Science.gov

Sample records for field evolution isotopic

  1. Oxygen isotope evolution of the Lake Owyhee volcanic field, Oregon, and implications for low-δ18O magmas of the Snake River Plain - Yellowstone hotspot

    NASA Astrophysics Data System (ADS)

    Blum, T.; Kitajima, K.; Nakashima, D.; Valley, J. W.

    2013-12-01

    The Snake River Plain - Yellowstone (SRP-Y) hotspot trend is one of the largest known low-δ18O magmatic provinces, yet the timing and distribution of hydrothermal alteration relative to hotspot magmatism remains incompletely understood. Existing models for SRP-Y low-δ18O magma genesis differ regarding the timing of protolith alteration (e.g. Eocene vs. present), depth at which alteration occurs (e.g. 15 km vs. <5 km), and physical controls on the extent of alteration (e.g. caldera collapse, crustal scale fluid flow, etc.). We expand the existing oxygen isotope data set for zircon in the Lake Owyhee volcanic field (LOVF) of east central Oregon to further identify magmatic oxygen isotope trends within the field. These data offer insight into the timing of alteration and the extent of the greater SRP-Y low-δ18O province, as well as the conditions that generate large low-δ18O provinces. 16-14 Ma silicic volcanism in the LOVF is linked to the pre-14 Ma SRP-Y hotspot, with volcanism partially overlapping extension in the north-south trending Oregon-Idaho Graben (OIG). Ion microprobe analyses of zircons from 16 LOVF silicic lavas and tuffs reveal homogeneous zircons on both the single grain and hand sample scales: individual samples have 2 S.D. for δ18O ranging from 0.27 to 0.96‰ (SMOW), and sample averages ranging from 1.8 to 6.0‰, excluding texturally chaotic and/or porous zircons which have δ18O values as low as 0.0‰. All low-δ18O LOVF magmas, including the caldera-forming Tuff of Leslie Gulch and Tuff of Spring Creek, are confined to the OIG, although not all zircons from within the OIG have low δ18O values. The presence and sequence of low-δ18O magmas in the LOVF and adjacent central Snake River Plain (CSRP) cannot be explained by existing caldera subsidence or pre-hotspot source models. These data, however, combined with volumetrically limited low-δ18O material in the adjacent Idaho Batholith and Basin and Range, are consistent with low-δ18O magmas

  2. Isotopic and trace element compositions of upper mantle and lower crustal xenoliths, Cima volcanic field, California: Implications for evolution of the subcontinental lithospheric mantle

    USGS Publications Warehouse

    Mukasa, S.B.; Wilshire, H.G.

    1997-01-01

    Ultramafic and mafic xenoliths from the Cima volcanic field, southern California, provide evidence of episodic modification of the upper mantle and underplating of the crust beneath a portion of the southern Basin and Range province. The upper mantle xenoliths include spinel peridotite and anhydrous and hydrous pyroxenite, some cut by igneous-textured pyroxenite-gabbro veins and dikes and some by veins of amphibole ?? plagioclase. Igneous-textured pyroxenites and gabbros like the dike rocks also occur abundantly as isolated xenoliths inferred to represent underplated crust. Mineral and whole rock trace element compositions among and within the different groups of xenoliths are highly variable, reflecting multiple processes that include magma-mantle wall rock reactions, episodic intrusion and it filtration of basaltic melts of varied sources into the mantle wall rock, and fractionation. Nd, Sr, and Pb isotopic compositions mostly of clinopyroxene and plagioclase mineral separates show distinct differences between mantle xenoliths (??Nd = -5.7 to +3.4; 87Sr/86Sr = 0.7051 - 0.7073; 206Pb/204Pb = 19.045 - 19.195) and the igneous-textured xenoliths (??Nd = +7.7 to +11.7; 87Sr/86Sr = 0.7027 - 0.7036 with one carbonate-affected outlier at 0.7054; and 206Pb/204Pb = 18.751 - 19.068), so that they cannot be related. The igneous-textured pyroxenites and gabbros are similar in their isotopic compositions to the host basaltic rocks, which have ??Nd of+5.1 to +9.3; 87Sr/86Sr of 0.7028 - 0.7050, and 206Pb/204Pb of 18.685 - 21.050. The igneous-textured pyroxenites and gabbros are therefore inferred to be related to the host rocks as earlier cogenetic intrusions in the mantle and in the lower crust. Two samples of peridotite, one modally metasomatized by amphibole and the other by plagioclase, have isotopic compositions intermediate between the igneous-textured xenoliths and the mantle rock, suggesting mixing, but also derivation of the metasomatizing magmas from two separate and

  3. H, O, Sr, Nd, and Pb isotope geochemistry of the Latir volcanic field and cogenetic intrusions, New Mexico, and relations between evolution of a continental magmatic center and modifications of the lithosphere

    USGS Publications Warehouse

    Johnson, C.M.; Lipman, P.W.; Czamanske, G.K.

    1990-01-01

    Over 200 H, O, Sr, Nd, and Pb isotope analyses, in addition to geologic and petrologic constraints, document the magmatic evolution of the 28.5-19 Ma Latir volcanic field and associated intrusive rocks, which includes multiple stages of crustal assimilation, magma mixing, protracted crystallization, and open- and closed-system evolution in the upper crust. In contrast to data from younger volcanic centers in northern New Mexico, relatively low and restricted primary ??18O values (+6.4 to +7.4) rule out assimilation of supracrustal rocks enriched in 18O. Initial 87Sr/86Sr ratios (0.705 to 0.708), ??18O values (-2 to-7), and 206Pb/204Pb ratios (17.5 to 18.4) of metaluminous precaldera volcanic rocks and postcaldera plutonic rocks suggest that most Latir rocks were generated by fractional crystallization of substantial volumes of mantle-derived basaltic magma that had near-chondritic Nd isotope ratios, accompanied by assimilation of crustal material in two main stages: 1) assimilation of non-radiogenic lower crust, followed by 2) assimilation of middle and upper crust by inter-mediate-composition magmas that had been contaminated during the first stage. Magmatic evolution in the upper crust peaked with eruption of the peralkaline Amalia Tuff (???26 Ma), which evolved from metaluminous parental magmas. A third stage of late, roofward assimilation of Proterozoic rocks in the Amalia Tuff magma is indicated by trends in initial 87Sr/86Sr and 206Pb/204Pb ratios from 0.7057 to 0.7098 and 19.5 to 18.8, respectively, toward the top of the pre-eruptive magma chamber. Highly evolved postcaldera plutons are generally fine grained and are zoned in initial 87Sr/86Sr and 206Pb/204Pb ratios, varying from 0.705 to 0.709 and 17.8 to 18.6, respectively. In contrast, the coarser-grained Cabresto Lake (???25 Ma) and Rio Hondo (???21 Ma) plutons have relatively homogeneous initial 87Sr/86Sr and 206Pb/204Pb ratios of approximately 0.7053 and 17.94 and 17.55, respectively. ??18O values for

  4. Manus Water Isotope Investigation Field Campaign Report

    SciTech Connect

    Conroy, Jessica L; Cobb, Kim M; Noone, David

    2016-03-01

    The objective of this field campaign was to investigate climatic controls on the stable isotopic composition of water vapor, precipitation, and seawater in the western tropical Pacific. Simultaneous measurements of the stable isotopic composition of vapor and precipitation from April 28 to May 8, 2013, at the Manus Tropical Western Pacific Atmospheric Radiation Measurement site, provided several key insights into the nature of the climate signal archived in precipitation and vapor isotope ratios. We observed a large shift from lower to higher isotopic values in vapor and precipitation because of the passage of a mesoscale convective system west of the site and a transition from a regional stormy period into a more quiescent period. During the quiescent period, the stable isotopic composition of vapor and precipitation indicated the predominance of oceanic evaporation in determining the isotopic composition of boundary-layer vapor and local precipitation. There was not a consistent relationship between intra-event precipitation amount at the site and the stable isotopic composition of precipitation, thus challenging simplified assumptions about the isotopic “amount effect” in the tropics on the time scale of individual storms. However, some storms did show an amount effect, and deuterium excess values in precipitation had a significant relationship with several meteorological variables, including precipitation, temperature, relative humidity, and cloud base height across all measured storms. The direction of these relationships points to condensation controls on precipitation deuterium excess values on intra-event time scales. The relationship between simultaneous measurements of vapor and precipitation isotope ratios during precipitation events indicates the ratio of precipitation-to-vapor isotope ratios can diagnose precipitation originating from a vapor source unique from boundary-layer vapor and rain re-evaporation.

  5. Martian stable isotopes: volatile evolution, climate change and exobiological implications.

    PubMed

    Jakosky, B M

    1999-01-01

    Measurements of the ratios of stable isotopes in the martian atmosphere and crust provide fundamental information about the evolution of the martian volatile and climate system. Current best estimates of the isotope ratios indicate that there has been substantial loss of gases to space and exchange of gases between the atmosphere and the crust throughout geologic time; exchange may have occurred through circulation of water in hydrothermal systems. Processes of volatile evolution and exchange will fractionate the isotopes in a manner that complicates the possible interpretation of isotopic data in terms of any fractionation that may have been caused by martian biota, and must be understood first. Key measurements are suggested that will enhance our understanding of the non-biological fractionation of the isotopes and of the evolution of the martian volatile system.

  6. Carbon Monoxide Isotopes: On the Trail of Galactic Chemical Evolution

    NASA Technical Reports Server (NTRS)

    Langer, W.

    1995-01-01

    From the early days of the discovery of radio emission from carbon monoxide it was realized that it offered unusual potential for under- standing the chemical evolution of the Galaxy and external galaxies through measurements of molecular isotopes. These results bear on stellar nucleosynthesis, star formation, and gases in the interstellar medium. Progress in isotopic radio measurements will be reviewed.

  7. Chronology and Isotopic Constraints on Lunar Evolution

    NASA Astrophysics Data System (ADS)

    Snyder, G. A.; Borg, L. E.; Nyquist, L. E.; Taylor, L. A.

    Isotopic systematics of lunar rocks indicate three major, distinct, reservoirs in the Moon: (1) the urKREEP residuum of a global lunar magma ocean with high 238U/204Pb (µ) >500, high Rb/Sr and thus elevated 87Sr/86Sr, and low Sm/Nd and consequent negative ɛNd values; (2) a “primordial” deep mantle source with µ values more typical of Earth, low Rb/Sr and 87Sr/86Sr, high Sm/Nd, and extremely positive ɛNd values, and positive to variable ɛW values; and (3) a shallower mantle reservoir that has similar µ values to the second, intermediate Nd values, low to intermediate 87Sr/86Sr, and chondritic ɛW values. The vast majority of lunar samples can be modeled by mixing these three reservoirs. A possible fourth source, with µ values from 35 to 100, is represented by a few early crustal rocks, the ferroan anorthosites. Ferroan anorthosites, ostensibly the earliest lunar crustal rocks, exhibit a range of ages from 4.56 to 4.29 Ga and initial ɛNd values (0.9 to 3.1). These ages are inconsistent with derivation of all these rocks from a short-lived magma ocean, as suggested by 182W and 142Nd anomalies in lunar highland rocks and basalts. The positive Nd values of the ferroan anorthosites indicate time-integrated LREE-depletion, which is also inconsistent with direct derivation from a progressively LREE-enriched magma ocean. Instead, the derivation of ferroan anorthosites may involve convective overturn of a magma ocean and consequent mixing of LREE-enriched, plagioclase-rich, lower crust with underlying LREE-depleted, mafic cumulate sources. Later modification of this early anorthositic crust involved serial KREEP basalt magmatism, ponding in the crust, and crystallization of highland alkali suite and magnesian suite plutons from 4.4 to 3.9 Ga. The end of this major period of crustal evolution roughly coincides in time with a fall-off in large basin-forming impacts. Argon-40 argon-39 analyses of a variety of lunar samples at the different landing sites have allowed

  8. Multiple sulfur isotopes and the evolution of Earth's surface sulfur cycle

    NASA Astrophysics Data System (ADS)

    Johnston, David T.

    2011-05-01

    The distribution of sulfur isotopes in geological materials reveals information about Earth history and biogeochemical processes. Research during the last several decades has used sulfur isotope geochemistry as a tool to better understand microbial processes ( Harrison and Thode, 1958; Kaplan, 1975; Monster et al., 1979; Peck, 1959, 1962; Rees, 1973) and sediment diagenesis ( Berner, 1969, 1982; Canfield et al., 1993b). Earth historians also realized this potential, as there exists a rich record of environmental change within the sedimentary records ( Canfield and Teske, 1996; Claypool et al., 1980; Goodwin et al., 1976; Habicht et al., 2002; Kah et al., 2004; Monster et al., 1979; Shen et al., 2001; Strauss, 1993; Thode and Goodwin, 1983). These applications have championed the use of the two most abundant sulfur isotopes [ 32S and 34S], and provide a rich introduction to what the sulfur isotope record has to offer [see ( Canfield, 2004; Canfield and Raiswell, 1999)]. Within the last decade, this information has been supplemented by new data derived from the less abundant isotopes [ 33S and 36S]. The measurement of all four stable sulfur isotopes - multiple sulfur isotope geochemistry - has expanded our understanding of biological evolution and activity, atmospheric chemistry and transport, crustal recycling, and many more fields related to Earth surface processes [see ( Farquhar and Wing, 2003)]. Here, I present a review of recent works in multiple sulfur isotope geochemistry with a focus on results that inform our understanding of biogeochemical processes and Earth surface evolution.

  9. Shape evolution with angular momentum in Lu isotopes

    NASA Astrophysics Data System (ADS)

    Kardan, Azam; Sayyah, Sepideh

    2016-06-01

    The nuclear potential energies of Lu isotopes with neutron number N = 90 - 98 up to high spins are computed within the framework of the unpaired cranked Nilsson-Strutinsky method. The potential and the macroscopic Lublin-Strasbourg drop (LSD) energy-surface diagrams are analyzed in terms of quadrupole deformation and triaxiality parameter. The shape evolution of these isotopes with respect to angular momentum, as well as the neutron number is studied.

  10. Stable isotope paleoaltimetry and the evolution of landscapes and life

    NASA Astrophysics Data System (ADS)

    Mulch, Andreas

    2016-01-01

    circulation and associated teleconnections in the global climate system that affect δ18O or δD of precipitation; (2) Evaluating on a case-by-case basis if temporal and spatial changes in isotope lapse rates influence interpretations of paleoelevation; (3) Interfacing with phylogenetic techniques to evaluate competing hypotheses with respect to the timing of surface uplift and the diversification of lineages; (4) Characterizing feedbacks between changes in surface elevation and atmospheric circulation as these are likely to be equally important to the diversification of lineages than changes in surface elevation alone. Tackling these challenges will benefit from the accelerating pace of improved data-model comparisons and rapidly evolving geochemical techniques for reconstructing precipitation patterns. Most importantly, stable isotope paleoaltimetry has the potential to develop into a truly interdisciplinary field if innovative tectonic/paleoclimatic and evolutionary biology/phylogenetic approaches are integrated into a common research framework. It therefore, opens new avenues to study the long-term evolution of landscapes and life.

  11. Mass transfer and carbon isotope evolution in natural water systems

    USGS Publications Warehouse

    Wigley, T.M.L.; Plummer, L.N.; Pearson, F.J.

    1978-01-01

    This paper presents a theoretical treatment of the evolution of the carbon isotopes C13 and C14 in natural waters and in precipitates which derive from such waters. The effects of an arbitrary number of sources (such as dissolution of carbonate minerals and oxidation of organic material) and sinks (such as mineral precipitation, CO2 degassing and production of methane), and of equilibrium fractionation between solid, gas and aqueous phases are considered. The results are expressed as equations relating changes in isotopic composition to changes in conventional carbonate chemistry. One implication of the equations is that the isotopic composition of an aqueous phase may approach a limiting value whenever there are simultaneous inputs and outputs of carbonate. In order to unambiguously interpret isotopic data from carbonate precipitates and identify reactants and products in reacting natural waters, it is essential that isotopic changes are determined chiefly by reactant and product stoichiometry, independent of reaction path. We demonstrate that this is so by means of quantitative examples. The evolution equations are applied to: 1. (1) carbon-14 dating of groundwaters; 2. (2) interpretation of the isotopic composition of carbonate precipitates, carbonate cements and diagenetically altered carbonates; and 3. (3) the identification of chemical reaction stoichiometry. These applications are illustrated by examples which show the variation of ??C13 in solutions and in precipitates formed under a variety of conditions involving incongruent dissolution, CO2 degassing, methane production and mineral precipitation. ?? 1978.

  12. Evolution of twisted magnetic fields

    SciTech Connect

    Zweibel, E.G.; Boozer, A.H.

    1985-02-01

    The magnetic field of the solar corona evolves quasistatically in response to slowly changing photospheric boundary conditions. The magnetic topology is preserved by the low resistivity of the solar atmosphere. We show that a magnetic flux coordinate system simplifies the problem of calculating field evolution with invariant topology. As an example, we calculate the equilibrium of a thin magnetic flux tube with small twist per unit length.

  13. Modelling the isotopic evolution of the Earth.

    PubMed

    Paul, Debajyoti; White, William M; Turcotte, Donald L

    2002-11-15

    We present a flexible multi-reservoir (primitive lower mantle, depleted upper mantle, upper continental crust, lower continental crust and atmosphere) forward-transport model of the Earth, incorporating the Sm-Nd, Rb-Sr, U-Th-Pb-He and K-Ar isotope-decay systematics. Mathematically, the model consists of a series of differential equations, describing the changing abundance of each nuclide in each reservoir, which are solved repeatedly over the history of the Earth. Fluxes between reservoirs are keyed to heat production and further constrained by estimates of present-day fluxes (e.g. subduction, plume flux) and current sizes of reservoirs. Elemental transport is tied to these fluxes through 'enrichment factors', which allow for fractionation between species. A principal goal of the model is to reproduce the Pb-isotope systematics of the depleted upper mantle, which has not been done in earlier models. At present, the depleted upper mantle has low (238)U/(204)Pb (mu) and (232)Th/(238)U (kappa) ratios, but Pb-isotope ratios reflect high time-integrated values of these ratios. These features are reproduced in the model and are a consequence of preferential subduction of U and of radiogenic Pb from the upper continental crust into the depleted upper mantle. At the same time, the model reproduces the observed Sr-, Nd-, Ar- and He-isotope ratios of the atmosphere, continental crust and mantle. We show that both steady-state and time-variant concentrations of incompatible-element concentrations and ratios in the continental crust and upper mantle are possible. Indeed, in some cases, incompatible-element concentrations and ratios increase with time in the depleted mantle. Hence, assumptions of a progressively depleting or steady-state upper mantle are not justified. A ubiquitous feature of this model, as well as other evolutionary models, is early rapid depletion of the upper mantle in highly incompatible elements; hence, a near-chondritic Th/U ratio in the upper mantle

  14. Mars volatile evolution - Evidence from stable isotopes

    NASA Technical Reports Server (NTRS)

    Jakosky, Bruce M.

    1991-01-01

    In the most strongly favored of the scenarios presently considered for Martian atmospheric evolution, oxygen fractionation by escape into space is diluted by exchange by a nonatmospheric reservoir as polar ice-water deposits exchange with atmospheric water over geologic time. The exchange of oxygen between atmospheric CO2 and H2O may account for the fractionation observed between those two species. Observations and numerical modeling efforts that may test the present results are suggested.

  15. Crustal evolution reflected in seawater Sr and Nd isotope records

    NASA Astrophysics Data System (ADS)

    Peucker-Ehrenbrink, B.

    2013-12-01

    Radiogenic isotope ratios record time-integrated parent-daughter ratios, and are thus sensitive to chemical composition and time. The oceans recieve the integrated runoff from the continental surface and preserve these signals in marine sedimentary records. Radiogenic isotope records of seawater and marine sediments have been reconstructed over the past five decades for many of the radiogenic isotope systems. For some systems (Sr) excellent records do exist that integrate seawater signals for the entire ocean. In contrast, globally averaged records of radiogenic isotopes with short marine residence times (Nd, Pb) are much more difficult to establish. Here, I attempt to link long-term (Phanerozoic) records of marine radiogenic isotope systems to records of the evolution of the continental surface that interacts with the hydrologic cycle. For the present we can show that the dissolved and particulate loads from the continents integrate different portions of the continental surface (Peucker-Ehrenbrink et al., 2010, G-cubed 11, doi: 10.1029/2009GC002869). For instance, the areas generating the dissolved load are characterized by significantly older bedrock (~400 Myr) than those generating the particulate load (~320 Myr). The fact that both are younger than the mean bedrock age of the non-glaciated, exorheic portion of the continental surface (~450 Myr) reflects the disproportionate role active margins, high-standing ocean island, and weathering and erosion of young sedimentary strata play in exporting dissolved matter and sedimnent to the oceans. Using present-day systematics as a guide, I argue that the first-order trough-like shape of the Phanerozoic marine Sr isotope record reflects the rejuvenation of the continental surface involved in exporting Sr to the ocean from the early Phanerozoic to the mid Jurassic that is followed by an 'aging' that continues into the Quaternary. This long-term evolution of the continental surface is mirrored by a similar - though more

  16. Mo isotope fractionation during hydrothermal evolution of porphyry Cu systems

    NASA Astrophysics Data System (ADS)

    Shafiei, Behnam; Shamanian, GholamHossein; Mathur, Ryan; Mirnejad, Hassan

    2015-03-01

    We present Mo isotope compositions of molybdenite types from three successive stages of ore deposition in several porphyry copper deposits of the Kerman region, Iran. The data provide new insights into controlling processes on Mo isotope fractionation during the hydrothermal evolution of porphyry systems. The Mo isotope compositions of 27 molybdenite samples show wide variations in δ97Mo ranging from -0.37 to +0.92 ‰. The data reveal that molybdenites in the early and transitional stages of mineralization (preferentially 2H polytypes; δ97Mo mean = 0.35 ‰) have higher δ97Mo values than late stage (mainly 3R polytypes; δ97Mo mean = 0.02 ‰) molybdenites. This trend suggests that fractionation of Mo isotopes occurred in high-temperature stages of mineralization and that hydrothermal systems generally evolve towards precipitation of molybdenite with lower δ97Mo values. Taking into account the genetic models proposed for porphyry Cu deposits along with the temperature-dependent fractionation of Mo isotope ratios, it is proposed that large variations of Mo isotopes in the early and the transitional stages of ore deposition could be controlled by the separation of the immiscible ore-forming fluid phases with different density, pH, and ƒO2 properties (i.e., brine and vapor). The fractionation of Mo isotopes during fluid boiling and Rayleigh distillation processes likely dominates the Mo isotope budget of the remaining ore-forming fluids for the late stage of mineralization. The lower δ97Mo values in the late stage of mineralization can be explained by depletion of the late ore-forming hydrothermal solutions in 97Mo, as these fluids have moved to considerable distance from the source. Finally, the relationship observed between MoS2 polytypes (2H and 3R) and their Mo isotopic compositions can be explained by the molecular vibration theory, in which heavier isotopes are preferentially partitioned into denser primary 2H MoS2 crystals.

  17. Atomic Beam Laser Spectrometer for In-field Isotopic Analysis

    SciTech Connect

    Castro, Alonso

    2016-06-22

    This is a powerpoint presentation for the DTRA quarterly program review that goes into detail about the atomic beam laser spectrometer for in-field isotopic analysis. The project goals are the following: analysis of post-detonation debris, determination of U and Pu isotopic composition, and fieldable prototype: < 2ft3, < 1000W.

  18. Isotopic evolution of the idaho batholith and Challis intrusive province, Northern US Cordillera

    USGS Publications Warehouse

    Gaschnig, R.M.; Vervoort, J.D.; Lewis, R.S.; Tikoff, B.

    2011-01-01

    The Idaho batholith and spatially overlapping Challis intrusive province in the North American Cordillera have a history of magmatism spanning some 55 Myr. New isotopic data from the ???98 Ma to 54 Ma Idaho batholith and ???51 Ma to 43 Ma Challis intrusions, coupled with recent geochronological work, provide insights into the evolution of magmatism in the Idaho segment of the Cordillera. Nd and Hf isotopes show clear shifts towards more evolved compositions through the batholith's history and Pb isotopes define distinct fields correlative with the different age and compositionally defined suites of the batholith, whereas the Sr isotopic compositions of the various suites largely overlap. The subsequent Challis magmatism shows the full range of isotopic compositions seen in the batholith. These data suggest that the early suites of metaluminous magmatism (98-87 Ma) represent crust-mantle hybrids. Subsequent voluminous Atlanta peraluminous suite magmatism (83-67 Ma) results primarily from melting of different crustal components. This can be attributed to crustal thickening, resulting from either subduction processes or an outboard terrane collision. A later, smaller crustal melting episode, in the northern Idaho batholith, resulted in the Bitterroot peraluminous suite (66-54 Ma) and tapped different crustal sources. Subsequent Challis magmatism was derived from both crust and mantle sources and corresponds to extensional collapse of the over-thickened crust. ?? The Author 2011. Published by Oxford University Press. All rights reserved.

  19. Possible observation of the isotope effect during field evaporation

    NASA Astrophysics Data System (ADS)

    Golubev, O. L.; Blashenkov, N. M.

    2016-01-01

    The field evaporation of tungsten at high temperatures (T ~ 2000 K) has been studied using a magnetic mass spectrometer equipped with a field ion source. Only low-charge ions (W+2 and W+) have been observed in the course of evaporation for all tungsten isotopes. For singly charged ions only, the number of ions of the heaviest isotope, 186W+, was about one order of magnitude lower than that corresponding to the standard isotope ratio for natural tungsten. An explanation of this anomalous phenomenon is proposed.

  20. Plutonium isotopes in the atmosphere of Central Europe: Isotopic composition and time evolution vs. circulation factors.

    PubMed

    Kierepko, Renata; Mietelski, Jerzy W; Ustrnul, Zbigniew; Anczkiewicz, Robert; Wershofen, Herbert; Holgye, Zoltan; Kapała, Jacek; Isajenko, Krzysztof

    2016-11-01

    This paper reports evidence of Pu isotopes in the lower part of the troposphere of Central Europe. The data were obtained based on atmospheric aerosol fraction samples collected from four places in three countries (participating in the informal European network known as the Ring of Five (Ro5)) forming a cell with a surface area of about 200,000km(2). We compared our original data sets from Krakow (Poland, 1990-2007) and Bialystok (Poland, 1991-2007) with the results from two other locations, Prague (Czech Republic; 1997-2004) and Braunschweig (Germany; 1990-2003) to find time evolution of the Pu isotopes. The levels of the activity concentration for (238)Pu and for ((239+240))Pu were estimated to be a few and some tens of nBqm(-3), respectively. However, we also noted some results were much higher (even about 70 times higher) than the average concentration of (238)Pu in the atmosphere. The achieved complex data sets were used to test a new approach to the problem of solving mixing isotopic traces from various sources (here up to three) in one sample. Results of our model, supported by mesoscale atmospheric circulation parameters, suggest that Pu from nuclear weapon accidents or tests and nuclear burnt-up fuel are present in the air.

  1. Stable isotope evolution and paleolimnology of ancient Lake Creede

    USGS Publications Warehouse

    Rye, Robert O.; Bethke, Philip M.; Finkelstein, David B.

    2000-01-01

    The lacustrine carbonate and travertine (tufa) deposits of ancient Lake Creede preserve a remarkable record of the isotopic evolution of the lake. That record indicates that the δ18O of the lake water, and by analogy its salinity, evolved through evaporation. Limited ans less reliable data on hydrous minerals and fluid inclusions in early diagenetic carbonates indicate that the δD of the lake waters also evolved through evaporation. The isotope data place restrictions on models of the physical limnology of the lake and its evolution. The closed-basin Lake Creede formed shortly after collapse of the 26.9 Ma Creede caldera. Throughout most of its history it occupied the northern three quarters of the moat between the resurgent dome and wall of the caldera. The Creede Formation was deposited in the basin, dominantly as lacustrine sediments. Travertine mounds interfinger with Creede Formation sediments along the inner and outer margins of the lake basin. An estimated one-half of the original thickness of the Creede Formation has been lost mainly to erosion although scattered remnants of the upper portion remain on the caldera walls. Two diamond core holes (CCM-1 and CCM-2) sampled the uneroded portion of the Creede Formation as part of the U.S. Continental Drilling Program. Volcaniclastic material, including tuff units deposited directly into the lake and ash washed in from the watershed, compose the main lithologies of the Creede Formation. These volcaniclastic strata were produced by episodic ring-fracture volcanism. Lacustrine carbonates make up about 15% of the section sampled by drill core. They occur as 1 mm to 2 cm low-Mg calcite laminar alternating with siliciclastic laminar in scattered intervals throughout the preserved section. The carbonate laminar are accumulations of 5-20 μm crystallites (microparites) and brine shrimmp fecal pellets (peloids) composed mainly of microparasite particles. Low-Mg calcite also occurs as an early diagenetic replacement of

  2. Os isotopes in SNC meteorites and their implications to the early evolution of Mars and Earth

    NASA Technical Reports Server (NTRS)

    Jagoutz, E.; Luck, J. M.; Othman, D. Ben; Wanke, H.

    1993-01-01

    A new development on the measurement of the Os isotopic composition by mass spectrometry using negative ions opened a new field of applications. The Re-Os systematic provides time information on the differentiation of the nobel metals. The nobel metals are strongly partitioned into metal and sulphide phases, but also the generation of silicate melts might fractionate the Re-Os system. Compared to the other isotopic systems which are mainly dating the fractionation of the alkalis and alkali-earth elements, the Re-Os system is expected to disclose entirely new information about the geochemistry. Especially the differentiation and early evolution of the planets such as the formation of the core will be elucidated with this method.

  3. Isotopic abundances - Inferences on solar system and planetary evolution

    NASA Astrophysics Data System (ADS)

    Wasserburg, G. J.

    1987-12-01

    For matter that has been removed from a region of nucleosynthetic activity and the effects of interactions with nuclear active particles, the only changes in nuclear abundances that can occur in an isolated system derive from the decay of radioactive nuclei of an element to yield the nucleus of another element. These two related nuclei furnish the absolute chronometers of geologic and cosmic time, through the decay of spontaneously radioactive parent nuclei and the accumulation of daughter nuclei. For systems related to such cosmic processes as the formation of the solar system from the precursor interstellar medium, and involving the very early evolution of the sun, there may arise considerable complexity, due to the intrinsic isotopic heterogeneity of the medium and the presence of short-lived nuclei.

  4. Ca isotope fingerprints of early crust-mantle evolution

    NASA Astrophysics Data System (ADS)

    Kreissig, K.; Elliott, T.

    2005-01-01

    The utility of 40Ca/ 44Ca as a tracer of pre-existing crustal contributions in early Archaean cratons has been explored to identify traces of Hadean crust and to assess the style of continental growth. The relatively short half-life of 40K (˜1.3 Gy) means that its decay to 40Ca occurs dominantly during early Earth History. If Archaean crust had a significant component derived from a more ancient protolith, as anticipated by "steady state" crustal evolution models, this should be clearly reflected in radiogenic 40Ca/ 44Ca ratios (or positive initial ɛ Ca) in different Archaean cratons. A high precision thermal ionisation technique has been used to analyse the 40Ca/ 44Ca ratios of plagioclase separates and associated whole rocks in ˜3.6 Ga (early Archaean) samples from Zimbabwe and West Greenland. Three out of four tonalite, trondhjemite, granodiorite (TTG) suite samples from Zimbabwe display initial 40Ca/ 44Ca ratios indistinguishable from our measured modern MORB value (i.e., ɛ Ca(3.6) ˜ 0). Greenland samples, however, are very diverse ranging from ɛ Ca(3.7) = 0.1 in mafic pillow lavas and felsic sheets from the Isua supracrustal belt, up to very radiogenic signatures (ɛ Ca(3.7) = 2.9) in both mafic rocks of the Akilia association and felsic TTG from the coastal Amîtsoq gneisses. At face value, these results imply the Zimbabwe crust is juvenile whereas most Greenland samples include an earlier crustal component. Yet the west Greenland craton, as with many Archaean localities, has experienced a complex geological history and the interpretation of age-corrected initial isotope values requires great care. Both felsic and mafic samples from Greenland display ɛ Ca(3.7) so radiogenic that they are not readily explained by crustal growth scenarios. The presence of such radiogenic 40Ca/ 44Ca found in low K/Ca plagioclases requires Ca isotope exchange between plagioclase and whole rock during later metamorphic event(s). In addition the unexpectedly radiogenic Ca

  5. A Portable, Field-Deployable Analyzer for Isotopic Water Measurements

    NASA Astrophysics Data System (ADS)

    Berman, E. S.; Gupta, M.; Huang, Y. W.; Lacelle, D.; McKay, C. P.; Fortson, S.

    2015-12-01

    Water stable isotopes have for many years been used to study the hydrological cycle, catchment hydrology, and polar climate among other applications. Typically, discrete water samples are collected and transported to a laboratory for isotope analysis. Due to the expense and labor associated with such sampling, isotope studies have generally been limited in scope and time-resolution. Field sampling of water isotopes has been shown in recent years to provide dense data sets with the increased time resolution illuminating substantially greater short term variability than is generally observed during discrete sampling. A truly portable instrument also opens the possibility to utilize the instrument as a tool for identifying which water samples would be particularly interesting for further laboratory investigation. To make possible such field measurements of liquid water isotopes, Los Gatos Research has developed a miniaturized, field-deployable liquid water isotope analyzer. The prototype miniature liquid water isotope analyzer (mini-LWIA) uses LGR's patented Off-Axis ICOS (Integrated Cavity Output Spectroscopy) technology in a rugged, Pelican case housing for easy transport and field operations. The analyzer simultaneously measures both δ2H and δ18O from liquid water, with both manual and automatic water introduction options. The laboratory precision for δ2H is 0.6 ‰, and for δ18O is 0.3 ‰. The mini-LWIA was deployed in the high Arctic during the summer of 2015 at Inuvik in the Canadian Northwest Territories. Samples were collected from Sachs Harbor, on the southwest coast of Banks Island, including buried basal ice from the Lurentide Ice Sheet, some ice wedges, and other types of ground ice. Methodology and water analysis results from this extreme field deployment will be presented.

  6. Isotopic constraints on open system evolution of the Laacher See magma chamber (Eifel, West Germany)

    NASA Astrophysics Data System (ADS)

    Wörner, G.; Staudigel, H.; Zindler, A.

    1985-09-01

    The Laacher See phonolite tephra sequence (11,000 years B.P.) of the Quaternary East Eifel volcanic field (West Germany) represents an inverted, chemically zoned magma column. Mafic and differentiated phonolites, respectively, represent the lowermost and uppermost erupted portion of the Laacher See magma chamber. Sr and Nd isotopic compositions of whole rocks, matrices and phenocrysts have been analyzed in order to provide constraints for open versus closed system evolution of the Laacher See magma chamber. 87Sr/ 86Sr isotope ratios of mafic phonolites and their phenocrysts are slightly more radiogenic than parental East Eifel basanite magmas. Bulk rock samples show a drastic increase in 87Sr/ 86Sr from mafic towards the most differentiated compositions that were erupted from the top of the magma chamber. Glass matrix separates show a parallel, but less pronounced, increase in 87Sr/ 86Sr . Phenocrysts, in contrast, show a narrow range in 87Sr/ 86Sr with a slight, but significant, increase towards the top of the magma chamber. Phenocrysts from the uppermost portion of the magma column were not in isotopic (or chemical) equilibrium with their host matrices. 143Nd/ 144Nd isotope ratios for whole rocks, matrices, and phenocrysts fall within a restricted range similar to that of East Eifel mafic magmas. A representative suite of crustal rocks (lower crustal granulites, quartzo-feldspathic gneisses, mica schists, Devonian slates and graywacke) was also analyzed in order to permit an evaluation of possible assimilation models. Our results are consistent with chemical evolution of the zoned Laacher See magma chamber mainly through crystal fractionation accompanied by minor amounts of assimilation. Slight contamination of the magma system may have involved (a) the assimilation of gneisses (?) and mica schists during the initial stage of magma chamber evolution (basanite-mafic phonolite), (b) combined assimilation-fractional crystallization (AFC) concurrent with the second

  7. Modeling nuclear field shift isotope fractionation in crystals

    NASA Astrophysics Data System (ADS)

    Schauble, E. A.

    2013-12-01

    In this study nuclear field shift fractionations in solids (and chemically similar liquids) are estimated using calibrated density functional theory calculations. The nuclear field shift effect is a potential driver of mass independent isotope fractionation(1,2), especially for elements with high atomic number such as Hg, Tl and U. This effect is caused by the different shapes and volumes of isotopic nuclei, and their interactions with electronic structures and energies. Nuclear field shift isotope fractionations can be estimated with first principles methods, but the calculations are computationally difficult, limiting most theoretical studies so far to small gas-phase molecules and molecular clusters. Many natural materials of interest are more complex, and it is important to develop ways to estimate field shift effects that can be applied to minerals, solutions, in biomolecules, and at mineral-solution interfaces. Plane-wave density functional theory, in combination with the projector augmented wave method (DFT-PAW), is much more readily adapted to complex materials than the relativistic all-electron calculations that have been the focus of most previous studies. DFT-PAW is a particularly effective tool for studying crystals with periodic boundary conditions, and may also be incorporated into molecular dynamics simulations of solutions and other disordered phases. Initial calibrations of DFT-PAW calculations against high-level all-electron models of field shift fractionation suggest that there may be broad applicability of this method to a variety of elements and types of materials. In addition, the close relationship between the isomer shift of Mössbauer spectroscopy and the nuclear field shift isotope effect makes it possible, at least in principle, to estimate the volume component of field shift fractionations in some species that are too complex even for DFT-PAW models, so long as there is a Mössbauer isotope for the element of interest. Initial results

  8. Connecting laboratory behavior to field function through stable isotope analysis

    PubMed Central

    Larson, Eric R.; Pangle, Kevin L.

    2016-01-01

    Inherent difficulties of tracking and observing organisms in the field often leave researchers with no choice but to conduct behavioral experiments under laboratory settings. However, results of laboratory experiments do not always translate accurately to natural conditions. A fundamental challenge in ecology is therefore to scale up from small area and short-duration laboratory experiments to large areas and long durations over which ecological processes generally operate. In this study, we propose that stable isotope analysis may be a tool that can link laboratory behavioral observations to past field interactions or function of individual organisms. We conducted laboratory behavioral assays to measure dominance of invasive rusty crayfish, Orconectes rusticus, and used stable isotope analysis to hindcast trophic positions of these crayfish under preceding natural conditions. We hypothesized that more dominant crayfish in our assays would have higher trophic positions if dominance were related to competitive ability or willingness to pursue high-risk, high-reward prey. We did not find a relationship between crayfish dominance and trophic position, and therefore infer that laboratory dominance of crayfish may not necessarily relate to their ecology in the field. However, this is to our knowledge the first attempt to directly relate laboratory behavior to field performance via stable isotope analysis. We encourage future studies to continue to explore a possible link between laboratory and field behavior via stable isotope analysis, and propose several avenues to do so. PMID:27077010

  9. Connecting laboratory behavior to field function through stable isotope analysis.

    PubMed

    Glon, Mael G; Larson, Eric R; Pangle, Kevin L

    2016-01-01

    Inherent difficulties of tracking and observing organisms in the field often leave researchers with no choice but to conduct behavioral experiments under laboratory settings. However, results of laboratory experiments do not always translate accurately to natural conditions. A fundamental challenge in ecology is therefore to scale up from small area and short-duration laboratory experiments to large areas and long durations over which ecological processes generally operate. In this study, we propose that stable isotope analysis may be a tool that can link laboratory behavioral observations to past field interactions or function of individual organisms. We conducted laboratory behavioral assays to measure dominance of invasive rusty crayfish, Orconectes rusticus, and used stable isotope analysis to hindcast trophic positions of these crayfish under preceding natural conditions. We hypothesized that more dominant crayfish in our assays would have higher trophic positions if dominance were related to competitive ability or willingness to pursue high-risk, high-reward prey. We did not find a relationship between crayfish dominance and trophic position, and therefore infer that laboratory dominance of crayfish may not necessarily relate to their ecology in the field. However, this is to our knowledge the first attempt to directly relate laboratory behavior to field performance via stable isotope analysis. We encourage future studies to continue to explore a possible link between laboratory and field behavior via stable isotope analysis, and propose several avenues to do so.

  10. Modeling the evolution of galactic magnetic fields

    SciTech Connect

    Yar-Mukhamedov, D.

    2015-04-15

    An analytic model for evolution of galactic magnetic fields in hierarchical galaxy formation frameworks is introduced. Its major innovative components include explicit and detailed treatment of the physics of merger events, mass gains and losses, gravitational energy sources and delays associated with formation of large-scale magnetic fields. This paper describes the model, its implementation, and core results obtained by its means.

  11. Magnetar Field Evolution and Crustal Plasticity

    NASA Astrophysics Data System (ADS)

    Lander, S. K.

    2016-06-01

    The activity of magnetars is believed to be powered by colossal magnetic energy reservoirs. We sketch an evolutionary picture in which internal field evolution in magnetars generates a twisted corona, from which energy may be released suddenly in a single giant flare, or more gradually through smaller outbursts and persistent emission. Given the ages of magnetars and the energy of their giant flares, we suggest that their evolution is driven by a novel mechanism: magnetic flux transport/decay due to persistent plastic flow in the crust, which would invalidate the common assumption that the crustal lattice is static and evolves only under Hall drift and Ohmic decay. We estimate the field strength required to induce plastic flow as a function of crustal depth, and the viscosity of the plastic phase. The star’s superconducting core may also play a role in magnetar field evolution, depending on the star’s spindown history and how rotational vortices and magnetic fluxtubes interact.

  12. The Nd and Sr isotopic evolution of Proterozoic seawater

    NASA Astrophysics Data System (ADS)

    Derry, Louis A.; Jacobsen, Stein B.

    1988-04-01

    Nd isotope measurements on banded iron formations and phosphorites, and Sr isotope measurements on carbonates, indicate that during both the Early and Late Proterozoic, hydrothermal input to the oceans was a significant fraction of the total input to ocean chemistry. Isotopic data from Early Proterozoic clastic sediments show systematic differences from coeval chemical sediments. These differences become less marked toward the end of the Proterozoic. This implies a higher hydrothermal water to river water flux ratio during the Early Proterozoic. The significant changes in seawater isotopic composition during the Proterozoic reflect the transition from mantle dominated Archean oceans to a typically modern system.

  13. Stable isotope analysis of precipitation samples obtained via crowdsourcing reveals the spatiotemporal evolution of Superstorm Sandy.

    PubMed

    Good, Stephen P; Mallia, Derek V; Lin, John C; Bowen, Gabriel J

    2014-01-01

    Extra-tropical cyclones, such as 2012 Superstorm Sandy, pose a significant climatic threat to the northeastern United Sates, yet prediction of hydrologic and thermodynamic processes within such systems is complicated by their interaction with mid-latitude water patterns as they move poleward. Fortunately, the evolution of these systems is also recorded in the stable isotope ratios of storm-associated precipitation and water vapor, and isotopic analysis provides constraints on difficult-to-observe cyclone dynamics. During Superstorm Sandy, a unique crowdsourced approach enabled 685 precipitation samples to be obtained for oxygen and hydrogen isotopic analysis, constituting the largest isotopic sampling of a synoptic-scale system to date. Isotopically, these waters span an enormous range of values (> 21‰ for δ(18)O, > 160‰ for δ(2)H) and exhibit strong spatiotemporal structure. Low isotope ratios occurred predominantly in the west and south quadrants of the storm, indicating robust isotopic distillation that tracked the intensity of the storm's warm core. Elevated values of deuterium-excess (> 25‰) were found primarily in the New England region after Sandy made landfall. Isotope mass balance calculations and Lagrangian back-trajectory analysis suggest that these samples reflect the moistening of dry continental air entrained from a mid-latitude trough. These results demonstrate the power of rapid-response isotope monitoring to elucidate the structure and dynamics of water cycling within synoptic-scale systems and improve our understanding of storm evolution, hydroclimatological impacts, and paleo-storm proxies.

  14. Isotopic evolution of saline lakes in the low-latitude and polar regions

    SciTech Connect

    Horita, Juske

    2009-01-01

    Isotopic fractionations associated with two primary processes (evaporation and freezing of water) are discussed, which are responsible for the formation and evolution of saline lakes in deserts from both low-latitude and the Polar regions. In an evaporative system, atmospheric parameters (humidity and isotopic composition of water vapor) have strong influence on the isotopic behavior of saline lakes, and in a freezing system, salinity build-up largely controls the extent of freezing and associated isotope fractionation. In both systems, salinity has a direct impact on the isotopic evolution of saline lakes. It is proposed that a steady-state terminal lake model with short-term hydrologic and environmental perturbations can serve as a useful framework for investigating both evaporative and freezing processes of perennial saline lakes. Through re-assessment of own work and literature data for saline lakes, it was demonstrated that effective uses of the isotope activity compositions of brines and salinity-chemistry data could reveal dynamic changes and evolution in the isotopic compositions of saline lakes in response to hydrologic and environmental changes. The residence time of isotopic water molecules in lakes determines the nature of responses in the isotopic compositions following perturbations in the water and isotope balances (e.g., dilution by inflow, water deficit by increased evaporation, and/ or reduction in inflow). The isotopic profiles of some saline lakes from the Polar regions show that they switched the two contrasting modes of operation between evaporative and freezing systems, in response to climate and hydrological changes in the past.

  15. Isotopic Evolution of Saline Lakes in the Low-Latitude and Polar Regions

    SciTech Connect

    Horita, Juske

    2009-01-01

    Isotopic fractionations associated with two primary processes (evaporation and freezing of water) are discussed, which are responsible for the formation and evolution of saline lakes in deserts from both low-latitude and the Polar regions. In an evaporative system, atmospheric parameters (humidity and isotopic composition of water vapor) have strong influence on the isotopic behavior of saline lakes, and in a freezing system, salinity build-up largely controls the extent of freezing and associated isotope fractionation. In both systems, salinity has a direct impact on the isotopic evolution of saline lakes. It is proposed that a steady-state 'terminal lake' model with short-term hydrologic and environmental perturbations can serve as a useful framework for investigating both evaporative and freezing processes of perennial saline lakes. Through re-assessment of own work and literature data for saline lakes, it was demonstrated that effective uses of the isotope activity compositions of brines and salinity-chemistry data could reveal dynamic changes and evolution in the isotopic compositions of saline lakes in response to hydrologic and environmental changes. The residence time of isotopic water molecules in lakes determines the nature of responses in the isotopic compositions following perturbations in the water and isotope balances (e.g., dilution by inflow, water deficit by increased evaporation, and/or reduction in inflow). The isotopic profiles of some saline lakes from the Polar regions show that they switched the two contrasting modes of operation between evaporative and freezing systems, in response to climate and hydrological changes in the past.

  16. Isotopic Evolution of River Water in the Northern Chile Region

    NASA Astrophysics Data System (ADS)

    Aravena, R.; Suzuki, O.

    1990-12-01

    Two main northern Chilean rivers, the Loa and Tarapaca, were investigated regarding their isotopic characteristics. Groundwater associated with various recharge zones, and the input of tributaries along their courses, mainly control their (18O, 2H) isotopic composition of the rivers. In the Loa river, carbon isotopic exchange between dissolved inorganic carbon (DIC) and atmospheric CO2 plays a minor role in the inorganic carbon cycle of the Loa river. The carbon isotopic composition (14C, 13C) of this river is probably controlled by carbon source associated with volcanic and geothermal activities and by the deposition of travertines. For the Tarapaca river the carbon isotope content of the DIC reflects the input of recirculated water from irrigated areas along the river course and carbon isotopic exchange. These findings imply that the input of volcanic and/or geothermal CO2 into the DIC pool has to be evaluated in order to use carbon isotopes as a dating tool for groundwater in the Loa basin and that modern conditions are not analogous to the paleohydrology of the Tarapaca river.

  17. Magnetic field evolution in interacting galaxies

    NASA Astrophysics Data System (ADS)

    Drzazga, R. T.; Chyży, K. T.; Jurusik, W.; Wiórkiewicz, K.

    2011-09-01

    Aims: Violent gravitational interactions can change the morphologies of galaxies and, by means of merging, transform them into elliptical galaxies. We aim to investigate how they affect the evolution of galactic magnetic fields. Methods: We selected 16 systems of interacting galaxies with available VLA archive radio data at 4.86 and 1.4 GHz and compared their radio emission and estimated magnetic field strengths with their star-forming activity, far-infrared emission, and the stage of tidal interaction. Results: The estimated mean of total magnetic field strength for our sample of interacting galaxies is 14 ± 5 μG, which is larger than for the non-interacting objects. The field regularity (of 0.27 ± 0.09) is lower than in typical spirals and indicates enhanced production of random magnetic fields in the interacting objects. We find a general evolution of magnetic fields: for weak interactions the strength of magnetic field is almost constant (10-15 μG) as interaction advances, then it increases up to 2× , peaks at the nuclear coalescence (25 μG), and decreases again, down to 5-6 μG, for the post-merger remnants. The main production of magnetic fields in colliding galaxies thus terminates somewhere close to the nuclear coalescence, after which magnetic field diffuses. The magnetic field strength for whole galaxies is weakly affected by the star formation rate (SFR), while the dependence is higher for galactic centres. We show that the morphological distortions visible in the radio total and polarized emission do not depend statistically on the global or local SFRs, while they do increase (especially in the polarization) with the advance of interaction. The constructed radio-far-infrared relations for interacting and non-interacting galaxies display a similar balance between the generation of cosmic rays, magnetic fields, and the production of the thermal energy and dust radiation. Conclusions: The regular magnetic fields are much more sensitive to

  18. The isotopic evolution of a raindrop through the critical zone

    NASA Astrophysics Data System (ADS)

    Oshun, J.; Dietrich, W. E.; Dawson, T. E.; Rempe, D.; Fung, I. Y.

    2015-12-01

    The use of stable isotopes of water (O18 and D) to determine the pathway of water through a hilslope, and source water for vegetation generally assumes that isotopic composition is conserved through the shallow evaporative front. Frequent sampling through the entire critical zone at Rivendell, a 32° hillslope in a mixed conifer forest, reveals a structured heterogeneity in the isotopic composition of subsurface water. We demonstrate that the moisture held in the soil, saprolite, and weathered bedrock is isotopically light relative to both the average meteoric water, and to the mobile water in the shallow subsurface and saturated zone. Weathered argillite, the dominant rock type, retains moisture that is isotopically more negative than neighboring sandstone. These differences in isotopic composition are persistent, suggesting subsurface fractionation and/or filtration processes. Different species of vegetation collocated on the same hillslope use different subsurface reservoirs. Throughout the year, Douglas-fir xylem water occupies a region of dual isotope space that differs from hardwoods (madrone, live oak, and tanoak) Whereas Douglas-firs use non-evaporatively enriched, deep bulk soil moisture, and unsaturated zone rock moisture throughout year, hardwoods switch their source water from shallow mobile water, to bulk soil moisture, to unsaturated zone rock moisture depending on subsurface water availability.
Furthermore, Douglas-fir roots transport water that is more negative than collocated madrone roots. At no time do trees use groundwater. Collectively, these discoveries suggest that a deep and frequent sampling campaign is required to capture the structured heterogeneity in the critical zone, as well as the species-specific and seasonal variability of vegetative water use.

  19. Trace element and isotopic constraints on magmatic evolution at Lassen volcanic center

    SciTech Connect

    Bullen, T.D.; Clynne, M.A. )

    1990-11-10

    Magmatic evolution at the Lassen volcanic center (LVC) is characterized by a transition from predominantly andesitic to predominantly silicic volcanism with time. Magmas of the adesitic, or Brokeoff phase of volcanism range in composition from basaltic andesite to dacite, whereas those of silicic, or Lassen phase range in composition from basaltic andesite to rhyolite. The distinctive mixing-dominated arrays for each volcanic phase manifest the generation and evolution of two physically distinct, but genetically related magma systems. The LVC magmas have Sr, Nd, and Pb isotope characteristics that approximate two-component mixing arrays. One isotopic component is similar in composition to that of NE Pacific Ocean ridge and seamount basalts (MORB component), the other to mafic Mesozoic granitoids sampled from the neighboring Klamath and Sierra Nevada provinces (KSN component). The lack of a correlation between the major element and isotopic compositions of LVC magmas seriously limits any model for magmatic evolution that relies on assimilation of old middle to upper crust by isotopically homogeneous mafic magmas during their ascent through the crust. Alternatively, the isotopic and geochemical uniformity of the most silicic magmas of the Brokeoff and Lassen phases suggests that they are well-homogenized partial melts. The likely source region for these silicic melts is the lower crust, which the authors envision to consist primarily of mafic igneous rocks that are similar in geochemical and isotopic diversity to the regional mafic lavas.

  20. Strontium isotopic variations of Neoproterozoic seawater: Implications for crustal evolution

    SciTech Connect

    Asmerom, Y.; Jacobsen, S.B.; Knoll, A.H.; Butterfield, N.J. ); Swett, K. )

    1991-10-01

    The authors report high precision Sr isotopic data on carbonates from the Neoproterozoic Shaler Group, Victoria Island, Northwest Territories, Canada. Samples with low {sup 87}Rb/{sup 86}Sr ratios (<0.01) were selected for Sr isotopic analysis. {delta}{sup 18}O, Mn, Ca, Mg, and Sr data were used to recognize altered samples. The altered samples are characterized by high Mn/Sr ({ge}2) and variable {delta}{sup 18}O; most are dolomites. The data indicate that between ca. 790-850 Ma the {sup 87}Sr/{sup 86}Sr ratio of seawater varied between 0.70676 and 0.70561. The samples show smooth and systematic variation, with the lowest {sup 87}Sr/{sup 86}Sr value of 0.70561 at ca. 830 Ma. The low {sup 87}Sr/{sup 86}Sr ratio of carbonates from the lower parts of the section is similar to a value reported for one sample from the Adrar of Mauritania ({approx}900 Ma), West African Craton. Isotopic ratios from the upper part of the Shaler section are identical to values from the lower part of the Neoproterozoic Akademikerbreen Group, Spitsbergen. Although a paucity of absolute age determinations hinders attempts at the precise correlation of Neoproterozoic successions, it is possible to draw a broad outline of the Sr isotopic composition of seawater for this period. Data from this study and the literature are used to construct a curve of the {sup 87}Sr/{sup 86}Sr ratio of Neoproterozoic seawater. The Sr isotope composition of seawater reflects primarily the balance between continental Sr input through river input and mantle input via hydrothermal circulation of seawater through mid-ocean ridges. Coupling of Nd and Sr isotopic systems allows the authors to model changes in seafloor spreading rates (or hydrothermal flux) and continental erosion. The Sr hydrothermal flux and the erosion rate (relative to present-day value) are modeled for the period 500-900 Ma.

  1. Strontium isotopic variations of Neoproterozoic seawater - Implications for crustal evolution

    NASA Technical Reports Server (NTRS)

    Asmerom, Yemane; Jacobsen, Stein B.; Knoll, Andrew H.; Butterfield, Nicholas J.; Swett, Keene

    1991-01-01

    High-precision Sr isotopic data were obtained on carbonate samples from the Neoproterozoic Shaler Group, Victoria Island (Canada). Results indicate that, between ca. 790 and 850 Ma, the Sr-87/Sr-86 ratio of seawater varied betweeen 0.70676 and 0.70561, with the minimum value at about 830 Ma. A curve of the Sr-87/Sr-86 seawater ratio vs. age showed that the new data substantially improve the existing isotopic record of Sr in seawater for the period 790-850 Ma. The Sr isotopic system data were coupled with data for the Nd isotopic system to model changes in the seafloor spreading rates (hydrothermal flux) and the continental erosion for the period 500-900 Ma. Results indicate that hydrothermal flux reached a maximum value at ca. 830 Ma, while a maximum in erosion rate occurred at ca. 570 Ma. These peaks are considered to be related to the developments in the Pan-African and related orogenic events.

  2. Development and evolution of cortical fields.

    PubMed

    Arai, Yoko; Pierani, Alessandra

    2014-09-01

    The neocortex is the brain structure that has been subjected to a major size expansion, in its relative size, during mammalian evolution. It arises from the cortical primordium through coordinated growth of neural progenitor cells along both the tangential and radial axes and their patterning providing spatial coordinates. Functional neocortical areas are ultimately consolidated by environmental influences such as peripheral sensory inputs. Throughout neocortical evolution, cortical areas have become more sophisticated and numerous. This increase in number is possibly involved in the complexification of neocortical function in primates. Whereas extensive divergence of functional cortical fields is observed during evolution, the fundamental mechanisms supporting the allocation of cortical areas and their wiring are conserved, suggesting the presence of core genetic mechanisms operating in different species. We will discuss some of the basic molecular mechanisms including morphogen-dependent ones involved in the precise orchestration of neurogenesis in different cortical areas, elucidated from studies in rodents. Attention will be paid to the role of Cajal-Retzius neurons, which were recently proposed to be migrating signaling units also involved in arealization, will be addressed. We will further review recent works on molecular mechanisms of cortical patterning resulting from comparative analyses between different species during evolution.

  3. Stable Isotope Paleoaltimetry: Linking Tectonics to the Evolution of Landscapes and Life

    NASA Astrophysics Data System (ADS)

    Mulch, A.; Chamberlain, C. P.

    2015-12-01

    Stable isotope paleoaltimetry exploits systematic changes in the oxygen or hydrogen isotopic composition of precipitation that occur when lifting of moist air masses over topography induces orographic precipitation. Stable isotope-based reconstructions of topography, therefore, have greatly expanded what used to be very sparse global paleoaltimetric information. The topography of mountain ranges and plateaus, however, not only reflects the geodynamic processes that shape the Earth's surface; it also represents a key control for continental moisture transport, atmospheric circulation and the distribution of biomes and biodiversity. The challenge now lies in disentangling the surface uplift component from the impact of long-term climate change on paleoaltimetry records. The robustness of stable isotope paleoaltimetry reconstructions can be greatly enhanced when high-elevation isotope proxy data are referenced against low-elevation records that track climate-modulated oxygen and hydrogen isotopes in precipitation through time. In addition, evaluating the record of precipitation upstream of the orogen reduces commonly encountered complexities such as topographic threshold conditions to atmospheric circulation, variable moisture recharge to the atmosphere through evapotranspiration over the continents or the impact of hemispheric-scale atmospheric teleconnections; all of which may conspire in setting the isotopic composition of precipitation.Here, we highlight some of these challenges a) by using stable isotope paleoaltimetry data from the central Andes to show how differences in oxygen isotopes in precipitation between high and low elevation sites may enhance the robustness of Andean stable isotope paleoaltimetry, and b) by linking a large set of spatially distributed isotope and biological proxy data to evaluate the impact of Palaeogene surface uplift on mammalian evolution in western North America prior and during the Eocene-Oligocene transition.

  4. Strontium isotopic variations of Neoproterozoic seawater: implications for crustal evolution.

    PubMed

    Asmerom, Y; Jacobsen, S B; Knoll, A H; Butterfield, N J; Swett, K

    1991-01-01

    We report high precision Sr isotopic data on carbonates from the Neoproterozoic Shaler Group, Victoria Island, Northwest Territories, Canada. Lithostratigraphic correlations with the relatively well-dated Mackenzie Mountains Supergroup constrain Shaler deposition to approximately 770-880 Ma, a range corroborated by 723 +/- 3 Ma lavas that disconformably overlie Shaler carbonates and by Late Riphean microfossils within the section. Samples with low 87Rb/86Sr ratios (<0.01) were selected for Sr isotopic analysis. Delta 18O, Mn, Ca, Mg, and Sr data were used to recognize altered samples. The altered samples are characterized by high Mn/Sr (> or = 2) and variable delta 18O; most are dolomites. The data indicate that between ca. 790-850 Ma the 87Sr/86Sr ratio of seawater varied between 0.70676 and 0.70561. The samples show smooth and systematic variation, with the lowest 87Sr/86Sr value of 0.70561 at ca. 830 Ma. The low 87Sr/86Sr ratio of carbonates from the lower parts of our section is similar to a value reported for one sample from the Adrar of Mauritania (approximately 900 Ma), West African Craton. Isotopic ratios from the upper part of the Shaler section are identical to values from the lower part of the Neoproterozoic Akademikerbreen Group, Spitsbergen. Although a paucity of absolute age determinations hinders attempts at the precise correlation of Neoproterozoic successions, it is possible to draw a broad outline of the Sr isotopic composition of seawater for this period. Indeed, the Sr isotope data themselves provide a stratigraphic tool of considerable potential. Data from this study and the literature are used to construct a curve of the 87Sr/86Sr ratio of Neoproterozoic seawater. The new data reported in this study substantially improve the isotopic record of Sr in seawater for the period 790-850 Ma. The Sr isotope composition of seawater reflects primarily the balance between continental Sr input through river input and mantle input via hydrothermal

  5. Oxygen isotope evolution of the Lake Owyhee volcanic field, Oregon, and implications for the low-δ18O magmatism of the Snake River Plain-Yellowstone hotspot and other low-δ18O large igneous provinces

    NASA Astrophysics Data System (ADS)

    Blum, Tyler B.; Kitajima, Kouki; Nakashima, Daisuke; Strickland, Ariel; Spicuzza, Michael J.; Valley, John W.

    2016-11-01

    The Snake River Plain-Yellowstone (SRP-Y) hotspot track represents the largest known low-δ18O igneous province; however, debate persists regarding the timing and distribution of meteoric hydrothermal alteration and subsequent melting/assimilation relative to hotspot magmatism. To further constrain alteration relations for SRP-Y low-δ18O magmatism, we present in situ δ18O and U-Pb analyses of zircon, and laser fluorination δ18O analyses of phenocrysts, from the Lake Owyhee volcanic field (LOVF) of east-central Oregon. U-Pb data place LOVF magmatism between 16.3 and 15.4 Ma, and contain no evidence for xenocrystic zircon. LOVF δ18O(Zrc) values demonstrate (1) both low-δ18O and high-δ18O caldera-forming and pre-/post-caldera magmas, (2) relative increases in δ18O between low-δ18O caldera-forming and post-caldera units, and (3) low-δ18O magmatism associated with extension of the Oregon-Idaho Graben. The new data, along with new compilations of (1) in situ zircon δ18O data for the SRP-Y, and (2) regional δ18O(WR) and δ18O(magma) patterns, further constrain the thermal and structural associations for hydrothermal alteration in the SRP-Y. Models for low-δ18O magmatism must be compatible with (1) δ18O(magma) trends within individual SRP-Y eruptive centers, (2) along axis trends in δ18O(magma), and (3) the high concentration of low-δ18O magmas relative to the surrounding regions. When considered with the structural and thermal evolution of the SRP-Y, these constraints support low-δ18O magma genesis originating from syn-hotspot meteoric hydrothermal alteration, driven by hotspot-derived thermal fluxes superimposed on extensional tectonics. This model is not restricted to continental hotspot settings and may apply to several other low-δ18O igneous provinces with similar thermal and structural associations.

  6. FUEL CYCLE ISOTOPE EVOLUTION BY TRANSMUTATION DYNAMICS OVER MULTIPLE RECYCLES

    SciTech Connect

    Samuel Bays; Steven Piet; Amaury Dumontier

    2010-06-01

    Because all actinides have the ability to fission appreciably in a fast neutron spectrum, these types of reactor systems are usually not associated with the buildup of higher mass actinides: curium, berkelium and californium. These higher actinides have high specific decay heat power, gamma and neutron source strengths, and are usually considered as a complication to the fuel manufacturing and transportation of fresh recycled transuranic fuel. This buildup issue has been studied widely for thermal reactor fuels. However, recent studies have shown that the transmutation physics associated with "gateway isotopes" dictates Cm-Bk-Cf buildup, even in fast burner reactors. Assuming a symbiotic fuel relationship with light water reactors (LWR), Pu-242 and Am-243 are formed in the LWRs and then are externally fed to the fast reactor as part of its overall transuranic fuel supply. These isotopes are created much more readily in a thermal than in fast spectrum systems due to the differences in the fast fission (i.e., above the fission threshold for non-fissile actinides) contribution. In a strictly breeding fast reactor this dependency on LWR transuranics would not exist, and thus avoids the introduction of LWR derived gateway isotopes into the fast reactor system. However in a transuranic burning fast reactor, the external supply of these gateway isotopes behaves as an external driving force towards the creation and build-up of Cm-Bk-Cf in the fuel cycle. It was found that though the Cm-Bk-Cf concentration in the equilibrium fuel cycle is dictated by the fast neutron spectrum, the time required to reach that equilibrium concentration is dictated by recycle, transmutation and decay storage dynamics.

  7. Diffusion as a Rate Limiting Factor on the Evolution of Strontium Isotope Ratios in Fractured Rock

    NASA Astrophysics Data System (ADS)

    Johnson, E. G.; Holt, R. M.; McLing, T. L.

    2002-12-01

    In recent years, several approaches have been developed to model the evolution of strontium isotope ratios (87Sr/86Sr) in porous media. In fractured rock, however, diffusion limits the rates of reaction between mobile water and mineral surfaces inside fracture-bounded blocks. Diffusion can limit transfer of fluids with differing isotopic ratios between the mobile and immobile zones leading to longer equilibration times. We develop a diffusion-based mathematical approach for modeling the evolution of ratios that includes sorption, ion exchange, and dissolution in fracture bounded blocks of multiple sizes. Traditional models employing isotopic ratios with the advection-dispersion equation are unable to incorporate diffusion because they are limited by the structure of their equation. Modeling the individual isotopic species separately accounts for the effects of diffusion. The general governing equation is robust in that it does not assume chemical equilibrium reactions. Special cases show the importance of diffusion-limited mass transfer on the evolution of isotopes ratios in fractured rock.

  8. Are sulfur isotope ratios sufficient to determine the antiquity of sulfate reduction. [implications for chemical evolution

    NASA Technical Reports Server (NTRS)

    Ashendorf, D.

    1980-01-01

    Possible limitations on the use of sulfur isotope ratios in sedimentary sulfides to infer the evolution of microbial sulfate reduction are discussed. Current knowledge of the ways in which stable sulfur isotope ratios are altered by chemical and biological processes is examined, with attention given to the marine sulfur cycle involving various microbial populations, and sulfur reduction processes, and it is noted that satisfactory explanations of sulfur isotope ratios observed in live organisms and in sediments are not yet available. It is furthermore pointed out that all members of the same genus of sulfate reducing bacteria do not always fractionate sulfur to the same extent, that the extent of sulfur fractionation by many sulfate-reducing organisms has not yet been determined, and that inorganic processes can also affect sulfur isotope fractionation values. The information currently available is thus concluded to be insufficient to determine the time of initial appearance of biological sulfate reduction.

  9. The isotopic and chemical evolution of Mount St. Helens

    USGS Publications Warehouse

    Halliday, A.N.; Fallick, A.E.; Dickin, A.P.; Mackenzie, A.B.; Stephens, W.E.; Hildreth, W.

    1983-01-01

    Isotopic and major and trace element analysis of nine samples of eruptive products spanning the history of the Mt. St. Helens volcano suggest three different episodes; (1) 40,000-2500 years ago: eruptions of dacite with ??{lunate}Nd = +5, ??{lunate}Sr = -10, variable ??18O, 206Pb/204Pb ??? 18.76, Ca/Sr ??? 60, Rb/Ba ??? 0.1, La/Yb ??? 18, (2) 2500-1000 years ago: eruptions of basalt, andesite and dacite with ??{lunate}Nd = +4 to +8, ??{lunate}Sr = -7 to -22, variable ??18O (thought to represent melting of differing mantle-crust reservoirs), 206Pb/204Pb = 18.81-18.87, variable Ca/Sr, Rb/Ba, La/Yb and high Zr, (3) 1000 years ago to present day: eruptions of andesite and dacite with ??{lunate}Nd = +6, ??{lunate}Sr = -13, ??18O ???6???, variable 206Pb/204Pb, Ca/Sr ??? 77, Rb/Ba = 0.1, La/Yb ??? 11. None of the products exhibit Eu anomalies and all are LREE enriched. There is a strong correlation between 87Sr/86Sr and differentiation indices. These data are interpreted in terms of a mantle heat source melting young crust bearing zircon and garnet, but not feldspar, followed by intrusion of this crustal reservoir by mantle-derived magma which caused further crustal melting and contaminated the crustal magma system with mafic components. Since 1000 years ago all the eruptions have been from the same reservoir which has displayed a much more gradual re-equilibration of Pb isotopic compositions than other components suggesting that Pb is being transported via a fluid phase. The Nd and Sr isotopic compositions lie along the mantle array and suggest that the mantle underneath Mt. St. Helens is not as depleted as MORB sources. There is no indication of seawater involvement in the source region. ?? 1983.

  10. Modeling crust-mantle evolution using radiogenic Sr, Nd, and Pb isotope systematics

    NASA Astrophysics Data System (ADS)

    Kumari, Seema; Paul, Debajyoti

    2015-04-01

    The present-day elemental and isotopic composition of Earth's terrestrial reservoirs can be used as geochemical constraints to study evolution of the crust-mantle system. A flexible open system evolutionary model of the Earth, comprising continental crust (CC), upper depleted mantle (UM) -source of mid-ocean ridge basalts (MORB), and lower mantle (LM) reservoir with a D" layer -source of ocean island basalts (OIB), and incorporating key radioactive isotope systematics (Rb-Sr, Sm-Nd, and U-Th-Pb), is solved numerically at 1 Ma time step for 4.55 Ga, the age of the Earth. The best possible solution is the one that produces the present-day concentrations as well as isotopic ratios in terrestrial reservoirs, compiled from published data. Different crustal growth scenarios (exponential, episodic, early and late growth), proposed in earlier studies, and its effect on the evolution of isotope systematics of terrestrial reservoirs is studied. Model simulations strongly favor a layered mantle structure satisfying majority of the isotopic constraints. In the successful model, which is similar to that proposed by Kellogg et al. (1999), the present-day UM comprises of 60% of mantle mass and extends to a depth 1600 km, whereas the LM becomes non-primitive and more enriched than the bulk silicate Earth, mainly due to addition of recycled crustal material. Modeling suggest that isotopic evolution of reservoirs is affected by the mode of crustal growth. Only two scenarios satisfied majority of the Rb-Sr and Sm-Nd isotopic constraints but failed to reproduce the present-day Pb-isotope systematics; exponential growth of crust (mean age, tc=2.3 Ga) and delayed and episodic growth (no growth for initial 900 Ma, tc=2.05 Ga) proposed by Patchett and Arndt (1986). However, assuming a slightly young Earth (4.45 Ga) better satisfies the Pb-isotope systematics. Although, the delayed crustal growth model satisfied Sr-Nd isotopic constraints, presence of early Hadean crust (4.03 and 4.4 Ga

  11. Evolution of turbulent fields in explosions

    SciTech Connect

    Kuhl, A.L.; Bell, J.B.; Ferguson, R.E.; Chien, K.Y.; Collins, J.P.; Lyons, M.L.

    1993-12-01

    Explosions always contain turbulent mixing regions, e.g.: boundary layers, shear layers, wall jets and unstable interfaces. The inherent unsteadiness of turbulent mixing in explosions, and the lack of sufficient data, pose insurmountable difficulties for turbulence modeling of such flows. Proposed here is a direct numerical simulation approach-where the three-dimensional (3-D) conservation laws are integrated via a high-order Godunov method. Adaptive Mesh Refinement (AMR) is used to Capture the convective mixing processes on the computational grid. Then, an azimuthal-averaging operator is applied to the 3-D solution-in order to extract the instantaneous mean and fluctuating components of the turbulent field. This methodology is applied to the numerical simulation of the turbulent wall jet and dusty boundary layer flow induced by a point explosion above a ground surface. Principal results include the evolution of the turbulent velocity field near the surface. During the wall jet phase, the mean profiles resemble our previous two-dimensional calculations, while the velocity fluctuation profiles and Reynolds stress profiles are qualitatively similar to measurements of self-preserving wall jets. During the boundary layer phase, the mean velocity profile evolved with time, e.g.: initially it agreed with measurements of a dusty boundary layer behind a shock; at intermediate times it resembled the dusty boundary layer profiles measured in a wind tunnel; while at late times, it approached a l/7 power-law profile. Velocity fluctuation profiles were qualitatively similar to those measured for a turbulent boundary layer on a fiat plate. The methodology can be used to predict the evolution of other turbulent fields such as dust clouds, axisymmetric jets, fireball instabilities, and dusty boundary layers in shock tube and wind tunnel flows.

  12. A Model of Isotope Separation in Cells at the Early Stages of Evolution.

    PubMed

    Melkikh, A V; Bokunyaeva, A O

    2016-03-01

    The separation of the isotopes of certain ions can serve as an important criterion for the presence of life in the early stages of its evolution. A model of the separation of isotopes during their transport through the cell membrane is constructed. The dependence of the selection coefficient on various parameters is found. In particular, it is shown that the maximum efficiency of the transport of ions corresponds to the minimum enrichment coefficient. At the maximum enrichment, the efficiency of the transport system approaches ½. Calculated enrichment coefficients are compared with experimentally obtained values for different types of cells, and the comparison shows a qualitative agreement between these quantities.

  13. What Hf isotopes in zircon tell us about crust-mantle evolution

    NASA Astrophysics Data System (ADS)

    Iizuka, Tsuyoshi; Yamaguchi, Takao; Itano, Keita; Hibiya, Yuki; Suzuki, Kazue

    2017-03-01

    The 176Lu-176Hf radioactive decay system has been widely used to study planetary crust-mantle differentiation. Of considerable utility in this regard is zircon, a resistant mineral that can be precisely dated by the U-Pb chronometer and record its initial Hf isotope composition due to having low Lu/Hf. Here we review zircon U-Pb age and Hf isotopic data mainly obtained over the last two decades and discuss their contributions to our current understanding of crust-mantle evolution, with emphasis on the Lu-Hf isotope composition of the bulk silicate Earth (BSE), early differentiation of the silicate Earth, and the evolution of the continental crust over geologic history. Meteorite zircon encapsulates the most primitive Hf isotope composition of our solar system, which was used to identify chondritic meteorites best representative of the BSE (176Hf/177Hf = 0.282793 ± 0.000011; 176Lu/177Hf = 0.0338 ± 0.0001). Hadean-Eoarchean detrital zircons yield highly unradiogenic Hf isotope compositions relative to the BSE, providing evidence for the development of a geochemically enriched silicate reservoir as early as 4.5 Ga. By combining the Hf and O isotope systematics, we propose that the early enriched silicate reservoir has resided at depth within the Earth rather than near the surface and may represent a fractionated residuum of a magma ocean underlying the proto-crust, like urKREEP beneath the anorthositic crust on the Moon. Detrital zircons from world major rivers potentially provide the most robust Hf isotope record of the preserved granitoid crust on a continental scale, whereas mafic rocks with various emplacement ages offer an opportunity to trace the Hf isotope evolution of juvenile continental crust (from εHf[4.5 Ga] = 0 to εHf[present] = + 13). The river zircon data as compared to the juvenile crust composition highlight that the supercontinent cycle has controlled the evolution of the continental crust by regulating the rates of crustal generation and intra

  14. Importance of the Lu-Hf isotopic system in studies of planetary chronology and chemical evolution

    NASA Technical Reports Server (NTRS)

    Patchett, P. J.

    1983-01-01

    The Lu-176-Hf-176 isotope method and its applications in earth sciences are discussed with regard to planetary-evolution studies. From new data on basalts from oceanic islands, Hf-176/Hf-177 and Nd-143/Nd-144 are found to display a single linear isotopic variation in the suboceanic mantle, whereas considerable divergences occur in Hf-176/Hf-177-Sr-87/Sr-86 and Nd-143/Nd-144-Sr87/Sr-86 diagrams. With the acquisition of further Hf-Sr-Nd isotopic data, these discordant Sr-87/Sr-86 relationships may allow a distinction between processes such as mantle metasomatism, influence of sea-water altered material in the magma source, or recycling of sediments into the mantle. The best quality Hf isotope data are obtained from granitoid or zircons, and are most suitable for studying ancient terrestrial Hf isotopic variations. Lu-Hf is shown to be a viable method for dating ancient terrestrial and extraterrestrial samples, but is unlikely to find wide application in pure chronological studies because it offers little advantage over existing methods.

  15. Noble gas isotopic composition as a key reference parameter in a planetary atmospheric evolution model

    NASA Astrophysics Data System (ADS)

    Ozima, M.

    2010-12-01

    The isotopic composition of noble gases is a key reference parameter in discussing the evolution of planetary atmospheres. Currently, two widely occurring noble gas components are identified in the early solar system, one is the Solar Wind noble gas (SW-noble gas, hereafter) and another is the Q-noble gas in unaltered meteorites: both noble gases are characterized by their ubiquitous occurrence and high isotopic homogeneity. Since the SW-noble gas is directly ejected from the Sun, it has been assumed to be a good proxy of the average noble gas isotopic composition in the Sun, namely the solar noble gas. The systematic enrichment of the heavier isotopes in the Q-noble gas relative to the SW-noble gas is then commonly attributed to its isotopic fractionation from the SW-noble gas. However, the isotopic compositions of the SW-noble gas either implanted on lunar soils or trapped by artificial targets show considerable isotopic variation depending on the velocity of the Solar Wind. Therefore, it is important to examine how closely the SW-noble gas represents the indigenous solar noble gas component or the mean isotopic composition of noble gases of the Sun. Here we show that the isotopic composition of the SW-noble gas is substantially fractionated relative to the solar value, and therefore should not be used as a reference parameter. We further suggest that the post D-burning Q-noble gas (see below) is the better proxy of the solar noble gas, and this should be used as a reference of the Solar noble gas isotopic composition in discussing the planetary atmospheric evolution. The most distinct difference between the Q- and the SW-noble gas is apparent in a 3He/4He isotopic ratio: 4.64e-4 in Q-He [1], but 1.23e-4 in SW-He[2]. The difference is attributed to the conversion of deuteron (D) to 3He in the Sun, namely the D-burning [3], due to high temperature during the pre-main sequence stage of the Sun. With the use of recent data on D/H ratios from helio-seismology [4] and

  16. Evolution of the pygmy dipole resonance in Sn isotopes

    NASA Astrophysics Data System (ADS)

    Toft, H. K.; Larsen, A. C.; Bürger, A.; Guttormsen, M.; Görgen, A.; Nyhus, H. T.; Renstrøm, T.; Siem, S.; Tveten, G. M.; Voinov, A.

    2011-04-01

    Nuclear level density and γ-ray strength functions of Sn121,122 below the neutron separation energy are extracted with the Oslo method using the (He3,He3'γ) and (He3,αγ) reactions. The level densities of Sn121,122 display steplike structures, interpreted as signatures of neutron pair breaking. An enhancement in both strength functions, compared to standard models for radiative strength, is observed in our measurements for Eγ≳5.2 MeV. This enhancement is compatible with pygmy resonances centered at ≈8.4(1) and ≈8.6(2) MeV, respectively, and with integrated strengths corresponding to ≈1.8-5+1% of the classical Thomas-Reiche-Kuhn sum rule. Similar resonances were also seen in Sn116-119. Experimental neutron-capture cross reactions are well reproduced by our pygmy resonance predictions, while standard strength models are less successful. The evolution as a function of neutron number of the pygmy resonance in Sn116-122 is described as a clear increase of centroid energy from 8.0(1) to 8.6(2) MeV, but with no observable difference in integrated strengths.

