Science.gov

Sample records for field estudio regional

  1. Polar Field Reversals and Active Region Decay

    NASA Astrophysics Data System (ADS)

    Petrie, Gordon; Ettinger, Sophie

    2015-07-01

    We study the relationship between polar field reversals and decayed active region magnetic flux. Photospheric active region flux is dispersed by differential rotation and turbulent diffusion, and is transported poleward by meridional flows and diffusion. We summarize the published evidence from observation and modeling of the influence of meridional flow variations and decaying active region flux's spatial distribution, such as the Joy's law tilt angle. Using NSO Kitt Peak synoptic magnetograms covering cycles 21-24, we investigate in detail the relationship between the transport of decayed active region flux to high latitudes and changes in the polar field strength, including reversals in the magnetic polarity at the poles. By means of stack plots of low- and high-latitude slices of the synoptic magnetograms, the dispersal of flux from low to high latitudes is tracked, and the timing of this dispersal is compared to the polar field changes. In the most abrupt cases of polar field reversal, a few activity complexes (systems of active regions) are identified as the main cause. The poleward transport of large quantities of decayed trailing-polarity flux from these complexes is found to correlate well in time with the abrupt polar field changes. In each case, significant latitudinal displacements were found between the positive and negative flux centroids of the complexes, consistent with Joy's law bipole tilt with trailing-polarity flux located poleward of leading-polarity flux. The activity complexes of the cycle 21 and 22 maxima were larger and longer-lived than those of the cycle 23 and 24 maxima, and the poleward surges were stronger and more unipolar and the polar field changes larger and faster. The cycle 21 and 22 polar reversals were dominated by only a few long-lived complexes whereas the cycle 23 and 24 reversals were the cumulative effects of more numerous, shorter-lived regions. We conclude that sizes and lifetimes of activity complexes are key to

  2. Polar Field Reversals and Active Region Decay

    NASA Astrophysics Data System (ADS)

    Petrie, Gordon; Ettinger, Sophie

    2015-04-01

    We study the relationship between polar field reversals and decayed active region magnetic flux. Photospheric active region flux is dispersed by differential rotation and turbulent diffusion, and is transported poleward by meridional flows and diffusion. Using NSO Kitt Peak synoptic magnetograms, we investigate in detail the relationship between the transport of decayed active region flux to high latitudes and changes in the polar field strength, including reversals in the magnetic polarity at the poles. By means of stack plots of low- and high-latitude slices of the synoptic magnetograms, the dispersal of flux from low to high latitudes is tracked, and the timing of this dispersal is compared to the polar field changes. In the most abrupt cases of polar field reversal, a few activity complexes (systems of active regions) are identified as the main cause. The poleward transport of large quantities of decayed lagging-polarity flux from these complexes is found to correlate well in time with the abrupt polar field changes. In each case, significant latitudinal displacements were found between the positive and negative flux centroids of the complexes, consistent with Joy's law bipole tilt with lagging-polarity flux located poleward of leading-polarity flux. This work is carried out through the National Solar Observatory Summer Research Assistantship (SRA) Program. The National Solar Observatory is operated by the Association of Universities for Research in Astronomy, Inc. (AURA) under cooperative agreement with the National Science Foundation.

  3. Magnetic Field Strengths in Photodissociation Regions

    NASA Astrophysics Data System (ADS)

    Balser, Dana S.; Anish Roshi, D.; Jeyakumar, S.; Bania, T. M.; Montet, Benjamin T.; Shitanishi, J. A.

    2016-01-01

    We measure carbon radio recombination line (RRL) emission at 5.3 {{GHz}} toward four H ii regions with the Green Bank Telescope to determine the magnetic field strength in the photodissociation region (PDR) that surrounds the ionized gas. Roshi suggests that the non-thermal line widths of carbon RRLs from PDRs are predominantly due to magneto-hydrodynamic waves, thus allowing the magnetic field strength to be derived. We model the PDR with a simple geometry and perform the non-LTE radiative transfer of the carbon RRL emission to solve for the PDR physical properties. Using the PDR mass density from these models and the carbon RRL non-thermal line width we estimate total magnetic field strengths of B∼ 100{--}300 μ {{G}} in W3 and NGC 6334A. Our results for W49 and NGC 6334D are less well constrained with total magnetic field strengths between B∼ 200{--}1000 μ {{G}}. H i and OH Zeeman measurements of the line of sight magnetic field strength ({B}{{los}}), taken from the literature, are between a factor of ∼ 0.5{--}1 of the lower bound of our carbon RRL magnetic field strength estimates. Since | {B}{{los}}| ≤slant B, our results are consistent with the magnetic origin of the non-thermal component of carbon RRL widths.

  4. Vector Magnetic Field in Emerging Flux Regions

    NASA Astrophysics Data System (ADS)

    Schmieder, B.; Pariat, E.

    A crucial phase in magnetic flux emergence is the rise of magnetic flux tubes through the solar photosphere, which represents a severe transition between the very different environments of the solar interior and corona. Multi-wavelength observations with Flare Genesis, TRACE, SoHO, and more recently with the vector magnetographs at THEMIS and Hida (DST) led to the following conclusions. The fragmented magnetic field in the emergence region - with dipped field lines or bald patches - is directly related with Ellerman bombs, arch filament systems, and overlying coronal loops. Measurements of vector magnetic fields have given evidence that undulating "serpentine" fields are present while magnetic flux tubes cross the photosphere. See the sketch below, and for more detail see Pariat et al. (2004, 2007); Watanabe et al. (2008):

  5. Geopotential field anomalies and regional tectonic features

    NASA Astrophysics Data System (ADS)

    Mandea, Mioara; Korte, Monika

    2016-07-01

    Maps of both gravity and magnetic field anomalies offer crucial information about physical properties of the Earth's crust and upper mantle, required in understanding geological settings and tectonic structures. Density and magnetization represent independent rock properties and thus provide complementary information on compositional and structural changes. Two regions are considered: southern Africa (encompassing South Africa, Namibia and Botswana) and Germany. This twofold choice is motivated firstly by the fact that these regions represent rather diverse geological and geophysical conditions (old Archean crust with strong magnetic anomalies in southern Africa, and much younger, weakly magnetized crust in central Europe) and secondly by our intimate knowledge of the magnetic vector ground data from these two regions. We take also advantage of the recently developed satellite potential field models and compare magnetic and gravity gradient anomalies of some 200 km resolution. Comparing short and long wavelength anomalies and the correlation of rather large scale magnetic and gravity anomalies, and relating them to known lithospheric structures, we generally find a better agreement over the southern African region than the German territory. This probably indicates a stronger concordance between near-surface and deeper structures in the former area, which can be perceived to agree with a thicker lithosphere.

  6. Focal region fields of distorted reflectors

    NASA Technical Reports Server (NTRS)

    Buris, N. E.; Kauffman, J. F.

    1988-01-01

    The problem of the focal region fields scattered by an arbitrary surface reflector under uniform plane wave illumination is solved. The physical optics (PO) approximation is used to calculate the current induced on the reflector. The surface of the reflector is described by a number of triangular domain-wise 5th degree bivariate polynomials. A 2-dimensional Gaussian quadrature is employed to numerically evaluate the integral expressions of the scattered fields. No Freshnel or Fraunhofer zone approximations are made. The relation of the focal fields problem to surface compensation techniques and other applications are mentioned. Several examples of distorted parabolic reflectors are presented. The computer code developed is included, together with instructions on its usage.

  7. PFI-ZEKE (Pulsed Field Ionization-Zero Electron Kinetic Energy) para el estudio de iones

    NASA Astrophysics Data System (ADS)

    Castaño, F.; Fernández, J. A.; Basterretxea, A. Longarte. F.; Sánchez Rayo, M. N.; Martínez, R.

    Entre las áreas hacia donde ha evolucionado la Química en los últimos años están los estudios de sistemas con especies reactivas de alta energía y los dominados por fuerzas intermoleculares débiles, con energías de unas pocas kcal/mol. En efecto, el estudio de las propiedades de los iones, comenzando por su relación con la molécula neutra de la que procede, la energía de ionización, los estados vibracionales y rotacionales, energías de enlace de Van der Waals entre el ión y una amplia variedad de otras moléculas, sus confórmeros o isómeros y sus reacciones o semi-reacciones químicas están en la raíz de la necesidad de la espectroscopía conocida como PFI-ZEKE, Pulsed Field Ionization-Zero Electron Kinetic Energy. Entre las aplicaciones que requieren estos conocimientos se encuentran la generación de plasmas para la fabricación de semiconductores, memorias magnéticas, etc, así como los sistemas astrofísicos, la ionosfera terrestre, etc. La espectroscopía ZEKE es una evolución de las de fluorescencia inducida por láser, LIF, ionización multifotónica acrecentada por resonancia, REMPI, con uno y dos colores y acoplada a un sistema de tiempo de vuelo, REMPI-TOF-MS, y las espectroscopías de doble resonancia IR-UV y UV-UV. Sus espectros y la ayuda de cálculos ab inicio permite determinar las energías de enlace de complejos de van der Waals en estados fundamental y excitados, identificar confórmeros e isómeros, obtener energías de ionización experimentales aproximadas (100 cm-1) y otras variables de interés. Al igual que con LIF, REMPI y dobles resonancias, es posible utilizar muestras gaseosas, pero los espectros están muy saturados de bandas y su interpretación es difícil o imposible. Se evitan estas dificultades estudiando las moléculas o complejos en expansiones supersónicas, donde la T de los grados de libertad solo alcanzan unos pocos K. Para realizar experimentos de ZEKE hay que utilizar una propiedad recientemente

  8. The Life Cycle of Active Region Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Cheung, M. C. M.; van Driel-Gesztelyi, L.; Martínez Pillet, V.; Thompson, M. J.

    2016-08-01

    We present a contemporary view of how solar active region magnetic fields are understood to be generated, transported and dispersed. Empirical trends of active region properties that guide model development are discussed. Physical principles considered important for active region evolution are introduced and advances in modeling are reviewed.

  9. Wake Fields in the Super B Factory Interaction Region

    SciTech Connect

    Weathersby, Stephen; Novokhatski, Alexander; /SLAC

    2011-06-02

    The geometry of storage ring collider interaction regions present an impedance to beam fields resulting in the generation of additional electromagnetic fields (higher order modes or wake fields) which affect the beam energy and trajectory. These affects are computed for the Super B interaction region by evaluating longitudinal loss factors and averaged transverse kicks for short range wake fields. Results indicate at least a factor of 2 lower wake field power generation in comparison with the interaction region geometry of the PEP-II B-factory collider. Wake field reduction is a consderation in the Super B design. Transverse kicks are consistent with an attractive potential from the crotch nearest the beam trajectory. The longitudinal loss factor scales as the -2.5 power of the bunch length. A factor of 60 loss factor reduction is possible with crotch geometry based on an intersecting tubes model.

  10. Rocket probe electric field measurements in PMSE and NLC regions

    NASA Astrophysics Data System (ADS)

    Bekkeng, J. K.; Pedersen, A.; Moen, J.

    2003-08-01

    Complex AC and DC electric fields are known to be associated with polar mesospheric summer echo (PMSE) density irregularities and noctilucent cloud (NLC) layers. A two-channel prototype electric field instrument based on the double probe technique was developed to measure electric fields on-board a MIDAS (Middle atmosphere Investigation of Dynamics And Structure) sounding rocket. The instrument measures electric field variations up to 4 kHz, with 8 bit resolution. The payload was launched on 2 July 2002 from Andøya Rocket Range (69°N, 16°E) in Norway, in the presence of a PMSE radar backscatter layer located between 82 and 85 km height. The AC measurements in the PMSE region are characterized by spiky waveforms with amplitudes of a few mV/m, and the AC variations were also present in the height region 81-82 km, i.e. below the PMSE and NLC layers.

  11. Relationship between Birkeland current regions, particle precipitation, and electric fields

    NASA Technical Reports Server (NTRS)

    De La Beaujardiere, O.; Watermann, J.; Newell, P.; Rich, F.

    1993-01-01

    The relationship of the large-scale dayside Birkeland currents to large-scale particle precipitation patterns, currents, and convection is examined using DMSP and Sondrestrom radar observations. It is found that the local time of the mantle currents is not limited to the longitude of the cusp proper, but covers a larger local time extent. The mantle currents flow entirely on open field lines. About half of region 1 currents flow on open field lines, consistent with the assumption that the region 1 currents are generated by the solar wind dynamo and flow within the surface that separates open and closed field lines. More than 80 percent of the Birkeland current boundaries do not correspond to particle precipitation boundaries. Region 2 currents extend beyond the plasma sheet poleward boundary; region 1 currents flow in part on open field lines; mantle currents and mantle particles are not coincident. On most passes when a triple current sheet is observed, the convection reversal is located on closed field lines.

  12. Vector Magnetic Fields of A Solar Polar Region

    NASA Astrophysics Data System (ADS)

    Jin, Chunlan; Wang, Jingxiu

    2011-05-01

    We study the vector magnetic fields of a solar polar region (PR) based on Solar Optical Telescope/Spectro-Polarimeter measurements. To better understand the polar magnetic properties, we compare the observed polar field with that in two solar quiet regions at the limb (QRL) and the disk center (QRD), and with that in a region of a low-latitude coronal hole (CHR). The following results are discussed: (1) The average vertical flux density of PR is 16 G, while the average horizontal flux density is 91 G. If we assume that the observed polar field suffers the same amount of limb weakening in polarization measurements as the Sun's quiet region, the average unsigned flux density in the pole would be 54 G, 60% stronger than that in the CHR. (2) The kG field in the PR occupies 6.7% of the region. The magnetic filling factor in the PR is characterized by a two-peak distribution, which appears at a field strength close to 100 G and 1000 G, respectively. (3) For the network elements, a correlation holds between the vertical and horizontal flux densities, suggesting the same physical entity is manifested by the observed stronger vertical and horizontal components. (4) The ratio of the magnetic flux in the minority polarity to that in the dominant polarity is approximately 0.5, implying that only 1/3 of the magnetic flux in the PR opens to the interplanetary space. Exemplified with CHR by a quasi-linear force-free extrapolation of the observed magnetic field, we find that the photospheric open flux is not always associated with strong vertical magnetic elements.

  13. ABRUPT LONGITUDINAL MAGNETIC FIELD CHANGES IN FLARING ACTIVE REGIONS

    SciTech Connect

    Petrie, G. J. D.; Sudol, J. J.

    2010-12-01

    We characterize the changes in the longitudinal photospheric magnetic field during 38 X-class and 39 M-class flares within 65{sup 0} of disk center using 1 minute GONG magnetograms. In all 77 cases, we identify at least one site in the flaring active region where clear, permanent, stepwise field changes occurred. The median duration of the field changes was about 15 minutes and was approximately equal for X-class and for M-class flares. The absolute values of the field changes ranged from the detection limit of {approx}10 G to as high as {approx}450 G in two exceptional cases. The median value was 69 G. Field changes were significantly stronger for X-class than for M-class flares and for limb flares than for disk-center flares. Longitudinal field changes less than 100 G tended to decrease longitudinal field strengths, both close to disk center and close to the limb, while field changes greater than 100 G showed no such pattern. Likewise, longitudinal flux strengths tended to decrease during flares. Flux changes, particularly net flux changes near disk center, correlated better than local field changes with GOES peak X-ray flux. The strongest longitudinal field and flux changes occurred in flares observed close to the limb. We estimate the change of Lorentz force associated with each flare and find that this is large enough in some cases to power seismic waves. We find that longitudinal field decreases would likely outnumber increases at all parts of the solar disk within 65{sup 0} of disk center, as in our observations, if photospheric field tilts increase during flares as predicted by Hudson et al.

  14. Chromospheric magnetic fields of an active region filament

    NASA Astrophysics Data System (ADS)

    Xu, Z.; Solanki, S.; Lagg, A.

    2012-06-01

    Vector magnetic fields of an active region filament are co-spatially and co-temporally mapped in photosphere and upper chromosphere, by using spectro-polarimetric observations made by Tenerife Infrared Polarimeter (TIP II) at the German Vacuum Tower Telescope (VTT). A Zeeman-based ME inversion is performed on the full Stokes vectors of both the photospheric Si I 1082.7 nm and the chromospheric He I 1083.0 nm lines. We found that the strong magnetic fields, with the field strength of 600 - 800 G in the He I line formation height, are not uncommon among AR filaments. But such strong magnetic field is not always found in AR filaments.

  15. REGIONAL-SCALE WIND FIELD CLASSIFICATION EMPLOYING CLUSTER ANALYSIS

    SciTech Connect

    Glascoe, L G; Glaser, R E; Chin, H S; Loosmore, G A

    2004-06-17

    The classification of time-varying multivariate regional-scale wind fields at a specific location can assist event planning as well as consequence and risk analysis. Further, wind field classification involves data transformation and inference techniques that effectively characterize stochastic wind field variation. Such a classification scheme is potentially useful for addressing overall atmospheric transport uncertainty and meteorological parameter sensitivity issues. Different methods to classify wind fields over a location include the principal component analysis of wind data (e.g., Hardy and Walton, 1978) and the use of cluster analysis for wind data (e.g., Green et al., 1992; Kaufmann and Weber, 1996). The goal of this study is to use a clustering method to classify the winds of a gridded data set, i.e, from meteorological simulations generated by a forecast model.

  16. Regional United States electric field and GIC hazard impacts (Invited)

    NASA Astrophysics Data System (ADS)

    Gannon, J. L.; Balch, C. C.; Trichtchenko, L.

    2013-12-01

    Geomagnetically Induced Currents (GICs) are primarily driven by impulsive geomagnetic disturbances created by the interaction between the Earth's magnetosphere and sharp velocity, density, and magnetic field enhancements in the solar wind. However, the magnitude of the induced electric field response at the ground level, and therefore the resulting hazard to the bulk power system, is determined not only by magnetic drivers, but also by the underlying geology. Convolution techniques are used to calculate surface electric fields beginning from the spectral characteristics of magnetic field drivers and the frequency response of the local geology. Using these techniques, we describe historical scenarios for regions across the United States, and the potential impact of large events on electric power infrastructure.

  17. Quasistatic electric field structures and field-aligned currents in the polar cusp region

    NASA Astrophysics Data System (ADS)

    Jacobsen, K. S.; Moen, J. I.; Pedersen, A.

    2010-10-01

    Cluster data have been examined for quasi-stationary electric field structures and field-aligned currents (FACs) in the vicinity of the dayside cusp region. We have related the measurements to the Region 1/Region 2 (R1/R2) current system and the cusp current system. It has been theoretically proposed that the dayside R1 current may be located on open field lines, and experimental evidence has been shown for R1 currents partially on open field lines. We document that R1 currents may flow entirely on open field lines. The electric field structures are found to occur at plasma density gradients in the cusp. They are associated with strong FACs with current directions that are consistent with the cusp currents. This indicates that the electric field structures are closely coupled to the cusp current system. The electric equipotential structures linking the perpendicular electric fields seen at Cluster altitudes to field-aligned electric fields at lower altitudes fall into one of two categories: S shape or U shape. Both types are found at both the equatorward edge of the cusp ion dispersion and at the equatorward edge of injection events within the cusp. Previous studies in the nightside auroral region attributed the S-shaped potential structures to the boundary transition between the low-density polar cap and the high-density plasma sheet, concluding that the shape of the electric potential structure depends on whether the plasma populations on each side of the structure can support intense currents. This explanation is not applicable for the S-shaped structures observed in the dayside cusp region.

  18. Active Region Filaments Might Harbor Weak Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Díaz Baso, C. J.; Martínez González, M. J.; Asensio Ramos, A.

    2016-05-01

    Recent spectropolarimetric observations of active region filaments have revealed polarization profiles with signatures typical of the strong field Zeeman regime. The conspicuous absence in those observations of scattering polarization and Hanle effect signatures was then pointed out by some authors. This was interpreted as either a signature of mixed “turbulent” field components or as a result of optical thickness. In this article, we present a natural scenario to explain these Zeeman-only spectropolarimetric observations of active region (AR) filaments. We propose a two-component model, one on top of the other. Both components have horizontal fields, with the azimuth difference between them being close to 90°. The component that lies lower in the atmosphere is permeated by a strong field of the order of 600 G, while the upper component has much weaker fields, of the order of 10 G. The ensuing scattering polarization signatures of the individual components have opposite signs, so its combination along the line of sight reduces—and even can cancel out—the Hanle signatures, giving rise to an apparent Zeeman-only profile. This model is also applicable to other chromospheric structures seen in absorption above ARs.

  19. Automated detection of open magnetic field regions in EUV images

    NASA Astrophysics Data System (ADS)

    Krista, Larisza Diana; Reinard, Alysha

    2016-05-01

    Open magnetic regions on the Sun are either long-lived (coronal holes) or transient (dimmings) in nature, but both appear as dark regions in EUV images. For this reason their detection can be done in a similar way. As coronal holes are often large and long-lived in comparison to dimmings, their detection is more straightforward. The Coronal Hole Automated Recognition and Monitoring (CHARM) algorithm detects coronal holes using EUV images and a magnetogram. The EUV images are used to identify dark regions, and the magnetogam allows us to determine if the dark region is unipolar - a characteristic of coronal holes. There is no temporal sensitivity in this process, since coronal hole lifetimes span days to months. Dimming regions, however, emerge and disappear within hours. Hence, the time and location of a dimming emergence need to be known to successfully identify them and distinguish them from regular coronal holes. Currently, the Coronal Dimming Tracker (CoDiT) algorithm is semi-automated - it requires the dimming emergence time and location as an input. With those inputs we can identify the dimming and track it through its lifetime. CoDIT has also been developed to allow the tracking of dimmings that split or merge - a typical feature of dimmings.The advantage of these particular algorithms is their ability to adapt to detecting different types of open field regions. For coronal hole detection, each full-disk solar image is processed individually to determine a threshold for the image, hence, we are not limited to a single pre-determined threshold. For dimming regions we also allow individual thresholds for each dimming, as they can differ substantially. This flexibility is necessary for a subjective analysis of the studied regions. These algorithms were developed with the goal to allow us better understand the processes that give rise to eruptive and non-eruptive open field regions. We aim to study how these regions evolve over time and what environmental

  20. Large scale photospheric magnetic field: The diffusion of active region fields

    NASA Technical Reports Server (NTRS)

    Schatten, K. H.; Leighton, R. B.; Howard, R.; Wilcox, J. M.

    1972-01-01

    The large-scale phototospheric magnetic field was computed by allowing observed active region fields to diffuse and to be sheared by differential rotation in accordance with the Leighton (1969) magneto-kinematic model of the solar cycle. The differential rotation of the computed field patterns as determined by autocorrelation curves is similar to that of the observed photospheric field, and poleward of 20 deg. latitude both are significantly different from the differential rotation of the long-lived sunspots (Newton and Nunn, 1951) used as an input into the computations.

  1. Phase unwrapping using region-based markov random field model.

    PubMed

    Dong, Ying; Ji, Jim

    2010-01-01

    Phase unwrapping is a classical problem in Magnetic Resonance Imaging (MRI), Interferometric Synthetic Aperture Radar and Sonar (InSAR/InSAS), fringe pattern analysis, and spectroscopy. Although many methods have been proposed to address this problem, robust and effective phase unwrapping remains a challenge. This paper presents a novel phase unwrapping method using a region-based Markov Random Field (MRF) model. Specifically, the phase image is segmented into regions within which the phase is not wrapped. Then, the phase image is unwrapped between different regions using an improved Highest Confidence First (HCF) algorithm to optimize the MRF model. The proposed method has desirable theoretical properties as well as an efficient implementation. Simulations and experimental results on MRI images show that the proposed method provides similar or improved phase unwrapping than Phase Unwrapping MAx-flow/min-cut (PUMA) method and ZpM method.

  2. Phase unwrapping using region-based markov random field model.

    PubMed

    Dong, Ying; Ji, Jim

    2010-01-01

    Phase unwrapping is a classical problem in Magnetic Resonance Imaging (MRI), Interferometric Synthetic Aperture Radar and Sonar (InSAR/InSAS), fringe pattern analysis, and spectroscopy. Although many methods have been proposed to address this problem, robust and effective phase unwrapping remains a challenge. This paper presents a novel phase unwrapping method using a region-based Markov Random Field (MRF) model. Specifically, the phase image is segmented into regions within which the phase is not wrapped. Then, the phase image is unwrapped between different regions using an improved Highest Confidence First (HCF) algorithm to optimize the MRF model. The proposed method has desirable theoretical properties as well as an efficient implementation. Simulations and experimental results on MRI images show that the proposed method provides similar or improved phase unwrapping than Phase Unwrapping MAx-flow/min-cut (PUMA) method and ZpM method. PMID:21096819

  3. Measuring Magnetic Fields in Photoionized Interstellar Plasmas (HII Regions)

    NASA Astrophysics Data System (ADS)

    Spangler, Steven; Costa, Allison

    2015-11-01

    Hot luminous stars photoionize the interstellar gas around them, creating plasmas with a very high ionization fraction. In astronomical terminology, these are called HII regions. They are dynamic plasmas, expanding due to overpressure with respect to the interstellar medium. We are making diagnostic measurements to determine the strength and structure of magnetic fields in these objects. This paper presents our results on the Rosette Nebula. We diagnose the magnetic field in the Rosette by measurements of Faraday rotation on lines of sight passing through the nebula. These measurements are made with the Very Large Array radio telescope of the National Radio Astronomy Observatory. We have measurements of the rotation measure for 18 lines of sight. Values of the mean, line of sight component of the magnetic field range from about 3 to 5 microGauss. We will discuss comparison of these measurements with models for modification of the interstellar magnetic field by an HII region. This work was supported by grants AST09-07911 and ATM09-56901 from the National Science Foundation.

  4. Regional Geomagnetic Field Model for Croatia at 2009.5

    NASA Astrophysics Data System (ADS)

    Vujić, Eugen; Brkić, Mario; Kovács, Peter

    2016-02-01

    Geomagnetic data of north, east, and vertical components at Croatian repeat stations and ground survey sites, as well as European geomagnetic observatories and repeat stations, were used to obtain a regional geomagnetic model over Croatia at 2009.5 epoch. Different models were derived, depending on input data, and three modelling techniques were used: Taylor Polynomial, Adjusted Spherical Harmonic Analysis, and Spherical Harmonic Analysis. It was derived that the most accurate model over Croatia was the one when only Croatian data were used, and by using the Adjusted Spherical Harmonic Analysis. Based on Croatian repeat stations' data in the interval 2007.5-2010.5, and a global Enhanced Magnetic Model, it was possible to estimate the crustal field at those sites. It was also done by taking into account the empirical adjustment for long-term external field variations. The higher crustal field values were found at those stations which are on or close to the Adriatic anomaly.

  5. Regional and local geologic structure of the Momotombo field, Nicaragua

    SciTech Connect

    Goldsmith, L.H.

    1980-09-01

    The regional geologic-tectonic setting of northwestern Nicaragua is the result of subduction. Differential plate margin movement and segmentation formed a deep rift paralleling the Middle American Trench. Deep-seated shear faults provided access to sublithospheric magmas to create the Nicaraguan volcanic chain. Volcan Momotombo is the southernmost volcano of the Marabios Range of northern Nicaragua. It hosts a proven geothermal resource known as the Momotombo field, located within a small graben structure and measuring less than one square kilometer. This geothermally productive area appears not to be a geothermal reservoir, but rather part of a thermal convection system. Wells in the central and eastern part of the field have diminished in output and temperature. The presence of a temperature inversion zone, clearly distinguishable in the eastern end of the field, indicates that no conductive heating of the productive zone is taking place.

  6. Magnetic field configuration in a flaring active region

    NASA Astrophysics Data System (ADS)

    Palacios, J.; Balmaceda, L. A.; Vieira, L. E.

    2015-10-01

    The Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) provides continuous monitoring of the Sun's vector magnetic field through full-disk photospheric data with both high cadence and high spatial resolution. Here we investigate the evolution of AR 11249 from March 6 to March 7, 2012. We make use of HMI Stokes imaging, SDO/SHARPs, the HMI magnetic field line-of-sight (LOS) maps and the transverse components of the magnetic field as well as LOS velocity maps in order to detect regions with significant flux emergence and/or cancellation. In addition, we apply the Local Correlation Tracking (LCT) technique to the total and signed magnetic flux data and derive maps of horizontal velocity. From this analysis, we were able to pinpoint localized shear regions (and a shear channel) where penumbrae and pore formation areas, with strong linear polarization signals, are stretched and squeezed, showing also important downflows and upflows. We have also utilized Hinode/SP data and compared them to the HMI-SHARPs and the HMI-Stokes spectrograms. The aforementioned shear channel seems to correspond well with the X-class flare main channel of March 7 2012, as observed in AIA/SDO 171, 304 and 1600 Å.

  7. Quasistatic electric field structures and field-aligned currents in the polar cusp region

    NASA Astrophysics Data System (ADS)

    Jacobsen, Knut; Moen, Joran; Pedersen, Arne

    2010-05-01

    Quasistatic electric field structures in the vicinity of the cusp have been studied using Cluster data. There are two categories of electric potential structures, S-shaped and U-shaped. In previous studies in the nightside auroral region, the S-shaped potential was uniquely related to the boundary transition between low density and high density plasma regimes, leading to the conclusion that the electric field profile depends on whether the plasma populations on each side of the boundary can support intense field-aligned and Pedersen currents. In this study in the dayside cusp this is not the case, and a different explanation has to be sought. Most electric field structures are associated with the start of the cusp ion dispersion or with injection signatures within the cusp, and the field-aligned currents associated with these structures are found to be consistent with the cusp currents expected for the IMF By polarity at the time. This indicates that the electric field structures are generated by the cusp current system, or modified by the cusp current system to be consistent with the required currents. Furthermore, we provide firm evidence for the dayside Region 1 current to be located on open field lines, which have been postulated but to our knowledge heretofore not experimentally verified.

  8. Quantifying solar superactive regions with vector magnetic field observations

    NASA Astrophysics Data System (ADS)

    Chen, A. Q.; Wang, J. X.

    2012-07-01

    Context. The vector magnetic field characteristics of superactive regions (SARs) hold the key for understanding why SARs are extremely active and provide the guidance in space weather prediction. Aims: We aim to quantify the characteristics of SARs using the vector magnetograms taken by the Solar Magnetic Field Telescope at Huairou Solar Observatory Station. Methods: The vector magnetic field characteristics of 14 SARs in solar cycles 22 and 23 were analyzed using the following four parameters: 1) the magnetic flux imbalance between opposite polarities; 2) the total photospheric free magnetic energy; 3) the length of the magnetic neutral line with its steep horizontal magnetic gradient; and 4) the area with strong magnetic shear. Furthermore, we selected another eight large and inactive active regions (ARs), which are called fallow ARs (FARs), to compare them with the SARs. Results: We found that most of the SARs have a net magnetic flux higher than 7.0 × 1021 Mx, a total photospheric free magnetic energy higher than 1.0 × 1024 erg cm-1, a magnetic neutral line with a steep horizontal magnetic gradient (≥300 G Mm-1) longer than 30 Mm, and an area with strong magnetic shear (shear angle ≥ 80°) greater than 100 Mm2. In contrast, the values of these parameters for the FARs are mostly very low. The Pearson χ2 test was used to examine the significance of the difference between the SARs and FARs, and the results indicate that these two types of ARs can be fairly distinguished by each of these parameters. The significance levels are 99.55%, 99.98%, 99.98%, and 99.96%, respectively. However, no single parameter can distinguish them perfectly. Therefore we propose a composite index based on these parameters, and find that the distinction between the two types of ARs is also significant with a significance level of 99.96%. These results are useful for a better physical understanding of the SAR and FAR.

  9. 5 CFR Appendix II to Part 1201 - Appropriate Regional or Field Office for Filing Appeals

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 5 Administrative Personnel 3 2011-01-01 2011-01-01 false Appropriate Regional or Field Office for... Regional or Field Office for Filing Appeals All submissions shall be addressed to the Regional Director, if submitted to a regional office, or the Chief Administrative Judge, if submitted to a field office,...

  10. 5 CFR Appendix II to Part 1201 - Appropriate Regional or Field Office for Filing Appeals

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 3 2010-01-01 2010-01-01 false Appropriate Regional or Field Office for... Regional or Field Office for Filing Appeals All submissions shall be addressed to the Regional Director, if submitted to a regional office, or the Chief Administrative Judge, if submitted to a field office,...

  11. An analysis of the flow field in the region of the ASRM field joints

    NASA Technical Reports Server (NTRS)

    Dill, Richard A.; Whitesides, Harold R.

    1992-01-01

    The flow field in the region of a solid rocket motor field joint is very important since fluid dynamic and mechanical propellant stresses can couple to cause a motor failure at a joint. Presented here is an examination of the flow field in the region of the Advanced Solid Rocket Motor (ASRM) field joints. The analyses were performed as a first step in assessing the design of the ASRM forward and aft field joints in order to assure the proper operation of the motor prior to further development of test firing. The analyses presented here were performed by employing a two-dimensional axisymmetric assumption. Fluent/BFC, a three dimensional full Navier-Stokes flow field code, was used to make the numerical calculations. This code utilizes a staggered grid formulation along with the SIMPLER numerical algorithm. Wall functions are used to determine the character of the laminar sublayer, and a standard kappa-epsilon turbulence model is used to close the fluid dynamic equations. The analyses performed to this date verify that the ASRM field joint design operates properly. The fluid dynamic stresses at the field joints are small due to the inherent design of the field joints. A problem observed in some other solid rocket motors is that large fluid dynamic stresses are generated at the motor joint on the downstream propellant grain due to forward facing step geometries. The design of the ASRM field joints are such that this is not a problem as shown by the analyses. Also, the analyses of the inhibitor stub left protruding into the port flow from normal propellant burn back show that more information is necessary to complete these analyses. These analyses were performed as parametric analyses in relation to the height of the inhibitor stub left protruding into the motor port. A better estimate of the amount of the inhibitor stub remaining at later burn times must be determined since the height which the inhibitor stub protrudes into the port flow drastically affects the fluid

  12. An analysis of the flow field in the region of the ASRM field joints

    NASA Astrophysics Data System (ADS)

    Dill, Richard A.; Whitesides, Harold R.

    1992-07-01

    The flow field in the region of a solid rocket motor field joint is very important since fluid dynamic and mechanical propellant stresses can couple to cause a motor failure at a joint. Presented here is an examination of the flow field in the region of the Advanced Solid Rocket Motor (ASRM) field joints. The analyses were performed as a first step in assessing the design of the ASRM forward and aft field joints in order to assure the proper operation of the motor prior to further development of test firing. The analyses presented here were performed by employing a two-dimensional axisymmetric assumption. Fluent/BFC, a three dimensional full Navier-Stokes flow field code, was used to make the numerical calculations. This code utilizes a staggered grid formulation along with the SIMPLER numerical algorithm. Wall functions are used to determine the character of the laminar sublayer, and a standard kappa-epsilon turbulence model is used to close the fluid dynamic equations. The analyses performed to this date verify that the ASRM field joint design operates properly. The fluid dynamic stresses at the field joints are small due to the inherent design of the field joints. A problem observed in some other solid rocket motors is that large fluid dynamic stresses are generated at the motor joint on the downstream propellant grain due to forward facing step geometries. The design of the ASRM field joints are such that this is not a problem as shown by the analyses. Also, the analyses of the inhibitor stub left protruding into the port flow from normal propellant burn back show that more information is necessary to complete these analyses. These analyses were performed as parametric analyses in relation to the height of the inhibitor stub left protruding into the motor port. A better estimate of the amount of the inhibitor stub remaining at later burn times must be determined since the height which the inhibitor stub protrudes into the port flow drastically affects the fluid

  13. Magnetic field measurements in and above a limb active region

    NASA Astrophysics Data System (ADS)

    Philip, Judge

    2013-07-01

    We analyze spectropolarimetric data of a limb active region (NOAA 11302) obtained on September 22nd 2011 using the Facility Infrared Spectrometer (FIRS) at the Dunn Solar Telescope (DST). Stokes profiles including lines of Si I 1028.7 nm and He I 1083 nm were obtained in three scans over a 45"x75" area. Simultaneous narrow band Ca II K and G-band intensity data were acquired with a cadence of 5s at the DST. The He I data show not only typical active region polarization signatures, but also signatures in plumes -- cool post flare loops -- which extend many Mm into the corona across the visible limb. The plumes have remarkably uniform brightness, and the plume plasma is significantly Doppler shifted as it drains from the corona. Using carefully constructed observing and calibration sequences and applying Principal Component Analysis to remove instrumental artifacts, we achieved a polarization sensitivity approaching 0.02%. With this sensitivity we attempt to diagnose the vector magnetic fields and plasma properties of chromospheric and cool coronal material in and above NOAA 11302. Inversions using various radiative transfer models in the HAZEL code are remarkably consistent with the idea that plume spectra are formed in a simple, slab-like geometry, but that the ``disk'' spectra are formed under more traditional models (Milne-Eddington). The inverted magnetic data of He I lines are compared with photospheric inversions of DST Si I and Fe I data from the Solar Dynamics Observatory.

  14. Generation and Suppression of E Region Artificial Field Aligned Irregularities

    NASA Astrophysics Data System (ADS)

    Miceli, R. J.; Hysell, D. L.; Munk, J.; Han, S.

    2012-12-01

    Artificial field-aligned plasma density irregularities (FAIs) were generated in the E region of the ionosphere above the High Frequency Active Auroral Research Program (HAARP) facility during campaigns in May and August of 2012 and were quantified using a 30 MHz coherent scatter radar in Homer, Alaska. The purpose of the experiment was to analyze the X-mode suppression of FAIs generated from O-mode heating and to measure the threshold required to excite thermal parametric instabilities. The irregularities were excited by gradually increasing the power of a zenith pointing O-mode emission transmitted at a frequency of 2.75 MHz. To suppress the irregularities, a second X-mode emission at a higher frequency was added on alternating power cycles. The Homer radar measured the signal-to-noise ratio, Doppler shift, and spectral width of echoes reflected from the irregularities. We will calculate the threshold electric field required to excite the irregularities and compare with similar experiments in order to better understand the thermal parametric instability.

  15. The effects of magnetic field in plume region on the performance of multi-cusped field thruster

    SciTech Connect

    Hu, Peng Liu, Hui Yu, Daren; Gao, Yuanyuan; Mao, Wei

    2015-10-15

    The performance characteristics of a Multi-cusped Field Thruster depending on the magnetic field in the plume region were investigated. Five magnetic field shielding rings were separately mounted near the exit of discharge channel to decrease the strength of magnetic field in the plume region in different levels, while the magnetic field in the upstream was well maintained. The test results show that the electron current increases with the decrease of magnetic field strength in the plume region, which gives rise to higher propellant utilization and lower current utilization. On the other hand, the stronger magnetic field in the plume region improves the performance at low voltages (high current mode) while lower magnetic field improves the performance at high voltages (low current mode). This work can provide some optimal design ideas of the magnetic strength in the plume region to improve the performance of thruster.

  16. Forecasting auroras from regional and global magnetic field measurements

    NASA Astrophysics Data System (ADS)

    Kauristie, Kirsti; Myllys, Minna; Partamies, Noora; Viljanen, Ari; Peitso, Pyry; Juusola, Liisa; Ahmadzai, Shabana; Singh, Vikramjit; Keil, Ralf; Martinez, Unai; Luginin, Alexej; Glover, Alexi; Navarro, Vicente; Raita, Tero

    2016-06-01

    We use the connection between auroral sightings and rapid geomagnetic field variations in a concept for a Regional Auroral Forecast (RAF) service. The service is based on statistical relationships between near-real-time alerts issued by the NOAA Space Weather Prediction Center and magnetic time derivative (dB/dt) values measured by five MIRACLE magnetometer stations located in Finland at auroral and sub-auroral latitudes. Our database contains NOAA alerts and dB/dt observations from the years 2002-2012. These data are used to create a set of conditional probabilities, which tell the service user when the probability of seeing auroras exceeds the average conditions in Fennoscandia during the coming 0-12 h. Favourable conditions for auroral displays are associated with ground magnetic field time derivative values (dB/dt) exceeding certain latitude-dependent threshold values. Our statistical analyses reveal that the probabilities of recording dB/dt exceeding the thresholds stay below 50 % after NOAA alerts on X-ray bursts or on energetic particle flux enhancements. Therefore, those alerts are not very useful for auroral forecasts if we want to keep the number of false alarms low. However, NOAA alerts on global geomagnetic storms (characterized with Kp values > 4) enable probability estimates of > 50 % with lead times of 3-12 h. RAF forecasts thus rely heavily on the well-known fact that bright auroras appear during geomagnetic storms. The additional new piece of information which RAF brings to the previous picture is the knowledge on typical storm durations at different latitudes. For example, the service users south of the Arctic Circle will learn that after a NOAA ALTK06 issuance in night, auroral spotting should be done within 12 h after the alert, while at higher latitudes conditions can remain favourable during the next night.

  17. Wide Field Imaging of the Hubble Deep Field-South Region III: Catalog

    NASA Technical Reports Server (NTRS)

    Palunas, Povilas; Collins, Nicholas R.; Gardner, Jonathan P.; Hill, Robert S.; Malumuth, Eliot M.; Rhodes, Jason; Teplitz, Harry I.; Woodgate, Bruce E.

    2002-01-01

    We present 1/2 square degree uBVRI imaging around the Hubble Deep Field - South. These data have been used in earlier papers to examine the QSO population and the evolution of the correlation function in the region around the HDF-S. The images were obtained with the Big Throughput Camera at CTIO in September 1998. The images reach 5 sigma limits of u approx. 24.4, B approx. 25.6, V approx. 25.3, R approx. 24.9 and I approx. 23.9. We present a catalog of approx. 22,000 galaxies. We also present number-magnitude counts and a comparison with other observations of the same field. The data presented here are available over the world wide web.

  18. Regional Ecorisk Field investigation, upper Clark Fork River Basin

    SciTech Connect

    Pastorok, R.; LaTier, A.; Ginn, T.

    1995-12-31

    The Regional Ecorisk Field Investigation was conducted at the Clark Fork River Superfund Site (Montana) to evaluate the relationships between plant communities and tailings deposits in riparian habitats and to evaluate food-chain transfer of trace elements to selected wildlife species. Stations were selected to represent a range of vegetation biomass (or cover) values and apparent impact of trace elements, with some areas of lush vegetation, some areas of mostly unvegetated soil (e.g., < 30 percent plant cover), and a gradient in between. For the evaluation of risk to wildlife, bioaccumulation of metals was evaluated in native or naturalized plants, terrestrial invertebrates, and the deer mouse (Peromyscus maniculatus). Potential reproductive effects in the deer mouse were evaluated by direct measurements. For other wildlife species, bioaccumulation data were interpreted in the context of food web exposure models. Total biomass and species richness of riparian plant communities are related to tailings content of soil as indicated by pH and metals concentrations. Risk to populations of omnivorous small mammals such as the deer mouse was not significant. Relative abundance and reproductive condition of the deer mouse were normal, even in areas of high metals enrichment. Based on exposure models and site-specific tissue residue data for dietary species, risk to local populations of predators such as red fox and American kestrel that feed on deer mice and terrestrial invertebrates is not significant. Risk to herbivores related to metals bioaccumulation in plant tissues is not significant. Population level effects in deer and other large wildlife are not expected because of the large home ranges of such species and compensatory demographic factors.

  19. Regional assemblages of Lygus (Heteroptera: Miridae) in Montana canola fields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sweep net sampling of canola (Brassica napus L.) was conducted in 2002 and 2003 to determine Lygus (Heteroptera: Miridae) species composition and parasitism levels in four regions of Montana. Regardless of region or seasonal change, Lygus elisus (Van Duzee) was the dominant species in all canola fi...

  20. Mapping Magnetic Fields in Star Forming Regions with BLASTPol

    NASA Astrophysics Data System (ADS)

    Fissel, Laura M.; Ade, Peter; Angilè, Francesco E.; Ashton, Peter; Benton, Steven J.; Devlin, Mark J.; Dober, Bradley; Fukui, Yasuo; Galitzki, Nicholas B.; Gandilo, Natalie; Klein, J. R.; Li, Zhi-Yun; Korotkov, Andrei; Martin, Peter G.; Matthews, Tristan; Moncelsi, Lorenzo; nakamura, fumitaka; Barth Netterfield, Calvin; Novak, Giles; Pascale, Enzo; Poidevin, Frédérick; Pereira Santos, Fábio; Savini, Giorgio; Scott, Douglas; Shariff, Jamil; Soler, Juan D.; Thomas, Nicholas; tucker, carole; Tucker, Gregory S.; Ward-Thompson, Derek

    2016-01-01

    A key outstanding question in our understanding of star formation is whether magnetic fields provide support against the gravitational collapse of their parent molecular clouds and cores. Direct measurement of magnetic field strength is observationally challenging, however observations of polarized thermal emission from dust grains aligned with respect to the local cloud magnetic field can be used to map out the magnetic field orientation in molecular clouds. Statistical comparisons between these submillimeter polarization maps and three-dimensional numerical simulations of magnetized star-forming clouds provide a promising method for constraining magnetic field strength. We present early results from a BLASTPol study of the nearby giant molecular cloud (GMC) Vela C, using data collected during a 2012 Antarctic flight. This sensitive balloon-borne polarimeter observed Vela C for 57 hours, yielding the most detailed submillimeter polarization map ever made of a GMC forming high mass stars. We find that most of the structure in p can be modeled by a power-law dependence on two quantities: the hydrogen column density and the local dispersion in magnetic field orientation. Our power-law model for p(N,S) provides new constraints for models of magnetized star-forming clouds and an important first step in the interpretation of the BLASTPol 2012 data set.

  1. Correlation between magnetic and electric field perturbations in the field-aligned current regions deduced from DE 2 observations

    NASA Technical Reports Server (NTRS)

    Ishii, M.; Sugiura, M.; Iyemori, T.; Slavin, J. A.

    1992-01-01

    The satellite-observed high correlations between magnetic and electric field perturbations in the high-latitude field-aligned current regions are investigated by examining the dependence of the relationship between Delta-B and E on spatial scale, using the electric and magnetic field data obtained by DE 2 in the polar regions. The results are compared with the Pedersen conductivity inferred from the international reference ionosphere model and the Alfven wave velocity calculated from the in situ ion density and magnetic field measurements.

  2. Nitrate leaching in californian rice fields: a field- and regional-scale assessment.

    PubMed

    Liang, X Q; Harter, T; Porta, L; van Kessel, C; Linquist, B A

    2014-05-01

    Irrigated croplands can be a major source of nitrate-N (NO-N) in groundwater due to leaching. In California, where high NO-N levels have been found in some areas of the Central Valley aquifer, the contribution from rice systems has not been determined. Nitrate leaching from rice systems was evaluated from soil cores (0-2 m), from the fate of N fertilizer in replicated microplots, and from about 145 regional groundwater wells. Soil NO-N concentrations were ≤3.3 mg kg (usually <1 mg kg) below the root zone (below 33 cm depth). In pore-water samples, NO-N was observed only below the root zone during the first 2 wk after the onset of flooding in either the growing season or the winter fallow period and was always ≤8.4 mg L. Fertilizer N accounted for 0 to 11.8% of NO-N in pore-water samples below the root zone. One year after application, based on an analysis of soil core samples, on average 2.5% of fertilizer N was recovered as N below the root zone (33-100 cm), possibly due to leaching in permeable soils or via preferential flow through cracks in heavy clay soils. Based on a regional assessment, groundwater samples from wells that are located in proximity to rice fields all had measured median NO-N and NO-N levels below 1 mg L. These results indicate that NO-N leaching from the majority of California rice systems poses little risk to groundwater under current crop management practices. PMID:25602817

  3. Nitrate leaching in californian rice fields: a field- and regional-scale assessment.

    PubMed

    Liang, X Q; Harter, T; Porta, L; van Kessel, C; Linquist, B A

    2014-05-01

    Irrigated croplands can be a major source of nitrate-N (NO-N) in groundwater due to leaching. In California, where high NO-N levels have been found in some areas of the Central Valley aquifer, the contribution from rice systems has not been determined. Nitrate leaching from rice systems was evaluated from soil cores (0-2 m), from the fate of N fertilizer in replicated microplots, and from about 145 regional groundwater wells. Soil NO-N concentrations were ≤3.3 mg kg (usually <1 mg kg) below the root zone (below 33 cm depth). In pore-water samples, NO-N was observed only below the root zone during the first 2 wk after the onset of flooding in either the growing season or the winter fallow period and was always ≤8.4 mg L. Fertilizer N accounted for 0 to 11.8% of NO-N in pore-water samples below the root zone. One year after application, based on an analysis of soil core samples, on average 2.5% of fertilizer N was recovered as N below the root zone (33-100 cm), possibly due to leaching in permeable soils or via preferential flow through cracks in heavy clay soils. Based on a regional assessment, groundwater samples from wells that are located in proximity to rice fields all had measured median NO-N and NO-N levels below 1 mg L. These results indicate that NO-N leaching from the majority of California rice systems poses little risk to groundwater under current crop management practices.

  4. Laboratory study of diffusion region with electron energization during high guide field reconnection

    NASA Astrophysics Data System (ADS)

    Yamasaki, K.; Inoue, S.; Kamio, S.; Watanabe, T. G.; Ushiki, T.; Guo, X.; Sugawara, T.; Matsuyama, K.; Kawakami, N.; Yamada, T.; Inomoto, M.; Ono, Y.

    2015-10-01

    Floating potential profile was measured around the X-point during high guide field reconnection in UTST merging experiment where the ratio of guide field ( Bg ) to reconnecting magnetic field ( Brec ) is Bg/Brec>10 . Floating potential measurement revealed that a quadrupole structure of electric potential is formed around the X-point during the fast reconnection phase due to the polarization by inductive electric field. Also, our floating potential measurement revealed the existence of parallel electric field in the vicinity of the X-point. While field-aligned components of inductive electric field ( E∥ind ) and electrostatic electric field ( E∥es ) cancel out with each other away from the X-point, E∥ind exceeds E∥es around the X-point, indicating the deviation from ideal MHD criterion within the region. The diffusion region extends in the outflow region and the scale length of region is an order of ion skin depth, which is quite different from the VTF experiment result. Based on the measured magnetic field and electric field profile, our particle trajectory analysis indicates that fast electrons with energies over 300 eV are produced within 1 μs around the X-point in the non-ideal MHD region. These results indicate that production of fast electrons or electron heating are expected to be observed in the vicinity of the X-point.

  5. H II REGION DRIVEN GALACTIC BUBBLES AND THEIR RELATIONSHIP TO THE GALACTIC MAGNETIC FIELD

    SciTech Connect

    Pavel, Michael D.; Clemens, D. P. E-mail: clemens@bu.edu

    2012-12-01

    The relative alignments of mid-infrared traced Galactic bubbles are compared to the orientation of the mean Galactic magnetic field in the disk. The orientations of bubbles in the northern Galactic plane were measured and are consistent with random orientations-no preferential alignment with respect to the Galactic disk was found. A subsample of H II region driven Galactic bubbles was identified, and as a single population they show random orientations. When this subsample was further divided into subthermal and suprathermal H II regions, based on hydrogen radio recombination linewidths, the subthermal H II regions showed a marginal deviation from random orientations, but the suprathermal H II regions showed significant alignment with the Galactic plane. The mean orientation of the Galactic disk magnetic field was characterized using new near-infrared starlight polarimetry and the suprathermal H II regions were found to preferentially align with the disk magnetic field. If suprathermal linewidths are associated with younger H II regions, then the evolution of young H II regions is significantly affected by the Galactic magnetic field. As H II regions age, they cease to be strongly linked to the Galactic magnetic field, as surrounding density variations come to dominate their morphological evolution. From the new observations, the ratios of magnetic-to-ram pressures in the expanding ionization fronts were estimated for younger H II regions.

  6. Scaling up from field to region for wind erosion prediction using a field-scale wind erosion model and GIS

    USGS Publications Warehouse

    Zobeck, T.M.; Parker, N.C.; Haskell, S.; Guoding, K.

    2000-01-01

    Factors that affect wind erosion such as surface vegetative and other cover, soil properties and surface roughness usually change spatially and temporally at the field-scale to produce important field-scale variations in wind erosion. Accurate estimation of wind erosion when scaling up from fields to regions, while maintaining meaningful field-scale process details, remains a challenge. The objectives of this study were to evaluate the feasibility of using a field-scale wind erosion model with a geographic information system (GIS) to scale up to regional levels and to quantify the differences in wind erosion estimates produced by different scales of soil mapping used as a data layer in the model. A GIS was used in combination with the revised wind erosion equation (RWEQ), a field-scale wind erosion model, to estimate wind erosion for two 50 km2 areas. Landsat Thematic Mapper satellite imagery from 1993 with 30 m resolution was used as a base map. The GIS database layers included land use, soils, and other features such as roads. The major land use was agricultural fields. Data on 1993 crop management for selected fields of each crop type were collected from local government agency offices and used to 'train' the computer to classify land areas by crop and type of irrigation (agroecosystem) using commercially available software. The land area of the agricultural land uses was overestimated by 6.5% in one region (Lubbock County, TX, USA) and underestimated by about 21% in an adjacent region (Terry County, TX, USA). The total estimated wind erosion potential for Terry County was about four times that estimated for adjacent Lubbock County. The difference in potential erosion among the counties was attributed to regional differences in surface soil texture. In a comparison of different soil map scales in Terry County, the generalised soil map had over 20% more of the land area and over 15% greater erosion potential in loamy sand soils than did the detailed soil map. As

  7. Capturing field-scale variability in crop performance across a regional-scale climosequence

    NASA Astrophysics Data System (ADS)

    Brooks, E. S.; Poggio, M.; Anderson, T. R.; Gasch, C.; Yourek, M. A.; Ward, N. K.; Magney, T. S.; Brown, D. J.; Huggins, D. R.

    2014-12-01

    With the increasing availability of variable rate technology for applying fertilizers and other agrichemicals in dryland agricultural production systems there is a growing need to better capture and understand the processes driving field scale variability in crop yield and soil water. This need for a better understanding of field scale variability has led to the recent designation of the R. J. Cook Agronomy Farm (CAF) (Pullman, WA, USA) as a United States Department of Agriculture Long-Term Agro-Ecosystem Research (LTAR) site. Field scale variability at the CAF is closely monitored using extensive environmental sensor networks and intensive hand sampling. As investigating land-soil-water dynamics at CAF is essential for improving precision agriculture, transferring this knowledge across the regional-scale climosequence is challenging. In this study we describe the hydropedologic functioning of the CAF in relation to five extensively instrumented field sites located within 50 km in the same climatic region. The formation of restrictive argillic soil horizons in the wetter, cooler eastern edge of the region results in the development of extensive perched water tables, surface saturation, and surface runoff, whereas excess water is not an issue in the warmer, drier, western edge of the region. Similarly, crop and tillage management varies across the region as well. We discuss the implications of these regional differences on field scale management decisions and demonstrate how we are using proximal soil sensing and remote sensing imagery to better understand and capture field scale variability at a particular field site.

  8. Regional Field Verification -- Operational Results from Four Small Wind Turbines in the Pacific Northwest: Preprint

    SciTech Connect

    Sinclair, K.; Raker, J.

    2006-08-01

    This paper describes four small wind turbines installed in the Pacific Northwest under DOE/NREL's Regional Field Verification Program between 2003 and 2004 and summarizes operational data from each site.

  9. Influence of non-stationary field of magnetospheric convection on the D-region

    NASA Technical Reports Server (NTRS)

    Eliseyev, A. YU.; Kashpar, Yu. V.; Nikitin, A. A.

    1989-01-01

    Perturbations of F region electron density caused by the extension of magnetospheric convection electric field to middle latitudes are already well known. For the D region of the first observations are believed to be reported by Eliseyev, Kashpar and Nikitin (1988). On several occasions, following the southward turning of the Bz-component of interplanetary magnetic field (IMF) small disturbances of the D region electron density were detected at night by steep-incidence VLF sounding, which may be attributed to the influence of the penetrated convection electric field (CEF). Some evidence is given of a local time dependence of the CEF effect in the D region and a rather good correlation is demonstrated at the initial stage of disturbance between high latitude magnetic field variations and simultaneous perturbation of the midlatitude ionospheric reflection height.

  10. HELIOSHEATH MAGNETIC FIELDS BETWEEN 104 AND 113 AU IN A REGION OF DECLINING SPEEDS AND A STAGNATION REGION

    SciTech Connect

    Burlaga, L. F.; Ness, N. F. E-mail: nfnudel@yahoo.com

    2012-04-10

    We examine the relationships between the magnetic field and the radial velocity component V{sub R} observed in the heliosheath by instruments on Voyager 1 (V1). No increase in the magnetic field strength B was observed in a region where V{sub R} decreased linearly from 70 km s{sup -1} to 0 km s{sup -1} as plasma moved outward past V1. An unusually broad transition from positive to negative polarity was observed during a Almost-Equal-To 26 day interval when the heliospheric current sheet (HCS) moved below the latitude of V1 and the speed of V1 was comparable to the radial speed of the heliosheath flow. When V1 moved through a region where V{sub R} Almost-Equal-To 0 (the 'stagnation region'), B increased linearly with time by a factor of two, and the average of B was 0.14 nT. Nothing comparable to this was observed previously. The magnetic polarity was negative throughout the stagnation region for Almost-Equal-To 580 days until 2011 DOY 235, indicating that the HCS was below the latitude of V1. The average passage times of the magnetic holes and proton boundary layers were the same during 2009 and 2011, because the plasma moved past V1 during 2009 at the same speed that V1 moved through the stagnation region during 2011. The microscale fluctuations of B in the stagnation region during 2011 are qualitatively the same as those observed in the heliosheath during 2009. These results suggest that the stagnation region is a part of the heliosheath, rather than a 'transition region' associated with the heliopause.

  11. On the Electron Diffusion Region in Asymmetric Reconnection with a Guide Magnetic Field

    NASA Technical Reports Server (NTRS)

    Hesse, Michael; Liu, Yi-Hsin; Chen, Li-Jen; Bessho, Naoki; Kuznetsova, Masha; Birn, Joachim; Burch, James L.

    2016-01-01

    Particle-in-cell simulations in a 2.5-D geometry and analytical theory are employed to study the electron diffusion region in asymmetric reconnection with a guide magnetic field. The analysis presented here demonstrates that similar to the case without guide field, in-plane flow stagnation and null of the in-plane magnetic field are well separated. In addition, it is shown that the electric field at the local magnetic X point is again dominated by inertial effects, whereas it remains dominated by nongyrotropic pressure effects at the in-plane flow stagnation point. A comparison between local electron Larmor radii and the magnetic gradient scale lengths predicts that distribution should become nongyrotropic in a region enveloping both field reversal and flow stagnation points. This prediction is verified by an analysis of modeled electron distributions, which show clear evidence of mixing in the critical region.

  12. Fields and Flares: Understanding the Complex Magnetic Topologies of Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Murray, Sophie A.

    2013-01-01

    Sunspots are regions of decreased brightness on the visible surface of the Sun (photosphere) that are associated with strong magnetic fields. They have been found to be locations associated with solar flares, which occur when energy stored in sunspot magnetic fields is suddenly released. The processes involved in flaring and the link between sunspot magnetic fields and flares is still not fully understood, and this thesis aims to gain a better understanding of these topics. The magnetic field evolution of a number of sunspot regions is examined using high spatial resolution data from the Hinode spacecraft. The research presented in this thesis gives insight into both photospheric and coronal magnetic field evolution of flaring regions. Significant increases in vertical field strength, current density, and field inclination angle towards the vertical are observed in the photosphere just hours before a flare occurs, which is on much shorter timescales than previously studied. First observations of spatial changes in field inclination across a magnetic neutral line (generally believed to be a typical source region of flares) are also discovered. 3D magnetic field extrapolation methods are used to study the coronal magnetic field, using the photospheric magnetic field data as a boundary condition. Magnetic energy and free magnetic energy are observed to increase significantly a few hours before a flare, and decrease afterwards, which is a similar trend to the photospheric field parameter changes observed. Evidence of partial Taylor relaxation is also detected after a flare, as predicted by several previous studies. The results outlined in this thesis show that this particular field of research is vital in furthering our understanding of the magnetic nature of sunspots and its link to flare processes.

  13. Criteria for and statistics of electron diffusion regions associated with subsolar magnetic field reconnection

    NASA Astrophysics Data System (ADS)

    Mozer, F. S.

    2005-12-01

    The definition of "electron diffusion regions" and criteria for identifying them in magnetic field reconnection events are given. By employing these criteria and further constraints on the measured parallel electric field, 117 electron diffusion regions have been found in searching through 3 years of Polar satellite subsolar data. They exist in filamentary currents in which parallel electric fields and depressed plasma densities are found and where the electron beta is generally less than 1. The average parallel electric field in these events is about 30% of the average 38 mV/m perpendicular field. The size of these regions is the order of the electron skin depth or less. These electron diffusion regions are topological boundaries in the electron and magnetic field line flows because the components of E × B/B2 on their opposite sides are frequently different. These regions are found throughout the magnetopause but mainly at the magnetospheric separatrix. The divergence of the pressure tensor in the Generalized Ohm's Law may be the leading term that balances the parallel electric field if the observed large plasma density variations (and hence electron pressure variations) were spatial and not temporal. The picture resulting from this data is of a magnetopause that is highly structured and filamentary and very different from a linear, laminar, symmetric structure sometimes considered in theories or simulations. However, it is emphasized that events such as those described have been found in fewer than 20% of the magnetopauses examined, so the conventional picture may be more prevalent.

  14. 77 FR 16852 - Notice of Reclassification of Five Regional Offices to Investigative Field Offices: Seattle, WA...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-22

    ...: Seattle, WA; New Orleans, LA; Baltimore, MD; Tampa, FL; and Detroit, MI; Closure of Two Investigative..., Washington; New Orleans, Louisiana; Baltimore, Maryland; Tampa, Florida; and Detroit, Michigan regional..., Louisiana; Baltimore, Maryland; Tampa, Florida; and Detroit, Michigan regional offices as field offices...

  15. Flexible gas insulated transmission line having regions of reduced electric field

    DOEpatents

    Cookson, Alan H.; Fischer, William H.; Yoon, Kue H.; Meyer, Jeffry R.

    1983-01-01

    A gas insulated transmission line having radially flexible field control means for reducing the electric field along the periphery of the inner conductor at predetermined locations wherein the support insulators are located. The radially flexible field control means of the invention includes several structural variations of the inner conductor, wherein careful controlling of the length to depth of surface depressions produces regions of reduced electric field. Several embodiments of the invention dispose a flexible connector at the predetermined location along the inner conductor where the surface depressions that control the reduced electric field are located.

  16. How Much Energy Can Be Stored in Solar Active Region Magnetic Fields?

    NASA Astrophysics Data System (ADS)

    Linker, J.; Downs, C.; Torok, T.; Titov, V. S.; Lionello, R.; Mikic, Z.; Riley, P.

    2015-12-01

    Major solar eruptions such as X-class flares and very fast coronal mass ejections usually originate in active regions on the Sun. The energy that powers these events is believed to be stored as free magnetic energy (energy above the potential field state) prior to eruption. While coronal magnetic fields are not in general force-free, active regions have very strong magnetic fields and at low coronal heights the plasma beta is therefore very small, making the field (in equilibrium) essentially force-free. The Aly-Sturrock theorem shows that the energy of a fully force-free field cannot exceed the energy of the so-called open field. If the theorem holds, this places an upper limit on the amount of free energy that can be stored: the maximum free energy (MFE) is the difference between the open field energy and the potential field energy of the active region. In thermodynamic MHD simulations of a major eruption (the July 14, 2000 'Bastille' day event) and a modest event (February 13, 2009, we have found that the MFE indeed bounds the energy stored prior to eruption. We compute the MFE for major eruptive events in cycles 23 and 24 to investigate the maximum amount of energy that can be stored in solar active regions.Research supported by AFOSR, NASA, and NSF.

  17. Regional-Scale High-Latitude Extreme Geoelectric Fields Pertaining to Geomagnetically Induced Currents

    NASA Technical Reports Server (NTRS)

    Pulkkinen, Antti; Bernabeu, Emanuel; Eichner, Jan; Viljanen, Ari; Ngwira, Chigomezyo

    2015-01-01

    Motivated by the needs of the high-voltage power transmission industry, we use data from the high-latitude IMAGE magnetometer array to study characteristics of extreme geoelectric fields at regional scales. We use 10-s resolution data for years 1993-2013, and the fields are characterized using average horizontal geoelectric field amplitudes taken over station groups that span about 500-km distance. We show that geoelectric field structures associated with localized extremes at single stations can be greatly different from structures associated with regionally uniform geoelectric fields, which are well represented by spatial averages over single stations. Visual extrapolation and rigorous extreme value analysis of spatially averaged fields indicate that the expected range for 1-in-100-year extreme events are 3-8 V/km and 3.4-7.1 V/km, respectively. The Quebec reference ground model is used in the calculations.

  18. Dose discrepancies in the buildup region and their impact on dose calculations for IMRT fields

    SciTech Connect

    Hsu, Shu-Hui; Moran, Jean M.; Chen Yu; Kulasekere, Ravi; Roberson, Peter L.

    2010-05-15

    Purpose: Dose accuracy in the buildup region for radiotherapy treatment planning suffers from challenges in both measurement and calculation. This study investigates the dosimetry in the buildup region at normal and oblique incidences for open and IMRT fields and assesses the quality of the treatment planning calculations. Methods: This study was divided into three parts. First, percent depth doses and profiles (for 5x5, 10x10, 20x20, and 30x30 cm{sup 2} field sizes at 0 deg., 45 deg., and 70 deg. incidences) were measured in the buildup region in Solid Water using an Attix parallel plate chamber and Kodak XV film, respectively. Second, the parameters in the empirical contamination (EC) term of the convolution/superposition (CVSP) calculation algorithm were fitted based on open field measurements. Finally, seven segmental head-and-neck IMRT fields were measured on a flat phantom geometry and compared to calculations using {gamma} and dose-gradient compensation (C) indices to evaluate the impact of residual discrepancies and to assess the adequacy of the contamination term for IMRT fields. Results: Local deviations between measurements and calculations for open fields were within 1% and 4% in the buildup region for normal and oblique incidences, respectively. The C index with 5%/1 mm criteria for IMRT fields ranged from 89% to 99% and from 96% to 98% at 2 mm and 10 cm depths, respectively. The quality of agreement in the buildup region for open and IMRT fields is comparable to that in nonbuildup regions. Conclusions: The added EC term in CVSP was determined to be adequate for both open and IMRT fields. Due to the dependence of calculation accuracy on (1) EC modeling, (2) internal convolution and density grid sizes, (3) implementation details in the algorithm, and (4) the accuracy of measurements used for treatment planning system commissioning, the authors recommend an evaluation of the accuracy of near-surface dose calculations as a part of treatment planning

  19. Dose discrepancies in the buildup region and their impact on dose calculations for IMRT fields

    PubMed Central

    Hsu, Shu-Hui; Moran, Jean M.; Chen, Yu; Kulasekere, Ravi; Roberson, Peter L.

    2010-01-01

    Purpose: Dose accuracy in the buildup region for radiotherapy treatment planning suffers from challenges in both measurement and calculation. This study investigates the dosimetry in the buildup region at normal and oblique incidences for open and IMRT fields and assesses the quality of the treatment planning calculations. Methods: This study was divided into three parts. First, percent depth doses and profiles (for 5×5, 10×10, 20×20, and 30×30 cm2 field sizes at 0°, 45°, and 70° incidences) were measured in the buildup region in Solid Water using an Attix parallel plate chamber and Kodak XV film, respectively. Second, the parameters in the empirical contamination (EC) term of the convolution∕superposition (CVSP) calculation algorithm were fitted based on open field measurements. Finally, seven segmental head-and-neck IMRT fields were measured on a flat phantom geometry and compared to calculations using γ and dose-gradient compensation (C) indices to evaluate the impact of residual discrepancies and to assess the adequacy of the contamination term for IMRT fields. Results: Local deviations between measurements and calculations for open fields were within 1% and 4% in the buildup region for normal and oblique incidences, respectively. The C index with 5%∕1 mm criteria for IMRT fields ranged from 89% to 99% and from 96% to 98% at 2 mm and 10 cm depths, respectively. The quality of agreement in the buildup region for open and IMRT fields is comparable to that in nonbuildup regions. Conclusions: The added EC term in CVSP was determined to be adequate for both open and IMRT fields. Due to the dependence of calculation accuracy on (1) EC modeling, (2) internal convolution and density grid sizes, (3) implementation details in the algorithm, and (4) the accuracy of measurements used for treatment planning system commissioning, the authors recommend an evaluation of the accuracy of near-surface dose calculations as a part of treatment planning commissioning

  20. Convective-region geometry as the cause of Uranus' and Neptune's unusual magnetic fields.

    PubMed

    Stanley, Sabine; Bloxham, Jeremy

    2004-03-11

    The discovery of Uranus' and Neptune's non-dipolar, non-axisymmetric magnetic fields destroyed the picture--established by Earth, Jupiter and Saturn--that planetary magnetic fields are dominated by axial dipoles. Although various explanations for these unusual fields have been proposed, the cause of such field morphologies remains unexplained. Planetary magnetic fields are generated by complex fluid motions in electrically conducting regions of the planets (a process known as dynamo action), and so are intimately linked to the structure and evolution of planetary interiors. Determining why Uranus and Neptune have different field morphologies is not only critical for studying the interiors of these planets, but also essential for understanding the dynamics of magnetic-field generation in all planets. Here we present three-dimensional numerical dynamo simulations that model the dynamo source region as a convecting thin shell surrounding a stably stratified fluid interior. We show that this convective-region geometry produces magnetic fields similar in morphology to those of Uranus and Neptune. The fields are non-dipolar and non-axisymmetric, and result from a combination of the stable fluid's response to electromagnetic stress and the small length scales imposed by the thin shell. PMID:15014493

  1. Convective-region geometry as the cause of Uranus' and Neptune's unusual magnetic fields.

    PubMed

    Stanley, Sabine; Bloxham, Jeremy

    2004-03-11

    The discovery of Uranus' and Neptune's non-dipolar, non-axisymmetric magnetic fields destroyed the picture--established by Earth, Jupiter and Saturn--that planetary magnetic fields are dominated by axial dipoles. Although various explanations for these unusual fields have been proposed, the cause of such field morphologies remains unexplained. Planetary magnetic fields are generated by complex fluid motions in electrically conducting regions of the planets (a process known as dynamo action), and so are intimately linked to the structure and evolution of planetary interiors. Determining why Uranus and Neptune have different field morphologies is not only critical for studying the interiors of these planets, but also essential for understanding the dynamics of magnetic-field generation in all planets. Here we present three-dimensional numerical dynamo simulations that model the dynamo source region as a convecting thin shell surrounding a stably stratified fluid interior. We show that this convective-region geometry produces magnetic fields similar in morphology to those of Uranus and Neptune. The fields are non-dipolar and non-axisymmetric, and result from a combination of the stable fluid's response to electromagnetic stress and the small length scales imposed by the thin shell.

  2. MAGNETIC FIELD TOPOLOGY AND THE THERMAL STRUCTURE OF THE CORONA OVER SOLAR ACTIVE REGIONS

    SciTech Connect

    Schrijver, Carolus J.; DeRosa, Marc L.; Title, Alan M.

    2010-08-20

    Solar extreme ultraviolet (EUV) images of quiescent active-region coronae are characterized by ensembles of bright 1-2 MK loops that fan out from select locations. We investigate the conditions associated with the formation of these persistent, relatively cool, loop fans within and surrounding the otherwise 3-5 MK coronal environment by combining EUV observations of active regions made with TRACE with global source-surface potential-field models based on the full-sphere photospheric field from the assimilation of magnetograms that are obtained by the Michelson Doppler Imager (MDI) on SOHO. We find that in the selected active regions with largely potential-field configurations these fans are associated with (quasi-)separatrix layers (QSLs) within the strong-field regions of magnetic plage. Based on the empirical evidence, we argue that persistent active-region cool-loop fans are primarily related to the pronounced change in connectivity across a QSL to widely separated clusters of magnetic flux, and confirm earlier work that suggested that neither a change in loop length nor in base field strengths across such topological features are of prime importance to the formation of the cool-loop fans. We discuss the hypothesis that a change in the distribution of coronal heating with height may be involved in the phenomenon of relatively cool coronal loop fans in quiescent active regions.

  3. Mechanism of formation of a dipole magnetic field in the central regions of active galaxies

    NASA Astrophysics Data System (ADS)

    Andreasyan, R. R.

    1996-01-01

    A model of the formation of large-scale magnetic fields of dipole configuration in the central regions (r ≈ 100 pc) of active galaxies is studied. It is assumed that these regions contain a rapidly rotating, highly ionized gas (Ω ≈ 5·10-15 sec, Ne ≈ 103 cm-3). Ionized matter escapes from the center of the region with a velocity of several hundred km/sec and is entrained by the rotation of the surrounding medium. Biermann's "battery" effect [L. Biermann, Z. Naturforsch., 5a, 65 (1950)] operates under such conditions, and circular electric currents are formed in the medium, which amplify the dipole magnetic fields. During the active phase of a galaxy, about 108 years, the magnetic field strength at the boundary of this region may reach 10-4 10-3 G.

  4. Fresnel-region fields and antenna noise-temperature calculations for advanced microwave sounding units

    NASA Technical Reports Server (NTRS)

    Schmidt, R. F.

    1982-01-01

    A transition from the antenna noise temperature formulation for extended noise sources in the far-field or Fraunhofer-region of an antenna to one of the intermediate near field or Fresnel-region is discussed. The effort is directed toward microwave antenna simulations and high-speed digital computer analysis of radiometric sounding units used to obtain water vapor and temperature profiles of the atmosphere. Fresnel-region fields are compared at various distances from the aperture. The antenna noise temperature contribution of an annular noise source is computed in the Fresnel-region (D squared/16 lambda) for a 13.2 cm diameter offset-paraboloid aperture at 60 GHz. The time-average Poynting vector is used to effect the computation.

  5. Effect of geometry on the nose-region flow-field of shuttle entry-configurations

    NASA Technical Reports Server (NTRS)

    Bertin, J. J.; Faria, H. T.

    1973-01-01

    In order to determine the convective heat-transfer distribution for the nose region of the space shuttle entry configurations, a three-dimensional flow-field is described which may include extensive regions of separated flow. Because of the complexity of the flow field for the nose region, experimental data are needed to define the relation between the nose geometry and the resultant flow field. According to theoretical solutions of the three-dimensional boundary layer, the boundary layer separates from the leeward generator of a blunted cone at an alpha equal to the cone half-angle. Separation results from the transverse pressure gradient, i.e., the velocity derivative due to crossflow. The boundary layer limiting streamlines converge toward the singular point of sep aration. The separated region is bounded by an ordinary line of separation.

  6. Magnetic field observations as Voyager 1 entered the heliosheath depletion region.

    PubMed

    Burlaga, L F; Ness, N F; Stone, E C

    2013-07-12

    Magnetic fields measured by Voyager 1 (V1) show that the spacecraft crossed the boundary of an unexpected region five times between days 210 and ~238 in 2012. The magnetic field strength B increased across this boundary from ≈0.2 to ≈0.4 nanotesla, and B remained near 0.4 nanotesla until at least day 270, 2012. The strong magnetic fields were associated with unusually low counting rates of >0.5 mega-electron volt per nuclear particle. The direction of B did not change significantly across any of the five boundary crossings; it was very uniform and very close to the spiral magnetic field direction, which was observed throughout the heliosheath. The observations indicate that V1 entered a region of the heliosheath (the heliosheath depletion region), rather than the interstellar medium.

  7. On the formation of dipolar magnetic fields in the central regions of active galaxies

    NASA Astrophysics Data System (ADS)

    Andreasyan, R. R.

    A model of the formation of large-scale magnetic fields of dipolar configuration in the central regions of active galaxies is studied. It is assumed that these regions contain a rapidly rotating partly ionized gas. Ionized matter escapes with a high velocity from the center of this region and is entrained by the rotation of the surrounding medium. Biermann's "battery" effect (L.Biermann, Z. Naturforsch., 5a, 65, 1950) operates under such conditions, and circular electric curents are generated in the medium, which amplify the dipolar magnetic fields. Dipolar magnetic fields of opposite orientation with respect to the angular momentum of the central engine can be amplified where there is accretion of gaseous matter onto the rotating central part of a galaxy. The direction of the "Halo" magnetic field of our Galaxy is in accordance with the first model.

