonons are determined in relation to the electron energy and width of a deep rectangular quantum well in GaAs. The Monte Carlo method was used to calculate the field dependences of the electron's drift velocity in quantum wells with the width of 10, 20, and 30 nm. It is shown that the drift velocity in high electric fields in a quantum well vastly exceeds the maximum drift's saturation velocity in the bulk material.

  19. Electric Field Cancellation on Quartz by Rb Adsorbate-Induced Negative Electron Affinity.

    PubMed

    Sedlacek, J A; Kim, E; Rittenhouse, S T; Weck, P F; Sadeghpour, H R; Shaffer, J P

    2016-04-01

    We investigate the (0001) surface of single crystal quartz with a submonolayer of Rb adsorbates. Using Rydberg atom electromagnetically induced transparency, we investigate the electric fields resulting from Rb adsorbed on the quartz surface, and measure the activation energy of the Rb adsorbates. We show that the adsorbed Rb induces negative electron affinity (NEA) on the quartz surface. The NEA surface allows low energy electrons to bind to the surface and cancel the electric field from the Rb adsorbates. Our results will be important for integrating Rydberg atoms into hybrid quantum systems, as fundamental probes of atom-surface interactions, and for studies of 2D electron gases bound to surfaces.

  20. Electron density magnification of the collective spin-orbit field in quantum wells

    NASA Astrophysics Data System (ADS)

    Baboux, F.; Perez, F.; Ullrich, C. A.; Karczewski, G.; Wojtowicz, T.

    2015-09-01

    The spin-orbit field acting on the spin waves of a spin-polarized electron gas is studied by inelastic light scattering on a CdMnTe quantum well. Above-barrier illumination allows us to vary the electronic density and control the collective Rashba and Dresselhaus coupling constants. We demonstrate that the enhancement between the single-particle and the collective spin-orbit field increases with increasing electronic density. This result is reproduced by a first-principles calculation. This behavior, which is opposite to usual Coulombic spin enhancements, reveals a novel aspect of the interplay of spin-orbit and Coulomb interactions in collective spin modes.

  1. Attosecond probe of valence-electron wave packets by subcycle sculpted laser fields.

    PubMed

    Xie, Xinhua; Roither, Stefan; Kartashov, Daniil; Persson, Emil; Arbó, Diego G; Zhang, Li; Gräfe, Stefanie; Schöffler, Markus S; Burgdörfer, Joachim; Baltuška, Andrius; Kitzler, Markus

    2012-05-11

    We experimentally and theoretically demonstrate a self-referenced wave-function retrieval of a valence-electron wave packet during its creation by strong-field ionization with a sculpted laser field. Key is the control over interferences arising at different time scales. Our work shows that the measurement of subcycle electron wave-packet interference patterns can serve as a tool to retrieve the structure and dynamics of the valence-electron cloud in atoms on a sub-10-as time scale.

  2. Electronic properties of pentaorgano[60]fullerenes under an external electric field

    NASA Astrophysics Data System (ADS)

    Furutani, Sho; Okada, Susumu

    2016-11-01

    The electronic properties of pentaorgano[60]fullerene under an external electric field were studied by combining the density functional theory with the effective screening medium method. Pentaorgano[60]fullerene possess a dipole moment because of their asymmetric molecular form owing to their five functionalized groups. When electrons and holes are injected into the molecule, the magnetic states of the molecule change from S = 1/2 to nonmagnetic and S = 1 triplet states for electron and hole doping, respectively. The asymmetric molecular shape causes the unusual distribution of the accumulated carriers depending on their mutual molecular arrangement in the electric field.

  3. Plasma injection and capture at electron cyclotron resonance in a mirror system with additional rf fields

    SciTech Connect

    Golovanivskii, K.S.; Dugar-Zhabon, V.D.; Karyaka, V.I.; Milant'ev, V.P.; Turikov, V.A.

    1980-03-01

    Experiments and numerical simulations have been carried out to determine how cyclotron-resonance rf fields in an open magnetic mirror system affect the capture and confinement of a plasma injected along the axis. The results show that at electron cyclotron resonance the fields greatly improve the longitudinal plasma confinement.

  4. Properties of the Schrödinger Theory for Electrons in External Fields

    NASA Astrophysics Data System (ADS)

    Sahni, Viraht; Pan, Xiao-Yin

    We consider electrons in external electrostatic boldsymbol calE (r) = - boldsymbol∇ v (r) and magnetostatic B (r) = boldsymbol∇ × A (r) fields. (The case of solely an electrostatic field constitutes a special case.) Via the `Quantal Newtonian' first law for the individual electron we prove the following: (i) In addition to the external electric and Lorentz fields, each electron experiences an internal field representative of electron correlations due to the Pauli exclusion principle and Coulomb repulsion, the kinetic energy, the density, and the magnetic field; (ii) the scalar potential v (r) arises from a curl-free field and is thus path-independent; (iii) the magnetic field B (r) appears explicitly in the Schrödinger equation in addition to the vector potential A (r) ; (iv) The Schrödinger equation can be written to exhibit its intrinsic self-consistent form. (The generalization of the conclusions to time-dependent external fields via the `Quantal Newtonian' second law follows.)

  5. Effect of a magnetic field on the diffusion of an electron-hole plasma in germanium.

    NASA Technical Reports Server (NTRS)

    Gurnee, M. N.; Hooke, W. M.; Goldsmith, G. J.; Brennan, M. H.

    1972-01-01

    Study in germanium of an optically injected electron-hole plasma, parallel and perpendicular to an applied magnetic field. The density gradient within the crystal was measured directly by an infrared-beam-absorption technique. Diffusion measurements made parallel to the magnetic field are adequately explained by the theory.

  6. Temporal evolution of the electric field accelerating electrons away from the auroral ionosphere.

    PubMed

    Marklund, G T; Ivchenko, N; Karlsson, T; Fazakerley, A; Dunlop, M; Lindqvist, P A; Buchert, S; Owen, C; Taylor, M; Vaivalds, A; Carter, P; André, M; Balogh, A

    2001-12-13

    The bright night-time aurorae that are visible to the unaided eye are caused by electrons accelerated towards Earth by an upward-pointing electric field. On adjacent geomagnetic field lines the reverse process occurs: a downward-pointing electric field accelerates electrons away from Earth. Such magnetic-field-aligned electric fields in the collisionless plasma above the auroral ionosphere have been predicted, but how they could be maintained is still a matter for debate. The spatial and temporal behaviour of the electric fields-a knowledge of which is crucial to an understanding of their nature-cannot be resolved uniquely by single satellite measurements. Here we report on the first observations by a formation of identically instrumented satellites crossing a beam of upward-accelerated electrons. The structure of the electric potential accelerating the beam grew in magnitude and width for about 200 s, accompanied by a widening of the downward-current sheet, with the total current remaining constant. The 200-s timescale suggests that the evacuation of the electrons from the ionosphere contributes to the formation of the downward-pointing magnetic-field-aligned electric fields. This evolution implies a growing load in the downward leg of the current circuit, which may affect the visible discrete aurorae.

  7. Enhanced electron field emission from carbon nanotubes irradiated by energetic C ions.

    PubMed

    Sun, Peng-Cheng; Deng, Jian-Hua; Cheng, Guo-An; Zheng, Rui-Ting; Ping, Zhao-Xia

    2012-08-01

    The field emission performance and structure of the vertically aligned multi-walled carbon nanotube arrays irradiated by energetic C ion with average energy of 40 keV have been investigated. During energetic C ion irradiation, the curves of emission current density versus the applied field of samples shift firstly to low applied fields when the irradiation doses are less than 9.6 x 10(16) cm(-2), and further increase of dose makes the curves reversing to a high applied field, which shows that high dose irradiation in carbon nanotube arrays makes their field emission performance worse. After energetic ion irradiation with a dose of 9.6 x 1016 cm(-2), the turn-on electric field and the threshold electric field of samples decreased from 0.80 and 1.13 V/microm to 0.67 and 0.98 V/microm respectively. Structural analysis of scanning electron microscopy, transmission electron microscopy and Raman spectroscopy indicates that the amorphous carbon nanowire/carbon nanotube hetero nano-structures have been fabricated in the C ion irradiated carbon nanotubes. The enhancement of electron field emission is due to the formation of amorphous carbon nanowires at the tip of carbon nanotube arrays, which is an electron emitting material with low work function.

  8. Field emission from ZnO whiskers under intervalley electron redistribution

    NASA Astrophysics Data System (ADS)

    Yilmazoglu, O.; Biethan, J.-P.; Evtukh, A.; Semenenko, M.; Pavlidis, D.; Hartnagel, H. L.; Litovchenko, V.

    2012-03-01

    ZnO field-emitter whiskers with nanometer diameter were fabricated by metal-organic chemical vapor deposition (MOCVD) growth on Si substrates. Their electron field emission properties and electron transfer effect between the valleys were investigated in a high vacuum chamber. The Fowler-Nordheim (F-N) plots of the emission current show different slopes for the small and high electric field regions. A model based on the electron-emission from valleys having different specific electron affinities is proposed to explain the experimental results. The paper presents a study of the conduction band of nano-structured ZnO with the help of field emission experiments. The energy difference between the lower and upper valleys was determined to be between 3.02 eV and 3.3 eV. The effective work function from the satellite valley is much lower than from the Γ-valley. These results can explain the usually obtained large discrepancies between extremely high field enhancement factors by fitting using F-N equation with known work function Φ from the Γ-valley and the geometrical estimated field enhancement factors for ZnO emitter. These functional field emitters based on ZnO materials and their ternaries can also be used as ultraviolet photodetector and find new applications for miniaturized photo-field assisted vacuum devices.

  9. Locally Resolved Electron Emission Area and Unified View of Field Emission from Ultrananocrystalline Diamond Films.

    PubMed

    Chubenko, Oksana; Baturin, Stanislav S; Kovi, Kiran K; Sumant, Anirudha V; Baryshev, Sergey V

    2017-09-27

    In this paper, we study the effect of the actual, locally resolved, field emission area on electron emission characteristics of uniform planar conductive nitrogen-incorporated ultrananocrystalline diamond ((N)UNCD) field emitters. High resolution imaging experiments were carried out in a field emission microscope with a specialty imaging anode screen such that electron emission micrographs were taken concurrently with measurements of I-V characteristics. An automated image processing algorithm was applied to process the extensive imaging data sets and calculate the emission area per image. It was routinely found that field emission from as-grown planar (N)UNCD films was always confined to a counted number of discrete emitting centers across the surface, which varied in size and electron emissivity. It was established that the actual field emission area critically depends on the applied electric field and that the field emission area and overall electron emissivity improve with the sp(2)-fraction present in the film, irrespective of the original substrate roughness or morphology. Most importantly, when as-measured I-E characteristics were normalized by the electric field-dependent emission area, the resulting j-E curves demonstrated a strong kink and departed from the Fowler-Nordheim law, finally saturating at a value on the order of 100 mA/cm(2). This value was nearly identical for all studied films regardless of substrate. It was concluded that the saturation value is specific to the intrinsic fundamental properties of (N)UNCD.

  10. Enhanced performance of thermal-assisted electron field emission based on barium oxide nanowire

    NASA Astrophysics Data System (ADS)

    Cui, Yunkang; Chen, Jing; Zhang, Yuning; Zhang, Xiaobing; Lei, Wei; Di, Yunsong; Zhang, Zichen

    2017-02-01

    In this paper, thermal-assisted field emission properties of barium oxide (BaO) nanowire synthesized by a chemical bath deposition method were investigated. The morphology and composition of BaO nanowire were characterized by field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SED), X-ray diffraction (XRD), and energy dispersive X-ray spectrometer (EDX) respectively. The turn-on field, threshold field and the emission current density could be affected relatively due to the thermal-assisted effect when the electric field was applied, in the meanwhile, the turn-on field for BaO nanowire was measured to be decreased from 1.12 V/μm to 0.66 V/μm when the temperature was raised from 293 K to 593 K, whereas for the threshold field was found to decrease from 3.64 V/μm to 2.12 V/μm. The improved performance was demonstrated due to the reduced work function of the BaO nanowire as the agitation temperature increasing, leading to the higher probability of electrons tunneling through the energy barrier and enhancement of the field emission properties of BaO emitters.

  11. The growth of graphite phase on an iridium field electron emitter

    NASA Astrophysics Data System (ADS)

    Bernatskii, D. P.; Pavlov, V. G.

    2016-06-01

    The growth of graphite on the surface of an iridium tip in pyrolysis of benzene to give a ribbed crystal has been found by the methods of field electron and desorption microscopy. The formation of a graphite crystal results in the electric field factor increasing. The adsorption of alkali metals on the surface of graphite is accompanied by the intercalation effect.

  12. Dynamics of electron-positron pairs in a vacuum polarized by an external radiation field

    NASA Astrophysics Data System (ADS)

    Apostol, M.

    2011-04-01

    The polarization of the vacuum under the action of an external classical field of electromagnetic radiation is investigated in the stationary regime. The electron-positron pairs interact both with the external field and with their own polarization field. For a macroscopic piece of vacuum the pairs are condensed on the low-momenta states and tend to form a quasi-localized electron-positron plasma of pairs, with single-particle states labeled by the position vector. In the polarization process under the action of a classical field of radiation the electron-positron and photon dynamics can be treated by means of classical fields. Under these circumstances, the corresponding coupled non-linear equations of motion are solved. It is shown that the pair dynamics consists of quasi-stationary single-particle states, while the polarization field reduces to a static magnetic field. The single-particle 'energy' (temporal phase) due to a monochromatic external field exhibits a spatial distribution characteristic of a stationary wave. Both the pair energy and the polarization energy are computed. Their values are extremely small, even for highly focused, reasonably high, external fields. The number of pairs is determined by the external energy. Under the action of a classical field the polarized vacuum is magnetized, and the corresponding (very low) magnetic susceptibility (the refractive index of the vacuum) is computed.

  13. Photochemical response of the nighttime mesosphere to electric field heating—Onset of electron density enhancements

    NASA Astrophysics Data System (ADS)

    Kotovsky, D. A.; Moore, R. C.

    2016-05-01

    Onsets of electron density enhancements in the upper nighttime mesosphere produced by electric field heating of electrons are examined using a photochemical model that accounts for 29 dynamic species via a set of 156 reactions. Physical mechanisms are identified which result in electron density enhancements that continuously increase for up to several seconds after electric field heating, establishing the conditions under which early VLF scattering is either "fast" (<20 ms) or slower (>20 ms, including "slow," ≥500 ms). During heating, O- ions are produced by heterolysis, e- + O2 → e- + O- + O+, and dissociative attachment, e-+ O2 → O- + O. Following heating, a significant proportion of O- ions associatively detach with molecular oxygen, O- + O2 → O3 + e-, and atomic oxygen, O- + O → O2 + e-. If enough O- ions are produced during heating such that O- detachment exceeds electron loss (predominantly attachment, e- + O3 → O2- + O, and/or electron-ion recombination), electron densities will continue to increase after heating has ended. Consequently, the total risetime of electron density enhancements produced by electric field heating is controlled by the duration of the electric field heating and (in some cases) the effects of O- detachment following heating.

  14. Delayed electron emission in strong-field driven tunnelling from a metallic nanotip in the multi-electron regime

    PubMed Central

    Yanagisawa, Hirofumi; Schnepp, Sascha; Hafner, Christian; Hengsberger, Matthias; Kim, Dong Eon; Kling, Matthias F.; Landsman, Alexandra; Gallmann, Lukas; Osterwalder, Jürg

    2016-01-01

    Illuminating a nano-sized metallic tip with ultrashort laser pulses leads to the emission of electrons due to multiphoton excitations. As optical fields become stronger, tunnelling emission directly from the Fermi level becomes prevalent. This can generate coherent electron waves in vacuum leading to a variety of attosecond phenomena. Working at high emission currents where multi-electron effects are significant, we were able to characterize the transition from one regime to the other. Specifically, we found that the onset of laser-driven tunnelling emission is heralded by the appearance of a peculiar delayed emission channel. In this channel, the electrons emitted via laser-driven tunnelling emission are driven back into the metal, and some of the electrons reappear in the vacuum with some delay time after undergoing inelastic scattering and cascading processes inside the metal. Our understanding of these processes gives insights on attosecond tunnelling emission from solids and should prove useful in designing new types of pulsed electron sources. PMID:27786287

  15. High-temperature high-pressure phases of lithium from electron force field (eFF) quantum electron dynamics simulations

    PubMed Central

    Kim, Hyungjun; Su, Julius T.; Goddard, William A.