  17. Carbon Retention and Isotopic Evolution in Deeply Subducted Sediments: Evidence from the Italian Alps

    NASA Astrophysics Data System (ADS)

    Cook-Kollars, J.; Bebout, G. E.; Agard, P.; Angiboust, S.

    2012-12-01

    increasing grade, metapelitic carbonaceous matter shows an increase in δ13CVPDB, ranging from about -25‰ in low-grade Schistes Lustres samples to -16‰ in the highest-grade Cignana samples. Carbonate in the entire suite shows decrease in δ18OSMOW, from marine carbonate values > 25‰ to values of 17-22‰ independent of the carbonate content of the rocks. This shift could possibly be explained by isotopic exchange with silicate phases in the same rocks [Henry et al. (1996), Chem. Geol.]. Metapelitic rocks in this suite experienced moderate amounts of dehydration (20-50%) largely related to breakdown of chlorite and carpholite [Bebout et al. (in press), Chem. Geol. (abstract in this session); Angiboust and Agard (2010), Lithos], conceivably providing a source for infiltrating H2O-rich fluids producing negative shifts in calcite δ18O in interlayered metacarbonates. These results indicate that relatively little decarbonation occurred in carbonate-bearing sediments subducted to depths greater than 100 km, arguing against any model of extensive decarbonation driven by infiltration of the sediments by H2O-rich fluids released from mafic and ultramafic parts of the underlying subducting slab. This study provides field evidence for the efficient retention of C in subducting shale-carbonate sequences through forearc depths, potentially affecting the C budget and isotopic evolution of the deeper mantle.

  18. A Cenozoic terrestrial isotope record and the evolution of C4 photosynthesis

    NASA Astrophysics Data System (ADS)

    Gröcke, D. R.; Tipple, B. J.; Pagani, M.

    2004-12-01

    Our understanding of C4 plant evolution and expansion has predominantly relied on site-specific fossil teeth, paleosols, and pedogenic carbonates carbon-isotope records and suggests a global dominance between 15-6 Ma. However, more recent techniques using bulk and compound-specific carbon-isotope ratios from terrestrial organic matter and other biomarker evidence suggest C4 plants may have evolved multiple times. Furthermore, C4 plants may have been present in terrestrial environments much earlier than the late Miocene expansion, but owing to their environmental preference and low preservation potential may not have been preserved in the terrestrial sedimentary record, and/or such latitudinal sites have not been fully explored. An additional implication is that the carbon-isotope composition of CO2 (\\delta 13CCO2) has changed through time and paleoecologic reconstructions based on teeth and carbonate isotopic signatures may not reflect accurate floral contributions. Thus, terrestrial and atmospheric carbon-isotope signatures must be integrated in order to assess the Cenozoic history of C4 photosynthesis. Presently, we are constructing a carbon-isotope record of long-chain n-alkanes with high carbon preference indices (indicative of higher plant input) from a globally distributed set of oligotropic and marginal DSDP/ODP marine sediments. As mentioned above, an estimate of the C4 plant proportion of total land-plant biomass requires an understanding of changes in \\delta 13CCO2 through time. Accordingly, we have constrained this parameter by establishing the carbon-isotope composition of C3 plant organic matter from Paleogene-age shallow marine shelf and lagoonal sediments from the Isle of Wight, UK, by assuming constant carbon-isotope discrimination between CO2 and C3 photosynthesis. Such \\delta 13CCO2 records can be directly compared with alkenone-based pCO2 and n-alkane based floral contribution estimates. Using integrated isotopic proxies, our preliminary data

  19. Shell Evolution in the Neutron-Rich Cu and Zn Isotopes

    NASA Astrophysics Data System (ADS)

    Belarge, Joe; Bazin, Daniel; Gade, Alexandra; Ayyad, Yassid; Bender, Peter; Elder, Robert; Elman, Brandon; Iwasaki, Hiro; Kobayashi, Nobuyuki; Loelius, Charles; Longfellow, Brenden; Lunderberg, Eric; Morfouace, Pierre; Sullivan, Chris; Weisshaar, Dirk; Whitmore, Kenneth

    2016-09-01

    Recent shell model calculations predict a gradual reduction of the Z=28 shell gap in Ni isotopes as the ν 1g9 / 2 orbital is filled from 68Ni to 78Ni [Otsuka et al. PRL 95, 232502]. These predictions can be experimentally tested by measuring the spectroscopic strength of a given orbital in an isotopic chain. The neutron-rich Cu isotopes, with one proton outside of a filled π 1f7 / 2 orbital, are some of the best candidates to exhibit the effects of the underlying structure evolution in this region. The high luminosity provided by fast beam, thick target experiments performed at the NSCL, coupled with the high resolution, high efficiency gamma-ray array GRETINA, provide a unique opportunity to study the neutron-rich Cu isotopes. The current experiment aims to measure the strength of 2p-1h excitations in 69-77Cu, populated through one proton knockout from 70-78Zn beams on a Be target, thereby probing the effective single particle energy and spectroscopic strength of the π 1f7 / 2 orbital. Results from the ongoing analysis will be presented.

  20. Isotope separation by selective charge conversion and field deflection

    DOEpatents

    Hickman, Robert G.

    1978-01-01

    A deuterium-tritium separation system wherein a source beam comprised of positively ionized deuterium (D.sup.+) and tritium (T.sup.+) is converted at different charge-exchange cell sections of the system to negatively ionized deuterium (D.sup.-) and tritium (T.sup.-). First, energy is added to the beam to accelerate the D.sup.+ ions to the velocity that is optimum for conversion of the D.sup.+ ions to D.sup.- ions in a charge-exchange cell. The T.sup.+ ions are accelerated at the same time, but not to the optimum velocity since they are heavier than the D.sup.+ ions. The T.sup.+ ions are, therefore, not converted to T.sup.- ions when the D.sup.+ ions are converted to D.sup.- ions. This enables effective separation of the beam by deflection of the isotopes with an electrostatic field, the D.sup.- ions being deflected in one direction and the T.sup.+ ions being deflected in the opposite direction. Next, more energy is added to the deflected beam of T.sup.+ ions to bring the T.sup.+ ions to the optimum velocity for their conversion to T.sup.- ions. In a particular use of the invention, the beams of D.sup.- and T.sup.- ions are separately further accelerated and then converted to energetic neutral particles for injection as fuel into a thermonuclear reactor. The reactor exhaust of D.sup.+ and T.sup.+ and the D.sup.+ and T.sup.+ that was not converted in the respective sections is combined with the source beam and recycled through the system to increase the efficiency of the system.

  1. Stable isotope paleoaltimetry of high relief terrain: An atmospheric dynamics and landscape evolution perspective

    NASA Astrophysics Data System (ADS)

    Galewsky, J.

    2009-04-01

    Stable isotope ratios in rain and snow from mountainous regions show a strong correlation with altitude. To the extent that these isotopic ratios are preserved in the geological record, they may provide a powerful constraint on the surface uplift history of mountain belts. Existing interpretive frameworks for paleoaltimetry are based on linear regressions of modern precipitation isotope transects or on a Rayleigh distillation model of air parcel ascent along a moist adiabatic temperature lapse rate. Neither of these frameworks accounts for the fully nonlinear dynamics of airflow over high-relief terrain, which predicts substantial deviations from the moist-adiabatic ascent model under common atmospheric conditions. The Weather Research and Forecast model (WRF), a numerical weather prediction model, has been modified to include a simplified isotope physics parameterization and has been used to explore the links between topography, atmospheric state, and precipitation isotopes. The controlling nondimensional parameter for atmospheric flow over terrain is Nh/U, where N is the Brunt-Vaisala frequency, a measure of atmospheric stability, h is the orogen- scale relief, and U is the horizontal wind speed. When Nh/U<1, winds can flow directly over topography and WRF precipitation isotopes match those predicted by the moist-adiabatic Rayleigh model. When Nh/U>1, the winds are blocked by the topography and are deflected around it. In these cases, the maximum elevation of condensation is much lower than the range crest, and precipitation isotopes are consequently substantially less depleted than predicted by the moist adiabatic Rayleigh model. Furthermore, the along-strike length of an orogen and the presence of valleys are shown to exert a strong influence on precipitation isotopes in blocked flow regimes because of the dynamical link between terrain length and atmospheric flow blocking. Terrain- blocked atmospheric conditions are common, especially in regions of high relief

  2. Mg Isotope Evolution During Water-Rock Interaction in a Carbonate Aquifer

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Jacobson, A. D.; Lundstrom, C. C.; Huang, F.

    2008-12-01

    To better understand how Mg isotopes behave during weathering and aqueous transport, we used a Nu Plasma MC-ICP-MS to measure δ26Mg values (relative to DSM-3) in water samples along a 236 km flow path in the Madison aquifer of South Dakota, a confined carbonate aquifer recharging in the igneous Black Hills. We also analyzed local granite and dolomite samples to characterize the Mg isotope composition of source rocks constituting the recharge zone and aquifer, respectively. Repeated analyses of Mg standard solutions yielded external precisions (2σ) better than 0.1 permil for δ26Mg(CAM-1, - 2.584±0.071, n=13; UIMg-1, -2.217±0.087, n=9.). The Madison aquifer provides a unique opportunity to quantify Mg isotope effects during water-rock interaction because (1) fluids and rock have chemically equilibrated over a much longer timescale (up to ~15 kyr) than can be simulated in laboratory experiments and (2) previous studies have determined the rates and mass-balances of de- dolomitization and other geochemical reactions controlling solute evolution along the flow path. Reactions important for changing the concentration and isotope composition of Mg include dolomite dissolution, Mg-for- Na ion exchange, calcite precipitation, and isotope exchange. δ26Mg values within the recharge region (0-17 km along flow path) vary between -1.08 and -1.63 permil, and then remain essentially constant at -1.408±0.010 permil(1σ, 5 samples) from 17 to 189 km. A final sample at 236 km shows an increase to -1.09 permil. Either mixing between different recharge waters or rapid isotope exchange between infiltrating waters and dolomite could control δ26Mg variability between 0 and 17 km. Likewise, reactive transport modeling suggests that preferential uptake of 24Mg during Mg-for-Na ion exchange might cause an increase in δ26Mg between 189 and 236 km. However, unchanging δ26Mg values observed throughout most of the aquifer clearly demonstrate that Mg isotopes are not fractionated during

  3. Isotopic Constraints on the Chemical Evolution of Geothermal Fluids, Long Valley, CA

    SciTech Connect

    Brown, Shaun; Kennedy, Burton; DePaolo, Donald; Evans, William

    2008-08-01

    A spatial survey of the chemical and isotopic composition of fluids from the Long Valley hydrothermal system was conducted. Starting at the presumed hydrothermal upwelling zone in the west moat of the caldera, samples were collected from the Casa Diablo geothermal field and a series of monitoring wells defining a nearly linear, ~;;14 km long, west-to-east trend along the proposed fluid flow path (Sorey et al., 1991). Samples were analyzed for the isotopes of water, Sr, Ca, and noble gases, the concentrations of major cations and anions and total CO2. Our data confirm earlier models in which the variations in water isotopes along the flow path reflect mixing of a single hydrothermal fluid with local groundwater. Variations in Sr data are poorly constrained and reflect fluid mixing, multiple fluid-pathways or water-rock exchange along the flow path as suggested by Goff et al. (1991). Correlated variations among total CO2, noble gases and the concentration and isotopic composition of Ca suggest progressive fluid degassing (loss of CO2, noble gases) driving calcite precipitation as the fluid flows west-to-east across the caldera. This is the first evidence that Ca isotopes may trace and provide definitive evidence of calcite precipitation along fluid flow paths in geothermal systems.

  4. Late Miocene evolution of the Black Sea: insights from palynology and strontium isotope ratios

    NASA Astrophysics Data System (ADS)

    Grothe, Arjen; van Baak, Christiaan; Vasiliev, Iuliana; Sangiorgi, Francesca; Reichart, Gert-Jan; Stoica, Marius; Krijgsman, Wout

    2016-04-01

    During the late Miocene, the connection(s) between the Mediterranean Basin and the Atlantic Ocean deteriorated, which ultimately culminated in thick evaporite deposits and a water level drop in the Mediterranean Basin during the so-called Messinian Salinity Crisis (MSC, 5.97 - 5.33 Ma). It has been claimed that Black Sea, in response to the MSC, also desiccated but these claims have been proven incorrectly. Here we present palynological (dinoflagellate cysts and pollen) and strontium isotope ratios from two Black Sea records: the Zheleznyi Rog outcrop section and Deep Sea Drilling Project Hole 380A. Organic walled cyst-producing dinoflagellates are highly sensitive to even small changes in surface waters and strontium isotope ratios are excellent recorders of changing connectivity. Our records provide therefore more insights in the sensitivity of the Black Sea to Messinian Salinity Crisis and the general evolution of the late Miocene Black Sea.

  5. The role of changing childhood diets in the prehistoric evolution of food production: An isotopic assessment.

    PubMed

    Schurr, Mark R; Powell, Mary Lucas

    2005-03-01

    Earlier weaning has often been suggested as a cause for population growth after the evolution of food production. However, evidence for weaning-time reduction is largely circumstantial. Collagen stable nitrogen- and carbon-isotope ratios from juvenile and adult burials from four sites in eastern North America were measured to estimate weaning onsets and durations before and after the appearance of intensive food production. Two preagricultural Late Archaic sites (Indian Knoll and Carlston Annis) are compared with two highly agricultural Middle Mississippian sites (Angel and Tinsley Hill). Isotopic data and paleodemographic measures of birth rates provide no evidence for changes in weaning behavior or fertility with the development of food production in the prehistoric Lower Ohio Valley. Birth rates and weaning behavior appear to have been roughly the same at all four sites. These results indicate that models attributing population growth after the appearance of food production to earlier weaning are not universally applicable.

  6. Oxygen Isotope Character of the Lake Owyhee Volcanic Field, Oregon

    NASA Astrophysics Data System (ADS)

    Blum, T.; Strickland, A.; Valley, J. W.

    2012-12-01

    Oxygen isotope analyses of zircons from lavas and tuffs from the Lake Owyhee Volcanic Field (LOVF) of east central Oregon unequivocally demonstrate the presence of mid-Miocene low-δ18O magmas (δ18Ozrc<4.7 ‰). Despite the growing data set of low-δ18O melts within, and proximal to, the Snake River Plain (SRP) Large Igneous Province, debate persists regarding both the mechanisms for low-δ18O magma petrogenesis, and their relative influence in the SRP. The LOVF is associated with widespread silicic volcanism roughly concurrent with the eruption of the Steens-Columbia River Basalt Group between ~17-15Ma. Silicic activity in the LOVF is limited to 16-15Ma, when an estimated 1100km3 of weakly peralkaline to metaluminous rhyolitic lavas and ignimbrites erupted from a series of fissures and calderas. Geographically, the LOVF overlaps the Oregon-Idaho Graben (OIG), and straddles the 87Sr/86Sr= 0.704 line which, together with the 0.706 line to the east, delineate the regional transition from the North American Precambrian continental crust to the east to younger Phanerozoic accreted terranes to the west. Here we report high accuracy ion microprobe analyses of δ18O in zircons using a 10-15μm spot, with average spot-to-spot precision ±0.28‰ (2SD), to investigate intra-grain and intra-unit δ18Ozrc trends for LOVF rhyolites. Due to its high closure temperature, chemical and physical resistance, and slow oxygen diffusion rates, zircon offers a robust record of magmatic oxygen isotope ratios during crystallization and provides constraints on the petrogenesis of Snake River Plain (SRP) low-δ18O melts. Individual zircons from LOVF rhyolites show no evidence of core-rim δ18O zoning, and populations exhibit ≤0.42‰ (2SD) intra-unit variability. Unit averages range from 2.2 to 4.3‰, with the lowest values in caldera-forming ignimbrites, but all units show evidence of crystallization from low-δ18O melts. Quartz and feldspar analyses by laser fluorination (precision

  7. Evolution of field line helicity during magnetic reconnection

    SciTech Connect

    Russell, A. J. B. Hornig, G.; Wilmot-Smith, A. L.; Yeates, A. R.

    2015-03-15

    We investigate the evolution of field line helicity for magnetic fields that connect two boundaries without null points, with emphasis on localized finite-B magnetic reconnection. Total (relative) magnetic helicity is already recognized as an important topological constraint on magnetohydrodynamic processes. Field line helicity offers further advantages because it preserves all topological information and can distinguish between different magnetic fields with the same total helicity. Magnetic reconnection changes field connectivity and field line helicity reflects these changes; the goal of this paper is to characterize that evolution. We start by deriving the evolution equation for field line helicity and examining its terms, also obtaining a simplified form for cases where dynamics are localized within the domain. The main result, which we support using kinematic examples, is that during localized reconnection in a complex magnetic field, the evolution of field line helicity is dominated by a work-like term that is evaluated at the field line endpoints, namely, the scalar product of the generalized field line velocity and the vector potential. Furthermore, the flux integral of this term over certain areas is very small compared to the integral of the unsigned quantity, which indicates that changes of field line helicity happen in a well-organized pairwise manner. It follows that reconnection is very efficient at redistributing helicity in complex magnetic fields despite having little effect on the total helicity.

  8. Evolution of field line helicity during magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Russell, A. J. B.; Yeates, A. R.; Hornig, G.; Wilmot-Smith, A. L.

    2015-03-01

    We investigate the evolution of field line helicity for magnetic fields that connect two boundaries without null points, with emphasis on localized finite-B magnetic reconnection. Total (relative) magnetic helicity is already recognized as an important topological constraint on magnetohydrodynamic processes. Field line helicity offers further advantages because it preserves all topological information and can distinguish between different magnetic fields with the same total helicity. Magnetic reconnection changes field connectivity and field line helicity reflects these changes; the goal of this paper is to characterize that evolution. We start by deriving the evolution equation for field line helicity and examining its terms, also obtaining a simplified form for cases where dynamics are localized within the domain. The main result, which we support using kinematic examples, is that during localized reconnection in a complex magnetic field, the evolution of field line helicity is dominated by a work-like term that is evaluated at the field line endpoints, namely, the scalar product of the generalized field line velocity and the vector potential. Furthermore, the flux integral of this term over certain areas is very small compared to the integral of the unsigned quantity, which indicates that changes of field line helicity happen in a well-organized pairwise manner. It follows that reconnection is very efficient at redistributing helicity in complex magnetic fields despite having little effect on the total helicity.

  9. Evolution of the Cerenkov x total-energy telescope for isotopic analysis of cosmic rays

    NASA Technical Reports Server (NTRS)

    Webber, W. R.; Simpson, G. A.; Lezniak, J. A.; Kish, J. C.

    1978-01-01

    This paper discusses the evolution of the Cerenkov x total energy technique for isotopic analysis of cosmic rays as developed by the University of New Hampshire. This technique is generally restricted to particles with Z greater than 6, and the best mass resolution is achieved over a relatively narrow energy range just above the Cerenkov threshold. State-of-the-art mass resolution is now 0.3-0.4 AMU throughout the charge range z = 8-28 and over an energy range varying from about 40 MeV/n at lower Z to about 200 MeV/n for Fe.

  10. Lithospheric evolution of the Northern Arabian Shield: Chemical and isotopic evidence from basalts, xenoliths and granites

    NASA Technical Reports Server (NTRS)

    Stein, M.

    1988-01-01

    The evolution of the upper-mantle and the lower-crust (the conteinental lithosphere), is the area of Israel and Sinai was studied, using the chemical composition and the Nd-Sr isotopic systematics from mantle and crustal nodules, their host basalts, and granites. The magmatism and the metasomatism making the lithosphere are related to uprise of mantle diapirs in the uppermost mantle of the area. These diapirs heated the base of the lithosphere, eroded, and replaced it with new hot material. It caused a domal uplift of the lithosphere (and the crust). The doming resulted in tensional stresses that in turn might develop transport channels for the basalt.

  11. Shape evolution at high spin states in Kr and Br isotopes

    SciTech Connect

    Trivedi, T.; Palit, R.; Naik, Z.; Jain, H. C.; Negi, D.; Kumar, R.; Singh, R. P.; Muralithar, S.; Pancholi, S. C.; Bhowmik, R. K.; Yang, Y.-C.; Sun, Y.; Sheikh, J. A.; Raja, M. K.; Kumar, S.; Choudhury, D.; Jain, A. K.; Mehrotra, I.

    2014-08-14

    The high spin states in A = 75, Kr and Br isotopes have been populated via fusion-evaporation reaction at an incident beam energy of 90 MeV. The de-exciting γ-rays were detected utilizing the Indian National Gamma Array (INGA). Lifetime of these excited high spin states were determined by Doppler-shift attenuation method. Experimental results obtained from lifetime measurement are interpreted in the frame work of projected shell-model to get better insight into the evolution of collectivity. Comparison of the calculations of the model with transitional quadrupole moments Q{sub t} of the positive and negative parity bands firmly established their configurations.

  12. Evolution of deformation in the neutron-rich krypton isotopes: The Kr96 nucleus

    NASA Astrophysics Data System (ADS)

    Mărginean, N.; Bucurescu, D.; Ur, C. A.; Mihai, C.; Corradi, L.; Farnea, E.; Filipescu, D.; Fioretto, E.; Ghiţă, D.; Guiot, B.; Górska, M.; Ionescu-Bujor, M.; Iordăchescu, A.; Jelavić-Malenica, D.; Lenzi, S. M.; Mason, P.; Mărginean, R.; Mengoni, D.; Montagnoli, G.; Napoli, D. R.; Pascu, S.; Pollarolo, G.; Recchia, F.; Stefanini, A. M.; Silvestri, R.; Sava, T.; Scarlassara, F.; Szilner, S.; Zamfir, N. V.

    2009-08-01

    The energy of the first excited 2+ state in Kr96 was measured as 241 keV. The nucleus was produced in the fission of U238 induced by a 954-MeV Xe136 beam and prompt γ rays were observed using the clover array CLARA in coincidence with fission products identified with the PRISMA spectrometer. The evolution of the quadrupole collectivity in the Kr isotopes with N⩾50 is discussed by comparison with that from the Rb to Mo isotones and with predictions of various theoretical calculations.

  13. Detrital zircon evidence for Hf isotopic evolution of granitoid crust and continental growth

    NASA Astrophysics Data System (ADS)

    Iizuka, Tsuyoshi; Komiya, Tsuyoshi; Rino, Shuji; Maruyama, Shigenori; Hirata, Takafumi

    2010-04-01

    We have determined U-Pb ages, trace element abundances and Hf isotopic compositions of approximately 1000 detrital zircon grains from the Mississippi, Congo, Yangtze and Amazon Rivers. The U-Pb isotopic data reveal the lack of >3.3 Ga zircons in the river sands, and distinct peaks at 2.7-2.5, 2.2-1.9, 1.7-1.6, 1.2-1.0, 0.9-0.4, and <0.3 Ga in the accumulated age distribution. These peaks correspond well with the timing of supercontinent assembly. The Hf isotopic data indicate that many zircons, even those having Archean U-Pb ages, crystallized from magmas involving an older crustal component, suggesting that granitoid magmatism has been the primary agent of differentiation of the continental crust since the Archean era. We calculated Hf isotopic model ages for the zircons to estimate the mean mantle-extraction ages of their source materials. The oldest zircon Hf model ages of about 3.7 Ga for the river sands suggest that some crust generation had taken place by 3.7 Ga, and that it was subsequently reworked into <3.3 Ga granitoid continental crust. The accumulated model age distribution shows peaks at 3.3-3.0, 2.9-2.4, and 2.0-0.9 Ga. The striking attribute of our new data set is the non-uniformitarian secular change in Hf isotopes of granitoid crusts; Hf isotopic compositions of granitoid crusts deviate from the mantle evolution line from about 3.3 to 2.0 Ga, the deviation declines between 2.0 and 1.3 Ga and again increases afterwards. Consideration of mantle-crust mixing models for granitoid genesis suggests that the noted isotopic trends are best explained if the rate of crust generation globally increased in two stages at around (or before) 3.3 and 1.3 Ga, whereas crustal differentiation was important in the evolution of the continental crust at 2.3-2.2 Ga and after 0.6 Ga. Reconciling the isotopic secular change in granitoid crust with that in sedimentary rocks suggests that sedimentary recycling has essentially taken place in continental settings rather than

  14. Genesis and evolution of water in a two-mica pluton: A hydrogen isotope study

    USGS Publications Warehouse

    Brigham, R.H.; O'Neil, J.R.

    1985-01-01

    Measurements were made of the hydrogen isotope composition of 74 samples of muscovite, biotite, vein quartz and whole rocks from the Papoose Flat pluton, eastern California, U.S.A., and adjacent metamorphic and sedimentary rocks in order to elucidate the genesis and evolution of water and hydrous minerals in a two-mica granodiorite. Electron microprobe analyses were made of all micas so that the Suzuoki-Epstein equation could be used in evaluating the data. Based on experimental, theoretical and textural evidence of mica paragenesis, a model of hydrogen isotope fractionation between an aqueous vapor and a magma during crystallization has been constructed. This model accounts for the observed hydrogen isotope relations and implies that primary hydrogen isotope compositions have been preserved in a large portion of the pluton. The ?? D-values of biotites vary widely over the range -103 to -66% with most values lying between -90 and -70??? Muscovites, on the other hand, are isotopically more uniform and have ?? D-values of -61 to -41??? with most values lying between -50 and -46??? These data are consistent with the interpretation that biotite formed over a long period of crystallization whereas muscovite formed in a narrow interval, presumably during the final stages of crystallization when alumina and water contents were at their highest. Only 8 of the 21 muscovite-biotite pairs analyzed are in hydrogen isotope equilibrium as calculated from the Suzuoki-Epstein equation. Biotites in the western half of the pluton have relatively low ?? D-values of around -85???, whereas those in the eastern half have higher values of up to -66??? This pattern is a consequence of a loss of permeability associated with the syn-intrusive deformation of the western margin of the pluton. This loss of permeability enhanced the preservation of primary hydrogen isotope relations there by diverting water evolved from the magma out through the eastern half of the pluton where some deuteric

  15. The Evolution of the Earth's Magnetic Field.

    ERIC Educational Resources Information Center

    Bloxham, Jeremy; Gubbins, David

    1989-01-01

    Describes the change of earth's magnetic field at the boundary between the outer core and the mantle. Measurement techniques used during the last 300 years are considered. Discusses the theories and research for explaining the field change. (YP)

  16. Historical Evolution of the Field View and Textbook Accounts.

    ERIC Educational Resources Information Center

    Pocovi, M. Cecilia; Finley, Fred N.

    2003-01-01

    Analyzes how two electromagnetism textbooks approach the concept of electric field. Uses historical evolution of the field representation. Indicates that one textbook mixes up the historical and pedagogical reasons for the introduction of the concept of field while the other one presents a sketch that might lead students to understand the field…

  17. Isotopic constraints on anorthosite genesis and implications for crust-mantle evolution

    SciTech Connect

    Ashwal, L.D.

    1985-01-01

    Crystallization ages of anorthosite massifs, determined from whole-rock and internal Sm-Nd and Rb-Sr isochrons range between about 1.1 and 1.6 Ga, arguing against a discrete anorthosite event. Metamorphic ages of some massifs are as much as 200-300 Ma younger, indicating that the Grenville orogeny was not a causative factor in anorthosite genesis. Variable crustal contamination effects are evident in many massifs, particularly in border zones. In some late-stage ferrogabbros, mafic silicates and/or Fe-Ti oxides are not in isotopic equilibrium with plagioclase, suggesting that crystallization took place both before and after contamination. The most isotopically primitive materials are Al-rich opx megacrysts. Isotopic data to date are compatible with a two-stage model involving (1) emplacement of basaltic magma into lower crustal chambers where fractionation and accumulation of olivine and Al-rich opx, and eventually plagioclase took place, and (2) detachment and ascent of buoyant anorthositic mushes to upper crustal emplacement sites. Besides being useful as indicators of Proterozoic mantle evolution, anorthosites can be used as tracers to map our basement types through which they were emplaced.

  18. Tracing the secular evolution of the UCC using the iron isotope composition of ancient glacial diamictites

    NASA Astrophysics Data System (ADS)

    Liu, X. M.; Gaschnig, R. M.; Rudnick, R. L.; Hazen, R. M.; Shahar, A.

    2015-12-01

    Iron is the fourth most abundant element in the continental crust and influences global climate and biogeochemical cycles in the ocean1. Continental inputs, including river waters, sediments and atmospheric dust are dominant sources (>95%) of iron into the ocean2. Therefore, understanding how continental inputs may have changed through time is important in understanding the secular evolution of the marine Fe cycle. We analysed the Fe isotopic composition of twenty-four glacial diamictite composites, upper continental crust (UCC) proxies, with ages ranging from the Mesoarchean to the Paleozoic eras to characterize the secular evolution of the UCC. The diamictites all have elevated chemical index of alteration (CIA) and other characteristics of weathered regolith (e.g., strong depletion in soluble elements such as Sr), which they inherited from their upper crustal source region3. δ56Fe in the diamictite composites range from -0.59 to +0.23‰, however, most diamictites cluster with an average δ56Fe of 0.11± 0.20 (2s), overlapping juvenile continental material such as island arc basalts (IABs), which show a narrow range in δ56Fe from -0.04 to +0.14 ‰4. There is no obvious correlation between δ56Fe of the glacial diamictites and the CIA, except that the diamictite with the lowest δ56Fe at -0.59 ‰ also has the highest CIA = 89 (the Paleoproterozoic Makganyene Fm.). The data suggest that the Fe isotope compositions in the upper continental crust did not vary throughout Earth history. Interestingly, chemical weathering and sedimentary transport likely play only a minor role in producing Fe isotope variations in the upper continental crust. Anoxic weathering pre-GOE (Great Oxidation Event) does not seem to generate different Fe isotopic signatures from the post-GOE oxidative weathering environment in the upper continental crust. Therefore, large Fe isotopic fractionations observed in various marine sedimentary records are likely due to other processes occurring

  19. Tracing the secular evolution of the UCC using the iron isotope composition of ancient glacial diamictites

    NASA Astrophysics Data System (ADS)

    Liu, X. M.; Gaschnig, R. M.; Rudnick, R. L.; Hazen, R. M.; Shahar, A.

    2014-12-01

    Iron is the fourth most abundant element in the continental crust and influences global climate and biogeochemical cycles in the ocean1. Continental inputs, including river waters, sediments and atmospheric dust are dominant sources (>95%) of iron into the ocean2. Therefore, understanding how continental inputs may have changed through time is important in understanding the secular evolution of the marine Fe cycle. We analysed the Fe isotopic composition of twenty-four glacial diamictite composites, upper continental crust (UCC) proxies, with ages ranging from the Mesoarchean to the Paleozoic eras to characterize the secular evolution of the UCC. The diamictites all have elevated chemical index of alteration (CIA) and other characteristics of weathered regolith (e.g., strong depletion in soluble elements such as Sr), which they inherited from their upper crustal source region3. δ56Fe in the diamictite composites range from -0.59 to +0.23‰, however, most diamictites cluster with an average δ56Fe of 0.11± 0.20 (2s), overlapping juvenile continental material such as island arc basalts (IABs), which show a narrow range in δ56Fe from -0.04 to +0.14 ‰4. There is no obvious correlation between δ56Fe of the glacial diamictites and the CIA, except that the diamictite with the lowest δ56Fe at -0.59 ‰ also has the highest CIA = 89 (the Paleoproterozoic Makganyene Fm.). The data suggest that the Fe isotope compositions in the upper continental crust did not vary throughout Earth history. Interestingly, chemical weathering and sedimentary transport likely play only a minor role in producing Fe isotope variations in the upper continental crust. Anoxic weathering pre-GOE (Great Oxidation Event) does not seem to generate different Fe isotopic signatures from the post-GOE oxidative weathering environment in the upper continental crust. Therefore, large Fe isotopic fractionations observed in various marine sedimentary records are likely due to other processes occurring

  20. STRONTIUM ISOTOPE EVOLUTION OF PORE WATER AND CALCITE IN THE TOPOPAH SPRING TUFF, YUCCA MOUNTAIN , NEVADA

    SciTech Connect

    B.D. Marshall; K. Futa

    2001-02-07

    Yucca Mountain, a ridge of Miocene volcanic rocks in southwest Nevada, is being characterized as a site for a potential high-level radioactive waste repository. One issue of concern for the future performance of the potential repository is the movement of water in and around the potential repository horizon. Past water movement in this unsaturated zone is indicated by fluid inclusions trapped in calcite coatings on fracture footwall surfaces and in some lithophysal cavities. Some of the fluid inclusions have homogenization temperatures above the present-day geotherm (J.F. Whelan, written communication), so determining the ages of the calcite associated with those fluid inclusions is important in understanding the thermal history of the potential repository site. Calcite ages have been constrained by uranium-lead dating of silica polymorphs (opal and chalcedony) that are present in most coatings. The opal and chalcedony ages indicate that deposition of the calcite and opal coatings in the welded part of the Topopah Spring Tuff (TSw hydrogeologic unit) spanned nearly the entire history of the 12.8-million-year-old rock mass at fairly uniform overall long-term rates of deposition (within a factor of five). Constraining the age of a layer of calcite associated with specific fluid inclusions is complicated. Calcite is commonly bladed with complex textural relations, and datable opal or chalcedony may be millions of years older or younger than the calcite layer or may be absent from the coating entirely. Therefore, a more direct method of dating the calcite is presented in this paper by developing a model for strontium evolution in pore water in the TSw as recorded by the strontium coprecipitated with calcium in the calcite. Although the water that precipitated the calcite in fractures and cavities may not have been in local isotopic equilibrium with the pore water, the strontium isotope composition of all water in the TSw is primarily controlled by water

  1. Magnetic field evolution of accreting neutron stars

    NASA Astrophysics Data System (ADS)

    Istomin, Y. N.; Semerikov, I. A.

    2016-01-01

    The flow of a matter, accreting on to a magnetized neutron star, is accompanied by an electric current. The closing of the electric current occurs in the crust of a neutron stars in the polar region across the magnetic field. But the conductivity of the crust along the magnetic field greatly exceeds the conductivity across the field, so the current penetrates deep into the crust down up to the superconducting core. The magnetic field, generated by the accretion current, increases greatly with the depth of penetration due to the Hall conductivity of the crust is also much larger than the transverse conductivity. As a result, the current begins to flow mainly in the toroidal direction, creating a strong longitudinal magnetic field, far exceeding an initial dipole field. This field exists only in the narrow polar tube of r width, narrowing with the depth, i.e. with increasing of the crust density ρ, r ∝ ρ-1/4. Accordingly, the magnetic field B in the tube increases with the depth, B∝ρ1/2, and reaches the value of about 1017 Gauss in the core. It destroys superconducting vortices in the core of a star in the narrow region of the size of the order of 10 cm. Because of generated density gradient of vortices, they constantly flow into this dead zone and the number of vortices decreases, the magnetic field of a star decreases as well. The attenuation of the magnetic field is exponential, B = B0(1 + t/τ)-1. The characteristic time of decreasing of the magnetic field τ is equal to τ ≃ 103 yr. Thus, the magnetic field of accreted neutron stars decreases to values of 108-109 Gauss during 107-106 yr.

  2. Ordovician carbonate formation waters in the Illinois Basin: Chemical and isotopic evolution beneath a regional aquitard

    SciTech Connect

    Stueber, A.M. ); Walter, L.M. . Dept. of Geological Sciences)

    1992-01-01

    Formation waters from carbonate reservoirs in the upper Ordovician Galena Group of the Illinois Basin have been analyzed geochemically to study origin of salinity, chemical and isotopic evolution, and relation to paleohydrologic flow systems. These carbonate reservoirs underlie the Maquoketa Shale Group of Cincinnatian age, which forms a regional aquitard. Cl-Br relations and Na/Br-Cl/Br systematics indicate that initial brine salinity resulted from subaerial evaporation of seawater to a point not significantly beyond halite saturation. Subsequent dilution in the subsurface by meteoric waters is supported by delta D-delta O-18 covariance. Systematic relations between Sr-87/Sr-86 and 1/Sr suggest two distinct mixing events: introduction of a Sr-87 enriched fluid from a siliciclastic source, and a later event which only affected reservoir waters from the western shelf of the basin. The second mixing event is supported by covariance between Sr-87/Sr-86 and concentrations of cations and anions; covariance between Sr and O-D isotopes suggests that the event is related to meteoric water influx. Systematic geochemical relations in ordovician Galena Group formation waters have been preserved by the overlying Maquoketa shale aquitard. Comparison with results from previous studies indicates that waters from Silurian-Devonian carbonate strata evolved in a manner similar to yet distinct from that of the Ordovician carbonate waters, whereas waters from Mississippian-Pennsylvanian strata that overlie the New Albany Shale Group regional aquitard are marked by fundamentally different Cl-Br-Na and Sr isotope systematics. Evolution of these geochemical formation-water regimes apparently has been influenced significantly by paleohydrologic flow systems.

  3. Importance of the Lu-Hf isotopic system in studies of planetary chronology and chemical evolution

    USGS Publications Warehouse

    Patchett, P.J.

    1983-01-01

    The 176Lu-176Hf isotope method and its applications in earth sciences are discussed. Greater fractionation of Lu/Hf than Sm/Nd in planetary magmatic processes makes 176Hf 177Hf a powerful geochemical tracer. In general, proportional variations of 176Hf 177Hf exceed those of 143Nd l44Nd by factors of 1.5-3 in terrestrial and lunar materials. Lu-Hf studies therefore have a major contribution to make in understanding of terrestrial and other planetary evolution through time, and this is the principal importance of Lu-Hf. New data on basalts from oceanic islands show unequivocally that whereas considerable divergences occur in 176Hf 177Hf- 87Sr 86Sr and 143Nd l44Nd- 87Sr 86Sr diagrams, 176Hf 177Hf and 143Nd 144Nd display a single, linear isotopic variation in the suboceanic mantle. These discordant 87Sr 86Sr relationships may allow, with the acquisition of further Hf-Nd-Sr isotopic data, a distinction between processes such as mantle metasomatism, influence of seawater-altered material in the magma source, or recycling of sediments into the mantle. In order to evaluate the Hf-Nd isotopic correlation in terms of mantle fractionation history, there is a need for measurements of Hf distribution coefficients between silicate minerals and liquids, and specifically for a knowledge of Hf behavior in relation to rareearth elements. For studying ancient terrestrial Hf isotopic variations, the best quality Hf isotope data are obtained from granitoid rocks or zircons. New data show that very U-Pb discordant zircons may have upwardly-biased 176Hf 177Hf, but that at least concordant to slightly discordant zircons appear to be reliable carriers of initial 176Hf 177Hf. Until the controls on addition of radiogenic Hf to zircon are understood, combined zircon-whole rock studies are recommended. Lu-Hf has been demonstrated as a viable tool for dating of ancient terrestrial and extraterrestrial samples, but because it offers little advantage over existing methods, is unlikely to find

  4. Effect of parent body evolution on equilibrium and kinetic isotope fractionation: a combined Ni and Fe isotope study of iron and stony-iron meteorites

    NASA Astrophysics Data System (ADS)

    Chernonozhkin, Stepan M.; Goderis, Steven; Costas-Rodríguez, Marta; Claeys, Philippe; Vanhaecke, Frank

    2016-08-01

    Various iron and stony-iron meteorites have been characterized for their Ni and Fe isotopic compositions using multi-collector inductively coupled plasma-mass spectrometry (MC-ICP-MS) after sample digestion and chromatographic separation of the target elements in an attempt to further constrain the planetary differentiation processes that shifted these isotope ratios and to shed light on the formational history and evolution of selected achondrite parent body asteroids. Emphasis was placed on spatially resolved isotopic analysis of iron meteorites, known to be inhomogeneous at the μm to mm scale, and on the isotopic characterization of adjacent metal and silicate phases in main group pallasites (PMG), mesosiderites, and the IIE and IAB complex silicate-bearing iron meteorites. In a 3-isotope plot of 60/58Ni versus62/58Ni, the slope of the best-fitting straight line through the laterally resolved Ni isotope ratio data for iron meteorites reveals kinetically controlled isotope fractionation (βexper = 1.981 ± 0.039, 1 SD), predominantly resulting from sub-solidus diffusion (with the fractionation exponent β connecting the isotope fractionation factors, as α62/58 =α60/58β). The observed relation between δ56/54Fe and Ir concentration in the metal fractions of PMGs and in IIIAB iron meteorites indicates a dependence of the bulk Fe isotopic composition on the fractional crystallization of an asteroidal metal core. No such fractional crystallization trends were found for the corresponding Ni isotope ratios or for other iron meteorite groups, such as the IIABs. In the case of the IIE and IAB silicate-bearing iron meteorites, the Fe and Ni isotopic signatures potentially reflect the influence of impact processes, as the degree of diffusion-controlled Ni isotope fractionation is closer to that of Fe compared to what is observed for magmatic iron meteorite types. Between the metal and olivine counterparts of pallasites, the Fe and Ni isotopic compositions show clearly

  5. Isotopic effect on ion mobility and separation of isotopomers by high-field ion mobility spectrometry.

    PubMed

    Shvartsburg, Alexandre A; Clemmer, David E; Smith, Richard D

    2010-10-01

    Distinguishing and separating isotopic molecular variants is important across many scientific fields. However, discerning such variants, especially those producing no net mass difference, has been challenging. For example, single-stage mass spectrometry is broadly employed to analyze isotopes but is blind to isotopic isomers (isotopomers) and, except at very high resolution, species of the same nominal mass (isobars). Here, we report separation of isotopic ions, including isotopomers and isobars, using ion mobility spectrometry (IMS), specifically, the field asymmetric waveform IMS (FAIMS). The effect is not based on the different reduced masses of ion-gas molecule pairs previously theorized to cause isotopic separations in conventional IMS, but appears related to the details of energetic ion-molecule collisions in strong electric fields. The observed separation qualitatively depends on the gas composition and may be improved using gas mixtures. Isotopic shifts depend on the position of the labeled site, which allows its localization and contains information about the ion geometry, potentially enabling a new approach to molecular structure characterization.

  6. Global-scale modelling of melting and isotopic evolution of Earth's mantle: melting modules for TERRA

    NASA Astrophysics Data System (ADS)

    van Heck, Hein J.; Davies, J. Huw; Elliott, Tim; Porcelli, Don

    2016-04-01

    Many outstanding problems in solid-Earth science relate to the geodynamical explanation of geochemical observations. Currently, extensive geochemical databases of surface observations exist, but satisfying explanations of underlying mantle processes are lacking. One way to address these problems is through numerical modelling of mantle convection while tracking chemical information throughout the convective mantle. We have implemented a new way to track both bulk compositions and concentrations of trace elements in a finite-element mantle convection code. Our approach is to track bulk compositions and trace element abundances via particles. One value on each particle represents bulk composition and can be interpreted as the basalt component. In our model, chemical fractionation of bulk composition and trace elements happens at self-consistent, evolving melting zones. Melting is defined via a composition-dependent solidus, such that the amount of melt generated depends on pressure, temperature and bulk composition of each particle. A novel aspect is that we do not move particles that undergo melting; instead we transfer the chemical information carried by the particle to other particles. Molten material is instantaneously transported to the surface layer, thereby increasing the basalt component carried by the particles close to the surface and decreasing the basalt component in the residue. The model is set to explore a number of radiogenic isotopic systems, but as an example here the trace elements we choose to follow are the Pb isotopes and their radioactive parents. For these calculations we will show (1) the evolution of the distribution of bulk compositions over time, showing the buildup of oceanic crust (via melting-induced chemical separation in bulk composition), i.e. a basalt-rich layer at the surface, and the transportation of these chemical heterogeneities through the deep mantle; (2) the amount of melt generated over time; (3) the evolution of the

  7. Evolution of tachyon kink with electric field

    NASA Astrophysics Data System (ADS)

    Cho, Inyong; Kwon, O.-Kab; Lee, Chong Oh

    2007-04-01

    We investigate the decay of an inhomogeneous D1-brane wrapped on a S1 with an electric field. The model that we consider consists of an array of tachyon kink and anti-kink with a constant electric flux. Beginning with an initially static configuration, we numerically evolve the tachyon field with some perturbations under a fixed boundary condition at diametrically opposite points on the circle S1. When the electric flux is smaller than the critical value, the tachyon kink becomes unstable; the tachyon field rolls down the potential, and the lower dimensional D0- and bar D0-brane become thin, which resembles the caustic formation known for this type of the system in the literature. For the supercritical values of the electric flux, the tachyon kink remains stable.

  8. Catastrophic isotopic modification of rhyolitic magma at times of caldera subsidence, Yellowstone plateau volcanic field.

    USGS Publications Warehouse

    Hildreth, W.; Christiansen, R.L.; O'Neil, J.R.

    1984-01-01

    This Wyoming volcanic field has undergone repeated eruption of rhyolitic magma strongly depleted in 18O. Large calderas subsided 2.0, 1.3 and 0.6 m.y. ago on eruption of ash-flow sheets. More than 60 other rhyolite lavas and tuffs permit reconstruction of the long-term chemical and isotopic evolution of the silicic system. Narrow delta 18O ranges in the ash-flow sheets contrast with wide delta 18O variation in post-caldera lavas. The earliest post-collapse lavas are 3-6per mille lighter than the preceding ash-flow sheets. The 18O depletions were short-lived events that immediately followed caldera subsidence and sequences of post-caldera lavas record partial recovery toward pre-caldera delta 18O values. Contemporaneous extra-caldera rhyolites show no effects of the repeated depletions. Although some contamination by foundering roof rocks seems to be required, water was probably the predominant contaminant.-W.H.B.

  9. Zircon Hf isotopic constraints on the magmatic evolution in Iran: Implications of the Phanerozoic continental growth

    NASA Astrophysics Data System (ADS)

    Chiu, H.; Chung, S.; Zarrinkoub, M. H.; Lee, H.; Pang, K.; Mohammadi, S. S.; Khatib, M. M.

    2013-12-01

    Combined LA-ICPMS analyses of zircon U-Pb and Hf isotope compositions for magmatic rocks from major domains of Iran allow us to better understand the magmatic evolution regarding the development of the Tethys oceans in the regions. In addition to 79 igneous rocks from Iran, 12 others were also collected from Armenia for isotopic studies. Two major episodes of magmatism were identified in the late Neoproterozoic to Cambrian and the Late Triassic. While the former represents the depleted mantle-derived magma and has associated with the magmatic events that produced the peri-Gondwanan terranes and the Arabian-Nubian Shield, the latter shows the continental crust-type zircon Hf isotopic characteristic and is attributed to the subduction and closing of the Paleotethys ocean. The Neotethyan subduction-related magmatism started from the Jurassic period as granitoids that now exposed along the Sanandaj-Sirjan structural zone (SSZ) and in the central part of the Urumieh-Dokhtar magmatic arc (UDMA), and exhibit heterogeneous isotopic affinities of variable zircon ɛHf(T) values between +12 and -5. The igneous activities migrated inland in the southeastern segment of the UDMA from which the Late Cretaceous granitoids occurred in the Jiroft and Bazman areas with zircon ɛHf(T) values from +15 to +11 and from +5 to -9, respectively, implying the remarkable involvement of crustal material in the Bazman magma. Then, the most widespread magmatic activities which took place during the Eocene to Miocene in the UDMA, Armenia, the SSZ and the Alborz yielded mainly positive zircon ɛHf(T) values from +17 to -1. However, the Eocene intrusive rocks from the Central Iran, in the Saghand area have less radiogenic zircon Hf isotopes of ɛHf(T) values between +6 and -7. Magmatic zircons with juvenile signatures, ɛHf(T) values from +17 to 0, were also found during the Oligocene to Quaternary in the southern Sistan suture zone and the Makran region. Significantly, the positive ɛHf(T) values

  10. Hydrogen Isotopic Constraints on the Evolution of Surface and Subsurface Water on Mars

    NASA Technical Reports Server (NTRS)

    Usui, T.; Kurokawa, H.; Wang, J.; Alexander, C. M. O’D.; Simon, J. I.; Jones, J. H.

    2017-01-01

    The geology and geomorphology of Mars provide clear evidence for the presence of liquid water on its surface during the Noachian and Hesperien eras (i.e., >3 Ga). In contrast to the ancient watery environment, today the surface of Mars is relatively dry. The current desert-like surface conditions, however, do not necessarily indicate a lack of surface or near-surface water/ice. In fact, massive deposits of ground ice and/or icy sediments have been proposed based on subsurface radar sounder observations. Hence, accurate knowledge of both the evolution of the distribution of water and of the global water inventory is crucial to our understanding of the evolution of the climate and near-surface environments and the potential habitability of Mars. This study presents insights from hydrogen isotopes for the interactive evolution of Martian water reservoirs. In particular, based on our new measurement of the D/H ratio of 4 Ga-old Noachian water, we constrain the atmospheric loss and possible exchange of surface and subsurface water through time.

  11. Mean Field Evolution of Fermions with Coulomb Interaction

    NASA Astrophysics Data System (ADS)

    Porta, Marcello; Rademacher, Simone; Saffirio, Chiara; Schlein, Benjamin

    2017-03-01

    We study the many body Schrödinger evolution of weakly coupled fermions interacting through a Coulomb potential. We are interested in a joint mean field and semiclassical scaling, that emerges naturally for initially confined particles. For initial data describing approximate Slater determinants, we prove convergence of the many-body evolution towards Hartree-Fock dynamics. Our result holds under a condition on the solution of the Hartree-Fock equation, that we can only show in a very special situation (translation invariant data, whose Hartree-Fock evolution is trivial), but that we expect to hold more generally.

  12. Decoupled Rb-Sr and Sm-Nd isotopic evolution of the continental crust

    NASA Technical Reports Server (NTRS)

    Goldstein, S. L.

    1988-01-01

    Evidence was presented that the Rb-Sr and Sm-Nd isotopic systems are decoupled in crust-mantle evolution. Rare earth element (including Sm and Nd) residue principally in silicates, and are resistant to mobilization by weathering and metamorphism. In contrast, Rb and Sr are easily fractionated by crustal processes and residue in carbonates as well as in silicates. As a result, continental Sr, but not Nd, can be recycled into the mantle by exchange of seawater with basalt at spreading ridges and by subduction of carbonates associated with ridge processes. These effects result in mean Rb-Sr ages of the continental crust and of the upper mantle that are too young. Crustal growth curves based largely on Rb-Sr data, such that of Hurley and Rand, are therefore incorrect.

  13. Mantle evolution on Mars: Constraints from Lu-Hf and Sm-Nd isotope systematics of SNC meteorites

    NASA Astrophysics Data System (ADS)

    Scherer, E. E.; Kurahashi, E.; Mezger, K.

    2012-12-01

    The long-lived 176Lu-176Hf and 147Sm-143Nd isotope systems are commonly employed to track the evolution of complementary mantle and crust reservoirs. The four elements involved are refractory and lithophile, and thus their relative abundances are not expected to have been changed by accretion or core formation. Subsequent silicate differentiation processes, however, e.g., the formation of crust by extraction of melts from the mantle, will fractionate Lu/Hf and Sm/Nd. This typically leaves a depleted mantle with higher Lu/Hf and Sm/Nd values than those of the undifferentiated, presumably chondritic parental reservoir. On the other hand, these same values in crustal rocks tend to be lower than those of their source. (Apparent exceptions are the Martian shergottites, which tend to have lower Lu/Hf as expected, but Sm/Nd higher than their presumed sources. Such decoupling of the two isotope systems may be explained by two-stage melting [e.g., 1, 5].) The ensuing chemical variability among secondary and later generation silicate reservoirs causes their isotopic compositions (e.g., 176Hf/177Hf and 143Nd/144Nd) to diverge from that of the bulk silicate planet over hundreds of millions of years. The resulting isotopic diversity preserved (SNC) meteorites is being used to constrain the differentiation history, melting mineralogy, and dynamics of the Martian mantle [e.g., 1-8]. However, interpretations based on the initial isotope compositions of Hf and Nd strongly depend on the accuracy of crystallization ages. The ages of shergottites in particular are debated (e.g., [3,4,7]). To resolve this issue and gain a better understanding of Martian mantle evolution, we are investigating the Lu-Hf and Sm-Nd systematics of bulk SNC meteorites and constructing internal (mineral) isochrons. Eleven bulk Martian meteorites (5 shergottites, 4 nakhlites, and 2 chassignites) were digested without prior leaching in high-pressure autoclaves for 5 days. Initial ɛ176Hf and ɛ143Nd values

  14. Isotopic Effect on Ion Mobility and Separation of Isotopomers by High-Field Ion Mobility Spectrometry

    SciTech Connect

    Shvartsburg, Alexandre A.; Clemmer, David E.; Smith, Richard D.

    2010-10-01

    Since early 1900-s, when vacuum techniques and ion detectors first enabled investigations of gas-phase ions, two approaches to their separation and characterization have emerged - mass spectrometry (MS) and ion mobility spectrometry (IMS).1,2 Though both exploit that distinct charged species move in electric fields differently, MS is performed in vacuum and is based only on the ion mass/charge (m/q) ratio while IMS involves sufficiently dense buffer gases and relies on ion transport properties. The first major discovery enabled by MS was the existence of isotopes by Thomson and Aston,3 and isotopic analyses have since been integral to MS. In particular, the preparative separation of U isotopes using Lawrence’s Calutron was the first industrial application of MS,4 and isotopic labeling is key to MS quantification methods. With IMS, the issue of isotopes was largely ignored as the resolving power (R) was generally too low for their separation. Here, we demonstrate that recently developed high-resolution differential IMS can separate isotopic molecular ions, including nominal isobars with different isotopic content and isotopomers. This capability may enable a new method for isotope separation in a small-scale format at ambient pressure and aid localization of labeled sites in various molecules. Perhaps most importantly, the isotopic shifts depend on the labeled atom position and thus may contain the kind of detailed structural information that is available in solution or solid state using tools such as NMR but has not generally been obtainable for gas-phase ions.

  15. Medical internet ethics: a field in evolution.

    PubMed

    Dyer, K A; Thompson, C D

    2001-01-01

    As in any new field, the merger of medicine, e-commerce and the Internet raises many questions pertaining to ethical conduct. Key issues include defining the essence of the patient-provider relationship, establishing guidelines and training for practicing online medicine and therapy, setting standards for ethical online research, determining guidelines for providing quality healthcare information and requiring ethical conduct for medical and health websites. Physicians who follow their professional code of ethics are obligated not to exploit the relationship they have with patients, nor allow anyone else working with them to do so. Physicians and therapists are obligated to serve those who place trust in them for treatment, whether in face-to-face or online Internet encounters with patients or clients. This ethical responsibility to patients and clients is often in direct conflict with the business model of generating profits. Healthcare professionals involved in Medical Internet Ethics need to define the scope of competent medical and healthcare on the Internet. The emerging ethical issues facing medicine on the Internet, the current state of medical ethics on the Internet and questions for future directions of study in this evolving field are reviewed in this paper.

  16. On the Origin and Evolution of Galactic Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Lesch, H.; Chiba, M.

    The existence of large-scale magnetic fields in galaxies is still a challenge for theoretical astrophysics. Are magnetic fields of primordial origin, produced somehow during the initial stages of cosmic evolution or are they intrinsically produced by the galaxies themselves? Especially observations of m G fields in high redshift (z = 2-3) damped Lyman alpha clouds, which are supposed to be the progenitors of disk galaxies, raise questions about the origin of such strong fields only one or two Gigayears after the Big Bang. Recent observations of galactic magnetic fields in nearby disk galaxies as well as in high redshift objects are reviewed and the role of electrodynamical coupling of the fields and the gas motions in different stages of galaxy evolution is emphasized. By presenting two different scenarios-action of a turbulent dynamo in axisymmetric differentially rotating disks and magnetic field amplification by non-axisymmetric dynamical processes (protogalactic collapse and subsequent excitation of spiral arms and bars) - we illustrate the basic problems of magnetic field production and amplification in galactic systems. It is shown that origin and amplification via dynamical processes leads to appropriate time scales and efficiencies to account for the strong magnetic fields in high redshift objects as well as the field structure in nearby disk galaxies. We describe the implications for galaxy formation if such strong fields exist in the epoch prior to galaxy formation. Finally we discuss our conclusion that the origin and evolution of galactic magnetic fields can only be understood by considering the time-varying velocity field of the conductor, the galactic interstellar medium in all stages of a galactic lifetime, in detail.

  17. The evolution of primordial magnetic fields since their generation

    NASA Astrophysics Data System (ADS)

    Kahniashvili, Tina; Brandenburg, Axel; Tevzadze, Alexander G.

    2016-10-01

    We study the evolution of primordial magnetic fields in an expanding cosmic plasma. For this purpose we present a comprehensive theoretical model to consider the evolution of MHD turbulence that can be used over a wide range of physical conditions, including cosmological and astrophysical applications. We model different types of decaying cosmic MHD turbulence in the expanding Universe and characterize the large-scale magnetic fields in such a medium. Direct numerical simulations of freely decaying MHD turbulence are performed for different magnetogenesis scenarios: magnetic fields generated during cosmic inflation as well as electroweak and QCD phase transitions in the early Universe. Magnetic fields and fluid motions are strongly coupled due to the high Reynolds number in the early Universe. Hence, we abandon the simple adiabatic dilution model to estimate magnetic field amplitudes in the expanding Universe and include turbulent mixing effects on the large-scale magnetic field evolution. Numerical simulations have been carried out for non-helical and helical magnetic field configurations. The numerical results show the possibility of inverse transfer of energy in magnetically dominated non-helical MHD turbulence. On the other hand, decay properties of helical turbulence depend on whether the turbulent magnetic field is in a weakly or a fully helical state. Our results show that primordial magnetic fields can be considered as a seed for the observed large-scale magnetic fields in galaxies and clusters. Bounds on the magnetic field strength are obtained and are consistent with the upper and lower limits set by observations of extragalactic magnetic fields.

  18. The origin, evolution and signatures of primordial magnetic fields

    NASA Astrophysics Data System (ADS)

    Subramanian, Kandaswamy

    2016-07-01

    The universe is magnetized on all scales probed so far. On the largest scales, galaxies and galaxy clusters host magnetic fields at the micro Gauss level coherent on scales up to ten kpc. Recent observational evidence suggests that even the intergalactic medium in voids could host a weak  ˜  10-16 Gauss magnetic field, coherent on Mpc scales. An intriguing possibility is that these observed magnetic fields are a relic from the early universe, albeit one which has been subsequently amplified and maintained by a dynamo in collapsed objects. We review here the origin, evolution and signatures of primordial magnetic fields. After a brief summary of magnetohydrodynamics in the expanding universe, we turn to magnetic field generation during inflation and phase transitions. We trace the linear and nonlinear evolution of the generated primordial fields through the radiation era, including viscous effects. Sensitive observational signatures of primordial magnetic fields on the cosmic microwave background, including current constraints from Planck, are discussed. After recombination, primordial magnetic fields could strongly influence structure formation, especially on dwarf galaxy scales. The resulting signatures on reionization, the redshifted 21 cm line, weak lensing and the Lyman-α forest are outlined. Constraints from radio and γ-ray astronomy are summarized. Astrophysical batteries and the role of dynamos in reshaping the primordial field are briefly considered. The review ends with some final thoughts on primordial magnetic fields.

  19. EVOLUTION OF THE AXIAL MAGNETIC FIELD IN SOLAR FILAMENT CHANNELS

    SciTech Connect

    Litvinenko, Yuri E.

    2010-09-01

    Formation of solar filament channels by photospheric magnetic reconnection is considered. A magnetohydrodynamic model for magnetic merging, driven by converging convective motions in the photosphere, is presented. Evolution of the axial magnetic field in a channel is analyzed. An exact time-dependent analytical solution for the field profile in a steady stagnation-point flow is derived. The maximum magnetic field in the channel is determined, and its dependence on the reconnection inflow speed is discussed. The quantitative results show that the maximum axial magnetic field in a forming channel is an indicator of the photospheric reconnection rate, in agreement with recent solar observations and laboratory experiments.

  20. The evolution of Phanerozoic seawater - Isotope paleothermometry finds consensus on Early Paleozoic warmth and constant seawater δ18O

    NASA Astrophysics Data System (ADS)

    Grossman, E. L.; Henkes, G. A.; Passey, B. H.; Shenton, B.; Yancey, T. E.; Perez-Huerta, A.

    2015-12-01

    Evolution of metazoan life is closely linked to the Phanerozoic evolution of ocean temperatures and chemistry. Oxygen isotopic evidence for early Phanerozoic paleotemperatures has been equivocal, with decreasing δ18O values with age being interpreted as warmer early oceans, decreasing seawater δ18O with age, or increasing diagenetic alteration in older samples. Here we compare an updated compilation of oxygen isotope data for carbonate and phosphate fossils and microfossils (Grossman, 2012, Geol. Time Scale, Elsevier, 195-220) with a compilation of new and existing clumped isotope data. Importantly, these data are curated based on sample preservation with special consideration given to screening techniques, and tectonic and burial history. Burial history is critical in the preservation of carbonate clumped isotope temperatures in particular, which can undergo reordering in the solid state. We use a model derived for reordering kinetics (Henkes et al., 2014, Geochim. Cosmochim. Acta 139:362-382) to screen clumped isotope data for the effects of solid-state burial alteration. With minor but significant exceptions (Late Cretaceous, Early Triassic), average δ18O values (4 m.y. window, 2 m.y. steps) for post-Devonian brachiopods, belemnites, and foraminifera, representing tropical-subtropical surface ocean conditions, yield average isotopic temperatures below 30°C (assuming a seawater δ18O value [ -1‰ VSMOW] of an "ice-free" world). In contrast, Ordovician to Devonian data show sustained temperatures of 35-40°C. Likewise, isotopic paleotemperatures from conodont apatite, known to be resistant to isotopic exchange, follow the same pattern. Clumped isotope data derived from Paleozoic brachiopod shells that experienced minimal burial (< 100 °C) and <1% reordering according to the taxon-specific clumped isotope reordering model yield typical temperatures of 25-30°C for the Carboniferous, and 35-40°C for the Ordovician-Silurian. Inserting clumped temperatures and

  1. The sources and time-integrated evolution of diamond-forming fluids - Trace elements and isotopic evidence

    NASA Astrophysics Data System (ADS)

    Klein-BenDavid, Ofra; Pearson, D. Graham; Nowell, Geoff M.; Ottley, Chris; McNeill, John C. R.; Logvinova, Alla; Sobolev, Nikolay V.

    2014-01-01

    Sub-micrometer inclusions in fibrous diamond growth zones carry high-density fluids (HDF) from which the host diamonds have precipitated. The chemistry of these fluids is our best opportunity of characterizing the diamond-forming environment. The major and trace element patterns of diamond-forming fluids vary widely. Such elemental signatures can be easily modified by a variety of mantle processes whereas radiogenic isotopes give a clear fingerprint of the time-integrated evolution of the fluid source region. Thus, the combination of elemental and isotope data is a powerful tool in constraining the origin of fluids from which diamonds precipitate. Here we present combined trace element composition (34 diamonds) and Sr isotopic data (23 diamonds) for fluid-rich diamonds from six worldwide locations. The Nd and Pb isotopic composition of two of the diamonds were also obtained. Several of the samples were analyzed in at least 2 locations to investigate variations in the fluid during diamond growth. The data was acquired using an off-line laser sampling technique followed by solution ICPMS and TIMS analysis. The Sr isotopic compositions of diamond fluids from the different suites range between convecting mantle values for Udachnaya (87Sr/86Sr363 = 0.70300 ± 16 to 0.70361 ± 4), to highly enriched values, up to 87Sr/86Sr = 0.72330 ± 3, for a diamond from Congo. No isochronous relationships were observed in any of the suites. The lowest Nd isotopic composition recorded so far in a diamond is from Congo (εNd71 = -40.4), which also contains the most radiogenic Sr isotopic composition. In contrast, a less enriched but still rather unradiogenic Nd isotope composition (εNd540 = -11) was obtained for a diamond from Snap Lake, which has moderately radiogenic Sr isotopic enrichment (87Sr/86Sr540 = 0.70821 ± 1). The Pb isotopic system measured in one diamond indicates a complex evolution for the fluid source, with extreme 207Pb/204Pb ratio (15.810 ± 3) and moderate

  2. Compound specific isotope analysis to investigate pesticide degradation in lysimeter experiments at field conditions

    NASA Astrophysics Data System (ADS)

    Ryabenko, Evgenia; Elsner, Martin; Bakkour, Rani; Hofstetter, Thomas; Torrento, Clara; Hunkeler, Daniel

    2015-04-01

    The frequent detection of organic micropollutants such as pesticides, consumer care products or pharmaceuticals in water is an increasing concern for human and ecosystem health. Degradation analysis of these compounds can be challenging in complex systems due to the fact that metabolites are not always found and mass balances frequently cannot be closed. Many abiotic and biotic degradation pathways cause, however, distinct isotope fractionation, where light isotopes are transferred preferentially from the reactant to the product pool (normal isotope fractionation). Compound-specific isotope analysis (CSIA) of multiple elements is a particularly powerful method to evaluate organic micropollutant transformation, because it can even give pathway-specific isotope fractionation (1,2). Available CSIA field studies, however, have focused almost exclusively on volatile petroleum and chlorinated hydrocarbons, which are present in high concentrations in the environment and can be extracted easily from water for GC-IRMS analysis. In the case of micropollutants, such as pesticides, CSIA in more challenging since it needs to be conducted at lower concentrations and requires pre-concentration, purification and high chromatographic performance (3). In this study we used lysimeters experiments to analyze transformation of atrazine, acetochlor, metolachlor and chloridazone by studying associated isotope fractionation. The project combines a) analytical method development for CSIA, b) identification of pathways of micropollutant degradation and c) quantification of transformation processes under field condition. The pesticides were applied both, at the soil surface and below the top soil under field-relevant concentrations in May 2014. After typical irrigation of the lysimeters, seepage water was collected in 50L bottles and stored for further SPE and CSIA. Here we present the very first result of a) analytical method development, b) improvement of SPE methods for complex pesticide

  3. Magnetic field evolution in white dwarfs: The hall effect and complexity of the field

    NASA Technical Reports Server (NTRS)

    Muslimov, A. G.; Van Horn, H. M.; Wood, M. A.

    1995-01-01

    We calculate the evolution of the magnetic fields in white dwarfs, taking into account the Hall effect. Because this effect depends nonlinearly upon the magnetic field strength B, the time dependences of the various multipole field components are coupled. The evolution of the field is thus significantly more complicated than has been indicated by previous investigations. Our calculations employ recent white dwarf evolutionary sequences computed for stars with masses 0.4, 0.6, 0.8, and 1.0 solar mass. We show that in the presence of a strong (up to approximately 10(exp 9) G) internal toroidal magnetic field; the evolution of even the lowest order poloidal modes can be substantially changed by the Hall effect. As an example, we compute the evolution of an initially weak quadrupole component, which we take arbitrarily to be approximately 0.1%-1% of the strength of a dominant dipole field. We find that coupling provided by the Hall effect can produce growth of the ratio of the quadrupole to the dipole component of the surface value of the magnetic field strength by more than a factor of 10 over the 10(exp 9) to 10(exp 10) year cooling lifetime of the white dwarf. Some consequences of these results for the process of magnetic-field evolution in white dwarfs are briefly discussed.

  4. Magmatic Fluid Source of the Chingshui Geothermal Field: Evidence of Carbonate Isotope data

    NASA Astrophysics Data System (ADS)

    Song, S. R.; Lu, Y. C.; Wang, P. L.; John, C. M.; MacDonald, J.

    2015-12-01

    The Chingshui geothermal field is located at the northern tip of the Miocene Lushan Slate Formation, which was part of the Eurasian continental margin subject to the Plio-Pleistocene collision associated with the Luzon Arc. The remnant heat of the Taiwan orogeny has long been considered to drive the circulation of hydrothermal fluids in the Chingshui geothermal field. However, recent studies based on magnetic anomalies and helium isotopic ratios suggest that the heat might instead be derived from igneous bodies. By examining isotope data of calcite veins and scaling in geothermal wells, this study aimed to clarify the fluid origin and possible heat source accounting for the geothermal fluids in the Chingshui geothermal field. Carbon and oxygen isotope analyses indicate that veins from outcrops and scalings in geothermal wells have high and low d values, respectively. Data for veins in drilled cores fall in between outcrop veins and scalings values. Such an isotopic pattern could be interpreted as the mixing of two end member fluids. The clumped isotope analysis of calcite veins from the outcrops yielded precipitation temperatures of up to 232 ± 16 ℃ and a reconstructed d18O fluid value of 9.5 ‰(magmatic fluid: 6-11 ‰; metamorphic fluid: 5-28 ‰ by Taylor, 1974). The inferred d18O values of hot fluids for the vein formation are significantly different from that of meteoric water in Chingshui area (around -5.4 ‰) as well as the scaling in geothermal wells (around -7.6 ‰). Previous study of magnetotelluric image demonstrated two possible fluid reservoirs at different depths (Chen et al. 2012). Our isotope data combined with these lines of evidence suggest that the scaling in geothermal wells could be derived from fluids originating from the shallower reservoir. In contrast, the veins present at outcrops could have been formed from 18O-enriched, deeply-sourced fluids related to either metamorphic dehydration or magmatic processes.

  5. Open system models of isotopic evolution in Earth's silicate reservoirs: Implications for crustal growth and mantle heterogeneity

    NASA Astrophysics Data System (ADS)

    Kumari, Seema; Paul, Debajyoti; Stracke, Andreas

    2016-12-01

    An open system evolutionary model of the Earth, comprising continental crust (CC), upper and lower mantle (UM, LM), and an additional isolated reservoir (IR) has been developed to study the isotopic evolution of the silicate Earth. The model is solved numerically at 1 Myr time steps over 4.55 Gyr of Earth history to reproduce both the present-day concentrations and isotope ratios of key radioactive decay systems (Rb-Sr, Sm-Nd, and U-Th-Pb) in these terrestrial reservoirs. Various crustal growth scenarios - continuous versus episodic and early versus late crustal growth - and their effect on the evolution of Sr-Nd-Pb isotope systematics in the silicate reservoirs have been evaluated. Modeling results where the present-day UM is ∼60% of the total mantle mass and a lower mantle that is non-primitive reproduce the estimated geochemical composition and isotope ratios in Earth's silicate reservoirs. The isotopic evolution of the silicate Earth is strongly affected by the mode of crustal growth; only an exponential crustal growth pattern with crustal growth since the early Archean satisfactorily explains the chemical and isotopic evolution of the crust-mantle system and accounts for the so-called Pb paradoxes. Assuming that the OIB source is located in the deeper mantle, our model could, however, not reproduce its target ɛNd of +4.6 for the UM, which has been estimated from the average isotope ratios of 32 individual ocean island localities. Hence, either mantle plumes sample the LM in a non-representative way, or the simplified model set-up does not capture the full complexity of Earth's lower mantle (Nd isotope) evolution. Compared to the results obtained for a 4.55 Ga Earth, a model assuming a protracted U-Pb evolution of silicate Earth by ca. 100 Myr reproduces a slightly better fit for the Pb isotope ratios in Earth's silicate reservoirs. One notable feature of successful models is the early depletion of incompatible elements (as well as rapid decrease in Th/U) in

  6. Evolution of carbon isotope signatures during reactive transport of hydrocarbons in heterogeneous aquifers

    NASA Astrophysics Data System (ADS)

    Höyng, Dominik; Prommer, Henning; Blum, Philipp; Grathwohl, Peter; Mazo D'Affonseca, Fernando

    2015-03-01

    Compound-specific isotope analysis (CSIA) of organic pollutants has become a well-established tool for assessing the occurrence and extent of biodegradation processes in contaminated aquifers. However, the precision of CSIA is influenced by the degree to which assumptions underlying CSIA data interpretation hold under realistic field-scale conditions. For the first time this study demonstrates how aquifer analogs combined with reactive transport models offer an underexplored way to develop generic process understanding, evaluate monitoring and quantification strategies in highly heterogeneous subsurface settings. Data from high-resolution aquifer analogs were used in numerical experiments to track the propagation of a representative oxidizable organic compound (toluene) within a variety of realistic heterogeneous aquifers and to investigate its detailed fate. The simulations were used to analyze (1) the effects of physical aquifer heterogeneities on spatiotemporal patterns of contaminant concentrations and isotope signatures, (2) the performance of the commonly applied Rayleigh equation and (3) the applicability of an extension of the Rayleigh equation for complex hydrogeological conditions. The results indicate that if field-derived enrichment factors are applied without corrections for dilution, the conventional Rayleigh equation is inaccurate and estimates for biodegradation are typically overestimated and unreliable in heterogeneous aquifers. Underestimations can occur due to the partial source zone depletion. In contrast, if dilution can be accurately accounted for, field-derived enrichment factors comprise a suitable alternative to laboratory-derived and redox-specific enrichment factors. The study also examines to what extent variations in monitoring/sampling strategies influence the obtained results. Especially measurements from long-screened wells (> 1 m) reveal to be inappropriate for the application of the Rayleigh equation in the investigated aquifer

  7. Magnetic Field Evolution and Topology of an AR

    NASA Astrophysics Data System (ADS)

    Mandrini, C. H.; Deng, Y. Y.; Schmieder, B.; Démoulin, P.; Rudawy, P.; Nitta, N.; Newmark, J.; de Forest, C.

    1999-09-01

    Active region 7968 was observed during runs of a coordinated SOHO, Yohkoh and ground-based observatory program (Joint Observing Program, JOP, 17). The region appeared and decayed in a seven day period (June 3 to 10, 1996). In this time, mainly during June 6, it presented a very dynamical behaviour. Flux emerged in between the two main polarities and Arch Filament Systems (AFS) were observed to be linked to this emergence. We analyze the evolution of some over dark arches observed during flux emergence, forming two systems of AFS. Modelling the magnetic field, we find that these systems were associated to field lines having dips tangent to the photosphere (the so called "bald patches", BPs). We discuss their evolution in terms of emergence of the dipped portion of the lines or of magnetic field reconnection.

  8. Study of shape transitions in N{approx}90 isotopes with beyond mean field calculations

    SciTech Connect

    Rodriguez, Tomas R.; Egido, J. L.

    2009-01-28

    We study the spherical to prolate-deformed shape transition in {sup 144-158}Sm and {sup 146-160}Gd isotopes with modern calculations beyond the mean field with the Gogny D1S force. We compare the results with the shape-phase transition predicted by the collective Hamiltonian model and with the experimental data. Our calculations do not support the existence of a first order phase transition in these isotopic chains in the viewpoint of the Bohr Hamiltonian neither the interpretation of the nuclei N = 90 as critical points.

  9. Formation and tectonic evolution of Southeastern China and Taiwan: Isotopic and geochemical constraints

    NASA Astrophysics Data System (ADS)

    John, B. M.; Zhou, X. H.; Li, J. L.

    1990-11-01

    The southern part of China consists of the Proterozoic Yangtze Craton and the Phanerozoic South China foldbelts (including the Himalayan foldbelt of Taiwan). Models for continental growth have been many and controversial. Isotopic and geochemical data from Mesozoic and younger granitoids and sediments are used here to place constraints on the tectonic evolution of Southeastern China and to evaluate whether the young Phanerozoic foldbelts are representative of old rejuvenated landmass, whether they characterize crustal accretion through successive subduction processes, hence suggesting a net growth of continental mass, or whether they represent some intermediate situation. Available Sm-Nd isotopic data for Phanerozoic granitoids and metasediments from the South China foldbelts and Taiwan invariably show Proterozoic model ages ( TDM) ranging from 1 to 2.5 Ga, with a mean of 1.54 ± 0.30 (1σ) Ga. All rocks have negative ɛNd(T) values (-2 to -15), suggesting variable but important contributions of old continental materials to the sources of the Phanerozoic rocks. Obviously they do not represent wholesale growth of continental mass. The granitoids of the South China foldbelts have multiple origins as viewed from their chemical and isotopic characteristics. Secular geochemical variation has been established for inland granitoids of Proterozoic to Mesozoic age. Their high ISr values (0.710-0.737) suggest that most granitoids are essentially anatectic products of ancient continental crust. This is compatible with remelting via microcontinental collision or terrane accretion. Repeated intracrustal reprocessing by partial fusion and differentiation has undoutedly contributed to important mineralization. Mesozoic granitoids (excluding A-type alkaline granites) in the coastal region and Taiwan show relatively low ISr(0.705-0.710) and high ɛNd values, implying that greater amounts of mantle components have been added to ancient continental material in the generation of these

  10. Computer simulations of plasmoid evolution in the sheared magnetic field

    NASA Astrophysics Data System (ADS)

    Ichikawa, H.; Ugai, M.; Kondoh, K.

    2009-12-01

    Statistical studies of satellite observations have revealed the plasmoid evolution and the characteristics of them (Ieda, 1998, Machida, 2004). In our previous studies (Ugai et al., 2005; Ugai and Zheng, 2005), the plasmoid evolutions in the no-sheared magnetic field were studied using MagnetoHydroDynamic(MHD) simulations. However, the magnetic field in the solar corona and the geo-magnetotail are usually sheared. Then, we studies plasmoid evolution in sheared magnetic field using MHD simulation on the basis of spontaneous fast reconnection model, and analyze the characteristics of plasmoid. These results are compared with actual satellite observations. References Ieda, A., Machida, T., Mukai, T., Saito, Y., Yamamoto, T., Nishida, A., Terasawa, T., and Kokubun, S., Statistical analysis of the plasmoid evolution with Geotail observations, J. Geophys. Res., 103, 4453, 1998. S. Machida, A. Ieda and Y. Miyashita, Roles of the magnetic reconnection in the Earth's magnetotail during substorms:Geotail observations Physics of Magnetic Reconnection in High-Temperature Plasmas, pp.161-191 ISBN: 81-7736-089-2, 2004 M. Ugai, K. Kondoh and T.Shimizu, Spontaneous fast reconnection model in three dimensions, Phys. Plasmas, 12, 042 903, 2005 M. Ugai and L. Zheng, Conditions for the fast reconnection mechanism in three dimensions, Phys. Plasmas, 12, 092 312, 2005

  11. Evolution of Biomass Burning Aerosols in the Near Field

    NASA Astrophysics Data System (ADS)

    Sedlacek, Arthur; Kleinman, Lawrence; Arnott, W. Patrick; Adachi, Kouji; Buseck, Peter; Lewis, Ernest; Onasch, Timothy; pikridas, Michail; Shilling, John; Springston, Stephen; Wang, Jian; Yokelson, Robert

    2014-05-01

    Biomass burning is a significant source of aerosols that can perturb Earth's climate through the direct (both scattering and absorption), indirect (cloud formation and precipitation), and semi-direct (cloud dissipation) radiative effects. Despite much effort, quantities important to determining radiative forcing for these events still remain highly uncertain due to the inherent difficultly of conducting the required measurements and instrumentation limitations. Further adding to this uncertainty is that few field campaigns have been conducted in the northern temperate latitudes in spite of biomass burning producing about one-third of the PM2.5 in the US. During the summer and early fall of 2013, the Atmospheric Radiation Measurement (ARM) program of the U. S. Department of Energy (DOE) sponsored an aircraft-based field campaign to study the near-field evolution of particulate emissions from biomass burning. Key scientific objectives for the Biomass Burning Observation Project (BBOP) are to 1) quantify the downwind time evolution of microphysical, morphological, chemical, hygroscopic, and optical properties of aerosols generated by biomass burning, 2) use the time sequences of observations to constrain processes and parameterizations in a Lagrangian model of aerosol evolution, and 3) incorporate time evolution information into a single-column radiative transfer model for determining forcing per unit carbon burned. Discussion will be on the near-field evolution of particle mixing state and morphology, chemical composition, and microphysical processes that determine aerosol size distribution and single scattering albedo (SSA) of light absorbing aerosols. In cases studied, increases in the coating thickness of refractive black carbon (rBC) particles, organic aerosol/rBC ratio, scattering/CO ratio, and aerosol size distributions have been observed. Results are based on wildfires sampled in the US northwest and on controlled agricultural burns in the south

  12. Sr isotopic characteristics in two small watersheds draining typical silicate and carbonate rocks: implication for the studies on seawater Sr isotopic evolution

    NASA Astrophysics Data System (ADS)

    Wu, W. H.; Zheng, H. B.; Yang, J. D.