  8. Magnetospheric Multiscale Observations of the Electron Diffusion Region of Large Guide Field Magnetic Reconnection.

    PubMed

    Eriksson, S; Wilder, F D; Ergun, R E; Schwartz, S J; Cassak, P A; Burch, J L; Chen, L-J; Torbert, R B; Phan, T D; Lavraud, B; Goodrich, K A; Holmes, J C; Stawarz, J E; Sturner, A P; Malaspina, D M; Usanova, M E; Trattner, K J; Strangeway, R J; Russell, C T; Pollock, C J; Giles, B L; Hesse, M; Lindqvist, P-A; Drake, J F; Shay, M A; Nakamura, R; Marklund, G T

    2016-07-01

    We report observations from the Magnetospheric Multiscale (MMS) satellites of a large guide field magnetic reconnection event. The observations suggest that two of the four MMS spacecraft sampled the electron diffusion region, whereas the other two spacecraft detected the exhaust jet from the event. The guide magnetic field amplitude is approximately 4 times that of the reconnecting field. The event is accompanied by a significant parallel electric field (E_{∥}) that is larger than predicted by simulations. The high-speed (∼300  km/s) crossing of the electron diffusion region limited the data set to one complete electron distribution inside of the electron diffusion region, which shows significant parallel heating. The data suggest that E_{∥} is balanced by a combination of electron inertia and a parallel gradient of the gyrotropic electron pressure. PMID:27419573

  9. Magnetospheric Multiscale Observations of the Electron Diffusion Region of Large Guide Field Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Eriksson, S.; Wilder, F. D.; Ergun, R. E.; Schwartz, S. J.; Cassak, P. A.; Burch, J. L.; Chen, L.-J.; Torbert, R. B.; Phan, T. D.; Lavraud, B.; Goodrich, K. A.; Holmes, J. C.; Stawarz, J. E.; Sturner, A. P.; Malaspina, D. M.; Usanova, M. E.; Trattner, K. J.; Strangeway, R. J.; Russell, C. T.; Pollock, C. J.; Giles, B. L.; Hesse, M.; Lindqvist, P.-A.; Drake, J. F.; Shay, M. A.; Nakamura, R.; Marklund, G. T.

    2016-07-01

    We report observations from the Magnetospheric Multiscale (MMS) satellites of a large guide field magnetic reconnection event. The observations suggest that two of the four MMS spacecraft sampled the electron diffusion region, whereas the other two spacecraft detected the exhaust jet from the event. The guide magnetic field amplitude is approximately 4 times that of the reconnecting field. The event is accompanied by a significant parallel electric field (E∥ ) that is larger than predicted by simulations. The high-speed (˜300 km /s ) crossing of the electron diffusion region limited the data set to one complete electron distribution inside of the electron diffusion region, which shows significant parallel heating. The data suggest that E∥ is balanced by a combination of electron inertia and a parallel gradient of the gyrotropic electron pressure.

  10. Regional estimation of electric fields and currents in the polar ionosphere

    SciTech Connect

    Sato, M.; Kamide, Y.; Richmond, A.D.; Brekke, A.; Nozawa, S. ||

    1995-02-01

    A new technique is presented to estimate electric fields and currents in a localized region of the high-latitude ionosphere by combining two magnetogram-inversion algorithms. This paper describes the concept and practical procedures of the method as well as the first results of our efforts in which this new scheme is applied to northern Scandinavia, computing the ionospheric parameters on a small scale. Examining latitudinal profiles of these parameters and precipitating particles, it is found that the region of the most intense precipitation in the morning sector is located equatorward of the region of the strongest electric field. To evaluate the relative importance of ionospheric and magnetospheric effects, the field-aligned current is divided into two components: (del Sigma) dot E and Sigma del dot E. These two components give often the opposite directions in the resultant field-aligned currents. The relative strength of the two components appears to vary considerably with latitude.

  11. Calculation of electromagnetic fields in the near-field region of a moving scattering object

    NASA Astrophysics Data System (ADS)

    Vogel, M. H.

    1990-07-01

    The problem of scattering of electromagnetic fields by perfectly conducting, moving objects is solved with the Lorentz transformation and the plane wave formulation. Apart from the physical optics approximation, the solution is exact. The result is subsequently applied to the special case of monostatic reflection by an object that moves slowly with respect to the velocity of light. The result can be used to predict the time dependent reflection from an aircraft that passes the antenna of a proximity fuze, and the optimum fuze algorithm can be selected.

  12. Model for the Coupled Evolution of Subsurface and Coronal Magnetic Fields in Solar Active Regions

    NASA Astrophysics Data System (ADS)

    van Ballegooijen, A. A.; Mackay, D. H.

    2007-04-01

    According to Babcock's theory of the solar dynamo, bipolar active regions are Ω-shaped loops emerging from a toroidal field located near the base of the convection zone. In this paper, a mean field model for the evolution of a twisted Ω-loop is developed. The model describes the coupled evolution of the magnetic field in the convection zone and the corona after the loop has fully emerged into the solar atmosphere. Such a coupled evolution is required to fully understand what happens to the coronal and subsurface fields as magnetic flux cancels at polarity inversion lines on the photosphere. The jump conditions for the magnetic field at the photosphere are derived from the magnetic stress balance between the convection zone and corona. The model reproduces the observed spreading of active region magnetic flux over the solar surface. At polarity inversion lines, magnetic flux submerges below the photosphere, but the component of magnetic field along the inversion line cannot submerge, because the field in the upper convection zone is nearly radial. Therefore, magnetic shear builds up in the corona above the inversion line, which eventually leads to a loss of equilibrium of the coronal fields and the ``lift-off'' of a coronal flux rope. Fields that submerge are transported back to the base of the convection zone, leading to the repair of the toroidal flux rope. Following Martens and Zwaan, interactions between bipoles are also considered.

  13. Stess field in Brazil: First and Second-Order Stress Patterns: Examples of Regional Forces Controlling the Stress Field

    NASA Astrophysics Data System (ADS)

    Dias, F.; Assumpcao, M.

    2012-12-01

    The knowledge of stress field is fundamental not only to understand driving forces and plate deformation as also it helps in the study of intraplate seismicity. In Brazil, we find reverse, strike-slip and normal mechanisms that indicates a variable stress field. The stress field has been mainly obtained using focal mechanism results and a few breakout data and in-situ measurements. However the stress field is still poorly known in Brazil. Recent earthquake focal mechanisms were determinate using P-wave modeling of seismogram stacks of several teleseismic stations ( > 30°) grouped according to distance and azimuth and first motion polarities. Every record was visually inspected and those with a good signal/noise ratio (SNR) were grouped in latitude-longitude windows of ten degrees and stacked. We usually consider groups with at least two stations, but, in sometimes a good record of single station with different azimuth was also used to constrain the focal depth. The P, pP, sP wavetrains of the stacked signals were modelled using the hudson96 program of Herrman seismology package (Herrman, 2002). We also determinate moment tensor of same events in the central region. The major difficulty is to determinate focal mechanism of low magnitudes events (< 4.0 mb) using distants seismograph stations. The central region shows a purely compressional pattern which are predicted by regional theoretical models (Richardson & Coblentz, 1996 and the TD0 model of Lithgow& Bertelloni, 2004). Meanwhile in the Amazonic region we find a SHmax from E-W to SE-NW probably caused by Caribbean and South American plates interaction (Meijer, 1995). In NE region, the compression rotates following the coast line which indicates an important component regional present in stress field spreading effects due to the continental/oceanic crustal (Assumpção, 1998) and cases of stress caused by sedimentary load in Amazon Fan in agreement local theoretical models (Watts et al., 2009). We determinate the

  14. On open and closed field line regions in Tsyganenko's field model and their possible associations with horse collar auroras

    NASA Technical Reports Server (NTRS)

    Birn, J.; Hones, E. W., Jr.; Craven, J. D.; Frank, L. A.; Elphinstone, R. D.; Stern, D. P.

    1991-01-01

    The boundary between open and closed field lines is investigated in the empirical Tsyganenko (1987) magnetic field model. All field lines extending to distances beyond -70 R(E), the tailward velocity limit of the Tsyganenko model are defined as open, while all other field lines, which cross the equatorial plane earthward of -70 R(E) and are connected with the earth at both ends, are assumed closed. It is found that this boundary at the surface of the earth, identified as the polar cap boundary, can exhibit the arrowhead shape, pointed toward the sun, which is found in horse collar auroras. For increasing activity levels, the polar cap increases in area and becomes rounder, so that the arrowhead shape is less pronounced. The presence of a net B(y) component can also lead to considerable rounding of the open flux region. The arrowhead shape is found to be closely associated with the increase of B(z) from the midnight region to the flanks of the tail, consistent with a similar increase of the plasma sheet thickness.

  15. The morphology of flare phenomena, magnetic fields, and electric currents in active regions. II - NOAA active region 5747 (1989 October)

    NASA Technical Reports Server (NTRS)

    Leka, K. D.; Canfield, Richard C.; Mcclymont, A. N.; De La Beaujardiere, J.-F.; Fan, Yuhong; Tang, F.

    1993-01-01

    The paper describes October 1989 observations in NOAA Active Region 5747 of the morphology of energetic electron precipitation and high-pressure coronal flare plasmas of three flares and their relation to the vector magnetic field and vertical electric currents. The H-alpha spectroheliograms were coaligned with the vector magnetograms using continuum images of sunspots, enabling positional accuracy of a few arcsec. It was found that, during the gradual phase, the regions of the H-alpha flare that show the effects of enhanced pressure in the overlying corona often encompass extrema of the vertical current density, consistent with earlier work showing a close relationship between H-alpha emission and line-of-sight currents. The data are also consistent with the overall morphology and evolution described by erupting-filament models such as those of Kopp and Pneuman (1976) and Sturrock (1989).

  16. The calculation of electromagnetic fields in the Fresnel and Fraunhofer regions using numerical integration methods

    NASA Technical Reports Server (NTRS)

    Schmidt, R. F.

    1971-01-01

    Some results obtained with a digital computer program written at Goddard Space Flight Center to obtain electromagnetic fields scattered by perfectly reflecting surfaces are presented. For purposes of illustration a paraboloidal reflector was illuminated at radio frequencies in the simulation for both receiving and transmitting modes of operation. Fields were computed in the Fresnel and Fraunhofer regions. A dual-reflector system (Cassegrain) was also simulated for the transmitting case, and fields were computed in the Fraunhofer region. Appended results include derivations which show that the vector Kirchhoff-Kottler formulation has an equivalent form requiring only incident magnetic fields as a driving function. Satisfaction of the radiation conditions at infinity by the equivalent form is demonstrated by a conversion from Cartesian to spherical vector operators. A subsequent development presents the formulation by which Fresnel or Fraunhofer patterns are obtainable for dual-reflector systems. A discussion of the time-average Poynting vector is also appended.

  17. Effect of spatial variation of textural layers on regional field water balance

    NASA Astrophysics Data System (ADS)

    Li, Weidong; Li, Baoguo; Shi, Yuanchun; Jacques, Diederik; Feyen, Jan

    2001-05-01

    The spatial variability of textural layers is a major factor influencing the field water and solute transport in alluvial soils. To quantify the water transport process at a regional scale accurately, one has to take the spatial variability of textural layers into account. In this paper, a recently presented Markov chain simulation model for soil textural profiles was coupled with a deterministic field water balance model to conduct a stochastic analysis of the field water balance in a 15 km2 alluvial soil region. The aim is to assess the effect of spatial variability of textural layers on the field water balance at a regional scale. By combining simulated soil textural profiles with the field water balance model, the mean values, extreme values, and probability distributions of field water balance variables were calculated. Results showed large differences in the magnitude of soil water balance variables between different profiles. The extreme difference in the water storage in 1 m depth soil during the winter wheat growth varied with time between 175 mm and 180 mm, which accounted for 86.5-135.0% of the mean of the soil water storage. This indicates that the soil water balance variables derived from only a few soil profiles are not representative for the situation of field water balance in the entire region. The simulated root water uptake showed different types of probability density functions when the soil water storage and the deficit of soil water in the field changed with time. The simulated water storage in 1 m depth soil showed obviously a lognormal distribution, but the measured data showed an approximate normal distribution. It may be heterogeneous irrigation and cropping and some other factors that induce this discrepancy.

  18. Periodic auroral forms and geomagnetic field oscillations in the 1400 MLT region

    SciTech Connect

    Potemra, T.A. ); Vo, H.; Venkatesan, D.; Cogger, L.L. ); Erlandson, R.E.; Zanetti, L.J.; Bythrow, P.F.; Anderson, B.J. )

    1990-05-01

    The UV images obtained with the Viking satellite often show bright features which resemble beads or pearls aligned in the east-west direction between noon and 1800 MLT. Viking acquired a series of 25 UV images during a 28-min period on July 29, 1986, which showed a distinct series of periodic bright features in this region. Magnetic field and hot plasma measurements obtained by Viking confirm that the UV emissions are colocated with the field line projection of an upward-flowing region 1 Birkeland current and precipitating energetic ({approximately}200 eV) electrons. The magnetic field and electric field measurements show transverse oscillations with a nearly constant period of about 3.5 min from 67{degree} invariant latitude equatorward up to the location of the large-scale Birkeland current system near 76{degree} invariant latitude. The electric field oscillations lead the magnetic field oscillations by about a quarter-period. The authors interpret the observed oscillations as standing Alfven waves driven at a frequency near the local resonance frequency by a large-scale wave in the boundary layer. They propose that the energy flux of the precipitating low-energy electrons in this afternoon region is modulated by this boundary wave and produces the periodic UV emission features. The results of this study support the view that large-scale oscillations of magnetospheric boundaries, possibly associated with the Kelvin-Helmholtz instability, can modulate currents, particles, and auroral forms.

  19. Effect of electric fields on the daytime high-latitude E and F regions

    NASA Technical Reports Server (NTRS)

    Schunk, R. W.; Banks, P. M.; Raitt, W. J.

    1975-01-01

    We have obtained solutions of the coupled continuity, momentum, and energy equations for NO(+), O(+), and O2(+) ions for conditions appropriate to the daytime high-latitude E and F regions. Owing to the rapid increase of the reaction O(+) + N2 yielding NO(+) + N with ion energy, high-latitude electric fields and consequent perpendicular-E x B drifts deplete O(+) in favor of NO(+). For electric field strengths less than about 10 mV/m the depletion of O(+) is small, and the altitude profiles of ion density are similar to those found at mid-latitudes. However, for moderate electric field strengths (50 mV/m), NO(+) is substantially increased in relation to O(+) and becomes an important ion throughout the F region. For large electric fields (200 mV/m), NO(+) completely dominates the ion composition to at least 600 km, decreasing at high altitudes with a diffusive equilibrium scale height. Since the overall F region electron density decreases markedly with increasing electric field strength, it appears that high-latitude, daytime electron density troughs are directly related to the presence of ionospheric electric fields.

  20. Evidence for polarization electric fields in the daytime F region above Millstone Hill

    SciTech Connect

    Buonsanto, M.J.

    1994-04-01

    Persistent anticorrelations between the ion drift components V{sub {perpendicular}N} and V{sub {parallel}} are seen in the daytime F region near solar maximum above Millstone Hill. The possibility that all of these anticorrelations may be spurious has been ruled out by calculating the correlations and anticorrelations which are introduced by simply adding random errors to the line-of-sight velocity measurements for each experiment considered. Variations in h{sub m}F{sub 2} follow V{sub {parallel}} during most of these intervals, suggesting that a neutral wind causes the h{sub m}F{sub 2} variations and is responsible for the anticorrelations between V{sub {perpendicular}N} and V{parallel} by setting up polarization electric fields by the wind dynamo mechanism. It is widely believed that such F region polarization electric fields cannot occur or are very weak during the daytime, as they are shorted out by the E region conductivity. However, calculations of the E and F region Pedersen conductivities using Millstone Hill electron density profiles and the mass spectrometer/incoherent scatter (MSIS) 86 model show how the F region Pedersen conductivities increase from solar minimum to solar maximum, so that the height-integrated Pedersen conductivities are larger in the F region than in the E region under winter daytime conditions at solar maximum. Thus the E region conductivity is not capable of fully shorting out the F region polarization electric fields above Millstone Hill during daytime at solar maximum. These are apparently the first calculations of ionospheric conductivities above Millstone Hill using incoherent scatter electron density profiles. 35 refs., 11 figs., 3 tabs.

  1. Characteristics of F-region dynamo currents deduced from CHAMP magnetic field measurements

    NASA Astrophysics Data System (ADS)

    Park, Jaeheung; Lühr, Hermann; Min, Kyoung Wook

    2010-10-01

    Using magnetic field observations of the CHAMP satellite we provide the first comprehensive study of F-region dynamo currents as a function of season, local time, geographic longitude, and solar activity. From bipolar variations of the zonal magnetic field component the density of vertical current driven by the F-region dynamo is deduced. The current strength is smallest around June solstice, which is attributed to a reduced F-region Pedersen conductance caused by a lower electron density and neutral density at that season. During the hours around noon highest current densities are observed. They are flowing downward over the dip equator. A secondary peak of upward currents appears at dusk. The polarity switch occurs between15 and 16 (local time) independent of season. The noontime F-region dynamo current peaks at longitudes connected to the South Atlantic Anomaly, which can be explained by the enhanced conductivity in the region of reduced B field. The F-region current at dusk exhibits no peak in the longitude sector of the South Atlantic Anomaly. At noon, the F-region dynamo currents exhibit a wave 4 longitudinal structure during equinoxes and June solstice. The wave 4 signature becomes weak during December solstice. At dusk the wave 4 signature of F-region dynamo currents is much reduced in all seasons. This behavior can be explained by the DE3 tidal signature in the zonal wind at CHAMP altitude. F-region dynamo currents increase linearly with the solar flux index, F10.7, during both noon and dusk time sectors. The increase in current strength with increasing F10.7 is slightly higher at dusk than at noon.

  2. Neutral wind acceleration in the polar lower E-region during an intense electric-field

    NASA Astrophysics Data System (ADS)

    Tsuda, Takuo T.; Buchert, Stephan C.; Nozawa, Satonori; Oyama, Shin-ichiro; Ogawa, Yasunobu; Fujii, Ryoichi

    2016-04-01

    The Joule heating and ion drag effects are considered as important factors in the neutral wind dynamics in the polar E-region. However, quantitative evaluations for these effects are insufficient for correct understanding, particularly, in the lower E-region (100-110 km heights) where the anomalous heating effect, related with the electron Pedersen currents, can occur during the intense electric field. In the present study, using EISCAT Svalbard radar data, we have investigated, for the first time, the normal and anomalous heating effects to the neutral wind acceleration in the lower E-region.

  3. On some properties of force-free magnetic fields in infinite regions of space

    NASA Technical Reports Server (NTRS)

    Aly, J. J.

    1984-01-01

    Techniques for solving boundary value problems (BVP) for a force free magnetic field (FFF) in infinite space are presented. A priori inequalities are defined which must be satisfied by the force-free equations. It is shown that upper bounds may be calculated for the magnetic energy of the region provided the value of the magnetic normal component at the boundary of the region can be shown to decay sufficiently fast at infinity. The results are employed to prove a nonexistence theorem for the BVP for the FFF in the spatial region. The implications of the theory for modeling the origins of solar flares are discussed.

  4. Amplification of magnetic fields in a primordial H II region and supernova

    NASA Astrophysics Data System (ADS)

    Koh, Daegene; Wise, John H.

    2016-10-01

    Magnetic fields permeate the Universe on all scales and play a key role during star formation. We study the evolution of magnetic fields around a massive metal-free (Population III) star at z ˜ 15 during the growth of its H II region and subsequent supernova explosion by conducting three cosmological magnetohydrodynamics simulations with radiation transport. Given the theoretical uncertainty and weak observational constraints of magnetic fields in the early universe, we initialize the simulations with identical initial conditions only varying the seed field strength. We find that magnetic fields grow as ρ2/3 during the gravitational collapse preceding star formation, as expected from ideal spherical collapse models. Massive Population III stars can expel a majority of the gas from the host halo through radiative feedback, and we find that the magnetic fields are not amplified above the spherical collapse scaling relation during this phase. However, afterwards when its supernova remnant can radiatively cool and fragment, the turbulent velocity field in and around the shell causes the magnetic field to be significantly amplified on average by ˜100 in the shell and up to 6 orders of magnitude behind the reverse shock. Within the shell, field strengths are on the order of a few nG at a number density of 1 cm-3. We show that this growth is primarily caused by small-scale dynamo action in the remnant. These strengthened fields will propagate into the first generations of galaxies, possibly affecting the nature of their star formation.

  5. On open and closed field line regions in Tsyganenko's field model and their possible associations with horse collar auroras

    SciTech Connect

    Birn, J.; Hones, E.W. Jr. ); Craven, J.D.; Frank, L.A. ); Elphinstone, R.D. ); Stern, D.P. )

    1991-03-01

    Using the empirical Tsyganenko (1987) long model as a prime example of a megnetospheric field model, the authors have attempted to identify the boundary between open and closed field lines. They define as closed all field lines that are connested with the Earth at both ends and cross the equatorial plane earthward of x = {minus}70 R{sub E}, the tailward validity limit of the Tsyganenko model. They find that the form of the open/closed boundary at the Earth's surface, identified with the polar cap boundary, can exhibit the arrowhead shape, pointed toward the Sun, observed in horse collar auroras (Hones et al., 1989). The polar cap size in the Tsyganenko model increases with increasing K{sub p} values, and it becomes rounder and less pointed. The superposition of a net B{sub y} field, which is the expected consequence of an IMF B{sub y}, rotates the polar cap pattern and, for larger values, degrades the arrowhead shape, resulting in polar cap configurations consistent with known asymmetries in the aurora. The pointedness of the polar cap shape also diminishes or even completely disappears if the low-latitude magnetopause is assumed open and located considerably inside of the outermost magnetic flux surface in the Tsyganenko model. The arrowhead shape of the polar cap is found to be associated with a strong increase of B{sub z} from midnight toward the tail flanks, which is observed independently, and is possibly related to the NBZ field-aligned current system, observed during quiet times and strongly northward IMF B{sub z}. The larger B{sub z} values near the flanks of the tail cause more magnetic flux to close through these regions than through the midnight equatorial region.

  6. Self-similar fragmentation regulated by magnetic fields in a region forming massive stars.

    PubMed

    Li, Hua-bai; Yuen, Ka Ho; Otto, Frank; Leung, Po Kin; Sridharan, T K; Zhang, Qizhou; Liu, Hauyu; Tang, Ya-Wen; Qiu, Keping

    2015-04-23

    Most molecular clouds are filamentary or elongated. For those forming low-mass stars (<8 solar masses), the competition between self-gravity and turbulent pressure along the dynamically dominant intercloud magnetic field (10 to 100 parsecs) shapes the clouds to be elongated either perpendicularly or parallel to the fields. A recent study also suggested that on the scales of 0.1 to 0.01 parsecs, such fields are dynamically important within cloud cores forming massive stars (>8 solar masses). But whether the core field morphologies are inherited from the intercloud medium or governed by cloud turbulence is unknown, as is the effect of magnetic fields on cloud fragmentation at scales of 10 to 0.1 parsecs. Here we report magnetic-field maps inferred from polarimetric observations of NGC 6334, a region forming massive stars, on the 100 to 0.01 parsec scale. NGC 6334 hosts young star-forming sites where fields are not severely affected by stellar feedback, and their directions do not change much over the entire scale range. This means that the fields are dynamically important. The ordered fields lead to a self-similar gas fragmentation: at all scales, there exist elongated gas structures nearly perpendicular to the fields. Many gas elongations have density peaks near the ends, which symmetrically pinch the fields. The field strength is proportional to the 0.4th power of the density, which is an indication of anisotropic gas contractions along the field. We conclude that magnetic fields have a crucial role in the fragmentation of NGC 6334.

  7. Evolution of Magnetic Field Twist and Tilt in Active Region NOAA 10930

    NASA Astrophysics Data System (ADS)

    Ravindra, B.; Venkatakrishnan, P.; Tiwari, Sanjiv Kumar

    2011-07-01

    Magnetic twist of the active region has been measured over a decade using photospheric vector field data, chromospheric H_alpha data, and coronal loop data. The twist and tilt of the active regions have been measured at the photospheric level with the vector magnetic field measurements. The active region NOAA 10930 is a highly twisted emerging region. The same active region produced several flares and has been extensively observed by Hinode. In this paper, we will show the evolution of twist and tilt in this active region leading up to the two X-class flares. We find that the twist initially increases with time for a few days with a simultaneous decrease in the tilt until before the X3.4 class flare on December 13, 2006. The total twist acquired by the active region is larger than one complete winding before the X3.4 class flare and it decreases in later part of observations. The injected helicity into the corona is negative and it is in excess of 10^43 Mx^2 before the flares.

  8. UNAVCO Plate Boundary Observatory 2007 Student Field Assistant Program in the Alaska Region

    NASA Astrophysics Data System (ADS)

    Marzulla, A.; Gasparich, S.; Pauk, B.; Feaux, K.; Jackson, M.

    2007-12-01

    The UNAVCO, Inc. Plate Boundary Observatory (PBO) Student Field Assistant Program strives to engage students in further study and careers in the Earth Sciences. Student Field Assistants from a variety of educational backgrounds ranging from high school graduates to master's level students spend a three to five month field season working in tandem with UNAVCO regional Field Engineers. The students work closely with senior staff to reconnaissance, install, and maintain a network of 875 permanent Global Positioning System (GPS) stations in one of the five PBO regions covering the western United States, including Alaska. Practical skills, such as power tool use, drilling, welding, firearms training, and proper field safety procedures, are taught and expected of the students. Installation and maintenance of new and existing GPS stations composes the bulk of the student's responsibilities and duties. When not in the field, students prepare gear and arrange logistics for site installations and maintenance as well as enter metadata and complete installation reports from recently constructed sites. An understanding of the operations of the GPS receivers and the scientific benefit of the network allows for an appreciation and great attention to detail during installation of the sites. Student assistance in the Alaska region during 2007 PBO AK field season was critical to the successful installation of 36 new GPS stations throughout Alaska. Significant benchmarks of the field season included installing six logistically difficult stations in Prince William Sounds, completing the Denali Fault GPS network, four new tiltmeters on Akutan Volcano, completing all installs on the Seward Peninsula as well as several new GPS stations throughout the western interior of the state. Alaska is a prominent area for much movement and deformation as the Pacific Plate subducts beneath the North American Plate resulting in an area of high volcanic activity and heightened crustal deformation. The

  9. Mapping land-surface fluxes of carbon, water and energy from field to regional scales

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A framework for routine mapping of land-surface fluxes of carbon, water, and energy at the field to regional scales has been established for drought monitoring, water resource management, yield forecasting and crop-growth monitoring. The framework uses the ALEXI/DisALEXI suite of land-surface model...

  10. In situ observations of reconnection Hall magnetic fields at Mars: Evidence for ion diffusion region encounters

    NASA Astrophysics Data System (ADS)

    Halekas, J. S.; Eastwood, J. P.; Brain, D. A.; Phan, T. D.; Øieroset, M.; Lin, R. P.

    2009-11-01

    We present Mars Global Surveyor measurements of bipolar out-of-plane magnetic fields at current sheets in Mars' magnetosphere. These signatures match predictions from simulations and terrestrial observations of collisionless magnetic reconnection, and could similarly indicate differential ion and electron motion and the resulting Hall current systems near magnetic X lines. Thus, these observations may represent passages through or very near reconnection diffusion regions at Mars. Out of 28 events found at 400 km altitude with well-defined current sheet orientations, 26 have magnetic fields consistent with the expected polarities of Hall fields near diffusion regions. For these events, we find an average ratio of Hall field to main field of 0.51 ± 0.13, and an average ratio of normal to main field (reconnection rate) of 0.16 ± 0.09, consistent with terrestrial observations of reconnection. These events do not consistently correlate with the location of crustal fields or with IMF reversals, indicating that magnetic field draping alone (perhaps enhanced by high solar wind dynamic pressure) may generate current sheets capable of reconnection. For some events, we observe field-aligned electrons that may carry parallel currents that close the Hall current loop. Electron distributions around current sheets often indicate magnetic connection to the collisional exosphere. For crossings sunward of the X line, we usually observe an electron flux minimum at the current sheet, consistent with the resulting closed magnetic structure. For crossings antisunward of the X line, we do not observe flux minima, consistent with field lines open downstream. Collisionless reconnection, if common at Mars, could represent a significant atmospheric loss process.

  11. Zonal Flow Magnetic Field Interaction in the Semi-Conducting Region of Giant Planets

    NASA Astrophysics Data System (ADS)

    Cao, Hao; Stevenson, David J.

    2016-10-01

    All four giant planets in the Solar System feature zonal flows on the order of 100 m/s in the cloud deck, and large-scale intrinsic magnetic fields on the order of 1 Gauss near the surface. The vertical structure of the zonal flows remains obscure. The end-member scenarios are shallow flows confined in the radiative atmosphere and deep flows throughout the planet with constant velocity along the direction of the spin-axis. The electrical conductivity increases smoothly as a function of depth inside Jupiter and Saturn, while a discontinuity of electrical conductivity inside Uranus and Neptune cannot be ruled out. Deep zonal flows will inevitably interact with the magnetic field, at depth with even modest electrical conductivity. Here we investigate the interaction between zonal flows and magnetic fields in the semi-conducting region of giant planets. Employing mean-field electrodynamics, we show that the interaction will generate detectable poloidal magnetic field perturbations spatially correlated with the deep zonal flows. Assuming the peak amplitude of the dynamo α-effect to be 0.1 mm/s, deep zonal flows on the order of 0.1 – 1 m/s in the semi-conducting region of Jupiter and Saturn would generate poloidal magnetic perturbations on the order of 0.01 % – 1 % of the background dipole field. These poloidal perturbations should be detectable with the in-situ magnetic field measurements from the upcoming Juno mission and the Cassini Grand Finale. This implies that magnetic field measurements can be employed to constrain the properties of deep zonal flows in the semi-conducting region of giant planets.

  12. Regional Field Verification -- Case Study of Small Wind Turbines in the Pacific Northwest: Preprint

    SciTech Connect

    Sinclair, K.

    2005-05-01

    The U.S. Department of Energy/National Renewable Energy Laboratory's (DOE/NREL) Regional Field Verification (RFV) project supports industry needs for gaining initial field operation experience with small wind turbines and verify the performance, reliability, maintainability, and cost of small wind turbines in diverse applications. In addition, RFV aims to help expand opportunities for wind energy in new regions of the United States by tailoring projects to meet unique regional requirements and document and communicate the experience from these projects for the benefit of others in the wind power development community and rural utilities. Between August 2003 and August 2004, six turbines were installed at different host sites. At least one year of data has been collected from five of these sites. This paper describes DOE/NREL's RFV project, reviews some of the lessons learned with regards to small wind turbine installations, summarizes operations data from these sites, and provides preliminary BOS costs.

  13. On the regularization of regional gravity field solutions in spherical radial base functions

    NASA Astrophysics Data System (ADS)

    Naeimi, Majid; Flury, Jakob; Brieden, Phillip

    2015-08-01

    Regional refinement of the gravity field models from satellite data using spherical radial base functions (SRBF) is an ill-posed problem. This is mainly due to the regional confinement of the data and the base functions, which leads to severe instabilities in the solutions. Here, this ill-posedness as well as the related regularization process are investigated. We compare three methods for the choice of the regularization parameter, which have been frequently used in gravity modelling. These methods are (1) the variance component estimation (VCE), (2) the generalized cross validation (GCV) and (3) the L-curve criterion. A particular emphasis is put on the impact of the SRBF type on the regularization parameter. To do this, we include two types of SRBF which are often used for regional gravity field modelling. These are the Shannon SRBF or the reproducing kernel and the Spline SRBF. The investigations are performed on two months of the real GOCE ultrasensitive gravity gradients over Central Africa and Amazon. The solutions are validated against a state-of-the-art global gravity solution. We conclude that if a proper regularization method is applied, both SRBF deliver more or less the same accuracy. We show that when the Shannon wavelet is used, the L-curve method gives the best results, while with the Spline kernel, the GCV outperforms the other two methods. Moreover, we observe that the estimated coefficients for the Spline kernel cannot be spatially interpreted. In contrast, the coefficients obtained for the Shannon wavelet reflect the energy of the recovered gravity field with a correlation factor of above 95 per cent. Therefore, when combined with the L-curve method, the Shannon SRBF is advantageous for regional gravity field estimation, since it is one of the simplest band-limited SRBF. In addition, it delivers promising solutions and the estimated coefficients represent the characteristics of the gravity field within the target region.

  14. Earth's Magnetic Field Monitoring in the AMAS Region with the NANOSATC-BR1 Nanosatellite

    NASA Astrophysics Data System (ADS)

    Bilibio, Andreos Vestena; Schuch, Nelson Jorge; Denardini, Clezio Marcos; Mendes, Odim; Marchezi, Jose Paulo; Cupertino Durao, Otavio S.

    The objectives of the Southern Regional Space Research Center's Solar Physics and Interplanetary Medium & Magnetosphere Laboratory is to study Geomagnetic field techniques in experimental measurements and monitoring changes in the South Atlantic Magnetic Anomaly (SAMA) region by continuous measurements of the three orthogonal components of Geomagnetic field: H (North-South), D (East- West) and Z (vertical down). The observation measurements are made at the Southern Space Observatory - SSO/CRS/INPE - MCTI in São Martinho da Serra (29.43º S, 53.82º W, elevation 488m), southern Brazil. Nanosatellites, such as CubeSats, have been used in many scientific space applications. The NANOSATC-BR1 is the second nanosatellite of the NANOSATC-BR, Development of CubeSats Program, a Brazilian Partnership between INPE/MCTI & UFSM. The NANOSATC-BR1 Project has been planed, designed and executed in the facilities built on the partnership between CRS/INPE/MCTI and the Federal University of Santa Maria (LACESM/CT-UFSM), with its undergraduate students. The nanosatellite has three payloads: two integrated circuits (designed in Brazil for space use) to be tested for radiation resistance and a fluxgate magnetometer (model XEM - 12.10 FGM), that will be used for geomagnetic field measurements over the AMAS region. The magnetometer is a magnetic field sensor based on the Hall effect. The instrument will perform data collection in a frequency of three samples per seconds, with a resolution of 15 nT for magnetic field intensity. The intention for future studies is to do comparison between SSO data and monitoring the spatial and temporal variation of magnetic field intensity in AMAS region.

  15. Plasma regions, charged dust and field-aligned currents near Enceladus

    NASA Astrophysics Data System (ADS)

    Engelhardt, I. A. D.; Wahlund, J.-E.; Andrews, D. J.; Eriksson, A. I.; Ye, S.; Kurth, W. S.; Gurnett, D. A.; Morooka, M. W.; Farrell, W. M.; Dougherty, M. K.

    2015-11-01

    We use data from several instruments on board Cassini to determine the characteristics of the plasma and dust regions around Saturn's moon Enceladus. For this we utilize the Langmuir probe and the electric antenna connected to the wideband receiver of the radio and plasma wave science (RPWS) instrument package as well as the magnetometer (MAG). We show that there are several distinct plasma and dust regions around Enceladus. Specifically they are the plume filled with neutral gas, plasma, and charged dust, with a distinct edge boundary region. Here we present observations of a new distinct plasma region, being a dust trail on the downstream side. This is seen both as a difference in ion and electron densities, indicating the presence of charged dust, and directly from the signals created on RPWS antennas by the dust impacts on the spacecraft. Furthermore, we show a very good scaling of these two independent dust density measurement methods over four orders of magnitude in dust density, thereby for the first time cross-validating them. To establish equilibrium with the surrounding plasma the dust becomes negatively charged by attracting free electrons. The dust distribution follows a simple power law and the smallest dust particles in the dust trail region are found to be 10 nm in size as well as in the edge region around the plume. Inside the plume the presence of even smaller particles of about 1 nm is inferred. From the magnetic field measurements we infer strong field-aligned currents at the geometrical edge of Enceladus.

  16. Calm before the spawn: global coral spawning patterns are explained by regional wind fields.

    PubMed

    van Woesik, R

    2010-03-01

    Most corals in tropical localities broadcast their gametes into the water column, yet we have a poor understanding of what forces reproductive schedules. Moreover, recent studies show considerable geographical variation in the duration of the coral spawning season. For example, on the Great Barrier Reef, corals display tight coupling, while corals in Kenya spawn over seven months. This study reconciles the regional variance by testing the hypothesis that regional wind fields are the corals' ultimate reproductive proxy. Regions with short calm periods should be more tightly coupled than regions with calm periods extending for several months. Regional wind fields were assessed at seven localities, between 1997 and 2006, using the 11 GHz channel radiometer tropical microwave imager (TMI) onboard the tropical rainfall measuring mission (TRMM). There was a direct positive relationship between the duration of regional calm periods and the coupling of mass coral spawning. Ultimate long-term evolutionary advantages of releasing gametes during calm periods ensure fertilization and facilitate larval retention and local recruitment. Coupling mass spawning with seasonally calm periods agrees strongly with recent genetic evidence of local dispersal and high local retention.

  17. Extensive lava flow fields on Venus: Preliminary investigation of source elevation and regional slope variations

    NASA Technical Reports Server (NTRS)

    Magee-Roberts, K.; Head, James W., III; Lancaster, M. G.

    1992-01-01

    Large-volume lava flow fields have been identified on Venus, the most areally extensive of which are known as fluctus and have been subdivided into six morphologic types. Sheetlike flow fields (Type 1) lack the numerous, closely spaced, discrete lava flow lobes that characterize digitate flow fields. Transitional flow fields (Type 2) are similar to sheetlike flow fields but contain one or more broad flow lobes. Digitate flow fields are divided further into divergent (Types 3-5) and subparallel (Type 6) classes on the basis of variations in the amount of downstream flow divergence. As a result of our previous analysis of the detailed morphology, stratigraphy, and tectonic associations of Mylitta Fluctus, we have formulated a number of questions to apply to all large flow fields on Venus. In particular, we would like to address the following: (1) eruption conditions and style of flow emplacement (effusion rate, eruption duration), (2) the nature of magma storage zones (presence of neutral buoyancy zones, deep or shallow crustal magma chambers), (3) the origin of melt and possible link to mantle plumes, and (4) the importance of large flow fields in plains evolution. To answer these questions we have begun to examine variations in flow field dimension and morphology; the distribution of large flow fields in terms of elevation above the mean planetary radius; links to regional tectonic or volcanic structures (e.g., associations with large shield edifices, coronae, or rift zones); statigraphic relationships between large flow fields, volcanic plains, shields, and coronae; and various models of flow emplacement in order to estimate eruption parameters. In this particular study, we have examined the proximal elevations and topographic slopes of 16 of the most distinctive flow fields that represent each of the 6 morphologic types.

  18. ARE DECAYING MAGNETIC FIELDS ABOVE ACTIVE REGIONS RELATED TO CORONAL MASS EJECTION ONSET?

    SciTech Connect

    Suzuki, J.; Welsch, B. T.; Li, Y.

    2012-10-10

    Coronal mass ejections (CMEs) are powered by magnetic energy stored in non-potential (current-carrying) coronal magnetic fields, with the pre-CME field in balance between outward magnetic pressure of the proto-ejecta and inward magnetic tension from overlying fields that confine the proto-ejecta. In studies of global potential (current-free) models of coronal magnetic fields-Potential Field Source Surface (PFSS) models-it has been reported that model field strengths above flare sites tend to be weaker when CMEs occur than when eruptions fail to occur. This suggests that potential field models might be useful to quantify magnetic confinement. One straightforward implication of this idea is that a decrease in model field strength overlying a possible eruption site should correspond to diminished confinement, implying an eruption is more likely. We have searched for such an effect by post facto investigation of the time evolution of model field strengths above a sample of 10 eruption sites. To check if the strengths of overlying fields were relevant only in relatively slow CMEs, we included both slow and fast CMEs in our sample. In most events we study, we find no statistically significant evolution in either (1) the rate of magnetic field decay with height, (2) the strength of overlying magnetic fields near 50 Mm, or (3) the ratio of fluxes at low and high altitudes (below 1.1 R{sub Sun }, and between 1.1 and 1.5 R{sub Sun }, respectively). We did observe a tendency for overlying field strengths and overlying flux to increase slightly, and their rates of decay with height to become slightly more gradual, consistent with increased confinement. The fact that CMEs occur regardless of whether the parameters we use to quantify confinement are increasing or decreasing suggests that either (1) the parameters that we derive from PFSS models do not accurately characterize the actual large-scale field in CME source regions, (2) systematic evolution in the large-scale magnetic

  19. Three-dimensional magnetic field topology in a region of solar coronal heating.

    PubMed

    Solanki, S K; Lagg, A; Woch, J; Krupp, N; Collados, M

    2003-10-16

    Flares and X-ray jets on the Sun arise in active regions where magnetic flux emerges from the solar interior amd interacts with the ambient magnetic field. The interactions are believed to occur in electric current sheets separating regions of opposite magnetic polarity. The current sheets located in the corona or upper chromosphere have long been thought to act as an important source of coronal heating, requiring their location in the corona or upper chromosphere. The dynamics and energetics of these sheets are governed by a complex magnetic field structure that, until now, has been difficult to measure. Here we report the determination of the full magnetic vector in an interaction region near the base of the solar corona. The observations reveal two magnetic features that characterize young active regions on the Sun: a set of rising magnetic loops and a tangential discontinuity of the magnetic field direction, the latter being the observational signature of an electric current sheet. This provides strong support for coronal heating models based on the dissipation of magnetic energy at current sheets. PMID:14562096

  20. Three-dimensional magnetic field topology in a region of solar coronal heating.

    PubMed

    Solanki, S K; Lagg, A; Woch, J; Krupp, N; Collados, M

    2003-10-16

    Flares and X-ray jets on the Sun arise in active regions where magnetic flux emerges from the solar interior amd interacts with the ambient magnetic field. The interactions are believed to occur in electric current sheets separating regions of opposite magnetic polarity. The current sheets located in the corona or upper chromosphere have long been thought to act as an important source of coronal heating, requiring their location in the corona or upper chromosphere. The dynamics and energetics of these sheets are governed by a complex magnetic field structure that, until now, has been difficult to measure. Here we report the determination of the full magnetic vector in an interaction region near the base of the solar corona. The observations reveal two magnetic features that characterize young active regions on the Sun: a set of rising magnetic loops and a tangential discontinuity of the magnetic field direction, the latter being the observational signature of an electric current sheet. This provides strong support for coronal heating models based on the dissipation of magnetic energy at current sheets.

  1. Chronologic Studies of Lava Flow Fields in the Southern Tharsis Region of Mars

    NASA Astrophysics Data System (ADS)

    Crown, D. A.; Berman, D. C.; Herrick, E.

    2014-12-01

    The current investigation examines the styles and sequences of volcanism in the southern Tharsis region of Mars. High-resolution images are being used to produce geologic and flow field maps of the region south of Arsia Mons and in Daedalia Planum. Mars Reconnaissance Orbiter Context Camera (CTX; ~5 m/pixel) images allow reconstruction of complex volcanic surfaces, including delineation of individual flow lobes and superposition relationships within a flow field. Flow field mapping reveals complex flow patterns and local interfingering and overlapping relationships. Populations of small, superposed impact craters are used to derive relative and absolute age constraints for individual flows and flow sequences. Mapping has revealed differences in flow morphology, flow age, and flow surface texture across the region. Results to-date show a general progression from younger (~100 My-old) flows with elongate, sinuous morphologies to the northeast (closer to Arsia Mons) to older (~500 My- to ~1 Gy-old) broader lobes and sheet flows to the southwest. At the southern margin of the Tharsis region, older (~3.7 Gy) volcanic plains have been identified where Tharis flows contact the ancient highlands.

  2. The EM fields in the Solid Generated by a Fault in a Porous Region

    NASA Astrophysics Data System (ADS)

    Ren, H.; Huang, Q.; Chen, X.

    2015-12-01

    Electrokinetic effect, as one of the most possible generation mechanisms of the seismo-electromagnetic phenomenons associated with natural earthquakes, has interested many researchers. Besides, it is also considered as a potential tool for the water/oil exploration. Recently, we numerically investigated the electromagnetic (EM) fields due to the electrokinetic effect in mixed layered model. The mixed model comprises not only porous layers but also solid layers. We firstly tested a two-layer mixed model. The numerical results show that, in addition to the radiation EM fields, another kind of evanescent EM fields can be generated by the seismic waves arriving at the interface with incident angles greater the critical angle. The evanescent EM fields decay faster than the radiation EM fields when getting away from the interface. For the seismic frequency band, the evanescent EM fields in the solid are still measurable at a distance of, e.g., 2km to the interface. We then tested a eight-layer mixed model. The top and bottom layers are solid and the other layers are porous. A finite fault of 20x10km is located in the porous region. The focal depth is 8km. The applied source time function is a ramp fuction with an arise time of 0.8s. Point stacking method was used to compute the wave-fields caused by the finite fault. Our nuemrical results show that, this model can generate the EM fields before the arrival of seismic waves as well as the residual EM fields. Both the two kinds of EM fields have been observed in field observations. There is a possibility that the anomalous EM activities before big earthquakes may be caused by the fluid flow in the shallow Earth as a result of the stress changes.

  3. Hamiltonian description of the parametrized scalar field in bounded spatial regions

    NASA Astrophysics Data System (ADS)

    Barbero G, J. Fernando; Margalef-Bentabol, Juan; Villaseñor, Eduardo J. S.

    2016-05-01

    We study the Hamiltonian formulation for a parametrized scalar field in a regular bounded spatial region subject to Dirichlet, Neumann and Robin boundary conditions. We generalize the work carried out by a number of authors on parametrized field systems to the interesting case where spatial boundaries are present. The configuration space of our models contains both smooth scalar fields defined on the spatial manifold and spacelike embeddings from the spatial manifold to a target spacetime endowed with a fixed Lorentzian background metric. We pay particular attention to the geometry of the infinite dimensional manifold of embeddings and the description of the relevant geometric objects: the symplectic form on the primary constraint submanifold and the Hamiltonian vector fields defined on it.

  4. Examining the Magnetic Field Strength and the Horizontal and Vertical Motions in an Emerging Active Region

    NASA Astrophysics Data System (ADS)

    Lin, Chia-Hsien; Chen, Yu-Che

    2016-03-01

    Earlier observational studies have used the time evolution of emerging magnetic flux regions at the photosphere to infer their subsurface structures, assuming that the flux structure does not change significantly over the near-surface layer. In this study, we test the validity of this assumption by comparing the horizontal and vertical motions of an emerging active region. The two motions would be correlated if the emerging structure is rigid. The selected active region (AR) NOAA 11645 is not embedded in detectable preexisting magnetic field. The observed horizontal motion is quantified by the separation of the two AR polarities and the width of the region. The vertical motion is derived from the magnetic buoyancy theory. Our results show that the separation of the polarities is fastest at the beginning with a velocity of {≈ }4 Mm hr^{-1} and decreases to ≤ 1 Mm hr^{-1} after the main growing phase of flux emergence. The derived thick flux-tube buoyant velocity is between 1 and 3 Mm hr^{-1}, while the thin flux-tube approximation results in an unreasonably high buoyant velocity, consistent with the expectation that the approximation is inappropriate at the surface layer. The observed horizontal motion is not found to directly correlate with either the magnetic field strength or the derived buoyant velocities. However, the percentage of the horizontally oriented fields and the temporal derivatives of the field strength and the buoyant velocity show some positive correlations with the separation velocity. The results of this study imply that the assumption that the emerging active region is the cross section of a rising flux tube whose structure can be considered rigid as it rises through the near-surface layer should be taken with caution.

  5. The magnetic field structure of the central region in M 31

    NASA Astrophysics Data System (ADS)

    Gießübel, R.; Beck, R.

    2014-11-01

    Context. The Andromeda Galaxy (M 31) is the nearest grand-design spiral galaxy. Thus far, most studies in the radio regime concentrated on the 10 kpc ring. The central region of M 31 has significantly different properties than the outer parts: The star formation rate is low, and inclination and position angle are largely different from the outer disk. Aims: The existing model of the magnetic field in the radial range 6 ≤ r ≤ 14 kpc is extended to the innermost part r ≤ 0.5 kpc to ultimately achieve a picture of the entire magnetic field in M 31. Methods: We combined observations taken with the VLA at 3.6 cm and 6.2 cm with data from the Effelsberg 100-m telescope to fill the missing spacings of the synthesis data. The resulting polarization maps were averaged in sectors to analyse the azimuthal behaviour of the polarized intensity (PI), rotation measure (RM), and apparent pitch angle (φobs). We developed a simplified 3D model for the magnetic field in the central region to explain the azimuthal behaviour of the three observables. Results: Our 3D model of a quadrupolar or dipolar dynamo field can explain the observed patterns in PI, RM, and φobs, while a 2D configuration is not sufficient to explain the azimuthal behaviour. In addition and independent of our model, the RM pattern shows that the spiral magnetic field in the inner 0.5 kpc points outward, which is opposite to that in the outer disk, and has a pitch angle of ≃33°, which is much larger than that of 8°-19° in the outer disk. Conclusions: The physical conditions in the central region differ significantly from those in the 10 kpc ring. In addition, the orientation of this region with respect to the outer disk is completely different. The opposite magnetic field directions suggest that the central region is decoupled from the outer disk, and we propose that an independent dynamo is active in the central region. FITS files of the recombined Stokes IQU images at the two frequencies are only

  6. Towards Regional Lunar Gravity Fields Using Lunar Prospector Extended Mission Data - Simulations and Results

    NASA Astrophysics Data System (ADS)

    Goossens, S.; Visser, P.; Floberghagen, R.; Koop, R.; Ambrosius, B.

    2002-12-01

    Until this date, the lunar gravimetric inverse problem has mainly been posed as a global problem, solving for gravity fields over the whole of the Moon. The asymmetric sampling of the force field requires that some sort of regularisation be applied in order to have a meaningful global solution that does not provide spurious information on the far side. On one hand these global solutions work very well in terms of overall orbit quality and consistency, despite the fact that roughly one half of the surface lacks sampling. On the other hand, excellently sampled regions cannot be determined at maximum spatial resolution without affecting too much the solution on the far side, which in itself is highly unstable. Since the Lunar Prospector mission, there are many of such excellently sampled regions on the near side of the Moon. In order to exhaust the information present in the tracking data of this satellite, regional methods for solving the gravity field of well-sampled areas become interesting. We present a method to extract regional gravity information from Doppler and Range tracking of the Lunar Prospector spacecraft. The method incorporates the GEODYN II software package for tracking data processing and orbit determination, and a software package to analyse the residuals from the orbit determination process, and to transform these residuals into gravity anomalies on the lunar surface by means of a Stokes method. Simulations will show how well a gravity signal in the residuals can be recovered. Results from orbit determination using 20 days of Lunar Prospector Extended Mission data will be shown, to demonstrate the readiness of the method to process real-life satellite data. With missions in the future such as SELENE, which will provide the first global tracking data set of the Moon ever, global and regional methods to solve for gravity field products will remain equally of interest, since they both can give complementary insight into the low and high resolution

  7. Regional electroporation of single cardiac myocytes in a focused electric field.

    PubMed

    Klauke, Norbert; Smith, Godfrey; Cooper, Jonathan M

    2010-01-15

    There is now a significant interest in being able to locate single cells within geometrically defined regions of a microfluidic chip and to gain intracellular access through the local electroporation of the cell membrane. This paper describes the microfabrication of electroporation devices which can enable the regional electroporation of adult ventricular myocytes, in order to lower the local electrical resistance of the cell membrane. Initially three different devices, designed to suit the characteristic geometry of the cardiomyocyte, were investigated (all three designs serve to focus the electric field to selected regions of the cell). We demonstrate that one of these three devices revealed the sequence of cellular responses to field strengths of increasing magnitudes, namely, cell contraction, hypercontraction, and lysis. This same device required a reduced threshold voltage for each of these events, including in particular membrane breakdown. We were not only able to show the gradual regional increase in the electric conductivity of the cell membrane but were also able to avoid changes in the local intra- and extracellular pH (by preventing the local generation of protons at the electrode surface, as a consequence of the reduced threshold voltage). The paper provides evidence for new strategies for achieving robust and reproducible regional electroporation, a technique which, in future, may be used for the insertion of large molecular weight molecules (including genes) as well as for on-chip voltage clamping of the primary adult cardiomyocyte.

  8. Combination of various observation techniques for regional modeling of the gravity field

    NASA Astrophysics Data System (ADS)

    Lieb, Verena; Schmidt, Michael; Dettmering, Denise; Börger, Klaus

    2016-05-01

    Modeling a very broad spectrum of the Earth's gravity field needs observations from various measurement techniques with different spectral sensitivities. Typically, high-resolution regional gravity data are combined with low-resolution global observations. To exploit the gravitational information as optimally as possible, we set up a regional modeling approach using radial spherical basis functions, emphasizing the strengths of various data sets by the flexible combination of high- and middle-resolution terrestrial, airborne, shipborne, and altimetry measurements. The basis functions are defined and located in the region of interest in such a manner, which the highest measure of information of the input data is captured. Any functional of the Earth's gravity field can be derived, as, e.g., quasi-geoid heights or gravity anomalies. Here we present results of a study area in Northern Germany. A comprehensive cross validation to external observation data delivers standard deviations less than 5 cm. Differences to an existing regional quasi-geoid model count on average ±6 cm and proof the plausibility of our solution. The comparison with existing global models reaches higher standard deviations for the more sensitive gravity anomalies as for quasi-geoid heights, showing the additional value of our solution in the high frequency domain. Covering a broad frequency spectrum, our regional models can be used as basis for various applications, such as refinement of global models, national geoid determination, and detection of mass anomalies in the Earth's interior.

  9. Flow-Field Survey in the Test Region of the SR-71 Aircraft Test Bed Configuration

    NASA Technical Reports Server (NTRS)

    Mizukami, Masashi; Jones, Daniel; Weinstock, Vladimir D.

    2000-01-01

    A flat plate and faired pod have been mounted on a NASA SR-71A aircraft for use as a supersonic flight experiment test bed. A test article can be placed on the flat plate; the pod can contain supporting systems. A series of test flights has been conducted to validate this test bed configuration. Flight speeds to a maximum of Mach 3.0 have been attained. Steady-state sideslip maneuvers to a maximum of 2 deg have been conducted, and the flow field in the test region has been surveyed. Two total-pressure rakes, each with two flow-angle probes, have been placed in the expected vicinity of an experiment. Static-pressure measurements have been made on the flat plate. At subsonic and low supersonic speeds with no sideslip, the flow in the surveyed region is quite uniform. During sideslip maneuvers, localized flow distortions impinge on the test region. Aircraft sideslip does not produce a uniform sidewash over the test region. At speeds faster than Mach 1.5, variable-pressure distortions were observed in the test region. Boundary-layer thickness on the flat plate at the rake was less than 2.1 in. For future experiments, a more focused and detailed flow-field survey than this one would be desirable.

  10. Importance of far-field Topographic and Isostatic corrections for regional density modeling

    NASA Astrophysics Data System (ADS)

    Szwillus, Ebbing, Holzrichter

    2016-07-01

    The long-wavelength gravity field contains information about processes in the sub-lithospheric mantle. As satellite-derived gravity models now provide the long to medium-wavelength gravity field at unprecedented accuracy, techniques used to process gravity data need to be updated. We show that when determining these long-wavelengths, the treatment of topographic and isostatic effects is a likely source of error. We constructed a global isostatic model and calculated global topographic and isostatic effect. These calculations were done for ground stations as well as stations at satellite height. We considered both gravity and gravity gradients. Using these results, we determined how much of the gravity signal comes from distant sources. We find that a significant long-wavelength bias is introduced if far-field effects on the topographic effect are neglected. However, due to isostatic compensation far-field effects of the topographic effect are to a large degree compensated by the far-field isostatic effect. This means that far-field effects can be reduced effectively by always considering topographic masses together with their compensating isostatic masses. We show that to correctly represent the ultra-long wavelengths, a global background model should be used. This is demonstrated both globally and for a continental-scale case area in North America. In the case of regional modeling, where the ultra-long wavelengths are not of prime importance, gravity gradients can be used to help minimize correction errors caused by far-field effects.

  11. Importance of far-field topographic and isostatic corrections for regional density modelling

    NASA Astrophysics Data System (ADS)

    Szwillus, Wolfgang; Ebbing, Jörg; Holzrichter, Nils

    2016-10-01

    The long-wavelength gravity field contains information about processes in the sublithospheric mantle. As satellite-derived gravity models now provide the long to medium-wavelength gravity field at unprecedented accuracy, techniques used to process gravity data need to be updated. We show that when determining these long-wavelengths, the treatment of topographic-isostatic effect (TIE) and isostatic effects (IE) is a likely source of error. We constructed a global isostatic model and calculated global TIE and IE. These calculations were done for ground stations as well as stations at satellite height. We considered both gravity and gravity gradients. Using these results, we determined how much of the gravity signal comes from distant sources. We find that a significant long-wavelength bias is introduced if far-field effects on the topographic effect are neglected. However, due to isostatic compensation far-field effects of the topographic effect are to a large degree compensated by the far-field IE. This means that far-field effects can be reduced effectively by always considering topographic masses together with their compensating isostatic masses. We show that to correctly represent the ultra-long wavelengths, a global background model should be used. This is demonstrated both globally and for a continental-scale case area in North America. In the case of regional modelling, where the ultra-long wavelengths are not of prime importance, gravity gradients can be used to help minimize correction errors caused by far-field effects.

  12. Merged interaction regions and large-scale magnetic field fluctuations during 1991: Voyager 2 observations

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.; Ness, N. F.

    1994-01-01

    This paper analyzes Voyager 2 observations of the magnetic field between 33.6 AU and 36.2 AU during 1991 when extraordinary events were observed on the Sun and in the heliosphere. The magnetic field strength signal B(t) has the unusual form of two large transient merged interaction regions (MIRs) on a fluctuating background. The two MIRs moved past the spacecraft in 32 days and 18 days, respectively. The mean field strength in each transient MIR was approx. equals 2.6 times the mean field during the remaining part of the year (0.11 nT). Each of the MIRs is related to a fast stream. The magnetic field is strong throughout each stream, suggesting that the strong fields are carried by the streams as well as produced by shock and stream compression. The fluctuations in B(t) during 1991 are not multifractal, and the MIRs cannot be approximated as multifractal clusters of intense magnetic fields. The distribution of the hour-averaged magnetic field strengths is approximately lognormal over 90% of its intermediate range, and it has an exponential tail for B greater than the average magnetic field strength. The elevation angles of B have a normal distribution with a standard deviation of 16 deg +/- 4 deg. The distributions of the azimuthal angles of B in the ranges 1 deg - 180 deg and 180 deg - 360 deg are approximately normal over a more limited range, and non-Gaussian tails associated with nearly radial magnetic fields; the standard deviations are approx. equal to 40 deg. Individual sectors are present throughout most of the interval, even in the MIRs, but there is no recurrent sector pattern. A model of the large-scale fluctuations in 1991 will have to include both determinaistic and statistical factors.

  13. Entanglement entropy for non-coplanar regions in quantum field theory

    NASA Astrophysics Data System (ADS)

    Blanco, David D.; Casini, Horacio

    2011-11-01

    We study the entanglement entropy in a relativistic quantum field theory for regions which are not included in a single spatial hyperplane. This geometric configuration cannot be treated with the Euclidean time method and the replica trick. Instead, we use a real time method to calculate the entropy for a massive free Dirac field in two dimensions in some approximations. We find some specifically relativistic features of the entropy. First, there is a large enhancement of entanglement due to boosts. As a result, the mutual information between relatively boosted regions does not vanish in the limit of zero volume and large relative boost. We also find extensivity of the information in a deeply Lorentzian regime with large violations of the triangle inequalities for the distances. This last effect is relevant to an interpretation of the amount of entropy enclosed in the Hawking radiation emitted by a black hole.

  14. Effect of Interhemispheric Field-Aligned Currents on Region-1 Currents

    NASA Technical Reports Server (NTRS)

    Lyatsky, Sonya; Lyatsky, Wladislaw; Khazanov, George V.

    2015-01-01

    An asymmetry in ionospheric conductivity between two hemispheres results in the formation of additional, interhemispheric field-aligned currents flowing between conjugate ionospheres within two auroral zones. These interhemispheric currents are especially significant during summer-winter conditions when there is a significant asymmetry in ionospheric conductivity in two hemispheres. In such conditions, these currents may be comparable in magnitude with the Region 1 field-aligned currents. In this case, the R1 current is the sum of two FACs: one is going from to the solar wind, and another is flowing between conjugate ionospheres. These interhemispheric currents can also cause the formation of auroras extended along the nightside polar cap boundary, which may be related to the so-called double auroral oval. In this study, we present the results of analytical and numerical solutions for the interhemispheric currents and their effect on the Region 1 currents.

  15. Polarized magnetic field fluctuations at the Apollo 15 site - Possible regional influence on lunar induction

    NASA Technical Reports Server (NTRS)

    Schubert, G.; Smith, B. F.; Colburn, D. S.; Sonett, C. P.; Schwartz, K.

    1974-01-01

    High-frequency (5 to 40 millihertz) induced lunar magnetic fields, observed at the Apollo 15 site near the southeastern boundary of Mare Imbrium and the southwestern boundary of Mare Serenitatis, show a strong tendency toward linear polarization in a direction radial to the Imbrium basin and circumferential to the Serenitatis basin, a property that could be indicative of a possible regional influence on the induction.

  16. Geopotential field anomalies and regional tectonic features - two case studies: southern Africa and Germany

    NASA Astrophysics Data System (ADS)

    Korte, Monika; Mandea, Mioara

    2016-05-01

    Maps of magnetic and gravity field anomalies provide information about physical properties of the Earth's crust and upper mantle, helpful in understanding geological conditions and tectonic structures. Depending on data availability, whether from the ground, airborne, or from satellites, potential field anomaly maps contain information on different ranges of spatial wavelengths, roughly corresponding to sources at different depths. Focussing on magnetic data, we compare amplitudes and characteristics of anomalies from maps based on various available data and as measured at geomagnetic repeat stations. Two cases are investigated: southern Africa, characterized by geologically old cratons and strong magnetic anomalies, and the smaller region of Germany with much younger crust and weaker anomalies. Estimating lithospheric magnetic anomaly values from the ground stations' time series (repeat station crustal biases) reveals magnetospheric field contributions causing time-varying offsets of several nT in the results. Similar influences might be one source of discrepancy when merging anomaly maps from different epochs. Moreover, we take advantage of recently developed satellite potential field models and compare magnetic and gravity gradient anomalies of ˜ 200 km resolution. Density and magnetization represent independent rock properties and thus provide complementary information on compositional and structural changes. Comparing short- and long-wavelength anomalies and the correlation of rather large-scale magnetic and gravity anomalies, and relating them to known lithospheric structures, we generally find a better agreement in the southern African region than the German region. This probably indicates stronger concordance between near-surface (down to at most a few km) and deeper (several kilometres down to Curie depth) structures in the former area, which can be seen to agree with a thicker lithosphere and a lower heat flux reported in the literature for the southern

  17. Four large-scale field-aligned current systmes in the dayside high-latitude region

    NASA Technical Reports Server (NTRS)

    Ohtani, S.; Potemra, T. A.; Newell, P.T.; Zanetti, L. J.; Iijima, T.; Watanabe, M.; Blomberg, L. G.; Elphinstone, R. D.; Murphree, J. S.; Yamauchi, M.

    1995-01-01

    A system of four current sheets of large-scale field-aligned currents (FACs) was discovered in the data set of simultaneous Viking and Defense Meteorological Satellire Program-F7 (DMSP-F7) crossing of the dayside high-latitude region. This paper reports four examples of this system that were observed in the prenoon sector. The flow polarities of FACs are upward, downward, upward, and downward, from equatorward to poleward. The lowest-latitude upward current is flowing mostly in the central plasma sheet (CPS) precipitation region, often overlapping with the boundary plasma sheet (BPS) at its poleward edge, andis interpreted as a region 2 current. The pair of downward and upward FACs in the middle of te structure are collocated with structured electron precipitation. The precipitation of high-energy (greater than 1 keV) electrons is more intense in the lower-latitude downward current sheet. The highest-latitude downward flowing current sheet is located in a weak, low-energy particle precipitation region, suggesting that this current is flowing on open field lines. Simulaneous observations in the postnoon local time sector reveal the standard three-sheet structure of FACs, sometimes described as region 2, region 1, and mantle (referred to the midday region O) currents. A high correlation was found between the occurrence of the four FAC sheet structure and negative interplanetary magnetic field (IMF) B(sub Y). We discuss the FAC structurein terms of three types of convection cells: the merging, viscous, andlobe cells. During strongly negative IMF B(sub Y), two convection reversals exist in the prenoon sector; one is inside the viscous cell, and the other is between the viscous cell and the lobe cell. This structure of convection flow is supported by the Viking electric field and auroral UV image data. Based on the convection pattern, the four FAC sheet structure is interpreted as the latitude overlap of midday and morning FAC systems. We suggest that the for

  18. Gamma–Gamma Absorption in the Broad Line Region Radiation Fields of Gamma-Ray Blazars

    NASA Astrophysics Data System (ADS)

    Böttcher, Markus; Els, Paul

    2016-04-01

    The expected level of γγ absorption in the Broad Line Region (BLR) radiation field of γ-ray loud Flat Spectrum Radio Quasars (FSRQs) is evaluated as a function of the location of the γ-ray emission region. This is done self-consistently with parameters inferred from the shape of the spectral energy distribution (SED) in a single-zone leptonic EC-BLR model scenario. We take into account all geometrical effects both in the calculation of the γγ opacity and the normalization of the BLR radiation energy density. As specific examples, we study the FSRQs 3C279 and PKS 1510-089, keeping the BLR radiation energy density at the location of the emission region fixed at the values inferred from the SED. We confirm previous findings that the optical depth due to γγ absorption in the BLR radiation field exceeds unity for both 3C279 and PKS 1510-089 for locations of the γ-ray emission region inside the inner boundary of the BLR. It decreases monotonically, with distance from the central engine and drops below unity for locations within the BLR. For locations outside the BLR, the BLR radiation energy density required for the production of GeV γ-rays rapidly increases beyond observational constraints, thus making the EC-BLR mechanism implausible. Therefore, in order to avoid significant γγ absorption by the BLR radiation field, the γ-ray emission region must therefore be located near the outer boundary of the BLR.

  19. Spatial Distribution of Ionospheric Plasma and Field Structures in the High-Latitude F Region

    NASA Technical Reports Server (NTRS)

    Kivanc, O.; Heelis, R. A.

    1998-01-01

    Ion density and velocity measurements from the Dynamics Explorer 2 (DE 2) spacecraft are used to obtain the average magnetic local time versus invariant latitude distribution of irregularities in the high-latitude F region ionosphere. To study the small-scale structure and its relationship to background conditions in the ionosphere, we have formed a reduced database using 2-s (approx. = 16 km) segments of the ion density and velocity data. The background gradients associated with each 2-s segment and the spectral characteristics, such as power at 6 Hz (approx. = 1.3 km) and spectral index, are among the reduced parameters used in this study. The relationship between the observed plasma structure and its motion is complex and dependent on the externally applied fields as well as locally generated plasma structure. The evolution of plasma structures also depends critically on the conductivity of the underlying ionosphere. Observations indicate an enhancement of irregularity amplitudes in two spatially isolated regions in both the ion density and the velocity. Convective properties seem to play a more important role in winter hemisphere where smaller-scale structures are maintained outside the source regions. (Delta)V irregularity amplitudes are enhanced in the cusp and the polar cap during northward interplanetary magnetic field regardless of season. The power in (Delta)V is usually higher than that associated with local polarization electric fields, suggesting that the observed structure in (Delta)N/N is strongly influenced by (Delta)V structure applied to large density gradients.

  20. An improved permanent magnet quadrupole design with larger good field region for high intensity proton linacs

    NASA Astrophysics Data System (ADS)

    Mathew, Jose V.; Rao, S. V. L. S.; Krishnagopal, S.; Singh, P.

    2013-11-01

    The Low Energy High Intensity Proton Accelerator (LEHIPA), being developed at the Bhabha Atomic Research Centre (BARC) will produce a 20 MeV, 30 mA, continuous wave (CW) proton beam. At these low velocities, space-charge forces dominate, and could lead to larger beam sizes and beam halos. Hence in the design of the focusing lattice of the LEHIPA drift tube linac (DTL) using permanent magnet quadrupoles (PMQs), a larger good field region is preferred. Here we study, using the two dimensional (2D) and three dimensional (3D) simulation codes PANDIRA and RADIA, four different types of cylindrical PMQ designs: 16-segment trapezoidal Halbach configuration, bullet-nosed geometry and 8- and 16-segment rectangular geometries. The trapezoidal Halbach geometry is used in a variety of accelerators since it provides very high field gradients in small bores, while the bullet-nosed geometry, which is a combination of the trapezoidal and rectangular designs, is used in some DTLs. This study shows that a larger good field region is possible in the 16-segment rectangular design as compared to the Halbach and bullet-nosed designs, making it more attractive for high-intensity proton linacs. An improvement in good-field region by ˜16% over the Halbach design is obtained in the optimized 16-segment rectangular design, although the field gradient is lower by ˜20%. Tolerance studies show that the rectangular segment PMQ design is substantially less sensitive to the easy axis orientation errors and hence will be a better choice for DTLs.

  1. Multi-frequency HF radar measurements of artificial F-region field-aligned irregularities

    NASA Astrophysics Data System (ADS)

    Senior, A.; Borisov, N.; Kosch, M.; Yeoman, T.; Honary, F.; Rietveld, M.

    2004-10-01

    We present radar backscatter power measurements using the CUTLASS HF radar at Hankasalmi, Finland from F-region field-aligned irregularities induced by HF radio pumping with the EISCAT Heating facility. A novel radar operating mode is used in which the radar frequency is rapidly swept through a number of bands, making use of the varying ionospheric refraction to probe different heights within the heated region. We obtain height profiles of backscatter power which correspond to e-folding scale lengths of around 20km for the mean-square electron density perturbations for pump wave interaction heights in the region of 240-250km in daytime conditions. The results are in agreement with previous measurements made by other techniques. We discuss some problems with the method and suggest improvements for future experiments.

  2. Interplanetary magnetic field and solar cycle dependence of Northern Hemisphere F region joule heating

    NASA Astrophysics Data System (ADS)

    Bjoland, L. M.; Chen, X.; Jin, Y.; Reimer, A. S.; Skjæveland, Å.; Wessel, M. R.; Burchill, J. K.; Clausen, L. B. N.; Haaland, S. E.; McWilliams, K. A.

    2015-02-01

    Joule heating in the ionosphere takes place through collisions between ions and neutrals. Statistical maps of F region Joule heating in the Northern Hemisphere polar ionosphere are derived from satellite measurements of thermospheric wind and radar measurements of ionospheric ion convection. Persistent mesoscale heating is observed near postnoon and postmidnight magnetic local time and centered around 70° magnetic latitude in regions of strong relative ion and neutral drift. The magnitude of the Joule heating is found to be largest during solar maximum and for a southeast oriented interplanetary magnetic field. These conditions are consistent with stronger ion convection producing a larger relative flow between ions and neutrals. The global-scale Joule heating maps quantify persistent (in location) regions of heating that may be used to provide a broader context compared to small-scale studies of the coupling between the thermosphere and ionosphere.

  3. DeepCNF-D: Predicting Protein Order/Disorder Regions by Weighted Deep Convolutional Neural Fields.

    PubMed

    Wang, Sheng; Weng, Shunyan; Ma, Jianzhu; Tang, Qingming

    2015-01-01

    Intrinsically disordered proteins or protein regions are involved in key biological processes including regulation of transcription, signal transduction, and alternative splicing. Accurately predicting order/disorder regions ab initio from the protein sequence is a prerequisite step for further analysis of functions and mechanisms for these disordered regions. This work presents a learning method, weighted DeepCNF (Deep Convolutional Neural Fields), to improve the accuracy of order/disorder prediction by exploiting the long-range sequential information and the interdependency between adjacent order/disorder labels and by assigning different weights for each label during training and prediction to solve the label imbalance issue. Evaluated by the CASP9 and CASP10 targets, our method obtains 0.855 and 0.898 AUC values, which are higher than the state-of-the-art single ab initio predictors.

  4. Orientation of hatchling loggerhead sea turtles to regional magnetic fields along a transoceanic migratory pathway.

    PubMed

    Fuxjager, Matthew J; Eastwood, Brian S; Lohmann, Kenneth J

    2011-08-01

    Young loggerhead sea turtles (Caretta caretta) from the east coast of Florida, USA, undertake a transoceanic migration around the North Atlantic Gyre, the circular current system that flows around the Sargasso Sea. Previous experiments indicated that loggerhead hatchlings, when exposed to magnetic fields replicating those that exist at five widely separated locations along the migratory pathway, responded by swimming in directions that would, in each case, help turtles remain in the gyre and advance along the migratory route. In this study, hatchlings were exposed to several additional magnetic fields that exist along or outside of the gyre's northern boundary. Hatchlings responded to fields that exist within the gyre currents by swimming in directions consistent with their migratory route at each location, whereas turtles exposed to a field that exists north of the gyre had an orientation that was statistically indistinguishable from random. These results are consistent with the hypothesis that loggerhead turtles entering the sea for the first time possess a navigational system in which a series of regional magnetic fields sequentially trigger orientation responses that help steer turtles along the migratory route. By contrast, hatchlings may fail to respond to fields that exist in locations beyond the turtles' normal geographic range.

  5. On the Dependence of the Ionospheric E-Region Electric Field of the Solar Activity

    NASA Astrophysics Data System (ADS)

    Denardini, Clezio Marcos; Schuch, Nelson Jorge; Moro, Juliano; Araujo Resende, Laysa Cristina; Chen, Sony Su; Costa, D. Joaquim

    2016-07-01

    We have being studying the zonal and vertical E region electric field components inferred from the Doppler shifts of type 2 echoes (gradient drift irregularities) detected with the 50 MHz backscatter coherent (RESCO) radar set at Sao Luis, Brazil (SLZ, 2.3° S, 44.2° W) during the solar cycle 24. In this report we present the dependence of the vertical and zonal components of this electric field with the solar activity, based on the solar flux F10.7. For this study we consider the geomagnetically quiet days only (Kp <= 3+). A magnetic field-aligned-integrated conductivity model was developed for proving the conductivities, using the IRI-2007, the MISIS-2000 and the IGRF-11 models as input parameters for ionosphere, neutral atmosphere and Earth magnetic field, respectively. The ion-neutron collision frequencies of all the species are combined through the momentum transfer collision frequency equation. The mean zonal component of the electric field, which normally ranged from 0.19 to 0.35 mV/m between the 8 and 18 h (LT) in the Brazilian sector, show a small dependency with the solar activity. Whereas, the mean vertical component of the electric field, which normally ranges from 4.65 to 10.12 mV/m, highlight the more pronounced dependency of the solar flux.

  6. Orientation of hatchling loggerhead sea turtles to regional magnetic fields along a transoceanic migratory pathway.

    PubMed

    Fuxjager, Matthew J; Eastwood, Brian S; Lohmann, Kenneth J

    2011-08-01

    Young loggerhead sea turtles (Caretta caretta) from the east coast of Florida, USA, undertake a transoceanic migration around the North Atlantic Gyre, the circular current system that flows around the Sargasso Sea. Previous experiments indicated that loggerhead hatchlings, when exposed to magnetic fields replicating those that exist at five widely separated locations along the migratory pathway, responded by swimming in directions that would, in each case, help turtles remain in the gyre and advance along the migratory route. In this study, hatchlings were exposed to several additional magnetic fields that exist along or outside of the gyre's northern boundary. Hatchlings responded to fields that exist within the gyre currents by swimming in directions consistent with their migratory route at each location, whereas turtles exposed to a field that exists north of the gyre had an orientation that was statistically indistinguishable from random. These results are consistent with the hypothesis that loggerhead turtles entering the sea for the first time possess a navigational system in which a series of regional magnetic fields sequentially trigger orientation responses that help steer turtles along the migratory route. By contrast, hatchlings may fail to respond to fields that exist in locations beyond the turtles' normal geographic range. PMID:21753042

  7. Observations of the longitudinal magnetic field in the transition region and photosphere of a sunspot

    NASA Technical Reports Server (NTRS)

    Henze, W., Jr.; Tandberg-Hanssen, E.; Hagyard, M. J.; West, E. A.; Woodgate, B. E.; Shine, R. A.; Beckers, J. M.; Bruner, M.; Hyder, C. L.; West, E. A.

