Designing a Field Experience Tracking System in the Area of Special Education
ERIC Educational Resources Information Center
He, Wu; Watson, Silvana
2014-01-01
Purpose: To improve the quality of field experience, support field experience cooperation and streamline field experience management, the purpose of this paper is to describe the experience in using Activity Theory to design and develop a web-based field experience tracking system for a special education program. Design/methodology/approach: The…
NASA Astrophysics Data System (ADS)
Siswono, T. Y. E.; Kohar, A. W.; Rosyidi, A. H.; Hartono, S.; Masriyah
2018-01-01
Designing problem like in PISA is known as a challenging activity for teachers particularly as the use of authentic context within that type of problem. This paper aims to describe the experiences of secondary mathematics teachers in designing PISA-like problems within an innovative training program focusing on building teachers’ understanding on the concept of mathematical literacy. The teachers were engaged in a set of problem-solving and problem-posing activities using PISA-based problem within indoor and outdoor field experiences. Within indoor field experience, the teachers worked collaboratively in groups on designing PISA-like problems with a given context through problem generation and reformulation techniques. Within outdoor field experience, they worked on designing PISA-like problems with self-chosen context from the place where the outdoor field experience took place. Our analysis indicates that there were improvements on the PISA-like problems designed by teachers based on its level use of context from indoor to outdoor experience. Also, the teachers were relatively successful with creating appropriate and motivating contexts by harnessing a variety of context consisting of personal, occupational, societal, and scientific contexts. However, they still experienced difficulties in turning these contexts into an appropriate problem satisfying PISA framework such as regarding authenticity of context use, language structure, and PISA task profile.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finsterle, S.; Moridis, G.J.; Pruess, K.
1994-01-01
The emplacement of liquids under controlled viscosity conditions is investigated by means of numerical simulations. Design calculations are performed for a laboratory experiment on a decimeter scale, and a field experiment on a meter scale. The purpose of the laboratory experiment is to study the behavior of multiple gout plumes when injected in a porous medium. The calculations for the field trial aim at designing a grout injection test from a vertical well in order to create a grout plume of a significant extent in the subsurface.
EXPERIMENTAL DESIGN AND INSTRUMENTATION FOR A FIELD EXPERIMENT
This report concerns the design of a field experiment for a military setting in which the effects of carbon monoxide on neurobehavioral variables are to be studied. ield experiment is distinguished from a survey by the fact that independent variables are manipulated, just as in t...
NASA Technical Reports Server (NTRS)
Post, E. J.
1970-01-01
An experiment, designed to determine the difference between fields-magnetic and electric-surrounding a uniformly moving charge as contrasted with the fields surrounding an accelerated charge, is presented. A thought experiment is presented to illustrate the process.
Optimization Design of Bipolar Plate Flow Field in PEM Stack
NASA Astrophysics Data System (ADS)
Wen, Ming; He, Kanghao; Li, Peilong; Yang, Lei; Deng, Li; Jiang, Fei; Yao, Yong
2017-12-01
A new design of bipolar plate flow field in proton exchange membrane (PEM) stack was presented to develop a high-performance transfer efficiency of the two-phase flow. Two different flow fields were studied by using numerical simulations and the performance of the flow fields was presented. the hydrodynamic properties include pressure gap between inlet and outlet, the Reynold’s number of the two types were compared based on the Navier-Stokes equations. Computer aided optimization software was implemented in the design of experiments of the preferable flow field. The design of experiments (DOE) for the favorable concept was carried out to study the hydrodynamic properties when changing the design parameters of the bipolar plate.
Random Assignment: Practical Considerations from Field Experiments.
ERIC Educational Resources Information Center
Dunford, Franklyn W.
1990-01-01
Seven qualitative issues associated with randomization that have the potential to weaken or destroy otherwise sound experimental designs are reviewed and illustrated via actual field experiments. Issue areas include ethics and legality, liability risks, manipulation of randomized outcomes, hidden bias, design intrusiveness, case flow, and…
Kirschvink, J L
1992-01-01
A common mistake in biomagnetic experimentation is the assumption that Helmholtz coils provide uniform magnetic fields; this is true only for a limited volume at their center. Substantial improvements on this design have been made during the past 140 years with systems of three, four, and five coils. Numerical comparisons of the field uniformity generated by these designs are made here, along with a table of construction details and recommendations for their use in experiments in which large volumes of uniform intensity magnetic exposures are needed. Double-wrapping, or systems of bifilar windings, can also help control for the non-magnetic effects of the electric coils used in many experiments. In this design, each coil is wrapped in parallel with two separate, adjacent strands of copper wire, rather than the single strand used normally. If currents are flowing in antiparallel directions, the magnetic fields generated by each strand will cancel and yield virtually no external magnetic field, whereas parallel currents will yield an external field. Both cases will produce similar non-magnetic effects of ohmic heating, and simple measures can reduce the small vibration and electric field differences. Control experiments can then be designed such that the only major difference between treated and untreated groups is the presence or absence of the magnetic field. Double-wrapped coils also facilitate the use of truly double-blind protocol, as the same apparatus can be used either for experimental or control groups.
ERIC Educational Resources Information Center
Kea, Cathy D.; Trent, Stanley C.
2013-01-01
This mixed design study chronicles the yearlong outcomes of 27 undergraduate preservice teacher candidates' ability to design and deliver culturally responsive lesson plans during field-based experience lesson observations and student teaching settings after receiving instruction in a special education methods course. While components of…
Exploring Group Cohesion in a Higher Education Field Experience
ERIC Educational Resources Information Center
Malcarne, Brian Keith
2012-01-01
The purpose of this study was to gain understanding into the experience of group cohesion for university students participating in an academic field experience. A mixed methods approach was used following a two-phase, sequential research design to help provide a more complete explanation of how group cohesion was impacted by the field experience.…
Off-design Performance Analysis of Multi-Stage Transonic Axial Compressors
NASA Astrophysics Data System (ADS)
Du, W. H.; Wu, H.; Zhang, L.
Because of the complex flow fields and component interaction in modern gas turbine engines, they require extensive experiment to validate performance and stability. The experiment process can become expensive and complex. Modeling and simulation of gas turbine engines are way to reduce experiment costs, provide fidelity and enhance the quality of essential experiment. The flow field of a transonic compressor contains all the flow aspects, which are difficult to present-boundary layer transition and separation, shock-boundary layer interactions, and large flow unsteadiness. Accurate transonic axial compressor off-design performance prediction is especially difficult, due in large part to three-dimensional blade design and the resulting flow field. Although recent advancements in computer capacity have brought computational fluid dynamics to forefront of turbomachinery design and analysis, the grid and turbulence model still limit Reynolds-average Navier-Stokes (RANS) approximations in the multi-stage transonic axial compressor flow field. Streamline curvature methods are still the dominant numerical approach as an important tool for turbomachinery to analyze and design, and it is generally accepted that streamline curvature solution techniques will provide satisfactory flow prediction as long as the losses, deviation and blockage are accurately predicted.
Field Trips as Valuable Learning Experiences in Geography Courses
ERIC Educational Resources Information Center
Krakowka, Amy Richmond
2012-01-01
Field trips have been acknowledged as valuable learning experiences in geography. This article uses Kolb's (1984) experiential learning model to discuss how students learn and how field trips can help enhance learning. Using Kolb's experiential learning theory as a guide in the design of field trips helps ensure that field trips contribute to…
Being in the Users' Shoes: Anticipating Experience while Designing Online Courses
ERIC Educational Resources Information Center
Rapanta, Chrysi; Cantoni, Lorenzo
2014-01-01
While user-centred design and user experience are given much attention in the e-learning design field, no research has been found on how users are actually represented in the discussions during the design of online courses. In this paper we identify how and when end-users' experience--be they students or tutors--emerges in designers'…
ERIC Educational Resources Information Center
Martin, William J.
A description is provided of Williamsport Area Community College's (WACC's) South American Field Experience program, a travel/study program for faculty and staff designed to provide a variety of learning experiences through a three week trip to Peru, Chile, Argentina, and Brazil. Chapter I presents an overview of the development of the project,…
USDA-ARS?s Scientific Manuscript database
Selection of experimental design can markedly influence efficiency of field research. This study used Monte Carlo simulations to compare the ability of different field experimental designs to distinguish defined treatment differences, and the paper concludes with a section on practical use of the in...
Field research on the spectral properties of crops and soils, volume 1. [Purdue Agronomy Farm
NASA Technical Reports Server (NTRS)
Bauer, M. E. (Principal Investigator); Biehl, L. L.; Robinson, B. F.
1980-01-01
The experiment design, data acquisition and preprocessing, data base management, analysis results and development of instrumentation for the AgRISTARS Supporting Research Project, Field Research task are described. Results of several investigations on the spectral reflectance of corn and soybean canopies as influenced by cultural practices, development stage and nitrogen nutrition are reported as well as results of analyses of the spectral properties of crop canopies as a function of canopy geometry, row orientation, sensor view angle and solar illumination angle are presented. The objectives, experiment designs and data acquired in 1980 for field research experiments are described. The development and performance characteristics of a prototype multiband radiometer, data logger, and aerial tower for field research are discussed.
Magnetic Field Monitoring in the SNS and LANL Neutron EDM Experiments
NASA Astrophysics Data System (ADS)
Aleksandrova, Alina; SNS nEDM Collaboration; LANL nEDM Collaboration
2017-09-01
The SNS neutron EDM experiment requires the ability to precisely control and monitor the magnetic field inside of the fiducial volume. However, it is not always practical (or even possible) to measure the field within the region of interest directly. To remedy this issue, we have designed a field monitoring system that will allow us to reconstruct the field inside of the fiducial volume using noninvasive measurements of the field components at discrete locations external to this volume. A prototype probe array (consisting of 12 single-axis fluxgate magnetometer sensors) was used to monitor the magnetic field within the fiducial volume of an in-house magnetic testing apparatus. In this talk, the design and results of this test will be presented, and the possible implementation of this field monitoring method may have in the room temperature LANL neutron EDM experiment will be discussed. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Award Number DE-SC-0014622.
Teaching Representation Translations with Magnetic Field Experiments
ERIC Educational Resources Information Center
Tillotson, Wilson Andrew; McCaskey, Timothy; Nasser, Luis
2017-01-01
We have developed a laboratory exercise designed to help students translate between different field representations. It starts with students qualitatively mapping field lines for various bar magnet configurations and continues with a Hall probe experiment in which students execute a series of scaffolded tasks, culminating in the prediction and…
ERIC Educational Resources Information Center
Mayo, Karen E.
This paper describes a literacy-based thematic unit on forestry and conservation designed for field experiences in early childhood education. This unit responds to national and state initiatives and serves as a model for enacting reform of science instruction by equipping preservice teachers with the necessary strategies to foster science process…
Solenoid for Laser Induced Plasma Experiments at Janus
NASA Astrophysics Data System (ADS)
Klein, Sallee; Leferve, Heath; Kemp, Gregory; Mariscal, Derek; Rasmus, Alex; Williams, Jackson; Gillespie, Robb; Manuel, Mario; Kuranz, Carolyn; Keiter, Paul; Drake, R.
2017-10-01
Creating invariant magnetic fields for experiments involving laser induced plasmas is particularly challenging due to the high voltages at which the solenoid must be pulsed. Creating a solenoid resilient enough to survive through large numbers of voltage discharges, enabling it to endure a campaign lasting several weeks, is exceptionally difficult. Here we present a solenoid that is robust through 40 μs pulses at a 13 kV potential. This solenoid is a vast improvement over our previously fielded designs in peak magnetic field capabilities and robustness. Designed to be operated at small-scale laser facilities, the solenoid housing allows for versatility of experimental set-ups among diagnostic and target positions. Within the perpendicular field axis at the center there is 300 degrees of clearance which can be easily modified to meet the needs of a specific experiment, as well as an f/3 cone for transmitted or backscattered light. After initial design efforts, these solenoids are relatively inexpensive to manufacture.
Design of the Madison Dynamo Experiment
NASA Astrophysics Data System (ADS)
Kendrick, R. D.; Bayliss, R. A.; Forest, C. B.; Nornberg, M. D.; O'Connell, R.; Spence, E. J.
2003-10-01
A spherical dynamo experiment has been constructed at the University of Wisconsin's liquid sodium facility. The goals of the experiment are to observe and understand magnetic instabilities driven by flow shear in MHD systems, investigate MHD turbulence for magnetic Reynolds numbers of ˜100, and understand the role of fluid turbulence in current generation. Magnetic field generation is possible for only specific flow geometries. We have studied and achieved simple roll flow geometries in a full scale water experiment. Results from this experiment have guided the design of the sodium experiment. The experiment consists of a 1 m diameter, spherical stainless steel vessel filled with liquid sodium at 110 Celsius. Two 100 Hp motors with impellers drive flows in the liquid sodium with flow velocities ˜ 15 m/s. A grid of Hall probes on the surface of the sodium vessel measure the generated external magnetic field. Hall probe feed-thru arrays measure the internal field. Preliminary investigations include measurements of the turbulent electromotive force and excitation of magnetic eigenmodes.
Research on the novel FBG detection system for temperature and strain field distribution
NASA Astrophysics Data System (ADS)
Liu, Zhi-chao; Yang, Jin-hua
2017-10-01
In order to collect the information of temperature and strain field distribution information, the novel FBG detection system was designed. The system applied linear chirped FBG structure for large bandwidth. The structure of novel FBG cover was designed as a linear change in thickness, in order to have a different response at different locations. It can obtain the temperature and strain field distribution information by reflection spectrum simultaneously. The structure of novel FBG cover was designed, and its theoretical function is calculated. Its solution is derived for strain field distribution. By simulation analysis the change trend of temperature and strain field distribution were analyzed in the conditions of different strain strength and action position, the strain field distribution can be resolved. The FOB100 series equipment was used to test the temperature in experiment, and The JSM-A10 series equipment was used to test the strain field distribution in experiment. The average error of experimental results was better than 1.1% for temperature, and the average error of experimental results was better than 1.3% for strain. There were individual errors when the strain was small in test data. It is feasibility by theoretical analysis, simulation calculation and experiment, and it is very suitable for application practice.
Overview of Field Experience - Degradation Rates & Lifetimes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jordan, Dirk; Kurtz, Sarah
2015-09-14
The way a PV module fails may depend not only on its design and the materials used in its construction, but also on the weather it experiences, the way it is mounted, and the quality control during its manufacture. This presentation gives an overview of Field Experience - what degradation rates and what lifetimes are being observed in various regions.
NASA Astrophysics Data System (ADS)
Kiryutin, Alexey S.; Pravdivtsev, Andrey N.; Ivanov, Konstantin L.; Grishin, Yuri A.; Vieth, Hans-Martin; Yurkovskaya, Alexandra V.
2016-02-01
A device for performing fast magnetic field-cycling NMR experiments is described. A key feature of this setup is that it combines fast switching of the external magnetic field and high-resolution NMR detection. The field-cycling method is based on precise mechanical positioning of the NMR probe with the mounted sample in the inhomogeneous fringe field of the spectrometer magnet. The device enables field variation over several decades (from 100 μT up to 7 T) within less than 0.3 s; progress in NMR probe design provides NMR linewidths of about 10-3 ppm. The experimental method is very versatile and enables site-specific studies of spin relaxation (NMRD, LLSs) and spin hyperpolarization (DNP, CIDNP, and SABRE) at variable magnetic field and at variable temperature. Experimental examples of such studies are demonstrated; advantages of the experimental method are described and existing challenges in the field are outlined.
DOT National Transportation Integrated Search
2005-10-01
The Specific Pavement Studies 6 (SPS-6) experiment, "Rehabilitation of Jointed Portland Cement Concrete Pavements," was designed as a controlled field experiment that focuses on the study of specific rehabilitation design features of jointed plain co...
Understanding behavioral responses of fish to pheromones in natural freshwater environments
Johnson, Nicholas S.; Li, Weiming
2010-01-01
There is an abundance of experimental studies and reviews that describe odorant-mediated behaviors of fish in laboratory microcosms, but research in natural field conditions has received considerably less attention. Fish pheromone studies in laboratory settings can be highly productive and allow for controlled experimental designs; however, laboratory tanks and flumes often cannot replicate all the physical, physiological and social contexts associated with natural environments. Field experiments can be a critical step in affirming and enhancing understanding of laboratory discoveries and often implicate the ecological significance of pheromones employed by fishes. When findings from laboratory experiments have been further tested in field environments, often different and sometimes contradictory conclusions are found. Examples include studies of sea lamprey (Petromyzon marinus) mating pheromones and fish alarm substances. Here, we review field research conducted on fish pheromones and alarm substances, highlighting the following topics: (1) contradictory results obtained in laboratory and field experiments, (2) how environmental context and physiological status influences behavior, (3) challenges and constraints of aquatic field research and (4) innovative techniques and experimental designs that advance understanding of fish chemical ecology through field research.
ERIC Educational Resources Information Center
Schmidt, Matthew; Gage, Ashley MacSuga; Gage, Nicholas; Cox, Penny; McLeskey, James
2015-01-01
This paper provides a summary of the design, development, and evaluation of a mobile distance supervision system for teacher interns in their field-based teaching experiences. Developed as part of the University of Florida's Restructuring and Improving Teacher Education 325T grant project, the prototype system streams video of teachers in rural…
Uniform field loop-gap resonator and rectangular TEU02 for aqueous sample EPR at 94 GHz
NASA Astrophysics Data System (ADS)
Sidabras, Jason W.; Sarna, Tadeusz; Mett, Richard R.; Hyde, James S.
2017-09-01
In this work we present the design and implementation of two uniform-field resonators: a seven-loop-six-gap loop-gap resonator (LGR) and a rectangular TEU02 cavity resonator. Each resonator has uniform-field-producing end-sections. These resonators have been designed for electron paramagnetic resonance (EPR) of aqueous samples at 94 GHz. The LGR geometry employs low-loss Rexolite end-sections to improve the field homogeneity over a 3 mm sample region-of-interest from near-cosine distribution to 90% uniform. The LGR was designed to accommodate large degassable Polytetrafluorethylen (PTFE) tubes (0.81 mm O.D.; 0.25 mm I.D.) for aqueous samples. Additionally, field modulation slots are designed for uniform 100 kHz field modulation incident at the sample. Experiments using a point sample of lithium phthalocyanine (LiPC) were performed to measure both the uniformity of the microwave magnetic field and 100 kHz field modulation, and confirm simulations. The rectangular TEU02 cavity resonator employs over-sized end-sections with sample shielding to provide an 87% uniform field for a 0.1 × 2 × 6 mm3 sample geometry. An evanescent slotted window was designed for light access to irradiate 90% of the sample volume. A novel dual-slot iris was used to minimize microwave magnetic field perturbations and maintain cross-sectional uniformity. Practical EPR experiments using the application of light irradiated rose bengal (4,5,6,7-tetrachloro-2‧,4‧,5‧,7‧-tetraiodofluorescein) were performed in the TEU02 cavity. The implementation of these geometries providing a practical designs for uniform field resonators that continue resonator advancements towards quantitative EPR spectroscopy.
Receptive fields selection for binary feature description.
Fan, Bin; Kong, Qingqun; Trzcinski, Tomasz; Wang, Zhiheng; Pan, Chunhong; Fua, Pascal
2014-06-01
Feature description for local image patch is widely used in computer vision. While the conventional way to design local descriptor is based on expert experience and knowledge, learning-based methods for designing local descriptor become more and more popular because of their good performance and data-driven property. This paper proposes a novel data-driven method for designing binary feature descriptor, which we call receptive fields descriptor (RFD). Technically, RFD is constructed by thresholding responses of a set of receptive fields, which are selected from a large number of candidates according to their distinctiveness and correlations in a greedy way. Using two different kinds of receptive fields (namely rectangular pooling area and Gaussian pooling area) for selection, we obtain two binary descriptors RFDR and RFDG .accordingly. Image matching experiments on the well-known patch data set and Oxford data set demonstrate that RFD significantly outperforms the state-of-the-art binary descriptors, and is comparable with the best float-valued descriptors at a fraction of processing time. Finally, experiments on object recognition tasks confirm that both RFDR and RFDG successfully bridge the performance gap between binary descriptors and their floating-point competitors.
Overview of the Madison Dynamo Experiment
NASA Astrophysics Data System (ADS)
Kendrick, R. D.; Spence, E. J.; Nornberg, M. D.; Jacobson, C. M.; Parada, C. A.; Forest, C. B.
2006-10-01
A spherical dynamo experiment has been constructed at the University of Wisconsin-Madison's liquid-sodium facility. The experiment is designed to self-generate magnetic fields from flows of conducting metal. The apparatus consists of a 1 m diameter, spherical stainless steel vessel filled with liquid sodium. Two 100 Hp motors drive impellers which generate the flow. The motors have been operated up to 1300 RPM (70% of design specification), achieving a magnetic Reynolds number of 130, based on impeller tip speed. Various polarizations of external magnetic fields have been applied to the sodium, and the induced magnetic field has been measured by both internal and external Hall probe arrays. The voltage induced across the sphere by the turbulent flow has been measured. Techniques for using ultrasound Doppler velocimetry have been explored in the water model of the experiment, including the use of high-pressure bubbles as seed particles.
Incidental Becomes Visible: A Comparison of School- and Community-Based Field Experience Narratives
ERIC Educational Resources Information Center
Holder, K. C.; Downey, Jayne A.
2008-01-01
The purpose of this study was to describe and compare student learning documented using written field experience summary narratives and occurring in community-based or school-based locations. Utilizing a hybrid portraiture--instrumental case study design, two researchers selected participants from undergraduate educational psychology courses using…
Creating Dissonance in Pre-Service Teachers' Field Experiences
ERIC Educational Resources Information Center
Eisenhardt, Sara; Besnoy, Kevin; Steele, Emily
2012-01-01
The study is practical in nature and addresses the call for investigating effective aspects of field experiences in teacher preparation. The authors designed a framework of assignments requiring the pre-service teachers to collect data about two diverse elementary students in their assigned elementary classroom during the twelve weeks of their…
The Mu2e Solenoid Cold Mass Position Monitor System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strauss, Thomas; Feher, Sandor; Friedsam, Horst W.
The Mu2e experiment at Fermilab is designed to search for charged-lepton flavor violation by looking for muon to electron conversions in the field of the nucleus. The concept of the experiment is to generate a low momentum muon beam, stopping the muons in a target and measuring the momentum of the outgoing electrons. The implementation of this approach utilizes a complex magnetic field composed of graded solenoidal and toroidal fields. The location of the solenoid cold mass relative to external fiducials is needed for alignment as well as monitoring coil movements during cool down and magnet excitation. This study describesmore » a novel design of a Cold Mass Position Monitor System (CMPS) that will be implemented for the Mu2e experiment.« less
The Mu2e Solenoid Cold Mass Position Monitor System
Strauss, Thomas; Feher, Sandor; Friedsam, Horst W.; ...
2018-01-23
The Mu2e experiment at Fermilab is designed to search for charged-lepton flavor violation by looking for muon to electron conversions in the field of the nucleus. The concept of the experiment is to generate a low momentum muon beam, stopping the muons in a target and measuring the momentum of the outgoing electrons. The implementation of this approach utilizes a complex magnetic field composed of graded solenoidal and toroidal fields. The location of the solenoid cold mass relative to external fiducials is needed for alignment as well as monitoring coil movements during cool down and magnet excitation. This study describesmore » a novel design of a Cold Mass Position Monitor System (CMPS) that will be implemented for the Mu2e experiment.« less
ERIC Educational Resources Information Center
Granshaw, Frank Douglas
2011-01-01
Virtual reality (VR) is increasingly used to acquaint geoscience novices with some of the observation, data gathering, and problem solving done in actual field situations by geoscientists. VR environments in a variety of forms are used to prepare students for doing geologic fieldwork, as well as to provide proxies for such experience when…
High Voltage Design Considerations for the Electrostatic Septum for the Mu2e Beam Resonant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alvarez, Matthew L.; Jensen, C.; Morris, D.
aTwo electrostatic septa (ESS) are being designed for the slow extraction of 8GeV proton beam for the Mu2e experiment at Fermilab. Special attention is given to the high voltage components that affect the performance of the septa. The components under consideration are the high voltage (HV) feedthrough, cathode standoff (CS), and clearing electrode ceramic standoffs (CECS). Previous experience with similar HV systems at Fermilab was used to define the evaluation criteria of the design of the high voltage components. Using electric field simulation software, high E-field intensities on the components and integrated field strength along the surface of the dielectricmore » material were minimized. Here we discuss the limitations found and improvements made based on those studies.« less
Measuring and Enhancing Creativity
ERIC Educational Resources Information Center
Mahboub, Kamyar C.; Portillo, Margaret B.; Liu, Yinhui; Chandraratna, Susantha
2004-01-01
The purpose of this study was to assess ways by which creativity may be enhanced in a design-oriented course. In order to demonstrate the validity of the approach, a statistically based study was employed. Additionally, the experiment was replicated in two design-oriented fields at the University of Kentucky. These fields were civil engineering…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brax, Philippe; Upadhye, Amol, E-mail: philippe.brax@cea.fr, E-mail: aupadhye@anl.gov
2014-02-01
A scalar field dark energy candidate could couple to ordinary matter and photons, enabling its detection in laboratory experiments. Here we study the quantum properties of the chameleon field, one such dark energy candidate, in an ''afterglow'' experiment designed to produce, trap, and detect chameleon particles. In particular, we investigate the possible fragmentation of a beam of chameleon particles into multiple particle states due to the highly non-linear interaction terms in the chameleon Lagrangian. Fragmentation could weaken the constraints of an afterglow experiment by reducing the energy of the regenerated photons, but this energy reduction also provides a unique signaturemore » which could be detected by a properly-designed experiment. We show that constraints from the CHASE experiment are essentially unaffected by fragmentation for φ{sup 4} and 1/φ potentials, but are weakened for steeper potentials, and we discuss possible future afterglow experiments.« less
Microwave Emission From Relativistic Electron Beams
1993-04-12
the Army position, policyX, or decision, unless so designated by other documentation. 124. DISTRIBUTION i AVAILAOILITY STATEMENT I 12b. DISTRIBUTION...klystron (inodel 343). An assembly of six focusing coils is de - signed so that their magnetic field lines lie along the zero-magnetic field electron...less than 1% is achieved. Preliminary field measurements of a 30 period prototype undulator and the design parameters of a submillimeter experiment
Transducer Design Experiments for Ground-Penetrating Acoustic Systems
1996-03-19
subsurface imaging experiments have utilized a source (Tx) and receiver (Rx) configuration in which signals produced by a transmitter at the soil surface...development in the field of acoustic subsurface imaging are as follows. First, a transmitter designed to minimize the emission of surface waves, while
NASA Astrophysics Data System (ADS)
O'Connell, R.; Forest, C. B.; Plard, F.; Kendrick, R.; Lovell, T.; Thomas, M.; Bonazza, R.; Jensen, T.; Politzer, P.; Gerritsen, W.; McDowell, M.
1997-11-01
A MHD experiment is being constructed which will have the possibility of showing dynamo action: the self--generation of currents from fluid motion. The design allows sufficient experimental flexibility and diagnostic access to study a variety of issues central to dynamo theory, including mean--field electrodynamics and saturation (backreaction physics). Initially, helical flows required for dynamo action will be driven by propellers embedded in liquid sodium. The flow fields will first be measured using laser doppler velocimetry in a water experiment with an identical fluid Reynolds number. The magnetic field evolution will then be predicted using a MHD code, replacing the water with sodium; if growing magnetic fields are found, the experiment will be repeated with sodium.
Topology optimization based design of unilateral NMR for generating a remote homogeneous field.
Wang, Qi; Gao, Renjing; Liu, Shutian
2017-06-01
This paper presents a topology optimization based design method for the design of unilateral nuclear magnetic resonance (NMR), with which a remote homogeneous field can be obtained. The topology optimization is actualized by seeking out the optimal layout of ferromagnetic materials within a given design domain. The design objective is defined as generating a sensitive magnetic field with optimal homogeneity and maximal field strength within a required region of interest (ROI). The sensitivity of the objective function with respect to the design variables is derived and the method for solving the optimization problem is presented. A design example is provided to illustrate the utility of the design method, specifically the ability to improve the quality of the magnetic field over the required ROI by determining the optimal structural topology for the ferromagnetic poles. Both in simulations and experiments, the sensitive region of the magnetic field achieves about 2 times larger than that of the reference design, validating validates the feasibility of the design method. Copyright © 2017. Published by Elsevier Inc.
ERIC Educational Resources Information Center
Rawson, Casey H.
2015-01-01
Numerous authors in the library and information science (LIS) field have called for more authentic collaborative experiences for students in school librarian education programs, particularly experiences that partner school library students with pre-service teachers to collaboratively design instruction. The first-iteration, design-based study…
First experiments probing the collision of parallel magnetic fields using laser-produced plasmas
Rosenberg, M. J.; Li, C. K.; Fox, W.; ...