    2013-06-01

    drainage area have extremely high 87Sr/86Sr ratios with an average of over 0.8. Therefore, a few silicate components contained in carbonate rocks obviously increases the Sr isotopic compositions of the river water, and results in a positive effect on the rise of 87Sr/86Sr ratio of seawater. Therefore, the relation between Sr isotope evolution of seawater and continental weathering rate is complex, 87Sr/86Sr ratios of underlying bedrock in catchment could be an important controlling factors.

  13. Evolution of Star Clusters in Time-variable Tidal Fields

    NASA Astrophysics Data System (ADS)

    Mamikonyan, Ernest N.; McMillan, Stephen L. W.; Vesperini, Enrico; Mac Low, Mordecai-Mark

    2017-03-01

    Strong tidal forces can dominate star cluster evolution in merging galaxies, determining their mass-loss rates and lifetimes. In order to model this evolution, we have developed a second-order accurate numerical method for integrating a star cluster in an arbitrary time-variable tidal field. We extend the Kira N-body integrator to handle these external fields. We obtain realistic tidal histories from a galaxy merger simulation including sink particles, which we interpret as young star clusters. Coupling these tidal accelerations to N-body models of isolated clusters, we perform detailed dynamical studies. This generalizes the formalism previously used to explore the dynamical effects of the galactic tidal field on clusters in circular orbits. We find that, in contrast to previous studies that considered only stellar and dark matter dynamics, tidal interactions between clusters and dense gas in the galactic disk can significantly influence cluster mass loss and lifetimes. Using our models, we develop an effective semianalytic model that can be used for fast estimation of cluster mass loss in a galactic tidal field and to study the evolution of the globular cluster mass function in isolated and merging galaxies.

  14. Tachyon field in loop quantum cosmology: Inflation and evolution picture

    SciTech Connect

    Xiong Huaui; Zhu Jianyang

    2007-04-15

    Loop quantum cosmology (LQC) predicts a nonsingular evolution of the universne through a bounce in the high energy region. We show that this is always true in tachyon matter LQC. Differing from the classical Friedman-Robertson-Walker (FRW) cosmology, the super inflation can appear in the tachyon matter LQC; furthermore, the inflation can be extended to the region where classical inflation stops. Using the numerical method, we give an evolution picture of the tachyon field with an exponential potential in the context of LQC. It indicates that the quantum dynamical solutions have the same attractive behavior as the classical solutions do. The whole evolution of the tachyon field is that in the distant past, the tachyon field--being in the contracting cosmology--accelerates to climb up the potential hill with a negative velocity; then at the boundary the tachyon field is bounced into an expanding universe with positive velocity rolling down to the bottom of the potential. In the slow roll limit, we compare the quantum inflation with the classical case in both an analytic and a numerical way.

  15. Rhyolite magma evolution recorded in isotope and trace element composition of zircon from Halle Volcanic Complex

    NASA Astrophysics Data System (ADS)

    Słodczyk, E.; Pietranik, A.; Breitkreuz, C.; Fanning, C. M.; Anczkiewicz, R.; Ehling, B.-C.

    2016-04-01

    Voluminous felsic volcanic magmas were formed in Central Europe at the Carboniferous/Permian boundary in numerous pull-apart basins; one of which is the Saale Basin, which holds the Halle Volcanic Complex (HVC), the focus of this study. The rhyolites in the HVC formed laccoliths and scarce lavas, and occur in two different textural types: fine and coarse porphyritic. Zircon isotope and trace element composition was analysed in four units, two per each textural type. Zircon from the different units shows similar ranges in εHf (- 4.1 to - 8.1) and δ18O values (6.51-8.26), indicating similar sources and evolution processes for texturally diverse rhyolites from the HVC. Scarce inherited zircon ranges from ~ 315 Ma to ~ 2100 Ma with the major groupings around 315-550 Ma. These ages are typical for Devonian arc magmatic activity (350-400 Ma) and Cadomian igneous rocks (500-600 Ma), which occur in the basement presently underlying the HVC. Therefore, the source of the rhyolites was multicomponent and probably represented by a basement composed of various crystalline rocks. Trace elements in zircon show similar distributions in all analysed samples, which is broadly consistent with zircon cores crystallizing in a less evolved magma undergoing limited fractional crystallization, whilst the zircon rims crystallized from a magma undergoing extensive fractional crystallization of major and accessory minerals. Interestingly, comparison of the zircon composition in HVC rhyolites and other rhyolites worldwide shows that the observed trends are similar in such rhyolites despite the values being different. This may suggest that most of the zircon in rhyolites crystallizes at a similar stage in the rhyolite magma evolution, from magmas undergoing extensive crystallization of major phases and apatite. The implication is that most of the zircon represents late stage crystallization, but also that antecrystic component may be present and preserve information on the development of

  16. Evolution of the magnetic field inclination in a forming penumbra

    SciTech Connect

    Romano, P.; Guglielmino, S. L.; Cristaldi, A.; Falco, M.; Zuccarello, F.; Ermolli, I.

    2014-03-20

    We describe the evolution of the magnetic and velocity fields in the annular zone around a pore a few hours before the formation of its penumbra. We detected the presence of several patches at the edge of the annular zone, with a typical size of about 1''. These patches are characterized by a rather vertical magnetic field with polarity opposite to that of the pore. They correspond to regions of plasma upflow up to 2.5 km s{sup –1} and are characterized by radially outward displacements with horizontal velocities up to 2 km s{sup –1}. We interpret these features as portions of the pore magnetic field lines returning beneath the photosphere being progressively stretched and pushed down by the overlying magnetic fields. Our results confirm that the penumbra formation results from changes in the inclination of the field lines in the magnetic canopy overlying the pore, until they reach the photosphere.

  17. Tracing the metasomatic and magmatic evolution of continental mantle roots with Sr, Nd, Hf and and Pb isotopes: A case study of Middle Atlas (Morocco) peridotite xenoliths

    NASA Astrophysics Data System (ADS)

    Wittig, Nadine; Pearson, D. Graham; Duggen, Svend; Baker, Joel A.; Hoernle, Kaj

    2010-02-01

    We studied clinopyroxenes from spinel-facies peridotite xenoliths sampled by the Quaternary intra-plate volcanism of the Middle Atlas (Morocco) and present new trace element and Sr-Nd-Hf isotope data. However, we focus in particular on Pb isotope data and 238U/ 204Pb and 232Th/ 204Pb ratios of these clinopyroxenes. This data allows us to investigate: (a) the timing of metasomatic events, (b) the prevalence and persistence of elevated 238U/ 204Pb, 232Th/ 238U and 232Th/ 204Pb in continental mantle roots and (c) the 238U/ 204Pb and 232Th/ 204Pb composition of putative basaltic melts generated from such metasomatised sub-continental lithospheric mantle (SCLM). Incompatible trace element concentrations in these clinopyroxenes are elevated, marked by high-field strength element depletion and fractionated elemental ratios (e.g., U/Nb, Zr/Hf) most consistent with enrichment due to carbonatitic liquids. Sr, Nd and Hf isotopes have an affinity to HIMU. U, Th and Pb abundances in the clinopyroxenes generally exceed estimates of primitive mantle clinopyroxene. Pb isotope compositions of these clinopyroxenes are radiogenic and vary between 206Pb/ 204Pb = 19.93-20.25, 207Pb/ 204Pb = 15.63-15.66 and 208Pb/ 204Pb = 39.72-40.23. These Pb isotope systematics result in generally negative Δ7/4 but positive Δ8/4; setting these samples distinctly apart from typical HIMU. These Pb isotope compositions are also distinct from the associated host volcanic rocks. 238U/ 204Pb and 232Th/ 204Pb of these clinopyroxenes, which range from 26 to 81 and 136 to 399, respectively, are elevated and more extreme than estimates of MORB- and HIMU-source mantle. The Pb isotope evolution of the clinopyroxenes suggests that the metasomatic enrichment is younger than 200 Ma, which discounts the volcanic activity due to the opening of the Atlantic and the onset of the collision of the African and Eurasian plates as processes generating the lithophile element and isotope composition of this continental

  18. Evolution of E. coli on [U-13C]Glucose Reveals a Negligible Isotopic Influence on Metabolism and Physiology

    PubMed Central

    Sandberg, Troy E.; Long, Christopher P.; Gonzalez, Jacqueline E.; Feist, Adam M.; Antoniewicz, Maciek R.; Palsson, Bernhard O.

    2016-01-01

    13C-Metabolic flux analysis (13C-MFA) traditionally assumes that kinetic isotope effects from isotopically labeled compounds do not appreciably alter cellular growth or metabolism, despite indications that some biochemical reactions can be non-negligibly impacted. Here, populations of Escherichia coli were adaptively evolved for ~1000 generations on uniformly labeled 13C-glucose, a commonly used isotope for 13C-MFA. Phenotypic characterization of these evolved strains revealed ~40% increases in growth rate, with no significant difference in fitness when grown on either labeled (13C) or unlabeled (12C) glucose. The evolved strains displayed decreased biomass yields, increased glucose and oxygen uptake, and increased acetate production, mimicking what is observed after adaptive evolution on unlabeled glucose. Furthermore, full genome re-sequencing revealed that the key genetic changes underlying these phenotypic alterations were essentially the same as those acquired during adaptive evolution on unlabeled glucose. Additionally, glucose competition experiments demonstrated that the wild-type exhibits no isotopic preference for unlabeled glucose, and the evolved strains have no preference for labeled glucose. Overall, the results of this study indicate that there are no significant differences between 12C and 13C-glucose as a carbon source for E. coli growth. PMID:26964043

  19. Chemical and isotopic evolution of a layered eastern U.S. snowpack and its relation to stream-water composition

    USGS Publications Warehouse

    Shanley, J.B.; Kendall, C.; Albert, M.R.; Hardy, J.P.

    1995-01-01

    The chemical, isotopic, and morphologic evolution of a layered snowpack was investigated during the winter of 1993-94 at Sleepers River Research Watershed in Danville, Vermont. The snowpack was monitored at two small basins: a forested basin at 525 m elevation, and an agricultural basin at 292 m elevation. At each site, the snowpack morphology was characterized and individual layers were sampled seven times during the season. Nitrate and 8d18O profiles in the snowpack remained relatively stable until peak accumulation in mid-March, except near the snow surface, where rain-on-snow events caused water and nitrate movement down to impeding ice layers. Subsequently, water and nitrate moved more readily through the ripening snowpack. As the snowpack evolved, combined processes of preferential ion elution, isotopic fractionation, and infiltration of isotopically heavy rainfall caused the pack to become depleted in solutes and isotopically enriched. The release of nitrate and isotopically depleted water was reflected in patterns of nitrate concentrations and ??18O of meltwater and stream water. Results supported data from the previous year which suggested that streamflow in the forested basin during snowmelt was dominated by groundwater discharge.

  20. Formation and evolution of small-scale solar magnetic fields

    NASA Astrophysics Data System (ADS)

    Lamb, D. A.

    2008-06-01

    In this thesis I investigate the formation and evolution of small-scale magnetic fields on the surface of the Sun. I observe the magnetic field in quiet sun regions in an effort to further understand the baseline magnetic field that exists throughout the photosphere at all phases of the solar cycle. An automated feature tracking algorithm that I helped develop allows me to systematically analyze datasets containing over 10 5 evolving magnetic features. In 1.2"-resolution Michelson Doppler Imager (MDI) magnetograms, I find that 30% of features identified by our algorithm originate without other detectable flux within 2.2 Mm. These features having an apparent unipolar origin account for 94% of the flux newly detected by the algorithm. I infer from their ensemble average that these features are actually previously existing flux, coalesced by surface flows into concentrations large and strong enough to detect. Flux coalescence is at least as important as bipolar ephemeral region emergence for introducing detectable flux into the photosphere, underscoring the importance of small-scale fields to the overall photospheric flux budget. Using 0.3"-resolution magnetograms from the Narrowband Filter Imager (NFI) on the recently-launched Hinode spacecraft, I confirm that apparent unipolar emergence seen with MDI is indeed flux coalescence. I then demonstrate that apparent unipolar emergence seen in NFI magnetograms also corresponds to coalescence of previously existing weak field. The uncoalesced flux, detectable only in the ensemble average of hundreds of these events, accounts for 30-50% of the total flux within 3 Mm of the detected features. Finally, I study small-scale fields around intermediate-scale supergranular network concentrations. This is motivated by simulations and observations showing suppression of flux production by background magnetic fields at small and large scales. Within 12 Mm of the network concentrations, I find no evidence that the concentrations

  1. Magnetic field effects on plant growth, development, and evolution

    PubMed Central

    Maffei, Massimo E.

    2014-01-01

    The geomagnetic field (GMF) is a natural component of our environment. Plants, which are known to sense different wavelengths of light, respond to gravity, react to touch and electrical signaling, cannot escape the effect of GMF. While phototropism, gravitropism, and tigmotropism have been thoroughly studied, the impact of GMF on plant growth and development is not well-understood. This review describes the effects of altering magnetic field (MF) conditions on plants by considering plant responses to MF values either lower or higher than those of the GMF. The possible role of GMF on plant evolution and the nature of the magnetoreceptor is also discussed. PMID:25237317

  2. The Upper Mantle Flow Field around South-Africa as Reflected by Isotopic Provinciality

    NASA Astrophysics Data System (ADS)

    Meyzen, C.; Blichert-Toft, J.; Ludden, J.; Humler, E.; Mevel, C.; Albarede, F.

    2006-12-01

    Isotopic studies of MORB have established the existence of broad isotopic provinces within the underlying asthenosphere, such as in the Indian Ocean (DUPAL). How these features relate to mantle circulation is, however, still unknown. The steepness of the transition between such isotopic provinces will define the geometry of the velocity field in the upper mantle. In this respect, the transition between the Indian and South Atlantic provinces, two domains that are isotopically contrasted, should be readily identifiable over this long ridge segment. Here, we present Hf isotope data for 60 samples dredged along the SWIR between 35° and 69°E. The new Hf isotope data show that the Indian asthenosphere does not spill directly into the South Atlantic upper mantle: the general decreasing southward gradient observed for ^{176}Hf/^{177}Hf down the mid- Atlantic Ridge, and also for Sr isotopes and model Th/U ratios (derived from Pb isotopes), is overprinted by material with radiogenic Sr, unradiogenic Hf and high Th/U. The Indian domain grades into the South Atlantic around Bouvet, while the South Atlantic collides with the Atlantic province around Tristan. We interpret these features to represent fronts between three adjacent isotopic provinces similar to what has been suggested for the Australian-Antarctic Discordance. The common DUPAL signature of MORB and OIB from the Indian province and the geochemistry of Gulf of Aden MORB and the Afar plume suggest that the source of this distinctive mantle component is deep and lies to the north of the province. This is also what the three-dimensional flow field computed by Behn et al. (2004) from shear-wave splitting shows with a major lower mantle upwelling radiating at the base of the asthenosphere under the Afar plume. Lower mantle gushing out from this source flows southward unimpeded along the Indian ridges, whereas it only reaches the South Atlantic ridge after first having been deflected under the deep roots of the South

  3. Light-front time evolution in intense fields

    NASA Astrophysics Data System (ADS)

    Chen, Guangyao; Zhao, Xingbo; Li, Yang; Maris, Pieter; Tuchin, Kirill; Vary, James

    2016-03-01

    We report on the influence of strong electromagnetic fields generated by an ultra-relativistic heavy ion on the quantized field of a charged fermion particle using the time-dependent basis light-front quantization (tBLFQ) approach. We calculate transitions of the charged fermion and find agreement with light-front perturbation theory at small coupling. We then present non-perturbative effects, such as the real-time evolution of the momentum distribution and the helicity configuration of the fermion in strong fields. We will discuss prospects for applying the tBLFQ formalism to time-dependent QED and QCD fields in heavy ion collisions and electron-ion collisions. This work is supported by DOE Grants DE-FG02-87ER40371 & DESC0008485.

  4. Conceptual models of the evolution of transgressive dune field systems

    NASA Astrophysics Data System (ADS)

    Hesp, Patrick A.

    2013-10-01

    This paper examines the evolutionary paths of some transgressive dune fields that have formed on different coasts of the world, and presents some initial conceptual models of system dynamics for transgressive dune sheets and dune fields. Various evolutionary pathways are conceptualized based on a visual examination of dune fields from around the world. On coasts with high sediment supply, dune sheets and dune fields tend to accumulate as large scale barrier systems with little colonization of vegetation in arid-hyper to arid climate regimes, and as multiple, active discrete phases of dune field and deflation plain couplets in temperate to tropical environments. Active dune fields tend to be singular entities on coasts with low to moderate sediment supply. Landscape complexity and vegetation richness and diversity increases as dune fields evolve from simple active sheets and dunes to single and multiple deflation plains and basins, precipitation ridges, nebkha fields and a host of other dune types associated with vegetation (e.g. trailing ridges, slacks, remnant knobs, gegenwalle ridges and dune track ridges, 'tree islands' and 'bush pockets'). Three principal scenarios of transgressive dune sheet and dune field development are discussed, including dune sheets or dune fields evolving directly from the backshore, development following foredune and/or dune field erosion, and development from the breakdown or merging of parabolic dunes. Various stages of evolution are outlined for each scenario. Knowledge of evolutionary patterns and stages in coastal dune fields is very limited and caution is urged in attempts to reverse, change and/or modify dune fields to 'restore' some perceived loss of ecosystem or dune functioning.

  5. Conceptual models of the evolution of transgressive dune field systems

    NASA Astrophysics Data System (ADS)

    A. Hesp, Patrick

    2013-10-01

    This paper examines the evolutionary paths of some transgressive dune fields that have formed on different coasts of the world, and presents some initial conceptual models of system dynamics for transgressive dune sheets and dune fields. Various evolutionary pathways are conceptualized based on a visual examination of dune fields from around the world. On coasts with high sediment supply, dune sheets and dune fields tend to accumulate as large scale barrier systems with little colonization of vegetation in arid-hyper to arid climate regimes, and as multiple, active discrete phases of dune field and deflation plain couplets in temperate to tropical environments. Active dune fields tend to be singular entities on coasts with low to moderate sediment supply. Landscape complexity and vegetation richness and diversity increases as dune fields evolve from simple active sheets and dunes to single and multiple deflation plains and basins, precipitation ridges, nebkha fields and a host of other dune types associated with vegetation (e.g. trailing ridges, slacks, remnant knobs, gegenwalle ridges and dune track ridges, ‘tree islands' and ‘bush pockets'). Three principal scenarios of transgressive dune sheet and dune field development are discussed, including dune sheets or dune fields evolving directly from the backshore, development following foredune and/or dune field erosion, and development from the breakdown or merging of parabolic dunes. Various stages of evolution are outlined for each scenario. Knowledge of evolutionary patterns and stages in coastal dune fields is very limited and caution is urged in attempts to reverse, change and/or modify dune fields to ‘restore' some perceived loss of ecosystem or dune functioning.

  6. Reexamination of magnetic isotope and field effects on adenosine triphosphate production by creatine kinase.

    PubMed

    Crotty, Darragh; Silkstone, Gary; Poddar, Soumya; Ranson, Richard; Prina-Mello, Adriele; Wilson, Michael T; Coey, J M D

    2012-01-31

    The influence of isotopically enriched magnesium on the creatine kinase catalyzed phosphorylation of adenosine diphosphate is examined in two independent series of experiments where adenosine triphosphate (ATP) concentrations were determined by a luciferase-linked luminescence end-point assay or a real-time spectrophotometric assay. No increase was observed between the rates of ATP production with natural Mg, (24)Mg, and (25)Mg, nor was any significant magnetic field effect observed in magnetic fields from 3 to 1,000 mT. Our results are in conflict with those reported by Buchachenko et al. [J Am Chem Soc 130:12868-12869 (2008)], and they challenge these authors' general claims that a large (two- to threefold) magnetic isotope effect is "universally observable" for ATP-producing enzymes [Her Russ Acad Sci 80:22-28 (2010)] and that "enzymatic phosphorylation is an ion-radical, electron-spin-selective process" [Proc Natl Acad Sci USA 101:10793-10796 (2005)].

  7. Lead Isotopes in Olivine-Phyric Shergottite Tissint: Implications for the Geochemical Evolution of the Shergottite Source Mantle

    NASA Technical Reports Server (NTRS)

    Moriwaki, R.; Usui, T.; Simon, J. I.; Jones, J. H.; Yokoyama, T.

    2015-01-01

    Geochemically-depleted shergottites are basaltic rocks derived from a martian mantle source reservoir. Geochemical evolution of the martian mantle has been investigated mainly based on the Rb-Sr, Sm-Nd, and Lu-Hf isotope systematics of the shergottites [1]. Although potentially informative, U-Th- Pb isotope systematics have been limited because of difficulties in interpreting the analyses of depleted meteorite samples that are more susceptible to the effects of near-surface processes and terrestrial contamination. This study conducts a 5-step sequential acid leaching experiment of the first witnessed fall of the geochemically-depleted olivinephyric shergottite Tissint to minimize the effect of low temperature distrubence. Trace element analyses of the Tissint acid residue (mostly pyroxene) indicate that Pb isotope compositions of the residue do not contain either a martian surface or terrestrial component, but represent the Tissint magma source [2]. The residue has relatively unradiogenic initial Pb isotopic compositions (e.g., 206Pb/204Pb = 10.8136) that fall within the Pb isotope space of other geochemically-depleted shergottites. An initial µ-value (238U/204Pb = 1.5) of Tissint at the time of crystallization (472 Ma [3]) is similar to a time-integrated mu- value (1.72 at 472 Ma) of the Tissint source mantle calculated based on the two-stage mantle evolution model [1]. On the other hand, the other geochemically-depleted shergottites (e.g., QUE 94201 [4]) have initial µ-values of their parental magmas distinctly lower than those of their modeled source mantle. These results suggest that only Tissint potentially reflects the geochemical signature of the shergottite mantle source that originated from cumulates of the martian magma ocean

  8. Groundwater processes and landscape evolution in Saharan Africa: Remote sensing, isotopic and geophysical constraints

    NASA Astrophysics Data System (ADS)

    Farag, A. Z.; Sultan, M.; El Kadiri, R.; Mohamed, L.

    2013-12-01

    Paleoclimatic regimes of the North African Sahara Desert alternated between dry and wet periods throughout the Pleistocene Epoch and it is during these wet periods that the fossil aquifers in North Africa were recharged. The largest of these aquifer systems is the Nubian Sandstone Aquifer System (NSAS; area: 2.2 million km2) in Egypt, Libya, Sudan and Chad and the North Western Sahara Aquifer (NWSA; area: 1 million km2) in Algeria, Tunisia and Libya. These aquifers have similar stratigraphic and hydrogeologic settings: (1) the main aquifer is composed largely of older clastic sediments (NAS: Nubian Sandstone; CI: Continental Intercalaire Aquifer) that is overlain by non-clastic carbonates with intercalations of clays and marls ( PNAS: Post Nubian Aquifer System, CT: Complexe Terminal) (2) unconfined conditions in the south that give way to confined conditions in the north, and (3) during wet periods, the NAS and the CI were recharged, groundwater levels rose, and groundwater flowed from the south to the north. In this study we present evidences (remote sensing, field, geophysical, isotopic) to support the hypothesis that in wet periods: (1) groundwater under high hydrostatic pressures access deep seated deep structures and discharge at the near surface causing sapping features and in the overlying carbonate sequences causing karstic features, and (2) many of the present topographic features including natural depressions across the NSAS and the NWSA were largely controlled by the groundwater system processes in previous wet climatic features. Evidences include: (1) Stubby-looking channels with U- shaped valley floors and theater-like valley heads indicative of sapping processes were mapped (using high spatial resolution IKONOS images, ASTER Digital Elevation Model (DEM), slope, hill shade and Landsat mosaics) along scarps in Egypt and Libya (scarp length: 2190 km) and in Algeria (scarp length: 400 km), (2) many of the mapped channel networks (length up to 50 km

  9. Singular cosmological evolution using canonical and ghost scalar fields

    SciTech Connect

    Nojiri, Shin'ichi; Odintsov, S.D.; Oikonomou, V.K.; Saridakis, Emmanuel N. E-mail: odintsov@ieec.uab.es E-mail: Emmanuel_Saridakis@baylor.edu

    2015-09-01

    We demonstrate that finite time singularities of Type IV can be consistently incorporated in the Universe's cosmological evolution, either appearing in the inflationary era, or in the late-time regime. While using only one scalar field instabilities can in principle occur at the time of the phantom-divide crossing, when two fields are involved we are able to avoid such instabilities. Additionally, the two-field scalar-tensor theories prove to be able to offer a plethora of possible viable cosmological scenarios, at which various types of cosmological singularities can be realized. Amongst others, it is possible to describe inflation with the appearance of a Type IV singularity, and phantom late-time acceleration which ends in a Big Rip. Finally, for completeness, we also present the Type IV realization in the context of suitably reconstructed F(R) gravity.

  10. Evolution of the magnetic field structure of the Crab pulsar.

    PubMed

    Lyne, Andrew; Graham-Smith, Francis; Weltevrede, Patrick; Jordan, Christine; Stappers, Ben; Bassa, Cees; Kramer, Michael

    2013-11-01

    Pulsars are highly magnetized rotating neutron stars and are well known for the stability of their signature pulse shapes, allowing high-precision studies of their rotation. However, during the past 22 years, the radio pulse profile of the Crab pulsar has shown a steady increase in the separation of the main pulse and interpulse components at 0.62° ± 0.03° per century. There are also secular changes in the relative strengths of several components of the profile. The changing component separation indicates that the axis of the dipolar magnetic field, embedded in the neutron star, is moving toward the stellar equator. This evolution of the magnetic field could explain why the pulsar does not spin down as expected from simple braking by a rotating dipolar magnetic field.

  11. Anisotropies in magnetic field evolution and local Lyapunov exponents

    SciTech Connect

    Tang, X.Z.; Boozer, A.H.

    2000-01-13

    The natural occurrence of small scale structures and the extreme anisotropy in the evolution of a magnetic field embedded in a conducting flow is interpreted in terms of the properties of the local Lyapunov exponents along the various local characteristic (un)stable directions for the Lagrangian flow trajectories. The local Lyapunov exponents and the characteristic directions are functions of Lagrangian coordinates and time, which are completely determined once the flow field is specified. The characteristic directions that are associated with the spatial anisotropy of the problem, are prescribed in both Lagrangian and Eulerian frames. Coordinate transformation techniques are employed to relate the spatial distributions of the magnetic field, the induced current density, and the Lorentz force, which are usually followed in Eulerian frame, to those of the local Lyapunov exponents, which are naturally defined in Lagrangian coordinates.

  12. Mantle evolution in the Variscides of SW England: Geochemical and isotopic constraints from mafic rocks

    NASA Astrophysics Data System (ADS)

    Dupuis, Nicolle E.; Murphy, J. Brendan; Braid, James A.; Shail, Robin K.; Nance, R. Damian

    2016-06-01

    The geology of SW England has long been interpreted to reflect Variscan collisional processes associated with the closure of the Rhenohercynian Ocean and the formation of Pangea. The Cornish peninsula is composed largely of Early Devonian to Late Carboniferous volcanosedimentary successions that were deposited in pre- and syn-collisional basins and were subsequently metamorphosed and deformed during the Variscan orogeny. Voluminous Early Permian granitic magmatism (Cornubian Batholith) is broadly coeval with the emplacement of ca. 280-295 Ma lamprophyric dykes and flows. Although these lamprophyres are well mapped and documented, the processes responsible for their genesis and their relationship with regional Variscan tectonic events are less understood. Pre- to syn-collisional basalts have intra-continental alkalic affinities, and have REE profiles consistent with derivation from the spinel-garnet lherzolite boundary. εNd values for the basalts range from + 0.37 to + 5.2 and TDM ages from 595 Ma to 705 Ma. The lamprophyres are extremely enriched in light rare earth elements, large iron lithophile elements, and are depleted in heavy rare earth elements, suggesting a deep, garnet lherzolite source that was previously metasomatised. They display εNd values ranging from - 1.4 to + 1.4, initial Sr values of ca. 0.706, and TDM ages from 671 Ma to 1031 Ma, suggesting that metasomatism occurred in the Neoproterozoic. Lamprophyres and coeval granite batholiths of similar chemistry to those in Cornwall occur in other regions of the Variscan orogen, including Iberia and Bohemia. By using new geochemical and isotopic data to constrain the evolution of the mantle beneath SW England and the processes associated with the formation of these post-collisional rocks, we may be able to gain a more complete understanding of mantle processes during the waning stages of supercontinent formation.

  13. Os isotopic composition of steels: Constraints on sources of Os in steel & crustal isotopic evolution of iron ores

    NASA Astrophysics Data System (ADS)

    Chatterjee, R. N.; Lassiter, J. C.

    2013-12-01

    Metal contamination during sample processing is a potential concern in Os-isotope studies. We examined Os concentrations and Os isotopes in industrial steels. Samples include high Cr stainless steels (>10.5% Cr), low alloy steels (>=92% Fe) and high alloy steels (<92% Fe). The chief components used to make steel are iron ore, chromites and coke. Coke is derived from coals that have low Os concentration (~36 ppt) [1]. Chromites in steels are mined from chromitites, which have high average Os concentrations and mantle-like 187Os/188Os ratios (~88 ppb Os, 187Os/188Os ≈ 0.127×24) [2]. Iron ores used in US steel manufacturing derive chiefly from magnetites mined from iron-bearing formations such as Banded Iron Formations (BIF), which have median Os concentration of ~4.8 ppb and radiogenic 187Os/188Os ≈ 0.358×388 [3]. Os concentrations in the measured steels span a wide range, from 0.03 to 22 ppb. The 187Os/188Os ratios vary from 0.144-4.12. Such high Os concentrations and radiogenic isotopic compositions confirm that metal contamination can affect Os-isotope compositions during sample processing, particularly for low-[Os] samples. There is no correlation between C and Os concentration in steel, indicating that coke is not a major Os source in steels. Os concentrations in steels are positively correlated with Cr content, suggesting that chromite-derived Os dominates the Os budget in stainless steels. 187Os/188Os is negatively correlated with Cr content, ranging from 0.144-0.195 in high-Cr (>10.5 % Cr) steels but from 0.279-4.12 in low-Cr steels. In addition, there is a positive correlation between 1/Os and 187Os/188Os, consistent with two-component mixing of Os derived from magnetite ore and chromites. Lower Os concentrations in steels than expected from simple mixing of magnetite and chromitite suggest some volatile Os loss during smelting. Although the current data is limited, the 186Os-187Os trend defined by the steel analyses can be utilized to extrapolate

  14. [Effect of processes in the earth's crust on evolution of photosynthesis (as indicated by data on carbon isotopic composition)].

    PubMed

    Ivlev, A A

    2010-01-01

    A probable mechanism of effect of processes occurring in the Earth's crust on evolution of photosynthesis is considered. According to the hypothesis, this effect is realized through entrance to the Earth's atmosphere of carbon dioxide that stimulates photosynthesis. Supply of CO2 is irregular and is due to irregular movements of the Earth's crust plates. This is accompanied by destruction of carbonates and conversion of carbon of the organic matter to CO2 due to processes of reduction of sulfates. The CO2 content in atmosphere rises for relatively short orogenic periods, due to intensive crust plate movement, while for the subsequent long periods, called the geosynclinal ones, of the relatively slow plate movement, the CO2 content falls due to the higher rate of its consumption for photosynthesis. Owing to the carbon isotopic fractionation accompanying photosynthesis, regular isotopic differences appear between the atmospheric CO2 and the "living" matter (Relay's effect); these differences are then transformed to isotope differences of the carbonate and organic carbon. At the appearance in atmosphere of free oxygen--product of photosynthesis--in organisms there appears photorespiration that also is accompanied by fractionation of carbon isotopes, but with effect of opposite sign. This leads to enrichment of the photosynthesizing biomass with 13C isotope at the orogenic periods. As a result, the initially pronounced isotope differences of the carbonate and organic carbon decrease by the end of the geosyclinal periods. According to the proposed model, concentrations of CO2 and O2 are exchanged in the antiphase. They lead to alternation of periods of warning up and cooling off on the Earth. The former coincide with the orogenic periods, the latter appear at the end of geosyclinal periods when oxygen is accumulated in atmosphere, while organic substance in sediments. Accumulation of organic substance leads to formation of petroleum-maternal masses. To substantiate the

  15. Evolution of protoplanetary disks with dynamo magnetic fields

    NASA Technical Reports Server (NTRS)

    Reyes-Ruiz, M.; Stepinski, Tomasz F.

    1994-01-01

    The notion that planetary systems are formed within dusty disks is certainly not a new one; the modern planet formation paradigm is based on suggestions made by Laplace more than 200 years ago. More recently, the foundations of accretion disk theory where initially developed with this problem in mind, and in the last decade astronomical observations have indicated that many young stars have disks around them. Such observations support the generally accepted model of a viscous Keplerian accretion disk for the early stages of planetary system formation. However, one of the major uncertainties remaining in understanding the dynamical evolution of protoplanetary disks is the mechanism responsible for the transport of angular momentum and subsequent mass accretion through the disk. This is a fundamental piece of the planetary system genesis problem since such mechanisms will determine the environment in which planets are formed. Among the mechanisms suggested for this effect is the Maxwell stress associated with a magnetic field treading the disk. Due to the low internal temperatures through most of the disk, even the question of the existence of a magnetic field must be seriously studied before including magnetic effects in the disk dynamics. On the other hand, from meteoritic evidence it is believed that magnetic fields of significant magnitude existed in the earliest, PP-disk-like, stage of our own solar system's evolution. Hence, the hypothesis that PP disks are magnetized is not made solely on the basis of theory. Previous studies have addressed the problem of the existence of a magnetic field in a steady-state disk and have found that the low conductivity results in a fast diffusion of the magnetic field on timescales much shorter than the evolutionary timescale. Hence the only way for a magnetic field to exist in PP disks for a considerable portion of their lifetimes is for it to be continuously regenerated. In the present work, we present results on the self

  16. Nd and Sr isotopic evolution of the oceans of the past 800 million years

    SciTech Connect

    Keto, L.S.

    1987-01-01

    This thesis comprises four related studies on the Nd and Sr isotopic composition of oceans through time. The first study uses Lower Paleozoic fossil samples of Europe and North America to establish that phosphatic fossils retain the distinct Nd isotopic signatures of paleoceans. These signatures may be used as tracers of paleoceanic water masses through time and consequently as tracers of paleogeography. The second study provides a framework for understanding and interpreting the Nd isotopic record of individual oceans as well as for determination of the mean oceanic isotopic compositions of Nd. Variations in individual ocean Nd isotopic compositions through time have implications for regional geology and paleoceanic circulation whereas the mean oceanic Nd isotopic compositions have implications for the global inputs to the oceans from the continents. The third study extends the record of well-defined /sup 87/Sr//sup 86/Sr values for seawater into the Late Proterozoic using carbonate samples of East Greenland and Svalbard. A thermal subsidence model is used to quantify the ages of these samples. Criterion for recognizing samples which have preserved /sup 87/Sr//sup 86/Sr seawater primary values are developed and the Sr and C isotopic records for paleoseawater of the past 1000 Ma are compared. The fourth study integrates the paleocean Nd and Sr isotopic records, as developed in the first parts of the thesis, into a model of the changing chemical and mass inputs to the oceans of the past 800 Ma.

  17. Field Evolution of Antiferromagnetic Domains and Domain Walls

    NASA Astrophysics Data System (ADS)

    Fullerton, Eric E.; Hellwig, Olav; Berger, Andreas K.

    2003-03-01

    We have used magnetron sputtered [Co(4Å)Pt(7Å)]X Co(4Å)Ru(9Å)N multiplayer films to create artificially layered antiferromagnets. In contrast to atomic antiferromagnets our model system has an antiferromagnetic (AF) exchange energy comparable to the Zeemann energy in moderate fields and allows to fine tune the relative magnitude of the different magnetic energy terms by varying the parameters X and N. With increasing X and N we observe a transition from traditionally observed sharp AF domain walls towards AF domain walls with a finite width which consist of ferromagnetic stripes, i.e. the AF domains have zero net moment whereas the domain walls carry a finite magnetic moment. Such AF domain walls have not been observed before and are a direct consequence of balancing out exchange and Zeeman energy. We also show that such domain walls are expected from theoretical energy calculations. In this contribution we study the nature and field evolution of the AF stripe domain walls by Magnetic Force Microscopy (MFM). The surface sensitivity of MFM and the finite moment of the AF domain walls allow us to image AF domains as well as domain walls. We are showing first experiments to study the AF domain wall evolution in real space while applying an external field. O.H. was supported by the Deutsche Forschungsgemeinschaft via a Forschungsstipendium under the contract number HE 3286/1-1.

  18. Quantum corrections to the cosmological evolution of conformally coupled fields

    SciTech Connect

    Cembranos, Jose A.R.; Olive, Keith A.; Peloso, Marco; Uzan, Jean-Philippe E-mail: olive@physics.umn.edu E-mail: uzan@iap.fr

    2009-07-01

    Because the source term for the equations of motion of a conformally coupled scalar field, such as the dilaton, is given by the trace of the matter energy momentum tensor, it is commonly assumed to vanish during the radiation dominated epoch in the early universe. As a consequence, such fields are generally frozen in the early universe. Here we compute the finite temperature radiative correction to the source term and discuss its consequences on the evolution of such fields in the early universe. We discuss in particular, the case of scalar tensor theories of gravity which have general relativity as an attractor solution. We show that, in some cases, the universe can experience an early phase of contraction, followed by a non-singular bounce, and standard expansion. This can have interesting consequences for the abundance of thermal relics; for instance, it can provide a solution to the gravitino problem. We conclude by discussing the possible consequences of the quantum corrections to the evolution of the dilaton.

  19. Detailed record of the Neogene Sr isotopic evolution of seawater from DSDP Site 590B. [Deep Sea Drilling Project

    SciTech Connect

    DePaolo, D.J.

    1986-02-01

    A detailed study of strontium isotope variations in Neogene marine carbonate sediments from Deep Sea Drilling Project Site 590B, using techniques that allow the /sup 87/Sr//sup 86/Sr ratio to be determined to better than +/- 0.000 01, gives a high-resolution record of the Sr isotopic evolution of seawater. The data show that the rate of change of the marine /sup 87/Sr//sup 86/Sr ratio has varied significantly even on time scales as short as 1 m.y. Periods of particularly rapid growth appear to follow major marine regressions and probably reflect an increase in the delivery of radiogenic Sr from the continents coupled with a decreased submarine carbonate dissolution rate (greater carbonate compensation depth). Periods of relatively slowly changing /sup 97/Sr//sup 86/Sr follow major marine transgressions. On the basis of correlations with the marine oxygen isotope record and the times of major continental glacier growth, it is inferred that the effects of sea-level variations are modified by climatic factors that affect the intensity of continental weathering and runoff. The effects of sea-floor generation rate variations are not discernible for the Neogene. The maximum attainable stratigraphic resolution using Sr isotopes is between 0.1 and 2 m.y. for this time period. 24 references.

  20. Does the Rayleigh equation apply to evaluate field isotope data in contaminant hydrogeology?

    PubMed

    Abe, Yumiko; Hunkeler, Daniel

    2006-03-01

    Stable isotope data have been increasingly used to assess in situ biodegradation of organic contaminants in groundwater. The data are usually evaluated using the Rayleigh equation to evaluate whether isotope data follow a Rayleigh trend, to calculate the extent of contaminant biodegradation, or to estimate first-order rate constants. However, the Rayleigh equation was developed for homogeneous systems while in the subsurface, contaminants can migrate at different velocities due to physical heterogeneity. This paper presents a method to quantify the systematic effect that is introduced by applying the Rayleigh equation to field isotope data. For this purpose, the travel time distribution between source and sampling point is characterized by an analytical solution to the advection-dispersion equation. The systematic effect was evaluated as a function of the magnitude of physical heterogeneity, geometry of the contaminant plume, and degree of biodegradation. Results revealed that the systematic effect always leads to an underestimation of the actual values of isotope enrichment factors, the extent of biodegradation, or first-order rate constants, especially in the dispersion-dominant region representing a higher degree of physical heterogeneity. A substantial systematic effect occurs especially for the quantification of first-order rate constants (up to 50% underestimation of actual rate) while it is relatively small for quantification of the extent of biodegradation (< 5% underestimation of actual degree of biodegradation). The magnitude of the systematic effect is in the same range as the uncertainty due to uncertainty of the analytical data, of the isotope enrichment factor, and the average travel time.

  1. Magnetic Field and Early Evolution of Circumstellar Disks

    NASA Astrophysics Data System (ADS)

    Tsukamoto, Yusuke

    2016-03-01

    The magnetic field plays a central role in the formation and evolution of circumstellar disks. The magnetic field connects the rapidly rotating central region with the outer envelope and extracts angular momentum from the central region during gravitational collapse of the cloud core. This process is known as magnetic braking. Both analytical and multidimensional simulations have shown that disk formation is strongly suppressed by magnetic braking in moderately magnetised cloud cores in the ideal magnetohydrodynamic limit. On the other hand, recent observations have provided growing evidence of a relatively large disk several tens of astronomical units in size existing in some Class 0 young stellar objects. This introduces a serious discrepancy between the theoretical study and observations. Various physical mechanisms have been proposed to solve the problem of catastrophic magnetic braking, such as misalignment between the magnetic field and the rotation axis, turbulence, and non-ideal effect. In this paper, we review the mechanism of magnetic braking, its effect on disk formation and early evolution, and the mechanisms that resolve the magnetic braking problem. In particular, we emphasise the importance of non-ideal effects. The combination of magnetic diffusion and thermal evolution during gravitational collapse provides a robust formation process for the circumstellar disk at the very early phase of protostar formation. The rotation induced by the Hall effect can supply a sufficient amount of angular momentum for typical circumstellar disks around T Tauri stars. By examining the combination of the suggested mechanisms, we conclude that the circumstellar disks commonly form in the very early phase of protostar formation.

  2. Evolution of star clusters in a cosmological tidal field

    NASA Astrophysics Data System (ADS)

    Rieder, Steven; Ishiyama, Tomoaki; Langelaan, Paul; Makino, Junichiro; McMillan, Stephen L. W.; Portegies Zwart, Simon

    2013-12-01

    We present a method to couple N-body star cluster simulations to a cosmological tidal field, using AMUSE (Astrophysical Multipurpose Software Environment). We apply this method to star clusters embedded in the CosmoGrid dark matter only Lambda cold dark matter simulation. Our star clusters are born at z = 10 (corresponding to an age of the universe of about 500 Myr) by selecting a dark matter particle and initializing a star cluster with 32 000 stars on its location. We then follow the dynamical evolution of the star cluster within the cosmological environment. We compare the evolution of star clusters in two Milky Way size haloes with a different accretion history. The mass-loss of the star clusters is continuous irrespective of the tidal history of the host halo, but major merger events tend to increase the rate of mass-loss. From the selected two dark matter haloes, the halo that experienced the larger number of mergers tends to drive a smaller mass-loss rate from the embedded star clusters, even though the final masses of both haloes are similar. We identify two families of star clusters: native clusters, which become part of the main halo before its final major merger event, and the immigrant clusters, which are accreted upon or after this event; native clusters tend to evaporate more quickly than immigrant clusters. Accounting for the evolution of the dark matter halo causes immigrant star clusters to retain more mass than when the z = 0 tidal field is taken as a static potential. The reason for this is the weaker tidal field experienced by immigrant star clusters before merging with the larger dark matter halo.

  3. Non-conformal evolution of magnetic fields during reheating

    SciTech Connect

    Calzetta, Esteban; Kandus, Alejandra E-mail: kandus@uesc.br

    2015-03-01

    We consider the evolution of electromagnetic fields coupled to conduction currents during the reheating era after inflation, and prior to the establishing of the proton-electron plasma. We assume that the currents may be described by second order causal hydrodynamics. The resulting theory is not conformally invariant. The expansion of the Universe produces temperature gradients which couple to the current and generally oppose Ohmic dissipation. Although the effect is not strong, it suggests that the unfolding of hydrodynamic instabilities in these models may follow a different pattern than in first order theories, and even than in second order theories on non expanding backgrounds.

  4. High-precision sulfur isotope composition of enstatite meteorites and implications of the formation and evolution of their parent bodies

    NASA Astrophysics Data System (ADS)

    Defouilloy, C.; Cartigny, P.; Assayag, N.; Moynier, F.; Barrat, J.-A.

    2016-01-01

    In order to better understand the formation and evolution of their parent bodies, the three isotope ratios of sulfur were analyzed in 33 enstatite meteorites (24 enstatite chondrites and 9 aubrites). The results show that on average all enstatite chondrite groups are enriched in the lightest isotopes compared to other chondrite groups, with means of δ34S of -0.28 ± 0.22‰ for EH3/4, -0.16 ± 0.16‰ for EH5, -0.32 ± 0.15‰ for EL3, -0.67 ± 0.16‰ for EL6 and -0.64 ± 0.00‰ for EL7 (all 1σ). Aubrites show a larger isotope variability in their composition, with a δ34S varying from -1.350‰ to +0.154‰. Contrary to previously published results, our data show a distinct composition for EL6 compared to other enstatite chondrites. This could be related to an impact-induced loss of isotopically heavy oldhamite (δ34S = by 3.62 ± 3.02‰ (1σ)) on the EL parent body. Although the bulk sulfur in both enstatite meteorites and aubrites does not show any significant Δ33S and Δ36S, the oldhamite fraction shows clear evidence of mass independent fractionation on the 36S/32S ratio (in 3 out of 9 analyzes, Δ36S up to +2.2‰), a signal that is not correlated to any 33S/32S anomaly (in 1 out of 9 analyzes, Δ33S down to -0.085‰). Though a nebular or photochemical origin cannot be ruled out, the most plausible mechanism to produce such isolated non-mass dependent 36S/32S anomalies would be a contribution of FeCl2 containing excesses of 36S due to the decay of 36Cl to the leached oldhamite fraction. Even though the sulfur isotopic composition measured in enstatite meteorites is distinct from the Bulk Silicate Earth (BSE), the isotopically lightest samples of EL6, EL7 and aubrites are approaching the isotopic composition of the BSE and enstatite meteorites remain the meteorites with the sulfur isotopic composition the closest to the terrestrial one.

  5. The Pb isotopic compositions of lower crustal xenoliths and the evolution of lower crustal Pb

    NASA Astrophysics Data System (ADS)

    Rudnick, Roberta L.; Goldstein, Steven L.

    1990-05-01

    Pb isotopic compositions for three suites of well-characterized granulite facies xenoliths from a diversity of crustal settings (the Chudleigh and McBride volcanic provinces, Queensland, Australia and the Eifel volcanics, West Germany) are presented here. All three suites plot to the right of the 4.57 Ga geochron, similar to the published Pb results of other mafic granulite xenoliths. Correlations between Sr, Nd and Pb isotopes in the three suites measured here point to an origin by mixing of mantle-derived basaltic magmas with lower crust at the time of basaltic underplating (i.e., < 100 Ma for Chudleigh, ˜ 300 Ma for McBride, ˜ 450 Ma for Eifel). Because the Pb concentration of the continental crust is much greater than that of mantle-derived basaltic magmas, the Pb isotopic compositions of the magmas are shifted dramatically by the mixing, allowing delineation of the isotopic characteristics of the lower crust. In all three cases, this lower crust had radiogenic Pb and Sr isotopic compositions and unradiogenic Nd isotopic compositions, yielding Proterozoic Nd model ages. Such radiogenic lower crust contrasts markedly with the Pb isotopic characteristics of most Precambrian granulite facies terrains. Whereas the Nd isotopes reflect the average age of crust formation, the Pb isotopic characteristics of the lower crust appear to be a function of the tectonothermal age of the crust: unradiogenic Pb can only develop in regions which have remained stable for long time periods (e.g., cratons), whereas in areas where orogenies have occurred subsequent to crustal formation, the Pb isotopic composition of the lower crust is "rejuvenated" through mixing with radiogenic Pb from upper crust and mantle-derived magmas. Thus, after orogeny, the Pb isotopic composition of the lower crust resembles that of the upper crust. On the basis of this proposed orogenic age-Pb isotope correlation, we estimate the Pb isotopic composition of the lower crust using the data for granulite

  6. Ground State Properties of Z=126 Isotopes within the Relativistic Mean Field Model

    NASA Astrophysics Data System (ADS)

    Yu, Qi-Xin; Li, Jun-Qing; Zhang, Hong-Fei

    2017-01-01

    The ground state properties of Z = 126 isotopes with neutron numbers N = 174-244 are calculated by the relativistic mean field (RMF) theory with effective interactions NL-Z2. In order to make a comprehensive understanding of the possible proton magic number Z = 126, we also perform the calculations in the vicinity of Z = 126, such as Z = 114,116,118,120,122,124,128 and 130 isotopic chains. The calculated results show there exist evident magicity for proton number Z = 120 and relatively weak magicity for proton number Z = 126. Supported by the National Natural Science Foundation of China under Grant Nos. 11675066, 11475050, 11265013, and the CAS Knowledge Innovation under Grant No. KJCX2-EW-N02

  7. Field applicability of Compound-Specific Isotope Analysis (CSIA) for characterization and quantification of in situ contaminant degradation in aquifers.

    PubMed

    Braeckevelt, M; Fischer, A; Kästner, M

    2012-06-01

    Microbial processes govern the fate of organic contaminants in aquifers to a major extent. Therefore, the evaluation of in situ biodegradation is essential for the implementation of Natural Attenuation (NA) concepts in groundwater management. Laboratory degradation experiments and biogeochemical approaches are often biased and provide only indirect evidence of in situ degradation potential. Compound-Specific Isotope Analysis (CSIA) is at present among the most promising tools for assessment of the in situ contaminant degradation within aquifers. One- and two-dimensional (2D) CSIA provides qualitative and quantitative information on in situ contaminant transformation; it is applicable for proving in situ degradation and characterizing degradation conditions and reaction mechanisms. However, field application of CSIA is challenging due to a number of influencing factors, namely those affecting the observed isotope fractionation during biodegradation (e.g., non-isotope-fractionating rate-limiting steps, limited bioavailability), potential isotope effects caused by processes other than biodegradation (e.g., sorption, volatilization, diffusion), as well as non-isotope-fractionating physical processes such as dispersion and dilution. This mini-review aims at guiding practical users towards the sound interpretation of CSIA field data for the characterization of in situ contaminant degradation. It focuses on the relevance of various constraints and influencing factors in CSIA field applications and provides advice on when and how to account for these constraints. We first evaluate factors that can influence isotope fractionation during biodegradation, as well as potential isotope-fractionating and non-isotope-fractionating physical processes governing observed isotope fractionation in the field. Finally, the potentials of the CSIA approach for site characterization and the proper ways to account for various constraints are illustrated by means of a comprehensive CSIA field

  8. Osmium Isotopic Evolution in Cumulate Piles at the Core-Mantle Boundary

    NASA Astrophysics Data System (ADS)

    Humayun, M.

    2009-12-01

    Osmium isotopic and Fe/Mn elemental tracers imply that chemical signals originating from the core are observed in some mantle plumes, particularly Hawaii. The discovery of radiogenic Os-186 in Hawaii requires a reservoir with time-integrated high Pt/Os ratios and Pt/Re ratios, proposed to be the Earth’s outer core. The radiogenic in-growth of Os-186 is directly proportional to time and Pt/Os ratio, so that any process acting more recently than the Hadean must create even larger Pt/Os fractionations. In the iron meteorite-analog model proposed to-date, the high Pt/Os ratio of the outer core is acquired by fractional crystallization of the inner core. To create sufficient Pt/Os fractionation, this model requires that: 1) substantial inner core growth had occurred prior to 3.5 Ga, and 2) the partition coefficients have extremely high values requiring the maximum amount of sulfur, or other light elements, possible in the core. The need for such extreme values is a vulnerability of the iron meteorite-analog model. The time constraint is in conflict with inner core growth models inferred from core heat flow requiring alternative heat sources for the core. Further, high Fe/Mn ratios are observed in every major Hawaiian volcano while these volcanoes exhibit a wide range of Os isotopic compositions from unradiogenic to radiogenic. Seismically observed features termed core rigidity zones at the core-mantle boundary have been interpreted to be flotation cumulate piles of FeO-rich material. Such features are not necessarily permanent, but may lose mass to the mantle by incorporation into plumes originating at the CMB. Here, I propose an alternative model for obtaining radiogenic Os-186, correlated with Os-187, from the core by examining the likely chemical evolution of a flotation cumulate pile of FeO-rich material. Fractional crystallization of trapped intercumulus metallic liquid in the cumulate pile produces solid metal with low Pt/Os ratios, and a residual liquid with

  9. Isotopic effects of nitrate photochemistry in snow: A field study at Dome C, Antarctica

    NASA Astrophysics Data System (ADS)

    Berhanu, T. A.; Erbland, J.; Savarino, J. P.

    2012-12-01

    Nitrate (NO3-) is the end product of NOx (NO+NO2) oxidation in the atmosphere and one of the most abundant anions present in the Antarctic snow pack. The comprehensive isotopic composition of nitrate (δ18O, Δ17O and δ15N) obtained from deep ice-cores may provide valuable information regarding the oxidative capacity of the atmosphere and could provide constraints on the global NOx budget. Nitrogen stable isotope ratios are typically thought to trace NOx sources while oxygen isotope ratios convey quantitative information regarding the oxidation pathways leading to nitrate formation. However, nitrate deposited at low accumulation sites in Polar Regions such as Dome C, Antarctica, is exposed to post depositional processes that modify its original isotopic composition. Among these processes, photolysis has been identified as the most significant mechanism leading to large nitrate mass loss and isotopic fractionation. Emission of NOx and OH from photolysis of nitrate, as well as formation of by-products such as HONO, can have a significant impact on the overlying boundary layer chemistry of polar regions. The quantitative effect of photolysis on the isotopic signature of nitrate is presently not well constrained and previous experimental and modelling studies have resulted in differing conclusions regarding the role of photolysis in the post processing of nitrate deposited to snow. In order to quantify the effect of photolysis on the isotopic composition of nitrate in snow, we have conducted a field study at Dome C, Antarctica. In this study, two snow sampling fields (1m wide, 2m long and 0.5m deep) within close proximity of each other were studied for the effect of UV light using a plexi glass filter experiment. The two fields were filled with wind blown snow at the beginning of December 2011 and then covered with plexi glass sheets. One of these sheets was equipped with a UV filter. Sampling was conducted every 10 days at a 2-5 cm depth resolution during the period

  10. Laboratory and Field Measurements of the Nitrogen Isotopic Composition of NOx

    NASA Astrophysics Data System (ADS)

    Fibiger, D. L.; Miller, D. J.; Dahal, B. R.; Lew, A. F.; Peltier, R.; Hastings, M. G.

    2014-12-01

    The nitrogen isotopic composition of nitrogen oxides (NOx = NO + NO2) has been measured from several NOx emissions sources in prior studies. These measurements have utilized a variety of methods for collecting the NOx as nitrate or nitrite for isotopic analysis, but none of these methods have been verified for complete conversion of NOx. Less than 100% conversion can result in isotopic fractionations. We present a method for accurately measuring the nitrogen isotopic composition of NOx using a .25 M KMnO4 and 0.5 M NaOH solution. Based on laboratory tests, this technique has been found to collect all NOx passed through under a variety of conditions (e.g., air flow rate, NOx concentration, temperature, humidity), allowing for diagnosis of δ15N-NOx without correction for fractionation. The precision across the entire analytic technique is 1.5‰. This active collection method is advantageous for collecting NOx over short time scales in environments with highly variable NOx sources and concentrations. The major drawback of the NaOH/KMnO4 method is a significant nitrate background found in the KMnO4, but this background is consistent and can be easily accounted for. We aim to use this method to provide more robust constraints on the isotopic signatures of NOx emissions from different sources. Initial results will be presented from lab- and field-based collections of NOx emissions. Emissions from a diesel engine were measured in a laboratory smog chamber and yielded δ15N values with a mean of -18.0‰ (n = 5, 1σ = 0.97‰). Measurements of δ15N-NOx were also made on a rooftop between two highways in Providence, RI. The values ranged from -7.7 to -0.63‰ for different time periods sampled, with excellent reproducibility in side-by-side collections. Additionally, the NaOH/KMnO4 was deployed in a laboratory study of biomass burning (FLAME4) to analyze the nitrogen isotopic composition of NOx produced from the burning of variety of materials (e.g. trees, agricultural

  11. Sulfur isotopes in coal constrain the evolution of the Phanerozoic sulfur cycle.

    PubMed

    Canfield, Donald E

    2013-05-21

    Sulfate is the second most abundant anion (behind chloride) in modern seawater, and its cycling is intimately coupled to the cycling of organic matter and oxygen at the Earth's surface. For example, the reduction of sulfide by microbes oxidizes vast amounts of organic carbon and the subsequent reaction of sulfide with iron produces pyrite whose burial in sediments is an important oxygen source to the atmosphere. The concentrations of seawater sulfate and the operation of sulfur cycle have experienced dynamic changes through Earth's history, and our understanding of this history is based mainly on interpretations of the isotope record of seawater sulfates and sedimentary pyrites. The isotope record, however, does not give a complete picture of the ancient sulfur cycle. This is because, in standard isotope mass balance models, there are more variables than constraints. Typically, in interpretations of the isotope record and in the absence of better information, one assumes that the isotopic composition of the input sulfate to the oceans has remained constant through time. It is argued here that this assumption has a constraint over the last 390 Ma from the isotopic composition of sulfur in coal. Indeed, these compositions do not deviate substantially from the modern surface-water input to the oceans. When applied to mass balance models, these results support previous interpretations of sulfur cycle operation and counter recent suggestions that sulfate has been a minor player in sulfur cycling through the Phanerozoic Eon.

  12. Sulfur isotopes in coal constrain the evolution of the Phanerozoic sulfur cycle

    PubMed Central

    Canfield, Donald E.

    2013-01-01

    Sulfate is the second most abundant anion (behind chloride) in modern seawater, and its cycling is intimately coupled to the cycling of organic matter and oxygen at the Earth’s surface. For example, the reduction of sulfide by microbes oxidizes vast amounts of organic carbon and the subsequent reaction of sulfide with iron produces pyrite whose burial in sediments is an important oxygen source to the atmosphere. The concentrations of seawater sulfate and the operation of sulfur cycle have experienced dynamic changes through Earth’s history, and our understanding of this history is based mainly on interpretations of the isotope record of seawater sulfates and sedimentary pyrites. The isotope record, however, does not give a complete picture of the ancient sulfur cycle. This is because, in standard isotope mass balance models, there are more variables than constraints. Typically, in interpretations of the isotope record and in the absence of better information, one assumes that the isotopic composition of the input sulfate to the oceans has remained constant through time. It is argued here that this assumption has a constraint over the last 390 Ma from the isotopic composition of sulfur in coal. Indeed, these compositions do not deviate substantially from the modern surface-water input to the oceans. When applied to mass balance models, these results support previous interpretations of sulfur cycle operation and counter recent suggestions that sulfate has been a minor player in sulfur cycling through the Phanerozoic Eon. PMID:23650346

  13. Compound-Specific Stable Isotope Analysis: Implications in Hexachlorocyclohexane in-vitro and Field Assessment.

    PubMed

    Kohli, Puneet; Richnow, Hans H; Lal, Rup

    2017-03-01

    Assessment of biotic and abiotic degradation reactions by studying the variation in stable isotopic compositions of organic contaminants in contaminated soil and aquifers is being increasingly considered during the last two decades with development of Compound specific stable isotope analysis (CSIA) technique. CSIA has been recognized as a potential tool for evaluating both qualitative and quantitative degradation with measurement of shifts in isotope ratios of contaminants and their degradation products as its basis. Amongst a wide variety of environmental pollutants including monoaromatics, chlorinated ethenes and benzenes etc., it is only recently that its efficacy is being tested for assessing biodegradation of a noxious pollutant namely hexachlorocyclohexane (HCH), by pure microbial cultures as well as directly at the field site. Anticipating the increase in demand of this technique for monitoring the microbial degradation along with natural attenuation, this review highlights the basic problems associated with HCH contamination emphasizing the applicability of emerging CSIA technique to absolve the major bottlenecks in assessment of HCH. To this end, the review also provides a brief overview of this technique with summarizing the recent revelations put forward by both in vitro and in situ studies by CSIA in monitoring HCH biodegradation.

  14. Strontium isotopic signatures of oil-field waters: Applications for reservoir characterization

    USGS Publications Warehouse

    Barnaby, R.J.; Oetting, G.C.; Gao, G.

    2004-01-01

    The 87Sr/86Sr compositions of formation waters that were collected from 71 wells producing from a Pennsylvanian carbonate reservoir in New Mexico display a well-defined distribution, with radiogenic waters (up to 0.710129) at the updip western part of the reservoir, grading downdip to less radiogenic waters (as low as 0.708903 to the east. Salinity (2800-50,000 mg/L) displays a parallel trend; saline waters to the west pass downdip to brackish waters. Elemental and isotopic data indicate that the waters originated as meteoric precipitation and acquired their salinity and radiogenic 87Sr through dissolution of Upper Permian evaporites. These meteoric-derived waters descended, perhaps along deeply penetrating faults, driven by gravity and density, to depths of more than 7000 ft (2100 m). The 87 Sr/86Sr and salinity trends record influx of these waters along the western field margin and downdip flow across the field, consistent with the strong water drive, potentiometric gradient, and tilted gas-oil-water contacts. The formation water 87Sr/86Sr composition can be useful to evaluate subsurface flow and reservoir behavior, especially in immature fields with scarce pressure and production data. In mature reservoirs, Sr Sr isotopes can be used to differentiate original formation water from injected water for waterflood surveillance. Strontium isotopes thus provide a valuable tool for both static and dynamic reservoir characterization in conjunction with conventional studies using seismic, log, core, engineering, and production data. Copyright ??2004. The American Association of Petroleum Geologist. All rights reserved.

  15. Noble Gas Isotopic Evidence for Primordial Evolution of the Earth's Atmosphere in Three Distinct Stages

    NASA Astrophysics Data System (ADS)

    Harper, C. L., Jr.; Jacobsen, S. B.

    1995-09-01

    The deep Earth is the key to understanding the primordial evolution of the Earth's atmosphere. However the atmosphere was not derived by degassing of the Earth, as widely held. Isotopic characterization of mantle noble gases and modeling based on this information [1] suggests the atmosphere experienced a 3-stage early history. This follows from 5 basic observations: (i) Ne in the mantle is solar-like, with light (high) 20Ne/22Ne relative to the atmosphere [2]; (ii) mantle Xe has higher 128Xe/130Xe than the atmosphere [3], which carries an extreme heavy isotope enriched mass fractionation signature of >3%/amu (iii) most of the radiogenic Xe from l29I and 244Pu decay in the Earth is not present either in the mantle or in the atmosphere; (iv) the inferred abundances of noble gases in the deep Earth "plume source" are insufficient to generate the present atmospheric abundances, even for whole mantle degassing; and (v) mantle noble gases indicate a 2 component structure, with solar light gases (He and Ne) and planetary heavy gases [4]. The present day noble gas budgets (and likely also N2) must derive from late accretion of a volatile-rich "veneer." This is stage III. Stage II is a naked (no atmosphere) epoch indicated by evidence for Hadean degassing of 244Pu (T1/2 = 80 Ma) fission Xe from the whole mantle, which was not retained in the present atmosphere. The naked stage must have lasted for more than ~200 Ma, and was supported by the early intense solar EUV luminosity. Stage I, a massive solar-composition protoatmosphere, occurred during the Earth's early accretion phase. Its existence is indicated by the presence of the solar gas component in the Earth. This is not attributable to subduction of solar wind rich cosmic dust, or solar wind irradiation of coagulating objects. It is best explained by accretion of a solar composition atmosphere from the nebula. This provided a thermal blanket supporting a magma ocean in which solar gases dissolved. Under these conditions

  16. Time Constraints on Soil Evolution from Uranium-series Isotopes in the South-eastern Australian Highlands: Evidences for a Coupling Between Soil Erosion and Production

    NASA Astrophysics Data System (ADS)

    Puthiyaveetil Othayoth, S.; Dosseto, A.; Hesse, P. P.; Handley, H. K.

    2011-12-01

    samples of profile F1 and from 15 to 34 kyr for leached samples of profile F3. A linear relationship is observed between soil depth and calculated residence times (modeled from U-series or using muscovite content), and can be used to infer soil production rates, which range between 10 and 24 mm/kyr. This compares with denudation rates previously determined at this site (Heimsath et al., 2001) and demonstrates the balance between soil production and loss, expressed in the landscape by soil-mantled hill slopes. Reference: Dosseto, A., Turner, S. P. and Chappell, J., 2008. The evolution of weathering profiles through time: New insights from uranium-series isotopes. Earth and Planetary Science Letters 274: 359-371 Heimsath, A. M., Chappell, J., Dietrich, W. E., Nishiizumi, K., and Finkel, R. C., 2001. Late Quaternary erosion in southeastern Australia: a field example using cosmogenic nuclides. Quaternary International 83-85, 169-185.

  17. Isotope effects in the harmonic response from hydrogenlike muonic atoms in strong laser fields

    SciTech Connect

    Shahbaz, Atif; Mueller, Carsten; Buervenich, Thomas J.

    2010-07-15

    High-order harmonic generation from hydrogenlike muonic atoms exposed to ultraintense high-frequency laser fields is studied. Systems of low nuclear-charge number Z are considered where a nonrelativistic description applies. By comparing the radiative response for different isotopes, we demonstrate characteristic signatures of the finite nuclear mass and size in the harmonic spectra. In particular, for Z>1, an effective muon charge appears in the Schroedinger equation for the relative particle motion, which influences the position of the harmonic cutoff. Cutoff energies in the million-electron-volt domain can be achieved, offering prospects for the generation of ultrashort coherent {gamma}-ray pulses.

  18. The evolution of Carbon isotopes in calcite in the presence of cyanobacteria

    NASA Astrophysics Data System (ADS)

    Grimm, Christian; Mavromatis, Vasileios; Pokrovsky, Oleg S.; Oelkers, Eric H.

    2016-04-01

    Stable isotopic compositions in carbonates are widely used as indicators of environmental conditions prevailing during mineral formation. This reconstruction is substantially based on the assumption that there is no change in the mineral composition over geological time. However, recent experimental studies have shown that carbon and magnesium isotopes in hydrous Mg-carbonates undergo continuous re-equilibration with the ambient solution even after mineral precipitation stopped ([1] and [2], respectively). To verify whether this holds true for anhydrous Ca-bearing carbonates which readily form at earth's surface environments, a series of batch system calcite precipitation experiments were performed in the presence of actively growing cyanobacteria Synechococcus sp. The bacteria were grown at ambient temperature in a BG11 culture medium (SIGMA C3061) and continuous stirring, air-bubbling and illumination. Calcite precipitation was initiated by the addition of 8.5mM CaCl2 and 0-50 mM NaHCO3 or NaHCO3-Na2CO3 mixtures. The presence of cyanobacteria is on one hand promoting CaCO3 formation due to increasing pH resulting from photosynthesis. On the other hand, actively growing cyanobacteria drastically change carbon isotope signature of the aqueous fluid phase by preferably incorporating the lighter 12C isotope into biomass [1]. This study explores the effect of continuously changing carbon isotope compositions in dissolved inorganic carbon (DIC) on precipitated calcite which is in chemical equilibrium with the ambient fluid phase. [1] Mavromatis et al. (2015). The continuous re-equilibration of carbon isotope compositions of hydrous Mg-carbonates in the presence of cyanobacteria. Chem. Geol. 404, 41-51 [2] Mavromatis et al. (2012). Magnesium isotope fractionation during hydrous magnesium carbonate precipitation with and without cyanobacteria. Geochim. Cosmochim. Acta 76, 161-174

  19. Isotopic and geochemical studies of fluid-rock interactions and the chemical evolution of the oceans

    SciTech Connect

    Derry, L.A.

    1989-01-01

    The isotopic compositions of Sr and Nd, and the abundances of rare earth elements (REE) are used to study various types of fluid-rock interactions in the Earth's crust. The isotopic compositions of Sr and Nd and REE patterns in marine chemical sediments of Precambrian age are used to estimate the relative importance of continental weathering versus submarine hydrothermal activity in determining the chemical mass balance of the Precambrian oceans. Major and trace element abundances and Sr and Nd isotopes are used to quantify the degree of interaction of a carbonatite fluid-magmatic system with felsic crust, and to constrain the isotopic characteristics of the mantle source region. The isotopic composition of Sr is reported from a well characterized sequence of Upper Proterozoic carbonates from Svalbard and east Greenland. A simple model of carbonate recycling and isotopic mass balance calculations illustrate that sedimentary recycling can have a strong influence on Sr in the oceans. REE patterns from Precambrian banded iron formations (BIFs) are very similar to modern metalliferous sediments, and imply that the overall REE pattern of Precambrian seawater was similar to today. The mantle-like {var epsilon}{sub Nd} values and positive Eu anomalies imply that the source of the REE in the BIFs was submarine hydrothermal activity. The implications of a large hydrothermal flux of reduced Fe on the redox controls of the Precambrian atmosphere are explored, and a testable hypothesis is developed. The mass balance of Eu in the oceans is affected by preferential scavenging at hydrothermal sites. Data from the Cherry Hill, CA mineralizing system imply a complex plumbing system and a long residence time for the water. Isotopic data from the Fen alkaline complex, Norway, define mixing trends between mantle derived magmas or magmatic fluids and old crust.

  20. Evolution of the Snorre Field downhole completion systems

    SciTech Connect

    Gunnarsson, B.; Toennessen, S.H.; Stensland, J.F.; Haut, R.C.

    1994-12-31

    This paper discusses the development and evolution of cost-effective downhole completion systems for the Snorre Field Tension Leg Platform (TLP) and Subsea Production System (SPS). Included is a discussion of operational experiences that influenced the evolution. Also included in the paper are specific examples of how the completion times were reduced. The completion design for the subsea wells includes some new features compared to previous through flow line (TFL) completions. During the design process cost, safety and simplicity have been the driving forces for selecting equipment. Previous TFL completions have normally included a H-member, dual packers, sliding sleeves and nipples in each tail pipe. This design required plugs and standing valves to be an integral part of the completion string, requiring high reliability of the TFL retrievable components. The completion design used for the Snorre SPS wells uses a minimum amount of tubular components. The design does not require any TFL retrievable components to be installed during production or injection. This minimizes the number of flow restrictions and thereby reduces the tendency for scaling, erosion and corrosion on the TFL retrievable components. All tubing retrievable components, including the Y-block, are qualified and are considered standard today.

  1. Genesis and open-system evolution of Quaternary magmas beneath southeastern margin of Tibet: Constraints from Sr-Nd-Pb-Hf isotope systematics

    NASA Astrophysics Data System (ADS)

    Zou, Haibo; Ma, Mingjia; Fan, Qicheng; Xu, Bei; Li, Shuang-Qing; Zhao, Yongwei; King, David T.

    2017-02-01

    Post-collisional volcanic rocks on the Tibetan Plateau and its margins contain valuable information about the geodynamic processes associated with this Cenozoic continent-continent collision. The Quaternary Tengchong volcanic field at the southeastern margin of the Tibetan Plateau formed high-potassium calc-alkaline volcanic rocks. Herein, we present comprehensive Nd-Sr-Pb-Hf isotopic and elemental data for trachybasalts, basaltic trachyandesites, and trachyandesites from four Quaternary Tengchong volcanoes (Maanshan, Dayingshan, Heikongshan, and Laoguipo) in order to understand their magma genesis and evolution as well as tectonic significance. Good correlations between SiO2 content and the ratios 87Sr/86Sr, 143Nd/144Nd, 206Pb/204Pb, and 177Hf/176Hf for these Quaternary volcanics strongly suggest that the combined assimilation and fractional crystallization (AFC) was an important process in the origin of basaltic trachyandesites and trachyandesites. High Y and Yb contents and low Sr/Y ratios of these basaltic trachyandesites and trachyandesites are uncharacteristic of adakites that formed by partial melting of eclogitic lower crust or partial melting of basaltic oceanic crust with eclogite as a restite. A combined assimilation-fractional crystallization model is proposed for these basaltic trachyandesites and trachyandesites. Nd-Sr-Pb-Hf isotopes for the uncontaminated Tengchong magma (trachybasalts with SiO2 < 52.5 wt.% and MgO > 5.5% wt.%) reflect a heterogeneous enriched mantle source. High Th/U, Th/Ta, and Rb/Nb ratios and Nd-Sr-Pb-Hf isotope characteristics of the uncontaminated magmas suggest that the enriched mantle beneath Tengchong formed as a result of subduction of clay-rich sediments, which probably came from the Indian continental plate. Partial melting of the enriched mantle was generated by deep continental subduction coupled with recent regional extension in the Tengchong area.

  2. Isotopic effects of nitrate photochemistry in snow: a field study at Dome C, Antarctica

    NASA Astrophysics Data System (ADS)

    Berhanu, T. A.; Savarino, J.; Erbland, J.; Vicars, W. C.; Preunkert, S.; Martins, J. F.; Johnson, M. S.

    2015-10-01

    Stable isotope ratios of nitrate preserved in deep ice cores are expected to provide unique and valuable information regarding paleoatmospheric processes. However, due to the post-depositional loss of nitrate in snow, this information may be erased or significantly modified by physical or photochemical processes before preservation in ice. We investigated the role of solar UV photolysis in the post-depositional modification of nitrate mass and stable isotope ratios at Dome C, Antarctica, during the austral summer of 2011/2012. Two 30 cm snow pits were filled with homogenized drifted snow from the vicinity of the base. One of these pits was covered with a plexiglass plate that transmits solar UV radiation, while the other was covered with a different plexiglass plate having a low UV transmittance. Samples were then collected from each pit at a 2-5 cm depth resolution and a 10-day frequency. At the end of the season, a comparable nitrate mass loss was observed in both pits for the top-level samples (0-7 cm) attributed to mixing with the surrounding snow. After excluding samples impacted by the mixing process, we derived an average apparent nitrogen isotopic fractionation (15ϵapp) of -67.8 ± 12 ‰ for the snow nitrate exposed to solar UV using the nitrate stable isotope ratios and concentration measurements. For the control samples in which solar UV was blocked, an apparent average 15ϵapp value of -12.0 ± 1.7 ‰ was derived. This difference strongly suggests that solar UV photolysis plays a dominant role in driving the isotopic fractionation of nitrate in snow. We have estimated a purely photolytic nitrogen isotopic fractionation (15ϵphoto) of -55.8 ± 12.0 ‰ from the difference in the derived apparent isotopic fractionations of the two experimental fields, as both pits were exposed to similar physical processes except exposure to solar UV. This value is in close agreement with the 15ϵphoto value of -47.9 ± 6.8

  3. Violent galaxy evolution in the Frontier Fields clusters

    NASA Astrophysics Data System (ADS)

    Ebeling, Harald; McPartland, Conor; Blumenthal, Kelly; Roediger, Elke

    2015-08-01

    In a recent study we used customized morphological selection criteria to identify potential ram-pressure stripping events in shallow HST images of MACS clusters at z=0.3-0.7 and found tantalising evidence of such violent evolution (a) being at least partly triggered by galaxy mergers and (b) causing extensive star formation and thus brightening of the affected galaxies. Due to the limited depth of the HST data used, our project focused (by design and necessity) on the brightest galaxies. We here present results of a similar survey for “jellyfish” galaxies conducted using the much deeper, multi-passband imaging data of the Frontier Fields clusters that allow us to probe much farther into the luminosity function of ram-pressure stripping in some of the most massive and most dynamically disturbed clusters known.

  4. Formation waters from Mississippian-Pennsylvanian reservoirs, Illinois basin, USA: Chemical and isotopic constraints on evolution and migration

    NASA Astrophysics Data System (ADS)

    Stueber, Alan M.; Walter, Lynn M.; Huston, Ted J.; Pushkar, Paul

    1993-02-01

    We have analyzed a suite of seventy-four formation-water samples from Mississippian and Pennsylvanian carbonate and siliciclastic strata in the Illinois basin for major, minor, and trace element concentrations and for strontium isotopic composition. A subset of these samples was also analyzed for boron isotopic composition. Data are used to interpret origin of salinity and chemical and Sr isotopic evolution of the brines and in comparison with a similar data set from an earlier study of basin formation waters from Silurian-Devonian reservoirs. Systematics of Cl-Br-Na show that present Mississippian-Pennsylvanian brine salinity can be explained by a combination of subaerial seawater evaporation short of halite saturation and subsurface dissolution of halite from an evaporite zone in the middle Mississippian St. Louis Limestone, along with extensive dilution by mixing with meteoric waters. Additional diagenetic modifications in the subsurface interpreted from cation/Br ratios include K depletion through interaction with clay minerals, Ca enrichment, and Mg depletion by dolomitization, and Sr enrichment through CaCO 3 recrystallization and dolomitization. Ste. Genevieve Limestone (middle Mississippian) formation waters show 87Sr /86Sr ratios in the range 0.70782-0.70900, whereas waters from the siliciclastic reservoirs are in the range 0.70900-0.71052. Inverse correlations between 87Sr /86Sr and B, Li, and Mg concentrations suggest that the brines acquired radiogenic 87Sr through interaction with siliciclastic minerals. Completely unsystematic relations between 87Sr /86Sr and 1/Sr are observed; Sr concentrations in Ste. Genevieve and Aux Vases (middle Mississippian) waters appear to be buffered by equilibrium with respect to SrSO 4. Although there are many similarities in their origin and evolution, these formation waters are distinguished from Silurian-Devonian brines in the basin by elevated Cl/Br and Na/Br ratios and by unsystematic Sr isotope relationships. Thus

  5. Isotopic evolution of Mauna Kea volcano: Results from the initial phase of the Hawaii Scientific Drilling Project

    USGS Publications Warehouse

    Lassiter, J.C.; DePaolo, D.J.; Tatsumoto, M.