    1982-01-01

    The Ultraviolet Spectrometer and Polarimeter on the Solar Maximum Mission spacraft has observed for the first time the longitudinal component of the magnetic field by means of the Zeeman effect in the transition region above a sunspot. The data presented here were obtained on three days in one sunspot, have spatial resolutions of 10 arcsec and 3 arcsec, and yield maximum field strengths greater than 1000 G above the umbrae in the spot. The method of analysis, including a line-width calibration feature used during some of the observations, is described in some detail in an appendix; the line width is required for the determination of the longitudinal magnetic field from the observed circular polarization. The transition region data for one day are compared with photospheric magnetograms from the Marshall Space Flight Center. Vertical gradients of the magnetic field are compared from the two sets of data; the maximum gradients of 0.41 to 0.62 G/km occur above the umbra and agree with or are smaller than values observed previously in the photosphere and low chromosphere.

  8. Simulation of the low latitude ionosphere response to disturbed winds and electric fields: Brazilian region

    NASA Astrophysics Data System (ADS)

    Batista, Inez S.; Souza, Jonas; Bailey, Graham; Bravo, Manuel

    2016-07-01

    Modeling the ionosphere during disturbed periods is one of the most challenging tasks due to the complexity of the phenomena that affect the electric fields and the thermosphere environment as whole. It is well known that depending on the direction of the interplanetary magnetic field disturbance electric fields (undershielding or overshielding) can penetrate from high to low latitudes causing significant disturbances in the electron density distribution and in the equatorial ionization anomaly (EIA) development. Besides that, the large amount of energy deposited in the polar region during disturbed periods will be responsible for the generation of disturbed winds that will flow towards the equator where they produce a disturbance dynamo which also affects the EIA density distribution. The TIDs and TADs are also sources of disturbances that propagate at high velocity reaching the equator 2-3 hours after the beginning of the magnetic storm. In this work we use the Sheffield University Plasmasphere-Ionosphere Model at INPE (SUPIM-INPE), to simulate the drastic effects that were observed at the low latitude ionosphere in the Brazilian region during a very intense magnetic storm event. A few models are tested for the disturbed electric field and wind. The simulation results showed that the observations are better explained when considering a traveling waveform disturbance propagating from north to south at a velocity equal to 200 m/s.

  9. The temperature and density structure in the closed field regions of the solar corona

    NASA Astrophysics Data System (ADS)

    McKenzie, J. F.; Sukhorukova, G. V.; Axford, W. I.

    1999-10-01

    In this paper we study the temperature and density structure in the closed field region of the solar corona using a dipole plus current sheet model to simulate the global solar magnetic field and a heating function of the same type used in models of the fast wind. The heat equation, describing the redistributing effects of heat conduction on the heat input in the presence of radiative losses, is solved simultaneously with hydrostatic pressure balance. At the base we prescribe the temperature and assume that the heat flux is zero there. We also insist that the heat flux is zero at the equator. This ensures that whatever heat has been added is radiated away. From the mathematical viewpoint this additional requirement sets up an eigenvalue problem which implies that the density at the base must be chosen in just the right way to fulfill the condition of zero heat flux at the equator. Thus our model not only provides the temperature and density structure in the closed regions of a global solar magnetic field appropriate to solar minimum but also predicts the latitudinal variation of the base density whose characteristic value is determined by the ratio of the amplitudes of the heating to the cooling. However it should be stressed that this last prediction represents, at best, an approximation to the real stale of affairs which is more complex and involves the connection of the coronal field lines to the magnetic funnels of the chromospheric network.

  10. Bias Corrections for Regional Estimates of the Time-averaged Geomagnetic Field

    NASA Astrophysics Data System (ADS)

    Constable, C.; Johnson, C. L.

    2009-05-01

    We assess two sources of bias in the time-averaged geomagnetic field (TAF) and paleosecular variation (PSV): inadequate temporal sampling, and the use of unit vectors in deriving temporal averages of the regional geomagnetic field. For the first temporal sampling question we use statistical resampling of existing data sets to minimize and correct for bias arising from uneven temporal sampling in studies of the time- averaged geomagnetic field (TAF) and its paleosecular variation (PSV). The techniques are illustrated using data derived from Hawaiian lava flows for 0-5~Ma: directional observations are an updated version of a previously published compilation of paleomagnetic directional data centered on ± 20° latitude by Lawrence et al./(2006); intensity data are drawn from Tauxe & Yamazaki, (2007). We conclude that poor temporal sampling can produce biased estimates of TAF and PSV, and resampling to appropriate statistical distribution of ages reduces this bias. We suggest that similar resampling should be attempted as a bias correction for all regional paleomagnetic data to be used in TAF and PSV modeling. The second potential source of bias is the use of directional data in place of full vector data to estimate the average field. This is investigated for the full vector subset of the updated Hawaiian data set. Lawrence, K.P., C.G. Constable, and C.L. Johnson, 2006, Geochem. Geophys. Geosyst., 7, Q07007, DOI 10.1029/2005GC001181. Tauxe, L., & Yamazkai, 2007, Treatise on Geophysics,5, Geomagnetism, Elsevier, Amsterdam, Chapter 13,p509

  11. Distribution of the Crustal Magnetic Field in Sichuan-Yunnan Region, Southwest China

    PubMed Central

    Bai, Chunhua; Kang, Guofa; Gao, Guoming

    2014-01-01

    Based on the new and higher degree geomagnetic model NGDC-720-V3, we have investigated the spatial distribution, the altitude decay characteristics of the crustal magnetic anomaly, the contributions from different wavelength bands to the anomaly, and the relationship among the anomaly, the geological structure, and the geophysical field in Sichuan-Yunnan region of China. It is noted that the most outstanding feature in this area is the strong positive magnetic anomaly in Sichuan Basin, a geologically stable block. Contrasting with this feature, a strong negative anomaly can be seen nearby in Longmen Mountain block, an active block. This contradiction implies a possible relationship between the magnetic field and the geological activity. Completely different feature in magnetic field distribution is seen in the central Yunnan block, another active region, where positive and negative anomalies distribute alternatively, showing a complex magnetic anomaly map. Some fault belts, such as the Longmen Mountain fault, Lijiang-Xiaojinhe fault, and the Red River fault, are the transitional zones of strong and weak or negative and positive anomalies. The corresponding relationship between the magnetic anomaly and the geophysical fields was confirmed. PMID:25243232

  12. Rocket-borne particle, field, and plasma observations in the cleft region. [ionospheric sounding

    NASA Technical Reports Server (NTRS)

    Ungstrup, E.; Bahnsen, A.; Olesen, J. K.; Primdahl, F.; Spangslev, F.; Heikkila, W. J.; Klumpar, D. M.; Winningham, J. D.; Fahleson, U.; Falthammar, C.-G.

    1975-01-01

    Results are reported for comprehensive observations of magnetic and electric fields together with ambient and suprathermal plasmas above the dayside auroral oval with rocket-borne instrumentation which penetrated the cleft region. Measurements were also obtained equatorward and poleward of the cleft. Convection velocities as inferred from electric-field measurements were generally toward noon equatorward of the cleft and were antisunward over the polar cap. Observations of electron temperatures, electric fields, and low-frequency electrostatic noise provide strong evidence of a plasma instability (Farley-Buneman) in the E-layer associated with the appearance of the 'slant E condition' identified in ground-acquired ionograms. The positions of these measurements relative to that of the cleft were firmly established via the determination of the plasma environment with an electrostatic analyzer.

  13. An analysis of diffraction at edges illuminated by transition region fields

    NASA Astrophysics Data System (ADS)

    Tiberio, R.; Kouyoumjian, R. G.

    1982-04-01

    A solution is obtained for high-frequency scattering of a pair of parallel wedges, in which the edge of one wedge is illuminated by the shadow boundary field of the other. Expressions of the diffracted field are given for plane, cylindrical, and spherical wave illuminations, with consideration given to incidence oblique to the edges. The expressions are reduced to a closed form at the shadow boundaries and outside the overlapping transition regions, and the solutions to the scalar problems are used to derive a dyadic diffraction coefficient for the doubly diffracted field in the ray-fixed coordinate system. Calculations of diffraction by strips, thick edges, polygonal cylindrical structures, and apertures in the thick screen agree well with numerical results obtained by the moment method.

  14. Generation of propagating spin waves from regions of increased dynamic demagnetising field near magnetic antidots

    SciTech Connect

    Davies, C. S. Kruglyak, V. V.; Sadovnikov, A. V.; Nikitov, S. A.; Grishin, S. V.; Sharaevskii, Yu. P.

    2015-10-19

    We have used Brillouin Light Scattering and micromagnetic simulations to demonstrate a point-like source of spin waves created by the inherently nonuniform internal magnetic field in the vicinity of an isolated antidot formed in a continuous film of yttrium-iron-garnet. The field nonuniformity ensures that only well-defined regions near the antidot respond in resonance to a continuous excitation of the entire sample with a harmonic microwave field. The resonantly excited parts of the sample then served as reconfigurable sources of spin waves propagating (across the considered sample) in the form of caustic beams. Our findings are relevant to further development of magnonic circuits, in which point-like spin wave stimuli could be required, and as a building block for interpretation of spin wave behavior in magnonic crystals formed by antidot arrays.

  15. Structure and Stability of Magnetic Fields in Solar Active Region 12192 Based on the Nonlinear Force-free Field Modeling

    NASA Astrophysics Data System (ADS)

    Inoue, S.; Hayashi, K.; Kusano, K.

    2016-02-01

    We analyze a three-dimensional (3D) magnetic structure and its stability in large solar active region (AR) 12192, using the 3D coronal magnetic field constructed under a nonlinear force-free field (NLFFF) approximation. In particular, we focus on the magnetic structure that produced an X3.1-class flare, which is one of the X-class flares observed in AR 12192. According to our analysis, the AR contains a multiple-flux-tube system, e.g., a large flux tube, with footpoints that are anchored to the large bipole field, under which other tubes exist close to a polarity inversion line (PIL). These various flux tubes of different sizes and shapes coexist there. In particular, the latter are embedded along the PIL, which produces a favorable shape for the tether-cutting reconnection and is related to the X-class solar flare. We further found that most of magnetic twists are not released even after the flare, which is consistent with the fact that no observational evidence for major eruptions was found. On the other hand, the upper part of the flux tube is beyond a critical decay index, essential for the excitation of torus instability before the flare, even though no coronal mass ejections were observed. We discuss the stability of the complicated flux tube system and suggest the reason for the existence of the stable flux tube. In addition, we further point out a possibility for tracing the shape of flare ribbons, on the basis of a detailed structural analysis of the NLFFF before a flare.

  16. [Spatial variability and management zone of soil major nutrients in tobacco fields in Qiannan mountainous region].

    PubMed

    Wu, De-Chuan; Luo, Hong-Xiang; Song, Ze-Min; Guo, Guang-Dong; Chen, Yong-An; Li, Yu-Xiang; Jiang, Yu-Ping; Li, Zhang-Hai

    2014-06-01

    Spatial variability and management zone of soil major nutrients in tobacco fields in Qian-nan mountainous region were analyzed using geostatistics and fuzzy c-mean algorithm. Results indicated that the level of soil organic matter (OM) was moderate, and alkalytic nitrogen (AN), available phosphorus (AP) and available potassium (AK) were rich according to tobacco soil nutrient classification standards. Coefficients of variation (CV) of OM, AN, AP and AK were moderate. Contents of OM, AN, AP and AK fitted log-normal distributions. Correlation analysis showed moderate correlations between OM and AN, AP and AK. OM and AN were best described by Gaussian semivariogram models, while AP and AK were described by exponential models. The four nutrients displayed moderate spatial autocorrelation. There were significant differences among lag distances of four soil nutrients. OM, AN, AP and AK in the majority of studied regions varied at moderate to very rich levels, and deficiencies of OM, AN, AP and AK only accounted for 0.93%, 0.53%, 0.24% and 7.91% of the total studied region, respectively. Based on the results, the studied region was divided into two management zones (MZ), namely MZ1 and MZ2, accounting for 69. 8% and 30. 2% of the studied region respectively. The soil levels of OM, AN, AP and AK in MZ1 were significantly lower than those in MZ2 (P < 0.01).

  17. Properties of magnetic field fluctuations in boundary regions of the Earth's magnetosphere

    NASA Astrophysics Data System (ADS)

    Kozak, Liudmyla; Savin, Sergey; Lui, Anthony Tat Yin; Igor, Gala

    Statistical properties of magnetic field fluctuations in boundary regions of the Earth’s magnetosphere at different timescales were considered. Data with high resolution (22,5 Hz) obtained by Cluster mission from 2004 to 2010 were used. As a characteristic of the fluctuations on various time scales, changes in the shape and parameters of the probability density function and wave analysis were studied. In order for investigations of features of the probability density functions of magnetic field fluctuations we analyzed the statistical properties of the absolute value of magnetic field variations in the different regions of near earth space. Amplitude of fluctuations in the magnetosheath just after crossing bow shock exceeds in a few time amplitude of fluctuations for non-perturbed solar wind or the foreshock. The analysis of the height of maximum of the probability density functions and of the kurtosis values have shown the presence of different asymptotic modes which are characterized by different power laws. The use of the technique of probability density function for magnetic fluctuations has shown that at high frequencies the structure of turbulence differs from that in the low-frequency region. The critical scale corresponds to the scales of the Larmor radius of ions. The research of the statistical properties of boundary layers allows to determine the role of turbulent processes in the interaction of plasma flows with the magnetic obstacles, whether these are fields of planets, stars, or laboratory traps, and to reveal the actual mechanisms of the energy transformation in collisionless plasma. The work is done in the frame of complex program of NAS of Ukraine on space researches for 2012-1016, within the framework of the educational program No.2201250 “Education, Training of students, PhD students, scientific and pedagogical staff abroad” launched by the Ministry of Education and Science of Ukraine and under a partial support of the grant No. F 53.2/039.

  18. A new nanoscale fin field effect transistor with embedded intrinsic region for high temperature applications

    NASA Astrophysics Data System (ADS)

    Karimi, Fa.; Orouji, Ali A.

    2016-08-01

    The present paper reveals a novel structure of nanoscale Silicon-On-Insulator (SOI) Fin Field Effect Transistor (FinFET) in which an intrinsic region (EIR) is embedded into the buried oxide layer. The key idea in this work is to improve the critical thermal problems raised by the self-heating effect (SHE). The EIR-FinFET device has lower thermal resistance, reduced hot carrier effect, lower threshold voltage roll-off, and lower critical electric field in comparison with the C-FinFET. Also, higher DC transconductance, lower DC conductance and a better gate capacitance are obtained because the intrinsic region is embedded in a suitable place. Moreover, the simulation result with three-dimensional and two-carrier device simulator demonstrates an improved output characteristic of the proposed structure due to the reduced self-heating effect. The intrinsic silicon layer is located under the source and fin regions and provides more space to dissipate the accumulated heat. Due to the high thermal conductivity of the silicon and decreasing corner effects there, the heat will flow easily and the lattice temperature will decrease. All the extracted results attempt to show the superiority of the EIR-FinFET device over the conventional one, and its effect on the operation of nanoscale low power and high speed devices.

  19. Regional stress field around the Taigu fault zone in Shanxi Province, China

    NASA Astrophysics Data System (ADS)

    Li, Bin; Li, Zihong; Sørensen, Mathilde B.; Løvlie, Reidar; Liu, Liqiang; Atakan, Kuvvet

    2015-12-01

    A comprehensive study on regional stress field around the Taigu fault zone in Shanxi Province, China, was performed in this study. To get a better understanding of the present-day stress status in this area, 31 focal mechanisms of M L ≥3 earthquakes since 1965 were compiled, and the best stress tensor was then inverted based on the database. Additionally, magnetic fabrics along the Taigu fault zone were investigated to get an indication of the regional stress field in the past. Our results show that the present-day stress field around the Taigu fault zone is characterized by astable NW-SE extension with a strike-slip component, consistent with the geological surveys and recent GPS data. Results from magnetic fabrics indicate that the orientations of principal stress axes from magnetic fabrics of sedimentary rocks in Neogene coincide to the orientations of principal stress axes from focal mechanisms. The south segment of the Taigu fault displays more complicated magnetic fabrics and more activity of moderate earthquakes. It is connected with the Mianshan west fault and intersects with NW-SE striking Fenyang fault and the north fault of the Lingshi uplift at the south edge of Taiyuan basin. This may be the area needing more attention in terms of seismic risk along the Taigu fault.

  20. A Review of Magnetic Anomaly Field Data for the Arctic Region: Geological Implications

    NASA Technical Reports Server (NTRS)

    Taylor, Patrick T.; vonFrese, Ralph; Roman, Daniel; Frawley, James J.

    1999-01-01

    Due to its inaccessibility and hostile physical environment remote sensing data, both airborne and satellite measurements, has been the main source of geopotential data over the entire Arctic region. Ubiquitous and significant external fields, however, hinder crustal magnetic field studies These potential field data have been used to derive tectonic models for the two major tectonic sectors of this region, the Amerasian and Eurasian Basins. The latter is dominated by the Nansen-Gakkel or Mid-Arctic Ocean Ridge and is relatively well known. The origin and nature of the Alpha and Mendeleev Ridges, Chukchi Borderland and Canada Basin of the former are less well known and a subject of controversy. The Lomonosov Ridge divides these large provinces. In this report we will present a summary of the Arctic geopotential anomaly data derived from various sources by various groups in North America and Europe and show how these data help us unravel the last remaining major puzzle of the global plate tectonic framework. While magnetic anomaly data represent the main focus of this study recently derived satellite gravity data are playing a major role in Arctic studies.

  1. A Review of Magnetic Anomaly Field Data for the Arctic Region: Geological Implications

    NASA Technical Reports Server (NTRS)

    Taylor, Patrick T.; vonFrese, Ralph; Roman, Daniel; Frawley, James J.

    1999-01-01

    Due to its inaccessibility and hostile physical environment remote sensing data, both airborne and satellite measurements, has been the main source of geopotential data over the entire Arctic region. Ubiquitous and significant external fields, however, hinder crustal magnetic field studies. These potential field data have been used to derive tectonic models for the two major tectonic sectors of this region, the Amerasian and Eurasian Basins. The latter is dominated by the Nansen-Gakkel or Mid-Arctic Ocean Ridge and is relatively well known. The origin and nature of the Alpha and Mendeleev Ridges, Chukchi Borderland and Canada Basin of the former are less well known and a subject of controversy. The Lomonosov Ridge divides these large provinces. In this report we will present a summary of the Arctic geopotential anomaly data derived from various sources by various groups in North America and Europe and show how these data help us unravel the last remaining major puzzle of the global plate tectonic framework. While Magnetic anomaly data represent the main focus of this study recently derived satellite gravity data (Laxon and McAdoo, 1998) are playing a major role in Arctic studies.

  2. [Distribution of Regional Pollution and the Characteristics of Vertical Wind Field in the Pearl River Delta].

    PubMed

    Liu, Jian; Wu, Dui; Fan, Shao-jia

    2015-11-01

    Based on the data of hourly PM2.5 concentration of 56 environmental monitoring stations and 9 cities over the Pearl River Delta (PRD) region, the distributions of PM2.5 pollution in PRD region were analyzed by systematic cluster analysis and correlational analysis. It was found that the regional pollution could be divided into 3 types. The first type was the pollution occurred in Dongguan, Guangzhou, Foshan and Jiangmen (I type), and the second type was the pollution occurred in Zhongshan, Zhuhai, Shenzhen and Huizhou (II type), while the last type was the pollution only occurred in Zhaoqing (III type). During the study period, they occurred 47, 7 and 128 days, respectively. During events of pollution type I, except Zhuhai, Shenzhen and Huizhou, the PM2.5 concentrations of other cities were generally high, while the PM2.5 concentration in whole PRD region was over 50.0 μg x m(-3) during events of pollution type II. The regions with higher PM2.5 concentration was mainly concentrated in Zhaoqing, Guangzhou and Foshan during events of pollution type III. The wind data from 4 wind profile radars located in PRD region was used to study the characteristics of vertical wind field of these 3 pollution types. It was found that the wind profiles of type I and III were similar that low layer and high layer were controlled by the southeast wind and the southwest wind, respectively. For type II, the low layer and high layer were influenced by northerly wind and westerly wind, respectively. Compared with other types, the wind speed and ventilation index of type II. were much higher, and the variation of wind direction at lower-middle-layer was much smaller. When PRD region was influenced by northerly winds, the PM2.5 concentration in the entire PRD region was higher. When PRD region was controlled by southeast wind, the PM2.5 concentrations of I and II areas were relatively lower, while the pollution in III area was relatively heavier.

  3. Chiral effective-field theory in the {delta}(1232) region. II. Radiative pion photoproduction

    SciTech Connect

    Pascalutsa, Vladimir; Vanderhaeghen, Marc

    2008-01-01

    We present a theoretical study of the radiative pion photoproduction on the nucleon ({gamma}N{yields}{pi}N{gamma}{sup '}) in the {delta}-resonance region, with the aim to determine the magnetic dipole moment (MDM) of the {delta}{sup +}(1232). The study is done within the framework of chiral effective-field theory, where the expansion is performed (to next-to-leading order) in the {delta} power-counting scheme, an extension of chiral perturbation theory to the {delta}-resonance energy region. We present the results for the absorptive part of the {delta} MDM, as well as perform a sensitivity study of the dependence of {gamma}N{yields}{pi}N{gamma}{sup '} observables on the real part of the {delta} MDM. We find that an asymmetry for circular polarization of the photon beam may provide a model-independent way to measure the {delta} MDM.

  4. Regional hydrology of the Dixie Valley geothermal field, Nevada: preliminary interpretations of chemical and isotopic data

    SciTech Connect

    Counce, D; Dunlap, C; Goff, F; Huebner, M; Janik, C; Johnson, S; Nimz, G

    1999-08-16

    Chemical and isotopic analyses of Dixie Valley regional waters indicate several distinct groups ranging in recharge age from Pleistocene (<20 ka) to recent (<50a). Valley groundwater is older than water from perennial springs and artesian wells in adjacent ranges, with Clan Alpine range (east) much younger (most <50a) than Stillwater range (west; most >1000a). Geothermal field fluids ({approximately}12-14 ka) appear derived from water similar in composition to non-thermal groundwater observed today in valley artesian wells (also -14 ka). Geothermal fluid interaction with mafic rocks (Humboldt Lopolith) appears to be common, and significant reaction with granodiorite may also occur. Despite widespread occurrence of carbonate rocks, large scale chemical interaction appears minor. Age asymmetry of the ranges, more extensive interaction with deep-seated waters in the west, and distribution of springs and artesian wells suggest the existence of a regional upward hydrologic gradient with an axis in proximity to the Stillwater range.

  5. Regional hydrology of the Dixie Valley geothermal field, Nevada: preliminary interpretations of chemical and isotopic data

    USGS Publications Warehouse

    Nimz, Gregory; Janik, Cathy; Goff, Fraser; Dunlap, Charles; Huebner, Mark; Counce, Dale; Johnson, Stuart D.

    1999-01-01

    Chemical and isotopic analyses of Dixie Valley regional waters indicated several distinct groups ranging in recharge age from Pleistocene (1000a). Geothermal field fluids (~12-14 ka) appear derived from water similar in composition to non thermal groundwater observed today in valley artesian well (also ~14 ka). Geothermal fluid interaction with mafic rocks (Humboldt Lopolith) appears to be common, and significant reaction with granodiorite may also occur. Despite widespread occurrence of carbonate rocks, large scale chemical interaction appears minor. Age asymmetry of the range, more extensive interaction with deep seated waters in the west, and distribution of springs and artesian wells suggest the existence of a regional upward hydrologic gradient with an axis in proximity to the Stillwater range.

  6. Chiral effective-field theory in the Delta(1232) region : II. radiative pion photoproduction

    SciTech Connect

    Vladimir Pascalutsa; Marc Vanderhaeghen

    2007-10-12

    We present a theoretical study of the radiative pion photoproduction on the nucleon ($\\gamma N \\rightarrow \\pi N \\gamma'$) in the $\\De$-resonance region, with the aim to determine the magnetic dipole moment (MDM) of the $\\Delta^+(1232)$. The study is done within the framework of chiral effective-field theory where the expansion is performed (to next-to-leading order) in the $\\delta$ power-counting scheme which is an extension of chiral perturbation theory to the $\\Delta$-resonance energy region. We present in detail the results for the absorptive part of the $\\Delta$ MDM, as well as a sensitivity study for the radiative pion photoproduction observables on the real part of the $\\Delta$ MDM. We find that an asymmetry for circular polarization of the photon beam may provide a model-independent way to measure the $\\Delta$ MDM.

  7. Spatial and temporal variation of gravity field in the capital region

    NASA Astrophysics Data System (ADS)

    Hua, Chang-Cai; Guo, Yong; Liu, Duan-Fa; Xiao, Gang; Kuo, J. T.; Brown, Walter

    1995-08-01

    The high accurate gravity measurement have been carried out many years in the capital region. The main characteristics of the change of gravity field during the latest eight years (1981 1988) in the region are presented in this paper. The more gravitational variation appeared in the southern and south-eastern part, the maximum variation come to 10-6 ms-2. In the northern part, for instance: Chengde City, and Wanxian County—west Taihang mountain area which are in the westside of the network, were relative stable. The noticeable areas of gravitational variation were in Tianjin-Baxian-Renqiu which correspond with the crustal vertical deformation. The main cause of that is related to pump ground water and petroleum.

  8. Simulating Turbulent Wind Fields for Offshore Turbines in Hurricane-Prone Regions (Poster)

    SciTech Connect

    Guo, Y.; Damiani, R.; Musial, W.

    2014-04-01

    Extreme wind load cases are one of the most important external conditions in the design of offshore wind turbines in hurricane prone regions. Furthermore, in these areas, the increase in load with storm return-period is higher than in extra-tropical regions. However, current standards have limited information on the appropriate models to simulate wind loads from hurricanes. This study investigates turbulent wind models for load analysis of offshore wind turbines subjected to hurricane conditions. Suggested extreme wind models in IEC 61400-3 and API/ABS (a widely-used standard in oil and gas industry) are investigated. The present study further examines the wind turbine response subjected to Hurricane wind loads. Three-dimensional wind simulator, TurbSim, is modified to include the API wind model. Wind fields simulated using IEC and API wind models are used for an offshore wind turbine model established in FAST to calculate turbine loads and response.

  9. WIDE-FIELD INFRARED SURVEY EXPLORER OBSERVATIONS OF THE EVOLUTION OF MASSIVE STAR-FORMING REGIONS

    SciTech Connect

    Koenig, X. P.; Leisawitz, D. T.; Benford, D. J.; Padgett, D. L.; Rebull, L. M.

    2012-01-10

    We present the results of a mid-infrared survey of 11 outer Galaxy massive star-forming regions and 3 open clusters with data from the Wide-field Infrared Survey Explorer (WISE). Using a newly developed photometric scheme to identify young stellar objects and exclude extragalactic contamination, we have studied the distribution of young stars within each region. These data tend to support the hypothesis that latter generations may be triggered by the interaction of winds and radiation from the first burst of massive star formation with the molecular cloud material leftover from that earlier generation of stars. We dub this process the 'fireworks hypothesis' since star formation by this mechanism would proceed rapidly and resemble a burst of fireworks. We have also analyzed small cutout WISE images of the structures around the edges of these massive star-forming regions. We observe large (1-3 pc size) pillar and trunk-like structures of diffuse emission nebulosity tracing excited polycyclic aromatic hydrocarbon molecules and small dust grains at the perimeter of the massive star-forming regions. These structures contain small clusters of emerging Class I and Class II sources, but some are forming only a single to a few new stars.

  10. An Experimental Study of the Near Field Region of a Free Jet with Passive Mixing Tabs

    NASA Technical Reports Server (NTRS)

    Bohl, D. G.; Foss, J. F.

    1997-01-01

    An experimental study was performed to determine the flow characteristics of a tabbed free jet. Results were acquired in the near field (nominally 2 tab widths upstream to 2 tab widths downstream of the exit plane) of a tabbed jet. Upstream pressure results showed static pressure distributions in both the x-and y-directions along the top surface of the tunnel. Hot-wire measurements showed rapid expansion of the core fluid into the ambient region. Two counter rotating regions of streamwise vorticity were shown on each side of the primary tab. An enhancement of the tabbed jet concept was proposed and tested. Specifically, two tabs, half the scale of the primary tab, were added to the primary tab to provide attachment surfaces for the normally occurring ejection of fluid. The secondary tabs caused a slight increase in the streamwise vorticity created from the upstream static pressure gradient while significantly increasing the re-oriented boundary layer vorticity. The combined pumping effect of the two counter rotating regions of vorticity caused a significant increase in the transport of the jet core fluid into the surrounding region.

  11. Wide-Field Infrared Survey Explorer Observations of the Evolution of Massive Star-Forming Regions

    NASA Technical Reports Server (NTRS)

    Koenig, X. P.; Leisawitz, D. T.; Benford, D. J.; Rebull, L. M.; Padgett, D. L.; Assef, R. J.

    2011-01-01

    We present the results of a mid-infrared survey of 11 outer Galaxy massive star-forming regions and 3 open clusters with data from the Wide-field Infrared Survey Explorer (WISE). Using a newly developed photometric scheme to identify young stellar objects and exclude extragalactic contamination, we have studied the distribution of young stars within each region. These data tend to support the hypothesis that latter generations may be triggered by the interaction of winds and radiation from the first burst of massive star formation with the molecular cloud material leftover from that earlier generation of stars.We dub this process the "fireworks hypothesis" since star formation by this mechanism would proceed rapidly and resemble a burst of fireworks.We have also analyzed small cutout WISE images of the structures around the edges of these massive star-forming regions. We observe large (1-3 pc size) pillar and trunk-like structures of diffuse emission nebulosity tracing excited polycyclic aromatic hydrocarbon molecules and small dust grains at the perimeter of the massive star-forming regions. These structures contain small clusters of emerging Class I and Class II sources, but some are forming only a single to a few new stars.

  12. Wide-Field Infrared Survey Explorer Observations of the Evolution of Massive Star-Forming Regions

    NASA Technical Reports Server (NTRS)

    Koenig, X. P.; Leisawitz, D. T.; Benford, D. J.; Rebull, L. M.; Padgett, D. L.; Asslef, R. J.

    2012-01-01

    We present the results of a mid-infrared survey of II outer Galaxy massive star-forming regions and 3 open clusters with data from the Wide-field Infrared Survey Explorer (WISE). Using a newly developed photometric scheme to identify young stellar objects and exclude extragalactic contamination, we have studied the distribution of young stars within each region. These data tend to support the hypothesis that latter generations may be triggered by the interaction of winds and radiation from the first burst of massive star formation with the molecular cloud material leftover from that earlier generation of stars. We dub this process the "fireworks hypothesis" since star formation by this mechanism would proceed rapidly and resemble a burst of fireworks. We have also analyzed small cutout WISE images of the structures around the edges of these massive star-forming regions. We observe large (1-3 pc size) pillar and trunk-like structures of diffuse emission nebulosity tracing excited polycyclic aromatic hydrocarbon molecules and small dust grains at the perimeter of the massive star-forming regions. These structures contain small clusters of emerging Class I and Class II sources, but some are forming only a single to a few new stars.

  13. Crustal stress field in the Greek region inferred from inversion of moment tensor solutions

    NASA Astrophysics Data System (ADS)

    Konstantinou, Konstantinos; Mouslopoulou, Vasiliki; Liang, Wen-Tzong; Heidbach, Oliver; Oncken, Onno; Suppe, John

    2016-04-01

    The Hellenic region is the seismically most active area in Europe, having experienced numerous large magnitude catastrophic earthquakes and associated devastating tsunamis. A means of mitigating these potential hazards is by better understanding the patterns of spatial and temporal deformation of the crust across the Hellenic orogenic system, over timescales that range from individual earthquakes to several tens of years. In this study for the first time we make collective use of the Global CMT (GCMT), Regional CMT (RCMT) and National Observatory of Athens (NOA) moment tensor databases in order to extract focal mechanism solutions that will be used to infer crustal stresses in the Greek region at an unprecedented resolution. We focus on the shallow seismicity within the upper plate (down to 42 km) and select solutions with good waveform fits and well-resolved hypocentral depths. In this way we obtained 1,614 focal mechanism solutions covering western Greece up to southern Albania, central and southern Greece, northern Aegean as well as the subduction trench west and east of Crete. These solutions are used as input to a regional-scale damped stress inversion over a grid whose node spacing is 0.35 degrees for the purpose of recovering the three principal stress axes and the stress ratio R for each node. Several sensitivity tests are performed where parameters such as damping, hypocentral depth, magnitude range are varied, in order to ascertain the robustness of our results. The final stress field model is then compared to the GPS-derived strain field revealing an excellent agreement between the two datasets. Additionally, maximum and minimum stress axes orientations are correlated with the strike and dip of known faults in order to improve our understanding of future fault rupture and corresponding seismic hazard.

  14. Improved confinement region without large magnetohydrodynamic activity in TPE-RX reversed-field pinch plasma

    SciTech Connect

    Yambe, Kiyoyuki; Hirano, Yoichi; Sakakita, Hajime; Koguchi, Haruhisa

    2014-11-15

    We found that spontaneous improved confinement was brought about depending on the operating region in the Toroidal Pinch Experiment-Reversed eXperiment (TPE-RX) reversed-field pinch plasma [Y. Yagi et al., Fusion Eng. Des. 45, 421 (1999)]. Gradual decay of the toroidal magnetic field at plasma surface B{sub tw} reversal makes it possible to realize a prolonged discharge, and the poloidal beta value and energy confinement time increase in the latter half of the discharge, where reversal and pinch parameters become shallow and low, respectively. In the latter half of the discharge, the plasma current and volume-averaged toroidal magnetic field 〈B{sub t}〉 increase again, the electron density slowly decays, the electron temperature and soft X-ray radiation intensity increase, and the magnetic fluctuations are markedly reduced. In this period of improved confinement, the value of (〈B{sub t}〉-B{sub tw})/B{sub pw}, where B{sub pw} is the poloidal magnetic field at the plasma surface, stays almost constant, which indicates that the dynamo action occurs without large magnetohydrodynamic activities.

  15. Photospheric Vector Magnetic Field Evolution of NOAA Active Region 11504 and the Ensuing CME

    NASA Astrophysics Data System (ADS)

    James, Alexander; Green, Lucie; Valori, Gherardo; van Driel-Gesztelyi, Lidia; Baker, Deborah; Brooks, David; Palmerio, Erika

    2016-05-01

    Coronal mass ejections (CMEs) are eruptions of billions of tonnes of plasma from the Sun that drive the most severe space weather effects we observe. In order to be able to produce forecasts of space weather with lead times of the order of days, accurate predictions of the occurrence of CMEs must be developed. The eruptive active-region studied in this work (NOAA 11504) is complex, featuring fragmentation of penumbral magnetic field in the days prior to eruption, as well as rotation of the leading sunspot. SDO/HMI vector photospheric magnetic field measurements are utilised alongside SDO/AIA multi-wavelength extreme ultra-violet (EUV) observations to study the dynamics of the photospheric and coronal structures, as well as Hinode/EIS spectroscopic measurements, including elemental composition data. The EUV data show flare ribbons as well as coronal dimmings, which are used to infer the orientation of the erupting flux rope. This flux rope orientation is then compared to in situ measurements of the flux rope. The vector magnetic field data is used to determine the possible contributions the field fragmentation and sunspot rotation may have made to the formation of the flux rope and the triggering of the CME.

  16. Regional gravity fields on Venus from tracking of Magellan cycles 5 and 6

    NASA Astrophysics Data System (ADS)

    Kaula, William M.

    From August 1993 to October 1994, Magellan was at heights 180 to 550 km. Products of the Deep Space Network (DSN) X band tracking are line-of-sight (LOS) Doppler frequencies and accelerations residual to a 40th degree gravity field. The intrinsic accuracy and abundance of these data may be good enough to push the resolution (half wavelength) to less than spacecraft height. The observation equation to infer gravity from LOS accelerations is simple. However, noise and non uniform geometry necessitate a singular value analysis cutoff or an a priori weighting; the latter was chosen for computational economy. Further, the non-Gaussian character of the noise necessitates a reject limit. Choices made were: (1) surface element size 100 km; (2) region size 1600 km; (3) buffer zone width 600 km; (4) reject limit 1 mGal (10-5 m/s); and (5) criterion for a priori weighting recovering a known solution; i.e., a field transferred from Earth to Venus (probably the most significant technical advance). This criterion was optimized by a priori increments to the normal main diagonal about 10% of the minimum main diagonal element, averaging about 0.5% of the maximum. Best resolutions, defined by spectral coherence of 0.7 for the known field, obtained were 110 km near the equator (from 51,285 points over Eisila) and 180 km at high latitudes (from 120,231 points over Maxwell and 162,000 over Akna/Freyja). The limitation on resolution near the equator is the cubic polynomial fitting over 335 km lengths to determine accelerations. However, environmental effects were the limiters elsewhere. Root-mean-square (rms) residuals to solutions had negative correlations with spacecraft altitude and the angle at the Earth between Venus and the Sun, and positive correlations with the Earth-Venus distance and latitude on Venus, indicating Venus's influence on its electromagnetic surroundings out to several 100 km, especially on its side toward the Sun. Correlations with DSN zenith angles and the Kp

  17. Velocity Fields in H II Regions Using High Resolution Imaging Fabry-Perot Spectrometer

    NASA Astrophysics Data System (ADS)

    Seema, P.

    1996-05-01

    The thesis comprises of two parts: I. Instrumentation II. Observations, results and discussion. An imaging Fabry-Perot spectrometer (IFPS) is designed and constructed for the studies on kinematics of extended astronomical objects (Seema et al., 1992). IFPS comprises of a field aperture, collimating lens and a two dimensional imaging sensor called Imaging Photon Detector (IPD). It is the first time that IPD which uses a resistive anode for position determination is being used in the spectroscopic studies of astronomical objects. Observations were made on Orion and Trifid nebula covering a wide field of view using a 35cm Celestron-14 telescope (f/11 cassegrain) at Gurushikhar, Mt.Abu, India. Orion Nebula: Observations were made in [OIII] 5007A, line with a spectral resolution of 6 km/sec and spatial resolution of 4" covering a field of view of 10.5', to study (i) general velocity flow (ii) high velocity flow and (iii)random motions. Line profiles generated for about 2000 positions showed an asymmetric shape with (a)a narrow component 20 +- 3 km/sec and (b) a broad component 50 +- 3 km/sec. The two components could be interpreted in terms of the interaction of the ionized gas (from the trapezium stars) with the condensations present in the nebula, resulting in the secondary flows. The iso-velocity contour map generated for both the components showed velocity flow in agreement with the champagne flow model (Tenorio-Tagle 1982). A model emission line profile constructed assuming a champagne flow in [OIII] 5007A, line for a position 2' away from theta-1 C Ori showed a reasonably good agreement with the narrow component of the observed profile. Certain high velocity flow (~50 km/s) regions are observed to be superimposed on the main flow of the narrow component. These flows are either radiation pressure driven stellar winds or jets generated during the formation phase of Young stellar objects. The radial velocity was found to be low with no high velocity flow regions in

  18. Explosive events in connection with small scale flux emergence in open field regions

    NASA Astrophysics Data System (ADS)

    Galsgaard, Klaus; Moreno-Insertis, Fernando, , Prof

    In recent years observations have shown that the emergence of new magnetic flux from the convection zone into the open field regions in the corona may generate spectacular jet phenomena. A smaller number of jets seem to end their near steady state phase in one or more spectacular eruptions where material is accelerated away from the solar surface reaching fairly high velocities. To investigate the jet phenomena, we have conducted a number of numerical MHD experiments that investigate the general interaction between an emerging bipolar flux region and the open coronal magnetic field. Under the correct conditions, this generates a well defined jet phase and the model explains many of the general characteristics of the typical Eiffel tower jets. Towards the end phase of the jet, the remains of the emerged flux system may experience some violent eruptions. This talk will discuss the general characteristics of these eruptions, aiming at providing an explanation to why they occur, and how they develop in general. These jets and eruptions may be what is taking place in some of the so-called breakout models described in a number of recent observational papers.

  19. Agricultural non-point source pollution in the Western Coal Field region of Kentucky

    SciTech Connect

    Snell, J.D.; Sendlein, L.V.A. . Dept. of Geological Sciences)

    1993-03-01

    As part of a general plan to characterize the extent of agricultural non-point source pollution in the different physiographic regions of Kentucky, two sites located in the Western Coal Field Physiographic provinces representing farmland drained by field tiles were chosen for ground water monitoring. These two sites are similar geologically, but the levels of Nitrate-N have proven to be drastically different between the two areas. A total of 24 wells and 3 lysimeters were installed at the two sites in three nested areas. Although both study sites are located in lowland valleys in fine grained lacustrine deposits, the materials at the Hopkins County site are slightly coarser grained. The wells in Hopkins County, with the exception of the two in the riparian zone, yield water consistently and substantially higher in Nitrate-N than wells in Daviess County. The Nitrate-N levels regularly hover near or exceed the EPA limit in Hopkins County, whereas the levels in Daviess County are near and in most cases far below the 0.53 ppm background level for the region. Pesticide concentrations are minor in both areas with small spikes of contamination noted in shallow wells shortly after application. The concentration of both the pesticides and the Nitrate-N drops off quickly with depth in both counties yielding relatively clean water below the lacustrine deposits.

  20. Multi-Point Electric Field Observations in the High-Altitude Cusp Region

    NASA Astrophysics Data System (ADS)

    Laakso, H.; Escoubet, C.; Grard, R.; Masson, A.; Moullard, O.; Andre, M.; Eriksson, A. I.; Gustafsson, G.; Hull, A.; Mozer, F.; Lindqvist, P.; Pedersen, A.; Balogh, A.; Dunlop, M.; Fazakerley, A.; Taylor, M.

    2001-12-01

    In January-April 2001 the Cluster quartet crossed the cusp region twice per their 56 hours orbital period. These cusp encounters occurred at high altitudes, usually above 8 RE distance. Basically these encounters can be categorized into two groups. The first group consists of crossings where the satellites enter and exit the cusp at a rather constant altitude so that the satellites exit/enter the cusp through the entry layer, on the equatorial side of the cusp, and the plasma mantle, on the poleward side of the cusp. In the second group, the satellites' movement is quite parallel with respect to cusp orientation so that their altitude changes quickly with a rather constant latitude, and then the satellites enter/exit the cusp through the exterior cusp, in the magnetosheath just above the cusp. In this study we will investigate multi-point measurements with the Cluster electric field instrument (EFW) which let us study both plasma drift patterns and electron density variations (from the spacecraft potential data) within the cusp region. We also utilize simultaneous ion, electron, and magnetic field measurements that are important observations for our effort to interpret the EFW data. In particular we attempt to investigate both dynamical and structural aspects of the cusp, as with multi-point observations we have a chance to separate spatial and temporal features from the data.

  1. Correlation of Coronal Plasma Properties and Solar Magnetic Field in a Decaying Active Region

    NASA Astrophysics Data System (ADS)

    Ko, Yuan-Kuen; Young, Peter R.; Muglach, Karin; Warren, Harry P.; Ugarte-Urra, Ignacio

    2016-08-01

    We present the analysis of a decaying active region observed by the EUV Imaging Spectrometer on Hinode during 2009 December 7–11. We investigated the temporal evolution of its structure exhibited by plasma at temperatures from 300,000 to 2.8 million degrees, and derived the electron density, differential emission measure, effective electron temperature, and elemental abundance ratios of Si/S and Fe/S (as a measure of the First Ionization Potential (FIP) Effect). We compared these coronal properties to the temporal evolution of the photospheric magnetic field strength obtained from the Solar and Heliospheric Observatory Michelson Doppler Imager magnetograms. We find that, while these coronal properties all decreased with time during this decay phase, the largest change was at plasma above 1.5 million degrees. The photospheric magnetic field strength also decreased with time but mainly for field strengths lower than about 70 Gauss. The effective electron temperature and the FIP bias seem to reach a “basal” state (at 1.5 × 106 K and 1.5, respectively) into the quiet Sun when the mean photospheric magnetic field (excluding all areas <10 G) weakened to below 35 G, while the electron density continued to decrease with the weakening field. These physical properties are all positively correlated with each other and the correlation is the strongest in the high-temperature plasma. Such correlation properties should be considered in the quest for our understanding of how the corona is heated. The variations in the elemental abundance should especially be considered together with the electron temperature and density.

  2. Correlation of Coronal Plasma Properties and Solar Magnetic Field in a Decaying Active Region

    NASA Astrophysics Data System (ADS)

    Ko, Yuan-Kuen; Young, Peter R.; Muglach, Karin; Warren, Harry P.; Ugarte-Urra, Ignacio

    2016-08-01

    We present the analysis of a decaying active region observed by the EUV Imaging Spectrometer on Hinode during 2009 December 7-11. We investigated the temporal evolution of its structure exhibited by plasma at temperatures from 300,000 to 2.8 million degrees, and derived the electron density, differential emission measure, effective electron temperature, and elemental abundance ratios of Si/S and Fe/S (as a measure of the First Ionization Potential (FIP) Effect). We compared these coronal properties to the temporal evolution of the photospheric magnetic field strength obtained from the Solar and Heliospheric Observatory Michelson Doppler Imager magnetograms. We find that, while these coronal properties all decreased with time during this decay phase, the largest change was at plasma above 1.5 million degrees. The photospheric magnetic field strength also decreased with time but mainly for field strengths lower than about 70 Gauss. The effective electron temperature and the FIP bias seem to reach a “basal” state (at 1.5 × 106 K and 1.5, respectively) into the quiet Sun when the mean photospheric magnetic field (excluding all areas <10 G) weakened to below 35 G, while the electron density continued to decrease with the weakening field. These physical properties are all positively correlated with each other and the correlation is the strongest in the high-temperature plasma. Such correlation properties should be considered in the quest for our understanding of how the corona is heated. The variations in the elemental abundance should especially be considered together with the electron temperature and density.

  3. Nonlinear Force-Free and Potential-Field Models of Active-Region and Global Coronal Fields during the Whole Heliosphere Interval

    NASA Astrophysics Data System (ADS)

    Petrie, G. J. D.; Canou, A.; Amari, T.

    2011-12-01

    Between 24 March 2008 and 2 April 2008, the three active regions (ARs) NOAA 10987, 10988 and 10989 were observed daily by the Synoptic Optical Long-term Investigations of the Sun (SOLIS) Vector Spectro-Magnetograph (VSM) while they traversed the solar disk. We use these measurements and the nonlinear force-free magnetic field code XTRAPOL to reconstruct the coronal magnetic field for each active region and compare model field lines with images from the Solar Terrestrial RElations Observatory (STEREO) and Hinode X-ray Telescope (XRT) telescopes. Synoptic maps made from continuous, round-the-clock Global Oscillations Network Group (GONG) magnetograms provide information on the global photospheric field and potential-field source-surface models based on these maps describe the global coronal field during the Whole Heliosphere Interval (WHI) and its neighboring rotations. Features of the modeled global field, such as the coronal holes and streamer-belt locations, are discussed in comparison with extreme ultra-violet and coronagraph observations from STEREO. The global field is found to be far from a minimum, dipolar state. From the nonlinear models we compute physical quantities for the active regions such as the photospheric magnetic and electric current fluxes, the free magnetic energy and the relative helicity for each region each day where observations permit. The interconnectivity of the three regions is addressed in the context of the potential-field source-surface model. Using local and global quantities derived from the models, we briefly discuss the different observed activity levels of the regions.

  4. Probing the innermost regions of AGN jets and their magnetic fields: LBA

    NASA Astrophysics Data System (ADS)

    Anderson, James M.; Lobanov, Andrei; Perez Torres, Miguel Angel; Ros, Eduardo; Alberdi, Antxon; Taylor, Greg; Zensus, Anton; Cawthorne, Tim; Kovalev, Yuri; Krichbaum, Thomas P.; Savolainen, Tuomas; Gomez, Jose Luis; Bach, Uwe; Bernhart, Simone; Clausen-Brown, Eric; Eilek, Jean; Fromm, Christian

    2013-10-01

    RadioAstron provides the first true full-polarization capabilities for space-VLBI. As part of our RadioAstron key science project to study magnetic fields in AGNs, we propose that the LBA participates in two global VLBI imaging observations (10 to 20 hours of total observing time) at K-band from a list of possible imaging targets (including OJ~287, 3C~273, 3C~279, and 3C~454.3 for the LBA) and sessions in the timerange 2013 October through 2014 April currently under consideration by other global VLBI stations. These measurements will exploit the unprecedented high-angular resolution polarization capabilities of RadioAstron to probe the innermost regions of AGN jets and their magnetic fields. Our initial target sample contains bright, strongly polarized AGN jets for which we confidently expect to measure polarization and be able to perform Faraday rotation synthesis analysis that will allow us to construct 3D maps of the magnetic field structure and strength in the vicinity of the central black hole. Comparison with 3D relativistic-MHD and emission simulations will allow us to obtain a better understanding of the jet formation and high-energy emission mechanisms. Perigee imaging with RadioAstron requires support from a truly global VLBI array that can co-observe for the full RadioAstron track. As very sensitive stations are required at all times to locate and track fringes to the weak RadioAstron K-band system, the LBA, including DSS-43, the ATCA, and Parkes, is crucial for the far eastern latitude region of the global array.

  5. Validation approaches for field-, basin-, and regional-scale water quality models

    NASA Astrophysics Data System (ADS)

    Mulla, David J.; Addiscott, Thomas M.

    Environmental issues such as global warming, hypoxia, and non-point source pollution of rivers and aquifers occur at scales which include the entire earth, the Gulf of Mexico, the Baltic Sea, the Mississippi and Amazon River basins, as well as smaller regions which cover states, provinces, and counties. The increasing availability of data layers at these scales through remote sensing and Geographic Information Systems (GIS) makes it possible to model transport processes at scales far removed from the traditional plot and field scales at which most transport models in soil physics were developed. This paper reviews and synthesizes the general approaches and concepts governing the use of water and solute transport models over a wide range of scales. Topics discussed include model selection, criteria for model calibration and validation, sources of error in modeling, non-linearity, spatial variability, non-uniqueness, and scale-transition techniques. The paper concludes that rigorous validation of models at the scale of large regions, basins, or continents is difficult for a variety of reasons. This does not preclude the value of modeling transport processes over large regions. If proper procedures are followed for model selection and calibration, then there can still be great value in using the model to investigate various scenarios, which would be impossible to study experimentally.

  6. Wide Field CO Mapping in the Region of IRAS 19312+1950

    NASA Astrophysics Data System (ADS)

    Nakashima, Jun-ichi; Ladeyschikov, Dmitry A.; Sobolev, Andrej M.; Zhang, Yong; Hsia, Chih-Hao; Yung, Bosco H. K.

    2016-07-01

    We report the results of wide field CO mapping in the region of IRAS 19312+1950. This Infrared Astronomical Satellite (IRAS) object exhibits SiO/H2O/OH maser emission, and is embedded in a chemically rich molecular component, the origin of which is still unknown. In order to reveal the entire structure and gas mass of the surrounding molecular component for the first time, we have mapped a wide region around IRAS 19312+1950 in the 12CO J = 1-0, 13CO J = 1-0 and C18O J = 1-0 lines using the Nobeyama 45 m telescope. In conjunction with archival CO maps, we investigated a region up to 20‧ × 20‧ in size around this IRAS object. We calculated the CO gas mass assuming local thermal equilibrium, the stellar velocity through the interstellar medium assuming an analytic model of bow shock, and the absolute luminosity, using the latest archival data and trigonometric parallax distance. The derived gas mass (225 M ⊙-478 M ⊙) of the molecular component and the relatively large luminosity (2.63 × 104 L ⊙) suggest that the central SiO/H2O/OH maser source is a red supergiant rather than an asymptotic giant branch (AGB) star or post-AGB star.

  7. Explanation of the regional tectonic map of the southwestern coal field of Virginia

    SciTech Connect

    McLoughlin, T.F.

    1986-01-01

    The result of this study is a single tectonic map of the southwestern coal field of Virginia, which lies within the southern portion of the Cumberland Plateau. The tectonic map was produced by compiling previously identified and plotted major structural geologic features situated in southwestern Virginia and adjacent portions of Kentucky and West Virginia. Remote sensing imagery and published geologic reports were also utilized in the generation of this tectonic map. Except for the Cumberland overthrust block and its related thrust faults, the major faults within the southwestern Virginia coal field are high-angle normal and right-lateral strike-slip faults showing apparent displacements ranging from a few tens of feet (few tens of meters) to several miles (several kilometers). Folds within the coal field are broad, gentle flexures which include anticlines, synclines and a monocline with amplitudes measured in tens of feet to hundreds of feet (tens of meters to hundreds of meters). Brief descriptions of the general geometry and structural characteristics of the tectonic features are included for use with the regional map as an aid in conducting detailed geologic and environmental investigations. Evidence of structural faulting associated with the Gladeville anticline ( Indian Creek'' lineament) is also presented. 41 refs., 5 figs.

  8. Stress Field in Brazil with Focal Mechanism: Regional and Local Patterns

    NASA Astrophysics Data System (ADS)

    Dias, F.; Assumpcao, M.

    2013-05-01

    The knowledge of stress field is fundamental not only to understand driving forces and plate deformation but also in the study of intraplate seismicity. The stress field in Brazil has been determined mainly using focal mechanisms and a few breakout data and in-situ measurements. However the stress field still is poorly known in Brazil. The focal mechanisms of recent earthquakes (magnitude lower than 5 mb) were studied using waveform modeling. We stacked the record of several teleseismic stations ( delta > 30°) stacked groups of stations separated according to distance and azimuth. Every record was visually inspected and those with a good signal/noise ratio (SNR) were grouped in windows of ten degrees distance and stacked. The teleseismic P-wave of the stacked signals was modeled using the hudson96 program of Herrmann seismology package (Herrmann, 2002) and the consistency of focal mechanism with the first-motion was checked. Some events in central Brazil were recorded by closer stations (~ 1000 km) and the moment tensor was determined with the ISOLA code (Sokos & Zahradnik, 2008). With the focal mechanisms available in literature and those obtained in this work, we were able to identify some patterns: the central region shows a purely compressional pattern (E-W SHmax), which is predicted by regional theoretical models (Richardson & Coblentz, 1996 and the TD0 model of Lithgow & Bertelloni, 2004). Meanwhile in the Amazon we find an indication of SHmax oriented in the SE-NW direction, probably caused by the Caribbean plate interaction (Meijer, 1995). In northern coastal region, the compression rotates following the coastline, which indicates an important local component related to spreading effects at the continental/oceanic transition (Assumpção, 1998) and flexural stresses caused by sedimentary load in Amazon Fan. We determine the focal mechanism of several events in Brazil using different techniques according to the available data. The major difficulty is to

  9. Analysis and Prediction of the Critical Regions of Antimicrobial Peptides Based on Conditional Random Fields

    PubMed Central

    Chang, Kuan Y.; Lin, Tung-pei; Shih, Ling-Yi; Wang, Chien-Kuo

    2015-01-01

    Antimicrobial peptides (AMPs) are potent drug candidates against microbes such as bacteria, fungi, parasites, and viruses. The size of AMPs ranges from less than ten to hundreds of amino acids. Often only a few amino acids or the critical regions of antimicrobial proteins matter the functionality. Accurately predicting the AMP critical regions could benefit the experimental designs. However, no extensive analyses have been done specifically on the AMP critical regions and computational modeling on them is either non-existent or settled to other problems. With a focus on the AMP critical regions, we thus develop a computational model AMPcore by introducing a state-of-the-art machine learning method, conditional random fields. We generate a comprehensive dataset of 798 AMPs cores and a low similarity dataset of 510 representative AMP cores. AMPcore could reach a maximal accuracy of 90% and 0.79 Matthew’s correlation coefficient on the comprehensive dataset and a maximal accuracy of 83% and 0.66 MCC on the low similarity dataset. Our analyses of AMP cores follow what we know about AMPs: High in glycine and lysine, but low in aspartic acid, glutamic acid, and methionine; the abundance of α-helical structures; the dominance of positive net charges; the peculiarity of amphipathicity. Two amphipathic sequence motifs within the AMP cores, an amphipathic α-helix and an amphipathic π-helix, are revealed. In addition, a short sequence motif at the N-terminal boundary of AMP cores is reported for the first time: arginine at the P(-1) coupling with glycine at the P1 of AMP cores occurs the most, which might link to microbial cell adhesion. PMID:25803302

  10. Paleosecular Variation and Time-Averaged Field Behavior: Global and Regional Signatures

    NASA Astrophysics Data System (ADS)

    Johnson, C. L.; Cromwell, G.; Tauxe, L.; Constable, C.

    2012-12-01

    We use an updated global dataset of directional and intensity data from lava flows to investigate time-averaged field (TAF) and paleosecular variation (PSV) signatures regionally and globally. The data set includes observations from the past 10 Ma, but we focus our investigations on the field structure over past 5 Ma, in particular during the Brunhes and Matuyama. We restrict our analyses to sites with at least 5 samples (all of which have been stepwise demagnetized), and for which the estimate of the Fisher precision parameter, k, is at least 50. The data set comprises 1572 sites from the past 5 Ma that span latitudes 78oS to 71oN; of these ˜40% are from the Brunhes chron and ˜20% are from the Matuyama chron. Age control at the site level is variable because radiometric dates are available for only about one third of our sites. New TAF models for the Brunhes show longitudinal structure. In particular, high latitude flux lobes are observed, constrained by improved data sets from N. and S. America, Japan, and New Zealand. We use resampling techniques to examine possible biases in the TAF and PSV incurred by uneven temporal sampling, and the limited age information available for many sites. Results from Hawaii indicate that resampling of the paleodirectional data onto a uniform temporal distribution, incorporating site ages and age errors leads to a TAF estimate for the Brunhes that is close to that reported for the actual data set, but a PSV estimate (virtual geomagnetic pole dispersion) that is increased relative to that obtained from the unevenly sampled data. The global distribution of sites in our dataset allows us to investigate possible hemispheric asymmetries in field structure, in particular differences between north and south high latitude field behavior and low latitude differences between the Pacific and Atlantic hemispheres.

  11. MAGNETIC FIELDS IN LARGE-DIAMETER H II REGIONS REVEALED BY THE FARADAY ROTATION OF COMPACT EXTRAGALACTIC RADIO SOURCES

    SciTech Connect

    Harvey-Smith, L.; Madsen, G. J.; Gaensler, B. M.

    2011-08-01

    We present a study of the line-of-sight magnetic fields in five large-diameter Galactic H II regions. Using the Faraday rotation of background polarized radio sources, as well as dust-corrected H{alpha} surface brightness as a probe of electron density, we estimated the strength and orientation of the magnetic field along 93 individual sight lines through the H II regions. Each of the H II regions displayed a coherent magnetic field. The magnetic field strength (line-of-sight component) in the regions ranges from 2 to 6 {mu}G, which is similar to the typical magnetic field strength in the diffuse interstellar medium. We investigated the relationship between magnetic field strength and electron density in the five H II regions. The slope of magnetic field versus density in the low-density regime (0.8 cm{sup -3} < n{sub e} <30 cm{sup -3}) is very slightly above zero. We also calculated the ratio of thermal to magnetic pressure, {beta}{sub th}, for each data point, which fell in the range 1.01 < {beta}{sub th} < 25. Finally, we studied the orientation of the magnetic field in the solar neighborhood (d < 1.1 kpc) using our data from five H II regions along with existing measurements of the line-of-sight magnetic field strength from polarized pulsars whose distances have been determined from their annual parallax. We identify a net direction for the magnetic field in the solar neighborhood, but find no evidence for a preferred vertical direction of the magnetic field above or below the Galactic plane.

  12. On the High- and Low- Altitude Limits of the Auroral Electric Field Region

    NASA Technical Reports Server (NTRS)

    Reiff, P. H.; Lu, G.; Burch, J. L.; Winningham, J. D.; Frank, L. A.; Craven, J. D.; Peterson, W. K.; Heelis, R. A.

    1993-01-01

    Using measurements from the High Altitude Plasma Instrument (HAPI) on the Dynamics-Explorer 1 (DE-1) spacecraft and the Low Altitude Plasma Instrument (LAPI) on Dynamics Explorer 2 (DE 2), we investigate both die high altitude and low altitude extents of the auroral acceleration region. To infer the high altitude limit, we searched the HAPI data base for evidence of upward-directed auroral electric fields located above the spacecraft when the HAPI spacecraft is above 9000 km altitude. We find that such acceleration is common when DE-1 flies through die auroral oval at an altitude of 9,000-11,000 km. At altitudes above 11,000 km, the fraction of the orbits with evidence of at least a 1000 V potential drop above the spacecraft falls, becoming essentially zero above an altitude of 15,000 km. Above that altitude, small (100 V) potential drops are frequently observed, but only rarely are approx. 1 kV potentials observed, typically associated with polar cap or 'theta' arcs or westward traveling surges. To investigate the low-altitude limit of the auroral acceleration region, we use conjunctions of DE 1 and DE 2 along auroral field lines and match the upgoing fluxes of ionospheric ions observed by DE 2 with the flux of accelerated upgoing ions observed at DE 1. Calculating the ionospheric scale height from the ion and electron temperatures and assuming that the parallel flow velocity is independent of height above 800 km, we calculate the altitude at which the upwelling ionospheric ions are effectively completely lost to upward acceleration. The initial lowest-altitude acceleration process could be either a perpendicular acceleration or a parallel electric field, but it must be sufficient to give the entire distribution escape energy. We find that in the two cases studied, near the region of peak auroral potential drop the altitude of this acceleration was around 1700 km (near the O/H neutral crossover altitude), but was significantly higher (approx. 2000 km) near the

  13. Nonlinear effects of locally heterogeneous hydraulic conductivity fields on regional stream-aquifer exchanges

    NASA Astrophysics Data System (ADS)

    Zhu, J.; Winter, C. L.; Wang, Z.

    2015-11-01

    Computational experiments are performed to evaluate the effects of locally heterogeneous conductivity fields on regional exchanges of water between stream and aquifer systems in the Middle Heihe River basin (MHRB) of northwestern China. The effects are found to be nonlinear in the sense that simulated discharges from aquifers to streams are systematically lower than discharges produced by a base model parameterized with relatively coarse effective conductivity. A similar, but weaker, effect is observed for stream leakage. The study is organized around three hypotheses: (H1) small-scale spatial variations of conductivity significantly affect regional exchanges of water between streams and aquifers in river basins, (H2) aggregating small-scale heterogeneities into regional effective parameters systematically biases estimates of stream-aquifer exchanges, and (H3) the biases result from slow paths in groundwater flow that emerge due to small-scale heterogeneities. The hypotheses are evaluated by comparing stream-aquifer fluxes produced by the base model to fluxes simulated using realizations of the MHRB characterized by local (grid-scale) heterogeneity. Levels of local heterogeneity are manipulated as control variables by adjusting coefficients of variation. All models are implemented using the MODFLOW (Modular Three-dimensional Finite-difference Groundwater Flow Model) simulation environment, and the PEST (parameter estimation) tool is used to calibrate effective conductivities defined over 16 zones within the MHRB. The effective parameters are also used as expected values to develop lognormally distributed conductivity (K) fields on local grid scales. Stream-aquifer exchanges are simulated with K fields at both scales and then compared. Results show that the effects of small-scale heterogeneities significantly influence exchanges with simulations based on local-scale heterogeneities always producing discharges that are less than those produced by the base model

  14. Reconnaissance of ground-water resources in the Eastern Coal Field Region, Kentucky

    USGS Publications Warehouse

    Price, William E.; Mull, D.S.; Kilburn, Chabot

    1962-01-01

    In the Eastern Coal Field region of Kentucky, water is obtained from consolidated sedimentary rocks ranging in age from Devonian to Pennsylvanian and from unconsolidated sediments of Quaternary age. About 95 percent of the area is underlain by shale, sandstone, and coal of Pennsylvanian age. Principal factors governing the availability of water in the region are depth, topographic location, and the lithology of the aquifer penetrated. In general, the yield of the well increases as the depth increases. Wells drilled in topographic lows, such as valleys, are likely to yield more water than wells drilled on topographic highs, such as hills. Sand and gravel, present in thick beds in the alluvium along the Ohio River, form the most productive aquifer in the Eastern Coal Field. Of the consolidated rocks in the region sandstone strata are the best aquifers chiefly because joints, openings along bedding planes, and intergranular pore spaces are best developed in them. Shale also supplies water to many wells in the region, chiefly from joints and openings along bedding planes. Coal constitutes a very small part of the sedimentary section, but it yields water from fractures to many wells. Limestone yields water readily from solution cavities developed along joint and bedding-plane openings. The availability of water in different parts of the region was determined chiefly by analyzing well data collected during the reconnaissance. The resulting water-availability maps, published as hydrologic investigations atlases (Price and others, 1961 a, b; Kilburn and others, 1961) were designed to be used in conjunction with this report. The maps were constructed by dividing the region into 5 physiographic areas, into 10 subareas based chiefly on lithologic facies, and, in the case of the Kanawha section, into 2 quality-of-water areas. The 5 physiographic areas are the Knobs, Mississippian Plateau, Cumberland Plateau section, Kanawha section, and Cumberland Mountain section. The 10

  15. Self-reinforcing process of the reconnection electric field in the electron diffusion region and onset of collisionless magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Lu, Quanming; Lu, San; Huang, Can; Wu, Mingyu; Wang, Shui

    2013-08-01

    The onset of collisionless magnetic reconnection is considered to be controlled by electron dynamics in the electron diffusion region, where the reconnection electric field is balanced mainly by the off-diagonal electron pressure tensor term. Two-dimensional particle-in-cell simulations are employed in this paper to investigate the self-reinforcing process of the reconnection electric field in the electron diffusion region, which is found to grow exponentially. A theoretical model is proposed to demonstrate such a process in the electron diffusion region. In addition the reconnection electric field in the pileup region, which is balanced mainly by the electromotive force term, is also found to grow exponentially and its growth rate is twice that in the electron diffusion region.

  16. Integral field spectroscopy of a sample of nearby galaxies. II. Properties of the H ii regions

    NASA Astrophysics Data System (ADS)

    Sánchez, S. F.; Rosales-Ortega, F. F.; Marino, R. A.; Iglesias-Páramo, J.; Vílchez, J. M.; Kennicutt, R. C.; Díaz, A. I.; Mast, D.; Monreal-Ibero, A.; García-Benito, R.; Bland-Hawthorn, J.; Pérez, E.; González Delgado, R.; Husemann, B.; López-Sánchez, Á. R.; Cid Fernandes, R.; Kehrig, C.; Walcher, C. J.; Gil de Paz, A.; Ellis, S.

    2012-10-01

    We analyse the spectroscopic properties of thousands of H ii regions identified in 38 face-on spiral galaxies. All galaxies were observed out to 2.4 effective radii using integral field spectroscopy (IFS) over the wavelength range ~3700 to ~6900 Å. The near uniform sample has been assembled from the PPAK IFS Nearby Galaxy (PINGS) survey and a sample described in Paper I. We develop a new automatic procedure to detect H ii regions, based on the contrast of the Hα intensity maps extracted from the datacubes. Once detected, the algorithm provides us with the integrated spectra of each individual segmented region. In total, we derive good quality spectroscopic information for ~2600 independent H ii regions/complexes. This is by far the largest H ii region survey of its kind. Our selection criteria and the use of 3D spectroscopy guarantee that we cover the regions in an unbiased way. A well-tested automatic decoupling procedure has been applied to remove the underlying stellar population, deriving the main properties (intensity, dispersion and velocity) of the strongest emission lines in the considered wavelength range (covering from [O ii] λ3727 to [S ii] λ6731). A final catalogue of the spectroscopic properties of H ii regions has been created for each galaxy, which includes information on morphology, spiral structure, gaskinematics, and surface brightness of the underlying stellar population. In the current study, we focus on the understanding of the average properties of the H ii regions and their radial distributions. We find a significant change in the ionisation characteristics of H ii regions within r < 0.25 re due to contamination from sources with different ionising characteristics, as we discuss. We find that the gas-phase oxygen abundance and the Hα equivalent width present a negative and positive gradient, respectively. The distribution of slopes is statistically compatible with a random Gaussian distribution around the mean value, if the radial

  17. Field-aligned current signatures in the near-tail region. I - ISEE observations in the plasma sheet boundary layer

    NASA Technical Reports Server (NTRS)

    Ohtani, S.; Kokubun, S.; Elphic, R. C.; Russell, C. T.

    1988-01-01

    Field-aligned currents in the near-tail region are examined using ISEE magnetometer data. Two substorms (the 1054 UT and the 1436 UT substorms on March 22, 1979) were examined, demonstrating the consistency of the current polarity and intensity with observations at lower altitudes, which suggests that field-aligned currents in the plasma sheet boundary layer are parts of the large-scale current system, the region-1 system. An examination of the steplike changes of the magnetic field direction, which correspond to the spacecraft crossing of a net field-aligned current, showed that the field-aligned currents in the plasma sheet boundary layer have the same polarity as the region-1 system.

  18. Statistical mechanics of velocity and magnetic fields in solar active regions

    NASA Astrophysics Data System (ADS)

    Krishan, V.

    1985-02-01

    A statistical mechanics of the velocity and magnetic fields is formulated for an active region plasma. The plasma subjected to the conservation laws emerges in a most probable state which is described by an equilibrium distribution function containing a Lagrange multiplier for every invariant of the system. The Lagrange multipliers are determined by demanding that the measured expectation values of the invariants be reproduced. For a numerical exercise, some probable values are assumed for these invariants. The total energy of a coronal loop is estimated from energy balance considerations. Doppler widths of the UV and EUV lines excited in the coronal loop plasma give a measure of the root-mean-square velocities. Measurements of magnetic helicity are not available for the solar corona.

  19. Coherent structure diffusivity in the edge region of Reversed Field Pinch experiments

    NASA Astrophysics Data System (ADS)

    Spolaore, M.; Antoni, V.; Spada, E.; Bergsåker, H.; Cavazzana, R.; Drake, J. R.; Martines, E.; Regnoli, G.; Serianni, G.; Vianello, N.

    2005-01-01

    Coherent structures emerging from the background turbulence have been detected by electrostatic measurements in the edge region of two Reversed Field Pinch experiments, RFX (Padua) and Extrap-T2R (Stockholm). Measurements have been performed by arrays of Langmuir probes which allowed simultaneous measurements of temperature, potential and density to be carried out. These structures have been interpreted as a dynamic balance of dipolar and monopolar vortices, whose relative population are found to depend on the local mean E × B flow shear. The contribution to the anomalous transport of these structures has been investigated and it has been found that the corresponding diffusion coeffcient accounts up to 50% of the total diffusivity. The experimental findings indicate that the diffusion coeffcient associated to the coherent structures depends on the relative population of the two types of vortices and is minimum when the two populations are equal. An interpretative model is proposed to explain this feature.

  20. Gravity field separation, density inversion and crustal tectonics in Kang-Dian region

    NASA Astrophysics Data System (ADS)

    Fu-Zhen, Jiang; Jian, Fang

    2001-07-01

    Kang-Dian region is located on the southern part of the famous North-South active tectonic belts, which is a part of China-Mongolia central axes strong earthquake belt and the huge crustal thickness undulation belt. Many geologists are interested in it due to its seismicity and abundant mineral resource. We inverted mean crustal density and density anomalies on the different layer in the depth range of 10 100 km, using the gravity field that is treated by separation and adjustment. Combining other geophysical data to analyze the density data, the results show that there is difference both in tectonic feature and geophysical feature between Kang-Dian lozenge block and its western and eastern parts.

  1. Electric potential patterns in the northern and southern polar regions parameterized by the interplanetary magnetic field

    SciTech Connect

    Papitashvili, V.O. |; Belov, B.A.; Faermark, D.S.; Feldstein, Ya.I.; Golyshev, S.A.; Gromova, L.I.; Levitin, A.E.

    1994-07-01

    Electric potential patterns have been obtained from the IZMIRAN electrodynamic model (IZMEM) for the northern and southern polar regions during summer, winter, and equinox. The model is derived from a large quantity of high-latitude ground-based geomagnetic data (above {+-} 57{degrees} corrected geomagnetic latitude) at all magnetic local time hours. A linear regression analysis technique has been used to obtain the quantitative response of each magnetic observatory to changes of interplanetary magnetic field (IMF) components. Since no ionospheric conductivity model exists specifically for the southern polar region, the statistical model of Wallis and Budzinski has been applied in both hemispheres. A cross-polar `background` potential of {approximately} 35 kV, derived by Reiff et al., is used to calibrate IZMEM`s potential patterns. The model`s response to changes in the IMF B{sub y} and B{sub z} components are analyzed to obtain a set of {open_quotes}elementary{close_quotes} convection patterns in both polar regions for each season of the year. Asymmetry in the potential pattern geometry in both hemispheres can be attributed either to the influence of the {open_quotes}northern{close_quotes} ionospheric conductivity model which was applied to the southern polar region, or to some natural phenomena. Average values of the modeled potential drop caused by each nanotesla of the IMF are the following: {approximately} 14 kV for southward B{sub z}; {approximately} {minus}4 kV for northward B{sub z}; and {approximately} {+-} 4.5 kV for B{sub y} components. The latter is not applicable to the {open_quotes}dawn-dusk{close_quotes} potential drop; it may be applied across the cusp region only. It is concluded that IZMEM provides realistic convection patterns parameterized by the IMF component directions and magnitudes and may be used to provide routine estimates of convection patterns and electric potentials if IMF data are available. 43 refs., 7 figs., 1 tab.

  2. The Southern African Regional Science Initiative (SAFARI 2000): Overview of the Dry Season Field Campaign

    NASA Technical Reports Server (NTRS)

    Swap, R. J.; Annegarn, H. J.; Suttles, J. T.; Haywood, J.; Helmlinger, M. C.; Hely, C.; Hobbs, P. V.; Holben, B. N.; Ji, J.; King, M. D.

    2002-01-01

    The Southern African Regional Science Initiative (SAFARI 2000) is an international project investigating the earth atmosphere -human system in southern Africa. The programme was conducted over a two year period from March 1999 to March 2001. The dry season field campaign (August-September 2000) was the most intensive activity involved over 200 scientist from eighteen countries. The main objectives were to characterize and quantify biogenic, pyrogenic and anthropogenic aerosol and trace gas emissions and their transport and transformations in the atmosphere and to validate NASA's Earth Observing System's Satellite Terra within a scientific context. Five aircraft-- two South African Weather Service Aeorcommanders, the University of Washington's CV-880, the U.K. Meteorological Office's C-130, and NASA's ER-2 --with different altitude capabilities, participated in the campaign. Additional airborne sampling of southern African air masses, that had moved downwind of the subcontinent, was conducted by the CSIRO over Australia. Multiple Observations were made in various geographical sections under different synoptic conditions. Airborne missions were designed to optimize the value of synchronous over-flights of the Terra Satellite platform, above regional ground validation and science targets. Numerous smaller scale ground validation activities took place throughout the subcontinent during the campaign period.

  3. Mesoscale vortices and associated field- aligned currents observed in the three Iijima - Potemra Regions during substorms

    NASA Astrophysics Data System (ADS)

    Mishin, Vladimir; Zuyin, Pu; Lunyushkin, Sergey; Mishin, Vilen

    During the last decade, different authors carried out a series of works in which there was expanded step by step description of the new system of plasma convection in the polar ionosphere, which arises and develops during substorms and storms. The system is found to consist of a mesoscale vortices. Within each vortex there is concurrent formation of local cell with the maximum density of the field- aligned current (FAC). Clockwise (counterclockwise) vortex always corresponds to the upward (downward) FAC. Simultaneously with one FAC/vortex pair there is formation of adjacent FAC/vortex pair. The direction of the plasma rotation in two adjacent vortex/ PT pairs are opposite as FACs directions. These directions change sign at the transition from R0 to R1 and from R1 to R2. Unlike earlier works, here we describe and analyze the dynamics of the vortex / FAC system covering the whole most active sector (20-02) MLT of the perturbed polar ionosphere and the corresponding region of the geotail, including all three Iijima -Potemra Regions, the boundaries of which are shown on maps of convection and FACs. We discuss the interaction of the vortex / FAC system with BBF. We conclude that BBFs of opposite signs are produced during substorms at the borders R0/R1 and R1/R2.

  4. The Target Model of Strategic Interaction of Kazan Federal University and the Region in the Field of Education

    ERIC Educational Resources Information Center

    Gabdulchakov, Valerian F.