2015-04-08
Novel experiments to study the strongly-driven collision of parallel magnetic fields in β~10, laser-produced plasmas have been conducted using monoenergetic proton radiography. These experiments were designed to probe the process of magnetic flux pileup, which has been identified in prior laser-plasma experiments as a key physical mechanism in the reconnection of anti-parallel magnetic fields when the reconnection inflow is dominated by strong plasma flows. In the present experiments using colliding plasmas carrying parallel magnetic fields, the magnetic flux is found to be conserved and slightly compressed in the collision region. Two-dimensional (2D) particle-in-cell (PIC) simulations predict a stronger flux compressionmore » and amplification of the magnetic field strength, and this discrepancy is attributed to the three-dimensional (3D) collision geometry. Future experiments may drive a stronger collision and further explore flux pileup in the context of the strongly-driven interaction of magnetic fields.« less
A ``Cyber Wind Facility'' for HPC Wind Turbine Field Experiments
NASA Astrophysics Data System (ADS)
Brasseur, James; Paterson, Eric; Schmitz, Sven; Campbell, Robert; Vijayakumar, Ganesh; Lavely, Adam; Jayaraman, Balaji; Nandi, Tarak; Jha, Pankaj; Dunbar, Alex; Motta-Mena, Javier; Craven, Brent; Haupt, Sue
2013-03-01
The Penn State ``Cyber Wind Facility'' (CWF) is a high-fidelity multi-scale high performance computing (HPC) environment in which ``cyber field experiments'' are designed and ``cyber data'' collected from wind turbines operating within the atmospheric boundary layer (ABL) environment. Conceptually the ``facility'' is akin to a high-tech wind tunnel with controlled physical environment, but unlike a wind tunnel it replicates commercial-scale wind turbines operating in the field and forced by true atmospheric turbulence with controlled stability state. The CWF is created from state-of-the-art high-accuracy technology geometry and grid design and numerical methods, and with high-resolution simulation strategies that blend unsteady RANS near the surface with high fidelity large-eddy simulation (LES) in separated boundary layer, blade and rotor wake regions, embedded within high-resolution LES of the ABL. CWF experiments complement physical field facility experiments that can capture wider ranges of meteorological events, but with minimal control over the environment and with very small numbers of sensors at low spatial resolution. I shall report on the first CWF experiments aimed at dynamical interactions between ABL turbulence and space-time wind turbine loadings. Supported by DOE and NSF.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Charles, R.W.; Holley, C.E. Jr.; Tester, J.W.
1980-02-01
The Los Alamos Scientific Laboratory is pursuing laboratory and field experiments in the development of the Hot Dry Rock concept of geothermal energy. The field program consists of experiments in a hydraulically fractured region of low permeability in which hot rock is intercepted by two wellbores. These experiments are designed to test reservoir engineering parameters such as: heat extraction rates, water loss rates, flow characteristics including impedance and buoyancy, seismic activity and fluid chemistry. Laboratory experiments have been designed to provide information on the mineral reactivity which may be encountered in the field program. Two experimental circulation systems have beenmore » built to study the rates of dissolution and alteration in dynamic flow. Solubility studies have been done in agitated systems. To date, pure minerals, samples of the granodiorite from the actual reservoir and Tijeras Canyon granite have been reacted with distilled water and various solutions of NaCl, NaOH, and Na/sub 2/CO/sub 3/. The results of these experimental systems are compared to observations made in field experiments done in a hot dry rock reservoir at a depth of approximately 3 km with initial rock temperatures of 150 to 200/sup 0/C.« less
Learning Design Research: Advancing Pedagogies in the Digital Age
ERIC Educational Resources Information Center
Dobozy, Eva
2013-01-01
Learning design research (LDR) is establishing itself as a separate and specialised field of educational research. Worldwide, technology-mediated learning experiences in higher and further education are on the increase. LDR investigates their success in providing effective outcomes-based and personalised learning experiences. This paper reports on…
Design of experiments (DOE) - history, concepts, and relevance to in vitro culture
USDA-ARS?s Scientific Manuscript database
Design of experiments (DOE) is a large and well-developed field for understanding and improving the performance of complex systems. Because in vitro culture systems are complex, but easily manipulated in controlled conditions, they are particularly well-suited for the application of DOE principle...
Developing the Practice of Teacher Questioning through a K-2 Elementary Mathematics Field Experience
ERIC Educational Resources Information Center
Schwartz, Catherine
2015-01-01
This article presents findings from research on a field experience designed to help elementary preservice teachers learn the practice of teacher questioning during formal and informal interviews to analyze student mathematical thinking in K-2 classrooms. The practice of teacher questioning is framed as choosing a mathematical goal, analyzing…
Rational Ignorance in Education: A Field Experiment in Student Plagiarism
ERIC Educational Resources Information Center
Dee, Thomas S.; Jacob, Brian A.
2012-01-01
Plagiarism appears to be a common problem among college students, yet there is little evidence on the effectiveness of interventions designed to minimize plagiarism. This study presents the results of a field experiment that evaluated the effects of a web-based educational tutorial in reducing plagiarism. We found that assignment to the treatment…
Health Education Field Experience Stories: A Reflective, Digital, Performance-Based Project
ERIC Educational Resources Information Center
Lyde, Adrian R.
2012-01-01
This article describes a reflective, systematic, performance-based project resulting in the development of a digital story about a community health education field experience. The project is designed for preservice health education students at the college/university level. The primary benefit of the project is that it challenges students to engage…
Field-Based Teacher Education in Literacy: Preparing Teachers in Real Classroom Contexts
ERIC Educational Resources Information Center
DeGraff, Tricia L.; Schmidt, Cynthia M.; Waddell, Jennifer H.
2015-01-01
For the past two decades, scholars have advocated for reforms in teacher education that emphasize relevant connections between theory and practice in university coursework and focus on clinical experiences. This paper is based on our experiences in designing and implementing an integrated literacy methods course in a field-based teacher education…
Electron guns and collectors developed at INP for electron cooling devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharapa, A.N.; Shemyakin, A.V.
1997-09-01
Institute of Nuclear Physics (INP) has a rich experience in designing electron guns and collectors for electron cooling devices. This paper is a review of the experience of several INP research groups in this field. Some results obtained at INP for systems without a guiding magnetic field are also discussed.
Perspectives for the high field approach in fusion research and advances within the Ignitor Program
NASA Astrophysics Data System (ADS)
Coppi, B.; Airoldi, A.; Albanese, R.; Ambrosino, G.; Belforte, G.; Boggio-Sella, E.; Cardinali, A.; Cenacchi, G.; Conti, F.; Costa, E.; D'Amico, A.; Detragiache, P.; De Tommasi, G.; DeVellis, A.; Faelli, G.; Ferraris, P.; Frattolillo, A.; Giammanco, F.; Grasso, G.; Lazzaretti, M.; Mantovani, S.; Merriman, L.; Migliori, S.; Napoli, R.; Perona, A.; Pierattini, S.; Pironti, A.; Ramogida, G.; Rubinacci, G.; Sassi, M.; Sestero, A.; Spillantini, S.; Tavani, M.; Tumino, A.; Villone, F.; Zucchi, L.
2015-05-01
The Ignitor Program maintains the objective of approaching D-T ignition conditions by incorporating systematical advances made with relevant high field magnet technology and with experiments on high density well confined plasmas in the present machine design. An additional objective is that of charting the development of the high field line of experiments that goes from the Alcator machine to the ignitor device. The rationale for this class of experiments, aimed at producing poloidal fields with the highest possible values (compatible with proven safety factors of known plasma instabilities) is given. On the basis of the favourable properties of high density plasmas produced systematically by this line of machines, the envisioned future for the line, based on novel high field superconducting magnets, includes the possibility of investigating more advanced fusion burn conditions than those of the D-T plasmas for which Ignitor is designed. Considering that a detailed machine design has been carried out (Coppi et al 2013 Nucl. Fusion 53 104013), the advances made in different areas of the physics and technology that are relevant to the Ignitor project are reported. These are included within the following sections of the present paper: main components issues, assembly and welding procedures; robotics criteria; non-linear feedback control; simulations with three-dimensional structures and disruption studies; ICRH and dedicated diagnostics systems; anomalous transport processes including self-organization for fusion burning regimes and the zero-dimensional model; tridimensional structures of the thermonuclear instability and control provisions; superconducting components of the present machine; envisioned experiments with high field superconducting magnets.
Canavati, Sara E; Quintero, Cesia E; Haller, Britt; Lek, Dysoley; Yok, Sovann; Richards, Jack S; Whittaker, Maxine Anne
2017-09-11
In a drug-resistant, malaria elimination setting like Western Cambodia, field research is essential for the development of novel anti-malarial regimens and the public health solutions necessary to monitor the spread of resistance and eliminate infection. Such field studies often face a variety of similar implementation challenges, but these are rarely captured in a systematic way or used to optimize future study designs that might overcome similar challenges. Field-based research staff often have extensive experience and can provide valuable insight regarding these issues, but their perspectives and experiences are rarely documented and seldom integrated into future research protocols. This mixed-methods analysis sought to gain an understanding of the daily challenges encountered by research field staff in the artemisinin-resistant, malaria elimination setting of Western Cambodia. In doing so, this study seeks to understand how the experiences and opinions of field staff can be captured, and used to inform future study designs. Twenty-two reports from six field-based malaria studies conducted in Western Cambodia were reviewed using content analysis to identify challenges to conducting the research. Informal Interviews, Focus Group Discussions and In-depth Interviews were also conducted among field research staff. Thematic analysis of the data was undertaken using Nvivo 9 ® software. Triangulation and critical case analysis was also used. There was a lack of formalized avenues through which field workers could report challenges experienced when conducting the malaria studies. Field research staff faced significant logistical barriers to participant recruitment and data collection, including a lack of available transportation to cover long distances, and the fact that mobile and migrant populations (MMPs) are usually excluded from studies because of challenges in follow-up. Cultural barriers to communication also hindered participant recruitment and created unexpected delays. Field staff often paid a physical, emotional and financial cost, going beyond their duty in order to keep the study running. Formal monthly reports filled out by field study staff could be a key tool for capturing field study staff experiences effectively, but require specific report fields to encourage staff to outline their challenges and to propose potential solutions. Forging strong bonds with communities and their leaders may improve communication, and decrease barriers to participant recruitment. Study designs that make it feasible for MMPs to participate should be pursued; in addition to increasing the potential participant pool, this will ensure that the most malaria-endemic demographic is taken into account in research studies. Overlaps between clinical care and research create ethical dilemmas for study staff, a fact that warrants careful consideration. Lessons learned from study field staff should be used to create a set of locally-relevant recommendations to inform future study designs.
The Tapered Hybrid Undulator (THUNDER) of the visible free-electron laser oscillator experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robinson, K.E.; Quimby, D.C.; Slater, J.M.
A 5 m tapered hybrid undulator (THUNDER) has been designed and built as part of the Boeing Aerospace Company and Spectra Technology, Inc. visible free-electron laser (FEL) oscillator experiment. The performance goals required of an undulator for a visible oscillator with large extraction are ambitious. They require the establishment of stringent magnetic field quality tolerances which impact design and fabrication techniques. The performance goals of THUNDER are presented. The tolerances resulting from the FEL interaction are contrasted and compared to those of a synchrotron radiation source. The design, fabrication, and field measurements are discussed. The performance of THUNDER serves asmore » a benchmark for future wiggler/undulator design for advanced FEL's and synchrotron radiation sources.« less
Narrow Angle Wide Spectral Range Radiometer Design FEANICS/REEFS Radiometer Design Report
NASA Technical Reports Server (NTRS)
Camperchioli, William
2005-01-01
A critical measurement for the Radiative Enhancement Effects on Flame Spread (REEFS) microgravity combustion experiment is the net radiative flux emitted from the gases and from the solid fuel bed. These quantities are measured using a set of narrow angle, wide spectral range radiometers. The radiometers are required to have an angular field of view of 1.2 degrees and measure over the spectral range of 0.6 to 30 microns, which presents a challenging design effort. This report details the design of this radiometer system including field of view, radiometer response, radiometric calculations, temperature effects, error sources, baffling and amplifiers. This report presents some radiometer specific data but does not present any REEFS experiment data.
ERIC Educational Resources Information Center
Leonard, William H.; And Others
1983-01-01
Describes a field trip designed to give students opportunities to experience relevant data leading to concepts in biogeography. Suggests that teachers (including college instructors) adapt the areas studied and procedures used to their own locations. Includes a suggested field trip handout. (JN)
[Design of MC-III low frequency pulsed strong magnetic fields generator].
Wen, Jun; Zhong, Lisheng; Xie, Hengkun; Qu, Xuemin; Ju, Hongbo; Yang, Jiqing; Wang, Sigang
2002-12-01
In this paper, We designed and accomplished a low frequency pulsed strong magnetic fields generator, which provides a pulsed magnetic field with the intensity range from 0.1-2.5 T and the adjusted time interval of pulse. This device is easy to operate and performs reliably. It can work steady for a long time and has been successful used in the experiments of biological effects of electromagnetics.
ERIC Educational Resources Information Center
Sözcü, Ömer Faruk; Ipek, Ismail; Kinay, Hüseyin
2016-01-01
The purpose of the study is to explore relationships between learners' cognitive styles of field dependence and learner variables in the preference of learner Interface design, attitudes in e-Learning instruction and experience with e-Learning in distance education. Cognitive style has historically referred to a psychological dimension…
Does Electrostatic Shielding Work Both Ways?
ERIC Educational Resources Information Center
Geller, Zvi; Bagno, Esther
1994-01-01
Describes an experiment designed to disprove the belief that an electrical field originating from a point inside a closed conducting surface cannot produce an electric field outside this surface. (ZWH)
Design of Field Experiments for Adaptive Sampling of the Ocean with Autonomous Vehicles
NASA Astrophysics Data System (ADS)
Zheng, H.; Ooi, B. H.; Cho, W.; Dao, M. H.; Tkalich, P.; Patrikalakis, N. M.
2010-05-01
Due to the highly non-linear and dynamical nature of oceanic phenomena, the predictive capability of various ocean models depends on the availability of operational data. A practical method to improve the accuracy of the ocean forecast is to use a data assimilation methodology to combine in-situ measured and remotely acquired data with numerical forecast models of the physical environment. Autonomous surface and underwater vehicles with various sensors are economic and efficient tools for exploring and sampling the ocean for data assimilation; however there is an energy limitation to such vehicles, and thus effective resource allocation for adaptive sampling is required to optimize the efficiency of exploration. In this paper, we use physical oceanography forecasts of the coastal zone of Singapore for the design of a set of field experiments to acquire useful data for model calibration and data assimilation. The design process of our experiments relied on the oceanography forecast including the current speed, its gradient, and vorticity in a given region of interest for which permits for field experiments could be obtained and for time intervals that correspond to strong tidal currents. Based on these maps, resources available to our experimental team, including Autonomous Surface Craft (ASC) are allocated so as to capture the oceanic features that result from jets and vortices behind bluff bodies (e.g., islands) in the tidal current. Results are summarized from this resource allocation process and field experiments conducted in January 2009.
Solenoid Magnet System for the Fermilab Mu2e Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lamm, M. J.; Andreev, N.; Ambrosio, G.
2011-12-14
The Fermilab Mu2e experiment seeks to measure the rare process of direct muon to electron conversion in the field of a nucleus. Key to the design of the experiment is a system of three superconducting solenoids; a muon production solenoid (PS) which is a 1.8 m aperture axially graded solenoid with a peak field of 5 T used to focus secondary pions and muons from a production target located in the solenoid aperture; an 'S shaped' transport solenoid (TS) which selects and transports the subsequent muons towards a stopping target; a detector solenoid (DS) which is an axially graded solenoidmore » at the upstream end to focus transported muons to a stopping target, and a spectrometer solenoid at the downstream end to accurately measure the momentum of the outgoing conversion elections. The magnetic field requirements, the significant magnetic coupling between the solenoids, the curved muon transport geometry and the large beam induced energy deposition into the superconducting coils pose significant challenges to the magnetic, mechanical, and thermal design of this system. In this paper a conceptual design for the magnetic system which meets the Mu2e experiment requirements is presented.« less
The first ISLSCP field experiment (FIFE). [International Satellite Land Surface Climatology Project
NASA Technical Reports Server (NTRS)
Sellers, P. J.; Hall, F. G.; Asrar, G.; Strebel, D. E.; Murphy, R. E.
1988-01-01
The background and planning of the first International Satellite Land Surface Climatology Project (ISLSCP) field experiment (FIFE) are discussed. In FIFE, the NOAA series of satellites and GOES will be used to provide a moderate-temporal resolution coarse-spatial resolution data set, with SPOT and aircraft data providing the high-spatial resolution pointable-instrument capability. The paper describes the experiment design, the measurement strategy, the configuration of the site of the experiment (which will be at and around the Konza prairie near Manhattan, Kansas), and the experiment's operations and execution.
Design of a High Voltage Power Supply Providing a Force Field for a Fluid Experiment
NASA Astrophysics Data System (ADS)
Herty, Frank
2005-05-01
As part of the GeoFlow fluid experiment an ac high voltage power supply (HVPS) is used to establish high electrical fields on fluids based on silicon oil. The non- conductive fluid is encapsulated between two spherical electrodes. This experiment cell assembly acts essentially as a capacitive load.The GeoFlow HVPS is an integrated ac high voltage source capable to provide up to 10kVRMS on capacitive loads up to 100pF.This paper presents major design challenges and solutions regarding the high voltage transformer and its driver electronics. Particular high voltage problems like corona effects and dielectric losses are discussed and countermeasures are presented.
ERIC Educational Resources Information Center
Lux, John E.
This document reports on a project designed to determine whether the amount and type of field experiences of students prior to student teaching would influence the achievement of competencies and result in different instructional patterns and attitudes of prospective teachers. Important subquestions were whether it was desirable to provide basic…
Teaching Statistical Inference for Causal Effects in Experiments and Observational Studies
ERIC Educational Resources Information Center
Rubin, Donald B.
2004-01-01
Inference for causal effects is a critical activity in many branches of science and public policy. The field of statistics is the one field most suited to address such problems, whether from designed experiments or observational studies. Consequently, it is arguably essential that departments of statistics teach courses in causal inference to both…
ERIC Educational Resources Information Center
Vermeersch, Peter-Willem; Heylighen, Ann
2015-01-01
Through their bodily interaction with the designed environment, disabled people can detect obstacles and appreciate spatial qualities architects may not be attuned to. While designers in several disciplines acknowledge disabled people as lead or critical users, in architectural practice their embodied experience is hardly recognized as a valuable…
A More Powerful Test in Three-Level Cluster Randomized Designs
ERIC Educational Resources Information Center
Konstantopoulos, Spyros
2011-01-01
Field experiments that involve nested structures frequently assign treatment conditions to entire groups (such as schools). A key aspect of the design of such experiments includes knowledge of the clustering effects that are often expressed via intraclass correlation. This study provides methods for constructing a more powerful test for the…
NASA Astrophysics Data System (ADS)
Jeong-hun, Yang; Chung, Kyoung-Jae; An, YoungHwa; Jung, Bong Ki; Jo, Jong Gab; Hwang, Y. S.
2012-10-01
A dual sensor probe array is designed and constructed for internal magnetic field measurement at Versatile Experiment Spherical Torus (VEST) at the Seoul National University. Simultaneous use of Hall sensors and chip inductors allows cross-calibration among the measurements and compensation for each other's weaknesses while their small sizes are expected to cause only mild plasma perturbations. Calibration of the dual sensor probe array, using a Helmholtz coil, shows good sensitivity for the magnetic field measurement of the VEST. Prior to Ohmic start-up, the magnetic field structure inside the vacuum chamber is measured by using the calibrated probe array. The dual sensor probe array is expected to be useful in analyzing the temporal magnetic field structure change during the magnetic reconnection and in reconstruction of the current profile during the discharge of the VEST device.
NASA Technical Reports Server (NTRS)
Gilland, James H.; Mikekkides, Ioannis; Mikellides, Pavlos; Gregorek, Gerald; Marriott, Darin
2004-01-01
This project has been a multiyear effort to assess the feasibility of a key process inherent to virtually all fusion propulsion concepts: the expansion of a fusion-grade plasma through a diverging magnetic field. Current fusion energy research touches on this process only indirectly through studies of plasma divertors designed to remove the fusion products from a reactor. This project was aimed at directly addressing propulsion system issues, without the expense of constructing a fusion reactor. Instead, the program designed, constructed, and operated a facility suitable for simulating fusion reactor grade edge plasmas, and to examine their expansion in an expanding magnetic nozzle. The approach was to create and accelerate a dense (up to l0(exp 20)/m) plasma, stagnate it in a converging magnetic field to convert kinetic energy to thermal energy, and examine the subsequent expansion of the hot (100's eV) plasma in a subsequent magnetic nozzle. Throughout the project, there has been a parallel effort between theoretical and numerical design and modelling of the experiment and the experiment itself. In particular, the MACH2 code was used to design and predict the performance of the magnetoplasmadynamic (MPD) plasma accelerator, and to design and predict the design and expected behavior for the magnetic field coils that could be added later. Progress to date includes the theoretical accelerator design and construction, development of the power and vacuum systems to accommodate the powers and mass flow rates of interest to out research, operation of the accelerator and comparison to theoretical predictions, and computational analysis of future magnetic field coils and the expected performance of an integrated source-nozzle experiment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
WANDERER,P.; ET AL.
2003-06-15
Superconducting combined function magnets will be utilized for the 50GeV-750kW proton beam line for the J-PARC neutrino experiment and an R and D program has been launched at KEK. The magnet is designed to provide a combined function with a dipole field of 2.59 T and a quadrupole field of 18.7 T/m in a coil aperture of 173.4 mm. A single layer coil is proposed to reduce the fabrication cost and the coil arrangement in the 2-D cross-section results in left-right asymmetry. This paper reports the design study of the magnet.
Kicker field simulation and measurement for the muon g-2 experiment at FNAL
NASA Astrophysics Data System (ADS)
Chang, Seung Pyo; Kim, Young Im; Choi, Jihoon; Semertzidis, Yannis; muon g-2 experiment Collaboration
2017-01-01
In the Muon g-2 experiment, muon beam is injected to the storage ring in a slightly tilted orbit whose center is 77 mm away from the center of the ring. The kicker is needed to send the muon beam to the central orbit. The magnetic kicker is designed for the experiment and about 0.1 Tm field integral is needed. The peak current pulse is 4200 A to make this field integral. This strong kicker pulse could make unwanted eddy current occur. This eddy current could spoil the main magnetic field of the storage ring. This could be a critical threat to the precision of experiment. The kicker field simulation has done using OPERA to estimate the effects. Also the kicker field should be measured based on Faraday effect. The measurement has tested in the lab before install the experiment area. In this presentation, the simulation and measurement results will be discussed. This work was supported by IBS-R017-D1-2016-a00.
NASA Astrophysics Data System (ADS)
Xin, Chen; Huang, Ji-Ping
2017-12-01
Agent-based modeling and controlled human experiments serve as two fundamental research methods in the field of econophysics. Agent-based modeling has been in development for over 20 years, but how to design virtual agents with high levels of human-like "intelligence" remains a challenge. On the other hand, experimental econophysics is an emerging field; however, there is a lack of experience and paradigms related to the field. Here, we review some of the most recent research results obtained through the use of these two methods concerning financial problems such as chaos, leverage, and business cycles. We also review the principles behind assessments of agents' intelligence levels, and some relevant designs for human experiments. The main theme of this review is to show that by combining theory, agent-based modeling, and controlled human experiments, one can garner more reliable and credible results on account of a better verification of theory; accordingly, this way, a wider range of economic and financial problems and phenomena can be studied.
ERIC Educational Resources Information Center
Lee County School District, Ft. Myers, FL. Dept. of Environmental Education and Instructional Development Services.
This unit is designed to help first grade students understand the broad concept of community. The students experience a variety of in-class and field trip activities that will expose them to communities. The students observe and compare both natural and human-designed communities. Learning activities include pantomimes, listening activities,…
Effects of Anode Flow Field Design on CO2 Bubble Behavior in μDMFC
Li, Miaomiao; Liang, Junsheng; Liu, Chong; Sun, Gongquan; Zhao, Gang
2009-01-01
Clogging of anode flow channels by CO2 bubbles is a vital problem for further performance improvements of the micro direct methanol fuel cell (μDMFC). In this paper, a new type anode structure using the concept of the non-equipotent serpentine flow field (NESFF) to solve this problem was designed, fabricated and tested. Experiments comparing the μDMFC with and without this type of anode flow field were implemented using a home-made test loop. Results show that the mean-value, amplitude and frequency of the inlet-to-outlet pressure drops in the NESFF is far lower than that in the traditional flow fields at high μDMFC output current. Furthermore, the sequential images of the CO2 bubbles as well as the μDMFC performance with different anode flow field pattern were also investigated, and the conclusions are in accordance with those derived from the pressure drop experiments. Results of this study indicate that the non-equipotent design of the μDMFC anode flow field can effectively mitigate the CO2 clogging in the flow channels, and hence lead to a significant promotion of the μDMFC performance. PMID:22412313
Computer code for analyzing the performance of aquifer thermal energy storage systems
NASA Astrophysics Data System (ADS)
Vail, L. W.; Kincaid, C. T.; Kannberg, L. D.
1985-05-01
A code called Aquifer Thermal Energy Storage System Simulator (ATESSS) has been developed to analyze the operational performance of ATES systems. The ATESSS code provides an ability to examine the interrelationships among design specifications, general operational strategies, and unpredictable variations in the demand for energy. The uses of the code can vary the well field layout, heat exchanger size, and pumping/injection schedule. Unpredictable aspects of supply and demand may also be examined through the use of a stochastic model of selected system parameters. While employing a relatively simple model of the aquifer, the ATESSS code plays an important role in the design and operation of ATES facilities by augmenting experience provided by the relatively few field experiments and demonstration projects. ATESSS has been used to characterize the effect of different pumping/injection schedules on a hypothetical ATES system and to estimate the recovery at the St. Paul, Minnesota, field experiment.
Jagathjothi, N; Amanullah, M Mohamed; Muthukrishnan, P
2013-11-15
Pot culture and field experiments were carried out at the Common Effluent Treatment Plant (CETP), Dindigul during kharif 2011-12 to investigate the influence of irrigation of treated tannery effluent along with domestic wastewater on growth, yield attributes and yield of cotton. The pot culture was in a factorial completely randomized design and field experiment laid out in factorial randomized block design with four replications. The results revealed that the mixing proportion of 25% Treated Tannery Effluent (TTE)+75% domestic wastewater (DWW) application recorded taller plants, higher dry matter production, number of sympodial branches plant(-1), number of fruiting points plant(-1), number of bolls plant(-1) and seed cotton yield with yield reduction of 15.28 and 16.11% compared to normal water irrigation under pot culture and field experiment, respectively. Regarding amendments, gypsum application registered higher seed cotton yield followed by VAM.
Experimental Characterization of Piezoelectric Radial Field Diaphragms for Fluidic Control
NASA Technical Reports Server (NTRS)
Bryant, R. G.; Kavli, S. E.; Thomas, R. A., Jr.; Darji, K. J.; Mossi, K. M.
2004-01-01
NASA has recently developed a new piezoelectric actuator, the Radial Field Diaphragm or RFD. This actuator uses a radially-directed electric field to generate concentric out-of-plane (Z-axis) motion that allows this packaged device to be used as a pump or valve diaphragm. In order to efficiently use this new active device, experimental determination of pressure, flow rate, mechanical work, power consumption and overall efficiency needs to be determined by actually building a pump. However, without an optimized pump design, it is difficult to assess the quality of the data, as these results are inherent to the actual pump. Hence, separate experiments must be conducted in order to generate independent results to help guide the design criteria and pump quality. This paper focuses on the experiments used to generate the RFD's operational parameters and then compares these results to the experimentally determined results of several types of ball pumps. Also discussed are how errors are inherently introduced into the experiments, the pump design, experimental hardware and their effects on the overall system efficiency.
Dyer, Bryce
2015-06-01
This study introduces the importance of the aerodynamics to prosthetic limb design for athletes with either a lower-limb or upper-limb amputation. The study comprises two elements: 1) An initial experiment investigating the stability of outdoor velodrome-based field tests, and 2) An experiment evaluating the application of outdoor velodrome aerodynamic field tests to detect small-scale changes in aerodynamic drag respective of prosthetic limb componentry changes. An outdoor field-testing method is used to detect small and repeatable changes in the aerodynamic drag of an able-bodied cyclist. These changes were made at levels typical of alterations in prosthetic componentry. The field-based test method of assessment is used at a smaller level of resolution than previously reported. With a carefully applied protocol, the field test method proved to be statistically stable. The results of the field test experiments demonstrate a noticeable change in overall athlete performance. Aerodynamic refinement of artificial limbs is worthwhile for athletes looking to maximise their competitive performance. A field-testing method illustrates the importance of the aerodynamic optimisation of prosthetic limb components. The field-testing protocol undertaken in this study gives an accessible and affordable means of doing so by prosthetists and sports engineers. Using simple and accessible field-testing methods, this exploratory experiment demonstrates how small changes to riders' equipment, consummate of the scale of a small change in prosthetics componentry, can affect the performance of an athlete. Prosthetists should consider such opportunities for performance enhancement when possible. © The International Society for Prosthetics and Orthotics 2014.
NASA Astrophysics Data System (ADS)
Amarasinghe, Chamindu; LANL nEDM Collaboration
2017-09-01
The LANL neutron Electric Dipole Moment (nEDM) experiment is an effort to set a sensitivity limit of 3.2 × 10-27 e cm on the electric dipole moment of the neutron, an order of magnitude smaller than the current upper limit. This measurement uses Ramsey's method of oscillating magnetic fields. The magnetic field and field gradient have to be low enough to avoid the smearing of the Ramsey fringes and to increase the neutron dephasing time respectively. The experiment is enclosed in a two layer Mu-metal magnetically shielded room (MSR) to null any external magnetic fields from the environment. The MSR is degaussed to sufficiently reduce its residual magnetic field and field gradient. The MSR is designed for residual fields as low as 30 nT. The experiment further requires a field gradient of 1 nT/m or smaller. Here we report on the degaussing procedure and the resulting improvement in the shielding prowess of the MSR. Funded by an NSF Grant.