    1996-01-01

    We have examined the Sr, Nd, and Pb isotopic compositions of Mauna Kea lavas recovered by the first drilling phase of the Hawaii Scientific Drilling Project. These lavas, which range in age from ???200 to 400 ka, provide a detailed record of chemical and isotopic changes in basalt composition during the shied/postshield transition and extend our record of Mauna Kea volcanism to a late-shield period roughly equivalent to the last ???100 ka of Mauna Loa activity. Stratigraphic variations in isotopic composition reveal a gradual shift over time toward a more depleted source composition (e.g., higher 143Nd/144Nd, lower 87Sr/86Sr, and lower 3He/4He). This gradual evolution is in sharp contrast with the abrupt appearance of alkalic lavas at ???240 ka recorded by the upper 50 m of Mauna Kea lavas from the core. Intercalated tholeiitic and alkalic lavas from the uppermost Mauna Kea section are isotopically indistinguishable. Combined with major element evidence (e.g., decreasing SiO2 and increasing FeO) that the depth of melt segregation increased during the transition from tholeiitic to alkalic volcanism, the isotopic similarity of tholeiitic and alkalic lavas argues against significant lithosphere involvement during melt generation. Instead, the depleted isotopic signatures found in late shield-stage lavas are best explained by increasing the proportion of melt generated from a depleted upper mantle component entrained and heated by the rising central plume. Direct comparison of Mauna Kea and Mauna Loa lavas erupted at equivalent stages in these volcanoes' life cycles reveals persistent chemical and isotopic differences independent of the temporal evolution of each volcano. The oldest lavas recovered from the drillcore are similar to modern Kilauea lavas, but are distinct from Mauna Loa lavas. Mauna Kea lavas have higher 143Nd/144Nd and 206Pb/204Pb and lower 87Sr/86Sr. Higher concentrations of incompatible trace elements in primary magmas, lower SiO2, and higher FeO also

  6. Carbon isotope stratigraphy of the upper Kharaib and Shuaiba formations: Implications for the Early Cretaceous evolution of the Arabian Gulf Region

    SciTech Connect

    Vahrenkamp, V.C.

    1996-05-01

    The carbon isotope profiles of shallow-marine carbonates from the Barremian-Aptian Kharaib and Shuaiba formations of the Arabian Gulf region range between 0.5 and 7{per_thousand} {delta}{sup 13}C PDB (Peedee belemnite). Systematic variations can be correlated with isotope profiles reported from Tethyan pelagic limestone sequences. The detailed correspondence between the isotopic signature of the relatively well-dated pelagic limestones and the poorly dated shallow-water limestones from the Arabian Gulf region suggests that global marine carbon isotope changes apparently affected deep-sea and shallow-water carbonate sediments similarly and at a similar time resolution. Although oxygen isotopes have been reset during diagenesis, carbon isotopes appear to have maintained their primary marine signature through time. No evidence has been found to connect carbon isotope trends to subaerial exposure or later meteoric diagenesis. In combination with other data, the investigated carbon isotope profiles can be used for basin-to-platform and regional correlations beyond the current resolution of biostratigraphy in shallow-water limestones. Carbon isotope stratigraphy confirms significant hiatuses in the investigated shallow-water carbonate sequences. Using carbon isotope trends as a proxy for sea level fluctuations, the carbon isotope cycles of the late Early Cretaceous of the Arabian Gulf region may represent four cycles of rising and falling sea level with a duration corresponding to that of third-order sea level fluctuations. Regional correlations derived from isotope trends provide a scenario for the larger scale stratigraphic evolution of the Arabian peninsula during the end of the Early Cretaceous.

  7. The multiple sulfur isotopic composition of iron meteorites: Implications for nebular evolution

    NASA Astrophysics Data System (ADS)

    Antonelli, Michael Ariel

    2013-12-01

    Multiple sulfur isotopic measurements of troilite from 61 different iron meteorites were undertaken in order to test for sulfur isotopic homogeneity within (and between) 8 different iron meteorite groups. It was found that different members within a given group of iron meteorites have homogeneous Delta 33S compositions, but that these Delta33S compositions differ between groups. This thesis shows that iron meteorites from the groups IC, IIAB, IIIAB, IIIF, and IVA have small yet resolvable enrichments or depletions in Delta33S relative to Canyon Diablo Troilite (CDT) and troilite from other non-magmatic (IAB and IIE) iron meteorites. The observed anomalous sulfur isotopic compositions in magmatic iron meteorites are most consistent with Lyman-alpha photolysis of H2S, pointing towards inheritance of an unexpected photolytically-derived sulfur component in magmatic iron meteorite groups which is absent in non-magmatic iron meteorites, chondrites, and the Earth-Moon System.

  8. N-C isotopic investigation of a zeolite-amended agricultural field

    NASA Astrophysics Data System (ADS)

    Ferretti, Giacomo; Natali, Claudio; Faccini, Barbara; Di Giuseppe, Dario; Bianchini, Gianluca; Coltorti, Massimo

    2016-04-01

    In this study, a C and N isotopic investigation in the soil-plant system of the ZeoLIFE project experimental field have been carried out. Since many years, natural and NH4-enriched zeolites have been used as soil amendant in agricultural context in order to reduce N losses, increase NUE (Nitrogen Use Efficiency) and crop yield. Nevertheless up to now there are no studies that, using the stable isotopes approach, highlighted the interaction between zeolites and plants in agricultural systems. The main aims of this study is to verify if natural zeolites amendment can enhance chemical fertilization efficiency and if N transfer from NH4-enriched zeolites to plants really occurs. Plants grown following traditional cultivation methods (with no zeolite addition) and plants grown on soils amended with natural and NH4-enriched zeolites (the latter obtained after mixing with pig-slurry with a very high 15N) were compared for two cultivation cycles (maize and wheat). As widely known, plants grown under conventional farming systems (use of chemical fertilizers as urea) and plants grown under organic farming can be discriminated by the isotopic signatures of plant tissues. For both years the main results of the study reveals that plants grown on plots amended with natural zeolites generally have their nitrogen isotopic signature more similar to that of the chemical fertilizers employed during the cultivation with respect to the plants cultivated in the non-amended plot. This suggests an enhanced N uptake by the plant from this specific N source with respect to the non-amended plot. On the other hand, plants grown on NH4-enriched zeolites registered a higher 15N, approaching the pig-slurry isotopic signature, confirming that this material can constitute an N pool for plants at least for two cultivation cycles. The distinct agricultural practices seem to be reflected in the plant physiology as recorded by the carbon discrimination factor (13C) which generally increases

  9. Formation waters from Mississippian-Pennsylvanian reservoirs, Illinois basin, USA: Chemical and isotopic constraints on evolution and migration

    SciTech Connect

    Stueber, A.M. ); Walter, L.M.; Huston, T.J. ); Pushkar, P. )

    1993-02-01

    We have analyzed a suite of seventy-four formation-water samples from Mississippian and Pennsylvanian carbonate and siliciclastic strata in the Illinois basin for major, minor, and trace element concentrations and for strontium isotopic composition. A subset of these samples was also analyzed for boron isotopic composition. Data are used to interpret origin of salinity and chemical and Sr isotopic evolution of the brines and in comparison with a similar data set from an earlier study of basin formation waters from Silurian-Devonian reservoirs. Systematics of Cl-Br-Na show that present Mississippian-Pennsylvanian brine salinity can be explained by a combination of subaerial seawater evaporation short of halite saturation and subsurface dissolution of halite from an evaporite zone in the middle Mississippian St. Louis Limestone, along with extensive dilution by mixing with meteoric waters. Additional diagenetic modifications in the subsurface interpreted from cation/Br ratios include K depletion through interaction with clay minerals, Ca enrichment, and Mg depletion by dolomitization, and Sr enrichment through CaCO[sub 3] recrystallization and dolomitization. Ste. Genevieve Limestone (middle Mississippian) formation waters show [sup 87]Sr/[sup 86]Sr ratios in the range 0.70782-0.70900, whereas waters from the siliciclastic reservoirs are in the rante 0.70900-0.71052. Inverse correlations between [sup 87]Sr/[sup 86]Sr and B,Li, and Mg concentrations suggest that the brines acquired radiogenic [sup 87]Sr through interaction with siliciclastic minerals. Completely unsystematic relations between [sup 87]Fr/[sup 86]Sr and 1/Sr are observed; Sr concentrations in Ste. Genevieve and Aux Vases (middle Mississippian) waters appear to be buffered by equilibrium with respect to SrSo[sub 4]. These formation waters are distinguished from Silurian-Devonian brines in the basin by elevated Cl/Br and Na/Br ratios and by unsystematic Sr isotope relationships.

  10. Stable isotope paleoaltimetry: Tectonics and the evolution of landscapes and life

    NASA Astrophysics Data System (ADS)

    Mulch, Andreas

    2015-04-01

    Stable isotope paleoaltimetry exploits systematic changes in the oxygen (δ18O) or hydrogen (δD) isotopic composition of precipitation when lifting of moist air masses over topography induces orographic precipitation. The past 10 years have witnessed rapidly expanding research activities in stable isotope paleoaltimetry that resulted in a broad array of fascinating tectonic studies many of which concentrated on the elevation histories of continental plateau regions. Stable isotope based reconstructions of topography, therefore, have greatly expanded what used to be very sparse global paleoaltimetric information. The topography of mountain ranges and plateaus, however, not only reflects the geodynamic processes that shape the Earth's surface; it also represents a key element in controlling continental moisture transport, atmospheric circulation and the distribution of biomes and biodiversity. The challenge now lies in disentangling the surface uplift component from the inevitable impact of climate change on long-term records of δ18O and δD in precipitation that accompanies surface uplift. The robustness of stable isotope paleoaltimetry reconstructions can be greatly enhanced when high-elevation δ18O or δD proxy data are referenced against low-elevation records that track climate-modulated δ18O or δD of precipitation through time. In addition, evaluating δ18O or δD of precipitation upstream of the orogen/continental plateau region reduces commonly encountered complexities such as topographic threshold conditions to atmospheric circulation, variable moisture recharge to the atmosphere through evapotranspiration over the continents or the impact of hemispheric-scale atmospheric teleconnections; all of which may conspire in setting δ18O or δD of precipitation. Here, I present examples where stable isotope paleoaltimetry data successfully track topographic thresholds to changes in atmospheric circulation and precipitation with a particular focus on the effect

  11. Reexamination of magnetic isotope and field effects on adenosine triphosphate production by creatine kinase

    PubMed Central

    Crotty, Darragh; Silkstone, Gary; Poddar, Soumya; Ranson, Richard; Prina-Mello, Adriele; Wilson, Michael T.; Coey, J. M. D.

    2012-01-01

    The influence of isotopically enriched magnesium on the creatine kinase catalyzed phosphorylation of adenosine diphosphate is examined in two independent series of experiments where adenosine triphosphate (ATP) concentrations were determined by a luciferase-linked luminescence end-point assay or a real-time spectrophotometric assay. No increase was observed between the rates of ATP production with natural Mg, 24Mg, and 25Mg, nor was any significant magnetic field effect observed in magnetic fields from 3 to 1,000 mT. Our results are in conflict with those reported by Buchachenko et al. [J Am Chem Soc 130:12868–12869 (2008)], and they challenge these authors’ general claims that a large (two- to threefold) magnetic isotope effect is “universally observable” for ATP-producing enzymes [Her Russ Acad Sci 80:22–28 (2010)] and that “enzymatic phosphorylation is an ion-radical, electron-spin-selective process” [Proc Natl Acad Sci USA 101:10793–10796 (2005)]. PMID:22198842

  12. Preliminary Gas and Isotope Geochemistry in the Rehai Geothermal Field, P.R. China

    SciTech Connect

    P., Zhao; Z., Liao

    1995-01-01

    Based on gas and sulphur isotopic composition, two types of steam in Rehai geothermal field are identified. One is with higher CO{sub 2} and H{sub 2}S concentration, the {delta}{sup 34}S of H{sub 2}S is in the range 2.49{per_thousand} to -1.04{per_thousand} (vs CDT), from which the H{sub 2}S-temperature is over than 250 C. The other is with lower CO{sub 2} and H{sub 2}S concentration, the {delta}{sup 34}S of H{sub 2}S is in the range -4.0{per_thousand} to -8.36{per_thousand}, from which the H{sub 2}S- and H{sub 2}-temperatures are 180 C-210 C, in good agreement with quartz temperature. The thermal water in the Rehai field is of local meteoric origin. Maximum {delta}{sup 18}O-value shift is less than 2.0{per_thousand} (vs SMOW). Mixing is widespread and could be identified on isotope and solute chemistry.

  13. Mean field study of structural changes in Pt isotopes with the Gogny interaction

    SciTech Connect

    Rodriguez-Guzman, R.; Sarriguren, P.; Robledo, L. M.; Garcia-Ramos, J. E.

    2010-02-15

    The evolution of the nuclear shapes along the triaxial landscape is studied in the Pt isotopic chain using the self-consistent Hartree-Fock-Bogoliubov approximation based on the Gogny interaction. In addition to the parametrization D1S, the new incarnations D1N and D1M of this force are also included in our analysis to assess to which extent the predictions are independent of details of the effective interaction. The considered range of neutron numbers 88<=N<=126 includes prolate, triaxial, oblate, and spherical ground-state shapes and serves as a detailed comparison of the predictions obtained with the new sets D1N and D1M against the ones provided by the standard parametrization Gogny-D1S in a region of the nuclear landscape for which experimental and theoretical fingerprints of shape transitions have been found. Structural evolution along the Pt chain is discussed in terms of the deformation dependence of single-particle energies.

  14. Isotopic and chemical constraints on the petrogenesis of Blackburn Hills volcanic field, western Alaska

    NASA Astrophysics Data System (ADS)

    Moll-Stalcup, Elizabeth J.; Arth, Joseph G.

    1991-12-01

    The Blackburn Hills volcanic field is one of several Late Cretaceous and early Tertiary (75-50 Ma) volcanic fields in western Alaska that comprise a vast magmatic province extending from the Arctic Circle to Bristol Bay. It consists of andesite flows, rhyolite domes, a central granodiorite to quartz monzonite pluton, and small intrusive rhyolite porphyries, overlain by basalt and alkali-rhyolites. Most of the field consists of andesite flows which can be divided into two groups on the basis of elemental and isotopic composition: a group having lower ( 87Sr /86Sr ) i, higher ( 143Nd /144Nd ) i, and moderate LREE and HREE contents (group 1), and a group having higher ( 87Sr /86Sr ) i, lower ( 143Sr /144Sr ) i, and lower HREE contents. Basalts are restricted to the top of the stratigraphic section, comprise the most primitive part of group 1 [( 87Sr /86Sr ) i = 0.7033; ( 143Nd /144Nd ) i = 0.5129] , and have trace-element ratios that are similar to those of oceanic island basalts (OIBs). In contrast to the basalts, group 1 andesites have higher ( 87Sr /86Sr ) i and lower ( 143Nd /144Nd ) i, and represent interaction of mantle-derived magmas with the lower crust of Koyukuk terrane. Group 2 andesites have ( 87Sr /86Sr ) i and ( 143Nd /144Nd ) i that are near bulk-earth values and probably formed by partial melting of the lower crust of Koyukuk terrane. The central pluton and rhyolite porphyries are isotopically uniform ( 87Sr /86Sr ) i ≈ 0.704, ( 143Nd /144Nd ) i ≈ 0.51275, and are interpreted to have formed by melting of young mafic to intermediate crustal rocks or by fractionation of group 1 andesites. The rhyolite domes have an isotopic range similar to that of the basalts and andesites [( 87Sr /86Sr ) i = 0.70355-0.70499; ( 143Nd /144Nd ) i = 0.51263-0.51292] , which suggests they formed by fractionation of the and site and basalt magmas. Although some workers have suggested that the volcanic field is underlain by old continental crust, none of the data require

  15. Compilation of gas geochemistry and isotopic analyses from The Geysers geothermal field: 1978-1991

    USGS Publications Warehouse

    Lowenstern, Jacob B.; Janik, Cathy; Fahlquist, Lynne; Johnson, Linda S.

    1999-01-01

    We present 45 chemical and isotopic analyses from well discharges at The Geysers geothermal field and summarize the most notable geochemical trends. H2 and H2S concentrations are highest in the Southeast Geysers, where steam samples have δD and δ18O values that reflect replenishment by meteoric water. In the Northwest Geysers, samples are enriched in gas/steam, CO2, CH4, and N2/Ar relative to the rest of the field, and contain steam that is elevated in δD and δ18O, most likely due to substantial contributions from Franciscan-derived fluids. The δ13C of CO2, trends in CH4 vs. N2, and abundance of NH3 indicate that the bulk of the non-condensable gases are derived from thermal breakdown of organic materials in Franciscan meta-sediments.

  16. Experimental study of the Mg and Sr isotopic evolution of seawater interacting with basalt between 150 and 300 ° C.

    NASA Astrophysics Data System (ADS)

    Voigt, Martin; Pearce, Christopher R.; Oelkers, Eric H.

    2016-04-01

    potential for combined radiogenic and stable isotope analysis to track solid-fluid reactions in the oceanic crust. Further characterisation of the extent of isotopic fractionation in these systems will help establish how such processes have affected the long-term chemical evolution of the oceans. [1] H. Elderfield and A. Schultz, "Mid-Ocean Ridge Hydrothermal Fluxes and the Chemical Composition of the Ocean," Annu Rev Earth Planet Sci, vol. 24, pp. 191-224, 1996. [2] W. E. Seyfried Jr and J. L. Bischoff, "Experimental seawater-basalt interaction at 300° C, 500 bars, chemical exchange, secondary mineral formation and implications for the transport of heavy metals," Geochim. Cosmochim. Acta, vol. 45, no. 2, pp. 135-147, 1981. [3] J. A. Higgins and D. P. Schrag, "The Mg isotopic composition of Cenozoic seawater - evidence for a link between Mg-clays, seawater Mg/Ca, and climate," Earth Planet. Sci. Lett., vol. 416, pp. 73-81, 2015.

  17. Isotope selective photodissociation of N2 by the interstellar radiation field and cosmic rays

    NASA Astrophysics Data System (ADS)

    Heays, Alan N.; Visser, Ruud; Gredel, Roland; Ubachs, Wim; Lewis, Brenton R.; Gibson, Stephen T.; van Dishoeck, Ewine F.

    2014-02-01

    Context. Photodissociation of 14N2 and 14N 15N occurs in interstellar clouds, circumstellar envelopes, protoplanetary discs, and other environments due to ultraviolet radiation originating from stellar sources and the presence of cosmic rays. This source of N atoms initiates the formation of more complex N-bearing species and may influence their isotopic composition. Aims: We study the photodissociation rates of 14N 15N by ultraviolet continuum radiation and both isotopologues in a field of cosmic ray induced photons. To determine the effect of these on the isotopic composition of more complex molecules. Methods: High-resolution theoretical photodissociation cross sections of N2 are used from an accurate and comprehensive quantum-mechanical model of the molecule based on laboratory experiments. A similarly high-resolution spectrum of H2 emission following interactions with cosmic rays has been constructed. The spectroscopic data are used to calculate photodissociation rates which are then input into isotopically differentiated chemical models, describing an interstellar cloud and a protoplanetary disc. Results: The photodissociation rate of 14N 15N in a Draine field assuming 30 K excitation is 1.73 × 10-10 s-1, within 4% of the rate for 14N2, and the rate due to cosmic ray induced photons assuming an H2 ionisation rate of ζ = 10-16 s-1 is about 10-15 s-1, with up to a factor of 10 difference between isotopologues. Shielding functions for 14N15N by 14N2, H2, and H are presented. Incorporating these into an interstellar cloud model, an enhancement of the atomic 15N/14N ratio over the elemental value is obtained due to the self-shielding of external radiation at an extinction of about 1.5 mag. This effect is larger where assumed grain growth has reduced the opacity of dust to ultraviolet radiation. The transfer of photolytic isotopic fractionation of N and N2 to other molecules is demonstrated to be significant in a protoplanetary disc model with grain growth, and

  18. Scalar field evolution in Gauss-Bonnet black holes

    SciTech Connect

    Abdalla, E.; Konoplya, R.A.; Molina, C.

    2005-10-15

    It is presented a thorough analysis of scalar perturbations in the background of Gauss-Bonnet, Gauss-Bonnet-de Sitter and Gauss-Bonnet-anti-de Sitter black hole spacetimes. The perturbations are considered both in frequency and time domain. The dependence of the scalar field evolution on the values of the cosmological constant {lambda} and the Gauss-Bonnet coupling {alpha} is investigated. For Gauss-Bonnet and Gauss-Bonnet-de Sitter black holes, at asymptotically late times either power-law or exponential tails dominate, while for Gauss-Bonnet-anti-de Sitter black hole, the quasinormal modes govern the scalar field decay at all times. The power-law tails at asymptotically late times for odd-dimensional Gauss-Bonnet black holes does not depend on {alpha}, even though the black hole metric contains {alpha} as a new parameter. The corrections to quasinormal spectrum due to Gauss-Bonnet coupling is not small and should not be neglected. For the limit of near extremal value of the (positive) cosmological constant and pure de Sitter and anti-de Sitter modes in Gauss-Bonnet gravity we have found analytical expressions.

  19. Helium-strontium isotope constraints on mantle evolution beneath the Roman Comagmatic Province, Italy

    NASA Astrophysics Data System (ADS)

    Martelli, M.; Nuccio, P. M.; Stuart, F. M.; Burgess, R.; Ellam, R. M.; Italiano, F.

    2004-08-01

    A study of the He isotopic ratios of fluid inclusions in olivine and pyroxene from the Roman Comagmatic Province (RCP), Italy, is presented together with 87Sr/ 86Sr isotope compositions of the whole rock or pyroxene phenocrysts. A clear covariation in He and Sr isotopes is apparent, with a strong northward increase in radiogenic He and Sr being evident. He and Sr isotopes ratios range from 3He/ 4He=5.2 Ra and 87Sr/ 86Sr=0.7056 in south Campania, to 3He/ 4He=0.44 Ra and 87Sr/ 86Sr=0.715905 in the northernmost Latium. Helium isotope ratios are significantly lower than MORB values and are among the lowest yet measured in subduction zone volcanism. The 3He/ 4He of olivine and pyroxene phenocryst-hosted volatiles appear to be little influenced by posteruptive processes and magma-crust interaction. The 3He/ 4He- 87Sr/ 86Sr covariation is consistent with binary mixing between an asthenospheric mantle similar to HIMU ocean island basalts, and an enriched (radiogenic) mantle end member generated from subduction of the Ionian/Adriatic plate. The contribution of radiogenic He from metasomatic fluids and postmetasomatism radiogenic ingrowth in the wedge is strongly dependent on the initial He concentration of the mantle. Only when asthenosphere He concentrations are substantially lower than the MORB source mantle, and metasomatism occurred at the beginning of the subduction (˜30 Ma), can ingrowth in the mantle wedge account for the 3He/ 4He of the most radiogenic basalts.

  20. The influence of photochemical fractionation on the evolution of the nitrogen isotope ratios - detailed analysis of current photochemical loss rates

    NASA Astrophysics Data System (ADS)

    Mandt, K. E.; Waite, J. H., Jr.; Westlake, J.; Magee, B.; Liang, M. C.; Bell, J.

    2012-04-01

    Tracking the evolution of molecular nitrogen over geologic time scales requires an understanding of the loss rates of both isotopologues (14N2 and 14N15N) as a function of time (e.g. Mandt et al., 2009). The relative loss rates, if different, “fractionate” the isotopes so that the ratios change as a function of time, and rate at which the ratio changes due to a loss process is determined by the “fractionation factor.” Photochemistry is known to fractionate the nitrogen isotopes in Titan’s atmosphere by preferentially removing the heavy isotope from the molecular nitrogen inventory and increasing the ratio (heavy/light) in one of the primary photochemical products, HCN. This fractionation occurs due to a selective shielding during photodissociation where the photons that dissociate 14N15N penetrate deeper into the atmosphere (Liang et al., 2007) than the photons that dissociate 14N14N. Two methods can be used to determine the photochemical fractionation factor, f. The first approach for calculating f is based on the isotopic ratios of the photochemical source and product, as measured by the Huygens Gas Chromatograph Mass Spectrometer (GCMS) (Niemann et al., 2010) and the Cassini Infrared Spectrometer (CIRS) (Vinatier et al., 2007), respectively. The second method uses the loss rates and the ratio of the source and requires detailed photochemical modeling to ensure that the loss rates are calculated accurately. We compare these two methods for calculating the photochemical fractionation factor for N2 by using measurements of the isotopic ratios of N2 and HCN combined with an updated coupled ion-neutral-thermal model (De la Haye et al., 2008). We find that accurate magnetospheric electron fluxes and a rotating model that accounts for diurnal variations are essential for accurate calculations of the HCN densities and for determination of the fractionation factor through photochemical modeling. References: De La Haye, V., J. H. Waite, Jr., T. E. Cravens, I. P

  1. Isotopic effects of nitrate photochemistry in snow: a field study at Dome C, Antarctica

    NASA Astrophysics Data System (ADS)

    Berhanu, T. A.; Savarino, J.; Erbland, J.; Vicars, W. C.; Preunkert, S.; Martins, J. F.; Johnson, M. S.

    2014-12-01

    Stable isotope ratios of nitrate preserved in deep ice cores are expected to provide unique and valuable information regarding paleo-atmospheric processes. However, due to the post-depositional loss of nitrate in snow, this information may be erased or significantly modified by physical or photochemical processes before preservation in ice. We have investigated the role of solar UV photolysis in the post-depositional modification of nitrate mass and stable isotope ratios at Dome C, Antarctica during the austral summer of 2011/12. Two 30 cm snow pits were filled with homogenized drifted snow from the vicinity of the base. One of these pits was covered with a plexiglass plate that transmits solar UV radiation, while the other was covered with a different plexiglass plate having a low UV transmittance. Samples were then collected from each pit at a 2-5 cm depth resolution and a 10 day frequency. At the end of the season, a comparable nitrate mass loss was observed in both pits for the top-level samples (0-7 cm). At deeper levels (7-30 cm), a significant nitrate mass loss (ca. 30%) was observed in the UV-exposed pit relative to the control field. From the nitrate stable isotope ratios and concentration losses measured in the snow nitrate exposed to solar UV, we have derived average apparent isotopic fractionations (15ϵ,18ϵ and 17E) of -67.8 ± 12‰, 12.5 ± 6.7‰ and 2.2 ± 1.4‰ for δ15N, δ18O, and Δ17O, respectively. These values are fairly stable throughout the season and are in close agreement with the apparent fractionations measured in natural snow at Dome C. Meanwhile, for the control samples in which solar UV was blocked, an apparent average 15ϵ value of -12.0 ± 1.7‰ was derived. The difference in the apparent 15ϵ values obtained for the two experimental fields strongly suggests that solar UV photolysis plays a dominant role in driving observed nitrate mass loss and resulting isotopic fractionation. We have

  2. The isotopic and chemical evolution of planets: Mars as a missing link

    NASA Technical Reports Server (NTRS)

    Depaolo, D. J.

    1988-01-01

    The study of planetary bodies has advanced to a stage where it is possible to contemplate general models for the chemical and physical evolution of planetary interiors, which might be referred to as UMPES (Unified Models of Planetary Evolution and Structure). UMPES would be able to predict the internal evolution and structure of a planet given certain input parameters such as mass, distance from the sun, and a time scale for accretion. Such models are highly dependent on natural observations because the basic material properties of planetary interiors, and the processes that take place during the evolution of planets are imperfectly understood. The idea of UMPES was particularly unrealistic when the only information available was from the earth. However, advances have been made in the understanding of the general aspects of planetary evolution now that there is geochemical and petrological data available for the moon and for meteorites.

  3. Deuterium isotope effects on the zero-field splittings of the lowest triplet state of benzaldehyde derivatives

    NASA Astrophysics Data System (ADS)

    Neugebauer, S. M.; Tinti, D. S.

    1993-08-01

    The zero-field splitting parameters, D and E, in the lowest triplet state of p-chlorobenzaldehyde, p-methylbenzaldehyde, and their d1 isotopes (aldehyde proton), are determined by ODMR measurements. The results show that the sign of the isotopic change in D reflects the orbital character of the lowest triplet state. The magnitude of D increases in the d1 isotope of both guests in p-dimethoxybenzene where the lowest guest triplet state is 3nπ*, but it decreases in p-xylene where the stae is 3ππ*. The results are interpreted in terms of the spin—orbit interactions between the nearby 3nπ* and 3ππ* states and the isotopic changes in the zero-point energies of the states.

  4. Origin of fluids and the evolution of the Atlantis II deep hydrothermal system, Red Sea: Strontium isotope study

    NASA Astrophysics Data System (ADS)

    Anschutz, Pierre; Blanc, Gérard; Stille, Peter

    1995-12-01

    Atlantis II is the largest and most mineralized of the deeps along the axis of the Red Sea spreading center. Its basaltic substratum is covered by recent layered metalliferous sediments, which precipitated from an overlying brine pool. The 87Sr /86Sr ratio and the strontium concentration of interstitial waters within these sediments range between 0.70708 and 0.70725 and between 43 and 53 ppm, respectively. They are close to what is found for the present-day deep brine pool (0.707105, 45.10 ppm). The strontium concentration and the 87Sr /86Sr ratio of the Atlantis II Deep brines can be derived from those of the interstitial waters of the surrounding Miocene evaporite by hydrothermal interaction with oceanic basaltic rocks at a maximal water/rock ratio of 2-3. This water/rock ratio is similar to that calculated for oceanic hydrothermal systems on sediment-free ridges. Interstitial waters show a linear trend on a plot of 87Sr /86Sr vs. 1/Sr. The highest strontium concentration and the most radiogenic interstitial waters correspond to sediment samples enriched in iron and manganese oxide minerals. These waters reflect the diagenetic release of strontium by oxide minerals that initially precipitated at the interface between the brine pool and more radiogenic seawater. The solid fraction of the sediment has 87Sr /86Sr isotopic compositions intermediate to those of the brines and seawater. The most radiogenic strontium values were observed in samples strongly enriched in marine microbiota. The gradual isotopic evolution in the lowest part of the western basin sediments testifies to the gradual influence of the hydrothermal activity in the deep in the beginning of the Atlantis II Deep sedimentary history. The strontium isotopic composition of solid samples from younger metalliferous facies is fairly uniform and close to that of the present-day brine. This isotopic homogeneity indicates that the isotopic composition of mineralizing fluids did not change during the time of

  5. Osmium-isotope ratios of platinum-group minerals associated with ultramafic intrusions: Os-isotopic evolution of the oceanic mantle

    NASA Astrophysics Data System (ADS)

    Hattori, Keiko; Hart, Stanley R.

    1991-12-01

    Osmium-isotope ratios were determined by an ion microprobe on the individual platinum-group minerals (PGM) from placers, which are associated with ultramafic intrusions of late Precambrian to Tertiary age. Unlike Os-isotope ratios in large layered mafic intrusions, these 187Os/ 186Os ratios are low, and within a narrow range from 0.99 to 1.12, which is attributed to the occurrences of the intrusions. There was no opportunity to incorporate old crustal Os because of the small sizes of the intrusions and the mode of emplacement into the upper crustal level. In addition, the interaction with the host volcanic rocks of similar age, if any, would not have seriously affected the 187Os/ 86Os ratios of the peridotites. While different phases of PGM in one grain have similar 187Os/ 186Os ratios, there is a significant variation in a given district. The variation is attributed to a long-term heterogeneity in Re/Os ratios of the oceanic upper mantle. The lowest value in each area is lower than the value expected from the evolution of bulk Earth composition. The lowering may be due to primordially low Re/Os ratios in the mantle or preferential removal of Re by partial melting to form the continental crust. The former model is rejected because most chondrites have higher Re/Os ratios than type C1 and the core-mantle separation would not have lowered Re/Os ratios. The low 187Os/ 186Os ratios are, therefore attributed to the extraction of continental crust by preferential removal of Re from the mantle through partial melting. The model is consistent with the depleted nature of oceanic peridotites (positive ɛ Nd, negative ɛ Sr, and low Re/Os ratios). Calculations of 187Os/ 186Os ratios of the mantle residue suggest that the observed data are in accordance with a model involving the extraction of ˜ 2% melt by fractional fusion from the mantle of C1 chondritic composition at ˜ 2.0 Ga. If the bulk Earth has higher Re/Os ratios, as proposed by Martin [1], then the observed data

  6. Effective crustal permeability controls fault evolution: An integrated structural, mineralogical and isotopic study in granitic gneiss, Monte Rosa, northern Italy

    NASA Astrophysics Data System (ADS)

    Lawther, Susan E. M.; Dempster, Tim J.; Shipton, Zoe K.; Boyce, Adrian J.

    2016-10-01

    Two dextral faults within granitic gneiss in the Monte Rosa nappe, northern Italy reveal key differences in their evolution controlled by evolving permeability and water/rock reactions. The comparison reveals that identical host rock lithologies develop radically different mineralogies within the fault zones, resulting in fundamentally different deformation histories. Oxygen and hydrogen isotope analyses coupled to microstructural characterisation show that infiltration of meteoric water occurred into both fault zones. The smaller Virgin Fault shows evidence of periodic closed system behaviour, which promoted the growth of hydrothermal K-feldspar, whilst the more open system behaviour of the adjacent Ciao Ciao Fault generated a weaker muscovite-rich fault core, which promoted a step change in fault evolution. Effective crustal permeability is a vital control on fault evolution and, coupled to the temperature (i.e. depth) at which key mineral transformations occur, is probably a more significant factor than host rock strength in controlling fault development. The study suggests that whether a fault in granitic basement grows into a large structure may be largely controlled by the initial hydrological properties of the host rocks. Small faults exposed at the surface may therefore be evolutionary "dead-ends" that typically do not represent the early stages in the development of larger faults.

  7. Evolution of Nd and Pb isotopes in Central Pacific seawater from ferromanganese crusts

    USGS Publications Warehouse

    Ling, H.F.; Burton, K.W.; O'Nions, R. K.; Kamber, B.S.; Von Blanckenburg, F.; Gibb, A.J.; Hein, J.R.

    1997-01-01

    Hydrogenetic ferromanganese crusts incorporate elements from ambient seawater during their growth on seamounts. By analysing Nd, Pb and Be isotope profiles within crusts it is possible to reconstruct seawater tracer histories. Depth profiles of 10Be/9Be ratios in three Pacific ferromanganese crusts have been used to obtain growth rates which are between 1.4 and 3.8 mm/Ma. Nd and Pb isotopes provide intact records of isotopic variations in Pacific seawater over the last 20 Ma or more. There were only small changes in Pb isotope composition in the last 20 Ma. This indicates a constant Pb composition for the erosional sources and suggests further that erosional Nd inputs may have been uniform too. ??ND values vary considerably with time and most probably reflect changes in ocean circulation. The ??ND values of the crusts not only vary as a function of age but also as a function of water depth. From 25 to 0 Ma, crust VA13/2 from 4.8 km water depth has a similar pattern of ??ND variation to the two shallower crusts from 1.8 and 2.3 km, but about 1.0 to 1.5 units more negative. This suggests that ??ND stratification in Pacific seawater, as demonstrated for the present day, has been maintained for at least 20 Ma. Each crust shows a decrease in ??ND from 3-5 Ma to the present, which is interpreted in terms of an increase in the NADW component present in the Pacific. From 10 to 3-5 Ma ago the crusts show an increase in ??ND. This suggests a decreasing role for a deep water source with ??ND less than circum-Pacific sources. In this regard the Panamanian gateway restriction from ???10 Ma with final closure at 3-5 Ma may have played an important role in reducing access of Atlantic-derived Nd to the Pacific.

  8. Trace sulfate in mid-Proterozoic carbonates and the sulfur isotope record of biospheric evolution

    NASA Astrophysics Data System (ADS)

    Gellatly, Anne M.; Lyons, Timothy W.

    2005-08-01

    Concentrations of oceanic and atmospheric oxygen have varied over geologic time as a function of sulfur and carbon cycling at or near the Earth's surface. This balance is expressed in the sulfur isotope composition of seawater sulfate. Given the near absence of gypsum in pre-Phanerozoic sediments, trace amounts of carbonate-associated sulfate (CAS) within limestones or dolostones provide the best available constraints on the isotopic composition of sulfate in Precambrian seawater. Although absolute CAS concentrations, which range from those below detection to ˜120 ppm sulfate in this study, may be compromised by diagenesis, the sulfur isotope compositions can be buffered sufficiently to retain primary values. Stratigraphically controlled δ 34S measurements for CAS from three mid-Proterozoic carbonate successions (˜1.2 Ga Mescal Limestone, Apache Group, Arizona, USA; ˜1.45-1.47 Ga Helena and Newland formations, Belt Supergroup, Montana, USA; and ˜1.65 Ga Paradise Creek Formation, McNamara Group, NW Queensland, Australia) show large isotopic variability (+9.1‰ to +18.9‰, -1.1‰ to +27.3‰, and +14.1‰ to +37.3‰, respectively) over stratigraphic intervals of ˜50 to 450 m. This rapid variability, ranging from scattered to highly systematic, and overall low CAS abundances can be linked to sulfate concentrations in the mid-Proterozoic ocean that were substantially lower than those of the Phanerozoic but higher than values inferred for the Archean. Results from the Belt Supergroup specifically corroborate previous arguments for seawater contributions to the basin. Limited sulfate availability that tracks the oxygenation history of the early atmosphere is also consistent with the possibility of extensive deep-ocean sulfate reduction, the scarcity of bedded gypsum, and the stratigraphic δ 34S trends and 34S enrichments commonly observed for iron sulfides of mid-Proterozoic age.

  9. Phase field modeling of the defect evolution and failure

    NASA Astrophysics Data System (ADS)

    Xie, Yuesong

    The plastic recovery processes in ultrafine and nano grained metals and the yield criteria and failure mechanisms in polymer matrix composite are the two major topics in this work. In the first part of the work, a phase field dislocation dynamics (PFDD) approach is introduced, which tracks the evolution of the dislocations in ultrafine and nano grained metals and takes into account the elastic interaction between dislocations, obstacles and the applied resolved shear stress on a single slip plane. Two phenomena, the reverse plastic strain during cyclic loading and plastic strain recovery upon unloading, are studied. One major finding of our simulations is that these two plastic recovery processes are related to the formation of dislocation structures during loading, and additional grain size inhomogeneity will increase the amount of plastic strain recovered. In the second part of the work, a phase field damage model (PFDM) is presented to study the onset of yielding and crack propagation in polymer matrix composite. The effect of two damage parameters, the fracture toughness Gc and crack length scale parameter l0, are first investigated. The former is shown to determine the energy needed during crack propagation and the latter is observed to control the crack nucleation process. Moreover, two asymmetric damage models are compared regarding their yield surfaces and it is found that the model of Miehe et al. leads to a linear pressure modified von Mises relation. Next, the PFDM reveals that the yield criterion in amorphous polymers should be described in terms of local stress and strains fields and cannot be extended directly from applied stress field values. Furthermore, it is demonstrated that the same damage model can be used to study the failure under shear yielding and crazing conditions. And if local defects in the samples such as voids are included explicitly in the simulations, the PFDM is able to explain the breakdown of the pressure modified von Mises

  10. Osmium and neodymium isotopic constraints on the temporal and spatial evolution of Siberian flood basalt sources

    USGS Publications Warehouse

    Horan, M.F.; Walker, R.J.; Fedorenko, V.A.; Czamanske, G.K.

    1995-01-01

    Picrites from the Gudchikhinsky suite, the oldest rocks examined, have ??Os of +5.3 to +6.1 and ??Nd of +3.7 to +4.0. The osmium and neodymium isotopic compositions of these rocks are similar to some modern ocean-island basalts (OIB), consistent with their derivation from an mantle plume. Picrites from the stratigraphically higher Tuklonsky suite have similar ??Os of +3.4 to +6.5, but ??Nd of -0.9 to -2.6. The similar ??Os, but lower ??Nd , suggest that some magmas from the same OIB-type, mantle source were contaminated by lithospheric components. A differentiated ankaramite flow, associated with the top of the stratigraphically higher Morongovsky suite, has ??Os of +9.8 to +10.2 and ??Nd of +1.3 to +1.4. The higher ??Os may indicate that the plume source was heterogeneous with respect to osmium isotopic composition, consistent with osmium isotopic measurements in rocks from other plume sources. Mg-rich, alkaline rocks (meymechites) from the Guli area that erupted much nearer the end of the flood-basalt event have ??Os of -1.2 to -2.6 and ??Nd of +3.7 to +4.9. These rocks were probably produced by low degrees of partial melting of mantle after the main stages of flood-basalt production. -from Authors

  11. Isotopic and trace element constraints on the origin and evolution of saline groundwaters from central Missouri

    SciTech Connect

    Banner, J.L. Louisiana State Univ., Baton Rouge ); Wasserburg, G.J.; Dobson, P.F. ); Carpenter, A.B. ); Moore, C.H. )

    1989-02-01

    Na-Ca-Cl groundwaters with salinities of 1 to 30{per thousand} discharge from natural springs and artesian wells in Mississippian carbonates and Ordovician sandstones and carbonates in central Missouri. Carbonate saturation and quartz supersaturation are maintained throughout the salinity range. Major and trace element and isotopic variations in the waters are used to place constraints on models for rock-water interaction and regional hydrology. The integration of geochemical, isotopic and hydrologic data on a local and regional scale suggests a history for the central Missouri groundwaters involving: (1) meteoric recharge in the Front Range of Colorado; (2) dissolution of Permian halite in the subsurface of Kansas; (3) interaction with predominantly silicate mineral assemblages in Paleozoic strata (and possibly Precambrian basement), with aquisition of crustal Sr and REE signatures; (4) dilution and migration to shallow aquifer levels in central Missouri; and (5) mixing with local meteoric recharge and discharge through Mississippian carbonates with no significant change of the isotopic signatures acquired in stage (3).

  12. The effectiveness of using carbonate isotope measurements of body tissues to infer diet in human evolution: Evidence from wild western chimpanzees (Pan troglodytes verus).

    PubMed

    Fahy, Geraldine E; Boesch, Christophe; Hublin, Jean-Jacques; Richards, Michael P

    2015-11-01

    Changes in diet throughout hominin evolution have been linked with important evolutionary changes. Stable carbon isotope analysis of inorganic apatite carbonate is the main isotopic method used to reconstruct fossil hominin diets; to test its effectiveness as a paleodietary indicator we present bone and enamel carbonate carbon isotope data from a well-studied population of modern wild western chimpanzees (Pan troglodytes verus) of known sex and age from Taï, Cote d'Ivoire. We found a significant effect of age class on bone carbonate values, with adult chimpanzees being more (13)C- and (18)O-depleted compared to juveniles. Further, to investigate habitat effects, we compared our data to existing apatite data on eastern chimpanzees (P. troglodytes schweinfurthii) and found that the Taï chimpanzees are significantly more depleted in enamel δ(13)Cap and δ(18)Oap compared to their eastern counterparts. Our data are the first to present a range of tissue-specific isotope data from the same group of wild western chimpanzees and, as such, add new data to the growing number of modern non-human primate comparative isotope datasets providing valuable information for the interpretation of diet throughout hominin evolution. By comparing our data to published isotope data on fossil hominins we found that our modern chimpanzee bone and enamel data support hypotheses that the trend towards increased consumption of C4 foods after 4 Ma (millions of years ago) is unique to hominins.

  13. Graphite-bearing CO 2-fluid inclusions in granulites: Insights on graphite precipitation and carbon isotope evolution

    NASA Astrophysics Data System (ADS)

    Satish-Kumar, Madhusoodhan

    2005-08-01

    -ilmenite granular exsolution textures and the systematic presence of numerous micron-sized rutile and other oxide inclusions in association with fluid inclusions within garnet, plagioclase, and quartz. The carbon isotope compositions of coexisting CO 2 (in fluid inclusions) and graphite show a fractionation ( α-gr) of ˜6‰ in garnet, consistent with the existing theoretical estimates of α-gr at 800°C. A subsequent generation of CO 2 inclusions trapped in matrix quartz and quartz segregation have higher δ 13C values, -4‰ and -2.9‰ respectively. Graphite in quartz segregations also has higher δ 13C values (-9.8‰) than those in enderbite (-12.7‰). Micro-graphite crystals included in garnet, quartz (enderbite), and quartz (segregation) have average δ 13C values of -11.1, -10.4, and -8.7‰ respectively, indicating progressive enrichment in 13C with a decrease in temperature of recrystallization of respective minerals. This progressive enrichment is also observed in carbon isotope compositions of fluid inclusion CO 2, suggesting isotopic equilibrium during graphite precipitation from CO 2 fluids. Thus, the carbon isotope record preserved in these rocks by the interstitial graphite, CO 2 fluid in enderbite, graphite microcrystals, graphite in quartz segregation, and CO 2 fluid in quartz segregation, suggests a temperature-controlled isotopic evolution. This evolution is in accordance with a closed system Rayleigh-type graphite precipitation process which progressively enriched residual CO 2 in 13C.

  14. He, Ar, O, Sr and Nd isotope constraints on the origin and evolution of Mount Etna magmatism

    NASA Astrophysics Data System (ADS)

    Marty, Bernard; Trull, Thomas; Lussiez, Patricia; Basile, Isabelle; Tanguy, Jean-Claude

    1994-08-01

    The 0.5 Ma history of the origin and evolution of Mount Etna, Sicily has been investigated by analysing the isotopic composition of He, Ar, O, Sr and Nd in 21 selected lava samples. The near constancy of the isotopic compositions of oxygen δ18O = 5.4 +/- 0.3%) and of helium trapped in olivine phenocrysts (6.7 +/- 0.4 Ra) is interpreted as evidence of a single mantle source, despite drastic petrological changes during the volcano's history. He analyzes performed by crushing cogenetic pyroxene and olivine phenocrysts show a tendency to lower He-3/He-4 ratios in pyroxenes. This is best explained by crystallization of pyroxenes at a depth shallower than that of olivines and/or by exchange of helium trapped in pyroxenes with atmospheric or radiogenic He before eruption. Sr-87/Sr-86 ratios of recent lavas tend to increase with time and to correlate with Rb/Th ratios, and, for historical lavas, these variations are tentatively attributed to shallow selective contamination from underlying sediments. Based on the similarity of the He-3/He-4 ratios at Etna to those of European mantle xenoliths, we propose that the 'baseline' geochemical signature of isotopic tracers at Etna reflects the composition of the subcontinental mantle. Comparison to other southern Italian active volcanoes (Etna, Vulcano Ischia, Campi Flegrei, Vesuvius) shows gradual dilution of the predominantly mantle Etnean end member by more radiogenic Sr and He and material with higher δ18O and C/He-3, which is reasonably explained by the progressively important influence of subducted continental crust.

  15. Regional hydrology of the Dixie Valley geothermal field, Nevada: preliminary interpretations of chemical and isotopic data

    SciTech Connect

    Counce, D; Dunlap, C; Goff, F; Huebner, M; Janik, C; Johnson, S; Nimz, G

    1999-08-16

    Chemical and isotopic analyses of Dixie Valley regional waters indicate several distinct groups ranging in recharge age from Pleistocene (<20 ka) to recent (<50a). Valley groundwater is older than water from perennial springs and artesian wells in adjacent ranges, with Clan Alpine range (east) much younger (most <50a) than Stillwater range (west; most >1000a). Geothermal field fluids ({approximately}12-14 ka) appear derived from water similar in composition to non-thermal groundwater observed today in valley artesian wells (also -14 ka). Geothermal fluid interaction with mafic rocks (Humboldt Lopolith) appears to be common, and significant reaction with granodiorite may also occur. Despite widespread occurrence of carbonate rocks, large scale chemical interaction appears minor. Age asymmetry of the ranges, more extensive interaction with deep-seated waters in the west, and distribution of springs and artesian wells suggest the existence of a regional upward hydrologic gradient with an axis in proximity to the Stillwater range.

  16. Fluid flow in the Rotorua geothermal field derived from isotopic and chemical data

    SciTech Connect

    Stewart, M.K.; Lyon, G.L.; Robinson, B.W. ); Glover, R.B. )

    1992-04-01

    A wide variety of isotopic and chemical measurements on geothermal fluids from shallow wells at Rotorua have given the following interpretations: The Rotorua field comprises one geothermal system; a primary upflow of (outgassed) alkali chloride water extends from northeast Whakarewarewa to Ngapuna and under Lake Rotorua (east side of the system). At the southern end a secondary upflow discharges dilute alkali chloride water; a second major upflow at Kuirau-Ohinmutu discharges chloride-bicarbonate waters formed by dilution of the primary water and reaction with rock; boiling primary water flows from the eastern upflow zone under confining sediments into aquifers in Rotorua Rhyolite containing chloride-bicarbonate waters in the central region; tritium-bearing groundwater penetrates from overlying aquifers in the sediment into the saddle area between the rhyolite domes or along the crest of the southern rhyolite dome and flows northeast into the northern dome.

  17. Regional hydrology of the Dixie Valley geothermal field, Nevada: preliminary interpretations of chemical and isotopic data

    USGS Publications Warehouse

    Nimz, Gregory; Janik, Cathy; Goff, Fraser; Dunlap, Charles; Huebner, Mark; Counce, Dale; Johnson, Stuart D.

    1999-01-01

    Chemical and isotopic analyses of Dixie Valley regional waters indicated several distinct groups ranging in recharge age from Pleistocene (1000a). Geothermal field fluids (~12-14 ka) appear derived from water similar in composition to non thermal groundwater observed today in valley artesian well (also ~14 ka). Geothermal fluid interaction with mafic rocks (Humboldt Lopolith) appears to be common, and significant reaction with granodiorite may also occur. Despite widespread occurrence of carbonate rocks, large scale chemical interaction appears minor. Age asymmetry of the range, more extensive interaction with deep seated waters in the west, and distribution of springs and artesian wells suggest the existence of a regional upward hydrologic gradient with an axis in proximity to the Stillwater range.

  18. Corrigendum to "Coupled thermochemical, isotopic evolution and heat transfer simulations in highly irradiated UO2 nuclear fuel"

    NASA Astrophysics Data System (ADS)

    Piro, M. H. A.; Banfield, J.; Clarno, K.; Simunovic, S.; Besmann, T. M.; Lewis, B. J.; Thompson, W. T.

    2016-09-01

    Figs. 7-9 in "Coupled thermochemical, isotopic evolution and heat transfer simulations in highly irradiated UO2 nuclear fuel" [1] have a consistent error corresponding to the relative proportions of iodine. Reported concentrations of iodine in the original manuscript are approximately ten times higher than expected, and are comparable in atomic proportions to cesium. One would expect that the amount of cesium would be about one order of magnitude greater than iodine based on the difference in fission yields of 235U and 239Pu. A practical consequence of this error would affect the predicted quantity and chemical composition of iodine on the fuel surface, which is related to iodine-induced stress corrosion cracking [2].

  19. A field and laboratory method for monitoring the concentration and isotopic composition of soil CO2.

    PubMed

    Breecker, Dan; Sharp, Zachary D

    2008-01-01

    The stable isotope composition of nmol size gas samples can be determined accurately and precisely using continuous flow isotope ratio mass spectrometry (IRMS). We have developed a technique that exploits this capability in order to measure delta13C and delta18O values and, simultaneously, the concentration of CO2 in sub-mL volume soil air samples. A sampling strategy designed for monitoring CO2 profiles at particular locations of interest is also described. This combined field and laboratory technique provides several advantages over those previously reported: (1) the small sample size required allows soil air to be sampled at a high spatial resolution, (2) the field setup minimizes sampling times and does not require powered equipment, (3) the analytical method avoids the introduction of air (including O2) into the mass spectrometer thereby extending filament life, and (4) pCO2, delta13C and delta18O are determined simultaneously. The reproducibility of measurements of CO2 in synthetic tank air using this technique is: +/-0.08 per thousand (delta13C), +/-0.10 per thousand (delta18O), and +/-0.7% (pCO2) at 5550 ppm. The reproducibility for CO2 in soil air is estimated as: +/-0.06 per thousand (delta13C), +/-0.06 per thousand (delta18O), and +/-1.6% (pCO2). Monitoring soil CO2 using this technique is applicable to studies concerning soil respiration and ecosystem gas exchange, the effect of elevated atmospheric CO2 (e.g. free air carbon dioxide enrichment) on soil processes, soil water budgets including partitioning evaporation from transpiration, pedogenesis and weathering, diffuse solid-earth degassing, and the calibration of speleothem and pedogenic carbonate delta13C values as paleoenvironmental proxies.

  20. A lab in the field: real-time measurements of water quality and stable isotopes

    NASA Astrophysics Data System (ADS)

    Kirchner, J. W.; von Freyberg, J.

    2015-12-01

    Hydrological and bio-geochemical processes in catchments are largely determined by the flow pathways of water through the subsurface. While the properties of the input (precipitation) and the output (streamflow) can be monitored with relatively low expenditure, subsurface flow processes and travel times remain difficult to quantify. A comprehensive understanding of these physical mechanisms is, however, crucial for a sustainable management of water resources. Natural tracers, such as stable isotopes of water (18O and 2H), in combination with other water quality parameters allows for studying various hydrological and associated processes in great detail. To follow the dynamics in rapidly changing hydrologic systems, high temporal resolution measurements of water isotopes and other constituents is required. Here, we present first results from an extensive field experiment in Switzerland where rain- and river water samples are sampled and analyzed directly in the field every 30 minutes. With this, sample degradation during storage and transportation can be minimized. At the same time, errors due to the collection and handling of numerous water samples are avoided. The fully automated monitoring system is comprised of the newly developed Continuous Water Sampler Module (CoWS), which was coupled to a Picarro L2130-i Cavity Ring-Down Spectrometer (Picarro Inc., USA), to continuously measure 18O and 2H. Optical and electrochemical sensors together with a spectrometer probe monitor NO3-, DOC and physico-chemical parameters, such as oxygen content, pH, electrical conductivity (s::can Messtechnik GmbH, Vienna). An ion chromatograph (Metrohm, Switzerland) allows for precise measurements of the major anions and cations. For quality control, additional water samples are taken automatically at the same frequency and analyzed in the laboratory.

  1. {beta}{sup -}-delayed spectroscopy of neutron-rich tantalum nuclei: Shape evolution in neutron-rich tungsten isotopes

    SciTech Connect

    Alkhomashi, N.; Regan, P. H.; Podolyak, Zs.; Pietri, S.; Garnsworthy, A. B.; Steer, S. J.; Farrelly, G.; Cullen, I. J.; Gelletly, W.; Walker, P. M.; Benlliure, J.; Caserejos, E.; Estevez, M. E.; Morales, A. I.; Casten, R. F.; Gerl, J.; Wollersheim, H. J.; Gorska, M.; Kojouharov, I.; Schaffner, H.

    2009-12-15

    The low-lying structure of {sup 188,190,192}W has been studied following {beta} decays of the neutron-rich mother nuclei {sup 188,190,192}Ta produced following the projectile fragmentation of a 1-GeV-per-nucleon {sup 208}Pb primary beam on a natural beryllium target at the GSI Fragment Separator. The {beta}-decay half-lives of {sup 188}Ta, {sup 190}Ta, and {sup 192}Ta have been measured, with {gamma}-ray decays of low-lying states in their respective W daughter nuclei, using heavy-ion {beta}-{gamma} correlations and a position-sensitive silicon detector setup. The data provide information on the low-lying excited states in {sup 188}W, {sup 190}W, and {sup 192}W, which highlight a change in nuclear shape at {sup 190}W compared with that of lighter W isotopes. This evolution of ground-state structure along the W isotopic chain is discussed as evidence for a possible proton subshell effect for the A{approx}190 region and is consistent with maximization of the {gamma}-softness of the nuclear potential around N{approx}116.

  2. Identifying diffused nitrate sources in a stream in an agricultural field using a dual isotopic approach.

    PubMed

    Ding, Jingtao; Xi, Beidou; Gao, Rutai; He, Liansheng; Liu, Hongliang; Dai, Xuanli; Yu, Yijun

    2014-06-15

    Nitrate (NO3(-)) pollution is a severe problem in aquatic systems in Taihu Lake Basin in China. A dual isotope approach (δ(15)NNO3(-) and δ(18)ONO3(-)) was applied to identify diffused NO3(-) inputs in a stream in an agricultural field at the basin in 2013. The site-specific isotopic characteristics of five NO3(-) sources (atmospheric deposition, AD; NO3(-) derived from soil organic matter nitrification, NS; NO3(-) derived from chemical fertilizer nitrification, NF; groundwater, GW; and manure and sewage, M&S) were identified. NO3(-) concentrations in the stream during the rainy season [mean±standard deviation (SD)=2.5±0.4mg/L] were lower than those during the dry season (mean±SD=4.0±0.5mg/L), whereas the δ(18)ONO3(-) values during the rainy season (mean±SD=+12.3±3.6‰) were higher than those during the dry season (mean±SD=+0.9±1.9‰). Both chemical and isotopic characteristics indicated that mixing with atmospheric NO3(-) resulted in the high δ(18)O values during the rainy season, whereas NS and M&S were the dominant NO3(-) sources during the dry season. A Bayesian model was used to determine the contribution of each NO3(-) source to total stream NO3(-). Results showed that reduced N nitrification in soil zones (including soil organic matter and fertilizer) was the main NO3(-) source throughout the year. M&S contributed more NO3(-) during the dry season (22.4%) than during the rainy season (17.8%). AD generated substantial amounts of NO3(-) in May (18.4%), June (29.8%), and July (24.5%). With the assessment of temporal variation of diffused NO3(-) sources in agricultural field, improved agricultural management practices can be implemented to protect the water resource and avoid further water quality deterioration in Taihu Lake Basin.

  3. Application of relativistic mean field and effective field theory densities to scattering observables for Ca isotopes

    SciTech Connect

    Bhuyan, M.; Panda, R. N.; Routray, T. R.; Patra, S. K.

    2010-12-15

    In the framework of relativistic mean field (RMF) theory, we have calculated the density distribution of protons and neutrons for {sup 40,42,44,48}Ca with NL3 and G2 parameter sets. The microscopic proton-nucleus optical potentials for p+{sup 40,42,44,48}Ca systems are evaluated from the Dirac nucleon-nucleon scattering amplitude and the density of the target nucleus using relativistic-Love-Franey and McNeil-Ray-Wallace parametrizations. We have estimated the scattering observables, such as the elastic differential scattering cross section, analyzing power and the spin observables with the relativistic impulse approximation (RIA). The results have been compared with the experimental data for a few selective cases and we find that the use of density as well as the scattering matrix parametrizations are crucial for the theoretical prediction.

  4. Dissolved inorganic carbon and stable carbon isotopic evolution of neutral mine drainage interacting with atmospheric CO2(g).

    PubMed

    Abongwa, Pride Tamasang; Atekwana, Eliot Anong; Puckette, James

    2016-03-01

    We investigated the spatial variations in the concentrations of dissolved inorganic carbon (DIC), the stable carbon isotopic composition (δ(13)C) of DIC and the δ(13)C of carbonate precipitated from neutral mine drainage interacting with the atmospheric CO2(g). We assessed the chemical, DIC and δ(13)CDIC evolution of the mine drainage and the δ(13)C evolution of carbonate precipitates for a distance of 562 m from the end of an 8 km tunnel that drains a mine. Our results show that as the mine drainage interacts with atmospheric CO2(g) the outgassing of CO2 due to the high initial partial pressure of CO2 (pCO2) causes the DIC to evolve under kinetic conditions followed by equilibration and then under equilibrium conditions. The carbonate evolution was characterized by spatial increases in pH, decreasing concentrations of Ca(2+) and DIC and by the precipitation of carbonate. The δ(13)CDIC showed a larger enrichment from the tunnel exit to 38 m, moderate continuous enrichment to 318 m and almost no enrichment to 562 m. On the other hand, the δ(13)C of the carbonate precipitates also showed large enrichment from the tunnel exit to 38 m, moderate enrichment to 318 m after which the δ(13)C remained nearly constant. The enrichment in the δ(13)C of the DIC and the carbonate precipitates from 0 to 38 m from kinetic fractionation caused by CO2(g) outgassing was followed by a mix of kinetic fractionation and equilibrium fractionation controlled by carbon exchange between DIC and atmospheric CO2(g) to 318 m and then by equilibrium fractionation from 318 to 562 m. From the carbonate evolution in this neutral mine drainage, we estimated that 20% of the carbon was lost via CO2 outgassing, 12% was sequestered in sediments in the drainage ponds from calcite precipitation and the remainder 68% was exported to the local stream.

  5. Re-Os Isotopic Constraints on the Chemical Evolution and Differentiation of the Martian Mantle

    NASA Technical Reports Server (NTRS)

    Brandon, Alan D.; Walker, Richard J.

    2002-01-01

    The (187)Re-187Os isotopic systematics of SNC meteorites, thought to be from Mars, provide valuable information regarding the chemical processes that affected the Martian mantle, particularly with regard to the relative abundances of highly siderophile elements (HSE). Previously published data (Birck and Allegre 1994, Brandon et al. 2000), and new data obtained since these studies, indicate that the HSE and Os isotopic composition of the Martian mantle was primarily set in its earliest differentiation history. If so, then these meteorites provide key constraints on the processes that lead to variation in HSE observed in not only Mars, but also Earth, the Moon and other rocky bodies in the Solar System. Processes that likely have an effect on the HSE budgets of terrestrial mantles include core formation, magma ocean crystallization, development of juvenile crust, and the addition of a late veneer. Each of these processes will result in different HSE variation and the isotopic composition of mantle materials and mantle derived lavas. Two observations on the SNC data to present provide a framework for which to test the importance of each of these processes. First, the concentrations of Re and Os in SNC meteorites indicate that they are derived from a mantle that has similar concentrations to the Earth's mantle. Such an observation is consistent with a model where a chondritic late veneer replenished the Earth and Martian mantles subsequent to core formation on each planet. Alternative models to explain this observation do exist, but will require additional data to test the limitations of each. Second, Re-Os isotopic results from Brandon et al. (2000) and new data presented here, show that initial yos correlates with variations in the short-lived systems of (182)Hf- (182)W and (142)Sm-142Nd in the SNC meteorites (epsilon(sub W) and epsilon(sub 142Nd)). These systematics require an isolation of mantle reservoirs during the earliest differentiation history of Mars, and

  6. Crustal evolution in the East African Orogen: a neodymium isotopic perspective

    NASA Astrophysics Data System (ADS)

    Stern, Robert J.

    2002-05-01

    The East African Orogen (EAO) is one of Earth's great collision zones, where East and West Gondwana collided to form the supercontinent `Greater Gondwana' or `Pannotia' at the end of Neoproterozoic time. There is now sufficient Nd isotopic data for basement rocks of the EAO to yield a useful summary. A total of 449 samples were gleaned from the literature, recalculated to a common value for the La Jolla Nd standard, and entered in Excel spreadsheets. This data set was filtered to exclude samples with 147Sm/ 144Nd> 0.165, considered to yield unreliable model ages, leaving 413 suitable data. The crust of the Arabian-Nubian Shield, including Egypt east of the Nile, Sudan east of the Keraf suture, Sinai, Israel, Jordan, most of Arabia, Eritrea, and northern Ethiopia yields overwhelmingly Neoproterozoic model ages. Crust to the east, in the Afif terrane of Arabia, Yemen, Somalia, and Eastern Ethiopia yields much older model ages, averaging 2.1 Ga, demonstrating an abundance of reworked ancient crust. This provides an isotopic link with Madagascar (mean age of 2.4 Ga), which in pre-Jurassic reconstructions lies on the southern extension of this older, remobilized tract. Crust in the far southern extreme of the EAO in Tanzania also yields ancient model ages, averaging 2.3 Ga. The central EAO, in southern Ethiopia and Kenya, yields intermediate ages (mean 1.1-1.2 Ga), interpreted to indicate extensive mixing between Neoproterozoic mantle-derived melts and ancient crust. The Nd isotope data indicate that the northern EAO is composed of juvenile Neoproterozoic crust sandwiched between reworked older crust, whereas the EAO farther south is progressively dominated by ancient crust reworked during Neoproterozoic time. The distribution of juvenile and reworked ancient crust suggests that the most intense collision between East and West Gondwana occurred in the southern part of the EAO.

  7. Massive sulfide deposits and hydrothermal solutions: incremental reaction modeling of mineral precipitation and sulfur isotopic evolution

    SciTech Connect

    Janecky, D.R.

    1986-01-01

    Incremental reaction path modeling of chemical and sulfur isotopic reactions occurring in active hydrothermal vents on the seafloor, in combination with chemical and petrographic data from sulfide samples from the seafloor and massive sulfide ore deposits, allows a detailed examination of the processes involved. This paper presents theoretical models of reactions of two types: (1) adiabatic mixing between hydrothermal solution and seawater, and (2) reaction of hydrothermal solution with sulfide deposit materials. In addition, reaction of hydrothermal solution with sulfide deposit minerals and basalt in feeder zones is discussed.

  8. Geochemical and isotopic perspectives on the origin and evolution of the Siletzia Terrane.

    NASA Astrophysics Data System (ADS)

    Phillips, B. A.; Weis, D.; Mullen, E.; Kerr, A. C.

    2015-12-01

    The Siletzia terrane, located in the Cascadia forearc region of Oregon, Washington and Vancouver Island, consists of a series of accreted basaltic pillow lavas, massive flows and intrusive sheets. It represents a late Paleocene-Eocene oceanic large igneous province (LIP), previously proposed to represent an accreted oceanic plateau, hotspot island chain, backarc basin, island arc, or a sequence of slab window volcanics formed by ridge subduction. A province-wide geochemical reassessment of the terrane, including new high precision Sr-Pb-Nd-Hf isotope data on basaltic samples, has been used to assess the validity of the proposed tectonomagmatic models for Siletzia. The trace element data show REE patterns that are flat to LREE enriched with an absence of any arc signatures. These features are comparable to other oceanic plateaus such as the Ontong Java and the Caribbean and so therefore support a mantle plume origin. Initial isotope ratios range from 206Pb/204Pb = 18.869 - 19.673, 207Pb/204Pb = 15.527 - 15.609, 208Pb/204Pb = 38.551 - 39.220, ɛHf = +9.0 - 14.8, ɛNd = +5.0 - 8.0 and 87Sr/86Sr = 0.70304 - 0.70397. The isotope signatures become more varied southward across the terrane and reveal two trends: i) HIMU-DMM and ii) another extending from DMM towards the Imnaha component, thought to represent the mantle plume source of the Columbia River Basalts and Yellowstone 1,2. The data may support the previously proposed idea that the volcanism of the Siletzia terrane represents initial melting of the mantle plume head of the Yellowstone hotspot 3,4,5. Other evidence indicating a LIP origin includes the relatively rapid eruption/intrusion of an estimated magma volume of 2.6 x 106 km3 6 between ~56-49 Ma 5, which, in conjunction with our new elemental and isotopic data, indicates that the Siletzia terrane most likely represents an accreted oceanic plateau. 1. Wolff et al., (2008) Nature Geoscience 1, 177-180. 2. Jean et al., (2014) EPSL 389, 119-131 3. Duncan (1982

  9. Isotopic and chemical constraints on the petrogenesis of Blackburn Hills volcanic field, western Alaska

    SciTech Connect

    Moll-Stalcup, E.J.; Arth, J.G. )

    1991-12-01

    The Blackburn Hills volcanic field is one of several Late Cretaceous and early Tertiary (75-50 Ma) volcanic fields in western Alaska that comprise a vast magmatic province extending from the Arctic Circle to Bristol Bay. It consists of andesite flows, rhyolite domes, a central granodiorite to quartz monzonite pluton, and small intrusive rhyolite porphyries, overlain by basalt and alkali-rhyolites. Most of the field consists of andesite flows which can be divided into two groups on the basis of elemental and isotopic composition: a group having lower ({sup 87}Sr/{sup 86}Sr){sub i}, higher ({sup 143}Nd/{sup 144}Nd){sub i}, and moderate LREE and HREE contents (group 1), and a group having higher ({sup 87}Sr/{sup 86}Sr){sub i}, lower ({sup 143}Nd/{sup 144}Nd){sub i}, and lower HREE contents. Basalts are restricted to the top of the stratigraphic section, comprise the most primitive part of group 1 (({sup 87}Sr/{sup 86}Sr){sub i} = 0.7033; ({sup 143}Nd/{sup 144}Nd){sub i} = 0.5129), and have trace-element ratios that are similar to those of oceanic island basalts (OIBs). Although some workers have suggested that the volcanic field is underlain by old continental crust, none of the data require the presence of Paleozoic or Precambrian continental middle or upper crust under this part of the volcanic field. However, the ultimate source of some of the rocks in the Yukon-Koyukuk province that have high {sup 87}Sr/{sup 86}Sr and low {sup 143}Nd/{sup 144}Nd ratios may be old sub-continental mantle and/or lower crust, which was previously subducted beneath the Yukon-Koyukuk province during Early Cretaceous arc-continent collision.

  10. Isotopic and chemical constraints on the petrogenesis of Blackburn Hills volcanic field, western Alaska

    USGS Publications Warehouse

    Moll-Stalcup, E. J.; Arth, Joseph G.

    1991-01-01

    The Blackburn Hills volcanic field is one of several Late Cretaceous and early Tertiary (75-50 Ma) volcanic fields in western Alaska that comprise a vast magmatic province extending from the Arctic Circle to Bristol Bay. It consists of andesite flows, rhyolite domes, a central granodiorite to quartz monzonite pluton, and small intrusive rhyolite porphyries, overlain by basalt and alkali-rhyolites. Most of the field consists of andesite flows which can be divided into two groups on the basis of elemental and isotopic composition: a group having lower ( 87Sr 86Sr)i, higher ( 143Nd 144Nd)i, and moderate LREE and HREE contents (group 1), and a group having higher ( 87Sr 86Sr)i, lower ( 143Sr 144Sr)i, and lower HREE contents. Basalts are restricted to the top of the stratigraphic section, comprise the most primitive part of group 1 [( 87Sr 86Sr)i = 0.7033; ( 143Nd 144Nd)i = 0.5129], and have trace-element ratios that are similar to those of oceanic island basalts (OIBs). In contrast to the basalts, group 1 andesites have higher ( 87Sr 86Sr)i and lower ( 143Nd 144Nd)i, and represent interaction of mantle-derived magmas with the lower crust of Koyukuk terrane. Group 2 andesites have ( 87Sr 86Sr)i and ( 143Nd 144Nd)i that are near bulk-earth values and probably formed by partial melting of the lower crust of Koyukuk terrane. The central pluton and rhyolite porphyries are isotopically uniform ( 87Sr 86Sr)i ??? 0.704, ( 143Nd 144Nd)i ??? 0.51275, and are interpreted to have formed by melting of young mafic to intermediate crustal rocks or by fractionation of group 1 andesites. The rhyolite domes have an isotopic range similar to that of the basalts and andesites [( 87Sr 86Sr)i = 0.70355-0.70499; ( 143Nd 144Nd)i = 0.51263-0.51292], which suggests they formed by fractionation of the and site and basalt magmas. Although some workers have suggested that the volcanic field is underlain by old continental crust, none of the data require the presence of Paleozoic or Precambrian

  11. Formation and Evolution of the Continental Lithospheric Mantle: Perspectives From Radiogenic Isotopes of Silicate and Sulfide Inclusions in Macrodiamonds

    NASA Astrophysics Data System (ADS)

    Shirey, S. B.; Richardson, S. H.

    2007-12-01

    Silicate and sulfide inclusions that occur in diamonds comprise the oldest (>3 Ga), deepest (>140 km) samples of mantle-derived minerals available for study. Their relevance to the evolution of the continental lithosphere is clear because terrestrial macrodiamonds are confined to regions of the Earth with continental lithospheric mantle keels. The goals of analytical work on inclusions in diamond are to obtain paragenesis constraints, radiogenic ages, and initial isotopic compositions. The purpose is to place diamond formation episodes into the broader framework of the geological processes that create and modify the continental lithosphere and to relate the source of the C and N in diamond-forming fluids to understanding the Earth's C and N cycles in the Archean. Although sulfide and silicate inclusions rarely occur in the same diamond, they both can be grouped according to their geochemical similarity with the chief rock types that comprise the mantle keel: peridotite and eclogite. Silicate inclusions are classified as harzburgitic (depleted; olivine > Fo91, garnet Cr2O3 > 3 wt% and CaO from 0 to 5 wt%), lherzolitic (fertile), or eclogitic (basaltic; garnet Cr2O3 < 2 wt% and CaO from 3 to 15 wt%, clinopyroxene with higher Na2O, Al2O3, and FeO); they are amenable for trace element study by SIMS and for Sm-Nd and Rb-Sr analysis by conventional P-TIMS after grouping by mineralogical similarity. Sulfide inclusions (chiefly FeS with lesser Ni, Cu, and Co) are classified as peridotitic (Ni > 14 wt%; Os > 2 ppm) versus eclogitic (Ni < 10 wt%; Os < 200 ppb); single sulfides are amenable for S isotopic study by SIMS or TIMS, and Re-Os analysis by N-TIMS. Work on inclusions in diamonds depends on the distribution of mined, diamond-bearing kimberlites, and the generosity of mining companies because of the extreme rarity of inclusions in suites of mostly gem-quality diamonds. Most isotopic work has been on the Kaapvaal-Zimbabwe craton with lesser work on the Slave, Siberian

  12. Sources and Evolution of Anthropogenic Lead in Northwestern Pacific Seawater: High Resolution Coral Pb Isotope Record

    NASA Astrophysics Data System (ADS)

    Wang, B.; You, C.; Nohda, S.

    2008-12-01

    Lattice-bound Lead in scleractinian coral skeletons provides a potential tracer to investigate the historical anthropogenic disturbance in the surface ocean. In this study, a Porites coral core collected from an islet offshore southeastern Taiwan was used to reconstruct decadal lead variation in surface seawater at northwestern Pacific. Seasonal Pb/Ca peaks are in accordance with rainfall episodes, while the long-term trend shows high lead input before 1970s. This can be attributed to extensively use of alkyl-lead in the region. Moreover, temporal variations of lead isotope display a significant change of lead sources in mid-20 th, coinciding with the Australian Pb imported period. These isotopic signatures also indicate contribution from China/Japan pollutant through atmospheric circulation during 1962-1998. This preliminary study infers that Pb in surface seawater is dominantly transported by ocean current and aeolian deposition from adjacent urban area, while Pb concentration may not reflect entirely the source flux due to potential loss during transportation.

  13. Stable isotope evidence for an amphibious phase in early proboscidean evolution.

    PubMed

    Liu, Alexander G S C; Seiffert, Erik R; Simons, Elwyn L

    2008-04-15

    The order Proboscidea includes extant elephants and their extinct relatives and is closely related to the aquatic sirenians (manatees and dugongs) and terrestrial hyracoids (hyraxes). Some analyses of embryological, morphological, and paleontological data suggest that proboscideans and sirenians shared an aquatic or semiaquatic common ancestor, but independent tests of this hypothesis have proven elusive. Here we test the hypothesis of an aquatic ancestry for advanced proboscideans by measuring delta(18)O in tooth enamel of two late Eocene proboscidean genera, Barytherium and Moeritherium, which are sister taxa of Oligocene-to-Recent proboscideans. The combination of low delta(18)O values and low delta(18)O standard deviations in Barytherium and Moeritherium matches the isotopic pattern seen in aquatic and semiaquatic mammals, and differs from that of terrestrial mammals. delta(13)C values of these early proboscideans suggest that both genera are likely to have consumed freshwater plants, although a component of C(3) terrestrial vegetation cannot be ruled out. The simplest explanation for the combined evidence from isotopes, dental functional morphology, and depositional environments is that Barytherium and Moeritherium were at least semiaquatic and lived in freshwater swamp or riverine environments, where they grazed on freshwater vegetation. These results lend new support to the hypothesis that Oligocene-to-Recent proboscideans are derived from amphibious ancestors.

  14. Stable isotope evidence for an amphibious phase in early proboscidean evolution

    PubMed Central

    Liu, Alexander G. S. C.; Seiffert, Erik R.; Simons, Elwyn L.

    2008-01-01

    The order Proboscidea includes extant elephants and their extinct relatives and is closely related to the aquatic sirenians (manatees and dugongs) and terrestrial hyracoids (hyraxes). Some analyses of embryological, morphological, and paleontological data suggest that proboscideans and sirenians shared an aquatic or semiaquatic common ancestor, but independent tests of this hypothesis have proven elusive. Here we test the hypothesis of an aquatic ancestry for advanced proboscideans by measuring δ18O in tooth enamel of two late Eocene proboscidean genera, Barytherium and Moeritherium, which are sister taxa of Oligocene-to-Recent proboscideans. The combination of low δ18O values and low δ18O standard deviations in Barytherium and Moeritherium matches the isotopic pattern seen in aquatic and semiaquatic mammals, and differs from that of terrestrial mammals. δ13C values of these early proboscideans suggest that both genera are likely to have consumed freshwater plants, although a component of C3 terrestrial vegetation cannot be ruled out. The simplest explanation for the combined evidence from isotopes, dental functional morphology, and depositional environments is that Barytherium and Moeritherium were at least semiaquatic and lived in freshwater swamp or riverine environments, where they grazed on freshwater vegetation. These results lend new support to the hypothesis that Oligocene-to-Recent proboscideans are derived from amphibious ancestors. PMID:18413605

  15. Can We Determine Temperatures Associated with Critical Transitions During the Evolution of Metazoan life? Application of 'Clumped' Isotope Thermometry to the Neoproterozoic and Paleozoic

    NASA Astrophysics Data System (ADS)

    Defliese, W.; Gutierrez, M.; Flores, S.; Retallack, G.; Tripati, A.

    2015-12-01

    The evolution and development of metazoan life during the Neoproterozoic and Paleozoic was one of the largest and monumental events in Earth history. Conditions surrounding these events are uncertain, as there remain many questions about the types of environment transitions such as the development of multicellular life, evolution of hard shells, and the transitions of life to land took place in. While mass-47 clumped isotope signatures are prone to thermal resetting and diagenesis, it remains the best tool for reconstructing temperatures in uncertain regimes, and can be integrated along with traditional tools such as textural petrography and cathodoluminescence to screen for diagenetic alteration. In this context, we analyze suites of Neoproterozoic and Paleozoic sediments and brachiopods for clumped isotope temperatures, and combine with microscopy and stratigraphic data to infer diagenetic and burial histories of these rocks. Samples judged to be unaltered will be further analyzed for the conditions prevalent during critical transitions during the evolution of metazoan life.

  16. Compound-specific stable isotope records of precipitation isotopes and paleotopographic evolution: Patterns of Cenozoic change in the Western U.S.

    NASA Astrophysics Data System (ADS)

    Hren, M. T.

    2014-12-01

    The topography of an orogen reflects the complex interplay between processes that occur at depth in the crust and processes such as erosion and weathering that shape the surface landscape. Reconstructions of paleotopography are critical for evaluating geodynamic models and separating effects of climatic and tectonic change in terrestrial records. Stable isotope paleoaltimetry has proved to be an important tool for understanding changes in topography through time, however this approach is complicated by factors such as mixing of moisture sources, uncertainty over how uplift impacts air mass transport and resultant isotope hydrology, and debate over what some proxies actually record. Hydrogen isotopes of organic molecules provide a means of reconstructing isotopes of ambient water, but these data are also impacted by factors that affect biological processes and stomatal regulation. Despite the myriad factors that can impact isotope fractionation in plant waxes, a growing body of data show these molecules to be an important record of precipitation isotopes when coupled with data that relates to ecosystem type. This study will examine the distribution of hydrogen isotopes of higher plant waxes across the western U.S. at key intervals of the Cenozoic to provide a snapshot of long-wavelength changes to topography and moisture sources from the Eocene to recent. These data demonstrate the utility of biomarker isotopes as a paleohydrologic/paleotopographic proxy and point to long-standing high topography over much of western U.S. throughout the Cenozoic.