    2016-01-01

    The subject of the study in the article is conceptual basis of construction of the target model of interaction between University and region. Hence the topic of the article "the Target model of strategic interaction between the University and the region in the field of education." The objective was to design a target model of this…

  5. PCA Analysis of the Geomagnetic Field at Mid-Latitude Regions during High Solar Activity

    NASA Astrophysics Data System (ADS)

    Natali, Maria Paula; Meza, Amalia Margarita

    2016-07-01

    Our study is focused on the analysis of the geomagnetic variability of the H, D and Z components in the Northern hemisphere at mid-latitudes. We analyze two different local times, noon and night, recorded by 22 permanent observatories distributed over Europe and North America during a period of four years of high solar activity comprising 2000-2003. We used Principal Component Analysis (PCA) in order to identify the spatial and temporal variations of the geomagnetic field components. This technique produces a quite compact representation of the data by defining an orthonormal base derived from correlation within the data set. This helps us to identify possible causes of seasonal variations and anomalies, linking them with already observed currents. In fact, the analysis of PCA amplitudes and modes support our interpretation of the spectral and statistical features of the geomagnetic field. Using the first two modes we reconstruct more than 90% of the original signal for the European and North American region. The obtained results reconfirm the existence of a latitudinal dependence in the geomagnetic components during nighttime hours, associated with the ring current. During noon, the first mode represent the dominant component of the current originated by the ionosphere, while the second mode show the presence of a longitudinal variation at both sides of the longitudes with zero declination for Europe and North America.

  6. High field FT-ICR mass spectrometry for molecular characterization of snow board from Moscow regions.

    PubMed

    Mazur, Dmitry M; Harir, Mourad; Schmitt-Kopplin, Philippe; Polyakova, Olga V; Lebedev, Albert T

    2016-07-01

    High field Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry analysis of eight snow samples from Moscow city allowed us to identify more than 2000 various elemental compositions corresponding to regional air pollutants. The hierarchical cluster analysis (HCA) of the data showed good concordance of three main groups of samples with the main wind directions. The North-West group (A1) is represented by several homologous CHOS series of aliphatic organic aerosols. They may form as a result of enhanced photochemical reactions including oxidation of hydrocarbons with sulfonations due to higher amount of SO2 emissions in the atmosphere in this region. Group A2, corresponding to the South-East part of Moscow, contains large amount of oxidized hydrocarbons of different sources that may form during oxidation in atmosphere. These hydrocarbons appear correlated to emissions from traffic, neighboring oil refinery, and power plants. Another family of compounds specific for this region involves CHNO substances formed during oxidation processes including NOx and NO3 radical since emissions of NOx are higher in this part of the city. Group A3 is rich in CHO type of compounds with high H/C and low O/C ratios, which is characteristic of oxidized hydrocarbon-like organic aerosol. CHNO types of compounds in A3 group are probably nitro derivatives of condensed hydrocarbons such as PAH. This non-targeted profiling revealed site specific distribution of pollutants and gives a chance to develop new strategies in air quality control and further studies of Moscow environment. PMID:26994789

  7. High field FT-ICR mass spectrometry for molecular characterization of snow board from Moscow regions.

    PubMed

    Mazur, Dmitry M; Harir, Mourad; Schmitt-Kopplin, Philippe; Polyakova, Olga V; Lebedev, Albert T

    2016-07-01

    High field Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry analysis of eight snow samples from Moscow city allowed us to identify more than 2000 various elemental compositions corresponding to regional air pollutants. The hierarchical cluster analysis (HCA) of the data showed good concordance of three main groups of samples with the main wind directions. The North-West group (A1) is represented by several homologous CHOS series of aliphatic organic aerosols. They may form as a result of enhanced photochemical reactions including oxidation of hydrocarbons with sulfonations due to higher amount of SO2 emissions in the atmosphere in this region. Group A2, corresponding to the South-East part of Moscow, contains large amount of oxidized hydrocarbons of different sources that may form during oxidation in atmosphere. These hydrocarbons appear correlated to emissions from traffic, neighboring oil refinery, and power plants. Another family of compounds specific for this region involves CHNO substances formed during oxidation processes including NOx and NO3 radical since emissions of NOx are higher in this part of the city. Group A3 is rich in CHO type of compounds with high H/C and low O/C ratios, which is characteristic of oxidized hydrocarbon-like organic aerosol. CHNO types of compounds in A3 group are probably nitro derivatives of condensed hydrocarbons such as PAH. This non-targeted profiling revealed site specific distribution of pollutants and gives a chance to develop new strategies in air quality control and further studies of Moscow environment.

  8. Monitoring and Modeling Water and Energy Fluxes in North China Plain: From Field to Regional Scales

    NASA Astrophysics Data System (ADS)

    Shen, Y.

    2012-12-01

    North China Plain is one of the mostly water deficit region in the world. Even though the total water withdrawal from surface and groundwater exceeded its renewable ability for long years, due to its importance to balance the food budget in China, large amount of groundwater is still extracted every year for intensive irrigation. With winter wheat and summer maize double-cropping system, the grain yield of NCP can reach a very high level of around 15 t/ha annually, which is largely depended on timely irrigation. As a result, the ceaseless over exploitation of groundwater caused serious environmental and ecological problems, e.g. nearly all the rivers run drying-up at plain areas, groundwater declined, land subsidence, and wetland shrank. The decrease in precipitation over past half century reinforced the water shortage in NCP. The sustainability of both the water resources and agriculture became the most important issue in this region. A key issue to the sustainable use of water resources is to improve the water use efficiency and reduce agricultural water consumptions. This study will introduce the efforts we put to clarify the water and heat balances in irrigated agricultural lands and its implications to crop yield, hydrology, and water resources evolution in NCP. We established a multi-scale observation system in NCP to study the surface water and heat processes and agricultural aspect of hydrological cycle in past years. Multi-disciplinary methods are adopted into this research such as micro-meteorologic, isotopic, soil hydrologic methods at the field scale, and remote sensing and modeling for study the water fluxes over regional scale. Detailed research activities and interesting as well as some initial results will be introduced at the workshop.

  9. High-resolution regional gravity field modelling in a mountainous area from terrestrial gravity data

    NASA Astrophysics Data System (ADS)

    Bucha, Blažej; Janák, Juraj; Papčo, Juraj; Bezděk, Aleš

    2016-11-01

    We develop a high-resolution regional gravity field model by a combination of spherical harmonics, band-limited spherical radial basis functions (SRBFs) and the residual terrain model (RTM) technique. As the main input data set, we employ a dense terrestrial gravity database (3-6 stations km-2), which enables gravity field modelling up to very short spatial scales. The approach is based on the remove-compute-restore methodology in which all the parts of the signal that can be modelled are removed prior to the least-squares adjustment in order to smooth the input gravity data. To this end, we utilize degree-2159 spherical harmonic models and the RTM technique using topographic models at 2 arcsec resolution. The residual short-scale gravity signal is modelled via the band-limited Shannon SRBF expanded up to degree 21 600, which corresponds to a spatial resolution of 30 arcsec. The combined model is validated against GNSS/levelling-based height anomalies, independent surface gravity data, deflections of the vertical and terrestrial vertical gravity gradients achieving an accuracy of 2.7 cm, 0.53 mGal, 0.39 arcsec and 279 E in terms of the RMS error, respectively. A key aspect of the combined approach, especially in mountainous areas, is the quality of the RTM. We therefore compare the performance of two RTM techniques within the innermost zone, the tesseroids and the polyhedron. It is shown that the polyhedron-based approach should be preferred in rugged terrain if a high-quality RTM is required. In addition, we deal with the RTM computations at points located below the reference surface of the residual terrain which is known to be a rather delicate issue.

  10. Carbon mapping of Argentine savannas: Using fractional tree cover to scale from field to region

    NASA Astrophysics Data System (ADS)

    González-Roglich, M.; Swenson, J. J.

    2015-12-01

    Programs which intend to maintain or enhance carbon (C) stocks in natural ecosystems are promising, but require detailed and spatially explicit C distribution models to monitor the effectiveness of management interventions. Savanna ecosystems are significant components of the global C cycle, covering about one fifth of the global land mass, but they have received less attention in C monitoring protocols. Our goal was to estimate C storage across a broad savanna ecosystem using field surveys and freely available satellite images. We first mapped tree canopies at 2.5 m resolution with a spatial subset of high resolution panchromatic images to then predict regional wall-to-wall tree percent cover using 30-m Landsat imagery and the Random Forests algorithms. We found that a model with summer and winter spectral indices from Landsat, climate and topography performed best. Using a linear relationship between C and % tree cover, we then predicted tree C stocks across the gradient of tree cover, explaining 87 % of the variability. The spatially explicit validation of the tree C model with field-measured C-stocks revealed an RMSE of 8.2 tC/ha which represented ~30% of the mean C stock for areas with tree cover, comparable to studies based on more advanced remote sensing methods, such as LiDAR and RADAR. Sample spatial distribution highly affected the performance of the RF models in predicting tree cover, raising concerns regarding the predictive capabilities of the model in areas for which training data is not present. The 50,000 km2 has ~41 Tg C, which could be released to the atmosphere if agricultural pressure intensifies in this semiarid savanna.

  11. Some initial applications of the new BEM extrapolation code for reconstructing the coronal magnetic field above solar active regions

    NASA Astrophysics Data System (ADS)

    Li, Y.; Yan, Y.; Su, J.; Devel, M.; Song, G.

    Magnetic fields play an important role in many physical events occurring in the solar atmosphere However reliable magnetic field measurements in the corona are still facing technical difficulties unconquerable today For many years photospherical magnetograms have been combined with various field extrapolation methods to reconstruct the magnetic fields in the corona under the force-free field assumption In this paper we present some initial results obtained by our recently rebuilt BEM extrapolation code for reconstructing the coronal magnetic field above the solar active regions Equipped with 10 iterative solvers of linear systems found in the SPARSKIT package the new BEM extrapolation code has the merits of efficiency and easy usage Some 3D visualization codes are also developed with which the twists and sigmoidal shapes in the reconstructed 3D magnetic fields can be illustrated more properly

  12. On the efficient computation of Fraunhofer and Fresnel region fields radiated by reflector and planar-aperture antennas

    NASA Technical Reports Server (NTRS)

    Mittra, R.; Rushdi, A.; Galindo-Israel, V.; Rahmat-Samii, Y.

    1979-01-01

    Computation of fields radiated by parabolic reflectors and planar apertures is a problem of prime importance, and conventional approaches to performing these computations are often very time-consuming. The paper demonstrates the usefulness of a series expansion technique for efficient computation of radiated fields in both the Fraunhofer and Fresnel regions. The series approach is based on the use of the Jacobi polynomials. The application of the series method to determining the far-field pattern of the antenna from the near-field measurements for an arbitrary aperture antenna is also discussed.

  13. From field to region yield predictions in response to pedo-climatic variations in Eastern Canada

    NASA Astrophysics Data System (ADS)

    JÉGO, G.; Pattey, E.; Liu, J.

    2013-12-01

    The increase in global population coupled with new pressures to produce energy and bioproducts from agricultural land requires an increase in crop productivity. However, the influence of climate and soil variations on crop production and environmental performance is not fully understood and accounted for to define more sustainable and economical management strategies. Regional crop modeling can be a great tool for understanding the impact of climate variations on crop production, for planning grain handling and for assessing the impact of agriculture on the environment, but it is often limited by the availability of input data. The STICS ("Simulateur mulTIdisciplinaire pour les Cultures Standard") crop model, developed by INRA (France) is a functional crop model which has a built-in module to optimize several input parameters by minimizing the difference between calculated and measured output variables, such as Leaf Area Index (LAI). STICS crop model was adapted to the short growing season of the Mixedwood Plains Ecozone using field experiments results, to predict biomass and yield of soybean, spring wheat and corn. To minimize the numbers of inference required for regional applications, 'generic' cultivars rather than specific ones have been calibrated in STICS. After the calibration of several model parameters, the root mean square error (RMSE) of yield and biomass predictions ranged from 10% to 30% for the three crops. A bit more scattering was obtained for LAI (20%

  14. Study of the Photospheric Magnetic Field and Coronal Emission from Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Aguilera, Jordan Armando Guerra

    2016-01-01

    Solar explosive phenomena (flares and Coronal Mass Ejections, CMEs) are examples of how the most dynamical processes within the heliosphere are interconnected and powered by the Sun. Solar flares originate in active regions (AR) -- areas of strong magnetic field on the solar surface. The electromagnetic (EM) energy released during flares, along with the often-seen CMEs, propagate through the heliosphere. In the Earth's vicinity, EM radiation and charged particles have the potential to produce unfavorable conditions for humans and technology in space. From many points of view (scientific, operational, economical) it is thus important to understand and try to predict when solar flares and associated eruptive phenomena will occur. This dissertation explores how to best leverage the available observational data to provide predictive information about the future flaring activity. This dissertation consists of two main components: 1) investigation of the photosphere-corona coupling by analyzing photospheric magnetic field and coronal data in search for signals or behaviors that precede eruptions; and 2) the combination of existing flare prediction methods in order to develop a novel ensemble prediction. For the first part, the data employed correspond to line-of-sight (LOS) magnetograms from the Helioseismic and Magnetic Imager (HMI) and EUV intensity maps from the Atmospheric Imaging Assembly (AIA), both instruments onboard NASA's Solar Dynamics Observatory (SDO) satellite. Photospheric magnetic field and coronal EUV emissions were characterized by measuring the power-law decay of their spatio-temporal spectra and the data statistical associations (auto- and cross-correlations). These measures, calculated with high spatio-temporal resolution, appeared to characterize the AR evolution, provide information about the state of the photospheric plasma, reveal insights into the photospheric conditions for flares, and expose the potential of combining coronal and photospheric

  15. Initial results on the correlation between the magnetic and electric fields observed from the DE-2 satellite in the field-aligned current regions

    NASA Technical Reports Server (NTRS)

    Sugiura, M.; Maynard, N. C.; Farthing, W. H.; Heppner, J. P.; Ledley, B. G.; Cahill, L. J., Jr.

    1982-01-01

    Initial results of the electric and magnetic field observations from the DE-2 satellite show a remarkably good correlation between the north-south component of the electric field and the east-west component of the magnetic field in many passes of the field-aligned current regions. For a dayside cusp pass on August 15, 1981 the coefficient of correlation between these components was 0.996. A preliminary inspection of the available data from the first 6 months of the DE operation indicates that the similarity between the electric and magnetic field signatures of the field-aligned currents is a commonly observed feature at all local times. This high correlation is interpreted to be an indication that the closure of the field-aligned current is essentially meridional. When the correlation between these components is not good, the closure current is likely to be flowing along the auroral belt. When the correlation between the electric and magnetic fields is high, it is possible to estimate the height-integrated Pedersen conductivity from the observed field components.

  16. The morphology of flare phenomena, magnetic fields, and electric currents in active regions. III - NOAA active region 6233 (1990 August)

    NASA Technical Reports Server (NTRS)

    De La Beaujardiere, J.-F.; Canfield, Richard C.; Leka, K. D.

    1993-01-01

    We investigate the spatial relationship between vertical electric currents and flare phenomena in NOAA Active Region 6233, which was observed 1990, August 28-31 at Mees Solar Observatory. The two flares studied are the 1N/M1.8 flare on August 28, 22:30 UT and the 1N/M1.6 flare on August 29, 20:35 UT. Using Stokes polarimetry we make magnetograms of the region and compute the vertical current density. Using H-alpha imaging spectroscopy we identify sites of intense nonthermal electron precipitation or of high coronal pressure. The precipitation in these flares is barely strong enough to be detectable. We find that both precipitation and high pressure tend to occur near vertical currents, but that neither phenomenon is cospatial with current maxima. In contrast with the conclusion of other authors, we argue that these observations do not support a current-interruption model for flares, unless the relevant currents are primarily horizontal. The magnetic morphology and temporal evolution of these flares suggest that an erupting filament model may be relevant, but this model does not explicitly predict the relationship between precipitation, high pressure, and vertical currents.

  17. Symmetrical seismic anisotropy of Mt. Fuji and its interpretations in terms of regional stress fields

    NASA Astrophysics Data System (ADS)

    Araragi, K.; Savage, M. K.; Ohminato, T.; Aoki, Y.

    2013-12-01

    objectivity and reliability of the results by suppressing subjective manual criteria. The measured fast directions are consistent at each station and the average of delay times is approximately 0.05 s. We infer that the anisotropic structure is located at shallow depths (<-4km) from the lack of depth dependence of delay times. The fast directions show a radial pattern from the summit. This indicates that the distribution of seismic anisotropy spread symmetrically at least several km from the summit. A few stations far from the summit show deviation from the pattern and the trends of fast directions of those stations are parallel to the NW-SE regional stress field. Regardless of the increase of seismicity and the Mw5.9 event, the fast directions and delay times did not change significantly. We consider that the lack of temporal change of SWS and spatial distribution of fast polarization directions indicate that symmetric seismic anisotropy in the vicinity of Mt. Fuji is caused mainly by anisotropic structure that is not easily affected by the short-term changes in stress field. The radial pattern and deviation from the pattern may suggest the influence of topography superimposed on the regional maximum compression as discussed by Nakamura (1977).

  18. Parallel plate capacitor analogy of equatorial plasma bubble and associated fringe fields with implications to equatorial valley region irregularities

    NASA Astrophysics Data System (ADS)

    Mukherjee, S.; Patra, A. K.

    2014-08-01

    VHF radar echoes from the valley region plasma irregularities, displaying ascending pattern, are often observed during the active phase of equatorial plasma bubble in the close vicinity of the geomagnetic equator and have been attributed to bubble-related fringe field effect. These irregularities however are not observed at a few degrees away from the equator. In this paper, we attempt to understand this contrasting observational result by comparing fringe field at the geomagnetic equator and low latitudes. We use parallel plate capacitor analogy of equatorial plasma bubble and choose a few capacitor configurations, consistent with commonly observed dimension and magnetic field-aligned property of plasma bubble, for computing fringe field. Results show that fringe field decreases significantly with decreasing altitude as expected. Further, fringe field decreases remarkably with latitude, which clearly indicates the role of magnetic field-aligned property of plasma bubble in reducing the magnitude of fringe field at low latitudes compared to that at the geomagnetic equator. The results are presented and discussed in the light of current understanding of plasma bubble-associated fringe field-induced plasma irregularities in the valley region.

  19. Regional model simulation of summer rainfall over the Philippines: Effect of choice of driving fields and ocean flux schemes

    NASA Astrophysics Data System (ADS)

    Francisco, R. V.; Argete, J.; Giorgi, F.; Pal, J.; Bi, X.; Gutowski, W. J.

    2006-09-01

    The latest version of the Abdus Salam International Centre for Theoretical Physics (ICTP) regional model RegCM is used to investigate summer monsoon precipitation over the Philippine archipelago and surrounding ocean waters, a region where regional climate models have not been applied before. The sensitivity of simulated precipitation to driving lateral boundary conditions (NCEP and ERA40 reanalyses) and ocean surface flux scheme (BATS and Zeng) is assessed for 5 monsoon seasons. The ability of the RegCM to simulate the spatial patterns and magnitude of monsoon precipitation is demonstrated, both in response to the prominent large scale circulations over the region and to the local forcing by the physiographical features of the Philippine islands. This provides encouraging indications concerning the development of a regional climate modeling system for the Philippine region. On the other hand, the model shows a substantial sensitivity to the analysis fields used for lateral boundary conditions as well as the ocean surface flux schemes. The use of ERA40 lateral boundary fields consistently yields greater precipitation amounts compared to the use of NCEP fields. Similarly, the BATS scheme consistently produces more precipitation compared to the Zeng scheme. As a result, different combinations of lateral boundary fields and surface ocean flux schemes provide a good simulation of precipitation amounts and spatial structure over the region. The response of simulated precipitation to using different forcing analysis fields is of the same order of magnitude as the response to using different surface flux parameterizations in the model. As a result it is difficult to unambiguously establish which of the model configurations is best performing.

  20. Radiation fields of intermediate-age stellar populations with binaries as ionizing sources of H II regions

    NASA Astrophysics Data System (ADS)

    Zhang, F.; Li, L.; Cheng, L.; Wang, L.; Kang, X.; Zhuang, Y.; Han, Z.

    2015-02-01

    Radiation fields emitted by O- and B-type stars or young stellar populations (SPs) are generally considered as significant central ionizing sources (CISs) of classic H II regions. In our previous studies, we showed that the inclusion of binary interactions in stellar population synthesis models can significantly increase the ultraviolet spectrum hardness and the number of ionizing photons of intermediate-age (IA) SPs (7 ≲ log(t/yr) ≲ 8). In this work, we present photoionization models of H II regions ionized by radiation fields emitted by IA SPs, including binary systems, and show that these fields are in theory possible candidates for significant CISs of classic H II regions. When radiation fields of IA SPs comprising binary systems are used as the CISs of classic H II regions, the theoretical strengths of a number of lines (such as [O III] λ4959', [S II] λ6716', etc.), which are weaker than observations, are increased; the border or selection-criterion lines between star-forming galaxies and active galactic nuclei (AGNs) in the diagnostic diagrams (for example, [N II] λ6583/Hα versus [O III] λ5007/Hβ), move into the region occupied originally by AGNs; and the He II λ1640 line, observed in Lyman break and high-redshift gravitationally lensed galaxies, also can be produced.

  1. Preface to the special issue on "Regional moment tensors and stress field in South and Central America"

    NASA Astrophysics Data System (ADS)

    Audemard, Franck; Zahradnik, Jiri; Assumpção, Marcelo

    2016-11-01

    This special issue follows from the Symposium "Regional Moment Tensor Solutions: advances and new applications" held in Bogotá, Colombia, at the I Regional Assembly of the IASPEI's Latin American and Caribbean Seismological Commission (LACSC) in 2014. Seven papers are presented dealing with determination of moment tensors, focal mechanisms and the stress field in Central and South America. The study areas of each paper are indicated in the index Map of Fig. 1.

  2. The EarthScope Plate Boundary Observatory Alaska Region: Highlights from the 2012 Summer Field Season

    NASA Astrophysics Data System (ADS)

    Enders, M.; Bierma, R. M.; Boyce, E. S.; Willoughby, H.; Fend, M.; Feaux, K.

    2012-12-01

    UNAVCO has now completed its fourth year of operation and maintenance of the 138 continuous GPS stations, 12 tiltmeters and 31 data communications relays that comprise the Alaska region of the EarthScope Plate Boundary Observatory (PBO). The successful operation of the autonomous GPS and tiltmeter network in Alaska continues to be a challenge, because of logistics, weather, and other difficulties related to working in Alaska. PBO engineers continue to work on network enhancements to make the stations more robust, while improving overall data quality and station uptime to better serve the EarthScope science community. In the summer of 2012, PBO engineers completed maintenance activities in Alaska, which resulted in a 95% operational status for the Alaska network within PBO. PBO engineers completed a total of 87 maintenance visits in the summer of FY2012, including 62 routine maintenance and 25 unscheduled maintenance visits to GPS and data communications stations. We present a number of highlights and accomplishments from the PBO 2012 summer field season in Alaska, for example the deployment of a newly designed methanol fuel cell at AV35, a critical station that serves as the main repeater for the real time network on Unimak Island. In addition, PBO engineers also completed the installation of three Inmarsat BGAN terminals for data telemetry following successful testing at AC60 Shemya. Lastly, PBO engineers completed scheduled battery replacements at most of the PBO stations on Unimak Island, in collaboration with the USGS/Alaska Volcano Observatory. In addition to routine maintenance and planned station improvements to sites in Alaska, numerous critical repairs were made at stations on Unimak Island and elsewhere to ensure that the PBO network continues to function well and continues to meet the requirements stipulated by the NSF. We also present some of the station failures unique to Alaska, which we encountered during the course of the 2012 field season, as well

  3. Photospheric Magnetic Field Properties of Flaring versus Flare-quiet Active Regions. II. Discriminant Analysis

    NASA Astrophysics Data System (ADS)

    Leka, K. D.; Barnes, G.

    2003-10-01

    We apply statistical tests based on discriminant analysis to the wide range of photospheric magnetic parameters described in a companion paper by Leka & Barnes, with the goal of identifying those properties that are important for the production of energetic events such as solar flares. The photospheric vector magnetic field data from the University of Hawai'i Imaging Vector Magnetograph are well sampled both temporally and spatially, and we include here data covering 24 flare-event and flare-quiet epochs taken from seven active regions. The mean value and rate of change of each magnetic parameter are treated as separate variables, thus evaluating both the parameter's state and its evolution, to determine which properties are associated with flaring. Considering single variables first, Hotelling's T2-tests show small statistical differences between flare-producing and flare-quiet epochs. Even pairs of variables considered simultaneously, which do show a statistical difference for a number of properties, have high error rates, implying a large degree of overlap of the samples. To better distinguish between flare-producing and flare-quiet populations, larger numbers of variables are simultaneously considered; lower error rates result, but no unique combination of variables is clearly the best discriminator. The sample size is too small to directly compare the predictive power of large numbers of variables simultaneously. Instead, we rank all possible four-variable permutations based on Hotelling's T2-test and look for the most frequently appearing variables in the best permutations, with the interpretation that they are most likely to be associated with flaring. These variables include an increasing kurtosis of the twist parameter and a larger standard deviation of the twist parameter, but a smaller standard deviation of the distribution of the horizontal shear angle and a horizontal field that has a smaller standard deviation but a larger kurtosis. To support the

  4. New Features of Time Domain Electric-Field Structures in the Auroral Acceleration Region

    SciTech Connect

    Mozer, F.S.; Ergun, R.; Temerin, M.; Cattell, C.; Dombeck, J.; Wygant, J.

    1997-08-01

    The Polar Satellite carries the first three-axis electric field detector flown in the magnetosphere. Its direct measurement of electric field components perpendicular and parallel to the local magnetic field has revealed new classes and features of electric field structures associated with the plasma acceleration that produces discrete auroras and that populates the magnetosphere with plasma of ionospheric origin. These structures, associated with the hydrogen ion cyclotron mode, include very large solitary waves, spiky field structures, wave envelopes of parallel electric fields, and very large amplitude, nonlinear, coherent ion cyclotron waves. {copyright} {ital 1997} {ital The American Physical Society}

  5. Electric fields and field-aligned currents in polar regions of the solar corona: 3-D MHD consideration

    NASA Technical Reports Server (NTRS)

    Pisanko, Yu. V.

    1995-01-01

    The calculation of the solar rotation electro-dynamical effects in the near-the-Sun solar wind seems more convenient from the non-inertial corotating reference frame. This implies some modification of the 3-D MHD equations generally on the base of the General Theory of Relativity. The paper deals with the search of stationary (in corotating non-inertial reference frame) solutions of the modified 3-D MHD equations for the in near-the-Sun high latitude sub-alfvenic solar wind. The solution is obtained requiring electric fields and field-aligned electric currents in the high latitude near-the-Sun solar wind. Various scenario are explored self-consistently via a number of numerical experiments. The analogy with the high latitude Earth's magnetosphere is used for the interpretation of the results. Possible observational manifestations are discussed.

  6. Evolution of Magnetic Fields in Corotating Interaction Regions from 1 to 95 AU: Order to Chaos

    NASA Astrophysics Data System (ADS)

    Burlaga, L. F.; Wang, C.; Richardson, J. D.; Ness, N. F.

    2003-06-01

    We discuss the large-scale heliospheric magnetic field strength fluctuations as a function of distance from the Sun during the declining phase of a solar cycle, based on a one-dimensional, MHD, three-fluid model with observations made at 1 AU during 1995 as input. We consider daily averages of the magnetic field strength, B, as a function of time for a ~1 year interval. The model predicts that B(t) is quasi-periodic, and that the amplitudes of fluctuations in B relative to the yearly average of B () are relatively large between 5 and 20 AU (``the corotating merged interaction region zone,'' or CMIR zone). The model predicts that the fluctuations are aperiodic and that their amplitudes are relatively small between 30 and 95 AU (the ``wave interaction region zone''). It predicts a transition between these two zones at ~25 AU. These results are consistent with a conceptual model proposed by Burlaga in 1983 for the declining phase of the solar cycle. In the CMIR zone, neighboring CMIRs merge in a sequence of events that defines a topological tree. The model predicts the following statistical properties of the fluctuations in B/ for the declining phase of a solar cycle in the CMIR zone: (1) the power spectrum of B/ has a prominent peak at 26 days and a secondary peak at 13 days; (2) the distribution of B/ has no simple form; and (3) the standard deviation (SD) of B/ is relatively large and has a maximum of 1.2 at 10 AU. In the wave interaction zone, (1) the spectrum has no significant peak, and the power level at 26 days is an order of magnitude smaller than in the CMIR zone; (2) the distribution of B/ is approximately lognormal; and (3) the SD(B/) is nearly constant, ~0.48. The SD(B/) versus R shows that the transition between the CMIR and the wave interaction zones is at ~25+/-5 AU. The results of the model are consistent with the Voyager 1 (V1) observations near 15 and 55 AU during 1983 and 1994, respectively. During the declining phase of

  7. Investigating the Seismicity and Stress Field of the Truckee -- Lake Tahoe Region, California -- Nevada

    NASA Astrophysics Data System (ADS)

    Seaman, Tyler

    The Lake Tahoe basin is located in a transtensional environment defined by east-dipping range--bounding normal faults, northeast--trending sinistral, and northwest-trending dextral strike-slip faults in the northern Walker Lane deformation belt. This region accommodates as much as 10 mm/yr of dextral shear between the Sierra Nevada and Basin and Range proper, or about 20% of Pacific-North American plate motion. There is abundant seismicity north of Lake Tahoe through the Truckee, California region as opposed to a lack of seismicity associated with the primary normal faults in the Tahoe basin (i.e., West Tahoe fault). This seismicity study is focused on the structural transition zone from north-striking east-dipping Sierran Range bounding normal faults into the northern Walker Lane right-lateral strike-slip domain. Relocations of earthquakes between 2000-2013 are performed by initially applying HYPOINVERSE mean sea level datum and station corrections to produce higher confidence absolute locations as input to HYPODD. HYPODD applies both phase and cross-correlation times for a final set of 'best' event relocations. Relocations of events in the upper brittle crust clearly align along well-imaged, often intersecting, high-angle structures of limited lateral extent. In addition, the local stress field is modeled from 679 manually determined short-period focal mechanism solutions, between 2000 and 2013, located within a fairly dense local seismic network. Short-period focal mechanisms were developed with the HASH algorithm and moment tensor solutions using long-period surface waves and the MTINV code. Resulting solutions show a 9:1 ratio of strike-slip to normal mechanisms in the transition zone study area. Stress inversions using the application SATSI (USGS Spatial And Temporal Stress Inversion) generally show a T-axis oriented primarily E-W that also rotates about 30 degrees counterclockwise, from a WNW-ESE trend to ENE-WSW, moving west to east across the California

  8. Regional lymph node radiotherapy in breast cancer: single anterior supraclavicular field vs. two anterior and posterior opposed supraclavicular fields

    PubMed Central

    Houshyari, Mohammad; Kashi, Amir Shahram Yousefi; Varaki, Sakineh Soleimani; Rakhsha, Afshin; Blookat, Eftekhar Rajab

    2015-01-01

    Background: The treatment of lymph nodes engaged in breast cancer with radiotherapy leads to improved locoregional control and enhanced survival rates in patients after surgery. The aim of this study was to compare two treatment techniques, namely single anterior posterior (AP) supraclavicular field with plan depth and two anterior and posterior opposed (AP/PA) supraclavicular fields. In the study, we also examined the relationships between the depth of supraclavicular lymph nodes (SCLNs) and the diameter of the wall of the chest and body mass index (BMI). Methods: Forty patients with breast cancer were analyzed using computed tomography (CT) scans. In planning target volume (PTV), the SCLNs and axillary lymph nodes (AXLNs) were contoured, and, with the attention to PTV, supraclavicular (SC) depth was measured. The dosage that reached the aforementioned lymph nodes and the level of hot spots were investigated using two treatment methods, i.e., 1) AP/PA and 2) AP with three-dimensional (3D) planning. Each of these methods was analyzed using the program Isogray for the 6 MV compact accelerator, and the diameter of the wall of the chest was measured using the CT scan at the center of the SC field. Results: Placing the plan such that 95% of the target volume with 95% or greater of the prescribed dose of 50 Gy (V95) had ≥95% concordance in both treatment techniques. According to the PTV, the depth of SCLNs and the diameter of the wall of the chest were 3–7 and 12–21cm, respectively. Regression analysis showed that the mean SC depth (the mean Plan depth) and the mean diameter of the wall of the chest were related directly to BMI (p<0.0001, adjusted R2=0.67) and (p<0.0001, adjusted R2=0.71), respectively. Conclusion: The AP/PA treatment technique was a more suitable choice of treatment than the AP field, especially for overweight and obese breast cancer patients. However, in the AP/PA technique, the use of a single-photon, low energy (6 MV) caused more hot spots

  9. The Major Project in the Field of Education in the Latin American and Caribbean Region: Summary. Bulletin 20.

    ERIC Educational Resources Information Center

    United Nations Educational, Scientific, and Cultural Organization, Santiago (Chile). Regional Office for Education in Latin America and Caribbean.

    This UNESCO bulletin includes reports that focus on diagnoses and strategies that ratify the validity of the goals set by the Major Project in the Field of Education in the Latin American and Caribbean Region. Four articles are featured: "Literacy, Human Rights and Democracy" (Jose Rivero H.); "Primary Schooling and Illiteracy in Latin America and…

  10. Formation and Eruption of an Active Region Sigmoid. I. A Study by Nonlinear Force-free Field Modeling

    NASA Astrophysics Data System (ADS)

    Jiang, Chaowei; Wu, S. T.; Feng, Xueshang; Hu, Qiang

    2014-01-01

    We present a comprehensive study of the formation and eruption of an active region (AR) sigmoid in AR 11283. To follow the quasi-static evolution of the coronal magnetic field, we reconstruct a time sequence of static fields using a recently developed nonlinear force-free field model constrained by vector magnetograms. A detailed analysis of the fields compared with observations suggests the following scenario for the evolution of the region. Initially, a new bipole emerges into the negative polarity of a preexisting bipolar AR, forming a null-point topology between the two flux systems. A weakly twisted flux rope (FR) is then built up slowly in the embedded core region, largely through flux cancellation, forming a bald patch separatrix surface (BPSS). The FR grows gradually until its axis runs into a torus instability (TI) domain, and the BPSS also develops a full S-shape. The combined effects of the TI-driven expansion of the FR and the line tying at the BP tear the FR into two parts with the upper portion freely expelled and the lower portion remaining behind the postflare arcades. This process dynamically perturbs the BPSS and results in the enhanced heating of the sigmoid and the rope. The accelerated expansion of the upper-portion rope strongly pushes its envelope flux near the null point and triggers breakout reconnection at the null, which further drives the eruption. We discuss the important implications of these results for the formation and disruption of the sigmoid region with an FR.

  11. Formation and eruption of an active region sigmoid. I. A study by nonlinear force-free field modeling

    SciTech Connect

    Jiang, Chaowei; Feng, Xueshang; Wu, S. T.; Hu, Qiang E-mail: fengx@spaceweather.ac.cn E-mail: qh0001@uah.edu

    2014-01-01

    We present a comprehensive study of the formation and eruption of an active region (AR) sigmoid in AR 11283. To follow the quasi-static evolution of the coronal magnetic field, we reconstruct a time sequence of static fields using a recently developed nonlinear force-free field model constrained by vector magnetograms. A detailed analysis of the fields compared with observations suggests the following scenario for the evolution of the region. Initially, a new bipole emerges into the negative polarity of a preexisting bipolar AR, forming a null-point topology between the two flux systems. A weakly twisted flux rope (FR) is then built up slowly in the embedded core region, largely through flux cancellation, forming a bald patch separatrix surface (BPSS). The FR grows gradually until its axis runs into a torus instability (TI) domain, and the BPSS also develops a full S-shape. The combined effects of the TI-driven expansion of the FR and the line tying at the BP tear the FR into two parts with the upper portion freely expelled and the lower portion remaining behind the postflare arcades. This process dynamically perturbs the BPSS and results in the enhanced heating of the sigmoid and the rope. The accelerated expansion of the upper-portion rope strongly pushes its envelope flux near the null point and triggers breakout reconnection at the null, which further drives the eruption. We discuss the important implications of these results for the formation and disruption of the sigmoid region with an FR.

  12. Analysis of the disturbed electric field effects in the sporadic E-layers at equatorial and low latitude regions

    NASA Astrophysics Data System (ADS)

    Araujo Resende, Laysa Cristina; Moro, Juliano; Denardini, Clezio Marcos; Carrasco, Alexander J.; Batista, Paulo; Chen, Sony Su; Batista, Inez S.; Andrioli, Vania Fatima

    2016-07-01

    In the present work we analyze the disturbed electric field effects in the sporadic E-layers at equatorial regions, Jicamarca (11.57°S, 76.52°O, I: -2°) and São Luís (2°S, 44° O, I: -2.3°), and at low latitude regions, Fortaleza (3.9°S, 38.45°O, I: -9°) and Cachoeira Paulista (22.42°S, 45°O, I: -15°). We have conducted a deep analysis to investigate these effects using a theoretical model for the ionospheric E region, called MIRE. This model is able to simulate the Es layers taking into account the E region winds and electric fields. It calculates the densities for the main molecular (NO^{+}, O_{2}^{+}, N_{2}^{+}) and metallic ions (Fe^{+}, Mg^{+}) by solving the continuity and momentum equations for each species. The main purpose of this analysis is to verify the disturbed electric fields role in the occurrence or disruption of Es layers through simulations. The analysis show that the Es layer formation and dynamics can be influenced by the prompt penetration electric fields that occur during magnetic disturbances. Therefore, the simulations present interesting results that helps to improve the understanding of Es layer behavior during the disturbed periods.

  13. Estudio del CH interestelar

    NASA Astrophysics Data System (ADS)

    Olano, C.; Lemarchand, G.; Sanz, A. J.; Bava, J. A.

    El objetivo principal de este proyecto consiste en el estudio de la distribución y abundancia del CH en nubes interestelares a través de la observación de las líneas hiperfinas del CH en 3,3 GHz. El CH es una molécula de amplia distribución en el espacio interestelar y una de las pocas especies que han sido observadas tanto con técnicas de radio como ópticas. Desde el punto de vista tecnológico se ha desarrollado un cabezal de receptor que permitirá la realización de observaciones polarimétricas en la frecuencia de 3,3 GHz, con una temperatura del sistema de 60 K y un ancho de banda de 140 MHz, y que será instalado en el foco primario de la antena parabólica del IAR. El cabezal del receptor es capaz de detectar señales polarizadas, separando las componentes de polarización circular derecha e izquierda. Para tal fin el cabezal consta de dos ramas receptoras que amplificarán la señal y la trasladarán a una frecuencia más baja (frecuencia intermedia), permitiendo de esa forma un mejor transporte de la señal a la sala de control para su posterior procesamiento. El receptor además de tener características polarimétricas, podrá ser usado en el continuo y en la línea, utilizando las ventajas observacionales y de procesamiento de señal que actualmente posee el IAR.

  14. B fields in OB stars (BOB): The discovery of a magnetic field in a multiple system in the Trifid nebula, one of the youngest star forming regions

    NASA Astrophysics Data System (ADS)

    Hubrig, S.; Fossati, L.; Carroll, T. A.; Castro, N.; González, J. F.; Ilyin, I.; Przybilla, N.; Schöller, M.; Oskinova, L. M.; Morel, T.; Langer, N.; Scholz, R. D.; Kharchenko, N. V.; Nieva, M.-F.

    2014-04-01

    Aims: Recent magnetic field surveys in O- and B-type stars revealed that about 10% of the core-hydrogen-burning massive stars host large-scale magnetic fields. The physical origin of these fields is highly debated. To identify and model the physical processes responsible for the generation of magnetic fields in massive stars, it is important to establish whether magnetic massive stars are found in very young star-forming regions or whether they are formed in close interacting binary systems. Methods: In the framework of our ESO Large Program, we carried out low-resolution spectropolarimetric observations with FORS 2 in 2013 April of the three most massive central stars in the Trifid nebula, HD 164492A, HD 164492C, and HD 164492D. These observations indicated a strong longitudinal magnetic field of about 500-600 G in the poorly studied component HD 164492C. To confirm this detection, we used HARPS in spectropolarimetric mode on two consecutive nights in 2013 June. Results: Our HARPS observations confirmed the longitudinal magnetic field in HD 164492C. Furthermore, the HARPS observations revealed that HD 164492C cannot be considered as a single star as it possesses one or two companions. The spectral appearance indicates that the primary is most likely of spectral type B1-B1.5 V. Since in both observing nights most spectral lines appear blended, it is currently unclear which components are magnetic. Long-term monitoring using high-resolution spectropolarimetry is necessary to separate the contribution of each component to the magnetic signal. Given the location of the system HD 164492C in one of the youngest star formation regions, this system can be considered as a Rosetta Stone for our understanding of the origin of magnetic fields in massive stars. Based on observations obtained in the framework of the ESO Prg. 191.D-0255(A,B).

  15. EVOLUTION OF MAGNETIC FIELD AND ENERGY IN A MAJOR ERUPTIVE ACTIVE REGION BASED ON SDO/HMI OBSERVATION

    SciTech Connect

    Sun Xudong; Hoeksema, J. Todd; Liu, Yang; Hayashi, Keiji; Wiegelmann, Thomas; Thalmann, Julia; Chen Qingrong

    2012-04-01

    We report the evolution of the magnetic field and its energy in NOAA active region 11158 over five days based on a vector magnetogram series from the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamic Observatory (SDO). Fast flux emergence and strong shearing motion led to a quadrupolar sunspot complex that produced several major eruptions, including the first X-class flare of Solar Cycle 24. Extrapolated nonlinear force-free coronal fields show substantial electric current and free energy increase during early flux emergence near a low-lying sigmoidal filament with a sheared kilogauss field in the filament channel. The computed magnetic free energy reaches a maximum of {approx}2.6 Multiplication-Sign 10{sup 32} erg, about 50% of which is stored below 6 Mm. It decreases by {approx}0.3 Multiplication-Sign 10{sup 32} erg within 1 hr of the X-class flare, which is likely an underestimation of the actual energy loss. During the flare, the photospheric field changed rapidly: the horizontal field was enhanced by 28% in the core region, becoming more inclined and more parallel to the polarity inversion line. Such change is consistent with the conjectured coronal field 'implosion' and is supported by the coronal loop retraction observed by the Atmospheric Imaging Assembly (AIA). The extrapolated field becomes more 'compact' after the flare, with shorter loops in the core region, probably because of reconnection. The coronal field becomes slightly more sheared in the lowest layer, relaxes faster with height, and is overall less energetic.

  16. Variation of Magnetic Fluctuation due to Gas Puffing in Edge Region of Reversed-Field Pinch Plasma

    NASA Astrophysics Data System (ADS)

    Yambe, Kiyoyuki; Hirano, Yoichi; Sakakita, Hajime; Koguchi, Haruhisa

    2016-09-01

    We measured the variation of magnetic and electrostatic fluctuations observed during the gas puffing in the edge region of the toroidal pinch experiment-reversed experiment (TPE-RX) reversed-field pinch plasma. In the short period in which the electron density increased slowly just after the gas puffing, the confinement of fast electrons in the core region was maintained by the decrease in the fast radial magnetic fluctuation with the deepening of the reversal of the toroidal field. During the following period in which the electron density increased rapidly, the radial gradient of electron density decreased, and the loss of fast electrons from the core region increased owing to the increase in the toroidal and radial magnetic fluctuations in the high-frequency band, although the poloidal magnetic fluctuation decreased. Therefore, the confinement of fast electrons would be maintained by keeping the radial gradient of plasma thermal pressure with a moderate neutral particle supply of small quantity in a short time.

  17. Simultaneous Measurement of Antenna Gain and Complex Permittivity of Liquid in Near-Field Region Using Weighted Regression

    NASA Astrophysics Data System (ADS)

    Ishii, Nozomu; Shiga, Hiroki; Ikarashi, Naoto; Sato, Ken-Ichi; Hamada, Lira; Watanabe, Soichi

    As a technique for calibrating electric-field probes used in standardized SAR (Specific Absorption Rate) assessment, we have studied the technique using the Friis transmission formula in the tissue-equivalent liquid. It is difficult to measure power transmission between two reference antennas in the far-field region due to large attenuation in the liquid. This means that the conventional Friis transmission formula cannot be applied to our measurement so that we developed an extension of this formula that is valid in the near-field region. In this paper, the method of weighted least squares is introduced to reduce the effect of the noise in the measurement system when the gain of the antenna operated in the liquid is determined by the curve-fitting technique. And we examine how to choose the fitting range to reduce the uncertainty of the estimated gain.

  18. X-Ray Properties of Lyman Break Galaxies in the Hubble Deep Field North Region

    NASA Technical Reports Server (NTRS)

    Nandra, K.; Mushotzky, R. F.; Arnaud, K.; Steidel, C. C.; Adelberger, K. L.; Gardner, J. P.; Teplitz, H. I.; Windhorst, R. A.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We describe the X-ray properties of a large sample of z approximately 3 Lyman Break Galaxies (LBGs) in the region of the Hubble Deep Field North, derived from the 1 Ms public Chandra observation. Of our sample of 148 LBGs, four are detected individually. This immediately gives a measure of the bright AGN (active galactic nuclei) fraction in these galaxies of approximately 3 per cent, which is in agreement with that derived from the UV (ultraviolet) spectra. The X-ray color of the detected sources indicates that they are probably moderately obscured. Stacking of the remainder shows a significant detection (6 sigma) with an average luminosity of 3.5 x 10(exp 41) erg/s per galaxy in the rest frame 2-10 keV band. We have also studied a comparison sample of 95 z approximately 1 "Balmer Break" galaxies. Eight of these are detected directly, with at least two clear AGN based on their high X-ray luminosity and very hard X-ray spectra respectively. The remainder are of relatively low luminosity (< 10(exp 42) erg/s, and the X-rays could arise from either AGN or rapid star-formation. The X-ray colors and evidence from other wavebands favor the latter interpretation. Excluding the clear AGN, we deduce a mean X-ray luminosity of 6.6 x 10(exp 40) erg/s, a factor approximately 5 lower than the LBGs. The average ratio of the UV and X-ray luminosities of these star forming galaxies L(sub UV)/L (sub X), however, is approximately the same at z = 1 as it is at z = 3. This scaling implies that the X-ray emission follows the current star formation rate, as measured by the UV luminosity. We use our results to constrain the star formation rate at z approximately 3 from an X-ray perspective. Assuming the locally established correlation between X-ray and far-IR (infrared) luminosity, the average inferred star formation rate in each Lyman break galaxy is found to be approximately 60 solar mass/yr, in excellent agreement with the extinction-corrected UV estimates. This provides an external

  19. The propagation characteristics of electromagnetic waves through plasma in the near-field region of low-frequency loop antenna

    SciTech Connect

    Liu, DongLin Li, XiaoPing; Xie, Kai; Liu, ZhiWei

    2015-10-15

    A high-speed vehicle flying through the atmosphere between 100 and 20 km may suffer from a “communication blackout.” In this paper, a low frequency system with an on-board loop antenna to receive signals is presented as a potential blackout mitigation method. Because the plasma sheath is in the near-field region of the loop antenna, the traditional scattering matrix method that is developed for the far-field region may overestimate the electromagnetic (EM) wave's attenuation. To estimate the EM wave's attenuation in the near-field region, EM interference (EMI) shielding theory is introduced. Experiments are conducted, and the results verify the EMI shielding theory's effectiveness. Simulations are also conducted with different plasma parameters, and the results obtained show that the EM wave's attenuation in the near-field region is far below than that in the far-field region. The EM wave's attenuation increases with the increase in electron density and decreases with the increase in collision frequency. The higher the frequency, the larger is the EM wave's attenuation. During the entire re-entry phase of a RAM-C module, the EM wave's attenuations are below 10 dB for EM waves with a frequency of 1 MHz and below 1 dB for EM waves with a frequency of 100 kHz. Therefore, the low frequency systems (e.g., Loran-C) may provide a way to transmit some key information to high-speed vehicles even during the communication “blackout” period.

  20. The propagation characteristics of electromagnetic waves through plasma in the near-field region of low-frequency loop antenna

    NASA Astrophysics Data System (ADS)

    Liu, DongLin; Li, XiaoPing; Xie, Kai; Liu, ZhiWei

    2015-10-01

    A high-speed vehicle flying through the atmosphere between 100 and 20 km may suffer from a "communication blackout." In this paper, a low frequency system with an on-board loop antenna to receive signals is presented as a potential blackout mitigation method. Because the plasma sheath is in the near-field region of the loop antenna, the traditional scattering matrix method that is developed for the far-field region may overestimate the electromagnetic (EM) wave's attenuation. To estimate the EM wave's attenuation in the near-field region, EM interference (EMI) shielding theory is introduced. Experiments are conducted, and the results verify the EMI shielding theory's effectiveness. Simulations are also conducted with different plasma parameters, and the results obtained show that the EM wave's attenuation in the near-field region is far below than that in the far-field region. The EM wave's attenuation increases with the increase in electron density and decreases with the increase in collision frequency. The higher the frequency, the larger is the EM wave's attenuation. During the entire re-entry phase of a RAM-C module, the EM wave's attenuations are below 10 dB for EM waves with a frequency of 1 MHz and below 1 dB for EM waves with a frequency of 100 kHz. Therefore, the low frequency systems (e.g., Loran-C) may provide a way to transmit some key information to high-speed vehicles even during the communication "blackout" period.

  1. 77 FR 16850 - Notice of Reclassification of One Investigative Field Office to Regional Office: Denver, CO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-22

    ... investigative resources, to promote more efficient responses to HUD or Congressional requests involving critical... other HUD programs; and 3. Improve management control and effectiveness, and reduce travel costs of management by reducing region size. 4. Return to the traditional Regional alignment of HUD OIG...

  2. Asymmetry of geomagnetic field horizontal components variation connected to field aligned currents appeared at early recovery phase in region of plasmospheric bulges

    NASA Astrophysics Data System (ADS)

    Barkhatova, Oksana; Barkhatov, Nikolay; Bespalov, Peter

    2010-05-01

    Studying of ring current dynamics at different phases of geomagnetic storm development assumes consideration of questions connected with its asymmetric part closing. Such closing of asymmetric ring current on ionosphere can be provided with existence of intensive field aligned currents. These currents can arise due to interaction of ring current energetic ions with plasmospheric bulges in day time and evening sectors of magnetosphere. At the same time in regions of plasmospheric bulges develop cyclotron instability. Interaction of ring current energetic ions with cyclotron waves leads to them isotropisation and precipitation in loss-cone therefore intensive field aligned currents are formed. In this work the experimental basis of asymmetric part of geomagnetic field disturbance connection with presence of plasmospheric bulges at early recovery phase of geomagnetic storm is received. Spectrums of geomagnetic field horizontal component on two meridional chains of ground based stations which correspond to location of day time and evening plasmospheric bulges are investigated. Research was carried out for two cases - when the stations chain is in region of plasmospheric bulge and when it is outside of its boundaries. As a result in spectrums of geomagnetic field horizontal component variations at ground magnetic stations the increase of spectral components amplitudes in geomagnetic pulsations range is observed. It is marked at an entrance of stations in regions corresponding to projections of day time and evening plasmospheric bulges. Comparison of geomagnetic field horizontal component variations at the stations which are taking place in region of a day time bulge is carried out. It is founded, that at an entrance of stations in this bulge region, evident depression of horizontal components values is observed. At stations which are located outside a bulge, this depression is less significant. In quiet days, when streams of ring current energetic ions are absent, the

  3. The field horizontal-branch star HD 109995: New results with coadded ultraviolet and optical region spectra

    NASA Technical Reports Server (NTRS)

    Adelman, S. J.; Leckrone, D. S.

    1985-01-01

    A comprehensive ultraviolet and optical region abundance analysis of the field horizontal branch Population 2 A-type star HD 109995 is described. Coaddition of IUE high dispersion images and DAO 6.5 A/mm IIaO spectrograms improved the signal-to-noise ratio of the data. We have identified ultraviolet lines whose analysis will provide more complete and accurate elemental abundances than those obtained from optical region spectra alone. A preliminary elemental abundance analysis of the optical region shows that log Z/Z (solar) approx. = -2. A first attempt to synthesize two Fe 2 ultraviolet resonance lines yields an iron abundance a few tenths of a deg higher than the average obtained from optical region Fe 2 lines.

  4. Does regional diversity recover after disturbance? A field experiment in constructed ponds

    PubMed Central

    Woods, Lauren M.; Biro, Elizabeth G.; Yang, Muxi

    2016-01-01

    The effects of disturbance on local species diversity have been well documented, but less recognized is the possibility that disturbances can alter diversity at regional spatial scales. Since regional diversity can dictate which species are available for recolonization of degraded sites, the loss of diversity at regional scales may impede the recovery of biodiversity following a disturbance. To examine this we used a chemical disturbance of rotenone, a piscicide commonly used for fish removal in aquatic habitats, on small fishless freshwater ponds. We focused on the non-target effects of rotenone on aquatic invertebrates with the goal of assessing biodiversity loss and recovery at both local (within-pond) and regional (across ponds) spatial scales. We found that rotenone caused significant, large, but short-term losses of species at both local and regional spatial scales. Using a null model of random extinction, we determined that species were selectively removed from communities relative to what would be expected if species loss occurred randomly. Despite this selective loss of biodiversity, species diversity at both local and regional spatial scales recovered to reference levels one year after the addition of rotenone. The rapid recovery of local and regional diversity in this study was surprising considering the large loss of regional species diversity, however many aquatic invertebrates disperse readily or have resting stages that may persist through disturbances. We emphasize the importance of considering spatial scale when quantifying the impacts of a disturbance on an ecosystem, as well as considering how regional species loss can influence recovery from disturbance. PMID:27781153

  5. Postsunset rise of F layer height in the equatorial region and its relation to the F layer dynamo polarization fields

    SciTech Connect

    Goel, M.K.; Singh, S.S.; Rao, B.C.N. )

    1990-05-01

    The ionosonde data are studied for equatorial station, Thumba, to delineate various features of the evening height rise of F layer. Sharp increase of h'F and h{sub p}F2 is observed in the postsunset period for high solar activity. Seasonal variation is observed in this increase of h'F and it is maximum for equinox months. For summer months, there is a delay of about an hour in the time of occurrence of h'F (peak) as compared to winter and equinox months. This delay is shown to be associated with the delay in sunset times in the conjugate E regions. As for magnetic activity dependence, it is found that this height increase is less pronounced for disturbed days for winter and equinox whereas for summer it is marginally higher over the quiet day values. Further, it is observed that the value of h'F (peak) during disturbed periods is almost at the same value of 350 km for all the three seasons. Thus the seasonal variation of magnetic activity effects appears to be mainly governed by the average seasonal variation for quiet times. The increase in F layer height is due to zonal eastward electric fields developed after sunset which is believed to be due to F region dynamo fields. While the main driving force for these fields is the zonal neutral winds, the development of these fields depend on the ratio of the F region to E region conductivity and the longitudinal gradient in the E region conductivity. Experimental observations of both the neutral winds and ionospheric conductivities are examined for their variation with solar activity, season and magnetic activity as both these factors will contribute for the various observed features of the height rise.

  6. Evaluating Wind Fields from a Diagnostic Model Over Complex Terrain in the Phoenix Region and Implications to Dispersion Calculations for Regional Emergency Response

    SciTech Connect

    Wang, Weiguo; Shaw, William J.

    2009-12-01

    This paper compares the wind field from a diagnostic model (CALMET) over complex terrain in the Phoenix region in the USA with observations that are gridded by a state-of-the-art Four-Dimensional Data Assimilation (FDDA) system. The wind difference between the CALMET and FDDA wind fields is larger at night than in the day. The magnitude of the wind difference can be smaller than 5% of the mean wind speed at low levels in areas with dense observational stations, while it can be larger than 80% in areas without observational stations or at high altitudes. The vector-mean wind direction difference over the domain is 15 deg on the surface level and 25 deg between 10 and 1500 m. To evaluate the effects of the wind difference on dispersion calculations, dispersion of a hypothetical passive tracer released from surface point sources is simulated by the second-order closure integrated puff (SCIPUFF) model driven by the CALMET and FDDA wind fields, respectively. Differences in the two simulated tracer concentration fields increase with time due to accumulation of effects of the wind differences both near the surface and at higher altitudes. Even for the release in the area with the densest distribution of surface stations, the relative difference in the peak surface concentration from CALMET-SCIPUFF and from FDDA-SCIPUFF is less than 10% only within 0.5 hr after the release in the afternoon, and increases to 70% at 1.5 hr; this is because of large differences in wind above the surface. For the release in the area with few stations, the difference can be larger than 100% or even larger after 1.5 hr from the release. To improve dispersion simulations driven by the CALMET wind in the region, observations at upper-air stations are needed and the current surface observation network needs to be reorganized or more stations are needed to account for the influence of terrain.

  7. Energization in regions of CIRs unconnected to shocks are probably not the result of cross-field transport

    NASA Technical Reports Server (NTRS)

    Intriligator, Devrie S.; Siscoe, George

    1995-01-01

    Corotating energetic ion populations (CEIPs) associated with the forward and reverse shocks of corotating interaction regions (CIRs) are observed in CIRs at places where models say are magnetically unconnected to either shock. Such disconnections between CEIPs and shocks are common and have been documented with data from Pioneers 10 and 11 and confirmed with data from Ulysses. They pose a problem for models that account for these CEIPs in terms of ion energization at the shocks followed by ion propagation along field lines. Two possible resolutions to this problem have been suggested: diffusion of the ions across field lines and extension of the ion energization process to regions beyond the shock waves. Here we quantitatively examine the first of these possibilities. We give the Green's function solution to the convection-diffusion equation applied to idealized CIR geometry, with a source at the reverse shock -- the main producer of CEIPs. Two kinds of diffusion are considered: resonant diffusion and stochastic field line diffusion. We find that for resonant diffusion the computed ratio is many orders of magnitudes below the observed ratio. For stochastic field line diffusion, the computed ratio approximately equals the observed ratio if a diffusion coefficient appropriate to the free solar wind is used. It is several orders of magnitude below the observed ratio, however, if a diffusion coefficient appropriate to CIRs is used. We conclude that cross-field diffusion probably does not account for the presence of energetic ions in regions of CIRs that are magnetically unconnected to its shock waves. We suggest that the alternative possibility -- the energetic ions in regions magnetically unconnected to shocks result from an acceleration process that is independent of shocks -- be pursued to the point where quantitative tests can be performed.

  8. Electric Currents and Fields in Middle and Low Atmosphere in Fair-Weather Regions due to Distant Thunderstorms

    NASA Astrophysics Data System (ADS)

    Velinov, Peter; Velinov, Peter; Tonev, Peter

    The electric currents created by the thunderstorms and the electrified shower clouds over the Earth flow into the global atmospheric electric circuit and are responsible for the formation in fair-weather regions of ionosphere-ground current of about 2 pA per square meter, as well as for the related fair-weather electric field of the order of 100 V/m at sea level. The link of the diurnal variations of the fair-weather electric field with the global thunderstorm activity has been widely studied with connection to the Wilson's hypothesis. To confirm this hypothesis directly, also the fair-weather electric field response to a strong single lightning discharge has being examined. Here we study theoretically the variations of the electric currents and fields in fair-weather regions at different altitudes of the lower and middle atmosphere, which are provoked by distant lightning discharges. The electric field variations can play an important role at higher altitudes (in the upper troposphere and above), where they are much larger and possibly influence the physical and chemical processes. For our goals we realize a globalscale model of the electric fields and currents generated by a lightning discharge, which is based on the Maxwell's equations. The fair-weather electric characteristics are studied by our model depending on the lightning parameters, location and distance. We also examine how variations of the conductivity in the strato/mesosphere due to changes of solar and geomagnetic activity affect the characteristics studied. Another question discussed is whether and how the mesospheric electric response to a remote lightning discharge is influenced by the conductivity anisotropy above 70 km and by the geomagnetic field geometry. The variations of the fairweather electric fields due to a distant lightning at tropospheric heights are also studied with respect to their presumable role in the cloud physics.

  9. Pacific region adds fields and technology to stretch and amplify huge oil reserves

    SciTech Connect

    Lyle, D.

    1995-12-01

    The Pacific region combines the best features of the oilpatch with three states that give operators plenty of exploration prospects and two states at the forefront of development technology. The region offers something for everyone, but it has been hamstrung by low oil prices. It looks as if the repeal on the ban on exports Alaskan oil will go a long way toward easing the low-price restriction.

  10. Morphologic and Chronologic Studies of Lava Flow Fields in the Southern Tharsis Region of Mars

    NASA Astrophysics Data System (ADS)

    Crown, D. A.; Ramsey, M. S.; Berman, D. C.

    2012-03-01

    The current investigation examines styles and sequences of volcanism in southern Tharsis, Mars. Geologic and flow field mapping reveal changes in flow morphology and age from south of Arsia Mons to the southern extent of Daedalia Planum.

  11. Denser Sampling of the Rosette Nebula with Faraday Rotation Measurements: Improved Estimates of Magnetic Fields in H II Regions

    NASA Astrophysics Data System (ADS)

    Costa, Allison H.; Spangler, Steven R.; Sink, Joseph R.; Brown, Shea; Mao, Sui Ann

    2016-04-01

    We report Faraday rotation measurements of 11 extragalactic radio sources with lines of sight through the Rosette Nebula, a prominent H ii region associated with the star cluster NGC 2244. The goal of these measurements is to better determine the strength and structure of the magnetic field in the nebula. We calculate the rotation measure (RM) through two methods, a least-squares fit to χ ({λ }2) and Rotation Measure Synthesis. In conjunction with our results from Savage et al., we find an excess RM due to the shell of the nebula of +40 to +1200 rad m‑2 above a background RM of +147 rad m‑2. We discuss two forms of a simple shell model intended to reproduce the magnitude of the observed RM as a function of distance from the center of the Rosette Nebula. The models represent different physical situations for the magnetic field within the shell of the nebula. The first assumes that there is an increase in the magnetic field strength and plasma density at the outer radius of the H ii region, such as would be produced by a strong magnetohydrodynamic shock wave. The second model assumes that any increase in the RM is due solely to an increase in the density, and the Galactic magnetic field is unaffected in the shell. We employ a Bayesian analysis to compare the two forms of the model. The results of this analysis were inconclusive, although the model without amplification of the interstellar magnetic field is weakly favored.

  12. Effects of external radiation fields on line emission—application to star-forming regions

    SciTech Connect

    Chatzikos, Marios; Ferland, G. J.; Williams, R. J. R.; Porter, Ryan; Van Hoof, P. A. M.

    2013-12-20

    A variety of astronomical environments contain clouds irradiated by a combination of isotropic and beamed radiation fields. For example, molecular clouds may be irradiated by the isotropic cosmic microwave background, as well as by a nearby active galactic nucleus. These radiation fields excite atoms and molecules and produce emission in different ways. We revisit the escape probability theorem and derive a novel expression that accounts for the presence of external radiation fields. We show that when the field is isotropic the escape probability is reduced relative to that in the absence of external radiation. This is in agreement with previous results obtained under ad hoc assumptions or with the two-level system, but can be applied to complex many-level models of atoms or molecules. This treatment is in the development version of the spectral synthesis code CLOUDY. We examine the spectrum of a Spitzer cloud embedded in the local interstellar radiation field and show that about 60% of its emission lines are sensitive to background subtraction. We argue that this geometric approach could provide an additional tool toward understanding the complex radiation fields of starburst galaxies.

  13. The role of waves and DC electric fields for electron heating and acceleration in the diffusion region

    NASA Astrophysics Data System (ADS)

    Graham, Daniel; Khotyaintsev, Yuri; Vaivads, Andris; Norgren, Cecilia; Andre, Mats; Lindqvist, Per-Arne; Le Contel, Olivier; Ergun, Robert; Goodrich, Katherine; Torbert, Roy; Burch, James; Russell, Christopher; Magnes, Werner; Giles, Barbara; Pollock, Craig; Mauk, Barry; Fuselier, Stephen

    2016-04-01

    Magnetic reconnection is a fundamental process in solar and astrophysical plasmas. The processes operating at electron spatial-scales, which enable magnetic field lines to reconnect, are generally difficult to resolve and identify. However, the recently launched Magnetospheric Multiscale (MMS) mission is specifically designed to resolve electron spatial scales. We use the MMS spacecraft to investigate the process operating within the diffusion region to determine the causes of electron heating and acceleration. In particular, we investigate the type of electrostatic and electromagnetic waves that develop and how they affect the electron distributions. We also compare the roles of wave-particle interactions with DC electric fields to determine which is responsible for the electron heating observed in diffusion regions.

  14. Determination of Focal Mechanisms of Microearthquakes and Estimation of the Stress Field in the Tanba Region in Central Japan

    NASA Astrophysics Data System (ADS)

    Ogasawara, T.; Katao, H.; Iio, Y.

    2005-12-01

    It is important that we examine mechanism of microearthquakes when we estimate occurrence mechanism of large earthquake and regional stress field. In the Tanba region, northern Osaka prefecture and middle Kyoto prefecture in Japan, the microearthquake activity that are not aftershocks of a large earthquake is active constantly. Katao et al. (1997) determined focal mechanisms of some microearthquakes of the Tanba region in the process of determining mechanisms of aftershocks of the Hyogo-ken Nanbu earthquake. However, determination of mechanisms is not done routinely in this area. In this study, we estimated stress changes caused by the 1995 Hyogo-ken Nanbu earthquake at the neighboring area, as seen in the P-axis directions by doing detailed analyses for small region. We manually read P-wave onset polarities, and determined focal mechanisms using the method of Maeda (1992) for about 800 events larger than M2.0 during 1995-1999. In these events, we used about 400 events as good solutions that have a P-axis error within 10 degrees. About the period before the Hyogo-ken Nanbu earthquake, we used data of focal mechanisms determined by Iio (1996). From the data mentioned above, we examined time and space distribution of P-axis directions. We used also a method of Horiuchi (1995) to estimate suitable principle stress field and stress ratio, because we have to study more quantitatively about stress field in this area. It is known that P-axis directions are generally E-W around the Tanba region. We estimated principal stress field using the method of Horiuchi (1995), the result shows that the stress field is consistent with P-axis direction. However, after the Hyogo-ken Nanbu earthquake, there are small areas with differences in a P-axis direction. After the Hyogo-ken Nanbu earthquake, many atypical earthquakes occurred in the Tanba region. Such a change of P-axis directions is evident particularly in two years after the Hyogo-ken Nanbu earthquake.

  15. Transient behavior of a flare-associated solar wind. I. Gas dynamics in a radial open field region

    SciTech Connect

    Nagai, F.

    1984-02-01

    A main purpose of this paper is to investigate by numerical calculations how a model solar wind, initially in a steady state and in energy balance, is disturbed and deformed and how it acquires a high speed when heat liberation corresponding to energy release in solar flares of importance approx.1 occurs around the lower corona in a radial open field region. This transient behavior of the flare-associated solar wind is modeled between 1 and 8 solar radii.

  16. Groundwater microflora of the Aptian-Cenomanian deposits at the Igolsko-Talovoe field in Tomsk Region

    NASA Astrophysics Data System (ADS)

    Nalivaiko, N. G.; Dutova, E. M.; Spiridonov, T. S.

    2016-03-01

    The authors have studied the microbiological composition of the groundwater of the Aptian-Cenomanian deposits in the territory of the Igolsko-Talovoe field in Tomsk Region. The detected diversity of the physiological groups of bacteria can be a corrosive component for waters used in the reservoir pressure maintenance system. The research findings have allowed making conclusions about the need to study the contribution of all microorganisms inhabiting the waters of the Aptian-Cenomanian deposits to corrosion.

  17. Hyperdeformation in the cranked relativistic mean field theory: The Z=40-58 region of the nuclear chart

    SciTech Connect

    Afanasjev, A. V.; Abusara, H.

    2008-07-15

    The systematic investigation of hyperdeformation (HD) at high spin in the Z=40-58 region of the nuclear chart was performed in the framework of the cranked relativistic mean-field theory. The properties of the moments of inertia of the HD bands, the role of the single-particle and necking degrees of freedom at HD, the spins at which the HD bands become yrast, the possibility to observe discrete HD bands, and so on are discussed in detail.

  18. The Regional Tectonic Stress Field in Central and Southern California, and its Relevance to Fault Interaction Modeling

    NASA Astrophysics Data System (ADS)

    Townend, J.; Zoback, M. D.

    2001-12-01

    Fault interaction and earthquake triggering models depend strongly on the regional stress orientation and magnitude and on the assumed constitutive laws governing fault slip. In this study we compare observations with theoretical studies of principal stress orientations in Central and Southern California to provide an appropriate regional stress orientation model for use in fault interaction studies. First, we compare in situ stress orientations obtained from focal mechanism inversions and wellbore breakouts with stress orientations calculated from lithospheric buoyancy (based on topographic and geoid data) and plate interaction effects (based on geodetic and geologic data; Flesch et al., 2000). The two sets of results exhibit a remarkable degree of overall consistency, implying that the principal source of stress acting along the plate boundary is that resulting from lithospheric buoyancy. A relatively small component of the stress field appears to stem from plate interaction effects. In particular, both the theoretical and observed stress fields indicate that the regional orientation of SHmax is NNE-SSW, and is generally at an angle to the strike of the San Andreas fault of >80° in Central California and ~60--65° in Southern California. These results provide a model of regional stress orientations in Central and Southern California that should prove useful in future studies of fault interaction and seismic triggering. Because there appears to be no significant variation of SHmax orientations in the near field of the San Andreas fault in either region, this analysis supports the hypothesis that the frictional strength the San Andreas fault is markedly lower than that of the surrounding crust.

  19. A simple simulation approach to generate complex rainfall fields conditioned by elevation: example of the eastern Mediterranean region

    NASA Astrophysics Data System (ADS)

    Oriani, Fabio; Ohana-Levi, Noa; Straubhaar, Julien; Renard, Philippe; Karnieli, Arnon; Mariethoz, Grégoire; Morin, Efrat; Marra, Francesco

    2016-04-01

    Stochastically generating realistic rainfall fields is useful to study the uncertainty related to catchment recharge and its propagation to distributed hydrological models. To this end, it is critical to use weather radar images as training data, being the single most informative source for rainfall spatial heterogeneity. Generating realistic simulations is particularly important in regions like the eastern Mediterranean, where the synoptic conditions can lead to rainfall fields presenting various morphology, anisotropy and non-stationarity. The Direct Sampling (DS) technique [Mariethoz2010] is proposed here as a stochastic generator of spatial daily rainfall fields relying on the simulation of radar imagery. The technique is based on resampling of a training data set (in this case, a stack of radar images) and the generation of similar patterns to the ones found in the data. The strong point of DS, which makes it an attractive simulation approach for rainfall, is its capability to preserve the high-order statistical features present in the training image (e.g., rainfall cell shape, spatial non-stationarity) with minimal parameterization. Moreover, factors influencing rainfall, like elevation, can be used as conditioning variables, without the need of a complex statistical dependence model. A DS setup for radar image simulation is presented and tested for the simulation of daily rainfall fields using a 10-year radar-image record from the central region of Israel. Using a synoptic weather classification to train the model, the algorithm can generate realistic spatial fields for different rainfall types, preserving the variability and the covariance structure of the reference reasonably well. Moreover, the simulation is conditioned using the digital elevation model to preserve the complex relation between rainfall intensity and altitude that is characteristic for this region. [Mariethoz2010] G. Mariethoz, P. Renard, and J. Straubhaar. The direct sampling method to

  20. Radar observations of F region field-aligned irregularities over Hainan island, China in 2014-2015

    NASA Astrophysics Data System (ADS)

    Shang, She-Ping; Wu, Qiongzhi; Chunxiao, Yan; Yan, Jingye; Shi, Jiankui; Yang, Guotao

    2016-07-01

    The morphology characteristics of low latitude F region 3-m scale field-aligned irregularities (FAIs) have been investigated by using the continuous observation of Hainan VHF radar (19.5ºN,109.1ºE,dip latitude:14.0ºN) in 2014-2015. The monthly mean F10.7 solar flux show the clear decrease from the peak in the start of 2014 to the foot in the end of 2015. F region FAIs can be further classified into the three cases: radar plumes (RP), broad spread F (BSF) and weak spread F (WSF), in which the first are mainly generated and developed within the field of view (FoV) of radar and the latter two generally originate outside of the FoV of radar and drift into the FoV of radar. They indicate the different phases of generation, evolution and decay of low latitude F region irregularities. The main results exhibit the F region FAIs mainly present in Feb.-Apr. and in Sep.-Nov. near the two equinoxes and are greatly reduced in May-Aug. near summer solstice, and almost completely disappeared in Dec.-Jan. near winter solstice, which are greatly affected by the solar activity. F region FAIs are more robust in spring equinox than in fall equinox, which can be shown as the occurrence rate, the structure and evolution, the duration time and so on. In spring equinox, the occurrence rate is far higher, and F region FAIs show the more structures and the longer duration time. RP near sunset are greatly enhanced. The following BSF and WSF can present intermittently and may persist into the post-midnight. F region FAIs in summer solstice mainly show BSF and WSF with the clear time delay. BSF mainly present in the pre-midnight, and there are mostly WSF in the post-midnight. The clear decrease of sola flux cause different effects to the occurrence of F region FAIs in the equinoxes and summer solstice. F region FAIs are greatly reduced in the equinoxes, in which RP are greatly reduced compared with BSF and WSF. F region FAIs seem not to be evidently affected in the summer solstice, in which

  1. 5 CFR Appendix II to Part 1201 - Appropriate Regional or Field Office for Filing Appeals

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...; Maryland—except the counties of Montgomery and Prince George's; Massachusetts; New Hampshire; New Jersey... Rico; and Virgin Islands). 4. Washington Regional Office, 1800 Diagonal Road, Alexandria, Virginia 22314, Facsimile No.: (703) 756-7112, (Maryland—counties of Montgomery and Prince George's;...

  2. 5 CFR Appendix II to Part 1201 - Appropriate Regional or Field Office for Filing Appeals

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...; Maryland—except the counties of Montgomery and Prince George's; Massachusetts; New Hampshire; New Jersey... Rico; and Virgin Islands). 4. Washington Regional Office, 1901 S. Bell Street, Arlington, Virginia 22202, Facsimile No.: (703) 756-7112, (Maryland—counties of Montgomery and Prince George's;...

  3. 5 CFR Appendix II to Part 1201 - Appropriate Regional or Field Office for Filing Appeals

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...; Maryland—except the counties of Montgomery and Prince George's; Massachusetts; New Hampshire; New Jersey... Rico; and Virgin Islands). 4. Washington Regional Office, 1800 Diagonal Road, Alexandria, Virginia 22314, Facsimile No.: (703) 756-7112, (Maryland—counties of Montgomery and Prince George's;...

  4. Field evaluation of anthracnose resistance for sorghum germplasm from the Sikasso region in Mali

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The USDA, ARS National Plant Germplasm System maintains 132 sorghum landraces from the Sikasso region of Mali. This germplasm was inoculated with Colletotrichum sublineolum and evaluated for foliar anthracnose resistance at the USDA, ARS Tropical Agriculture Research Station in Isabela, Puerto Rico...

  5. Radiative and magnetic properties of solar active regions. I. Global magnetic field and EUV line intensities

    NASA Astrophysics Data System (ADS)

    Fludra, A.; Ireland, J.