INDOOR AIR QUALITY MODELING (CHAPTER 58)
The chapter discussses indoor air quality (IAQ) modeling. Such modeling provides a way to investigate many IAQ problems without the expense of large field experiments. Where experiments are planned, IAQ models can be used to help design experiments by providing information on exp...
Designs of Empirical Evaluations of Nonexperimental Methods in Field Settings.
Wong, Vivian C; Steiner, Peter M
2018-01-01
Over the last three decades, a research design has emerged to evaluate the performance of nonexperimental (NE) designs and design features in field settings. It is called the within-study comparison (WSC) approach or the design replication study. In the traditional WSC design, treatment effects from a randomized experiment are compared to those produced by an NE approach that shares the same target population. The nonexperiment may be a quasi-experimental design, such as a regression-discontinuity or an interrupted time-series design, or an observational study approach that includes matching methods, standard regression adjustments, and difference-in-differences methods. The goals of the WSC are to determine whether the nonexperiment can replicate results from a randomized experiment (which provides the causal benchmark estimate), and the contexts and conditions under which these methods work in practice. This article presents a coherent theory of the design and implementation of WSCs for evaluating NE methods. It introduces and identifies the multiple purposes of WSCs, required design components, common threats to validity, design variants, and causal estimands of interest in WSCs. It highlights two general approaches for empirical evaluations of methods in field settings, WSC designs with independent and dependent benchmark and NE arms. This article highlights advantages and disadvantages for each approach, and conditions and contexts under which each approach is optimal for addressing methodological questions.
Experimental realization of dynamo action: present status and prospects
NASA Astrophysics Data System (ADS)
Giesecke, André; Stefani, Frank; Gundrum, Thomas; Gerbeth, Gunter; Nore, Caroline; Léorat, Jacques
2013-07-01
In the last decades, the experimental study of dynamo action has made great progress. However, after the dynamo experiments in Karlsruhe and Riga, the von-Kármán-Sodium (VKS) dynamo is only the third facility that has been able to demonstrate fluid flow driven self-generation of magnetic fields in a laboratory experiment. Further progress in the experimental examination of dynamo action is expected from the planned precession driven dynamo experiment that will be designed in the framework of the liquid sodium facility DRESDYN (DREsden Sodium facility for DYNamo and thermohydraulic studies). In this paper, we briefly present numerical models of the VKS dynamo that demonstrate the close relation between the axisymmetric field observed in that experiment and the soft iron material used for the flow driving impellers. We further show recent results of preparatory water experiments and design studies related to the precession dynamo and delineate the scientific prospects for the final set-up.
ERIC Educational Resources Information Center
Darolia, Rajeev; Koedel, Cory; Martorell, Paco; Wilson, Katie; Perez-Arce, Francisco
2014-01-01
This paper reports results from a resume-based field experiment designed to examine employer preferences for job applicants who attended for-profit colleges. For-profit colleges have seen sharp increases in enrollment in recent years despite alternatives such as public community colleges being much cheaper. We sent almost 9,000 fictitious resumes…
ERIC Educational Resources Information Center
Rothstein, Richard
2008-01-01
Accountability and performance incentive plans in education are compromised by goal distortion, gaming, and corruption. Education policy makers who design such plans have paid insufficient attention to similar experiences in other fields. This paper describes institutions in health care, job training and welfare administration, and in the private…
The Kosmos-1129 biosatellite. [experiments in biological effects of space flight
NASA Technical Reports Server (NTRS)
Nikitin, S. A.
1980-01-01
A number of experiments, designed by participating specialists from several countries, are described. The experiments included studies in biorhythm, stress, body parts, behavior, ontogenesis, and gravitational preference. The biological subjects of the experiments were retrieved immediately after the landing of the satellite and examined in a field laboratory.
Conducting Design Experiments to Support Teachers' Learning: A Reflection from the Field
ERIC Educational Resources Information Center
Cobb, Paul; Zhao, Qing; Dean, Chrystal
2009-01-01
This article focuses on 3 conceptual challenges that we sought to address while conducting a design experiment in which we supported the learning of a group of middle school mathematics teachers. These challenges involved (a) situating teachers' activity in the institutional setting of the schools and district in which they worked, (b) developing…
Design of pulsed guiding magnetic field for high power microwave generators.
Ju, J-C; Zhang, H; Zhang, J; Shu, T; Zhong, H-H
2014-09-01
In this paper, we present a comprehensive study on designing solenoid together with the corresponding power supply system to excite pulsed magnetic field required for high power microwave generators. Particularly, a solenoid is designed and the excited magnetic field is applied to a Ku-band overmoded Cerenkov generator. It is found in experiment that the electron beam is properly guided by the magnetic field and a 1.1 GW high power microwave is achieved at a central frequency of 13.76 GHz. Pulsed solenoid system has the advantages of compactness and low energy consumption, which are of great interest for repetitive operation. The reported studies and results can be generalized to other applications which require magnetic fields.
Magnetic Eigenmodes in the Madison Dynamo Experiment
NASA Astrophysics Data System (ADS)
Nornberg, M. D.; Bayliss, R. A.; Forest, C. B.; Kendrick, R. D.; O'Connell, R.; Spence, E. J.
2002-11-01
A spherical dynamo experiment has been constructed at the University of Wisconsin's liquid sodium facility. The goals of the experiment are to observe and understand magnetic instabilities driven by flow shear in MHD systems, investigate MHD turbulence for magnetic Reynolds numbers of 100, and understand the role of fluid turbulence in current generation. Magnetic field generation is only possible for specific flow geometries. We have studied and achieved simple roll flow geometries in a full scale water experiment. Results from the water experiment have guided the design of the sodium experiment. The experiment consists of a 1 m diameter, spherical stainless steel vessel filled with liquid sodium at 110 Celsius. Two 100 Hp motors with impellers drive flows in the liquid sodium with flow velocities of 15 m/s. A gaussian grid of 66 Hall probes on the surface of the sodium vessel measure the generated external magnetic field. Hall probe feed-thru arrays measure the internal field. A pair of magnetic field coils produce a roughly uniform field inside the sphere with a centerline field strength of 100 gauss. Preliminary investigations include measurements of the turbulent electromotive force and excitation of magnetic eigenmodes.
Physical Vapor Transport of Mercurous Chloride Crystals: Design of a Microgravity Experiment
NASA Technical Reports Server (NTRS)
Duval, W, M. B.; Singh, N. B.; Glicksman, M. E.
1997-01-01
Flow field characteristics predicted from a computational model show that the dynamical state of the flow, for practical crystal growth conditions of mercurous chloride, can range from steady to unsteady. Evidence that the flow field can be strongly dominated by convection for ground-based conditions is provided by the prediction of asymmetric velocity profiles bv the model which show reasonable agreement with laser Doppler velocimetry experiments in both magnitude and planform. Unsteady flow is shown to be correlated with a degradation of crystal quality as quantified by light scattering pattern measurements, A microgravity experiment is designed to show that an experiment performed with parameters which yield an unsteady flow becomes steady (diffusive-advective) in a microgravity environment of 10(exp -3) g(sub 0) as predicted by the model, and hence yields crystals with optimal quality.
Flowpath evaluation and reconnaissance by remote field Eddy current testing (FERRET)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smoak, A.E.; Zollinger, W.T.
1993-12-31
This document describes the design and development of FERRET (Flowpath Evaluation and Reconnaisance by Remote-field Eddy current Testing). FERRET is a system for inspecting the steel pipes which carry cooling water to underground nuclear waste storage tanks. The FERRET system has been tested in a small scale cooling pipe mock-up, an improved full scale mock-up, and in flaw detection experiments. Early prototype designs of FERRET and the FERRET launcher (a device which inserts, moves, and retrieves probes from a piping system) as well as the field-ready design are discussed.
Design and fabrication of a magnetic propulsion system for self-propelled capsule endoscope.
Gao, Mingyuan; Hu, Chengzhi; Chen, Zhenzhi; Zhang, Honghai; Liu, Sheng
2010-12-01
This paper investigates design, modeling, simulation, and control issues related to self-propelled endoscopic capsule navigated inside the human body through external magnetic fields. A novel magnetic propulsion system is proposed and fabricated, which has great potential of being used in the field of noninvasive gastrointestinal endoscopy. Magnetic-analysis model is established and finite-element simulations as well as orthogonal design are performed for obtaining optimized mechanical and control parameters for generating appropriate external magnetic field. Simulated intestinal tract experiments are conducted, demonstrating controllable movement of the capsule under the developed magnetic propulsion system.
Design and Analysis of AN Static Aeroelastic Experiment
NASA Astrophysics Data System (ADS)
Hou, Ying-Yu; Yuan, Kai-Hua; Lv, Ji-Nan; Liu, Zi-Qiang
2016-06-01
Static aeroelastic experiments are very common in the United States and Russia. The objective of static aeroelastic experiments is to investigate deformation and loads of elastic structure in flow field. Generally speaking, prerequisite of this experiment is that the stiffness distribution of structure is known. This paper describes a method for designing experimental models, in the case where the stiffness distribution and boundary condition of a real aircraft are both uncertain. The stiffness distribution form of the structure can be calculated via finite element modeling and simulation calculation and F141 steels and rigid foam are used to make elastic model. In this paper, the design and manufacturing process of static aeroelastic models is presented and a set of experiment model was designed to simulate the stiffness of the designed wings, a set of experiments was designed to check the results. The test results show that the experimental method can effectively complete the design work of elastic model. This paper introduces the whole process of the static aeroelastic experiment, and the experimental results are analyzed. This paper developed a static aeroelasticity experiment technique and established an experiment model targeting at the swept wing of a certain kind of large aspect ratio aircraft.
ERIC Educational Resources Information Center
Miller, Howard J.; And Others
This document is a manual for a social work field placement program. The social work field placement is described as a learning experience designed to translate the students' interests, interpersonal abilities, and academic knowledge and theory into the capability of enabling others to solve problems. Expectations of skills to be learned in the…
[Design of an microwave applicator using for tumor in superficial layer].
Sun, Bing; Lu, Xiaofeng; Cao, Yi
2010-05-01
A 2.45 GHz microstrip applicator using single rectangle sheet structure is presented. Based on the radiant principle of microstrip antenna, the applicator's parameter is designed and the simulating model is set and optimized in HFSS. Measured by network analyzer, the technical target of this applicator is complied with design demand. During irradiation experiment, based on 30 W power, 30 mm radiation distance and 15 min duration experiment condition, the thermal field distribution map of phantom is obtained from the far-infrared image instrument. The 3D map shows that the region of thermal field centre has small radius and deep heat penetration. The microwave energy from this applicator can reach the tumor in superficial layer without heat injuring normal tissue around it.
How we launched a developmental student-as-teacher (SAT) program for all medical students.
Blanco, Maria A; Maderer, Ann; Oriel, Amanda; Epstein, Scott K
2014-05-01
Teaching is a necessary skill for medical trainees and physicians. We designed and launched a developmental Student-as-Teacher program for all students, beginning with the class of 2016. A task force of faculty and students designed the program. The goal is to enable all students to acquire basic principles of teaching and learning at different stages in their four-year medical school career. Upon completion, students will achieve twenty-eight learning objectives grouped within four competency domains: (1) Adult and Practice-Based Learning; (2) Learning Environment; (3) Instructional Design and Performance; and, (4) Learner's Assessment and Evaluation. The program combines online learning modules and a field teaching experience. The entire class of 2016 (N = 200) completed the first online module. Students found the module effective, and 70% reported an increase in their level of knowledge. Although most students are expected to complete their field teaching experience in fourth year, twelve students completed their field experience in first year. Reported strengths of these experiences include reinforcement of their medical knowledge and improvement of their adult teaching skills. The program was successfully launched, and students are already experiencing the benefits of training in basic teaching skills in the first year of the program.
A Tutorial on Adaptive Design Optimization
Myung, Jay I.; Cavagnaro, Daniel R.; Pitt, Mark A.
2013-01-01
Experimentation is ubiquitous in the field of psychology and fundamental to the advancement of its science, and one of the biggest challenges for researchers is designing experiments that can conclusively discriminate the theoretical hypotheses or models under investigation. The recognition of this challenge has led to the development of sophisticated statistical methods that aid in the design of experiments and that are within the reach of everyday experimental scientists. This tutorial paper introduces the reader to an implementable experimentation methodology, dubbed Adaptive Design Optimization, that can help scientists to conduct “smart” experiments that are maximally informative and highly efficient, which in turn should accelerate scientific discovery in psychology and beyond. PMID:23997275
A differentiable reformulation for E-optimal design of experiments in nonlinear dynamic biosystems.
Telen, Dries; Van Riet, Nick; Logist, Flip; Van Impe, Jan
2015-06-01
Informative experiments are highly valuable for estimating parameters in nonlinear dynamic bioprocesses. Techniques for optimal experiment design ensure the systematic design of such informative experiments. The E-criterion which can be used as objective function in optimal experiment design requires the maximization of the smallest eigenvalue of the Fisher information matrix. However, one problem with the minimal eigenvalue function is that it can be nondifferentiable. In addition, no closed form expression exists for the computation of eigenvalues of a matrix larger than a 4 by 4 one. As eigenvalues are normally computed with iterative methods, state-of-the-art optimal control solvers are not able to exploit automatic differentiation to compute the derivatives with respect to the decision variables. In the current paper a reformulation strategy from the field of convex optimization is suggested to circumvent these difficulties. This reformulation requires the inclusion of a matrix inequality constraint involving positive semidefiniteness. In this paper, this positive semidefiniteness constraint is imposed via Sylverster's criterion. As a result the maximization of the minimum eigenvalue function can be formulated in standard optimal control solvers through the addition of nonlinear constraints. The presented methodology is successfully illustrated with a case study from the field of predictive microbiology. Copyright © 2015. Published by Elsevier Inc.
ERIC Educational Resources Information Center
Treischl, Edgar; Wolbring, Tobias
2017-01-01
In recent years many universities switched from paper- to online-based student evaluation of teaching (SET) without knowing the consequences for data quality. Based on a series of three consecutive field experiments--a split-half design, twin courses, and pre-post-measurements--this paper examines the effects of survey mode on SET. First, all…
ERIC Educational Resources Information Center
Heemsoth, Tim; Heinze, Aiso
2016-01-01
Thus far, it is unclear how students can learn most effectively from their own errors. In this study, reflections on the rationale behind self-made errors are assumed to enhance knowledge acquisition. In a field experiment with pre/post/follow-up design, the authors practiced fractions with 174 seventh- and eighth-grade students who were randomly…
Using Mobile Devices to Connect Teachers and Museum Educators
NASA Astrophysics Data System (ADS)
Delen, Ibrahim; Krajcik, Joseph
2017-06-01
The use of mobile devices is increasing rapidly as a potential tool for science teaching. In this study, five educators (three middle school teachers and two museum educators) used a mobile application that supported the development of a driving question. Previous studies have noted that teachers make little effort to connect learning experiences between classrooms and museums, and few studies have focused on creating connections between teachers and museum educators. In this study, teachers and museum educators created an investigation together by designing a driving question in conjunction with the research group before field trips. During field trips, students collected their own data using iPods or iPads to take pictures or record videos of the exhibits. When students returned to the school, they used the museum data with their peers as they tried to answer the driving question. After completing the field trips, five educators were interviewed to investigate their experiences with designing driving questions and using mobile devices. Besides supporting students in data collection during the field trip, using mobile devices helped teachers to get the museum back to the classroom. Designing the driving question supported museum educators and teachers to plan the field trip collaboratively.
Sakellariou, Dimitris; Hugon, Cédric; Guiga, Angelo; Aubert, Guy; Cazaux, Sandrine; Hardy, Philippe
2010-12-01
We introduce a cylindrical permanent magnet design that generates a homogeneous and strong magnetic field having an arbitrary inclination with respect to the axis of the cylinder. The analytical theory of 3 D magnetostatics has been applied to this problem, and a hybrid magnet structure has been designed. This structure contains two magnets producing a longitudinal and transverse component for the magnetic field, whose amplitudes and homogeneities can be fully controlled by design. A simple prototype has been constructed using inexpensive small cube magnets, and its magnetic field has been mapped using Hall and NMR probe sensors. This magnet can, in principle, be used for magic angle field spinning NMR and MRI experiments allowing for metabolic chemical shift profiling in small living animals. Copyright © 2010 John Wiley & Sons, Ltd.
Commentary on "Studying eyewitness investigations in the field": a look forward.
Steblay, Nancy Kay
2008-02-01
Schacter et al. (2007, this issue) address the controversy surrounding an Illinois pilot project that attempted to compare sequential versus simultaneous police lineup formats. The statement by these experts will guide the design and execution of future field lineup experiments. This commentary discusses three aspects of field studies that pose challenges as lineup experiments are interpreted: the imprecise meaning of the dependent measure (eyewitness decisions), the limitations of single studies, and the necessity to devise public policy from incomplete knowledge. A combination of laboratory and field information provides the means to determine best practices in eyewitness identification procedures.
Magnetic field mapping of the UCNTau magneto-gravitational trap: design study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Libersky, Matthew Murray
2014-09-04
The beta decay lifetime of the free neutron is an important input to the Standard Model of particle physics, but values measured using different methods have exhibited substantial disagreement. The UCN r experiment in development at Los Alamos National Laboratory (LANL) plans to explore better methods of measuring the neutron lifetime using ultracold neutrons (UCNs). In this experiment, UCNs are confined in a magneto-gravitational trap formed by a curved, asymmetric Halbach array placed inside a vacuum vessel and surrounded by holding field coils. If any defects present in the Halbach array are sufficient to reduce the local field near themore » surface below that needed to repel the desired energy level UCNs, loss by material interaction can occur at a rate similar to the loss by beta decay. A map of the magnetic field near the surface of the array is necessary to identify any such defects, but the array's curved geometry and placement in a vacuum vessel make conventional field mapping methods difficult. A system consisting of computer vision-based tracking and a rover holding a Hall probe has been designed to map the field near the surface of the array, and construction of an initial prototype has begun at LANL. The design of the system and initial results will be described here.« less
NASA Technical Reports Server (NTRS)
1977-01-01
The joint U.S.-USSR experiments and the U.S. conducted unilateral experiments performed during the Apollo Soyuz Test Project are described. Scientific concepts and experiment design and operation are discussed along with scientific results of postflight analysis.
The Effect of STEM Learning through the Project of Designing Boat Model toward Student STEM Literacy
NASA Astrophysics Data System (ADS)
Tati, T.; Firman, H.; Riandi, R.
2017-09-01
STEM Learning focusses on development of STEM-literate society, the research about implementation of STEM learning to develope students’ STEM literacy is still limited. This study is aimed to examine the effect of implementation STEM learning through the project of designing boat model on students STEM literacy in energy topic. The method of this study was a quasi-experiment with non-randomized pretest-posttest control group design. There were two classes involved, the experiment class used Project Based Learning with STEM approach and control class used Project-Based Learning without STEM approach. A STEM Literacy test instrument was developed to measure students STEM literacy which consists of science literacy, mathematics literacy, and technology-engineering literacy. The analysis showed that there were significant differences on improvement science literacy, mathematics technology-engineering between experiment class and control class with effect size more than 0.8 (large effect). The difference of improvement of STEM literacy between experiment class and control class is caused by the existence of design engineering activity which required students to apply the knowledge from every field of STEM. The challenge that was faced in STEM learning through design engineering activity was how to give the students practice to integrate STEM field in solving the problems. In additional, most of the students gave positive response toward implementation of STEM learning through design boat model project.
Apollo-Soyuz pamphlet no. 4: Gravitational field. [experimental design
NASA Technical Reports Server (NTRS)
Page, L. W.; From, T. P.
1977-01-01
Two Apollo Soyuz experiments designed to detect gravity anomalies from spacecraft motion are described. The geodynamics experiment (MA-128) measured large-scale gravity anomalies by detecting small accelerations of Apollo in the 222 km orbit, using Doppler tracking from the ATS-6 satellite. Experiment MA-089 measured 300 km anomalies on the earth's surface by detecting minute changes in the separation between Apollo and the docking module. Topics discussed in relation to these experiments include the Doppler effect, gravimeters, and the discovery of mascons on the moon.
An illustrated gardener's guide to transgenic Arabidopsis field experiments.
Frenkel, Martin; Jänkänpää, Hanna Johansson; Moen, Jon; Jansson, Stefan
2008-01-01
Field studies with transgenic Arabidopsis lines have been performed over 8 yr, to better understand the influence that certain genes have on plant performance. Many (if not most) plant phenotypes cannot be observed under the near constant, low-stress conditions in growth chambers, making field experiments necessary. However, there are challenges in performing such experiments: permission must be obtained and regulations obeyed, the profound influence of uncontrollable biotic and abiotic factors has to be considered, and experimental design has to be strictly controlled. The aim here is to provide inspiration and guidelines for researchers who are not used to setting up such experiments, allowing others to learn from our mistakes. This is believed to be the first example of a 'manual' for field experiments with transgenic Arabidopsis plants. Many of the challenges encountered are common for all field experiments, and many researchers from ecological backgrounds are skilled in such methods. There is huge potential in combining the detailed mechanistic understanding of molecular biologists with ecologists' expertise in examining plant performance under field conditions, and it is suggested that more interdisciplinary collaborations will open up new scientific avenues to aid analyses of the roles of genetic and physiological variation in natural systems.
ERIC Educational Resources Information Center
Kali, Yael; Goodyear, Peter; Markauskaite, Lina
2011-01-01
If research and development in the field of learning design is to have a serious and sustained impact on education, then technological innovation needs to be accompanied--and probably guided--by good empirical studies of the design practices and design thinking of those who develop these innovations. This article synthesises two related lines of…
A novel field generator for magnetic stimulation in cell culture experiments.
Vogt, G; Schrefl, A; Mitteregger, R; Falkenhagen, D
1997-06-01
A novel field generator specially designed to examine the influence of low frequency magnetic fields on specific cell material was constructed and characterized. The exposure unit described in this paper consists of a controller unit and three sets of coils. The field generator permits a precious definition of the revelant signal parameters and allows the superposition of alternating current (AC) and direct current (DC) magnetic fields. Critical system parameters were monitored continuously. The three sets of coils, each arranged in the Helmholtz Configuration were characterized. After data processing and visualization the results showed a constant and homogeneous field within the experimental area. The special coil design also allows their use in an incubator.
Wide-angle Optical Telescope for the EUSO Experiments
NASA Technical Reports Server (NTRS)
Hillman, L. W.; Takahaski, Y.; Zuccaro, A.; Lamb, D.; Pitalo, K.; Lopado, A.; Keys, A.
2003-01-01
Future spacebased air shower experiments, including the planned Extreme Universe Space Observatory (EUSO) mission, require a wide-angle telescope in the near-UV wavelengths 330 - 400 nm. Widest possible target aperture of earth's atmosphere, such as greater than 10(exp 5) square kilometers sr, can be viewed within the field-of-view of 30 degrees from space. EUSO's optical design is required to be compact, being constrained by the allocated mass and diameter for use in space. Two doublesided Fresnel lenses with 2.5-m diameter are chosen for the baseline design. It satisfies the imaging resolution of 0.1 degree over the 30-degree field of view.
Reinventing the Wheel: Design and Problem Solving
ERIC Educational Resources Information Center
Blasetti, Sean M.
2010-01-01
This article describes a design problem that not only takes students through the technological design process, but it also provides them with real-world problem-solving experience as it relates to the manufacturing and engineering fields. It begins with a scenario placing the student as a custom wheel designer for an automotive manufacturing…
LDRD final report on confinement of cluster fusion plasmas with magnetic fields.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Argo, Jeffrey W.; Kellogg, Jeffrey W.; Headley, Daniel Ignacio
2011-11-01
Two versions of a current driver for single-turn, single-use 1-cm diameter magnetic field coils have been built and tested at the Sandia National Laboratories for use with cluster fusion experiments at the University of Texas in Austin. These coils are used to provide axial magnetic fields to slow radial loss of electrons from laser-produced deuterium plasmas. Typical peak field strength achievable for the two-capacitor system is 50 T, and 200 T for the ten-capacitor system. Current rise time for both systems is about 1.7 {mu}s, with peak current of 500 kA and 2 MA, respectively. Because the coil must bemore » brought to the laser, the driver needs to be portable and drive currents in vacuum. The drivers are complete but laser-plasma experiments are still in progress. Therefore, in this report, we focus on system design, initial tests, and performance characteristics of the two-capacitor and ten-capacitors systems. The questions of whether a 200 T magnetic field can retard the breakup of a cluster-fusion plasma, and whether this field can enhance neutron production have not yet been answered. However, tools have been developed that will enable producing the magnetic fields needed to answer these questions. These are a two-capacitor, 400-kA system that was delivered to the University of Texas in 2010, and a 2-MA ten-capacitor system delivered this year. The first system allowed initial testing, and the second system will be able to produce the 200 T magnetic fields needed for cluster fusion experiments with a petawatt laser. The prototype 400-kA magnetic field driver system was designed and built to test the design concept for the system, and to verify that a portable driver system could be built that delivers current to a magnetic field coil in vacuum. This system was built copying a design from a fixed-facility, high-field machine at LANL, but made to be portable and to use a Z-machine-like vacuum insulator and vacuum transmission line. This system was sent to the University of Texas in Austin where magnetic fields up to 50 T have been produced in vacuum. Peak charge voltage and current for this system have been 100 kV and 490 kA. It was used this last year to verify injection of deuterium and surrogate clusters into these small, single-turn coils without shorting the coil. Initial test confirmed the need to insulate the inner surface of the coil, which requires that the clusters must be injected through small holes in an insulator. Tests with a low power laser confirmed that it is possible to inject clusters into the magnetic field coils through these holes without destroying the clusters. The university team also learned the necessity of maintaining good vacuum to avoid insulator, transmission line, and coil shorting. A 200-T, 2 MA system was also constructed using the experience from the first design to make the pulsed-power system more robust. This machine is a copy of the prototype design, but with ten 100-kV capacitors versus the two used in the prototype. It has additional inductance in the switch/capacitor unit to avoid breakdown seen in the prototype design. It also has slightly more inductance at the cable connection to the vacuum chamber. With this design we have been able to demonstrate 1 MA current into a 1 cm diameter coil with the vacuum chamber at air pressure. Circuit code simulations, including the additional inductance with the new design, agree well with the measured current at a charge voltage of 40 kV with a short circuit load, and at 50 kV with a coil. The code also predicts that with a charge voltage of 97 kV we will be able to get 2 MA into a 1 cm diameter coil, which will be sufficient for 200 T fields. Smaller diameter or multiple-turn coils will be able to achieve even higher fields, or be able to achieve 200-T fields with lower charge voltage. Work is now proceeding at the university under separate funding to verify operation at the 2-MA level, and to address issues of debris mitigation, measurement of the magnetic field, and operation in vacuum. We anticipate operation at full current with single-turn, magnetic field coils this fall, with 200 T experiments on the Texas Petawatt laser in the spring of 2012.« less
Layton, Kelvin J; Gallichan, Daniel; Testud, Frederik; Cocosco, Chris A; Welz, Anna M; Barmet, Christoph; Pruessmann, Klaas P; Hennig, Jürgen; Zaitsev, Maxim
2013-09-01
It has recently been demonstrated that nonlinear encoding fields result in a spatially varying resolution. This work develops an automated procedure to design single-shot trajectories that create a local resolution improvement in a region of interest. The technique is based on the design of optimized local k-space trajectories and can be applied to arbitrary hardware configurations that employ any number of linear and nonlinear encoding fields. The trajectories designed in this work are tested with the currently available hardware setup consisting of three standard linear gradients and two quadrupolar encoding fields generated from a custom-built gradient insert. A field camera is used to measure the actual encoding trajectories up to third-order terms, enabling accurate reconstructions of these demanding single-shot trajectories, although the eddy current and concomitant field terms of the gradient insert have not been completely characterized. The local resolution improvement is demonstrated in phantom and in vivo experiments. Copyright © 2012 Wiley Periodicals, Inc.
ERIC Educational Resources Information Center
Bamborough, Mary
2009-01-01
School design has developed into a specialized area in the interior design field. When considering candidates for a school or university project, education institutions should move beyond a prospective designer's resume of experience and accomplishments in order to get a better handle on what to expect when working together. This article offers…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lord, J. S.; McKenzie, I.; Baker, P. J.
2011-07-15
The high magnetic field (HiFi) muon instrument at the ISIS pulsed neutron and muon source is a state-of-the-art spectrometer designed to provide applied magnetic fields up to 5 T for muon studies of condensed matter and molecular systems. The spectrometer is optimised for time-differential muon spin relaxation studies at a pulsed muon source. We describe the challenges involved in its design and construction, detailing, in particular, the magnet and detector performance. Commissioning experiments have been conducted and the results are presented to demonstrate the scientific capabilities of the new instrument.
The hardwood ecosystem experiment: goals, design, and implementation
Rebecca A. Kalb; Cortney J. Mycroft
2013-01-01
The Hardwood Ecosystem Experiment (HEE) is a long-term, landscape-level field experiment initiated in 2006 by the Indiana Department of Natural Resources-Division of Forestry. The HEE is a multi-disciplinary, collaborative research project involving researchers from Purdue University, Indiana State University, Ball State University, Indiana University of Pennsylvania,...
School Partnerships: Technology Rich Classrooms and the Student Teaching Experience
ERIC Educational Resources Information Center
VanSlyke-Briggs, Kjersti; Hogan, Molly; Waffle, Julene; Samplaski, Jessica
2014-01-01
Building upon an established relationship between a college and a local school district, this project formally designated a Partnership School, at which education students conduct field experience. In addition to providing these participating pre-service teachers (students) with a clinically rich experience through closer supervision by and…
ERIC Educational Resources Information Center
Brown, Robert T., Ed.; Clark, Barbara G., Ed.