  17. Wet deposition at the base of Mt Everest: Seasonal evolution of the chemistry and isotopic composition

    NASA Astrophysics Data System (ADS)

    Balestrini, Raffaella; Delconte, Carlo A.; Sacchi, Elisa; Wilson, Alana M.; Williams, Mark W.; Cristofanelli, Paolo; Putero, Davide

    2016-12-01

    The chemistry of wet deposition was investigated during 2012-2014 at the Pyramid International Laboratory in the Upper Khumbu Valley, Nepal, at 5050 m a.s.l., within the Global Atmosphere Watch (GAW) programme. The main hydro-chemical species and stable isotopes of the water molecule were determined for monsoon rain (July-September) and snow samples (October-June). To evaluate the synoptic-scale variability of air masses reaching the measurement site, 5 day back-trajectories were computed for the sampling period. Ion concentrations in precipitation during the monsoon were low suggesting that they represent global regional background concentrations. The associations between ions suggested that the principal sources of chemical species were marine aerosols, rock and soil dust, and fossil fuel combustion. Most chemical species exhibited a pattern during the monsoon, with maxima at the beginning and at the end of the season, partially correlated with the precipitation amount. Snow samples exhibited significantly higher concentrations of chemical species, compared to the monsoon rainfall observations. Particularly during 2013, elevated concentrations of NO3-, SO42- and NH4+ were measured in the first winter snow event, and in May at the end of the pre-monsoon season. The analysis of large-scale circulation and wind regimes as well as atmospheric composition observations in the region indicates the transport of polluted air masses from the Himalayan foothills and Indian sub-continent up to the Himalaya region. During the summer monsoon onset period, the greater values of pollutants can be attributed to air-mass transport from the planetary boundary layer (PBL) of the Indo-Gangetic plains. Isotopic data confirm that during the monsoon period, precipitation occurred from water vapor that originated from the Indian Ocean and the Bay of Bengal; by contrast during the non-monsoon period, an isotopic signature of more continental origin appeared, indicating that the higher

  18. Carbon isotope geochemistry of hydrocarbons in the Cerro Prieto geothermal field, Baja California Norte, Mexico

    USGS Publications Warehouse

    Des Marais, D.J.; Stallard, M.L.; Nehring, N.L.; Truesdell, A.H.

    1988-01-01

    Hydrocarbon abundances and stable-isotopic compositions were measured in wells M5, M26, M35 and M102, which represent a range of depths (1270-2000 m) and temperatures (275-330??C) in the field. In order to simulate the production of the geothermal hydrocarbons, gases were collected from the pyrolysis of lignite in the laboratory. This lignite was obtained from a well which sampled rock strata which are identical to those occurring in the field, but which have experienced much lower subsurface temperatures. In both the well and the laboratory observations, high-temperature environments favored higher relative concentrations of methane, ethane and benzene and generally higher ??13C-values in the individual hydrocarbons. The best correlation between the laboratory and well data is obtained when laboratory-produced gases from experiments conducted at lower (400??C) and higher (600??C) temperatures are mixed. This improved correlation suggests that the wells are sampling hydrocarbons produced from a spectrum of depths and temperatures in the sediments. ?? 1988.

  19. Carbon isotope geochemistry of hydrocarbons in the Cerro Prieto geothermal field, Baja California Norte, Mexico

    NASA Technical Reports Server (NTRS)

    Des Marais, D. J.; Stallard, M. L.; Nehring, N. L.; Truesdell, A. H.

    1988-01-01

    Hydrocarbon abundances and stable-isotopic compositions were measured in wells M5, M26, M35 and M102, which represent a range of depths (1270-2000 m) and temperatures (275-330 degrees C) in the field. In order to simulate the production of the geothermal hydrocarbons, gases were collected from the pyrolysis of lignite in the laboratory. This lignite was obtained from a well which sampled rock strata which are identical to those occurring in the field, but which have experienced much lower subsurface temperatures. In both the well and the laboratory observations, high-temperature environments favored higher relative concentrations of methane, ethane and benzene and generally higher delta 13C-values in the individual hydrocarbons. The best correlation between the laboratory and well data is obtained when laboratory-produced gases from experiments conducted at lower (400 degrees C) and higher (600 degrees C) temperatures are mixed. This improved correlation suggests that the wells are sampling hydrocarbons produced from a spectrum of depths and temperatures in the sediments.

  20. Sr, Nd, Pb and Os Isotopic Compositions of Lavas From the Mount Baker Volcanic Field, Cascade Arc

    NASA Astrophysics Data System (ADS)

    Mullen, E. K.; McCallum, I.; Brandon, A. D.

    2008-12-01

    We present the results of a trace element and Sr, Nd, Pb and Os isotopic study of the Mt. Baker volcanic field (MBVF), part of the northern segment of the Cascade magmatic arc known as the Garibaldi Belt. To date, only 4 Sr isotopic ratios (all from the Sulphur Creek flow) have been published. The Mount Baker volcanic field extends to 3.72 Ma and a case can be made for continuous magmatic activity in this region extending from 34 Ma to present. Our goal is to use isotope ratios to characterize the mantle source regions that underlie the Garibaldi Belt, to document the chemical inputs of slab fluid/melt, sediment, and lower crust, and to assess temporal and spatial variations in these factors. We measured 29 Sr and Nd isotopic ratios, 8 Pb isotopic ratios, and 9 Os isotopic ratios, representing the full age range and compositional diversity (calc- alkaline basalt through rhyolite) of the MBVF, including all known MBVF basalts. A 22.86-Ma gabbronorite from the adjacent Chilliwack batholith was analyzed as an analog for the modern mafic lower crust. All Mt. Baker lavas are calc-alkaline with the arc-characteristic signatures of HFSE depletion and LILE enrichment. MBVF 87Sr/86Sr values (0.703932 to 0.703057) and ɛNd (+4.71 to +7.79) are well correlated and lie within the mantle array. Mt. Baker Sr and Nd data are indistinguishable from other Garibaldi belt lavas (Green & Harry 1999, Green & Sinha 2005), and also overlap data from the neighboring Chilliwack batholith (Tepper 1996; Tepper et al. 1993). In contrast, central and southern Cascade arc lavas with similar Sr ratios have corresponding ɛNd values that are lower by ~2 epsilon units. The Garibaldi Belt and Chilliwack magmas are tapping a mantle source distinct from that of the rest of the Cascade arc. 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios of MBVF basalts plot close to the NHRL, in a linear trend between Juan de Fuca MORB and Pacific sediment, indicating a sediment contribution to the MBVF magmas. With

  1. Sr-isotopic, paleomagnetic, and biostratigraphic calibration of horse evolution: Evidence from the Miocene of Florida

    SciTech Connect

    MacFadden, B.J.; Bryant, J.D.; Mueller, P.A. )

    1991-03-01

    During the middle Miocene an explosive adaptive radiation resulted in the advent of grazing horses with high-crowned teeth in North America. New Sr isotopic, paleomagnetic, and biostratigrahic evidence from the Miocene marine and nonmarine sequence of the Florida panhandle calibrates the base of this adaptive radiation. The transition from the primitive outgroup species 'Parahippus' leonensis to the most primitive high-crowned horse, 'Merychippus' gunteri occured after about 17.7 Ma. After this event, the lowest known stratigraphic level at which diversification (i.e., presence of two or more sympatric species) of grazing merychippine horses occurs is about 16.2 Ma, or within the early part of Chron C5BR. Although this currently is the only sequence where the parahippine-merychippine transition is directly calibrated, biochronologic evidence from other important, contemporaneous localities in Texas, Nebraska, and California indicate that diversification occured rapidly throughout North America between 15 and 16 Ma.

  2. Helium isotope study of geothermal features in Chile with field and laboratory data

    DOE Data Explorer

    Dobson, Patrick

    2013-02-11

    Helium isotope and stable isotope data from the El Tatio, Tinginguirica, Chillan, and Tolhuaca geothermal systems, Chile. Data from this submission are discussed in: Dobson, P.F., Kennedy, B.M., Reich, M., Sanchez, P., and Morata, D. (2013) Effects of volcanism, crustal thickness, and large scale faulting on the He isotope signatures of geothermal systems in Chile. Proceedings, 38th Workshop on Geothermal Reservoir Engineering, Stanford University, Feb. 11-13, 2013

  3. Isotopic constraints on the genesis and evolution of basanitic lavas at Haleakala, Island of Maui, Hawaii

    NASA Astrophysics Data System (ADS)

    Phillips, Erin H.; Sims, Kenneth W. W.; Sherrod, David R.; Salters, Vincent J. M.; Blusztajn, Jurek; Dulai, Henrietta

    2016-12-01

    To understand the dynamics of solid mantle upwelling and melting in the Hawaiian plume, we present new major and trace element data, Nd, Sr, Hf, and Pb isotopic compositions, and 238U-230Th-226Ra and 235U-231Pa-227Ac activities for 13 Haleakala Crater nepheline normative basanites with ages ranging from ∼900 to 4100 yr B.P. These basanites of the Hana Volcanics exhibit an enrichment in incompatible trace elements and a more depleted isotopic signature than similarly aged Hawaiian shield lavas from Kilauea and Mauna Loa. Here we posit that as the Pacific lithosphere beneath the active shield volcanoes moves away from the center of the Hawaiian plume, increased incorporation of an intrinsic depleted component with relatively low 206Pb/204Pb produces the source of the basanites of the Hana Volcanics. Haleakala Crater basanites have average (230Th/238U) of 1.23 (n = 13), average age-corrected (226Ra/230Th) of 1.25 (n = 13), and average (231Pa/235U) of 1.67 (n = 4), significantly higher than Kilauea and Mauna Loa tholeiites. U-series modeling shows that solid mantle upwelling velocity for Haleakala Crater basanites ranges from ∼0.7 to 1.0 cm/yr, compared to ∼10 to 20 cm/yr for tholeiites and ∼1 to 2 cm/yr for alkali basalts. These modeling results indicate that solid mantle upwelling rates and porosity of the melting zone are lower for Hana Volcanics basanites than for shield-stage tholeiites from Kilauea and Mauna Loa and alkali basalts from Hualalai. The melting rate, which is directly proportional to both the solid mantle upwelling rate and the degree of melting, is therefore greatest in the center of the Hawaiian plume and lower on its periphery. Our results indicate that solid mantle upwelling velocity is at least 10 times higher at the center of the plume than at its periphery under Haleakala.

  4. Earth-atmosphere evolution based on new determination of Devonian atmosphere Ar isotopic composition

    NASA Astrophysics Data System (ADS)

    Stuart, Finlay M.; Mark, Darren F.; Gandanger, Pierre; McConville, Paul

    2016-07-01

    The isotopic composition of the noble gases, in particular Ar, in samples of ancient atmosphere trapped in rocks and minerals provides the strongest constraints on the timing and rate of Earth atmosphere formation by degassing of the Earth's interior. We have re-measured the isotopic composition of argon in the Rhynie chert from northeast Scotland using a high precision mass spectrometer in an effort to provide constraints on the composition of Devonian atmosphere. Irradiated chert samples yield 40Ar/36Ar ratios that are often below the modern atmosphere value. The data define a 40Ar/36Ar value of 289.5 ± 0.4 at K/36Ar = 0. Similarly low 40Ar/36Ar are measured in un-irradiated chert samples. The simplest explanation for the low 40Ar/36Ar is the preservation of Devonian atmosphere-derived Ar in the chert, with the intercept value in 40Ar-39Ar-36Ar space representing an upper limit. In this case the Earth's atmosphere has accumulated only 3% (5.1 ± 0.4 ×1016 mol) of the total 40Ar inventory since the Devonian. The average accumulation rate of 1.27 ± 0.09 ×108 mol40Ar/yr overlaps the rate over the last 800 kyr. This implies that there has been no resolvable temporal change in the outgassing rate of the Earth since the mid-Palaeozoic despite the likely episodicity of Ar degassing from the continental crust. Incorporating the new Devonian atmosphere 40Ar/36Ar into the Earth degassing model of Pujol et al. (2013) provides the most precise constraints on atmosphere formation so far. The atmosphere formed in the first ∼100 Ma after initial accretion during a catastrophic degassing episode. A significant volume of 40Ar did not start to accumulate in the atmosphere until after 4 Ga which implies that stable K-rich continental crust did not develop until this time.

  5. Laboratory and field methods for stable isotope analysis in human biology.

    PubMed

    Reitsema, Laurie J

    2015-01-01

    Stable isotope analysis (SIA; carbon, hydrogen, nitrogen, sulfur, and oxygen) of human tissues offers a means for assessing diet among living humans. Stable isotope ratios of broad categories of food and drink food vary systematically, and stable isotope ratios in consumer tissues represent a composite of the isotopic ratios of food and drink consumed during an individual's life. Isotopic evidence for diet is independent of errors in informant recall, and accrues during time periods when researchers are absent. Beyond diet reconstruction, tissue stable isotope ratios are sensitive to excursions from homeostasis, such as starvation and rapid growth. Because of their relationship to diet, geographic location, hydration, and nutritional status, stable isotope signatures in human tissues offer a window into human biocultural adaptations, past and present. This article describes methods for SIA that may be usefully applied in studies of living humans, with emphasis placed on carbon and nitrogen. Some of the ecological, physiological, and evolutionary applications of stable isotope data among living humans are discussed. By incorporating SIA in research, human biologists facilitate a productive dialog with bioarchaeologists, who routinely use stable isotope evidence, mingling different perspectives on human biology and behavior.

  6. Nitrogen use efficiency evaluation of aerobic rice under field capacity water potential using {sup 15}N isotopic tracer technique

    SciTech Connect

    Wahid, Ahmad Nazrul Abd; Rahim, Sahibin Abd; Rahim, Khairuddin Abdul; Harun, Abdul Rahim

    2015-09-25

    This study was carried out to evaluate the efficiency use of the nitrogen fertilizer on aerobic rice varieties MR219-4 and MR219-9 which were grown aerobically under field capacity water potential at the controlled environment area or shield house. Direct {sup 15}N isotope tracer method was used in this study, whereby the {sup 15}N isotope was utilized as a tracer for nitrogen nutrient uptake. {sup 15}N isotope presence in the samples is determined by using emission spectrometer analysis and percentage of total nitrogen is determined by using Kjeldahl method. {sup 15}N atom access value contained in the sample will be used in determining the effectiveness of the use of nitrogen in fertilizers through the specific calculation formulas. In this work, the data several data of nitrogen derived from fertilizer (Ndff), total nitrogen, nitrogen uptake and nitrogen use efficiency was obtained.

  7. Neogene marine isotopic evolution and the erosion of Lesser Himalayan strata: Implications for Cenozoic tectonic history

    NASA Astrophysics Data System (ADS)

    Myrow, Paul M.; Hughes, Nigel C.; Derry, Louis A.; Ryan McKenzie, N.; Jiang, Ganqing; Webb, A. Alexander G.; Banerjee, Dhiraj M.; Paulsen, Timothy S.; Singh, Birendra P.

    2015-05-01

    An extensive, northward deepening blanket of Neoproterozoic and Cambrian sedimentary rocks once extended from the Himalayan margin far onto the Indian craton. Cambrian deposits of this "upper Lesser Himalayan" succession, which include deposits of the "outer" Lesser Himalaya tectonic unit, are enriched in radiogenic 187Os. They make up part of a proximal marine facies belt that extends onto the craton and along strike from India to Pakistan. By contrast, age-equivalent facies in the Tethyan Himalaya are more distal in nature. Neoproterozoic to Cambrian strata of the upper Lesser Himalayan succession are now missing in much of the Lesser Himalaya, with their erosion exposing older Precambrian Lesser Himalayan strata. We suggest that exhumation and weathering of the upper Lesser Himalaya and related strata caused dramatic changes in the 187Os/188Os and 87Sr/86Sr Neogene record of seawater starting at ∼ 16 Ma. First-order estimates for the volume of upper Himalayan strata, as well as the volume of all LH rock eroded since this time, and geochemical box modeling, support this idea. Exhumation at 16 Ma is a fundamental event in the evolution of the Himalayan orogeny and the geochemical evolution of the oceans, and will be a critical part of the construction of future models of Himalayan thrust belt evolution.

  8. Mg Isotope variations of Marinoan Cap Carbonates: implications for the chemical evolution of Neoproterozoic Ocean after snowball earth

    NASA Astrophysics Data System (ADS)

    Liu, C.; Macdonald, F. A.; Raub, T.; Wang, Z.; Evans, D. A.

    2012-12-01

    We report Mg isotope profiles of two cap-carbonates: Nuccaleena formation from south Australia (mostly dolostones) and Tsagaan Oloom Formation from southwest Mongolia (including dolostones, aragonite crystal fans, and lime-mudstones). These data provide additional constraints on the chemical evolution of Neoproterozoic Oceans after the Marinoan deglaciation. An incremental leaching technique using ammonium acetate and various concentrations of acetic acid and hydrochloric acid was applied to separate metals in various forms from cap-carbonates (including surface adsorbed phases, calcite, dolomite and clay minerals). The leachates were then passed through chromatographic columns to extract pure Mg and Sr, which were then analyzed for their isotopic compositions by MC-ICP-MS (Neptune) at Yale University. Elemental ratios (Mg/Ca and Sr/Ca) in each leaching steps were also measured. Our results show that small variations of δ26MgDSM3 with leaching steps were observed in most dolostone samples when secondary calcite is absent. In contrast, large Mg isotope variations (up to 1.5 per mil) were shown in the leaching steps of limestone and crystal fans. The primary δ26MgDSM3 value of each sample was chosen from the leachate that has the lowest 87Sr/86Sr ratios. The δ26MgDSM3 value of Nuccaleena dolostone increases from -2.2‰ at the basal part of the section to -1.7‰ in the middle, and then turns back to -2.0‰ on the top, with a positive correlation between 26Mg/24Mg and 87Sr/86Sr ratios, implying that the high δ26MgDSM3 values may be caused by alteration or inherit from continental-derived fluids. In contrast, small δ26MgDSM3 variations in Tsagaan Oloom dolostones were exhibited in different leaching steps or cross the section (~-1.7‰), with high 87Sr/86Sr ratios (~0.7090), resembling cap dolostones from middle part of Nuccaleena dolostone, implying that they are formed in a similar environment. However, the δ26MgDSM3 value of upper lime-mudstones and crystal

  9. Early Earth evolution: new insight from Sm and Nd isotopes in meteoritic inclusions

    NASA Astrophysics Data System (ADS)

    Bouvier, A.; Boyet, M.

    2014-12-01

    The interpretation of Sm-Nd systematics for the early Earth relies on knowing the composition of the silicate Earth and the 146Sm decay constant. We have measured both 146Sm-142Nd and 147Sm-143Nd internal systematics of four individual Calcium, Aluminum-rich Inclusions (CAIs), the first solids formed in the Solar System [1], from 3 different carbonaceous chondrites from the CV3 group: Allende, Northwest Africa (NWA) 2364 and NWA 6991. Results obtained on NWA 6991 plot on a well-defined mineral and bulk isochron with a Solar System initial 146Sm/144Sm ratio of 0.0070 ±0.0024. This ratio is more consistent with the ratio defined from internal isochrons of differentiated meteorites using the half-life of 103 Ma for 146Sm [2], instead of the value obtained considering the half-life of 68 Ma [3]. On the basis of nucleosynthethic anomalies in Sm and Nd isotopes [4], the ordinary (O) and enstatite (E) chondrites remain potential candidates for the Earth's building blocks. OC have an average deficit of -18±3 ppm relative to modern terrestrial 142Nd/144Nd, whereas EC range from the OC to the terrestrial values [4-6]. Sm stable isotope compositions of the analyzed CAIs indicate that galactic cosmic rays did not affect the 142Nd/144Nd compositions, but deficits are found in the pure p-process 144Sm nuclide (-240 to -290 ppm/ standard). These deficits may translate to 142Nd deficits of a few ppm. NWA 6991 CAI 146Sm-142Nd internal isochron passes through a 142Nd/144Nd ratio of -6 ±6 ppm relative to the terrestrial standard at a chondritic 147Sm/144Nd of 0.1960. We note that this value is identical to the enstatite chondrite average and the 142Nd/144Nd ratio of the lunar mantle, as defined recently by [7] using a chondritic Sm/Nd and Lu/Hf for the bulk Moon. While the determination of the Sm-Nd reference parameters for the bulk Earth is still contentious, the difference in 142Nd/144Nd between modern terrestrial rocks and meteorites analyzed so far is <10ppm. [1] Bouvier and

  10. Isotopic constraints on the genesis and evolution of basanitic lavas at Haleakala, Island of Maui, Hawaii

    USGS Publications Warehouse

    Phillips, Erin H.; Sims, K.W.W.; Sherrod, David R.; Salters, Vincent; Blusztajn, Jurek; Dulaiova, Henrieta

    2016-01-01

    To understand the dynamics of solid mantle upwelling and melting in the Hawaiian plume, we present new major and trace element data, Nd, Sr, Hf, and Pb isotopic compositions, and 238U–230Th–226Ra and 235U–231Pa–227Ac activities for 13 Haleakala Crater nepheline normative basanites with ages ranging from ∼900 to 4100 yr B.P. These basanites of the Hana Volcanics exhibit an enrichment in incompatible trace elements and a more depleted isotopic signature than similarly aged Hawaiian shield lavas from Kilauea and Mauna Loa. Here we posit that as the Pacific lithosphere beneath the active shield volcanoes moves away from the center of the Hawaiian plume, increased incorporation of an intrinsic depleted component with relatively low 206Pb/204Pb produces the source of the basanites of the Hana Volcanics. Haleakala Crater basanites have average (230Th/238U) of 1.23 (n = 13), average age-corrected (226Ra/230Th) of 1.25 (n = 13), and average (231Pa/235U) of 1.67 (n = 4), significantly higher than Kilauea and Mauna Loa tholeiites. U-series modeling shows that solid mantle upwelling velocity for Haleakala Crater basanites ranges from ∼0.7 to 1.0 cm/yr, compared to ∼10 to 20 cm/yr for tholeiites and ∼1 to 2 cm/yr for alkali basalts. These modeling results indicate that solid mantle upwelling rates and porosity of the melting zone are lower for Hana Volcanics basanites than for shield-stage tholeiites from Kilauea and Mauna Loa and alkali basalts from Hualalai. The melting rate, which is directly proportional to both the solid mantle upwelling rate and the degree of melting, is therefore greatest in the center of the Hawaiian plume and lower on its periphery. Our results indicate that solid mantle upwelling velocity is at least 10 times higher at the center of the plume than at its periphery under Haleakala.

  11. Geochemical and isotopic insights into the assembly, evolution and disruption of a magmatic plumbing system before and after a cataclysmic caldera-collapse eruption at Ischia volcano (Italy)

    NASA Astrophysics Data System (ADS)

    Brown, R. J.; Civetta, L.; Arienzo, I.; D'Antonio, M.; Moretti, R.; Orsi, G.; Tomlinson, E. L.; Albert, P. G.; Menzies, M. A.

    2014-09-01

    New geochemical and isotopic data on volcanic rocks spanning the period ~75-50 ka BP on Ischia volcano, Italy, shed light on the evolution of the magmatic system before and after the catastrophic, caldera-forming Monte Epomeo Green Tuff (MEGT) eruption. Volcanic activity during this period was influenced by a large, composite and differentiating magmatic system, replenished several times with isotopically distinct magmas of deep provenance. Chemical and isotopic variations highlight that the pre-MEGT eruptions were fed by trachytic/phonolitic magmas from an isotopically zoned reservoir that were poorly enriched in radiogenic Sr and became progressively less radiogenic with time. Just prior to the MEGT eruption, the magmatic system was recharged by an isotopically distinct magma, relatively more enriched in radiogenic Sr with respect to the previously erupted magmas. This second magma initially fed several SubPlinian explosive eruptions and later supplied the climactic, phonolitic-to-trachytic MEGT eruption(s). Isotopic data, together with erupted volume estimations obtained for MEGT eruption(s), indicate that >5-10 km3 of this relatively enriched magma had accumulated in the Ischia plumbing system. Geochemical modelling indicates that it accumulated at shallow depths (4-6 km), over a period of ca. 20 ka. After the MEGT eruption, volcanic activity was fed by a new batch of less differentiated (trachyte-latite) magma that was slightly less enriched in radiogenic Sr. The geochemical and Sr-Nd-isotopic variations through time reflect the upward flux of isotopically distinct magma batches, variably contaminated by Hercynian crust at 8-12 km depth. The deep-sourced latitic to trachytic magmas stalled at shallow depths (4-6 km depth), differentiated to phonolite through crystal fractionation and assimilation of a feldspar-rich mush, or ascended directly to the surface and erupted.

  12. Lead isotope systematics in Polytrichum formosum: An example from a biomonitoring field study with mosses

    SciTech Connect

    Kunert, M.; Friese, K.; Weckert, V.; Markert, B.

    1999-10-15

    With the aid of inductively coupled plasma mass spectrometry (ICP-MS), {sup 206/207}Pb isotope ratios were determined in 34 moss samples (Polytrichum formosum) taken from the Hoerner Bruch area near Osnabrueck (FRG) in the years 1987--1996. The goal was to distinguish different sources of atmospheric lead pollution by the investigation of lead isotope ratios. Reproducibility tests were carried out to ensure the reliability of analyzing Pb isotope ratios in moss samples by means of quadrupole ICP-MS. The reproducibility of the isotope ratios for one digested sample and the day-to-day reproducibility were determined. In all the moss samples analyzed, relative standard deviations of < 0.26% for five replicate measurements of one digested sample were achieved for the {sup 206/207}Pb isotope ratios. On the basis of the {sup 206/207}Pb isotope ratio, it was possible to establish that the sources of man-made atmospheric inputs of lead have changed over the 10-year period investigated. In the moss samples analyzed, the {sup 206/207}Pb isotope ratio was found to have risen significantly from 1.131 in 1987 to 1.154 in 1996. This increase in the {sup 206/207}Pb isotope ratio can be attributed to a reduction of atmospheric inputs of lead from petrol.

  13. Stable Isotope Evidence for a Complex Fluid Evolution of the Northwestern British Columbia Coast Ranges Related to Terrane Accretion

    NASA Astrophysics Data System (ADS)

    Moertle, J.; Holk, G. J.

    2015-12-01

    Stable isotope geochemistry reveals a complex fluid evolution for the Western Metamorphic Belt (WMB), Coast Ranges Batholith (CRB), Central Gneiss Complex (CGC) and Coast Ranges Megalineament (CRM). These fluids are a product of a complex tectonic history related to terrane accretion that includes oblique convergence, metamorphism, magmatism, and orogenic collapse. From W-to-E, these fluid systems are as follows. High-pressure greenschist-to-amphibolite facies metasedimentary rocks of the WMB record variable mineral δD (-61 to -104‰) and δ18O (e.g., quartz +9.6 to +13.4‰) values with multiple minerals in apparent isotopic equilibrium (T ~ 450-550°C) suggest a low W/R system dominated by metamorphic fluids. Variable and non-equilibrium δD (-53 to -143‰) and δ18O (e.g., biotite +2.3 to +5.3‰) values from diorites of the Quottoon pluton affected by the ductile CRM suggest a complex evolution that involved both metamorphic and meteoric-hydrothermal fluids in this dextral shear zone; these results differ from those 300 km along strike to the north that documented only metamorphic fluids in the CRM (Goldfarb et al., 1988). Our data and those of Magaritz and Taylor (1976) from granulite facies metasediments of the CGC and plutons of the western CRB reveal homogeneous δD values (-62 to -78‰) and a restricted range of δ18O values (e.g., quartz +8.5 to +11.5‰) with all minerals in equilibrium at T > 570°C indicate a system dominated by magmatic fluids. Calculated whole-rock δ18O values (~ +7‰) for the Quottoon pluton and CRB intrusive rocks suggest a mantle origin for these magmas. Reinterpretation of very low δD (< -150‰) and quartz-feldspar δ18O pairs that display extreme disequilibrium (feldspar δ18O values as low as -5‰) from the Ponder pluton, eastern CRB, and Hazelton Group point reveals that the major meteoric-hydrothermal system that affected these rocks was related to Eocene detachment faulting along the Shames Lake fault system, a

  14. Evolution of water reservoirs on Mars: Constraints from hydrogen isotopes in martian meteorites

    NASA Astrophysics Data System (ADS)

    Kurokawa, H.; Sato, M.; Ushioda, M.; Matsuyama, T.; Moriwaki, R.; Dohm, J. M.; Usui, T.

    2014-05-01

    Martian surface morphology implies that Mars was once warm enough to maintain persistent liquid water on its surface. While the high D/H ratios (˜6 times the Earth's ocean water) of the current martian atmosphere suggest that significant water has been lost from the surface during martian history, the timing, processes, and the amount of the water loss have been poorly constrained. Recent technical developments of ion-microprobe analysis of martian meteorites have provided accurate estimation of hydrogen isotope compositions (D/H) of martian water reservoirs at the time when the meteorites formed. Based on the D/H data from the meteorites, this study demonstrates that the water loss during the pre-Noachian (>41-99 m global equivalent layers, GEL) was more significant than in the rest of martian history (>10-53 m GEL). Combining our results with geological and geomorphological evidence for ancient oceans, we propose that undetected subsurface water/ice (≃100-1000 m GEL) should exist, and it exceeds the observable present water inventory (≃20-30 m GEL) on Mars.

  15. Functional morphology, stable isotopes, and human evolution: a model of consilience.

    PubMed

    Yeakel, Justin D; Dominy, Nathaniel J; Koch, Paul L; Mangel, Marc

    2014-01-01

    Foraging is constrained by the energy within resources and the mechanics of acquisition and assimilation. Thick molar enamel, a character trait differentiating hominins from African apes, is predicted to mitigate the mechanical costs of chewing obdurate foods. The classic expression of hyperthick enamel together with relatively massive molars, termed megadontia, is most evident in Paranthropus, a lineage of hominins that lived about 2.7-1.2 million years ago. Among contemporary primates, thicker molar enamel corresponds with the consumption of stiffer, deformation-resistant foods, possibly because thicker enamel can better resist cracking under high compressive loads. Accordingly, plant underground storage organs (USOs) are thought to be a central food resource for hominins such as Paranthropus due to their abundance, isotopic composition, and mechanical properties. Here, we present a process-based model to investigate foraging constraints as a function of energetic demands and enamel wear among human ancestors. Our framework allows us to determine the fitness benefits of megadontia, and to explore under what conditions stiff foods such as USOs are predicted to be chosen as fallback, rather than preferred, resources. Our model predictions bring consilience to the noted disparity between functional interpretations of megadontia and microwear evidence, particularly with respect to Paranthropus boisei.

  16. Enabling Continuous, Field-Based Isotope and Greenhouse Gas Measurements with WS-CRDS-based Analyzers

    NASA Astrophysics Data System (ADS)

    Rella, C.; van Pelt, A.

    2009-04-01

    When new instrumentation becomes widely available, it has the power to fundamentally change how measurements are made. In particular, technology developments that enable measurements to be done more simply, at lower cost, by a greater number of scientists, moving information-rich, laboratory-quality measurements from the lab out into the field -- these are the innovations that can aid in moving the science forward. Here we describe how the application of a novel cavity-enhanced spectroscopic technique called wavelength scanned cavity ring down spectroscopy (WS-CRDS) has been pivotal in developing gas an isotope analyzers capable of being deployed in the field, unattended, for long periods of time. This particular implementation of the traditional cavity ring down technique employs several additional key aspects of control and design to achieve highly sensitive, highly stable measurements. WS-CRDS owes its high sensitivity to an extremely long optical interaction pathlengh, as well as to its complete immunity to laser noise since the laser is actually off during the measurement. To stabilize the spectroscopic line itself, the temperature and pressure of the gas are tightly controlled. The analyzer's optical cavity, gas handling system and analog electronics are themselves also tightly temperature controlled. The heart of the WS-CRDS technique is, however, the wavelength monitor which further ensures the stability of the measurement by continuously measuring and tightly controlling the laser wavelength. A key design aspect of the WS-CRDS analyzer is its three-mirror, traveling-wave cavity which allows optical backreflections to be avoided and further adds to the inherent stability of the optical train. The analyzer owes its ease of use to the design requirement that it be field-deployable, in locations without personnel, with the ability to restart itself and automatically resume collecting data even after a power failure. Beyond the design aspects of the analyzer

  17. A field study of hydraulic, geochemical and stable isotope relationships in a coastal wetlands system

    NASA Astrophysics Data System (ADS)

    Marimuthu, S.; Reynolds, D. A.; La Salle, C. Le Gal

    2005-12-01

    Both chemical and stable isotope data provide important supplemental information to more traditional hydraulic data and unravel the processes that underpin the large variations in chemical and stable isotopic composition within a coastal wetland system. The system studied was the Lake Warden wetlands, located in Esperance, in south coast of Western Australia. The spatial and temporal variations of chemical and isotopic composition of the individual water bodies within the system were measured for an annual cycle. In broad terms, the groundwater levels appear to follow the topography but the distinct higher chloride and isotopic concentrations observed within the wetlands were not reflected in the low lying coastal plain groundwater. The hydraulic analysis of the region surrounding the wetlands suggest that the wetlands are flow-through bodies, however the chemical and isotope information indicates the lakes almost invariably act as discharge points for the surface water flows and the north-south groundwater flow. The northeast-southwest groundwater flow is along an observed paleochannel within the wetlands system and in this case the chemical and isotopic evidence are complimentary with the hydraulic study. The study highlighted the importance of correcting the isotopic values for the salt effect in highly saline water. The isotopic activity ratios of δ2H ( δ2H a) of some samples were up to 15‰ higher than the uncorrected values. The high salinity of the terminal lake in the wetlands chain also required implementation of a theoretical evaporative model to explain the lower enrichment of the isotopic results as compared to expectations for a shallow and ephemeral lake. The inter-lake variation in the theoretical evaporative model parameters, coupled with a significant variation in the hydrochemistry and isotope composition suggests that the lakes within the wetlands system cannot be treated as single water body as is implied by the bathymetry survey.

  18. A comparison of force fields and calculation methods for vibration intervals of isotopic H3(+) molecules

    NASA Astrophysics Data System (ADS)

    Carney, G. D.; Adler-Golden, S. M.; Lesseski, D. C.

    1986-04-01

    This paper reports (1) improved values for low-lying vibration intervals of H3(+), H2D(+), D2H(+), and D3(+) calculated using the variational method and Simons-Parr-Finlan (1973) representations of the Carney-Porter (1976) and Dykstra-Swope (1979) ab initio H3(+) potential energy surfaces, (2) quartic normal coordinate force fields for isotopic H3(+) molecules, (3) comparisons of variational and second-order perturbation theory, and (4) convergence properties of the Lai-Hagstrom internal coordinate vibrational Hamiltonian. Standard deviations between experimental and ab initio fundamental vibration intervals of H3(+), H2D(+), D2H(+), and D3(+) for these potential surfaces are 6.9 (Carney-Porter) and 1.2/cm (Dykstra-Swope). The standard deviations between perturbation theory and exact variational fundamentals are 5 and 10/cm for the respective surfaces. The internal coordinate Hamiltonian is found to be less efficient than the previously employed 't' coordinate Hamiltonian for these molecules, except in the case of H2D(+).

  19. Sulphur Cycling at the Mid-Atlantic Ridge: Isotopic Evidence From the Logatchev and Turtle Pits Hydrothermal Fields

    NASA Astrophysics Data System (ADS)

    Eickmann, B.; Strauss, H.; Koschinsky, A.; Kuhn, T.; Petersen, S.; Schmidt, K.

    2005-12-01

    Mid-ocean ridges and associated hydrothermal vent systems represent a unique scenario in which the interaction of hydrosphere, lithosphere and biosphere and the related element cycling can be studied. Sulphur participates in inorganic and microbially driven processes and plays, thus, an important role at these vent sites. The sulphur isotopic compositions of different sulphur-bearing minerals as well as dissolved sulphur compounds provide a tool for identifying the sulphur source and pertinent processes of sulphur cycling. Here, we present sulphur isotope data from an ongoing study of the Logatchev hydrothermal field at 14°45' N and the Turtle Pits hydrothermal field at 4°48' S. The former is located in 2900 to 3060 m water depth, hosted by ultramafic rocks, while the latter is situated in 2990 m water depth, hosted by basaltic rocks. Different metal sulphides (chalcopyrite, pyrite, pyrrhotite, various copper sulphides), either particles from the emanating hot fluid itself or pieces of active and inactive black smokers, display δ34S values between +2 and +9 ‰. So far, no significant difference is discernible between mineral precipitates from both hydrothermal fields. However, differences exist between different generations of sulphide precipitates. Based on respective data from other sites of hydrothermal activity at mid-ocean ridges, this sulphur isotope range suggests that sulphur in the hydrothermal fluid and mineral precipitates represents a mixture between mantle sulphur and reduced seawater sulphate. Anhydrite precipitates from hydrothermal chimneys, located inside sulphide conduits, and obvious late stage gypsum needles from voids, yielded sulphur isotope values between +17.5 and +20.0 ‰. This clearly identifies seawater sulphate as the principal sulphur source. Variable, but generally low abundances of sulphide and sulphate in differently altered mafic and ultramafic rocks point to a complex fluid-rock interaction. Sulphur isotope values for total

  20. Faculty Development in Medicine: A Field in Evolution

    ERIC Educational Resources Information Center

    Skeff, Kelley M.; Stratos, Georgette A.; Mount, Jane F. S.

    2007-01-01

    This article focuses on the evolution of faculty development in medicine. Of note, improving teaching in medical education is not a new concept. At a minimum, it was seriously discussed by pioneers like George Miller and Steve Abrahamson as early as the 1950s [Simpson & Bland (2002). Stephen Abrahamson, PhD, ScD, educationist: A stranger in a kind…

  1. Initial Dynamical Evolution of Star Clusters with Tidal Field

    NASA Astrophysics Data System (ADS)

    Park, So-Myoung; Goodwin, Simon P.; Kim, Sungsoo S.

    2017-03-01

    Observations have been suggested that star clusters could form from the rapid collapse and violent relaxation of substructured distributions. We investigate the collapse of fractal stellar distributions in no, weak, and very strong tidal fields. We find that the rapid collapse of substructure into spherical clusters happens quickly with no or a weak tidal field, but very strong tidal fields prevent a cluster forming. However, we also find that dense Plummer spheres are also rapidly destroyed in strong tidal fields. We suggest that this is why the low-mass star clusters cannot survive near the galactic centre which has strong tidal field.

  2. Sr Isotopic Variation in Plagioclase Phenocrysts of the Heise Volcanic Field, Eastern Snake River Plain, Idaho USA

    NASA Astrophysics Data System (ADS)

    Phillips, W. M.; Schwartz, D. M.; Ellis, B. S.

    2012-12-01

    Feldspars within single eruptive units of rhyolites of the central Snake River Plain are tightly grouped into unimodal Sr isotope populations. Wolff et al. (2011) suggested that this Sr isotopic homogeneity is characteristic of Snake River-type rhyolitic volcanism, and reflects unusually high magma temperatures and low water contents. We test this hypothesis with new Sr data from plagioclase phenocrysts from the Heise Volcanic Field, a large nested caldera complex in the eastern Snake River Plain. We sampled the oldest unit (Tuff of Blacktail Creek, 6.6 Ma) and youngest unit (Kilgore Tuff, 4.5 Ma) at their type sections. To assess within unit variability, we also sampled widely separated exposures of the units across the caldera complex. Plagioclase crystals were separated magnetically and by hand-picking. Sr isotopes were analyzed in 9 to 66 grains per sample by LA-MC-ICPMS at the Washington State University GeoAnalytical Lab. Blacktail Creek samples have tight unimodal distributions with 87Sr/86Sr modes between 0.7126 and 0.7128 that support the Wolff et al. hypothesis. The Kilgore samples show considerably more variability. While all Kilgore samples have a similar principal mode between 0.7116 and 0.7118, additional minor modes are generally present. The Kilgore results are surprising given oxygen isotope evidence for magma homogeneity prior to eruption, crystal residence times of ~110 kyr, and magma temperatures of ~800-900°C (Watts et al., 2011). Under such temperatures, Sr isotopic homogeneity in plagioclase is likely achieved in 5 mm grains within <10 kyr. The observed Sr isotope heterogeneity in Kilgore may result from isolation of magma batches until shortly before eruption. References: Wolff et al., 2011, Geology 39(10), 931-934; Watts et al. 2011, J. Petrology 52(5), 857-890.

  3. Petrology and Sr and Nd isotopic characteristics of five late Cretaceous-early Tertiary volcanic fields in western Alaska

    SciTech Connect

    Moll-Stalcup, E.J.

    1987-01-01

    Chemical and Sr and Nd isotopic characteristics were studied in an attempt to determine if old continental crust having high /sup 87/Sr//sup 86/Sr (SIR) and low /sup 143/Nd//sup 144/Nd (NIR) underlies the Yukon-Koyukuk province. The Blackburn Hills, Yukon River, and Kanuti fields lie within the Yukon-Koyukuk province and the Sischu and Nowitna fields overlie Paleozoic and Precambrian metamorphic terranes to the southeast. The Nowitna field is chiefly andesite having SIR = 0.7044-0.7051 and NIR = 0.51256-0.51257. The Sischu field is chiefly rhyolite and dacite having high SIR (0.7079-0.7140) and low NIR (0.51246-0.51252), which suggests that old continental crust was involved in their genesis, either by direct partial melting or by large degrees of assimilation. The Blackburn Hills field consists of medium-K basalt, andesite, and rhyolite intruded by a small granodiorite pluton and has SIR = 0.7033-0.7052 and NIR = 0.51253-51290. The Yukon River field is basalt, andesite, dacite, and rhyolite having SIR = 0.70374-0.70511 and NIR = 0.51270-0.51284, and much of its isotopic variation can be modeled by assimilation of seawater-altered oceanic crust during fractionation of basalt. Isotopic compositions of most felsic rocks from the Blackburn Hills field (SIR = 0.7038-0.7041) and dacites from the Kanuti volcanic field (SIR = 0.7043-0.7048) require little or no old continental crust in their genesis, suggesting that ancient crust does not extend beneath this part of the Yukon-Koyukuk province. However, the ultimate source of the shoshonitic lower crust of the Koyukuk terrane (SIR = 0.705, NIR = 0.5125) may be continental mantle, which may have been thrust under this part of the Yukon-Koyukuk province during arc-continent collision in the early Cretaceous.

  4. Evolution of Sulfur Isotopes and Oceanic Oxygenation Recorded in a Neoproterozoic Cap Carbonate From the Chaidam Block, China

    NASA Astrophysics Data System (ADS)

    Shen, B.; Xiao, S.; Kaufman, A.; Zhou, C.

    2006-12-01

    Neoproterozoic successions in the Chaidam Block, northwestern China, include the Hongtiegou Formation, which consists of a 20-meter thick, reddish diamictite with widespread dropstones and outsized clasts. The age of the Hongtiegou diamictite is unknown, but recent biostratigraphic correlations support a Neoproterozoic assignment. The glacial deposit is immediately overlain by a 5-meter thick carbonate of the basal Zhoujieshan Formation, which we interpret as a classic post-glacial cap carbonate. However, carbon isotope compositions of samples from this unit are near zero or slightly positive (up to ~ 2‰), which contrasts with the strongly negative (ca. -5‰) values recorded in the basal portions of most other post-glacial Neoproterozoic caps. Trace sulfate concentrations in samples of the carbonate are notably high, with an average of 366 ± 266 ppm. In the lower 2.5 meters of the Zhoujieshan cap (stage I) sulfur isotope compositions of both carbonate associated sulfate (CAS) and sulfides isolated from the same sample are indistinguishable from each other, and rise in concert by over 10% to values around +22‰. Above this level (stage II), 34S abundances of sulfides continue to increase to a peak of +27‰, but CAS values fall back to ~15‰. As a result isotopic differences between sulfides and sulfates are near zero in stage I and around 10% in stage II. The evolution of both systems in the lower half of the deposit suggests that seawater sulfate must have evolved to progressively heavier 34S compositions, and that sulfate in pore waters ¨C where sulfate reducing bacteria were active ¨C was quantitatively reduced to pyrite. This might result from the progressive distillation of sulfate from seawater by an enhanced rain of carbonate, in addition to bacterial reduction of sulfate, in the glacial aftermath. The anomalous isotope systematics of stage II are difficult to model, but might signal a new source and higher abundances of oceanic sulfate, based on

  5. Evolution of continental crust and mantle heterogeneity: Evidence from Hf isotopes

    USGS Publications Warehouse

    Jonathan, Patchett P.; Kouvo, O.; Hedge, C.E.; Tatsumoto, M.

    1982-01-01

    We present initial 176Hf/177 Hf ratios for many samples of continental crust 3.7-0.3 Gy old. Results are based chiefly on zircons (1% Hf) and whole rocks: zircons are shown to be reliable carriers of essentially the initial Hf itself when properly chosen on the basis of U-Pb studies. Pre-3.0 Gy gneisses were apparently derived from an unfractionated mantle, but both depleted and undepleted mantle are evident as magma sources from 2.9 Gy to present. This mantle was sampled mainly from major crustal growth episodes 2.8, 1.8 and 0.7 Gy ago, all of which show gross heterogeneity of 176Hf/177Hf in magma sources from ??Hf=0 to +14, or about 60% of the variability of the present mantle. The approximate ??Hf=2??Nd relationship in ancient and modern igneous rocks shows that 176Lu/177Hf fractionates in general twice as much as 147Sm/144Nd in mantle melting processes. This allows an estimation of the relative value of the unknown bulk solid/liquid distribution coefficient for Hf. DLu/DHf=??? 2.3 holds for most mantle source regions. For garnet to be an important residual mantle phase, it must hold Hf strongly in order to preserve Hf-Nd isotopic relationships. The ancient Hf initials are consistent with only a small proportion of recycled older cratons in new continental crust, and with quasi-continuous, episodic growth of the continental crust with time. However, recycling of crust less than 150 My old cannot realistically be detected using Hf initials. The mantle shows clearly the general positive ??Hf resulting from a residual geochemical state at least back to 2.9 Gy ago, and seems to have repeatedly possessed a similar degree of heterogeneity, rather than a continuously-developing depletion. This is consistent with a complex dynamic disequilibrium model for the creation, maintenance and destruction of heterogeneity in the mantle. ?? 1981 Springer-Verlag.

  6. Anomalous resistivity and the evolution of magnetic field topology

    NASA Technical Reports Server (NTRS)

    Parker, E. N.

    1993-01-01

    This paper explores the topological restructuring of a force-free magnetic field caused by the hypothetical sudden onset of a localized region of strong anomalous resistivity. It is shown that the topological complexity increases, with the primitive planar force-free field with straight field lines developing field lines that wrap half a turn around each other, evidently providing a surface of tangential discontinuity in the wraparound region. It is suggested that the topological restructuring contributes to the complexity of the geomagnetic substorm, the aurora, and perhaps some of the flare activity on the sun, or other star, and the Galactic halo.

  7. Identifying the origin and geochemical evolution of groundwater using hydrochemistry and stable isotopes in Subei Lake Basin, Ordos energy base, Northwestern China

    NASA Astrophysics Data System (ADS)

    Liu, F.; Song, X.; Yang, L.; Zhang, Y.; Han, D.; Ma, Y.; Bu, H.

    2014-05-01

    A hydrochemical and isotopic study was conducted in Subei Lake Basin, northwestern China, to identify the origin and geochemical evolution of groundwater. Water samples were collected, major ions and stable isotopes (δ18O, δ D) were analyzed. In terms of hydrogeological conditions in study area, groundwater can be classified into three types: the Quaternary groundwater, the shallow Cretaceous groundwater, the deep Cretaceous groundwater. Piper diagram and correlation analysis were used to reveal the hydrochemical characteristics of water resources. The dominant water type of lake water was Na-Cl type, which was controlled by strong evaporation and recharge from overland flow and groundwater; the predominant hydrochemical types for groundwater were Ca-HCO3, Na-HCO3, and mixed Ca · Na · Mg-HCO3 types, the groundwater chemistry is mainly controlled by dissolution/precipitation of anhydrite, gypsum, halite and calcite. The dedolomitization and cation exchange are also important factors. Rock weathering is confirmed to play a leading role in the mechanisms responsible for the chemical compositions of groundwater. The stable isotopic values of oxygen and hydrogen in groundwater are close to the local meteoric water line, showing that groundwater is of meteoric origin. The deep Cretaceous groundwater is depleted in heavy isotopes, compared to shallow Cretaceous groundwater. The hydrogen and oxygen isotopes signatures in deep Cretaceous groundwater may show a paleorecharge effect that the deep Cretaceous groundwater was recharged during a geologic period when the climate was wetter and colder than today. Due to strong evaporation effect and dry climatic conditions, heavy isotopes are more enriched in lake water than groundwater. The hydrochemical and isotopic information of utmost importance has been provided to decision-makers by the present study so that a sustainable water resources management policy could be designed for the Ordos energy base.

  8. Isotopic and trace element constraints on the petrogenesis of lavas from the Mount Adams volcanic field, Washington

    USGS Publications Warehouse

    Jicha, B.R.; Hart, G.L.; Johnson, C.M.; Hildreth, W.; Beard, B.L.; Shirey, S.B.; Valley, J.W.

    2009-01-01

    Strontium, Nd, Pb, Hf, Os, and O isotope compositions for 30 Quaternary lava flows from the Mount Adams stratovolcano and its basaltic periphery in the Cascade arc, southern Washington, USA indicate a major component from intraplate mantle sources, a relatively small subduction component, and interaction with young mafic crust at depth. Major- and trace-element patterns for Mount Adams lavas are distinct from the rear-arc Simcoe volcanic field and other nearby volcanic centers in the Cascade arc such as Mount St. Helens. Radiogenic isotope (Sr, Nd, Pb, and Hf) compositions do not correlate with geochemical indicators of slab-fluids such as (Sr/P)n and Ba/Nb. Mass-balance modeling calculations, coupled with trace-element and isotopic data, indicate that although the mantle source for the calc-alkaline Adams basalts has been modified with a fluid derived from subducted sediment, the extent of modification is significantly less than what is documented in the southern Cascades. The isotopic and trace-element compositions of most Mount Adams lavas require the presence of enriched and depleted mantle sources, and based on volume-weighted chemical and isotopic compositions for Mount Adams lavas through time, an intraplate mantle source contributed the major magmatic mass of the system. Generation of basaltic andesites to dacites at Mount Adams occurred by assimilation and fractional crystallization in the lower crust, but wholesale crustal melting did not occur. Most lavas have Tb/Yb ratios that are significantly higher than those of MORB, which is consistent with partial melting of the mantle in the presence of residual garnet. ??18O values for olivine phenocrysts in Mount Adams lavas are within the range of typical upper mantle peridotites, precluding involvement of upper crustal sedimentary material or accreted terrane during magma ascent. The restricted Nd and Hf isotope compositions of Mount Adams lavas indicate that these isotope systems are insensitive to crustal

  9. Lithium Isotope Ratios in Foraminifera - A Potential Proxy for Geologic Evolution of Cenozoic Seawater Chemistry

    NASA Astrophysics Data System (ADS)

    Misra, S.; Froelich, P. N.

    2008-12-01

    The Li isotope ratio of seawater (δ7Li) recorded in planktonic foraminifera has the potential to elucidate changes in seawater chemistry and the factors driving variations of oceanic silica mass balances linked to continental and sea floor/hydrothermal weathering. To establish the validity of forams as a recorder of seawater δ7Li, we measured Li/Ca, Mg/Ca, Mn/Ca, V/Ca, Sr/Ca and Ba/Ca in cleaned core top foraminifera samples from Caribbean Sea and Gulf of Mexico from (a) 9 individual species, (b) size fractions of the same species and (c) bulk samples of size fractions. Samples were chemically cleaned with a reductive-oxidative-reductive (R-O-R) cleaning sequence. The high precision (<0.9 per mil, 2σ), low blank (<500fg/ml) and low Li mass requirement (<0.3ng/quintuplicate) of our method allows precise δ7Li determination using <1.0mg of forams and <5.0μl of seawater by single collector Quadrupole ICP-MS (Agilent 7500cs). Our seawater δ7Li value (30.79 per mil ±0.91 per mil, 2σ, n=10) is the same as that reported by other workers (~31 per mil ±0.5 per mil). Species-specific δ7Li analyses of Orbulina universa (>300μm) from both Caribbean Sea (30.72 per mil ±1.43 per mil, n=5) and Gulf of Mexico (30.16 per mil ±1.37 per mil, n=4) yield values similar to modern seawater. δ7Li values of Globigerina triloba and Globorotalia menardii (Caribbean Sea, >300μm) are (30.12 per mil ±1.34 per mil, n=4) and (30.29 per mil ±0.92 per mil, n=4). The 212μ m-300μm size fractions of triloba (30.05 per mil) and menardii (30.29 per mil) from the Caribbean Sea produced similar δ7Li values, indicating the absence of size dependent fractionation in at least two species. Bulk foram analyses of >300μm (29.84 per mil ±1.52 per mil, n=2) and 212μm-300μm (30.25 per mil ±1.61 per mil) also produced δ7Li values similar to seawater. Identical δ7Li values, within error, of two fractions of bulk samples with seawater encourages the potential use of bulk foraminiferal

  10. Strontium isotope detection of brine contamination in the East Poplar oil field, Montana

    USGS Publications Warehouse

    Peterman, Zell E.; Thamke, Joanna N.; Futa, Kiyoto; Oliver, Thomas A.

    2010-01-01

    Brine contamination of groundwater in the East Poplar oil field was first documented in the mid-1980s by the U.S. Geological Survey by using hydrochemistry, with an emphasis on chloride (Cl) and total dissolved solids concentrations. Supply wells for the City of Poplar are located downgradient from the oil field, are completed in the same shallow aquifers that are documented as contaminated, and therefore are potentially at risk of being contaminated. In cooperation with the Office of Environmental Protection of the Fort Peck Tribes, groundwater samples were collected in 2009 and 2010 from supply wells, monitor wells, and the Poplar River for analyses of major and trace elements, including strontium (Sr) concentrations and isotopic compositions. The ratio of strontium-87 to strontium-86 (87Sr/86Sr) is used extensively as a natural tracer in groundwater to detect mixing among waters from different sources and to study the effects of water/rock interaction. On a plot of the reciprocal strontium concentration against the 87Sr/86Sr ratio, mixtures of two end members will produce a linear array. Using this plotting method, data for samples from most of the wells, including the City of Poplar wells, define an array with reciprocal strontium values ranging from 0.08 to 4.15 and 87Sr/86Sr ratios ranging from 0.70811 to 0.70828. This array is composed of a brine end member with an average 87Sr/86Sr of 0.70822, strontium concentrations in excess of 12.5 milligrams per liter (mg/L), and chloride concentrations exceeding 8,000 mg/L mixing with uncontaminated water similar to that in USGS06-08 with 18.0 mg/L chloride, 0.24 mg/L strontium, and a 87Sr/86Sr ratio of 0.70811. The position of samples from the City of Poplar public-water supply wells within this array indicates that brine contamination has reached all three wells. Outliers from this array are EPU-4G (groundwater from the Cretaceous Judith River Formation), brine samples from disposal wells (Huber 5-D and EPU 1-D

  11. Evolution of magnetic field inclination in a forming penumbra

    NASA Astrophysics Data System (ADS)

    Jurčák, Jan; Bello González, Nazaret; Schlichenmaier, Rolf; Rezaei, Reza

    2014-12-01

    As a sunspot penumbra forms, the magnetic field vector at the outer boundary of the protospot undergoes a transformation. We study the changes of the magnetic field vector at this boundary as a penumbral segment forms. We analyze a set of spectropolarimetric maps covering 2 hr during the formation of a sunspot in NOAA 11024. The data were recorded with the GFPI instrument attached to the German VTT. We observe a stationary umbra/quiet Sun boundary, where the magnetic field becomes more horizontal with time. The magnetic field inclination increases by 5°, reaching a maximum value of about 59°. The maximum inclination coincides with the onset of filament formation. In time, the penumbra filaments become longer and the penumbral bright grains protrude into the umbra, where the magnetic field is stronger and more vertical. Consequently, we observe a decrease in the magnetic field inclination at the boundary as the penumbra grows. In summary, in order to initiate the formation of the penumbra, the magnetic field at the umbral (protospot) boundary becomes more inclined. As the penumbra grows, the umbra/penumbra boundary migrates inwards, and at this boundary the magnetic field turns more vertical again, while it remains inclined in the outer penumbra.

  12. Gases and water isotopes in a geochemical section across the Larderello, Italy, geothermal field

    USGS Publications Warehouse

    Truesdell, A.H.; Nehring, N.L.

    1978-01-01

    Steam samples from six wells (Colombaia, Pineta, Larderello 57, Larderello 155, Gabbro 6, and Gabbro 1) in a south to north section across the Larderello geothermal field have been analyzed for inorganic and hydrocarbon gases and for oxygen-18 and deuterium of steam. The wells generally decrease in depth and increase in age toward the south. The steam samples are generally characterized by (1) Total gas contents increasing south to north from 0.003 to 0.05 mole fraction; (2) Constant CO2 (95??2 percent); near constant H2S (1.6??0.8), N2 (1.2??0.8), H2 (2??1), CH4 (1.2??1), and no O2 in the dry gas; (3) Presence of numerous, straight chain and branched C2 to C6 hydrocarbons plus benzene in amounts independent of CH4 contents with highest concentrations in the deeper wells; (4) Oxygen-18 contents of steam increasing south to north from -5.0??? to -0.4??? with little change in deuterium (-42??2???). These observations are interpreted as showing: (1) Decreasing gas contents with amount of production because the proportion of steam boiled from liquid water increases with production; (2) Synthesis of CH4 from H2 and CO2 with CO2 and H2 produced by thermal metamorphism and rock-water reactions; (3) Extraction of C2 to C6 hydrocarbons from rock organic matter; (4) Either oxygen isotope exchange followed by distillation of steam from the north toward the south (2 plates at ???220??C) or mixture of deeper more-exchange waters from the north with shallow, less-exchanged recharging waters from the south. ?? 1978 Birkha??user Verlag.

  13. Field evolution of magnetism in multiferroic (ND4)2 [FeCl5 (D2O)

    NASA Astrophysics Data System (ADS)

    Tian, Wei; Cao, Huibo; Yan, Jiaqiang; Sales, Brian; Fernandez-Baca, Jaime

    (NH4)2 [FeCl5(H2O)] is a new organic multiferroic material that exhibits a very rich magnetic field versus temperature (B vs. T) phase diagram. The material undergoes two successive magnetic transitions at 7.3K and 6.8K, with the onset of ferroelectricity at 6.8K at B = 0T. Applying magnetic field with B// a-axis or B//c-axis induces transitions to different ferroelectric phases, and the electric polarization direction rotates from P//a-axis at B = 0T to P//c-axis at B = 5T. Here we report single crystal neutron diffraction results studied with B//a-axis that elucidate the field evolution of magnetism associated with different ferroelectric phases in (NH4)2 [FeCl5(H2O)]. 1Research conducted at ORNL's High Flux Isotope Reactor was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U. S. Department of Energy.

  14. Quasispecies evolution in general mean-field landscapes

    NASA Astrophysics Data System (ADS)

    Peliti, L.

    2002-03-01

    I consider a class of fitness landscapes, in which the fitness is a function of a finite number of phenotypic "traits", which are themselves linear functions of the genotype. I show that the stationary trait distribution in such a landscape can be explicitly evaluated in a suitably defined "thermodynamic limit", which is a combination of infinite-genome and strong selection limits. These considerations can be applied in particular to identify relevant features of the evolution of promoter binding sites, in spite of the shortness of the corresponding sequences.

  15. Use of radium isotopes to determine the age and origin of radioactive barite at oil-field production sites

    USGS Publications Warehouse

    Zielinski, R.A.; Otton, J.K.; Budahn, J.R.

    2001-01-01

    Radium-bearing barite (radiobarite) is a common constituent of scale and sludge deposits that form in oil-field production equipment. The barite forms as a precipitate from radium-bearing, saline formation water that is pumped to the surface along with oil. Radioactivity levels in some oil-field equipment and in soils contaminated by scale and sludge can be sufficiently high to pose a potential health threat. Accurate determinations of radium isotopes (226Ra+228Ra) in soils are required to establish the level of soil contamination and the volume of soil that may exceed regulatory limits for total radium content. In this study the radium isotopic data are used to provide estimates of the age of formation of the radiobarite contaminant. Age estimates require that highly insoluble radiobarite approximates a chemically closed system from the time of its formation. Age estimates are based on the decay of short-lived 228Ra (half-life=5.76 years) compared to 226Ra (half-life=1600 years). Present activity ratios of 228Ra/226Ra in radiobarite-rich scale or highly contaminated soil are compared to initial ratios at the time of radiobarite precipitation. Initial ratios are estimated by measurements of saline water or recent barite precipitates at the site or by considering a range of probable initial ratios based on reported values in modern oil-field brines. At sites that contain two distinct radiobarite sources of different age, the soils containing mixtures of sources can be identified, and mixing proportions quantified using radium concentration and isotopic data. These uses of radium isotope data provide more description of contamination history and can possibly address liability issues. Copyright ?? 2000 .

  16. Evolution of the soil cover of soccer fields

    NASA Astrophysics Data System (ADS)

    Belobrov, V. P.; Zamotaev, I. V.

    2014-04-01

    A soccer field can be considered a soil-like technogenic formation (STF). According to the theory of soil cover patterns, the artificially constructed (anthropogenic) soil cover of a soccer field is an analogue of a relatively homogeneous elementary soil area. However, the spatial homogeneity of the upper part (50-80 cm) of the STF of soccer fields is unstable and is subjected to gradual transformation under the impact of pedogenetic processes, agrotechnical loads, and mechanical loads during the games. This transformation is favored by the initial heterogeneity of the deep (buried) parts of the STF profile. The technogenic factors and elementary pedogenetic processes specify the dynamic functioning regime of the STF. In 50-75 years, the upper part of the STF is transformed into soil-like bodies with properties close to those in zonal soils. Certain micro- and nanopatterns of the soil cover are developed within the field creating its spatial heterogeneity.

  17. Ca, Sr, O and D isotope approach to defining the chemical evolution of hydrothermal fluids: example from Long Valley, CA, USA

    USGS Publications Warehouse

    Brown, Shaun T.; Kennedy, B. Mack; DePaolo, Donald J.; Hurwitz, Shaul; Evans, William C.

    2013-01-01

    We present chemical and isotopic data for fluids, minerals and rocks from the Long Valley meteoric-hydrothermal system. The samples encompass the presumed hydrothermal upwelling zone in the west moat of the caldera, the Casa Diablo geothermal field, and a series of wells defining a nearly linear, ∼16 km long, west-to-east trend along the likely fluid flow path. Fluid samples were analyzed for the isotopes of water, Sr, and Ca, the concentrations of major cations and anions, alkalinity, and total CO2. Water isotope data conform to trends documented in earlier studies, interpreted as indicating a single hydrothermal fluid mixing with local groundwater. Sr isotopes show subtle changes along the flow path, which requires rapid fluid flow and minimal reaction between the channelized fluids and the wallrocks. Sr and O isotopes are used to calculate fracture spacing using a dual porosity model. Calculated fracture spacing and temperature data for hydrothermal fluids indicate the system is (approximately) at steady-state. Correlated variations among total CO2, and the concentration and isotopic composition of Ca suggest progressive fluid degassing (loss of CO2), which drives calcite precipitation as the fluid flows west-to-east and cools. The shifts in Ca isotopes require that calcite precipitated at temperatures of 150–180 °C is fractionated by ca. −0.3‰ to −0.5‰ relative to aqueous species. Our data are the first evidence that Ca isotopes undergo kinetic fractionation at high temperatures (>100 °C) and can be used to trace calcite precipitation along hydrothermal fluid flow paths.

  18. Phase-field modeling of microstructure evolutions in magnetic materials

    PubMed Central

    Koyama, Toshiyuki

    2008-01-01

    Recently, the phase-field method has been extended and utilized across many fields of materials science. Since this method can incorporate, systematically, the effect of the coherency induced by lattice mismatch and the applied stress as well as the external electrical and magnetic fields, it has been applied to many material processes including solidification, solid-state phase transformations and various types of complex microstructure changes. In this paper, we focus on the recent phase-field simulations of real magnetic materials, and the simulation method for magnetic materials is explained comprehensively. Several applications of the phase-field method to clarifying the microstructure changes in magnetic materials, such as Ni2MnGa ferromagnetic shape memory alloy, FePt nanogranular thin film, Co–Sm–Cu rare-earth magnet, Fe–Cr–Co spinodal magnet, and Fe–C steel with external magnetic field, are demonstrated. Furthermore, the general concept of the effective strategy for controlling microstructure in magnetic materials is proposed. PMID:27877924

  19. Geologic evolution of the Lost City Hydrothermal Field

    NASA Astrophysics Data System (ADS)

    Denny, Alden R.; Kelley, Deborah S.; Früh-Green, Gretchen L.

    2016-02-01

    The Lost City Hydrothermal Field (LCHF) is a novel serpentinite-hosted vent field located on the Atlantis Massif southern wall. Results of 2 m resolution bathymetry, side scan, and video and still imagery, integrated with direct submersible observations provide the first high-resolution geologic map of the LCHF. These data form the foundation for an evolutionary model for the vent system over the past >120,000 years. The field is located on a down-dropped bench 70 m below the summit of the massif. The bench is capped by breccia and pelagic carbonate deposits underlain by variably deformed and altered serpentinite and gabbroic rocks. Hydrothermal activity is focused at the 60 m tall, 100 m across, massive carbonate edifice "Poseidon," which is venting 91°C fluid. Hydrothermal activity declines south and west of the Poseidon complex and dies off completely at distances greater than 200 m. East of Poseidon, the most recent stage of hydrothermal flow is characterized by egress of diffuse fluids from narrow fissures within a low-angle, anastomosing mylonite zone. South of the area of current hydrothermal activity, there is evidence of two discrete previously unrecognized relict fields. Active venting sites defined by carbonate-filled fissures that cut the carbonate cap rock at the summit of the massif mark the present-day northernmost extent of venting. These spatial relationships reflect multiple stages of field development, the northward migration of venting over time, and the likely development of a nascent field at the massif summit.

  20. Production waters associated with the Ferron coalbed methane fields, central Utah: Chemical and isotopic composition and volumes

    USGS Publications Warehouse

    Rice, C.A.

    2003-01-01

    This study investigated the composition of water co-produced with coalbed methane (CBM) from the Upper Cretaceous Ferron Sandstone Member of the Mancos Shale in east-central Utah to better understand coalbed methane reservoirs. The Ferron coalbed methane play currently has more than 600 wells producing an average of 240 bbl/day/well water. Water samples collected from 28 wellheads in three fields (Buzzards Bench, Drunkards Wash, and Helper State) of the northeast-southwest trending play were analyzed for chemical and stable isotopic composition.Water produced from coalbed methane wells is a Na-Cl-HCO3 type. Water from the Drunkards Wash field has the lowest total dissolved solids (TDS) (6300 mg/l) increasing in value to the southeast and northeast. In the Helper State field, about 6 miles northeast, water has the highest total dissolved solids (43,000 mg/l), and major ion abundance indicates the possible influence of evaporite dissolution or mixing with a saline brine. In the southern Buzzards Bench field, water has variable total dissolved solids that are not correlated with depth or spatial distance. Significant differences in the relative compositions are present between the three fields implying varying origins of solutes and/or different water-rock interactions along multiple flow paths.Stable isotopic values of water from the Ferron range from +0.9??? to -11.4??? ?? 18O and -32??? to -90??? ?? 2H and plot below the global meteoric water line (GMWL) on a line near, but above values of present-day meteoric water. Isotopic values of Ferron water are consistent with modification of meteoric water along a flow path by mixing with an evolved seawater brine and/or interaction with carbonate minerals. Analysis of isotopic values versus chloride (conservative element) and total dissolved solids concentrations indicates that recharge water in the Buzzards Bench area is distinct from recharge water in Drunkards Wash and is about 3 ??C warmer. These variations in

  1. A Nd and Sr isotopic study of the Trinity peridotite Implications for mantle evolution

    NASA Technical Reports Server (NTRS)

    Jacobsen, S. B.; Quick, J. E.; Wasserburg, G. J.

    1984-01-01

    Field evidence is reported which indicates that the Trinity peridotite in Northern California was partially melted during its rise as part of the upwelling convecting mantle at a spreading center. A Sm-Nd mineral isochron for a plagioclase Iherzolite yielded an age of about 427 Ma which is significantly higher than that expected for depleted mantle during this period. The age is interpreted as the time of crystallization of trapped melt in the plagioclase Iherzolite P-T field, and probably represents the time when the massif was incorporated as a part of the oceanic lithosphere. The Sm-Nd model age of the plagioclase Iherzolite total rock is 3.4 AE. This suggests that the peridotite was derived from a mantle that was depleted early in earth history. Although most available data indicate that the depleted upper mantle has been relatively well stirred through time, the Trinity data suggest that very ancient Nd isotropic values are preserved and chemical and physical heterogeneities are sometimes preserved in the depleted source of midocean ridge basalts as well as the oceanic lithosphere which they intrude.

  2. Field-Scale Stable-Isotope Probing of Active Methanotrophs in a Landfill-Cover Soil

    NASA Astrophysics Data System (ADS)

    Schroth, M. H.; Henneberger, R.; Chiri, E.

    2012-12-01

    The greenhouse gas methane (CH4) is an important contributor to global climate change. While its atmospheric concentration is increasing, a large portion of produced CH4 never reaches the atmosphere, but is consumed by aerobic methane-oxidizing bacteria (MOB). The latter are ubiquitous in soils and utilize CH4 as sole source of energy and carbon. Among other methods, MOB may be differentiated based on characteristic phospholipid fatty acids (PLFA). Stable-isotope probing (SIP) on PLFA has been widely applied to identify active members of MOB communities in laboratory incubation studies, but results are often difficult to extrapolate to the field. Thus, novel field-scale approaches are needed to link activity and identity of MOB in their natural environment. We present results of field experiments in which we combined PLFA-SIP with gas push-pull tests (GPPTs) to label active MOB at the field-scale while simultaneously quantifying CH4 oxidation activity. During a SIP-GPPT, a mixture of reactive (here 13CH4, O2) and non-reactive tracer gases (e.g., Ar, Ne, He) is injected into the soil at a location of interest. Thereafter, gas flow is reversed and the gas mixture diluted with soil air is extracted from the same location and sampled periodically. Rate constants for CH4 oxidation can be calculated by analyzing breakthrough curves of 13CH4 and a suitable non-reactive tracer gas. SIP-GPPTs were performed in a landfill-cover soil, and feasibility of this novel approach was tested at several locations along a gradient of MOB activity and soil temperature. Soil samples were collected before and after SIP-GPPTs, total PLFA were extracted, and incorporation of 13C in the polar lipid fraction was analyzed. Potential CH4 oxidation rates derived from SIP-GPPTs were similar to those derived from regular GPPTs (using unlabeled CH4) performed at the same locations prior to SIP-GPPTs, indicating that application of 13CH4 did not adversely affect bacterial CH4 oxidation rates. Rates

  3. Hydrogeochemical and isotopic characteristics of Kavak (Seydişehir-Konya) geothermal field, Turkey

    NASA Astrophysics Data System (ADS)

    Bozdağ, Ayla

    2016-09-01

    The Kavak geothermal field is located 13 km north of Seydişehir town, about 90 km southwest of Konya Province in the Central Anatolia, Turkey. This study was carried out to determine the origin, chemical characteristics, and isotopic composition of Kavak thermal waters. The measured temperatures of thermal and mineral waters range from 21.5 to 26 °C with a discharge of 0.8 l/s in springs, and from 30 to 45.8 °C with a discharge of 185 l/s in wells. Thermal and/or mineralized spring and well waters are of Casbnd Nasbnd HCO3 types with electrical conductivity ranging from 2530 to 4150 μS/cm while cold groundwater is mainly of Casbnd HCO3 and Casbnd Mgsbnd HCO3 types with electrical conductivity ranging from 446 to 668 μS/cm. Kavak thermal waters have not reached complete chemical re-equilibrium possibly as a result of mixing with cold water during upward flow. Assessments from quartz geothermometers and fluid-mineral equilibria calculations suggest that reservoir temperature of Kavak geothermal field ranges from 68 to 105 °C. Thermal waters are oversaturated at discharge temperatures for calcite, dolomite, and aragonite minerals corresponding to travertine precipitation in the discharge area. Gypsum and anhydrite minerals are undersaturated in all the thermal waters. The δ18O and δ2H compositions of Kavak thermal and cold waters point to a meteoric origin. Meteoric waters infiltrate the reservoir rocks along faults and fracture zones. After being heated at depth with the high geothermal gradient, they move up to the surface along faults and fractures that act as pathways. Additionally, δ18O and δ2H values suggest that thermal waters are recharged from higher elevations in comparison with cold waters. Long-term circulation of meteoric waters within the basement rocks is indicated by low tritium (<2 TU) values in the thermal waters, although the fluids do not achieve thermodynamic equilibrium. Based on the δ13C values, carbon in thermal waters is considered

  4. Mercury isotopic composition of hydrothermal systems in the Yellowstone Plateau volcanic field and Guaymas Basin sea-floor rift

    USGS Publications Warehouse

    Sherman, L.S.; Blum, J.D.; Nordstrom, D.K.; McCleskey, R.B.; Barkay, T.; Vetriani, C.

    2009-01-01

    To characterize mercury (Hg) isotopes and isotopic fractionation in hydrothermal systems we analyzed fluid and precipitate samples from hot springs in the Yellowstone Plateau volcanic field and vent chimney samples from the Guaymas Basin sea-floor rift. These samples provide an initial indication of the variability in Hg isotopic composition among marine and continental hydrothermal systems that are controlled predominantly by mantle-derived magmas. Fluid samples from Ojo Caliente hot spring in Yellowstone range in δ202Hg from - 1.02‰ to 0.58‰ (± 0.11‰, 2SD) and solid precipitate samples from Guaymas Basin range in δ202Hg from - 0.37‰ to - 0.01‰ (± 0.14‰, 2SD). Fluid samples from Ojo Caliente display mass-dependent fractionation (MDF) of Hg from the vent (δ202Hg = 0.10‰ ± 0.11‰, 2SD) to the end of the outflow channel (&delta202Hg = 0.58‰ ± 0.11‰, 2SD) in conjunction with a decrease in Hg concentration from 46.6pg/g to 20.0pg/g. Although a small amount of Hg is lost from the fluids due to co-precipitation with siliceous sinter, we infer that the majority of the observed MDF and Hg loss from waters in Ojo Caliente is due to volatilization of Hg0(aq) to Hg0(g) and the preferential loss of Hg with a lower δ202Hg value to the atmosphere. A small amount of mass-independent fractionation (MIF) was observed in all samples from Ojo Caliente (Δ199Hg = 0.13‰ ±1 0.06‰, 2SD) but no significant MIF was measured in the sea-floor rift samples from Guaymas Basin. This study demonstrates that several different hydrothermal processes fractionate Hg isotopes and that Hg isotopes may be used to better understand these processes.

  5. Mercury stable isotopic compositions in coals from major coal producing fields in China and their geochemical and environmental implications.

    PubMed

    Yin, Runsheng; Feng, Xinbin; Chen, Jiubin

    2014-05-20

    Total mercury (Hg) concentrations (THg) and stable mercury isotopic compositions were measured in coal samples (n = 61) from major coal producing fields in China. The THg concentrations in coals ranged from 0.05 to 0.78 μg g(-1), with a geometric mean of 0.22 μg g(-1). Hg isotopic compositions in coals showed large variations both in mass-dependent fractionation (MDF, δ(202)Hg: -2.36 to -0.14‰) and mass-independent fractionation (MIF, Δ(199)Hg: -0.44 to +0.38‰). The MIF signatures in coals may reveal important information on the coal-forming conditions (e.g., humic and sapropelic). The Δ(199)Hg/Δ(201)Hg of ∼1 determined in coals indicated that a portion of Hg has been subjected to photoreduction process prior to being incorporated to coals. On the basis of THg, Hg isotopic signatures, and other geological factors (e.g., total ash content and total sulfur content), the potential sources of Hg in coals from different coal producing regions were estimated. The main source of Hg in coals from southwestern China and eastern part of northern China is likely geogenic Hg, whereas the source of Hg in coals from other parts of northern China is mainly biogenic Hg. Finally, we estimated that Hg emission from coal combustion in China is characterized by diagnostic Hg isotopic signatures (δ(202)Hg: ∼-0.70‰ and Δ(199)Hg: ∼-0.05‰). The present study demonstrates that Hg isotopes can serve as a tool in understanding the sources and transformation of Hg in coals and may also be used as a tracer to quantify Hg emissions from coal combustion.

  6. Iron isotope fingerprints of redox and biogeochemical cycling in the soil-water-rice plant system of a paddy field.

    PubMed

    Garnier, J; Garnier, J-M; Vieira, C L; Akerman, A; Chmeleff, J; Ruiz, R I; Poitrasson, F

    2017-01-01

    The iron isotope composition was used to investigate dissimilatory iron reduction (DIR) processes in an iron-rich waterlogged paddy soil, the iron uptake strategies of plants and its translocation in the different parts of the rice plant along its growth. Fe concentration and isotope composition (δ(56)Fe) in irrigation water, precipitates from irrigation water, soil, pore water solution at different depths under the surface water, iron plaque on rice roots, rice roots, stems, leaves and grains were measured. Over the 8.5-10cm of the vertical profiles investigated, the iron pore water concentration (0.01 to 24.3mg·l(-1)) and δ(56)Fe (-0.80 to -3.40‰) varied over a large range. The significant linear co-variation between Ln[Fe] and δ(56)Fe suggests an apparent Rayleigh-type behavior of the DIR processes. An average net fractionation factor between the pore water and the soil substrate of Δ(56)Fe≈-1.15‰ was obtained, taking the average of all the δ(56)Fe values weighted by the amount of Fe for each sample. These results provide a robust field study confirmation of the conceptual model of Crosby et al. (2005, 2007) for interpreting the iron isotope fractionation observed during DIR, established from a series of laboratories experiments. In addition, the strong enrichment of heavy Fe isotope measured in the root relative to the soil solution suggest that the iron uptake by roots is more likely supplied by iron from plaque and not from the plant-available iron in the pore water. Opposite to what was previously observed for plants following strategy II for iron uptake from soils, an iron isotope fractionation factor of -0.9‰ was found from the roots to the rice grains, pointing to isotope fractionation during rice plant growth. All these features highlight the insights iron isotope composition provides into the biogeochemical Fe cycling in the soil-water-rice plant systems studied in nature.

  7. The evolution of the electric field at a nonstationary perpendicular shock

    SciTech Connect

    Yang, Z. W.; Lu, Q. M.; Wang, S.

    2009-12-15

    Particle-in-cell simulations evidenced that supercritical, quasiperpendicular shocks are nonstationary and may suffer a self-reformation on the ion gyroscale. In this brief communication, we investigate the evolution of the electric field at a nonstationary, supercritial perpendicular shock. The contributions of the ion Lorentz, Hall, and electron pressure terms to the electric field are analyzed. During the evolution of the perpendicular shock, a new ramp may be formed in front of the old ramp, and its amplitude becomes larger and larger. At last, the new ramp exceeds the old one, and such a nonstationary process can be formed periodically. When the new ramp begins to be formed in front of the old ramp, the Hall term becomes more and more important. The electric field E{sub x} is dominated by the Hall term when the new ramp exceeds the old one. The significance of the evolution of the electric field on shock acceleration is also discussed.

  8. Evolution of quantum field, particle content, and classicality in the three stage universe

    NASA Astrophysics Data System (ADS)

    Singh, Suprit; Modak, Sujoy Kumar; Padmanabhan, T.