    2011-01-01

    We recently developed the electron force field (eFF) method for practical nonadiabatic electron dynamics simulations of materials under extreme conditions and showed that it gave an excellent description of the shock thermodynamics of hydrogen from molecules to atoms to plasma, as well as the electron dynamics of the Auger decay in diamondoids following core electron ionization. Here we apply eFF to the shock thermodynamics of lithium metal, where we find two distinct consecutive phase changes that manifest themselves as a kink in the shock Hugoniot, previously observed experimentally, but not explained. Analyzing the atomic distribution functions, we establish that the first phase transition corresponds to (i) an fcc-to-cI16 phase transition that was observed previously in diamond anvil cell experiments at low temperature and (ii) a second phase transition that corresponds to the formation of a new amorphous phase (amor) of lithium that is distinct from normal molten lithium. The amorphous phase has enhanced valence electron-nucleus interactions due to localization of electrons into interstitial locations, along with a random connectivity distribution function. This indicates that eFF can characterize and compute the relative stability of states of matter under extreme conditions (e.g., warm dense matter). PMID:21873210

  16. Delayed electron emission in strong-field driven tunnelling from a metallic nanotip in the multi-electron regime

    NASA Astrophysics Data System (ADS)

    Yanagisawa, Hirofumi; Schnepp, Sascha; Hafner, Christian; Hengsberger, Matthias; Kim, Dong Eon; Kling, Matthias F.; Landsman, Alexandra; Gallmann, Lukas; Osterwalder, Jürg

    2016-10-01

    Illuminating a nano-sized metallic tip with ultrashort laser pulses leads to the emission of electrons due to multiphoton excitations. As optical fields become stronger, tunnelling emission directly from the Fermi level becomes prevalent. This can generate coherent electron waves in vacuum leading to a variety of attosecond phenomena. Working at high emission currents where multi-electron effects are significant, we were able to characterize the transition from one regime to the other. Specifically, we found that the onset of laser-driven tunnelling emission is heralded by the appearance of a peculiar delayed emission channel. In this channel, the electrons emitted via laser-driven tunnelling emission are driven back into the metal, and some of the electrons reappear in the vacuum with some delay time after undergoing inelastic scattering and cascading processes inside the metal. Our understanding of these processes gives insights on attosecond tunnelling emission from solids and should prove useful in designing new types of pulsed electron sources.

  17. Effects of the imposed magnetic field on the production and transport of relativistic electron beams

    NASA Astrophysics Data System (ADS)

    Cai, Hong-bo; Zhu, Shao-ping; He, X. T.

    2013-07-01

    The effects of the imposed uniform magnetic field, ranging from 1 MG up to 50 MG, on the production and transport of relativistic electron beams (REBs) in overdense plasmas irradiated by ultraintense laser pulse are investigated with two-dimensional particle-in-cell numerical simulations. This study gives clear evidence that the imposed magnetic field is capable of effectively confining the relativistic electrons in space even when the source is highly divergent since it forces the electrons moving helically. In comparison, the spontaneous magnetic fields, generated by the helically moving electrons interplaying with the current filamentation instability, are dominant in scattering the relativistic electrons. As the imposed magnetic field was increased from 1 MG to 50 MG, overall coupling from laser to the relativistic electrons which have the potential to heat the compressed core in fast ignition was found to increase from 6.9% to 21.3% while the divergence of the REB increases significantly from 64° to 90°. The simulations show that imposed magnetic field of the value of 3-30 MG could be more suitable to fast-ignition inertial fusion.

  18. The influence of longitudinal space charge fields on the modulation process of coherent electron cooling

    SciTech Connect

    Wang, G.; Blaskiewicz, M.; Litvinenko, V. N.

    2014-05-21

    Initial modulation in Coherent electron cooling (CeC) scheme relies on ion charge screening by electrons. In a CeC system with bunched electron beam, the long-range longitudinal space charge force is inevitably induced. For a relatively dense electron beam, it can be comparable or even greater than the attractive force from the ion. Hence, space-charge field influence to the modulation process could be important. If the longitudinal Debye length is much smaller than the electron bunch length, the modulation induced by the ion happens locally. In this case, the long-range longitudinal space charge field can be approximated as a uniform electric field across the region. In this paper we developed an analytical model to study the dynamics of ion shielding in the presence of a uniform electric field. We are solving the coupled Vlasov-Poisson equation system for infinite anisotropic electron plasma and estimate the influences of the longitudinal space charge field to the modulation process. We present numerical estimates for a case of the proof of CeC principle experiment at RHIC.

  19. Conductivity, electric field and electron drift velocity within the equatorial electrojet

    NASA Astrophysics Data System (ADS)

    Rastogi, R. G.; Chandra, H.

    2006-08-01

    Rocket-borne in-situ measurements of electron density and current density made from Thumba, India, on four occasions between 1966 and 1973 and on one flight from Peru in 1965 are studied along with the corresponding ground magnetometer data. The Cowling conductivity is computed using the yearly mean magnetic field values of 1965 and the atmospheric density values from the MSIS 1986 model. The rocket-borne measurements from Thumba cover different geophysical conditions of strong, moderate and partial counter-electrojet events. The vertical profiles of the measured current density and electron density are presented along with the computed Cowling conductivity, electron drift velocity and electric field. The peak current density occurred at 106-107 km over Thumba and at 109 km over Peru compared to 104 km over Brazil. Cowling conductivity peaks occurred at 102 km over Huancayo and 101 km over Thumba, while electron drift velocity and electric field peaks occurred at approximately 105-107 km over Thumba, 108 and 110 km over Huancayo and 104 km over Brazil, respectively. While the electron density near the level of peak current density shows some variability, electron drift velocity and electric field show large variability. We conclude that the local electric field plays an important role in the spatial and temporal variability of the strength of the electrojet.

  20. Electron Raman scattering in a double quantum well tuned by an external nonresonant intense laser field

    NASA Astrophysics Data System (ADS)

    Tiutiunnyk, A.; Mora-Ramos, M. E.; Morales, A. L.; Duque, C. M.; Restrepo, R. L.; Ungan, F.; Martínez-Orozco, J. C.; Kasapoglu, E.; Duque, C. A.

    2017-02-01

    In this work we shall present a study of inelastic light scattering involving inter-subband electron transitions in coupled GaAs-(Ga,Al)As quantum wells. Calculations include the electron related Raman differential cross section and Raman gain. The effects of an external nonresonant intense laser field are used in order to tune these output properties. The confined electron states will be described by means of a diagonalization procedure within the effective mass and parabolic band approximations. It is shown that the application of the intense laser field can produce values of the intersubband electron Raman gain above 400 cm-1. The system proposed here is an alternative choice for the development of AlxGa1-xAs semiconductor laser diodes that can be tuned via an external nonresonant intense laser field.

  1. Controlling and Reading Interference Structures Created by Strong Field Ionizing Attosecond Electron Wave Packets

    NASA Astrophysics Data System (ADS)

    Xie, X.; Roither, S.; Kartashov, D.; Zhang, L.; Persson, E.; Gräfe, S.; Schöffler, M.; Burgdörfer, J.; Baltuška, A.; Kitzler, M.

    We use cycle-sculpted two-color waveforms to drive electronic wavepackets generated by strong-field ionization from helium gas atoms and analyse their momentum spectra measured by electron-ion coincidence momentum spectroscopy. Varying the relative phase of the two colors allows to sculpt the ionizing field and hence to control the emission times and motion of the wavepackets on an attosecond timescale. We show that the measured electron momentum spectra contain interference patterns created by pairs of electron wavepackets that are released within a single laser-field-cycle. We experimentally distinguish these sub-cycle interference structures from above-threshold ionization (ATI) peaks and argue that they can be used to extract the sub-cycle phase-evolution of the laser-driven complex bound-state wavefunction.

  2. Diffusion of electrons scattered by short-range impurities in a quantizing magnetic field

    SciTech Connect

    Andreev, S. P. Pavlova, T. V.

    2008-04-15

    Formulas for transverse diffusion and conductivity in a semiconductor are obtained for electrons scattered by neutral impurities in a quantizing magnetic field. The formulas are valid for an impurity potential of arbitrary depth. Based on Kubo's theory, calculations are performed using electron wavefunctions of the problem of single-impurity scattering in a magnetic field. The poles of the scattering amplitude correctly determine electron eigenstates and magnetic impurity states. As a result, an exact expression is found for the dependence of transverse diffusion coefficient D{sub perpendicular} on longitudinal electron energy {epsilon} due to scattering by short-range (neutral) impurities. The behavior of D{sub perpendicular} ({epsilon}) is examined over an interval of magnetic field strength for several values of impurity potential depth. The experimental observability of diffusion and conductivity using IR lasers is discussed.

  3. Effect of drifts on the diffusion of runaway electrons in tokamak stochastic magnetic fields

    SciTech Connect

    Myra, J.R.; Catto, P.J. )

    1992-01-01

    The quasilinear diffusion of runaway electrons in tokamak stochastic magnetic fields is examined. Previous models are generalized with respect to the spatial location and coherency of the perturbing magnetic fields, treatment of the radial as well as poloidal drift motion of the electrons, and the role of sidebands that arise from the beating of the electron drift motion with the applied perturbing fields. It is found that drift effects act to reduce the level of quasilinear diffusion by an amount that depends on the poloidal distribution of the magnetic turbulence. The results are employed to estimate the internal magnetic fluctuation levels at the edge during recent experiments on the TEXT tokamak (Phys. Fluids B {bold 3}, 2038 (1991)), where the drift modification effects are shown to be small. It is inferred that intrinsic magnetic turbulence controls runaway diffusion, but not the thermal diffusivity of the background electrons.

  4. Electromagnetic waves destabilized by runaway electrons in near-critical electric fields

    SciTech Connect

    Komar, A.; Pokol, G. I.; Fueloep, T.

    2013-01-15

    Runaway electron distributions are strongly anisotropic in velocity space. This anisotropy is a source of free energy that may destabilize electromagnetic waves through a resonant interaction between the waves and the energetic electrons. In this work, we investigate the high-frequency electromagnetic waves that are destabilized by runaway electron beams when the electric field is close to the critical field for runaway acceleration. Using a runaway electron distribution appropriate for the near-critical case, we calculate the linear instability growth rate of these waves and conclude that the obliquely propagating whistler waves are most unstable. We show that the frequencies, wave numbers, and propagation angles of the most unstable waves depend strongly on the magnetic field. Taking into account collisional and convective damping of the waves, we determine the number density of runaways that is required to destabilize the waves and show its parametric dependences.

  5. Double layer electric fields aiding the production of superthermal electrons within magnetic reconnection exhausts

    NASA Astrophysics Data System (ADS)

    Egedal, Jan; Daughton, William; Le, Ari

    2015-11-01

    Using a kinetic simulation of magnetic reconnection it was recently shown that parallel electric fields (E∥) can be present over large spatial scales in reconnection exhausts. The largest values of E∥ are observed within double layers, which form through large parallel streaming of electrons into the reconnection region. The electron confinement, provided in part by the structure in E∥, allows sustained energization by perpendicular electric fields (E⊥). The energization is a consequence of the confined electrons' chaotic orbital motion that includes drifts aligned with the reconnection electric field. The mechanism is effective in an extended region of the reconnection exhaust allowing for the generation of superthermal electrons in reconnection scenarios, including those with only a single x-line. The numerical and analytical results agree with detailed spacecraft observations recorded during reconnection events in the Earth's magnetotail. Supported by NSF GEM award 1405166 and NASA grant NNX14AC68G.

  6. Attosecond control of spin polarization in electron-ion recollision driven by intense tailored fields

    NASA Astrophysics Data System (ADS)

    Ayuso, David; Jiménez-Galán, Alvaro; Morales, Felipe; Ivanov, Misha; Smirnova, Olga

    2017-07-01

    Tunnel ionization of noble gas atoms driven by a strong circularly polarized laser field in combination with a counter-rotating second harmonic generates spin-polarized electrons correlated to the spin-polarized ionic core. Crucially, such two-color field can bring the spin-polarized electrons back to the parent ion, enabling the scattering of the spin-polarized electron on the spin-polarized parent ion. Here we show how one can control the degree of spin polarization as a function of electron energy and recollision time by tuning the laser parameters, such as the relative intensities of the counter-rotating fields. The attosecond precision of the control over the degree of spin polarization opens the door for attosecond control and spectroscopy of spin-resolved dynamics.

  7. Tunneling lifetimes of electrons escaping from atoms under a static electric field.

    PubMed

    Zhao, Rundong; Sarwono, Yanoar Pribadi; Zhang, Rui-Qin

    2017-08-14

    The tunneling lifetime of an electron escaping from an atom is calculated using a projected Green's function method, combining with the radial potential of the atom which is obtained from density functional theory. Results of the calculated electron tunneling lifetimes in model systems such as a quantum dot are shown to be comparable with other theoretical studies. For the first time, we have obtained the tunneling lifetimes of electrons escaping from a series of atoms (He, Ne, Ar, Kr, H, Li, Na, K) under a static electric field. Dependent on both the barrier width/height and the bound strength of the ground state electron, the calculated tunneling lifetime under a static electric field spans from femtosecond level to picosecond level, consistent with the attosecond-level results in experiments using a time-dependent external field.

  8. Tunneling lifetimes of electrons escaping from atoms under a static electric field

    NASA Astrophysics Data System (ADS)

    Zhao, Rundong; Sarwono, Yanoar Pribadi; Zhang, Rui-Qin

    2017-08-01

    The tunneling lifetime of an electron escaping from an atom is calculated using a projected Green's function method, combining with the radial potential of the atom which is obtained from density functional theory. Results of the calculated electron tunneling lifetimes in model systems such as a quantum dot are shown to be comparable with other theoretical studies. For the first time, we have obtained the tunneling lifetimes of electrons escaping from a series of atoms (He, Ne, Ar, Kr, H, Li, Na, K) under a static electric field. Dependent on both the barrier width/height and the bound strength of the ground state electron, the calculated tunneling lifetime under a static electric field spans from femtosecond level to picosecond level, consistent with the attosecond-level results in experiments using a time-dependent external field.

  9. Correlated electron and nuclear dynamics in strong field photoionization of H(2)(+).

    PubMed

    Silva, R E F; Catoire, F; Rivière, P; Bachau, H; Martín, F

    2013-03-15

    We present a theoretical study of H(2)(+) ionization under strong IR femtosecond pulses by using a method designed to extract correlated (2D) photoelectron and proton kinetic energy spectra. The results show two distinct ionization mechanisms-tunnel and multiphoton ionization-in which electrons and nuclei do not share the energy from the field in the same way. Electrons produced in multiphoton ionization share part of their energy with the nuclei, an effect that shows up in the 2D spectra in the form of energy-conservation fringes similar to those observed in weak-field ionization of diatomic molecules. In contrast, tunneling electrons lead to fringes whose position does not depend on the proton kinetic energy. At high intensity, the two processes coexist and the 2D plots show a very rich behavior, suggesting that the correlation between electron and nuclear dynamics in strong field ionization is more complex than one would have anticipated.

  10. Influence of lattice vibrations on the field driven electronic transport in chains with correlated disorder

    NASA Astrophysics Data System (ADS)

    da Silva, L. D.; Sales, M. O.; Ranciaro Neto, A.; Lyra, M. L.; de Moura, F. A. B. F.

    2016-12-01

    We investigate electronic transport in a one-dimensional model with four different types of atoms and long-ranged correlated disorder. The latter was attained by choosing an adequate distribution of on-site energies. The wave-packet dynamics is followed by taking into account effects due to a static electric field and electron-phonon coupling. In the absence of electron-phonon coupling, the competition between correlated disorder and the static electric field promotes the occurrence of wave-packet oscillations in the regime of strong correlations. When the electron-lattice coupling is switched on, phonon scattering degrades the Bloch oscillations. For weak electron-phonon couplings, a coherent oscillatory-like dynamics of the wave-packet centroid persists for short periods of time. For strong couplings the wave-packet acquires a diffusive-like displacement and spreading. A slower sub-diffusive spreading takes place in the regime of weak correlations.

  11. Effects of inner electrons on atomic strong-field-ionization dynamics

    NASA Astrophysics Data System (ADS)

    Rapp, J.; Bauer, D.

    2014-03-01

    The influence of inner electrons on the ionization dynamics in strong laser fields is investigated in a wavelength regime where the inner electron dynamics is usually assumed to be negligible. The role of inner electrons is of particular interest for the application of frozen-core approximations and pseudopotentials in time-dependent density functional theory (TDDFT) and the single-active-electron (SAE) approximation in strong-field laser physics. Results of TDDFT and SAE calculations are compared with exact ones obtained by the numerical ab initio solution of the three-electron time-dependent Schrödinger equation for a lithium model atom. It is found that dynamical antiscreening, i.e., a particular form of dynamical core polarization, may substantially alter the ionization rate in the single-photon regime. Requirements for the validity of the approximations in the single and multiphoton ionization domain are identified.