    2008-05-01

    Context: The relationships between the photospheric magnetic flux and either the X-ray or extreme ultraviolet emission from the solar atmosphere have been studied by several authors. Power-law relations have been found between the total magnetic flux and X-ray flux or intensities of the chromospheric, transition region, and coronal emission lines in solar active regions. These relations were then used to infer the mechanism of the coronal heating. Aims: We derive accurate power laws between EUV line intensities and the total magnetic flux in solar active regions and discuss their applications. We examine whether these global power laws are capable of providing the diagnostics of the coronal heating mechanism. Methods: This analysis is based on EUV lines recorded by the Coronal Diagnostic Spectrometer (CDS) on SOHO for 48 solar active regions, as they crossed the central meridian in years 1996-1998. Four spectral lines are used: He I 584.3 Å (3×104 K), O V 629.7 Å (2.2×105 K), Mg IX 368.06 Å (9.5×105 K), and Fe XVI 360.76 Å (2.0×106 K). In particular, the Fe XVI 360.76 Å line, seen only in areas of enhanced heating in active regions or bright points, has not been used before for this analysis. Results: Empirical power laws are established between the total active region intensity in the lines listed above and the total magnetic flux. We demonstrate the usefulness of some spatially integrated EUV line intensities, I_T, as a proxy for the total magnetic flux, Φ, in active regions. We point out the approximate, empirical nature of the I_T-Φ relationships and discuss the interpretation of the global power index. Different power index values for transition region and coronal lines are explained by their different dependence on pressure under the assumption of hydrostatic loop models. However, the global power laws are dominated by the size of the active regions, and we demonstrate for the first time the difficulties in uniquely relating the power index in the

  6. THE IMPORTANCE OF THE MAGNETIC FIELD FROM AN SMA-CSO-COMBINED SAMPLE OF STAR-FORMING REGIONS

    SciTech Connect

    Koch, Patrick M.; Tang, Ya-Wen; Ho, Paul T. P.; Chen, Huei-Ru Vivien; Liu, Hau-Yu Baobab; Yen, Hsi-Wei; Lai, Shih-Ping; Zhang, Qizhou; Chen, How-Huan; Ching, Tao-Chung; Girart, Josep M.; Frau, Pau; Li, Hua-Bai; Li, Zhi-Yun; Padovani, Marco; Qiu, Keping; Rao, Ramprasad

    2014-12-20

    Submillimeter dust polarization measurements of a sample of 50 star-forming regions, observed with the Submillimeter Array (SMA) and the Caltech Submillimeter Observatory (CSO) covering parsec-scale clouds to milliparsec-scale cores, are analyzed in order to quantify the magnetic field importance. The magnetic field misalignment δ—the local angle between magnetic field and dust emission gradient—is found to be a prime observable, revealing distinct distributions for sources where the magnetic field is preferentially aligned with or perpendicular to the source minor axis. Source-averaged misalignment angles (|δ|) fall into systematically different ranges, reflecting the different source-magnetic field configurations. Possible bimodal (|δ|) distributions are found for the separate SMA and CSO samples. Combining both samples broadens the distribution with a wide maximum peak at small (|δ|) values. Assuming the 50 sources to be representative, the prevailing source-magnetic field configuration is one that statistically prefers small magnetic field misalignments |δ|. When interpreting |δ| together with a magnetohydrodynamics force equation, as developed in the framework of the polarization-intensity gradient method, a sample-based log-linear scaling fits the magnetic field tension-to-gravity force ratio (Σ {sub B}) versus (|δ|) with (Σ {sub B}) = 0.116 · exp (0.047 · (|δ|)) ± 0.20 (mean error), providing a way to estimate the relative importance of the magnetic field, only based on measurable field misalignments |δ|. The force ratio Σ {sub B} discriminates systems that are collapsible on average ((Σ {sub B}) < 1) from other molecular clouds where the magnetic field still provides enough resistance against gravitational collapse ((Σ {sub B}) > 1). The sample-wide trend shows a transition around (|δ|) ≈ 45°. Defining an effective gravitational force ∼1 – (Σ {sub B}), the average magnetic-field-reduced star formation efficiency is at least a

  7. Quantifying variability in field scale evapotranspiration measurements in an irrigated agricultural region under advection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study compares the evapotranspiration (ET) measurements from eddy covariance, lysimetry, and water balance using a network of neutron probe sensors and investigates the role of within-field variability in the vegetation density in explaining the differences among the ET estimates from the vario...

  8. Using simulation and budget models to scale-up nitrogen leaching from field to region in Canada.

    PubMed

    Huffman, E C; Yang, J Y; Gameda, S; De Jong, R

    2001-12-11

    Efforts are underway at Agriculture and Agri-Food Canada (AAFC) to develop an integrated, nationally applicable, socioeconomic/biophysical modeling capability in order to predict the environmental impacts of policy and program scenarios. This paper outlines our Decision Support System (DSS), which integrates the IROWCN (Indicator of the Risk of Water Contamination by Nitrogen) index with the agricultural policy model CRAM (Canadian Regional Agricultural Model) and presents an outline of our methodology to provide independent assessments of the IROWCN results through the use of nitrogen (N) simulation models in select, data-rich areas. Three field-level models--DSSAT, N_ABLE, and EPIC--were evaluated using local measured data. The results show that all three dynamic models can be used to simulate biomass, grain yield, and soil N dynamics at the field level; but the accuracy of the models differ, suggesting that models need to be calibrated using local measured data before they are used in Canada. Further simulation of IROWCN in a maize field using N_ABLE showed that soil-mineral N levels are highly affected by the amount of fertilizer N applied and the time of year, meaning that fertilizer and manure N applications and weather data are crucial for improving IROWCN. Methods of scaling-up simulated IROWCN from field-level to soil-landscape polygons and CRAM regions are discussed.

  9. A case study of a density structure over a vertical magnetic field region in the Martian ionosphere

    NASA Astrophysics Data System (ADS)

    Duru, F.; Gurnett, D. A.; Diéval, C.; Morgan, D. D.; Pisa, D.; Lundin, R.

    2016-05-01

    One of the discoveries made by the radar sounder on the Mars Express spacecraft is the existence of magnetically controlled structures in the ionosphere of Mars, which result in bulges in the ionospheric electron density contours. These bulges lead in turn to oblique echoes, which show up as hyperbola-shaped features in the echograms. A hyperbola-shaped feature observed over an isolated region of strong crustal magnetic field is associated with a plasma cavity in the upper ionosphere and a corresponding density enhancement in the lower levels of the ionosphere. We suggest that along open magnetic field lines, the solar wind electrons are accelerated downward and the ionospheric ions are accelerated upward in a manner similar to the field line-driven auroral acceleration at Earth. This heating due to precipitating electrons may cause an increase in the scale height and may drive a loss of ionospheric plasma at high altitudes.

  10. Influence of uncertainties of the empirical models for inferring the E-region electric fields at the dip equator

    NASA Astrophysics Data System (ADS)

    Moro, Juliano; Denardini, Clezio Marcos; Resende, Laysa Cristina Araújo; Chen, Sony Su; Schuch, Nelson Jorge

    2016-06-01

    Daytime E-region electric fields play a crucial role in the ionospheric dynamics at the geomagnetic dip latitudes. Due to their importance, there is an interest in accurately measuring and modeling the electric fields for both climatological and near real-time studies. In this work, we present the daytime vertical ( Ez) and eastward ( Ey) electric fields for a reference quiet day (February 7, 2001) at the São Luís Space Observatory, Brazil (SLZ, 2.31°S, 44.16°W). The component Ez is inferred from Doppler shifts of type II echoes (gradient drift instability) and the anisotropic factor, which is computed from ion and electron gyro frequencies as well as ion and electron collision frequencies with neutral molecules. The component Ey depends on the ratio of Hall and Pedersen conductivities and Ez. A magnetic field-line-integrated conductivity model is used to obtain the anisotropic factor for calculating Ez and the ionospheric conductivities for calculating Ey. This model uses the NRLMSISE-00, IRI-2007, and IGRF-11 empirical models as input parameters for neutral atmosphere, ionosphere, and geomagnetic field, respectively. Consequently, it is worth determining the uncertainties (or errors) in Ey and Ez associated with these empirical model outputs in order to precisely define the confidence limit for the estimated electric field components. For this purpose, errors of ±10 % were artificially introduced in the magnitude of each empirical model output before estimating Ey and Ez. The corresponding uncertainties in the ionospheric conductivity and electric field are evaluated considering the individual and cumulative contribution of the artificial errors. The results show that the neutral densities and temperature may be responsible for the largest changes in Ey and Ez, followed by changes in the geomagnetic field intensity and electron and ions compositions.

  11. Regional electric field induced by electroconvulsive therapy in a realistic finite element head model: influence of white matter anisotropic conductivity.

    PubMed

    Lee, Won Hee; Deng, Zhi-De; Kim, Tae-Seong; Laine, Andrew F; Lisanby, Sarah H; Peterchev, Angel V

    2012-02-01

    We present the first computational study investigating the electric field (E-field) strength generated by various electroconvulsive therapy (ECT) electrode configurations in specific brain regions of interest (ROIs) that have putative roles in the therapeutic action and/or adverse side effects of ECT. This study also characterizes the impact of the white matter (WM) conductivity anisotropy on the E-field distribution. A finite element head model incorporating tissue heterogeneity and WM anisotropic conductivity was constructed based on structural magnetic resonance imaging (MRI) and diffusion tensor MRI data. We computed the spatial E-field distributions generated by three standard ECT electrode placements including bilateral (BL), bifrontal (BF), and right unilateral (RUL) and an investigational electrode configuration for focal electrically administered seizure therapy (FEAST). The key results are that (1) the median E-field strength over the whole brain is 3.9, 1.5, 2.3, and 2.6 V/cm for the BL, BF, RUL, and FEAST electrode configurations, respectively, which coupled with the broad spread of the BL E-field suggests a biophysical basis for observations of superior efficacy of BL ECT compared to BF and RUL ECT; (2) in the hippocampi, BL ECT produces a median E-field of 4.8 V/cm that is 1.5-2.8 times stronger than that for the other electrode configurations, consistent with the more pronounced amnestic effects of BL ECT; and (3) neglecting the WM conductivity anisotropy results in E-field strength error up to 18% overall and up to 39% in specific ROIs, motivating the inclusion of the WM conductivity anisotropy in accurate head models. This computational study demonstrates how the realistic finite element head model incorporating tissue conductivity anisotropy provides quantitative insight into the biophysics of ECT, which may shed light on the differential clinical outcomes seen with various forms of ECT, and may guide the development of novel stimulation paradigms

  12. TURBULENCE IN THE OUTER REGIONS OF PROTOPLANETARY DISKS. II. STRONG ACCRETION DRIVEN BY A VERTICAL MAGNETIC FIELD

    SciTech Connect

    Simon, Jacob B.; Armitage, Philip J.; Beckwith, Kris; Bai, Xue-Ning; Stone, James M.

    2013-09-20

    We carry out a series of local, vertically stratified shearing box simulations of protoplanetary disks that include ambipolar diffusion and a net vertical magnetic field. The ambipolar diffusion profiles we employ correspond to 30 AU and 100 AU in a minimum mass solar nebula (MMSN) disk model, which consists of a far-ultraviolet-ionized surface layer and low-ionization disk interior. These simulations serve as a follow-up to Simon et al., in which we found that without a net vertical field, the turbulent stresses that result from the magnetorotational instability (MRI) are too weak to account for observed accretion rates. The simulations in this work show a very strong dependence of the accretion stresses on the strength of the background vertical field; as the field strength increases, the stress amplitude increases. For a net vertical field strength (quantified by β{sub 0}, the ratio of gas to magnetic pressure at the disk mid-plane) of β{sub 0} = 10{sup 4} and β{sub 0} = 10{sup 5}, we find accretion rates M-dot ∼10{sup -8}-10{sup –7} M{sub ☉} yr{sup –1}. These accretion rates agree with observational constraints, suggesting a vertical magnetic field strength of ∼60-200 μG and 10-30 μG at 30 AU and 100 AU, respectively, in a MMSN disk. Furthermore, the stress has a non-negligible component due to a magnetic wind. For sufficiently strong vertical field strengths, MRI turbulence is quenched, and the flow becomes largely laminar, with accretion proceeding through large-scale correlations in the radial and toroidal field components as well as through the magnetic wind. In all simulations, the presence of a low-ionization region near the disk mid-plane, which we call the ambipolar damping zone, results in reduced stresses there.

  13. Force-free field modeling of twist and braiding-induced magnetic energy in an active-region corona

    SciTech Connect

    Thalmann, J. K.

    2014-01-01

    The theoretical concept that braided magnetic field lines in the solar corona may dissipate a sufficient amount of energy to account for the brightening observed in the active-region (AR) corona has only recently been substantiated by high-resolution observations. From the analysis of coronal images obtained with the High Resolution Coronal Imager, first observational evidence of the braiding of magnetic field lines was reported by Cirtain et al. (hereafter CG13). We present nonlinear force-free reconstructions of the associated coronal magnetic field based on Solar Dynamics Observatory/Helioseismic and Magnetic Imager vector magnetograms. We deliver estimates of the free magnetic energy associated with a braided coronal structure. Our model results suggest (∼100 times) more free energy at the braiding site than analytically estimated by CG13, strengthening the possibility of the AR corona being heated by field line braiding. We were able to appropriately assess the coronal free energy by using vector field measurements and we attribute the lower energy estimate of CG13 to the underestimated (by a factor of 10) azimuthal field strength. We also quantify the increase in the overall twist of a flare-related flux rope that was noted by CG13. From our models we find that the overall twist of the flux rope increased by about half a turn within 12 minutes. Unlike another method to which we compare our results, we evaluate the winding of the flux rope's constituent field lines around each other purely based on their modeled coronal three-dimensional field line geometry. To our knowledge, this is done for the first time here.

  14. Near-Field Probabilistic Seismic Hazard Analysis of Metropolitan Tehran Using Region-Specific Directivity Models

    NASA Astrophysics Data System (ADS)

    Yazdani, Azad; Nicknam, Ahmad; Dadras, Ehsan Yousefi; Eftekhari, Seyed Nasrollah

    2016-09-01

    Ground motions are affected by directivity effects at near-fault regions which result in low-frequency cycle pulses at the beginning of the velocity time history. The directivity features of near-fault ground motions can lead to significant increase in the risk of earthquake-induced damage on engineering structures. The ordinary probabilistic seismic hazard analysis (PSHA) does not take into account such effects; recent studies have thus proposed new frameworks to incorporate directivity effects in PSHA. The objective of this study is to develop the seismic hazard mapping of Tehran City according to near-fault PSHA procedure for different return periods. To this end, the directivity models required in the modified PSHA were developed based on a database of the simulated ground motions. The simulated database was used in this study because there are no recorded near-fault data in the region to derive purely empirically based pulse prediction models. The results show that the directivity effects can significantly affect the estimate of regional seismic hazard.

  15. OBSERVATION OF A NON-RADIAL PENUMBRA IN A FLUX EMERGING REGION UNDER CHROMOSPHERIC CANOPY FIELDS

    SciTech Connect

    Lim, Eun-Kyung; Yurchyshyn, Vasyl; Goode, Philip; Cho, Kyung-Suk

    2013-05-20

    The presence of a penumbra is one of the main properties of a mature sunspot, but its formation mechanism has been elusive due to a lack of observations that fully cover the formation process. Utilizing the New Solar Telescope at the Big Bear Solar Observatory, we observed the formation of a partial penumbra for about 7 hr simultaneously at the photospheric (TiO; 7057 A) and the chromospheric (H{alpha} - 1 A) spectral lines with high spatial and temporal resolution. From this uninterrupted, long observing sequence, we found that the formation of the observed penumbra was closely associated with flux emergence under the pre-existing chromospheric canopy fields. Based on this finding, we suggest a possible scenario for penumbra formation in which a penumbra forms when the emerging flux is constrained from continuing to emerge, but rather is trapped at the photospheric level by the overlying chromospheric canopy fields.

  16. Conventional spherical harmonic analysis for regional modelling of the geomagnetic field

    NASA Astrophysics Data System (ADS)

    de Santis, Angelo

    1992-05-01

    The 3D global geomagnetic field is modeled by adjusted spherical harmonic analysis (ASHA), which is based on the expansion of conventional spherical harmonics after the colatitude interval is adjusted to that of a hemisphere. This kind of analysis can also be applied to modeling general 2D functions. ASHA is compared to spherical cap harmonic analysis, which involves the computation of more complex Legendre functions with real harmonic degree.

  17. Inhomogeneities of plasma density and electric field as sources of electrostatic turbulence in the auroral region

    SciTech Connect

    Ilyasov, Askar A.; Chernyshov, Alexander A. Mogilevsky, Mikhail M.; Golovchanskaya, Irina V. Kozelov, Boris V.

    2015-03-15

    Inhomogeneities of plasma density and non-uniform electric fields are compared as possible sources of a sort of electrostatic ion cyclotron waves that can be identified with broadband extremely low frequency electrostatic turbulence in the topside auroral ionosphere. Such waves are excited by inhomogeneous energy-density-driven instability. To gain a deeper insight in generation of these waves, computational modeling is performed with various plasma parameters. It is demonstrated that inhomogeneities of plasma density can give rise to this instability even in the absence of electric fields. By using both satellite-observed and model spatial distributions of plasma density and electric field in our modeling, we show that specific details of the spatial distributions are of minor importance for the wave generation. The solutions of the nonlocal inhomogeneous energy-density-driven dispersion relation are investigated for various ion-to-electron temperature ratios and directions of wave propagation. The relevance of the solutions to the observed spectra of broadband extremely low frequency emissions is shown.

  18. Possible variations of E-layer electromagnetic fields by acoustic waves above earthquake preparation regions

    NASA Astrophysics Data System (ADS)

    Meister, C.-V.; Mayer, B.; Hoffmann, D. H. H.

    2012-04-01

    The many-fluid magnetohydrodynamic theory is applied to describe the modification of the electromagnetic field of the ionospheric E-layer by acoustic-type waves. These waves originate from lower altitudes and may be caused by earthquake preparation processes. In comparison to former works, the different stratification of the positively and negatively charged ionospheric particles and of the neutral constituents is taken into account. There also the influence of the mean electric field on the different hight scales of the plasma parameters is discussed. Besides, the hight scales of the electric and magnetic wave fields are modeled. It is shown that at E-layer altitudes the acoustic waves may be converted into Alfvén waves. The dependence of these waves on the height scales of the plasma parameters of the particles and on the momentum transport between the charged and neutral particles is analysed. First estimates of the temperature variations within the E-layer because of the assumed acoustic-type waves of seismic origin are made.

  19. Integral field spectroscopy of the circum-nuclear region of the radio Galaxy Pictor A

    NASA Astrophysics Data System (ADS)

    Couto, Guilherme S.; Storchi-Bergmann, Thaisa; Robinson, Andrew; Riffel, Rogemar A.; Kharb, Preeti; Lena, Davide; Schnorr-Müller, Allan

    2016-05-01

    We present optical integral field spectroscopy of the inner 2.5 × 3.4 kpc2 of the broad-line radio galaxy Pictor A, at a spatial resolution of ≈400 pc. Line emission is observed over the whole field of view, being strongest at the nucleus and in an elongated linear feature (ELF) crossing the nucleus from the south-west to the north-east along PA ≈70°. Although the broad double-peaked Hα line and the [O I]6300/Hα and [S II]6717+31/Hα ratios are typical of active galactic nuclei (AGNs), the [N II]6584/Hα ratio (0.15-0.25) is unusually low. We suggest that this is due to the unusually low metallicity of the gas. Centroid velocity maps show mostly blueshifts to the south and redshifts to the north of the nucleus, but the velocity field is not well fitted by a rotation model. Velocity dispersions are low (<100 km s- 1 ) along the ELF, ruling out a jet-cloud interaction as the origin of this structure. The ELF shows both blueshifts and redshifts in channel maps, suggesting that it is close to the plane of the sky. The ELF is evidently photoionized by the AGN, but its kinematics and inferred low metallicity suggest that this structure may have originated in a past merger event with another galaxy. We suggest that the gas acquired in this interaction may be feeding the ELF.

  20. L1599B: Cloud Envelope and C+ Emission in a Region of Moderately Enhanced Radiation Field

    NASA Astrophysics Data System (ADS)

    Goldsmith, Paul F.; Pineda, Jorge L.; Langer, William D.; Liu, Tie; Requena-Torres, Miguel; Ricken, Oliver; Riquelme, Denise

    2016-06-01

    We study the effects of an asymmetric radiation field on the properties of a molecular cloud envelope. We employ observations of carbon monoxide (12CO and 13CO), atomic carbon, ionized carbon, and atomic hydrogen to analyze the chemical and physical properties of the core and envelope of L1599B, a molecular cloud forming a portion of the ring at ≃27 pc from the star Λ Ori. The O8 star provides an asymmetric radiation field that produces a moderate enhancement of the external radiation field. Observations of the [C ii] fine structure line with the GREAT instrument on SOFIA indicate a significant enhanced emission on the side of the cloud facing the star, while the [C i], 12CO and 13CO J = 1-0 and 2-1, and 12CO J = 3-2 data from the Purple Mountain Observatory and APEX telescopes suggest a relatively typical cloud interior. The atomic, ionic, and molecular line centroid velocities track each other very closely, and indicate that the cloud may be undergoing differential radial motion. The H i data from the Arecibo GALFA survey and the SOFIA/GREAT [C ii] data do not suggest any systematic motion of the halo gas, relative to the dense central portion of the cloud traced by 12CO and 13CO.

  1. Coronal temperature, density, and magnetic field maps of a solar acitve region using the Owens Valley Solar Array

    NASA Technical Reports Server (NTRS)

    Gary, Dale E.; Hurford, G. J.

    1994-01-01

    We present the first results of solar active region observations with the recently completed five-element Owens Valley Solar Array. On 1991 October 24, maps of Active Region AR 6891 were obtained at 22 frequencies from 1.2-7.0 GHz to provide brightness temperature spectra at each point. This is the first time that both high spatial and frequency-resolution brightness temperature spectra have been available over such a broad radio-frequency range. We find that over most of the region the spectra fall into one of the two well-defined categories: thermal free-free or thermal gyroresonance. In these cases, we use the spectra to deduce the spatial variation of physical parameters-electron temperature, column emission measure (intergral n(sup 2)(sub e) dl), and the coronal magnetic field strength-in and around the active region. Over a limited area of the region, the spectra resemble neither of the simple types, and alternative interpretations are required. The possibilties include the presence of fine structure that is unresolved at low frequencies; the presence of a small number of nonthermal electrons; or the presence of overlying, cooler 10(exp 6) K material which at low frequencies absorbs the hot (3 x 10(exp 6) K) thermal emission generated below.

  2. Relationships among seismic velocity, metamorphism, and seismic and aseismic fault slip in the Salton Sea Geothermal Field region

    NASA Astrophysics Data System (ADS)

    McGuire, Jeffrey J.; Lohman, Rowena B.; Catchings, Rufus D.; Rymer, Michael J.; Goldman, Mark R.

    2015-04-01

    The Salton Sea Geothermal Field is one of the most geothermally and seismically active areas in California and presents an opportunity to study the effect of high-temperature metamorphism on the properties of seismogenic faults. The area includes numerous active tectonic faults that have recently been imaged with active source seismic reflection and refraction. We utilize the active source surveys, along with the abundant microseismicity data from a dense borehole seismic network, to image the 3-D variations in seismic velocity in the upper 5 km of the crust. There are strong velocity variations, up to ~30%, that correlate spatially with the distribution of shallow heat flow patterns. The combination of hydrothermal circulation and high-temperature contact metamorphism has significantly altered the shallow sandstone sedimentary layers within the geothermal field to denser, more feldspathic, rock with higher P wave velocity, as is seen in the numerous exploration wells within the field. This alteration appears to have a first-order effect on the frictional stability of shallow faults. In 2005, a large earthquake swarm and deformation event occurred. Analysis of interferometric synthetic aperture radar data and earthquake relocations indicates that the shallow aseismic fault creep that occurred in 2005 was localized on the Kalin fault system that lies just outside the region of high-temperature metamorphism. In contrast, the earthquake swarm, which includes all of the M > 4 earthquakes to have occurred within the Salton Sea Geothermal Field in the last 15 years, ruptured the Main Central Fault (MCF) system that is localized in the heart of the geothermal anomaly. The background microseismicity induced by the geothermal operations is also concentrated in the high-temperature regions in the vicinity of operational wells. However, while this microseismicity occurs over a few kilometer scale region, much of it is clustered in earthquake swarms that last from hours to a

  3. Seismotectonics of the Armutlu peninsula (Marmara Sea, NW Turkey) from geological field observation and regional moment tensor inversion

    NASA Astrophysics Data System (ADS)

    Kinscher, J.; Krüger, F.; Woith, H.; Lühr, B. G.; Hintersberger, E.; Irmak, T. S.; Baris, S.

    2013-11-01

    The Armutlu peninsula, located in the eastern Marmara Sea, coincides with the western end of the rupture of the 17 August 1999, İzmit MW 7.6 earthquake which is the penultimate event of an apparently westward migrating series of strong and disastrous earthquakes along the NAFZ during the past century. We present new seismotectonic data of this key region in order to evaluate previous seismotectonic models and their implications for seismic hazard assessment in the eastern Marmara Sea. Long term kinematics were investigated by performing paleo strain reconstruction from geological field investigations by morphotectonic and kinematic analysis of exposed brittle faults. Short term kinematics were investigated by inverting for the moment tensor of 13 small to moderate recent earthquakes using surface wave amplitude spectra. Our results confirm previous models interpreting the eastern Marmara Sea Region as an active transtensional pull-apart environment associated with significant NNE-SSW extension and vertical displacement. At the northern peninsula, long term deformation pattern did not change significantly since Pliocene times contradicting regional tectonic models which postulate a newly formed single dextral strike slip fault in the Marmara Sea Region. This area is interpreted as a horsetail splay fault structure associated with a major normal fault segment that we call the Waterfall Fault. Apart from the Waterfall Fault, the stress strain relation appears complex associated with a complicated internal fault geometry, strain partitioning, and reactivation of pre-existing plane structures. At the southern peninsula, recent deformation indicates active pull-apart tectonics constituted by NE-SW trending dextral strike slip faults. Earthquakes generated by stress release along large rupture zones seem to be less probable at the northern, but more probable at the southern peninsula. Additionally, regional seismicity appears predominantly driven by plate boundary

  4. The self-reinforcing process of the reconnection electric field in the electron diffusion region and onset of collisionless magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Lu, Q.; Lu, S.; Huang, C.; Wang, S.

    2012-12-01

    The onset of collisionless magnetic reconnection is considered to be controlled by electron dynamics in the electron diffusion region, where the reconnection electric field is dominated by the off-diagonal electron pressure tensor term. We present a theoretical model to demonstrate the self-reinforcing process of the reconnection electric field in the electron diffusion region, which is found to grow exponentially. In addition, we found that the reconnection electric field in the pileup region also grows exponentially with the growth rate twice that in the electron diffusion region. Two-dimensional (2-D) particle-in-cell (PIC) simulations are employed to verify the results of the theoretical model.

  5. Celtic field agriculture and Early Anthropogenic Environmental change in the Meuse-Demer-Scheldt region, NW Europe

    NASA Astrophysics Data System (ADS)

    Van der Sanden, Germaine; Kluiving, Sjoerd; Roymans, Nico

    2016-04-01

    The field of Archaeology remains focused on historical issues while underexploring its potential contribution on currently existing societal problems, e.g. climate change. The aim of this paper is to show the relevance of archeological studies for the research of the 'human species as a significant moving agent' in terms of the changing natural environment during a much earlier time frame. This research is based on the study area of the Meuse-Demer-Scheldt region in the Netherlands and Belgium and exhibits the period from the Late Bronze Age to the Early Roman period. This period is characterized by the widespread introduction and use of an agricultural system, often referred to as the Celtic Field system that served as one of the most modifying systems in terms of anthropogenic-environmental change during this period. Emphasis in this research is given to results generated by the use of the remote sensing technology, LiDAR. New information is reported considering a correlation between singular field size and the overall surface of the agricultural complexes and secondly, the presentation of newly identified Celtic field systems in the Meuse-Demer-Scheldt region are presented. The study of the dynamics of the Celtic Field agricultural system provides evidence for a significant anthropogenic footprint on the natural environment due to land cover dominance, soil degeneration, increased soil acidification and forest clearance. Soil exhaustion forced the inhabitants to re-establish their relationship with the landscape in terms of fundamental changes in the habitation pattern and the agrarian exploitations of the land.

  6. Simulations of the 2004 NAME Field Season by Regional and Global Atmospheric Models: The NAMAP-2 Assessment

    NASA Astrophysics Data System (ADS)

    Gutzler, D. S.; Williams, L. N.; Kelly, P.; Mapes, B.; Schemm, J.

    2007-05-01

    The second phase of the NAME Model Assessment Project (NAMAP2) is a coordinated set of atmospheric simulations of the 2004 North American Monsoon season, associated with the NAME field campaign. Simulations using prescribed, time-varying SST fields were carried out last year by 6 global models and 4 regional models, implementing a variety of model resolutions and physical parameterizations. Output was saved in the form of both (a) subdaily time series of horizontal fields of standard meteorological and surface variables in order to examine the simulated hydroclimatology of Southwest North America, resolving the diurnal cycle; (b) high resolution time series of full model output in vertical columns colocated with NAME field sites where soundings were taken, for more detailed analysis of convective processes. An online atlas of NAMAP2 results can be accessed at: http:rsmas.miami.edu/personal/pkelly/Research.html. In this presentation we will summarize the results obtained to date and frame what appear to be outstanding issues in simulating warm season precipitation in complex terrain. NAMAP2 analyses confirm significant inconsistency among model simulations of the diurnal cycle of precipitation. The biggest component of model disagreement, especially among the regional models, seems to be in the amount of resolved precipitation generated by the models. A related disparity among the simulations is the amount of radiatively active cloudiness generated. The frequency of days with significant precipitation amounts (0.1" or greater) varies widely among models and available operational precipitation analyses. Special NAME precipitation observations are being used to provide additional detail on the actual precipitation rates and frequencies in the core monsoon domain. Model simulations of monsoon onset and analysis of surface flux, surface radiation and soil moisture fields are being analyzed at present.

  7. Field line equipotentiality and ion neutral collision frequencies in the dynamo region deduced from Saint-Santin ion drift measurements

    SciTech Connect

    Taieb, C.; Blanc, M.

    1981-08-01

    We analyze three-dimensional ion drift data from the Saint-Santin incoherent scatter facility to test experimentally the theoretical description of ion transport in the ionospheric dynamo layer, and to deduce electric fields and ion neutral collision frequencies from the observed drifts. Using a geometrical representation of the ion momentum equation, we show that at middle latitudes, because horizontal neutral wind influences ion motions both parallel and orthogonal to the field lines in the ionospheric dynamo layer, the information contained in a three-dimensional ion drift measurement is redundant, thus permitting to check the standard theoretical description of ionospheric electrodynamics in two ways. First, assuming a model ion-neutral collision frequency profile, one can deduce the north-south perpendicular component of the electric field function of height in the E region from Saint-Santin drift data. We find that its altitude variations remain within the experimental uncertainty of the method, in agreement with the theoretical assumption of equipotential field lines. Second, assuming that the electric field is constant in altitude, one can determine the ion collision ratio, or ratio of the ion collision frequency to the ion gyrofrequency, from a comparison of E and F region drift measurements. Daily median values of the ion collision frequencies, thus obtained for each of the three seasons, are found to compare reasonably well with ion collision frequencies derived from the Jacchia neutral atmosphere model for the case of the equinox sample, but determinations for the other seasons are contaminated by a high level of measurement noise.

  8. Agricultural terraces montoring and modeling: a field survey in Chianti region, Firenze, Italy - First part

    NASA Astrophysics Data System (ADS)

    Preti, Federico; Caruso, Marco; Dani, Andrea; Errico, Alessandro; Guastini, Enrico; Trucchi, Paolo

    2015-04-01

    The two abstracts present the design and set-up of an experimental field plant whose aim is the study and modeling of water circulation in a terraced slope together with its influence on the stability of the retaining dry stone walls. The pilot plant is located at "Fattoria di Lamole" (Greve in Chianti, Firenze, Italy) where both ancient and recently restored or rebuilt dry stone retaining walls are present. The intense vineyards cultivation makes it very representative in terms of range of external stresses that affect both hillslopes and walls. The research is developed within a bigger framework of landscape preservation as a way to prevent hydrogeological instabilities and landslide risks. First Part A first/preliminary field survey was carried out in order to estimate the hydraulic and mechanical soil characteristics. Field saturated hydraulic conductivity measurements with the Simplified Falling Head (SFH) method on a terrace along an alignment were performed. Infiltrometer tests with a double ring device and soil texture determinations with both fine particle-size and skeleton fraction distributions were also performed. The Direct shear test on undisturbed and reconstituted soil samples will offer an estimation of the Mohr-Coulomb failure envelope parameters (friction angle and cohesion). A reference portion of a dry stone wall will be also monitored. Lateral earth pressure at backfill-retaining wall interface (compared to temperature and air pressure measured values), backfill volumetric water content (both in saturated and unsaturated states) and ground-water level are measured. Acknowledgements Italian Research Project of Relevant Interest (PRIN2010-2011), prot. 20104ALME4, National network for monitoring, modeling, and sustainable management of erosion processes in agricultural land and hilly-mountainous area

  9. Equatorial evening prereversal electric field enhancement and sporadic E layer disruption: A manifestation of E and F region coupling

    NASA Astrophysics Data System (ADS)

    Abdu, M. A.; MacDougall, J. W.; Batista, I. S.; Sobral, J. H. A.; Jayachandran, P. T.

    2003-06-01

    An investigation of the evening prereversal enhancement in the equatorial zonal electric field (PRE) based on ionosonde data show that the PRE development process is coupled with the sporadic E layer formation in the evening over Fortaleza. Larger PRE amplitudes are associated with disruption of the Es layer, whereas for smaller PRE amplitudes such disruption does not occur, in general. The Es layer disruption does not occur also when the PRE amplitude decreases or is inhibited under a disturbance dynamo electric field. The disruption of these layers is followed by their reconstitution after a break of ˜3 hours. An examination of the relative role of the electric field and winds on ion velocity convergence process shows that the Es layer formation from a shearing (or height-independent and westward) zonal wind is directly influenced by a vertical electric field (but not by zonal electric field). Measurements of the Es patch zonal drift velocities by a digital ionosonde seem to support the role of a westward wind in the Es layer formation. The observed association between the PRE and Es layer disruption/formation is shown to arise from sunset-related vertical electric field development originating from the E and F region electrodynamic coupling processes. The results demonstrate the competing influences of the vertical electric field and the zonal wind in the evening Es layer processes. Since the PRE is responsible for the equatorial spread F (ESF) development, its relationship with the Es layer is discussed in the context of the day-to-day variability of the ESF.

  10. Using coronal loops to reconstruct the magnetic field of an active region before and after a major flare

    SciTech Connect

    Malanushenko, A.; Schrijver, C. J.; DeRosa, M. L.; Wheatland, M. S.

    2014-03-10

    The shapes of solar coronal loops are sensitive to the presence of electrical currents that are the carriers of the non-potential energy available for impulsive activity. We use this information in a new method for modeling the coronal magnetic field of active region (AR) 11158 as a nonlinear force-free field (NLFFF). The observations used are coronal images around the time of major flare activity on 2011 February 15, together with the surface line-of-sight magnetic field measurements. The data are from the Helioseismic and Magnetic Imager and Atmospheric Imaging Assembly on board the Solar Dynamics Observatory. The model fields are constrained to approximate the coronal loop configurations as closely as possible, while also being subject to the force-free constraints. The method does not use transverse photospheric magnetic field components as input and is thereby distinct from methods for modeling NLFFFs based on photospheric vector magnetograms. We validate the method using observations of AR 11158 at a time well before major flaring and subsequently review the field evolution just prior to and following an X2.2 flare and associated eruption. The models indicate that the energy released during the instability is about 1 × 10{sup 32} erg, consistent with what is needed to power such a large eruptive flare. Immediately prior to the eruption, the model field contains a compact sigmoid bundle of twisted flux that is not present in the post-eruption models, which is consistent with the observations. The core of that model structure is twisted by ≈0.9 full turns about its axis.

  11. Mars Pathfinder Landing Site Workshop 2: Characteristics of the Ares Vallis Region and Field Trips in the Channeled Scabland, Washington

    NASA Technical Reports Server (NTRS)

    Golombek, M. P. (Editor); Edgett, K. S. (Editor); Rice, J. W. , Jr. (Editor)

    1995-01-01

    Mars Pathfinder will place a single lander on the surface of Mars on July 4, 1997, following a December 1996 launch. As a result of the very successful first Mars Pathfinder Landing Site Workshop, the project has selected the Ares Vallis outflow channel in Chryse Planitia as the landing site. This location is where a large catastrophic outflow channel debouches into the northern lowlands. A second workshop and series of field trips, entitled Mars Pathfinder Landing Site Workshop 2: Characteristics of the Ares Vallis Region and Field Trips in the Channeled Scabland, Washington, were held in Spokane and Moses Lake, Washington. The purpose of the workshop was to provide a focus for learning as much as possible about the Ares Vallis region on Mars before landing there. The rationale is that the more that can be learned about the general area prior to landing, the better scientists will be able interpret the observations made by the lander and rover and place them in the proper geologic context. The field trip included overflights and surface investigations of the Channeled Scabland (an Earth analog for the martian catastrophic outflow channels), focusing on areas particularly analogous to Ares Vallis and the landing site. The overflights were essential for placing the enormous erosional and depositional features of the Channeled Scabland into proper three-dimensional context. The field trips were a joint educational outreach activity involving K-12 science educators, Mars Pathfinder scientists and engineers, and interested scientists from the Mars scientific community. Part 1 of the technical report on this workshop includes a description of the Mars Pathfinder mission, abstracts accepted for presentation at the workshop, an introduction to the Channeled Scabland, and field trip guides for the overflight and two field trips. This part, Part 2, includes the program for the workshop, summaries of the workshop technical sessions, a summary of the field trips and ensuing

  12. Mars Pathfinder Landing Site Workshop II: Characteristics of the Ares Vallis Region and Field Trips in the Channeled Scabland, Washington

    NASA Astrophysics Data System (ADS)

    Golombek, M. P.; Edgett, K. S.; Rice, J. W., Jr.

    1995-09-01

    Mars Pathfinder will place a single lander on the surface of Mars on July 4, 1997, following a December 1996 launch. As a result of the very successful first Mars Pathfinder Landing Site Workshop, the project has selected the Ares Vallis outflow channel in Chryse Planitia as the landing site. This location is where a large catastrophic outflow channel debouches into the northern lowlands. A second workshop and series of field trips, entitled Mars Pathfinder Landing Site Workshop 2: Characteristics of the Ares Vallis Region and Field Trips in the Channeled Scabland, Washington, were held in Spokane and Moses Lake, Washington. The purpose of the workshop was to provide a focus for learning as much as possible about the Ares Vallis region on Mars before landing there. The rationale is that the more that can be learned about the general area prior to landing, the better scientists will be able interpret the observations made by the lander and rover and place them in the proper geologic context. The field trip included overflights and surface investigations of the Channeled Scabland (an Earth analog for the martian catastrophic outflow channels), focusing on areas particularly analogous to Ares Vallis and the landing site. The overflights were essential for placing the enormous erosional and depositional features of the Channeled Scabland into proper three-dimensional context. The field trips were a joint educational outreach activity involving K-12 science educators, Mars Pathfinder scientists and engineers, and interested scientists from the Mars scientific community. Part 1 of the technical report on this workshop includes a description of the Mars Pathfinder mission, abstracts accepted for presentation at the workshop, an introduction to the Channeled Scabland, and field trip guides for the overflight and two field trips. This part, Part 2, includes the program for the workshop, summaries of the workshop technical sessions, a summary of the field trips and ensuing

  13. CHARACTERISTICS AND EVOLUTION OF THE MAGNETIC FIELD AND CHROMOSPHERIC EMISSION IN AN ACTIVE REGION CORE OBSERVED BY HINODE

    SciTech Connect

    Brooks, David H.; Warren, Harry P.; Winebarger, Amy R.

    2010-09-10

    We describe the characteristics and evolution of the magnetic field and chromospheric emission in an active region core observed by the Solar Optical Telescope (SOT) on Hinode. Consistent with previous studies, we find that the moss is unipolar, the spatial distribution of magnetic flux evolves slowly, and that the magnetic field is only moderately inclined. We also show that the field-line inclination and horizontal component are coherent, and that the magnetic field is mostly sheared in the inter-moss regions where the highest magnetic flux variability is seen. Using extrapolations from spectropolarimeter magnetograms, we show that the magnetic connectivity in the moss is different from that in the quiet Sun because most of the magnetic field extends to significant coronal heights. The magnetic flux, field vector, and chromospheric emission in the moss also appear highly dynamic but actually show only small-scale variations in magnitude on timescales longer than the cooling times for hydrodynamic loops computed from our extrapolations, suggesting high-frequency (continuous) heating events. Some evidence is found for flux (Ca II intensity) changes on the order of 100-200 G (DN) on timescales of 20-30 minutes that could be taken as indicative of low-frequency heating. We find, however, that only a small fraction (10%) of our simulated loops would be expected to cool on these timescales, and we do not find clear evidence that the flux changes consistently produce intensity changes in the chromosphere. Using observations from the EUV Imaging Spectrometer (EIS), we also determine that the filling factor in the moss is {approx}16%, consistent with previous studies and larger than the size of an SOT pixel. The magnetic flux and chromospheric intensity in most individual SOT pixels in the moss vary by less than {approx}20% and {approx}10%, respectively, on loop cooling timescales. In view of the high energy requirements of the chromosphere, we suggest that these

  14. Impacts of cloud overlap assumptions on radiative budgets and heating fields in convective regions

    NASA Astrophysics Data System (ADS)

    Wang, XiaoCong; Liu, YiMin; Bao, Qing

    2016-01-01

    Impacts of cloud overlap assumptions on radiative budgets and heating fields are explored with the aid of a cloud-resolving model (CRM), which provided cloud geometry as well as cloud micro and macro properties. Large-scale forcing data to drive the CRM are from TRMM Kwajalein Experiment and the Global Atmospheric Research Program's Atlantic Tropical Experiment field campaigns during which abundant convective systems were observed. The investigated overlap assumptions include those that were traditional and widely used in the past and the one that was recently addressed by Hogan and Illingworth (2000), in which the vertically projected cloud fraction is expressed by a linear combination of maximum and random overlap, with the weighting coefficient depending on the so-called decorrelation length Lcf. Results show that both shortwave and longwave cloud radiative forcings (SWCF/LWCF) are significantly underestimated under maximum (MO) and maximum-random (MRO) overlap assumptions, whereas remarkably overestimated under the random overlap (RO) assumption in comparison with that using CRM inherent cloud geometry. These biases can reach as high as 100 Wm- 2 for SWCF and 60 Wm- 2 for LWCF. By its very nature, the general overlap (GenO) assumption exhibits an encouraging performance on both SWCF and LWCF simulations, with the biases almost reduced by 3-fold compared with traditional overlap assumptions. The superiority of GenO assumption is also manifested in the simulation of shortwave and longwave radiative heating fields, which are either significantly overestimated or underestimated under traditional overlap assumptions. The study also pointed out the deficiency of constant assumption on Lcf in GenO assumption. Further examinations indicate that the CRM diagnostic Lcf varies among different cloud types and tends to be stratified in the vertical. The new parameterization that takes into account variation of Lcf in the vertical well reproduces such a relationship and

  15. Electric field measurements in an NLC/PMSE region during the MASS/ECOMA campaign

    NASA Astrophysics Data System (ADS)

    Shimogawa, M.; Holzworth, R. H.; Robertson, S.; Knappmiller, S.; Sternovsky, Z.

    2008-12-01

    Multiple high-impedance electric field probes were flown from Norway in August 2007 on each of the two MASS rockets, which were launched through NLC and PMSE events. Within the cloud layer, the probe potentials relative to the rocket skin were driven negative by incident heavy charged aerosols. In the first flight, the amplitude of voltage spikes caused by probe shadowing were large, and followed a profile similar to the probe potential and heavy charged aerosol density. The relationship between the shadowing spike amplitudes and heavy charged aerosol density is used to infer ion conductivity within the cloud layer.

  16. Surficial geology of the Safsaf region, south-central Egypt, derived from remote-sensing and field data

    USGS Publications Warehouse

    Davis, P.A.; Breed, C.S.; McCauley, J.F.; Schaber, G.G.

    1993-01-01

    We used a decorrelation-stretched image of Landsat Thematic Mapper (TM) Bands 1, 4, and 7 and field data to map and describe the main surficial units in the hyperarid Safsaf region in south-central Egypt. We show that the near-infrared bands on Landsat TM, which are sensitive to very subtle changes in mineralogy common to arid regions, significantly improve the geologist's capability to discriminate geologic units in desert regions. These data also provide the spatial and spectral information necessary to determine the migration patterns and provenance of eolian materials. The Safsaf area was the focus of our post flight field studies using Shuttle Imaging Radar (SIR) data following the discovery of buried paleochannels in North Africa. Most of the channels discernible on SIR images are not expressed in TM data, but traces of a few channels are present in both the SIR and the TM data within the Wadi Safsaf area. Here we present a detailed digital examination of the SIR and the TM-band reflectance and reflectance-ratio data at three locations of the more obvious surface expressions of the buried channels. Our results indicate that the TM expressions of the channels are not purely topographic but are more compositional in nature. Two possibilities may account for the TM expressions of the buried channels: 1) concentrations of windblown, iron-rich materials that accumulated along subtle curvilinear topograpohic traps, or 2) curvilinear exposures of an iron-rich underlying unit of the flat sand sheet. ?? 1993.

  17. Field Survey of Health Perception and Complaints of Pennsylvania Residents in the Marcellus Shale Region

    PubMed Central

    Saberi, Pouné; Propert, Kathleen Joy; Powers, Martha; Emmett, Edward; Green-McKenzie, Judith

    2014-01-01

    Pennsylvania Marcellus Shale region residents have reported medical symptoms they believe are related to nearby Unconventional Natural Gas Development (UNGD). Associations between medical symptoms and UNGD have been minimally explored. The objective of this descriptive study is to explore whether shale region Pennsylvania residents perceive UNGD as a health concern and whether they attribute health symptoms to UNGD exposures. A questionnaire was administered to adult volunteers with medical complaints in a primary-care medical office in a county where UNGD was present. Participants were asked whether they were concerned about health effects from UNGD, and whether they attributed current symptoms to UNGD or to some other environmental exposure. There were 72 respondents; 22% perceived UNGD as a health concern and 13% attributed medical symptoms to UNGD exposures. Overall, 42% attributed one or more of their medical symptoms to environmental causes, of which UNGD was the most frequent. A medical record review conducted on six participants who attributed their medical symptoms to UNGD revealed that only one of these records documented both the symptoms in question and the attribution to UNGD. The results of this pilot study suggest that there is substantial concern about adverse health effects of UNGD among Pennsylvania Marcellus Shale residents, and that these concerns may not be adequately represented in medical records. Further efforts to determine the relationship between UNGD and health are recommended in order to address community concerns. PMID:25003172

  18. Assimilation of solids during ascent of magmas from the Bartoy Field of the Baikal Region, Siberia

    NASA Technical Reports Server (NTRS)

    Haas, Johnson R.; Haskin, Larry A.; Luhr, James; Rasskazov, Sergei

    1993-01-01

    Most investigators ascribe mare basalt magma genesis to partial melting at depths of approximately 130 to greater than 400 km within the cumulate pile deposited from a lunar magma ocean. Mare basalts share with mid-ocean ridge basalts the characteristic of relative depletion in LREE and other incompatible trace elements that arises from melting within 'used' mantle, from which crust-forming elements have already been separated. Some mare basalt types do not show the classical, La-Nd depleted mare basalt REE distributions; however, some types are isotopically heterogeneous. These differences have been ascribed to assimilation, mainly AFC-style, of KREEPy highland material overlying the source region. Might such assimilation occur during magma ascent through the KREEPy material? To gain information from a terrestrial setting on possible assimilation during ascent, we have studied a suite of Quaternary nepheline-hawalites and nepheline-mugearites from the Bartoy cinder cone complex of the Baikal Rift, Siberia. The Bartoy magmas originated from greater than 80 km deep, and erupted through thick Archean crust. We find evidence for assimilation of approximately 31 wt. percent xenocrysts of garnet, aluminous clinopyroxene, kaersutite, and olivine, all presumably from the basalt source region, but no appreciable assimilation of overlying crust, consistent with isotopic constraints. Magmatic superheat made available by rapid ascent and decomposition accounts adequately for the energy of assimilation; no accompanying fractional crystallization is required or evident.

  19. [Effects of mulching and fertilization on winter wheat field soil moisture in dry highland region of Loess Plateau].

    PubMed

    Wang, Xiao-Feng; Tian, Xiao-Hong; Chen, Zi-Hui; Chen, Hui-Lin; Wang, Zhao-Hui

    2009-05-01

    A field experiment was conducted in a winter wheat field in Weibei dry highland region of Loess Plateau to study the effects of different mulching and fertilization treatments on soil moisture regime. The treatments were 1) no fertilization, 2) conventional fertilization, 3) recommended fertilization, 4) recommended fertilization + manure, 5) recommended fertilization + plastic mulch on soil ridges, 6) recommended fertilization + plastic mulch on soil ridges and straw mulch in furrows, and 7) recommended fertilization + straw mulch on entire plot. Soil moisture content was determined regularly with a neutron probe. Among the treatments, recommended fertilization plus plastic mulch on soil ridges and straw mulch in furrows in dry season (spring) resulted in the greatest increase of soil water storage and maintained the storage to the critical stage crops needed, followed by recommended fertilization plus plastic mulch on soil ridges. These two treatments could store more precipitation in field, and would benefit the development of rainfed agriculture in dry highland region of Loess Plateau. As for recommended fertilization plus manure, it had the least increase of soil water storage, with a difference of 48.2 mm to the recommended fertilization plus plastic mulch on soil ridges and straw mulch in furrows in dry season.

  20. A Case Study of the Density Structure over a Vertical Magnetic Field Region in the Martian Ionosphere

    NASA Astrophysics Data System (ADS)

    Duru, F.; Gurnett, D. A.; Morgan, D. D.; Dieval, C.; Pisa, D.; Lundin, R. N. A.

    2014-12-01

    One of the discoveries made by Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) on the Mars Express spacecraft is the existence of magnetically controlled structures in the ionosphere of Mars, which result in irregularities in the ionospheric electron density contours. These irregularities lead in turn to oblique echoes, which show up as hyperbola-shaped features on the plots of echo intensity measured by MARSIS as a function of altitude and universal time. The study of a hyperbola-shaped feature observed in a pass over an isolated region of strong crustal magnetic field shows that this kind of feature can be associated with a plasma cavity in the upper ionosphere and a corresponding density enhancement in the lower levels of the ionosphere. At the location where the hyperbola-shaped echo is observed, the electron and ion fluxes measured by ASPERA-3 at the location of the spacescraft are depleted and the local electron density from MARSIS shows a small decrease, as well. However, the peak ionospheric density obtained by MARSIS remote sounding shows a clear increase as Mars Express passes over the same region. We conclude that through the open magnetic field lines, the electrons are accelerated downward and ions are accelerated upward in a manner similar to the field-line driven auroral acceleration at Earth. This heating due to precipitating electrons causes a bulge at the altitude of the main ionosphere, which in turn leads to a hyperbola shaped echo, and loss of ionospheric plasma at high altitudes.

  1. ASDI (All-Sky Doppler Interferometer) -- Determinations of thermospheric wind and temperature fields over large regions of the upper atmosphere

    SciTech Connect

    Biondi, M.A.; Zipf, M.E.; Sipler, D.P.; Baumgardner, J.L.

    1994-12-31

    A novel All-Sky Doppler Interferometer (ASDI) has been used to measure Doppler shifts and widths of nightglow emission lines from the upper atmosphere, thereby permitting determination of the neutral wind and temperature fields over regions up to 2,000 km in diameter. The ASDI instrument consists of efficient all-sky (160{degree} field-of-view) input optics, a 100 mm aperture Fabry-Perot interferometer and output optics which focus 5 orders of the interference ring pattern superposed on the sky image onto a 512x512 pixel, LN{sub 2}-cooled ({minus}150C) CCD detector. Good quality CCD images of the mid latitude nightglow oxygen 630.0 nm red line ({approx}300 km altitude) and 557.7 nm green line ({approx}105 km altitude) and the OH 799.4 nm line ({approx}86 km altitude) are obtained in 5-15 min exposures. The image signal-to-noise ratio is sufficient for division of the 5 circular interference rings into 24 equal azimuthal sectors, so that Doppler shifts and widths for 120 distinct regions of the sky can be obtained from one exposure. Wind and temperature fields derived from the ASDI nightglow 630 nm measurements are compared for observations following the autumnal and the vernal equinoxes.

  2. Relationship of magnetic field strength and brightness of fine-structure elements in the solar temperature minimum region

    NASA Technical Reports Server (NTRS)

    Cook, J. W.; Ewing, J. A.

    1990-01-01

    A quantitative relationship was determined between magnetic field strength (or magnetic flux) from photospheric magnetograph observations and the brightness temperature of solar fine-structure elements observed at 1600 A, where the predominant flux source is continuum emission from the solar temperature minimum region. A Kitt Peak magnetogram and spectroheliograph observations at 1600 A taken during a sounding rocket flight of the High Resolution Telescope and Spectrograph from December 11, 1987 were used. The statistical distributions of brightness temperature in the quiet sun at 1600 A, and absolute value of magnetic field strength in the same area were determined from these observations. Using a technique which obtains the best-fit relationship of a given functional form between these two histogram distributions, a quantitative relationship was determined between absolute value of magnetic field strength B and brightness temperature which is essentially linear from 10 to 150 G. An interpretation is suggested, in which a basal heating occurs generally, while brighter elements are produced in magnetic regions with temperature enhancements proportional to B.

  3. Focal mechanisms in the southern Aegean from temporary seismic networks - implications for the regional stress field and ongoing deformation processes

    NASA Astrophysics Data System (ADS)

    Friederich, W.; Brüstle, A.; Küperkoch, L.; Meier, T.; Lamara, S.; Egelados Working Group

    2014-05-01

    The lateral variation of the stress field in the southern Aegean plate and the subducting Hellenic slab is determined from recordings of seismicity obtained with the CYCNET and EGELADOS networks in the years from 2002 to 2007. First motions from 7000 well-located microearthquakes were analysed to produce 540 well-constrained focal mechanisms. They were complemented by another 140 derived by waveform matching of records from larger events. Most of these earthquakes fall into 16 distinct spatial clusters distributed over the southern Aegean region. For each cluster, a stress inversion could be carried out yielding consistent estimates of the stress field and its spatial variation. At crustal levels, the stress field is generally dominated by a steeply dipping compressional principal stress direction except in places where coupling of the subducting slab and overlying plate come into play. Tensional principal stresses are generally subhorizontal. Just behind the forearc, the crust is under arc-parallel tension whereas in the volcanic areas around Kos, Columbo and Astypalea tensional and intermediate stresses are nearly degenerate. Further west and north, in the Santorini-Amorgos graben and in the area of the islands of Mykonos, Andros and Tinos, tensional stresses are significant and point around the NW-SE direction. Very similar stress fields are observed in western Turkey with the tensional axis rotated to NNE-SSW. Intermediate-depth earthquakes below 100 km in the Nisyros region indicate that the Hellenic slab experiences slab-parallel tension at these depths. The direction of tension is close to east-west and thus deviates from the local NW-oriented slab dip presumably owing to the segmentation of the slab. Beneath the Cretan sea, at shallower levels, the slab is under NW-SE compression. Tensional principal stresses in the crust exhibit very good alignment with extensional strain rate principal axes derived from GPS velocities except in volcanic areas, where both

  4. Interchange Reconnection and Slow Solar Wind Formation at the boundaries of open field regions in the Solar Corona

    NASA Astrophysics Data System (ADS)

    Rappazzo, A. F.; Matthaeus, W. H.; Ruffolo, D. J.; Servidio, S.; Velli, M.

    2014-12-01

    Interchange reconnection, i.e., magnetic reconnection at the interface between open and closed corona, is thought to contribute to the formation of the slowsolar wind, since it can inject the hotter and denserplasma from closed regions into the heliosphere,and account for the different slow wind composition (thatis similar to the plasma of closed regions) respectto the fast wind. The interchange process has mostly been investigatedfor magnetic field lines with opposite polarity and null points, either for the case of counterdirected loops (e.g., Fisk et al. 1999, Fisk and Schwadron 2001), or in correspondence of null points at the apex of streamers or pseudo-streamers (e.g., Wang et al. 1998,Edmondson et al. 2010, Del Zanna et al. 2011).Magnetic reconnection can certainly occur in these configurations,but they occupy a very small volume of the corona. On the other hand component magnetic reconnection at the boundarybetween coronal holes and streamers or pseudo-streamers hasreceived less attention, even though it can occur aroundthe entire extension of such boundaries. Magnetic reconnection is at the basis of Parker'snanoflare scenario for the heating of coronal loops.Modeling such regions in cartesian geometry with a strongguide field, it has been shown numerically that photosphericmotions induce a magnetic fieldcomponent orthogonal to the strong axial field characterizedby the presence of many current sheets, where the field lines are locally oppositely directed, and can reconnect (Einaudi et al. 1996; Dmitruk and Gomez 1997).The reconnection of the orthogonal component of the magneticfield leads to a change of connectivity of the field linesof the total magnetic field that connect one photospheric boundaryto the other. We have shown that a similar interchange mechanismcan operate in and around the boundaries between open and closedregions inducing a continual stochastic rearrangement of connectivityeverywhere along the open-closed boundary (Rappazzo et al. 2012

  5. Development of region processing algorithm for HSTAMIDS: status and field test results

    NASA Astrophysics Data System (ADS)

    Ngan, Peter; Burke, Sean; Cresci, Roger; Wilson, Joseph N.; Gader, Paul; Ho, K. C.; Bartosz, Elizabeth; Duvoisin, Herbert

    2007-04-01

    The Region Processing Algorithm (RPA) has been developed by the Office of the Army Humanitarian Demining Research and Development (HD R&D) Program as part of improvements for the AN/PSS-14. The effort was a collaboration between the HD R&D Program, L-3 Communication CyTerra Corporation, University of Florida, Duke University and University of Missouri. RPA has been integrated into and implemented in a real-time AN/PSS-14. The subject unit was used to collect data and tested for its performance at three Army test sites within the United States of America. This paper describes the status of the technology and its recent test results.

  6. Performances and failure of field-aged PV modules operating in Saharan region of Algeria

    NASA Astrophysics Data System (ADS)

    Sadok, M.; Benyoucef, B.; Othmani, M.; Mehdaoui, A.

    2016-07-01

    This article deals with behaviour of PV modules, of different technologies and manufacturers, exposed for long periods in Saharan region of Algeria. These modules are exposed in Adrar in the south-western part of Algeria. The study uses experimental I-V curves of PV modules for determining their performances. The datasheet information of modules will be useful in determination of degradation rates of the modules. Three types of modules have been tested: Photowatt (PWX 500), UDTS-50 and Isofoton (I-75 and I-100 serials). Results showed that Isofoton I-100 modules present the highest degradation rate while the lowest degradation rate was reached with I-75 serial. However, these rates tallies with other studies. The visual inspection of the modules has revealed various kinds of failures and defects responsible of performances drop (EVA browning, delamination, burn marks,…).

  7. Seismogenic stress field estimation in the Calabrian Arc region (south Italy) from a Bayesian approach

    NASA Astrophysics Data System (ADS)

    Totaro, C.; Orecchio, B.; Presti, D.; Scolaro, S.; Neri, G.

    2016-09-01

    A new high-quality waveform inversion focal mechanism database of the Calabrian Arc region has been compiled by integrating 292 mechanisms selected from literature and catalogs with 146 newly computed solutions. The new database has then been used for computation of posterior density distributions of stress tensor components by a Bayesian method never applied in south Italy before the present study. The application of this method to the enhanced database has allowed us to provide a detailed picture of seismotectonic stress regimes in this very complex area where lithospheric unit configuration and geodynamic engines are still strongly debated. Our results well constrain the extensional domain of Calabrian Arc and the compressional one of the southernmost Tyrrhenian Sea. In addition, previously undetected transcurrent regimes have been identified in the Ionian offshore. The new information released here will furnish useful tools and constraints for future geodynamic investigations.

  8. Preguntas y respuestas acerca del Estudio del

    Cancer.gov

    El Estudio del Tamoxifeno y Raloxifeno (STAR, por sus siglas en ingls) es un estudio clnico (un estudio de investigacin conducido con voluntarios) diseado para ver cómo el medicamento raloxifeno (Evista) se compara con el medicamento tamoxifeno (Nolvadex)

  9. Field Test of a Hybrid Finite-Difference and Analytic Element Regional Model.

    PubMed

    Abrams, D B; Haitjema, H M; Feinstein, D T; Hunt, R J

    2016-01-01

    Regional finite-difference models often have cell sizes that are too large to sufficiently model well-stream interactions. Here, a steady-state hybrid model is applied whereby the upper layer or layers of a coarse MODFLOW model are replaced by the analytic element model GFLOW, which represents surface waters and wells as line and point sinks. The two models are coupled by transferring cell-by-cell leakage obtained from the original MODFLOW model to the bottom of the GFLOW model. A real-world test of the hybrid model approach is applied on a subdomain of an existing model of the Lake Michigan Basin. The original (coarse) MODFLOW model consists of six layers, the top four of which are aggregated into GFLOW as a single layer, while the bottom two layers remain part of MODFLOW in the hybrid model. The hybrid model and a refined "benchmark" MODFLOW model simulate similar baseflows. The hybrid and benchmark models also simulate similar baseflow reductions due to nearby pumping when the well is located within the layers represented by GFLOW. However, the benchmark model requires refinement of the model grid in the local area of interest, while the hybrid approach uses a gridless top layer and is thus unaffected by grid discretization errors. The hybrid approach is well suited to facilitate cost-effective retrofitting of existing coarse grid MODFLOW models commonly used for regional studies because it leverages the strengths of both finite-difference and analytic element methods for predictions in mildly heterogeneous systems that can be simulated with steady-state conditions.

  10. Effects of He-Ne regional irradiation on 53 cases in the field of pediatric surgery

    NASA Astrophysics Data System (ADS)

    Guo, Jing-Zhen

    1991-06-01

    We report the clinical observation of the effect on 53 surgical cases with Helium-Neon laser local irradiation therapy. Of those cases 15 were suffered from chronic and acute infection, 5 were traumatic, 15 of hemangioma had been treated by solid CO freezing therapy and sclerosing injection previously. 18 cases were received incisional irradiation postoperatively. All showed remarkable results. There were no infection, and the healing process was shortened by Helium-Neon laser local irradiation for 2-3 days. The results showed that the curative rate was 88.68%, the marked effective rate was 9.43%, and the fair was 1.89$. We emphasize that because of the characteristic of anatomical physiology and histology in children. so the result in children is better than in adults. Thus, we strongly recommend using Helium-Laser local irradiation in surgical pediatric field. It is reliable, safe, painless, convenient, economic, and no side effects at all.

  11. Evolution of auroral acceleration region field-aligned current systems, plasma, and potentials observed by Cluster during substorms

    NASA Astrophysics Data System (ADS)

    Hull, A. J.; Chaston, C. C.; Fillingim, M. O.; Frey, H. U.; Goldstein, M. L.; Bonnell, J. W.; Mozer, F.

    2015-12-01

    The auroral acceleration region is an integral link in the chain of events that transpire during substorms, and the currents, plasma and electric fields undergo significant changes driven by complex dynamical processes deep in the magnetotail. The acceleration processes that occur therein accelerate and heat the plasma that ultimately leads to some of the most intense global substorm auroral displays. Though this region has garnered considerable attention, the temporal evolution of field-aligned current systems, associated acceleration processes, and resultant changes in the plasma constituents that occur during key stages of substorm development remain unclear. In this study we present a survey of Cluster traversals within and just above the auroral acceleration region (≤3 Re altitude) during substorms. Particular emphasis is on the spatial morphology and developmental sequence of auroral acceleration current systems, potentials and plasma constituents, with the aim of identifying controlling factors, and assessing auroral emmission consequences. Exploiting multi-point measurements from Cluster in combination with auroral imaging, we reveal the injection powered, Alfvenic nature of both the substorm onset and expansion of auroral particle acceleration. We show evidence that indicates substorm onsets are characterized by the gross-intensification and filamentation/striation of pre-existing large-scale current systems to smaller/dispersive scale Alfven waves. Such an evolutionary sequence has been suggested in theoretical models or single spacecraft data, but has not been demonstrated or characterized in multispacecraft observations until now. It is also shown how the Alfvenic variations over time may dissipate to form large-scale inverted-V structures characteristic of the quasi-static aurora. These findings suggest that, in addition to playing active roles in driving substorm aurora, inverted-V and Alfvenic acceleration processes are causally linked. Key

  12. Stochastic models for climate field reconstruction over the Euro-Mediterranean region

    NASA Astrophysics Data System (ADS)

    Werner, Johannes; Toreti, Andrea; Luterbacher, Juerg

    2014-05-01

    Over the last decades, several different methods have been used to reconstruct past climatic change. These methods consist of an - often statistical - model and a related inference step. While recently a lot of the discussion has been focused on the latter (Smerdon et al. 2011, Christiansen et al. 2011), the focus on more appropriate models seems promising. In a series of recent pseudoproxy experiments (PPE) for climate field reconstructions (Tingley+Huybers 2010a,b; Werner et al. 2013), Bayesian inference was used toghether with a localised stochastic description of the spatio-temporal evolution of annual temperature fields. In contrast to other methods that are based on large scale patterns over the full reconstruction domain, the local temporal evolution and spatial dependencies are modelled. The models are based on simple assumptions about the spatio-temporal evolution and have been shown to perform well for temperature reconstructions, at least in pseudo proxy experiments. We show in this contribution how localised climate models can be checked using the Kramers Moyal expansion. We apply this method to estimate models for temperature and precipitation over Europe and the Mediterranean. While such simple models fare well enough for temperatures, precipitation poses new problems. We show that while the model mismatch does indeed introduce errors, it can be neglected when compared to the influence of the proxy data. The effect of noisy proxy time series and spatial sparseness still remains the most prominent source of errors. Smerdon J.E. et al., J Clim 24, 1284-1309 (2011) Tingley M.P. and Huybers P., J Clim 10, 2759-2781, 2782-2800 (2010a,b) Christiansen B. and Ljundqvist F.C., J Clim 24, 6013-6034 (2011) Werner J.P. et al., J Clim 26, 824 (2013)

  13. VHF coherent scatter radar observations of mid-latitude F-region field-aligned irregularities over South Korea

    NASA Astrophysics Data System (ADS)

    Kwak, Y.; Yang, T.; Lee, J.; Hwang, J.; Kil, H.; Park, Y.

    2011-12-01

    We examine the mid-latitude F-region field-aligned irregularity (FAI) activity during 2010-2011 by using the VHF coherent scatter radar data in Daejeon (36.2°N, 127.1°E; dip latitude 26.7°N), South Korea. The VHF radar has been operated since December 2009 and provides a unique opportunity to investigate the variability of the FAI activity with local time, season, solar flux, and magnetic activity. Our preliminary results during the solar minimum show that FAIs preferentially occur at post-sunset and pre-sunrise and during the June solstice. The seasonal variation of the FAI occurrence frequency is similar to that of the electron density irregularities observed by the C/NOFS satellite. For one event, we observed the association of the FAIs with a medium-scale traveling ionospheric disturbance (MSTID). Our study extends to the investigation of the correlations between the irregularities in the equatorial region and middle latitudes and between the conjugate F regions, and the causal linkage of the FAIs with the E-region perturbations. For this purpose, we analyze the VHF radar and C/NOFS data during 2010-2011.

  14. Parabolic cylinder antennas. [discussed in terms of wave conversions, field divergence, and wavefronts in Fresnel and Fraunhofer regions

    NASA Technical Reports Server (NTRS)

    Schmidt, R. F.

    1973-01-01

    Some of the features of single and dual parabolic-cylinder reflector antenna systems are discussed in terms of wave conversions, field divergence, and wavefronts in Fresnel and Fraunhofer regions. Beam-squinting, by mechanical displacement and electrical phase gradient methods, is introduced together with the combination of these methods. In the case of dual parabolic cylinders there is also a discussion of surface-truncation, parametric representation of surface intersections, main-aperture blockage by the subsystem, and beam squinting. A few diffraction patterns are presented to illustrate the type of data available via a formulation equivalent to the complex-vector Kirchhoff-Kottler formulation. Main and cross-polarization components of the solution are available as they are inherently part of the field solution in the Cartesian coordinate system. A means of displaying main and cross-polarization components for arbitrary beam-scanning in space is outlined. Extensions to monopulse tracking with variable-beamwidth (zooming) capability are introduced.

  15. A pulsed-field gel electrophoresis map in the ataxia-telangiectasia region of chromosome 11q22. 3

    SciTech Connect

    Uhrhammer, N.; Huo, Y.; Gatti, R.A. ); Concannon, P. ); Nakamura, Yusuke )

    1994-03-15

    The authors interest in isolating the gene(s) for ataxia-telangiectasia has prompted construction of a physical map of chromosome 11q22.3 using markers localized to this region by linkage analysis and/or hybrid cell panels. Twenty-two markers have been analyzed by pulsed-field gel electrophoresis. Nine of these markers form an [approximately]2-Mb long-range contiguous map. An average distance of 200 kb between probes in this map should facilitate the isolation of new cDNAs, anonymous probes, and YACs in an orderly way. 15 refs., 2 figs.

  16. Exploration of Quench Initiation Due to Intentional Geometrical Defects in a High Magnetic Field Region of an SRF Cavity

    SciTech Connect

    J. Dai, K. Zhao, G.V. Eremeev, R.L. Geng, A.D. Palczewski; Dai, J.; Palczewski, A. D.; Eremeev, G. V.; Geng, R. L.; Zhao, K.

    2011-07-01

    A computer program which was used to simulate and analyze the thermal behaviors of SRF cavities has been developed at Jefferson Lab using C++ code. This code was also used to verify the quench initiation due to geometrical defects in high magnetic field region of SRF cavities. We built a CEBAF single cell cavity with 4 artificial defects near equator, and this cavity has been tested with T-mapping. The preheating behavior and quench initiation analysis of this cavity will be presented here using the computer program.

  17. Coronal extension of flaring region magnetic fields inferred from high-resolution microwave and type III burst observations

    SciTech Connect

    Lantos, P.; Pick, M.; Kundu, M.R.

    1984-08-15

    Observations of three solar radio bursts, obtained with the Very Large Array of the National Radio Astronomy Observatory at 6 cm wavelength, have been combined with meter observationss from the Mark III Nancay Radioheliograph. There is a good correlation between solar activity observed at the two wavelength domains. A small change by about 10'' in the centimetric burst location corresponds to a large change, by about 0.5 R/sub sun/, in the related metric type III burst location. This indicates discrete injection/acceleration regions and the presence of very divergent magnetic fields.

  18. Thaw Characteristics of Soil around Buried Pipeline in Permafrost Regions Based on Numerical Simulation of Temperature Fields

    NASA Astrophysics Data System (ADS)

    Fu, Zaiguo; Yu, Bo; Zhu, Jie; Li, Wang

    The freezing-thawing processes of the soil around the buried oil and gas pipelines in permafrost regions due to the effect of the pipe and atmospheric environment may bring about dangers to the pipelines as frost heave and thaw settlement occur and go on, and then the buried pipes may face huge challenges for safe operation. To analyze the thermal effect of the buried pipe on the surrounding soil, a two-dimensional computational model of the soil temperature fields was established based on the process of the heat transfer with phase change in the soil. The temperature fields and the thaw characteristics of the soil around the operating pipeline in permafrost regions were studied using numerical methods via the software FLUENT in this paper. The developments of the maximum thawed cylinders and corresponding thaw depths under the pipeline within operation life cycle were predicted and analyzed for various medium temperatures, water contents of soils, insulation layer thicknesses and imposed boundary conditions by climatic warming. In addition, the maximum thaw settlement of the soil under the pipeline in 5 typical permafrost areas along the Russia — China oil pipeline (the section in China) within operation life cycle was calculated. The medium temperatures were assumed to be constant and sinusoidal. The results indicated that the maximum thaw depths and thawed cylinders around the pipeline in permafrost regions enlarged with time elapse and the decrease in water content of the soils under the same boundary conditions. The maximum thaw depths and thawed cylinders increased with the increase of medium temperatures after the same operation time. The insulation layer weakened heat exchange between the pipeline and the surrounding soils and thus reduced the development of the thawed cylinders effectively during the early operation period. This research may provide an effective method for engineering application, and the results may provide references for predicting the

  19. Photon-dominated regions around cool stars: The effects of the color temperature of the radiation field

    NASA Technical Reports Server (NTRS)

    Spaans, Marco; Tielens, A. G. G. M.; Dishoeck, Ewine F. Van; Bakes, E. L. O.

    1994-01-01

    We have investigated the influence of the color temperature of the illuminating radiation field on the chemical and thermal structure of photon-dominated regions (PDRs). We present the results of a study of the photoelectric efficiency of heating by large molecules such as polycyclic aromatic hydrocarbons (PAHs) and very small grains for radiation fields characterized by different effective temperatures. We show that the efficiency for cooler (T(sub eff) approximately = 6000-10,000 K) stars is at most an order of magnitude smaller than that for hotter (T(sub eff) approximately = 20,000-30,000 K) stars. While cooler radiation fields result in less ultraviolet photons capable of heating, the efficiency per absorbed photon is higher, because the grains become less positively charged. We also present detailed calculations of the chemistry and thermal balance for generic PDRs (n(sub 0) approximately = 10(exp 3), G(sub 0) approximately = 10(exp 3)). For cooler radiation fields, the H/H2 and C(+)/C/CO transition layers shift toward the surface of the PDR, because fewer photons are available to photodissociate H2 and CO and to ionize C. The dominant cooling lines are the (C II) 158 micron and the (O I) 63 micron lines for the hotter radiation fields, but cooling by CO becomes dominant for a color temperature of 6000 K or lower. The (C II)/CO and (O I)/CO ratios are found to be very good diagnostics for the color temperature of the radiation field.

  20. Storm time equatorial plasma bubble zonal drift reversal due to disturbance Hall electric field over the Brazilian region

    NASA Astrophysics Data System (ADS)

    Santos, A. M.; Abdu, M. A.; Souza, J. R.; Sobral, J. H. A.; Batista, I. S.; Denardini, C. M.

    2016-06-01

    The dynamics of equatorial ionospheric plasma bubbles over Brazilian sector during two magnetic storm events are investigated in this work. The observations were made at varying phases of magnetic disturbances when the bubble zonal drift velocity was found to reverse westward from its normally eastward velocity. Calculation of the zonal drift based on a realistic low-latitude ionosphere modeled by the Sheffield University Plasmasphere-Ionosphere Model showed on a quantitative basis a clear competition between vertical Hall electric field and disturbance zonal winds on the variations observed in the zonal velocity of the plasma bubble. The Hall electric field arising from enhanced ratio of field line-integrated conductivities, ΣH/ΣP, is most often generated by an increase in the integrated Hall conductivity, arising from enhanced energetic particle precipitation in the South American Magnetic Anomaly region for which evidence is provided from observation of anomalous sporadic E layers over Cachoeira Paulista and Fortaleza. Such sporadic E layers are also by themselves evidence for the development of the Hall electric field that modifies the zonal drift.

  1. The Correlation Between Electron Density and Temperature in Low and High Strength Crustal Magnetic Field Regions at Mars

    NASA Astrophysics Data System (ADS)

    Chamandy, T.; Andersson, L.; Fowler, C. M.; Ergun, R.; Connerney, J. E. P.; Brain, D. A.

    2015-12-01

    The Langmuir Probe and Waves Instrument (LPW) onboard the MAVEN spacecraft is the first Langmuir probe to map out the upper atmosphere of Mars. The instrument provides measurements (amongst other variables) of electron density (Ne) and temperature (Te). The overarching scientific goal of MAVEN is to determining how Mars lost its atmosphere and to understand the physical processes governing this escape and the above quantities play a crucial role in understanding this. Ne and Te information is critical for determining the efficiency of the different photochemical reaction rates and thereby in understanding the upper atmospheric composition. Understanding the upper atmosphere allows the MAVEN mission to calculate escape rates. Photochemical reactions and collisions dominate below the exobase region (~150-~180 km). Above the exobase, particles with energies greater than the Mars gravity well can escape. On the dayside solar EUV heats the atmosphere at lower altitudes and produces the ionosphere. It is of great interest to understand the how the electron density and temperature correlate. The presented study therefore shows the correlation between Ne and Te. This study investigates how different solar zenith angles affect these quantities and evaluates if closed magnetic field lines (as expected to occur over crustal magnetic fields) change the correlation between the two. Many previous studies have shown that crustal fields affect the plasma at high altitudes. In this study we present how the magnetic field influences the photochemical and the plasma processes close to the exobase via analyzing Ne and Te.

  2. Analysis of gene expression in mouse brain regions after exposure to 1.9 GHz radiofrequency fields

    PubMed Central

    McNamee, James P.; Bellier, Pascale V.; Konkle, Anne T. M.; Thomas, Reuben; Wasoontarajaroen, Siriwat; Lemay, Eric; Gajda, Greg B.