    2013-12-01

    We study the evolution of a quantum scalar field in a toy universe which has three stages of evolution, viz., (i) an early (inflationary) de Sitter phase (ii) radiation-dominated phase and (iii) late-time (cosmological constant dominated) de Sitter phase. Using the Schrödinger picture, the scalar field equations are solved separately for the three stages and matched at the transition points. The boundary conditions are chosen so that field modes in the early de Sitter evolves from the Bunch-Davies vacuum state. We determine the (time-dependent) particle content of this quantum state for the entire evolution of the universe and describe the various features both numerically and analytically. We also describe the quantum to classical transition in terms of a classicality parameter which tracks the particle creation and its effect on phase space correlation of the quantum field.

  9. Evolution, Abundance and Biocalcification of Calcareous Nannoplankton During the Aptian (Early Cretaceous): Causes and Consequences for C Isotopic Anomalies, Climate Changes and the Carbon Cycle.

    NASA Astrophysics Data System (ADS)

    Erba, E.

    2005-12-01

    The mid Cretaceous is marked by extreme greenhouse conditions, coeval with emplacement of large igneous provinces, C isotopic anomalies, major changes in structure and composition of the oceans, and accelerated rates in the evolutionary history of calcareous plankton. The Aptian is a crucial interval to decipher links between biotic evolution and environmental pressure: it is appealing for understanding nannofloral biocalcification and feedbacks in the carbonate system and in the global carbon cycle. Ontong Java, Manihiki and Kerguelen Plateaus formed in the Aptian affecting the ocean-atmosphere system with excess CO2, changes in Ca2+ and Mg2+ concentrations, and varying nutrient cycling. Two large C isotopic anomalies are associated with episodes of prolonged high primary productivity, changes in alkality, global warming and cooling, anoxia, speciations and extinctions in planktonic communities. Nannofossil diversity, abundance and biocalcification are quantified in continuous, complete, pelagic sections to derive biosphere-geosphere interactions at short and long time scales. The early Aptian C isotopic anomaly interrupts a speciation episode in calcareous nannoplankton paralleled by a drastic reduction in nannofossil paleofluxes culminating in the nannoconid crisis preceding the Oceanic Anoxic Event 1a and the negative C isotopic spike linked to clathrate melting presumably triggered by the thermal maximum at the onset of the mid Cretaceous greenhouse climate. No extinctions are recorded. In the early late Aptian resumption of nannoconid production and appearance of several taxa are coeval with a return to normal C isotopic values. The occurrence of calpionellids and diversified planktonic foraminifers indicate successful biocalcification and restoration of the thermocline. In the late Aptian a drop in nannofossil abundance and accelerated extinction rates are associated with another C isotopic excursion under cool conditions possibly due to a prolonged volcanic

  10. The carbon isotope biogeochemistry of methane production in anoxic sediments. 1: Field observations

    NASA Technical Reports Server (NTRS)

    Blair, Neal E.; Boehme, Susan E.; Carter, W. Dale, Jr.

    1993-01-01

    The natural abundance C-13/C-12 ratio of methane from anoxic marine and freshwater sediments in temperate climates varies seasonally. Carbon isotopic measurements of the methanogenic precursors, acetate and dissolved inorganic carbon, from the marine sediments of Cape Lookout Bight, North Carolina were used to determine the sources of the seasonal variations at that site. Movement of the methanogenic zone over an isotopic gradient within the dissolved CO2 pool appears to be the dominant control of the methane C-13/C-12 ratio from February to June. The onset of acetoclastic methane-production is a second important controlling process during mid-summer. An apparent temperature dependence on the fractionation factor for CO2-reduction may have a significant influence on the isotopic composition of methane throughout the year.

  11. Using chemical and isotopic data to quantify ionic trapping of injected carbon dioxide in oil field brines.

    PubMed

    Raistrick, Mark; Mayer, Bernhard; Shevalier, Maurice; Perez, Renee J; Hutcheon, Ian; Perkins, Ernie; Gunter, Bill

    2006-11-01

    Injection of carbon dioxide into depleted oil fields or deep saline aquifers represents one of the most promising means of long-term storage of this greenhouse gas. While the ultimate goal of CO2 injection in the subsurface is mineral storage of CO2 as carbonates, short-term (<50 year) storage of injected CO2 is most likely to be accomplished by ionic trapping of CO2 as bicarbonate ions (HCO3-) and hydrogeological trapping of molecular CO2. Here, we demonstrate a technique for quantifying ionic trapping of injected CO2 as HCO3- using geochemical data collected prior to and during 40 months of CO2 injection into a hydrocarbon reservoir at the International Energy Agency (IEA) Weyburn CO2 Monitoring and Storage Project, Saskatchewan, Canada. As a result of injection of CO2 with a low carbon isotope ratio (delta13C value), fluid and gas samples from four selected production wells showed an increase in HCO3- concentration and a decrease in delta13C values of HCO3- and CO2 over the observation period. Isotope and mass balance calculations indicate that, after 40 months of injection, approximately 80% of the HCO3- in the reservoir brines sampled from the four wells formed via dissolution and dissociation of injected CO2. This chemical and isotopic technique should be applicable to CO2 injection and storage in oil fields and in deep saline aquifers, provided there is sufficient carbon isotopic distinction between injected CO2 and baseline aquifer HCO3- and CO2.

  12. Cosmic Evolution of Scalar Fields with Multiple Vacua: Generalized DBI and Quintessence

    NASA Astrophysics Data System (ADS)

    Gao, Changjun; Shen, You-Gen

    2016-10-01

    We find a method to rewrite the equations of motion of scalar fields, generalized DBI field and quintessence, in the autonomous form for arbitrary scalar potentials. With the aid of this method, we explore the cosmic evolution of generalized DBI field and quintessence with the potential of multiple vacua. Then we find that the scalars are always frozen in the false or true vacuum in the end. Compared to the evolution of quintessence, the generalized DBI field has more times of oscillations around the vacuum of the potential. The reason for this point is that, with the increasing of speed dot {φ }, the friction term of generalized DBI field is greatly decreased. Thus the generalized DBI field acquires more times of oscillations.

  13. Boundary-value problem for a counterrotating electrical discharge in an axial magnetic field. [plasma centrifuge for isotope separation

    NASA Technical Reports Server (NTRS)

    Hong, S. H.; Wilhelm, H. E.

    1978-01-01

    An electrical discharge between two ring electrodes embedded in the mantle of a cylindrical chamber is considered, in which the plasma in the anode and cathode regions rotates in opposite directions under the influence of an external axial magnetic field. The associated boundary-value problem for the coupled partial differential equations describing the azimuthal velocity and radial current-density fields is solved in closed form. The velocity, current density, induced magnetic induction, and electric fields are presented for typical Hartmann numbers, magnetic Reynolds numbers, and geometry parameters. The discharge is shown to produce anodic and cathodic plasma sections rotating at speeds of the order 1,000,000 cm/sec for conventional magnetic field intensities. Possible application of the magnetoactive discharge as a plasma centrifuge for isotope separation is discussed.

  14. Evolution.

    ERIC Educational Resources Information Center

    Mayr, Ernst

    1978-01-01

    Traces the history of evolution theory from Lamarck and Darwin to the present. Discusses natural selection in detail. Suggests that, besides biological evolution, there is also a cultural evolution which is more rapid than the former. (MA)

  15. Equilibrium evolution in oscillating-field current-drive experiments

    NASA Astrophysics Data System (ADS)

    McCollam, K. J.; Anderson, J. K.; Blair, A. P.; Craig, D.; Den Hartog, D. J.; Ebrahimi, F.; O'Connell, R.; Reusch, J. A.; Sarff, J. S.; Stephens, H. D.; Stone, D. R.; Brower, D. L.; Deng, B. H.; Ding, W. X.

    2010-08-01

    Oscillating-field current drive (OFCD) is a proposed method of steady-state toroidal plasma sustainment in which ac poloidal and toroidal loop voltages are applied to produce a dc plasma current. OFCD is added to standard, inductively sustained reversed-field pinch plasmas in the Madison Symmetric Torus [R. N. Dexter et al., Fusion Technol. 19, 131 (1991)]. Equilibrium profiles and fluctuations during a single cycle are measured and analyzed for different relative phases between the two OFCD voltages and for OFCD off. For OFCD phases leading to the most added plasma current, the measured energy confinement is slightly better than that for OFCD off. By contrast, the phase of the maximum OFCD helicity-injection rate also has the maximum decay rate, which is ascribed to transport losses during discrete magnetic-fluctuation events induced by OFCD. Resistive-magnetohydrodynamic simulations of the experiments reproduce the observed phase dependence of the added current.

  16. Magnetic Fields In Early Stellar Evolution: Improving Mass And Age Estimates For Young Stars

    NASA Astrophysics Data System (ADS)

    Feiden, Gregory A.

    2016-11-01

    Inhibition of convection by strong magnetic fields has been implicated as a potential culprit for the observed systematic errors with stellar models predictions. I test this hypothesis using stellar evolution models that include effects of strong magnetic fields on stellar structure and the efficiency of convection. I show that models including inhibition of convection due to magnetic fields producebetter age consistency across effective temperature domains and alterthe slope of the mass-radius relation to predict an age consistentwith the HR diagram.

  17. Model for the Coupled Evolution of Subsurface and Coronal Magnetic Fields in Solar Active Regions

    NASA Astrophysics Data System (ADS)

    van Ballegooijen, A. A.; Mackay, D. H.

    2007-04-01

    According to Babcock's theory of the solar dynamo, bipolar active regions are Ω-shaped loops emerging from a toroidal field located near the base of the convection zone. In this paper, a mean field model for the evolution of a twisted Ω-loop is developed. The model describes the coupled evolution of the magnetic field in the convection zone and the corona after the loop has fully emerged into the solar atmosphere. Such a coupled evolution is required to fully understand what happens to the coronal and subsurface fields as magnetic flux cancels at polarity inversion lines on the photosphere. The jump conditions for the magnetic field at the photosphere are derived from the magnetic stress balance between the convection zone and corona. The model reproduces the observed spreading of active region magnetic flux over the solar surface. At polarity inversion lines, magnetic flux submerges below the photosphere, but the component of magnetic field along the inversion line cannot submerge, because the field in the upper convection zone is nearly radial. Therefore, magnetic shear builds up in the corona above the inversion line, which eventually leads to a loss of equilibrium of the coronal fields and the ``lift-off'' of a coronal flux rope. Fields that submerge are transported back to the base of the convection zone, leading to the repair of the toroidal flux rope. Following Martens and Zwaan, interactions between bipoles are also considered.

  18. APPLICATION OF STABLE CARBON AND HYDROGEN ISOTOPIC TECHNIQUES FOR MONITORING BIODEGRADATION OF MTBE IN THE FIELD

    EPA Science Inventory


    A significant challenge in environmental studies is to determine the onset and extent of MTBE bioremediation at an affected site, which may involve indirect approaches such as microcosm verification of microbial activities at a given site. Stable isotopic fractionation is cha...

  19. Field evidence of beach profile evolution toward equilibrium

    NASA Astrophysics Data System (ADS)

    Ludka, B. C.; Guza, R. T.; O'Reilly, W. C.; Yates, M. L.

    2015-11-01

    An equilibrium framework is used to describe the evolution of the cross-shore profile of five beaches (medium grain size sand) in southern California. Elevations were observed quarterly on cross-shore transects extending from the back beach to 8 m depth, for 3-10 years. Transects spaced 100 m in the alongshore direction are alongshore averaged into nineteen 700-900 m long sections. Consistent with previous observations, changes about the time average profile in many sections are captured by the first mode empirical orthogonal function (EOF). The first EOF poorly describes sections with hard substrate (less than roughly 80% sandy bottom) and also fails near the head of a submarine canyon and adjacent to an inlet. At the 12 well-described sections, the time-varying amplitude of the first EOF, the beach state A, describes the well-known seasonal sand exchange between the shoreline and offshore (roughly between 4 and 7 m depth). We show that the beach state change rate dA/dt depends on the disequilibrium between the present state A and wave conditions, consistent with the equilibrium concepts of Wright and Short (1984) and Wright et al. (1985). Empirically determined, optimal model coefficients using the framework of Yates et al. (2009a, 2011) vary between sections, but a single set of globally optimized values performs almost as well. The model implements equilibrium concepts using ad hoc assumptions and empirical parameter values. The similarity with observed profile change at five southern California beaches supports the underlying model equilibrium hypotheses, but for unknown reasons the model fails at Duck, NC.

  20. Spatio-temporal evolution of the Tuxtla Volcanic Field

    NASA Astrophysics Data System (ADS)

    Kobs Nawotniak, S. E.; Espindola, J.; Godinez, L.

    2010-12-01

    Mapping of the Tuxtla Volcanic Field (TVF), located in Veracruz, Mexico, through the use of digital elevation models, aerial photography, and field confirmation has found 353 distinct cones, 4 large composite volcanoes, and 42 maars. Eruptive activity in the TVF began in the late Miocene, underwent a quiescent period approximately 2.6-0.8 Ma, and continues into historic times with the most recent eruption occurring at San Martín Tuxtla volcano in 1793. The covariance of the minimum cone separation in the TVF indicates that, despite the influence of clear vent alignments following regional faulting trends, the field as a whole is anticlustered. Dividing the cones by morphometric age shows that while the older cones have an anti-clustered distribution, the younger cones (<50 Ka) are clustered. The younger cones display a stronger spatial association with the Anegada fault than their predecessors, are more likely to form in aligned groups of similarly-sized cones, and are clustered in two areas: the area immediately surrounding San Martín Tuxtla and an area approximately 3 km east of Laguna Catemaco. These areas of concentrated volcanism roughly correspond to the locations of two gravity anomalies previously identified in the area. While the average height/width ratio is equal between the two clusters, the cones in the eastern group are significantly smaller than their counterparts in the western group. The maars of the TVF are mostly located within the younger volcanic series, west of Laguna Catemaco, and have an anticlustered distribution; many of the maars are evenly spaced along curved lines, where they are weakly grouped according to crater diameter. Results indicate volcanism TVF has undergone continued spatial restriction over time, concentrating in the western half of the TVF with the onset of the eruption of the younger volcanic series 0.8 Ma and further contracting along the principle fault system within the last 50 Ka.

  1. Peculiarities of the time evolution of magnetoresistance of granular HTSC in a constant applied magnetic field

    NASA Astrophysics Data System (ADS)

    Balaev, D. A.; Dubrovskiy, A. A.; Shaykhutdinov, K. A.; Popkov, S. I.; Petrov, M. I.

    2008-08-01

    The time evolution of the magnetoresistance of bulk YBCO + CuO composites at T=4.2 K in constant applied magnetic fields was studied to clarify the mechanism of hysteretic behavior of magnetoresistance R(H) of granular HTSC. The composites represent "model" granular HTSC with weakened Josephson coupling between superconducting (YBCO) crystallites. It was found for the first time that on the ascending branch of R(H) dependence, the resistance at H=const decreased with time while on the descending branch, the resistance increased with time in an applied constant magnetic field. In the range of low magnetic fields (below the minimum point of the descending branch of the R(H) dependence), the resistance at H=const decreased again. Similar measurements performed on pure polycrystalline YBCO at T=77.4 K have shown that the behavior of evolution of resistance with time is similar to that observed for the composite. This proves the peculiarity of time evolution of magnetoresistance to be a common feature of granular HTSCs. The behavior revealed is well described by the model of granular HTSC, where the intergrain media is in an effective magnetic field which is the superposition of the external field and the field induced by superconducting grains. The time evolution of resistance reflects the time relaxation of magnetization of HTSC grains due to the intragrain flux creep processes.

  2. Evolution of vortex-surface fields in transitional boundary layers

    NASA Astrophysics Data System (ADS)

    Yang, Yue; Zhao, Yaomin; Xiong, Shiying

    2016-11-01

    We apply the vortex-surface field (VSF), a Lagrangian-based structure-identification method, to the DNS database of transitional boundary layers. The VSFs are constructed from the vorticity fields within a sliding window at different times and locations using a recently developed boundary-constraint method. The isosurfaces of VSF, representing vortex surfaces consisting of vortex lines with different wall distances in the laminar stage, show different evolutionary geometries in transition. We observe that the vortex surfaces with significant deformation evolve from wall-parallel planar sheets through hairpin-like structures and packets into a turbulent spot with regeneration of small-scale hairpins. From quantitative analysis, we show that a small number of representative or influential vortex surfaces can contribute significantly to the increase of the drag coefficient in transition, which implies a reduced-order model based on VSF. This work has been supported in part by the National Natural Science Foundation of China (Grant Nos. 11472015, 11522215 and 11521091), and the Thousand Young Talents Program of China.

  3. Isotopic and chemical evidence concerning the genesis and contamination of basaltic and rhyolitic magma beneath the Yellowstone Plateau Volcanic Field

    USGS Publications Warehouse

    Hildreth, W.; Halliday, A.N.; Christiansen, R.L.

    1991-01-01

    Since 2.2 Ma, the Yellowstone Plateau Volcanic Field has produced ~6000 km3 of rhyolite tuffs and lavas in >60 separate eruptions, as well as ~100 km3 of tholeiitic basalt from >50 vents peripheral to the silicic focus. Intermediate eruptive products are absent. Early postcollapse rhyolites show large shifts in Nd, Sr, Pb, and O isotopic composition caused by assimilation of roof rocks and hydrothermal brines during collapse and resurgence. Younger intracaldera rhyolite lavas record partial isotopic recovery toward precaldera ratios. Thirteen extracaldera rhyolites show none of these effects and have sources independent of the subcaldera magma system. Contributions from the Archaean crust have extreme values and wide ranges of Nd-, Sr, and Pb-isotope ratios, but Yellowstone rhyolites have moderate values and limited ranges. This requires their deep-crustal sources to have been pervasively hybridized by distributed intrusion of Cenozoic basalt, most of which was probably contemporaneous with the Pliocene and Quaternary volcanism. Most Yellowstone basalts had undergone cryptic clinopyroxene fractionation in the lower crust or crust-mantle transition zone and, having also ascended through or adjacent to crustal zones of silicic-magma generation, most underwent some crustal contamination. -from Authors

  4. TESTING MODELS OF MAGNETIC FIELD EVOLUTION OF NEUTRON STARS WITH THE STATISTICAL PROPERTIES OF THEIR SPIN EVOLUTIONS

    SciTech Connect

    Zhang Shuangnan; Xie Yi

    2012-10-01

    We test models for the evolution of neutron star (NS) magnetic fields (B). Our model for the evolution of the NS spin is taken from an analysis of pulsar timing noise presented by Hobbs et al.. We first test the standard model of a pulsar's magnetosphere in which B does not change with time and magnetic dipole radiation is assumed to dominate the pulsar's spin-down. We find that this model fails to predict both the magnitudes and signs of the second derivatives of the spin frequencies ({nu}-double dot). We then construct a phenomenological model of the evolution of B, which contains a long-term decay (LTD) modulated by short-term oscillations; a pulsar's spin is thus modified by its B-evolution. We find that an exponential LTD is not favored by the observed statistical properties of {nu}-double dot for young pulsars and fails to explain the fact that {nu}-double dot is negative for roughly half of the old pulsars. A simple power-law LTD can explain all the observed statistical properties of {nu}-double dot. Finally, we discuss some physical implications of our results to models of the B-decay of NSs and suggest reliable determination of the true ages of many young NSs is needed, in order to constrain further the physical mechanisms of their B-decay. Our model can be further tested with the measured evolutions of {nu}-dot and {nu}-double dot for an individual pulsar; the decay index, oscillation amplitude, and period can also be determined this way for the pulsar.

  5. Magicity of the Ca52 and Ca54 isotopes and tensor contribution within a mean-field approach

    NASA Astrophysics Data System (ADS)

    Grasso, Marcella

    2014-03-01

    I investigate the magicity of the isotopes Ca52 and Ca54, which was recently confirmed by two experimental measurements, and relate it to like-particle and neutron-proton tensor effects within a mean-field description. By analyzing Ca isotopes, it is shown that the like-particle tensor contribution induces shell effects that render these nuclei more magic than would be predicted by neglecting it. In particular, such induced shell effects are stronger in the Ca52 nucleus, and the single-particle gaps are increased in both isotopes due to the tensor force. By studying N =32 and N =34 isotones, neutron-proton tensor effects may be isolated and their role analyzed. It is shown that neutron-proton tensor effects lead to increasing N =32 and N =34 gaps, when going along isotonic chains, from Fe58 to Ca52 and from Fe60 to Ca54, respectively. Mean-field calculations are perfomed by employing one Skyrme parameter set, which was introduced in a previous work by fitting the tensor parameters together with the spin-orbit strength. The signs and values of the tensor strengths are thus checked within this specific application. The obtained results indicate that the employed parameter set, even if generated with a partial adjustment of the parameters of the force, leads to the correct shell behavior and provides, in particular, a description of the magicity of Ca52 and Ca54 within a pure mean-field picture with the effective two-body Skyrme interaction.

  6. Stable and radioactive carbon in forest soils of Chhattisgarh, Central India: Implications for tropical soil carbon dynamics and stable carbon isotope evolution

    NASA Astrophysics Data System (ADS)

    Laskar, A. H.; Yadava, M. G.; Ramesh, R.

    2016-06-01

    Soils from two sites viz. Kotumsar and Tirathgarh, located ∼5 km apart in a tropical reserve forest (18°52‧N, 81°56‧E) in central India, have been explored for soil organic carbon (SOC) content, its mean residence time (MRT) and the evolution of stable carbon isotopic composition (δ13C). SOC stocks in the upper 30 cm of soil layers are ∼5.3 kg/m2 and ∼3.0 kg/m2; in the upper 110 m are ∼10.7 kg/m2 and ∼7.8 kg/m2 at Kotumsar and Tirathgarh, respectively. SOC decreases with increasing depth. Bomb carbon signature is observed in the upper ∼10 cm. Organic matters in the top soil layers (0-10 cm) have MRTs of the order of a century which increases gradually with depths, reaching 3500-5000 yrs at ∼100 cm. δ13C values of SOC increase with depth, the carbon isotopic fractionation is obtained to be -1.2‰ and -3‰ for soils at Kotumsar and Tirathgarh, respectively, confirmed using Rayleigh isotopic fractionation model. The evolution of δ13C in soils was also studied using a modified Rayleigh fractionation model incorporating a continuous input into the reservoir: the depth profiles of δ13C for SOC show that the input organic matter from surface into the deeper soil layers is either insignificant or highly labile and decomposes quite fast in the top layers, thus making little contribution to the residual biomasses of the deeper layers. This is an attempt to understand the distillation processes that take place in SOC, assess the extent of decomposition by microbes and effect of percolation of fresh organic matter into dipper soil layers which are important for stable isotope based paleoclimate and paleovegetation reconstruction and understanding the dynamics of organic carbon in soils.

  7. The redshift evolution of clustering in the Hubble Deep Field

    NASA Astrophysics Data System (ADS)

    Magliocchetti, M.; Maddox, S. J.

    1999-07-01

    We present a correlation function analysis for the catalogue of photometric redshifts obtained from the Hubble Deep Field image by Fernandez-Soto, Lanzetta & Yahil. By dividing the catalogue into redshift bins of width Deltaz=0.4 we measured the angular correlation function w(theta) as a function of redshift up to z~4.8. From these measurements we derive the trend of the correlation length r_0. We find that r_0(z) is roughly constant with look-back time up to z~=2, and then increases to higher values at z>~2.4. We estimate the values of r_0, assuming xi(r,z)=[rr_0(z)]^-gamma, gamma=1.8 and various geometries. For Omega_0=1 we find r_0(z=3)~=7.00+/-4.87h^-1Mpc, in good agreement with the values obtained from analysis of the Lyman break galaxies.

  8. Silicon isotope fractionation during silica precipitation from hot-spring waters: Evidence from the Geysir geothermal field, Iceland

    NASA Astrophysics Data System (ADS)

    Geilert, Sonja; Vroon, Pieter Z.; Keller, Nicole S.; Gudbrandsson, Snorri; Stefánsson, Andri; van Bergen, Manfred J.

    2015-09-01

    This study aims to explore the extent and controls of silicon isotope fractionation in hot spring systems of the Geysir geothermal area (Iceland), a setting where sinter deposits are actively formed. The δ30Si values of dissolved silica measured in the spring water and sampling sites along outflowing streams, covering a temperature range between 20 and 100 °C, were relatively constant around +0.2‰, whereas the δ30Si signatures of associated opaline sinters from the streambeds were between -0.1‰ and -4.0‰, becoming progressively more negative in the downstream parts of the aprons. Here, the deposited sinters represent some of the most 30Si depleted abiotically produced terrestrial materials documented to date. Compared to the data reported for Icelandic basalts, considered to be the source of the silicon, the δ30Si values of the fluids and sinter deposits are higher and lower, respectively. The resulting values for apparent solid-water isotope fractionation (Δ30Sisolid-water) decreased with decreasing temperature from ca. -0.7‰ at ∼80 °C to -3.7‰ at ∼20 °C, locally down to -4.4‰. This temperature relationship was reproducible in each of the investigated hot spring systems and is qualitatively consistent with recent findings in laboratory experiments on kinetic fractionation for a flowing fluid. However, the apparent fractionation magnitudes observed in the field are ca. -2‰ more negative and thus significantly larger. We infer that solid-water silicon isotope fractionation during deposition of amorphous silica from a flowing fluid correlates inversely with temperature, but is essentially a function of the precipitation rate, such that the fractionation factor decreases with increasing rate. As an important corollary, the effective fractionation behavior during precipitation of silica from saturated solutions is a system-dependent feature, which should be taken into account when using silicon isotopes for paleo-environmental reconstructions.

  9. Isotopic and geochemical constraints on the origin and evolution of postcollapse rhyolites in the Valles Caldera, New Mexico

    NASA Astrophysics Data System (ADS)

    Spell, Terry L.; Kyle, Philip R.; Thirlwall, Matthew F.; Campbell, Andrew R.

    1993-11-01

    Ring-fracture rhyolites of the Valles Caldera (VC) were examined to determine the evolution of the magma system following eruption of the upper Bandelier Tuff (UBT) and subsequent caldera collapse. Volcanism began with eruption of Deer Canyon (DC), Redondo Creek, and Del Medio (DM) rhyolites during the interval 1140-1133 ka. Quartz delta O-18 for the UBT, (average +8.3 %), DC (+7.9 %), and DM (+8.7 %) rhyolites indicate no significant lowering of delta O-18 following caldera collapse. In contrast, DM rhyolites record low epsilon(sub Nd) of -3.6 to -3.8 relative to the UBT (-2.7) and variable initial 87-Sr/86-Sr (0.70923-0.71307). Del Abrigo (DA) and Santa Rosa I rhyolites (973-915 ka) exhibit lower epsilon(Sub Nd) (-4.4 to -4.6) and initial 87-Sr/86-Sr (0.70707-0.71009), as well as shifts in compatible and incompatible trace element ratios. Seco, San Luis, and Santa Rosa II rhyolites (800-787 ka) have epsilon(Sub Nd) (-4.0 to -4.3) similar to the 973 to 915 ka rhyolites but lower initial 87-Sr/86-Sr (0.70616-0.70747). After a hiatus of 230 ka, San Antonio (SA), South Mountain (SM), and La Jara (LJ) rhyolites (557-521 ka) were erupted with epsilon(Sub Nd) of -3.7 to 4.3, distinctly lower initial 87-Sr/86-Sr of 0.70513-0.70553 and less evolved trace element compositions. The youngest rhyolites, the El Cajete-Banco Bonito group (EC-BB) (300-170 ka) are petrographically and geochemically distinct with the highest epsilon(Sub Nd) (-2.7 to -3.0) and the lowest initial 87-Sr/86-Sr (0.70464-0.70478) of postcollapse rhyolites. The isotopic data indicate that Valles rhyolites are not direct melts of Proterozoic basement (epsilon(Sub Nd) of -10 to -15) and indicate a significant mantle-derived (basaltic) component. Elevated initial 87-Sr/86-Sr is restricted to rhyolites depleted in Sr (less than 10 ppm) and probably reflects minor upper crustal assimilation. Calculated magma delta 0-18 values (+6.6 to +7.0 %) indicate no substantial supracrustal sediment in the source region

  10. Sulfur Isotopes as Indicators of Bacterial Sulfate Reduction Processes Influencing Field Scale Uranium Bioremediation

    NASA Astrophysics Data System (ADS)

    Druhan, J. L.; Conrad, M. E.; Williams, K. H.; N'guessan, L.; Long, P. E.; Hubbard, S. S.

    2007-12-01

    An in-situ acetate amendment at a DOE Uranium Mill Tailings Remedial Action (UMTRA) site near Rifle, CO demonstrated successful reduction of aqueous U(VI), to less soluble U(IV) through stimulated microbial activity. U(VI) reduction rates were highest during iron reduction and decreased with the onset of sulfate reduction. However, sustained U(IV) attenuation was observed following subsequent termination of the acetate amendment. These findings illustrate the importance of the transition between iron and sulfate reducing conditions in stimulating bioreduction of uranium. The sulfur isotope compositions of sulfate and sulfide were measured through this transition in order to explore the utility of these data in tracking the extent of microbial sulfate reduction and to assess the stability of sulfide precipitates. Samples for isotopic analyses and aqueous measurements of sulfate, ferrous iron, U(VI) and acetate were collected in one background well and three monitoring wells down-gradient of the acetate injection. Results show an increase of up to 7‰ in the δ34S of sulfate at the onset of sulfate reduction, followed by a return to background δ34S values of -8‰ following cessation of the acetate amendment. The δ34S values of sulfide increased from roughly -20‰ at the onset of sulfate reduction to a maximum of -0.8‰ during peak sulfate removal, followed by a gradual return to values of roughly -28‰ upon cessation of the acetate amendment. These data present a unique perspective on the processes governing the bioreduction experiment in that the sulfate isotopes are a function of both transport and mixing processes, whereas the sulfide isotopes represent biogenic sulfide that is rapidly removed from the aqueous phase. Thus a comparable enrichment in sulfate isotopic data noted in the closest and furthest wells from the injection gallery suggest bioreduction in both of these locations, while a larger increase in sulfide isotopic values in the closest well

  11. Magnetic-field effects in transitions of X Li molecules (X: even isotopes of group II atoms)

    SciTech Connect

    Gopakumar, Geetha; Abe, Minori; Hada, Masahiko; Kajita, Masatoshi

    2011-10-15

    We analyze the Zeeman shift in the (v,N)=(0,0){yields}(1,0) transition frequency of X Li molecules (X: even isotopes of group II atoms), which is of interest in metrology. The Zeeman shift in the transition frequency between stretching states is found to be less than 1 mHz with a magnetic field of 1 G. X {sup 6}Li molecules are more advantageous than X {sup 7}Li molecules for measuring the transition frequency without the Zeeman shift because of the smaller g factor of the Li nuclear spin.

  12. The evolution of the North Atlantic Oscillation for the last 700 years inferred from D/H isotopes in the sedimentary record of Lake Azul (Azores archipelago, Portugal).

    NASA Astrophysics Data System (ADS)

    Rubio de Ingles, Maria Jesus; Shanahan, Timothy M.; Sáez, Alberto; José Pueyo, Juan; Raposeiro, Pedro M.; Gonçalves, Vitor M.; Hernández, Armand; Trigo, Ricardo; Sánchez López, Guiomar; Francus, Pierre; Giralt, Santiago

    2015-04-01

    The δD plant leaf wax variations provide insights on precipitation and evaporation evolution through time. This proxy has been used to reconstruct the temporal evolution of the North Atlantic Oscillation (NAO) climate mode since this mode rules most of the climate variability in the central North Atlantic area. A total lipid extraction preparation and the correspondent analyses in the IRMS have been done for 100 samples from the uppermost 1.5 m of the sedimentary infill of Lake Azul (Azores archipelago, Portugal). According to the chronological model, established by 210Pb profile and 4 AMS 14C dates, this record contains the environmental history of the last 730 years. The reconstructed precipitation variations obtained from D/H isotope values, suggest that this area has suffered significant changes in its distribution and intensity rainfall patterns through time. The end of the Medieval Climate Anomaly (MCA, 1100- 1300 AD) is characterized by a progressive enrichmentof D/H isotope values which meant decreasing arid conditions. These rainfalls' increase might be interpreted by a shift from positive to negative dominance of the NAO. The Little Ice Age (LIA, 1300 - 1850 AD) was characterized by two humid periods (1300- 1550 AD and 1650 - 1850 AD) separated by a relatively dry period. These precipitation oscillations are clearly visible by marked changes in the D/H isotope values. The LIA was followed by the persistence of the positive NAO mode, exhibited by the depletion of the D/H isotope signal, which indicated an overall decrease of the precipitation in the central North Atlantic area. Surprisingly, the D/H of the last 100 years, characterized by the present global warming and a persistent positive NAO mode, display large fluctuations most possibly linked to an enhancement of the storminess which is in concordance with the data fluctuations observed in the instrumental record for the last 80 years in the archipelago. This climatic evolution is in accordance with

  13. Tertiary stress field evolution in Sistan (Eastern Iran)

    NASA Astrophysics Data System (ADS)

    Michael, Jentzer; Marc, Fournier; Philippe, Agard; Jafar, Omrani

    2016-04-01

    The Sistan orogenic belt in eastern Iran, near the boundary with Afghanistan, results from the closure of a branch of the Neo-Thethys: the Sistan Ocean. It was divided by Tirrul et al. (1983) in five main units: the Lut (1) and Afghan (2) continental blocks where basement is exposed; the Neh (3) and Ratuk (4) complexes which display ophiolitic rocks weakly and highly (HP-BT) metamorphosed, respectively, and the Sefidabeh basin lying over these complexes and interpreted as a fore-arc basin. Sistan is bordered by the Makran and Zagros (formed by the closure of the Neo-Tethys) to the south and by the Kopet Dagh (formed by the closure of Paleo-Tethys) to the North. The aim of this study is to fill the gap between preliminary studies about the overall structure of the Sistan Suture Zone and recent investigations of active tectonics in the region (e.g., Walker et al., 2004 and 2006 a and b). Questions herein addressed are: (1) how are stresses transfered throughout Iran from the Zagros to the Sistan belts? (2) Did the Zagros, Makran and Sistan belts evolve independently through time, or were they mechanically coupled? In order to answer these questions, we have determined paleostress evolution in the Sistan, using a direct inversion method for 42 microtectonic sites in almost all lithologies of the Neh complex and the Sefidabeh basin. We find three successive directions of compression: (1) 87°N for the oldest deformation stage dated of the Late Miocene, (2) 59°N for the intermediate stage probably dated of the Early Pliocene, and (3) 26°N for the youngest stage dated of the Plio-Quaternary. A counterclockwise rotation of about 60° of the main stress (σ1) in less than 10 Ma is therefore documented in Sistan. These same three stages of deformation were also documented by several microtectonic studies in Iran, especially in Makran and Zagros. The direction of the youngest compression is very homogeneous indicating that the mountain belts and continental blocks of Iran

  14. Climatic evolution of Marine Isotope Stage 5 and particularly the Eemian reconstructed from precisely dated speleothems from western Germany

    NASA Astrophysics Data System (ADS)

    Scholz, Denis; Hoffmann, Dirk L.; Spötl, Christoph; Hopcroft, Peter; Jochum, Klaus Peter; Richter, Detlev K.

    2015-04-01

    We present high-resolution δ18O, δ13C and trace element profiles for three stalagmites from western Germany, which grew during Marine Isotope Stage (MIS) 5. All stalagmites were precisely dated by MC-ICPMS 230Th/U-dating. Stalagmite HBSH-1 from Hüttenbläserschachthöhle grew between 130 and 80 ka and provides a climate record with decadal to centennial resolution. The other two stalagmites grew faster than HBSH 1, but their growth phases are shorter. Stalagmite HBSH 5 grew between 129 and 122 ka, whereas stalagmite BR 5 grew between 126 and 122 ka. The record of HBSH 1 shows four growth interruptions coinciding with Greenland Stadials (GS) 21, 22, 24, 25, and 26. This shows that stalagmite growth is a very sensitive proxy for cool and dry conditions in the northern hemisphere and enables us to precisely determine the timing and duration of the GS. We interpret stalagmite δ18O values as a proxy for supra-regional temperature changes in the North Atlantic realm, which is paticularly evident from their close resemblance with the δ18O values of the NGRIP and NEEM ice core records. Stalagmite δ13C values primarily reflect changes in hydrological balance and (local) vegetation and are, thus, a proxy for terrestrial climate change in central European. The δ13C record shows three pronounced negative peaks during MIS 5, and their timing is in agreement with MIS 5e, 5c and 5a. This suggests generally warm and humid climate in central Europe during these phases. The evolution of the δ18O and δ13C values during the Eemian is not parallel. The δ18O values progressively increase from 130 ka, peak at 125 ka and subsequently show a gradual decrease. The δ13C values, in contrast, start to decrease at 123 ka, show a negative peak at 120 ka and an aprupt increase at 114 ka. This suggests that the Eemian sensu strictu lasted from 124 to 114 ka, in agreement with a marine record from the Norwegian Sea and indicates and a strong influence on central European climate from

  15. Calibrating 100 Years of Polar Faculae Measurements: Implications for the Evolution of the Heliospheric Magnetic Field

    NASA Astrophysics Data System (ADS)

    Muñoz-Jaramillo, Andrés; Sheeley, Neil R.; Zhang, Jie; DeLuca, Edward E.

    2012-07-01

    Although the Sun's polar magnetic fields are thought to provide important clues for understanding the 11 year sunspot cycle, including the observed variations of its amplitude and period, the current database of high-quality polar field measurements spans relatively few sunspot cycles. In this paper, we address this deficiency by consolidating Mount Wilson Observatory polar faculae data from four data reduction campaigns, validating it through a comparison with facular data counted automatically from Michelson Doppler Imager (MDI) intensitygrams, and calibrating it against polar field measurements taken by the Wilcox Solar Observatory and average polar field and total polar flux calculated using MDI line-of-sight magnetograms. Our results show that the consolidated polar facular measurements are in excellent agreement with both polar field and polar flux estimates, making them an ideal proxy to study the evolution of the polar magnetic field. Additionally, we combine this database with sunspot area measurements to study the role of the polar magnetic flux in the evolution of the heliospheric magnetic field (HMF). We find that there is a strong correlation between HMF and polar flux at solar minimum and that, taken together, polar flux and sunspot area are better at explaining the evolution of the HMF during the last century than sunspot area alone.

  16. CALIBRATING 100 YEARS OF POLAR FACULAE MEASUREMENTS: IMPLICATIONS FOR THE EVOLUTION OF THE HELIOSPHERIC MAGNETIC FIELD

    SciTech Connect

    Munoz-Jaramillo, Andres; DeLuca, Edward E.; Sheeley, Neil R.; Zhang, Jie E-mail: edeluca@cfa.harvard.edu E-mail: jzhang7@gmu.edu

    2012-07-10

    Although the Sun's polar magnetic fields are thought to provide important clues for understanding the 11 year sunspot cycle, including the observed variations of its amplitude and period, the current database of high-quality polar field measurements spans relatively few sunspot cycles. In this paper, we address this deficiency by consolidating Mount Wilson Observatory polar faculae data from four data reduction campaigns, validating it through a comparison with facular data counted automatically from Michelson Doppler Imager (MDI) intensitygrams, and calibrating it against polar field measurements taken by the Wilcox Solar Observatory and average polar field and total polar flux calculated using MDI line-of-sight magnetograms. Our results show that the consolidated polar facular measurements are in excellent agreement with both polar field and polar flux estimates, making them an ideal proxy to study the evolution of the polar magnetic field. Additionally, we combine this database with sunspot area measurements to study the role of the polar magnetic flux in the evolution of the heliospheric magnetic field (HMF). We find that there is a strong correlation between HMF and polar flux at solar minimum and that, taken together, polar flux and sunspot area are better at explaining the evolution of the HMF during the last century than sunspot area alone.

  17. The δ13C evolution of cave drip water along discreet flow paths in a central Texas cave: Quantifying kinetic isotope fractionation factors

    NASA Astrophysics Data System (ADS)

    Mickler, P. J.; Carlson, P. E.; Banner, J.; Breecker, D.; Stern, L. A.; Baseman, A.

    2015-12-01

    Gaps remain in our understanding of in-cave processes that influence cave water chemistry during speleothem formation. Quantifying environmental controls on the isotopic and chemical evolution of karst groundwater would improve the accuracy of speleothem-based paleoclimate reconstructions. In this study, drip water chemical evolution along flow paths was sampled monthly at two locations in Inner Space Cavern, Texas, over a period of 8 months. In each of the two locations, cave water drips off a stalactite, flows along a flowstone and subsequently drips off a lower stalactite, allowing cave water to be sampled at two points, 1-2 meters apart, along each flow path. The chemical and isotopic evolution of drip water along its flow path shows seasonality, where 1) summer months (high cave-air pCO2) have small variations in δ13C values along the flow paths, high and relatively invariant DIC and Ca values,; and 2) winter months (low cave-air pCO2) generally have large increases in DIC δ13C values along the flow paths, lower DIC and Ca values. The magnitude of the increase in DIC δ13C values along the flow paths, <~1‰ to ~4‰, is controlled by the extent of DIC loss to CO2 degassing and calcite precipitation which is controlled by the pCO2 gradient between drip water and cave air. If the DIC loss is less than 15%, then the evolution of the δ13C value of the DIC reservoir can be modelled using a Rayleigh distillation model and equilibrium fractionation factors between (CO2(g)-HCO3-(aq)) and (CaCO3-HCO3-(aq)). As the loss of the DIC reservoir increases above 15% the DIC δ13C values become progressively higher such that the ɛ (CO2(g)-HCO3-(aq)) values needed to model the observed results change from equilibrium values of ~8‰ to non-equilibrium values up to ~25‰. The variance in magnitude of carbon isotope fractionation during CO2 degassing cannot be attributed to changes in temperature, and thus we infer significant kinetic isotope effects at higher rates of DIC

  18. Rapid evolution of analog circuits configured on a field programmable transistor array

    NASA Technical Reports Server (NTRS)

    Stoica, A.; Ferguson, M. I.; Zebulum, R. S.; Keymeulen, D.; Duong, V.; Daud, T.

    2002-01-01

    The purpose of this paper is to illustrate evolution of analog circuits on a stand-alone board-level evolvable system (SABLES). SABLES is part of an effort to achieve integrated evolvable systems. SABLES provides autonomous, fast (tens to hundreds of seconds), on-chip circuit evolution involving about 100,000 circuit evaluations. Its main components are a JPL Field Programmable Transistor Array (FPTA) chip used as transistor-level reconfigurable hardware, and a TI DSP that implements the evolutionary algorithm controlling the FPTA reconfiguration. The paper details an example of evolution on SABLES and points out to certain transient and memory effects that affect the stability of solutions obtained reusing the same piece of hardware for rapid testing of individuals during evolution.

  19. Identifying the origin and geochemical evolution of groundwater using hydrochemistry and stable isotopes in the Subei Lake basin, Ordos energy base, Northwestern China

    NASA Astrophysics Data System (ADS)

    Liu, F.; Song, X.; Yang, L.; Zhang, Y.; Han, D.; Ma, Y.; Bu, H.

    2015-01-01

    A series of changes in groundwater systems caused by groundwater exploitation in energy base have been of great concern to hydrogeologists. The research aims to identify the origin and geochemical evolution of groundwater in the Subei Lake basin under the influence of human activities. Water samples were collected, and major ions and stable isotopes (δ18O, δD) were analyzed. In terms of hydrogeological conditions and the analytical results of hydrochemical data, groundwater can be classified into three types: the Quaternary groundwater, the shallow Cretaceous groundwater and the deep Cretaceous groundwater. Piper diagram and correlation analysis were used to reveal the hydrochemical characteristics of water resources. The dominant water type of the lake water was Cl-Na type, which was in accordance with hydrochemical characteristics of inland salt lakes; the predominant hydrochemical types for groundwater were HCO3-Ca, HCO3-Na and mixed HCO3-Ca-Na-Mg types. The groundwater chemistry is mainly controlled by dissolution/precipitation of anhydrite, gypsum, halite and calcite. The dedolomitization and cation exchange are also important factors. Rock weathering is confirmed to play a leading role in the mechanisms responsible for the chemical composition of groundwater. The stable isotopic values of oxygen and hydrogen in groundwater are close to the local meteoric water line, indicating that groundwater is of modern local meteoric origin. Unlike significant differences in isotopic values between shallow groundwater and deep groundwater in the Habor Lake basin, shallow Cretaceous groundwater and deep Cretaceous groundwater have similar isotopic characteristics in the Subei Lake basin. Due to the evaporation effect and dry climatic conditions, heavy isotopes are more enriched in lake water than in groundwater. The low slope of the regression line of δ18O and δD in lake water could be ascribed to a combination of mixing and evaporation under conditions of low humidity

  20. Stable carbon isotope discrimination in rice field soil during acetate turnover by syntrophic acetate oxidation or acetoclastic methanogenesis

    NASA Astrophysics Data System (ADS)

    Conrad, Ralf; Klose, Melanie

    2011-03-01

    Rice fields are an important source for the greenhouse gas methane. In Italian rice field soil CH 4 is produced either by hydrogenotrophic and acetoclastic methanogenesis, or by hydrogenotrophic methanogenesis and syntrophic acetate oxidation when temperatures are below and above about 40-45 °C, respectively. In order to see whether these acetate consumption pathways differently discriminate the stable carbon isotopes of acetate, we measured the δ 13C of total acetate and acetate-methyl as well as the δ 13C of CO 2 and CH 4 in rice field soil that had been pre-incubated at 45 °C and then shifted to different temperatures between 25 and 50 °C. Acetate transiently accumulated to about 6 mM, which is about one-third of the amount of CH 4 produced, irrespective of the incubation temperature and the CH 4 production pathway involved. However, the patterns of δ 13C of the CH 4 and CO 2 produced were different at low (25, 30, 35 °C) versus high (40, 45, 50 °C) temperatures. These patterns were consistent with CH 4 being exclusively formed by hydrogenotrophic methanogenesis at high temperatures, and by a combination of acetoclastic and hydrogenotrophic methanogenesis at low temperatures. The patterns of δ 13C of total acetate and acetate-methyl were also different at high versus low temperatures, indicating the involvement of different pathways of production and consumption of acetate at the two temperature regimes. Isotope fractionation during consumption of the methyl group of acetate was more pronounced at low ( α = 1.010-1.025) than at high ( α = 1.0-1.01) temperatures indicating that acetoclastic methanogenesis exhibits a stronger isotope effect than syntrophic acetate oxidation. Small amounts of propionate also transiently accumulated and were analyzed for δ 13C. The δ 13C values slightly increased (by about 10‰) during production and consumption of propionate, but were not affected by incubation temperature. Collectively, our results showed distinct

  1. Nitrogen-isotope ratios of nitrate in ground water under fertilized fields, Long Island, New York

    USGS Publications Warehouse

    Flipse, W.J.; Bonner, F.T.

    1985-01-01

    Ground-water samples from two heavily fertilized sites in Suffolk County, New York, were collected through the 1978 growing season and analyzed for nitrate-N concentrations and nitrogen-isotope ratios. Six wells were at a potato farm; six were on a golf course. The purpose of this study was to determine whether the 15N/14N ratios (??15N values) of fertilizer are increased during transit from land surface to ground water to an extent which would preclude use of this ratio to distinguish agricultural from animal sources of nitrate in ground water. Ground water at both sites contained a greater proportion of 15N than the fertilizers being applied. At the potato farm, the average ??15N value of the fertilizers was 0.2???; the average ??15N value of the ground-water nitrate was 6.2???. At the golf course, the average ??15N value of the fertilizers was -5.9???, and that of ground-water nitrate was 6.5???. The higher ??15N values of ground-water nitrate are probably caused by isotopic fractionation during the volatile loss of ammonia from nitrogen applied in reduced forms (NH4+ and organic-N). The ??15N values of most ground-water samples from both areas were less than 10???, the upper limit of the range characteristic of agricultural sources of nitrate; these sources include both fertilizer nitrate and nitrate derived from increased mineralization of soil nitrogen through cultivation. Previous studies have shown that the ??15N values of nitrate derived from human or animal waste generally exceed 10???. The nitrogen-isotope ratios of fertilizer-derived nitrate were not altered to an extent that would make them indistinguishable from animal-waste-derived nitrates in ground water.Ground-water samples from two heavily fertilized sites in Suffolk County, New York, were collected through the 1978 growing season and analyzed for nitrate-N concentrations and nitrogen-isotope ratios. Six wells were at a potato farm; six were on a golf course. The purpose of this study was to

  2. Evolution and field application of a plankton imaging system

    NASA Astrophysics Data System (ADS)

    Remsen, Andrew Walker

    Understanding the processes controlling the distribution and abundance of zooplankton has been a primary concern of oceanographers and has driven the development of numerous technologies to more accurately quantify these parameters. This study investigates the potential of a new plankton imaging sensor, the shadowed image particle profiling and evaluation recorder (SIPPER), that I helped develop at the University of South Florida, to address that concern. In the first chapter, results from the SIPPER are compared against concurrently sampling plankton nets and the optical plankton counter (OPC), the most widely used optical zooplankton sampling sensor in the field. It was found that plankton nets and the SIPPER sampled robust and hard-bodied zooplankton taxa similarly while nets significantly underestimated the abundance of fragile and gelatinous taxa imaged by the SIPPER such that nets might underestimate zooplankton biomass by greater than 50%. Similarly, it was determined that the OPC misses greater than a quarter of resolvable particles due to coincident counting and that it can not distinguish between zooplankton and other abundant suspended particles such as marine snow and Trichodesmium that are difficult to quantify with traditional sampling methods. Therefore the standard method of using net samples to ground truth OPC data should be reevaluated. In the second chapter, a new automated plankton classification system was utilized to see if it was possible to use machine learning methods to classify SIPPER-imaged plankton from a diverse subtropical assemblage on the West Florida Shelf and describe their distribution during a 24 hour period. Classification accuracy for this study was similar to that of other studies in less diverse environments and similar to what could be expected by a human expert for a complex dataset. Fragile plankton taxa such as larvaceans, hydromedusae, sarcodine protoctists and Trichodesmium were found at significantly higher

  3. ISOTOPE SEPARATORS

    DOEpatents

    Bacon, C.G.

    1958-08-26

    An improvement is presented in the structure of an isotope separation apparatus and, in particular, is concerned with a magnetically operated shutter associated with a window which is provided for the purpose of enabling the operator to view the processes going on within the interior of the apparatus. The shutier is mounted to close under the force of gravity in the absence of any other force. By closing an electrical circuit to a coil mouated on the shutter the magnetic field of the isotope separating apparatus coacts with the magnetic field of the coil to force the shutter to the open position.

  4. Phase-Field Modeling of Microstructure Evolution in Electron Beam Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Gong, Xibing; Chou, Kevin

    2015-05-01

    In this study, the microstructure evolution in the powder-bed electron beam additive manufacturing (EBAM) process is studied using phase-field modeling. In essence, EBAM involves a rapid solidification process and the properties of a build partly depend on the solidification behavior as well as the microstructure of the build material. Thus, the prediction of microstructure evolution in EBAM is of importance for its process optimization. Phase-field modeling was applied to study the microstructure evolution and solute concentration of the Ti-6Al-4V alloy in the EBAM process. The effect of undercooling was investigated through the simulations; the greater the undercooling, the faster the dendrite grows. The microstructure simulations show multiple columnar-grain growths, comparable with experimental results for the tested range.

  5. Geochemical and stable isotopic evolution of the Guarani Aquifer System in the state of São Paulo, Brazil

    NASA Astrophysics Data System (ADS)

    Sracek, Ondra; Hirata, Ricardo

    2002-09-01

    The purpose of this report is to explain geochemical and stable isotopes trends in the Brazilian unit of the Guarani Aquifer System (Botucatu and Piramboia aquifers) in São Paulo State, Brazil. Trends of dissolved species concentrations and geochemical modeling indicated a significant role of cation exchange and dissolution of carbonates in downgradient evolution of groundwater chemistry. Loss of calcium by the exchange for sodium drives dissolution of carbonates and results in Na-HCO3 type of groundwater. The cation-exchange front moves downgradient at probably much slower rate compared to the velocity of groundwater flow and at present is located near to the cities of Sertãozinho and Águas de Santa Barbara (wells PZ-34 and PZ-148, respectively) in a shallow confined area, 50-70 km from the recharge zone. Part of the sodium probably enters the Guarani Aquifer System. together with chloride and sulfate from the underlying Piramboia Formation by diffusion related to the dissolution of evaporates like halite and gypsum. High concentrations of fluorine (up to 13.3 mg/L) can be explained by dissolution of mineral fluoride also driven by cation exchange. However, it is unclear if the dissolution takes place directly in the Guarani Aquifer System or in the overlying basaltic Serra Geral Formation. There is depletion in δ2H and δ18O values in groundwater downgradient. Values of δ13C(DIC) are enriched downgradient, indicating dissolution of calcite under closed system conditions. Values of δ13C(DIC) in deep geothermal wells are very high (>-6.0‰) and probably indicate isotopic exchange with carbonates with δ13C about -3.0‰. Future work should be based on evaluation of vertical fluxes and potential for penetration of contamination to the Guarani Aquifer System. Résumé. Cet article a pour objet d'expliquer l'évolution de la géochimie et des isotopes stables dans l'unité brésilienne du système aquifère du Guarani (aquifères de Botucatu et Piramboia), dans

  6. Field Effect Enhanced Hydrogen Evolution Reaction of MoS2 Nanosheets.

    PubMed

    Wang, Junhui; Yan, Mengyu; Zhao, Kangning; Liao, Xiaobin; Wang, Peiyao; Pan, Xuelei; Yang, Wei; Mai, Liqiang

    2017-02-01

    Hydrogen evolution reaction performance of MoS2 can be enhanced through electric-field-facilitated electron transport. The best catalytic performance of a MoS2 nanosheet can achieve an overpotential of 38 mV (100 mA cm(-2) ) at gate voltage of 5 V, the strategy of utilizing the electric field can be used in other semiconductor materials to improve their electrochemical catalysis for future relevant research.

  7. A constraint-free phase field model for ferromagnetic domain evolution

    PubMed Central

    Yi, Min; Xu, Bai-Xiang

    2014-01-01

    A continuum constraint-free phase field model is proposed to simulate the magnetic domain evolution in ferromagnetic materials. The model takes the polar and azimuthal angles (ϑ1,ϑ2), instead of the magnetization unit vector m(m1,m2,m3), as the order parameters. In this way, the constraint on the magnetization magnitude can be exactly satisfied automatically, and no special numerical treatment on the phase field evolution is needed. The phase field model is developed from a thermodynamic framework which involves a configurational force system for ϑ1 and ϑ2. A combination of the configurational force balance and the second law of thermodynamics leads to thermodynamically consistent constitutive relations and a generalized evolution equation for the order parameters (ϑ1,ϑ2). Beneficial from the constraint-free model, the three-dimensional finite-element implementation is straightforward, and the degrees of freedom are reduced by one. The model is shown to be capable of reproducing the damping-dependent switching dynamics, and the formation and evolution of domains and vortices in ferromagnetic materials under the external magnetic or mechanical loading. Particularly, the calculated out-of-plane component of magnetization in a vortex is verified by the corresponding experimental results, as well as the motion of the vortex under a magnetic field. PMID:25383036

  8. A constraint-free phase field model for ferromagnetic domain evolution.

    PubMed

    Yi, Min; Xu, Bai-Xiang

    2014-11-08

    A continuum constraint-free phase field model is proposed to simulate the magnetic domain evolution in ferromagnetic materials. The model takes the polar and azimuthal angles (ϑ1,ϑ2), instead of the magnetization unit vector m(m1,m2,m3), as the order parameters. In this way, the constraint on the magnetization magnitude can be exactly satisfied automatically, and no special numerical treatment on the phase field evolution is needed. The phase field model is developed from a thermodynamic framework which involves a configurational force system for ϑ1 and ϑ2. A combination of the configurational force balance and the second law of thermodynamics leads to thermodynamically consistent constitutive relations and a generalized evolution equation for the order parameters (ϑ1,ϑ2). Beneficial from the constraint-free model, the three-dimensional finite-element implementation is straightforward, and the degrees of freedom are reduced by one. The model is shown to be capable of reproducing the damping-dependent switching dynamics, and the formation and evolution of domains and vortices in ferromagnetic materials under the external magnetic or mechanical loading. Particularly, the calculated out-of-plane component of magnetization in a vortex is verified by the corresponding experimental results, as well as the motion of the vortex under a magnetic field.

  9. Functional evolution of scalar fields in bounded one-dimensional regions

    NASA Astrophysics Data System (ADS)

    Barbero G, J. Fernando; Margalef-Bentabol, Juan; Villaseñor, Eduardo J. S.

    2017-03-01

    We discuss the unitarity of the quantum evolution between arbitrary Cauchy surfaces of a 1  +  1 dimensional free scalar field defined on a bounded spatial region and subject to several types of boundary conditions including Dirichlet, Neumann and Robin.

  10. Role of electric fields in the MHD evolution of the kink instability

    NASA Astrophysics Data System (ADS)

    Lapenta, Giovanni; Skender, Marina

    2017-02-01

    The discovery (Bonfiglio et al 2005 Phys. Rev. Lett. 94 145001) of electrostatic fields playing a crucial role in establishing plasma motion in the flux conversion and dynamo processes in reversed field pinches is revisited. In order to further elucidate the role of the electrostatic fields, a flux rope configuration susceptible to the kink instability is numerically studied with an MHD code. Simulated nonlinear evolution of the kink instability is found to confirm the crucial role of the electrostatic fields. A new insight is gained on the special function of the electrostatic fields: they lead the plasma towards the reconnection site at the mode resonant surface. Without this step the plasma column could not relax to its nonlinear state, since no other agent is present to perform this role. While the inductive field generated directly by the kink instability is the dominant flow driver, the electrostatic field is found to allow the motion in the vicinity of the reconnection region.

  11. Methanogenic Bacteria from the Bondyuzhskoe Oil Field: General Characterization and Analysis of Stable-Carbon Isotopic Fractionation

    PubMed Central

    Belyaev, S. S.; Wolkin, R.; Kenealy, W. R.; DeNiro, M. J.; Epstein, S.; Zeikus, J. G.

    1983-01-01

    Selective enrichment culture techniques were employed to obtain mixed cultures of methanogenic rods and sarcina from surface flooding waters and deep subsurface (∼1650 m) oil-bearing sedimentary rocks and formation waters sampled from an old oil field in the U.S.S.R. previously reported to display active biological methanogenesis. The methanogens were selectively isolated as colonies on agar petri dishes that were incubated in a novel container. The general cellular and growth features of three Methanobacterium isolates were determined. These strains grew optimally at 37 to 45°C in anaerobic pressure tube cultures with a doubling time of 16 to 18 h on H2-CO2 and proliferated as autotrophs. Acetate addition significantly enhanced the final cell yield. Growth of these strains was completely inhibited by either 0.6 g of sodium sulfide per liter or 31.0 of sodium chloride per liter, but growth was not inhibited by either 0.3 g of sodium sulfide per liter or 1.0 g of sodium sulfate per liter. One novel isolate, Methanobacterium sp. strain ivanov, was grown on H2-CO2, and the stable-carbon isotopic fractionations that occurred during synthesis of methane, cell carbon, and lipids were determined. The results of this study were used to examine the anomalous relationship between the isotopic and chemical compositions of natural gas occurring in the deep subsurface environment of the oil field. Images PMID:16346216

  12. Strontium isotope systematics of mixing groundwater and oil-field brine at Goose Lake in northeastern Montana, USA

    USGS Publications Warehouse

    Peterman, Zell E.; Thamke, Joanna N.; Futa, Kiyoto; Preston, Todd

    2012-01-01

    Groundwater, surface water, and soil in the Goose Lake oil field in northeastern Montana have been affected by Cl−-rich oil-field brines during long-term petroleum production. Ongoing multidisciplinary geochemical and geophysical studies have identified the degree and local extent of interaction between brine and groundwater. Fourteen samples representing groundwater, surface water, and brine were collected for Sr isotope analyses to evaluate the usefulness of 87Sr/86Sr in detecting small amounts of brine. Differences in Sr concentrations and 87Sr/86Sr are optimal at this site for the experiment. Strontium concentrations range from 0.13 to 36.9 mg/L, and corresponding 87Sr/86Sr values range from 0.71097 to 0.70828. The local brine has 168 mg/L Sr and a 87Sr/86Sr value of 0.70802. Mixing relationships are evident in the data set and illustrate the sensitivity of Sr in detecting small amounts of brine in groundwater. The location of data points on a Sr isotope-concentration plot is readily explained by an evaporation-mixing model. The model is supported by the variation in concentrations of most of the other solutes.

  13. Hydrocarbon degassing of the earth and origin of oil-gas fields (isotope-geochemical and geodynamic aspects)

    NASA Astrophysics Data System (ADS)

    Valyaev, Boris; Dremin, Ivan

    2016-04-01

    More than half a century ago, Academician PN Kropotkin substantiated the relationship of the formation and distribution of oil and gas fields with the processes of emanation hydrocarbon degassing of the Earth. Over the years, the concept of PN Kropotkin received further development and recognition of studies based on new factual material. Of particular importance are the following factors: a) the results of studies on global and regional uneven processes of traditional oil and gas and the role of deep faults in controlling the spread of oil and gas fields; b) the results of the research on gigantic volumes and localization of the discharges of hydrocarbon fluids (mud volcanoes, seeps) on land and into the atmosphere and through the bottom of the World ocean; c) the results of the studies on grand volumes of the spread of unconventional hydrocarbon resources in their non-traditional fields, especially on near-surface interval of unconventional oil and gas accumulation with gas hydrates, heavy oil and bitumen, as well as extraordinary resources of oil and gas in the shale and tight rocks. Deep mantle-crust nature of oil and gas in traditional and nontraditional deposits thus received further substantiation of geological and geophysical data and research results. However, isotopic and geochemical data are still interpreted in favor of the concept of the genesis of oil and gas in the processes of thermal catalytic conversion of organic matter of sedimentary rocks, at temperatures up to 200°C. In this report an alternative interpretation of the isotope carbon-hydrogen system (δ13C-δD) for gas and of oil deposits, isotope carbon system for methane and carbon dioxide (δ13C1-δ13C0) will be presented. An alternative interpretation will also be presented for the data on carbon-helium isotope geochemical system for oil and gas fields, volcanoes and mud volcanoes. These constructions agree with the geological data on the nature of deep hydrocarbon fluids involved in the

  14. Gas and Isotope Geochemistry of 81 Steam Samples from Wells in The Geysers Geothermal Field, Sonoma and Lake Counties, California

    USGS Publications Warehouse

    Lowenstern, Jacob B.; Janik, Cathy J.; Fahlquist, Lynne; Johnson, Linda S.

    1999-01-01

    The Geysers geothermal field in northern California, with about 2000-MW electrical capacity, is the largest geothermal field in the world. Despite its importance as a resource and as an example of a vapor-dominated reservoir, very few complete geochemical analyses of the steam have been published (Allen and Day, 1927; Truesdell and others, 1987). This report presents data from 90 steam, gas, and condensate samples from wells in The Geysers geothermal field in northern California. Samples were collected between 1978 and 1991. Well attributes include sampling date, well name, location, total depth, and the wellhead temperature and pressure at which the sample was collected. Geochemical characteristics include the steam/gas ratio, composition of noncondensable gas (relative proportions of CO2, H2S, He, H2, O2, Ar, N2, CH4, and NH3), and isotopic values for deltaD and delta18O of H2O, delta13C of CO2, and delta34S of H2S. The compilation includes 81 analyses from 74 different production wells, 9 isotopic analyses of steam condensate pumped into injection wells, and 5 complete geochemical analyses on gases from surface fumaroles and bubbling pools. Most samples were collected as saturated steam and plot along the liquid-water/steam boiling curve. Steam-togas ratios are highest in the southeastern part of the geothermal field and lowest in the northwest, consistent with other studies. Wells in the Northwest Geysers are also enriched in N2/Ar, CO2 and CH4, deltaD, and delta18O. Well discharges from the Southeast Geysers are high in steam/gas and have isotopic compositions and N2/Ar ratios consistent with recharge by local meteoric waters. Samples from the Central Geysers show characteristics found in both the Southeast and Northwest Geysers. Gas and steam characteristics of well discharges from the Northwest Geysers are consistent with input of components from a high-temperature reservoir containing carbonrich gases derived from the host Franciscan rocks. Throughout the

  15. Nonlinear evolution of electron shear flow instabilities in the presence of an external guide magnetic field

    NASA Astrophysics Data System (ADS)

    Jain, Neeraj; Büchner, Jörg; Muñoz, Patricio A.

    2017-03-01

    The dissipation mechanism by which the magnetic field reconnects in the presence of an external (guide) magnetic field in the direction of the main current is not well understood. In thin electron current sheets (half thickness close to an electron inertial length) formed in a quasi-steady state of collisionless magnetic reconnection, electron shear flow instabilities are potential candidates for providing an anomalous dissipation mechanism which can break the frozen-in condition of the magnetic field affecting the structure and rate of reconnection. We present the results of investigations of the evolution of electron shear flow instabilities, from linear to nonlinear state, in guide field magnetic reconnection. The properties of the plasma turbulence resulting from the growth of instability and their dependence on the strength of the guide field are studied. For this sake, we utilize the three dimensional electron-magnetohydrodynamic simulations of electron current sheets. We show that, unlike the case of current sheets self-consistently embedded in anti-parallel magnetic fields, the evolution of thin electron current sheets in the presence of a finite external guide field (equal to the asymptotic value of the reconnecting magnetic field or larger) is dominated by high wave number non-tearing mode instabilities. The latter causes the development of, first, a wavy structure of the current sheet. The turbulence, developed later, consists of current filaments and electron flow vortices. As a result of the nonlinear evolution of instability, the current sheet broadens simultaneously with its flattening in the central region mimicking a viscous-like turbulent dissipation. Later, the flattened current sheet bifurcates. During the time of bifurcation, the rate of the change of mean electron flow velocity is proportional to the magnitude of the flow velocity, suggesting a resistive-like dissipation. The turbulence energy cascades to shorter wavelengths preferentially in

  16. Apparatus for extraction and separation of a preferentially photo-dissociated molecular isotope into positive and negative ions by means of an electric field

    NASA Technical Reports Server (NTRS)

    Wilhelm, H. E. (Inventor)

    1978-01-01

    Molecules of one and the same isotope were preferentially photodissociated by a laser and an ultraviolet source, or by multiphoton absorption of laser radiation. The resultant ions were confined with a magnetic field, moved in opposite directions by an electric field, extracted from the photodissociation region by means of screening and accelerating grids, and collected in ducts.

  17. Evolution of the Magnetic Field Line Diffusion Coefficient and Non-Gaussian Statistics

    NASA Astrophysics Data System (ADS)

    Snodin, A. P.; Ruffolo, D.; Matthaeus, W. H.

    2016-08-01

    The magnetic field line random walk (FLRW) plays an important role in the transport of energy and particles in turbulent plasmas. For magnetic fluctuations that are transverse or almost transverse to a large-scale mean magnetic field, theories describing the FLRW usually predict asymptotic diffusion of magnetic field lines perpendicular to the mean field. Such theories often depend on the assumption that one can relate the Lagrangian and Eulerian statistics of the magnetic field via Corrsin’s hypothesis, and additionally take the distribution of magnetic field line displacements to be Gaussian. Here we take an ordinary differential equation (ODE) model with these underlying assumptions and test how well it describes the evolution of the magnetic field line diffusion coefficient in 2D+slab magnetic turbulence, by comparisons to computer simulations that do not involve such assumptions. In addition, we directly test the accuracy of the Corrsin approximation to the Lagrangian correlation. Over much of the studied parameter space we find that the ODE model is in fairly good agreement with computer simulations, in terms of both the evolution and asymptotic values of the diffusion coefficient. When there is poor agreement, we show that this can be largely attributed to the failure of Corrsin’s hypothesis rather than the assumption of Gaussian statistics of field line displacements. The degree of non-Gaussianity, which we measure in terms of the kurtosis, appears to be an indicator of how well Corrsin’s approximation works.

  18. Structure and evolution of the large scale solar and heliospheric magnetic fields. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Hoeksema, J. T.

    1984-01-01

    Structure and evolution of large scale photospheric and coronal magnetic fields in the interval 1976-1983 were studied using observations from the Stanford Solar Observatory and a potential field model. The solar wind in the heliosphere is organized into large regions in which the magnetic field has a componenet either toward or away from the sun. The model predicts the location of the current sheet separating these regions. Near solar minimum, in 1976, the current sheet lay within a few degrees of the solar equator having two extensions north and south of the equator. Soon after minimum the latitudinal extent began to increase. The sheet reached to at least 50 deg from 1978 through 1983. The complex structure near maximum occasionally included multiple current sheets. Large scale structures persist for up to two years during the entire interval. To minimize errors in determining the structure of the heliospheric field particular attention was paid to decreasing the distorting effects of rapid field evolution, finding the optimum source surface radius, determining the correction to the sun's polar field, and handling missing data. The predicted structure agrees with direct interplanetary field measurements taken near the ecliptic and with coronameter and interplanetary scintillation measurements which infer the three dimensional interplanetary magnetic structure. During most of the solar cycle the heliospheric field cannot be adequately described as a dipole.

  19. Quantum field as a quantum cellular automaton: The Dirac free evolution in one dimension

    SciTech Connect

    Bisio, Alessandro; D’Ariano, Giacomo Mauro; Tosini, Alessandro

    2015-03-15

    We present a quantum cellular automaton model in one space-dimension which has the Dirac equation as emergent. This model, a discrete-time and causal unitary evolution of a lattice of quantum systems, is derived from the assumptions of homogeneity, parity and time-reversal invariance. The comparison between the automaton and the Dirac evolutions is rigorously set as a discrimination problem between unitary channels. We derive an exact lower bound for the probability of error in the discrimination as an explicit function of the mass, the number and the momentum of the particles, and the duration of the evolution. Computing this bound with experimentally achievable values, we see that in that regime the QCA model cannot be discriminated from the usual Dirac evolution. Finally, we show that the evolution of one-particle states with narrow-band in momentum can be efficiently simulated by a dispersive differential equation for any regime. This analysis allows for a comparison with the dynamics of wave-packets as it is described by the usual Dirac equation. This paper is a first step in exploring the idea that quantum field theory could be grounded on a more fundamental quantum cellular automaton model and that physical dynamics could emerge from quantum information processing. In this framework, the discretization is a central ingredient and not only a tool for performing non-perturbative calculation as in lattice gauge theory. The automaton model, endowed with a precise notion of local observables and a full probabilistic interpretation, could lead to a coherent unification of a hypothetical discrete Planck scale with the usual Fermi scale of high-energy physics. - Highlights: • The free Dirac field in one space dimension as a quantum cellular automaton. • Large scale limit of the automaton and the emergence of the Dirac equation. • Dispersive differential equation for the evolution of smooth states on the automaton. • Optimal discrimination between the

  20. Fractionation of Cu and Mo isotopes caused by vapor-liquid partitioning, evidence from the Dahutang W-Cu-Mo ore field

    NASA Astrophysics Data System (ADS)

    Yao, Junming; Mathur, Ryan; Sun, Weidong; Song, Weile; Chen, Huayong; Mutti, Laurence; Xiang, Xinkui; Luo, Xiaohong

    2016-05-01

    The study presents δ65Cu and δ97Mo isotope values from cogenetic chalcopyrite and molybdenite found in veins and breccias of the Dahutang W-Cu-Mo ore field in China. The samples span a 3-4 km range. Both isotopes show a significant degree of fractionation. Cu isotope values in the chalcopyrite range from -0.31‰ to +1.48‰, and Mo isotope values in the molybdenite range from -0.03‰ to +1.06‰. For the cogenetic sulfide veined samples, a negative slope relationship exists between δ65Cu and δ97Mo values, which suggest a similar fluid history. Rayleigh distillation models the vein samples' change in isotope values. The breccia samples do not fall on the trend, thus indicating a different source mineralization event. Measured fluid inclusion and δD and δ18O data from cogenetic quartz indicate changes in temperature, and mixing of fluids do not appear to cause the isotopic shifts measure. Related equilibrium processes associated with the partitioning of metal between the vapor-fluid in the hydrothermal system could be the probable cause for the relationship seen between the two isotope systems.

  1. The questa magmatic system: Petrologic, chemical and isotopic variations in cogenetic volcanic and plutonic rocks of the latir volcanic field and associated intrusives, northern New Mexico

    SciTech Connect

    Johnson, C.M.

    1986-01-01

    Field, chemical and isotopic data demonstrate that nearly all igneous rocks at Questa resulted from interactions between mantle-derived parental magmas and the crust. Strontium, neodymium and lead isotope ratios of early andesites to rhyolites (28 to 26 Ma) indicate that these magmas assimilated > 25% lower crust. Injection of basaltic magmas extensively modified the strontium and neodymium but not the lead isotope compositions of the lower crust. Eruption of comendite magmas and the peralkaline Amalia Tuff 26 Ma is correlated with inception of regional extension. Lead isotope ratios identify different sources for the metaluminous granites and the peralkaline rocks. 26 Ma metaluminous granite to granodiorite intrusions have chemical and isotopic compositions to those of the precaldera intermediate-composition rocks, and are interpreted as representing the solidified equivalents of the precaldera magmatic episode. However, both conventional and ion-microprobe isotopic data prohibit significant assimilation of crustal rocks at the level of exposure, suggesting that the plutons were emplaced a relatively crystal-rich mushes which did not have sufficient heat to assimilate country rocks. This suggest that in some cases plutonic rocks are better than volcanic rocks in representing the isotopic compositions of their source regions, because the assimilation potential of crystal-rich magmas is significantly less than that of largely liquid magmas.

  2. A quantum cascade laser infrared spectrometer for CO2 stable isotope analysis: Field implementation at a hydrocarbon contaminated site under bio-remediation.

    PubMed

    Guimbaud, Christophe; Noel, Cécile; Chartier, Michel; Catoire, Valéry; Blessing, Michaela; Gourry, Jean Christophe; Robert, Claude

    2016-02-01

    Real-time methods to monitor stable isotope ratios of CO2 are needed to identify biogeochemical origins of CO2 emissions from the soil-air interface. An isotope ratio infra-red spectrometer (IRIS) has been developed to measure CO2 mixing ratio with δ(13)C isotopic signature, in addition to mixing ratios of other greenhouse gases (CH4, N2O). The original aspects of the instrument as well as its precision and accuracy for the determination of the isotopic signature δ(13)C of CO2 are discussed. A first application to biodegradation of hydrocarbons is presented, tested on a hydrocarbon contaminated site under aerobic bio-treatment. CO2 flux measurements using closed chamber method is combined with the determination of the isotopic signature δ(13)C of the CO2 emission to propose a non-intrusive method to monitor in situ biodegradation of hydrocarbons. In the contaminated area, high CO2 emissions have been measured with an isotopic signature δ(13)C suggesting that CO2 comes from petroleum hydrocarbon biodegradation. This first field implementation shows that rapid and accurate measurement of isotopic signature of CO2 emissions is particularly useful in assessing the contribution of contaminant degradation to the measured CO2 efflux and is promising as a monitoring tool for aerobic bio-treatment.

  3. Stable isotope fractionation at a glacial hydrothermal field: implications for biogeochemistry and biosignatures on Mars

    NASA Astrophysics Data System (ADS)

    Cousins, C.; Bowden, R.; Fogel, M.; Cockell, C.; Crawford, I.; Gunn, M.; Karlsson, M. T.; Thorsteinsson, T.

    2012-12-01

    Hydrothermal environments that arise through the interaction between volcanogenic heat and glacial ice are ideal sites for understanding microbial biogeochemical processes on Earth, and also potentially on Mars where similar volcano-cryosphere interactions are thought to have occurred in the past. The Kverkfjöll subglacial basaltic volcano in central Iceland is geographically isolated, with little influence from flora, fauna, and human activity. Major environmental inputs include geothermal heat, meltwater from ice and snow, and outgassing of CO2, H2S, and SO2. Large physiochemical gradients exist, from steaming fumaroles and boiling hydrothermal pools, to frozen geothermal ground and glacial ice. Stable isotope measurements of total organic carbon, total sulphur, and total nitrogen were coupled with metagenomic analysis of the residing microbial communities, with the aim to identify biogeochemical relationships and processes operating within the Kverkfjöll geothermal environment, and also to identify any isotopic biosignatures that could be preserved within geothermal sediments. This study focused on a variety of samples taken along a hot spring stream that fed into a large ice-confined geothermal lake. Samples analysed range from unconsolidated hot spring sediments, well-developed microbial mats, and dissolved sulphate from hot spring fluids. From the anoxic spring source, the stream water increases in dissolved oxygen, decreases in temperature, yet maintains a pH of ~4. The spring environment is dominated by dissolved sulphate (~2.3 mM), with lower levels of nitrate (~50 μM), phosphorus (~5μM), and ammonium (~1.5 μM). Stable S isotope analysis reveals a fractionation of ~3.2 ‰ between sediment sulphide (as pyrite; δ34S ~0‰), and dissolved water sulphate (δ34S ~3.2 ‰) consistently along the hot spring stream, indicating the presence of an active sulphur cycle, although not one dominated by sulphate reduction (e.g. very negative sulphide δ34S). This

  4. The oxygen isotope evolution of parent body aqueous solutions as recorded by multiple carbonate generations in the Lonewolf Nunataks 94101 CM2 carbonaceous chondrite

    NASA Astrophysics Data System (ADS)

    Lee, M. R.; Sofe, M. R.; Lindgren, P.; Starkey, N. A.; Franchi, I. A.

    2013-11-01

    The CM2 carbonaceous chondrite LON 94101 contains aragonite and two generations of calcite that provide snapshots of the chemical and isotopic evolution of aqueous solutions during parent body alteration. Aragonite was the first carbonate to crystallize. It is rare, heterogeneously distributed within the meteorite matrix, and its mean oxygen isotope values are δ18O 39.9 ± 0.6‰, Δ17O -0.3 ± 1.0‰ (1σ). Calcite precipitated soon afterwards, and following a fall in solution Mg/Ca ratios, to produce small equant grains with a mean oxygen isotope value of δ18O 37.5 ± 0.7‰, Δ17O 1.4 ± 1.1‰ (1σ). These grains were partially or completely replaced by serpentine and tochilinite prior to precipitation of the second generation of calcite, which occluded an open fracture to form a millimetre-sized vein, and replaced anhydrous silicates within chondrules and the matrix. The vein calcite has a mean composition of δ18O 18.4 ± 0.3‰, Δ17O -0.5 ± 0.5‰ (1σ). Petrographic and isotopic results therefore reveal two discrete episodes of mineralisation that produced calcite generations with contrasting δ18O, and mean Δ17O values. The aragonite and equant calcite crystallized over a relatively brief period early in the aqueous alteration history of the parent body, and from static fluids that were evolving chemically in response to mineral dissolution and precipitation. The second calcite generation crystallized from solutions of a lower Δ17O, and a lower δ18O and/or higher temperature. As two generations of calcite whose petrographic characteristics and oxygen isotopic compositions are similar to those in LON 94101 occur in at least one other CM2, multiphase carbonate mineralisation could be the typical outcome of the sequence of chemical reactions during parent body aqueous alteration. It is equally possible however that the second generation of calcite formed in response to an event such as impact fracturing and concomitant fluid mobilisation that affected

  5. Linear evolution of current sheets in sheared force-free magnetic fields with discontinuous connectivity

    NASA Technical Reports Server (NTRS)

    Wolfson, Richard

    1990-01-01

    Thin current sheets arising in tenuous, magnetized solar coronal plasmas may constitute an important mechanism for energy buildups and subsequent energy releases; they could arise from the continuous-and-random motion of magnetic footprints associated with photospheric velocity fields. A model is presented for study of the quasi-static evolution of current sheets due to shearing of the footpoints, in a highly idealized geometry that incorporates an abrupt jump in field-line connectivity. The model highlights that formation of thin current layers and allows large shearing motions prior to violation of the linear approximation. Excess energy comparable to that released by solar flares can be stored in a sheared field.