  12. Direct electric field heating and acceleration of electrons in solar flares

    NASA Technical Reports Server (NTRS)

    Holman, Gordon D.; Benka, Stephen G.

    1992-01-01

    We show that the observed properties of solar flare X-ray and microwave emission can be explained through the Joule heating and electric field acceleration of runaway electrons in current channels. The global properties of the flaring region required for this are presented. We have fit a hybrid thermal/nonthermal electron distribution, consisting of hot, isothermal electrons with a nonthermal tail of runaway electrons, to high-resolution hard X-ray and microwave spectra and have obtained excellent fits to both. The hybrid model relaxes the electron number and energy flux requirements for the hard X-ray emission over those of a purely nonthermal model. The model also provides explanations for several previously unexplained aspects of the high-resolution microwave spectra. The fit parameters can be related to physical properties (such as the electric field strength in the current channels) of the acceleration region.

  13. Effect of anodization voltage on electron field emission from carbon nanotubes in anodized alumina template.

    PubMed

    Wisitsoraat, A; Phokharatkul, D; Komin, K; Jaruwongrangsee, K; Tuantranont, A

    2011-12-01

    In this work, electron field emission from AAO-CNT structure is studied as a function of anodizing voltage. It is found that the turn-on electric field of AAO-CNTs reduces from 5 V/microm to 4 V/microm as anodization voltage increase from 20 to 30 V. On the other hand, CNTs the turn-on electric field of AAO-CNTs increases from 4 V/microm to 6 V/microm as anodization voltage increase from 30 to 40 V. Thus, anodization voltage of 30 V provides an optimal AAO-CNTs structure for electron field emission. The emission data have been analyzed based on the Fowler Nordhiem (F-N) model. AAO template prepared with 30 V anodization voltage is found to yield CNT nanoarray with optimum alignment and spacing that increase field enhancement factor by the lowering of field screening effect without significant lowering of CNTs density.

  14. Theoretical interpretation of upstreaming electrons and elevated conics on auroral field lines

    SciTech Connect

    Ashour-Abdalla, M.; Schriver, D.

    1989-01-01

    Recent VIKING satellite observations in the auroral zone have shown the association of elevated ion conics (conics with a low energy cutoff above zero) with upward streaming electrons in the presence of low frequency electric field fluctuations. A self-consistent particle simulation was developed which assumed the presence of a steady state electric field on auroral zone field lines capable of accelerating ions up the magnetic field lines. Results from this study show that a low frequency ion-ion two stream instability can be excited. This low frequency instability creates a fluctuating electric field which heats the ions oblique to the magnetic field forming distributions similar to the elevated ion comics. The ion-ion waves also interact resonantly with electrons and accelerates them in the direction of the ion beam.

  15. Build up of electron cloud with different bunch pattern in the presence of solenoidal field

    SciTech Connect

    Cai, Y.; Furman, M.A.; Pivi, M.

    2004-04-01

    We have augmented the code POSINST to include solenoid fields, and used it to simulate the build up of electron cloud due to electron multipacting in the PEP-II positron ring. We find that the distribution of electrons is strongly affected by the resonances associated with the cyclotron period and bunch spacing. In addition, we discover a threshold beyond which the electron density grows exponentially until it reaches the space charge limit. The threshold does not depend on the bunch spacing but does depend on the positron bunch population.

  16. Electronic Still Camera view of Aft end of Wide Field/Planetary Camera in HST

    NASA Image and Video Library

    1993-12-06

    S61-E-015 (6 Dec 1993) --- A close-up view of the aft part of the new Wide Field/Planetary Camera (WFPC-II) installed on the Hubble Space Telescope (HST). WFPC-II was photographed with the Electronic Still Camera (ESC) from inside Endeavour's cabin as astronauts F. Story Musgrave and Jeffrey A. Hoffman moved it from its stowage position onto the giant telescope. Electronic still photography is a relatively new technology which provides the means for a handheld camera to electronically capture and digitize an image with resolution approaching film quality. The electronic still camera has flown as an experiment on several other shuttle missions.

  17. Disassociation of electrons from partially stripped ion beams due to strong magnetic fields

    SciTech Connect

    Tepikian, S.; Lee, S.Y.

    1989-01-01

    We study the probability of dissociating an electron from partially stripped ions in the AGS. Our calculation indicates that the probability for electron disassociation due to the strong external magnetic field in the AGS is very small for tightly bounded electrons. Two methods are used to estimate this effect: a one-dimensional JWKB method; an energy density approximation. Both methods yield a consistent picture to support the idea of accelerating the partially stripped ions in the AGS, which requires some upgrade in the vacuum pressure due to other processes such as electron capture and ionization. 5 refs., 4 figs.

  18. Electron holography of magnetic field generated by a magnetic recording head.

    PubMed

    Goto, Takayuki; Jeong, Jong Seok; Xia, Weixing; Akase, Zentaro; Shindo, Daisuke; Hirata, Kei

    2013-06-01

    The magnetic field generated by a magnetic recording head is evaluated using electron holography. A magnetic recording head, which is connected to an electric current source, is set on the specimen holder of a transmission electron microscope. Reconstructed phase images of the region around the magnetic pole show the change in the magnetic field distribution corresponding to the electric current applied to the coil of the head. A simulation of the magnetic field, which is conducted using the finite element method, reveals good agreement with the experimental observations.

  19. Extreme field limits in the interaction of laser light with ultrarelativistic electrons

    SciTech Connect

    Bulanov, S. V.; Esirkepov, T. Zh.; Hayashi, Y.; Kando, M.; Kiriyama, H.; Koga, J.; Kondo, K.; Kotaki, H.; Pirozhkov, A.; Bulanov, S. S.; Zhidkov, A.; Chen, P.; Neely, D.; Kato, Y.; Narozhny, N. B.; Korn, G.

    2012-07-11

    The critical electric field of quantum electrodynamics is so strong that it produces electron-positron pairs from vacuum, converting the energy of light into matter. This field has become feasible through the construction of extremely high power lasers or/and with the sophisticated use of nonlinear processes in relativistic plasmas. A feasibility of the experiments on the collision of laser light and high intensity electromagnetic pulses, generated by relativistic flying mirrors, with relativistic electrons for the studying of extreme field limits in the nonlinear interaction of electromagnetic waves is discussed.

  20. Efficiency enhancement of anomalous-Doppler electron cyclotron masers with tapered magnetic field

    SciTech Connect

    Xie, Chao-Ran; Hou, Zhi-Ling; Kong, Ling-Bao E-mail: pkliu@pku.edu.cn; Liu, Pu-Kun E-mail: pkliu@pku.edu.cn; Du, Chao-Hai; Jin, Hai-Bo

    2014-02-15

    The efficiency of slow-wave electron cyclotron masers (ECM) is usually low, thus limiting the practical applications. Here, a method of tapered magnetic field is introduced for the efficiency enhancement of the slow-wave ECM. The numerical calculations show that the tapered magnetic-field method can enhance the efficiency of slow-wave ECM significantly. The effect of beam electron velocity spread on the efficiency has also been studied. Although the velocity spread reduces the efficiency, a great enhancement of efficiency can still be obtained by the tapered magnetic field method.

  1. Three-dimensional modeling of electron quasiviscous dissipation in guide-field magnetic reconnection

    SciTech Connect

    Hesse, Michael; Kuznetsova, Masha; Schindler, Karl; Birn, Joachim

    2005-10-01

    A numerical study of guide-field magnetic reconnection in a three-dimensional model is presented. Starting from an initial, perturbed, force-free current sheet, it is shown that reconnection develops to an almost translationally invariant state, where magnetic perturbations are aligned primarily along the main current flow direction. An analysis of guide-field and electron flow signatures indicates behavior that is very similar to earlier, albeit not three-dimensional, simulations. Furthermore, a detailed investigation of electron pressure nongyrotropies in the central diffusion region confirms the major role the associated dissipation process plays in establishing the reconnection electric field.

  2. Numerical method for determination of resonance electron velocities in periodic electric fields

    SciTech Connect

    Tarnev, Khristo

    2014-11-18

    A Monte Carlo method is applied for modeling of a plasma source with a periodic structure of a radiofrequency electric field. The method is modified in order to detect resonance increase of the electron energy at given velocities of the electrons as expected from theoretical considerations. The numerical model is validated by comparison with known analytical results. The applicability of the method for detection of resonance velocities in plasma sources with electric field variation parallel or perpendicular to the electric field vector is proven.

  3. The simulation of TGF origin in lightning leader electric fields by cosmic ray shower electrons

    NASA Astrophysics Data System (ADS)

    Connell, P. H.; Atri, D.

    2015-12-01

    With the TGF simulation package LEPTRACK we can easily create all kinds of electric field geometries and electron flux fields to simulate Relativistic Runaway Electron Avalanches - it is script driven, with the details of high energy scattering physics hidden from the user, and an easily accessible output database for each particle created or scattered. We will show the results of simulating a realistic scenario of TGF origin based on cosmic ray shower electron flux fields in the neighbourhood of electric field geometries expected around lightning leader tips. Electron fluxes are derived from simulations using the CORSIKA cosmic ray simulation package and leader electric field geometry from current models. Presuming a TGF observed at orbital altitudes must come from a lightning leader pointing "upwards", and that cosmic rays enter at angles pointing "downwards" to "horizontal", we will show which combinations allow the electron flux to curve into the compact electric field of the leader and gain sufficient acceleration to create a TGF photon flux observable in orbit.

  4. Electron-beam induced current characterization of back-surface field solar cells using a chopped scanning electron microscope beam

    NASA Technical Reports Server (NTRS)

    Luke, K. L.; Cheng, L.-J.

    1984-01-01

    A chopped electron beam induced current (EBIC) technique for the chacterization of back-surface field (BSF) solar cells is presented. It is shown that the effective recombination velocity of the low-high junction forming the back-surface field of BSF cells, in addition to the diffusion length and the surface recombination velocity of the surface perpendicular to both the p-n and low-high junctions, can be determined from the data provided by a single EBIC scan. The method for doing so is described and illustrated. Certain experimental considerations taken to enhance the quality of the EBIC data are also discussed.

  5. Experimental Development of Low-emittance Field-emission Electron Sources

    SciTech Connect

    Lueangaranwong, A.; Buzzard, C.; Divan, R.; Korampally, V.; Piot, P.

    2016-10-10

    Field emission electron sources are capable of extreme brightness when excited by static or time-dependent electro- magnetic fields. We are currently developing a cathode test stand operating in DC mode with possibility to trigger the emission using ultra-short (~ 100-fs) laser pulses. This contribution describes the status of an experiment to investigate field-emission using cathodes under development at NIU in collaboration with the Argonne’s Center for Nanoscale Materials.

  6. Dependence of field-aligned electron precipitation on season, altitude and pitch angle

    NASA Technical Reports Server (NTRS)

    Berko, F. W.; Hoffman, R. A.

    1973-01-01

    The occurrence of field-aligned 2.3 keV electron precipitation was examined by using data from more than 7500 orbits of the polar-orbiting satellite, OGO-4. The frequency of occurrence of field aligned precipitation was highest at actual pitch angles between 7 and 10 deg, being highest in the winter months, at highest satellite altitudes. Acceleration by a localized parallel electric field established by electrostatic charge layers is proposed to explain particle observations.

  7. Investigation of electron trajectories of an x-ray tube in magnetic fields of MR scanners.

    PubMed

    Wen, Zhifei; Fahrig, Rebecca; Conolly, Steven; Pelc, Norbert J

    2007-06-01

    A hybrid x-ray/MR system combining an x-ray fluoroscopic system and an open-bore magnetic resonance (MR) system offers advantages from both powerful imaging modalities and thus can benefit numerous image-guided interventional procedures. In our hybrid system configurations, the x-ray tube and detector are placed in the MR magnet and therefore experience a strong magnetic field. The electron beam inside the x-ray tube can be deflected by a misaligned magnetic field, which may damage the tube. Understanding the deflection process is crucial to predicting the electron beam deflection and avoiding potential damage to the x-ray tube. For this purpose, the motion of an electron in combined electric (E) and magnetic (B) fields was analyzed theoretically to provide general solutions that can be applied to different geometries. For two specific cases, a slightly misaligned strong field and a perpendicular weak field, computer simulations were performed with a finite-element method program. In addition, experiments were conducted using an open MRI magnet and an inserted electromagnet to quantitatively verify the relationship between the deflections and the field misalignment. In a strong (B > E/c; c: speed of light) and slightly misaligned magnetic field, the deflection in the plane of E and B caused by electrons following the magnetic field lines is the dominant component compared to the deflection in the E X B direction due to the drift of electrons. In a weak magnetic field (B < or = E/c), the main deflection is in the E x B direction and is caused by the perpendicular component of the magnetic field.

  8. An electron of helium atom under a high-intensity laser field

    NASA Astrophysics Data System (ADS)

    Falaye, Babatunde James; Sun, Guo-Hua; Adepoju, Adenike Grace; Liman, Muhammed S.; Oyewumi, K. J.; Dong, Shi-Hai

    2017-02-01

    We scrutinize the behavior of eigenvalues of an electron in a helium (He) atom as it interacts with electric field directed along the z-axis and is exposed to linearly polarized intense laser field radiation. To achieve this, we freeze one electron of the He atom at its ionic ground state and the motion of the second electron in the ion core is treated via a more general case of screened Coulomb potential model. Using the Kramers-Henneberger (KH) unitary transformation, which is the semiclassical counterpart of the Block-Nordsieck transformation in the quantized field formalism, the squared vector potential that appears in the equation of motion is eliminated and the resultant equation is expressed in the KH frame. Within this frame, the resulting potential and the corresponding wave function are expanded in Fourier series and using Ehlotzky’s approximation, we obtain a laser-dressed potential to simulate intense laser field. By fitting the more general case of screened Coulomb potential model into the laser-dressed potential, and then expanding it in Taylor series up to O≤ft({{r}4},α 09\\right) , we obtain the solution (eigenvalues and wave function) of an electron in a He atom under the influence of external electric field and high-intensity laser field, within the framework of perturbation theory formalism. We found that the variation in frequency of laser radiation has no effect on the eigenvalues of a He electron for a particular electric field intensity directed along z-axis. Also, for a very strong external electric field and an infinitesimal screening parameter, the system is strongly bound. This work has potential application in the areas of atomic and molecular processes in external fields including interactions with strong fields and short pulses.

  9. Upper critical field in the model with finite-range interaction between electrons

    NASA Astrophysics Data System (ADS)

    Shumilin, A. V.; Baranov, V. V.; Kabanov, V. V.

    2016-11-01

    We develop a theory of the upper critical field in a BCS superconductor with a nonlocal interaction between electrons. We have shown that the nonlocal interaction is characterized by the parameter kFρ0 , where kF is the Fermi momentum and ρ0 is the radius of electron-electron interaction. The presence of the external magnetic field leads to the generation of additional components of the order parameter with different angular momenta. This effect leads to the enhancement of the upper critical field above the orbital limiting field. In addition the upward curvature in the temperature dependence of Hc 2(T ) in the clean limit is predicted. The impurity scattering suppresses the effect in the dirty limit.

  10. Foucault imaging and small-angle electron diffraction in controlled external magnetic fields.

    PubMed

    Nakajima, Hiroshi; Kotani, Atsuhiro; Harada, Ken; Ishii, Yui; Mori, Shigeo

    2016-12-01

    We report a method for acquiring Foucault images and small-angle electron diffraction patterns in external magnetic fields using a conventional transmission electron microscope without any modification. In the electron optical system that we have constructed, external magnetic fields parallel to the optical axis can be controlled using the objective lens pole piece under weak excitation conditions in the Foucault mode and the diffraction mode. We observe two ferromagnetic perovskite-type manganese oxides, La0.7Sr0.3MnO3 (LSMO) and Nd0.5Sr0.5MnO3, in order to visualize magnetic domains and their magnetic responses to external magnetic fields. In rhombohedral-structured LSMO, pinning of magnetic domain walls at crystallographic twin boundaries was found to have a strong influence on the generation of new magnetic domains in external applied magnetic fields.