This guide contains a collection of laboratory and field inquiries designed to promote ecological awareness, sensitivity, and understanding. The activities compiled by 28 teachers are for use in teaching biology at the secondary level. They are presented in a "recipe" form to make it possible for teachers without prior experience or training to…
The Design and Implementation of Indoor Localization System Using Magnetic Field Based on Smartphone
NASA Astrophysics Data System (ADS)
Liu, J.; Jiang, C.; Shi, Z.
2017-09-01
Sufficient signal nodes are mostly required to implement indoor localization in mainstream research. Magnetic field take advantage of high precision, stable and reliability, and the reception of magnetic field signals is reliable and uncomplicated, it could be realized by geomagnetic sensor on smartphone, without external device. After the study of indoor positioning technologies, choose the geomagnetic field data as fingerprints to design an indoor localization system based on smartphone. A localization algorithm that appropriate geomagnetic matching is designed, and present filtering algorithm and algorithm for coordinate conversion. With the implement of plot geomagnetic fingerprints, the indoor positioning of smartphone without depending on external devices can be achieved. Finally, an indoor positioning system which is based on Android platform is successfully designed, through the experiments, proved the capability and effectiveness of indoor localization algorithm.
Field Responsive, Center Specific: A Model for Collaborative Partnerships.
ERIC Educational Resources Information Center
Hawkes, Richard R.; Stahlhut, Richard G.
A description is given of the Regional Partnership Program, a field-responsive, center-specific model established at the University of Northern Iowa (UNI) designed to oversee clinical field experiences for student teachers. This cooperative partnership calls for a resident tenure track professor to be placed in a geographic area away from the main…
Open the Door, Let's Explore More! Field Trips of Discovery for Young Children.
ERIC Educational Resources Information Center
Redleaf, Rhoda
Designed as a resource for teachers and parents, this guide contains activities to help children in primary grades learn from walks and field trips. Chapter 1, "Experience and Learning," discusses general information about how young children learn and the contribution of field trips to children's perception, language, memory, and logical…
Bacterial Transport in Heterogeneous Porous Media: Laboratory and Field Experiments
NASA Astrophysics Data System (ADS)
Fuller, M. E.
2001-12-01
A fully instrumented research site for examining field-scale bacterial transport has been established on the eastern shore of Virginia. Studies employing intact sediment cores from the South Oyster site have been performed to examine the effects of physical and chemical heterogeneity, to derive transport parameters, and to aid in the selection of bacterial strains for use in field experiments. A variety of innovative methods for tracking bacteria were developed and evaluated under both laboratory and field conditions, providing the tools to detect target cell concentrations in groundwater down to <20 cells/ml, and to perform real-time monitoring in the field. Comprehensive modeling efforts have provided a framework for the layout and instrumentation of the field site, and have aided in the design and interpretation of field-scale bacterial transport experiments. Field transport experiments were conducted in both aerobic and an anoxic flow cells to determine the effects of physical and chemical heterogeneity on field-scale bacterial transport. The results of this research not only contribute to the development of more effective bioremediation strategies, but also have implications for a better understanding of bacterial movement in the subsurface as it relates to public health microbiology and general microbial ecology.
2013-01-01
Background In this study, a multi-parent population of barley cultivars was grown in the field for two consecutive years and then straw saccharification (sugar release by enzymes) was subsequently analysed in the laboratory to identify the cultivars with the highest consistent sugar yield. This experiment was used to assess the benefit of accounting for both the multi-phase and multi-environment aspects of large-scale phenotyping experiments with field-grown germplasm through sound statistical design and analysis. Results Complementary designs at both the field and laboratory phases of the experiment ensured that non-genetic sources of variation could be separated from the genetic variation of cultivars, which was the main target of the study. The field phase included biological replication and plot randomisation. The laboratory phase employed re-randomisation and technical replication of samples within a batch, with a subset of cultivars chosen as duplicates that were randomly allocated across batches. The resulting data was analysed using a linear mixed model that incorporated field and laboratory variation and a cultivar by trial interaction, and ensured that the cultivar means were more accurately represented than if the non-genetic variation was ignored. The heritability detected was more than doubled in each year of the trial by accounting for the non-genetic variation in the analysis, clearly showing the benefit of this design and approach. Conclusions The importance of accounting for both field and laboratory variation, as well as the cultivar by trial interaction, by fitting a single statistical model (multi-environment trial, MET, model), was evidenced by the changes in list of the top 40 cultivars showing the highest sugar yields. Failure to account for this interaction resulted in only eight cultivars that were consistently in the top 40 in different years. The correspondence between the rankings of cultivars was much higher at 25 in the MET model. This approach is suited to any multi-phase and multi-environment population-based genetic experiment. PMID:24359577
Studies of the Impact of Magnetic Field Uncertainties on Physics Parameters of the Mu2e Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bradascio, Federica
The Mu2e experiment at Fermilab will search for a signature of charged lepton flavor violation, an effect prohibitively too small to be observed within the Standard Model of particle physics. Therefore, its observation is a signal of new physics. The signature that Mu2e will search for is the ratio of the rate of neutrinoless coherent conversion of muons into electrons in the field of a nucleus, relative to the muon capture rate by the nucleus. The conversion process is an example of charged lepton flavor violation. This experiment aims at a sensitivity of four orders of magnitude higher than previousmore » related experiments. The desired sensitivity implies highly demanding requirements of accuracy in the design and conduct of the experiment. It is therefore important to investigate the tolerance of the experiment to instrumental uncertainties and provide specifications that the design and construction must meet. This is the core of the work reported in this thesis. The design of the experiment is based on three superconducting solenoid magnets. The most important uncertainties in the magnetic field of the solenoids can arise from misalignments of the Transport Solenoid, which transfers the beam from the muon production area to the detector area and eliminates beam-originating backgrounds. In this thesis, the field uncertainties induced by possible misalignments and their impact on the physics parameters of the experiment are examined. The physics parameters include the muon and pion stopping rates and the scattering of beam electrons off the capture target, which determine the signal, intrinsic background and late-arriving background yields, respectively. Additionally, a possible test of the Transport Solenoid alignment with low momentum electrons is examined, as an alternative option to measure its field with conventional probes, which is technically difficult due to mechanical interference. Misalignments of the Transport Solenoid were simulated using standard magnetic field cal- culation tools. Particle transport was simulated using the Mu2e Offline software, which includes realistic models of particle interactions with materials in the full Mu2e geometry. The physics parameters were found tolerant within the precision requirements of the experiment for rigid-body type of misalignments, which are the most dangerous, up to a maximum coil displacement of nearly 10 mm. With the appropriate choice of low momentum electron detector, the proposed Transport Solenoid test is found to be sensitive to such misalignments.« less
ERIC Educational Resources Information Center
Csikos, Csaba; Szitanyi, Judit; Kelemen, Rita
2012-01-01
The present study aims to investigate the effects of a design experiment developed for third-grade students in the field of mathematics word problems. The main focus of the program was developing students' knowledge about word problem solving strategies with an emphasis on the role of visual representations in mathematical modeling. The experiment…
NASA Astrophysics Data System (ADS)
Ferderbar, Catherine A.
To develop sustainable solutions to remediate the complex ecological problems of earth's soil, water, and air degradation requires the talents and skills of knowledgeable, motivated people (UNESCO, 1977; UNESCO, 2010). Researchers historically emphasized that time spent in outdoor, nature activities (Wells & Lekies, 2006), particularly with an adult mentor (Chawla & Cushing, 2007), promotes environmental knowledge and nature-relatedness, precursors to environmental literacy. Research has also demonstrated that technology is integral to the lives of youth, who spend 7:38 hours daily (Rideout, et al., 2010), engaged in electronics. Educators would benefit from knowing if in-nature and virtual-nature field trip experiences provide comparable levels of knowledge and connectedness, to nurture student proenvironmentalism. To investigate field trip phenomena, the researcher studied the impact of virtual-nature and in-nature experiences during which students analyzed water quality along Midwestern rivers. The quasi-experimental, mixed method convergent parallel design with a purposeful sample (n=131) of middle school students from two Midwestern K-8 schools, utilized scientist participant observer field records and narrative response, written assessment aligned to field trip content to evaluate knowledge acquisition. To gain insight into student environmental dispositions, participant observers recorded student comments and behaviors throughout field trips. A survey, administered Pre-Treatment, Post-Treatment 1 and Post-Treatment 2, focused on family water-related behaviors and student perceptions of the need for local government water protection. The findings demonstrated both field trips increased content knowledge significantly, with large effect size. Content knowledge gain from one experience transferred to and was augmented by the second experience. Skill gain (technical and observational) varied by type of field trip and did not transfer. Technical skill was often paired with critical thinking/reasoning. Survey results demonstrated that the virtual-nature, in-nature order evinced a greater proenvironmental attitude and behavioral change. The initial experience provided greater proenvironmental impact, regardless of order. Several students exhibited a Connection to Life Experience that reinforced their nature-relatedness during either field trip. These findings inform best practices associated with environmental education. The implications include teacher-practitioner collaboration with IT personnel, naturalists, hydrologists, zoological and botanical experts, to design local, site-based virtual-nature and in-nature (or hybrid) field trips to nurture environmental literacy goals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fleming, P. A.; van Wingerden, J. W.; Wright, A. D.
2011-12-01
This paper presents the structure of an ongoing controller comparison experiment at NREL's National Wind Technology Center; the design process for the two controllers compared in this phase of the experiment, and initial comparison results obtained in field-testing. The intention of the study is to demonstrate the advantage of using modern multivariable methods for designing control systems for wind turbines versus conventional approaches. We will demonstrate the advantages through field-test results from experimental turbines located at the NWTC. At least two controllers are being developed side-by-side to meet an incrementally increasing number of turbine load-reduction objectives. The first, a multiplemore » single-input, single-output (m-SISO) approach, uses separately developed decoupled and classicially tuned controllers, which is, to the best of our knowledge, common practice in the wind industry. The remaining controllers are developed using state-space multiple-input and multiple-output (MIMO) techniques to explicity account for coupling between loops and to optimize given known frequency structures of the turbine and disturbance. In this first publication from the study, we present the structure of the ongoing controller comparison experiment, the design process for the two controllers compared in this phase, and initial comparison results obtained in field-testing.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buehler, Marc; Tartaglia, Michael; Tompkins, John
The Mu2e experiment at Fermilab is designed to explore charged lepton flavor violation by searching for muon-to-electron conversion. The magnetic field generated by a system of solenoids is crucial for Mu2e and requires accurate characterization to detect any flaws and to produce a detailed field map. Stringent physics goals are driving magnetic field specifications for the Mu2e solenoids. A field mapper is being designed, which will produce detailed magnetic field maps. The uniform field region of the spectrometer volume requires the highest level of precision (1 Gauss per 1 Tesla). During commissioning, multiple magnetic field maps will be generated tomore » verify proper alignment of all magnet coils, and to create the final magnetic field map. In order to design and build a precise field mapping system consisting of Hall and NRM probes, tolerances and precision for such a system need to be evaluated. In this paper we present a design for the Mu2e field mapping hardware, and discuss results from OPERA-3D simulations to specify parameters for Hall and NMR probes. We also present a fitting procedure for the analytical treatment of our expected magnetic measurements.« less
Note: Versatile sample stick for neutron scattering experiments in high electric fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bartkowiak, M., E-mail: marek.bartkowiak@psi.ch; White, J. S.; Laboratory for Quantum Magnetism, Ecole Polytechnique Fédérale de Lausanne
2014-02-15
We present a versatile high voltage sample stick that fits into all cryomagnets and standard cryostats at the Swiss Spallation Neutron Source, Paul Scherrer Institut, and which provides a low effort route to neutron scattering experiments that combine electric field with low temperature and magnetic field. The stick allows for voltages up to 5 kV and can be easily adapted for different scattering geometries. We discuss the design consideration and thermal behavior of the stick, and give one example to showcase the abilities of the device.
Monte Carlo simulation of a cesium atom beam in a magnetic field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Jiang, E-mail: chernjiang@aliyun.com; Zhu, Hongwei; Ma, Yinguang
2015-03-07
We present Monte Carlo simulations of the deflection of a beam of {sup 133}Cs atoms in a two wire magnetic field. Our results reveal the relationship between transmission rate of the atoms and incident parameters. Incident angle and position of the beam with maximum transmission are obtained from the simulations. The effect of the deflection field on the spatial distribution (beam profile) of {sup 133}Cs is derived. The method will help with the design of magnetic deflection experiments and to extract the magnetic properties from such experiments.
Engineering design criteria for an image intensifier/image converter camera
NASA Technical Reports Server (NTRS)
Sharpsteen, J. T.; Lund, D. L.; Stoap, L. J.; Solheim, C. D.
1976-01-01
The design, display, and evaluation of an image intensifier/image converter camera which can be utilized in various requirements of spaceshuttle experiments are described. An image intensifier tube was utilized in combination with two brassboards as power supply and used for evaluation of night photography in the field. Pictures were obtained showing field details which would have been undistinguishable to the naked eye or to an ordinary camera.
Birdcage volume coils and magnetic resonance imaging: a simple experiment for students.
Vincent, Dwight E; Wang, Tianhao; Magyar, Thalia A K; Jacob, Peni I; Buist, Richard; Martin, Melanie
2017-01-01
This article explains some simple experiments that can be used in undergraduate or graduate physics or biomedical engineering laboratory classes to learn how birdcage volume radiofrequency (RF) coils and magnetic resonance imaging (MRI) work. For a clear picture, and to do any quantitative MRI analysis, acquiring images with a high signal-to-noise ratio (SNR) is required. With a given MRI system at a given field strength, the only means to change the SNR using hardware is to change the RF coil used to collect the image. RF coils can be designed in many different ways including birdcage volume RF coil designs. The choice of RF coil to give the best SNR for any MRI study is based on the sample being imaged. The data collected in the simple experiments show that the SNR varies as inverse diameter for the birdcage volume RF coils used in these experiments. The experiments were easily performed by a high school student, an undergraduate student, and a graduate student, in less than 3 h, the time typically allotted for a university laboratory course. The article describes experiments that students in undergraduate or graduate laboratories can perform to observe how birdcage volume RF coils influence MRI measurements. It is designed for students interested in pursuing careers in the imaging field.
Embracing the Danger: Accepting the Implications of Innovation
ERIC Educational Resources Information Center
McDonald, Jason K.
2016-01-01
Instructional designers are increasingly looking beyond the field's mainstream approaches to achieve desired outcomes. They seek more creative forms of design to help them invent more imaginative experiences that better reflect their vision and ideals. This essay is addressed to designers who are attracted to these expanded visions of their…
Improved Steam Turbine Leakage Control with a Brush Seal Design
NASA Astrophysics Data System (ADS)
Turnquist, Norman; Chupp, Raymond E.; Pastrana, Ryan; Wolfe, Chris; Burnett, Mark
2002-10-01
This paper presents an improved steam turbine leakage control system with a brush seal design. The contents include: 1) Typical Design Characteristics; 2) Typical Brush Seal Locations; 3) Reduced Leakage Rates; 4) Performance Benefits; 5) System Considerations; 6) Rotor Dynamics; 7) Laboratory Tests and 8) Field Experience.
Reinventing Material Science - Continuum Magazine | NREL
to reinvent an entire field of study, but that is exactly what the Center for Inverse Design is functional materials by developing an "inverse design" approach, powered by theory that guides experiment. The Center for Inverse Design was established as an Energy Frontier Research Center, funded by
Active Learning through Toy Design and Development
ERIC Educational Resources Information Center
Sirinterlikci, Arif; Zane, Linda; Sirinterlikci, Aleea L.
2009-01-01
This article presents an initiative that is based on active learning pedagogy by engaging elementary and middle school students in the toy design and development field. The case study presented in this article is about student learning experiences during their participation in the TOYchallenge National Toy Design Competition. Students followed the…
ERIC Educational Resources Information Center
Skeries, Larry
Experiences suggested within this visual arts packet provide high school students with awareness of visual expression in graphic design, product design, architecture, and crafts. The unit may be used in whole or in part and includes information about art careers and art-related jobs found in major occupational fields. Specific lesson topics…
Novel design methods for magnetic flux loops in the National Compact Stellarator Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pomphrey, N.; Lazarus, E.; Zarnstorff, M.
2007-05-15
Magnetic pickup loops on the vacuum vessel (VV) can provide an abundance of equilibrium information for stellarators. A substantial effort has gone into designing flux loops for the National Compact Stellarator Experiment (NCSX) [Zarnstorff et al., Plasma Phys. Controlled Fusion 43, A237 (2001)], a three-field period quasi-axisymmetric stellarator under construction at the Princeton Plasma Physics Laboratory. The design philosophy, to measure all of the magnetic field distributions normal to the VV that can be measured, has necessitated the development of singular value decomposition algorithms for identifying efficient loop locations. Fields are expected to be predominantly stellarator symmetric (SS)--the symmetry ofmore » the machine design--with toroidal mode numbers per torus (n) equal to a multiple of 3 and possessing reflection symmetry in a period. However, plasma instabilities and coil imperfections will generate non-SS fields that must also be diagnosed. The measured symmetric fields will yield important information on the plasma current and pressure profile as well as on the plasma shape. All fields that obey the design symmetries could be measured by placing flux loops in a single half-period of the VV, but accurate resolution of nonsymmetric modes, quantified by the condition number of a matrix, requires repositioning loops to equivalent locations on the full torus. A subarray of loops located along the inside wall of the vertically elongated cross section was designed to detect n=3, m=5 or 6 resonant field perturbations that can cause important islands. Additional subarrays included are continuous in the toroidal and poloidal directions. Loops are also placed at symmetry points of the VV to obtain maximal sensitivity to asymmetric perturbations. Combining results from various calculations which have made extensive use of a database of 2500 free-boundary VMEC equilibria, has led to the choice of 225 flux loops for NCSX, of which 151 have distinct shapes.« less
Numerical modeling of aquifer thermal energy storage
NASA Astrophysics Data System (ADS)
Tsang, C. F.; Doughty, C.; Kincaid, C. T.
1982-12-01
During 1981 and 1982, Auburn University has been performing a three cycle ATES field experiment in Mobile County, Alabama. Details of the experiment are described elsewhere in this volume. Concurrent with the first two cycles (59 C and 82 C), Lawrence Berkeley Laboratory (LBL) did numerical simulations based on field operating conditions to predict the outcome of each cycle before its conclusion. Prior to the third cycle, a series of numerical simulations were made to aid in the design of an experiment that would yield the highest recovery factor possible.
Operations summary for the convection and moisture experiment (CAMEX)
NASA Technical Reports Server (NTRS)
Griffin, V. L.; Guillory, A. R.; Susko, M.; Arnold, J. E.
1994-01-01
During the fall of 1993, NASA sponsored a field program called the Convection and Moisture Experiment (CAMEX) at Wallops Island, Virginia. CAMEX was a multidisciplinary experiment design to measure the three dimensional moisture fields over Wallops Island and to characterize the multifrequency radiometric signature of tropical convection over the Gulf Stream and southeastern Atlantic Ocean. This document summarizes the daily CAMEX activities, including ground and aircraft (NASA ER-2) operations, and includes 'quick-look' summaries of data acquisition along with data examples provided by the various CAMEX PI's.
ERIC Educational Resources Information Center
Hirumi, Atsusi; Johnson, Teresa; Reyes, Ramsamooj Javier; Lok, Benjamin; Johnsen, Kyle; Rivera-Gutierrez, Diego J.; Bogert, Kenneth; Kubovec, Stacey; Eakins, Michael; Kleinsmith, Andrea; Bellew, Michael; Cendan, Juan
2016-01-01
In Part I of this two-part series, we examined the design and development of NERVE: A virtual patient simulation created to give medical students standardized experiences in interviewing, examining, and diagnosing virtual patients with cranial nerve disorders. We illustrated key design features and discussed how design-based research studies…
DC-magnetic field vector measurement
NASA Technical Reports Server (NTRS)
Schmidt, R.
1981-01-01
A magnetometer experiment was designed to determine the local magnetic field by measuring the total of the Earth's magnetic field and that of an unknown spacecraft. The measured field vector components are available to all onboard experiments via the Spacelab command and data management system. The experiment consists of two parts, an electronic box and the magnetic field sensor. The sensor includes three independent measuring flux-gate magnetometers, each measuring one component. The physical background is the nonlinearity of the B-H curve of a ferrite material. Two coils wound around a ferrite rod are necessary. One of them, a tank coil, pumps the ferrite rod at approximately 20 kilohertz. As a consequence of the nonlinearity, many harmonics can be produced. The second coil (i.e., the detection coil) resonates to the first harmonic. If an unknown dc or low-frequency magnetic field exists, the amplitude of the first harmonic is a measure for the unknown magnetic field. The voltages detected by the sensors are to be digitized and transferred to the command and data management system.
Field investigation of high performance pavements in Virginia.
DOT National Transportation Integrated Search
2005-01-01
This study evaluated 18 pavement sections located in high-traffic highways in Virginia to find a premium pavement design with a life span of 40 years or more using current and past field experience. The selected pavement sections were thought to perf...
NASA Technical Reports Server (NTRS)
1989-01-01
The Solar Activity Measurements Experiments (SAMEX) mission is described. It is designed to provide a look at the interactions of magnetic fields and plasmas that create flares and other explosive events on the sun in an effort to understand solar activity and the nature of the solar magnetic field. The need for this mission, the instruments to be used, and the expected benefits of SAMEX are discussed.
Mu2e Solenoid Field Mapping System Design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feher, Sandor; DeLurgio, Patrick M.; Elementi, Luciano
The Mu2e experiment at Fermilab plans to search for charged-lepton flavor violation by looking for neutrino-less muon to electron conversion in the field of the nucleus. A complex solenoid system and precise knowledge of its magnetic field play a major role in the experimental approach Mu2e has chosen. It is essential to map the solenoid field up to 10 -4 accuracy. This article describes the design of the Field Mapping System Mu2e will use to measure the magnetic field. Two different mechanical mapper systems, a survey based position determination of the in-house calibrated 3D Hall probes, a motion control system,more » and a data acquisition and readout system are presented.« less
Mu2e Solenoid Field Mapping System Design
Feher, Sandor; DeLurgio, Patrick M.; Elementi, Luciano; ...
2018-01-11
The Mu2e experiment at Fermilab plans to search for charged-lepton flavor violation by looking for neutrino-less muon to electron conversion in the field of the nucleus. A complex solenoid system and precise knowledge of its magnetic field play a major role in the experimental approach Mu2e has chosen. It is essential to map the solenoid field up to 10 -4 accuracy. This article describes the design of the Field Mapping System Mu2e will use to measure the magnetic field. Two different mechanical mapper systems, a survey based position determination of the in-house calibrated 3D Hall probes, a motion control system,more » and a data acquisition and readout system are presented.« less
Photovoice as an Evaluation Tool for Student Learning on a Field Trip
ERIC Educational Resources Information Center
Behrendt, Marc; Machtmes, Krisanna
2016-01-01
Background: Photovoice is one method that enables an educator to view an experience from a student's perspective. This study examined how teachers might use photovoice during an informal learning experience to understand the students' experiences and experiential gain. Design and methods: Participants in this study consisted of six students, three…
Development of Eulerian Code Modeling for ICF Experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bradley, Paul A.
2014-02-27
One of the most pressing unexplained phenomena standing in the way of ICF ignition is understanding mix and how it interacts with burn. Experiments were being designed and fielded as part of the Defect-Induced Mix Experiment (DIME) project to obtain data about the extent of material mix and how this mix influenced burn. Experiments on the Omega laser and National Ignition Facility (NIF) provided detailed data for comparison to the Eulerian code RAGE1. The Omega experiments were able to resolve the mix and provide “proof of principle” support for subsequent NIF experiments, which were fielded from July 2012 through Junemore » 2013. The Omega shots were fired at least once per year between 2009 and 2012. RAGE was not originally designed to model inertial confinement fusion (ICF) implosions. It still lacks lasers, so the code has been validated using an energy source. To test RAGE, the simulation output is compared to data and by means of postprocessing tools that were developed. Here, the various postprocessing tools are described with illustrative examples.« less
Rovang, Dean C.; Lamppa, Derek C.; Cuneo, Michael Edward; ...
2014-12-04
We have successfully integrated the capability to apply uniform, high magnetic fields (10–30 T) to high energy density experiments on the Z facility. This system uses an 8-mF, 15-kV capacitor bank to drive large-bore (5 cm diameter), high-inductance (1–3 mH) multi-turn, multi-layer electromagnets that slowly magnetize the conductive targets used on Z over several milliseconds (time to peak field of 2–7 ms). This system was commissioned in February 2013 and has been used successfully to magnetize more than 30 experiments up to 10 T that have produced exciting and surprising physics results. These experiments used split-magnet topologies to maintain diagnosticmore » lines of sight to the target. We then describe the design, integration, and operation of the pulsed coil system into the challenging and harsh environment of the Z Machine. We also describe our plans and designs for achieving fields up to 20 T with a reduced-gap split-magnet configuration, and up to 30 T with a solid magnet configuration in pursuit of the Magnetized Liner Inertial Fusion concept.« less
Experimental Design of a Magnetic Flux Compression Experiment
NASA Astrophysics Data System (ADS)
Fuelling, Stephan; Awe, Thomas J.; Bauer, Bruno S.; Goodrich, Tasha; Lindemuth, Irvin R.; Makhin, Volodymyr; Siemon, Richard E.; Atchison, Walter L.; Reinovsky, Robert E.; Salazar, Mike A.; Scudder, David W.; Turchi, Peter J.; Degnan, James H.; Ruden, Edward L.
2007-06-01
Generation of ultrahigh magnetic fields is an interesting topic of high-energy-density physics, and an essential aspect of Magnetized Target Fusion (MTF). To examine plasma formation from conductors impinged upon by ultrahigh magnetic fields, in a geometry similar to that of the MAGO experiments, an experiment is under design to compress magnetic flux in a toroidal cavity, using the Shiva Star or Atlas generator. An initial toroidal bias magnetic field is provided by a current on a central conductor. The central current is generated by diverting a fraction of the liner current using an innovative inductive current divider, thus avoiding the need for an auxiliary power supply. A 50-mm-radius cylindrical aluminum liner implodes along glide planes with velocity of about 5 km/s. Inward liner motion causes electrical closure of the toroidal chamber, after which flux in the chamber is conserved and compressed, yielding magnetic fields of 2-3 MG. Plasma is generated on the liner and central rod surfaces by Ohmic heating. Diagnostics include B-dot probes, Faraday rotation, radiography, filtered photodiodes, and VUV spectroscopy. Optical access to the chamber is provided through small holes in the walls.
NASA Astrophysics Data System (ADS)
Corona, Thomas
The Karlsruhe Tritium Neutrino (KATRIN) experiment is a tritium beta decay experiment designed to make a direct, model independent measurement of the electron neutrino mass. The experimental apparatus employs strong ( O[T]) magnetostatic and (O[10 5 V/m]) electrostatic fields in regions of ultra high (O[10-11 mbar]) vacuum in order to obtain precise measurements of the electron energy spectrum near the endpoint of tritium beta-decay. The electrostatic fields in KATRIN are formed by multiscale electrode geometries, necessitating the development of high performance field simulation software. To this end, we present a Boundary Element Method (BEM) with analytic boundary integral terms in conjunction with the Robin Hood linear algebraic solver, a nonstationary successive subspace correction (SSC) method. We describe an implementation of these techniques for high performance computing environments in the software KEMField, along with the geometry modeling and discretization software KGeoBag. We detail the application of KEMField and KGeoBag to KATRIN's spectrometer and detector sections, and demonstrate its use in furthering several of KATRIN's scientific goals. Finally, we present the results of a measurement designed to probe the electrostatic profile of KATRIN's main spectrometer in comparison to simulated results.
NASA Astrophysics Data System (ADS)
Rovang, D. C.; Lamppa, D. C.; Cuneo, M. E.; Owen, A. C.; McKenney, J.; Johnson, D. W.; Radovich, S.; Kaye, R. J.; McBride, R. D.; Alexander, C. S.; Awe, T. J.; Slutz, S. A.; Sefkow, A. B.; Haill, T. A.; Jones, P. A.; Argo, J. W.; Dalton, D. G.; Robertson, G. K.; Waisman, E. M.; Sinars, D. B.; Meissner, J.; Milhous, M.; Nguyen, D. N.; Mielke, C. H.
2014-12-01
Sandia has successfully integrated the capability to apply uniform, high magnetic fields (10-30 T) to high energy density experiments on the Z facility. This system uses an 8-mF, 15-kV capacitor bank to drive large-bore (5 cm diameter), high-inductance (1-3 mH) multi-turn, multi-layer electromagnets that slowly magnetize the conductive targets used on Z over several milliseconds (time to peak field of 2-7 ms). This system was commissioned in February 2013 and has been used successfully to magnetize more than 30 experiments up to 10 T that have produced exciting and surprising physics results. These experiments used split-magnet topologies to maintain diagnostic lines of sight to the target. We describe the design, integration, and operation of the pulsed coil system into the challenging and harsh environment of the Z Machine. We also describe our plans and designs for achieving fields up to 20 T with a reduced-gap split-magnet configuration, and up to 30 T with a solid magnet configuration in pursuit of the Magnetized Liner Inertial Fusion concept.
GENERAL EARTHQUAKE-OBSERVATION SYSTEM (GEOS).
Borcherdt, R.D.; Fletcher, Joe B.; Jensen, E.G.; Maxwell, G.L.; VanSchaack, J.R.; Warrick, R.E.; Cranswick, E.; Johnston, M.J.S.; McClearn, R.