  6. Hydrogen-isotope transport induced by an electric field in α-Al2O3 single crystals

    NASA Astrophysics Data System (ADS)

    Ramírez, R.; Colera, I.; González, R.; Chen, Y.; Kokta, M. R.

    2004-01-01

    Infrared-absorption measurements were used to characterize OH- and OD- stretching frequencies in Al2O3 crystals both nominally pure and doped with either Ti, V, or Mg impurities. Impurities, cooling rates, and ultraviolet irradiation affect the distribution of various OH- (OD-) band intensities. Polarization experiments determined the precise angle of OH- (OD-) ions protruding from the basal plane for several OH- (OD-) bands. Most were <15°, with one at 21°. Diffusion of isotopic species was performed with and without an electric field. Without an electric field, indiffusion is possible only by exchanging with an existing species. With an electric field, indiffusion occurs by exchange as well as occupying new sites. Incorporation of hydrogen (deuterium) was investigated by subjecting the crystals to a moderate electric field both parallel and perpendicular to the crystallographic c axis, in the temperature range 973 1300 K in H2O (or D2O) vapor. An initial linear dependence of the percent of exchange with annealing time and applied voltage was observed, indicating that ionic conduction is the dominant mechanism. The activation energy for the H+iff D+ exchange was determined to be ≈2.4 eV with an electric field of 3000 V/cm applied either parallel or perpendicular to the c axis. The estimated proton (deuteron) mobility is μ=(6±1)×10-8 cm2/(V s).

  7. Laser-Assisted Field Evaporation and Three-Dimensional Atom-by-Atom Mapping of Diamond Isotopic Homojunctions.

    PubMed

    Mukherjee, Samik; Watanabe, Hideyuki; Isheim, Dieter; Seidman, David N; Moutanabbir, Oussama

    2016-02-10

    It addition to its high evaporation field, diamond is also known for its limited photoabsorption, strong covalent bonding, and wide bandgap. These characteristics have been thought for long to also complicate the field evaporation of diamond and make its control hardly achievable on the atomistic-level. Herein, we demonstrate that the unique behavior of nanoscale diamond and its interaction with pulsed laser lead to a controlled field evaporation thus enabling three-dimensional atom-by-atom mapping of diamond (12)C/(13)C homojunctions. We also show that one key element in this process is to operate the pulsed laser at high energy without letting the dc bias increase out of bounds for diamond nanotip to withstand. Herein, the role of the dc bias in evaporation of diamond is essentially to generate free charge carriers within the nanotip via impact ionization. The mobile free charges screen the internal electric field, eventually creating a hole rich surface where the pulsed laser is effectively absorbed leading to an increase in the nanotip surface temperature. The effect of this temperature on the uncertainty in the time-of-flight of an ion, the diffusion of atoms on the surface of the nanotip, is also discussed. In addition to paving the way toward a precise manipulation of isotopes in diamond-based nanoscale and quantum structures, this result also elucidates some of the basic properties of dielectric nanostructures under high electric field.

  8. Some Evolution Formulas on the Optical Fields Propagation in Realistic Environments

    NASA Astrophysics Data System (ADS)

    Xu, Xue-xiang; Yuan, Hong-chun

    2017-03-01

    Evolution formulas of the density operator, the photon number distribution, and the Wigner function are derived for the problem on the optical fields propagation in realistic environments. Using the idea "reservoir modeled by beam splitter (BS)" and the Weyl expansion of the density operator, we obtain these formulas cleverly, which are very useful for quantum optics and quantum statistics. As an application, we study the time evolution of the photon number distribution and the Wigner function for single-photon-added coherent state in thermal environment.

  9. Os, Sr, Nd, and Pb isotope systematics of southern African peridotite xenoliths - Implications for the chemical evolution of subcontinental mantle

    NASA Technical Reports Server (NTRS)

    Walker, R. J.; Carlson, R. W.; Shirey, S. B.; Boyd, F. R.

    1989-01-01

    Isotope analyses of Os, Sr, Nd, and Pb elements were caried out on twelve peridotite xenoliths from the Jagersfontein, Letseng-la-terae, Thaba Patsoa, Mothae, and Premier kimberlites of southern Africa, to investigate the timing and the nature of melt extraction from the continental lithosphere and its relation to the continent formation and stabilization. The distinct Os and Pb isotopic characteristics found in these samples suggested that both the low- and the high-temperature peridotites reside in an ancient stable lithospheric 'keel' to the craton that has been isolated from chemical exchange with the sublithospheric mantle for time periods in excess of 2 Ga.

  10. Evolution of Ore Deposits and Technology Transfer Project: Isotope and Chemical Methods in Support of the U.S. Geological Survey Science Strategy, 2003-2008

    USGS Publications Warehouse

    Rye, Robert O.; Johnson, Craig A.; Landis, Gary P.; Hofstra, Albert H.; Emsbo, Poul; Stricker, Craig A.; Hunt, Andrew G.; Rusk, Brian G.

    2010-01-01

    Principal functions of the U.S. Geological Survey (USGS) Mineral Resources Program are providing assessments of the location, quantity, and quality of undiscovered mineral deposits, and predicting the environmental impacts of exploration and mine development. The mineral and environmental assessments of domestic deposits are used by planners and decisionmakers to improve the stewardship of public lands and public resources. Assessments of undiscovered mineral deposits on a global scale reveal the potential availability of minerals to the United States and other countries that manufacture goods imported to the United States. These resources are of fundamental relevance to national and international economic and security policy in our globalized world economy. Performing mineral and environmental assessments requires that predictions be made of the likelihood of undiscovered deposits. The predictions are based on geologic and geoenvironmental models that are constructed for the diverse types of mineral deposits from detailed descriptions of actual deposits and detailed understanding of the processes that formed them. Over the past three decades the understanding of ore-forming processes has benefited greatly from the integration of laboratory-based geochemical tools with field observations and other data sources. Under the aegis of the Evolution of Ore Deposits and Technology Transfer Project (referred to hereinafter as the Project), a 5-year effort that terminated in 2008, the Mineral Resources Program provided state-of-the-art analytical capabilities to support applications of several related geochemical tools to ore-deposit-related studies. The analytical capabilities and scientific approaches developed within the Project have wide applicability within Earth-system science. For this reason the Project Laboratories represent a valuable catalyst for interdisciplinary collaborations of the type that should be formed in the coming years for the United States to meet

  11. Stable isotope evidence for the petrogenesis and fluid evolution in the Proterozoic Harney Peak leucogranite, Black Hills, South Dakota

    NASA Astrophysics Data System (ADS)

    Nabelek, P. I.; Russ-Nabelek, C.; Haeussler, G. T.

    1992-01-01

    Oxygen and hydrogen isotope systematics of the Proterozoic Harney Peak Granite, Black Hills, South Dakota, were examined in order to constrain its petrogenesis and to examine the role of fluids in a peraluminous granite-pegmatite magmatic system. The leucogranite and its satellite intrusions were emplaced as hundreds of sills and dikes which are texturally heterogeneous, ranging from aplitic to pegmatitic. The dominant ferromagnesian mineral in the core of the granite is biotite while along its perimeter and in satellite intrusions it is tourmaline. Biotite and tourmaline are for the most part mutually exclusive. Oxygen isotopes among minerals in non-pegmatitic rocks from throughout the pluton equilibrated for the most part at magmatic temperatures between >800 to 650°C. In the pegmatitic samples, quartzfeldspar oxygen isotope fractionations point to disequilibrium, probably a result of the sequential crystallization of these minerals. The isotopic composition of most pegmatites suggests local derivation by differentiation of emplaced batches of magma. The whole rock δ 18O values of the granites are heterogeneous, ranging from 10.4 to 14.3‰ However, there is a pronounced difference in the isotopic composition of the biotite-containing granites from the core of the pluton ( 11.5 ± 0.6‰) and the tourmaline-rich granites from its perimeter and the satellite intrusions ( 13.2 ± 0.8‰). The average oxygen isotopic composition of the surrounding schists is identical to that of the latter granites. Biotite-muscovite and tourmaline-muscovite ΔD values vary from -20 to - 10‰ and from 0 to +10‰, respectively. Although these values differ from theoretical values, the narrow ranges suggest that the minerals are in isotopic equilibrium and that their isotopic compositions record the composition of the magmatic fluid. The calculated δD value of the magmatic fluid is -67 to -58‰, well within the magmatic water range. However, somewhat elevated mineral δD values

  12. Pb, Sr, and Nd isotopic compositions of a suite of Late Archean, igneous rocks, eastern Beartooth Mountains: implications for crust-mantle evolution

    USGS Publications Warehouse

    Wooden, J.L.; Mueller, P.A.

    1988-01-01

    A series of compositionally diverse, Late Archean rocks (2.74-2.79 Ga old) from the eastern Beartooth Mountains, Montana and Wyoming, U.S.A., have the same initial Pb, Sr, and Nd isotopic ratios. Lead and Sr initial ratios are higher and Nd initial ratios lower than would be expected for rocks derived from model mantle sources and strongly indicate the involvement of an older crustal reservoir in the genesis of these rocks. Crustal contamination during emplacement can be ruled out for a variety of reasons. Instead a model involving subduction of continental detritus and contamination of the overlying mantle as is often proposed for modern subduction environments is preferred. This contaminated mantle would have all the isotopic characteristics of mantle enriched by internal mantle metasomatism but would require no long-term growth or changes in parent to daughter element ratios. This contaminated mantle would make a good source for some of the Cenozoic mafic volcanics of the Columbia River, Snake River Plain, and Yellowstone volcanic fields that are proposed to come from ancient, enriched lithospheric mantle. The isotopic characteristics of the 2.70 Ga old Stillwater Complex are a perfect match for the proposed contaminated mantle which provides an alternative to crustal contamination during emplacement. The Pb isotopic characteristics of the Late Archean rocks of the eastern Beartooth Mountains are similar to those of other Late Archean rocks of the Wyoming Province and suggest that Early Archean, upper crustal rocks were common in this terrane. The isotopic signatures of Late Archean rocks in the Wyoming Province are distinctive from those of other Archean cratons in North America which are dominated by a MORB-like, Archean mantle source (Superior Province) and/or a long-term depleted crustal source (Greenland). ?? 1988.

  13. A Markov random field approach for modeling spatio-temporal evolution of microstructures

    NASA Astrophysics Data System (ADS)

    Acar, Pinar; Sundararaghavan, Veera

    2016-10-01

    The following problem is addressed: ‘Can one synthesize microstructure evolution over a large area given experimental movies measured over smaller regions?’ Our input is a movie of microstructure evolution over a small sample window. A Markov random field (MRF) algorithm is developed that uses this data to estimate the evolution of microstructure over a larger region. Unlike the standard microstructure reconstruction problem based on stationary images, the present algorithm is also able to reconstruct time-evolving phenomena such as grain growth. Such an algorithm would decrease the cost of full-scale microstructure measurements by coupling mathematical estimation with targeted small-scale spatiotemporal measurements. The grain size, shape and orientation distribution statistics of synthesized polycrystalline microstructures at different times are compared with the original movie to verify the method.

  14. Magma evolution and ascent at the Craters of the Moon and neighboring volcanic fields, southern Idaho, USA: implications for the evolution of polygenetic and monogenetic volcanic fields

    USGS Publications Warehouse

    Putirka, Keith D.; Kuntz, Mel A.; Unruh, Daniel M.; Vaid, Nitin

    2009-01-01

    The evolution of polygenetic and monogenetic volcanic fields must reflect differences in magma processing during ascent. To assess their evolution we use thermobarometry and geochemistry to evaluate ascent paths for neighboring, nearly coeval volcanic fields in the Snake River Plain, in south-central Idaho, derived from (1) dominantly Holocene polygenetic evolved lavas from the Craters of the Moon lava field (COME) and (2) Quaternary non-evolved, olivine tholeiites (NEOT) from nearby monogenetic volcanic fields. These data show that NEOT have high magmatic temperatures (1205 + or - 27 degrees C) and a narrow temperature range (50 degrees C). Prolonged storage of COME magmas allows them to evolve to higher 87Sr/86Sr and SiO2, and lower MgO and 143Nd/144Nd. Most importantly, ascent paths control evolution: NEOT often erupt near the axis of the plain where high-flux (Yellowstone-related), pre-Holocene magmatic activity replaces granitic middle crust with basaltic sills, resulting in a net increase in NEOT magma buoyancy. COME flows erupt off-axis, where felsic crustal lithologies sometimes remain intact, providing a barrier to ascent and a source for crustal contamination. A three-stage ascent process explains the entire range of erupted compositions. Stage 1 (40-20 km): picrites are transported to the middle crust, undergoing partial crystallization of olivine + or - clinopyroxene. COME magmas pass through unarmored conduits and assimilate 1% or less of ancient gabbroic crust having high Sr and 87Sr/86Sr and low SiO2. Stage 2 (20-10 km): magmas are stored within the middle crust, and evolve to moderate MgO (10%). NEOT magmas, reaching 10% MgO, are positively buoyant and migrate through the middle crust. COME magmas remain negatively buoyant and so crystallize further and assimilate middle crust. Stage 3 (15-0 km): final ascent and eruption occurs when volatile contents, increased by differentiation, are sufficient (1-2 wt % H2O) to provide magma buoyancy through the

  15. Triple oxygen and multiple sulfur isotope constraints on the evolution of the post-Marinoan sulfur cycle

    NASA Astrophysics Data System (ADS)

    Crockford, Peter W.; Cowie, Benjamin R.; Johnston, David T.; Hoffman, Paul F.; Sugiyama, Ichiko; Pellerin, Andre; Bui, Thi Hao; Hayles, Justin; Halverson, Galen P.; Macdonald, Francis A.; Wing, Boswell A.

    2016-02-01

    Triple oxygen isotopes within post-Marinoan barites have played an integral role in our understanding of Cryogenian glaciations. Reports of anomalous Δ17O values within cap carbonate hosted barites however have remained restricted to South China and Mauritania. Here we extend the Δ17O anomaly to northwest Canada with our new measurements of barites from the Ravensthroat cap dolostone with a minimum Δ17O value of - 0.75 ‰. For the first time we pair triple oxygen with multiple sulfur isotopic data as a tool to identify the key processes that controlled the post-Marinoan sulfur cycle. We argue using a dynamic 1-box model that the observed isotopic trends both in northwest Canada and South China can be explained through the interplay between sulfide weathering, microbial sulfur cycling and pyrite burial. An important outcome of this study is a new constraint placed on the size of the post-Marinoan sulfate reservoir (≈0.1% modern), with a maximum concentration of less than 10% modern. Through conservative estimates of sulfate fluxes from sulfide weathering and under a small initial sulfate reservoir, we suggest that observed isotopic trends are the product of a dynamic sulfur cycle that saw both the addition and removal of the Δ17O anomaly over four to five turnovers of the post-Marinoan marine sulfate reservoir.

  16. Magnetars: Time Evolution, Superfluid Properties, and the Mechanism of Magnetic Field Decay

    NASA Astrophysics Data System (ADS)

    Arras, P.; Cumming, A.; Thompson, C.

    2004-06-01

    We calculate the coupled thermal evolution and magnetic field decay in relativistic model neutron stars threaded by superstrong magnetic fields (B>1015 G). Our main goal is to evaluate how such ``magnetars'' evolve with time and how field decay modifies the transitions to core superfluidity and cooling dominated by surface X-ray emission. Observations of a thermal X-ray spectral component and fast timing noise place strong constraints on the presence of a superfluid core. We find that the transition to core superfluidity can be significantly delayed by magnetic field decay in the age range ~103-105 yr. The mechanism of Hall drift is related to the stability of the core magnetic field and to currents flowing outward through the crust. The heating effect is enhanced if it is continuous rather than spasmodic. Condensation of a heavy element layer at the surface is shown to cause only modest changes in the outward conduction of heat.

  17. Evolution in Solitude - Field Galaxies from Half the Age of the Universe to the Present

    NASA Astrophysics Data System (ADS)

    Woodrum, Charity; Jørgensen, Inger; Oberhelman, Lindsey; Contreras, Taylor; Demarco, Ricardo; Fisher, Robert Scott; Bieker, Jacob

    2017-01-01

    We analyze the stellar populations and evolutionary history of bulge-dominated (nser ≥ 1.5) field galaxies at redshifts up to z≈1 as part of the Gemini/HST Galaxy Cluster Project (GCP). High signal-to-noise optical spectroscopy from Gemini Observatory and imaging from Hubble Space Telescope is used to analyze a total of 44 field galaxies, focusing on 30 passive (EW[OII] ≤ 5Å) field galaxies. Our results indicate that the size-mass and size-velocity dispersion relations for the passive field galaxies show no significant evolution between z≈1 and the present. The passive field galaxies contain younger stellar populations than cluster galaxies at similar redshifts, with a formation redshift zform = 1.2-1.4 compared to zform = 1.8 for the cluster galaxies. We establish the Fundamental Plane and study the M/L ratios, both indicating that the formation redshift for the passive field galaxies is mass dependent. The zero point differences of the scaling relations for the M/L ratios agree with the formation redshift of zform = 1.2-1.4 found from the line indices and are consistent with the passive evolution model.

  18. The evolution of field-induced structure of confined ferrofluid emulsions

    SciTech Connect

    Mou, T.; Flores, G.A.; Liu, J. . Dept. of Physics and Astronomy); Bibette, J. ); Richard, J. )

    1994-09-01

    The authors report a real-time study of the evolution of the structure of confined ferrofluid emulsions during the ''liquid-solid'' phase transition. A monodisperse oil-in-water ferrofluid emulsion is used. The structure evolution of the emulsion after rapidly applying a magnetic field is probed by the static light scattering. The scattering pattern exhibits pronounced rings reflecting the formation of chains and their coalescence to columns or even ''worm'' structures. The scattering ring is found to decrease in size and brighten in intensity with time. To monitor the structure evolution in time, both the ring peak position in scattering wave vector, q[sub max], and the peak intensity, I[sub max], are measured as a function of time. Both q[sub max] and I[sub max] saturate in less than 0.5 seconds after applying a magnetic field. At a constant cell thickness of 25 [mu]m, the evolution of structure is essentially independent of volume fraction ranging from 0.015 to 0.13. In addition, a very good scaling is found in the scattered light intensity as a function of the scattering wave vector.

  19. Measuring carbon and oxygen isotope signals of photosynthesis and respiration: first field results from a chamber system coupled to tunable diode laser spectrometers

    NASA Astrophysics Data System (ADS)

    Wingate, L.; Burlett, R.; Bosc, A.; Cross, A.; Devaux, M.; Grace, J.; Loustau, D.; Seibt, U.; Ogée, J.

    2007-12-01

    Studying the carbon and oxygen stable isotope signals from plants and soils can help us gain insight to mechanistic processes responsible for the net exchange of CO2 and water cycled between terrestrial ecosystems and the atmosphere. Chamber field measurements of component fluxes and their isotopic composition have been reported for a few ecosystems. These observations have revealed that isotopic signals for carbon and oxygen are dynamic over relatively short time scales (hrs and days) for both branches and soils (Seibt et al., 2006a; 2006b; Wingate et al., 2007), and not fully explained by currently available models (Seibt et al., 2006b; Wingate et al., 2007). Ecosystem isotope studies have been limited by flask sampling requirements in the past. To evaluate and refine our models of isotopic fractionation by plants and soil, we need high resolution continuous isotopic measurements over the growing season for different ecosystems. In this study, we coupled chambers with tunable diode laser spectroscopy techniques in the field to continuously capture the isotopic signals from the most important component fluxes contributing to the net ecosystem exchange of CO2 in a Pinus pinaster forest in south-west France. We obtained profiles of the carbon and oxygen isotope content of CO2 within and above the forest canopy. In addition, we measured branch photosynthetic 13C and 18O discrimination alongside the 13C and 18O isotopic composition of the branch, stem and soil respiration during a 6-month period in 2007. In this talk, we will present the first results from this field campaign. References Seibt, U., Wingate, L., Berry, J.A. and Lloyd, J. (2006a) Non steady state effects in diurnal 18O discrimination by Picea sitchensis branches in the field. Plant, Cell and Environment Vol 29, 928-939. Seibt, U., Wingate, L., Lloyd, J. and Berry, J.A. (2006b) Diurnally variable δ18O signatures of soil CO2 fluxes indicate carbonic anhydrase activity in a forest soil. JGR

  20. Cyclic Evolution of Coronal Fields from a Coupled Dynamo Potential-Field Source-Surface Model

    NASA Astrophysics Data System (ADS)

    Dikpati, Mausumi; Suresh, Akshaya; Burkepile, Joan

    2016-02-01

    The structure of the Sun's corona varies with the solar-cycle phase, from a near spherical symmetry at solar maximum to an axial dipole at solar minimum. It is widely accepted that the large-scale coronal structure is governed by magnetic fields that are most likely generated by dynamo action in the solar interior. In order to understand the variation in coronal structure, we couple a potential-field source-surface model with a cyclic dynamo model. In this coupled model, the magnetic field inside the convection zone is governed by the dynamo equation; these dynamo-generated fields are extended from the photosphere to the corona using a potential-field source-surface model. Assuming axisymmetry, we take linear combinations of associated Legendre polynomials that match the more complex coronal structures. Choosing images of the global corona from the Mauna Loa Solar Observatory at each Carrington rotation over half a cycle (1986 - 1991), we compute the coefficients of the associated Legendre polynomials up to degree eight and compare with observations. We show that at minimum the dipole term dominates, but it fades as the cycle progresses; higher-order multipolar terms begin to dominate. The amplitudes of these terms are not exactly the same for the two limbs, indicating that there is a longitude dependence. While both the 1986 and the 1996 minimum coronas were dipolar, the minimum in 2008 was unusual, since there was a substantial departure from a dipole. We investigate the physical cause of this departure by including a North-South asymmetry in the surface source of the magnetic fields in our flux-transport dynamo model, and find that this asymmetry could be one of the reasons for departure from the dipole in the 2008 minimum.

  1. Cyclic Evolution of Coronal Fields from a Coupled Dynamo Potential-Field Source-Surface Model.

    PubMed

    Dikpati, Mausumi; Suresh, Akshaya; Burkepile, Joan

    The structure of the Sun's corona varies with the solar-cycle phase, from a near spherical symmetry at solar maximum to an axial dipole at solar minimum. It is widely accepted that the large-scale coronal structure is governed by magnetic fields that are most likely generated by dynamo action in the solar interior. In order to understand the variation in coronal structure, we couple a potential-field source-surface model with a cyclic dynamo model. In this coupled model, the magnetic field inside the convection zone is governed by the dynamo equation; these dynamo-generated fields are extended from the photosphere to the corona using a potential-field source-surface model. Assuming axisymmetry, we take linear combinations of associated Legendre polynomials that match the more complex coronal structures. Choosing images of the global corona from the Mauna Loa Solar Observatory at each Carrington rotation over half a cycle (1986 - 1991), we compute the coefficients of the associated Legendre polynomials up to degree eight and compare with observations. We show that at minimum the dipole term dominates, but it fades as the cycle progresses; higher-order multipolar terms begin to dominate. The amplitudes of these terms are not exactly the same for the two limbs, indicating that there is a longitude dependence. While both the 1986 and the 1996 minimum coronas were dipolar, the minimum in 2008 was unusual, since there was a substantial departure from a dipole. We investigate the physical cause of this departure by including a North-South asymmetry in the surface source of the magnetic fields in our flux-transport dynamo model, and find that this asymmetry could be one of the reasons for departure from the dipole in the 2008 minimum.

  2. Investigation of the Mg isotopes using the shell-model-like approach in relativistic mean field theory

    NASA Astrophysics Data System (ADS)

    Bai, Hong-Bo; Zhang, Zhen-Hua; Li, Xiao-Wei

    2016-11-01

    Ground state properties for Mg isotopes, including binding energies, one- and two-neutron separation energies, pairing energies, nuclear matter radii and quadrupole deformation parameters, are obtained from the self-consistent relativistic mean field (RMF) model with the pairing correlations treated by a shell-mode-like approach (SLAP), in which the particle-number is conserved and the blocking effects are treated exactly. The experimental data, including the binding energies and the one- and two-neutron separation energies, which are sensitive to the treatment of pairing correlations and block effects, are well reproduced by the RMF+SLAP calculations. Supported by NSFC (11465001,11275098, 11275248, 11505058,11165001) and Natural Science Foundation of Inner Mongolia of China (2016BS0102)

  3. Deformation-induced spatiotemporal fluctuation, evolution and localization of strain fields in a bulk metallic glass

    DOE PAGES

    Wu, Yuan; Bei, Hongbin; Wang, Yanli; ...

    2015-05-16

    Deformation behavior and local strain evolutions upon loading and unloading of a bulk metallic glass (BMG) were systematically investigated by in situ digital image correlation (DIC). Distinct fluctuations and irreversible local strains were observed before the onset of macroscopic yielding. Statistical analysis shows that these fluctuations might be related to intrinsic structural heterogeneities, and that the evolution history and characteristics of local strain fields play an important role in the subsequent initiation of shear bands. Effects of sample size, pre-strain, and loading conditions were systematically analyzed in terms of the probability distributions of the resulting local strain fields. It ismore » found that a higher degree of local shear strain heterogeneity corresponds to a more ductile stressestrain curve. Implications of these findings are discussed for the design of new materials.« less

  4. Deformation-induced spatiotemporal fluctuation, evolution and localization of strain fields in a bulk metallic glass

    SciTech Connect

    Wu, Yuan; Bei, Hongbin; Wang, Yanli; Lu, Zhaoping; George, Easo P.; Gao, Yanfei

    2015-05-16

    Deformation behavior and local strain evolutions upon loading and unloading of a bulk metallic glass (BMG) were systematically investigated by in situ digital image correlation (DIC). Distinct fluctuations and irreversible local strains were observed before the onset of macroscopic yielding. Statistical analysis shows that these fluctuations might be related to intrinsic structural heterogeneities, and that the evolution history and characteristics of local strain fields play an important role in the subsequent initiation of shear bands. Effects of sample size, pre-strain, and loading conditions were systematically analyzed in terms of the probability distributions of the resulting local strain fields. It is found that a higher degree of local shear strain heterogeneity corresponds to a more ductile stressestrain curve. Implications of these findings are discussed for the design of new materials.

  5. Evolution of a magmatic system during continental extension: The Mount Taylor volcanic field, New Mexico

    SciTech Connect

    Perry, F.V. ); Baldridge, W.S. ); DePaolo, D.J. Lawrence Berkeley Lab., Berkeley, CA ); Shafiqullah, M. )

    1990-11-10

    In this paper the authors present geologic mapping, K-Ar chronology, major and trace element data, mineral chemistry, and Nd, Sr, and O isotopic data for volcanic rocks of the Mount Taylor volcanic field (MTVF). The MTVF lies on the tectonic boundary between the Basin and Range province and the southeastern Colorado Plateau and is dominated by Mount Taylor, a composite volcano active from {approx}3 to 1.5 m.y. ago. Growth of the volcano began with eruption of rhyolite, followed by quartz latite and finally latite. Basalts erupted throughout the lifetime of the volcano. Rare mixing of evolved hy-hawaiite and rhyolite produced a few intermediate magmas, primarily in the early history of the field. Mixing may have occurred when rhyolite magmas in the lower crust ascended to upper crustal levels and were injected into the bases of mafic magma chambers. Small amounts of crustal assimilation accompanied fractional crystallization and affected all the evolved MTVF rocks. Assimilation/fractional crystallization occurred primarily in the lower crust as hy-hawaiite differentiated to mugearite or latite. Early in the history of the field, evolved lower crustal magmas ascended into the upper crust, where density filtering and a reduced tensional stress field inhibited further ascent until magmas evolved to rhyolite or quartz latite. Later in the history of the field, latite magmas ascended directly from the lower crust and erupted without further significant differentiation because of increased crustal extension.

  6. Evolution of the mantle source in an evolving arc-backarc system (Torres del Paine, Patagonia): Evidence from Hf isotopes in zircon

    NASA Astrophysics Data System (ADS)

    Ewing, T. A.; Muntener, O.; Leuthold, J.; Baumgartner, L. P.; Putlitz, B.; d'Abzac, F. X.; Chiaradia, M.

    2015-12-01

    The Miocene Torres del Paine intrusive complex (TPIC) in Patagonia is a transitional alkaline backarc intrusion1 emplaced on short timescales of 162 ± 11 ka2. It is subdivided into two units with distinct ages of ~12.6 Ma and ~12.45 Ma1. Smaller intrusive bodies in the area record a change in chemistry from calc-alkaline at ~16 Ma, to transitional alkaline at ~12.5 Ma. Zircons from ~16 Ma intrusives and the 12.6 Ma part of the TPIC have remarkably consistent, slightly enriched Hf isotope compositions with ɛHf(i) of -1 to +2. An abrupt shift towards more juvenile Hf isotope compositions is observed in the ~12.45 Ma part of the TPIC, with ɛHf(i) of +3 to +6. Bulk rock Nd and Sr isotopes for the TPIC show the same shift towards more juvenile compositions at this time1. The long-term consistency of ɛHf(i) from 16 to 12.6 Ma is surprising, given that in the same period the bulk rock chemistry changes from calc-alkaline to transitional alkaline. Conversely, the major shift in ɛHf(i) is not correlated with any change in bulk rock chemistry, which remains transitional alkaline from 12.6 to 12.45 Ma. The decoupling of major element chemical evolution and Hf isotope signatures suggests that the subsequent rapid influx of juvenile material recorded by our Hf isotope data must have occurred by renewed mantle melting. Subduction of the Chile ridge at ~12.5 Ma in this area caused arc magmatism to move westwards and back-arc extension to initiate. We propose that the first TPIC magmas (12.6 Ma) came from a mantle wedge with a residual subduction signature. Subsequent melting of more juvenile mantle, less contaminated by a subduction component, generated the 12.45 Ma TPIC magmas. These results demonstrate that magmatic complexes such as the TPIC may tap distinct mantle sources even on very short timescales, fingerprinting arc-backarc transition processes. 1Leuthold et al., 2013, JPET, 54: 273-303 2Leuthold et al., 2012, EPSL, 325: 85-92

  7. Mantle source heterogeneity and magmatic evolution at Carlsberg Ridge (3.7°N): constrains from elemental and isotopic (Sr, Nd, Pb) data

    NASA Astrophysics Data System (ADS)

    Chen, Ling; Tang, Limei; Yu, Xing; Dong, Yanhui

    2016-12-01

    We present new major element, ICP-MS trace element, and Sr-Nd-Pb isotope data of basalts from four locations along the Carlsberg Ridge (CR), northern Indian Ocean. The basalts are low-K tholeiites with 7.52-9.51 wt% MgO, 49.40-50.60 wt% SiO2, 0.09-0.27 wt% K2O, 2.55-2.90 wt% Na2O, and 0.60-0.68 Mg#. Trace element contents of the basalts show characteristics similar to those of average normal MORB, such as LREE depleted patterns with (La/Sm)N ratio of 0.55-0.69; however, some samples are enriched in large-ion lithophile elements such as K and Rb, suggesting probable modification of the mantle source. Poor correlations between the compatible elements [e.g. Ni, Cr, and Sr (related to olivine, clinopyroxene and plagioclase, respectively)] and the incompatible elements (e.g. Zr and Y), and positive correlations in the Zr versus Zr/Y and Nb versus Nb/Y plots suggest a magmatic evolution controlled mainly by mantle melting rather than fractional crystallization. Our results extend the CR basalt range to higher radiogenic Pb isotopes and lower 143Nd/144Nd. These basalts and basalts from the northern Indian Ocean Ridge show lower 143Nd/144Nd and higher 87Sr/86Sr values than those of the depleted mantle (DM), defining a trend towards pelagic sediment composition. The Pb isotopic ratios of basalts from CR 3-4°N lie along the compositional mixing lines between the DM and the upper continental crust. However, the low radiogenic Pb of basalts from CR 9-10°N lie on the mixing line between the DM and lower continental crust. Since the Pb isotopic ratio of MORB would decrease if the source mantle was contaminated by continental lithospheric mantle, we suggest that CR contains continental lithospheric material, resulting in heterogeneous mantle beneath different ridge segments. The continental lithospheric material was introduced into the asthenosphere before or during the breakup of the Gondwana. These results support the long-term preservation of continental material in the

  8. Relativistic mean-field study of the properties of Z=117 nuclei and the decay chains of the {sup 293,294}117 isotopes

    SciTech Connect

    Bhuyan, M.; Patra, S. K.; Gupta, Raj K.

    2011-07-15

    We have calculated the binding energy, root-mean-square radius, and quadrupole deformation parameter for the recently synthesized superheavy element Z=117, using the axially deformed relativistic mean-field (RMF) model. The calculation is extended to various isotopes of the Z=117 element, starting from A=286 till A=310. We predict almost spherical structures in the ground state for almost all the isotopes. A shape transition appears at about A=292 from a prolate to an oblate shape structure of the Z=117 nucleus in our mean-field approach. The most stable isotope (largest binding energy per nucleon) is found to be the {sup 288}117 nucleus. Also, the Q{sub {alpha}} values and the half-life T{sub 1/2}{sup {alpha}} for the {alpha}-decay chains of {sup 293}117 and {sup 294}117 are calculated, supporting the magic numbers at N=172 and/or 184.

  9. Evolution of chemical and isotopic composition of inorganic carbon in a complex semi-arid zone environment: Consequences for groundwater dating using radiocarbon

    NASA Astrophysics Data System (ADS)

    Meredith, K. T.; Han, L. F.; Hollins, S. E.; Cendón, D. I.; Jacobsen, G. E.; Baker, A.

    2016-09-01

    Estimating groundwater age is important for any groundwater resource assessment and radiocarbon (14C) dating of dissolved inorganic carbon (DIC) can provide this information. In semi-arid zone (i.e. water-limited environments), there are a multitude of reasons why 14C dating of groundwater and traditional correction models may not be directly transferable. Some include; (1) the complex hydrological responses of these systems that lead to a mixture of different ages in the aquifer(s), (2) the varied sources, origins and ages of organic matter in the unsaturated zone and (3) high evaporation rates. These all influence the evolution of DIC and are not easily accounted for in traditional correction models. In this study, we determined carbon isotope data for; DIC in water, carbonate minerals in the sediments, sediment organic matter, soil gas CO2 from the unsaturated zone, and vegetation samples. The samples were collected after an extended drought, and again after a flood event, to capture the evolution of DIC after varying hydrological regimes. A graphical method (Han et al., 2012) was applied for interpretation of the carbon geochemical and isotopic data. Simple forward mass-balance modelling was carried out on key geochemical processes involving carbon and agreed well with observed data. High values of DIC and δ13CDIC, and low 14CDIC could not be explained by a simple carbonate mineral-CO2 gas dissolution process. Instead it is suggested that during extended drought, water-sediment interaction leads to ion exchange processes within the top ∼10-20 m of the aquifer which promotes greater calcite dissolution in saline groundwater. This process was found to contribute more than half of the DIC, which is from a mostly 'dead' carbon source. DIC is also influenced by carbon exchange between DIC in water and carbonate minerals found in the top 2 m of the unsaturated zone. This process occurs because of repeated dissolution/precipitation of carbonate that is dependent on

  10. EVOLUTION OF X-RAY AND FAR-ULTRAVIOLET DISK-DISPERSING RADIATION FIELDS

    SciTech Connect

    Ingleby, Laura; Calvet, Nuria; Miller, Jon; Bergin, Edwin; Hartmann, Lee; Hernandez, Jesus; Briceno, Cesar; Espaillat, Catherine E-mail: ncalvet@umich.edu E-mail: ebergin@umich.edu E-mail: jesush@cida.ve E-mail: cespaillat@cfa.harvard.edu

    2011-04-15

    We present new X-ray and far-ultraviolet (FUV) observations of T Tauri stars covering the age range 1-10 Myr. Our goals are to observationally constrain the intensity of radiation fields responsible for evaporating gas from the circumstellar disk and to assess the feasibility of current photoevaporation models, focusing on X-ray and UV radiation. We greatly increase the number of 7-10 Myr old T Tauri stars observed in X-rays by including observations of the well-populated 25 Ori aggregate in the Orion OB1a subassociation. With these new 7-10 Myr objects, we confirm that X-ray emission remains constant from 1 to 10 Myr. We also show, for the first time, observational evidence for the evolution of FUV radiation fields with a sample of 56 accreting and non-accreting young stars spanning 1 Myr to 1 Gyr. We find that the FUV emission decreases on timescales consistent with the decline of accretion in classical T Tauri stars until reaching the chromospheric level in weak T Tauri stars and debris disks. Overall, we find that the observed strength of high-energy radiation is consistent with that required by photoevaporation models to dissipate the disks in timescales of approximately 10 Myr. Finally, we find that the high-energy fields that affect gas evolution are not similarly affecting dust evolution; in particular, we find that disks with inner clearings, transitional disks, have similar levels of FUV emission as full disks.

  11. Transmitted light relaxation and microstructure evolution of ferrofluids under gradient magnetic fields

    NASA Astrophysics Data System (ADS)

    Huang, Yan; Li, Decai; Li, Feng; Zhu, Quanshui; Xie, Yu

    2015-03-01

    Using light transmission experiments and optical microscope observations with a longitudinal gradient magnetic field configuration, the relationship between the behavior of the transmitted light relaxation and the microstructure evolution of ionic ferrofluids in the central region of an axisymmetric field is investigated. Under a low-gradient magnetic field, there are two types of relaxation process. When a field is applied, the transmitted light intensity decreases to a minimum within a time on the order of 101-102 s. It is then gradually restored, approaching its initial value within a time on the order of 102 s. This is type I relaxation, which corresponds to the formation of magnetic columns. After the transmission reaches this value, it either increases or decreases slowly, stabilizing within a time on the order of 103 s, according to the direction of the field gradient. This is a type II relaxation, which results from the shadowing effect, corresponding to the motion of the magnetic columns under the application of a gradient force. Under a magnetic field with a centripetal high-gradient (magnetic materials subjected to a force pointing toward the center of the axisymmetric field), the transmitted light intensity decreases monotonously and more slowly than that under a low-gradient field. Magnetic transport and separation resulted from magnetophoresis under high-gradient fields, changing the formation dynamics of the local columns and influencing the final state of the column system.

  12. Evolution of the Interplanetary Magnetic Field sector structure during the last 15 solar cycles

    NASA Astrophysics Data System (ADS)

    Vokhmyanin, Mikhail

    We have inferred for the first time Interplanetary Magnetic Field (IMF) polarities from ground-based geomagnetic observations back to 1844. Reconstructions are reliable enough to study sector structure of the IMF in the past. The inferred daily polarities demonstrate solar-cycle changes during the nineteenth and twentieth centuries. We have analyzed statistics of the sector boundaries and found recurrences that reflect evolution of the solar wind sources. Additionally, seasonal variations of the ratio of positive and negative sectors provide evidence of solar magnetic field reversals during the last 15 solar cycles.

  13. Evolution of magnetic field fluctuations in two-dimensional chaotic flow

    NASA Astrophysics Data System (ADS)

    Kolokolov, I. V.

    2017-04-01

    The two-point correlation tensor of small-scale fluctuations of magnetic field \\boldsymbol{B} in a two-dimensional chaotic flow is studied. The analytic approach is developed in the framework of the Kraichnan–Kazantsev model. It is shown that the growth of the field fluctuations takes place in an essentially resistive regime and stops at large times in accordance with the so-called anti-dynamo theorems. The value of \\boldsymbol{B}{2} is enhanced in the course of the evolution by the magnetic Prandtl number.

  14. Environment-Assisted Speed-up of the Field Evolution in Cavity Quantum Electrodynamics

    DOE PAGES

    Cimmarusti, A. D.; Yan, Z.; Patterson, B. D.; ...

    2015-06-11

    We measure the quantum speed of the state evolution of the field in a weakly-driven optical cavity QED system. To this end, the mode of the electromagnetic field is considered as a quantum system of interest with a preferential coupling to a tunable environment: the atoms. By controlling the environment, i.e., changing the number of atoms coupled to the optical cavity mode, an environment assisted speed-up is realized: the quantum speed of the state re-population in the optical cavity increases with the coupling strength between the optical cavity mode and this non-Markovian environment (the number of atoms).

  15. Environment-Assisted Speed-up of the Field Evolution in Cavity Quantum Electrodynamics.

    PubMed

    Cimmarusti, A D; Yan, Z; Patterson, B D; Corcos, L P; Orozco, L A; Deffner, S

    2015-06-12

    We measure the quantum speed of the state evolution of the field in a weakly driven optical cavity QED system. To this end, the mode of the electromagnetic field is considered as a quantum system of interest with a preferential coupling to a tunable environment: the atoms. By controlling the environment, i.e., changing the number of atoms coupled to the optical cavity mode, an environment-assisted speed-up is realized: the quantum speed of the state repopulation in the optical cavity increases with the coupling strength between the optical cavity mode and this non-Markovian environment (the number of atoms).

  16. Possible evolution of a bouncing universe in cosmological models with non-minimally coupled scalar fields

    NASA Astrophysics Data System (ADS)

    Pozdeeva, Ekaterina O.; Skugoreva, Maria A.; Toporensky, Alexey V.; Vernov, Sergey Yu.

    2016-12-01

    We explore dynamics of cosmological models with bounce solutions evolving on a spatially flat Friedmann-Lemaître-Robertson-Walker background. We consider cosmological models that contain the Hilbert-Einstein curvature term, the induced gravity term with a negative coupled constant, and even polynomial potentials of the scalar field. Bounce solutions with non-monotonic Hubble parameters have been obtained and analyzed. The case when the scalar field has the conformal coupling and the Higgs-like potential with an opposite sign is studied in detail. In this model the evolution of the Hubble parameter of the bounce solution essentially depends on the sign of the cosmological constant.

  17. Evolution of the photospheric magnetic field and coronal null points before solar flares

    NASA Astrophysics Data System (ADS)

    Oreshina, I. V.; Somov, B. V.

    2009-03-01

    Based on a topological model for the magnetic field of a solar active region (AR), we suggest a criterion for the existence of magnetic null points on the separators in the corona. With the problem of predicting solar flares in mind, we have revealed a model parameter whose decrease means that the AR evolves toward a major eruptive flare. We analyze the magnetic field evolution for AR 9077 within two days before the Bastille Day flare on July 14, 2000. The coronal conditions are shown to have become more favorable for magnetic reconnection, which led to a 3B/X5.7 eruptive flare.

  18. Sedimentary records of mangrove evolution during the past one hundred years based on stable carbon isotope and pollen evidences in Maowei, SW China

    NASA Astrophysics Data System (ADS)

    Xia, Peng; Meng, Xianwei; Li, Zhen; Feng, Aiping

    2016-06-01

    Mangroves accumulate sedimentary sequences, where cores can provide historical records of mangrove evolution with past climate change and human activity. The study traced the history of mangrove evolution during the past one hundred years in a mangrove swamp of Maowei Sea, SW China. The sedimentation rates (0.38-0.95 cm yr-1) were calculated on the basis of ln (210Pbxs/Al) and mass depth in the core sediments. Chemical tracers, such as δ13Corg and C:N values, were utilized to trace the contribution of mangrove-derived organic matter using a ternary mixing model. Because of potential diagenetic alteration and / or overlap in the isotopic signatures of different components, simultaneous use of mangrove pollen diagrams can help to supplement some of these limitations. Combined with mangrove pollen, mangrove evolution was reconstructed and could be divided into three stages: flourishment (1886-1905 AD), slight degradation (1905-1949 AD) and rapid degradation period (1949-2007 AD), which was consistent with previous reports. The reclamation of mangrove swamps to shrimp ponds was the major reason for rapid degradation of mangrove ecosystems in recent years, rather than climate change in the region.

  19. Understanding carbon isotope behaviour during combustion processes: a pre-requisite to using d13C in the field of air pollution.

    NASA Astrophysics Data System (ADS)

    Negrel, P.; Widory, D.

    2006-12-01

    Recent studies have demonstrated the effectiveness of stable isotopes in the field of air pollution research, especially their success in clearly discriminating the different sources of pollution in urban environments, and in tracing their respective impacts for a given sampling location. Among them, carbon isotopes have been used to track the origin of both gases (i.e. CO2; Widory &Javoy, 2003) and particulate matter (i.e. PM2 .5 and PM10; Widory et al., 2004). But understanding the carbon isotope behaviour that leads to this discrimination during combustion processes is a pre-requisite to using them as tracers of pollution sources in the atmosphere. d13C in fuels has been extensively used as an indicator of the processes leading to the generation of their parent crude-oil. Here, we isotopically characterise fuels and combustibles sold in Paris (France), and characterise the isotopic relations existing with their combustion by-products, i.e. gases (CO2) and particles (bulk carbon). Results show that d13C in fuels is clearly related to their physical state, with natural gas being strongly depleted in 13C while coal yields the highest d13C, and liquid fuels display intermediate values. This relation is also valid for exhaust gases, though d13C values of combustion particles form a homogeneous range within which no clear distinction is observed. Combustion processes are accompanied by carbon-isotope fractionation resulting from the combustion being incomplete. Carbon-isotope fractionation is strictly negative ( 1.3‰) during the formation of combustion gases, but generally positive in particle formation even if values close to zero are observed. This study helps understanding the processes leading to the d13C discrimination observed in pollution sources' exhausts, and definitely validates the use of carbon isotopes as tracers of atmospheric pollution.

  20. CARBON AND OXYGEN ISOTOPIC ANALYSIS: BUG, CHEROKEE, AND PATTERSON CANYON FIELDS, SAN JUAN COUNTY, UTAH

    SciTech Connect

    David E. Eby; Thomas C. Chidsey Jr; Kevin McClure; Craig D. Morgan; Stephen T. Nelson

    2003-12-01

    Over 400 million barrels (64 million m{sup 3}) of oil have been produced from the shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation in the Paradox Basin, Utah and Colorado. With the exception of the giant Greater Aneth field, the other 100 plus oil fields in the basin typically contain 2 to 10 million barrels (0.3-1.6 million m{sup 3}) of original oil in place. Most of these fields are characterized by high initial production rates followed by a very short productive life (primary), and hence premature abandonment. Only 15 to 25 percent of the original oil in place is recoverable during primary production from conventional vertical wells. An extensive and successful horizontal drilling program has been conducted in the giant Greater Aneth field. However, to date, only two horizontal wells have been drilled in small Ismay and Desert Creek fields. The results from these wells were disappointing due to poor understanding of the carbonate facies and diagenetic fabrics that create reservoir heterogeneity. These small fields, and similar fields in the basin, are at high risk of premature abandonment. At least 200 million barrels (31.8 million m{sup 3}) of oil will be left behind in these small fields because current development practices leave compartments of the heterogeneous reservoirs undrained. Through proper geological evaluation of the reservoirs, production may be increased by 20 to 50 percent through the drilling of low-cost single or multilateral horizontal legs from existing vertical development wells. In addition, horizontal drilling from existing wells minimizes surface disturbances and costs for field development, particularly in the environmentally sensitive areas of southeastern Utah and southwestern Colorado.

  1. Stable isotope evidence for the petrogenesis and fluid evolution in the Proterozoic Harney Peak leucogranite, Black Hills, South Dakota

    SciTech Connect

    Nabelek, P.I. Centre National de la Recherche Scientifique, Orleans ); Russ-Nabelek, C.; Haeussler, G.T. )

    1992-01-01

    Oxygen and hydrogen isotope systematics of the Proterozoic Harney Peak Granite were examined in order to constrain its petrogenesis and to examine the role of fluids in a peraluminous granite-pegmatite magmatic system. It is shown that fractional crystallization or subsolidus interaction of the Harney Peak Granite with the magmatic fluid or a fluid derived from the schist cannot explain the difference between the {delta}{sup 18}O values of the core and perimeter granites. Although some oxygen isotope heterogeneity in the granite could be explained by assimilation of the country rocks, assimilation cannot explain all of the difference between the two granite types. Instead, it is proposed that intrusion of the magma which led to the biotite granites in the core of the pluton at the culmination of regional metamorphism initiated melting of the schists at a depth somewhat greater than the present level of erosion. The melts were emplaced into the overlying schist and differentiated into the many tourmaline-rich granite-pegmatite sills and dikes comprising much of the perimeter of the Harney Peak Granite and its satellite plutons. Alternatively, the different melts may have resulted from melting along an isotopically heterogeneous vertical section of the crust in response to the ascent of a thermal pulse.

  2. Field-based stable isotope analysis of carbon dioxide by mid-infrared laser spectroscopy for carbon capture and storage monitoring.

    PubMed

    van Geldern, Robert; Nowak, Martin E; Zimmer, Martin; Szizybalski, Alexandra; Myrttinen, Anssi; Barth, Johannes A C; Jost, Hans-Jürg

    2014-12-16

    A newly developed isotope ratio laser spectrometer for CO2 analyses has been tested during a tracer experiment at the Ketzin pilot site (northern Germany) for CO2 storage. For the experiment, 500 tons of CO2 from a natural CO2 reservoir was injected in supercritical state into the reservoir. The carbon stable isotope value (δ(13)C) of injected CO2 was significantly different from background values. In order to observe the breakthrough of the isotope tracer continuously, the new instruments were connected to a stainless steel riser tube that was installed in an observation well. The laser instrument is based on tunable laser direct absorption in the mid-infrared. The instrument recorded a continuous 10 day carbon stable isotope data set with 30 min resolution directly on-site in a field-based laboratory container during a tracer experiment. To test the instruments performance and accuracy the monitoring campaign was accompanied by daily CO2 sampling for laboratory analyses with isotope ratio mass spectrometry (IRMS). The carbon stable isotope ratios measured by conventional IRMS technique and by the new mid-infrared laser spectrometer agree remarkably well within analytical precision. This proves the capability of the new mid-infrared direct absorption technique to measure high precision and accurate real-time stable isotope data directly in the field. The laser spectroscopy data revealed for the first time a prior to this experiment unknown, intensive dynamic with fast changing δ(13)C values. The arrival pattern of the tracer suggest that the observed fluctuations were probably caused by migration along separate and distinct preferential flow paths between injection well and observation well. The short-term variances as observed in this study might have been missed during previous works that applied laboratory-based IRMS analysis. The new technique could contribute to a better tracing of the migration of the underground CO2 plume and help to ensure the long

  3. Magnetic field evolution in neutron stars: one-dimensional multi-fluid model

    NASA Astrophysics Data System (ADS)

    Hoyos, J.; Reisenegger, A.; Valdivia, J. A.

    2008-09-01

    Aims: This paper is the first in a series that aims to understand the long-term evolution of neutron star magnetic fields. Methods: We model the stellar matter as an electrically neutral and lightly-ionized plasma composed of three moving particle species: neutrons, protons, and electrons; these species can be converted into each other by weak interactions (beta decays), suffer binary collisions, and be affected by each other's macroscopic electromagnetic fields. Since the evolution of the magnetic field occurs over thousands of years or more, compared to dynamical timescales (sound and Alfvén) of milliseconds to seconds, we use a slow-motion approximation in which we neglect the inertial terms in the equations of motion for the particles. This approximation leads to three nonlinear partial-differential equations describing the evolution of the magnetic field, as well as the movement of two fluids: the charged particles (protons and electrons) and the neutrons. These equations are first rather than second order in time (involving the velocities of the three species but not their accelerations). Results: In this paper, we restrict ourselves to a one-dimensional geometry in which the magnetic field points in one Cartesian direction, but varies only along an orthogonal direction. We study the evolution of the system in three different ways: (i) estimating timescales directly from the equations, guided by physical intuition; (ii) a normal-mode analysis in the limit of a nearly uniform system; and (iii) a finite-difference numerical integration of the full set of nonlinear partial-differential equations. We find good agreement between our analytical normal-mode solutions and the numerical simulations. We show that the magnetic field and the particles evolve through successive quasi-equilibrium states, on timescales that can be understood by physical arguments. Depending on parameter values, the magnetic field can evolve by ohmic diffusion or by ambipolar diffusion, the

  4. Sr-Nd isotope data of basement rocks from the northernmost argentine Precordillera and its implications for the early Paleozoic evolution of SW Gondwana margin

    NASA Astrophysics Data System (ADS)

    Martina, Federico; Astini, Ricardo A.; Pimentel, Marcio M.

    2014-12-01

    The Precordillera terrane (Cuyania) in western Argentina is commonly accepted as an exotic fragment derived from Laurentia in the Early Paleozoic. Evidence supporting such an interpretation is manly based on similarities in the sedimentary cover successions and their paleontological content. Little is known about the basement of the Precordillera terrane. Its isotopic characterization is essential to better constrain the present areal distribution of the terrane and it may provide more insight into the pre-rifting evolution of the Precordillera terrane along the Iapetan margin of Laurentia. We present new Sr and Nd isotope data of pre-Late Ordovician meta-igneous rocks from the Río Bonete region in NW Argentina, interpreted as the northernmost extent of the Precordillera. The Nd systematics of the Río Bonete basement rocks including greenschists and metagabbros (ɛNd(470) = +2.14--0.19; TDM = 0.99-1.2 Ga), a garnet-amphibolite (ɛNd(470) = -0.53; TDM = 1.32 Ga) and a quartz-phyllite (ɛNd(470) = -3.83; TDM = 1.55 Ga), are similar to other pre-Ordovician meta-igneous rocks from Sierra de Umango, Pie de Palo and the Ullum xenoliths, usually interpreted as the basement of the Precordillera terrane. Nd model ages around 1.2 Ga are also typical from the Mesoproterozoic Grenvillian basement of southern North America, currently exposed in the Llano region. In addition, the greenschists and metagabbros show a robust correlation with the Late Neoproterozoic Catoctin volcanics in the central Appalachians. The Sr isotope data (when not disturbed) also supports this novel interpretation and suggests the presence of the Blue Ridge rifting event in Precordillera. According to our interpretation, some lithotypes included within the basement complex of the Río Bonete area belonged to the basement of the Precordillera terrane supporting previous correlation between both regions.

  5. Lipid Biomarkers and Carbon Isotope Ratios of Lipids Isolated from Acid Mine Drainage Biofilms: Dual Biosignatures for Eukaryotic Evolution and Oxygenation of Primitive Earth

    NASA Astrophysics Data System (ADS)

    Dasgupta, S.; Fang, J.; Zhang, L.; Li, J.

    2012-12-01

    Lipid analysis and carbon isotope ratios (δ13C) of lipids in biofilms in an acid mine drainage site (AMD) site in western Indiana revealed unique biogeochemical signatures of microeukaryotes, never recorded before. Dominance of photosynthetic microeukaryote Euglena was indicated by the detection of abundant phytadiene, phytol, phytanol, polyunsaturated n-alkenes, polyunsaturated fatty acids, short-chain (C25-32) wax esters (WE), ergosterol, and tocopherols. The WE were probably synthesized in mitochondria under anoxic conditions by the reverse β-oxidation pathway, whereas the sterols (ergosterol and ergosta-7,22-dien-3β-ol) were likely synthesized in the cytosol in the presence of molecular oxygen. The dual aerobic and anaerobic biosynthetic pathways of Euglena may be a response to survive the recurring anoxic and oxic conditions in primitive Earth, whereby microeukaryotes retained this mechanism of conserved compartmentalization within their physiology to evolve and diversify in extreme conditions. Hydrocarbons, including n-alkenes, phytadienes, and wax esters showed heavy δ13C values than usual. The primary cause for the 13C-enrichment can be attributed to a CO2-limiting system that exists in the AMD, which is further regulated by the pH of the AMD. Floating biofilms BF2, 4, and 6 showed more depleted δ13C values for phytadienes and n-alkenes (average of -23.6‰) as compared to benthic biofilm BF5 (average of -20.8‰), indicating that physiology plays an important role in isotopic discrimination. 13C-enriched values of the esters could result from kinetic isotope effects at two branch points (pyruvate and/or acetyl CoA) in the biosynthetic pathway. Our understanding of biogeochemical conditions in this AMD environment would allow us to identify unique sets of biosignatures that can act as a proxy in deciphering the links between eukaryotic evolutions, oxygenation of the early atmosphere, formation of BIF, and possibly iron-rich extraterrestrial

  6. Crustal evolution and recycling in a juvenile continent: Oxygen isotope ratio of zircon in the northern Arabian Nubian Shield

    NASA Astrophysics Data System (ADS)

    Be'eri-Shlevin, Yaron; Katzir, Yaron; Valley, John W.

    2009-02-01

    Crustal recycling patterns during the evolution of the Neoproterozoic Arabian-Nubian Shield (ANS) were defined using the oxygen isotope ratio of zircon [ δ18O(Zrn)]. Evidence for early (~ 870-740 Ma) crustal recycling in the northernmost ANS (southern Israel and Sinai, Egypt) is given by laser fluorination analysis of bulk zircon separates, which yield higher than mantle δ18O(Zrn) values of several island arc complex (IAC) orthogneisses (6.9 to 8.2‰) and also from the average δ18O(Zrn) value of 6.4‰ determined for detrital zircons (~ 870-780 Ma) from the Elat-schist; the latter representing the oldest known rock sources in the region. These results indicate prolonged availability of surface-derived rocks for burial or subduction, melting, and assimilation at the very early stages of island arc formation in the ANS. Other IAC intrusions of ~ 800 Ma show mantle-like δ18O(Zrn) values, implying that not all magmas involved supracrustal contribution. Much younger (650-625 Ma) deformed syn-collisional calc-alkaline (CA1) intrusions are characterized by δ18O(Zrn) values of 5.0 to 7.9‰ indicating continued recycling of the felsic crust. The main sample set of this study comprises rocks from the mostly granitic, post-collisional calc-alkaline (CA2: ~ 635-590 Ma) and alkaline (AL: ~ 608-580 Ma) magmatic suites. Despite having distinct geochemical characteristics and petrogenetic paths and spans of magmatic activity, the two suites are indistinguishable by their average δ18O(Zrn) values of 5.7 and 5.8‰ pointing to the dominance of mantle-like δ18O sources in their formation. Nonetheless, grouping the two suites together reveals geographical zoning in δ18O(Zrn) where a large southeastern region of δ18O(Zrn) = 4.5 to 5.9‰ is separated from a northwestern belt with δ18O(Zrn) = 6 to 8‰ by a '6‰ line'. It is thus suggested that all CA2 and AL magmas of the northernmost ANS were derived from mantle-like δ18O reservoirs in the mafic lower-crust and the

  7. Spatial and temporal evolution of lead isotope ratios in the North Atlantic Ocean between 1981 and 1989

    NASA Astrophysics Data System (ADS)

    Weiss, Dominik; Boyle, Edward A.; Wu, Jingfeng; Chavagnac, ValéRie; Michel, Anna; Reuer, Matthew K.

    2003-10-01

    Lead concentrations and isotope ratios were measured in North Atlantic surface water samples collected in 1981 (29°-79°N, 6°E-49°W) and in 1989 (23°-39°N, 29°-68°W). In the early 1980s, 206Pb/207Pb ratios in the North African Basin averaged 1.193 ± 0.005 (1 σ). Similar radiogenic ratios within the level of analytical precision (average 0.29%) were found in the Labrador and Iceland Basins (1.198 ± 0.006) and in the Norwegian Sea (1.196 ± 0.008). These radiogenic mixed layer signatures along with atmospheric global lead emission patterns suggest that most North Atlantic lead in the early 1980s was derived from North American leaded gasoline. Samples in the East Iberian Basin near Portugal and France showed lower 206Pb/207Pb ratios, between 1.167 and 1.182, indicating a significant influence of less radiogenic atmospheric lead transported from Europe and possibly the influence of the Rio Tinto acid mine drainage very close to shore in the Gulf of Cadiz. [Pb] across the entire North Atlantic Basin ranged between 54 and 145 pmol/kg, with the lowest values (54-74 pmol/kg) found at high latitudes (>65°N). In the late 1980s, surface waters in the western subtropical North Atlantic (North American Basin/Sargasso Sea, >47°W) and in the eastern subtropical North Atlantic (North African Basin/Central Iberian Basin, <45°W) showed very similar 206Pb/207Pb signatures with little zonal variation, ranging from 1.177 to 1.192. Lead concentrations ranged between 47 and 137 pmol/kg, increasing slightly from west to east. South of 25°N in the equatorial North Atlantic, crossing the subtropical/tropical surface water boundary, the 206Pb/207Pb seawater signatures were significantly less radiogenic (1.170-1.175) and concentrations were lower (≤51 pmol/kg). This difference suggests a relative increase in the atmospheric lead supply from the western Mediterranean/North African continent via Trade Easterlies and illustrates the effective barrier between the subtropical

  8. Observations of two-dimensional magnetic field evolution in a plasma opening switch

    NASA Astrophysics Data System (ADS)

    Shpitalnik, R.; Weingarten, A.; Gomberoff, K.; Krasik, Ya.; Maron, Y.

    1998-03-01

    The time dependent magnetic field distribution was studied in a coaxial 100-ns positive-polarity Plasma Opening Switch (POS) by observing the Zeeman effect in ionic line emission. Measurements local in three dimensions are obtained by doping the plasma using laser evaporation techniques. Fast magnetic field penetration with a relatively sharp magnetic field front (⩽1 cm) is observed at the early stages of the pulse (t≲25). Later in the pulse, the magnetic field is observed at the load-side edge of the plasma, leaving "islands" of low magnetic field at the plasma center that last for about 10 ns. The two-dimensional (2-D) structure of the magnetic field in the r,z plane is compared to the results of an analytical model based on electron-magneto-hydrodynamics, that utilizes the measured 2-D plasma density distribution and assumes fast magnetic field penetration along both POS electrodes. The model results provide quantitative explanation for the magnetic field evolution observed.

  9. Temporal evolution of the electric field accelerating electrons away from the auroral ionosphere.

    PubMed

    Marklund, G T; Ivchenko, N; Karlsson, T; Fazakerley, A; Dunlop, M; Lindqvist, P A; Buchert, S; Owen, C; Taylor, M; Vaivalds, A; Carter, P; André, M; Balogh, A

    2001-12-13

    The bright night-time aurorae that are visible to the unaided eye are caused by electrons accelerated towards Earth by an upward-pointing electric field. On adjacent geomagnetic field lines the reverse process occurs: a downward-pointing electric field accelerates electrons away from Earth. Such magnetic-field-aligned electric fields in the collisionless plasma above the auroral ionosphere have been predicted, but how they could be maintained is still a matter for debate. The spatial and temporal behaviour of the electric fields-a knowledge of which is crucial to an understanding of their nature-cannot be resolved uniquely by single satellite measurements. Here we report on the first observations by a formation of identically instrumented satellites crossing a beam of upward-accelerated electrons. The structure of the electric potential accelerating the beam grew in magnitude and width for about 200 s, accompanied by a widening of the downward-current sheet, with the total current remaining constant. The 200-s timescale suggests that the evacuation of the electrons from the ionosphere contributes to the formation of the downward-pointing magnetic-field-aligned electric fields. This evolution implies a growing load in the downward leg of the current circuit, which may affect the visible discrete aurorae.

  10. Radiogenic p-isotopes from type Ia supernova, nuclear physics uncertainties, and galactic chemical evolution compared with values in primitive meteorites

    SciTech Connect

    Travaglio, C.; Gallino, R.; Rauscher, T.; Dauphas, N.; Röpke, F. K.; Hillebrandt, W. E-mail: claudia.travaglio@b2fh.org

    2014-11-10

    The nucleosynthesis of proton-rich isotopes is calculated for multi-dimensional Chandrasekhar-mass models of Type Ia supernovae (SNe Ia) with different metallicities. The predicted abundances of the short-lived radioactive isotopes {sup 92}Nb, {sup 97,} {sup 98}Tc, and {sup 146}Sm are given in this framework. The abundance seeds are obtained by calculating s-process nucleosynthesis in the material accreted onto a carbon-oxygen white dwarf from a binary companion. A fine grid of s-seeds at different metallicities and {sup 13}C-pocket efficiencies is considered. A galactic chemical evolution model is used to predict the contribution of SN Ia to the solar system p-nuclei composition measured in meteorites. Nuclear physics uncertainties are critical to determine the role of SNe Ia in the production of {sup 92}Nb and {sup 146}Sm. We find that, if standard Chandrasekhar-mass SNe Ia are at least 50% of all SN Ia, they are strong candidates for reproducing the radiogenic p-process signature observed in meteorites.

  11. Evolution of volcanic rocks and associated ore deposits in the Marysvale volcanic field, Utah

    USGS Publications Warehouse

    Cunningham, Charles G.; Steven, Thomas A.; Rowley, Peter D.; Naeser, Charles W.; Mehnert, Harald H.; Hedge, Carl E.; Ludwig, Kenneth R.

    1994-01-01

    A geological account on the igneous activity and associated mineral deposition in the volcanic field of Marysvale in Utah is presented. Three episodes (34-22 Ma, 22-14 Ma and 9-5 Ma) involved in the volcanic rock eruption and associated mineralization are described. The first episode is believed to have occurred during the time of tectonic convergence when two contrasting suites of rocks, Mount Dutton Formation and Bullion Canyon Volcanics, erupted concurrently. Mineralization during this period was sparse. In the second episode, change from intermediate to bimodal volcanism occurred. During the third episode, basaltic compositions did not change. Although major element constituent had rhyolites similar to that of the second episode, rhyolites had a marked radiogenic isotope characteristic difference.

  12. Variability of solar/stellar activity and magnetic field and its influence on planetary atmosphere evolution

    NASA Astrophysics Data System (ADS)

    Lammer, Helmut; Güdel, Manuel; Kulikov, Yuri; Ribas, Ignasi; Zaqarashvili, Teimuraz V.; Khodachenko, Maxim L.; Kislyakova, Kristina G.; Gröller, Hannes; Odert, Petra; Leitzinger, Martin; Fichtinger, Bibiana; Krauss, Sandro; Hausleitner, Walter; Holmström, Mats; Sanz-Forcada, Jorge; Lichtenegger, Herbert I. M.; Hanslmeier, Arnold; Shematovich, Valery I.; Bisikalo, Dmitry; Rauer, Heike; Fridlund, Malcolm

    2012-02-01

    It is shown that the evolution of planetary atmospheres can only be understood if one recognizes the fact that the radiation and particle environment of the Sun or a planet's host star were not always on the same level as at present. New insights and the latest observations and research regarding the evolution of the solar radiation, plasma environment and solar/stellar magnetic field derived from the observations of solar proxies with different ages will be given. We show that the extreme radiation and plasma environments of the young Sun/stars have important implications for the evolution of planetary atmospheres and may be responsible for the fact that planets with low gravity like early Mars most likely never build up a dense atmosphere during the first few 100 Myr after their origin. Finally we present an innovative new idea on how hydrogen clouds and energetic neutral atom (ENA) observations around transiting Earth-like exoplanets by space observatories such as the WSO-UV, can be used for validating the addressed atmospheric evolution studies. Such observations would enhance our understanding on the impact on the activity of the young Sun on the early atmospheres of Venus, Earth, Mars and other Solar System bodies as well as exoplanets.

  13. Geochemistry and isotopic composition of the Guerrero Terrane (western Mexico): implications for the tectono-magmatic evolution of southwestern North America during the Late Mesozoic

    NASA Astrophysics Data System (ADS)

    Mendoza, O. T.; Suastegui, M. G.

    2000-10-01

    The composite Guerrero Terrane of western Mexico records much of the magmatic evolution of southwestern North America during Late Mesozoic time. The Guerrero includes three distinctive subterranes characterized by unique stratigraphic records, structural evolutions, and geochemical and isotopic features that strongly suggest they evolved independently. The eastern Teloloapan Subterrane represents an evolved intra-oceanic island arc of Hauterivian to Cenomanian age, which includes a high-K calc-alkaline magmatic suite. The central Arcelia-Palmar Chico Subterrane represents a primitive island arc-marginal basin system of Albian to Cenomanian age, consisting of an oceanic suite and a tholeiitic arc suite. The western Zihuatanejo-Huetamo Subterrane comprises three components that represent an evolved island arc-marginal basin-subduction complex system of Late Jurassic (?) -Early Cretaceous age built on a previously deformed basement. The Zihuatanejo Sequence includes a thick high-K calc-alkaline magmatic suite. The Las Ollas Complex consists of tectonic slices containing exotic blocks of arc affinity affected by high-pressure/low-temperature metamorphism included in a sheared matrix. The Huetamo Sequence consists mainly of volcanic-arc derived sedimentary rocks, including large pebbles of tholeiitic, calc-alkaline, and shoshonitic lavas. These sequences are unconformably underlain by the Arteaga Complex, which represents the subvolcanic basement. On the basis of available geology, geochemistry, geochronology, and isotopic data, we suggest that Late Mesozoic volcanism along the western margin of southern North America developed in broadly contemporaneous but different intra-oceanic island arcs that constitute a complex fossil arc-trench system similar to the present-day western Pacific island arc system.

  14. High frequency field measurements of diurnal carbon isotope discrimination and internal conductance in a semi-arid species, Juniperus monosperma

    NASA Astrophysics Data System (ADS)

    Bickford, C. P.; McDowell, N. G.; Erhardt, E. B.; Hanson, D. T.

    2008-12-01

    We present field observations of leaf gas exchange, carbon isotope discrimination (Δ) and internal conductance of CO2 to the sites of carboxylation (gi) collected during summer 2006 using tunable diode laser spectroscopy (TDL). Δ ranged from 27.4‰ to 12.6‰ over diurnal periods with daily means of 16.3 ± 0.2‰ during drought to 19.0 ± 0.5‰ during monsoon conditions. We observed a large range in gi, from 0.03-2.03 μmol m-2 s-1 Pa-1 among measured leaves. We tested the comprehensive Farquhar, OLeary & Berry (1982) model of Δ (Δcomp), a simplified form of Δcomp (Δsimple), and recently suggested amendments (Δrevised; Wingate et al. 2007). Sensitivity analyses demonstrated that incorporating variable gi had a substantial effect on Δcomp, resulting in mean differences between observed Δ (Δobs) and Δcomp predictions as low as 0.04‰ and as high as 9.6‰. We found first order linear models adequately described the relationship between Δ and the ratio of substomatal to atmospheric CO2 partial pressure (pi/pa) on all three days, but curvilinear second order models best described the relationship in July and August, potentially due to the dominance of respiration and associated isotopic signatures at high pi/pa. There was good agreement between Δobs and predictions from all models, with Δsimple producing the best fit of Δobs in June, Δcomp producing the best fit in July, and Δrevised producing the best fit in August.

  15. Minimalist coupled evolution model for stellar X-ray activity, rotation, mass loss, and magnetic field

    NASA Astrophysics Data System (ADS)

    Blackman, Eric G.; Owen, James E.

    2016-05-01

    Late-type main-sequence stars exhibit an X-ray to bolometric flux ratio that depends on {tilde{R}o}, the ratio of rotation period to convective turnover time, as {tilde{R}o}^{-ζ } with 2 ≤ ζ ≤ 3 for {tilde{R}o} > 0.13, but saturates with |ζ| < 0.2 for {tilde{R}o} < 0.13. Saturated stars are younger than unsaturated stars and show a broader spread of rotation rates and X-ray activity. The unsaturated stars have magnetic fields and rotation speeds that scale roughly with the square root of their age, though possibly flattening for stars older than the Sun. The connection between faster rotators, stronger fields, and higher activity has been established observationally, but a theory for the unified time-evolution of X-ray luminosity, rotation, magnetic field and mass loss that captures the above trends has been lacking. Here we derive a minimalist holistic framework for the time evolution of these quantities built from combining a Parker wind with new ingredients: (1) explicit sourcing of both the thermal energy launching the wind and the X-ray luminosity via dynamo produced magnetic fields; (2) explicit coupling of X-ray activity and mass-loss saturation to dynamo saturation (via magnetic helicity build-up and convection eddy shredding); (3) use of coronal equilibrium to determine how magnetic energy is divided into wind and X-ray contributions. For solar-type stars younger than the Sun, we infer conduction to be a subdominant power loss compared to X-rays and wind. For older stars, conduction is more important, possibly quenching the wind and reducing angular momentum loss. We focus on the time evolution for stars younger than the Sun, highlighting what is possible for further generalizations. Overall, the approach shows promise towards a unified explanation of all of the aforementioned observational trends.

  16. Pb-isotopic systematics of lunar highland rocks (>3.9 Ga): Constraints on early lunar evolution

    USGS Publications Warehouse

    Premo, W.R.; Tatsumoto, M.; Misawa, K.; Nakamuka, N.; Kita, N.I.

    1999-01-01

    The present lead (Pb)-isotopic database of over 200 analyses from nearly 90 samples of non-mare basalt, lunar highland rocks (>3.9 Ga) delineate at least three isotopically distinct signatures that in some combination can be interpreted to characterize the systematics of the entire database. Two are fairly new sets of lunar data and are typical of Pb data from other solar-system objects, describing nearly linear arrays slightly above the 'geochron' values, with 207Pb/206Pb values 500). Although the age and origin of this exotic Pb is not well constrained, it is interpreted to be related to the entrapment of incompatible-element-rich (U, Th) melts within the lunar upper mantle and crust between 4.36 and 4.46 Ga (urKREEP residuum?). The latest discovered Pb signature is found only in lunar meteorites and is characterized by relatively low source ?? values between 10 and 50 at 3.9 Ga. The fact that most lunar crustal rocks (>3.9 Ga) exhibit high 207Pb/206Pb values requires that they were derived from, mixed with, or contaminated by Pb produced from early-formed, high-?? sources. The ubiquity of these U-Pb characteristics in the sample collection is probably an artifact of Apollo and Luna sampling sites, all located on the near side of the Moon, which was deeply excavated during the basin-forming event(s). However, the newest Pb-isotopic data support the idea that the Moon originally had a ?? value of ~8 to 35, slightly elevated from Earth values, and that progressive U-Pb fractionations occurred within the Moon during later stages of differentiation between 4.36 and 4.46 Ga.

  17. Isotope and trace element data bearing of the sources and evolution of magmas in the Katmai region, Alaska

    SciTech Connect

    Rubenstone, J.L.; Langmuir, C.H.; Hildreth, W.

    1985-01-01

    The Katmai volcanic province, Alaska Peninsula, includes the catastrophic 1912 Valley of Ten Thousand Smokes (VTTS) eruption, and five andesite-dacite stratovolcanoes. The VTTS is markedly uniform in /sup 143/Nd//sup 144/Nd (0.51301) and delta/sup 18/O (6.0 per thousands) but has a small but significant variation in /sup 87/Sr//sup 86/Sr (0.70354 in andesite and dacite, 0.70368 in rhyolite). The rhyolite's low Sr content (63 ppm) makes it particularly susceptible to crustal contamination; assimilation of only 1% of Jurassic country rock (0.70480, 400 ppm Sr) is sufficient. Dacite from the 1959 eruption of nearby Mt. Trident and a basalt boulder from the rim of Mt. Katmai are isotopically similar to the VTTS andesite and dacite. Dacite from Mt. Mageik has higher /sup 87/Sr//sup 86/Sr, whereas the least-silicic in situ lava in the region, an andesite from Mt. Griggs, has the lowest /sup 87/Sr//sup 86/Sr (0.70335). The Katmai Province falls within the narrow range of /sup 143/Nd//sup 144/Nd for Quaternary lavas from the Aleutians and SW Alaska Peninsula (0.51298-0.51310) but at the high end of the /sup 87/Sr//sup 86/Sr range. Along with the greater abundance of evolved lavas, this probably reflects progressively thicker crust northward along the Alaska Peninsula, although simple assimilation of upper crust cannot explain all of the isotopic data. Isotopic systematics, and Aleutian-type trace-element patterns (La/Yb > chondrites, high Ba/La), indicate that the parental magmas at Katmai are likewise derived from a time-integrated depleted mantle, recently modified by a component from the subducted slab.

  18. The vibrational spectra of amides—II. The force field and isotopic shifts of N, N-dimethyl formamide

    NASA Astrophysics Data System (ADS)

    Steele, D.; Quatermain, A.

    The effects of 16O → 18O substitution on the vibrational frequencies of N, N-dimethylformamide have been studied. To understand these and the effects of previously measured shift data due to 13C, 2H and 15N ab initio calculations of frequencies and intensities have been carried out at the 3-21G level. Accord between theory and experiment is generally good. A surprising result is the prediction of a weak band near 2000 cm -1 in DMF due to in-plane interaction between the methyl umbrella modes and the anti-symmetric CN stretch. This abnormally high frequency is explained as arising due to the planar trigonal C 3N entity. Previous problems in reproducing isotope shifts are shown to be due to this mode being previously assigned near 1500 cm -1. The effects of suppressing reference to one of a set of internal valence angles involved in a redundancy are explored. It is shown that the principal effect is to add the diagonal quadratic constant for that coordinate to all other quadratic terms involving pairs of the angles involved in the redundancy. This results in large, almost equal, interaction constants amongst this set. Such effects are seen in the present work. The ab initio field is shown to be compatible with ab initio fields of mono N-methyl amides extant in the literature.

  19. TEMPORAL EVOLUTION OF VELOCITY AND MAGNETIC FIELD IN AND AROUND UMBRAL DOTS

    SciTech Connect

    Watanabe, Hiroko; Bellot Rubio, Luis R.; De la Cruz Rodriguez, Jaime; Rouppe van der Voort, Luc

    2012-09-20

    We study the temporal evolution of umbral dots (UDs) using measurements from the CRISP imaging spectropolarimeter at the Swedish 1 m Solar Telescope. Scans of the magnetically sensitive 630 nm iron lines were performed under stable atmospheric conditions for 71 minutes with a cadence of 63 s. These observations allow us to investigate the magnetic field and velocity in and around UDs at a resolution approaching 0.''13. From the analysis of 339 UDs, we draw the following conclusions: (1) UDs show clear hints of upflows, as predicted by magnetohydrodynamic simulations. By contrast, we could not find systematic downflow signals. Only in very deep layers, we detect localized downflows around UDs, but they do not persist in time. (2) We confirm that UDs exhibit weaker and more inclined fields than their surroundings, as reported previously. However, UDs that have strong fields above 2000 G or are in the decay phase show enhanced and more vertical fields. (3) There are enhanced fields at the migration front of UDs detached from penumbral grains, as if their motion were impeded by the ambient field. (4) Long-lived UDs travel longer distances with slower proper motions. Our results appear to confirm some aspects of recent numerical simulations of magnetoconvection in the umbra (e.g., the existence of upflows in UDs), but not others (e.g., the systematic weakening of the magnetic field at the position of UDs).