  11. In situ electromagnetic field diagnostics with an electron plasma in a Penning-Malmberg trap

    NASA Astrophysics Data System (ADS)

    Amole, C.; Ashkezari, M. D.; Baquero-Ruiz, M.; Bertsche, W.; Butler, E.; Capra, A.; Cesar, C. L.; Charlton, M.; Deller, A.; Evetts, N.; Eriksson, S.; Fajans, J.; Friesen, T.; Fujiwara, M. C.; Gill, D. R.; Gutierrez, A.; Hangst, J. S.; Hardy, W. N.; Hayden, M. E.; Isaac, C. A.; Jonsell, S.; Kurchaninov, L.; Little, A.; Madsen, N.; McKenna, J. T. K.; Menary, S.; Napoli, S. C.; Olchanski, K.; Olin, A.; Pusa, P.; Rasmussen, C. Ø.; Robicheaux, F.; Sarid, E.; Silveira, D. M.; So, C.; Stracka, S.; Tharp, T.; Thompson, R. I.; van der Werf, D. P.; Wurtele, J. S.

    2014-01-01

    We demonstrate a novel detection method for the cyclotron resonance frequency of an electron plasma in a Penning-Malmberg trap. With this technique, the electron plasma is used as an in situ diagnostic tool for the measurement of the static magnetic field and the microwave electric field in the trap. The cyclotron motion of the electron plasma is excited by microwave radiation and the temperature change of the plasma is measured non-destructively by monitoring the plasma's quadrupole mode frequency. The spatially resolved microwave electric field strength can be inferred from the plasma temperature change and the magnetic field is found through the cyclotron resonance frequency. These measurements were used extensively in the recently reported demonstration of resonant quantum interactions with antihydrogen.

  12. Field electron emission of layered Bi2Se3 nanosheets with atom-thick sharp edges

    NASA Astrophysics Data System (ADS)

    Huang, Huihui; Li, Yuan; Li, Qi; Li, Borui; Song, Zengcai; Huang, Wenxiao; Zhao, Chujun; Zhang, Han; Wen, Shuangchun; Carroll, David; Fang, Guojia

    2014-06-01

    Field electron emission properties of solution processed few-layer Bi2Se3 nanosheets are studied for the first time, which exhibit a low turn-on field of 2.3 V μm-1, a high field enhancement factor of up to 6860 and good field emission stability. This performance is better than that of the as reported layered MoS2f sheets and is comparable to that of single layer graphene films. The efficient field emission behaviours are found to be not only attributed to their lower work function but also related to their numerous sharp edges or protrusion decorated structure based on our simulation results. Besides, the contribution of possible two-dimensional electron gas surface states of atom-thick layered Bi2Se3 nanosheets is discussed in this paper. We anticipate that these solution processed layered Bi2Se3 nanosheets have great potential as robust high-performance vertical structure electron emitters for future light weight and highly flexible vacuum micro/nano-electronic device applications.Field electron emission properties of solution processed few-layer Bi2Se3 nanosheets are studied for the first time, which exhibit a low turn-on field of 2.3 V μm-1, a high field enhancement factor of up to 6860 and good field emission stability. This performance is better than that of the as reported layered MoS2f sheets and is comparable to that of single layer graphene films. The efficient field emission behaviours are found to be not only attributed to their lower work function but also related to their numerous sharp edges or protrusion decorated structure based on our simulation results. Besides, the contribution of possible two-dimensional electron gas surface states of atom-thick layered Bi2Se3 nanosheets is discussed in this paper. We anticipate that these solution processed layered Bi2Se3 nanosheets have great potential as robust high-performance vertical structure electron emitters for future light weight and highly flexible vacuum micro/nano-electronic device applications

  13. Acceleration of electrons by a circularly polarized laser pulse in the presence of an intense axial magnetic field in vacuum

    SciTech Connect

    Singh, K. P.

    2006-08-15

    Acceleration of electrons by a circularly polarized laser pulse in the presence of a short duration intense axial magnetic field has been studied. Resonance occurs between the electrons and the laser field for an optimum magnetic field leading to effective energy transfer from laser to electrons. The value of optimum magnetic field is independent of the laser intensity and decreases with initial electron energy. The electrons rotate around the axis of the laser pulse with small angle of emittance and small energy spread. Acceleration gradient increases with laser intensity and decreases with initial electron energy.

  14. A comparison of TPS and different measurement techniques in small-field electron beams

    SciTech Connect

    Donmez Kesen, Nazmiye Cakir, Aydin; Okutan, Murat; Bilge, Hatice

    2015-04-01

    In recent years, small-field electron beams have been used for the treatment of superficial lesions, which requires small circular fields. However, when using very small electron fields, some significant dosimetric problems may occur. In this study, dose distributions and outputs of circular fields with dimensions of 5 cm and smaller, for nominal energies of 6, 9, and 15 MeV from the Siemens ONCOR Linac, were measured and compared with data from a treatment planning system using the pencil-beam algorithm in electron beam calculations. All dose distribution measurements were performed using the Gafchromic EBT film; these measurements were compared with data that were obtained from the Computerized Medical Systems (CMS) XiO treatment planning system (TPS), using the gamma-index method in the PTW VeriSoft software program. Output measurements were performed using the Gafchromic EBT film, an Advanced Markus ion chamber, and thermoluminescent dosimetry (TLD). Although the pencil-beam algorithm is used to model electron beams in many clinics, there is no substantial amount of detailed information in the literature about its use. As the field size decreased, the point of maximum dose moved closer to the surface. Output factors were consistent; differences from the values obtained from the TPS were, at maximum, 42% for 6 and 15 MeV and 32% for 9 MeV. When the dose distributions from the TPS were compared with the measurements from the Gafchromic EBT films, it was observed that the results were consistent for 2-cm diameter and larger fields, but the outputs for fields of 1-cm diameter and smaller were not consistent. In CMS XiO TPS, calculated using the pencil-beam algorithm, the dose distributions of electron treatment fields that were created with circular cutout of a 1-cm diameter were not appropriate for patient treatment and the pencil-beam algorithm is not convenient for monitor unit (MU) calculations in electron dosimetry.

  15. Application of The Alfvén-Assisted Precipitation Model to Field-Aligned Electron Bursts

    NASA Astrophysics Data System (ADS)

    Lee, J. H.; Clemmons, J. H.; Angelopoulos, V.; Pfaff, R. F.; Wallis, D. D.; Knudsen, D. J.

    2009-12-01

    A close relationship between field-aligned electron bursts and Alfvén waves has been identified by numerous sounding rocket and satellite missions. While previous work has demonstrated the ability of inertial Alfvén waves to accelerate electrons along the geomagnetic field lines in the dayside cusp, the nightside signatures of Alfvén wave interactions with cold electrons in the auroral ionosphere have yet to be explained in a reasonable manner. The Alfvén-assisted precipitation model and new analyses of observations supporting its validity are presented. High time resolution electron flux data from the GEODESIC sounding rocket flight of 2000, taken during an active auroral breakup, show dozens of field-aligned electron bursts; the bursts display energy-time dispersion with higher energy electrons appearing earlier in time and have peak energies with a range up to—but not exceeding—the energy of a nearby inverted-V peak, up to about 20 keV. Several of these bursts occur separately from inverted-V electron distributions and an instance of a burst occurring near the edge of an auroral arc with fluxes higher than the accompanying inverted-V electron distribution is also present. The observations not only suggest separate source locations for the burst electrons and the quasistatic, isotropic inverted-V electrons, but also support the existence of a quasistatic potential structure without simultaneous inverted-V electron precipitation. The model incorporates the aforementioned attributes displayed by the observations and provides a set of physical parameters which help characterize individual phenomena. Energy-time dispersion signatures are derived and shown for each of the individual bursts; model fits to these signatures demonstrate agreement with the model. Examples from Freja and FAST satellite data are also discussed.

  16. Influence of static electron beam`s self-fields on the cyclotron-undulator resonance

    SciTech Connect

    Rozanov, N.E.; Golub, Yu.Ya. |

    1995-12-31

    When undulators with a leading magnetic field B are used, the regime of double resonance is possible in which an undulator period is equal to an electron cyclotron wavelength. In the vicinity of this resonance an amplitude of particle oscillations in the undulator strongly depends on a difference between B and a resonant value of the leading magnetic field. Consequently, it is important to investigate a role of self-fields of the electron beam, in particular, due to its influence on the electron cyclotron wavelength. At the paper analytically and by numerical simulation the influence of the static fields of the annular electron beam on its dynamics in the axisymmetrical magnetic undulator with the leading magnetic field in the vicinity of the cyclotron-undulator resonance is investigated. It is shown that the value of the resonant magnetic field is changed with the rise of beam`s current. A shift of the resonant magnetic field may be both to larger values of B and to smaller ones, when different values of beam and waveguide radii, beam energy and undulator period are considered. A width of the resonance (on B - scale) is increased with the beam current.

  17. Particle Acceleration and Magnetic Field Generation in Electron-Positron Relativistic Shocks

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-L.; Hardee, P.; Richardson, G.; Preece, R.; Sol, H.; Fishman, G. J.

    2004-01-01

    Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., Buneman, Weibel and other two-stream instabilities) created in collisionless shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic electron-positron jet front propagating into an ambient electron-positron plasma with and without initial magnetic fields. We find small differences in the results for no ambient and modest ambient magnetic fields. Simulations show that the Weibel instability created in the collisionless shock front accelerates jet and ambient particles both perpendicular and parallel to the jet propagation direction. The non-linear fluctuation amplitudes of densities, currents, electric, and magnetic fields in the electron-positron shock are larger than those found in the electron-ion shock studied in a previous paper at the comparable simulation time. This comes from the fact that both electrons and positrons contribute to generation of the Weibel instability. Additionally, we have performed simulations with different electron skin depths. We find that growth times scale inversely with the plasma frequency, and the sizes of structures created by the Weibel instability scale proportional to the electron skin depth. This is the expected result and indicates that the simulations have sufficient grid resolution. While some Fermi acceleration may occur at the jet front, the majority of electron and positron acceleration takes place behind the jet front and cannot be characterized as Fermi acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying nonuniform: small-scale magnetic fields which contribute to the electron's (positron's) transverse deflection behind the jet head. This small scale magnetic field structure

  18. Particle Acceleration and Magnetic Field Generation in Electron-Positron Relativistic Shocks

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Hardee, P.; Richardson, G.; Preece, R.; Sol, H.; Fishman, G. J.

    2004-01-01

    Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., Buneman, Weibel and other two-stream instabilities) created in collisionless shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic electron-positron jet front propagating into an ambient electron-positron plasma with and without initial magnetic fields. We find small differences in the results for no ambient and modest ambient magnetic fields. Simulations show that the Weibel instability created in the collisionless shock front accelerates jet and ambient particles both perpendicular and parallel to the jet propagation direction. The non-linear fluctuation amplitudes of densities, currents, electric, and magnetic fields in the electron-positron shock are larger than those found in the electron-ion shock studied in a previous paper. This comes from the fact that both electrons and positrons contribute to generation of the Weibel instability. Additionally, we have performed simulations with different electron skin depths. We find that growth times scale inversely with the plasma frequency, and the sizes of structures created by the Weibel instability scale proportional to the electron skin depth. This is the expected result and indicates that the simulations have sufficient grid resolution. While some Fermi acceleration may occur at the jet front, the majority of electron and positron acceleration takes place behind the jet front and cannot be characterized as Fermi acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying nonuniform, small-scale magnetic fields which contribute to the electron's (positron's) transverse deflection behind the jet head. This small scale magnetic field structure is appropriate to the generation

  19. Particle Acceleration and Magnetic Field Generation in Electron-Positron Relativistic Shocks

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Hardee, P.; Richardson, G.; Preece, R.; Sol, H.; Fishman, G. J.

    2005-01-01

    Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., Buneman, Weibel, and other two-stream instabilities) created in collisionless shocks are responsible for particle (electron, positron, and ion) acceleration. Using a three-dimensional relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic electron-positron jet front propagating into an ambient electron-positron plasma with and without initial magnetic fields. We find small differences in the results for no ambient and modest ambient magnetic fields. New simulations show that the Weibel instability created in the collisionless shock front accelerates jet and ambient particles both perpendicular and parallel to the jet propagation direction. Furthermore, the nonlinear fluctuation amplitudes of densities, currents, and electric and magnetic fields in the electron-positron shock are larger than those found in the electron-ion shock studied in a previous paper at a comparable simulation time. This comes from the fact that both electrons and positrons contribute to generation of the Weibel instability. In addition, we have performed simulations with different electron skin depths. We find that growth times scale inversely with the plasma frequency, and the sizes of structures created by tine Weibel instability scale proportionally to the electron skin depth. This is the expected result and indicates that the simulations have sufficient grid resolution. While some Fermi acceleration may occur at the jet front, the majority of electron and positron acceleration takes place behind the jet front and cannot be characterized as Fermi acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying nonuniform, small-scale magnetic fields, which contribute to the electron s (positron s) transverse deflection behind the jet head. This

  20. An inexpensive approach for bright-field and dark-field imaging by scanning transmission electron microscopy in scanning electron microscopy.

    PubMed

    Patel, Binay; Watanabe, Masashi

    2014-02-01

    Scanning transmission electron microscopy in scanning electron microscopy (STEM-in-SEM) is a convenient technique for soft materials characterization. Various specimen-holder geometries and detector arrangements have been used for bright-field (BF) STEM-in-SEM imaging. In this study, to further the characterization potential of STEM-IN-SEM, a new specimen holder has been developed to facilitate direct detection of BF signals and indirect detection of dark-field (DF) signals without the need for substantial instrument modification. DF imaging is conducted with the use of a gold (Au)-coated copper (Cu) plate attached to the specimen holder which directs highly scattered transmitted electrons to an off-axis yttrium-aluminum-garnet (YAG) detector. A hole in the copper plate allows for BF imaging with a transmission electron (TE) detector. The inclusion of an Au-coated Cu plate enhanced DF signal intensity. Experiments validating the acquisition of true DF signals revealed that atomic number (Z) contrast may be achieved for materials with large lattice spacing. However, materials with small lattice spacing still exhibit diffraction contrast effects in this approach. The calculated theoretical fine probe size is 1.8 nm. At 30 kV, in this indirect approach, DF spatial resolution is limited to 3.2 nm as confirmed experimentally.

  1. Observation of correlated electronic decay in expanding clusters triggered by near-infrared fields

    PubMed Central

    Schütte, B.; Arbeiter, M.; Fennel, T.; Jabbari, G.; Kuleff, A.I.; Vrakking, M.J.J.; Rouzée, A.

    2015-01-01

    When an excited atom is embedded into an environment, novel relaxation pathways can emerge that are absent for isolated atoms. A well-known example is interatomic Coulombic decay, where an excited atom relaxes by transferring its excess energy to another atom in the environment, leading to its ionization. Such processes have been observed in clusters ionized by extreme-ultraviolet and X-ray lasers. Here, we report on a correlated electronic decay process that occurs following nanoplasma formation and Rydberg atom generation in the ionization of clusters by intense, non-resonant infrared laser fields. Relaxation of the Rydberg states and transfer of the available electronic energy to adjacent electrons in Rydberg states or quasifree electrons in the expanding nanoplasma leaves a distinct signature in the electron kinetic energy spectrum. These so far unobserved electron-correlation-driven energy transfer processes may play a significant role in the response of any nano-scale system to intense laser light. PMID:26469997

  2. Observation of correlated electronic decay in expanding clusters triggered by near-infrared fields

    NASA Astrophysics Data System (ADS)

    Schütte, B.; Arbeiter, M.; Fennel, T.; Jabbari, G.; Kuleff, A. I.; Vrakking, M. J. J.; Rouzée, A.

    2015-10-01

    When an excited atom is embedded into an environment, novel relaxation pathways can emerge that are absent for isolated atoms. A well-known example is interatomic Coulombic decay, where an excited atom relaxes by transferring its excess energy to another atom in the environment, leading to its ionization. Such processes have been observed in clusters ionized by extreme-ultraviolet and X-ray lasers. Here, we report on a correlated electronic decay process that occurs following nanoplasma formation and Rydberg atom generation in the ionization of clusters by intense, non-resonant infrared laser fields. Relaxation of the Rydberg states and transfer of the available electronic energy to adjacent electrons in Rydberg states or quasifree electrons in the expanding nanoplasma leaves a distinct signature in the electron kinetic energy spectrum. These so far unobserved electron-correlation-driven energy transfer processes may play a significant role in the response of any nano-scale system to intense laser light.

  3. Magnetic field structure influence on primary electron cusp losses for micro-scale discharges

    SciTech Connect

    Dankongkakul, Ben; Araki, Samuel J.; Wirz, Richard E.