1985-01-01
Microprocessor technology has permitted the development of a General Earthquake-Observation System (GEOS) useful for most seismic applications. Central-processing-unit control via robust software of system functions that are isolated on hardware modules permits field adaptability of the system to a wide variety of active and passive seismic experiments and straightforward modification for incorporation of improvements in technology. Various laboratory tests and numerous deployments of a set of the systems in the field have confirmed design goals, including: wide linear dynamic range (16 bit/96 dB); broad bandwidth (36 hr to 600 Hz; greater than 36 hr available); selectable sensor-type (accelerometer, seismometer, dilatometer); selectable channels (1 to 6); selectable record mode (continuous, preset, trigger); large data capacity (1. 4 to 60 Mbytes); selectable time standard (WWVB, master, manual); automatic self-calibration; simple field operation; full capability to adapt system in the field to a wide variety of experiments; low power; portability; and modest costs. System design goals for a microcomputer-controlled system with modular software and hardware components as implemented on the GEOS are presented. The systems have been deployed for 15 experiments, including: studies of near-source strong motion; high-frequency microearthquakes; crustal structure; down-hole wave propagation; teleseismicity; and earth-tidal strains.
ICF Implosions, Space-Charge Electric Fields, and Their Impact on Mix and Compression
NASA Astrophysics Data System (ADS)
Knoll, Dana; Chacon, Luis; Simakov, Andrei
2013-10-01
The single-fluid, quasi-neutral, radiation hydrodynamics codes, used to design the NIF targets, predict thermonuclear ignition for the conditions that have been achieved experimentally. A logical conclusion is that the physics model used in these codes is missing one, or more, key phenomena. Two key model-experiment inconsistencies on NIF are: 1) a lower implosion velocity than predicted by the design codes, and 2) transport of pusher material deep into the hot spot. We hypothesize that both of these model-experiment inconsistencies may be a result of a large, space-charge, electric field residing on the distinct interfaces in a NIF target. Large space-charge fields have been experimentally observed in Omega experiments. Given our hypothesis, this presentation will: 1) Develop a more complete physics picture of initiation, sustainment, and dissipation of a current-driven plasma sheath / double-layer at the Fuel-Pusher interface of an ablating plastic shell implosion on Omega, 2) Characterize the mix that can result from a double-layer field at the Fuel-Pusher interface, prior to the onset of fluid instabilities, and 3) Quantify the impact of the double-layer induced surface tension at the Fuel-Pusher interface on the peak observed implosion velocity in Omega.
ERIC Educational Resources Information Center
Parkes, Margot W.; Saint-Charles, Johanne; Cole, Donald C.; Gislason, Maya; Hicks, Elisabeth; Le Bourdais, Courtney; McKellar, Kaileah A.; St-Cyr Bouchard, Maude
2017-01-01
A key capacity for engagement in the emerging field of ecohealth is the ability to work collaboratively. Between 2008 and 2010, the Canadian Community of Practice in Ecosystem Approaches to Health collectively designed and delivered three foundational, intensive, field courses. This paper presents findings derived from both quantitative and…
An improved rocket-borne electric field meter for the middle atmosphere
NASA Technical Reports Server (NTRS)
Burton, D. L.; Smith, L. G.
1984-01-01
Improvements in a rocketborne electric field meter designed to measure the atmosphere's electric field and conductivity in the middle atmosphere are described. The general background of the experiment is given as well as changes in the instrument and data processing schemes. Calibration and testing procedures are documented together with suggestions for future work.
TPX: Contractor preliminary design review. Volume 3, Design and analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-06-30
Several models have been formed for investigating the maximum electromagnetic loading and magnetic field levels associated with the Tokamak Physics eXperiment (TPX) superconducting Poloidal Field (PF) coils. The analyses have been performed to support the design of the individual fourteen hoop coils forming the PF system. The coils have been sub-divided into three coil systems consisting of the central solenoid (CS), PF5 coils, and the larger radius PF6 and PF7 coils. Various electromagnetic analyses have been performed to determine the electromagnetic loadings that the coils will experience during normal operating conditions, plasma disruptions, and fault conditions. The loadings are presentedmore » as net body forces acting individual coils, spatial variations throughout the coil cross section, and force variations along the path of the conductor due to interactions with the TF coils. Three refined electromagnetic models of the PF coil system that include a turn-by-turn description of the fields and forces during a worst case event are presented in this report. A global model including both the TF and PF system was formed to obtain the force variations along the path of the PF conductors resulting from interactions with the TF currents. In addition to spatial variations, the loadings are further subdivided into time-varying and steady components so that structural fatigue issues can be addressed by designers and analysts. Other electromagnetic design issues such as the impact of the detailed coil designs on field errors are addressed in this report. Coil features that are analyzed include radial transitions via short jogs vs. spiral type windings and the effects of layer-to-layer rotations (i.e clocking) on the field errors.« less
A Pennsylvania State University/General Electric Get Away Special (GAS) experiment
NASA Technical Reports Server (NTRS)
Evanisko, George; Grosch, Theodore; Youssef, Milad; Yurack, Jim
1992-01-01
We describe four student-designed experiments by the Pennsylvania State University, which are planned for a GAS canister. The four experiments will measure: the effects of radiation on semiconductors; orbital debris impacts; the Space Shuttle's magnetic field; and the photoelectric yield of several different materials. These experiments are the result of the efforts of more than one hundred students.
Johnson, J. R.; Ruff, S.W.; Moersch, J.; Roush, T.; Horton, K.; Bishop, J.; Cabrol, N.A.; Cockell, C.; Gazis, P.; Newsom, Horton E.; Stoker, C.
2001-01-01
Upcoming Mars Surveyor lander missions will include extensive spectroscopic capabilities designed to improve interpretations of the mineralogy and geology of landing sites on Mars. The 1999 Marsokhod Field Experiment (MFE) was a Mars rover simulation designed in part to investigate the utility of visible/near-infrared and thermal infrared field spectrometers to contribute to the remote geological exploration of a Mars analog field site in the California Mojave Desert. The experiment simultaneously investigated the abilities of an off-site science team to effectively analyze and acquire useful imaging and spectroscopic data and to communicate efficiently with rover engineers and an on-site field team to provide meaningful input to rover operations and traverse planning. Experiences gained during the MFE regarding effective communication between different mission operation teams will be useful to upcoming Mars mission teams. Field spectra acquired during the MFE mission exhibited features interpreted at the time as indicative of carbonates (both dolomitic and calcitic), mafic rocks and associated weathering products, and silicic rocks with desert varnish-like coatings. The visible/near-infrared spectra also suggested the presence of organic compounds, including chlorophyll in one rock. Postmission laboratory petrologic and spectral analyses of returned samples confirmed that all rocks identified as carbonates using field measurements alone were calc-silicates and that chlorophyll associated with endolithic organisms was present in the one rock for which it was predicted. Rocks classified from field spectra as silicics and weathered mafics were recognized in the laboratory as metamorphosed monzonites and diorite schists. This discrepancy was likely due to rock coatings sampled by the field spectrometers compared to fresh rock interiors analyzed petrographically, in addition to somewhat different surfaces analyzed by laboratory thermal spectroscopy compared to field spectra. Copyright 2001 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Charsley-Groffman, L.; Killeffer, T.; Wullschleger, S. D.; Wilson, C. J.
2016-12-01
The Next Generation Ecosystem Experiment, NGEE Arctic, project aims to improve the representation of arctic terrestrial processes and properties in Earth System Models, ESMs, through coordinated multi-disciplinary field-based observations and experiments. NGEE involves nearly one hundred research staff, post docs and students from multiple DOE laboratories and universities who deploy a wide range of in-situ and remote field observation techniques to quantify and understand interactions between the climate system and surface and subsurface coupled thermal-hydrologic, biogeochemical and vegetation processes. Careful attention was given to the design and management of co-located long-term and one off data collection efforts, as well as their data streams. Field research sites at the Barrow Environmental Observatory near Barrow AK and on the Seward Peninsula were designed around the concept of "ecotypes" which co-evolved with readily identified and classified hydro-geomorphic features characteristic of arctic landscapes. NGEE sub-teams focused on 5 unique science questions collaborated to design field sites and develop naming conventions for locations and data types to develop coherent data sets to parameterize, initialize and test a range of site-specific process resolving models to ESMs. Multi-layer mapping products were a critical means of developing a coordinated and coherent observation design, and a centralized data portal and data reporting framework was critical to ensuring meaningful data products for NGEE modelers and Arctic scientific community at large. We present examples of what works and lessons learned for a large multi-disciplinary terrestrial observational research project in the Arctic.
Augmented Reality in a Simulated Tower Environment: Effect of Field of View on Aircraft Detection
NASA Technical Reports Server (NTRS)
Ellis, Stephen R.; Adelstein, Bernard D.; Reisman, Ronald J.; Schmidt-Ott, Joelle R.; Gips, Jonathan; Krozel, Jimmy; Cohen, Malcolm (Technical Monitor)
2002-01-01
An optical see-through, augmented reality display was used to study subjects' ability to detect aircraft maneuvering and landing at the Dallas Ft. Worth International airport in an ATC Tower simulation. Subjects monitored the traffic patterns as if from the airport's western control tower. Three binocular fields of view (14 deg, 28 deg and 47 deg) were studied in an independent groups' design to measure the degradation in detection performance associated with the visual field restrictions. In a second experiment the 14 deg and 28 deg fields were presented either with 46% binocular overlap or 100% overlap for separate groups. The near asymptotic results of the first experiment suggest that binocular fields of view much greater than 47% are unlikely to dramatically improve performance; and those of the second experiment suggest that partial binocular overlap is feasible for augmented reality displays such as may be used for ATC tower applications.
Scientific field training for human planetary exploration
NASA Astrophysics Data System (ADS)
Lim, D. S. S.; Warman, G. L.; Gernhardt, M. L.; McKay, C. P.; Fong, T.; Marinova, M. M.; Davila, A. F.; Andersen, D.; Brady, A. L.; Cardman, Z.; Cowie, B.; Delaney, M. D.; Fairén, A. G.; Forrest, A. L.; Heaton, J.; Laval, B. E.; Arnold, R.; Nuytten, P.; Osinski, G.; Reay, M.; Reid, D.; Schulze-Makuch, D.; Shepard, R.; Slater, G. F.; Williams, D.
2010-05-01
Forthcoming human planetary exploration will require increased scientific return (both in real time and post-mission), longer surface stays, greater geographical coverage, longer and more frequent EVAs, and more operational complexities than during the Apollo missions. As such, there is a need to shift the nature of astronauts' scientific capabilities to something akin to an experienced terrestrial field scientist. To achieve this aim, the authors present a case that astronaut training should include an Apollo-style curriculum based on traditional field school experiences, as well as full immersion in field science programs. Herein we propose four Learning Design Principles (LDPs) focused on optimizing astronaut learning in field science settings. The LDPs are as follows: LDP#1: Provide multiple experiences: varied field science activities will hone astronauts' abilities to adapt to novel scientific opportunities LDP#2: Focus on the learner: fostering intrinsic motivation will orient astronauts towards continuous informal learning and a quest for mastery LDP#3: Provide a relevant experience - the field site: field sites that share features with future planetary missions will increase the likelihood that astronauts will successfully transfer learning LDP#4: Provide a social learning experience - the field science team and their activities: ensuring the field team includes members of varying levels of experience engaged in opportunities for discourse and joint problem solving will facilitate astronauts' abilities to think and perform like a field scientist. The proposed training program focuses on the intellectual and technical aspects of field science, as well as the cognitive manner in which field scientists experience, observe and synthesize their environment. The goal of the latter is to help astronauts develop the thought patterns and mechanics of an effective field scientist, thereby providing a broader base of experience and expertise than could be achieved from field school alone. This will enhance their ability to execute, explore and adapt as in-field situations require.
NASA Astrophysics Data System (ADS)
Martin, E. H.; Caughman, J. B. O.; Shannon, S. C.; Klepper, C. C.; Isler, R. C.
2013-10-01
A major challenge facing magnetic fusion devices and the success of ITER is the design and implementation of reliable ICRH systems. The primary issue facing ICRH is the parasitic near-field which leads to an increased heat flux, sputtering, and arcing of the antenna/faraday screen. In order to aid the theoretical development of near-field physics and thus propel the design process experimental measurements are highly desired. In this work we have developed a diagnostic based on passive emission spectroscopy capable of measuring time periodic electric fields utilizing a generalized dynamic Stark effect model and a novel spectral line profile fitting package. The diagnostic was implemented on a small scale laboratory experiment designed to simulate the edge environment associated with ICRF antenna/faraday screen. The spatially and temporally resolved electric field associated with magnetized RF sheaths will be presented for two field configurations: magnetic field parallel to electric field and magnetic field perpendicular to electric field, both hydrogen and helium discharges where investigated. ORNL is managed by UT-Battelle, LCC, for the US DOE under Contract No. DE-AC05-00OR22725.
Tracer tomography: design concepts and field experiments using heat as a tracer.
Doro, Kennedy O; Cirpka, Olaf A; Leven, Carsten
2015-04-01
Numerical and laboratory studies have provided evidence that combining hydraulic tomography with tomographic tracer tests could improve the estimation of hydraulic conductivity compared with using hydraulic data alone. Field demonstrations, however, have been lacking so far, which we attribute to experimental difficulties. In this study, we present a conceptual design and experimental applications of tracer tomography at the field scale using heat as a tracer. In our experimental design, we improve active heat tracer testing by minimizing possible effects of heat losses, buoyancy, viscosity, and changing boundary conditions. We also utilize a cost-effective approach of measuring temperature changes in situ at high resolution. We apply the presented method to the 8 m thick heterogeneous, sandy gravel, alluvial aquifer at the Lauswiesen Hydrogeological Research Site in Tübingen, Germany. Results of our tomographic heat-tracer experiments are in line with earlier work on characterizing the aquifer at the test site. We demonstrate from the experimental perspective that tracer tomography is applicable and suitable at the field scale using heat as a tracer. The experimental results also demonstrate the potential of heat-tracer tomography as a cost-effective means for characterizing aquifer heterogeneity. © 2014, National Ground Water Association.
Using a new Geothermal Well Field as a Field Laboratory to Facilitate Comprehensive Knowledge
NASA Astrophysics Data System (ADS)
Neumann, K.; Dowling, C. B.
2011-12-01
In Fall 2010, the faculty of the Department of Geological Sciences at Ball State University (BSU) took advantage of several recently drilled monitoring wells within BSU's newly constructed ground-source geothermal well field, currently the largest in the U.S., to create an undergraduate field laboratory for hydrogeological experiments. Using the Investigative Case-Based Learning approach, upper-level undergraduate students developed research projects that would assist BSU's Facilities in evaluating and maintaining the geothermal fields. The students designed original hypotheses and explored how to test them with the available equipment within one semester. They focused on observing and measuring the potential impact of the geothermal well field on groundwater temperature and flow direction using two shallow monitoring wells in gravel (~30 ft) and eight deeper monitoring wells in limestone (~70 ft). The results will be used for comparisons when the geothermal plant goes online in Fall 2011. Undergraduate and graduate students will perform experiments throughout this initial period and continue even after the geothermal field is activated. Through the use of different assessment tools, including peer evaluation, instructors' assessment and an assessment of understanding, we determined that twenty-five percent of the class gained full comprehensive understanding. These students were able to design new experiments by assessing their semester data, integrating their knowledge from previous classes, and synthesizing new hypotheses. The majority of the class was able to further expand their understanding of the scientific process, but not to the extent as the top students.
Far ultraviolet wide field imaging with a SPARTAN /Experiment of Opportunity/ Payload
NASA Technical Reports Server (NTRS)
Carruthers, G. R.; Heckathorn, H. M.; Opal, C. B.
1982-01-01
A wide-field electrographic Schmidt camera, sensitive in the far UV (1230-2000 A), has been developed and utilized in three sounding rocket flights. It is now being prepared for Shuttle flight as an Experiment of Opportunity Payload (EOP) (recently renamed as the SPARTAN program). In this paper, we discuss (1) design of the instrument and payload, particularly as influenced by our experience in rocket flights; (2) special problems of EOP in comparison to sounding rocket missions; (3) relationship of this experiment to, and special capabilities in comparison to, other space astronomy instruments such as Space Telescope; and (4) a tentative observing plan for an EOP mission.
A Course on Reconfigurable Processors
ERIC Educational Resources Information Center
Shoufan, Abdulhadi; Huss, Sorin A.
2010-01-01
Reconfigurable computing is an established field in computer science. Teaching this field to computer science students demands special attention due to limited student experience in electronics and digital system design. This article presents a compact course on reconfigurable processors, which was offered at the Technische Universitat Darmstadt,…
Summary of the Madison Dynamo Experiment
NASA Astrophysics Data System (ADS)
Kendrick, R. D.; Spence, E. J.; Nornberg, M. D.; Forest, C. B.
2001-10-01
A spherical dynamo experiment has been constructed at the University of Wisconsin's liquid sodium facility. The goals of the experiment are to observe and understand magnetic instabilities driven by flow shear in MHD systems, investigate MHD turbulence for magnetic Reynolds numbers of ~100, and understand the role of fluid turbulence in current generation. Magnetic field generation is possible for only specific flow geometries. We have studied and achieved simple roll flow geometries in a full scale water experiment. Results from this experiment have guided the design of the sodium experiment. The experiment consists of a 1 m diameter, spherical stainless steel vessel filled with liquid sodium at 110 Celsius. Two 100 Hp motors with impellers drive flows in the liquid sodium with flow velocities ~ 15 m/s. A gaussian grid of Hall probes on the surface of the sodium vessel measure the generated external magnetic field. Hall probe feed-thru arrays measure the internal field. Preliminary investigations include measurements of the turbulent electromotive force and excitation of magnetic eigenmodes.
ERIC Educational Resources Information Center
Johnson, Carol; Hill, Laurie; Lock, Jennifer; Altowairiki, Noha; Ostrowski, Chris; da Rosa dos Santos, Luciano; Liu, Yang
2017-01-01
From a design perspective, the intentionality of students to engage in surface or deep learning is often experienced through prescribed activities and learning tasks. Educators understand that meaningful learning can be furthered through the structural and organizational design of the online environment that motivates the student towards task…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-19
... (Application for Fee or Personnel Designation) Activity Under OMB Review AGENCY: Veterans Benefits...: Application for Fee or Personnel Designation, VA Form 26- 6681. OMB Control Number: 2900-0113. Type of Review... the applicant's experience in the real estate valuation field. An agency may not conduct or sponsor...
A modified Bitter-type electromagnet and control system for cold atom experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luan, Tian; Zhou, Tianwei; Chen, Xuzong, E-mail: xuzongchen@pku.edu.cn
2014-02-15
We present a modified Bitter-type electromagnet which features high magnetic field, fine electronic properties and efficient heat removal. The electromagnet is constructed from a stack of copper layers separated by mica layers that have the same shape. A distinctive design of cooling channels on the insulating layers and the parallel ducts between the layers ensures low resistance for cooling water to flow. A continuous current control system is also made to regulate the current through the electromagnet. In our experiment, versatile electromagnets are applied to generate magnetic field and gradient field. From our measurements, a peak magnetic field of 1000more » G and a peak gradient field of 80 G/cm are generated in the center of the apparatuses which are 7 cm and 5 cm away from the edge of each electromagnet with a current of 230 A and 120 A, respectively. With the effective feedback design in the current control system and cooling water flow of 3.8 l/min, the stability of the current through the electromagnets can reach 10{sup −5}.« less
NASA Astrophysics Data System (ADS)
Wang, Nianfeng; Guo, Hao; Chen, Bicheng; Cui, Chaoyu; Zhang, Xianmin
2018-05-01
Dielectric elastomers (DE), known as electromechanical transducers, have been widely used in the field of sensors, generators, actuators and energy harvesting for decades. A large number of DE actuators including bending actuators, linear actuators and rotational actuators have been designed utilizing an experience design method. This paper proposes a new method for the design of DE actuators by using a topology optimization method based on pairs of curves. First, theoretical modeling and optimization design are discussed, after which a rotary dielectric elastomer actuator has been designed using this optimization method. Finally, experiments and comparisons between several DE actuators have been made to verify the optimized result.
Competencies for Learning Design: A Review of the Literature and a Proposed Framework
ERIC Educational Resources Information Center
MacLean, Piers; Scott, Bernard
2011-01-01
The term "learning design" is used in this paper to refer to the process of designing effective learning experiences for a variety of contexts: in the classroom or laboratory, in the field, online and via standalone packages using a range of media. Learning design involves a wide set of knowledge, skills and competencies, including:…
Yao, Wenxuan; Zhang, Yingchen; Liu, Yong; ...
2017-04-10
Traditional synchrophasors rely on CTs and PTs physically connected to transmission lines or buses to acquire input signals for phasor measurement. However, it is challenging to install and maintain traditional phasor measurement units in some remote areas due to lack of facilities. Since transmission lines naturally generate alternating electrical and magnetic fields in the surrounding atmosphere, this paper presents two innovative designs for non-contact synchronized measurement devices (NCSMD), including an electric field sensor based non-contact SMD (E-NCSMD) and a magnetic field sensor based non-contact SMD (M-NCSMD). Compared with conventional synchrophasors, E-NCSMD and M-NCSMD are much more flexible to be deployedmore » and have much lower costs, making E-NCSMDs and M-NCSMD highly accessible and useful for a wide array of phasor measurement applications. Laboratory and field experiment results verified the effectiveness of the designs of both E-NCSMD and M-NCSMD.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yao, Wenxuan; Zhang, Yingchen; Liu, Yong
Traditional synchrophasors rely on CTs and PTs physically connected to transmission lines or buses to acquire input signals for phasor measurement. However, it is challenging to install and maintain traditional phasor measurement units in some remote areas due to lack of facilities. Since transmission lines naturally generate alternating electrical and magnetic fields in the surrounding atmosphere, this paper presents two innovative designs for non-contact synchronized measurement devices (NCSMD), including an electric field sensor based non-contact SMD (E-NCSMD) and a magnetic field sensor based non-contact SMD (M-NCSMD). Compared with conventional synchrophasors, E-NCSMD and M-NCSMD are much more flexible to be deployedmore » and have much lower costs, making E-NCSMDs and M-NCSMD highly accessible and useful for a wide array of phasor measurement applications. Laboratory and field experiment results verified the effectiveness of the designs of both E-NCSMD and M-NCSMD.« less
Testing of Photomultiplier Tubes in a Magnetic Field
NASA Astrophysics Data System (ADS)
Waldron, Zachary; A1 Collaboration
2016-09-01
The A1 collaboration at MAMI in Mainz, Germany has designed a neutron detector that can be used in experiments to measure the electric form factor of the neutron. They will measure elastic scattering from the neutron, using the polarized electron beam from MAMI at A1's experimental hall. The detector will be composed of two walls of staggered scintillator bars which will be read out by photomultiplier tubes (PMT), connected to both ends of each scintillator via light guides. The experiment requires a magnetic field with strength of 1 Tesla, 2m away from the first scintillator wall. The resulting fringe field is sufficient to disrupt the PMTs, despite the addition of Mu Metal shielding. The effects of the fringe field on these PMTs was tested to optimize the amplification of the PMTs. A Helmholtz Coil was designed to generate a controlled magnetic field with equivalent strength to the field that the PMTs will encounter. The PMTs were read out using a multi-channel analyzer, were tested at various angles relative to the magnetic field in order to determine the optimal orientation to minimize signal disruption. Tests were also performed to determine: the neutron detector response to cosmic radiation; and the best method for measuring a magnetic field's strength in two dimensions. National Science Foundation Grant No. IIA-1358175.
Improving the conspicuity of trailblazing signs for incident management.
DOT National Transportation Integrated Search
1998-03-01
This report represents efforts to design and evaluate a new sign design for emergency route trailblazing in a two-part series. : Study was an off-road field experiment conducted to determine the best sign color combination, letter stroke width, and l...
DOE Office of Scientific and Technical Information (OSTI.GOV)
NAKAMOTO, T.; AJIMA, Y.; FUJII, Y.
2005-05-16
Superconducting combined function magnets will be utilized for the 50 GeV, 750 kW proton beam line for the J-PARC neutrino experiment. The magnet is designed to provide a dipole field of 2.6 T combined with a quadrupole field of 19 T/m in a coil aperture of 173.4 mm at a nominal current of 7345 A. Two full-scale prototype magnets to verify the magnet performance were successfully developed. The first prototype experienced no training quench during the excitation test and good field quality was confirmed.
Zhukov, Ivan V; Kiryutin, Alexey S; Yurkovskaya, Alexandra V; Grishin, Yuri A; Vieth, Hans-Martin; Ivanov, Konstantin L
2018-05-09
An experimental method is described allowing fast field-cycling Nuclear Magnetic Resonance (NMR) experiments over a wide range of magnetic fields from 5 nT to 10 T. The method makes use of a hybrid technique: the high field range is covered by positioning the sample in the inhomogeneous stray field of the NMR spectrometer magnet. For fields below 2 mT a magnetic shield is mounted on top of the spectrometer; inside the shield the magnetic field is controlled by a specially designed coil system. This combination allows us to measure T1-relaxation times and nuclear Overhauser effect parameters over the full range in a routine way. For coupled proton-carbon spin systems relaxation with a common T1 is found at low fields, where the spins are "strongly coupled". In some cases, experiments at ultralow fields provide access to heteronuclear long-lived spin states. Efficient coherent polarization transfer is seen for proton-carbon spin systems at ultralow fields as follows from the observation of quantum oscillations in the polarization evolution. Applications to analysis and the manipulation of heteronuclear spin systems are discussed.
Preliminary design work on a DSN VLBI correlator. [Deep Space Network
NASA Technical Reports Server (NTRS)
Lushbaugh, W. A.; Layland, J. W.
1978-01-01
The Deep Space Network is in the process of fielding high-density digital instrumentation recorders for support of the Pioneer Venus 1978 entry experiment and other related tasks. It has long been obvious that these recorders would also serve well as the recording medium for very long base interferometry (VLBI) experiments with relatively weak radio sources, provided that a suitable correlation processor for these tape recordings could be established. The overall design and current status of a VLBI correlator designed to mate with these tape recorders are described.
Earth Radiation Budget Experiment scanner radiometric calibration results
NASA Technical Reports Server (NTRS)
Lee, Robert B., III; Gibson, M. A.; Thomas, Susan; Meekins, Jeffrey L.; Mahan, J. R.
1990-01-01
The Earth Radiation Budget Experiment (ERBE) scanning radiometers are producing measurements of the incoming solar, earth/atmosphere-reflected solar, and earth/atmosphere-emitted radiation fields with measurement precisions and absolute accuracies, approaching 1 percent. ERBE uses thermistor bolometers as the detection elements in the narrow-field-of-view scanning radiometers. The scanning radiometers can sense radiation in the shortwave, longwave, and total broadband spectral regions of 0.2 to 5.0, 5.0 to 50.0, and 0.2 to 50.0 micrometers, respectively. Detailed models of the radiometers' response functions were developed in order to design the most suitable calibration techniques. These models guided the design of in-flight calibration procedures as well as the development and characterization of a vacuum-calibration chamber and the blackbody source which provided the absolute basis upon which the total and longwave radiometers were characterized. The flight calibration instrumentation for the narror-field-of-view scanning radiometers is presented and evaluated.
NASA Astrophysics Data System (ADS)
Preusch, Peggy L.
2009-12-01
Field trips provide opportunities for students to experience many different contexts beyond the classroom, and are a popular choice of K-12 teachers in the US. Recent interest in learning that occurs at informal science education centers such as museums, zoos and aquariums has stimulated studies of the relationship between learning in and outside of schools. Although many studies focus on the teachers, the contexts, and/or the students during the field trip, only a few look at the entire process of learning by including the classroom setting before and after the field trip. This study was designed to develop understandings of the student process of learning during and surrounding an environmental science field trip to an outdoor setting. John Dewey's extensive writings on the relationship between experience and learning informed the analysis, creating a focus on active and passive elements of the experience, continuity within and across contexts, the interactive nature of the experience and the importance of subject matter. An exploration of environmental education (EE), environmental science (ES), and nature study as content revealed the complexities of the subject matter of the field trip that make its presentation problematic. An urban school was chosen to contribute to the research literature about urban student learning in outdoor environments. During the field trip, the students' active engagement with each other and the environment supported meaningful remembrances of the field trip experiences during interviews after the field trip. The students accurately described plants and animals they had observed in different habitats during the field trip. They also made connections with their home life and prior experiences in the outdoors as they discussed the field trip and drew pictures that represented their experiences. One student integrated his outdoor experience with a language arts assignment as he reflected deeply on the field trip. One implication of this study is that educational experiences in outdoor natural environments are complex in ways that contribute to lack of continuity between science lessons in an elementary classroom and environmental science field trip. Long term relationships between schools and informal settings that recognize the strengths of both contexts in terms of student learning processes surrounding field trip experiences are needed to strengthen the educative process for field trip participants.
A Reflection on Musical Experience as Existential Experience: An Ontological Turn
ERIC Educational Resources Information Center
Pio, Frederik; Varkoy, Oivind
2012-01-01
In the current world of education, politics and public opinion, musical experience is increasingly threatened. It is designated ever more as an expendable luxury. This kind of general trend has hardly left the thinking in the field of music and music education untouched. Inspiration comes from the technical rationality of our time. This…
75 FR 38774 - Submission for OMB Review; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-06
... design research as part of testing for its censuses and surveys. At this time, the Census Bureau is... follows: Field test, Respondent debriefing questionnaire, Split sample experiments, Cognitive interviews... each round will be provided separately. When split sample experiments are conducted, either in small...
ERIC Educational Resources Information Center
Hendricks, Julie E.; Atchison, Christopher L.; Feig, Anthony D.