    2016-01-01

    Abstract Purpose: To assess 1.9 GHz radiofrequency (RF) field exposure on gene expression within a variety of discrete mouse brain regions using whole genome microarray analysis. Materials and methods: Adult male C57BL/6 mice were exposed to 1.9 GHz pulse-modulated or continuous-wave RF fields for 4 h/day for 5 consecutive days at whole body average (WBA) specific absorption rates of 0 (sham), ∼0.2 W/kg and ∼1.4 W/kg. Total RNA was isolated from the auditory cortex, amygdala, caudate, cerebellum, hippocampus, hypothalamus, and medial prefrontal cortex and differential gene expression was assessed using Illumina MouseWG-6 (v2) BeadChip arrays. Validation of potentially responding genes was conducted by RT-PCR. Results: When analysis of gene expression was conducted within individual brain regions when controlling the false discovery rate (FDR), no differentially expressed genes were identified relative to the sham control. However, it must be noted that most fold changes among groups were observed to be less than 1.5-fold and this study had limited ability to detect such small changes. While some genes were differentially expressed without correction for multiple-comparisons testing, no consistent pattern of response was observed among different RF-exposure levels or among different RF-modulations. Conclusions: The current study provides the most comprehensive analysis of potential gene expression changes in the rodent brain in response to RF field exposure conducted to date. Within the exposure conditions and limitations of this study, no convincing evidence of consistent changes in gene expression was found in response to 1.9 GHz RF field exposure. PMID:27028625

  3. Remote Estimation of Gross Primary Production in Crops at Field and Regional Levels

    NASA Astrophysics Data System (ADS)

    Gitelson, A. A.; Vina, A.; Verma, S. B.; Rundquist, D. C.

    2007-12-01

    Accurate estimation of spatially distributed CO2 fluxes is of great importance for regional and global studies of carbon balance. We have found that in irrigated and rainfed crops (maize and soybean), GPP is closely related to total crop chlorophyll content. The finding allowed development of a new technique for remote estimation of crop chlorophyll specifically for assessing gross primary production. The technique is based on reflectance in two spectral channels: the near-infrared and either the green or the red-edge. The technique provided accurate estimations of daily GPP in both crops. Validation using independent datasets for irrigated and rainfed maize and soybean documented the robustness of the technique. We report also about applying the developed technique for GPP retrieval from data acquired by both an airborne imaging spectrometer (AISA-Eagle) and Landsat ETM+. The Chlorophyll Index, retrieved from Landsat ETM+ data, was found to be an accurate surrogate measure for daily crop GPP with a root mean square error of GPP prediction of less than 1.58 g C m-2d-1 in a GPP range of 1.88 g C m-2d-1 to 23.1 g C m-2d-1. These results suggest new possibilities for analyzing the spatio-temporal variation of the GPP of crops using not only the extensive archive of Landsat Thematic Mapper imagery acquired since the early 1980s but also the 500-m/pixel data currently being acquired by MODIS.

  4. Spectral tuning by opsin coexpression in retinal regions that view different parts of the visual field.

    PubMed

    Dalton, Brian E; Loew, Ellis R; Cronin, Thomas W; Carleton, Karen L

    2014-12-22

    Vision frequently mediates critical behaviours, and photoreceptors must respond to the light available to accomplish these tasks. Most photoreceptors are thought to contain a single visual pigment, an opsin protein bound to a chromophore, which together determine spectral sensitivity. Mechanisms of spectral tuning include altering the opsin, changing the chromophore and incorporating pre-receptor filtering. A few exceptions to the use of a single visual pigment have been documented in which a single mature photoreceptor coexpresses opsins that form spectrally distinct visual pigments, and in these exceptions the functional significance of coexpression is unclear. Here we document for the first time photoreceptors coexpressing spectrally distinct opsin genes in a manner that tunes sensitivity to the light environment. Photoreceptors of the cichlid fish, Metriaclima zebra, mix different pairs of opsins in retinal regions that view distinct backgrounds. The mixing of visual pigments increases absorbance of the corresponding background, potentially aiding the detection of dark objects. Thus, opsin coexpression may be a novel mechanism of spectral tuning that could be useful for detecting prey, predators and mates. However, our calculations show that coexpression of some opsins can hinder colour discrimination, creating a trade-off between visual functions. PMID:25377457

  5. Evaluation of VIIRS SST fields through the analysis of overlap regions between consecutive orbits

    NASA Astrophysics Data System (ADS)

    Cayula, Jean-François P.; May, Douglas A.; Arnone, Robert A.; Vandermeulen, Ryan A.

    2015-05-01

    Full-swath Sea Surface Temperature (SST) derived from data acquired by the Visible Infrared Imaging Radiometer Suite (VIIRS) sensor on-board the Suomi-National Polar-orbiting Partnership (S-NPP) satellite produces significant overlap between consecutive orbits at all latitudes. In this study, we use those overlap regions to evaluate VIIRS SST, as inconsistencies between SST values from consecutive orbits are indications of likely degraded quality. The studies investigate two sources of inconsistencies: those resulting from the response of the SST equations when observing a scene from differing view angles and those caused by undetected data contamination. This study will present results for two VIIRS SST products: one from the Naval Oceanographic Office (NAVOCEANO), which is assimilated in the Navy Ocean Models, and the Advanced Clear-Sky Processor for Oceans (ACSPO) product from the National Oceanic and Atmospheric Administration (NOAA) Center for Satellite Applications and Research (STAR). Global statistics based on drifting buoys for both NAVOCEANO and NOAA products complete the analysis.

  6. Spectral tuning by opsin coexpression in retinal regions that view different parts of the visual field.

    PubMed

    Dalton, Brian E; Loew, Ellis R; Cronin, Thomas W; Carleton, Karen L

    2014-12-22

    Vision frequently mediates critical behaviours, and photoreceptors must respond to the light available to accomplish these tasks. Most photoreceptors are thought to contain a single visual pigment, an opsin protein bound to a chromophore, which together determine spectral sensitivity. Mechanisms of spectral tuning include altering the opsin, changing the chromophore and incorporating pre-receptor filtering. A few exceptions to the use of a single visual pigment have been documented in which a single mature photoreceptor coexpresses opsins that form spectrally distinct visual pigments, and in these exceptions the functional significance of coexpression is unclear. Here we document for the first time photoreceptors coexpressing spectrally distinct opsin genes in a manner that tunes sensitivity to the light environment. Photoreceptors of the cichlid fish, Metriaclima zebra, mix different pairs of opsins in retinal regions that view distinct backgrounds. The mixing of visual pigments increases absorbance of the corresponding background, potentially aiding the detection of dark objects. Thus, opsin coexpression may be a novel mechanism of spectral tuning that could be useful for detecting prey, predators and mates. However, our calculations show that coexpression of some opsins can hinder colour discrimination, creating a trade-off between visual functions.

  7. Spectral tuning by opsin coexpression in retinal regions that view different parts of the visual field

    PubMed Central

    Dalton, Brian E.; Loew, Ellis R.; Cronin, Thomas W.; Carleton, Karen L.

    2014-01-01

    Vision frequently mediates critical behaviours, and photoreceptors must respond to the light available to accomplish these tasks. Most photoreceptors are thought to contain a single visual pigment, an opsin protein bound to a chromophore, which together determine spectral sensitivity. Mechanisms of spectral tuning include altering the opsin, changing the chromophore and incorporating pre-receptor filtering. A few exceptions to the use of a single visual pigment have been documented in which a single mature photoreceptor coexpresses opsins that form spectrally distinct visual pigments, and in these exceptions the functional significance of coexpression is unclear. Here we document for the first time photoreceptors coexpressing spectrally distinct opsin genes in a manner that tunes sensitivity to the light environment. Photoreceptors of the cichlid fish, Metriaclima zebra, mix different pairs of opsins in retinal regions that view distinct backgrounds. The mixing of visual pigments increases absorbance of the corresponding background, potentially aiding the detection of dark objects. Thus, opsin coexpression may be a novel mechanism of spectral tuning that could be useful for detecting prey, predators and mates. However, our calculations show that coexpression of some opsins can hinder colour discrimination, creating a trade-off between visual functions. PMID:25377457

  8. Impact of E4 Training and Field Auditing of GSA Heartland Region Facilities

    SciTech Connect

    Fernandez, Nicholas; Gowri, Krishnan; Underhill, Ronald M.; Goddard, James K.

    2012-04-01

    To assess the impact of energy efficiency expert evaluation (E4) training and field audits performed since 2007, the Federal Energy Management Program (FEMP) undertook a follow-up study on the implementation of E4 recommendations and an analysis of energy savings. The building property manager and O and M contractor of each facility were interviewed to obtain feedback and implementation status of the E4 recommendations. Overall, there were more than 160 recommendations documented in the E4 reports; about 50% of these recommendations were fully implemented and the remaining 50% either partially implemented or not implemented. In four buildings, the E4 recommendations were aligned with American Recovery and Reinvestment Act of 2009 (ARRA) projects replacing HVAC equipment or upgrading the building control system. The E4 recommendations were not followed-up in two buildings because of uncertainty of the long-term use of the facility or personnel changes. Results of this followon study are reported in this document.

  9. Regional implications of the Bashkerian-Serpukhovian reservoir architecture at Tengiz field; Kazakhstan

    SciTech Connect

    Lomando, A.J.; Suisenov, K.; Shilin, A.

    1995-08-01

    The super-giant Tengiz Field is a complex Carboniferous-Devonian reservoir. The most common occurrence of higher porosity zones is in the uppermost portion of the reservoir within the Bashkerian to Serpukhovian section. The suite of porous textures containing preserved primary porosity ranges from skeletal and coated grain to mixed particle grainstones, and packstones which display little or no compaction due to early isopachous marine cementation. In some areas, the amount of primary preserved porosity is inversely proportional to th occurrence and amount of crinoids and associated syntaxial overgrowths. Early and late secondary porosity is most pronounced in the upper portions of the reservoir associated with features ranging from multiple short-term exposure events to long-duration unconformities. Lower energy wackestones and mudstones interbedded with higher energy facies cause verticle permeability barriers and baffles. In areas of stacked shoaling cycles in the platform interior, lateral correlation of porosity zones is good. Muddy biolithites tend to be concentrated along the north and eastern portions of the structure and generally contain lower reservoir quality and cause lateral changes in reservoir continuity. Preliminary analysis of facies distribution patterns indicates that the higher energy {open_quotes}windward{close_quotes} direction is not facing into the North Caspian basin, but to the east-northeast into the Emba sub-basin. This allows for a separate exploration play concept around the Emba sub-basin {open_quotes}rim{close_quotes} which would be separate and distinct from the rest of the North Caspian Basin.

  10. Structure of pre-Caspian depression and major oil and gas fields of the region

    SciTech Connect

    Krylov, N.A. ); Avrov, V.P. ); Lisovsky, N.N.

    1991-03-01

    As a single unified depression, the pre-Caspian basin has been formed from Paleozoic to Cenozoic time. The basin is superimposed on two large pre-Permian depressions. On the Astrakhan-Aktyubinsk zone of uplifts between them is found sharply reduced Carboniferous and Devonian sections. Modern structural plan clearly displays two major structural stages: Subsalt (Paleozoic) and post (post-Kungurian). The post-salt stage is characterized by wide development of salt dome tectonics. It corresponds with its own petroliferous stage containing numerous, mostly small oil accumulations in terrigenous Mesozoic reservoirs. Large recent discoveries-Astrakhan condensate, Karachaganak and Kanazhol-Sinelnikov oil/condensate, Tengiz oil, and other fields-are associated with the Subsalt Paleozoic complex ranging from Lower Permian to the top of Upper Devonian. The Subsalt stage has its own regularities in hydrocarbon phase differentiation; large reserves concentration; dominantly productive carbonates with various reservoirs; and presence of structural, depositional, and erosional factors controlling formation of oil and gas traps. The paper describes major distributional features of the various arc-and-type Permian and Carboniferous formations, which in conjunction with Subsalt paleotemperature data and geochemistry of organic matter represents a basis for the forecast of new discoveries.

  11. Investigating Alfvénic wave propagation in coronal open-field regions.

    PubMed

    Morton, R J; Tomczyk, S; Pinto, R

    2015-01-01

    The physical mechanisms behind accelerating solar and stellar winds are a long-standing astrophysical mystery, although recent breakthroughs have come from models invoking the turbulent dissipation of Alfvén waves. The existence of Alfvén waves far from the Sun has been known since the 1970s, and recently the presence of ubiquitous Alfvénic waves throughout the solar atmosphere has been confirmed. However, the presence of atmospheric Alfvénic waves does not, alone, provide sufficient support for wave-based models; the existence of counter-propagating Alfvénic waves is crucial for the development of turbulence. Here, we demonstrate that counter-propagating Alfvénic waves exist in open coronal magnetic fields and reveal key observational insights into the details of their generation, reflection in the upper atmosphere and outward propagation into the solar wind. The results enhance our knowledge of Alfvénic wave propagation in the solar atmosphere, providing support and constraints for some of the recent Alfvén wave turbulence models. PMID:26213234

  12. Investigating Alfvénic wave propagation in coronal open-field regions

    PubMed Central

    Morton, R. J.; Tomczyk, S.; Pinto, R.

    2015-01-01

    The physical mechanisms behind accelerating solar and stellar winds are a long-standing astrophysical mystery, although recent breakthroughs have come from models invoking the turbulent dissipation of Alfvén waves. The existence of Alfvén waves far from the Sun has been known since the 1970s, and recently the presence of ubiquitous Alfvénic waves throughout the solar atmosphere has been confirmed. However, the presence of atmospheric Alfvénic waves does not, alone, provide sufficient support for wave-based models; the existence of counter-propagating Alfvénic waves is crucial for the development of turbulence. Here, we demonstrate that counter-propagating Alfvénic waves exist in open coronal magnetic fields and reveal key observational insights into the details of their generation, reflection in the upper atmosphere and outward propagation into the solar wind. The results enhance our knowledge of Alfvénic wave propagation in the solar atmosphere, providing support and constraints for some of the recent Alfvén wave turbulence models. PMID:26213234

  13. Field studies of isoprene emissions from vegetation in the Northwest Mediterranean region

    NASA Astrophysics Data System (ADS)

    Owen, Susan M.; Boissard, C.; Hagenlocher, B.; Hewitt, C. Nicholas

    1998-10-01

    During the Biogenic Emissions in the Mediterranean Area (BEMA) project field campaigns (1993-1997), 40 native Mediterranean plant species were screened for emissions of isoprene and monoterpenes using a branch enclosure sampling method with subsequent gas chromatographic-flame ionization detector (GC-FID) and GC-mass selective detector (MS) analysis. Thirteen species emitted more than 0.5 μg (C) g-1 dw h-1 isoprene at 30°C and 1000 μmol m-2 s-1 photosynthetically active radiation (PAR), of which nine species emitted more than 20 μg (C) g-1 dw h-1. Emissions of isoprene were strongly correlated with temperature and PAR, and were reasonably well predicted by existing algorithms. There was little intraspecies and day to day variation in base emission rates. In general, median base emission rates were higher in summer compared to autumn for most species. Significant difference in aggregated habitat base emission rates was found between dunes, garrigue, woodland, and riverside sample sites. Although considerable unexplained variability in base emission rates remains to be explored, first estimates of base emission rates for Mediterranean shrublands are presented here.

  14. Water Quality in an Elevated CO2 Region: a Field Study at Mammoth Lakes, CA

    NASA Astrophysics Data System (ADS)

    Dwyer, C. D.; Ellis, A. S.; Khachikian, C.; CenterEnergy; Sustainability

    2010-12-01

    Increasing levels of anthropogenic carbon dioxide in the atmosphere have led to concern with regard to the consequences of global warming. Efforts to limit, if not prevent, further increases are becoming a great priority. Among the variety of proposed mitigation methods is that of injecting CO2 into structural reservoirs in deep permeable geologic formations. Understanding the potential side effects on the environment should leaks occur is essential to our ability to prepare and mitigate environmental hazards. This study examines the effect of elevated soil levels of CO2 on water chemistry. In more specific terms, the purpose is to find geochemical signatures to indicate that elevated CO2 is causing observable changes in water chemistry. Preliminary targets elements are Si, Al and Sr in conjunction with major ions. Mammoth Mountain provides an excellent study area as CO2 gas from an underlying magma chamber has been leaking into the overlying soil, turning it into a natural analogue to a leaking CO2 storage formation. Accelerated weathering of minerals is hypothesized to occur in concert with elevated CO2 levels. Water samples were collected from Horseshoe Lake (adjacent to a high flux of soil CO2), streams that drain into Horseshoe lake, and from Mcleod Lake (with “normal” CO2 levels). Preliminary results show that the waters of Mammoth Lakes are generally dilute, with the major inputs being snowmelt and runoff from Mammoth Mountain. Water samples from the high CO2 Horseshoe Lake area have higher alkalinity (0.295 meq/L compared to 0.047 meq/L at McLeod Lake), an indication of more weathering occurring at the high CO2 lake. Weathering from alumnosilicate minerals is one of the main sources of dissolved ions to waters in the region. Al and Si concentrations are higher in the streams (39μg/L and 4575μg/L respectively) than in the lake (16μg/L and 3074 respectively). Al/Na molar ratios in Horseshoe Lake range from 0.008 - 0.028 while stream inputs to the lake

  15. Preliminary Analysis of Observations on the Ultra-Low Frequency Electric Field in the Beijing Region

    NASA Astrophysics Data System (ADS)

    Zhuang, Jiancang; Vere-Jones, David; Guan, Huaping; Ogata, Yosihiko; Ma, Li

    2005-06-01

    This paper presents a preliminary analysis of observations on ultra-low frequency ground electric signals from stations operated by the China Seismological Bureau over the last 20 years. A brief description of the instrumentation, operating procedures and data processing procedures is given. The data analyzed consists of estimates of the total strengths (cumulated amplitudes) of the electric signals during 24-hour periods. The thresholds are set low enough so that on most days a zero observation is returned. Non-zero observations are related to electric and magnetic storms, occasional man-made electrical effects, and, apparently, some pre-, co-, or postseismic signals. The main purpose of the analysis is to investigate the extent that the electric signals can be considered as preseismic in character. For this purpose the electric signals from each of five stations are jointly analyzed with the catalogue of local earthquakes within circular regions around the selected stations. A version of Ogata’s Lin-Lin algorithm is used to estimate and test the existence of a pre-seismic signal. This model allows the effect of the electric signals to be tested, even after allowing for the effects of earthquake clustering. It is found that, although the largest single effect influencing earthquake occurrence is the clustering tendency, there remains a significant preseismic component from the electrical signals. Additional tests show that the apparent effect is not postseismic in character, and persists even under variations of the model and the time periods used in the analysis. Samples of the data are presented and the full data sets have been made available on local websites.

  16. Quantification and regionalization of groundwater recharge in South-Central Kansas: Integrating field characterization, statistical analysis, and GIS

    USGS Publications Warehouse

    Sophocleous, M.

    2000-01-01

    A practical methodology for recharge characterization was developed based on several years of field-oriented research at 10 sites in the Great Bend Prairie of south-central Kansas. This methodology combines the soil-water budget on a storm-by-storm year-round basis with the resulting watertable rises. The estimated 1985-1992 average annual recharge was less than 50mm/year with a range from 15 mm/year (during the 1998 drought) to 178 mm/year (during the 1993 flood year). Most of this recharge occurs during the spring months. To regionalize these site-specific estimates, an additional methodology based on multiple (forward) regression analysis combined with classification and GIS overlay analyses was developed and implemented. The multiple regression analysis showed that the most influential variables were, in order of decreasing importance, total annual precipitation, average maximum springtime soil-profile water storage, average shallowest springtime depth to watertable, and average springtime precipitation rate. Therefore, four GIS (ARC/INFO) data "layers" or coverages were constructed for the study region based on these four variables, and each such coverage was classified into the same number of data classes to avoid biasing the results. The normalized regression coefficients were employed to weigh the class rankings of each recharge-affecting variable. This approach resulted in recharge zonations that agreed well with the site recharge estimates. During the "Great Flood of 1993," when rainfall totals exceeded normal levels by -200% in the northern portion of the study region, the developed regionalization methodology was tested against such extreme conditions, and proved to be both practical, based on readily available or easily measurable data, and robust. It was concluded that the combination of multiple regression and GIS overlay analyses is a powerful and practical approach to regionalizing small samples of recharge estimates.

  17. [Hygienic evaluation and prediction of population morbidity in the region of the Karachaganak field].

    PubMed

    Kenesariev, U I; Erzhanova, A E; Amrin, M K; Kenesary, D U; Dosmukhametov, A T; Baĭmukhamedov, A A

    2013-01-01

    The state of pollution of the environment in the area of operation of the Karachaganak oil and gas field depends on the development and operation of oil and gas objects. According to the analysis of retrospective studies, periods of the increase in air pollution have two peaks occurring in 1990 and 1997. However, these negative environmental moments are significantly different. In 1990, due to a sharp increase in the production of hydrocarbon crude, as well as the low efficiency of gas cleaning devices air pollution has increased significantly. The second period was characterized by a slight increase in the concentration of nitrogen dioxide only that was directly connected to the introduction of new technologies reducing environmental pollution. At the same time, the average population morbidity rate in settlement Berezovka is 336.8 cases per 1,000 surveyed, which is lower in 1.6 times than the reference data in the control townships. The leading place in the structure of morbidity are taken by digestive diseases, respiratory diseases and diseases of the nervous system, diseases of the eye and its appendages, diseases of the genitourinary system, diseases of the circulatory system, accounting for 87.6% of all diseases of the surveyed residents of settlement Berezovka. There was shown a multi-dimensional model of the dependence of general population morbidity in settlement Berezovka on the concentration of SO2 and NO2 in air. Also found depending on the influence of the concentrations of H2S, SO2 and NO2 in the air on the population on basic classes of diseases.

  18. Regional electric field induced by electroconvulsive therapy in a realistic finite element head model: Influence of white matter anisotropic conductivity

    PubMed Central

    Lee, Won Hee; Deng, Zhi-De; Kim, Tae-Seong; Laine, Andrew F.; Lisanby, Sarah H.; Peterchev, Angel V.

    2012-01-01

    We present the first computational study investigating the electric field (E-field) strength generated by various electroconvulsive therapy (ECT) electrode configurations in specific brain regions of interest (ROIs) that have putative roles in the therapeutic action and/or adverse side effects of ECT. This study also characterizes the impact of the white matter (WM) conductivity anisotropy on the E-field distribution. A finite element head model incorporating tissue heterogeneity and WM anisotropic conductivity was constructed based on structural magnetic resonance imaging (MRI) and diffusion tensor MRI data. We computed the spatial E-field distributions generated by three standard ECT electrode placements including bilateral (BL), bifrontal (BF), and right unilateral (RUL) and an investigational electrode configuration for focal electrically administered seizure therapy (FEAST). The key results are that (1) the median E-field strength over the whole brain is 3.9, 1.5, 2.3, and 2.6 V/cm for the BL, BF, RUL, and FEAST electrode configurations, respectively, which coupled with the broad spread of the BL E-field suggests a biophysical basis for observations of superior efficacy of BL ECT compared to BF and RUL ECT; (2) in the hippocampi, BL ECT produces a median E-field of 4.8 V/cm that is 1.5–2.8 times stronger than that for the other electrode configurations, consistent with the more pronounced amnestic effects of BL ECT; and (3) neglecting the WM conductivity anisotropy results in E-field strength error up to 18% overall and up to 39% in specific ROIs, motivating the inclusion of the WM conductivity anisotropy in accurate head models. This computational study demonstrates how the realistic finite element head model incorporating tissue conductivity anisotropy provides quantitative insight into the biophysics of ECT, which may shed light on the differential clinical outcomes seen with various forms of ECT, and may guide the development of novel stimulation

  19. ABRUPT CHANGES OF THE PHOTOSPHERIC MAGNETIC FIELD IN ACTIVE REGIONS AND THE IMPULSIVE PHASE OF SOLAR FLARES

    SciTech Connect

    Cliver, E. W.; Petrie, G. J. D.; Ling, A. G.

    2012-09-10

    We compared time profiles of changes of the unsigned photospheric magnetic flux in active regions with those of their associated soft X-ray (SXR) bursts for a sample of 75 {>=} M5 flares well observed by Global Oscillation Network Group longitudinal magnetographs. Sixty-six of these events had stepwise changes in the spatially integrated unsigned flux during the SXR flares. In superposed epoch plots for these 66 events, there is a sharp increase in the unsigned magnetic flux coincident with the onset of the flare impulsive phase while the end of the stepwise change corresponds to the time of peak SXR emission. We substantiated this result with a histogram-based comparison of the timing of flux steps (onset, midpoint of step, and end) for representative points in the flaring regions with their associated SXR event time markers (flare onset, onset of impulsive phase, time of peak logarithmic derivative, maximum). On an individual event basis, the principal part of the stepwise magnetic flux change occurred during the main rise phase of the SXR burst (impulsive phase onset to SXR peak) for {approx}60% of the 66 cases. We find a close timing agreement between magnetic flux steps and >100 keV emission for the three largest hard X-ray (>100 keV) bursts in our sample. These results identify the abrupt changes in photospheric magnetic fields as an impulsive phase phenomenon and indicate that the coronal magnetic field changes that drive flares are rapidly transmitted to the photosphere.

  20. Local versus regional active stress field in 5900m San Gregorio Magno 1 well (southern Apennines, Italy).

    NASA Astrophysics Data System (ADS)

    Pierdominici, S.; Montone, P.; Mariucci, M. T.

    2009-04-01

    The aim of this work is to characterize the local stress field in a peculiar sector of the southern Apennines by analyzing borehole breakouts, fractures and logging data along the San Gregorio Magno 1 deep well, and to compare the achieved stress field with the regional one. The study area is characterized by diffuse low-Magnitude seismicity, although in historical times it has been repeatedly struck by moderate to large earthquakes. We have analyzed in detail the 5900m San Gregorio Magno 1 well drilled in 1996-97 by ENI S.p.A. and located very close (1.3 km away) to the Irpinia Fault. This fault was responsible of the strongest earthquake happened in this area, the 23rd November 1980 M6.9 earthquake that produced the first unequivocal historical surface faulting ever documented in Italy. The mainshock enucleated on a fault 38 km-long with a strike of 308° and 60-70° northeast-dipping, consistent with a NE-SW T-axis and a normal faulting tectonic regime. Borehole breakouts, active faults and focal mechanism solutions have allowed to define the present-day stress along and around the San Gregorio Magno 1 well and other analysis (logging data) to discriminate the presence of fracture zones and/or faults at depth. We have considered data from 1200m to the bottom of San Gregorio Magno 1 well. Our analysis of stress-induced wellbore breakouts shows an inhomogeneous direction of minimum horizontal stress (N359+-31°) orientation along the well. This direction is moderately consistent with the Shmin-trend determined from breakouts in other wells in this region and also with the regional active stress field inferred from active faults and earthquake focal plane solutions (N44 Shmin oriented). For this reason we have computed for each breakout zone the difference between the local trend and the regional one; comparing these breakout rotations with the spikes or changing trend of logs we have identified possible fractures or faults at different depths. We have correlated

  1. CO2 Fluxes Monitoring at the Level of Field Agroecosystem in Moscow Region of Russia

    NASA Astrophysics Data System (ADS)

    Meshalkina, Joulia; Mazirov, Ilya; Samardzic, Miljan; Yaroslavtsev, Alexis; Valentini, Riccardo; Vasenev, Ivan

    2014-05-01

    The Central Russia is still one of the less GHG-investigated European areas especially in case of agroecosystem-level carbon dioxide fluxes monitoring by eddy covariance method. The eddy covariance technique is a statistical method to measure and calculate vertical turbulent fluxes within atmospheric boundary layers. The major assumption of the metod is that measurements at a point can represent an entire upwind area. Eddy covariance researches, which could be considered as repeated for the same area, are very rare. The research has been carried out on the Precision Farming Experimental Field of the Russian Timiryazev State Agricultural University (Moscow, Russia) in 2013 under the support of RF Government grant No. 11.G34.31.0079. Arable derno-podzoluvisls have around 1 The results have shown high daily and seasonal dynamic of agroecosystem CO2 emission. Sowing activates soil microbiological activity and the average soil CO2 emission and adsorption are rising at the same time. CO2 streams are intensified after crop emerging from values of 3 to 7 μmol/s-m2 for emission, and from values of 5 to 20 μmol/s-m2 for adsorption. Stabilization of the flow has come at achieving plants height of 10-12 cm. The vegetation period is characterized by high average soil CO2 emission and adsorption at the same time, but the adsorption is significantly higher. The resulted CO2 absorption during the day is approximately 2-5 times higher than emissions at night. For example, in mid-June, the absorption value was about 0.45 mol/m2 during the day-time, and the emission value was about 0.1 mol/m2 at night. After harvesting CO2 emission is becoming essentially higher than adsorption. Autumn and winter data are fluctuate around zero, but for some periods a small predominance of CO2 emissions over the absorption may be observed. The daily dynamics of CO2 emissions depends on the air temperature with the correlation coefficient changes between 0.4 and 0.8. Crop stage, agrotechnological

  2. [Characteristics of spatial variation of soil nutrients in sloping field in a gorge karst region, southwest China].

    PubMed

    Fan, Fu-Jing; Song, Tong-Qing; Huang, Guo-Qin; Zeng, Fu-Ping; Peng, Wan-Xia; Du, Hu; Lu, Shi-Yang; Shi, Wei-Wei; Tan, Qiu-Jin

    2014-01-01

    Based on a grid (20 m x 20 m) sampling, spatial heterogeneity and pattern of soil nutrients in sloping field in the gorge karst region, southwestern China, were explored by using classical statistics and geostatistics methods. The results showed that soil nutrient contents in slope field in the canyon karst region were more abundant, where pH value had a weak variation and the soil organic matter (SOM) had a moderate degree of variation. All the soil nutrients had moderate or strong variation with an order of available phosphorus (AP) > total potassium (TK) > SOM > alkaline nitrogen (AN) > total nitrogen (TN) > total phosphorus (TP) > available potassium (AK). All of the soil nutrients had a good spatial autocorrelation and the autocorrelation function performed in the same law of developing from positive to negative direction with the inflection point ranged from 80 to 100 m. In addition, the Moran's I was small for TK and AP while large for other nutrients. Characteristics of spatial variation differed among soil nutrients. Exponential model fitted best for TK and AP, in which the ratio of nugget to sill (C0/(C0 + C)) and the range (A) were small and the fractal dimension (D) was high, showed a strong spatial correlation. Spherical model fitted best for other soil nutrients, with C0/(C0 + C) , the range (A) and D showing a moderate autocorrelation. Kriging analysis clearly indicated that pH, SOM, TN, TP and AN were distributed in a concave pattern, while AP and AK had fragmented patch distribution. Therefore, vegetation, topography, human disturbance and strong heterogeneity of microhabitats are main factors leading to the differences in patterns of soil nutrients on the sloping land in the gorge karst region.

  3. Space Technology 5 (ST-5) Observations of the Imbalance of Region 1 and 2 Field-Aligned Currents

    NASA Technical Reports Server (NTRS)

    Le, Guan

    2010-01-01

    Space Technology 5 (ST-5) is a three micro-satellite constellation deployed into a 300 x 4500 km, dawn-dusk, sun-synchronous polar orbit from March 22 to June 21, 2006, for technology validations. In this study, we use the in-situ magnetic field observations from Space Technology 5 mission to quantify the imbalance of Region 1 (R1) and Region 2 (R2) currents. During the three-month duration of the ST5 mission, geomagnetic conditions range from quiet to moderately active. We find that the R1 current intensity is consistently stronger than the R2 current intensity both for the dawnside and the duskside large-scale field-aligned current system. The net currents flowing into (out of) the ionosphere in the dawnside (duskside) are in the order of 5% of the total RI currents. We also find that the net currents flowing into or out of the ionosphere are controlled by the solar wind-magnetosphere interaction in the same way as the field-aligned currents themselves are. Since the net currents due to the imbalance of the R1 and R2 currents require that their closure currents flow across the polar cap from dawn to dusk as Pedersen currents, our results indicate that the total amount of the cross-polar cap Pedersen currents is in the order of approx. 0.1 MA. This study, although with a very limited dataset, is one of the first attempts to quantify the cross-polar cap Pedersen currents. Given the importance of the Joule heating due to Pedersen currents to the high-latitude ionospheric electrodynamics, quantifying the cross-polar cap Pedersen currents and associated Joule heating is needed for developing models of the magnetosphere-ionosphere coupling.

  4. Integral field spectroscopy of massive young stellar objects in the N113 H II region in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Ward, J. L.; Oliveira, J. M.; van Loon, J. Th.; Sewiło, M.

    2016-01-01

    The Spitzer Surveying the Agents of Galaxy Evolution (SAGE) survey has allowed the identification and analysis of significant samples of Young Stellar Object (YSO) candidates in the Large Magellanic Cloud (LMC). However, the angular resolution of Spitzer is relatively poor meaning that at the distance of the LMC, it is likely that many of the Spitzer YSO candidates in fact contain multiple components. We present high-resolution K-band integral field spectroscopic observations of the three most prominent massive YSO candidates in the N113 H II region using Very Large Telescope/Spectrograph for INtegral Field Observations in the Near Infrared (VLT/SINFONI). We have identified six K-band continuum sources within the three Spitzer sources and we have mapped the morphology and velocity fields of extended line emission around these sources. Br γ, He I and H2 emission is found at the position of all six K-band sources; we discuss whether the emission is associated with the continuum sources or whether it is ambient emission. H2 emission appears to be mostly ambient emission and no evidence of CO emission arising in the discs of YSOs has been found. We have mapped the centroid velocities of extended Br γ emission and He I emission and found evidence of two expanding compact H II regions. One source shows compact and strong H2 emission suggestive of a molecular outflow. The diversity of spectroscopic properties observed is interpreted in the context of a range of evolutionary stages associated with massive star formation.

  5. The VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx): Goals, platforms, and field operations

    SciTech Connect

    Wood, R.; Springston, S.; Mechoso, C. R.; Bretherton, C. S.; A.Weller, R.; Huebert, B.; Straneo, F.; Albrecht, B. A.; Coe, H.; Allen, G.; Vaughan, G.; Daum, P.; Fairall, C.; Chand, D.; Klenner, L. G.; Garreaud, R.; Grados, C.; Covert, D. S.; Bates, T. S.; Krejci, R.; Russell, L. M.; Szoeke, S. d.; Brewer, A.; Yuter, S. E.; Chaigneau, A.; Toniazzo, T.; Minnis, P.; Palikonda, R.; Abel, S. J.; Brown, W. O. J.; Williams, S.; Fochesatto, J.; Brioude, J.; Bower, K. N

    2011-01-21

    The VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx) was an international field program designed to make observations of poorly understood but critical components of the coupled climate system of the southeast Pacific. This region is characterized by strong coastal upwelling, the coolest SSTs in the tropical belt, and is home to the largest subtropical stratocumulus deck on Earth. The field intensive phase of VOCALS-REx took place during October and November 2008 and constitutes a critical part of a broader CLIVAR program (VOCALS) designed to develop and promote scientific activities leading to improved understanding, model simulations, and predictions of the southeastern Pacific (SEP) coupled ocean-atmosphere-land system, on diurnal to interannual timescales. The other major components of VOCALS are a modeling program with a model hierarchy ranging from the local to global scales, and a suite of extended observations from regular research cruises, instrumented moorings, and satellites. The two central themes of VOCALS-REx focus upon (a) links between aerosols, clouds and precipitation and their impacts on marine stratocumulus radiative properties, and (b) physical and chemical couplings between the upper ocean and the lower atmosphere, including the role that mesoscale ocean eddies play. A set of hypotheses designed to be tested with the combined field, monitoring and modeling work in VOCALS is presented here. A further goal of VOCALS-REx is to provide datasets for the evaluation and improvement of large-scale numerical models. VOCALS-REx involved five research aircraft, two ships and two surface sites in northern Chile. We describe the instrument payloads and key mission strategies for these platforms and give a summary of the missions conducted.

  6. Far-field model of the regional influence of affluent plumes from Ocean Thermal Energy Conversion (OTEC) plants

    NASA Astrophysics Data System (ADS)

    Wang, D. P.

    1985-07-01

    Ocean thermal energy conversion (OTEC) plants discharge large volumes of cold water into the upper ocean. A three-dimensional, limited-area model was developed to investigate the regional influence of the far-field effluent plume created by the negatively buoyant discharge. The model was applied to discharges from a 40-MW sub e OTEC plant into coastal waters characterized by various ambient ocean conditions. A typical ambient temperature structure and nutrient distribution, as well as the behavior of the effluent plume itself, were strongly modified by the discharge-induced circulation. Although temperature perturbations in the plume were small, upward entrainment of nutrients from below the thermocline was significant. The regional influence of discharges from an 80-MW sub e OTEC plant, the interactions between the discharges from two adjacent 40-MW sub e OTEC plants, and the effects of coastal boundary and bottom discharge were examined with respect to the regional influence of a 40-MW sub e OTEC plant located in deep water off a coast (base case).

  7. Far-field model of the regional influence of effluent plumes from ocean thermal energy conversion (OTEC) plants

    SciTech Connect

    Wang, D.P.

    1985-07-01

    Ocean thermal energy conversion (OTEC) plants discharge large volumes of cold water into the upper ocean. A three-dimensional, limited-area model was developed to investigate the regional influence of the far-field effluent plume created by the negatively buoyant discharge. The model was applied to discharges from a 40-MW/sub e/ OTEC plant into coastal waters characterized by various ambient ocean conditions. A typical ambient temperature structure and nutrient distribution, as well as the behavior of the effluent plume itself, were strongly modified by the discharge-induced circulation. Although temperature perturbations in the plume were small, upward entrainment of nutrients from below the thermocline was significant. The regional influence of discharges from an 80-MW/sub e/ OTEC plant, the interactions between the discharges from two adjacent 40-MW/sub e/ OTEC plants, and the effects of coastal boundary and bottom discharge were examined with respect to the regional influence of a 40-MW/sub e/ OTEC plant located in deep water off a coast (base case).

  8. A DEEP CHANDRA OBSERVATION OF THE GIANT H II REGION N11. I. X-RAY SOURCES IN THE FIELD

    SciTech Connect

    Nazé, Yaël; Wang, Q. Daniel; Chu, You-Hua; Gruendl, Robert; Oskinova, Lida

    2014-08-01

    A very sensitive X-ray investigation of the giant H II region N11 in the Large Megallanic Cloud was performed using the Chandra X-ray Observatory. The 300 ks observation reveals X-ray sources with luminosities down to 10{sup 32} erg s{sup –1}, increasing the number of known point sources in the field by more than a factor of five. Among these detections are 13 massive stars (3 compact groups of massive stars, 9 O stars, and one early B star) with log (L {sub X}/L {sub BOL}) ∼–6.5 to –7, which may suggest that they are highly magnetic or colliding-wind systems. On the other hand, the stacked signal for regions corresponding to undetected O stars yields log (L {sub X}/L {sub BOL}) ∼–7.3, i.e., an emission level comparable to similar Galactic stars despite the lower metallicity. Other point sources coincide with 11 foreground stars, 6 late-B/A stars in N11, and many background objects. This observation also uncovers the extent and detailed spatial properties of the soft, diffuse emission regions, but the presence of some hotter plasma in their spectra suggests contamination by the unresolved stellar population.

  9. IRX-β Relation of Star-forming Regions in NGC 628 Based on Integral Field Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ye, Chengyun; Zou, Hu; Lin, Lin; Lian, Jianhui; Hu, Ning; Kong, Xu

    2016-08-01

    It has been found that the infrared-to-ultraviolet luminosity ratio (IRX) and ultraviolet spectral slope (β) have a tight correlation in starburst galaxies, while in normal galaxies the relation is deviated and has a much larger scatter. Star formation regions are much simpler in both morphology and physical properties than galaxies, so their photometric and spectroscopic properties are more easily and accurately determined. We have used the integral field spectroscopy and multiband photometric images to study the IRX–β relation of H ii regions in a nearby galaxy, NGC 628. There are obvious correlations between the Dn (4000), stellar population age, star formation rate, especially Hα equivalent width EW(Hα), and deviation distance d p from the starburst IRX–β relation. However, there is little correlation between the Balmer decrement, metallicity, and d p. It is much more complicated than expected, so that we cannot introduce a single second parameter to describe the scatter and deviation of the H ii region IRX–β relation.

  10. Utility of thermal image sharpening for monitoring field-scale evapotranspiration over rainfed and irrigated agricultural regions

    NASA Astrophysics Data System (ADS)

    Agam, Nurit; Kustas, William P.; Anderson, Martha C.; Li, Fuqin; Colaizzi, Paul D.

    2008-01-01

    The utility of a thermal image sharpening algorithm (TsHARP) in providing fine resolution land surface temperature data to a Two-Source-Model for mapping evapotranspiration (ET) was examined over two agricultural regions in the U.S. One site is in a rainfed corn and soybean production region in central Iowa. The other lies within the Texas High Plains, an irrigated agricultural area. It is concluded that in the absence of fine (sub-field scale) resolution thermal data, TsHARP provides an important tool for monitoring ET over rainfed agricultural areas. In contrast, over irrigated regions, TsHARP applied to kilometer-resolution thermal imagery is unable to provide accurate fine resolution land surface temperature due to significant sub-pixel moisture variations that are not captured in the sharpening procedure. Consequently, reliable estimation of ET and crop stress requires thermal imagery acquired at high spatial resolution, resolving the dominant length-scales of moisture variability present within the landscape.

  11. IRX-β Relation of Star-forming Regions in NGC 628 Based on Integral Field Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ye, Chengyun; Zou, Hu; Lin, Lin; Lian, Jianhui; Hu, Ning; Kong, Xu

    2016-08-01

    It has been found that the infrared-to-ultraviolet luminosity ratio (IRX) and ultraviolet spectral slope (β) have a tight correlation in starburst galaxies, while in normal galaxies the relation is deviated and has a much larger scatter. Star formation regions are much simpler in both morphology and physical properties than galaxies, so their photometric and spectroscopic properties are more easily and accurately determined. We have used the integral field spectroscopy and multiband photometric images to study the IRX-β relation of H ii regions in a nearby galaxy, NGC 628. There are obvious correlations between the Dn (4000), stellar population age, star formation rate, especially Hα equivalent width EW(Hα), and deviation distance d p from the starburst IRX-β relation. However, there is little correlation between the Balmer decrement, metallicity, and d p. It is much more complicated than expected, so that we cannot introduce a single second parameter to describe the scatter and deviation of the H ii region IRX-β relation.

  12. Monitoring soil erosion in terraced catchments in Mediterranean regions: a field experiment in Cyprus

    NASA Astrophysics Data System (ADS)

    Camera, Corrado; Djuma, Hakan; Zoumides, Christos; Eliades, Marinos; Bruggeman, Adriana; Abate, Dante; Faka, Marina; Hermon, Sorin

    2016-04-01

    Terraces retained by dry-stone walls are very common features in mountainous Mediterranean environments. These structures provide accessible agricultural land on steep slopes, favoring water infiltration and reducing water runoff and soil erosion. However, during the last decades, an increasing trend of agricultural land abandonment has resulted in a lack of maintenance of the terrace walls and the onset of a general process of land degradation. The objective of this study is the quantification of soil erosion in a small terraced catchment (10,000 m2), located on the north-eastern slope of the Troodos Mountains (Cyprus), at an elevation of 1,300 m a.s.l. The catchment is cultivated with vineyards and it is representative of the main agricultural land use in the Troodos region. Soil erosion is measured by sediment traps and laser scans are made to assess changes in terrace geometry. In addition, a weather station measuring rainfall, temperature and relative humidity has been installed in the catchment, along with 18 soil moisture sensors, to relate soil erosion processes with climate and (sub)surface hydrology. A total of 10 sediment traps, five pairs, have been installed in the study site, catching five well-maintained sections of a dry-stone wall and five degraded (collapsed) sections. Each trap is 1 m wide. In detail, two terraces, 11 and 14 m long, located at the same elevation and separated by a strip of natural vegetation, are monitored with four and six traps, respectively. To get a complete picture of the erosion processes occurring on the selected area, the trap pairs collect sediment from both the collapsed and the well maintained wall sections of the two terraces. In addition, terrace area of two traps is delineated by metal borders (1x4 m2) to relate erosion rates to a known drainage area. The sediment traps are emptied after all rainfall events. At the beginning and end of the rainy season, a laser scanning survey of a terrace located uphill of the ones

  13. Extreme regimes of atmospheric circulation and their role in the formation of temperature and precipitation fields in the Arctic region

    NASA Astrophysics Data System (ADS)

    Irina, Kulikova; Ekaterina, Kruglova; Dmitry, Kiktev; Vladimir, Tischenco; Valentina, Khan

    2016-04-01

    In the present study, the extreme regimes of atmospheric circulation in the Northern Hemisphere as well as their role in the formation of monthly and seasonal anomalies of temperature and precipitation fields over Arctic region were examined using NCEP / NCAR-2 reanalysis data. To identify extreme modes, climate indexes were quantitatively assessed. The mapping of monthly and seasonal temperature and precipitation fields for the different phases of indices using composite analysis was developed. It is allowed to identify allocated geographic areas in which the influence of modes of circulation for temperature and precipitation fields in Arctic is statistically significant. Quantitative estimations of contingency of atmospheric circulation modes in the Northern Hemisphere were analyzed. Special attention has been paid to the extreme episodes of the climate circulation indices, associated with formation of significant anomalies of air temperature and precipitation. The results of numerical experiments to reproduce the extreme events on monthly and seasonal time scale on the basis of the global semi-Lagrangian model SL-AV, developed in collaboration of Institute of Numerical Mathematics and Hydrometeorological Centre of Russia, have been discussed. For this study the support has been provided by Grant of Russian Science Foundation (№14-37-00053).

  14. Conjugate conduction-convection heat transfer model for the valve flow-field region of four-stroke piston engines

    SciTech Connect

    Blank, D.A. )

    1990-01-01

    A multidimensional method has been devised to solve the conjugate conduction-convection heat transfer process at the surface of a moving valve of finite thickness within the flow field of an operating four-stroke internal combustion (IC) engine. Heat exchange processes between the valve and the gases adjacent to these boundaries were also computed during the portions of the engine cycle when the valve was closed. Boundaries of the solution scheme were extended fixed distances into the piston and cylinder liner. The valve was simulated as having a small but measurable thickness for the purpose of heat transfer calculations and as being immeasurably thin for the purpose of other flow-field calculations. The effects of fluid entrainment caused by valve motion were also considered and modeled. The implicit finite-difference solution of the governing equations for the primitive variables in the flow field was conducted in three regions: one fixed in space and time, one using a stretching and compressing computational mesh, and one that moved with time without stretching or compressing. This paper reports use of the model to simulate a portion of an exhaust stroke for an axisymmetric four-stroke engine piston.

  15. Regional Impacts of Woodland Expansion on Nitrogen Oxide Emissions from Texas Savannahs: Combining Field, Modeling and Remote Sensing Approaches

    NASA Technical Reports Server (NTRS)

    Asner, Gregory P. (Principal Investigator)

    2003-01-01

    Woody encroachment has contributed to documented changes world-wide and locally in the southwestern U.S. Specifically, in North Texas rangelands encroaching mesquite (Prosopis glandulosa var. glandulosa) a known N-fixing species has caused changes in aboveground biomass. While measurements of aboveground plant production are relatively common, measures of soil N availability are scarce and vary widely. N trace gas emissions (nitric and nitrous oxide) flom soils reflect patterns in current N cycling rates and availability as they are stimulated by inputs of organic and inorganic N. Quantification of N oxide emissions from savanna soils may depend upon the spatial distribution of woody plant canopies, and specifically upon the changes in N availability and cycling and subsequent N trace gas production as influenced by the shift from herbaceous to woody vegetation type. The main goal of this research was to determine whether remotely sensible parameters of vegetation structure and soil type could be used to quantify biogeochemical changes in N at local, landscape and regional scales. To accomplish this goal, field-based measurements of N trace gases were carried out between 2000-2001, encompassing the acquisition of imaging spectrometer data from the NASA Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) on September 29, 2001. Both biotic (vegetation type and soil organic N) and abiotic (soil type, soil pH, temperature, soil moisture, and soil inorganic N) controls were analyzed for their contributions to observed spatial and temporal variation in soil N gas fluxes. These plot level studies were used to develop relationships between spatially extensive, field-based measurements of N oxide fluxes and remotely sensible aboveground vegetation and soil properties, and to evaluate the short-term controls over N oxide emissions through intensive field wetting experiments. The relationship between N oxide emissions, remotely-sensed parameters (vegetation cover, and

  16. Calculation of population doses with RADTRAN for route segments that have an unpopulated near-field region

    SciTech Connect

    Kanipe, F.L.; Neuhauser, S.; Sprung, J.L.

    1998-03-01

    The RADTRAN code (Neuhauser and Kanipe, 1994) models the radiological consequences of the transportation of radioactive materials, both the exposures that will occur if the transport occurs without incident, and the exposures that may occur should the transport vehicle be involved in an accident while en route. Because accidents might occur at any point along a transportation route, RADTRAN divides the route into segments (links) and uses a uniform population density and constant meteorological conditions (wind speed and atmospheric stability) to represent the population and weather characteristics of each route segment. A way to perform RADTRAN calculations, that allows an unpopulated near-field region along a transportation link to be approximately modeled, is described, validated, and then illustratively applied to a coastal sailing route.

  17. In-field results of SNCR/SCR hybrid on a group 1 boiler in the ozone transport region

    SciTech Connect

    Boyle, J.M.; Urbas, J.

    1998-07-01

    Electric utilities within the Ozone Transport Region must prepare for seasonal and potentially piecemeal NO{sub x} reductions to meet Title 1 requirements. In order to achieve additional NO{sub x} reductions beyond the existing SNCR System in a manner, which allows maximum flexibility at minimum cost. GPU GENCO, in cooperation with the DOE, EPRI, PETC, and PERC, has chosen to field demonstrate a SNCR/SCR hybrid system. Commercially known as NO{sub x}OUT CASCADE, the system employs a urea based SNCR system to produce a managed level of ammonia slip, which in turn charges an in duct SCR element. The system is presently scheduled for initial operation in October 1997. This paper discusses the decision path associated with the project, including design and operating criteria, performance expectations, retrofit considerations, testing protocol, and current results.

  18. Altitude development of postmidnight F region field-aligned irregularities observed using Equatorial Atmosphere Radar in Indonesia

    NASA Astrophysics Data System (ADS)

    Dao, Tam; Otsuka, Yuichi; Shiokawa, Kazuo; Tulasi Ram, S.; Yamamoto, Mamoru

    2016-02-01

    For the first time, vertical rise velocities of postmidnight field-aligned irregularities (FAIs) at low geomagnetic latitudes have been examined near the June solstice by using two-dimensional maps of F region FAI echoes observed with the Equatorial Atmosphere Radar in Indonesia for 3 years starting in May 2010. We found 15 freshly growing FAIs at postmidnight between May and August during the 3 years. The rise velocities of FAIs are smaller at postmidnight than at postsunset, and most postmidnight FAIs do not exceed an altitude of 450 km. Based on the rise velocities, a lower limit for the creation time of the postmidnight FAIs is estimated to be between 21:30 LT and 02:00 LT for 14 of the 15 events, indicating that this class of FAIs is distinct from the postsunset FAIs.

  19. Enhancement of cross-field transport into the private region of detached-divertor in Large Helical Device

    SciTech Connect

    Tanaka, H.; Ohno, N.; Tsuji, Y.; Kajita, S.; Masuzaki, S.; Kobayashi, M.; Morisaki, T.; Tsuchiya, H.; Komori, A.

    2010-10-15

    The fluctuation of ion saturation currents in the attached- and detached-divertor plasmas of the Large Helical Device [Fujiwara et al., Nucl. Fusion 41, 1355 (2001)] has been measured using a Langmuir probe array embedded in a divertor plate. Analytical results indicate that these fluctuation properties differ considerably from each other; for instance, the mean value distribution expands to and positive spikes propagate toward a private region from the divertor leg in the detached-divertor. We investigated the magnetic field lines traced from probe electrodes by using the KMAG code [Nakamura et al., J. Plasma Fusion Res. 69, 41 (1993)], and it is then confirmed that the propagation direction of positive spikes corresponds to that predicted by the theory of blobby plasma transport. This phenomenon is expected to lead to the broadening of plasma particle and heat fluxes to the divertor plate.

  20. Mars Pathfinder Landing Site Workshop 2: Characteristics of the Ares Vallis Region and Field Trips in the Channeled Scabland, Washington

    NASA Technical Reports Server (NTRS)

    Golombek, M. P. (Editor); Edgett, K. S. (Editor); Rice, J. W., Jr. (Editor)

    1995-01-01

    This volume, the first of two comprising the technical report for this workshop, contains papers that have been accepted for presentation at the Mars Pathfinder Landing Site Workshop 2: Characteristics of the Ares Vallis Region, September 24-30, 1995, in Spokane, Washington. The Mars Pathfinder Project received a new start in October 1993 as one of the next missions in NASA's long-term Mars exploration program. The mission involves landing a single vehicle on the surface of Mars in 1997. The project is one of the first Discovery-class missions and is required to be a quick, low-cost mission and achieve a set of significant but focused engineering, science, and technology objectives. The primary objective is to demonstrate a low-cost cruise, entry, descent, and landing system required to place a payload on the martian surface in a safe, operational configuration. Additional objectives include the deployment and operation of various science instruments and a microrover. Pathfinder paves the way for a cost-effective implementation of future Mars lander missions. Also included in this volume is the field trip guide to the Channeled Scabland and Missoula Lake Break-out. On July 4, 1997, Mars Pathfinder is scheduled to land near 19.5 deg N, 32.8 deg W, in a portion of Ares Vallis. The landing ellipse covers a huge (100 x 200 km) area that appears to include both depositional and erosional landforms created by one or more giant, catastrophic floods. One of the best known terrestrial analogs to martian outflow channels (such as Ares Vallis) is the region known as the Channeled Scabland. The field trip guide describes some of the geomorphological features of the Channeled Scabland and adjacent Lake Missoula break-out area near Lake Pend Oreille, Idaho.

  1. Continuous day-time time series of E-region equatorial electric fields derived from ground magnetic observatory data

    NASA Astrophysics Data System (ADS)

    Alken, P.; Chulliat, A.; Maus, S.

    2012-12-01

    The day-time eastward equatorial electric field (EEF) in the ionospheric E-region plays an important role in equatorial ionospheric dynamics. It is responsible for driving the equatorial electrojet (EEJ) current system, equatorial vertical ion drifts, and the equatorial ionization anomaly (EIA). Due to its importance, there is much interest in accurately measuring and modeling the EEF. However, there are limited sources of direct EEF measurements with full temporal and spatial coverage of the equatorial ionosphere. In this work, we propose a method of estimating a continuous day-time time series of the EEF at any longitude, provided there is a pair of ground magnetic observatories in the region which can accurately track changes in the strength of the EEJ. First, we derive a climatological unit latitudinal current profile from direct overflights of the CHAMP satellite and use delta H measurements from the ground observatory pair to determine the magnitude of the current. The time series of current profiles is then inverted for the EEF by solving the governing electrodynamic equations. While this method has previously been applied and validated in the Peruvian sector, in this work we demonstrate the method using a pair of magnetometers in Africa (Samogossoni, SAM, 0.18 degrees magnetic latitude and Tamanrasset, TAM, 11.5 degrees magnetic latitude) and validate the resulting EEF values against the CINDI ion velocity meter (IVM) instrument on the C/NOFS satellite. We find a very good 80% correlation with C/NOFS IVM measurements and a root-mean-square difference of 9 m/s in vertical drift velocity. This technique can be extended to any pair of ground observatories which can capture the day-time strength of the EEJ. We plan to apply this work to more observatory pairs around the globe and distribute real-time equatorial electric field values to the community.

  2. Characterization of field and vaccine infectious bursal disease viruses from Nigeria revealing possible virulence and regional markers in the VP2 minor hydrophilic peaks.

    PubMed

    Adamu, J; Owoade, A A; Abdu, P A; Kazeem, H M; Fatihu, M Y

    2013-01-01

    Outbreaks of infectious bursal disease in vaccinated chicken flocks are frequent in Nigeria. For the control of infectious bursal disease, live vaccines based on foreign infectious bursal disease virus (IBDV) strains are used. The present study investigated the phylogenetic relationship between field and vaccine IBDV strains from northwestern Nigeria. Thirty field IBDV strains and three commercial vaccines strains were characterized through sequencing the VP2 hypervariable region. In addition, the complete genome segment A coding region for two vaccines and two field strains was sequenced. The deduced amino acid sequences (position 212 to 331) of IBDV strains from Nigeria and other regions of the world were aligned and possible regional and virulence markers were identified associated with VP2 minor hydrophilic peaks. Reversion to virulence of a vaccine strain with a Q to L mutation at position 253 was observed. Phylogenetic analyses revealed a unique cluster of northwest Nigerian field IBDV strains alone or related to imported characterized classical and very virulent IBDV vaccines. The results suggest that when IBDV strains spread from their region of origin to a different region they mutate alongside indigenous field strains but may retain their identity on the VP2 region. PMID:23919308

  3. NEAR-INFRARED PERIODIC AND OTHER VARIABLE FIELD STARS IN THE FIELD OF THE CYGNUS OB7 STAR-FORMING REGION

    SciTech Connect

    Wolk, Scott J.; Rice, Thomas S.; Aspin, Colin A.

    2013-04-15

    We present a subset of the results of a three-season, 124 night, near-infrared monitoring campaign of the dark clouds Lynds 1003 and Lynds 1004 in the Cygnus OB7 star-forming region. In this paper, we focus on the field star population. Using three seasons of UKIRT J, H, and K-band observations spanning 1.5 years, we obtained high-quality photometry on 9200 stars down to J = 17 mag, with photometric uncertainty better than 0.04 mag. After excluding known disk-bearing stars we identify 149 variables-1.6% of the sample. Of these, about 60 are strictly periodic, with periods predominantly <2 days. We conclude this group is dominated by eclipsing binaries. A few stars have long period signals of between 20 and 60 days. About 25 stars have weak modulated signals, but it was not clear if these were periodic. Some of the stars in this group may be diskless young stellar objects with relatively large variability due to cool starspots. The remaining {approx}60 stars showed variations which appear to be purely stochastic.

  4. Temperature field and heat flow of the Danish-German border region - borehole measurements and numerical modelling

    NASA Astrophysics Data System (ADS)

    Fuchs, Sven; Balling, Niels

    2016-04-01

    We present a regional 3D numerical crustal temperature model and analyze the present-day conductive thermal field of the Danish-German border region located in the North German Basin. A comprehensive analysis of borehole and well-log data on a regional scale is conducted to derive both the model parameterization with a spatial distribution of rock thermal conductivity and new heat-flow values. The latter one are used to setup the numerical lower boundary condition. Measured heat flow and borehole temperature observations (59 values from 24 wells) are used to constrain the modelling results (calibration and validation). The prediction uncertainties between observed and modelled temperatures at deep borehole sites are small (rms = 3.5°C). For eight deep boreholes, new values of terrestrial surface heat flow are derived, ranging between 72 and 84 mW/m² (mean of 80 ± 5 mW/m²). Those values are up to 20 mW/m² higher than low values reported in some previous studies for this region. Heat flow from the mantle is estimated to be between 33 and 40 mW/m² (q1-q3; mean of 37 ± 7 mW/m²). Pronounced lateral temperature variations are caused mainly by complex geological structures, including a large amount of salt structures and marked lateral variations in the thickness of basin sediments. The associated variations in rock thermal conductivity generate significant variations in model heat flow and large variations in temperature gradients. Major geothermal sandstone reservoirs (e.g. Rhaetian and Middle Buntsandstein) are mainly found with temperatures within the range of 40-80°C, which is suitable for low enthalpy heating purposes in most of the area. Higher temperatures of up to 120-160°C, of interest for the production of electricity, are observed only in the very south-eastern part of the study area (Glückstadt-Graben area). In combination with the structural geological model and information on reservoir hydraulic properties, the presented temperature model will

  5. Markov random field driven region-based active contour model (MaRACel): application to medical image segmentation.

    PubMed

    Xu, Jun; Monaco, James P; Madabhushi, Anant

    2010-01-01

    In this paper we present a Markov random field (MRF) driven region-based active contour model (MaRACel) for medical image segmentation. State-of-the-art region-based active contour (RAC) models assume that every spatial location in the image is statistically independent of the others, thereby ignoring valuable contextual information. To address this shortcoming we incorporate a MRF prior into the AC model, further generalizing Chan & Vese's (CV) and Rousson and Deriche's (RD) AC models. This incorporation requires a Markov prior that is consistent with the continuous variational framework characteristic of active contours; consequently, we introduce a continuous analogue to the discrete Potts model. To demonstrate the effectiveness of MaRACel, we compare its performance to those of the CV and RD AC models in the following scenarios: (1) the qualitative segmentation of a cancerous lesion in a breast DCE-MR image and (2) the qualitative and quantitative segmentations of prostatic acini (glands) in 200 histopathology images. Across the 200 prostate needle core biopsy histology images, MaRACel yielded an average sensitivity, specificity, and positive predictive value of 71%, 95%, 74% with respect to the segmented gland boundaries; the CV and RD models have corresponding values of 19%, 81%, 20% and 53%, 88%, 56%, respectively.

  6. Reexamining X-mode suppression and fine structure in artificial E region field-aligned plasma density irregularities

    NASA Astrophysics Data System (ADS)

    Miceli, R. J.; Hysell, D. L.; Munk, J.; McCarrick, M.; Huba, J. D.

    2013-09-01

    Artificial field-aligned plasma density irregularities (FAIs) were generated in the E region of the ionosphere above the High Frequency Active Auroral Research Program facility during campaigns in May and August of 2012 and observed using a 30 MHz coherent scatter radar imager in Homer, Alaska. The purpose of this ionospheric modification experiment was to measure the threshold pump power required to excite thermal parametric instabilities by O-mode heating and to investigate the suppression of the FAIs by simultaneous X-mode heating. We find that the threshold pump power for irregularity excitation was consistent with theoretical predictions and increased by approximately a factor of 2 when X-mode heating was present. A modified version of the Another Model of the Ionosphere (SAMI2) ionospheric model was used to simulate the threshold experiments and suggested that the increase was entirely due to enhanced D region absorption associated with X-mode heating. Additionally, a remarkable degree of fine structure possibly caused by natural gradient drift instability in the heater-modified volume was observed in experiments performed during geomagnetically active conditions.

  7. NEW YOUNG STAR CANDIDATES IN THE TAURUS-AURIGA REGION AS SELECTED FROM THE WIDE-FIELD INFRARED SURVEY EXPLORER

    SciTech Connect

    Rebull, L. M.; Padgett, D. L.; Noriega-Crespo, A. E-mail: alberto@ipac.caltech.edu E-mail: karl.r.stapelfeldt@nasa.gov

    2011-09-01

    The Taurus Molecular Cloud subtends a large solid angle on the sky, in excess of 250 deg{sup 2}. The search for legitimate Taurus members to date has been limited by sky coverage as well as the challenge of distinguishing members from field interlopers. The Wide-field Infrared Survey Explorer has recently observed the entire sky, and we take advantage of the opportunity to search for young stellar object (YSO) candidate Taurus members from a {approx}260 deg{sup 2} region designed to encompass previously identified Taurus members. We use near- and mid-infrared colors to select objects with apparent infrared excesses and incorporate other catalogs of ancillary data to present a list of rediscovered Taurus YSOs with infrared excesses (taken to be due to circumstellar disks), a list of rejected YSO candidates (largely galaxies), and a list of 94 surviving candidate new YSO-like Taurus members. There is likely to be contamination lingering in this candidate list, and follow-up spectra are warranted.

  8. Polarization signatures of relativistic magnetohydrodynamic shocks in the blazar emission region. I. Force-free helical magnetic fields

    DOE PAGES

    Zhang, Haocheng; Deng, Wei; Li, Hui; Bottcher, Markus

    2016-01-20

    The optical radiation and polarization signatures in blazars are known to be highly variable during flaring activities. It is frequently argued that shocks are the main driver of the flaring events. However, the spectral variability modelings generally lack detailed considerations of the self-consistent magnetic field evolution modeling; thus, so far the associated optical polarization signatures are poorly understood. We present the first simultaneous modeling of the optical radiation and polarization signatures based on 3D magnetohydrodynamic simulations of relativistic shocks in the blazar emission environment, with the simplest physical assumptions. By comparing the results with observations, we find that shocks inmore » a weakly magnetized environment will largely lead to significant changes in the optical polarization signatures, which are seldom seen in observations. Hence an emission region with relatively strong magnetization is preferred. In such an environment, slow shocks may produce minor flares with either erratic polarization fluctuations or considerable polarization variations, depending on the parameters; fast shocks can produce major flares with smooth polarization angle rotations. In addition, the magnetic fields in both cases are observed to actively revert to the original topology after the shocks. In addition, all these features are consistent with observations. Future observations of the radiation and polarization signatures will further constrain the flaring mechanism and the blazar emission environment.« less

  9. Transient behavior of flare-associated solar wind. II. Gas dynamics in a nonradial open field region

    SciTech Connect

    Nagai, F.

    1984-03-15

    In this paper, we have numerically investigated the transient perturbation of a fast (''high-speed'') model solar wind in a nonradial open field geometry, taking into account the thermal and dynamical coupling between the chromosphere and the corona. The transient behavior of the fast solar wind is treated between 1 and 8 solar radii, assuming that flare heating occurs in the lower corona. The results are compare with the radial case previously investigated in the first paper in this series. The unperturbed high-speed wind passes through the inner X-type critical point in the rapidly diverging region, where it shows much larger increase in velocity and steeper decrease in density and pressure as compared with the radial case. It is assumed that flare-energy input ceases before the ascending shock reaches the inner critical point, and that the total flare energy per unit area on the surface of the Sun is the same as in the radial case, in spite of the difference in open field geometries.

  10. On the applicability of the standard approaches for evaluating a neoclassical radial electric field in a tokamak edge region

    SciTech Connect

    Dorf, M. A.; Cohen, R. H.; Joseph, I.; Simakov, A. N.

    2013-08-15

    The use of the standard approaches for evaluating a neoclassical radial electric field E{sub r}, i.e., the Ampere (or gyro-Poisson) equation, requires accurate calculation of the difference between the gyroaveraged electron and ion particle fluxes (or densities). In the core of a tokamak, the nontrivial difference appears only in high-order corrections to a local Maxwellian distribution due to the intrinsic ambipolarity of particle transport. The evaluation of such high-order corrections may be inconsistent with the accuracy of the standard long wavelength gyrokinetic equation (GKE), thus imposing limitations on the applicability of the standard approaches. However, in the edge of a tokamak, charge-exchange collisions with neutrals and prompt ion orbit losses can drive non-intrinsically ambipolar particle fluxes for which a nontrivial (E{sub r}-dependent) difference between the electron and ion fluxes appears already in a low order and can be accurately predicted by the long wavelength GKE. The parameter regimes, where the radial electric field dynamics in the tokamak edge region is dominated by the non-intrinsically ambipolar processes, thus allowing for the use of the standard approaches, are discussed.

  11. On the applicability of the standard approaches for evaluating a neoclassical radial electric field in a tokamak edge region

    SciTech Connect

    Dorf, M. A.; Cohen, R. H.; Simakov, A. N.; Joseph, I.

    2013-08-27

    The use of the standard approaches for evaluating a neoclassical radial electric field Er, i.e., the Ampere (or gyro-Poisson) equation, requires accurate calculation of the difference between the gyroaveraged electron and ion particle fluxes (or densities). In the core of a tokamak, the nontrivial difference appears only in high-order corrections to a local Maxwellian distribution due to the intrinsic ambipolarity of particle transport. The evaluation of such high-order corrections may be inconsistent with the accuracy of the standard long wavelength gyrokinetic equation (GKE), thus imposing limitations on the applicability of the standard approaches. However, in the edge of a tokamak, charge-exchange collisions with neutrals and prompt ion orbit losses can drive non-intrinsically ambipolar particle fluxes for which a nontrivial (Er-dependent) difference between the electron and ion fluxes appears already in a low order and can be accurately predicted by the long wavelength GKE. As a result, the parameter regimes where the radial electric field dynamics in the tokamak edge region is dominated by the non-intrinsically ambipolar processes, thus allowing for the use of the standard approaches, are discussed.

  12. On the applicability of the standard approaches for evaluating a neoclassical radial electric field in a tokamak edge region

    DOE PAGES

    Dorf, M. A.; Cohen, R. H.; Simakov, A. N.; Joseph, I.

    2013-08-27

    The use of the standard approaches for evaluating a neoclassical radial electric field Er, i.e., the Ampere (or gyro-Poisson) equation, requires accurate calculation of the difference between the gyroaveraged electron and ion particle fluxes (or densities). In the core of a tokamak, the nontrivial difference appears only in high-order corrections to a local Maxwellian distribution due to the intrinsic ambipolarity of particle transport. The evaluation of such high-order corrections may be inconsistent with the accuracy of the standard long wavelength gyrokinetic equation (GKE), thus imposing limitations on the applicability of the standard approaches. However, in the edge of a tokamak,more » charge-exchange collisions with neutrals and prompt ion orbit losses can drive non-intrinsically ambipolar particle fluxes for which a nontrivial (Er-dependent) difference between the electron and ion fluxes appears already in a low order and can be accurately predicted by the long wavelength GKE. As a result, the parameter regimes where the radial electric field dynamics in the tokamak edge region is dominated by the non-intrinsically ambipolar processes, thus allowing for the use of the standard approaches, are discussed.« less

  13. Phosphorus losses to water from lowland rice fields under rice-wheat double cropping system in the Tai Lake region.

    PubMed

    Cao, Z H; Zhang, H C

    2004-01-01

    To assess P losses to surface water by runoff during the rice season and by drainage flow during the winter wheat season, serial field trials were conducted in different types of paddy soils in the Tai Lake Region (TLR) during 2000 and 2001. Four P application rates were set as 0 (CK), 30, 150, and 300 kg P/hm2 for flooded rice trials and 0 (CK), 20, 80, 160 kg P/hm2 for winter wheat trials respectively. Field experiments were done in two locations with a plot size of 30 m2 and four replications in a randomized complete block design. A simplified lysimeter was installed for each plot to collect all the runoff or drainage flow from each event. Total P (TP) losses to surface water during rice season by runoff flow from four treatments were 150 (CK), 220 (T30), 395 (T150), 670 (T300) g P/ hm2 in year 2000, and 298, 440, 1828, 3744 g P/hm2 in year 2001 respectively in Wuxi station, here the soil is permeable paddy soil derived from loam clay deposit. While the losses were 102, 140, 210, 270 in year 2000, and 128, 165, 359, 589 g P/hm2 in year 2001 respectively in Changshu station, here the soil is waterlogged paddy soil derived from silt loam deposit. During the winter wheat season, total P lost from the fields by drainage flow in the four treatments were 253 (CK), 382 (T20), 580 (T89), 818 (T160) g P/hm2 in year 2000--2001, and 573.3, 709.4, 1123.2, 1552.4 g P/hm2 in year 2001--2002 at the Wuxi station. While these were 395.6, 539.1, 1356.8, 1972.1 g P/hm2 in year 2000--2001, and 811.5, 1184.6, 3001.2, 5333.1 g P/hm2 in year 2001--2002 at the Changshu station. Results revealed that P fertilizer application rates significantly affected the TP concentrations and TP loads in runoff during the rice season, and by drainage flow during the winter wheat season. Both TP loads were significantly increased as the P application rate increases. The data indicate that TP losses to surface water were much higher during the winter wheat season than during the rice season in two

  14. Local and regional seismic response to injection and production at the Salton Sea geothermal field, southern California

    NASA Astrophysics Data System (ADS)

    Lajoie, L. J.; Brodsky, E. E.

    2011-12-01

    California hosts both the largest geothermal resource capacity and highest seismicity rate in the nation. With plans to increase geothermal output, and proven earthquake triggering in the vicinity of geothermal power plants worldwide, it is important to determine the local and regional effects of geothermal power production. This study focuses on relating the volume of fluid extracted from and re-injected into wells at the Salton Sea geothermal field (SSGF) in Southern California to local seismicity rate and increased probability of larger events on nearby faults such as the San Andreas and Imperial faults. Seismic data is obtained from the publicly available Advanced National Seismic System (ANSS) catalog and SSGF injection and production data from the State of California Department of Conservation. We identify triggered earthquakes in the catalog by modeling seismicity in a 15km radius around the SSGF according to an Epidemic-Type Aftershock Sequence (ETAS) method. The model seeks to fit the cumulative seismicity curve from our dataset by optimizing five seismic parameters in accordance with Gutenberg-Richter and Omori's law. The modeled curve is then removed from the dataset to isolate the non-ETAS, or production-triggered, signal. We then formulate a constitutive law to relate the seismicity rate to the driving stress (i.e. volumetric strain in the reservoir). Defining the local stressing rate provides a tool for predicting the effects that production has on regional seismicity rates. The largest spike in SSGF net production volume over the past 30 years is accompanied by the one of the largest increases in both seismicity rate and moment release within the geothermal field. This indicates a direct coupling between net fluid production volume (volume extracted minus volume re-injected) and seismicity rate and cumulative seismic moment in the field. Three dimensional plots of hypocentral earthquake locations show that seismicity is concentrated on an

  15. Refining regional SOC estimates: Accounting for erosion induced within field variability of the vertical distribution of SOC.