    2014-04-15

    An experimental effort was used to examine the primary electron loss behavior for micro-scale (≲3 cm diameter) discharges. The experiment uses an electron flood gun source and an axially aligned arrangement of ring-cusps to guide the electrons to a downstream point cusp. Measurements of the electron current collected at the point cusp show an unexpectedly complex loss pattern with azimuthally periodic structures. Additionally, in contrast to conventional theory for cusp losses, the overall radii of the measured collection areas are over an order of magnitude larger than the electron gyroradius. Comparing these results to Monte Carlo particle tracking simulations and a simplified analytical analysis shows that azimuthal asymmetries of the magnetic field far upstream of the collection surface can substantially affect the electron loss structure and overall loss area.

  4. Field electron and ion emission from charged surfaces: a strategic historical review of theoretical concepts.

    PubMed

    Forbes, Richard G

    2003-01-01

    The field-electron (FE) and field-ion techniques directly observe and measure atomic-level surface processes that occur in very high electric fields. In theoretical terms, the high fields put large additional terms into Hamiltonians and free energies, and significantly modify many aspects of the surface physics and chemistry, as compared with the field-free situation. This paper presents a strategic review of the fundamental science of some of these high-field surface effects and processes, as developed in the context of the field electron and ion emission techniques. It outlines the main theoretical concepts developed, notes some twists of scientific history, and suggests useful contributions made to mainstream science. Topics covered are basic aspects of FE emission, surface field ionisation, localised field adsorption, charged surfaces theory, field-ion image contrast theory and associated imaging-gas kinetics, field evaporation, and aspects of the thermodynamics of charged surfaces. Despite many years of effort, important aspects of the theory remain incomplete. Some theoretical challenges are noted.

  5. Wake-field and fast head-tail instability caused by an electron cloud.

    PubMed

    Ohmi, K; Zimmermann, F; Perevedentsev, E

    2002-01-01

    In positron and proton storage rings, electrons produced by photoemission, ionization, and secondary emission accumulate in the vacuum chamber during multibunch operation with close spacing. A positron or proton bunch passing through this "electron cloud" experiences a force similar to a short-range wake field. This effective wake field can cause a transverse-mode-coupling instability, if the electron-cloud density exceeds a threshold value. In this report, we compute the electron-cloud induced wake in a region without external magnetic field both analytically and via computer simulation, for parameters representing the low-energy positron ring of KEKB and the LHC proton beam in the CERN SPS. We study the linearity and time dependence of the wake function and its variation with the size of the electron cloud. Using a broadband resonator model for the electron-cloud wake field, we then evaluate theoretical expressions for the transverse-mode-coupling instability based on the linearized Vlasov equation, and for the instability threshold of fast transverse blow up including its dependence on chromaticity.

  6. Electronic Structures of Supported Nanometer-Size Clusters Using Field Emission Energy Analyzer.

    NASA Astrophysics Data System (ADS)

    Lin, Mong-Ea.

    The discrete energy states of a nanometer-size gold cluster have been measured using energy-resolved field emission microscopy. The clusters were prepared in a multiple expansion cluster source (MECS) which is capable of producing nanometer-size clusters with a narrow size distribution. An individual cluster was deposited on a tungsten field emission tip which was then transferred under vacuum into a UHV field emission chamber. A 127^circ differential energy analyzer with 80 meV resolution was used to measure the energy distribution of electrons emitted from the individual cluster. Several peaks are observed in the field emission energy distributions. A simple model will be presented to explain the structure observed and relate the observed peaks to discrete energy levels of the Au cluster. As a next example of such 'single cluster' experiments, we will discuss the evidence for electron emission from the first quantum charge state of a metal cluster. This charge state is located at an energy e^2 /2C above the highest filled electronic state of the neutral cluster and becomes populated at high rates of electron emission. We will also investigate the electrons emission rates of cluster and tungsten tips. The emission rates of cluster tips are not as stable as those of tungsten tip and do not obey Poisson distributions. The reduced chi^2 test shows two different geometrical structures of a small cluster and indicates quasimelting of this cluster. Another interesting topic to study is electron emission from the newly discovered C_{60 } molecule. C_{60} dust has been heated near a tungsten tip situated in an ultra high vacuum chamber. The rate of cluster deposition was found to greatly increase when the tip was biased positive with respect to the oven potential. These experiments have shown that with care, individual C_ {60} can be deposited on a field emitter and studied using field emission microscopy techniques. Size estimates of the field emission image indicate

  7. Generation of Runaway Electrons Induced by Cosmic-Ray Muons in Thunderstorm Electric Fields

    NASA Astrophysics Data System (ADS)

    Torii, T.; Nishijima, T.; Sugita, T.; Kawasaki, Z.

    2004-05-01

    Gamma ray dose-rate increases associated with winter thunderstorm activities have been observed in the coastal areas facing the Sea of Japan [1]. In order to investigate the generation of energetic photons which originate in thunderstorm electric fields, we have calculated the behavior of secondary cosmic ray electrons and photons in electric fields with Monte Carlo method. In the calculation, the electron and photon fluxes have increased greatly in the region where the field strength exceeds about 280 P(z) kV/m-atm, and these energy spectra show a large increase in the energy region up to several MeV [2]. In addition to the analysis of the electromagnetic component of cosmic rays, we have carried out the Monte Carlo transport calculations of the cosmic-ray muons and associated particles (e.g. knock-on electrons and bremsstrahlung photons) in thunderstorm electric fields, using GEANT4 code [3]. Muons form a large part of the secondary cosmic-rays and directly reach the regions of strong electric fields owing to their high penetrability in the atmosphere. Therefore, they can serve as the source of a considerable amount of runaway electrons, through their ionization process with air molecules, and their decay into energetic electrons. The electron and photon fluxes show notable increases in the strong electric field, while the muon flux does not fluctuate significantly. These results indicate that the production of energetic electrons by cosmic ray muons plays an important role in the enhancement of electron and photon fluxes in thunderstorm electric fields. Finally, we discuss a feasibility of muon-triggered lightning deduced from the muon transport calculation inside thunderstorm electric fields. From the calculation results, we estimate that the irradiation of muon beams rapidly increases energy deposition in the region of strong electric fields, and produce numerous electron - ion pairs. These productions may induce the lightning discharge by the runaway

  8. Spectrum of fast electrons in a dense gas in the presence of a nonuniform pulsed field

    NASA Astrophysics Data System (ADS)

    Tkachev, A. N.; Yakovlenko, S. I.

    2007-01-01

    The problems of gas preionization in discharges related to laser physics are considered. The propagation of fast electrons injected from the cathode in the presence of a nonuniform nonstationary field and the motion of multiplying electrons at the edge of the avalanche in the presence of a nonuniform nonstationary field are simulated. The effect of the voltage pulse steepness and the field nonuniformity on the mean propagation velocity of fast electrons and their energy distribution is demonstrated. At certain combinations of the voltage pulse rise time and amplitude and at a certain time interval, the center of gravity of the electron cloud can move in the opposite direction relative to the direction of force acting upon electrons. It is also demonstrated that the number of hard particles (and, hence, the hard component of the x-ray bremsstrahlung) increases with both an increase in the voltage amplitude and a decrease in the pulse rise time. For nonoptimal conditions of the picosecond voltage pulse, an assumption is formulated: an electron beam in gas is formed due to the electrons at the edge of the avalanche rather than the background multiplication wave approaching the anode.

  9. Observation of energetic electron confinement in a largely stochastic reversed-field pinch plasma

    NASA Astrophysics Data System (ADS)

    Clayton, D. J.; Chapman, B. E.; O'Connell, R.; Almagri, A. F.; Burke, D. R.; Forest, C. B.; Goetz, J. A.; Kaufman, M. C.; Bonomo, F.; Franz, P.; Gobbin, M.; Piovesan, P.

    2010-01-01

    Runaway electrons with energies >100 keV are observed with the appearance of an m =1 magnetic island in the core of otherwise stochastic Madison Symmetric Torus [Dexter et al., Fusion Technol. 19, 131 (1991)] reversed-field-pinch plasmas. The island is associated with the innermost resonant tearing mode, which is usually the largest in the m =1 spectrum. The island appears over a range of mode spectra, from those with a weakly dominant mode to those, referred to as quasi single helicity, with a strongly dominant mode. In a stochastic field, the rate of electron loss increases with electron parallel velocity. Hence, high-energy electrons imply a region of reduced stochasticity. The global energy confinement time is about the same as in plasmas without high-energy electrons or an island in the core. Hence, the region of reduced stochasticity must be localized. Within a numerical reconstruction of the magnetic field topology, high-energy electrons are substantially better confined inside the island, relative to the external region. Therefore, it is deduced that the island provides a region of reduced stochasticity and that the high-energy electrons are generated and well confined within this region.

  10. Observation of energetic electron confinement in a largely stochastic reversed-field pinch plasma

    SciTech Connect

    Clayton, D. J.; Chapman, B. E.; O'Connell, R.; Almagri, A. F.; Burke, D. R.; Forest, C. B.; Goetz, J. A.; Kaufman, M. C.; Bonomo, F.; Franz, P.; Gobbin, M.; Piovesan, P.

    2010-01-15

    Runaway electrons with energies >100 keV are observed with the appearance of an m=1 magnetic island in the core of otherwise stochastic Madison Symmetric Torus [Dexter et al., Fusion Technol. 19, 131 (1991)] reversed-field-pinch plasmas. The island is associated with the innermost resonant tearing mode, which is usually the largest in the m=1 spectrum. The island appears over a range of mode spectra, from those with a weakly dominant mode to those, referred to as quasi single helicity, with a strongly dominant mode. In a stochastic field, the rate of electron loss increases with electron parallel velocity. Hence, high-energy electrons imply a region of reduced stochasticity. The global energy confinement time is about the same as in plasmas without high-energy electrons or an island in the core. Hence, the region of reduced stochasticity must be localized. Within a numerical reconstruction of the magnetic field topology, high-energy electrons are substantially better confined inside the island, relative to the external region. Therefore, it is deduced that the island provides a region of reduced stochasticity and that the high-energy electrons are generated and well confined within this region.

  11. Electron drift across the magnetic field in a micro-ECR neutralizer

    NASA Astrophysics Data System (ADS)

    Takao, Yoshinori; Hiramoto, Kenta; Nakagawa, Yuichi; Koizumi, Hiroyuki; Komurasaki, Kimiya

    2016-09-01

    Although neutralization is required for ion propulsion systems to produce thrust by ion beams in space, a neutralizer itself should be low-power and low-propellant consumption because electrons make no thrust. To design such a micro neutralizer, the mechanisms of electron transport should be elucidated. In the present study, three-dimensional particle-in-cell simulations have been conducted for a 4.2-GHz microwave discharge neutralizer, using an electron cyclotron resonance xenon plasma. The size of the discharge chamber is 20 × 20 × 4 mm3 and a plate with four orifices is placed at the downstream of the chamber. The calculations were performed at the gas pressure of 1 mTorr and the absorbed power of 0.3 W. The simulation results have indicated that the electrostatic field inside the plasma source has a dominant effect on the electron extraction. When the electrons are trapped in the magnetic field passing close to the orifice, such electrons can be extracted from the plasma source to the outside at the orifice edge because of the E × B drift. The E × B drift also seems to play a significant role in electron transport from the ECR layer to the orifice plate across the magnetic field.

  12. The effect of spin polarization on zero field splitting parameters in paramagnetic pi-electron molecules.

    PubMed

    van Gastel, Maurice

    2009-09-28

    Spin polarization effects play an important role in the theory of isotropic hyperfine interactions for aromatic protons. The spin polarization gives rise to significant isotropic proton hyperfine interactions--spin-dependent one-electron properties--smaller than 0 MHz and the effect has been theoretically described [H. M. McConnell and D. B. J. Chesnut, Chem. Phys. 28, 107 (1958)]. The influence of spin polarization on the zero field splitting parameters, which are spin-dependent two-electron properties, has not been clearly identified yet. A phenomenological equation is proposed here for the contribution of spin polarization to the zero field splitting parameter D in analogy to McConnell's equation for hyperfine interactions. The presence of the effect is demonstrated in a series of calculations on polyacenes in the triplet state and turns out to be responsible for up to 50% of the D parameter in the case of naphthalene! It is found that spin-unrestricted single-determinant methods, including the widely used density functional theory methods, do not accurately reproduce the two-electron reduced electron density required for the evaluation of two-electron spin-dependent properties. For the accurate calculation of zero field splitting parameters by quantum chemical methods, it thus seems necessary to resort to correlated ab initio methods which do not give rise to spin contamination and which do provide an accurate description of the two-electron reduced electron density.

  13. Study on field-aligned electrons with Cluster observation in the Earth's cusp

    NASA Astrophysics Data System (ADS)

    Shi, Jiankui; Torkar, Klaus; Cheng, Zhengwei

    2017-04-01

    Cusp region is very important to the solar wind-magnetosphere coupling. The solar wind particles, through the cusp, can directly entry into the magnetosphere and ionosphere, and transport the mass, momentum and energy. The gyrating charged particles with field-aligned velocity are significant to perform the transportation. In this study, data from Cluster observation are used to study the characteristics of field-aligned electrons (FAE's) including the downward and the upward FAEs in the cusp. We select FAE event to do analysis. The durations of the FAE event covered a wide range from 6 to 475 seconds. The FAE's were found to occur very commonly in a circumpolar zone in the polar region and the MLT and ILAT distributions showed that most of the FAE events were observed around the cusp (70-80°ILAT, 0900-1500MLT). With the FAE flux the contribution of the electrons to the Field-Aligned Current (FAC) is estimated and the result shows that the FAE was the main carrier to the FAC in the cusp. The physical mechanisms of the FAE are analyzed, namely that the downward electrons were mainly from the solar wind and the upward electrons may originated from accelerated ionospheric up-flowing electrons or mirrored solar wind electrons. The energy transportation into the magnetosphere by the solar wind electrons through the cusp is also investigated.

  14. Effect of the plasma-generated magnetic field on relativistic electron transport.

    PubMed

    Nicolaï, Ph; Feugeas, J-L; Regan, C; Olazabal-Loumé, M; Breil, J; Dubroca, B; Morreeuw, J-P; Tikhonchuk, V

    2011-07-01

    In the fast-ignition scheme, relativistic electrons transport energy from the laser deposition zone to the dense part of the target where the fusion reactions can be ignited. The magnetic fields and electron collisions play an important role in the collimation or defocusing of this electron beam. Detailed description of these effects requires large-scale kinetic calculations and is limited to short time intervals. In this paper, a reduced kinetic model of fast electron transport coupled to the radiation hydrodynamic code is presented. It opens the possibility to carry on hybrid simulations in a time scale of tens of picoseconds or more. It is shown with this code that plasma-generated magnetic fields induced by noncollinear temperature and density gradients may strongly modify electron transport in a time scale of a few picoseconds. These fields tend to defocus the electron beam, reducing the coupling efficiency to the target. This effect, that was not seen before in shorter time simulations, has to be accounted for in any ignition design using electrons as a driver.

  15. Quantum speed limit for a relativistic electron in a uniform magnetic field

    NASA Astrophysics Data System (ADS)

    Villamizar, D. V.; Duzzioni, E. I.

    2015-10-01

    We analyze the influence of relativistic effects on the minimum evolution time between two orthogonal states of a quantum system. Defining the initial state as a homogeneous superposition between two Hamiltonian eigenstates of an electron in a uniform magnetic field, we obtain a relation between the minimum evolution time and the displacement of the mean radial position of the electron wave packet. The quantum speed limit time is calculated for an electron dynamics described by Dirac and Schrödinger-Pauli equations considering different parameters, such as the strength of magnetic field and the linear momentum of the electron in the axial direction. We highlight that when the electron undergoes a region with extremely strong magnetic field the relativistic and nonrelativistic dynamics differ substantially, so that the description given by the Schrödinger-Pauli equation enables the electron to travel faster than c , which is prohibited by Einstein's theory of relativity. This approach allows a connection between the abstract Hilbert space and the space-time coordinates, besides the identification of the most appropriate quantum dynamics used to describe the electron motion.

  16. Electrostatic solitary structures in presence of non-thermal electrons and a warm electron beam on the auroral field lines

    NASA Astrophysics Data System (ADS)

    Singh, S. V.; Lakhina, G. S.; Bharuthram, R.; Pillay, S. R.