2017-01-01
In 2014, the Geological Society of America sponsored an Accessible Field Trip, designed to demonstrate best practices in accommodating a wide variety of participants with disabilities during a field experience. During the trip, an aide was deployed to assist two student participants with sensory disabilities, one with low vision and the other with…
NASA Astrophysics Data System (ADS)
Schmidt, C. M.; Hall, S. R.; Walker, B.; Paul, J.
2017-12-01
Existing STEM retention and diversity programs have identified access to field and professional experiences as critical to helping students identify as scientists, form networks, and gain important skills necessary for employment. This program reimagines the traditional geology field course as a professional development experience for students at 2-year and 4-year institutions interested in environmental careers. Students participate in a summer field course in the Sierra Nevada of California, during which time they complete geology, geomorphology, hydrology, and ecology field projects designed to compliment the curriculum of Environmental Geoscience, Environmental Science, and Environmental Studies programs. During the course students interact with local professionals in the environmental sector and work to earn badges based on the skills demonstrated during field projects. Badges create transparent documentation of skill mastery for students and provide a new way for students to understand and market their skills and competencies to potential employers. We will report on the curriculum development, implementation and assessment of the first cohort of students to participate in the program. Preliminary results of formative and summative assessments and their implications for student success and program design will be addressed.
Wildfire and MAMS data from STORMFEST
NASA Technical Reports Server (NTRS)
Jedlovec, Gary J.; Carlson, G. S.
1993-01-01
Early in 1992, NASA participated in an inter-agency field program called STORMFEST. The STORM-Fronts Experiment Systems Test (STORMFEST) was designed to test various systems critical to the success of STORM 1 in a very focused experiment. The field effort focused on winter storms in order to investigate the structure and evolution of fronts and associated mesoscale phenomena in the central United States. This document describes the data collected from two instruments onboard a NASA ER2 aircraft which was deployed out of Ellington Field in Houston, Texas from February 13 through March 15, 1992, in support of this experiment. The two instruments were the Wildfire (a.k.a. the moderate resolution imaging spectrometer-nadir (MODIS-N) Airborne Simulation (MAS)) and the Multispectral Atmospheric Mapping Sensor (MAMS).
Andorfer, Veronika A; Liebe, Ulf
2015-07-01
We address ethical consumption using a natural field experiment on the actual purchase of Fair Trade (FT) coffee in three supermarkets in Germany. Based on a quasi-experimental before-and-after design the effects of three different treatments - information, 20% price reduction, and a moral appeal - are analyzed. Sales data cover actual ethical purchase behavior and avoid problems of social desirability. But they offer only limited insights into the motivations of individual consumers. We therefore complemented the field experiment with a customer survey that allows us to contrast observed (ethical) buying behavior with self-reported FT consumption. Results from the experiment suggest that only the price reduction had the expected positive and statistically significant effect on FT consumption. Copyright © 2015 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rovang, Dean C.; Lamppa, Derek C.; Cuneo, Michael Edward
We have successfully integrated the capability to apply uniform, high magnetic fields (10–30 T) to high energy density experiments on the Z facility. This system uses an 8-mF, 15-kV capacitor bank to drive large-bore (5 cm diameter), high-inductance (1–3 mH) multi-turn, multi-layer electromagnets that slowly magnetize the conductive targets used on Z over several milliseconds (time to peak field of 2–7 ms). This system was commissioned in February 2013 and has been used successfully to magnetize more than 30 experiments up to 10 T that have produced exciting and surprising physics results. These experiments used split-magnet topologies to maintain diagnosticmore » lines of sight to the target. We then describe the design, integration, and operation of the pulsed coil system into the challenging and harsh environment of the Z Machine. We also describe our plans and designs for achieving fields up to 20 T with a reduced-gap split-magnet configuration, and up to 30 T with a solid magnet configuration in pursuit of the Magnetized Liner Inertial Fusion concept.« less
Hall Probe Calibration System Design for the Mu2e Solenoid Field Mapping System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orozco, Charles; Elementi, Luciano; Feher, Sandor
The goal of the Mu2e experiment at Fermilab is to search for charged-lepton flavor violation by looking for neutrino-less muon to electron conversion in the field of the nucleus. The Mu2e experimental apparatus utilizes a complex magnetic field in the muon generation and momentum and charge selection process. Precise knowledge of the magnetic field is crucial. It is planned to map the solenoid field with calibrated 3D Hall probes up to 10 -5 accuracy. Here, this article describes a new design of a Hall probe calibration system that will be used to calibrate 3D Hall probes to better than 10more » -5 accuracy for the Mu2e Solenoid Field Mapping System.« less
Hall Probe Calibration System Design for the Mu2e Solenoid Field Mapping System
Orozco, Charles; Elementi, Luciano; Feher, Sandor; ...
2018-02-22
The goal of the Mu2e experiment at Fermilab is to search for charged-lepton flavor violation by looking for neutrino-less muon to electron conversion in the field of the nucleus. The Mu2e experimental apparatus utilizes a complex magnetic field in the muon generation and momentum and charge selection process. Precise knowledge of the magnetic field is crucial. It is planned to map the solenoid field with calibrated 3D Hall probes up to 10 -5 accuracy. Here, this article describes a new design of a Hall probe calibration system that will be used to calibrate 3D Hall probes to better than 10more » -5 accuracy for the Mu2e Solenoid Field Mapping System.« less
A plasma model for reversed field pinch circuit design
NASA Astrophysics Data System (ADS)
Johnston, J. W.
1981-03-01
A plasma model has been developed for use in the design of circuits for reversed field pinch experiments. The magnetic field is assumed to evolve through a given series of relaxed states with the plasma resistivity specified as a function of time. At any instant the magnetic field configuration is determined by the field energy and the toroidal flux. If the Bessel function model is chosen as the relaxed state then the magnetic helicity can be used as an alternative to the magnetic energy without altering the results. Simulations of discharges on ZETA and ETA BETA II are presented. By suitable choices of the relaxed field configuration and plasma resistivity it is possible to obtain close agreement with the experimental waveforms. Application to the proposed RFX device is discussed.
The use of affective interaction design in car user interfaces.
Gkouskos, Dimitrios; Chen, Fang
2012-01-01
Recent developments in the car industry have put Human Machine Interfaces under the spotlight. Developing gratifying human-car interactions has become one of the more prominent areas that car manufacturers want to invest in. However, concepts like emotional design remain foreign to the industry. In this study 12 experts on the field of automobile HMI design were interviewed in order to investigate their needs and opinions of emotional design. Results show that emotional design has yet to be introduced for this context of use. Designers need a tool customized for the intricacies of the car HMI field that can provide them with support and guidance so that they can create emotionally attractive experiences for drivers and passengers alike.
Construction of a solenoid used on a magnetized plasma experiment
Klein, S. R.; Manuel, M. J. -E.; Pollock, B. B.; ...
2014-10-30
Creating magnetized jets in the laboratory is relevant to studying young stellar objects, but generating these types of plasmas within the laboratory setting has proven to be challenging. Here, we present the construction of a solenoid designed to produce an axial magnetic field with strengths in the gap of up to 5 T. This novel design was a compact 75 mm × 63 mm × 88 mm, allowing it to be placed in the Titan target chamber. As a result, it was robust, surviving over 50 discharges producing fields ≲ 5 T, reaching a peak magnetic field of 12.5 T.
Electromagnet Design for an Experimental Search for CP Violation in Positronium Decay
NASA Astrophysics Data System (ADS)
Petersburg, Ryan; Henning, Reyco; Bartram, Chelsea
2015-04-01
The 3-photon decay of spin-aligned triplet positronium could be used to search for a charge conjugation and parity (CP) symmetry violation. This CP violation would manifest as a nonzero angular correlation (S-> .k1 -->) (S-> .k1 --> ×k2 -->) between the three decay photons' momentum vectors (|k1 --> | > |k2 --> | > |k3 --> |) and the triplet positronium spin (S->). Current limits on this correlation are at the ~10-3 level; therefore, we propose an experiment to improve this limit. In our experiment, the positronium is spin-polarized by a uniform magnetic field from a conventional electromagnet, and the photons are detected by a segmented NaI gamma detector array with large angular acceptance. This talk discusses the design of this unique electromagnet, which requires good field uniformity for the positronium source and a novel yoke design to minimize fringe field effects for the NaI array's PMTs. This project was supported by the Gillian T. Cell Senior Thesis Research Award in the College of Arts & Sciences, administered by Honors Carolina.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Djang, Austin
2015-08-22
Thanks to the versatility of the beam lines at SSRL, research there is varied and benefits multiple fields. Each experiment requires a particular set of experiment equipment, which in turns requires its own particular assembly. As such, new engineering challenges arise from each new experiment. My role as an engineering intern has been to help solve these challenges, by designing and assembling experimental devices. My first project was to design a heated sample holder, which will be used to investigate the effect of temperature on a sample's x-ray diffraction pattern. My second project was to help set up an imagingmore » test, which involved designing a cooled grating holder and assembling multiple positioning stages. My third project was designing a 3D-printed pencil holder for the SSRL workstations.« less
Radiofrequency pulse design using nonlinear gradient magnetic fields.
Kopanoglu, Emre; Constable, R Todd
2015-09-01
An iterative k-space trajectory and radiofrequency (RF) pulse design method is proposed for excitation using nonlinear gradient magnetic fields. The spatial encoding functions (SEFs) generated by nonlinear gradient fields are linearly dependent in Cartesian coordinates. Left uncorrected, this may lead to flip angle variations in excitation profiles. In the proposed method, SEFs (k-space samples) are selected using a matching pursuit algorithm, and the RF pulse is designed using a conjugate gradient algorithm. Three variants of the proposed approach are given: the full algorithm, a computationally cheaper version, and a third version for designing spoke-based trajectories. The method is demonstrated for various target excitation profiles using simulations and phantom experiments. The method is compared with other iterative (matching pursuit and conjugate gradient) and noniterative (coordinate-transformation and Jacobian-based) pulse design methods as well as uniform density spiral and EPI trajectories. The results show that the proposed method can increase excitation fidelity. An iterative method for designing k-space trajectories and RF pulses using nonlinear gradient fields is proposed. The method can either be used for selecting the SEFs individually to guide trajectory design, or can be adapted to design and optimize specific trajectories of interest. © 2014 Wiley Periodicals, Inc.
Adiabatic model and design of a translating field reversed configuration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Intrator, T. P.; Siemon, R. E.; Sieck, P. E.
We apply an adiabatic evolution model to predict the behavior of a field reversed configuration (FRC) during decompression and translation, as well as during boundary compression. Semi-empirical scaling laws, which were developed and benchmarked primarily for collisionless FRCs, are expected to remain valid even for the collisional regime of FRX-L experiment. We use this approach to outline the design implications for FRX-L, the high density translated FRC experiment at Los Alamos National Laboratory. A conical theta coil is used to accelerate the FRC to the largest practical velocity so it can enter a mirror bounded compression region, where it mustmore » be a suitable target for a magnetized target fusion (MTF) implosion. FRX-L provides the physics basis for the integrated MTF plasma compression experiment at the Shiva-Star pulsed power facility at Kirtland Air Force Research Laboratory, where the FRC will be compressed inside a flux conserving cylindrical shell.« less
NASA Astrophysics Data System (ADS)
J. Chung, K.; H. An, Y.; K. Jung, B.; Y. Lee, H.; C., Sung; S. Na, Y.; S. Hahm, T.; S. Hwang, Y.
2013-03-01
A new spherical torus called VEST (Versatile Experiment Spherical Torus) is designed, constructed and successfully commissioned at Seoul National University. A unique design feature of the VEST is two partial solenoid coils installed at both vertical ends of a center stack, which can provide sufficient magnetic fluxes to initiate tokamak plasmas while keeping a low aspect ratio configuration in the central region. According to initial double null merging start-up scenario using the partial solenoid coils, appropriate power supplies for driving a toroidal field coil, outer poloidal field coils, and the partial solenoid coils are fabricated and successfully commissioned. For reliable start-up, a pre-ionization system with two cost-effective homemade magnetron power supplies is also prepared. In addition, magnetic and spectroscopic diagnostics with appropriate data acquisition and control systems are well prepared for initial operation of the device. The VEST is ready for tokamak plasma operation by completing and commissioning most of the designed components.
An ionization pressure gauge with LaB6 emitter for long-term operation in strong magnetic fields
NASA Astrophysics Data System (ADS)
Wenzel, U.; Pedersen, T. S.; Marquardt, M.; Singer, M.
2018-03-01
We report here on a potentially significant improvement in the design of neutral pressure gauges of the so-called ASDEX-type which were first used in the Axially Symmetric Divertor EXperiment (ASDEX). Such gauges are considered state-of-the-art and are in wide use in fusion experiments, but they nonetheless suffer from a relatively high failure rate when operated at high magnetic field strengths for long times. This is therefore a significant concern for long-pulse, high-field experiments such as Wendelstein 7-X (W7-X) and ITER. The new design is much more robust. The improvement is to use a LaB6 crystal instead of a tungsten wire as the thermionic emitter of electrons in the gauge. Such a LaB6 prototype gauge was successfully operated for a total of 60 h in B = 3.1 T, confirming the significantly improved robustness of the new design and qualifying it for near-term operation in W7-X. With the LaB6 crystal, an order of magnitude reduction in heating current is achieved, relative to the tungsten filament based gauges, from 15-20 A to 1-2 A. This reduces the Lorenz forces and the heating power by an order of magnitude also and is presumably the reason for the much improved robustness. The new gauge design, test environment setup at the superconducting magnet, and results from test operation are described.
Using innovative instructional technology to meet training needs in public health: a design process.
Millery, Mari; Hall, Michelle; Eisman, Joanna; Murrman, Marita
2014-03-01
Technology and distance learning can potentially enhance the efficient and effective delivery of continuing education to the public health workforce. Public Health Training Centers collaborate with instructional technology designers to develop innovative, competency-based online learning experiences that meet pressing training needs and promote best practices. We describe one Public Health Training Center's online learning module design process, which consists of five steps: (1) identify training needs and priority competencies; (2) define learning objectives and identify educational challenges; (3) pose hypotheses and explore innovative, technology-based solutions; (4) develop and deploy the educational experience; and (5) evaluate feedback and outcomes to inform continued cycles of revision and improvement. Examples illustrate the model's application. These steps are discussed within the context of design practices in the fields of education, engineering, and public health. They incorporate key strategies from across these fields, including principles of programmatic design familiar to public health professionals, such as backward design. The instructional technology design process we describe provides a structure for the creativity, collaboration, and systematic strategies needed to develop online learning products that address critical training needs for the public health workforce.
ERIC Educational Resources Information Center
Dalziel, James; Dalziel, Bronwen
2012-01-01
One of the ongoing challenges in the field of Learning Design is how to most effectively support educators in the development of innovative e-learning through the adoption and adaptation of learning design templates. This paper reflects on experiences from two recent higher education projects in teacher training and medical education, and…
Towards Cognitive Load Theory as Guideline for Instructional Design in Science Education
ERIC Educational Resources Information Center
Meissner, Barbara; Bogner, Franz X.
2013-01-01
We applied cognitive load theory in an heuristic out-of-school science lesson. The lesson comprises experiments concerning major attributes of NaCl and was designed for 5th to 8th grade students. Our interest focused on whether cognitive load theory provides sufficient guidelines for instructional design in the field of heuristic science…
Mentoring for Mentors: The Music Mentor Plus Program
ERIC Educational Resources Information Center
Berg, Margaret H.; Rickels, David A.
2018-01-01
The Music Mentor Plus program was designed to introduce mentoring strategies teachers can implement during supervision of student teachers and early field experience interns, while also fostering connections between field-based modeling and university methods course content. Throughout the 2015-2016 school year, seven music teachers and two…
Using Artificial Nests to Study Nest Predation in Birds
ERIC Educational Resources Information Center
Belthoff, James R.
2005-01-01
A simple and effective field exercise that demonstrates factors affecting predation on bird nests is described. With instructor guidance, students in high school biology or college-level biology, ecology, animal behavior, wildlife management or ornithology laboratory courses can collaborate to design field experiments related to nest depredation.
An Integrated Field-Based Approach to Building Teachers' Geoscience Skills
ERIC Educational Resources Information Center
Almquist, Heather; Stanley, George; Blank, Lisa; Hendrix, Marc; Rosenblatt, Megan; Hanfling, Seymour; Crews, Jeffrey
2011-01-01
The Paleo Exploration Project was a professional development program for K-12 teachers from rural eastern Montana. The curriculum was designed to incorporate geospatial technologies, including Global Positioning Systems (GPS), Geographic Information Systems (GIS), and total station laser surveying, with authentic field experiences in geology and…
POWER FIELD MONITORING EQUIPMENT FROM WETLAND DETRITUS MATERIALS USING MICROBIAL FUEL CELL
The data from both laboratory and field experiments will provide useful information to assist designing an in-situ MFC system that uses detritus materials to achieve constant and useable electric energy output. The in-situ MFC systems installed in the forested wetlands at Wi...
The paper describes preliminary results from a field experiment designed to evaluate a new approach to quantifying gaseous fugitive emissions from area air pollution sources. The new approach combines path-integrated concentration data acquired with any path-integrated optical re...
ERIC Educational Resources Information Center
Kempf, Jerry
The sixth grade instructional unit, part of a field-tested grade school level career education series, is designed to assist learners in understanding how present experiences relate to past and future ones. Before the main body of the lessons is described, field testing results are reported and key items are presented: the concepts, the estimated…
Model-based design of experiments for cellular processes.
Chakrabarty, Ankush; Buzzard, Gregery T; Rundell, Ann E
2013-01-01
Model-based design of experiments (MBDOE) assists in the planning of highly effective and efficient experiments. Although the foundations of this field are well-established, the application of these techniques to understand cellular processes is a fertile and rapidly advancing area as the community seeks to understand ever more complex cellular processes and systems. This review discusses the MBDOE paradigm along with applications and challenges within the context of cellular processes and systems. It also provides a brief tutorial on Fisher information matrix (FIM)-based and Bayesian experiment design methods along with an overview of existing software packages and computational advances that support MBDOE application and adoption within the Systems Biology community. As cell-based products and biologics progress into the commercial sector, it is anticipated that MBDOE will become an essential practice for design, quality control, and production. Copyright © 2013 Wiley Periodicals, Inc.
Opto-mechanical design of vacuum laser resonator for the OSQAR experiment
NASA Astrophysics Data System (ADS)
Hošek, Jan; Macúchová, Karolina; Nemcová, Šárka; Kunc, Štěpán.; Šulc, Miroslav
2015-01-01
This paper gives short overview of laser-based experiment OSQAR at CERN which is focused on search of axions and axion-like particles. The OSQAR experiment uses two experimental methods for axion search - measurement of the ultra-fine vacuum magnetic birefringence and a method based on the "Light shining through the wall" experiment. Because both experimental methods have reached its attainable limits of sensitivity we have focused on designing a vacuum laser resonator. The resonator will increase the number of convertible photons and their endurance time within the magnetic field. This paper presents an opto-mechanical design of a two component transportable vacuum laser resonator. Developed optical resonator mechanical design allows to be used as a 0.8 meter long prototype laser resonator for laboratory testing and after transportation and replacement of the mirrors it can be mounted on the LHC magnet in CERN to form a 20 meter long vacuum laser resonator.
The Role of Forethought and Serendipity in Designing a Successful Hydrogeological Research Site
NASA Astrophysics Data System (ADS)
Shapiro, A. M.; Hsieh, P. A.
2008-12-01
Designing and implementing a successful hydrogeologic field research observatory requires careful planning among a multidisciplinary group of research scientists. In addition, a small team of research coordinators needs to assume responsibility for smoothly integrating the multidisciplinary experimental program and promoting the explanation of results across discipline boundaries. A narrow interpretation of success at these hydrogeologic observatories can be viewed as the completion of the field-based experiments and the reporting of results for the field site under investigation. This alone is no small task, given the financial and human resources that are needed to develop and maintain field infrastructure, as well as developing, maintaining, and sharing data and interpretive results. Despite careful planning, however, unexpected or serendipitous results can occur. Such serendipitous results can lead to new understanding and revision of original hypotheses. To fully evaluate such serendipitous results, the field program must collect a broad range of scientifically robust data-beyond what is needed to examine the original hypotheses. In characterizing ground water flow and chemical transport in fractured crystalline rock in the Mirror Lake watershed in central New Hampshire, unexpected effects of scale were observed for hydraulic conductivity and matrix diffusion. Contrary to existing theory, hydraulic conductivity at the site did not increase with scale, whereas the effective coefficient of matrix diffusion was found to increase with scale. These results came to light only after examination of extensive data from carefully designed hydraulic and chemical transport experiments. Experiments were conducted on rock cores, individual fractures and volumes of fractured rock over physical dimensions from meters to kilometers. The interpretation of this data yielded new insight into the effect of scale on chemical transport and hydraulic conductivity of fractured rock. Subsequent evaluation of experiments conducted at other fractured rock sites have showed similarities in hydraulic and chemical transport responses, allowing broader conclusions to be reached concerning geologic controls on ground water flow and chemical transport in fractured rock aquifers.
NASA Astrophysics Data System (ADS)
Tzeferacos, P.; Rigby, A.; Bott, A.; Bell, A.; Bingham, R.; Casner, A.; Cattaneo, F.; Churazov, E.; Forest, C.; Katz, J.; Koenig, M.; Li, C.-K.; Meinecke, J.; Petrasso, R.; Park, H.-S.; Remington, B.; Ross, J.; Ryutov, D.; Ryu, D.; Reville, B.; Miniati, F.; Schekochihin, A.; Froula, D.; Lamb, D.; Gregori, G.
2017-10-01
The universe is permeated by magnetic fields, with strengths ranging from a femtogauss in the voids between the filaments of galaxy clusters to several teragauss in black holes and neutron stars. The standard model for cosmological magnetic fields is the nonlinear amplification of seed fields via turbulent dynamo. We have conceived experiments to demonstrate and study the turbulent dynamo mechanism in the laboratory. Here, we describe the design of these experiments through large-scale 3D FLASH simulations on the Mira supercomputer at ANL, and the laser-driven experiments we conducted with the OMEGA laser at LLE. Our results indicate that turbulence is capable of rapidly amplifying seed fields to near equipartition with the turbulent fluid motions. This work was supported in part from the ERC (FP7/2007-2013, No. 256973 and 247039), and the U.S. DOE, Contract No. B591485 to LLNL, FWP 57789 to ANL, Grant No. DE-NA0002724 and DE-SC0016566 to the University of Chicago, and DE-AC02-06CH11357 to ANL.
The Martian: Examining Human Physical Judgments across Virtual Gravity Fields.
Ye, Tian; Qi, Siyuan; Kubricht, James; Zhu, Yixin; Lu, Hongjing; Zhu, Song-Chun
2017-04-01
This paper examines how humans adapt to novel physical situations with unknown gravitational acceleration in immersive virtual environments. We designed four virtual reality experiments with different tasks for participants to complete: strike a ball to hit a target, trigger a ball to hit a target, predict the landing location of a projectile, and estimate the flight duration of a projectile. The first two experiments compared human behavior in the virtual environment with real-world performance reported in the literature. The last two experiments aimed to test the human ability to adapt to novel gravity fields by measuring their performance in trajectory prediction and time estimation tasks. The experiment results show that: 1) based on brief observation of a projectile's initial trajectory, humans are accurate at predicting the landing location even under novel gravity fields, and 2) humans' time estimation in a familiar earth environment fluctuates around the ground truth flight duration, although the time estimation in unknown gravity fields indicates a bias toward earth's gravity.
Theoretical analysis for the design of the French watt balance experiment force comparator
NASA Astrophysics Data System (ADS)
Pinot, Patrick; Genevès, Gerard; Haddad, Darine; David, Jean; Juncar, Patrick; Lecollinet, Michel; Macé, Stéphane; Villar, François
2007-09-01
This paper presents a preliminary analysis for designing a force comparator to be used in the French watt balance experiment. The first stage of this experiment consists in a static equilibrium, by means of a mechanical beam balance, between a gravitational force (a weight of an artefact having a known mass submitted to the acceleration due to the gravity) and a vertical electromagnetic force acting on a coil driven by a current subject to the magnetic induction field provided by a permanent magnet. The principle of the force comparison in the French experiment is explained. The general design configuration of the force balance using flexure strips as pivots is discussed and theoretical calculation results based on realistic assumptions of the static and dynamic behaviors of the balance are presented.
Theoretical analysis for the design of the French watt balance experiment force comparator.
Pinot, Patrick; Genevès, Gerard; Haddad, Darine; David, Jean; Juncar, Patrick; Lecollinet, Michel; Macé, Stéphane; Villar, François
2007-09-01
This paper presents a preliminary analysis for designing a force comparator to be used in the French watt balance experiment. The first stage of this experiment consists in a static equilibrium, by means of a mechanical beam balance, between a gravitational force (a weight of an artefact having a known mass submitted to the acceleration due to the gravity) and a vertical electromagnetic force acting on a coil driven by a current subject to the magnetic induction field provided by a permanent magnet. The principle of the force comparison in the French experiment is explained. The general design configuration of the force balance using flexure strips as pivots is discussed and theoretical calculation results based on realistic assumptions of the static and dynamic behaviors of the balance are presented.
International Field Experiences Promote Professional Development for Sustainability Leaders
ERIC Educational Resources Information Center
Hull, R. Bruce; Kimmel, Courtney; Robertson, David P.; Mortimer, Michael
2016-01-01
Purpose: This paper aims to describe, explain and evaluate a graduate education program that provides international project experiences and builds competencies related to collaborative problem-solving, cultural capacity to work globally and sustainable development. Design/methodology/approach: Qualitative analysis of survey data from 28 students…
Phenomena induced by charged particle beams. [experimental design for Spacelab
NASA Technical Reports Server (NTRS)
Beghin, C.
1981-01-01
The injection of energetic particles along the Earth's magnetic field lines is a possible remote sensing method for measuring the electric fields parallel to the magnetic field with good time resolution over the entire magnetic field. Neutralization processes, return-current effects, dynamics of the beams, triggered instabilities, and waves must be investigated before the fundamental question about proper experimental conditions, such as energy, intensity and divergence of the beams, pitch-angle injection, ion species, proper probes and detectors and their location, and rendezvous conditions, can be resolved. An experiment designed to provide a better understanding of these special physical processes and to provide some answers to questions concerning beam injection techniques is described.
NASA Astrophysics Data System (ADS)
Nir, A.; Doughty, C.; Tsang, C. F.
Validation methods which developed in the context of deterministic concepts of past generations often cannot be directly applied to environmental problems, which may be characterized by limited reproducibility of results and highly complex models. Instead, validation is interpreted here as a series of activities, including both theoretical and experimental tests, designed to enhance our confidence in the capability of a proposed model to describe some aspect of reality. We examine the validation process applied to a project concerned with heat and fluid transport in porous media, in which mathematical modeling, simulation, and results of field experiments are evaluated in order to determine the feasibility of a system for seasonal thermal energy storage in shallow unsaturated soils. Technical details of the field experiments are not included, but appear in previous publications. Validation activities are divided into three stages. The first stage, carried out prior to the field experiments, is concerned with modeling the relevant physical processes, optimization of the heat-exchanger configuration and the shape of the storage volume, and multi-year simulation. Subjects requiring further theoretical and experimental study are identified at this stage. The second stage encompasses the planning and evaluation of the initial field experiment. Simulations are made to determine the experimental time scale and optimal sensor locations. Soil thermal parameters and temperature boundary conditions are estimated using an inverse method. Then results of the experiment are compared with model predictions using different parameter values and modeling approximations. In the third stage, results of an experiment performed under different boundary conditions are compared to predictions made by the models developed in the second stage. Various aspects of this theoretical and experimental field study are described as examples of the verification and validation procedure. There is no attempt to validate a specific model, but several models of increasing complexity are compared with experimental results. The outcome is interpreted as a demonstration of the paradigm proposed by van der Heijde, 26 that different constituencies have different objectives for the validation process and therefore their acceptance criteria differ also.
A program to study antiprotons in the cosmic rays: Arizona collaboration
NASA Technical Reports Server (NTRS)
Bowen, Theodore
1992-01-01
The Cherenkov detector designed and built for the LEAP (Low Energy AntiProton) experiment utilized a novel design to achieve appreciable sensitive area (02. sq m) with a refractive index of 1.25 in a magnetic fringe field region (500-1000 Gauss). The weight was held to only 64 kg by using 16 unshielded Hamamatsu R2490-01 photomultiplier tubes, each aligned with its local magnetic field. A filling and reservoir system for the highly volatile FC-72 liquid Cherenkov radiator also presented many design challenges. Relativistic particles yielded about 72 photoelectrons, total.
Engaging students in research learning experiences through hydrology field excursions and projects
NASA Astrophysics Data System (ADS)
Ewen, T.; Seibert, J.
2014-12-01
One of the best ways to engage students and instill enthusiasm for hydrology is to expose them to hands-on learning. A focus on hydrology field research can be used to develop context-rich and active learning, and help solidify idealized learning where students are introduced to individual processes through textbook examples, often neglecting process interactions and an appreciation for the complexity of the system. We introduced a field course where hydrological measurement techniques are used to study processes such as snow hydrology and runoff generation, while also introducing students to field research and design of their own field project. In the field projects, students design a low-budget experiment with the aim of going through the different steps of a 'real' scientific project, from formulating the research question to presenting their results. In one of the field excursions, students make discharge measurements in several alpine streams with a salt tracer to better understand the spatial characteristics of an alpine catchment, where source waters originate and how they contribute to runoff generation. Soil moisture measurements taken by students in this field excursion were used to analyze spatial soil moisture patterns in the alpine catchment and subsequently used in a publication. Another field excursion repeats a published experiment, where preferential soil flow paths are studied using a tracer and compared to previously collected data. For each field excursion, observational data collected by the students is uploaded to an online database we developed, which also allows students to retrieve data from past excursions to further analyze and compare their data. At each of the field sites, weather stations were installed and a webviewer allows access to realtime data from data loggers, allowing students to explore how processes relate to climatic conditions. With in-house film expertise, these field excursions were also filmed and short virtual excursions were produced, which we plan to use in a large introductory course, exposing students to field research at an early stage.