    NASA Astrophysics Data System (ADS)

    Meersmans, Jeroen; Quine, Tim

    2013-04-01

    Recently, soil organic carbon (SOC) is considered as a dynamic soil property largely influencing soil quality and global C-cycling. Consequently, accurate mapping of SOC at the regional or national scale becomes an important issue in order to help policymakers in developing an appropriate soil and climate change management strategy. So far, in these studies, only factors determining the spatial and temporal distribution of SOC at the landscape scale, such as soil type, land use (change), climate and agro-management, were considered. Despite the fact that a few recent studies incorporated as well the distribution of SOC with depth, resulting in an improved representation of the 3D distribution of SOC, most studies only considers topsoil and/or are characterized by simple sampling by site at rather coarse resolution. Consequently, they omit quantification of stable subsoil carbon buried in depositional areas and does not allow to clearly identify significant differences of SOC and erosion at the within field scale. Hence, the variability of SOC at smaller scales in complex terrain driven by lateral soil transport processes (such as soil erosion), is still rather understudied and is not (well) presented in existing regional SOC estimates. Nevertheless, incorporating this smaller level of spatial detail will most probably have a major influence on SOC mapping and regional SOC stock dynamics' calculations. Consequently, there exists an urgent need in conducting an appropriate soil sampling strategy considering deeper layers and enabling us to detect significant patterns at detailed spatial levels. In this study we aim to unravel the variation of SOC depth distributions along typical hillslope transects under cropland (Devon, UK) and link these to soil redistribution rates and variations in C input, i.e. below and above ground biomass productivity. The radionuclide isotope Caesium-137 (137Cs) was used as proxy for erosion. Furthermore, a soil sampling strategy was

  16. HAIC/HIWC field campaign - investigating ice microphysics in high ice water content regions of mesoscale convective systems

    NASA Astrophysics Data System (ADS)

    Leroy, Delphine; Fontaine, Emmanuel; Schwarzenboeck, Alfons; Strapp, J. Walter; Lilie, Lyle; Dezitter, Fabien; Grandin, Alice

    2015-04-01

    Despite existing research programs focusing on tropical convection, high ice water content (IWC) regions in Mesoscale Convective Systems (MCS) - potentially encountered by commercial aircraft and related to reported in-service events - remain poorly documented either because investigation of such high IWC regions was not of highest priority or because utilized instrumentation was not capable of providing accurate cloud microphysical measurements. To gather quantitative data in high IWC regions, a multi-year international HAIC/HIWC (High Altitude Ice Crystals / High Ice Water Content) field project has been designed including a first field campaign conducted out of Darwin (Australia) in 2014. The French Falcon 20 research aircraft had been equipped among others with a state-of-the-art in situ microphysics package including the IKP (isokinetic evaporator probe which provides a reference measurement of IWC and TWC), the CDP (cloud droplet spectrometer probe measuring particles in the range 2-50 µm), the 2D-S (2D-Stereo, 10-1280 µm) and PIP (precipitation imaging probe, 100-6400 µm) optical array probes. Microphysical data collection has been performed mainly at -40°C and -30°C levels, whereas little data could be sampled at -50°C and at -15C/-10°C. The study presented here focuses on ice crystal size properties, thereby analyzing in detail the 2D image data from 2D-S and PIP optical array imaging probes. 2D images recorded with 2D-S and PIP were processed in order to extract a large variety of geometrical parameters, such as maximum diameter (Dmax), 2D surface equivalent diameter (Deq), and the corresponding number particle size distribution (PSD). Using the PSD information from both probes, a composite size distribution was then built, with sizes ranging from few tens of µm to roughly 10 mm. Finally, mass-size relationships for ice crystals in tropical convection were established in terms of power laws in order to compute median mass diameters MMDmax and

  17. Hydrological and erosion processes in terraced agricultural fields: observations from a wet Mediterranean region in northern Portugal

    NASA Astrophysics Data System (ADS)

    Nunes, João Pedro; Bernard-Jannin, Léonard; Rodriguez-Blanco, María Luz; Marisa Santos, Juliana; Oliveira Alves Coelho, Celeste; Keizer, Jan Jacob

    2015-04-01

    Traditional agriculture in the mountainous humid regions of the northwestern Iberian peninsula has relied on terraces for soil retention. In the last decades, a strong afforestation (in many cases with commercial species) has led to the appearance of large forest areas coexisting with traditional agricultural landscapes. Soil erosion research in this region has therefore focused on the impact of forest management practices and associated disturbances such as wildfires. However, there has been little research on the impacts of traditional terracing practices on erosion, and therefore it has been difficult to connect forest research with the wider issue of sediment connectivity in this complex agroforestry landscape. This work tried to address this research gap by monitoring an agricultural terrace in the Caramulo mountains, northern Portugal, during two years. The field site is located in a humid Mediterranean climate region, with c. 1500 mm/y rainfall, overlaying granite bedrock; agricultural practices are a traditional rotation between winter pasture and summer (irrigated) corn cultivation. During this period, the soil properties of the terrace were characterized, and there was a continuous monitoring of rainfall, soil moisture and surface runoff at the outlet, as well as 1 or 2-weekly collections of runoff to measure sediment yield. Occasional measurements of vegetation cover and erosion features (rills) within the plot were also made. Preliminary results indicate that runoff generation occurred mostly due to saturation-excess, possibly linked with the accumulation of groundwater in the lower layers of the soil. After one of the largest events, there was a clear inflow of runoff from outside the terrace, through either the irrigation network linking all terraces or by resurfacing of groundwater. Sediment yield was linked with runoff, but sediment concentration was linked with vegetation cover and was highest during the early stages of pasture growth. However

  18. A Chandra view of non-thermal emission in the northwestern region of supernova remnant RCW 86: Particle acceleration and magnetic fields

    SciTech Connect

    Castro, Daniel; Lopez, Laura A.; Figueroa-Feliciano, Enectali; Slane, Patrick O.; Yamaguchi, Hiroya; Ramirez-Ruiz, Enrico

    2013-12-10

    The shocks of supernova remnants are believed to accelerate particles to cosmic ray (CR) energies. The amplification of the magnetic field due to CRs propagating in the shock region is expected to have an impact on both the emission from the accelerated particle population as well as the acceleration process itself. Using a 95 ks observation with the Advanced CCD Imaging Spectrometer on board the Chandra X-Ray Observatory, we map and characterize the synchrotron emitting material in the northwest region of RCW 86. We model spectra from several different regions, both filamentary and diffuse, where emission appears to be dominated by synchrotron radiation. The fine spatial resolution of Chandra allows us to obtain accurate emission profiles across three different non-thermal rims in this region. The narrow width (l ≈ 10''-30'') of these filaments constrains the minimum magnetic field strength at the post-shock region to approximately 80 μG.

  19. Improved regionalization of soil surface properties using multi-frequency remote sensing data and geo-statistics at field scale

    NASA Astrophysics Data System (ADS)

    Meyer, Swen; Marzahn, Philip; Krüger, Karsten; Duttmann, Rainer; Ludwig, Ralf

    2010-05-01

    Land Surface Models (LSM) have become indispensable tools to quantify the most important physical, chemical and biological processes to determine water and nutrient fluxes in support of land management strategies or the prediction of climate change impacts. However, the utilization of LSM requires numerous soil and vegetation parameters, which are seldom available in spatial distribution or an appropriate temporal frequency. The quality of these model input parameters, especially the spatial heterogeneity and temporal variability of soil parameters, has a strong effect on LSM simulations. Conventional measurements of soil characteristics (texture, bulk density, moisture) remain time consuming and non-cost effective and are therefore continuously reduced. Thus, the presentation focuses on the regionalization of soil physical properties such as surface texture, bulk density, soil roughness and soil moisture using microwave airborne SAR data at different frequencies and polarisations, calculated terrain attributes from a Digital Elevation Model (DEM) and geo-statistical approaches. Stochastic and deterministic approaches comprised different prediction methods, such as IDW, linear- and multiple linear regressions, Simple Kriging and Ordinary Kriging as well as hybrid approaches such as Regression Kriging. Different co- variables were integrated in the spatial prediction process using the Regression-Kriging Models A, B and C first introduced by Odeh et al. (1995). Co-variables were derived using: a.) An interferometric high resolution DEM and its quantified first and second order terrain attributes. b.) Spatially distributed dielectric properties of the soil surface derived from SAR imagery following a semi empirical approach (Oh et al. 1992) and a physically based approach (Hajnsek et al. 2003). The developed approach was validated against in-situ data from different field campaigns carried out over a test site located in the young moraine area in northern Mecklenburg

  20. Extending a field-based Sonoran desert vegetation classification to a regional scale using optical and microwave satellite imagery

    NASA Astrophysics Data System (ADS)

    Shupe, Scott Marshall

    2000-10-01

    Vegetation mapping in and regions facilitates ecological studies, land management, and provides a record to which future land changes can be compared. Accurate and representative mapping of desert vegetation requires a sound field sampling program and a methodology to transform the data collected into a representative classification system. Time and cost constraints require that a remote sensing approach be used if such a classification system is to be applied on a regional scale. However, desert vegetation may be sparse and thus difficult to sense at typical satellite resolutions, especially given the problem of soil reflectance. This study was designed to address these concerns by conducting vegetation mapping research using field and satellite data from the US Army Yuma Proving Ground (USYPG) in Southwest Arizona. Line and belt transect data from the Army's Land Condition Trend Analysis (LCTA) Program were transformed into relative cover and relative density classification schemes using cluster analysis. Ordination analysis of the same data produced two and three-dimensional graphs on which the homogeneity of each vegetation class could be examined. It was found that the use of correspondence analysis (CA), detrended correspondence analysis (DCA), and non-metric multidimensional scaling (NMS) ordination methods was superior to the use of any single ordination method for helping to clarify between-class and within-class relationships in vegetation composition. Analysis of these between-class and within-class relationships were of key importance in examining how well relative cover and relative density schemes characterize the USYPG vegetation. Using these two classification schemes as reference data, maximum likelihood and artificial neural net classifications were then performed on a coregistered dataset consisting of a summer Landsat Thematic Mapper (TM) image, one spring and one summer ERS-1 microwave image, and elevation, slope, and aspect layers

  1. A formula for human average whole-body SARwb under diffuse fields exposure in the GHz region

    NASA Astrophysics Data System (ADS)

    Bamba, A.; Joseph, W.; Vermeeren, G.; Thielens, A.; Tanghe, E.; Martens, L.

    2014-12-01

    A simple formula to determine the human average whole-body SAR (SARwb) under realistic propagation conditions is proposed in the GHz region, i.e. from 1.45 GHz to 5.8 GHz. The methodology is based on simulations of ellipsoidal human body models. Only the exposure (incident power densities) and the human mass are needed to apply the formula. Diffuse scattered illumination is addressed for the first time and the possible presence of a Line-of-Sight (LOS) component is addressed as well. As validation, the formula is applied to calculate the average whole-body SARwb in 3D heterogeneous phantoms, i.e. the virtual family (34 year-old male, 26 year-old female, 11 year-old girl, and 6 year-old boy) and the results are compared with numerical ones—using the Finite-Difference Time-Domain (FDTD) method—at 3 GHz. For the LOS exposure, the average relative error varies from 28% to 12% (resp. 14-12%) for the vertical polarization (resp. horizontal polarization), depending on the heteregeneous phantom. Regarding the diffuse illumination, relative errors of -39.40%, -11.70%, 10.70%, and 10.60% are obtained for the 6 year-old boy, 11 year-old girl, 26 year-old female, and 34 year-old male, respectively. The proposed formula estimates well (especially for adults) the SARwb induced by diffuse illumination in realistic conditions. In general, the correctness of the formula improves when the human mass increases. Keeping the uncertainties of the FDTD simulations in mind, the proposed formula might be important for the dosimetry community to assess rapidly and accurately the human absorption of electromagnetic radiation caused by diffuse fields in the GHz region. Finally, we show the applicability of the proposed formula to personal dosimetry for epidemiological research.

  2. Large field-of-view and depth-specific cortical microvascular imaging underlies regional differences in ischemic brain

    NASA Astrophysics Data System (ADS)

    Qin, Jia; Shi, Lei; Dziennis, Suzan; Wang, Ruikang K.

    2014-02-01

    Ability to non-invasively monitor and quantify of blood flow, blood vessel morphology, oxygenation and tissue morphology is important for improved diagnosis, treatment and management of various neurovascular disorders, e.g., stroke. Currently, no imaging technique is available that can satisfactorily extract these parameters from in vivo microcirculatory tissue beds, with large field of view and sufficient resolution at defined depth without any harm to the tissue. In order for more effective therapeutics, we need to determine the area of brain that is damaged but not yet dead after focal ischemia. Here we develop an integrated multi-functional imaging system, in which SDW-LSCI (synchronized dual wavelength laser speckle imaging) is used as a guiding tool for OMAG (optical microangiography) to investigate the fine detail of tissue hemodynamics, such as vessel flow, profile, and flow direction. We determine the utility of the integrated system for serial monitoring afore mentioned parameters in experimental stroke, middle cerebral artery occlusion (MCAO) in mice. For 90 min MCAO, onsite and 24 hours following reperfusion, we use SDW-LSCI to determine distinct flow and oxygenation variations for differentiation of the infarction, peri-infarct, reduced flow and contralateral regions. The blood volumes are quantifiable and distinct in afore mentioned regions. We also demonstrate the behaviors of flow and flow direction in the arterials connected to MCA play important role in the time course of MCAO. These achievements may improve our understanding of vascular involvement under pathologic and physiological conditions, and ultimately facilitate clinical diagnosis, monitoring and therapeutic interventions of neurovascular diseases, such as ischemic stroke.

  3. Laboratory and field response of the emerald ash borer (Coleoptera: Buprestidae), to selected regions of the electromagnetic spectrum.

    PubMed

    Crook, Damon J; Francese, Joseph A; Zylstra, Kelley E; Fraser, Ivich; Sawyer, Alan J; Bartels, David W; Lance, David R; Mastro, Victor C

    2009-12-01

    Retinal sensitivity of Agrilus planipennis Fairmaire (Coleoptera: Buprestidae) was examined with an aim to improve trap efficacy for the beetle. Electroretinogram (ERG) recordings from dark-adapted compound eyes of male and female were measured at different wavelengths across the spectrum ranging from 300 to 700 nm. The spectral sensitivity curves revealed peaks in the UV (340 nm), the violet/purple (420-430 nm), blue (460 nm), and green (540-560 nm) regions of the spectrum. Females were sensitive to red regions of the spectrum (640-670 nm), whereas males were not. A spectrophotometer was used to measure the wavelength and reflectance for ash foliage, purple corrugated plastic traps, as well as the elytra and abdomen of adult A. planipennis. Traps were painted using colors based on ERG and spectrophotometer measurements and compared with purple corrugated plastic traps currently used by the USDA-APHIS-PPQ-EAB National Survey. In a field assay conducted along the edges of several A. planipennis-infested ash stands, there were no significant differences in trap catch among green, red, or purple treatments. Dark blue traps caught significantly fewer A. planipennis than red, light green, or dark purple traps. In a second assay where purple and green treatments were placed in the mid canopy of ash trees (approximately 13 m in height), trap catch was significantly higher on green treatments. We hypothesize that when placed in the mid-canopy, green traps constitute a foliage-type stimulus that elicits food-seeking and/or host seeking behavior by A. planipennis.

  4. [Effects of different mulching measures on winter wheat field soil respiration in Loess Plateau dry land region].

    PubMed

    Guan, Qing; Wang, Jun; Song, Shu-Ya; Liu, Wen-Zhao

    2011-06-01

    A field experiment was conducted to study the effects of different mulching measures on the diurnal and seasonal variations of winter wheat field soil respiration in dry land region of Loess Plateau. Four treatments were installed, i. e., 300 kg x hm(-2) straw mulching (M300), 600 kg x hm(-2) straw mulching (M600), plastic film mulching (PM), and no mulching (CK). In all treatments, the soil respiration rate had a decreasing trend from autumn to winter, but increased rapidly after winter and peaked at jointing stage. Comparing with CK, treatments mulching promoted the soil respiration obviously from wintering to maturing stage, with significant differences between treatment PM and the others. The average soil respiration rate in treatments M300, and M600 in whole growth period was 1. 52 micromol CO2 x m(-2) x s(-1) and 1. 47 micromol CO2 x m(-2) x s(-1), being 10. 2% and 6.6% higher than the CK (1.38 micromol CO2 x m(-2) s(-1)) , respectively, and that in treatment PM was 3. 63 micromol CO2 x m(-2) x s(-1), 163% higher than CK. The diurnal variation of soil respiration rate in CK and in M300 and M600 presented a single peak curve and peaked at 12:00 and 14:00, respectively, but for PM treatment, the diurnal variation of soil respiration rate was similar with that in CK at jointing stage while presented a bimodal curve at maturing stage, with the peaks at 12:00 and 16:00, respectively. Soil respiration rate had an exponential correlation with soil temperature, and a parabolic correlation with soil moisture.

  5. Estudio de Salud Agrícola

    Cancer.gov

    En 1993, científicos del Instituto Nacional del Cáncer, Instituto Nacional de Ciencias Ambientales y la Agencia de Protección Ambiental de Estados Unidos iniciaron un estudio conocido como Estudio de Salud Agrícola (AHS).

  6. Towards integrating the influence of erosion on within field variability of C input, stock and stability in regional SOC estimates

    NASA Astrophysics Data System (ADS)

    Meersmans, J.; Quine, T. A.

    2013-12-01

    approach allows us to unravel the influence of lateral transport processes (erosion) on the within field vertical heterogeneity in SOC stock and stability and associated variation in C input, and hence can be considered as a first step to refine spatial-temporal mapping of SOC at regional scales.

  7. Spatial-temporal variability of the microbial respiration at the regional scale: comparison of field and laboratory approaches

    NASA Astrophysics Data System (ADS)

    Vasenev, Viacheslav; Stoorvogel, Jetse; Ananyeva, Nadezhda D.; Valentini, Riccardo

    2013-04-01

    Regional carbon assessments are increasingly important. Soil respiration is a predominant carbon efflux of terrestrial ecosystems. The total carbon efflux from soils includes autotrophic respiration of root systems and heterotrophic microbial respiration (MR). MR usually refers to 60-80% of the total efflux and thus plays a key role in regional carbon balance. Quite a few studies report high sensitivity of MR to climate conditions and land-use. Different approaches to analyze MR exist. The methods differ in the procedures to consider space and time variability. We evaluated two approaches to assess MR variability. One approach uses field measurements on a limited number of locations with chambers. The other approach samples more intensively and derives basal respiration (BR) from measurements under standard conditions in the laboratory. The chamber approach includes periodic measurements at a limited number of sites. As such, the methodology provides appropriate information on temporal dynamics. Spatial variability although, is underrepresented .. In our case chambers were mounted in forest, cropland and urban sites (n=48) located in the north of Moscow city. Roots were removed and geotextile (1 micron mesh) bags were inserted in soil to segregate MR. The flux was measured weekly by Li-6400-XT from July till September 2012. In contrast, standardized BR techniques minimize the diversity of initial conditions. This allows to increase the number of observations considerably. However, the temporal variance is avoided. BR was analyzed in mixed topsoil (0-10 cm) and subsoil (10-150 cm) samples (n=182) collected in forest, cropland and urban sites from different bioclimatic zones of Moscow region. After preincubation (T=22°C, 55% water content, 7 days) soil MR (in μg ?O2-? g-1) was measured after incubating 2g soil with 0.2 μl distilled water as the rate of ?O2 production (22° ?, 24 h) by gas chromatography. Both approaches can be used to describe MR variability in

  8. INTEGRATING FIELD-BASED SAMPLING AND LANDSCAPE DATA FOR REGIONAL SCALE ASSESSMENTS: EXAMPLES FROM THE UNITED STATES MID-ATLANTIC REGION

    EPA Science Inventory

    Spatially explicit identification of status and changes in ecological conditions over large, regional areas is key to targeting and prioritizing areas for potential further study and environmental protection and restoration. A critical limitation to this point has been our abili...

  9. Salt kinematics and regional tectonics across a Permian gas field: a case study from East Frisia, NW Germany

    NASA Astrophysics Data System (ADS)

    Vackiner, Anna Alexandra; Antrett, Philipp; Strozyk, Frank; Back, Stefan; Kukla, Peter; Stollhofen, Harald

    2013-09-01

    This study presents a reconstruction of the tectonic history of an Upper Rotliegend tight gas field in Northern Germany. Tectonism of the greater study area was influenced by multiple phases of salt movement, which produced a variety of salt-related structural features such as salt walls, salt diapirs as well as salt glaciers (namakiers). A sequential 2D retro-deformation and stratal backstripping methodology was used to differentiate mechanisms inducing salt movement and to discuss their relation to regional tectonics. The quantitative geometric restoration included sedimentary balancing, decompaction, fault-related deformation, salt movement, thermal subsidence, and isostasy to unravel the post-depositional tectonic overprint of the Rotliegend reservoir rock. The results of this study indicate that reactive salt diapirism started during an Early Triassic interval of thin-skinned extensional tectonics, followed by an active diapirism stage with an overburden salt piercement in the Late Triassic, and finally a period of intensive salt surface extrusion and the formation of salt glaciers (namakiers) in Late Triassic and Jurassic times. Since the Early Cretaceous, salt in the study area has been rising by passive diapirism.

  10. Field performance of nine soil water content sensors on a sandy loam soil in new brunswick, maritime region, Canada.

    PubMed

    Chow, Lien; Xing, Zisheng; Rees, Herb W; Meng, Fanrui; Monteith, John; Stevens, Lionel

    2009-01-01

    An in situ field test on nine commonly-used soil water sensors was carried out in a sandy loam soil located in the Potato Research Center, Fredericton, NB (Canada) using the gravimetric method as a reference. The results showed that among the tested sensors, regardless of installation depths and soil water regimes, CS615, Trase, and Troxler performed the best with the factory calibrations, with a relative root mean square error (RRMSE) of 15.78, 16.93, and 17.65%, and a r(2) of 0.75, 0.77, and 0.65, respectively. TRIME, Moisture Point (MP917), and Gopher performed slightly worse with the factory calibrations, with a RRMSE of 45.76, 26.57, and 20.41%, and a r(2) of 0.65, 0.72, and 0.78, respectively, while the Gypsum, WaterMark, and Netafim showed a frequent need for calibration in the application in this region. PMID:22291570

  11. In situ nitrogen mineralization, nitrification, and ammonia volatilization in maize field fertilized with urea in Huanghuaihai region of northern China.

    PubMed

    Zhang, Xuelin; Wang, Qun; Xu, Jun; Gilliam, Frank S; Tremblay, Nicolas; Li, Chaohai

    2015-01-01

    Nitrogen (N) fertilization potentially affects soil N mineralization and leaching, and can enhance NH3 volatilization, thus impacting crop production. A fertilizer experiment with five levels of N addition (0, 79, 147, 215 and 375 kg N ha(-1)) was performed in 2009 and 2010 in a maize field in Huanghuaihai region, China, where > 300 kg N ha(-1) has been routinely applied to soil during maize growth period of 120 days. Responses of net N mineralization, inorganic N flux (0-10 cm), NH3 volatilization, and maize yield to N fertilization were measured. During the growth period, net N mineralization and nitrification varied seasonally, with higher rates occurring in August and coinciding with the R1 stage of maize growth. Soil NO3(-)-N contributed to more than 60% of inorganic N flux during maize growth. Cumulative NH3 volatilization increased with N additions, with total NH3 volatilization during maize growth accounting for about 4% of added N. Relative to the control, mean maize yield in the fertilizer treatments increased by 17% and 20% in 2009 and 2010, respectively. However, grain yield, aboveground biomass, and plant N accumulation did not increase with added N at levels > 215 kg N ha(-1). These results suggest that the current N rate of 300 kg N ha(-1) is not only excessive, but also reduces fertilizer efficacy and may contribute to environmental problems such as global warming and eutrophication of ground water and streams. PMID:25635864

  12. Matrix attachment region elements have small and variable effects on transgene expression and stability in field-grown Populus.

    PubMed

    Li, Jingyi; Brunner, Amy M; Meilan, Richard; Strauss, Steven H

    2008-12-01

    Matrix attachment regions (MARs) are thought to buffer transgenes from the influence of surrounding chromosomal sequences, and therefore to reduce transgene silencing and variation in expression. The statistical properties of more than 400 independent transgenic events produced in Populus, with and without flanking MAR elements from the tobacco root gene RB7, were analysed. The expression of two reporter genes in two poplar clones during three phases of vegetative growth, and the association of T-DNA characteristics with expression, was examined. It was found that MARs did not show a consistent effect on transgene expression levels; they had no effect on the green fluorescent protein (GFP) reporter gene, but reduced expression in the Basta resistance (BAR) reporter gene by 23%. The presence of MARs reduced expression variability within transformant populations, apparently by reducing the number of silenced or weakly expressing events. Transgene expression was highly stable over vegetative growth cycles that spanned 3 years of growth in the glasshouse and field, but MARs showed no association with the strength of correlations in expression over the years. Nonetheless, MARs increased the correlation in expression between a p35S::GFP and prbcS::BAR transgene linked on the same vector, but the effect was small and varied between the years. The presence of MARs had no effect on the transgene copy number, but was positively associated with T-DNA truncations, as well as with the formation of direct over inverted repeats at the same chromosomal locus. PMID:19548343

  13. The protons and electrons trapped in the Jovian dipole magnetic field region and their interaction with Io

    NASA Technical Reports Server (NTRS)

    Simpson, J. A.; Hamilton, D. C.; Mckibben, R. B.; Mogro-Campero, A.; Pyle, K. R.; Tuzzolino, A. J.

    1974-01-01

    Detailed analysis of electrons equal to or greater than 3 MeV and of protons 0.5 to 1.8 MeV and equal to or greater than 35 MeV for both the inbound and the outbound passes of the Pioneer 10 spacecraft. Conclusive evidence is obtained that the trapped radiation in Jupiter's inner magnetosphere is maintained and supplied by inward diffusion from the outer regions of the trapped radiation zone. It is shown that the time required for isotropization of an anisotropic flux by pitch angle scattering inside L approximately equal to 6 is long in comparison with the time required for particles to diffuse inward from L approximately equal to 6 to L approximately equal to 3, that the high-energy protons were not injected at high energies by the Crand (cosmic ray albedo neutron decay) process but were accelerated in the magnetosphere of Jupiter, and that the main conclusions of this analysis are unaffected by use of either the D sub 1 or the D sub 2 magnetic field models. Theoretical studies of the capture of trapped electrons and protons by Io have been carried out, and it is found that the probability of capture by Io depends strongly upon the particle species and kinetic energy.

  14. In Situ Nitrogen Mineralization, Nitrification, and Ammonia Volatilization in Maize Field Fertilized with Urea in Huanghuaihai Region of Northern China

    PubMed Central

    Zhang, Xuelin; Wang, Qun; Xu, Jun; Gilliam, Frank S.; Tremblay, Nicolas; Li, Chaohai

    2015-01-01

    Nitrogen (N) fertilization potentially affects soil N mineralization and leaching, and can enhance NH3 volatilization, thus impacting crop production. A fertilizer experiment with five levels of N addition (0, 79, 147, 215 and 375 kg N ha-1) was performed in 2009 and 2010 in a maize field in Huanghuaihai region, China, where > 300 kg N ha-1 has been routinely applied to soil during maize growth period of 120 days. Responses of net N mineralization, inorganic N flux (0–10cm), NH3 volatilization, and maize yield to N fertilization were measured. During the growth period, net N mineralization and nitrification varied seasonally, with higher rates occurring in August and coinciding with the R1 stage of maize growth. Soil NO3−-N contributed to more than 60% of inorganic N flux during maize growth. Cumulative NH3 volatilization increased with N additions, with total NH3 volatilization during maize growth accounting for about 4% of added N. Relative to the control, mean maize yield in the fertilizer treatments increased by 17% and 20% in 2009 and 2010, respectively. However, grain yield, aboveground biomass, and plant N accumulation did not increase with added N at levels > 215 kg N ha-1. These results suggest that the current N rate of 300 kg N ha-1 is not only excessive, but also reduces fertilizer efficacy and may contribute to environmental problems such as global warming and eutrophication of ground water and streams. PMID:25635864

  15. Estrus synchronization and fixed-time artificial insemination in sheep under field conditions of a semi-arid tropical region.

    PubMed

    De, Kalyan; Kumar, Davendra; Sethi, Debabrata; Gulyani, Rajiv; Naqvi, Syed Mohammed Khursheed

    2015-02-01

    A study was conducted to assess the success of estrus synchronization and fixed-time artificial insemination (FTAI) in sheep under field conditions of a semi-arid tropical region. A total of 471 ewes belonging to 17 farmers of four villages in Tonk district of Rajasthan (Jelmiya, Dhani Jaisinghpura, Tantiya and Bheepur) were synchronized for estrus during the years 2011 and 2012. Synchronization of estrus was done by AVIKESIL-S, cost-effective intra-vaginal sponges developed by the Institute and eCG protocol. The sponges were kept in situ in the vagina for 12 days and 200 IU eCG (Folligon, Intervet) was administered intramuscularly at the time of sponge withdrawal on the 12th day. Fixed-time cervical insemination was performed twice in ewes exhibiting estrus (restlessness, shaking of tail, slightly swollen vulva, moist and reddish cervical external os), 48 and 56 h after sponge removal, using liquid chilled semen of Patanwadi/Malpura rams containing 100 million sperm per dose. The estrus response recorded was 79.4 % (374/471) and lambing rate was 60.42 % (226/374). It may be concluded from the encouraging results of the present study that FTAI can be used effectively to take advantage of both the genetic improvement and economic benefit that can be realized by the use of estrus synchronization in conjunction with artificial insemination (AI).

  16. Sampling and Studying Permafrost in Alaska and on Mars: Mars Arctic Regions Science Field Experience for Secondary Teachers (MARSFEST)

    NASA Astrophysics Data System (ADS)

    Keller, J. M.; Buxner, S. R.; Douglas, T. A.; Lombardi, D. A.; Shaner, A. J.

    2006-12-01

    Both neutron and gamma ray data from the Gamma Ray Spectrometer (GRS) instrument suite aboard the 2001 Mars Odyssey spacecraft provide compelling evidence for the presence of water ice buried within the upper few tens of centimeters of Mars at high latitudes.^{1-3} In May 2008, the Phoenix Mars Lander mission will arrive at the northern high latitudes of Mars to ground-truth the presence of this water ice. The mission will use a robotic arm to deliver samples of permafrost to several instruments on the deck of the spacecraft for detailed chemical and microscopic analyses. Two primary science objectives at the landing site are to study the history of water in all its phases and to characterize soil habitability.4 As part of the Education and Public Outreach efforts for both the Phoenix and Odyssey missions, 20 secondary science teachers from across the U.S. and Canada were selected to spend a week in Summer 2006 immersed in arctic region science around Fairbanks, Alaska. The focal point of the experience involved investigations conducted at the Cold Regions Research and Engineering Laboratory (CRREL) Permafrost Tunnel.5 Teacher participants combined remote sensing and in situ observations of permafrost regions, conducted sample collection and analyses to investigate research questions generated by participants at the Permafrost Tunnel, explored comparisons between the terrestrial and Martian arctic, and completed inquiry- based classroom curriculum activities related to Mars and arctic science. A video documentary of the field experience is being produced by the NASA Mars Public Engagement program for education and public outreach purposes. The ten teacher teams involved in the workshop will now serve as educational ambassadors for the Phoenix Mars Lander mission over the next two years through to the completion of surface operations for the mission. They will be supported through monthly teleconferences updating them on mission status and continued research

  17. An Assessment of Magnetic Conditions for Strong Coronal Heating in Solar Active Regions by Comparing Observed Loops with Computed Potential Field Lines

    NASA Technical Reports Server (NTRS)

    Falconer, D. A.; Gary, G. A.; Moore, R. L.; Porter, J. G.

    1998-01-01

    We report further results on the magnetic origins of coronal heating found from combining coronal images with photospheric magnetograms. Here, for two complementary active regions, we compare the measured photospheric magnetic roots, extrapolated potential fields, and the distribution of bright coronal loops, to examine the global nonpotentiality of bright extended coronal loops and the three-dimensional structure of the magnetic field at their feet and to assess the role of these magnetic conditions in the strong coronal heating in these loops.

  18. A New Technique For Measuring The Twist Of Photospheric Active Regions Without Recourse To The Force-Free-Field Equation: Reconfirming The Hemispheric Helicity Trend

    NASA Astrophysics Data System (ADS)

    Nandy, Dibyendu; Calhoun, A.; Windschitl, J.; Canfield, R. C.; Linton, M. G.

    2007-05-01

    The twist component of magnetic helicity in solar active regions is known to be an important indicator of sub-photospheric flux tube dynamics and solar eruptive activity. Traditionally, estimates of the parameter alpha -- appearing in the force-free-field equation -- has been used to infer the twist of photospheric active regions. However, the photosphere is not force-free and this has lead to recent concerns on the validity of using the alpha parameter for determining photospheric active region twist. We have devised a new flux-tube-fitting technique for determining the twist of active regions without recourse to the force-free-field equation. This method assumes that the underlying active region flux system is cylindrically symmetric and uniformly twisted. By using this new technique, on a statistically compelling number of photospheric active region vector magnetograms, we re-confirm the hemispheric helicity rule independent of the force-free-field assumption. This research has been supported in parts by a NASA Living With a Star grant NNG05GE47G. A.C. and J.W. were supported by a NSF Research Experience for Undergraduates grant ATM-0243923 to Montana State University. M.G.L. acknowledges support from NASA and the Office of Naval Research.

  19. Channel response to tectonic forcing: field analysis of stream morphology and hydrology in the Mendocino triple junction region, northern California

    NASA Astrophysics Data System (ADS)

    Snyder, Noah P.; Whipple, Kelin X.; Tucker, Gregory E.; Merritts, Dorothy J.

    2003-07-01

    An empirical calibration of the shear stress model for bedrock incision is presented, using field and hydrologic data from a series of small, coastal drainage basins near the Mendocino triple junction in northern California. Previous work comparing basins from the high uplift zone (HUZ, uplift rates around 4 mm/year) to ones in the low uplift zone (LUZ, ˜0.5 mm/year) indicates that the HUZ channels are about twice as steep for a given drainage area. This observation suggests that incision processes are more effective in the HUZ. It motivates a detailed field study of channel morphology in the differing tectonic settings to test whether various factors that are hypothesized to influence incision rates (discharge, channel width, lithology, sediment load) change in response to uplift or otherwise differ between the HUZ and LUZ. Analysis of regional stream gaging data for mean annual discharge and individual floods yields a linear relationship between discharge and drainage area. Increased orographic precipitation in the HUZ accounts for about a twofold increase in discharge in this area, corresponding to an assumed increase in the erosional efficiency of the streams. Field measurements of channel width indicate a power-law relationship between width and drainage area with an exponent of ˜0.4 and no significant change in width between the uplift rate zones, although interpretation is hampered by a difference in land use between the zones. The HUZ channel width dataset reveals a scaling break interpreted to be the transition between colluvial- and fluvial-dominated incision processes. Assessments of lithologic resistance using a Schmidt hammer and joint surveys show that the rocks of the study area should be fairly similar in their susceptibility to erosion. The HUZ channels generally have more exposed bedrock than those in the LUZ, which is consistent with protection by sediment cover inhibiting incision in the LUZ. However, this difference is likely the result of a

  20. An efficient plane wave spectral analysis to predict the focal region fields of parabolic reflector antennas for small and wide angle scanning

    NASA Astrophysics Data System (ADS)

    Nagamune, Akio; Pathak, Prabhakar H.

    1990-11-01

    An efficient approach is described for calculating the field distribution in the focal region of an electrically large, symmetric or offset parabolic reflector antenna with an arbitrary rim contour, when the concave reflector surface is fully illuminated by an obliquely incident arbitrary electromagnetic plane wave. This solution is useful for synthesizing feed arrays in scanning multiple and contour beam reflector antennas via reciprocity. The dominant contribution to the focal-region fields is found by transforming the physical-optics integral over the reflector surface into a plane-wave spectral (PWS) integral. An important feature of the approach is that the spectrum (or the PWS integrand) is obtained in closed form containing relatively simple functions upon dividing the reflector surface into just a few sections that yield rectangular projected apertures. The PWS integral is evaluated rapidly via the fast Fourier transform (FFT) algorithm to furnish, in only a single computation, the field for every place in the focal plane (or any plane parallel to it) within the focal region for a given direction of the incident wave. The correction to the physical-optics field is relatively small in the focal region and may therefore be neglected. Numerical results based on this PWS approach are presented, and their accuracy is established by comparison with results based on other approaches.

  1. Strontium isotope constraint on the genesis of crude oils, oil-field brines and Kuroko ore deposits from the Green Tuff region of northeastern Japan

    NASA Astrophysics Data System (ADS)

    Nakano, Takanori; Kajiwara, Yoshimichi; Farrell, Clifton W.

    1989-10-01

    Crude oils from Akita to northern Niigata oil fields in the Green Tuff region of northeastern Japan have distinctly uniform 87Sr/86Sr ratios (0.7080-0.7082), while those from the southern Niigata oil field contain more radiogenic strontium (0.7095-0.7102). The regional variation in the strontium isotopic composition of crude oils is also reflected in their sulfur contents and sulfur isotopic compositions, and may be attributed to the regional heterogeneity of marine organic sediments from which the crude oils were ultimately derived. The 87Sr/86Sr ratios of most oil-field brines (0.7061-0.7084), however, are different from and vary more locally than those of the accompanying crude oils. This finding supports the view that strontium, and by inference some other dissolved solutes in the brines, may have evolved during diagenesis by reaction of a connate and/or a meteoric water with rocks in the Green Tuff region. Barites in the sulfide ore and anhydrites and gypsums in the sulfate (sekko) ore from the Fukazawa and Kosaka Kuroko deposits in the Hokuroku district are divided by the 87Sr/86Sr ratio of 0.7081 (±0.0001), which is identical to that of crude oils from nearby oil fields. This similarity in ratios lends support to the conclusion that the Kuroko base metal deposits and crude oil deposits were ultimately derived from a common organic sediment named PUMOS (Primitive Undifferentiated Metalliferous Organic Sediments).

  2. A constant-alpha force-free-field analysis of the active region AR 4711 of February, 1986

    NASA Technical Reports Server (NTRS)

    Yang, Hai-Shou; Hong, Q. F.; Ding, Y. J.

    1988-01-01

    The theory of Yang et al. (1983) is used to analyze the large active region AR 4711 of Feb. 1986. This region stored between 0.01 x 10 to the 32nd and 5.36 x 10 to the 32nd erg of extractable free magnetic energy, sufficient to supply the energies of the observed flare activities in this region. The region was an energetic quadrupolar sunspot group, occurring during solar minimum; this group was strongly twisted and produced many intense flares.

  3. Geology, geochronology, and paleogeography of the southern Sonoma volcanic field and adjacent areas, northern San Francisco Bay region, California

    USGS Publications Warehouse

    Wagner, D.L.; Saucedo, G.J.; Clahan, K.B.; Fleck, R.J.; Langenheim, V.E.; McLaughlin, R.J.; Sarna-Wojcicki, A. M.; Allen, J.R.; Deino, A.L.

    2011-01-01

    Recent geologic mapping in the northern San Francisco Bay region (California, USA) supported by radiometric dating and tephrochronologic correlations, provides insights into the framework geology, stratigraphy, tectonic evolution, and geologic history of this part of the San Andreas transform plate boundary. There are 25 new and existing radiometric dates that define three temporally distinct volcanic packages along the north margin of San Pablo Bay, i.e., the Burdell Mountain Volcanics (11.1 Ma), the Tolay Volcanics (ca. 10-8 Ma), and the Sonoma Volcanics (ca. 8-2.5 Ma). The Burdell Mountain and the Tolay Volcanics are allochthonous, having been displaced from the Quien Sabe Volcanics and the Berkeley Hills Volcanics, respectively. Two samples from a core of the Tolay Volcanics taken from the Murphy #1 well in the Petaluma oilfield yielded ages of 8.99 ?? 0.06 and 9.13 ?? 0.06 Ma, demonstrating that volcanic rocks exposed along Tolay Creek near Sears Point previously thought to be a separate unit, the Donnell Ranch volcanics, are part of the Tolay Volcanics. Other new dates reported herein show that volcanic rocks in the Meacham Hill area and extending southwest to the Burdell Mountain fault are also part of the Tolay Volcanics. In the Sonoma volcanic field, strongly bimodal volcanic sequences are intercalated with sediments. In the Mayacmas Mountains a belt of eruptive centers youngs to the north. The youngest of these volcanic centers at Sugarloaf Ridge, which lithologically, chemically, and temporally matches the Napa Valley eruptive center, was apparently displaced 30 km to the northwest by movement along the Carneros and West Napa faults. The older parts of the Sonoma Volcanics have been displaced at least 28 km along the RodgersCreek fault since ca. 7 Ma. The Petaluma Formation also youngs to the north along the Rodgers Creek-Hayward fault and the Bennett Valley fault. The Petaluma basin formed as part of the Contra Costa basin in the Late Miocene and was

  4. Comparing Simulations of Rising Flux Tubes Through the Solar Convection Zone with Observations of Solar Active Regions: Constraining the Dynamo Field Strength

    NASA Astrophysics Data System (ADS)

    Weber, M. A.; Fan, Y.; Miesch, M. S.

    2013-10-01

    We study how active-region-scale flux tubes rise buoyantly from the base of the convection zone to near the solar surface by embedding a thin flux tube model in a rotating spherical shell of solar-like turbulent convection. These toroidal flux tubes that we simulate range in magnetic field strength from 15 kG to 100 kG at initial latitudes of 1∘ to 40∘ in both hemispheres. This article expands upon Weber, Fan, and Miesch ( Astrophys. J. 741, 11, 2011) (Article 1) with the inclusion of tubes with magnetic flux of 1020 Mx and 1021 Mx, and more simulations of the previously investigated case of 1022 Mx, sampling more convective flows than the previous article, greatly improving statistics. Observed properties of active regions are compared to properties of the simulated emerging flux tubes, including: the tilt of active regions in accordance with Joy's Law as in Article 1, and in addition the scatter of tilt angles about the Joy's Law trend, the most commonly occurring tilt angle, the rotation rate of the emerging loops with respect to the surrounding plasma, and the nature of the magnetic field at the flux tube apex. We discuss how these diagnostic properties constrain the initial field strength of the active-region flux tubes at the bottom of the solar convection zone, and suggest that flux tubes of initial magnetic field strengths of ≥ 40 kG are good candidates for the progenitors of large (1021 Mx to 1022 Mx) solar active regions, which agrees with the results from Article 1 for flux tubes of 1022 Mx. With the addition of more magnetic flux values and more simulations, we find that for all magnetic field strengths, the emerging tubes show a positive Joy's Law trend, and that this trend does not show a statistically significant dependence on the magnetic flux.

  5. Accuracy analysis and application of extrapolation of force-free fields in solar active and quiet regions

    NASA Astrophysics Data System (ADS)

    Liu, Suo; Zhang, Hongqi; Su, Jiangtao; Song, Mutao

    2013-07-01

    In this paper, the availability, applicability and deviation of nonlinear force-free (NLFF) fields extrapolated by Approximate Vertical Integration (AVI), Boundary Integral Equation (BIE) and Optimization (Opt.) methods are studied based on the comparison with two semi-analytical fields (Low & Lou 1990). These NLFF extrapolations based on the observational vector magnetograms are used to study the spatial magnetic field in the quiet Sun.

  6. Liquid-metal flow in a thin conducting pipe near the end of a region of uniform magnetic field

    SciTech Connect

    Walker, J.S.

    1986-04-01

    This paper treats the liquid-metal flow in a straight circular pipe with a thin metal wall. A strong magnetic field is applied by a magnet with parallel poles that end abruptly. In the plane midway between the magnet poles: (1) far upstream, the flow is uniform, fully developed flow in a uniform magnetic field; (2) as the flow enters the non-uniform magnetic field near the end of the magnet, the flow moves away from the central part of the pipe and becomes concentrated as two jets near the points where the magnetic field is tangent to the pipe wall; (3) further downstream where the magnetic field strength is 0(c/sup 1/6/) compared to its value upstream, the flow migrates from these jets back toward a uniform flow distributed over the entire pipe cross section. Here, c is the wall conductance ratio, which is assumed to be small. The analysis also applies to flow into the magnetic field, because inertial effects and induced magnetic fields are neglected. There are circulations of electric current in planes parallel to the magnet poles. These currents produce a pressure drop in addition to that for two fully developed flows, one in a uniform magnetic field and one in no magnetic field, joined at the end of the magnet.

  7. The Archean crust in the Wawa-Chapleau-Timmins region. A field guidebook prepared for the 1983 Archean Geochemistry-Early Crustal Genesis Field Conference

    NASA Technical Reports Server (NTRS)

    Percival, J. A.; Card, K. D.; Sage, R. P.; Jensen, L. S.; Luhta, L. E.

    1983-01-01

    This guidebook describes the characteristics and interrelationships of Archean greenstone-granite and high-grade gneiss terrains of the Superior Province. A 300-km long west to east transect between Wawa and Timmins, Ontario will be used to illustrate regional-scale relationships. The major geological features of the Superior Province are described.

  8. The Major Project in the Field of Education in the Latin American and Caribbean Region. Bulletin #13.

    ERIC Educational Resources Information Center

    United Nations Educational, Scientific, and Cultural Organization, Santiago (Chile). Regional Office for Education in Latin America and the Caribbean.

    This document addresses several of the problems of educational planning in Latin America. Emilia Ferreiro, in "Alternatives to Understanding Illiteracy in the Region," suggests that illiteracy in this region is preventing the attainment of democracy. As social inequality increases, so does the percentage of illiterate adults. Revolutionary social…

  9. Statistical characteristics and occurrences of the F-region field-aligned irregularities in middle latitudes observed with Korea VHF coherent scattering radar

    NASA Astrophysics Data System (ADS)

    Yang, T.; Kwak, Y.; Kil, H.; Park, Y.

    2013-12-01

    We report for the first time of the long term characteristics and percentage occurrences of F-region field-aligned irregularities (FAIs) in the middle latitude observed with Korea VHF coherent scattering radar. This radar was built at Daejeon(36.18°N, 127.14°E, dip latitude 26.7°N) with 40.8 MHz operating frequency for continuous monitoring of the behavior of electron density irregularities in the middle latitude. From more than three-year of continuous observations since 2010, we have obtained the diurnal and seasonal characteristics of a signal-to-noise ratio and percentage occurrence variations from F-region FAIs over Korea peninsular. F-region FAIs appeared frequently at right after the sunset in both equinoxes, but pre- and post-midnight in summer season. F-region irregularities are intensified after sunset to before sunrise, and then the occurrence of F-region FAIs is rapidly decreased after sunrise. Peak height of F-region irregularities have seen around 300 km altitudes in the evening, then at higher altitude up to 400 km near local midnight and then lower altitudes around 300 km again in the early morning. And also we found that the obtained F-region echoes can be classified as E-region's continuous and quasi-periodic echoes, even though, the duration, occur time and locations are different from Kwak et al. (this issue).

  10. Megacity impacts on regional ozone formation: observations and WRF-Chem modeling for the MIRAGE-Shanghai field campaign

    NASA Astrophysics Data System (ADS)

    Tie, X.; Geng, F.; Guenther, A.; Cao, J.; Greenberg, J.; Zhang, R.; Apel, E.; Li, G.; Weinheimer, A.; Chen, J.; Cai, C.

    2013-06-01

    The MIRAGE-Shanghai experiment was designed to characterize the factors controlling regional air pollution near a Chinese megacity (Shanghai) and was conducted during September 2009. This paper provides information on the measurements conducted for this study. In order to have some deep analysis of the measurements, a regional chemical/dynamical model (version 3 of Weather Research and Forecasting Chemical model - WRF-Chemv3) is applied for this study. The model results are intensively compared with the measurements to evaluate the model capability for calculating air pollutants in the Shanghai region, especially the chemical species related to ozone formation. The results show that the model is able to calculate the general distributions (the level and the variability) of air pollutants in the Shanghai region, and the differences between the model calculation and the measurement are mostly smaller than 30%, except the calculations of HONO (nitrous acid) at PD (Pudong) and CO (carbon monoxide) at DT (Dongtan). The main scientific focus is the study of ozone chemical formation not only in the urban area, but also on a regional scale of the surrounding area of Shanghai. The results show that during the experiment period, the ozone photochemical formation was strongly under the VOC (volatile organic compound)-limited condition in the urban area of Shanghai. Moreover, the VOC-limited condition occurred not only in the city, but also in the larger regional area. There was a continuous enhancement of ozone concentrations in the downwind of the megacity of Shanghai, resulting in a significant enhancement of ozone concentrations in a very large regional area in the surrounding region of Shanghai. The sensitivity study of the model suggests that there is a threshold value for switching from VOC-limited condition to NOx (nitric oxide and nitrogen dioxide)-limited condition. The threshold value is strongly dependent on the emission ratio of NOx / VOCs. When the ratio is about

  11. Megacity impacts on regional ozone formation: observations and WRF-Chem modeling for the MIRAGE-Shanghai field campaign

    NASA Astrophysics Data System (ADS)

    Tie, X.; Geng, F.; Guenther, A.; Cao, J.; Greenberg, J.; Zhang, R.; Apel, E.; Li, G.; Weinheimer, A.; Chen, J.; Cai, C.

    2013-01-01

    The MIRAGE-Shanghai experiment was designed to characterize the factors controlling regional air pollution near a Chinese Megacity (Shanghai) and was conducted during September 2009. This paper provides an overview of the measurements conducted for this study. In addition to the measurements, a regional chemical/dynamical model (version 3 of Weather Research and Forecasting Chemical model - WRF-Chemv3) is applied for this study. The model results are intensively compared with the measurements to evaluate the model capability for calculating air pollutants in the Shanghai region, especially the chemical species related to ozone formation. The results show that the model is able to calculate the general distributions (the level and the variability) of air pollutants in the Shanghai region, and the difference between the model calculation and the measurement are mostly smaller than 30%, except the calculations of HONO at PD (Pudong) and CO at DT (Dongtan). The main scientific focus is the study of ozone chemical formation not only in the urban area, but also on a regional scale of the surrounding area of Shanghai. The results show that during the experiment period, the ozone photochemical formation was strongly under the VOC-limited condition in the urban area of Shanghai. Moreover, the VOC-limited condition occurred not only in the city, but also in the larger regional area. There was a continuous enhancement of ozone concentrations in the downwind of the megacity of Shanghai, resulting in a significant enhancement of ozone concentrations in a very large regional area in the surrounding region of Shanghai. The sensitivity study of the model suggests that there is a threshold value for switching from VOC-limited condition to NOx-limited condition. The threshold value is strongly dependent on the emission ratio of NOx/VOCs. When the ratio is about 0.4, the Shanghai region is under a strong VOC-limited condition over the regional scale. In contrast, when the ratio is

  12. Multi-point Analysis of Electrostatic Solitary Waves and Field Aligned Electrons Observed by Cluster in and Near the Auroral Current Regions

    NASA Astrophysics Data System (ADS)

    Pickett, J. S.; Forsyth, C.; Christopher, I.; Fazakerley, A. N.; Masson, A.; Marklund, G. T.; Georgescu, E.

    2011-12-01

    The four Cluster spacecraft have been transiting Earth's mid and upper auroral acceleration region (AAR) during parts of the year since late 2008. The Wideband Data (WBD) plasma wave receiver mounted on all four spacecraft obtains high time resolution, band-limited waveforms over a wide frequency range (100 Hz to 577 kHz). We present observations of Electrostatic Solitary Waves (ESWs) made by the WBD instrument simultaneously on more than one Cluster spacecraft in and near the auroral downward current region in the following two frequency bands: 100 Hz to 9.5 kHz and 700 Hz to 77 kHz. We examine and analyze these ESWs for similarities on different spacecraft, and investigate the conclusion, based on single spacecraft FAST satellite data, that fast ESWs (~1 ms duration) in this region are observed in conjunction with modulations in both upgoing and downgoing electrons, suggesting a current instability as the mechanism for generation of these ESWs. We also analyze and discuss the very short time duration ESWs (~20-30 microseconds) observed in the upward current region by the Cluster spacecraft. Such short time duration ESWs have not been previously reported in this region, although fast ESWs of ~300 microseconds duration have been reported using data from the FAST satellite. The Cluster PEACE electron data in this upward current region are examined to determine if there is a correlation of ESW detection with narrow, field-aligned downgoing beams as shown by the FAST results, suggesting ESW generation through a beam instability. The electron density and electric field data are also presented for some events in order to place the wave measurements into context with relation to the auroral density cavity and electric field configuration in and near the AAR.

  13. Polar/Tide Observations of Field Aligned O(+) Flows at 5000 km Altitude over the Auroral Regions in Comparison to UVI Auroral Images

    NASA Technical Reports Server (NTRS)

    Stevenson, Benjamin Adam; Craven, Paul D.; Chandler, Michael O.; Moore, Thomas E.; Giles, Barbara L.; Parks, G. K.; Pollock, Craig J.

    1999-01-01

    Measurements of thermal O(+) ion parameters from the Thermal Ion Dynamics Experiment (TIDE) on POLAR obtained near 5000 km altitude are compared with auroral images from the Ultra Violet Imager (UVI), for southern perigee passes. Ion parameters, including parallel velocity, density, and flux are combined with simultaneous auroral images to investigate relationships between their properties and the structure and brightness of the auroral forms. Results indicate field aligned upflowing O(+) ions over bright auroral regions and downward flows over dark regions. These and other relationships will be presented for several POLAR passes when both ion measurements and auroral images are observed under favorable conditions for comparison.

  14. USING CABLE SUSPENDED SUBMERSIBLE PUMPS TO REDUCE PRODUCTION COSTS TO INCREASE ULTIMATE RECOVERY IN THE RED MOUNTAIN FIELD OF THE SAN JUAN BASIN REGION

    SciTech Connect

    Don L. Hanosh

    2004-11-01

    This report discusses: (1) being able to resume marginal oil production operations in the Red Mountain Oil Field, located in McKinley County, New Mexico by installing a cable suspended electric submersible pumping system (HDESP); (2) determining if this system can reduce life costs making it a more cost effective production system for similar oil fields within the region, and if warranted, drill additional wells to improve the economics. In April 2003, a cooperative 50% cost share agreement between Enerdyne and the DOE was executed to investigate the feasibility of using cable suspended electric submersible pumps to reduce the life costs and increase the ultimate oil recovery of the Red Mountain Oil Field, located on the Chaco Slope of the San Juan Basin, New Mexico. The field was discovered in 1934 and has produced approximately 55,650 cubic meters (m{sup 3}), (350,000 barrels, 42 gallons) of oil. Prior to April 2003, the field was producing only a few cubic meters of oil each month; however, the reservoir characteristics suggest that the field retains ample oil to be economic. This field is unique, in that, the oil accumulations, above fresh water, occur at depths from 88-305 meters, (290 feet to 1000 feet), and serves as a relatively good test area for this experiment.

  15. An Assessment of Magnetic Conditions for Strong Coronal Heating in Solar Active Regions by Comparing Observed Loops with Computed Potential Field Lines

    NASA Technical Reports Server (NTRS)

    Gary, G. A.; Moore, R. L.; Porter, J. G.; Falconer, D. A.

    1999-01-01

    We report further results on the magnetic origins of coronal heating found from registering coronal images with photospheric vector magnetograms. For two complementary active regions, we use computed potential field lines to examine the global non-potentiality of bright extended coronal loops and the three-dimensional structure of the magnetic field at their feet, and assess the role of these magnetic conditions in the strong coronal heating in these loops. The two active regions are complementary, in that one is globally potential and the other is globally nonpotential, while each is predominantly bipolar, and each has an island of included polarity in its trailing polarity domain. We find the following: (1) The brightest main-arch loops of the globally potential active region are brighter than the brightest main- arch loops of the globally strongly nonpotential active region. (2) In each active region, only a few of the mainarch magnetic loops are strongly heated, and these are all rooted near the island. (3) The end of each main-arch bright loop apparently bifurcates above the island, so that it embraces the island and the magnetic null above the island. (4) At any one time, there are other main-arch magnetic loops that embrace the island in the same manner as do the bright loops but that are not selected for strong coronal heating. (5) There is continual microflaring in sheared core fields around the island, but the main-arch bright loops show little response to these microflares. From these observational and modeling results we draw the following conclusions: (1) The heating of the main-arch bright loops arises mainly from conditions at the island end of these loops and not from their global non-potentiality. (2) There is, at most, only a loose coupling between the coronal heating in the bright loops of the main arch and the coronal heating in the sheared core fields at their feet, although in both the heating is driven by conditions/events in and around the

  16. Field Trip Guide to Serpentinite, Silica-Carbonate Alteration, and Related Hydrothermal Activity in the Clear Lake Region, California

    SciTech Connect

    Fraser Goff; George Guthrie

    1999-06-01

    This guide is designed to familiarize scientists with the geology, structure, alteration, and fluids typical of California serpentinites for purposes of carbon dioxide sequestration (Lackner et al., 1995). Goff et al. (1997) and Goff and Lackner (1998) describe the geology and geochemistry of some of the serpentinites from this area. Mechanisms of silica-carbonate alteration were outlined by Barnes et al. (1973). Donnelly-Nolan et al. (1993) most recently reviewed relations between regional hydrothermal alteration and Quarternary volcanic activity. Stanley et al. (1998) summarized geophysical characteristics of the region.

  17. Ultra Low Frequency (ULF) European multi station magnetic field analysis before and during the 2009 earthquake at L'Aquila regarding regional geotechnical information

    NASA Astrophysics Data System (ADS)

    Prattes, G.; Schwingenschuh, K.; Eichelberger, H. U.; Magnes, W.; Boudjada, M.; Stachel, M.; Vellante, M.; Villante, U.; Wesztergom, V.; Nenovski, P.

    2011-07-01

    This work presents ground based Ultra Low Frequency (ULF) magnetic field measurements in the frequency range from 10-15 mHz from 1 January 2008 to 14 April 2009. In this time period a strong earthquake series hit the Italian Abruzzo region around L'Aquila with the main stroke of magnitude M = 6.3 on 6 April 2009. In the frame of the South European Geomagnetic Array (SEGMA), a European collaboration runs ULF fluxgate instruments providing continuously magnetic field data recorded in mid- and south Europe. The main scientific objective is the investigation of signal variations due to seismic activity and the discrimination between other natural and human influences. The SEGMA station closest to the L'Aquila earthquake epicenter is L'Aquila observatory located in the epicenter region. For the scientific analysis we extract the nighttime period from 22:00-02:00 UT and determine the power spectral density (PSD) of the horizontal (H) and vertical (Z) magnetic field components and the standardized polarization ratio (Z) over (H). To discriminate local emissions from global geomagnetic effects, data from three SEGMA stations in distances up to 630 km from the epicenter region are analyzed and further compared to the independent global geomagnetic ∑ Kp index. Apart from indirect ionospheric effects, electromagnetic noise could be originated in the lithosphere due to tectonic mechanisms in the earthquake focus. To estimate the amplitude of assumed lithospheric electromagnetic noise emissions causing anomalies in the PSD of the (Z) component, we consider magnetotelluric calculations of the electric crust conductivity in the L'Aquila region. Results found at L'Aquila observatory are interpreted with respect to the lithosphere electrical conductivity in the local observatory region, the ∑ Kp index, and further in a multi station analysis. Possible seismic related ULF anomalies occur ~2 weeks before the main stroke.

  18. Study of the 3D Coronal Magnetic Field of Active Region 11117 Around the Time of a Confined Flare Using a Data-Driven CESE-MHD Model

    NASA Astrophysics Data System (ADS)

    Jiang, C.; Feng, X.; Wu, S.; Hu, Q.

    2012-12-01

    Non-potentiality of the solar coronal magnetic field accounts for the solar explosion like flares and CMEs. We apply a data-driven CESE-MHD model to investigate the three-dimensional (3D) coronal magnetic field of NOAA active region (AR) 11117 around the time of a C-class confined flare occurred on 2010 October 25. The CESE-MHD model, based on the spacetime conservation-element and solution-element scheme, is designed to focus on the magnetic-field evolution and to consider a simplified solar atomsphere with finite plasma β. Magnetic vector-field data derived from the observations at the photoshpere is inputted directly to constrain the model. Assuming that the dynamic evolution of the coronal magnetic field can be approximated by successive equilibria, we solve a time sequence of MHD equilibria basing on a set of vector magnetograms for AR 11117 taken by the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamic Observatory (SDO) around the time of flare. The model qualitatively reproduces the basic structures of the 3D magnetic field, as supported by the visual similarity between the field lines and the coronal loops observed by the Atmospheric Imaging Assembly (AIA), which shows that the coronal field can indeed be well characterized by the MHD equilibrium in most time. The magnetic configuration changes very limited during the studied time interval of two hours. A topological analysis reveals that the small flare is correlated with a bald patch (BP, where the magnetic field is tangent to the photoshpere), suggesting that the energy release of the flare can be understood by magnetic reconnection associated with the BP separatrices. The total magnetic flux and energy keep increasing slightly in spite of the flare, while the magnetic free energy drops during the flare with an amount of 1.7 × 1030 erg, which can be interpreted as the energy budget released by the minor C-class flare.

  19. A Study of the Orientation, Propagation Speeds, and Thicknesses of Electric Field and Density Structures Observed by Cluster~II in the High-Altitude Auroral Region

    NASA Astrophysics Data System (ADS)

    Hull, A. J.; Bonnell, J. W.; Mozer, F. S.; Andre, M.; Vaivads, A.; Eriksson, A.; Pedersen, A.; Lindqvist, P.; Laakso, H.

    2001-12-01

    The high-altitude auroral region constitues an integral part of the auroral zone electrodynamic system. The high-altitude perpendicular flows and the electric fields associated with those flows are the drivers for the low-altitude flows and mid-altitude acceleration processes that occur in the auroral zone. An interesting open question that the Cluster~II mission is ideally suited to answer is what properties of the generator region and the flows and density structures observed therin are related to the proper motion of the auroral acceleration region and auroral arcs. We will present the results of a study of more than twenty crossings of the high-altitude auroral zone by the Cluster~II spacecraft. The multi-point electric field and density measurements from the Cluster~II constellation will be used to estimate the direction and speed of propagation of structures in the electric fields and plasma density (as inferred from spacecraft floating potential measurements), as well as quantify the thicknesses of those structures. The implications of our observational results on the proper motion of arc systems in the ionosphere will be discussed.

  20. Two-dimensional PIC simulations of double layers in the upward current region of the aurora with quasi-dipole magnetic fields

    NASA Astrophysics Data System (ADS)

    Nishikawa, Kenichi; Almomany, Abedalmohdi; Wells, Buren

    2016-04-01

    The results of applying two-dimensional particle-in-cell code to study the development of potential structures in the upward current region of an auroral plasma where quasi-dipole magnetic fields are applied is investigated. Within the resulting simulations a double layer (DL) forms in the auroral potential structure in the couterstreaming expansion area of cold plasma from bottom (ionospheric side) and hot plasma from top (magnetospheric side). A V-shaped potential structure is generated within the expanding plasmas with transversely non-uniform converging perpendicular electric field. Due to the inclusion of the more realistic magnetic fields in the auroal region (stronger in the ionospheric side) this V-shaped potential structure is very evident. We have observed the following dynamical evolutions: (1) recurring formation of the DL, (2) downward motion of the DL over the distance of thousands of Debye lengths, and (3) collapse of the existing double layer shortly after a new DL has formed near the top of the simulation region in the hot magmnetospheric plasma. The evolution of the DL and electron hole formation correlates well to data obtained through satellite observation.

  1. Observational evidence for the plausible linkage of Equatorial Electrojet (EEJ) electric field variations with the post sunset F-region electrodynamics

    NASA Astrophysics Data System (ADS)

    Sreeja, V.; Devasia, C. V.; Ravindran, Sudha; Pant, Tarun Kumar

    2009-11-01

    The paper is based on a detailed observational study of the Equatorial Spread F (ESF) events on geomagnetically quiet (Ap≤20) days of the solar maximum (2001), moderate (2004) and minimum (2006) years using the ionograms and magnetograms from the magnetic equatorial location of Trivandrum (8.5° N; 77° E; dip lat ~0.5° N) in India. The study brings out some interesting aspects of the daytime Equatorial Electrojet (EEJ) related electric field variations and the post sunset F-region electrodynamics governing the nature of seasonal characteristics of the ESF phenomena during these years. The observed results seem to indicate a plausible linkage of daytime EEJ related electric field variations with pre-reversal enhancement which in turn is related to the occurrence of ESF. These electric field variations are shown to be better represented through a parameter, termed as "E", in the context of possible coupling between the E- and F-regions of the ionosphere. The observed similarities in the gross features of the variations in the parameter "E" and the F-region vertical drift (Vz) point towards the potential usage of the EEJ related parameter "E" as an useful index for the assessment of Vz prior to the occurrence of ESF.

  2. The Role of Polar Cap Flux Tube Deformation and Magnetosheath Plasma Beta in the Saturation of the Region 1 Field-Aligned Current System

    NASA Astrophysics Data System (ADS)

    Wilder, F. D.; Eriksson, S.; Wiltberger, M. J.

    2014-12-01

    The phenomena of cross-polar cap potential (CPCP) and ionospheric field-aligned current (FAC) saturation remains largely unexplained. In this study, we expand upon the Alfvén Wing model of CPCP saturation by investigating its impact on the magnetosphere-ionosphere current system, particularly the Region 1 FAC input into the polar cap. Our hypothesis is that the ability of open flux tubes to deform in response to applied fluid stress from the magnetosheath is governed by the magnetosheath plasma beta, which in turn governs the Maxwell stress imposed on ionospheric plasma from the magnetosphere. This leads both the Region 1 FAC input as well as the ionospheric convection strength, as represented by the CPCP, to saturate in response to the interplanetary magnetic field (IMF) driving. We perform 32 simulations using the Lyon-Fedder-Mobarry (LFM) Magnetohydrodynamic (MHD) model with varying solar wind density and IMF strength, and demonstrate that the plasma beta does govern the deformation of polar cap and lobe field lines, as well as the non-linear response of the Region 1 FAC system to increasingly southward IMF. Further, we show that the current-voltage relationship in the ionosphere also shows a dependence on the plasma beta in the magnetosheath, with the ionosphere becoming more resistive at lower beta.

  3. Genetic relationships of grizzly bears (Ursus arctos) in the Prudhoe Bay region of Alaska: inference from microsatellite DNA, mitochondrial DNA, and field observations.

    PubMed

    Cronin, M; Shideler, R; Hechtel, J; Strobeck, C; Paetkau, D

    1999-01-01

    Grizzly bears are abundant in the region of the Prudhoe Bay oil fields in northern Alaska. We used field observations and molecular genetic data to identify parent-offspring and sibling relationships among bears in this region. We determined genotypes at 14 microsatellite DNA loci and the cytochrome b gene of mitochondrial DNA (mtDNA) for 36 bears. We identified 17 possible mother-offspring pairs and 8 possible father-offspring pairs. This includes verification of the relationships of 14 mother-offspring pairs identified from field observations. Three additional mother-offspring pairs and all eight father-offspring pairs were determined from genetic and age data. Relatedness coefficients based on numbers of shared alleles between individuals were as expected: approximately 0.50 for parent-offspring and sibling pairs and approximately 0.75 for a father-offspring pair resulting from a father-daughter mating. The level of genetic variation (mean number of alleles per locus = 6.6, mean heterozygosity = 70%) and allele frequencies in grizzly bears in the Prudhoe Bay region are similar to those in other parts of the species' range.

  4. Obliquely propagating ion acoustic waves in the auroral E region: Further evidence of irregularity production by field-aligned electron streaming

    SciTech Connect

    Villain, J.P. ); Hanuise, C. ); Greenwald, R.A.; Baker, K.B.; Ruohoniemi, J.M. )

    1990-06-01

    Common volume observations of E region high-latitude irregularities at decameter wavelengths have been obtained with the JHU/APL HF radar located at Goose Bay, Labrador, and the SHERPA HF radar located at Schefferville, Quebec. In this paper, the authors analyze an event with characteristics similar to those of a distinctive type of event described by Villain et al. (1987). The experimental configuration, which combines the azimuthal-scanning capability of the Goose Bay radar with the frequency-scanning operation of the Schefferville radar, has provided unambiguous evidence of the existence of two irregularity layers at different altitudes within the E region. The layers, which exhibit different characteristics, can be related to the action of the gradient drift and ion acoustic instability mechanisms. It is shown that the ion acoustic modes have phase velocities in the range of 400 to 550 m/s and are produced in regions of subcritical perpendicular electron Hall drift. They infer that the observed irregularities are produced through a combination of perpendicular and field-aligned relative electron-ion drifts. Features previously observed but no t satisfactorily explained by perpendicular drift excitation alone can be understood in terms of field-aligned drift excitation. They conclude that the role of electron-ion field-aligned drift may be much more important than previously realized.

  5. The proton temperature and the total hourly variance of the magnetic field components in different solar wind speed regions

    NASA Technical Reports Server (NTRS)

    Tu, Chuan-Yi; Freeman, John W.; Lopez, R. E.

    1989-01-01

    A comparison has been made between the predictions of the theory for radial variations of both Alfvenic fluctuations and solar wind proton temperatures proposed by Tu (1987, 1988) and the statistical results of hourly averaged plasma and magnetic field data observed by Helios 1 and 2 from launch through 1980 for different solar wind speed regimes. The comparison shows that for speed ranges between 500-800 km/s, the radial variation of the proton temperature between 0.3 and 1 AU can be explained by heating from the cascade energy which is determined by the radial variation of the total variance of magnetic field vector.

  6. Identification of vortical structures inside the human pharynx/larynx region from POD-reconstructed velocity fields

    NASA Astrophysics Data System (ADS)

    Shinneeb, A.-M.; Pollard, Andrew

    2012-08-01

    This paper reports an experimental investigation of the vortical structures in the pharynx/larynx region of an idealised human extra-thoracic airway obtained using particle image velocimetry (PIV). The inlet velocity was 0.13 m/s yielding a Reynolds number, based on the inlet condition, of 670. Two thousand images were acquired at each location at a framing rate of 2 Hz. The proper orthogonal decomposition method was applied to the PIV data. Only a few modes were used for POD reconstruction which recovered about 60 % of the turbulent kinetic energy. A vortex identification algorithm was employed to identify and measure properties of the structures. This step was followed by a statistical analysis of the distribution of number, size, and strength of these vortices. The results reveal the formation of a large number of structures identified along two planes in the pharynx/larynx region. This study also revealed an increased strength in the counter-clockwise structures as compared to clockwise structures in the pharynx region. As well, there is some evidence to suggest that the vortical structures, whose axes are perpendicular to the sagittal plane, change their orientation as they proceed further into the laryngeal region.

  7. Superfund Record of Decision (EPA Region 4): Naval Air Station Cecil Field, Operable Unit 6, Jacksonville, FL, September 1994

    SciTech Connect

    Not Available

    1994-09-01

    The site name is the Golf Course Pesticide Disposal Area, Site 11, Operable Unit (OU) 6. The site is located in a wooded area between the 11th fairway and the 17th green at the Naval Air Station (NAS) Cecil Field golf course, Jacksonville, Florida. The purpose of the interim remedial action is to remove buried containers of pesticides and associated contaminated soil.

  8. Field data observed during the geological excursion in the west-central region of the Sul-Riogrande Shield

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Ohara, T.

    1984-01-01

    Outcrops are studied in the Copper Project test area of the Rio Grande do Sul State of Brazil. The accuracy of LANDSAT-MSS data is checked against field data. A preliminary geological map is included on a scale of 1:500,000 that describes 820 outcrop over an area of 1,700 kilometers.

  9. The Major Project in the Field of Education in the Latin American and Caribbean Region. Bulletin 4.

    ERIC Educational Resources Information Center

    United Nations Educational, Scientific, and Cultural Organization, Santiago (Chile). Regional Office for Education in Latin America and Caribbean.

    The initiative and activities carried out by 29 countries in Latin and South America and the Caribbean in the UNESCO Major Project in the Field of Education to correct deficiencies and meet unsatisfied basic educational needs are summarized. Many summaries reflect revisions made during 1983 in National Plans of Action with respect to enhancing…

  10. Determinants of Success on the ETS Business Major Field Exam for Students in an Undergraduate Multisite Regional University Business Program

    ERIC Educational Resources Information Center

    Bagamery, Bruce D.; Lasik, John J.; Nixon, Don R.

    2005-01-01

    Extending previous studies, the authors examined a larger set of variables to identify predictors of student performance on the Educational Testing Service Major Field Exam in Business, which has been shown to be an externally valid measure of student learning outcomes. Significant predictors include gender, whether students took the SAT, and…

  11. Coronal Magnetic Structures Observing Campaign. 3: Coronal plasma and magnetic field diagnostics derived from multiwaveband active region observations

    NASA Technical Reports Server (NTRS)

    Schmelz, J. T.; Holman, G. D.; Brosius, J. W.; Willson, R. F.

    1994-01-01

    Simultaneous soft X-ray, microwave, and photospheric magnetic field observations were taken during the Coronal Magnetic Structures Observing Campaign (CoMStOC '87). The plasma electron temperature and emission measures determined from the X-ray data are used to predict the free-free emission expected at 20 and 6 cm. Comparing these predictions with the microwave observations, it is found that the predicted 20 cm brightness temperatures are higher than the observed, requiring cool absorbing material between the hot X-ray plasma and the observer. The model that is most consistent with all the observations and minimizes the required coronal fields indicates that this 20 cm emission is either free-free or a combination of free-free and fourth harmonic cyclotron emanating from the X-ray plasma with an electron temperature of approximately 3.1 x 10(exp 6) K and an emission measure of approximately 1.3 x 10(exp 29)/cm(exp 5). The observed 20 cm polarization requires a field strength of greater than or equal to 150 G. In addition, the 6 cm emission is free-free, emanating from cooler plasma with an electron temperature of approximately 1.5 x 10(exp 6) K and an emission measure of approximately 3-6 x 10(exp 29)/cm(exp 5). This model is consistent with the rather unusual combination of high 20 cm and low 6 cm polarization as well as the low extrapolated coronal fields.

  12. The Major Project in the Field of Education in the Latin American and Caribbean Region. Bulletin 10-11.

    ERIC Educational Resources Information Center

    United Nations Educational, Scientific, and Cultural Organization, Santiago (Chile). Regional Office for Education in Latin America and the Caribbean.

    The Major Project in the Field of Education stresses renewed and intensive efforts by Latin American and Caribbean Island countries to provide the resources and training necessary to meet basic education needs by the year 2000. This document examines project achievements, innovations, and problems through 1986 in the areas of rural education,…

  13. The Zeeman effect in astrophysical water masers and the observation of strong magnetic fields in regions of star formation

    NASA Technical Reports Server (NTRS)

    Nedoluha, Gerald E.; Watson, William D.

    1992-01-01

    The present study solves the transfer equations for the polarized radiation of astrophysical 22-GHz water masers in the presence of a magnetic field which causes a Zeeman splitting that is much smaller than the spectral line breadth. The emphasis is placed on the relationship between the recently detected circular polarization in this maser radiation and the strength of the magnetic field. When the observed spectral line breadth is smaller than about 0.8 km/s (FWHM), it is calculated that the uncertainty is less than a factor of about 2. The accuracy is improved significantly when the angle between the line of sight and the direction of the magnetic field does not exceed about 45 deg. Uncertainty in the strength of the magnetic field due to lack of knowledge about which hyperfine transition is the source of the 22-GHz masers is removed. The 22-GHz maser feature is found to be the result of a merger of the three strongest hyperfine components.

  14. The role of magnetic flux tube deformation and magnetosheath plasma beta in the saturation of the Region 1 field-aligned current system

    NASA Astrophysics Data System (ADS)

    Wilder, F. D.; Eriksson, S.; Wiltberger, M.

    2015-03-01

    The phenomena of cross polar cap potential (CPCP) and ionospheric field-aligned current (FAC) saturation remain largely unexplained. In the present study, we expand upon the Alfvén wing model of CPCP saturation by investigating its impact on the magnetosphere-ionosphere current system, particularly the Region 1 FAC input into the polar cap. Our hypothesis is that the ability of open flux tubes to deform in response to applied fluid stress from the magnetosheath is governed by the magnetosheath plasma beta, which in turn governs the Maxwell stress imposed on ionospheric plasma from the magnetosphere. We performed 32 MHD simulations with varying solar wind density and interplanetary magnetic field strength and show that the plasma beta does govern the deformation of open field lines, as well as the nonlinear response of the Region 1 FAC system to increasingly southward interplanetary magnetic field. Further, we show that the current-voltage relationship in the ionosphere also shows a dependence on the plasma beta in the magnetosheath, with the ionosphere becoming more resistive at lower beta.

  15. Quasi-static three-dimensional magnetic field evolution in solar active region NOAA 11166 associated with an X1.5 flare

    SciTech Connect

    Vemareddy, P.; Wiegelmann, T. E-mail: wiegelmann@mps.mpg.de

    2014-09-01

    We study the quasi-static evolution of coronal magnetic fields constructed from the non-linear force-free field (NLFFF) approximation aiming to understand the relation between the magnetic field topology and ribbon emission during an X1.5 flare in active region (AR) NOAA 11166. The flare with a quasi-elliptical and two remote ribbons occurred on 2011 March 9 at 23:13 UT over a positive flux region surrounded by negative flux at the center of the bipolar AR. Our analysis of the coronal magnetic structure with potential and NLFFF solutions unveiled the existence of a single magnetic null point associated with a fan-spine topology and is co-spatial with the hard X-ray source. The footpoints of the fan separatrix surface agree with the inner edge of the quasi-elliptical ribbon and the outer spine is linked to one of the remote ribbons. During the evolution, the slow footpoint motions stressed the field lines along the polarity inversion line and caused electric current layers in the corona around the fan separatrix surface. These current layers trigger magnetic reconnection as a consequence of dissipating currents, which are visible as cusp-shaped structures at lower heights. The reconnection process reorganized the magnetic field topology whose signatures are observed at the separatrices/quasi-separatrix layer structure in both the photosphere and the corona during the pre-to-post flare evolution. In agreement with previous numerical studies, our results suggest that the line-tied footpoint motions perturb the fan-spine system and cause null point reconnection, which eventually causes the flare emission at the footpoints of the field lines.

  16. MAGNETIC FIELDS OF AN ACTIVE REGION FILAMENT FROM FULL STOKES ANALYSIS OF Si I 1082.7 nm AND He I 1083.0 nm

    SciTech Connect

    Xu, Z.; Liu, Y.

    2012-04-20

    Vector magnetic fields of an active region filament in the photosphere and upper chromosphere are obtained from spectro-polarimetric observations recorded with the Tenerife Infrared Polarimeter (TIP II) at the German Vacuum Tower Telescope. We apply Milne-Eddington inversions on full Stokes vectors of the photospheric Si I 1082.7 nm and the upper chromospheric He I triplet at 1083.0 nm to obtain the magnetic field vector and velocity maps in two atmosphere layers. We find that (1) a complete filament was already present in H{alpha} at the beginning of the TIP II data acquisition. Only a partially formed one, composed of multiple small threads, was present in He I. (2) The AR filament comprises two sections. One shows strong magnetic field intensities, about 600-800 G in the upper chromosphere and 800-1000 G in the photosphere. The other exhibits only comparatively weak magnetic field strengths in both layers. (3) The Stokes V signal is indicative of a dip in the magnetic field strength close to the chromospheric PIL. (4) In the chromosphere, consistent upflows are found along the PIL flanked by downflows. (5) The transversal magnetic field is nearly parallel to the PIL in the photosphere and inclined by 20 Degree-Sign -30 Degree-Sign in the chromosphere. (6) The chromospheric magnetic field around the filament is found to be in normal configuration, while the photospheric field presents a concave magnetic topology. The observations are consistent with the emergence of a flux rope with a subsequent formation of a filament.