    2011-12-01

    Electrostatic solitary waves (ESWs) have been observed by satellites in the auroral region of the Earth's magnetosphere. These ESWs are found to be having both positive and negative electrostatic potentials. Using the Sagdeeev psuedo-potential technique, arbitrary amplitude electron-acoustic solitary waves/double layers are studied in an unmagnetized plasma consisting of non-thermally distributed hot electrons, fluid cold electrons, a warm electron beam, and ions. The inertia of the warm electrons, and not the beam speed, is essential for the existence of positive potential solitary structures. Existence domains for positive as well as negative potential electrostatic solitons/double layers are obtained. For the typical auroral region parameters, the electric field amplitude of the negative potential solitons is found to be in the range ˜(3-30) mV/m and ˜(5-80) mV/m for the positive potential solitons. For the negative potential solitons/double layers, the amplitudes are higher when their widths are smaller. On the other hand, the amplitude of the positive potential structures increase with their widths.

  17. Electron bunch acceleration in an inverse free-electron laser with a helical magnetic wiggler and axial guide field

    NASA Astrophysics Data System (ADS)

    Mirzanejhad, Saeed; Sohbatzadeh, Farshad; Asri, Mehdi; Toosi, Ershad Sadeghi

    2006-12-01

    Electron bunch acceleration by a laser pulse having Gaussian radial and temporal profiles of intensity has been studied numerically in a static helical magnetic wiggler in vacuum. The main electron bunch parameters for simulations are 10MeV initial energy with 0.1% longitudinal energy spread, 1mm mrad rms transverse emittance, and 3×1012cm-3 density. It is shown that the radial Gaussian profile can decrease the acceleration gradient compared with that of the plane-wave approximation due to the reduction of electron-pulse interaction area. In order to collimate electron bunch and overcome the decreasing of the acceleration gradient, an external axial magnetic field is used. The importance of the electron initial phase with respect to laser pulse is considered, and some appropriate values are found. Finally, acceleration of a femtosecond (fs) microbunch with an optimum appropriate initial phase is considered, which leads to a nearly monoenergetic microbunch and an acceleration gradient of about ≈0.2GeV/m.

  18. OEDIPUS-C observations of electrons accelerated by radio frequency fields at whistler-mode frequencies

    NASA Astrophysics Data System (ADS)

    James, H. G.; Sotnikov, V. I.; Burke, W. J.; Huang, C. Y.

    1999-10-01

    Simultaneous measurements of transmitted 500 kHz electric fields and of electron fluxes nonlinearly energized by those fields were made during the ionospheric flight of the rocket double payload OEDIPUS C. Given the local plasma parameters, 500 kHz corresponded to the whistler mode of cold-plasma propagation. As the separation between each payload end increased from 153 to 537 m, enhanced electron fluxes were detected at energies up to 20 keV, at the receiver end of the tether. Rf (radio frequency) electric fields created by the OEDIPUS-C transmitter have been computed for positions close to the whistler-mode group resonance cone and also for locations very close to the active dipoles. Test-particle trajectory tracings show that linear acceleration can account for the energy increases of electrons with starting energies up to about 100 eV. Neither resonant field-particle interactions of background energetic electrons nor strong turbulence of the background thermal particles explain the creation of sounder-accelerated electrons at 1-10 keV. The calculated magnitudes of the very near potentials, up to 550 V, point to acceleration by intense fields in the rf sheath region.

  19. Electron transport in mercury vapor: magnetic field effects, dimer induced NDC and multi-term analysis

    NASA Astrophysics Data System (ADS)

    Petrovic, Zoran; Miric, Jasmina; Simonovic, Ilija; Dujko, Sasa

    2016-09-01

    A multi term theory for solving the Boltzmann equation and Monte Carlo simulation technique are used to investigate electron transport in varying configurations of electric and magnetic fields in mercury vapor. Using different sets of cross sections for electron scattering in mercury as an input in our Boltzmann and Monte Carlo codes, we have calculated data for electron transport as a function of reduced electric and magnetic fields. A multitude of kinetic phenomena in electron transport has been observed and discussed using physical arguments. In particular, we discuss two important phenomena: (1) for certain values of electric and magnetic field, we find regions where swarm mean energy increases with increasing magnetic field for a fixed electric field, and (2) the occurrence of negative differential conductivity (NDC) for higher pressures and temperatures. In particular, NDC is induced by the presence of mercury dimers. The measured drift velocities agree very well with our Monte Carlo results only if the superelastic collisions are included in our calculations. Spatially-resolved electron transport properties are calculated using a Monte Carlo simulation technique in order to understand these phenomena.

  20. Hot electron field emission via individually transistor-ballasted carbon nanotube arrays.

    PubMed

    Li, Chi; Zhang, Yan; Cole, Matthew T; Shivareddy, Sai G; Barnard, Jon S; Lei, Wei; Wang, Baoping; Pribat, Didier; Amaratunga, Gehan A J; Milne, William I

    2012-04-24

    We present electronically controlled field emission characteristics of arrays of individually ballasted carbon nanotubes synthesized by plasma-enhanced chemical vapor deposition on silicon-on-insulator substrates. By adjusting the source-drain potential we have demonstrated the ability to controllable limit the emission current density by more than 1 order of magnitude. Dynamic control over both the turn-on electric field and field enhancement factor have been noted. A hot electron model is presented. The ballasted nanotubes are populated with hot electrons due to the highly crystalline Si channel and the high local electric field at the nanotube base. This positively shifts the Fermi level and results in a broad energy distribution about this mean, compared to the narrow spread, lower energy thermalized electron population in standard metallic emitters. The proposed vertically aligned carbon nanotube field-emitting electron source offers a viable platform for X-ray emitters and displays applications that require accurate and highly stable control over the emission characteristics.

  1. Formation of the inner electron radiation belt by enhanced large-scale electric fields

    NASA Astrophysics Data System (ADS)

    Su, Yi-Jiun; Selesnick, Richard S.; Blake, J. B.

    2016-09-01

    A two-dimensional bounce-averaged test particle code was developed to examine trapped electron trajectories during geomagnetic storms with the assumption of conservation of the first and second adiabatic invariants. The March 2013 storm was selected as an example because the geomagnetic activity Kp index sharply increased from 2 + to 7- at 6:00 UT on 17 March. Electron measurements with energies between 37 and 460 keV from the Magnetic Electron Ion Spectrometer (MagEIS) instrument onboard Van Allen Probes (VAP) are used as initial conditions prior to the storm onset and served to validate test particle simulations during the storm. Simulation results help to interpret the observed electron injection as nondiffusive radial transport over a short distance in the inner belt and slot region based on various electric field models, although the quantitative comparisons are not precise. We show that electron drift trajectories are sensitive to the selection of electric field models. Moreover, our simulation results suggest that the actual field strength of penetration electric fields during this storm is stronger than any existing electric field model, particularly for L ≤ 2.

  2. Direct laser acceleration of electrons in a strong azimuthal magnetic field

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Toncian, Toma; Stark, David; Arefiev, Alexey

    2016-10-01

    Recently published particle-in-cell simulations indicate that a high-intensity laser irradiating an over-critical plasma can induce relativistic transparency and drive a Megatesla magnetic field while propagating into the plasma. At the same time, the quasi-static electric field in this regime is an order of magnitude weaker than the quasi-static magnetic field as a result of ion mobility and the fact that electrons are irradiated by a high intensity laser pulse. We have examined analytically and numerically direct laser acceleration of electrons in such an azimuthal magnetic field. We have considered a general case of a laser beam propagating with a superluminal phase velocity and compared the results to those for a luminal case. Our key finding is that the maximum gamma-factor that can be attained by electrons has a pronounced threshold, with a significant enhancement of the electron energy taking place above the threshold. The threshold is a function of the azimuthal magnetic field and of the initial transverse electron momentum. This work was supported by the National Science Foundation under Grant No. 1632777.

  3. Magnetic field induced by strong transverse plasmons in ultra-relativistic electron-positron plasmas

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Li, X. Q.; Liu, S. Q.

    2012-08-01

    Context. We investigated the generation of localized magnetic fields in an ultra-relativistic non-isothermal electron-positron plasma by strong electromagnetic plasmons. Aims: The results obtained can be used to explain the origin of small-scale magnetic fields in the internal shock region of gamma-ray bursts with ultra-relativistic electron positron plasmas. Methods: The generation of magnetic fields was investigated with kinetic Vlasov Maxwell equations. Results: The self-generated magnetic field will collapse for modulation instability, leading to spatially highly intermittent magnetic fluxes, whose characteristic scale is much larger than relativistic plasma skin depth, which in turn is conducive to the generation of the long-life small-scale magnetic fields in the internal shock region of gamma-ray bursts.

  4. Electronic properties of nanowire superlattices in the presence of strain and magnetic-field effects

    NASA Astrophysics Data System (ADS)

    Willatzen, M.; Voon, L. C. Lew Yan

    2008-08-01

    A calculation of the effective electron barrier potential in quantum-wire superlattices subject to magnetic-field and strain effects is presented. It is shown that, besides the lateral-confinement contributions to the barrier potential emphasized by the authors in earlier work (Lew Yan Voon and Willatzen 2003 J. Appl. Phys. 93 9997; Lew Yan Voon et al 2004 J. Appl. Phys. 96 4660), strong contributions from strain (lattice mismatch) may be present as well. This is due to the fact that strain values can be several percent in heterostructures while electron deformation potentials are of the order of 10 eV. It is also shown that Landau and Landé magnetic-field contributions become important at magnetic fields of 10 T or higher. The driving force behind the lateral-confinement and the Landau magnetic-field contributions is the same, namely, the electron effective-mass difference in the two material constituents forming the superlattice structure; however, the dependences of the two contributions on lateral dimensions are inverse squared and squared, respectively. Similarly, the driving force behind the Landé magnetic-field contribution, being independent of lateral dimensions, is the difference in electron g factors between the two material constituents. We note that, for InAs/GaAs nanowire superlattices, it is possible to tune the effective barrier potential around 0 for cross-sectional dimensions of 5-6 nm by use of a magnetic field. Further, since the effective barrier potential is different for spin-up and spin-down polarized electrons, magnetic-field tuning can be used to separate spin-up and spin-down electrons in quantum-wire superlattices.

  5. Controlling electron-ion rescattering in two-color circularly polarized femtosecond laser fields

    NASA Astrophysics Data System (ADS)

    Mancuso, Christopher A.; Hickstein, Daniel D.; Dorney, Kevin M.; Ellis, Jennifer L.; Hasović, Elvedin; Knut, Ronny; Grychtol, Patrik; Gentry, Christian; Gopalakrishnan, Maithreyi; Zusin, Dmitriy; Dollar, Franklin J.; Tong, Xiao-Min; Milošević, Dejan B.; Becker, Wilhelm; Kapteyn, Henry C.; Murnane, Margaret M.

    2016-05-01

    High-harmonic generation driven by two-color counter-rotating circularly polarized laser fields was recently demonstrated experimentally as a breakthrough source of bright, coherent, circularly polarized beams in the extreme ultraviolet and soft-x-ray regions. However, the conditions for optimizing the single-atom yield are significantly more complex than for linearly polarized driving lasers and are not fully understood. Here we present a comprehensive study of strong-field ionization—the complementary process to high-harmonic generation—driven by two-color circularly polarized fields. We uncover the conditions that lead to enhanced electron-ion rescattering, which should correspond to the highest single-atom harmonic flux. Using a velocity map imaging photoelectron spectrometer and tomographic reconstruction techniques, we record three-dimensional photoelectron distributions resulting from the strong-field ionization of argon atoms across a broad range of driving laser intensity ratios. In combination with analytical predictions and advanced numerical simulations, we show that "hard" electron-ion rescattering is optimized when the second-harmonic field has an intensity approximately four times higher than that of the fundamental driving field. We also investigate electron-ion rescattering with co-rotating fields, and find that rescattering is significantly suppressed when compared with counter-rotating fields.

  6. Electronic Properties of Capped Carbon Nanotubes under an Electric Field: Inhomogeneous Electric-Field Screening Induced by Bond Alternation

    NASA Astrophysics Data System (ADS)

    Yamanaka, Ayaka; Okada, Susumu

    2013-06-01

    We study the electronic properties of capped carbon nanotubes under an electric field by investigating their electrostatic potentials, total energies, and energy gaps under a parallel electric field, based on the density functional theory with effective screening medium method. We find that, in the capped carbon nanotubes, screening against the external electric field strongly depends on local atomic arrangement due to the inhomogeneous charge distribution arising from its bond alternation induced by the pentagonal rings in the cap region. In the case of armchair nanotubes, we find that the relative permittivity and energy gap between the highest occupied and the lowest unoccupied states oscillate in triple periodicity in their units with respect to the length. The electric field induces the charge redistribution in which the charge accumulation and depletion only occur around the pentagonal rings at or vicinity of the top/bottom of the nanotubes.

  7. A Theoretical Study of the Runaway Electron Energy Spectrum Inside the High Field Regions of Thunderclouds

    NASA Astrophysics Data System (ADS)

    Cramer, E. S.; Dwyer, J. R.; Arabshahi, S.; Liu, N.; Vodopiyanov, I. B.; Rassoul, H.

    2013-12-01

    Runaway electrons are produced in Earth's atmosphere when the particles rate of energy gain from an externally applied electric field exceeds the rate of energy loss it experiences from various interactions in air. In this presentation, we theoretically study the creation, propagation, and properties of runaway electrons during the avalanche process. Specifically, we use analytical and numerical models to study the runaway electron energy spectrum, and predict its shape and dependence on the electric field strength and air density. We also develop simple relationships between avalanche variables, including the electron avalanche length, radiation length, and minimum runaway electron kinetic energy. In order to guide the calculations presented here, a Monte Carlo simulation code is used, which was created by Dr. Joseph Dwyer at Florida Institute of Technology. The simulation includes all the relevant physics involved in propagating an energetic electron through air under the influence of an electric field. One motivation for this project is to express the results of the Monte Carlo simulation analytically, giving a better perspective on the nature of the avalanche region inside thunderclouds. Although the kinetic theory for runaway electrons has been studied previously (e.g., Roussel-Dupre et al. [1994], and Gurevich et al. [1992]), the equations derived are quite complex. Here, we present a simplified transport equation based on the classical continuity equation in phase space, and develop the proper form for describing the acceleration/deceleration and collisional processes that runaway electrons experience while propagating through air. Analytical results of the steady state distribution are possible with the help of several mathematical techniques, simplifications and assumptions. In particular, we find that when the bremsstrahlung energy losses are included, the high energy portion of the electron distribution is greatly affected. Finally, a numerical solution

  8. Nonlinear electron magnetohydrodynamics physics. I. Whistler spheromaks, mirrors, and field reversed configurations

    SciTech Connect

    Stenzel, R. L.; Urrutia, J. M.; Strohmaier, K. D.

    2008-04-15

    The nonlinear interactions of time-varying magnetic fields with plasmas is investigated in the regime of electron magnetohydrodynamics. Simple magnetic field geometries are excited in a large laboratory plasma with a loop antenna driven with large oscillatory currents. When the axial loop field opposes the ambient field, the net field can be reversed to create a field-reversed configuration (FRC). In the opposite polarity, a strong field enhancement is produced. The time-varying antenna field excites whistler modes with wave magnetic fields exceeding the ambient magnetic field. The resulting magnetic field topologies have been measured. As the magnetic topology is changed from FRC to strong enhancement, two propagating field configurations resembling spheromaks are excited, one with positive and the other with negative helicity. Such 'whistler spheromaks' propagate with their null points along the weaker ambient magnetic field, with the current density localized around its O-line. In contrast, 'whistler mirrors' which have topologies similar to linear whistlers, except with B{sub wave}>B{sub 0}, have no null regions and, therefore, broad current layers. This paper describes the basic field topologies of whistler spheromaks and mirrors, while companion papers discuss the associated nonlinear phenomena as well as the interaction between them.

  9. SU-E-T-432: Field Size Influence On the Electron and Photon Spectra Within Small MV Field Detectors

    SciTech Connect

    Benmakhlouf, H; Andreo, P

    2015-06-15

    Purpose: To investigate the influence of photon field size on the electron and photon fluence spectra in the active volume of small field detectors. Methods: The PENELOPE MC system based usercode PenEasy was used to calculate the material influence on the spectra by scoring the differential fluence in inserts of silicon, carbon, phosphorus and aluminium having 3 mm diameter and height. The spectra were then calculated inside the active volume of eleven detectors (ion chambers and solid-state detectors) whose geometry was simulated with great detail. The inserts/detectors were placed at 10 cm depth in a 30 cm x 30 cm x 30 cm water phantom and irradiated with 2.5 MeV photons and Varian Clinac 6 MV beams of small, medium and large size. Results: For all configurations, photon spectra in the scoring volume were similar to that in a small water volume except for additional characteristic x-ray peaks resulting from the material itself and from the materials surrounding the detectors (i.e. high-Z shielding the silicon). Electron fluence calculated in the inserts were up to 60% larger than in water; the difference increased with material density and decreasing field size. MC-calculated doses were compared to analytically determined collision kerma and restricted cema (cut-off=15keV). For the inserts, with large and medium fields K-col agreed with MC-dose, but K-col overestimated the dose for small fields due to lack of lateral CPE. For the detectors, up to 15% differences between K-col and the MC-dose were found. For all configurations the C-delta and MC-dose agreed within ±2%. Conclusion: The most relevant findings were that shielding affects substantially the photon spectra and material conditions the electron spectra, their field size dependence varying with the geometry configuration. These affect the values of factors entering into relative dosimetry.