NASA Astrophysics Data System (ADS)
Shepherd, O.; Bucknam, R. D.; Hurd, A. G.; Sheehan, W. H.
1991-06-01
This is Volume 3 of a three volume final report on the design, development, and test of balloonborne and groundbased lidar systems. Volume 1 describes the design and fabrication of a balloonborne CO2 coherent payload to measure the 10.6 micrometers backscatter from atmospheric aerosols as a function of altitude. Volume 2 describes the Aug. 1987 flight test of Atmospheric Balloonborne Lidar Experiment, ABLE 2. In this volume we describe groundbased lidar development and measurements. A design was developed for installation of the ABLE lidar in the GL rooftop dome. A transportable shed was designed to house the ABLE lidar at the various remote measurement sites. Refurbishment and modification of the ABLE lidar were completed to permit groundbased lidar measurements of clouds and aerosols. Lidar field measurements were made at Ascension Island during SABLE 89. Lidar field measurements were made at Terciera, Azores during GABLE 90. These tasks were successfully completed, and recommendations for further lidar measurements and data analysis were made.
Flow field description of the Space Shuttle Vernier reaction control system exhaust plumes
NASA Technical Reports Server (NTRS)
Cerimele, Mary P.; Alred, John W.
1987-01-01
The flow field for the Vernier Reaction Control System (VRCS) jets of the Space Shuttle Orbiter has been calculated from the nozzle throat to the far-field region. The calculations involved the use of recently improved rocket engine nozzle/plume codes. The flow field is discussed, and a brief overview of the calculation techniques is presented. In addition, a proposed on-orbit plume measurement experiment, designed to improve future estimations of the Vernier flow field, is addressed.
JoVE: the Journal of Visualized Experiments.
Vardell, Emily
2015-01-01
The Journal of Visualized Experiments (JoVE) is the world's first scientific video journal and is designed to communicate research and scientific methods in an innovative, intuitive way. JoVE includes a wide range of biomedical videos, from biology to immunology and bioengineering to clinical and translation medicine. This column describes the browsing and searching capabilities of JoVE, as well as its additional features (including the JoVE Scientific Education Database designed for students in scientific fields).
Key Topics for High-Lift Research: A Joint Wind Tunnel/Flight Test Approach
NASA Technical Reports Server (NTRS)
Fisher, David; Thomas, Flint O.; Nelson, Robert C.
1996-01-01
Future high-lift systems must achieve improved aerodynamic performance with simpler designs that involve fewer elements and reduced maintenance costs. To expeditiously achieve this, reliable CFD design tools are required. The development of useful CFD-based design tools for high lift systems requires increased attention to unresolved flow physics issues. The complex flow field over any multi-element airfoil may be broken down into certain generic component flows which are termed high-lift building block flows. In this report a broad spectrum of key flow field physics issues relevant to the design of improved high lift systems are considered. It is demonstrated that in-flight experiments utilizing the NASA Dryden Flight Test Fixture (which is essentially an instrumented ventral fin) carried on an F-15B support aircraft can provide a novel and cost effective method by which both Reynolds and Mach number effects associated with specific high lift building block flows can be investigated. These in-flight high lift building block flow experiments are most effective when performed in conjunction with coordinated ground based wind tunnel experiments in low speed facilities. For illustrative purposes three specific examples of in-flight high lift building block flow experiments capable of yielding a high payoff are described. The report concludes with a description of a joint wind tunnel/flight test approach to high lift aerodynamics research.
Harte, J Davis; Sheehan, Athena; Stewart, Susan C; Foureur, Maralyn
2016-04-01
To explore inhibiting and facilitating design factors influencing childbirth supporters' experiences. Birthing women benefit from the continuous, cooperative presence of supporters. However, little research has investigated how birth room design facilitates or inhibits supporters' role navigation. We conducted an exploratory video ethnographic single case study of childbirth supporters' experiences, within an Australian hospital birth environment. Video, field notes, and video-cued reflexive interviews with the woman, her midwives, and supporters were thematically analyzed using ethnographic/symbolic interactionist perspectives to frame supporters' understandings. Findings suggest supporters' experiences are complex, made more complicated by sparse understanding or accommodation of their needs in the built environment. Supporters' presence and roles are not facilitated by the physical space; they experience "an unbelonging paradox" of being needed, yet uncertain and "in the way" during "tenuous nest-building" activities. Suggested design guidelines to facilitate supporters' well-being and their roles in designed hospital birth spaces are provided. © The Author(s) 2016.
NASA Technical Reports Server (NTRS)
Wescott, E. M.; Davis, T. N.
1980-01-01
A reliable payload system and scaled down shaped charges were developed for carrying out experiments in solar-terrestrial magnetospheric physics. Four Nike-Tomahawk flights with apogees near 450 km were conducted to investigate magnetospheric electric fields, and two Taurus-Tomahawk rockets were flown in experiments on the auroral acceleration process in discrete auroras. In addition, a radial shaped charge was designed for plasma perturbation experiments.
Applying modeling Results in designing a global tropospheric experiment
NASA Technical Reports Server (NTRS)
1982-01-01
A set of field experiments and advanced modeling studies which provide a strategy for a program of global tropospheric experiments was identified. An expanded effort to develop space applications for trospheric air quality monitoring and studies was recommended. The tropospheric ozone, carbon, nitrogen, and sulfur cycles are addressed. Stratospheric-tropospheric exchange is discussed. Fast photochemical processes in the free troposphere are considered.
Teaching a Student to Read through a Screen: Using SKYPE to Facilitate a Field Experience
ERIC Educational Resources Information Center
Gunther, Jeanne
2016-01-01
The Distance Clinical Connecting Candidates and Children (DC4) is an innovative new model for providing a clinical experience in a reading methods course. Pre-service teachers used this model to implement assessments and lessons via SKYPE with local elementary students. I designed this model to provide a clinical experience when faced with…
Scientific activity program for 1989
NASA Astrophysics Data System (ADS)
1989-04-01
The current research projects are summarized. The research is grouped into four main directions: infrared astronomy, interplanetary media, cosmic rays and gravitational fields. The projects include instruments for the Infrared Space Observatory (ISO) satellite, problems of star formation and star evolution, Tethered Satellite System (TSS) experiment, Opera experiment, propagation of cosmic rays in the ionosphere, design of a solar neutron detector, and gravitational wave antennas experiments.
Performance improvement of magnetized coaxial plasma gun by magnetic circuit on a bias coil
NASA Astrophysics Data System (ADS)
Edo, Takahiro; Matsumoto, Tadafumi; Asai, Tomohiko; Kamino, Yasuhiro; Inomoto, Michiaki; Gota, Hiroshi
2016-10-01
A magnetized coaxial plasmoid accelerator has been utilized for compact torus (CT) injection to refuel into fusion reactor core plasma. Recently, CT injection experiments have been conducted on the C-2/C-2U facility at Tri Alpha Energy. In the series of experiments successful refueling, i.e. increased particle inventory of field-reversed configuration (FRC) plasma, has been observed. In order to improve the performance of CT injector and to refuel in the upgraded FRC device, called C-2W, with higher confinement magnetic field, magnetic circuit consisting of magnetic material onto a bias magnetic coil is currently being tested at Nihon University. Numerical work suggests that the optimized bias magnetic field distribution realizes the increased injection velocity because of higher conversion efficiency of Lorenz self force to kinetic energy. Details of the magnetic circuit design as well as results of the test experiment and field calculations will be presented and discussed.
NASA Astrophysics Data System (ADS)
Tzeferacos, P.; Rigby, A.; Bott, A.; Bell, A. R.; Bingham, R.; Casner, A.; Cattaneo, F.; Churazov, E. M.; Emig, J.; Flocke, N.; Fiuza, F.; Forest, C. B.; Foster, J.; Graziani, C.; Katz, J.; Koenig, M.; Li, C.-K.; Meinecke, J.; Petrasso, R.; Park, H.-S.; Remington, B. A.; Ross, J. S.; Ryu, D.; Ryutov, D.; Weide, K.; White, T. G.; Reville, B.; Miniati, F.; Schekochihin, A. A.; Froula, D. H.; Gregori, G.; Lamb, D. Q.
2017-04-01
The universe is permeated by magnetic fields, with strengths ranging from a femtogauss in the voids between the filaments of galaxy clusters to several teragauss in black holes and neutron stars. The standard model behind cosmological magnetic fields is the nonlinear amplification of seed fields via turbulent dynamo to the values observed. We have conceived experiments that aim to demonstrate and study the turbulent dynamo mechanism in the laboratory. Here, we describe the design of these experiments through simulation campaigns using FLASH, a highly capable radiation magnetohydrodynamics code that we have developed, and large-scale three-dimensional simulations on the Mira supercomputer at the Argonne National Laboratory. The simulation results indicate that the experimental platform may be capable of reaching a turbulent plasma state and determining the dynamo amplification. We validate and compare our numerical results with a small subset of experimental data using synthetic diagnostics.
NASA Astrophysics Data System (ADS)
Li, C. K.; Seguin, F. H.; Frenje, J. A.; Rosenberg, M.; Zylstra, A. B.; Rinderknecht, H. G.; Petrasso, R. D.; Amendt, P. A.; Landen, O. L.; Town, R. P. J.; Betti, R.; Knauer, J. P.; Meyerhofer, D. D.; Back, C. A.; Kilkenny, J. D.; Nikroo, A.
2010-11-01
Backlighting of x-ray-driven implosions in empty hohlraums with mono-energetic protons on the OMEGA laser facility has allowed a number of important phenomena to be observed. Several critical parameters were determined, including plasma flow, three types of spontaneous electric fields and megaGauss magnetic fields. These results provide insight into important issues in indirect-drive ICF. Even though the cavity is effectively a Faraday cage, the strong, local fields inside the hohlraum can affect laser-plasma instabilities, electron distributions and implosion symmetry. They are of fundamental scientific importance for a range of new experiments at the frontiers of high-energy-density physics. Future experiments designed to characterize the field formation and evolution in low-Z gas fill hohlraums will be discussed.
Assembling a ring-shaped crystal in a microfabricated surface ion trap
Stick, Daniel Lynn; Tabakov, Boyan; Benito, Francisco; ...
2015-09-01
We report on experiments with a microfabricated surface trap designed for confining a chain of ions in a ring. Uniform ion separation over most of the ring is achieved with a rotationally symmetric design and by measuring and suppressing undesired electric fields. After reducing stray fields, the ions are confined primarily by a radio-frequency pseudopotential and their mutual Coulomb repulsion. As a result, approximately 400 40Ca + ions with an average separation of 9 μm comprise the ion crystal.
Assembling a ring-shaped crystal in a microfabricated surface ion trap
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stick, Daniel Lynn; Tabakov, Boyan; Benito, Francisco
We report on experiments with a microfabricated surface trap designed for confining a chain of ions in a ring. Uniform ion separation over most of the ring is achieved with a rotationally symmetric design and by measuring and suppressing undesired electric fields. After reducing stray fields, the ions are confined primarily by a radio-frequency pseudopotential and their mutual Coulomb repulsion. As a result, approximately 400 40Ca + ions with an average separation of 9 μm comprise the ion crystal.
Exposing the Challenges and Coping Strategies of Field-Ecology Graduate Students
NASA Astrophysics Data System (ADS)
Leon-Beck, Mika; Dodick, Jeff
2012-11-01
In this paper, we expose the unique challenges confronting graduate field-ecology students and the coping strategies they adopt to overcome such challenges. To do so, we used a qualitative (in vivo) research method that combines interviews, observations and open questionnaires with a group of five Israeli graduate students. The two major challenges that the students faced were the uncontrolled nature of field research (or complexity), and the nature of field setting, which isolated the students from authoritative guidance. In response to these challenges, the students developed a set of research skills which were expressed in this study by a series of three (metacognitive) strategies which we designated as 'protocol-dominated', 'intermediate' or 'field-dominated'. In order to develop such research skills, our subjects rely upon declarative and procedural knowledge. In contrast to declarative knowledge, learned in coursework, procedural knowledge is learned and activated via the situated experience of implementing research in authentic field environments. We also found that fieldwork complexity imposes itself the minute the students step into the field; potentially, this can negatively impact students' motivation. However, as the students accumulate field experience and acquire the knowledge and skills needed to overcome the field's complexity, their motivation improves. Recognizing the unique learning components connected to field research will help novice students better cope with fieldwork challenges, as well as help their advisers in guiding them. This work also has implications for designing inquiry curricula in field sciences for university and high-school students.
NASA Technical Reports Server (NTRS)
Pitts, D. E.; Badhwar, G.
1980-01-01
The development of agricultural remote sensing systems requires knowledge of agricultural field size distributions so that the sensors, sampling frames, image interpretation schemes, registration systems, and classification systems can be properly designed. Malila et al. (1976) studied the field size distribution for wheat and all other crops in two Kansas LACIE (Large Area Crop Inventory Experiment) intensive test sites using ground observations of the crops and measurements of their field areas based on current year rectified aerial photomaps. The field area and size distributions reported in the present investigation are derived from a representative subset of a stratified random sample of LACIE sample segments. In contrast to previous work, the obtained results indicate that most field-size distributions are not log-normally distributed. The most common field size observed in this study was 10 acres for most crops studied.
AN OVERVIEW OF THE OBJECTIVES AND DESIGN OF THE '99 ATLANTA SUPERSITE EXPERIMENT
During the Summer of 1999, a 4-week intensive field campaign was conducted at a site on Jefferson Street in Midtown Atlanta. The campaign, the 1999 Atlanta Supersites Experiment, was carried out under the direction of the Southern Oxidants Study and represented the first of U....
Building a Context of Experience: Communication Audits to Teach Communication Concepts.
ERIC Educational Resources Information Center
Husband, Robert L.; Helmer, James E.
The research audit is an effective means for providing undergraduate students with relevant organizational experience through which they can integrate theory and practice. A course was designed to teach students to apply basic concepts in the field of organizational communication to "real life" communication problems in organizations.…
ERIC Educational Resources Information Center
Aiken, Mary Jo
This five-lesson unit is designed to give students a flavor of what the study of economics is about, to strengthen mathematical concepts the students already know, to allow them to experience the interrelationship between the two fields of mathematics and economics and to experience success and enjoyment. Topics of instruction include: (1) types…
NASA Lewis Research Center combustion MHD experiment
NASA Technical Reports Server (NTRS)
Smith, J. M.
1982-01-01
The MHD power generation experiments were conducted in a high field strength cryomagnet which was adapted from an existing facility. In its original construction, it consisted of 12 high purity aluminum coils pool cooled in a bath of liquid neon. In this configuration, a peak field of 15 tesla was produced. For the present experiments, the center four coils were removed and a 23 cm diameter transverse warm bore tube was inserted to allow the placement of the MHD experiment between the remaining eight coils. In this configuration, a peak field of 6 tesla should be obtainable. The time duration of the experiment is limited by the neon supply which allows on the order of 1 minute of total operating time followed by an 18-hour reliquefaction period. As a result, the experiments are run in a pulsed mode. The run duration for the data presented here was 5 sec. The magnetic field profile along the MHD duct is shown. Since the working fluid is in essence superheated steam, it is easily water quenched at the exit of the diffuser and the components are designed vacuum tight so that the exhaust pipe and demister an be pumped down to simulate the vacuum of outer space.
A Novel Approach to the Millikan Oil Drop Experiment
NASA Astrophysics Data System (ADS)
Gibbs, Spencer; Oyun, Nomin
2008-05-01
Robert Millikan was in part awarded the 1923 Nobel Prize in physics for the famous Millikan Oil Drop Experiment. We have successfully repeated the experiment using a novel approach designed by Brian Scott and Robert Hobbs of Bellevue Community College that is less tedious and more reliable than the classic experiment. In Millikan's experiment, the charged plates are oriented horizontally so that the electric and gravitational forces are parallel to each other. By observing the velocity of the droplets in the field free state, the mass of the droplet can be determined, and by observing the velocity in the electric field, the charge can be inferred. Bellevue College's new approach reorients the plates vertically so that the gravitational field is perpendicular to the electric field. We have also added video capture of the falling drop to replace the traditional repeated rise and fall timings from the original. This allows both the mass and charge of the droplet to be determined in one passage from the orthogonal components of velocity, dramatically improving the ease and success rate of the experiment. Using this method, it is well within the experimental abilities of first year physics students to successfully determine the mass and charge of the oil droplets.
Ishima, Rieko
2016-01-01
Abundant solvent nuclear spins, such as water protons in aqueous solution, cause radiation damping in NMR experiments. It is important to know how the effect of radiation damping appears in high-resolution protein NMR because macromolecular studies always require very high magnetic field strengths with a highly sensitive NMR probe that can easily cause radiation damping. Here, we show the behavior of water magnetization after a pulsed-field gradient (PFG) using nutation experiments at 900 MHz with a cryogenic probe: when water magnetization is located in the upper hemisphere (having +Z component, parallel to the external magnetic field), dephasing of the magnetization by a PFG effectively suppresses residual water magnetization in the transverse plane. In contrast, when magnetization is located in the lower hemisphere (having −Z component), the small residual transverse component remaining after a PFG is still sufficient to induce radiation damping. Based on this observation, we designed 1H-15N HSQC experiments in which water magnetization is maintained in the upper hemisphere, but not necessarily along Z, and compared them with the conventional experiments, in which water magnetization is inverted during the t1 period. The result demonstrates moderate gain of signal-to-noise ratio, 0–28%. Designing the experiments such that water magnetization is maintained in the upper hemisphere allows shorter pulses to be used compared to the complete water flip-back and, thereby, is useful as a building block of protein NMR pulse programs in solution. PMID:27524944
Englert, Chris; Persaud, Brittany N; Oudejans, Raôul R D; Bertrams, Alex
2015-01-01
We tested the assumption that ego depletion would affect the sprint start in a sample of N = 38 athletes without track and field experience in an experiment by applying a mixed between- (depletion vs. non-depletion) within- (T1: before manipulation of ego depletion vs. T2: after manipulation of ego depletion) subjects design. We assumed that ego depletion would increase the possibility for a false start, as regulating the impulse to initiate the sprinting movement too soon before the starting signal requires self-control. In line with our assumption, we found a significant interaction as there was only a significant increase in the number of false starts from T1 to T2 for the depletion group while this was not the case for the non-depletion group. We conclude that ego depletion has a detrimental influence on the sprint start in athletes without track and field experience.
Englert, Chris; Persaud, Brittany N.; Oudejans, Raôul R. D.; Bertrams, Alex
2015-01-01
We tested the assumption that ego depletion would affect the sprint start in a sample of N = 38 athletes without track and field experience in an experiment by applying a mixed between- (depletion vs. non-depletion) within- (T1: before manipulation of ego depletion vs. T2: after manipulation of ego depletion) subjects design. We assumed that ego depletion would increase the possibility for a false start, as regulating the impulse to initiate the sprinting movement too soon before the starting signal requires self-control. In line with our assumption, we found a significant interaction as there was only a significant increase in the number of false starts from T1 to T2 for the depletion group while this was not the case for the non-depletion group. We conclude that ego depletion has a detrimental influence on the sprint start in athletes without track and field experience. PMID:26347678
Flow field measurements in the cell culture unit
NASA Technical Reports Server (NTRS)
Walker, Stephen; Wilder, Mike; Dimanlig, Arsenio; Jagger, Justin; Searby, Nancy
2002-01-01
The cell culture unit (CCU) is being designed to support cell growth for long-duration life science experiments on the International Space Station (ISS). The CCU is a perfused loop system that provides a fluid environment for controlled cell growth experiments within cell specimen chambers (CSCs), and is intended to accommodate diverse cell specimen types. Many of the functional requirements depend on the fluid flow field within the CSC (e.g., feeding and gas management). A design goal of the CCU is to match, within experimental limits, all environmental conditions, other than the effects of gravity on the cells, whether the hardware is in microgravity ( micro g), normal Earth gravity, or up to 2g on the ISS centrifuge. In order to achieve this goal, two steps are being taken. The first step is to characterize the environmental conditions of current 1g cell biology experiments being performed in laboratories using ground-based hardware. The second step is to ensure that the design of the CCU allows the fluid flow conditions found in 1g to be replicated from microgravity up to 2g. The techniques that are being used to take these steps include flow visualization, particle image velocimetry (PIV), and computational fluid dynamics (CFD). Flow visualization using the injection of dye has been used to gain a global perspective of the characteristics of the CSC flow field. To characterize laboratory cell culture conditions, PIV is being used to determine the flow field parameters of cell suspension cultures grown in Erlenmeyer flasks on orbital shakers. These measured parameters will be compared to PIV measurements in the CSCs to ensure that the flow field that cells encounter in CSCs is within the bounds determined for typical laboratory experiments. Using CFD, a detailed simulation is being developed to predict the flow field within the CSC for a wide variety of flow conditions, including microgravity environments. Results from all these measurements and analyses of the CSC flow environment are presented and discussed. The final configuration of the CSC employs magnetic stir bars with angled paddles to achieve the necessary flow requirements within the CSC.
Nested Helmholtz coil design for producing homogeneous transient rotating magnetic fields
NASA Astrophysics Data System (ADS)
Podaru, George; Moore, John; Dani, Raj Kumar; Prakash, Punit; Chikan, Viktor
2015-03-01
Electromagnets that can produce strong rotating magnetic fields at kHz frequencies are potentially very useful to exert rotating force on magnetic nanoparticles as small as few nanometers in size. In this article, the construction of a pulsed high-voltage rotating electromagnet is demonstrated based on a nested Helmholtz coil design. The energy for the coils is provided by two high-voltage discharge capacitors. The triggered spark gaps used in the experiments show sufficient accuracy to achieve the high frequency rotating magnetic field. The measured strength of the rotating magnetic field is 200 mT. This magnetic field is scalable by increasing the number of turns on the coils, by reducing the dimensions of the coils and by increasing the discharge current/voltage of the capacitors.
Bistatic radar sea state monitoring system design
NASA Technical Reports Server (NTRS)
Ruck, G. T.; Krichbaum, C. K.; Everly, J. O.
1975-01-01
Remote measurement of the two-dimensional surface wave height spectrum of the ocean by the use of bistatic radar techniques was examined. Potential feasibility and experimental verification by field experiment are suggested. The required experimental hardware is defined along with the designing, assembling, and testing of several required experimental hardware components.
ERIC Educational Resources Information Center
Zhang, Zhe; Hansen, Claus Thorp; Andersen, Michael A. E.
2016-01-01
Power electronics is a fast-developing technology within the electrical engineering field. This paper presents the results and experiences gained from applying design-oriented project-based learning to switch-mode power supply design in a power electronics course at the Technical University of Denmark (DTU). Project-based learning (PBL) is known…
Fastener Design Course [Workbook
NASA Technical Reports Server (NTRS)
Barrett, Richart T.
1997-01-01
Richard T. Barrett, Senior Aerospace Engineer of NASA Lewis Research Center presents a comprehensive course on fastener design. A recognized expert in the field of fastener technology Mr. Barrett combines lecture, charts, illustrations with real-world experiences. Topics covered include: materials, plantings and coatings, locking methods threads, joint stiffness, rivets, inserts, nut plates, thread lubricants, design criteria, etc. These presentation slides accompany the DVD.
Pipelined CPU Design with FPGA in Teaching Computer Architecture
ERIC Educational Resources Information Center
Lee, Jong Hyuk; Lee, Seung Eun; Yu, Heon Chang; Suh, Taeweon
2012-01-01
This paper presents a pipelined CPU design project with a field programmable gate array (FPGA) system in a computer architecture course. The class project is a five-stage pipelined 32-bit MIPS design with experiments on the Altera DE2 board. For proper scheduling, milestones were set every one or two weeks to help students complete the project on…
ERIC Educational Resources Information Center
Vezzoli, Carlo; Penin, Lara
2006-01-01
Purpose: This paper aims to diffuse the concept of a multi-lateral learning process as a means to promote experimental didactics and research (and the cross-fertilization between these two activities) in the field of design of sustainable product-service systems (PSSs) and to consider the university campus as the locus for the design,…
On verifying magnetic dipole moment of a magnetic torquer by experiments
NASA Astrophysics Data System (ADS)
Kuyyakanont, Aekjira; Kuntanapreeda, Suwat; Fuengwarodsakul, Nisai H.
2018-01-01
Magnetic torquers are used for the attitude control of small satellites, such as CubeSats with Low Earth Orbit (LEO). During the design of magnetic torquers, it is necessary to confirm if its magnetic dipole moment is enough to control the satellite attitude. The magnetic dipole moment can affect the detumbling time and the satellite rotation time. In addition, it is also necessary to understand how to design the magnetic torquer for operation in a CubeSat under the space environment at LEO. This paper reports an investigation of the magnetic dipole moment and the magnetic field generated by a circular air-coil magnetic torquer using experimental measurements. The experiment testbed was built on an air-bearing under a magnetic field generated by a Helmholtz coil. This paper also describes the procedure to determine and verify the magnetic dipole moment value of the designed circular air-core magnetic torquer. The experimental results are compared with the design calculations. According to the comparison results, the designed magnetic torquer reaches the required magnetic dipole moment. This designed magnetic torquer will be applied to the attitude control systems of a 1U CubeSat satellite in the project “KNACKSAT.”
A free-jet Hg target operating in a high magnetic field intersecting a high-power proton beam
NASA Astrophysics Data System (ADS)
Graves, Van; Spampinato, Philip; Gabriel, Tony; Kirk, Harold; Simos, Nicholas; Tsang, Thomas; McDonald, Kirk; Peter Titus; Fabich, Adrian; Haseroth, Helmut; Lettry, Jacques
2006-06-01
A proof-of-principal experiment to investigate the interaction of a proton beam, high magnetic field, and high-Z target is planned to take place at CERN in early 2007. This experiment is part of the Muon Collider Collaboration, with participants from Brookhaven National Laboratory, Princeton University, Massachusetts Institute Of Technology, European Organization for Nuclear Research-CERN, Rutherford Appleton Laboratory, and Oak Ridge National Laboratory. An unconstrained mercury jet target system that interacts with a high power (1 MW) proton beam in a high magnetic field (15 T) is being designed. The Hg jet diameter is 1-cm with a velocity up to 20 m/s. A laser optical diagnostic system will be incorporated into the target design to permit observation of the dispersal of the jet resulting from interaction with a 24 GeV proton beam with up to 20×1012 ppp. The target system includes instruments for sensing mercury vapor, temperature, flow rate, and sump tank level, and the means to position the jet relative to the magnetic axis of a solenoid and the proton beam. The design considerations for the system include all issues dealing with safely handling approximately 23 l of Hg, transporting the target system and the mercury to CERN, decommissioning the experiment, and returning the mildly activated equipment and Hg to the US.
A free-jet Hg target operating in a high magnetic field intersecting a high-power proton beam
NASA Astrophysics Data System (ADS)
Van Graves; Spampinato, Philip; Gabriel, Tony; Kirk, Harold; Simos, Nicholas; Tsang, Thomas; McDonald, Kirk; Peter Titus; Fabich, Adrian; Haseroth, Helmut; Lettry, Jacques
2006-06-01
A proof-of-principal experiment to investigate the interaction of a proton beam, high magnetic field, and high- Z target is planned to take place at CERN in early 2007. This experiment is part of the Muon Collider Collaboration, with participants from Brookhaven National Laboratory, Princeton University, Massachusetts Institute Of Technology, European Organization for Nuclear Research-CERN, Rutherford Appleton Laboratory, and Oak Ridge National Laboratory. An unconstrained mercury jet target system that interacts with a high power (1 MW) proton beam in a high magnetic field (15 T) is being designed. The Hg jet diameter is 1-cm with a velocity up to 20 m/s. A laser optical diagnostic system will be incorporated into the target design to permit observation of the dispersal of the jet resulting from interaction with a 24 GeV proton beam with up to 20×10 12 ppp. The target system includes instruments for sensing mercury vapor, temperature, flow rate, and sump tank level, and the means to position the jet relative to the magnetic axis of a solenoid and the proton beam. The design considerations for the system include all issues dealing with safely handling approximately 23 l of Hg, transporting the target system and the mercury to CERN, decommissioning the experiment, and returning the mildly activated equipment and Hg to the US.
Control of Flowing Liquid Films By Electrostatic Fields in Space
NASA Technical Reports Server (NTRS)
Bankoff, S. George; Miksis, Michael J.; Kim, Hyo
1996-01-01
A novel type of lightweight space radiator has been proposed which employs internal electrostatic fields to stop coolant leaks from punctures caused by micrometeorites or space debris. Extensive calculations have indicated the feasibility of leak stoppage without film destabilization for both stationary and rotating designs. Solutions of the evolution equation for a liquid-metal film on an inclined plate, using lubrication theory for low Reynolds numbers, Karman-Pohlhausen quadratic velocity profiles for higher Reynolds numbers, and a direct numerical solution are shown. For verification an earth-based falling-film experiment on a precisely-vertical wall with controllable vacuum on either side of a small puncture is proposed. The pressure difference required to start and to stop the leak, in the presence and absence of a strong electric field, will be measured and compared with calculations. Various parameters, such as field strength, film Reynolds number, contact angle, and hole diameter will be examined. A theoretical analysis will be made of the case where the electrode is close enough to the film surface that the electric field equation and the surface dynamics equations are coupled. Preflight design calculations will be made in order to transfer the modified equipment to a flight experiment.