  17. A WIDE-FIELD NARROWBAND OPTICAL SURVEY OF THE BRAID NEBULA STAR FORMATION REGION IN CYGNUS OB7

    SciTech Connect

    Magakian, Tigran Yu.; Nikogossian, Elena H.; Movsessian, Tigran; Aspin, Colin; Pyo, Tae-Soo; Khanzadyan, Tigran; Smith, Michael D.; Mitchison, Sharon; Davis, Chris J.; Beck, Tracy L.; Moriarty-Schieven, Gerald H. E-mail: elena@bao.sci.am E-mail: pyo@subaru.naoj.org E-mail: smm23@kent.ac.uk E-mail: c.davis@jach.hawaii.edu E-mail: gerald.schieven@nrc-cnrc.gc.ca

    2010-03-15

    We study the population of Herbig-Haro (HH) flows and jets in an area of Cygnus OB7 designated the Braid Nebula star formation region. This complex forms part of the L 1003 dark cloud, and hosts two FU Orionis (FUor)-like objects as well as several other active young stars. To trace outflow activity and to relate both known and newly discovered flows to young star hosts we intercompare new, deep, narrowband H{alpha} and [S II] optical images taken on the Subaru 8 m Telescope on Mauna Kea, Hawaii. Our images show that there is considerable outflow and jet activity in this region suggesting the presence of an extensive young star population. We confirm that both of the FUor-like objects drive extensive HH flows and document further members of the flows in both objects. The L 1003 star formation complex is a highly kinematically active region with young stars in several different stages of evolution. We trace collimated outflows from numerous young stars although the origin of some HH objects remains elusive.

  18. Dual-illumination mode, wide-field probe imaging scheme for imaging irido-corneal angle region inside eye

    NASA Astrophysics Data System (ADS)

    Shinoj, V. K.; Murukeshan, V. M.; Hong, Jesmond; Baskaran, M.; Aung, Tin

    2015-07-01

    Noninvasive medical imaging techniques have generated great interest and high potential in the research and development of ocular imaging and follow up procedures. It is well known that angle closure glaucoma is one of the major ocular diseases/ conditions that causes blindness. The identification and treatment of this disease are related primarily to angle assessment techniques. In this paper, we illustrate a probe-based imaging approach to obtain the images of the angle region in eye. The proposed probe consists of a micro CCD camera and LED/NIR laser light sources and they are configured at the distal end to enable imaging of iridocorneal region inside eye. With this proposed dualmodal probe, imaging is performed in light (white visible LED ON) and dark (NIR laser light source alone) conditions and the angle region is noticeable in both cases. The imaging using NIR sources have major significance in anterior chamber imaging since it evades pupil constriction due to the bright light and thereby the artificial altering of anterior chamber angle. The proposed methodology and developed scheme are expected to find potential application in glaucoma disease detection and diagnosis.

  19. An integrated exploration model for Council Run field analogs: Regional geology and seismic stratigraphy of Devonian 6th Elk sandstones

    SciTech Connect

    Kelleher, G.; Johnson, R. )

    1991-08-01

    A geologic study of the Devonian Lock Haven 6th Elk formation along the structural front of Pennsylvania and Maryland suggest that present-day structures were active at the time of deposition. These structures barred deposition to the west and helped to localize sands in a northeast-southwest fairway. The 6th Elk sandstones occur in two major depositional lobes (located in Centre and Somerset counties in Pennsylvania, and Garret County, Maryland) and were deposited on a shallow-marine shelf by turbidity currents and later modified by storm-generated currents. Deposition of 6th Elk sands may also have been influenced by cross-strike discontinuities. A seismic study of the Council Run field aids in subsurface identification of the 6th Elk. A high-amplitude seismic anomaly across the Council Run field is correlated with increasing san thickness. Two dimensional modeling suggests that the seismic response is extremely sensitive to specific acquisition and processing techniques including filter and phase variability. Additional attribute analysis integrates the seismic data with the forward models. This results in a predictive method for potentially identifying 6th Elk sandstone development from seismic data. Applying the results of the seismic modeling at Council Run field to a seismic grid across the previously defined 6th Elk depositional fairway has identified many exploratory prospects in Lycoming and Bradford counties, Pennsylvania. This area coincides with the site of a third, previously documented, Upper Devonian depositional lobe.

  20. Recent crustal deformation of İzmir, Western Anatolia and surrounding regions as deduced from repeated GPS measurements and strain field

    NASA Astrophysics Data System (ADS)

    Aktuğ, Bahadır; Kılıçoğlu, Ali

    2006-07-01

    To investigate contemporary neotectonic deformation in İzmir, Western Anatolia and in its neighborhood, a relatively dense Global Positioning System (GPS) monitoring network was established in 2001. Combination of three spatially dense GPS campaigns in 2001, 2003 and 2004 with temporally dense campaigns between 1992 and 2004 resulted in a combined velocity field representing active deformation rate in the region. We computed horizontal and vertical velocity fields with respect to Earth-centered, Earth-fixed ITRF2000, to Eurasia and to Anatolia as well. The rates of principal and shear strains along with rigid-body rotation rates were derived from velocity field. Results show east-west shortening between Karaburun Peninsula and northern part of İzmir Bay together with the extension of İzmir Bay in accordance with general extension regime of Western Anatolia and Eastern Agea. East-west shortening and north-south extension of Karaburun Peninsula are closely related to right-lateral faulting and a clockwise rotation. There exists a block in the middle of the peninsula with a differential motion at a rate of 3-5 ± 1 mm/year and 5-6 ± 1 mm/year to the east and south, respectively. As is in Western Anatolia, north-south extension is dominant in almost all parts of the region despite the fact that they exhibit significantly higher rates in the middle of the peninsula. Extensional rates along Tuzla Fault lying nearly perpendicular to İzmir Bay and in its west are maximum in the region with an extension rate of 300-500 ± 80-100 nanostrain/year and confirm its active state. Extensional rates in other parts of the region are at level of 50-150 nanostrain/year as expected in the other parts of Western Anatolia.

  1. High resolution field monitoring in coastal wetlands of the U.S. Mid-Atlantic to support quantification of storm surge attenuation at the regional scale

    NASA Astrophysics Data System (ADS)

    Paquier, A. E.; Haddad, J.; Lawler, S.; Garzon Hervas, J. L.; Ferreira, C.

    2015-12-01

    Hurricane Sandy (2012) demonstrated the vulnerability of the US East Coast to extreme events, and motivated the exploration of resilient coastal defenses that incorporate both hard engineering and natural strategies such as the restoration, creation and enhancement of coastal wetlands and marshes. Past laboratory and numerical studies have indicated the potential of wetlands to attenuate storm surge, and have demonstrated the complexity of the surge hydrodynamic interactions with wetlands. Many factors control the propagation of surge in these natural systems including storm characteristics, storm-induced hydrodynamics, landscape complexity, vegetation biomechanical properties and the interactions of these different factors. While previous field studies have largely focused on the impact of vegetation characteristics on attenuation processes, few have been undertaken with holistic consideration of these factors and their interactions. To bridge this gap of in-situ field data and to support the calibration of storm surge and wave numerical models such that wetlands can be correctly parametrized on a regional scale, we are carrying out high resolution surveys of hydrodynamics (pressure, current intensity and direction), morphology (topo-bathymetry, micro-topography) and vegetation (e.g. stem density, height, vegetation frontal area) in 4 marshes along the Chesapeake Bay. These areas are representative of the ecosystems and morphodynamic functions present in this region, from the tidal Potomac marshes to the barrier-island back-bays of the Delmarva Peninsula. The field monitoring program supports the investigation of the influence of different types of vegetation on water level, swell and wind wave attenuation and morphological evolution during storm surges. This dataset is also used to calibrate and validate numerical simulations of hurricane storm surge propagation at regional and local scales and to support extreme weather coastal resilience planning in the region

  2. Statistical characteristics of nighttime mid-latitude F-region field-aligned irregularities observed by Daejeon VHF coherent scattering radar in South Korea

    NASA Astrophysics Data System (ADS)

    Yang, T. Y.; Kwak, Y. S.; Kil, H.; Lee, Y.; Lee, W. K.; Park, Y. D.

    2014-12-01

    We report statistical characteristics of mid-latitude nighttime F-region field-aligned irregularities (FAIs) based on more than three-year observations by Daejeon VHF coherent backscatter radar. This radar has built at Daejeon (36.18°N, 127.14°E, dip lat. 26.7°N) in 2009 with 40.8 MHz operating frequency for continuous monitoring of the behavior of electron density irregularities in the middle latitude. By using long-term observations from January 2010 to December 2013, we obtained the annual, diurnal and seasonal characteristics of a variety of a percentage occurrence, signal-to-noise ratio, and Doppler velocities from the nighttime F-region irregularities over Korea peninsular. From almost four-year observations, the F-region nighttime irregularities occurred most frequently during post-sunset period. These nighttime irregularities usually appeared with occupying different height levels according to local time. This height variation of F-region FAIs was correlated with hmf2 of ionosonde in Icheon, South Korea. The irregularities were least active near the winter solstice and most active near summer solstice. From the annual occurrence variations, F-region nighttime irregularities seem to have tendency with solar activity.

  3. [Effect of tillage patterns on the structure of weed communities in oat fields in the cold and arid region of North China].

    PubMed

    Zhang, Li; Zhang, Li; Wu, Dong-Xia; Zhang, Jun-Jun

    2014-06-01

    In order to clarify the effects of tillage patterns on farmland weed community structure and crop production characteristics, based on 10 years location experiment with no-tillage, subsoiling and conventional tillage in the cold and arid region of North China, and supplementary experiment of plowing after 10 years no-tillage and subsoiling, oat was planted in 2 soils under different tillage patterns, and field weed total density, dominant weed types, weed diversity index, field weed biomass and oats yield were measured. The results showed that the regional weed community was dominated by foxtail weed (Setaira viridis); the weed density under long-term no-tillage was 2.20-5.14 times of tillage at different growing stages of oat, but there were no significant differences between conditional tillage and plowing after long-term no-tillage and subsoiling. Field weed Shannon diversity indices were 0.429 and 0.531, respectively, for sandy chestnut soil and loamy meadow soil under no-tillage conditions, and field weed biomass values were 1.35 and 2.26 times of plowing treatment, while the oat biomass values were only 2807.4 kg x hm(-2) and 4053.9 kg x hm(-2), decreased by 22.3% and 46.2%, respectively. The results showed that the weed community characteristics were affected by both tillage patterns and soil types. Long-term no-tillage farmland in the cold and arid region of North China could promote the natural evolution of plant communities by keeping more perennial weeds, and the plowing pattern lowered the annual weed density, eliminated perennial weeds with shallow roots, and stimulated perennial weeds with deep roots.

  4. CHAMP, SWARM, and WDMAM magnetic data; three reasons for further developing techniques for modeling the lithospheric magnetic field at regional scales

    NASA Astrophysics Data System (ADS)

    Thebault, E.; Vervelidou, F.

    2012-04-01

    The spatial resolution of all available data monitoring the Earth's lithospheric magnetic field range from thousands to few kilometers at the regional spatial scale. The data type and measurement platforms covering these various wavelengths are in general different. For instance, Low Earth Orbiting satellites, such as CHAMP and the forthcoming SWARM, measure the vector field and are sensitive to large-scale and deep lithospheric magnetic field structures, while aeromagnetic and marine data or grids, like the World Digital Magnetic Anomaly Map (WDMAM), which are mostly scalar, in general fetch better shallow and small spatial scale signals. For quantitative geophysical interpretations, there is therefore a need for methodologies allowing for the reconstruction of the full magnetic field spectrum. During the last decades, various methodologies have been proposed in an effort to merge all kinds of magnetic data available over particular regions. We first briefly review the methods proposed by the scientific community and will more specifically focus on new progresses in developing the Revised Spherical Cap modeling approach. In particular, we will discuss the concept of spectrum with this formalism and its applicability in the framework of geomagnetism. Since a regional modeling approach can only be applied on high quality data we then propose some strategies to first obtain a better signal to noise ratio in satellite data and second to better account for its nature. We will illustrate our conclusions with issues faced with the data processing of single satellite missions such as CHAMP. Finally, we discuss how a constellation such as the Swarm mission will alleviate some of, so far, unresolved problems and how important it is to have the metadata information about the aeromagnetic and marine anomaly data.

  5. Simulation study of wave phenomena from the sheath region in single frequency capacitively coupled plasma discharges; field reversals and ion reflection

    SciTech Connect

    Sharma, S.; Turner, M. M.

    2013-07-15

    Capacitively coupled radio-frequency (RF) discharges have great significance for industrial applications. Collisionless electron heating in such discharges is important, and sometimes is the dominant mechanism. This heating is usually understood to originate in a stochastic interaction between electrons and the electric fields. However, other mechanisms may also be important. There is evidence of wave emission with a frequency near the electron plasma frequency, i.e., ω{sub pe}, from the sheath region in collisionless capacitive RF discharges. This is the result of a progressive breakdown of quasi-neutrality close to the electron sheath edge. These waves are damped in a few centimeters during their propagation from the sheath towards the bulk plasma. The damping occurs because of the Landau damping or some related mechanism. This research work reports that the emission of waves is associated with a field reversal during the expanding phase of the sheath. Trapping of electrons near to this field reversal region is observed. The amplitude of the wave increases with increasing RF current density amplitude J(tilde sign){sub 0} until some maximum is reached, beyond which the wave diminishes and a new regime appears. In this new regime, the density of the bulk plasma suddenly increases because of ion reflection, which occurs due to the presence of strong field reversal near sheath region. Our calculation shows that these waves are electron plasma waves. These phenomena occur under extreme conditions (i.e., higher J(tilde sign){sub 0} than in typical experiments) for sinusoidal current waveforms, but similar effects may occur with non-sinusoidal pulsed waveforms for conditions of experimental interest, because the rate of change of current is a relevant parameter. The effect of electron elastic collisions on plasma waves is also investigated.

  6. Some learnings from post-event field investigations after the june 2013 floods in the Pyrenees region in France.

    NASA Astrophysics Data System (ADS)

    Payrastre, Olivier; Bonnifait, Laurent; Gaume, Eric; Le Boursicaut, Raphael

    2014-05-01

    In June 2013 catastrophic floods occurred in south of France in the Pyrenees mountainous area. These floods were due to the combination of a high initial discharge due to snowmelt with a significant rainfall event (up to 200mm rainfall), which effects may have been enhanced by an increase of snowmelt. Although the dynamics of this flood are not really similar, some of its features clearly remind what may be observed in the case of flash floods: significant contribution of relatively small watersheds, high solid transport, very limited information on the reality of flood magnitudes due to the small size of catchments contributing to the flood and the destruction of a significant part of the gauging network. This contribution presents the results of a post event field survey conducted in July 2013 in order to document this flood in terms of intensities of hydrologic reactions. The methods used are those described in Gaume et al. [2008, 2009], with a specific focus on the exploitation of videos from weatnesses. The dataset builded includes 31 peak discharge estimates, illustrating the relatively limited intensity of hydrologic reactions if compared to flash floods, but also providing some interesting complements for the consolidation of the methodology used for post-event field investigations: - several opportunities of comparison of the peak discharge estimates obtained from post event field investigations and from the gauging network, showing an overall good coherence - possibility of very significant flow velocities (up to 6 m/s-2) in the specific context observed here (slopes reaching up to 5%). - possibility to get information on flow surface velocities fields from videos provided by weatnesses. - significant influence of space-time rainfall distribution on the features of the flood, stressing the importance of a detailed information on the contribution of the sub-catchments. Gaume E., Borga M., 2008. Post flood field investigations after major flash floods

  7. Nature of the boundary between open and closed magnetic field line regions at the Sun revealed by composition data and numerical models

    NASA Astrophysics Data System (ADS)

    Posner, Arik; Zurbuchen, Thomas H.; Schwadron, Nathan A.; Fisk, Lennard A.; Gloeckler, George; Linker, Jon A.; Mikić, Zoran; Riley, Pete

    2001-08-01

    Recently, Fisk et al. [1999] have presented a theory that describes a number of features of the large-scale coronal and heliospheric magnetic field. This theory predicts large-scale transport of magnetic flux across the boundaries of the polar coronal holes, which leads to reconnection processes of open field lines with preliminary closed magnetic structures. Reconnection processes reveal themselves in solar wind composition data: Plasma released out of previously closed magnetic field structures exhibits hotter charge state distributions and has a tendency to be enriched by elements with low first ionization potentials. The idea of reconnection at the boundaries of coronal holes is not new. For example, Wang and Sheeley [1993] and Luhmann et al. [1999] found evidence for that mechanism by comparison of observations of the rotation and evolution of coronal holes with potential field models of the solar corona. We use Ulysses Solar Wind Ion Composition Spectrometer composition measurements and sophisticated numerical models [Linker et al., 1999; Riley et al., 1999] to accurately map these observations back to the solar surface. We then constrain the thickness of the stream interface at the Sun and compare the location of the source region with SOHO observations of the low corona. The results are discussed in the context of the global structure of the heliospheric magnetic field.

  8. Study of simultaneous presence of DD and PP electric fields during the geomagnetic storm of November 7-8, 2004 and resultant TEC variation over the Indian Region

    NASA Astrophysics Data System (ADS)

    Galav, P.; Sharma, Shweta; Rao, S. S.; Veenadhari, B.; Nagatsuma, T.; Pandey, R.

    2014-04-01

    During very intense geomagnetic storm of November 7-8, 2004 simultaneous presence of storm time disturbance dynamo and eastward and westward directed prompt penetration electric fields inferred from the ground based magnetometer data in the 75∘ E sector is presented. Magnetometer observations show that, on the whole, average Δ H variation on 8 November remains below the night time level compared to its quiet day variation. A number of upward and downward excursions have been observed between 0130 UT and 0800 UT in the Δ H variation on 8 November. These excursions in Δ H have been attributed to the episodes of eastward and westward prompt penetrating electric fields. Ionospheric response in the equatorial ionization anomaly region along 75∘ E has also been studied using the total electron content data recorded at five GPS stations, namely Udaipur, Bengaluru (IISC), Hyderabad (HYDE), Maldives (MALD) and Diego Garcia (DGAR). Observation of markedly suppressed EIA, in conjunction with Δ H variation which was m negative during the daytime on 8 November, indicates the presence of an external field of opposite polarity (the disturbance dynamo electric field) that either undermined, or overshadowed the daytime ambient (eastward) electric field to the extent that the equatorial plasma fountain could not become effective.

  9. The morphology of flare phenomena, magnetic fields, and electric currents in active regions. I - Introduction and methods

    NASA Technical Reports Server (NTRS)

    Canfield, Richard C.; De La Beaujardiere, J.-F.; Fan, Yuhong; Leka, K. D.; Mcclymont, A. N.; Metcalf, Thomas R.; Mickey, Donald L.; Wuelser, Jean-Pierre; Lites, Bruce W.

    1993-01-01

    Electric current systems in solar active regions and their spatial relationship to sites of electron precipitation and high-pressure in flares were studied with the purpose of providing observational evidence for or against the flare models commonly discussed in the literature. The paper describes the instrumentation, the data used, and the data analysis methods, as well as improvements made upon earlier studies. Several flare models are overviewed, and the predictions yielded by each model for the relationships of flares to the vertical current systems are discussed.

  10. Source Regions of the Interplanetary Magnetic Field and Variability in Heavy-Ion Elemental Composition in Gradual Solar Energetic Particle Events

    NASA Technical Reports Server (NTRS)

    Ko, Yuan-Kuen; Tylka, Allan J.; Ng, Chee K.; Wang, Yi-Ming; Dietrich, William F.

    2013-01-01

    Gradual solar energetic particle (SEP) events are those in which ions are accelerated to their observed energies by interactions with a shock driven by a fast coronal mass-ejection (CME). Previous studies have shown that much of the observed event-to-event variability can be understood in terms of shock speed and evolution in the shock-normal angle. But an equally important factor, particularly for the elemental composition, is the origin of the suprathermal seed particles upon which the shock acts. To tackle this issue, we (1) use observed solar-wind speed, magnetograms, and the PFSS model to map the Sun-L1 interplanetary magnetic field (IMF) line back to its source region on the Sun at the time of the SEP observations; and (2) then look for correlation between SEP composition (as measured by Wind and ACE at approx. 2-30 MeV/nucleon) and characteristics of the identified IMF-source regions. The study is based on 24 SEP events, identified as a statistically-significant increase in approx. 20 MeV protons and occurring in 1998 and 2003-2006, when the rate of newly-emergent solar magnetic flux and CMEs was lower than in solar-maximum years and the field-line tracing is therefore more likely to be successful. We find that the gradual SEP Fe/O is correlated with the field strength at the IMF-source, with the largest enhancements occurring when the footpoint field is strong, due to the nearby presence of an active region. In these cases, other elemental ratios show a strong charge-to-mass (q/M) ordering, at least on average, similar to that found in impulsive events. These results lead us to suggest that magnetic reconnection in footpoint regions near active regions bias the heavy-ion composition of suprathermal seed ions by processes qualitatively similar to those that produce larger heavy-ion enhancements in impulsive SEP events. To address potential technical concerns about our analysis, we also discuss efforts to exclude impulsive SEP events from our event sample.

  11. Field detection of eastern equine encephalitis virus in the Amazon Basin region of Peru using reverse transcription-polymerase chain reaction adapted for field identification of arthropod-borne pathogens.

    PubMed

    O'Guinn, Monica L; Lee, John S; Kondig, John P; Fernandez, Roberto; Carbajal, Faustino

    2004-02-01

    In support of efforts to develop rapid diagnostic assays for use in the field, reverse transcription-polymerase chain reaction (RT-PCR) assays were developed to detect arboviruses circulating in the Amazon Basin region of Peru. Previous knowledge of arthropod/pathogen relationships allowed a focused evaluation to be conducted in November 2000 that assessed the feasibility and reliability of a mobile, rapid, field-expedient RT-PCR diagnostic system aimed at detecting eastern equine encephalitis virus (EEEV) in Culex (Melanoconion) pedroi mosquitoes. Modifications were made to a commercially available mobile molecular laboratory kit and assay procedures were tailored for use under harsh environmental conditions with field-collected and field-processed mosquitoes. From CO2 baited mosquito light traps, 3,227 Cx. (Mel.) pedroi mosquitoes were collected and sorted into 117 pools. The pools were processed and assayed in the field by RT-PCR and five of those pools were found positive for EEEV. Laboratory sequence analysis confirmed the presence of two distinct subtypes of EEEV.

  12. Near Surface Magnetic Field Mapping over the Swirls in the SPA Region on the Moon Using Kaguya LMAG Low Altitude Data

    NASA Astrophysics Data System (ADS)

    Shibuya, H.; Tsunakawa, H.; Takahashi, F.; Shimizu, H.; Matsushima, M.

    2010-12-01

    We have reported the correlation between the high albedo marking (HAM) on the moon surface and the strength of horizontal component (Bh) of the near surface lunar magnetic field, at 2009 AGU Fall meeting, using the Lunar Prospector magnetometer data (LP-MAG). The correlation is further examined using the lowest altitude data at the latest orbits of Kaguya magnetometer data (KG-MAG). The Kaguya spacecraft (launched on September 14, 2007) dropped to the Moon at 65.5S and 80.4E on Jun 11, 2009. On the last few weeks, it flies over SPA with low altitudes as 10km, and the magnetometer acquired beautiful data. The magnetic field on the Mare Ingenii, on which we can see one of the most enhanced HAM, is restored using equivalent pole reduction (EPR) technique. First, EPR model is examined by comparing the model field and the other observations of LP-MAG and KG-MAG. They agree each other not only the shape but also the amplitude of the peaks. It indicates that the lunar magnetic field is well reproduced in 3-dimension. The magnetic field at the altitude of 5km is mapped over the Mare Ingenii and adjacent region where the HAM is clearly seen from Clementine albedo images. The coincidence of the HAM and the Bh is incredibly well, especially for the HAM in the flat crater floors. In some region, some of the detailed shapes of HAM match with the small bulge in the Bh contour. The HAM seems to be correlated maximas of Bh rather than its absolute strength. This result further support that the HMA is formed by magnetic shielding of the solar wind particles.

  13. SOURCE REGIONS OF THE INTERPLANETARY MAGNETIC FIELD AND VARIABILITY IN HEAVY-ION ELEMENTAL COMPOSITION IN GRADUAL SOLAR ENERGETIC PARTICLE EVENTS

    SciTech Connect

    Ko, Yuan-Kuen; Wang, Yi-Ming; Tylka, Allan J.; Ng, Chee K.; Dietrich, William F.

    2013-10-20

    Gradual solar energetic particle (SEP) events are those in which ions are accelerated to their observed energies by interactions with a shock driven by a fast coronal mass ejection (CME). Previous studies have shown that much of the observed event-to-event variability can be understood in terms of shock speed and evolution in the shock-normal angle. However, an equally important factor, particularly for the elemental composition, is the origin of the suprathermal seed particles upon which the shock acts. To tackle this issue, we (1) use observed solar-wind speed, magnetograms, and the potential-field source-surface model to map the Sun-L1 interplanetary magnetic field (IMF) line back to its source region on the Sun at the time of the SEP observations and (2) then look for a correlation between SEP composition (as measured by Wind and Advanced Composition Explorer at ∼2-30 MeV nucleon{sup –1}) and characteristics of the identified IMF source regions. The study is based on 24 SEP events, identified as a statistically significant increase in ∼20 MeV protons and occurring in 1998 and 2003-2006, when the rate of newly emergent solar magnetic flux and CMEs was lower than in solar-maximum years, and the field-line tracing is therefore more likely to be successful. We find that the gradual SEP Fe/O is correlated with the field strength at the IMF source, with the largest enhancements occurring when the footpoint field is strong due to the nearby presence of an active region (AR). In these cases, other elemental ratios show a strong charge-to-mass (q/M) ordering (at least on average), similar to that found in impulsive events. Such results lead us to suggest that magnetic reconnection in footpoint regions near ARs bias the heavy-ion composition of suprathermal seed ions by processes qualitatively similar to those that produce larger heavy-ion enhancements in impulsive SEP events. To address potential technical concerns about our analysis, we also discuss efforts to

  14. Analysis of viral protein-2 encoding gene of avian encephalomyelitis virus from field specimens in Central Java region, Indonesia

    PubMed Central

    Haryanto, Aris; Ermawati, Ratna; Wati, Vera; Irianingsih, Sri Handayani; Wijayanti, Nastiti

    2016-01-01

    Aim: Avian encephalomyelitis (AE) is a viral disease which can infect various types of poultry, especially chicken. In Indonesia, the incidence of AE infection in chicken has been reported since 2009, the AE incidence tends to increase from year to year. The objective of this study was to analyze viral protein 2 (VP-2) encoding gene of AE virus (AEV) from various species of birds in field specimen by reverse transcription polymerase chain reaction (RT-PCR) amplification using specific nucleotides primer for confirmation of AE diagnosis. Materials and Methods: A total of 13 AEV samples are isolated from various species of poultry which are serologically diagnosed infected by AEV from some areas in central Java, Indonesia. Research stage consists of virus samples collection from field specimens, extraction of AEV RNA, amplification of VP-2 protein encoding gene by RT-PCR, separation of RT-PCR product by agarose gel electrophoresis, DNA sequencing and data analysis. Results: Amplification products of the VP-2 encoding gene of AEV by RT-PCR methods of various types of poultry from field specimens showed a positive results on sample code 499/4/12 which generated DNA fragment in the size of 619 bp. Sensitivity test of RT-PCR amplification showed that the minimum concentration of RNA template is 127.75 ng/µl. The multiple alignments of DNA sequencing product indicated that positive sample with code 499/4/12 has 92% nucleotide homology compared with AEV with accession number AV1775/07 and 85% nucleotide homology with accession number ZCHP2/0912695 from Genbank database. Analysis of VP-2 gene sequence showed that it found 46 nucleotides difference between isolate 499/4/12 compared with accession number AV1775/07 and 93 nucleotides different with accession number ZCHP2/0912695. Conclusions: Analyses of the VP-2 encoding gene of AEV with RT-PCR method from 13 samples from field specimen generated the DNA fragment in the size of 619 bp from one sample with sample code 499

  15. Modeling volcanic deformation in a regional stress field: Implications for the formation of graben structures on Alba Patera, Mars

    NASA Astrophysics Data System (ADS)

    Cailleau, Beatrice; Walter, Thomas R.; Janle, Peter; Hauber, Ernst

    2003-12-01

    Abundant grabens transect the volcano Alba Patera. Their complex geometry and formation mechanisms are still poorly understood. Tectonic processes and magmatic intrusions are responsible for these long surface features. Cross-cutting relationships of the grabens show radial fractures that were formed during early stages and were progressively overprinted by concentric fractures on the mid and upper flanks of the volcano. Two modeling methods are used to understand the formation of the observed structures and to evaluate their implications for hidden subvolcanic processes. Surface deformation and fault arrangements predicted in finite element models are compared to the graben systems observed in Viking images. The orientation and position of the concentric grabens are found to be best reproduced by local crustal subsidence, superimposed on a regional NW-SE oriented extension with decreasing magnitude from south to north. In analogue sandbox models we also simulate surface structures of arrangements that almost perfectly mimic the observed lineaments on Alba Patera. Formation of the grabens spans a period on the order of a billion years, suggesting long-term geodynamic processes to be responsible for the subsidence of the central Alba Patera area. The progressive change toward higher concentricity is likely resultant from an increase in density in the crust by accumulation of intrusive material and cooling, thus causing subsidence of the region above this volcanic root.

  16. Wnt/β-catenin signaling directs the regional expansion of first and second heart field-derived ventricular cardiomyocytes.

    PubMed

    Buikema, Jan Willem; Mady, Ahmed S; Mittal, Nikhil V; Atmanli, Ayhan; Caron, Leslie; Doevendans, Pieter A; Sluijter, Joost P G; Domian, Ibrahim J

    2013-10-01

    In mammals, cardiac development proceeds from the formation of the linear heart tube, through complex looping and septation, all the while increasing in mass to provide the oxygen delivery demands of embryonic growth. The developing heart must orchestrate regional differences in cardiomyocyte proliferation to control cardiac morphogenesis. During ventricular wall formation, the compact myocardium proliferates more vigorously than the trabecular myocardium, but the mechanisms controlling such regional differences among cardiomyocyte populations are not understood. Control of definitive cardiomyocyte proliferation is of great importance for application to regenerative cell-based therapies. We have used murine and human pluripotent stem cell systems to demonstrate that, during in vitro cellular differentiation, early ventricular cardiac myocytes display a robust proliferative response to β-catenin-mediated signaling and conversely accelerate differentiation in response to inhibition of this pathway. Using gain- and loss-of-function murine genetic models, we show that β-catenin controls ventricular myocyte proliferation during development and the perinatal period. We further demonstrate that the differential activation of the Wnt/β-catenin signaling pathway accounts for the observed differences in the proliferation rates of the compact versus the trabecular myocardium during normal cardiac development. Collectively, these results provide a mechanistic explanation for the differences in localized proliferation rates of cardiac myocytes and point to a practical method for the generation of the large numbers of stem cell-derived cardiac myocytes necessary for clinical applications.

  17. Effectiveness of natural treatment in a wastewater irrigation district of the Mexico City region: A synoptic field survey

    SciTech Connect

    Downs, T.J.; Cifuentes, E.; Ruth, E.; Suffet, I.

    2000-02-01

    Untreated wastewater from Mexico City has been used for decades to irrigate the Mezquital Valley, Hidalgo, Mexico. A synoptic survey of the natural treatment systems was carried out using the criteria of 24 trace metals, 67 target base/neutral/acid (BNA) semivolatile organic compounds, nontarget BNA semivolatile organics, nitrate, 23 chlorinated pesticides, and a 20 congener polychlorinated biphenyl (PCB) suite. Data suggest the irrigation region is acting as a huge open-system slow sand filter, the main reservoir as a large waste stabilization lagoon, and he canals as extremely long, narrow stabilization channels. The BNA levels in surface water (SW) after reservoir retention were much lower than before it, while levels in groundwater (GW) were significantly lower than SW. All GW nitrate levels exceeded them for only a few metals. Low to moderate levels of organochlorine pesticides and PCBs were found.

  18. Comparison of regional hydrological excitation of polar motion derived from hydrological models and the GRACE gravity field data

    NASA Astrophysics Data System (ADS)

    Nastula, J.; Kolaczek, B.; Salstein, D. A.

    2009-09-01

    Global geophysical excitation functions of polar motion do not explain fully the observed polar motion as determined by geodetic techniques. The impact of continental hydrologic signals, from land water, snow, and ice, on polar motion excitation HAM (Hydrological Angular Momentum), is still inadequately estimated and not known so well as atmospheric and oceanic ones. Recently the GRACE (Gravity Recovery and Climate Experiment) satellite mission monitoring Earth's time variable gravity field has allowed us to determine global mass term of the polar motion excitation functions, which inherently includes the atmospheric, oceanic and hydrological portions. We use these terms to make comparisons with the mass term of the geodetic and geophysical excitation functions of polar motion on seasonal scales. Global GRACE excitation function of polar motion and hydrological excitation function of polar motion have been determined and were studied earlier

  19. Communication: dynamical embedding: correct quantum response from coupling TDDFT for a small cluster with classical near-field electrodynamics for an extended region.

    PubMed

    Gao, Yi; Neuhauser, Daniel

    2013-05-14

    We show how to obtain the correct electronic response of a large system by embedding; a small region is propagated by TDDFT (time-dependent density functional theory) simultaneously with a classical electrodynamics evolution using the Near-Field method over a larger external region. The propagations are coupled through a combined time-dependent density yielding a common Coulomb potential. We show that the embedding correctly describes the plasmonic response of a Mg(0001) slab and its influence on the dynamical charge transfer between an adsorbed H2O molecule and the substrate, giving the same spectral shape as full TDDFT (similar plasmon peak and molecular-dependent differential spectra) with much less computational effort. The results demonstrate that atomistic embedding electrodynamics is promising for nanoplasmonics and nanopolaritonics.

  20. Communication: Dynamical embedding: Correct quantum response from coupling TDDFT for a small cluster with classical near-field electrodynamics for an extended region

    SciTech Connect

    Gao Yi; Neuhauser, Daniel

    2013-05-14

    We show how to obtain the correct electronic response of a large system by embedding; a small region is propagated by TDDFT (time-dependent density functional theory) simultaneously with a classical electrodynamics evolution using the Near-Field method over a larger external region. The propagations are coupled through a combined time-dependent density yielding a common Coulomb potential. We show that the embedding correctly describes the plasmonic response of a Mg(0001) slab and its influence on the dynamical charge transfer between an adsorbed H{sub 2}O molecule and the substrate, giving the same spectral shape as full TDDFT (similar plasmon peak and molecular-dependent differential spectra) with much less computational effort. The results demonstrate that atomistic embedding electrodynamics is promising for nanoplasmonics and nanopolaritonics.

  1. A Conceptual Model to Link Anomalously High Temperature Gradients in the Cerros del Rio Volcanic Field to Regional Flow in the Espanola Basin, New Mexico

    NASA Astrophysics Data System (ADS)

    Fillingham, E. J.; Keller, S. N.; McCullough, K. R.; Watters, J.; Weitering, B.; Wilce, A. M.; Folsom, M.; Kelley, S.; Pellerin, L.

    2015-12-01

    Temperature-depth well data along with electromagnetic (EM) data were collected by students of the Summer of Applied Geophysics Experience (SAGE) 2015 field season in the Espanola Basin, New Mexico. The data from this year, in addition to data acquired since 2013, were used to construct a conceptual east-west cross-section of the Espanola Basin and the adjacent highlands in order to evaluate the regional flow system. Vertical geothermal gradients from several monitoring wells were measured using a thermistor. Anomalously warm geothermal gradients were mapped in the Cerros del Rio volcanic field in the basin just east of the Rio Grande. Temperature gradients are up to 70℃/km, while the background geothermal gradients in the Rio Grande rift zone generally show 28℃-35℃/km. This anomaly extends to the Buckman well field, which supplies water to the city of Santa Fe. Overpumping of this well field has led to subsidence in the past. However, discharge temperature plots indicate that the temperature gradients of the Buckman field may be rebounding as pumping is reduced. Audiomagnetotelluric (AMT) and transient electromagnetic (TEM) data were acquired in the vicinity of three monitoring wells. TEM and AMT methods complement each other with the former having depths of investigation of less than ten to hundreds of meters and AMT having depths of investigation comparable to the wells deeper than 500m. These datasets were used collectively to image the subsurface stratigraphy and, more specifically, the hydrogeology related to shallow aquifers. The EM data collected at these wells showed a trend indicating a shallow aquifer with a shallower resistive layer of approximately 100 ohm-m at 70-100 meters depth. Beneath this resistive layer we resolved a more conductive, clay-rich layer of 10 ohm-m. These resistivity profiles compliment the electrical logs provided by Jet West, which indicate shallower sandstone interbedded with silt on top of more silt-dominant layers. Our

  2. Peak divergence in the curve of magnetoelectric coefficient versus dc bias magnetic field at resonance region for bi-layer magnetostrictive/piezoelectric composites

    SciTech Connect

    Zuo, Z. J.; Pan, D. A. Zhang, S. G.; Qiao, L. J.; Jia, Y. M.

    2013-12-15

    Magnetoelectric (ME) coefficient dependence on the bias magnetic field at resonance frequencies for the bi-layered bonded Terfenol-D/Pb(Zr,Ti)O{sub 3} composite was investigated. The resonance frequency decreases first and then increases with the bias magnetic field (H{sub DC}), showing a “V” shape in the range of 0 ∼ 5 kOe. Below the resonance frequency, the pattern of ME coefficient dependence on the H{sub DC} shows a single peak, but splits into a double-peak pattern when the testing frequency increases into a certain region. With increasing the frequency, a divergent evolution of the H{sub DC} patterns was observed. Domain motion and ΔE effect combined with magnetostriction-piezoelectric coupling effect were employed to explain this experimental result.

  3. [The problem of participation of different brain regions in the reactions to the low-intensity magnetic and electromagnetic field exposure].

    PubMed

    Luk'ianova, S N; Merkulov, A V

    2012-01-01

    Experimental analysis of the integral and pulsed bioelectric activity of the rabbit's various brain regions shows an ambiguous extent of their participation in the central nervous system reactions to low-intensity magnetic and electromagnetic fields with different parameters and conditions of exposure. This difference is determined not only by the location of brain structures in the head or by the field intensity, but, above all, by its functional state, which is reflected in the background. Artificial changes in the functioning of the original structures (administration of caffeine or adrenaline) altered the extent of their participation in the brain reaction, according to the drug action mechanism. The presence and severity of response depended on the structure and the biological significance of the impact, which is largely determined by the mode and conditions of exposure. Changing these parameters influenced the participation of the brain in its reaction in accordance with the adaptive response of the organism.

  4. Region-based Active Contour Model based on Markov Random Field to Segment Images with Intensity Non-Uniformity and Noise.

    PubMed

    Shahvaran, Zahra; Kazemi, Kamran; Helfroush, Mohammad Sadegh; Jafarian, Nassim

    2012-01-01

    This paper represents a new region-based active contour model that can be used to segment images with intensity non-uniformity and high-level noise. The main idea of our proposed method is to use Gaussian distributions with different means and variances with incorporation of intensity non-uniformity model for image segmentation. In order to integrate the spatial information between neighboring pixels in our proposed method, we use Markov Random Field. Our experiments on synthetic images and cerebral magnetic resonance images show the advantages of the proposed method over state-of-art methods, i.e. local Gaussian distribution fitting.

  5. Near-field tsunami forecast system based on near real-time seismic moment tensor estimation in the regions of Indonesia, the Philippines, and Chile

    NASA Astrophysics Data System (ADS)

    Inazu, Daisuke; Pulido, Nelson; Fukuyama, Eiichi; Saito, Tatsuhiko; Senda, Jouji; Kumagai, Hiroyuki

    2016-05-01

    We have developed a near-field tsunami forecast system based on an automatic centroid moment tensor (CMT) estimation using regional broadband seismic observation networks in the regions of Indonesia, the Philippines, and Chile. The automatic procedure of the CMT estimation has been implemented to estimate tsunamigenic earthquakes. A tsunami propagation simulation model is used for the forecast and hindcast. A rectangular fault model based on the estimated CMT is employed to represent the initial condition of tsunami height. The forecast system considers uncertainties due to two possible fault planes and two possible scaling laws and thus shows four possible scenarios with these associated uncertainties for each estimated CMT. The system requires approximately 15 min to estimate the CMT after the occurrence of an earthquake and approximately another 15 min to make the tsunami forecast results including the maximum tsunami height and its arrival time at the epicentral region and near-field coasts available. The retrospectively forecasted tsunamis were evaluated by the deep-sea pressure and tide gauge observations, for the past eight tsunamis ( M w 7.5-8.6) that occurred throughout the regional seismic networks. The forecasts ranged from half to double the amplitudes of the deep-sea pressure observations and ranged mostly within the same order of magnitude as the maximum heights of the tide gauge observations. It was found that the forecast uncertainties increased for greater earthquakes (e.g., M w > 8) because the tsunami source was no longer approximated as a point source for such earthquakes. The forecast results for the coasts nearest to the epicenter should be carefully used because the coasts often experience the highest tsunamis with the shortest arrival time (e.g., <30 min).

  6. Frontal eye field, where art thou? Anatomy, function, and non-invasive manipulation of frontal regions involved in eye movements and associated cognitive operations

    PubMed Central

    Vernet, Marine; Quentin, Romain; Chanes, Lorena; Mitsumasu, Andres; Valero-Cabré, Antoni

    2014-01-01

    The planning, control and execution of eye movements in 3D space relies on a distributed system of cortical and subcortical brain regions. Within this network, the Eye Fields have been described in animals as cortical regions in which electrical stimulation is able to trigger eye movements and influence their latency or accuracy. This review focuses on the Frontal Eye Field (FEF) a “hub” region located in Humans in the vicinity of the pre-central sulcus and the dorsal-most portion of the superior frontal sulcus. The straightforward localization of the FEF through electrical stimulation in animals is difficult to translate to the healthy human brain, particularly with non-invasive neuroimaging techniques. Hence, in the first part of this review, we describe attempts made to characterize the anatomical localization of this area in the human brain. The outcome of functional Magnetic Resonance Imaging (fMRI), Magneto-encephalography (MEG) and particularly, non-invasive mapping methods such a Transcranial Magnetic Stimulation (TMS) are described and the variability of FEF localization across individuals and mapping techniques are discussed. In the second part of this review, we will address the role of the FEF. We explore its involvement both in the physiology of fixation, saccade, pursuit, and vergence movements and in associated cognitive processes such as attentional orienting, visual awareness and perceptual modulation. Finally in the third part, we review recent evidence suggesting the high level of malleability and plasticity of these regions and associated networks to non-invasive stimulation. The exploratory, diagnostic, and therapeutic interest of such interventions for the modulation and improvement of perception in 3D space are discussed. PMID:25202241

  7. The Magnetic Field of Active Region 11158 during the 2011 February 12-17 Flares: Differences between Photospheric Extrapolation and Coronal Forward-Fitting Methods

    NASA Astrophysics Data System (ADS)

    Aschwanden, Markus J.; Sun, Xudong; Liu, Yang

    2014-04-01

    We developed a coronal nonlinear force-free field (COR-NLFFF) forward-fitting code that fits an approximate nonlinear force-free field (NLFFF) solution to the observed geometry of automatically traced coronal loops. In contrast to photospheric NLFFF codes, which calculate a magnetic field solution from the constraints of the transverse photospheric field, this new code uses coronal constraints instead, and this way provides important information on systematic errors of each magnetic field calculation method, as well as on the non-force-freeness in the lower chromosphere. In this study we applied the COR-NLFFF code to NOAA Active Region 11158, during the time interval of 2011 February 12-17, which includes an X2.2 GOES-class flare plus 35 M- and C-class flares. We calculated the free magnetic energy with a 6 minute cadence over 5 days. We find good agreement between the two types of codes for the total nonpotential EN and potential energy EP but find up to a factor of 4 discrepancy in the free energy E free = EN – EP and up to a factor of 10 discrepancy in the decrease of the free energy ΔE free during flares. The coronal NLFFF code exhibits a larger time variability and yields a decrease of free energy during the flare that is sufficient to satisfy the flare energy budget, while the photospheric NLFFF code shows much less time variability and an order of magnitude less free-energy decrease during flares. The discrepancy may partly be due to the preprocessing of photospheric vector data but more likely is due to the non-force-freeness in the lower chromosphere. We conclude that the coronal field cannot be correctly calculated on the basis of photospheric data alone and requires additional information on coronal loop geometries.

  8. The magnetic field of active region 11158 during the 2011 February 12-17 flares: Differences between photospheric extrapolation and coronal forward-fitting methods

    SciTech Connect

    Aschwanden, Markus J.; Sun, Xudong; Liu, Yang E-mail: xudongs@stanford.edu

    2014-04-10

    We developed a coronal nonlinear force-free field (COR-NLFFF) forward-fitting code that fits an approximate nonlinear force-free field (NLFFF) solution to the observed geometry of automatically traced coronal loops. In contrast to photospheric NLFFF codes, which calculate a magnetic field solution from the constraints of the transverse photospheric field, this new code uses coronal constraints instead, and this way provides important information on systematic errors of each magnetic field calculation method, as well as on the non-force-freeness in the lower chromosphere. In this study we applied the COR-NLFFF code to NOAA Active Region 11158, during the time interval of 2011 February 12-17, which includes an X2.2 GOES-class flare plus 35 M- and C-class flares. We calculated the free magnetic energy with a 6 minute cadence over 5 days. We find good agreement between the two types of codes for the total nonpotential E{sub N} and potential energy E{sub P} but find up to a factor of 4 discrepancy in the free energy E {sub free} = E{sub N} – E{sub P} and up to a factor of 10 discrepancy in the decrease of the free energy ΔE {sub free} during flares. The coronal NLFFF code exhibits a larger time variability and yields a decrease of free energy during the flare that is sufficient to satisfy the flare energy budget, while the photospheric NLFFF code shows much less time variability and an order of magnitude less free-energy decrease during flares. The discrepancy may partly be due to the preprocessing of photospheric vector data but more likely is due to the non-force-freeness in the lower chromosphere. We conclude that the coronal field cannot be correctly calculated on the basis of photospheric data alone and requires additional information on coronal loop geometries.

  9. Multi-site study of diffusion metric variability: effects of site, vendor, field strength, and echo time on regions-of-interest and histogram-bin analyses

    NASA Astrophysics Data System (ADS)

    Helmer, K. G.; Chou, M.-C.; Preciado, R. I.; Gimi, B.; Rollins, N. K.; Song, A.; Turner, J.; Mori, S.

    2016-03-01

    It is now common for magnetic-resonance-imaging (MRI) based multi-site trials to include diffusion-weighted imaging (DWI) as part of the protocol. It is also common for these sites to possess MR scanners of different manufacturers, different software and hardware, and different software licenses. These differences mean that scanners may not be able to acquire data with the same number of gradient amplitude values and number of available gradient directions. Variability can also occur in achievable b-values and minimum echo times. The challenge of a multi-site study then, is to create a common protocol by understanding and then minimizing the effects of scanner variability and identifying reliable and accurate diffusion metrics. This study describes the effect of site, scanner vendor, field strength, and TE on two diffusion metrics: the first moment of the diffusion tensor field (mean diffusivity, MD), and the fractional anisotropy (FA) using two common analyses (region-of-interest and mean-bin value of whole brain histograms). The goal of the study was to identify sources of variability in diffusion-sensitized imaging and their influence on commonly reported metrics. The results demonstrate that the site, vendor, field strength, and echo time all contribute to variability in FA and MD, though to different extent. We conclude that characterization of the variability of DTI metrics due to site, vendor, field strength, and echo time is a worthwhile step in the construction of multi-center trials.

  10. A statistical study of the orientation, motion, and thicknesses of density and electric field structures observed by Cluster~II above the auroral accleration region

    NASA Astrophysics Data System (ADS)

    Hull, A. J.; Bonnell, J. W.; Mozer, F. S.; Andre, M.; Eriksson, A.; Vaivads, A.; Pedersen, A.; Lindqvist, P.; Laakso, H.

    2003-12-01

    We present the results of a statistical study of the properties of electric field and density structures observed by the Cluster~II spacecraft above the auroral acceleration region. Of particular emphasis is the orientation, motion, and thicknesses of time stationary structures. The multi-point electric field and density measurements from the Cluster~II constellation are used to estimate the direction and propagation speed of structures in the electric fields and plasma density (as inferred from spacecraft floating potential measurements), as well as to quantify the thicknesses of those structures. These spatial structures propagate transverse to the magnetic field at speeds of ˜10 km/s and are characterized by thicknesses that range from a few hundred kilometers to a few thousand kilometers in extent. Thus with these observations we are probing the high-altitude potential and density structures that are associated with relatively fast (1 km/s) proper motions of fairly large scale (10-100 km) features in the auroral zone. The variation in the properties of these spatial structures with other parameters that characterize the auroral zone, such as altitude, local time, invariant latitude, and geomagnetic activity will also be discussed.

  11. USING CABLE SUSPENDED SUBMERSIBLE PUMPS TO REDUCE PRODUCTION COSTS TO INCREASE ULTIMATE RECOVERY IN THE RED MOUNTAIN FIELD IN SAN JUAN BASIN REGION

    SciTech Connect

    Pat Fort; Don L. Hanosh

    2003-11-01

    A joint venture between Enerdyne LLC, a small independent oil and gas producer, and Pumping Solutions Inc., developer of a low volume electric submersible pump, suspended from a cable, both based in Albuquerque, New Mexico, has re-established marginal oil production from the Red Mountain Oil Field, located in the San Juan Basin, New Mexico by working over 17 existing wells and installing submersible pumps. Resume marginal oil production operations in the Red Mountain oil fields located in McKinley County, New Mexico by installing a cable suspended electric submersible pumping system (HDESP), determine if this system can reduce lift costs making it a more cost effective production system for similar oil fields within the region, and if warranted, drill additional wells to improved the economics. Three Phases of work have been defined in the DOE Form 4600.1 Notice of Financial Assistance Award for this project, in which the project objectives are to be attained through a joint venture between Enerdyne LLC (Enerdyne), owner and operator of the fields and Pumping Solutions Inc. (PSI), developer of the submersible pumping system. Upon analysis of the results of each Phase, the DOE will determine if the results justify the continuation of the project and approve the next Phase to proceed or terminate the project and request that the wells be plugged. This topical report shall provide the DOE with Phase I results and conclusions reached by Enerdyne and PSI.

  12. Monitoring of the velocity field of the plasma motion under sounding of F ionospheric region by the probe waves

    NASA Astrophysics Data System (ADS)

    Sergeev, Evgeny; Komrakov, G. P.; Smyshlyaev, Sergey E.

    Results of investigations of the motions in F region of the ionosphere by means of the method of the space-frequency diversity reception are presented. Measurements of the vertical and horizontal plasma drift velocities have been performed over SURA facility (Russia) using of multifrequency dopler station for vertical sounding and diversity three point reception of the reflected radiosignals. Possibilities of a day (15 hours) monitoring of the drift velocity space at different altitudes were studied by using of the three fixed probe frequencies 4353 kHz, 5853 kHz and 7353 kHz. For another experimental series complex investigations of the pumped ionospheric volume were performed by its diagnostics at different frequencies with the short (¡ 200 mks) wide frequency band (˜ 500 kHz) and powerful (˜ 20 - 150 MW ERP) pulses. Data about a fine distribution structure of the vertical and horizontal plasma drift velocities in the turbulence plasma range were first obtained with a high frequency (˜ 1 kHz) and temporal (˜ 20 ms) resolution. The work was supported by RFBR grants 07-02-00464 and 06-02-17334.

  13. Diversity of nematodes in the yellow-necked field mouse Apodemus flavicollis from the Peripannonic region of Serbia.

    PubMed

    Čabrilo, B; Jovanović, V M; Bjelić-Čabrilo, O; Budinski, I; Blagojević, J; Vujošević, M

    2016-01-01

    Up to six nematode species were identified from 86 specimens of the yellow-necked field mouse Apodemus flavicollis from three mountainous localities known as Avala, Cer and Liškovac in Serbia. The highest prevalence of infection of 97% was recorded from Mt. Avala. Only one nematode species, Syphacia frederici, occurred in all three localities. There was complete overlap in nematode species from Mts. Avala and Liškovac, whereas the taxonomic distinctness of Mt. Cer was seen in the presence of the insect-transmitted species Rictularia proni. Locality was a statistically significant factor in all the best-fitted generalized linear models of variation in abundances. The highest level of both species richness and parasite alpha diversity (Shannon's H= 1.47) was found in the easternmost Mt. Liškovac, whereas the diversity indices were lowest for the westernmost Mt. Cer (Shannon's H= 0.48). In view of this geographical difference, the beta diversity indices were calculated along a west to east longitudinal gradient. PMID:25272984

  14. Quality of water in mines in the Western Middle Coal Field, Anthracite Region, east-central Pennsylvania

    USGS Publications Warehouse

    Reed, L.A.; Beard, M.M.; Growitz, D.J.

    1987-01-01

    The quality of mine water in the 75 sq-mi Western Middle anthracite field, Pennsylvania was determined by sampling discharges and boreholes at 60 abandoned and flooded mines during 1975-78. The Vulcan-Buck Mountain mine, east-northeast of Mahanoy City, contains an estimated 6,100 acre-ft of water with a specific conductance of 380 to 460 micromhos and a pH of 4.4 to 4.6 units. Twenty-two mines are in a 15-sq mi area between Mahanoy City and Girardville, all of which closed prior to 1958. Seven of these mines in the Mahanoy Basin may contain 30,000 acre-ft of water. Specific conductance ranges from 630 micromhos in the Tunnel mine to 1,800 micromhos in the Gilberton mine. Fifteen of these mines are in the Shenandoah complex; specific conductance ranges from 240 to 310 micromhos in mines in the eastern end of the complex to 2,400 micromhos in the western end. The specific conductance of water in 25 mines in the Mount Carmel-Shamokin area ranges from 460 to 980 micromhos. The North Franklin mine near Trevorton contains about 4,900 acre-ft of water with a specific conductance of about 1,100 micromhos. (USGS)

  15. Region-specific age effects on AMPA sensitivity: electrophysiological evidence for loss of synaptic contacts in hippocampal field CA1.

    PubMed

    Barnes, C A; Rao, G; Foster, T C; McNaughton, B L

    1992-10-01

    The effects of aging on the responsiveness of hippocampal neurons to iontophoretic application of L-glutamate and AMPA were studied in vitro. There were no effects of age on neuronal responses to L-glutamate; however, CA1 pyramidal cells of old rats, but not granule cells in the fascia dentata, showed both a smaller reduction in extracellularly-recorded synaptic responses following application of AMPA (presumably mediated by depolarization), and smaller extracellular "DC" fields (measured by subtracting the DC potentials at the dendrite and soma following AMPA application in the dendrites). To examine the cellular bases of this age-related alteration in AMPA sensitivity, two additional electrophysiological approaches were used: (1) measurement of the amplitude ratios of extracellular EPSP and fiber potential components of the Schaffer collateral-CA1 response; (2) measurement of intracellularly recorded unitary EPSPs and quantal analysis of their fluctuations. The interpretations that would be placed on four hypothetical possible outcomes of such experiments are outlined and assessed in relation to the experimental data. The pattern of results obtained in the present experiments supports the following conclusions: In old rats, individual Schaffer collateral synapses do not appear to have altered AMPA receptor properties, as neither the mean size of the unitary synaptic response nor the apparent quantal size differs between age groups; however, the data do support the conclusion that there are fewer synapses per Schaffer collateral branch in old versus young CA1 pyramidal cells.

  16. Spatial heterogeneity of the structure and stress field in Hyuga-nada region, southwest Japan, deduced from onshore and offshore seismic observations

    NASA Astrophysics Data System (ADS)

    Uehira, K.; Yakiwara, H.; Yamada, T.; Umakoshi, K.; Nakao, S.; Kobayashi, R.; Goto, K.; Miyamachi, H.; Mochizuki, K.; Nakahigashi, K.; Shinohara, M.; Kanazawa, T.; Hino, R.; Goda, M.; Shimizu, H.

    2010-12-01

    In Hyuga-nada region, the Philippine Sea (PHS) plate is subducting beneath the Eurasian (EU) plate (the southwest Japan arc) along the Nankai trough at a rate of about 5 cm per year. The seismic activity in the boundary between the PHS and the Eurasian (EU) plates varies spatially along the Nankai trough. Especially the region from off coast of Shikoku to the Bungo channel and Hyuga-nada has large variation of seismicity. Although usual microearthquake activity is active in Hyuga-nada, it is inactive near Shikoku. On the other hand, although the great earthquake (M>8) has occurred repeatedly in near Shikoku at intervals of about 100 years, in Hyuga-nada, smaller earthquakes (M7 class) has occurred at intervals of about dozens of years, and so plate coupling varies dozens of kilometers specially. Big earthquakes (M7 class) have occurred in the north region from latitude 31.6 degrees north, but it has not occurred in the south region from latitude 31.6 degrees north. The largest earthquake ever recorded in Hyuga-nada region is the 1968 Hyuga-nada earthquake (Mw 7.5). And microseismicity varies spatially. It is important to understand seismic activity, stress field, and structure in such region in order to understand seismic cycle. We performed extraordinary seismic observation in and around Hyuga-nada region. More than 20 pop-up type OBSs were deployed above hypocentral region of Hyuga-nada using Nagasaki-maru and several data loggers were deployed in order to compensate a regular seismic network on land. We detected earthquakes more than 2 times of JMA. Seismic activity in source region of the 1961 Hyuga-nada Earthquake (M7.0) is low, but around its source region, seismic activity is very high. In order to obtain a 3D seismic velocity structure and precise hypocenter distribution and focal mechanisms around the Hyuga-nada region, we used Double-Difference (DD) Tomography method developed by Zhang and Thurber (2003). We could detect the structure of subduction of

  17. Intensity modulated radiation therapy with irregular multileaf collimated field: A dosimetric study on the penumbra region with different leaf stepping patterns

    SciTech Connect

    Chow, James C. L.; Grigorov, Grigor N.; Jiang Runqing

    2006-12-15

    Using a Varian 21 EX linear accelerator with a multileaf collimator (MLC) of 120 leaves, the penumbra regions of beam profiles within an irregular multileaf collimated fields were studied. MLC fields with different leaf stepping angles from 21.8 deg. to 68.2 deg. were used. Beam profiles in different directions: (1) along the cross-line and in-line axis (2) along the leaf stepping edges of the field, and (3) parallel to the stepping edges but in the middle of the field, were measured and calculated using Kodak XV radiographic film and Pinnacle3 treatment planning system version 7.4f. These beam profiles were measured and calculated at source to axis distance=100 cm with 5 cm of solid water slab on top. On the one hand, for both cross-line and in-line beam profiles, the penumbra widths of 20%-80% did not vary with the leaf stepping angles and were about 0.4 cm. On the other hand, the penumbra widths of 10%-90% of the above two profiles varied with the stepping angles and had maximum widths of about 1.9 cm (cross-line) and 1.65 cm (in-line) for stepping angles of 38.7 deg. and 51.3 deg., respectively. For profiles crossing the 'rippled' stepping edges of the field, the penumbra widths (10%-90%) at the regions between two opposite leaves (i.e., profile end at the Y1/Y2 jaw position) decreased with the stepping angles. At the penumbra regions between two leaf edges with the tongue-and-groove structure of the same bank (i.e., profile end at the X1/X2 jaw position), the penumbra widths increased with the stepping angles. When the penumbra widths were measured between two opposite leaf edges and at corners between two leaves, the widths first decreased with the stepping angles and then increased beyond the minimum width point at stepping angle of 45 deg. The penumbra width (10%-90%) measured at the leaf edge was larger than that at the corner. For the beam profiles calculated using Pinnacle3, it is found that the results agreed well with the measurements along the cross

  18. Very large array and green bank telescope observations of Orion B (NGC 2024, W12): photodissociation region properties and magnetic field

    SciTech Connect

    Roshi, D. Anish; Goss, W. M.; Jeyakumar, S. E-mail: mgoss@nrao.edu

    2014-10-01

    We present images of C110α and H110α radio recombination line (RRL) emission at 4.8 GHz and images of H166α, C166α, and X166α RRL emission at 1.4 GHz, observed toward the star-forming region NGC 2024. The 1.4 GHz image with angular resolution ∼70'' is obtained using Very Large Array (VLA) data. The 4.8 GHz image with angular resolution ∼17'' is obtained by combining VLA and Green Bank Telescope data in order to add the short and zero spacing data in the uv plane. These images reveal that the spatial distributions of C110α line emission is confined to the southern rim of the H II region close to the ionization front whereas the C166α line emission is extended in the north-south direction across the H II region. The LSR velocity of the C110α line is 10.3 km s{sup –1} similar to that of lines observed from molecular material located at the far side of the H II region. This similarity suggests that the photodissociation region (PDR) responsible for C110α line emission is at the far side of the H II region. The LSR velocity of C166α is 8.8 km s{sup –1}. This velocity is comparable with the velocity of molecular absorption lines observed from the foreground gas, suggesting that the PDR is at the near side of the H II region. Non-LTE models for carbon line-forming regions are presented. Typical properties of the foreground PDR are T {sub PDR} ∼ 100 K, n{sub e}{sup PDR}∼5 cm{sup –3}, n {sub H} ∼ 1.7 × 10{sup 4} cm{sup –3}, and path length l ∼ 0.06 pc, and those of the far side PDR are T {sub PDR} ∼ 200 K, n{sub e}{sup PDR}∼ 50 cm{sup –3}, n {sub H} ∼ 1.7 × 10{sup 5} cm{sup –3}, and l ∼ 0.03 pc. Our modeling indicates that the far side PDR is located within the H II region. We estimate the magnetic field strength in the foreground PDR to be 60 μG and that in the far side PDR to be 220 μG. Our field estimates compare well with the values obtained from OH Zeeman observations toward NGC 2024. The H166α spectrum shows narrow (1

  19. Challenges of using electrical resistivity method to locate karst conduits-A field case in the Inner Bluegrass Region, Kentucky

    USGS Publications Warehouse

    Zhu, J.; Currens, J.C.; Dinger, J.S.

    2011-01-01

    Conduits serve as major pathways for groundwater flow in karst aquifers. Locating them from the surface, however, is one of the most challenging tasks in karst research. Geophysical methods are often deployed to help locate voids by mapping variations of physical properties of the subsurface. Conduits can cause significant contrasts of some physical properties that can be detected; other subsurface features such as water-bearing fractures often yield similar contrasts, which are difficult to distinguish from the effects of the conduits. This study used electrical resistivity method to search for an unmapped karst conduit that recharges Royal Spring in the Inner Bluegrass karst region, Kentucky, USA. Three types of resistivity techniques (surface 2D survey, quasi-3D survey, and time-lapse survey) were used to map and characterize resistivity anomalies. Some of the major anomalies were selected as drilling targets to verify the existence of the conduits. Drilling near an anomaly identified by an electrical resistivity profile resulted in successful penetration of a major water-filled conduit. The drilling results also suggest that, in this study area, low resistivity anomalies in general are associated with water-bearing features. However, differences in the anomaly signals between the water-filled conduit and other water-bearing features such as water-filled fracture zones were undistinguishable. The electrical resistivity method is useful in conduit detection by providing potential drilling targets. Knowledge of geology and hydrogeology about the site and professional judgment also played important roles in locating the major conduit. ?? 2011 Elsevier B.V.

  20. Occurrence climatology of F region field-aligned irregularities in middle latitudes as observed by a 40.8 MHz coherent scatter radar in Daejeon, South Korea

    NASA Astrophysics Data System (ADS)

    Yang, Tae-Yong; Kwak, Young-Sil; Kil, Hyosub; Lee, Young-Sook; Lee, Woo Kyoung; Lee, Jae-jin

    2015-11-01

    A new 40.8 MHz coherent scatter radar was built in Daejeon, South Korea (36.18°N, 127.14°E, dip latitude: 26.7°N) on 29 December 2009 and has since been monitoring the occurrence of field-aligned irregularities (FAIs) in the northern middle latitudes. We report on the occurrence climatology of the F region FAIs as observed by the Daejeon radar between 2010 and 2014. The F region FAIs preferentially occur around 250-350 km at 18:00-21:00 local time (postsunset FAI), around 350-450 km near midnight (nighttime FAI), around 250-350 km before sunrise (presunrise FAI), and around 160-300 km after 05:00 local time (postsunrise FAI). The occurrence rates of nighttime and presunrise FAIs are maximal during summer, though the occurrence rates of postsunset and postsunrise FAIs are maximal during the equinoxes. FAIs rarely occur during local winter. The occurrence rate of F region FAIs increases in concert with increases in solar activity. Medium-scale traveling ionospheric disturbances (MSTIDs) are known as an important source of the F region FAIs in middle latitudes. The high occurrence rate of the nighttime FAIs in local summer is consistent with the high occurrence rate of MSTIDs in that season. However, the dependence of the FAI activity on the solar cycle is inconsistent with the MSTID activity. The source of the F region FAIs in middle latitudes is an open question. Our report of different types of FAIs and their occurrence climatology may provide a useful reference for the identification of the source of the middle latitude FAIs.

  1. Field scale interaction and nutrient exchange between surface water and shallow groundwater in the Baiyang Lake region, North China Plain.

    PubMed

    Brauns, Bentje; Bjerg, Poul L; Song, Xianfang; Jakobsen, Rasmus

    2016-07-01

    Fertilizer input for agricultural food production, as well as the discharge of domestic and industrial water pollutants, increases pressures on locally scarce and vulnerable water resources in the North China Plain. In order to: (a) understand pollutant exchange between surface water and groundwater, (b) quantify nutrient loadings, and (c) identify major nutrient removal pathways by using qualitative and quantitative methods, including the geochemical model PHREEQC) a one-year study at a wheat (Triticum aestivum L.) and maize (Zea mays L.) double cropping system in the Baiyang Lake area in Hebei Province, China, was undertaken. The study showed a high influence of low-quality surface water on the shallow aquifer. Major inflowing pollutants into the aquifer were ammonium and nitrate via inflow from the adjacent Fu River (up to 29.8mg/L NH4-N and 6.8mg/L NO3-N), as well as nitrate via vertical transport from the field surface (up to 134.8mg/L NO3-N in soil water). Results from a conceptual model show an excess nitrogen input of about 320kg/ha/a. Nevertheless, both nitrogen species were only detected at low concentrations in shallow groundwater, averaging at 3.6mg/L NH4-N and 1.8mg/L NO3-N. Measurement results supported by PHREEQC-modeling indicated cation exchange, denitrification, and anaerobic ammonium oxidation coupled with partial denitrification as major nitrogen removal pathways. Despite the current removal capacity, the excessive nitrogen fertilization may pose a future threat to groundwater quality. Surface water quality improvements are therefore recommended in conjunction with simultaneous monitoring of nitrate in the aquifer, and reduced agricultural N-inputs should be considered.

  2. Field scale interaction and nutrient exchange between surface water and shallow groundwater in the Baiyang Lake region, North China Plain.

    PubMed

    Brauns, Bentje; Bjerg, Poul L; Song, Xianfang; Jakobsen, Rasmus

    2016-07-01

    Fertilizer input for agricultural food production, as well as the discharge of domestic and industrial water pollutants, increases pressures on locally scarce and vulnerable water resources in the North China Plain. In order to: (a) understand pollutant exchange between surface water and groundwater, (b) quantify nutrient loadings, and (c) identify major nutrient removal pathways by using qualitative and quantitative methods, including the geochemical model PHREEQC) a one-year study at a wheat (Triticum aestivum L.) and maize (Zea mays L.) double cropping system in the Baiyang Lake area in Hebei Province, China, was undertaken. The study showed a high influence of low-quality surface water on the shallow aquifer. Major inflowing pollutants into the aquifer were ammonium and nitrate via inflow from the adjacent Fu River (up to 29.8mg/L NH4-N and 6.8mg/L NO3-N), as well as nitrate via vertical transport from the field surface (up to 134.8mg/L NO3-N in soil water). Results from a conceptual model show an excess nitrogen input of about 320kg/ha/a. Nevertheless, both nitrogen species were only detected at low concentrations in shallow groundwater, averaging at 3.6mg/L NH4-N and 1.8mg/L NO3-N. Measurement results supported by PHREEQC-modeling indicated cation exchange, denitrification, and anaerobic ammonium oxidation coupled with partial denitrification as major nitrogen removal pathways. Despite the current removal capacity, the excessive nitrogen fertilization may pose a future threat to groundwater quality. Surface water quality improvements are therefore recommended in conjunction with simultaneous monitoring of nitrate in the aquifer, and reduced agricultural N-inputs should be considered. PMID:27372119

  3. 3D Cloud Radiative Effects on Aerosol Optical Thickness Retrievals in Cumulus Cloud Fields in the Biomass Burning Region in Brazil

    NASA Technical Reports Server (NTRS)

    Wen, Guo-Yong; Marshak, Alexander; Cahalan, Robert F.

    2004-01-01

    Aerosol amount in clear regions of a cloudy atmosphere is a critical parameter in studying the interaction between aerosols and clouds. Since the global cloud cover is about 50%, cloudy scenes are often encountered in any satellite images. Aerosols are more or less transparent, while clouds are extremely reflective in the visible spectrum of solar radiation. The radiative transfer in clear-cloudy condition is highly three- dimensional (3D). This paper focuses on estimating the 3D effects on aerosol optical thickness retrievals using Monte Carlo simulations. An ASTER image of cumulus cloud fields in the biomass burning region in Brazil is simulated in this study. The MODIS products (i-e., cloud optical thickness, particle effective radius, cloud top pressure, surface reflectance, etc.) are used to construct the cloud property and surface reflectance fields. To estimate the cloud 3-D effects, we assume a plane-parallel stratification of aerosol properties in the 60 km x 60 km ASTER image. The simulated solar radiation at the top of the atmosphere is compared with plane-parallel calculations. Furthermore, the 3D cloud radiative effects on aerosol optical thickness retrieval are estimated.

  4. INTERVALS OF RADIAL INTERPLANETARY MAGNETIC FIELDS AT 1 AU, THEIR ASSOCIATION WITH RAREFACTION REGIONS, AND THEIR APPARENT MAGNETIC FOOT POINTS AT THE SUN

    SciTech Connect

    Orlove, Steven T.; Smith, Charles W.; Vasquez, Bernard J.; Schwadron, Nathan A.; Skoug, Ruth M.; Zurbuchen, Thomas H.; Zhao Liang E-mail: Charles.Smith@unh.edu E-mail: N.Schwadron@unh.edu E-mail: thomasz@umich.edu

    2013-09-01

    We have examined 226 intervals of nearly radial interplanetary magnetic field orientations at 1 AU lasting in excess of 6 hr. They are found within rarefaction regions as are the previously reported high-latitude observations. We show that these rarefactions typically do not involve high-speed wind such as that seen by Ulysses at high latitudes during solar minimum. We have examined both the wind speeds and the thermal ion composition before, during and after the rarefaction in an effort to establish the source of the flow that leads to the formation of the rarefaction. We find that the bulk of the measurements, both fast- and slow-wind intervals, possess both wind speeds and thermal ion compositions that suggest they come from typical low-latitude sources that are nominally considered slow-wind sources. In other words, we find relatively little evidence of polar coronal hole sources even when we examine the faster wind ahead of the rarefaction regions. While this is in contrast to high-latitude observations, we argue that this is to be expected of low-latitude observations where polar coronal hole sources are less prevalent. As with the previous high-latitude observations, we contend that the best explanation for these periods of radial magnetic field is interchange reconnection between two sources of different wind speed.

  5. Development of a regional ocean color algorithm using field- and satellite-derived datasets: Long Bay, South Carolina

    NASA Astrophysics Data System (ADS)

    Ryan, Kimberly Susan

    Coastal and inland waters represent a diverse set of resources that support natural habitat and provide numerous ecosystem services to the human population. Conventional techniques to monitor water quality using in situ sensors and laboratory analysis of water samples can be very time- and cost-intensive. Alternatively, remote sensing techniques offer better spatial coverage and temporal resolution to accurately characterize the dynamic and unique water quality parameters. However, bio and geo-optical models are required that relate the remotely sensed spectral data with color producing agents (CPAs) that define the water quality. These CPAs include chlorophyll-a, suspended sediments, and colored-dissolved organic matter. Developing these models may be challenging for coastal environments such as Long Bay, South Carolina, due to the presence of multiple optically interfering CPAs. In this work, a regionally tiered ocean color model was developed using band ratio techniques to specifically predict the variability of chlorophyll-a concentrations in the turbid Long Bay waters. This model produced higher accuracy results (r-squared = 0.62; RMSE = 0.87 micrograms per liter) compared to the existing models, which gave a highest r-squared value of 0.58 and RMSE = 0.99 micrograms per liter. To further enhance the retrievals of chlorophyll-a in these optically complex waters, a novel multivariate-based approach was developed using current generation hyperspectral data. This approach uses a partial least-squares regression model to identify wavelengths that are more sensitive to chlorophyll-a relative to other associated CPAs. This model was able to explain 80% of the observed chlorophyll-a variability in Long Bay with RMSE = 2.03 micrograms per liter. This approach capitalizes on the spectral advantage gained from hyperspectral sensors, thus providing a more robust predicting model. This enhanced mode of water quality monitoring in marine environments will provide insight

  6. Within-field and regional-scale accuracies of topsoil organic carbon content prediction from an airborne visible near-infrared hyperspectral image combined with synchronous field spectra for temperate croplands

    NASA Astrophysics Data System (ADS)

    Vaudour, Emmanuelle; Gilliot, Jean-Marc; Bel, Liliane; Lefevre, Josias; Chehdi, Kacem

    2016-04-01

    This study was carried out in the framework of the TOSCA-PLEIADES-CO of the French Space Agency and benefited data from the earlier PROSTOCK-Gessol3 project supported by the French Environment and Energy Management Agency (ADEME). It aimed at identifying the potential of airborne hyperspectral visible near-infrared AISA-Eagle data for predicting the topsoil organic carbon (SOC) content of bare cultivated soils over a large peri-urban area (221 km2) with intensive annual crop cultivation and both contrasted soils and SOC contents, located in the western region of Paris, France. Soils comprise hortic or glossic luvisols, calcaric, rendzic cambisols and colluvic cambisols. Airborne AISA-Eagle images (400-1000 nm, 126 bands) with 1 m-resolution were acquired on 17 April 2013 over 13 tracks. Tracks were atmospherically corrected then mosaicked at a 2 m-resolution using a set of 24 synchronous field spectra of bare soils, black and white targets and impervious surfaces. The land use identification system layer (RPG) of 2012 was used to mask non-agricultural areas, then calculation and thresholding of NDVI from an atmospherically corrected SPOT4 image acquired the same day enabled to map agricultural fields with bare soil. A total of 101 sites, which were sampled either at the regional scale or within one field, were identified as bare by means of this map. Predictions were made from the mosaic AISA spectra which were related to SOC contents by means of partial least squares regression (PLSR). Regression robustness was evaluated through a series of 1000 bootstrap data sets of calibration-validation samples, considering those 75 sites outside cloud shadows only, and different sampling strategies for selecting calibration samples. Validation root-mean-square errors (RMSE) were comprised between 3.73 and 4.49 g. Kg-1 and were ~4 g. Kg-1 in median. The most performing models in terms of coefficient of determination (R²) and Residual Prediction Deviation (RPD) values were the

  7. ST5 Observations of the Imbalance of Region 1 and 2 Field-Aligned Currents and Its Implication to the Cross-Polar Cap Pedersen Currents

    NASA Technical Reports Server (NTRS)

    Le, Guan; Slavin, J. A.; Strangeway, Robert

    2011-01-01

    In this study, we use the in-situ magnetic field observations from Space Technology 5 mission to quantify the imbalance of Region 1 (R1) and Region 2 (R2) currents. During the three-month duration of the ST5 mission, geomagnetic conditions range from quiet to moderately active. We find that the R1 current intensity is consistently stronger than the R2 current intensity both for the dawnside and the duskside large-scale field-aligned current system. The net currents flowing into (out of) the ionosphere in the dawnside (duskside) are in the order of 5% of the total R1 currents. We also find that the net currents flowing into or out of the ionosphere are controlled by the solar wind-magnetosphere interaction in the same way as the