  10. Investigation of sounding rocket observations of field-aligned currents and electron temperature

    NASA Astrophysics Data System (ADS)

    Cohen, I. J.; Lessard, M.; Zettergren, M. D.; Moen, J.; Lynch, K. A.; Heavisides, J. M.

    2014-12-01

    Strangeway et al. [2005] and other authors have concluded that the establishment of the ambipolar field by the deposition of energy from soft electron precipitation is a significant driver of type-2 ion upflows. Likewise, Clemmons et al. [2008] and Zhang et al. [2012] proposed processes by which soft electron precipitation may play a role in heating neutrals and contribute to neutral upwelling. In both situations the thermal ionospheric electron population plays a crucial role in both generation of the ambipolar field and in collisional energy exchange with the atmosphere through a variety of processes. In this study we examine the dynamics of the electron population, specifically the temperature, in a slightly different context - focusing on the auroral downward current region (DCR). In many cases auroral DCRs may be depleted of plasma, which sets up interesting conditions involving thermoelectric heat fluxes (which flow upward - in the opposite direction from the current), adiabatic expansion due to the high (upward) speed of the electrons carrying the downward current, heat exchange from ions which have elevated temperatures due to frictional heating, and direct frictional heating of the electrons. A detailed understanding of the electron temperature in auroral DCRs is necessary to make quantitative statements about recombination, upflow, cavitation and a host of other processes relevant to ion outflow. In this study, we compare in situ rocket observations of electron temperature, density, and current densities with predictions from the Zettergren and Semeter [2012] model in an attempt to better understand the dynamics and relationships between these parameters in DCRs.

  11. Effect of magnetic field on an electronic structure and intraband quantum transitions in multishell quantum dots

    NASA Astrophysics Data System (ADS)

    Holovatsky, V. A.; Voitsekhivska, O. M.; Yakhnevych, M. Ya.

    2017-09-01

    The electron energy spectrum and wave functions in multishell spherical quantum dot, consisting of core and two spherical shells - potential wells separated by thin potential barriers, are obtained in the framework of the effective mass approximation and single band model. The investigations are performed within the matrix method for the nanostructure driven by magnetic field using the complete set of wave functions obtained without the magnetic field. The electron dipole momentum and oscillator strengths of intraband quantum transitions as functions of the magnetic field induction are numerically calculated. In order to increase the sensibility to magnetic field, the geometric parameters of the shells are chosen in such a way that the electron in the ground state is to be located in outer spherical well, but when the magnetic field induction becomes bigger, it moves into the core. It is shown that size of the middle potential well causes the smooth change of the electron location due to the effect of magnetic field, what is displayed on optical properties of nanostructure. The calculations are performed for multishell quantum dot CdSe/ZnS/CdSe/ZnS/CdSe.

  12. Imposed magnetic field and hot electron propagation in inertial fusion hohlraums

    NASA Astrophysics Data System (ADS)

    Strozzi, David J.; Perkins, L. J.; Marinak, M. M.; Larson, D. J.; Koning, J. M.; Logan, B. G.

    2015-12-01

    > . The field's main hydrodynamic effect is to significantly reduce electron thermal conduction perpendicular to the field. This results in hotter and less dense plasma on the equator between the capsule and hohlraum wall. The inner laser beams experience less inverse bremsstrahlung absorption before reaching the wall. The X-ray drive is thus stronger from the equator with the imposed field. We study superthermal, or `hot', electron dynamics with the particle-in-cell code ZUMA, using plasma conditions from HYDRA. During the early-time laser picket, hot electrons based on two-plasmon decay in the laser entrance hole (Regan et al., Phys. Plasmas, vol. 17(2), 2010, 020703) are guided to the capsule by a 70 T field. Twelve times more energy deposits in the deuterium-tritium fuel. For plasma conditions early in peak laser power, we present mono-energetic test-case studies with ZUMA as well as sources based on inner-beam stimulated Raman scattering. The effect of the field on deuterium-tritium deposition depends strongly on the source location, namely whether hot electrons are generated on field lines that connect to the capsule.

  13. Wigner crystallization of a two-dimensional electron gas in a magnetic field: Single electrons versus electron pairs at the lattice sites

    NASA Astrophysics Data System (ADS)

    Taut, M.

    2001-10-01

    The ground state energy and the lowest excitations of a two-dimensional Wigner crystal in a perpendicular magnetic field with one and two electrons per cell is investigated. In the case of two electrons per lattice site, the interaction of the electrons within each cell is taken into account exactly (including exchange and correlation effects), and the interaction between the cells is in second order (dipole) van der Waals approximation. No further approximations are made, in particular Landau level mixing and incomplete spin polarization are accounted for. Therefore, our calculation comprises a, roughly speaking, complementary description of the bubble phase (in the special case of one and two electrons per bubble), which was proposed by Koulakov, Fogler, and Shklovskii on the basis of a Hartree Fock calculation. The phase diagram shows that in GaAs the paired phase is energetically more favorable than the single electron phase for, roughly speaking, filling factor f larger than 0.3 and density parameter rs smaller than 19 effective Bohr radii (for a more precise statement see Figs. 3 and 4). If we start within the paired phase and increase magnetic field or decrease density, the pairs first undergo some singlet-triplet transitions before they break.

  14. Breakdown of the Strong-Field Approximation for Transverse Electron Momentum Distributions in Strong-Field Ionization

    NASA Astrophysics Data System (ADS)

    Sang, Robert; Calvert, J. E.; Goodall, S.; Wang, X.; Xu, H.; Palmer, A. J.; Ivanov, I. A.; Kheifets, A. S.; Kielpinski, D.; Litvinyuk, I. V.

    2015-05-01

    We investigated the transverse electron momentum distributions for the strong field ionization of atoms by laser pulses with varying ellipticity. We investigated two ionization regimes; tunelling and over the barrier ionization regimes. The over the barrier regime was accessed by using neon atoms in excited atomic metastable states and is the first such strong-field experiment to use such an atomic species. We will show that the transverse momentum distributions evolve in qualitatively different when the ellipticity of the driving laser pulses is varied. email: R.Sang@griffith.edu.au

  15. The Algorithm for Description of Ultrarelativistic Electron Motion in Complex Electromagnetic Fields

    NASA Astrophysics Data System (ADS)

    Chorny, Anton; Dubina

    2002-08-01

    We propose the numerical methodics for solution of equation of motion for electrons in arbitrary electromagnetic fields. The main idea of the methodics is to extract the rotation force from the full force applied to a particle by electromagnetic field. This rotation force changes only the direction of motion and does not change the particle energy. As it follows from the equation of motion the rotation force depends both on magnetic field and on electric field. Usually, this force is supposed to be determined only by magnetic field. Taking into account the electric field effect on rotation of a particle allows avoiding of the high order methodics application for differential equation solutions. The simplicity of the method is that that in each step of solution we suppose that particle moves along the circle arc. Then we add the equation for the time derivative of particle kinetic energy, which is determined by electric field, and solve the obtained system of these two differential equations. The proposed methodics was used to calculate the electron motion in complex electromagnetic fields formed inside the diod, where the magnetic field is generized by external solenoids and induced current, and the electric field is produced by electrodes of complex forms.

  16. Field match verification during combination proton, photon, and electron therapy for oligometastatic inflammatory breast cancer.

    PubMed

    Amos, Richard A; Woodward, Wendy A

    2012-01-01

    Postmastectomy radiation therapy (PMRT) has been shown in randomized trials to improve overall survival for patients with locally advanced breast cancer. The standard PMRT clinical target volume (CTV) encompasses the chest wall and undissected regional lymphatics. Conformal isodose distributions covering the standard CTV with acceptable dose limits to normal tissue can typically be achieved with a combination of photon and electron fields. Field borders are marked on the patient's skin using a light field projection of each beam and are subsequently used to verify daily field matching clinically. Initial imaging of a patient with oligometastatic inflammatory breast cancer demonstrated direct extension of disease from the involved internal mammary lymph node chain into the anterior mediastinum as the only site of metastatic disease. The patient achieved a pathologic complete response to neoadjuvant chemotherapy and underwent mastectomy. The initial sites of gross disease, including the anterior mediastinal node was included in the CTV for PMRT, and treatment planning demonstrated a clear advantage to the inclusion of proton fields in this case. The absence of a light source on the proton delivery system that accurately projects proton field edges onto the patient's skin posed a significant challenge for daily verification of proton-to-photon and -electron field matching. Proton field-specific radiographic imaging devices were designed and used such that proton field edges could be delineated on the patient's skin and used for daily matching with photon and electron fields. Manufacture of the imaging devices was quick and inexpensive. Weekly verification of proton field alignment with the proton field delineation on the skin demonstrated agreement within 3-mm tolerance. The patient remains with no evidence of disease 18 months after completing radiation. Other patients with similar indications may benefit from multimodality radiation therapy. Copyright © 2012

  17. Field match verification during combination proton, photon, and electron therapy for oligometastatic inflammatory breast cancer

    SciTech Connect

    Amos, Richard A.; Woodward, Wendy A.

    2012-01-01

    Postmastectomy radiation therapy (PMRT) has been shown in randomized trials to improve overall survival for patients with locally advanced breast cancer. The standard PMRT clinical target volume (CTV) encompasses the chest wall and undissected regional lymphatics. Conformal isodose distributions covering the standard CTV with acceptable dose limits to normal tissue can typically be achieved with a combination of photon and electron fields. Field borders are marked on the patient's skin using a light field projection of each beam and are subsequently used to verify daily field matching clinically. Initial imaging of a patient with oligometastatic inflammatory breast cancer demonstrated direct extension of disease from the involved internal mammary lymph node chain into the anterior mediastinum as the only site of metastatic disease. The patient achieved a pathologic complete response to neoadjuvant chemotherapy and underwent mastectomy. The initial sites of gross disease, including the anterior mediastinal node was included in the CTV for PMRT, and treatment planning demonstrated a clear advantage to the inclusion of proton fields in this case. The absence of a light source on the proton delivery system that accurately projects proton field edges onto the patient's skin posed a significant challenge for daily verification of proton-to-photon and -electron field matching. Proton field-specific radiographic imaging devices were designed and used such that proton field edges could be delineated on the patient's skin and used for daily matching with photon and electron fields. Manufacture of the imaging devices was quick and inexpensive. Weekly verification of proton field alignment with the proton field delineation on the skin demonstrated agreement within 3-mm tolerance. The patient remains with no evidence of disease 18 months after completing radiation. Other patients with similar indications may benefit from multimodality radiation therapy.

  18. Parallel electric field generation in the ionosphere over thunderstorms and the interaction with ionospheric electrons

    NASA Astrophysics Data System (ADS)

    Rowland, D.; Wygant, J.; Pfaff, R.; Farrell, W.; Goetz, K.; Monson, S.

    Sounding rockets launched by Mike Kelley and his group at Cornell demonstrated the existence of transient (1 ms) electric fields associated with lightning strikes at high altitudes above active thunderstorms. These electric fields had a component parallel to the Earth's magnetic field, and were unipolar and large in amplitude. They were thought to be strong enough to energize electrons and generate strong turbulence as the beams thermalized. The parallel electric fields were observed on multiple flights, but high time resolution measurements were not made within 100 km horizontal distance of lightning strokes, where the electric fields are largest. In 2000 the ``Lightning Bolt'' sounding rocket (NASA 27.143) was launched directly over an active thunderstorm to an apogee near 300 km. The sounding rocket was equipped with sensitive electric and magnetic field instruments as well as a photometer and electrostatic analyser for measuring accelerated electrons. The electric and magnetic fields were sampled at 10 million samples per second, letting us fully resolve the structure of the parallel electric field pulse up to and beyond the plasma frequency. We will present results from the Lightning Bolt mission, concentrating on the parallel electric field pulses that arrive before the lower-frequency whistler wave modes. We observe pulses with peak electric fields of a few mV/m lasting for a substantial fraction of a millisecond. Superimposed on this is high-frequency turbulence, comparable in amplitude to the pulse itself. This is the first direct observation of this structure in the parallel electric field, within 100 km horizontal distance of the lightning stroke. We will present evidence for the method of generation of these parallel fields, and discuss their probable effect on ionospheric electrons.

  19. Energy Conversion Mechanism for Electron Perpendicular Energy in High Guide-Field Reconnection

    NASA Astrophysics Data System (ADS)

    Guo, Xuehan; Horiuchi, Ritoku; Kaminou, Yasuhiro; Cheng, Frank; Ono, Yasushi

    2016-10-01

    The energy conversion mechanism for electron perpendicular energy, both the thermal and the kinetic energy, is investigated by means of two-dimensional, full-particle simulations in an open system. It is shown that electron perpendicular heating is mainly due to the breaking of magnetic moment conservation in separatrix region because the charge separation generates intense variation of electric field within the electron Larmor radius. Meanwhile, electron perpendicular acceleration takes place manly due to the polarization drift term as well as the curvature drift term of E . u⊥ in the downstream near the X-point. The enhanced electric field due to the charge separation there results in a significant effect of the polarization drift term on the dissipation of magnetic energy within the ion inertia length in the downstream. Japan Society for the Promotion of Science (JSPS) Fellows 15J03758.

  20. Field ionization of Rydberg atoms for high-brightness electron and ion beams

    NASA Astrophysics Data System (ADS)

    McCulloch, A. J.; Speirs, R. W.; Grimmel, J.; Sparkes, B. M.; Comparat, D.; Scholten, R. E.

    2017-06-01

    We present an ionization mechanism for use in a cold atom electron source with the goal of producing highly monochromatic electron beams. We experimentally produce a map of the Stark states of 85Rb below the ionization threshold and identify states that undergo selective field ionization. The properties of an electron beam produced by field-assisted ionization of such states are quantified. A theoretical framework is established to predict the improvement to beam quality when ionization is conducted above the ionization threshold, where ionization conditions are typically more favorable than below the threshold. Calculations suggest that selective ionization of Rydberg states may offer a pathway to the production of high-brightness, highly monochromatic ion and electron beams.

  1. Effect of insulating layer on the Field Electron Emission Performance of Nano-Apex Metallic Emitters

    NASA Astrophysics Data System (ADS)

    AL-Qudah, Ala'a. A.; Mousa, Marwan S.; Fischer, A.

    2015-10-01

    This paper deals with the process of electron emission from the surface of metals (before and after coating with controlled layers of dielectric materials) into the vacuum due to an intense applied external electric field. This process is usually called cold field electron emission (CFE). The research work reported here includes the current-voltage (I-V) characteristics presented as Fowler-Nordheim (FN) plots and scanning electron micrographs in addition to the spatial emission current distributions (electron emission images). The process of coating the clean tungsten (W) emitters by layers of dielectric epoxylite resin was easy, and the measurements were performed under UHV ∼ 10-8 mbar. From comparing the results obtained in this work, significant improvement in properties of the emitters after coating are observed.

  2. Electron emission properties of gated silicon field emitter arrays driven by laser pulses

    NASA Astrophysics Data System (ADS)

    Shimawaki, Hidetaka; Nagao, Masayoshi; Neo, Yoichiro; Mimura, Hidenori; Wakaya, Fujio; Takai, Mikio

    2016-10-01

    We report optically modulated electron emission from gated p-type silicon field emitter arrays (Si-FEAs). The device's "volcano" structure is designed to control the photoexcitation of electrons by transmitting light through the small gate aperture, thereby minimizing the photogeneration of slow diffusion carriers outside the depletion region in the tip. Compared to that in the dark, the emission current was enhanced by more than three orders of magnitude in the high field region when irradiated with blue laser pulses. Results from the time-resolved measurements of photoassisted electron emission showed that these possess the same response as the laser pulse with no discernible delay. These results indicate that the volcano device structure is effective at eliminating the generation of diffusion carriers and that a fully optimized FEA is promising as a photocathode for producing high-speed modulated electron beams.

  3. Charging and the cross-field discharge during electron accelerator operation on a rocket

    NASA Technical Reports Server (NTRS)

    Kellogg, Paul J.; Monson, Steven J.