  20. Temporal Evolution of Velocity and Magnetic Field in and around Umbral Dots

    NASA Astrophysics Data System (ADS)

    Watanabe, Hiroko; Bellot Rubio, Luis R.; de la Cruz Rodríguez, Jaime; Rouppe van der Voort, Luc

    2012-09-01

    We study the temporal evolution of umbral dots (UDs) using measurements from the CRISP imaging spectropolarimeter at the Swedish 1 m Solar Telescope. Scans of the magnetically sensitive 630 nm iron lines were performed under stable atmospheric conditions for 71 minutes with a cadence of 63 s. These observations allow us to investigate the magnetic field and velocity in and around UDs at a resolution approaching 0farcs13. From the analysis of 339 UDs, we draw the following conclusions: (1) UDs show clear hints of upflows, as predicted by magnetohydrodynamic simulations. By contrast, we could not find systematic downflow signals. Only in very deep layers, we detect localized downflows around UDs, but they do not persist in time. (2) We confirm that UDs exhibit weaker and more inclined fields than their surroundings, as reported previously. However, UDs that have strong fields above 2000 G or are in the decay phase show enhanced and more vertical fields. (3) There are enhanced fields at the migration front of UDs detached from penumbral grains, as if their motion were impeded by the ambient field. (4) Long-lived UDs travel longer distances with slower proper motions. Our results appear to confirm some aspects of recent numerical simulations of magnetoconvection in the umbra (e.g., the existence of upflows in UDs), but not others (e.g., the systematic weakening of the magnetic field at the position of UDs).

  1. Magnetic field evolution in magnetar crusts through three-dimensional simulations

    PubMed Central

    Gourgouliatos, Konstantinos N.; Wood, Toby S.; Hollerbach, Rainer

    2016-01-01

    Current models of magnetars require extremely strong magnetic fields to explain their observed quiescent and bursting emission, implying that the field strength within the star’s outer crust is orders of magnitude larger than the dipole component inferred from spin-down measurements. This presents a serious challenge to theories of magnetic field generation in a proto-neutron star. Here, we present detailed modeling of the evolution of the magnetic field in the crust of a neutron star through 3D simulations. We find that, in the plausible scenario of equipartition of energy between global-scale poloidal and toroidal magnetic components, magnetic instabilities transfer energy to nonaxisymmetric, kilometer-sized magnetic features, in which the local field strength can greatly exceed that of the global-scale field. These intense small-scale magnetic features can induce high-energy bursts through local crust yielding, and the localized enhancement of Ohmic heating can power the star’s persistent emission. Thus, the observed diversity in magnetar behavior can be explained with mixed poloidal−toroidal fields of comparable energies. PMID:27035962

  2. Magnetic field evolution in magnetar crusts through three-dimensional simulations.

    PubMed

    Gourgouliatos, Konstantinos N; Wood, Toby S; Hollerbach, Rainer

    2016-04-12

    Current models of magnetars require extremely strong magnetic fields to explain their observed quiescent and bursting emission, implying that the field strength within the star's outer crust is orders of magnitude larger than the dipole component inferred from spin-down measurements. This presents a serious challenge to theories of magnetic field generation in a proto-neutron star. Here, we present detailed modeling of the evolution of the magnetic field in the crust of a neutron star through 3D simulations. We find that, in the plausible scenario of equipartition of energy between global-scale poloidal and toroidal magnetic components, magnetic instabilities transfer energy to nonaxisymmetric, kilometer-sized magnetic features, in which the local field strength can greatly exceed that of the global-scale field. These intense small-scale magnetic features can induce high-energy bursts through local crust yielding, and the localized enhancement of Ohmic heating can power the star's persistent emission. Thus, the observed diversity in magnetar behavior can be explained with mixed poloidal-toroidal fields of comparable energies.

  3. Trace element and isotopic geochemistry of Cretaceous magmatism in NE Asia: Spatial zonation, temporal evolution, and tectonic controls

    NASA Astrophysics Data System (ADS)

    Tikhomirov, Petr L.; Kalinina, Elena A.; Moriguti, Takuya; Makishima, Akio; Kobayashi, Katsura; Nakamura, Eizo

    2016-11-01

    Results of a comprehensive geochemical study (major and trace elements, and isotopes of Sr, Nd, Pb, Hf) of Cretaceous volcanic rocks from the Chukotka area in northeastern Russia are presented. Synthesis of available geological and geochronological data suggests diachronous onset of activity of the Okhotsk-Chukotka volcanic belt (OCVB), the largest magmatic province in the region. The OCVB consists of ca. 106 km3 of volcanic rocks. At 106-105 Ma, subduction-related magmatism initiated in the southern and central segments of the OCVB. In the Central and Northern Chukotka areas, where the northern OCVB is exposed, onset of arc magmatism occurred ca. 10 m.y. after extension-related magmatism of the Chaun igneous province at 109-104 Ma. Mafic rocks from the OCVB yield (87Sr/86Sr)80 Ma of 0.7033 to 0.7047, εNd80 Ma of 0.0 to 7.10, εHf80 Ma of 4.12 to 12.88, (206Pb/204Pb)80 Ma of 18.11 to 18.42, and (208Pb/204Pb)80 Ma of 37.96 to 38.21. Volcanic rocks from the Chaun province, as well as OCVB rocks from Northern Chukotka, originate from a relatively enriched source and have (87Sr/86Sr)80 Ma of 0.7088 to 0.7100, εNd80 Ma of - 5.81 to - 3.42, εHf80 Ma of - 3.40 to - 0.25, (206Pb/204Pb)80 Ma of 18.69 to 18.90, and (208Pb/204Pb)80 Ma of 38.65 to 38.86. No definitive across-arc elemental or isotopic zonation of the OCVB has been revealed, probably because of wide-scale crustal melting and subsequent contamination of mantle-derived melts. However, there is a clear along-arc isotopic zonation. In our interpretation, this results from heterogeneity of the subcontinental lithospheric mantle, which likely was a major contributor to the magma source. The similar isotopic signatures of silicic (dominantly crust-derived) and mafic (mantle-derived) volcanic rocks in each OCVB segment imply that remelting of juvenile mafic underplated material was the main process responsible for the crust-derived magma generation. These data from the major Cretaceous magmatic provinces of northeast

  4. Siderophile and chalcophile element abundances in oceanic basalts, Pb isotope evolution and growth of the earth's core

    NASA Technical Reports Server (NTRS)

    Newsom, H. E.; White, W. M.; Jochum, K. P.; Hofmann, A. W.

    1986-01-01

    The hypothesis that the mantle Pb isotope ratios reflect continued extraction of Pb into the earth's core over geologic time is evaluated by studying the depeletion of chalcophile and siderophile elements in the mantle. Oceanic basalt samples are analyzed in order to determine the Pb, Sr, and Nd isotropic compositions and the abundances of siderophile and chalcophile elements and incompatible lithophile elements. The data reveal that there is no systematic variation of siderophile or chalcophile element abundances relative to abundances of lithophile elements and the Pb/Ce ratio of the mantle is constant. It is suggested that the crust formation involves nonmagmatic and magmatic processes.

  5. Tracking seasonal subglacial drainage evolution of alpine glaciers using radiogenic Nd and Sr isotope systematics: Lemon Creek Glacier, Alaska

    NASA Astrophysics Data System (ADS)

    Clinger, A. E.; Aciego, S.; Stevenson, E. I.; Arendt, C. A.

    2014-12-01

    The transport pathways of water beneath a glacier are subject to change as melt seasons progress due to variability in the balance between basal water pressure and water flux. Subglacial hydrology has been well studied, but the understanding of spatial distribution is less well constrained. Whereas radiogenic isotopic tracers have been traditionally used as proxies to track spatial variability and weathering rates in fluvial and riverine systems, these techniques have yet to be applied extensively to the subglacial environment and may help resolve ambiguity in subglacial hydrology. Research has shown the 143Nd/144Nd values can reflect variation in source provenance processes due to variations in the age of the continental crust. Correlating the 143Nd/144Nd with other radiogenic isotope systematics such as strontium (87Sr/86Sr) provides important constraints on the role of congruent and incongruent weathering processes. Our study presents the application of Nd and Sr systematics using isotopic ratios to the suspended load of subglacial meltwater collected over a single melt season at Lemon Creek Glacier, USA (LCG). The time-series data show an average ɛNd ~ -6.83, indicating a young bedrock (~60 MYA). Isotopic variation helps track the seasonal expansion of the subglacial meltwater channels and subsequent return to early season conditions due to the parabolic trend towards less radiogenic Nd in June and towards more radiogenic Nd beginning in mid-August. However, the high variability in July and early August may reflect a mixture of source as the channels diverge and derive sediment from differently aged lithologies. We find a poor correlation between 143Nd/144Nd and 87Sr/86Sr (R2= 0.38) along with a slight trend towards more radiogenic 87Sr/86Sr values with time ((R2= 0.49). This may indicate that, even as the residence time decreases over the melt season, the LCG subglacial system is relatively stable and that the bedrock is congruently weathered. Our study

  6. Crustal contamination and crystal entrapment during polybaric magma evolution at Mt. Somma-Vesuvius volcano, Italy: Geochemical and Sr isotope evidence

    USGS Publications Warehouse

    Piochi, M.; Ayuso, R.A.; de Vivo, B.; Somma, R.

    2006-01-01

    New major and trace element analyses and Sr-isotope determinations of rocks from Mt. Somma-Vesuvius volcano produced from 25 ky BP to 1944 AD are part of an extensive database documenting the geochemical evolution of this classic region. Volcanic rocks include silica undersaturated, potassic and ultrapotassic lavas and tephras characterized by variable mineralogy and different crystal abundance, as well as by wide ranges of trace element contents and a wide span of initial Sr-isotopic compositions. Both the degree of undersaturation in silica and the crystal content increase through time, being higher in rocks produced after the eruption at 472 AD (Pollena eruption). Compositional variations have been generally thought to reflect contributions from diverse types of mantle and crust. Magma mixing is commonly invoked as a fundamental process affecting the magmas, in addition to crystal fractionation. Our assessment of geochemical and Sr-isotopic data indicates that compositional variability also reflects the influence of crustal contamination during magma evolution during upward migration to shallow crustal levels and/or by entrapment of crystal mush generated during previous magma storage in the crust. Using a variant of the assimilation fractional crystallization model (Energy Conservation-Assimilation Fractional Crystallization; [Spera and Bohrson, 2001. Energy-constrained open-system magmatic processes I: General model and energy-constrained assimilation and fractional crystallization (EC-AFC) formulation. J. Petrol. 999-1018]; [Bohrson, W.A. and Spera, F.J., 2001. Energy-constrained open-system magmatic process II: application of energy-constrained assimilation-fractional crystallization (EC-AFC) model to magmatic systems. J. Petrol. 1019-1041]) we estimated the contributions from the crust and suggest that contamination by carbonate rocks that underlie the volcano (2 km down to 9-10 km) is a fundamental process controlling magma compositions at Mt. Somma

  7. Model for origin and evolution of water at volcanoes in São Miguel, Azores (Portugal), based on geochemical and isotopic data set

    NASA Astrophysics Data System (ADS)

    Woitischek, Julia; Dietzel, Martin; Virgílio Cruz, J.; Inguaggiato, Salvatore; Leis, Albrecht; Böttcher, Michael E.

    2016-04-01

    A conceptual model is presented to better constrain the origin and evolution of discharges at Sete Cidades, Fogo and Furnas Volcano, using geochemical and isotopic analyses of rock and water as well as recalculated gas composition. The evolution of thermal water clearly reveals that Na-HCO3 and Na-SO4 type of springs have their origin in meteoric water as isotope data are close to the local meteoric water line (δ 18OH2O =-3 ± 1 ‰ V-SMOW; δ DH2O= -13 ± 7 ‰ V-SMOW) with exception of a Na-Cl spring named Ferraria, Sete Cidades area (δ 18OH2O = 0.45 ‰ V-SMOW ; δ DH2O= 4.18 ‰ V-SMOW). Analysed solutions are chemical evolved by evaporation, uptake of volcanic gas, leaching of local basaltic rocks, precipitation of solids, partly admixture of sea water and/or biological activity. Following the individual concentrations supports this model e.g.: HCO3 concentration and the recalculated isotopic composition of gaseous CO2 (δ 13CCO_2 = -4 ± 2.5 ‰ V-PDB) reflect evolved magmatic CO2 uptake and the subsequent leaching progress; High SO42- concentration of up to 16.5 mmol L-1 with δ 34SSO4 = 0.35 ± 0.3 ‰ (V-CDT) reflects magmatic origin which mainly control water chemistry of boiling pools of both Fogo and Furnas lake; δ 18OSO4 = 10.5 ‰ (V-SMOW) suggests organic origin and fits together with the observation of stromatolitic structures in the related precipitates; Molar Mg/Caratio (≈ 0.77) of all thermal discharges reflects leaching of analysed local basalt (Mg/Ca≈ 0.78). Furthermore, shallow and evolved outgassing effects can be distinguished. Equilibrium temperatures for various minerals given in SI vs. T plots and further geothermometers (e.g. Na-K, Na-K-Ca geothermometers) were discussed to estimate temperatures of reservoirs.

  8. Chiral magnetic effect in protoneutron stars and magnetic field spectral evolution

    SciTech Connect

    Sigl, Günter; Leite, Natacha E-mail: natacha.leite@desy.de

    2016-01-01

    We investigate the evolution of the chiral magnetic instability in a protoneutron star and compute the resulting magnetic power and helicity spectra. The instability may act during the early cooling phase of the hot protoneutron star after supernova core collapse, where it can contribute to the buildup of magnetic fields of strength up to the order of 10{sup 14} G. The maximal field strengths generated by this instability, however, depend considerably on the temperature of the protoneutron star, on density fluctuations and turbulence spectrum of the medium. At the end of the hot cooling phase the magnetic field tends to be concentrated around the submillimeter to cm scale, where it is subject to slow resistive damping.

  9. Evolution of scalar fields surrounding black holes on compactified constant mean curvature hypersurfaces

    NASA Astrophysics Data System (ADS)

    Morales, Manuel D.; Sarbach, Olivier

    2017-02-01

    Motivated by the goal for high accuracy modeling of gravitational radiation emitted by isolated systems, recently, there has been renewed interest in the numerical solution of the hyperboloidal initial value problem for Einstein's field equations in which the outer boundary of the numerical grid is placed at null infinity. In this article, we numerically implement the tetrad-based approach presented by Bardeen, Sarbach, and Buchman [Phys. Rev. D 83, 104045 (2011), 10.1103/PhysRevD.83.104045] for a spherically symmetric, minimally coupled, self-gravitating scalar field. When this field is massless, the evolution system reduces to a regular, first-order symmetric hyperbolic system of equations for the conformally rescaled scalar field which is coupled to a set of singular elliptic constraints for the metric coefficients. We show how to solve this system based on a numerical finite-difference approximation, obtaining stable numerical evolutions for initial black hole configurations which are surrounded by a spherical shell of scalar field, part of which disperses to infinity and part of which is accreted by the black hole. As a nontrivial test, we study the tail decay of the scalar field along different curves, including one along the marginally trapped tube, one describing the world line of a timelike observer at a finite radius outside the horizon, and one corresponding to a generator of null infinity. Our results are in perfect agreement with the usual power-law decay discussed in previous work. This article also contains a detailed analysis for the asymptotic behavior and regularity of the lapse, conformal factor, extrinsic curvature and the Misner-Sharp mass function along constant mean curvature slices.

  10. Photospheric and coronal magnetic fields in six magnetographs. I. Consistent evolution of the bashful ballerina

    NASA Astrophysics Data System (ADS)

    Virtanen, Ilpo; Mursula, Kalevi

    2016-06-01

    Aims: We study the long-term evolution of photospheric and coronal magnetic fields and the heliospheric current sheet (HCS), especially its north-south asymmetry. Special attention is paid to the reliability of the six data sets used in this study and to the consistency of the results based on these data sets. Methods: We use synoptic maps constructed from Wilcox Solar Observatory (WSO), Mount Wilson Observatory (MWO), Kitt Peak (KP), SOLIS, SOHO/MDI, and SDO/HMI measurements of the photospheric field and the potential field source surface (PFSS) model. Results: The six data sets depict a fairly similar long-term evolution of magnetic fields and the heliospheric current sheet, including polarity reversals and hemispheric asymmetry. However, there are time intervals of several years long, when first KP measurements in the 1970s and 1980s, and later WSO measurements in the 1990s and early 2000s, significantly deviate from the other simultaneous data sets, reflecting likely errors at these times. All of the six magnetographs agree on the southward shift of the heliospheric current sheet (the so-called bashful ballerina phenomenon) in the declining to minimum phase of the solar cycle during a few years of the five included cycles. We show that during solar cycles 20-22, the southward shift of the HCS is mainly due to the axial quadrupole term, reflecting the stronger magnetic field intensity at the southern pole during these times. During cycle 23 the asymmetry is less persistent and mainly due to higher harmonics than the quadrupole term. Currently, in the early declining phase of cycle 24, the HCS is also shifted southward and is mainly due to the axial quadrupole as for most earlier cycles. This further emphasizes the special character of the global solar field during cycle 23.

  11. Field driven ferromagnetic phase evolution originating from the domain boundaries in antiferromagnetically coupled perpendicular anitsotropy films

    SciTech Connect

    Jones, Juanita; Hauet, Thomas; Gunther, Christian; Hovorka, Ondrej; Berger, Andreas; Im, Mi-Young; Fischer, Peter; Hellwig, Olav

    2008-05-01

    Strong perpendicular anisotropy systems consisting of Co/Pt multilayer stacks that are antiferromagnetically coupled via thin Ru or NiO layers have been used as model systems to study the competition between local interlayer exchange and long-range dipolar interactions [1,2]. Magnetic Force Microscopy (MFM) studies of such systems reveal complex magnetic configurations with a mix of antiferromagnetic (AF) and ferromagnetic (FM) phases. However, MFM allows detecting surface stray fields only and can interact strongly with the magnetic structure of the sample, thus altering the original domain configuration of interest [3,4]. In the current study they combine magnetometry and state-of-the-art soft X-ray transmission microscopy (MXTM) to investigate the external field driven FM phase evolution originating from the domain boundaries in such antiferromagnetically coupled perpendicular anisotropy films. MXTM allows directly imaging the perpendicular component of the magnetization in an external field at sub 100 nm spatial resolution without disturbing the magnetic state of the sample [5,6]. Here they compare the domain evolution for two similar [Co(4{angstrom})/Pt(7{angstrom})]x-1/{l_brace}Co(4{angstrom})/Ru(9{angstrom})/[Co(4{angstrom})/Pt(7{angstrom})]x-1{r_brace}16 samples with slightly different Co/Pt stack thickness, i.e. slightly different strength of internal dipolar fields. After demagnetization they obtain AF domains with either sharp AF domain walls for the thinner multilayer stacks or 'tiger-tail' domain walls (one dimensional FM phase) for the thicker stacks. When increasing the external field strength the sharp domain walls in the tinner stack sample transform into the one-dimensional FM phase, which then serves as nucleation site for further FM stripe domains that spread out into all directions to drive the system towards saturation. Energy calculations reveal the subtle difference between the two samples and help to understand the observed transition, when

  12. Autonomous Instrumentation for Fast, Continuous and Accurate Isotopic Measurements of Water Vapor (δ18O, δ 2H, H2O) in the Field

    NASA Astrophysics Data System (ADS)

    Liem, J. S.; Dong, F.; Owano, T. G.; Baer, D. S.

    2010-12-01

    Stable isotopes of water vapor are powerful tracers to investigate the hydrological cycle and ecological processes. Therefore, continuous, in-situ and accurate measurements of δ18O and δ2H are critical to advance the understanding of water-cycle dynamics worldwide. Furthermore, the combination of meteorological techniques and high-frequency isotopic water measurements can provide detailed time-resolved information on the eco-physiological performance of plants and enable improved understanding of water fluxes at ecosystem scales. In this work, we present recent development and field deployment of a novel Water Vapor Isotope Measurement System (WVIMS) capable of simultaneous in situ measurements of δ18O and δ2H and water mixing ratio (H2O) with high precision, accuracy and speed (up to 10 Hz measurement rate). The WVIMS consists of an Analyzer (Water Vapor Isotope Analyzer), based on cavity enhanced laser absorption spectroscopy, and a Standard Source (Water Vapor Isotope Standard Source), based on quantitative evaporation of a liquid water standard (with known isotopic content), and operates in a dual-inlet configuration. The WVIMS automatically controls the entire sample and data collection, data analysis and calibration process to allow for continuous, autonomous unattended long-term operation. The WVIMS has been demonstrated for accurate (i.e. fully calibrated) measurements ranging from 500 ppmv (typical of arctic environments) to over 30,000 ppmv (typical of tropical environments) in air. Dual-inlet operation, which involves regular calibration with isotopic water vapor reference standards, essentially eliminates measurement drift, ensures data reliability, and allows operation over an extremely wide ambient temperature range (5-45C). This presentation will include recent measurements recorded using the WVIMS in plant growth chambers and in arctic environments. The availability of this new instrumentation provides new opportunities for detailed continuous

  13. Temporal evolution of lead isotope ratios in sediments of the Central Portuguese Margin: a fingerprint of human activities.

    PubMed

    Mil-Homens, Mário; Caetano, Miguel; Costa, Ana M; Lebreiro, Susana; Richter, Thomas; de Stigter, Henko; Trancoso, Maria A; Brito, Pedro

    2013-09-15

    Stable Pb isotope ratios ((206)Pb/(207)Pb, (208)Pb/(206)Pb), (210)Pb, Pb, Al, Ca, Fe, Mn and Si concentrations were measured in 7 sediment cores from the west coast of the Iberian Peninsula to assess the Pb contamination throughout the last 200 years. Independently of their locations, all cores are characterized by increasing Pb/Al rends not related to grain-size changes. Conversely, decreasing trends of (206)Pb/(207)Pb were found towards the present. This tendency suggest a change in Pb sources reflecting an increased proportion derived from anthropogenic activities. The highest anthropogenic Pb inventories for sediments younger than 1950s were found in the two shallowest cores of Cascais and Lisboa submarine canyons, reflecting the proximity of the Tagus estuary. Lead isotope signatures also help demonstrate that sediments contaminated with Pb are not constrained to estuarine-coastal areas and upper parts of submarine canyons, but are also to transferred to a lesser extent to deeper parts of the Portuguese Margin.

  14. Geochemical and isotopic evolution of soil solutions over the last 25 years in a forested granitic catchment (the experimental Strengbach watershed case, France).

    NASA Astrophysics Data System (ADS)

    Pierret, M.-C.; Prunier, J.; Stille, P.; Chabaux, F.

    2009-04-01

    The upper most meter of the soil represents the most sensitive and the most reactive zone of surface facing anthropological or global changes. Indeed, the processes and the exchanges which take place in this zone, in particular between soils, plants, waters, and atmosphere can be strongly modified by the disturbances of the environment. It is the reason why it is essential to study the various compartments of the soil and in particular theirs time evolutions. The soil solutions represent an essential vector of migration of elements within the soil profile and until the deeper levels feeding springs and rivers. Besides, they also reflect the atmospheric contributions and the processes such as the chemical weathering, the root uptake or the biological recycling. Our study presents the variations over more than 20 years of the elemental and isotopic compositions of soil solutions along two profiles in a granitic environment undergoing acid rains in the 60s-80s, as well as an extensive forestry development. Two experimental plots were monitored, which are part of the Environmental Hydro-Geochemical Observatory (OHGE; http://ohge.u-strasbg.fr) located on the small granitic watershed of the Strengbach creek, in the Vosges Mountain (North-East of France). Meteorological, hydrological and geochemical data are recorded since 1986. The soil solutions and the soils were analysed (elemental and isotopic compositions) at different depths, under beeches and spruces, and in both podzolic and acid brown soils. The data covering more than 2 decades show important evolutions with time in the geochemical composition of the soil solutions from the both plots, both with respect to the elementary data and the isotopic ratios. For instance, the annual chemical flux in soil solutions of certain nutrients such as the Ca strongly decreased in depth for more than 20 years, while they remained constant or increased for lithogenic elements as Na or Si. The rain and throughfall records show

  15. Evolution of localized blobs of swirling or buoyant fluid with and without an ambient magnetic field

    NASA Astrophysics Data System (ADS)

    Davidson, P. A.; Sreenivasan, Binod; Aspden, A. J.

    2007-02-01

    We investigate the evolution of localized blobs of swirling or buoyant fluid in an infinite, inviscid, electrically conducting fluid. We consider the three cases of a strong imposed magnetic field, a weak imposed magnetic field, and no magnetic field. For a swirling blob in the absence of a magnetic field, we find, in line with others, that the blob bursts radially outward under the action of the centrifugal force, forming a thin annular vortex sheet. A simple model of this process predicts that the vortex sheet thins exponentially fast and that it moves radially outward with constant velocity. These predictions are verified by high-resolution numerical simulations. When an intense magnetic field is applied, this phenomenon is suppressed, with the energy and angular momentum of the blob now diffusing axially along the magnetic field lines, converting the blob into a columnar structure. For modest or weak magnetic fields, there are elements of both types of behavior, with the radial bursting dominating over axial diffusion for weak fields. However, even when the magnetic field is very weak, the flow structure is quite distinct to that of the nonmagnetic case. In particular, a small but finite magnetic field places a lower bound on the thickness of the annular vortex sheet and produces an annulus of counter-rotating fluid that surrounds the vortex core. The behavior of the buoyant blob is similar. In the absence of a magnetic field, it rapidly develops the mushroomlike shape of a thermal, with a thin vortex sheet at the top and sides of the mushroom. Again, a simple model of this process predicts that the vortex sheet at the top of the thermal thins exponentially fast and rises with constant velocity. These predictions are consistent with earlier numerical simulations. Curiously, however, it is shown that the net vertical momentum associated with the blob increases linearly in time, despite the fact that the vertical velocity at the front of the thermal is constant

  16. Evolution of localized blobs of swirling or buoyant fluid with and without an ambient magnetic field

    SciTech Connect

    Davidson, P. A.; Sreenivasan, Binod; Aspden, A. J.

    2007-02-15

    We investigate the evolution of localized blobs of swirling or buoyant fluid in an infinite, inviscid, electrically conducting fluid. We consider the three cases of a strong imposed magnetic field, a weak imposed magnetic field, and no magnetic field. For a swirling blob in the absence of a magnetic field, we find, in line with others, that the blob bursts radially outward under the action of the centrifugal force, forming a thin annular vortex sheet. A simple model of this process predicts that the vortex sheet thins exponentially fast and that it moves radially outward with constant velocity. These predictions are verified by high-resolution numerical simulations. When an intense magnetic field is applied, this phenomenon is suppressed, with the energy and angular momentum of the blob now diffusing axially along the magnetic field lines, converting the blob into a columnar structure. For modest or weak magnetic fields, there are elements of both types of behavior, with the radial bursting dominating over axial diffusion for weak fields. However, even when the magnetic field is very weak, the flow structure is quite distinct to that of the nonmagnetic case. In particular, a small but finite magnetic field places a lower bound on the thickness of the annular vortex sheet and produces an annulus of counter-rotating fluid that surrounds the vortex core. The behavior of the buoyant blob is similar. In the absence of a magnetic field, it rapidly develops the mushroomlike shape of a thermal, with a thin vortex sheet at the top and sides of the mushroom. Again, a simple model of this process predicts that the vortex sheet at the top of the thermal thins exponentially fast and rises with constant velocity. These predictions are consistent with earlier numerical simulations. Curiously, however, it is shown that the net vertical momentum associated with the blob increases linearly in time, despite the fact that the vertical velocity at the front of the thermal is constant

  17. MODEL OF THE FIELD LINE RANDOM WALK EVOLUTION AND APPROACH TO ASYMPTOTIC DIFFUSION IN MAGNETIC TURBULENCE

    SciTech Connect

    Snodin, A. P.; Ruffolo, D.; Matthaeus, W. H. E-mail: david.ruf@mahidol.ac.th

    2013-01-01

    The turbulent random walk of magnetic field lines plays an important role in the transport of plasmas and energetic particles in a wide variety of astrophysical situations, but most theoretical work has concentrated on determination of the asymptotic field line diffusion coefficient. Here we consider the evolution with distance of the field line random walk using a general ordinary differential equation (ODE), which for most cases of interest in astrophysics describes a transition from free streaming to asymptotic diffusion. By challenging theories of asymptotic diffusion to also describe the evolution, one gains insight on how accurately they describe the random walk process. Previous theoretical work has effectively involved closure of the ODE, often by assuming Corrsin's hypothesis and a Gaussian displacement distribution. Approaches that use quasilinear theory and prescribe the mean squared displacement ({Delta}x {sup 2}) according to free streaming (random ballistic decorrelation, RBD) or asymptotic diffusion (diffusive decorrelation, DD) can match computer simulation results, but only over specific parameter ranges, with no obvious 'marker' of the range of validity. Here we make use of a unified description in which the ODE determines ({Delta}x {sup 2}) self-consistently, providing a natural transition between the assumptions of RBD and DD. We find that the minimum kurtosis of the displacement distribution provides a good indicator of whether the self-consistent ODE is applicable, i.e., inaccuracy of the self-consistent ODE is associated with non-Gaussian displacement distributions.

  18. Modeling of microstructure evolution in direct metal laser sintering: A phase field approach

    NASA Astrophysics Data System (ADS)

    Nandy, Jyotirmoy; Sarangi, Hrushikesh; Sahoo, Seshadev

    2017-02-01

    Direct Metal Laser Sintering (DMLS) is a new technology in the field of additive manufacturing, which builds metal parts in a layer by layer fashion directly from the powder bed. The process occurs within a very short time period with rapid solidification rate. Slight variations in the process parameters may cause enormous change in the final build parts. The physical and mechanical properties of the final build parts are dependent on the solidification rate which directly affects the microstructure of the material. Thus, the evolving of microstructure plays a vital role in the process parameters optimization. Nowadays, the increase in computational power allows for direct simulations of microstructures during materials processing for specific manufacturing conditions. In this study, modeling of microstructure evolution of Al-Si-10Mg powder in DMLS process was carried out by using a phase field approach. A MATLAB code was developed to solve the set of phase field equations, where simulation parameters include temperature gradient, laser scan speed and laser power. The effects of temperature gradient on microstructure evolution were studied and found that with increase in temperature gradient, the dendritic tip grows at a faster rate.

  19. Lead and strontium isotopic evidence for crustal interaction and compositional zonation in the source regions of Pleistocene basaltic and rhyolitic magmas of the Coso volcanic field, California

    USGS Publications Warehouse

    Bacon, C.R.; Kurasawa, H.; Delevaux, M.H.; Kistler, R.W.; Doe, B.R.

    1984-01-01

    The isotopic compositions of Pb and Sr in Pleistocene basalt, high-silica rhyolite, and andesitic inclusions in rhyolite of the Coso volcanic field indicate that these rocks were derived from different levels of compositionally zoned magmatic systems. The 2 earliest rhyolites probably were tapped from short-lived silicic reservoirs, in contrast to the other 36 rhyolite domes and lava flows which the isotopic data suggest may have been leaked from the top of a single, long-lived magmatic system. Most Coso basalts show isotopic, geochemical, and mineralogic evidence of interaction with crustal rocks, but one analyzed flow has isotopic ratios that may represent mantle values (87Sr/86Sr=0.7036,206Pb/204Pb=19.05,207Pb/204Pb=15.62,208Pb/204Pb= 38.63). The (initial) isotopic composition of typical rhyolite (87Sr/86Sr=0.7053,206Pb/204Pb=19.29,207Pb/204Pb= 15.68,208Pb/204Pb=39.00) is representative of the middle or upper crust. Andesitic inclusions in the rhyolites are evidently samples of hybrid magmas from the silicic/mafic interface in vertically zoned magma reservoirs. Silicic end-member compositions inferred for these mixed magmas, however, are not those of erupted rhyolite but reflect the zonation within the silicic part of the magma reservoir. The compositional contrast at the interface between mafic and silicic parts of these systems apparently was greater for the earlier, smaller reservoirs. ?? 1984 Springer-Verlag.

  20. Self-consistent evolution of plasma discharge and electromagnetic fields in a microwave pulse compressor

    NASA Astrophysics Data System (ADS)

    Shlapakovski, A. S.; Beilin, L.; Hadas, Y.; Schamiloglu, E.; Krasik, Ya. E.

    2015-07-01

    Nanosecond-scale evolution of plasma and RF electromagnetic fields during the release of energy from a microwave pulse compressor with a plasma interference switch was investigated numerically using the code MAGIC. The plasma was simulated in the scope of the gas conductivity model in MAGIC. The compressor embodied an S-band cavity and H-plane waveguide tee with a shorted side arm filled with pressurized gas. In a simplified approach, the gas discharge was initiated by setting an external ionization rate in a layer crossing the side arm waveguide in the location of the electric field antinode. It was found that with increasing ionization rate, the microwave energy absorbed by the plasma in the first few nanoseconds increases, but the absorption for the whole duration of energy release, on the contrary, decreases. In a hybrid approach modeling laser ignition of the discharge, seed electrons were set around the electric field antinode. In this case, the plasma extends along the field forming a filament and the plasma density increases up to the level at which the electric field within the plasma decreases due to the skin effect. Then, the avalanche rate decreases but the density still rises until the microwave energy release begins and the electric field becomes insufficient to support the avalanche process. The extraction of the microwave pulse limits its own power by terminating the rise of the plasma density and filament length. For efficient extraction, a sufficiently long filament of dense plasma must have sufficient time to be formed.

  1. Self-consistent evolution of plasma discharge and electromagnetic fields in a microwave pulse compressor

    SciTech Connect

    Shlapakovski, A. S.; Beilin, L.; Krasik, Ya. E.; Hadas, Y.; Schamiloglu, E.

    2015-07-15

    Nanosecond-scale evolution of plasma and RF electromagnetic fields during the release of energy from a microwave pulse compressor with a plasma interference switch was investigated numerically using the code MAGIC. The plasma was simulated in the scope of the gas conductivity model in MAGIC. The compressor embodied an S-band cavity and H-plane waveguide tee with a shorted side arm filled with pressurized gas. In a simplified approach, the gas discharge was initiated by setting an external ionization rate in a layer crossing the side arm waveguide in the location of the electric field antinode. It was found that with increasing ionization rate, the microwave energy absorbed by the plasma in the first few nanoseconds increases, but the absorption for the whole duration of energy release, on the contrary, decreases. In a hybrid approach modeling laser ignition of the discharge, seed electrons were set around the electric field antinode. In this case, the plasma extends along the field forming a filament and the plasma density increases up to the level at which the electric field within the plasma decreases due to the skin effect. Then, the avalanche rate decreases but the density still rises until the microwave energy release begins and the electric field becomes insufficient to support the avalanche process. The extraction of the microwave pulse limits its own power by terminating the rise of the plasma density and filament length. For efficient extraction, a sufficiently long filament of dense plasma must have sufficient time to be formed.

  2. Parallel electric fields in a simulation of magnetotail reconnection and plasmoid evolution

    NASA Technical Reports Server (NTRS)

    Hesse, Michael; Birn, Joachim

    1989-01-01

    Properties of the electric field component parallel to the magnetic field (E sub parallel) in a three-dimensional MHD simulation of plasmoid formation and evolution in the magnetotail in the presence of a net dawn-dusk magnetic field component were observed. Particularly emphasized was the spatial location of E(sub parallel), the concept of a diffusion zone and the role of E(sub parallel) in accelerating electrons. A localization of the region of enhanced E(sub parallel) in all space directions with a strong concentration in the z direction was found. This region was identified as the diffusion zone, which plays a crucial role in reconnection theory through the local break-down of magnetic flux conservation. The presence of B(sub y) implies a north-south asymmetry of the injection of accelerated particles into the near-earth region, if the net B(sub y) field is strong enough to force particles to follow field lines through the diffusion region. It is estimated that for a typical net B(sub y) field this should affect the injection of electrons into the near-earth dawn region, so that precipitation into the Northern (Southern) Hemisphere should dominate for duskward (dawnward) net B(sub y). In addition, a spatial clottiness of the expected injection of adiabatic particles which could be related to the appearance bright spots in auroras was observed.

  3. Tracing ground-water evolution in a limestone aquifer using Sr isotopes: Effects of multiple sources of dissolved ions and mineral-solution reactions

    NASA Astrophysics Data System (ADS)

    Banner, Jay L.; Musgrove, Marylynn; Capo, R. C.

    1994-08-01

    Uplifted Pleistocene coral-reef terraces on Barbados, West Indies, constitute an aquifer that is built on low-permeability Tertiary pelagic rocks that overlie the Barbados accretionary prism. The downdip segments of the aquifer are composed of younger reef limestones that contain more aragonite and have higher 87Sr/86Sr and Sr/Ca ratios than the updip parts of the aquifer. Ground waters and host limestones display similar stratigraphic trends in 87Sr/86Sr and Sr/Ca. The ground waters have lower 87Sr/86Sr values, however, indicating that they acquire a significant fraction of their dissolved Sr through interaction with components of Tertiary rocks, which compose the underlying aquitard and parts of overlying soils. Geochemical modeling results indicate that ground-water evolution is controlled by (1) variations in the age and composition of the aquifer and aquitard rocks and (2) the relative roles of calcite dissolution, calcite recrystallization, and the transformation of aragonite to calcite. Sr isotopes can provide unique information for tracing ground-water evolution, which requires consideration of the multiple components and processes that make up even relatively simple limestone aquifer systems.

  4. THERMAL EVOLUTION AND LIFETIME OF INTRINSIC MAGNETIC FIELDS OF SUPER-EARTHS IN HABITABLE ZONES

    SciTech Connect

    Tachinami, C.; Ida, S.; Senshu, H.

    2011-01-10

    We have numerically studied the thermal evolution of different-mass terrestrial planets in habitable zones, focusing on the duration of dynamo activity to generate their intrinsic magnetic fields, which may be one of the key factors in habitability of the planets. In particular, we are concerned with super-Earths, observations of which are rapidly developing. We calculated the evolution of temperature distributions in the planetary interior using Vinet equations of state, the Arrhenius-type formula for mantle viscosity, and the astrophysical mixing-length theory for convective heat transfer modified for mantle convection. After calibrating the model with terrestrial planets in the solar system, we apply it for 0.1-10 M{sub +} rocky planets with a surface temperature of 300 K (in habitable zones) and Earth-like compositions. With the criterion of heat flux at the core-mantle boundary (CMB), the lifetime of the magnetic fields is evaluated from the calculated thermal evolution. We found that the lifetime slowly increases with planetary mass (M{sub p} ), independent of the initial temperature gap at the CMB ({Delta}T{sub CMB}), but beyond the critical value M{sub c,p} ({approx}O(1) M{sub +}) it abruptly declines from the mantle viscosity enhancement due to the pressure effect. We derived M{sub c,p} as a function of {Delta}T{sub CMB} and a rheological parameter (activation volume, V*). Thus, the magnetic field lifetime of super-Earths with M{sub p} >M{sub p,c} sensitively depends on {Delta}T{sub CMB}, which reflects planetary accretion, and V*, which has uncertainty at very high pressure. More advanced high-pressure experiments and first-principle simulation, as well as planetary accretion simulation, are needed to discuss the habitability of super-Earths.

  5. Evolution of Mass and Velocity Field in the Cosmic Web: Comparison between Baryonic and Dark Matter

    NASA Astrophysics Data System (ADS)

    Zhu, Weishan; Feng, Long-Long

    2017-03-01

    We investigate the evolution of the cosmic web since z = 5 in grid-based cosmological hydrodynamical simulations, focusing on the mass and velocity fields of both baryonic and cold dark matter. The tidal tensor of density is used as the main method for web identification, with λ th = 0.2–1.2. The evolution trends in baryonic and dark matter are similar, although moderate differences are observed. Sheets appear early, and their large-scale pattern may have been set up by z = 3. In terms of mass, filaments supersede sheets as the primary collapsing structures from z ∼ 2–3. Tenuous filaments assembled with each other to form prominent ones at z < 2. In accordance with the construction of the frame of the sheets, the cosmic divergence velocity, v div, was already well-developed above 2–3 Mpc by z = 3. Afterwards, the curl velocity, v curl, grew dramatically along with the rising of filaments, becoming comparable to v div, for <2–3 Mpc at z = 0. The scaling of v curl can be described by the hierarchical turbulence model. The alignment between the vorticity and the eigenvectors of the shear tensor in the baryonic matter field resembles that in the dark matter field, and is even moderately stronger between {\\boldsymbol{ω }} and {{\\boldsymbol{e}}}1, and ω and {{\\boldsymbol{e}}}3. Compared with dark matter, there is slightly less baryonic matter found residing in filaments and clusters, and its vorticity developed more significantly below 2–3 Mpc. These differences may be underestimated because of the limited resolution and lack of star formation in our simulation. The impact of the change of dominant structures in overdense regions at z ∼ 2–3 on galaxy formation and evolution is shortly discussed.

  6. Time evolution of linearized gauge field fluctuations on a real-time lattice

    NASA Astrophysics Data System (ADS)

    Kurkela, A.; Lappi, T.; Peuron, J.

    2016-12-01

    Classical real-time lattice simulations play an important role in understanding non-equilibrium phenomena in gauge theories and are used in particular to model the prethermal evolution of heavy-ion collisions. Due to instabilities, small quantum fluctuations on top of the classical background may significantly affect the dynamics of the system. In this paper we argue for the need for a numerical calculation of a system of classical gauge fields and small linearized fluctuations in a way that keeps the separation between the two manifest. We derive and test an explicit algorithm to solve these equations on the lattice, maintaining gauge invariance and Gauss' law.

  7. Remanent magnetism of HED meteorites: Implications for their evolution and ancient magnetic fields

    NASA Technical Reports Server (NTRS)

    Collinson, D. W.; Morden, S. J.

    1993-01-01

    The magnetic properties of extraterrestrial materials, in particular natural remanent magnetization (NRM), is a potentially useful study for detecting ancient Solar System magnetic fields and for elucidating meteorite evolutionary processes. Results are presented for the following: howardites--Kapoeta, Petersburg, Le Teilleul, and EET 87503; eucrites--Sioux County and Millbillillie; and diogenites--Shalka and Johnstown. Significant features of their magnetism are within-sample in homogeneity of NRM directions in several of the meteorites and within-sample uniformity of axes of an isotropy of magnetic susceptibility. Both these phenomena bear on the meteorites' evolution and the timing of the magnetization process.

  8. Vent Field Distribution and Evolution Along the Endeavour Segment, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Kelley, D. S.; Delaney, J. R.; Lilley, M. D.; Butterfield, D. A.

    2001-12-01

    Five major vent fields have now been discovered along the Endeavour Segment of the Juan de Fuca Ridge. From the north to the south they include Sasquatch, Salty Dawg, High Rise, Main Endeavour, and Mothra. Spacing between the distinct, high-temperature fields increases from the north to the south. For example Sasquatch is located 1.6 km north of Salty Dawg and Mothra is 2.7 km south of the Main Endeavour Field. In addition to changes in spacing of the vent fields along axis there are also dramatic changes in the style, intensity, and thermal-chemical characteristics of venting. The newly discovered Sasquatch field extends for >200 m in length, and venting is limited to a few isolated, small structures that reach 284° C. Active venting is confined to the northern portion of the field. In contrast, extinct, massive sulfide edifices and oxidized sulfide talus can be followed continuously for over 200 m along a 25-30 m wide, 020 trending ridge indicating that this field was very active in the past. In contrast to the delicate active structures, older extinct structures reach at least 25 m in height and the aspect ratios are similar to active pillars in the Mothra Field 7.5 km, to the south. It is unclear if venting at this site represents rejuvenation of the field, or whether it is in a waning stage. Within Salty Dawg, vent fluid temperatures reach 296° C and vigorous venting is constrained to a few, multi-flanged edifices that reach 25 m in height and 25 m in length. The field hosts over 25 structures, oxidized sulfide is abundant, and diffuse flow is dominant. Fluid compositions and temperatures are consistent with Salty Dawg being in a waning stage of evolution. Venting intensity and incidence of venting increase dramatically at High Rise where numerous multi-flanged structures are active; temperatures reach 343° C. The most intense and active of the fields is the Main Endeavour, with at least 21 actively venting, multi-flanged edifices that contain at least 100

  9. The evolution of field early-type galaxies in the FDF and WHDF

    NASA Astrophysics Data System (ADS)

    Fritz, Alexander; Böhm, Asmus; Ziegler, Bodo L.

    2009-03-01

    We explore the properties of 24 field early-type galaxies in the redshift range 0.20 < z < 0.75 down to MB <= -19.30 in a sample extracted from the FORS Deep Field and the William Herschel Deep Field. Target galaxies were selected on the basis of a combination of luminosity, spectrophotometric type, morphology and photometric redshift or broad-band colours. High signal-to-noise ratio intermediate-resolution spectroscopy has been acquired at the Very Large Telescope, complemented by deep high-resolution imaging with the Advanced Camera for Surveys onboard the Hubble Space Telescope (HST) and additional ground-based multiband photometry. All galaxy spectra were observed under subarcsecond conditions and allow us to derive accurate kinematics and stellar population properties of the galaxies. To clarify the low level of star formation detected in some galaxies, we identify the amount of active galactic nuclei (AGN) activity in our sample using archive data of Chandra and XMM-Newton X-ray surveys. None of the galaxies in our sample was identified as secure AGN source based on their X-ray emission. The rest-frame B- and K-band scaling relations of the Faber-Jackson relation and the Fundamental Plane display a moderate evolution for the field early-type galaxies. Lenticular (S0) galaxies feature on average a stronger luminosity evolution and bluer rest-frame colours which can be explained that they comprise more diverse stellar populations compared to elliptical galaxies. The evolution of the FP can be interpreted as an average change in the dynamical (effective) mass-to-light ratio of our galaxies as <Δlog(M/LB)/z> = -0.74 +/- 0.08. The M/L evolution of these field galaxies suggests a continuous mass assembly of field early-type galaxies during the last 5 Gyr, which gets supported by recent studies of field galaxies up to z ~ 1. Independent evidence for recent star formation activity is provided by spectroscopic ([OII] emission, Hδ) and photometric (rest-frame broad

  10. Strain field evolution during creep on ice. Impact of dynamic recrystallization mechanisms.

    NASA Astrophysics Data System (ADS)

    Chauve, Thomas; Montagnat, Maurine; Barou, Fabrice; Hidas, Karoly; Tommasi, Andréa; Vacher, Pierre

    2015-04-01

    Discontinuous Dynamic Recrystallization (DDRX) occurs in minerals, metals, ice and impacts on texture and microstructure evolution during deformation. It therefore impacts on large scale mechanisms as seismic anisotropy, mechanical properties inside the Earth mantle, material forming and anisotropic flow in polar ice sheet, for instance. In this frame, ice can be considered as a model material due to a strong viscoplastic anisotropy inducing strong deformation heterogeneities, that are precursors of recrystallization. During creep deformation at high temperature in the laboratory, DDRX occurs from 1% strain and involves grain nucleation and grain boundary migration. As DDRX induces an evolution of microstructure and texture, it strongly affects the mechanical behavior (1,2), and it is expected to modify the strain field at the grain and/or the sample scale. Compressive creep test (σ=0.5-0.8 MPa) were performed at high temperature (T/Tf 0,98) on granular polycrystalline ice (grains size 1mm) and columnar polycrystalline ice (microstructure 2D 1/2 in plane grain size 10mm) up to 18 % strain. Columnar ice provides interesting feature as it contains only one grain through the thickness and the columns are parallel. Post-deformation texture analyses with an Automatic Ice Texture Analyzer (AITA) and with EBSD (CrystalProbe MEB of Geoscience Montpellier) were used to investigate DDRX mechanisms at high resolution, and deduce their impact on texture and microstructure, at different scales. During the experiment, local strain field is measured on the surface of the sample by Digital Image Correlation (DIC) (3) with a spatial resolution between 0.2 and 0.5 mm, and a strain resolution between 0.2% to 1%. Grain size being large, we obtain a relatively good intra-granular resolution of the strain field. Thanks to the 2D configuration of the columnar ice samples, we can superimpose the initial microstructure to the strain field measured by DIC. We will present an overview of

  11. Evolution of the air cavity during a depressurized wave impact. I. The kinematic flow field

    NASA Astrophysics Data System (ADS)

    Lugni, C.; Miozzi, M.; Brocchini, M.; Faltinsen, O. M.

    2010-05-01

    This paper describes a systematic experimental study of the role of the ambient pressure on wave impact events in depressurized environments. A wave impact event of "mode (b)" [see Lugni et al., "Wave impact loads: The role of the flip-through," Phys. Fluids 18, 122101 (2006)] causes entrapment of an air cavity. Here the topological and kinematic aspects of its oscillation and evolution toward collapse into a mixture of water and air bubbles are studied, while Part II [Lugni et al., "Evolution of the air cavity during a depressurized wave impact. II. The dynamic field," Phys. Fluids 22, 056102 (2010)] focuses on the dynamic features of the flow. Four distinct stages characterize the flow evolution: (1) the closure of the cavity onto the wall, (2) the isotropic compression/expansion of the cavity, (3) its anisotropic compression/expansion, and (4) the rise of the cavity up the wall. The first two stages are mainly governed by the air leakage, the last two by the surrounding hydrodynamic flow, which contributes to compressing the bubble horizontally and to convecting it up the wall. Ullage pressure affects the ratio between the minimum and maximum cavity areas. An ullage pressure of 2.5% of the atmospheric pressure leads to an area ratio of about 360% of the equivalent ratio at atmospheric conditions.

  12. Aerosol effect on the evolution of the thermodynamic properties of warm convective cloud fields.

    PubMed

    Dagan, Guy; Koren, Ilan; Altaratz, Orit; Heiblum, Reuven H

    2016-12-08

    Convective cloud formation and evolution strongly depend on environmental temperature and humidity profiles. The forming clouds change the profiles that created them by redistributing heat and moisture. Here we show that the evolution of the field's thermodynamic properties depends heavily on the concentration of aerosol, liquid or solid particles suspended in the atmosphere. Under polluted conditions, rain formation is suppressed and the non-precipitating clouds act to warm the lower part of the cloudy layer (where there is net condensation) and cool and moisten the upper part of the cloudy layer (where there is net evaporation), thereby destabilizing the layer. Under clean conditions, precipitation causes net warming of the cloudy layer and net cooling of the sub-cloud layer (driven by rain evaporation), which together act to stabilize the atmosphere with time. Previous studies have examined different aspects of the effects of clouds on their environment. Here, we offer a complete analysis of the cloudy atmosphere, spanning the aerosol effect from instability-consumption to enhancement, below, inside and above warm clouds, showing the temporal evolution of the effects. We propose a direct measure for the magnitude and sign of the aerosol effect on thermodynamic instability.

  13. Mineral-Scale Sr and Pb Isotopic Variations as Recorders of Magma Differentiation Processes in the Fish Canyon Magmatic System, San Juan Volcanic Field, U.S.A.

    NASA Astrophysics Data System (ADS)

    Charlier, B. L.; Davidson, J. P.; Bachmann, O.; Dungan, M. A.

    2003-12-01

    The use of crystal isotope microstratigraphy, through microanalysis for Sr and more recently Pb isotopes, shows that inter- and intra-crystalline isotopic and compositional heterogeneities exist within many volcanic rocks. Here we report preliminary Sr and Pb isotope data for sanidine, plagioclase and biotite (Sr only) crystals separated from representative samples of the 5000km3, 28Ma Fish Canyon Tuff and the pre-caldera Pagosa Peak Dacite, from the La Garita Caldera, San Juan Volcanic Field, U.S.A. Age-corrected whole-rock 87Sr/86Sr values define a small range (0.7063 to 0.7065), whereas plagioclase values range from 0.7063 to 0.7072 and sanidines define a more limited range 0.7063 to 0.7067. These ranges in 87Sr/86Sr cannot be solely attributed to radiogenic ingrowth during residence in the Fish Canyon magma reservoir, as the 87Rb/86Sr values (plagioclase; 0.003 to 0.011, sanidine; 0.30 to 0.73) are too low to significantly affect 87Sr/86Sr over magmatic timescales. Biotites exhibit a much greater range in initial Sr isotope ratios (0.7202 to 0.7295), but with even higher 87Rb/86Sr ratios of 8 to 12, more than 50 Myrs would be needed to evolve such ratios from the whole-rock ratio. Similarly, large ranges of Pb isotope ratios in sanidines and plagioclase, cannot be produced given the U/Pb ratios of these phases on any geologically reasonable timescale. We interpret the isotopic variations to represent open system processes in the generation of the Fish Canyon magma either by 1) crystallisation from heterogeneous isotopically modified (ultimately mantle-derived) magmas during interaction with old, heterogeneous crust, and/or 2) the direct incorporation of xenocrystic phases from the crust to produce an isotopically heterogeneous magma (and rock) at the mineral scale. Small but significant variations in 39Ar/40Ar total fusion ages for each of the studied phases, are consistent with the latter interpretation, suggesting that the crystal population is a mixture of

  14. Isotopically constrained soil carbon and nitrogen budgets in a soybean field chronosequence in the Brazilian Amazon region

    NASA Astrophysics Data System (ADS)

    Figueira, Adelaine M. e. Silva; Davidson, Eric A.; Nagy, R. Chelsea; Riskin, Shelby H.; Martinelli, Luiz A.

    2016-10-01

    The impacts of large-scale conversion of cattle pastures to cropland on soil carbon (C) and nitrogen (N) stocks are poorly understood in the Amazon region. The objective of this research was to determine whether soybean cultivation on a previously deforested and pastured soil has changed C and N stocks and dynamics. We sampled a chronosequence of soybean fields in 2009 and again in 2013. We hypothesized that detecting statistically significant changes in total soil C and N stocks would be difficult but that fluxes of C and N through the soil would be sufficiently large to significantly decrease the stable isotope ratios of soil organic matter. We observed statistically significant decreases in the 13C and 15N enrichments and C:N ratio. When combined with estimates of crop biomass production, harvest yield, and biological nitrogen fixation, these measurements provided sufficient constraints for C and N budgets to infer modest rates of net change in soil N (+15 to +27 kg N ha-1 yr-1) and soil C (-0.15 to -0.30 Mg C ha-1 yr-1) in the top 10 cm of soil. These results indicate that this intensive soybean cropping system is having minimal impacts on N loss to the environment but likely is a small net source of C to the atmosphere.

  15. Integrating Field Measurements and Numerical Modeling to Investigate Gully Network Evolution

    NASA Astrophysics Data System (ADS)

    Rengers, F. K.; Tucker, G. E.

    2011-12-01

    With the advent of numerical modeling the exploration of landscape evolution has advanced from simple thought experiments to investigation of increasingly complex landforming processes. A common criticism of landscape evolution modeling, however, is the lack of model validation with actual field data. Here we present research that continues the advancement of landscape evolution theory by combining detailed field observations with numerical modeling. The focus of our investigation is gully networks on soft-rock strata, where rates of morphologic change are fast enough to measure on annual to decadal time scales. Our research focuses on a highly transient landscape on the high plains of eastern Colorado (40 miles east of Denver, CO) where convective thunderstorms drive ephemeral stream flow, resulting in incised gullies with vertical knickpoints. The site has yielded a comprehensive dataset of hydrology, topography, and geomorphic change. We are continuously monitoring several environmental parameters (including rainfall, overland flow, stream discharge, and soil moisture), and have explored the physical properties of the soil on the site through grain size analysis and infiltration measurements. In addition, time-lapse photography and repeat terrestrial lidar scanning make it possible to track knickpoint dynamics through time. The resulting dataset provides a case study for testing the ability of landscape evolution models to reproduce annual to decadal patterns of erosion and deposition. Knickpoint erosion is the largest contributor to landscape evolution and the controlling factor for gully migration rate. Average knickpoint retreat rates, based on historic aerial photographs and ongoing laser surveying, range between 0.1 and 2.5 m/yr. Knickpoint retreat appears to be driven by a combination of plunge-pool scour, large block failure, and grain-by-grain entrainment of sediment from the wall. Erosion is correlated with flash floods in the summer months. To test our

  16. Cosmological evolution of a complex scalar field with repulsive or attractive self-interaction

    NASA Astrophysics Data System (ADS)

    Suárez, Abril; Chavanis, Pierre-Henri

    2017-03-01

    We study the cosmological evolution of a complex scalar field with a self-interaction potential V (|φ |2) , possibly describing self-gravitating Bose-Einstein condensates, using a fully general relativistic treatment. We generalize the hydrodynamic representation of the Klein-Gordon-Einstein equations in the weak field approximation developed in our previous paper [A. Suárez and P.-H. Chavanis, Phys. Rev. D 92, 023510 (2015), 10.1103/PhysRevD.92.023510]. We establish the general equations governing the evolution of a spatially homogeneous complex scalar field in an expanding background. We show how they can be simplified in the fast oscillation regime (equivalent to the Thomas-Fermi, or semiclassical, approximation) and derive the equation of state of the scalar field in parametric form for an arbitrary potential V (|φ |2) . We explicitly consider the case of a quartic potential with repulsive or attractive self-interaction. For repulsive self-interaction, the scalar field undergoes a stiff matter era followed by a pressureless dark matter era in the weakly self-interacting regime and a stiff matter era followed by a radiationlike era and a pressureless dark matter era in the strongly self-interacting regime. For attractive self-interaction, the scalar field undergoes an inflation era followed by a stiff matter era and a pressureless dark matter era in the weakly self-interacting regime and an inflation era followed by a cosmic stringlike era and a pressureless dark matter era in the strongly self-interacting regime (the inflation era is suggested, not demonstrated). We also find a peculiar branch on which the scalar field emerges suddenly at a nonzero scale factor with a finite energy density. At early times, it behaves as a gas of cosmic strings. At later times, it behaves as dark energy with an almost constant energy density giving rise to a de Sitter evolution. This is due to spintessence. We derive the effective cosmological constant produced by the scalar

  17. Future evolution in a backreaction model and the analogous scalar field cosmology

    NASA Astrophysics Data System (ADS)

    Ali, Amna; Majumdar, A. S.

    2017-01-01

    We investigate the future evolution of the universe using the Buchert framework for averaged backreaction in the context of a two-domain partition of the universe. We show that this approach allows for the possibility of the global acceleration vanishing at a finite future time, provided that none of the subdomains accelerate individually. The model at large scales is analogously described in terms of a homogeneous scalar field emerging with a potential that is fixed and free from phenomenological parametrization. The dynamics of this scalar field is explored in the analogous FLRW cosmology. We use observational data from Type Ia Supernovae, Baryon Acoustic Oscillations, and Cosmic Microwave Background to constrain the parameters of the model for a viable cosmology, providing the corresponding likelihood contours.

  18. Theory of gel electrophoresis in high fields: Evolution of a population of hernias

    NASA Astrophysics Data System (ADS)

    Long, Didier; Viovy, Jean-Louis

    1997-02-01

    We consider long polyelectrolytes that are initially at rest in a gel and suddenly submitted to a strong electric field. The evolution of the conformation regime is described up to the final disengagement from the initial tube. Just after the field has been applied, the chain adopts a comb-like conformation with several “hernias”, which evolve in competition with each other. As long as the conformation has many hernias, the distribution of their size follows a self-similar law, first described by Deutsch. The number of hernias decreases, and ultimately the chain disengages from its initial tube. Various predictions for the conformation of the chain in this last stage and for time constants are proposed. In particular, the disengagement times are found to follow a self-similar law in the size of the chains.

  19. Origin and evolution of Pliocene Pleistocene granites from the Larderello geothermal field (Tuscan Magmatic Province, Italy)

    NASA Astrophysics Data System (ADS)

    Dini, A.; Gianelli, G.; Puxeddu, M.; Ruggieri, G.

    2005-04-01

    Extensive, mainly acidic peraluminous magmatism affected the Tuscan Archipelago and the Tuscan mainland since late Miocene, building up the Tuscan Magmatic Province (TMP) as the Northern Apennine fold belt was progressively thinned, heated and intruded by mafic magmas. Between 3.8 and 1.3 Ma an intrusive complex was built on Larderello area (Tuscan mainland) by emplacement of multiple intrusions of isotopically and geochemically distinct granite magmas. Geochemical and isotopic investigations were carried out on granites cored during drilling exploration activity on the Larderello geothermal field. With respect to the other TMP granites the Larderello intrusives can be classified as two-mica granites due to the ubiquitous presence of small to moderate amounts of F-rich magmatic muscovite. They closely resemble the almost pure crustal TMP acidic rocks and do not show any of the typical petrographic features commonly observed in the TMP hybrid granites (enclaves, patchy zoning of plagioclase, amphibole clots). On the basis of major and trace elements, as well as REE patterns, two groups of granites were proposed: LAR-1 granites (3.8-2.3 Ma) originated by biotite-muscovite breakdown, and LAR-2 granites (2.3-1.3 Ma) generated by muscovite breakdown. At least three main crustal sources (at 14-23 km depth), characterized by distinct ɛNd( t) and 87Sr/ 86Sr values, were involved at different times, and the magmas produced were randomly emplaced at shallow levels (3-6 km depth) throughout the entire field. The partial melting of a biotite-muscovite-rich source with low ɛNd( t) value (about -10.5) produced the oldest intrusions (about 3.8-2.5 Ma). Afterwards (2.5-2.3 Ma), new magmas were generated by another biotite-rich source having a distinctly higher ɛNd( t) value (-7.9). Finally, a muscovite-rich source with high ɛNd( t) (about -8.9) gave origin to the younger group of granites (2.3-1.0 Ma). The significant Sr isotope disequilibrium recorded by granites belonging to

  20. VISCOUS EVOLUTION AND PHOTOEVAPORATION OF CIRCUMSTELLAR DISKS DUE TO EXTERNAL FAR ULTRAVIOLET RADIATION FIELDS

    SciTech Connect

    Anderson, Kassandra R.; Adams, Fred C.; Calvet, Nuria

    2013-09-01

    This paper explores the effects of FUV radiation fields from external stars on circumstellar disk evolution. Disks residing in young clusters can be exposed to extreme levels of FUV flux from nearby OB stars, and observations show that disks in such environments are being actively photoevaporated. Typical FUV flux levels can be factors of {approx}10{sup 2}-10{sup 4} higher than the interstellar value. These fields are effective in driving mass loss from circumstellar disks because they act at large radial distance from the host star, i.e., where most of the disk mass is located, and where the gravitational potential well is shallow. We combine viscous evolution (an {alpha}-disk model) with an existing FUV photoevaporation model to derive constraints on disk lifetimes, and to determine disk properties as functions of time, including mass-loss rates, disk masses, and radii. We also consider the effects of X-ray photoevaporation from the host star using an existing model, and show that for disks around solar-mass stars, externally generated FUV fields are often the dominant mechanism in depleting disk material. For sufficiently large viscosities, FUV fields can efficiently photoevaporate disks over the entire range of parameter space. Disks with viscosity parameter {alpha} = 10{sup -3} are effectively dispersed within 1-3 Myr; for higher viscosities ({alpha} = 10{sup -2}) disks are dispersed within {approx}0.25-0.5 Myr. Furthermore, disk radii are truncated to less than {approx}100 AU, which can possibly affect the formation of planets. Our model predictions are consistent with the range of observed masses and radii of proplyds in the Orion Nebula Cluster.

  1. Gully evolution in field crops on vertic soils under conventional agriculture

    NASA Astrophysics Data System (ADS)

    Castillo, Carlos; Pérez, Rafael; Mora, Jose; Gómez, Jose A.

    2015-04-01

    Gully erosion is a major process contributing to soil degradation on cultivated areas. Its effects are especially intense in farms under conventional agriculture characterised by the use of heavy machinery for land levelling and herbicides leading to the depletion of natural vegetation in valley locations. When the soil (e.g. vertic soils) and parent material conditions (e.g. soft erodible marls) are favourable to incision, gully features may present large dimensions, producing the loss of significant proportions of productive land. This study evaluates the evolution of several gully networks located in Córdoba (Spain) within the Campiña area (a rolling landscape on Miocene marls) with conventional agriculture and gully filling operations as the predominant farm practices. The area of the catchments ranged from 10 to 100 ha, they were covered by field crops (mostly bean, sunflower and wheat) on vertic soils. Firstly, we carried out a historical analysis of the gully development during the last six decades by aerial image interpretation. Secondly, a number of field surveys were conducted to characterise the evolution of the gully morphology in a period of five years (2010-2014). For this purpose, a range of measurement techniques were used: pole and tape, differential GPS and 3D photo-reconstruction. Finally, the influence of topography (slope and drainage area) on gully dimensions along the longitudinal profile was assessed.

  2. Gravitational field of a hedgehog and the evolution of vacuum bubbles

    SciTech Connect

    Guendelman, E.I. ); Rabinowitz, A. )

    1991-11-15

    The gravitational field produced by a spherically symmetric hedgehog'' configuration in scalar field theories with global SO(3) symmetry (or higher) is studied in the limit in which these models become nonlinear {sigma} models. The same gravitational effect can be generated by a set of cosmic strings intersecting at a point, in the limit that one considers a continuous distribution of such intersecting strings in a spherically symmetric configuration (to be referred to as the string hedgehog''). When the energy densities associated with the hedgehog are small, we obtain a static geometry, but for higher values, the resulting geometry is that of an anisotropic cosmology. The evolution of bubbles joining two phases, one of which contains a hedgehog (as defined above) is investigated. The role of such configurations in processes that lead to classical false-vacuum destabilization and in the evolution of inflationary bubbles is discussed. The generalization of our results to the gauged case, i.e., to magnetic-monopole hedgehogs, is discussed.

  3. Gravitational field of a hedgehog and the evolution of vacuum bubbles

    NASA Astrophysics Data System (ADS)

    Guendelman, E. I.; Rabinowitz, A.

    1991-11-01

    The gravitational field produced by a spherically symmetric ``hedgehog'' configuration in scalar field theories with global SO(3) symmetry (or higher) is studied in the limit in which these models become nonlinear σ models. The same gravitational effect can be generated by a set of cosmic strings intersecting at a point, in the limit that one considers a continuous distribution of such intersecting strings in a spherically symmetric configuration (to be referred to as the ``string hedgehog''). When the energy densities associated with the hedgehog are small, we obtain a static geometry, but for higher values, the resulting geometry is that of an anisotropic cosmology. The evolution of bubbles joining two phases, one of which contains a hedgehog (as defined above) is investigated. The role of such configurations in processes that lead to classical false-vacuum destabilization and in the evolution of inflationary bubbles is discussed. The generalization of our results to the gauged case, i.e., to magnetic-monopole hedgehogs, is discussed.

  4. Free energy of mean-field spin-glass models: Evolution operator and perturbation expansion

    NASA Astrophysics Data System (ADS)

    Janiš, V.; Kauch, A.; Klíč, A.

    2013-02-01

    The full mean-field solution of spin glass models with a continuous order-parameter function is not directly available and approximate schemes must be used to assess its properties. One of the authors recently proposed a representation of the free energy generating this solution via an evolution operator parametrized by attainable values of overlap of magnetizations between different states. Here, we introduce a perturbation expansion for the evolution operator that we use to derive all thermodynamic characteristics via the standard methods of statistical mechanics. We obtain a generic scheme for an approximate calculation of physical quantities of different mean-field spin-glass models at all temperatures. The small expansion parameter is a difference between the continuous order-parameter function and the corresponding order parameter from the solution with one level of replica-symmetry breaking. The first correction beyond the approximation with one level of replica-symmetry breaking is explicitly evaluated in the glassy phase of the Sherrington-Kirkpatrick model.

  5. Oxidation pathways for formic acid under low temperature hydrothermal conditions: Implications for the chemical and isotopic evolution of organics on Mars

    NASA Astrophysics Data System (ADS)

    Foustoukos, Dionysis I.; Stern, Jennifer C.

    2012-01-01

    In order to evaluate the oxidation effect of dissolved hydrogen peroxide and the catalytic role of iron oxides on the kinetics of formic acid decarboxylation, a series of flow-through hydrothermal experiments was conducted at temperatures ranging from 80 to 150 °C and pressures of 172-241 bar. δ 13C composition of residual HCOOH (aq) was also monitored to examine kinetic isotope effects associated with oxidation processes. Our results reveal that decomposition of H 2O 2(aq) in presence of magnetite follows pseudo first order kinetics, highly enhanced relative to the homogeneous H 2O 2(aq)-HCOOOH (aq)-H 2O system, which possibly reflect synthesis of hydroxyl radicals ( rad OH) through Fenton processes. The kinetic rate constants of HCOOH (aq) decarboxylation to CO 2(aq) are also elevated relative to those previously measured in H 2O 2(aq) free experiments. However, reaction kinetics are slightly slower in the case of H 2O 2(aq) aqueous solutions coexisting with magnetite than in the absence of mineral phases. This behavior is attributed to the possible formation of Fe-bearing hydroxyl formate aqueous species that could serve as stable transition states leading to a decrease in the activation entropy of formic acid decomposition. δ 13C values of residual formic acid in the homogeneous H 2O 2(aq)-HCOOH (aq)-H 2O system are consistent with previous studies. However, magnetite-bearing experiments produce a negative shift in δ 13C of residual formic acid, perhaps specific to rad OH-imposed oxidation of organic compounds. This would indicate that isotopic fractionations by this oxidation pathway are opposite to kinetic fractionation effects expected in biologically driven oxidation processes. This could have important implications for putative H 2O 2(aq)-bearing Martian subsurface environments and the evolution of organics at low-temperature hydrothermal conditions.

  6. Using Oxygen Isotopes of Zircon to Evaluate Magmatic Evolution and Crustal Contamination in the Halifax Pluton, Nova Scotia

    NASA Astrophysics Data System (ADS)

    Murray, K. E.; Lackey, J.; Valley, J. W.; Nowak, R.

    2007-12-01

    Oxygen isotope analysis of zircon (Zrc) is well suited for parsing out the magmatic history in granitoids. The Halifax pluton is the largest pluton (1060 km2) in the peraluminous South Mountain batholith. The Halifax pluton is mapped as a concentrically zoned body, with outer units comprising granodiorite, monzogranite and a mafic porphyry; these units are locally rich in metasedimentary xenoliths and magmatic enclaves. The exterior units surround a more felsic core of leucogranite [1]. Previous oxygen isotope studies of the pluton report high whole rock δ18O values that range from 10.7-11.7‰ [2], and indicate a significant supracrustal component in the source of the pluton. We report the first δ18O(Zrc) values from the Peggy's Cove monzogranite and an associated mafic porphyry. Samples were collected across 30 km of discontinuous exposures of the monzogranite. Values of δ18O(Zrc) vary from 7.71-8.26‰ (average = 8.15±±0.32‰(2 S.D.); n = 10). Small but systematic E-W regional variation in δ18O(Zrc) values suggests heterogeneous magmatic contamination within the monzogranite. Meter-scale magmatic enclaves, observed in close association with pods of diverse xenoliths and smaller enclaves at the western Cranberry Head locality, are slightly enriched in δ18O relative to the host monzogranite. These data combined support a model of magma mingling and heterogeneous mixing at the rim of the pluton, with contamination by high-δ18O rocks. Additional high-δ18O(Zrc) data from granodiorites on the northern margin of the Halifax pluton concur with these observations [3]. Typically, closed magmatic systems show increasing δ18O with SiO2 because more felsic magmas have a greater percentage of high-δ18O minerals such as quartz and feldspar. Thus, the Halifax pluton appears to exhibit an enrichment trend opposite of what would be expected of a closed evolving system. Emplacement mechanisms for the Halifax pluton proposed by previous workers suggest that the outer

  7. Oxygen isotopic evolution of amoeboid olivine aggregates in the reduced CV3 chondrites Efremovka, Vigarano, and Leoville

    NASA Astrophysics Data System (ADS)

    Fagan, T. J.; Krot, A. N.; Keil, K.; Yurimoto, H.

    2004-06-01

    Amoeboid olivine aggregates (AOAs) from the reduced CV chondrites Efremovka, Vigarano, and Leoville consist of forsteritic olivine, FeNi-metal and a refractory component composed of spinel, Al-diopside, ±anorthite. Secondary ferrous olivine and alkali-rich minerals (nepheline and sodalite), commonly observed in the oxidized CVs, are rare. Mineralogy and chemical compositions of AOAs are similar to those predicted by equilibrium thermodynamic condensation models, suggesting that AOAs formed primarily by gas-solid condensation over a narrow temperature range, slightly below the temperatures over which most Ca-Al-rich inclusions (CAIs) formed. AOAs in the reduced CVs preserve a 1 st-generation 16O-rich signal (δ 17,18O ˜ -40‰) similar to that observed in many CAIs, suggesting that these refractory objects originated from a common source in the solar nebula. In fact AOAs and many fine-grained CAIs may have formed by the same processes, but at slightly different temperatures, and can be considered a single class of refractory objects. Alteration of the AOAs is manifested by differing extents of 16O-depletion in original AOA minerals, FeO-enrichment in olivine, and formation of interstitial very fine grained Na-bearing phases. From the six AOAs and one fine-grained, melilite-pyroxene-rich CAI examined in this study, five distinct patterns of alteration were identified. (1) One unaltered AOA from Vigarano is characterized by 16O-rich forsterite without FeO-rich rims and interstitial Na-bearing phases. (2) Weak alteration in the melilite-pyroxene-rich CAI is characterized by incomplete 16O-depletion in some melilite and precipitation of Na-bearing phases near the CAI rim. (3) Oxygen isotopic composition and mineralogy are correlated in two AOAs from Leoville with 16O-rich olivine, 16O-poor anorthite and a range of intermediate compositions in Al-diopside. This pattern is consistent with model diffusion between original grains and a 16O-poor reservoir during a

  8. Evolution of the Cretaceous magmatism in the Apuseni-Timok-Srednogorie metallogenic belt and implications for the geodynamic reconstructions: new insight from geochronology, geochemistry and isotope studies

    NASA Astrophysics Data System (ADS)

    von Quadt, A.; Peytcheva, I.; Heinrich, C. A.; Frank, M.; Cvetkovic, V.

    2003-04-01

    Most major Cu-Au (-PGE) deposits in the Carpathian Balkan orogen are related to a 1500 km long belt of Upper Cretaceous magmatism extending from southern Romania through Yugoslavia to Bulgaria, with a likely continuation southeast of the Black Sea into Turkey, known as the Apuseni Banat Timok Srednogorie (ABTS) belt (Popov et al., 2000). In the frame of ABTS belt a new investigation was started to reveal the relation between Cretaceous magmatism and the Cu-Au-PGE deposits across the belt in East Serbia (Yugoslavia) and the Panagyurishte district (Bulgaria). The Late Cretaceous (Palaeogene?) magmatism of East Serbia developed along the Timok Magmatic Complex (TMC) in the east and the Ridanj Krepoljin Zone (RKZ) in the west. High precision U-Pb single zircon dating and a combination of isotope tracing, geochronological data as well as petrological data were used to provide additional data for the geodynamic evolution. A maximum life span of 2.5 Ma could be calculated for the first phase of volcanic activity in TMC, starting with the Amf-andesites of Veliki Kravelj (86.29 ± 0.32 Ma) and finishing with the Timozites (84.66 ± 0.5 Ma). Ore bearing magmatism in a single deposit (Veliki Kravelj) extended a maximum of 0.6 Ma ("pre-ore": 86.29 ± 0.32 Ma, "post-ore": 86.17 ± 0.15 Ma). Preliminary data for the dacites (70.3 ± 3.5 Ma) outcropping near Krepoljin give evidence for a shifting of the volcanic activity from TMC to RKZ together with changing the ore-deposit type from Cu-Au-PGE (TMC) to Pb-Zn-Cu (RKZ). Isotope tracing give evidence for mantle dominated source with increasing of crustal contamination in the same direction: (87Sr/86Sr ratios: 0.70388 to 0.706050, e-Hf-zircon data: +12 in TMC to +4.5 in RKZ). The Panagyurishte district (Bulgaria) show a duration time of the magmatic activity of 14 Ma, starting in the north at 92 Ma and finishing in the south at 78 Ma. Ore-related magmatism becomes younger in the same direction but finishes with 86 Ma. Multiple short

  9. Evolution of dynamo-generated magnetic fields in accretion disks around compact and young stars

    NASA Technical Reports Server (NTRS)

    Stepinski, Tomasz F.

    1994-01-01

    Geometrically thin, optically thick, turbulent accretion disks are believed to surround many stars. Some of them are the compact components of close binaries, while the others are throught to be T Tauri stars. These accretion disks must be magnetized objects because the accreted matter, whether it comes from the companion star (binaries) or from a collapsing molecular cloud core (single young stars), carries an embedded magnetic field. In addition, most accretion disks are hot and turbulent, thus meeting the condition for the MHD turbulent dynamo to maintain and amplify any seed field magnetic field. In fact, for a disk's magnetic field to persist long enough in comparison with the disk viscous time it must be contemporaneously regenerated because the characteristic diffusion time of a magnetic field is typically much shorter than a disk's viscous time. This is true for most thin accretion disks. Consequently, studying magentic fields in thin disks is usually synonymous with studying magnetic dynamos, a fact that is not commonly recognized in the literature. Progress in studying the structure of many accretion disks was achieved mainly because most disks can be regarded as two-dimensional flows in which vertical and radial structures are largely decoupled. By analogy, in a thin disk, one may expect that vertical and radial structures of the magnetic field are decoupled because the magnetic field diffuses more rapidly to the vertical boundary of the disk than along the radius. Thus, an asymptotic method, called an adiabatic approximation, can be applied to accretion disk dynamo. We can represent the solution to the dynamo equation in the form B = Q(r)b(r,z), where Q(r) describes the field distribution along the radius, while the field distribution across the disk is included in the vector function b, which parametrically depends on r and is normalized by the condition max (b(z)) = 1. The field distribution across the disk is established rapidly, while the radial

  10. Long-term Evolution of Seismicity Rates in California Geothermal Fields

    NASA Astrophysics Data System (ADS)

    Trugman, D. T.; Shearer, P. M.; Borsa, A. A.; Fialko, Y. A.

    2015-12-01

    The temporal evolution of seismicity rates within geothermal fields provides important observational constraints on the ways in which rocks respond to natural and anthropogenic loading. We develop an iterative, regularized inversion procedure to partition the observed seismicity rate into two primary components: (1) the interaction seismicity rate due to earthquake-earthquake triggering, and (2) the time-varying background seismicity rate controlled by other time-dependent stresses, including anthropogenic forcing. We parameterize our seismicity model using an Epidemic-Type Aftershock Sequence (ETAS) framework with a background seismicity rate that varies smoothly with time. We apply our methodology to study long-term changes in seismicity rates at the Geysers and Salton Sea geothermal fields in California. At the Geysers, we find that the background seismicity rate is highly correlated with fluid injection. Seismicity at the Geysers has experienced a rate increase of approximately 50% since year 2000 and exhibits strong seasonal fluctuations, both of which can be explained by changes in fluid injection following the completion of the Santa Rosa pipeline. At the Salton Sea, the background seismicity rate has remained relatively stable since 1990, with short-term fluctuations that are not obviously modulated by fluid fluxes related to the operation of the geothermal field. The differences in the field-wide seismicity responses of the Geysers and Salton Sea to geothermal plant operation may reflect differences in in-situ reservoir conditions and local tectonics, indicating that induced seismicity may not be solely a function of fluid injection and withdrawal.

  11. Geodynamo simulations: tools to understand and forecast the geomagnetic field evolution

    NASA Astrophysics Data System (ADS)

    Aubert, Julien

    2016-04-01

    The past two decades have seen an extensive development of numerical geodynamo simulations as tools to understand the mechanisms through which the magnetic field of internal origin of our planet is generated. Though these are still run at parameter regimes far from that of the Earth's core, the similarity of their output with the various observables of the field, secular variation, and underlying core flows has strengthened the prospect to use these simulations as analysis and forecasting tools for the geomagnetic field evolution. In this presentation, I will report on recent progress in geomagnetic data assimilation, an emerging discipline which blends together the high-quality satellite data such as these obtained by the Swarm mission, and state-of-the art numerical geodynamo sim