    1988-01-01

    Preliminary results are presented from experiments to study the neutralization processes around an electron beam emitting rocket. The rocket, SCEX II, was flown on January 31, 1987 from Alaska, with a payload consisting of two independent electron accelerators and two arms with conducting elements to act as Langmuir probes and to measure floating potentials. It was expected that electrons in the strong electric fields around the charged rocket would gain sufficient energy to ionize neutrals, producing ions which would be hurled outward at energies up to the rocket potential. Three hemispherical retarding potential analyzers were ejected from the main payload to measure these ions. The measurements show that fields sufficient to accelerate electrons to ionizing energies were present around the rocket.

  4. Quantitative electron phase imaging with high sensitivity and an unlimited field of view

    PubMed Central

    Maiden, A. M.; Sarahan, M. C.; Stagg, M. D.; Schramm, S. M.; Humphry, M. J.

    2015-01-01

    As it passes through a sample, an electron beam scatters, producing an exit wavefront rich in information. A range of material properties, from electric and magnetic field strengths to specimen thickness, strain maps and mean inner potentials, can be extrapolated from its phase and mapped at the nanoscale. Unfortunately, the phase signal is not straightforward to obtain. It is most commonly measured using off-axis electron holography, but this is experimentally challenging, places constraints on the sample and has a limited field of view. Here we report an alternative method that avoids these limitations and is easily implemented on an unmodified transmission electron microscope (TEM) operating in the familiar selected area diffraction mode. We use ptychography, an imaging technique popular amongst the X-ray microscopy community; recent advances in reconstruction algorithms now reveal its potential as a tool for highly sensitive, quantitative electron phase imaging. PMID:26423558

  5. Electron-Nuclear Coupling through Autoionizing States after Strong-Field Excitation of H2 Molecules

    NASA Astrophysics Data System (ADS)

    Mi, Yonghao; Camus, Nicolas; Fechner, Lutz; Laux, Martin; Moshammer, Robert; Pfeifer, Thomas

    2017-05-01

    Channel-selective electron emission from strong-field photoionization of H2 molecules is experimentally investigated by using ultrashort laser pulses and a reaction microscope. The electron momenta and energy spectra in coincidence with bound and dissociative ionization channels are compared. Surprisingly, we observed an enhancement of the photoelectron yield in the low-energy region for the bound ionization channel. By further investigation of asymmetrical electron emission using two-color laser pulses, this enhancement is understood as the population of the autoionizing states of H2 molecules in which vibrational energy is transferred to electronic energy. This general mechanism provides access to the vibrational-state distribution of molecular ions produced in a strong-field interaction.

  6. Electron-Nuclear Coupling through Autoionizing States after Strong-Field Excitation of H_{2} Molecules.

    PubMed

    Mi, Yonghao; Camus, Nicolas; Fechner, Lutz; Laux, Martin; Moshammer, Robert; Pfeifer, Thomas

    2017-05-05

    Channel-selective electron emission from strong-field photoionization of H_{2} molecules is experimentally investigated by using ultrashort laser pulses and a reaction microscope. The electron momenta and energy spectra in coincidence with bound and dissociative ionization channels are compared. Surprisingly, we observed an enhancement of the photoelectron yield in the low-energy region for the bound ionization channel. By further investigation of asymmetrical electron emission using two-color laser pulses, this enhancement is understood as the population of the autoionizing states of H_{2} molecules in which vibrational energy is transferred to electronic energy. This general mechanism provides access to the vibrational-state distribution of molecular ions produced in a strong-field interaction.

  7. Energy conversion mechanism for electron perpendicular energy in high guide-field reconnection

    NASA Astrophysics Data System (ADS)

    Guo, X.; Horiuchi, R.; Cheng, C. Z.; Kaminou, Y.; Ono, Y.

    2017-03-01

    The energy conversion mechanism for electron perpendicular energy, both the thermal and the kinetic energies, is investigated by means of two-dimensional, full-particle simulations in an open system. It is shown that electron perpendicular heating is mainly due to the breaking of magnetic moment conservation in separatrix region because the charge separation generates intense variation of electric field within the several electron Larmor radii. Meanwhile, electron perpendicular acceleration takes place mainly due to the polarization drift term as well as the curvature drift term of E .u⊥ in the downstream near the X-point. The enhanced electric field due to the charge separation there results in a significant effect of the polarization drift term on the dissipation of magnetic energy within the ion inertia length in the downstream.

  8. Direct Visualization of Local Electromagnetic Field Structures by Scanning Transmission Electron Microscopy.

    PubMed

    Shibata, Naoya; Findlay, Scott D; Matsumoto, Takao; Kohno, Yuji; Seki, Takehito; Sánchez-Santolino, Gabriel; Ikuhara, Yuichi

    2017-07-18

    The functional properties of materials and devices are critically determined by the electromagnetic field structures formed inside them, especially at nanointerface and surface regions, because such structures are strongly associated with the dynamics of electrons, holes and ions. To understand the fundamental origin of many exotic properties in modern materials and devices, it is essential to directly characterize local electromagnetic field structures at such defect regions, even down to atomic dimensions. In recent years, rapid progress in the development of high-speed area detectors for aberration-corrected scanning transmission electron microscopy (STEM) with sub-angstrom spatial resolution has opened new possibilities to directly image such electromagnetic field structures at very high-resolution. In this Account, we give an overview of our recent development of differential phase contrast (DPC) microscopy for aberration-corrected STEM and its application to many materials problems. In recent years, we have developed segmented-type STEM detectors which divide the detector plane into 16 segments and enable simultaneous imaging of 16 STEM images which are sensitive to the positions and angles of transmitted/scattered electrons on the detector plane. These detectors also have atomic-resolution imaging capability. Using these segmented-type STEM detectors, we show DPC STEM imaging to be a very powerful tool for directly imaging local electromagnetic field structures in materials and devices in real space. For example, DPC STEM can clearly visualize the local electric field variation due to the abrupt potential change across a p-n junction in a GaAs semiconductor, which cannot be observed by normal in-focus bright-field or annular type dark-field STEM imaging modes. DPC STEM is also very effective for imaging magnetic field structures in magnetic materials, such as magnetic domains and skyrmions. Moreover, real-time imaging of electromagnetic field structures can

  9. Characterization of Field Line Topologies Near the Magnetopause Using Electron Pitch Angle Measurements

    NASA Astrophysics Data System (ADS)

    Payne, D.; Argall, M. R.; Dors, I.; Ergun, R.; Farrugia, C. J.; Giles, B. L.; Russell, C.; Torbert, R. B.; Vaith, H.; Magnes, W.

    2016-12-01

    The electron drift instrument (EDI) on the Magnetospheric Multiscale (MMS) mission detects 0 and 180 degree pitch angle electrons on millisecond timescales. Using this data, we observe rapid variation of these electron fluxes in regions close to the magnetopause boundary. These variations in flux provide key insights into the dynamic field line configurations that arise from reconnection. These variations in the field detected by the spacecraft may be indicative of rapid reconnection or oscillations in the position of the boundary itself. By investigating these fluctuations near the magnetopause, we may be able to discover which of these processes, if any, are occurring. The results of this investigation may provide further insight into the process of reconnection and its effect on magnetic field topologies in the magnetosphere.

  10. Simple empirical formula for predicting range variation of central-axis parameters in small electron fields.

    PubMed

    Hwang, I M; Chuang, K S

    2001-12-01

    The depth of central-axis percent dose Rx (except R100) and practical range, Rp, for small field electron beams can be calculated by the proposed empirical formula: Rx = Rxo x [1 - (1 - r/Rpo)m], where Rxo and Rpo are the broad beam percentage dose depth and practical range respectively; r is the small field cutout side when it is less than the maximum lateral scatter equivalent range, and m is the exponent term relative to the decreasing curvature. Five electron beams from a Varian CL-2100CD linear accelerator were used to verify this formula. The difference between measured and calculated depth dose range is within +/- 1 mm when cutout side reduced to 2 x 2 cm2. This formula offers a simple and time-saving method to quickly determine the useful treatment percentage dose depth of small field electron beams.

  11. Synchrotron radiation with radiation reaction. [relativistic electron motion in strong astrophysical magnetic fields

    NASA Technical Reports Server (NTRS)

    Nelson, Robert W.; Wasserman, Ira

    1991-01-01

    A rigorous discussion is presented of the classical motion of a relativistic electron in a magnetic field and the resulting electromagnetic radiation when radiation reaction is important. In particular, for an electron injected with initial energy gamma(0), a systematic perturbative solution to the Lorentz-Dirac equation of motion is developed for field strengths satisfying gamma(0) B much less than 6 x 10 to the 15th G. A particularly accurate solution to the electron orbital motion in this regime is found and it is demonstrated how lowest-order corrections can be calculated. It is shown that the total energy-loss rate corresponds to what would be found using the exact Larmor power formula without including radiation reaction. Provided that the particle energy and field strength satisfy the same contraint, it is explicitly demonstrated that the intuitive prescription for calculating the time-integrated radiation spectrum described above is correct.

  12. Electrospun MgO-loaded carbon nanofibers: Enhanced field electron emission from the fibers in vacuum

    NASA Astrophysics Data System (ADS)

    Aykut, Yakup

    2013-02-01

    MgO-loaded electrospun carbon nanofibers (MgO/CNFs) were prepared by electrospinning a magnesium acetate containing polyacrylonitrile composite followed by stabilization under an air atmosphere at 280 °C and carbonization under a nitrogen atmosphere at 800 °C. In addition to investigating the morphological and material features of the nanofibers, the field emission (FE) characteristics of the carbonized NFs (CNFs), performed in an ultra-high vacuum chamber utilizing scanning electron microscopy (SEM), were determined. The results of the investigation show that the MgO/CNFs (195.5% enhancement) display enhanced field electron emission as compared to that of pure CNFs as a result of the existence of a MgO phase. Consequently, it appears that the graphitic structures of CNFs can be tuned, a finding that has significance in studies aimed at developing new field electron emission devices.

  13. Fabrication of free-standing highly conducting ultrananocrystalline diamond films with enhanced electron field emission properties

    NASA Astrophysics Data System (ADS)

    Sankaran, K. J.; Chen, H. C.; Lee, C. Y.; Tai, N. H.; Lin, I. N.

    2012-12-01

    Fabrication of free-standing/highly conducting ultrananocrystalline diamond (fc-UNCD) films at low growth temperature (<475 °C) is demonstrated. The fc-UNCD films show high conductivity of σ = 146 (Ω cm)-1 with superior electron field emission (EFE) properties, viz. low turn-on field of 4.35 V/μm and high EFE current density of 3.76 mA/cm2 at an applied field of 12.5 V/μm. Transmission electron microscopy examinations reveal the presence of Au/Cu clusters in film-to-substrate interface, which consequences in the induction of nanographite phases, surrounding the diamond grains that form conduction channels for electrons transport, ensuing in marvelous EFE properties of fc-UNCD films.

  14. Simulations of Field-Emission Electron Beams from CNT Cathodes in RF Photoinjectors

    SciTech Connect

    Mihalcea, Daniel; Faillace, Luigi; Panuganti, Harsha; Thangaraj, Jayakar C.T.; Piot, Philippe

    2015-06-01

    Average field emission currents of up to 700 mA were produced by Carbon Nano Tube (CNT) cathodes in a 1.3 GHz RF gun at Fermilab High Brightness Electron Source Lab. (HBESL). The CNT cathodes were manufactured at Xintek and tested under DC conditions at RadiaBeam. The electron beam intensity as well as the other beam properties are directly related to the time-dependent electric field at the cathode and the geometry of the RF gun. This report focuses on simulations of the electron beam generated through field-emission and the results are compared with experimental measurements. These simulations were performed with the time-dependent Particle In Cell (PIC) code WARP.

  15. Enhancement of electron field emission property with silver incorporation into diamondlike carbon matrix

    SciTech Connect

    Ahmed, Sk. Faruque; Moon, Myoung-Woon; Lee, Kwang-Ryeol

    2008-05-12

    Effects of silver doping on the electron field emission properties of diamondlike carbon films deposited on silicon substrates by the rf reactive sputtering technique were studied in detail. It was found that the threshold field and effective emission barrier were reduced by Ag doping and the emission current strongly depends on the Ag doping percentage. The threshold field was found to decrease from 6.8 to 2.6 V/{mu}m with a variation of Ag at. % from 0 to 12.5. The field enhancement factor was calculated and we have explained the emission mechanism.

  16. Modelling coronal electron density and temperature profiles based on solar magnetic field observations

    NASA Astrophysics Data System (ADS)

    Rodríguez Gómez, J. M.; Antunes Vieira, L. E.; Dal Lago, A.; Palacios, J.; Balmaceda, L. A.; Stekel, T.

    2017-10-01

    The density and temperature profiles in the solar corona are complex to describe, the observational diagnostics is not easy. Here we present a physics-based model to reconstruct the evolution of the electron density and temperature in the solar corona based on the configuration of the magnetic field imprinted on the solar surface. The structure of the coronal magnetic field is estimated from Potential Field Source Surface (PFSS) based on magnetic field from both observational synoptic charts and a magnetic flux transport model. We use an emission model based on the ionization equilibrium and coronal abundances from CHIANTI atomic database 8.0. The preliminary results are discussed in details.

  17. Diamond/diamond-like carbon coated nanotube structures for efficient electron field emission

    NASA Technical Reports Server (NTRS)

    Dimitrijevic, Steven (Inventor); Withers, James C. (Inventor); Loutfy, Raouf O. (Inventor)

    2005-01-01

    The present invention is directed to a nanotube coated with diamond or diamond-like carbon, a field emitter cathode comprising same, and a field emitter comprising the cathode. It is also directed to a method of preventing the evaporation of carbon from a field emitter comprising a cathode comprised of nanotubes by coating the nanotube with diamond or diamond-like carbon. In another aspect, the present invention is directed to a method of preventing the evaporation of carbon from an electron field emitter comprising a cathode comprised of nanotubes, which method comprises coating the nanotubes with diamond or diamond-like carbon.

  18. Vertically aligned diamond-graphite hybrid nanorod arrays with superior field electron emission properties

    NASA Astrophysics Data System (ADS)

    Ramaneti, R.; Sankaran, K. J.; Korneychuk, S.; Yeh, C. J.; Degutis, G.; Leou, K. C.; Verbeeck, J.; Van Bael, M. K.; Lin, I. N.; Haenen, K.

    2017-06-01

    A "patterned-seeding technique" in combination with a "nanodiamond masked reactive ion etching process" is demonstrated for fabricating vertically aligned diamond-graphite hybrid (DGH) nanorod arrays. The DGH nanorod arrays possess superior field electron emission (FEE) behavior with a low turn-on field, long lifetime stability, and large field enhancement factor. Such an enhanced FEE is attributed to the nanocomposite nature of the DGH nanorods, which contain sp2-graphitic phases in the boundaries of nano-sized diamond grains. The simplicity in the nanorod fabrication process renders the DGH nanorods of greater potential for the applications as cathodes in field emission displays and microplasma display devices.

  19. Theory of Electric-Field Effects on Electron-Spin-Resonance Hyperfine Couplings

    SciTech Connect

    Karna, S.P.

    1997-07-01

    A quantum mechanical theory of the effects of a uniform electric field on electron-spin-resonance hyperfine couplings is presented. The electric-field effects are described in terms of perturbation coefficients which can be used to probe the local symmetry as well as the strength of the electric field at paramagnetic sites in a solid. Results are presented for the first-order perturbation coefficients describing the Bloembergen effect (linear electric-field effect on hyperfine coupling tensor) for the O atom and the OH radical. {copyright} {ital 1997} {ital The American Physical Society}

  20. Measurement of lunar and planetary magnetic fields by reflection of low energy electrons

    NASA Technical Reports Server (NTRS)

    Anderson, K. A.; Lin, R. P.; Mcguire, R. E.; Mccoy, J. E.

    1975-01-01

    The paper describes the technique of planetary electron reflection magnetometry (PERM), a method for measuring the magnitude, direction, and scale size of magnetic fields near the surface of the moon and other planetary bodies with weak and small-scale-size surface fields. It is noted that the PERM technique is based on the ability of magnetic fields to reflect charged particles. A qualitative account of the implementation of the technique is presented along with some results obtained by the Apollo 15 and 16 Particles and Fields subsatellites. The quantitative aspects of PERM are treated by examining solutions to the equation of motion of a charged particle in a magnetic field, computing reflection coefficients on the basis of trajectory calculations, and determining the direction of the lunar surface magnetic field. The sensitivity of the PERM technique is calculated, and effects of lunar electric fields and spacecraft potentials on the measurements are described. Extension of the technique to Mars and Venus is discussed.