Curriculum Outline for a General Oceanography Field Laboratory (Review Cycle-Annual).
ERIC Educational Resources Information Center
Schlenker, Richard M.
A curriculum guide, in outline form, for oceanography field laboratories is presented. Designed to complement and expand upon an oceanography lecture course, it provides a list of objectives related to student experiences in three areas: (1) operating oceanographic equipment; (2) gathering, manipulating, and evaluating data; and (3) writing formal…
See the Math behind the Medicine
ERIC Educational Resources Information Center
Saunders, Marnie M.
2010-01-01
To promote math and science, this author designed an activity to show students that biomedical fields are within their reach. The activity has three distinct goals: (1) To introduce the field of biomedical engineering to students and encourage them in these career pursuits; (2) To give them hands-on experience conducting a biomechanical test; and…
The Role of Majority Groups in Diversity Programs
ERIC Educational Resources Information Center
Rheingans, Penny; Brodsky, Anne; Scheibler, Jill; Spence, Anne
2011-01-01
The underrepresentation of women in technical fields is a widely acknowledged national problem, limiting both the raw size of the talent pool and the diversity of experiences and perspectives of those who will design solutions to key problems facing society. Empowering women to succeed in these fields is clearly one important component of any…
Coral: A Hawaiian Resource. An Instructional Guidebook for Teachers.
ERIC Educational Resources Information Center
Fielding, Ann; Moniz, Barbara
Described are eight field trips to various sites on the Hawaiian island of Oahu. These experiences are designed to help teachers develop middle school students' awareness and understanding of Hawaii's natural resources, with particular emphasis upon coral. Each field trip unit contains a physical and biological description of the area and two to…
Climbing the Slope of Enlightenment during NASA's Arctic Boreal Vulnerability Experiment
NASA Astrophysics Data System (ADS)
Griffith, P. C.; Hoy, E.; Duffy, D.; McInerney, M.
2015-12-01
The Arctic Boreal Vulnerability Experiment (ABoVE) is a new field campaign sponsored by NASA's Terrestrial Ecology Program and designed to improve understanding of the vulnerability and resilience of Arctic and boreal social-ecological systems to environmental change (http://above.nasa.gov). ABoVE is integrating field-based studies, modeling, and data from airborne and satellite remote sensing. The NASA Center for Climate Simulation (NCCS) has partnered with the NASA Carbon Cycle and Ecosystems Office (CCEO) to create a high performance science cloud for this field campaign. The ABoVE Science Cloud combines high performance computing with emerging technologies and data management with tools for analyzing and processing geographic information to create an environment specifically designed for large-scale modeling, analysis of remote sensing data, copious disk storage for "big data" with integrated data management, and integration of core variables from in-situ networks. The ABoVE Science Cloud is a collaboration that is accelerating the pace of new Arctic science for researchers participating in the field campaign. Specific examples of the utilization of the ABoVE Science Cloud by several funded projects will be presented.
Dumpster Optics: teaching and learning optics without a kit
NASA Astrophysics Data System (ADS)
Donnelly, Judy; Magnani, Nancy; Robinson, Kathleen
2016-09-01
The Next Generation Science Standards (NGSS) and renewed emphasis on STEM education in the U.S. have resulted in the development of many educational kits for teaching science in general and optics in particular. Many teachers do not have funding to purchase kits and practical experience has shown that even costly kits can have poorly written and misleading instructions and may include experiments that would not work in a classroom. Dumpster Optics lessons are designed to use inexpensive, commonly found materials. All lessons have been field-tested with students. We will describe the development of the lessons, provide examples of field testing experiences and outline possible future activities.
Electric-field sensors for bullet detection systems
NASA Astrophysics Data System (ADS)
Vinci, Stephen; Hull, David; Ghionea, Simon; Ludwig, William; Deligeorges, Socrates; Gudmundsson, Thorkell; Noras, Maciej
2014-06-01
Research and experimental trials have shown that electric-field (E-field) sensors are effective at detecting charged projectiles. E-field sensors can likely complement traditional acoustic sensors, and help provide a more robust and effective solution for bullet detection and tracking. By far, the acoustic sensor is the most prevalent technology in use today for hostile fire defeat systems due to compact size and low cost, yet they come with a number of challenges that include multipath, reverberant environments, false positives and low signal-to-noise. Studies have shown that these systems can benefit from additional sensor modalities such as E-field sensors. However, E-field sensors are a newer technology that is relatively untested beyond basic experimental trials; this technology has not been deployed in any fielded systems. The U.S. Army Research Laboratory (ARL) has conducted live-fire experiments at Aberdeen Proving Grounds (APG) to collect data from E-field sensors. Three types of E-field sensors were included in these experiments: (a) an electric potential gradiometer manufactured by Quasar Federal Systems (QFS), (b) electric charge induction, or "D-dot" sensors designed and built by the Army Research Lab (ARL), and (c) a varactor based E-field sensor prototype designed by University of North Carolina-Charlotte (UNCC). Sensors were placed in strategic locations near the bullet trajectories, and their data were recorded. We analyzed the performance of each E-field sensor type in regard to small-arms bullet detection capability. The most recent experiment in October 2013 allowed demonstration of improved versions of the varactor and D-dot sensor types. Results of new real-time analysis hardware employing detection algorithms were also tested. The algorithms were used to process the raw data streams to determine when bullet detections occurred. Performance among the sensor types and algorithm effectiveness were compared to estimates from acoustics signatures and known ground truth. Results, techniques and configurations that might work best for a given sensor platform are discussed.
A magnetic field cloak for charged particle beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Capobianco-Hogan, K. G.; Cervantes, R.; Deshpande, A.
Shielding charged particle beams from transverse magnetic fields is a common challenge for particle accelerators and experiments. In this study, we demonstrate that a magnetic field cloak is a viable solution. It allows for the use of dipole magnets in the forward regions of experiments at an Electron Ion Collider (EIC) and other facilities without interfering with the incoming beams. The dipoles can improve the momentum measurements of charged final state particles at angles close to the beam line and therefore increase the physics reach of these experiments. In contrast to other magnetic shielding options (such as active coils), amore » cloak requires no external powering. We discuss the design parameters, fabrication, and limitations of a magnetic field cloak and demonstrate that cylinders made from 45 layers of YBCO high-temperature superconductor, combined with a ferromagnetic shell made from epoxy and stainless steel powder, shield more than 99% of a transverse magnetic field of up to 0.45 T (95% shielding at 0.5 T) at liquid nitrogen temperature. Lastly, the ferromagnetic shell reduces field distortions caused by the superconductor alone by 90% at 0.45 T.« less
A magnetic field cloak for charged particle beams
NASA Astrophysics Data System (ADS)
Capobianco-Hogan, K. G.; Cervantes, R.; Deshpande, A.; Feege, N.; Krahulik, T.; LaBounty, J.; Sekelsky, R.; Adhyatman, A.; Arrowsmith-Kron, G.; Coe, B.; Dehmelt, K.; Hemmick, T. K.; Jeffas, S.; LaByer, T.; Mahmud, S.; Oliveira, A.; Quadri, A.; Sharma, K.; Tishelman-Charny, A.
2018-01-01
Shielding charged particle beams from transverse magnetic fields is a common challenge for particle accelerators and experiments. We demonstrate that a magnetic field cloak is a viable solution. It allows for the use of dipole magnets in the forward regions of experiments at an Electron Ion Collider (EIC) and other facilities without interfering with the incoming beams. The dipoles can improve the momentum measurements of charged final state particles at angles close to the beam line and therefore increase the physics reach of these experiments. In contrast to other magnetic shielding options (such as active coils), a cloak requires no external powering. We discuss the design parameters, fabrication, and limitations of a magnetic field cloak and demonstrate that cylinders made from 45 layers of YBCO high-temperature superconductor, combined with a ferromagnetic shell made from epoxy and stainless steel powder, shield more than 99% of a transverse magnetic field of up to 0.45 T (95% shielding at 0.5 T) at liquid nitrogen temperature. The ferromagnetic shell reduces field distortions caused by the superconductor alone by 90% at 0.45 T.
A magnetic field cloak for charged particle beams
Capobianco-Hogan, K. G.; Cervantes, R.; Deshpande, A.; ...
2017-10-02
Shielding charged particle beams from transverse magnetic fields is a common challenge for particle accelerators and experiments. In this study, we demonstrate that a magnetic field cloak is a viable solution. It allows for the use of dipole magnets in the forward regions of experiments at an Electron Ion Collider (EIC) and other facilities without interfering with the incoming beams. The dipoles can improve the momentum measurements of charged final state particles at angles close to the beam line and therefore increase the physics reach of these experiments. In contrast to other magnetic shielding options (such as active coils), amore » cloak requires no external powering. We discuss the design parameters, fabrication, and limitations of a magnetic field cloak and demonstrate that cylinders made from 45 layers of YBCO high-temperature superconductor, combined with a ferromagnetic shell made from epoxy and stainless steel powder, shield more than 99% of a transverse magnetic field of up to 0.45 T (95% shielding at 0.5 T) at liquid nitrogen temperature. Lastly, the ferromagnetic shell reduces field distortions caused by the superconductor alone by 90% at 0.45 T.« less
Development of 1D Liner Compression Code for IDL
NASA Astrophysics Data System (ADS)
Shimazu, Akihisa; Slough, John; Pancotti, Anthony
2015-11-01
A 1D liner compression code is developed to model liner implosion dynamics in the Inductively Driven Liner Experiment (IDL) where FRC plasmoid is compressed via inductively-driven metal liners. The driver circuit, magnetic field, joule heating, and liner dynamics calculations are performed at each time step in sequence to couple these effects in the code. To obtain more realistic magnetic field results for a given drive coil geometry, 2D and 3D effects are incorporated into the 1D field calculation through use of correction factor table lookup approach. Commercial low-frequency electromagnetic fields solver, ANSYS Maxwell 3D, is used to solve the magnetic field profile for static liner condition at various liner radius in order to derive correction factors for the 1D field calculation in the code. The liner dynamics results from the code is verified to be in good agreement with the results from commercial explicit dynamics solver, ANSYS Explicit Dynamics, and previous liner experiment. The developed code is used to optimize the capacitor bank and driver coil design for better energy transfer and coupling. FRC gain calculations are also performed using the liner compression data from the code for the conceptual design of the reactor sized system for fusion energy gains.
Sampling flies or sampling flaws? Experimental design and inference strength in forensic entomology.
Michaud, J-P; Schoenly, Kenneth G; Moreau, G
2012-01-01
Forensic entomology is an inferential science because postmortem interval estimates are based on the extrapolation of results obtained in field or laboratory settings. Although enormous gains in scientific understanding and methodological practice have been made in forensic entomology over the last few decades, a majority of the field studies we reviewed do not meet the standards for inference, which are 1) adequate replication, 2) independence of experimental units, and 3) experimental conditions that capture a representative range of natural variability. Using a mock case-study approach, we identify design flaws in field and lab experiments and suggest methodological solutions for increasing inference strength that can inform future casework. Suggestions for improving data reporting in future field studies are also proposed.
Global Modeling, Field Campaigns, Upscaling and Ray Desjardins
NASA Technical Reports Server (NTRS)
Sellers, P. J.; Hall, F. G.
2012-01-01
In the early 1980's, it became apparent that land surface radiation and energy budgets were unrealistically represented in Global Circulation models (GCM's), Shortly thereafter, it became clear that the land carbon budget was also poorly represented in Earth System Models (ESM's), A number of scientific communities, including GCM/ESM modelers, micrometeorologists, satellite data specialists and plant physiologists, came together to design field experiments that could be used to develop and validate the contemporary prototype land surface models. These experiments were designed to measure land surface fluxes of radiation, heat, water vapor and CO2 using a network of flux towers and other plot-scale techniques, coincident with satellite measurements of related state variables, The interdisciplinary teams involved in these experiments quickly became aware of the scale gap between plot-scale measurements (approx 10 - 100m), satellite measurements (100m - 10 km), and GCM grid areas (l0 - 200km). At the time, there was no established flux measurement capability to bridge these scale gaps. Then, a Canadian science learn led by Ray Desjardins started to actively participate in the design and execution of the experiments, with airborne eddy correlation providing the radically innovative bridge across the scale gaps, In a succession of brilliantly executed field campaigns followed up by convincing scientific analyses, they demonstrated that airborne eddy correlation allied with satellite data was the most powerful upscaling tool available to the community, The rest is history: the realism and credibility of weather and climate models has been enormously improved enormously over the last 25 years with immense benefits to the public and policymakers.
A three-layer magnetic shielding for the MAIUS-1 mission on a sounding rocket
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kubelka-Lange, André, E-mail: andre.kubelka@zarm.uni-bremen.de; Herrmann, Sven; Grosse, Jens
Bose-Einstein-Condensates (BECs) can be used as a very sensitive tool for experiments on fundamental questions in physics like testing the equivalence principle using matter wave interferometry. Since the sensitivity of these experiments in ground-based environments is limited by the available free fall time, the QUANTUS project started to perform BEC interferometry experiments in micro-gravity. After successful campaigns in the drop tower, the next step is a space-borne experiment. The MAIUS-mission will be an atom-optical experiment that will show the feasibility of experiments with ultra-cold quantum gases in microgravity in a sounding rocket. The experiment will create a BEC of 10{supmore » 5} {sup 87}Rb-atoms in less than 5 s and will demonstrate application of basic atom interferometer techniques over a flight time of 6 min. The hardware is specifically designed to match the requirements of a sounding rocket mission. Special attention is thereby spent on the appropriate magnetic shielding from varying magnetic fields during the rocket flight, since the experiment procedures are very sensitive to external magnetic fields. A three-layer magnetic shielding provides a high shielding effectiveness factor of at least 1000 for an undisturbed operation of the experiment. The design of this magnetic shielding, the magnetic properties, simulations, and tests of its suitability for a sounding rocket flight are presented in this article.« less
A three-layer magnetic shielding for the MAIUS-1 mission on a sounding rocket.
Kubelka-Lange, André; Herrmann, Sven; Grosse, Jens; Lämmerzahl, Claus; Rasel, Ernst M; Braxmaier, Claus
2016-06-01
Bose-Einstein-Condensates (BECs) can be used as a very sensitive tool for experiments on fundamental questions in physics like testing the equivalence principle using matter wave interferometry. Since the sensitivity of these experiments in ground-based environments is limited by the available free fall time, the QUANTUS project started to perform BEC interferometry experiments in micro-gravity. After successful campaigns in the drop tower, the next step is a space-borne experiment. The MAIUS-mission will be an atom-optical experiment that will show the feasibility of experiments with ultra-cold quantum gases in microgravity in a sounding rocket. The experiment will create a BEC of 10(5) (87)Rb-atoms in less than 5 s and will demonstrate application of basic atom interferometer techniques over a flight time of 6 min. The hardware is specifically designed to match the requirements of a sounding rocket mission. Special attention is thereby spent on the appropriate magnetic shielding from varying magnetic fields during the rocket flight, since the experiment procedures are very sensitive to external magnetic fields. A three-layer magnetic shielding provides a high shielding effectiveness factor of at least 1000 for an undisturbed operation of the experiment. The design of this magnetic shielding, the magnetic properties, simulations, and tests of its suitability for a sounding rocket flight are presented in this article.
ERIC Educational Resources Information Center
Browning, Ruth A.
This module is designed to aid preservice teachers in their first student teaching experience. The module is composed of five learning experiences which enable participants to assess their feelings toward teaching by focusing on three module components: (1) getting to know the students; (2) analyzing the role and activities of a teacher; and (3)…
ERIC Educational Resources Information Center
Nasir, Ambareen; Heineke, Amy J.
2014-01-01
This study investigates how early clinical experiences impact teacher candidates' learning and experiences with Latina/o English learners in a field-based program housed in a multilingual, urban elementary school. We draw on multiple-case study design and use discourse analysis to explore cases of three candidates. Findings reveal exploration of…
High Voltage Tests in the LUX-ZEPLIN System Test
NASA Astrophysics Data System (ADS)
Whitis, Thomas; Lux-Zeplin Collaboration
2016-03-01
The LUX-ZEPLIN (LZ) project is a dark matter direct detection experiment using liquid xenon. The detector is a time projection chamber (TPC) requiring the establishment of a large electric field inside of the detector in order to drift ionization electrons. Historically, many xenon TPC designs have been unable to reach their design fields due to light production and breakdown. The LZ System Test is scaled so that with a cathode voltage of -50 kV, it will have the fields that will be seen in the LZ detector at -100 kV. It will use a fully instrumented but scaled-down version of the LZ TPC design with a vessel set and gas system designed for quick turnaround, allowing for iterative modifications to the TPC prototype and instrumentation. This talk will present results from the high voltage tests performed during the first runs of the LZ System Test.
Field Geophysics at SAGE: Strategies for Effective Education
NASA Astrophysics Data System (ADS)
Braile, L. W.; Baldridge, W. S.; Jiracek, G. R.; Biehler, S.; Ferguson, J. F.; Pellerin, L.; McPhee, D. K.; Bedrosian, P. A.; Snelson, C. M.; Hasterok, D. P.
2011-12-01
SAGE (Summer of Applied Geophysical Experience) is a unique program of education and research in geophysical field methods for undergraduate and graduate students from any university and for professionals. The core program is held for 4 weeks each summer in New Mexico and for an additional week in the following academic year in San Diego for U.S. undergraduates supported by the NSF Research Experience for Undergraduates (REU) program. Since SAGE was initiated in 1983, 730 students have participated in the program. NSF REU funding for SAGE began in 1990 and 319 REU students have completed SAGE through 2011. The primary objectives of SAGE are to teach the major geophysical exploration methods (seismic, gravity, magnetics, electromagnetics); apply these methods to the solution of specific problems (environmental, archaeological, hydrologic, geologic structure and stratigraphy); gain experience in processing, modeling and interpretation of geophysical data; and integrate the geophysical models and interpretations with geology. Additional objectives of SAGE include conducting research on the Rio Grande rift of northern New Mexico, and providing information on geophysics careers and professional development experiences to SAGE participants. Successful education, field and research strategies that we have implemented over the years include: 1. learn by doing; 2. mix lecture/discussion, field work, data processing and analysis, modeling and interpretation, and presentation of results; 3. a two-tier team approach - method/technique oriented teams and interpretation/integration teams (where each team includes persons representing different methods), provides focus, in-depth study, opportunity for innovation, and promotes teamwork and a multi-disciplinary approach; 4. emphasis on presentations/reports - each team (and all team members) make presentation, each student completes a written report; 5. experiment design discussion - students help design field program and consider issues - safety, constraints, data quality/quantity, research objective, educational experience, survey parameters, why multidisciplinary?, etc.; 6. knowledge of multiple geophysical field methods (each student works with all methods); 7. information on geophysics careers and networking provided by industry visitors; 8. measures of success of the program include high rate of continuation to graduate school and careers in geophysics, support and feedback from industry participants and visitors, student evaluations at end of program, presentations at professional meetings, publications, and faculty evaluation of student work.
NASA Astrophysics Data System (ADS)
Yue, Kang; Wang, Danli; Yang, Xinpan; Hu, Haichen; Liu, Yuqing; Zhu, Xiuqing
2016-10-01
To date, as the different application fields, most VR-based training systems have been different. Therefore, we should take the characteristics of application field into consideration and adopt different evaluation methods when evaluate the user experience of these training systems. In this paper, we propose a method to evaluate the user experience of virtual astronauts training system. Also, we design an experiment based on the proposed method. The proposed method takes learning performance as one of the evaluation dimensions, also combines with other evaluation dimensions such as: presence, immersion, pleasure, satisfaction and fatigue to evaluation user experience of the System. We collect subjective and objective data, the subjective data are mainly from questionnaire designed based on the evaluation dimensions and user interview conducted before and after the experiment. While the objective data are consisted of Electrocardiogram (ECG), reaction time, numbers of reaction error and the video data recorded during the experiment. For the analysis of data, we calculate the integrated score of each evaluation dimension by using factor analysis. In order to improve the credibility of the assessment, we use the ECG signal and reaction test data before and after experiment to validate the changes of fatigue during the experiment, and the typical behavioral features extracted from the experiment video to explain the result of subjective questionnaire. Experimental results show that the System has a better user experience and learning performance, but slight visual fatigue exists after experiment.
RF Pulse Design using Nonlinear Gradient Magnetic Fields
Kopanoglu, Emre; Constable, R. Todd
2014-01-01
Purpose An iterative k-space trajectory and radio-frequency (RF) pulse design method is proposed for Excitation using Nonlinear Gradient Magnetic fields (ENiGMa). Theory and Methods The spatial encoding functions (SEFs) generated by nonlinear gradient fields (NLGFs) are linearly dependent in Cartesian-coordinates. Left uncorrected, this may lead to flip-angle variations in excitation profiles. In the proposed method, SEFs (k-space samples) are selected using a Matching-Pursuit algorithm, and the RF pulse is designed using a Conjugate-Gradient algorithm. Three variants of the proposed approach are given: the full-algorithm, a computationally-cheaper version, and a third version for designing spoke-based trajectories. The method is demonstrated for various target excitation profiles using simulations and phantom experiments. Results The method is compared to other iterative (Matching-Pursuit and Conjugate Gradient) and non-iterative (coordinate-transformation and Jacobian-based) pulse design methods as well as uniform density spiral and EPI trajectories. The results show that the proposed method can increase excitation fidelity significantly. Conclusion An iterative method for designing k-space trajectories and RF pulses using nonlinear gradient fields is proposed. The method can either be used for selecting the SEFs individually to guide trajectory design, or can be adapted to design and optimize specific trajectories of interest. PMID:25203286
Causer, J; McRobert, A P; Williams, A M
2013-10-01
The ability to make accurate judgments and execute effective skilled movements under severe temporal constraints are fundamental to elite performance in a number of domains including sport, military combat, law enforcement, and medicine. In two experiments, we examine the effect of stimulus strength on response time and accuracy in a temporally constrained, real-world, decision-making task. Specifically, we examine the effect of low stimulus intensity (black) and high stimulus intensity (sequin) uniform designs, worn by teammates, to determine the effect of stimulus strength on the ability of soccer players to make rapid and accurate responses. In both field- and laboratory-based scenarios, professional soccer players viewed developing patterns of play and were required to make a penetrative pass to an attacking player. Significant differences in response accuracy between uniform designs were reported in laboratory- and field-based experiments. Response accuracy was significantly higher in the sequin compared with the black uniform condition. Response times only differed between uniform designs in the laboratory-based experiment. These findings extend the literature into a real-world environment and have significant implications for the design of clothing wear in a number of domains. © 2012 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Field-scale experiments reveal persistent yield gaps in low-input and organic cropping systems
Kravchenko, Alexandra N.; Snapp, Sieglinde S.; Robertson, G. Philip
2017-01-01
Knowledge of production-system performance is largely based on observations at the experimental plot scale. Although yield gaps between plot-scale and field-scale research are widely acknowledged, their extent and persistence have not been experimentally examined in a systematic manner. At a site in southwest Michigan, we conducted a 6-y experiment to test the accuracy with which plot-scale crop-yield results can inform field-scale conclusions. We compared conventional versus alternative, that is, reduced-input and biologically based–organic, management practices for a corn–soybean–wheat rotation in a randomized complete block-design experiment, using 27 commercial-size agricultural fields. Nearby plot-scale experiments (0.02-ha to 1.0-ha plots) provided a comparison of plot versus field performance. We found that plot-scale yields well matched field-scale yields for conventional management but not for alternative systems. For all three crops, at the plot scale, reduced-input and conventional managements produced similar yields; at the field scale, reduced-input yields were lower than conventional. For soybeans at the plot scale, biological and conventional managements produced similar yields; at the field scale, biological yielded less than conventional. For corn, biological management produced lower yields than conventional in both plot- and field-scale experiments. Wheat yields appeared to be less affected by the experimental scale than corn and soybean. Conventional management was more resilient to field-scale challenges than alternative practices, which were more dependent on timely management interventions; in particular, mechanical weed control. Results underscore the need for much wider adoption of field-scale experimentation when assessing new technologies and production-system performance, especially as related to closing yield gaps in organic farming and in low-resourced systems typical of much of the developing world. PMID:28096409
Field-scale experiments reveal persistent yield gaps in low-input and organic cropping systems.
Kravchenko, Alexandra N; Snapp, Sieglinde S; Robertson, G Philip
2017-01-31
Knowledge of production-system performance is largely based on observations at the experimental plot scale. Although yield gaps between plot-scale and field-scale research are widely acknowledged, their extent and persistence have not been experimentally examined in a systematic manner. At a site in southwest Michigan, we conducted a 6-y experiment to test the accuracy with which plot-scale crop-yield results can inform field-scale conclusions. We compared conventional versus alternative, that is, reduced-input and biologically based-organic, management practices for a corn-soybean-wheat rotation in a randomized complete block-design experiment, using 27 commercial-size agricultural fields. Nearby plot-scale experiments (0.02-ha to 1.0-ha plots) provided a comparison of plot versus field performance. We found that plot-scale yields well matched field-scale yields for conventional management but not for alternative systems. For all three crops, at the plot scale, reduced-input and conventional managements produced similar yields; at the field scale, reduced-input yields were lower than conventional. For soybeans at the plot scale, biological and conventional managements produced similar yields; at the field scale, biological yielded less than conventional. For corn, biological management produced lower yields than conventional in both plot- and field-scale experiments. Wheat yields appeared to be less affected by the experimental scale than corn and soybean. Conventional management was more resilient to field-scale challenges than alternative practices, which were more dependent on timely management interventions; in particular, mechanical weed control. Results underscore the need for much wider adoption of field-scale experimentation when assessing new technologies and production-system performance, especially as related to closing yield gaps in organic farming and in low-resourced systems typical of much of the developing world.
NASA Astrophysics Data System (ADS)
Wu, Chuanren; Pagonakis, Ioannis Gr.; Avramidis, Konstantinos A.; Gantenbein, Gerd; Illy, Stefan; Thumm, Manfred; Jelonnek, John
2018-03-01
Multistage Depressed Collectors (MDCs) are widely used in vacuum tubes to regain energy from the depleted electron beam. However, the design of an MDC for gyrotrons, especially for those deployed in fusion experiments and future power plants, is not trivial. Since gyrotrons require relatively high magnetic fields, their hollow annular electron beam is magnetically confined in the collector. In such a moderate magnetic field, the MDC concept based on E × B drift is very promising. Several concrete design approaches based on the E × B concept have been proposed. This paper presents a realizable design of a two-stage depressed collector based on the E × B concept. A collector efficiency of 77% is achievable, which will be able to increase the total gyrotron efficiency from currently 50% to more than 60%. Secondary electrons reduce the efficiency only by 1%. Moreover, the collector efficiency is resilient to the change of beam current (i.e., space charge repulsion) and beam misalignment as well as magnetic field perturbations. Therefore, compared to other E × B conceptual designs, this design approach is promising and fairly feasible.
Devices development and techniques research for space life sciences
NASA Astrophysics Data System (ADS)
Zhang, A.; Liu, B.; Zheng, C.
The development process and the status quo of the devices and techniques for space life science in China and the main research results in this field achieved by Shanghai Institute of Technical Physics SITP CAS are reviewed concisely in this paper On the base of analyzing the requirements of devices and techniques for supporting space life science experiments and researches one designment idea of developing different intelligent modules with professional function standard interface and easy to be integrated into system is put forward and the realization method of the experiment system with intelligent distributed control based on the field bus are discussed in three hierarchies Typical sensing or control function cells with certain self-determination control data management and communication abilities are designed and developed which are called Intelligent Agents Digital hardware network system which are consisted of the distributed Agents as the intelligent node is constructed with the normative opening field bus technology The multitask and real-time control application softwares are developed in the embedded RTOS circumstance which is implanted into the system hardware and space life science experiment system platform with characteristic of multitasks multi-courses professional and instant integration will be constructed
ERIC Educational Resources Information Center
Risner, Doug
2015-01-01
A successful internship experience can provide invaluable learning experiences connecting students' classroom knowledge to professional "know-how" in the field. Over the past three decades, post-secondary internship programs have flourished, generating considerable research literature from a variety of disciplinary perspectives; however,…
Education and Research Related to Organic Waste Management at Agricultural Engineering Schools
ERIC Educational Resources Information Center
Soliva, Montserrat; Bernat, Carles; Gil, Emilio; Martinez, Xavier; Pujol, Miquel; Sabate, Josep; Valero, Jordi
2007-01-01
Purpose: The purpose of this paper is to describe the experience of the Agriculture Engineering School of Barcelona (ESAB), where undergraduate students were involved in field research experiments on organic waste use in agricultural systems. Design/methodology/approach: The paper outlines how the formation of professionals oriented to work for…
Power Analysis for Models of Change in Cluster Randomized Designs
ERIC Educational Resources Information Center
Li, Wei; Konstantopoulos, Spyros
2017-01-01
Field experiments in education frequently assign entire groups such as schools to treatment or control conditions. These experiments incorporate sometimes a longitudinal component where for example students are followed over time to assess differences in the average rate of linear change, or rate of acceleration. In this study, we provide methods…
"Hard Science" for Gifted 1st Graders
ERIC Educational Resources Information Center
DeGennaro, April
2006-01-01
"Hard Science" is designed to teach 1st grade gifted students accurate and high level science concepts. It is based upon their experience of the world and attempts to build a foundation for continued love and enjoyment of science. "Hard Science" provides field experiences and opportunities for hands-on discovery working beside experts in the field…
Apollo-Soyuz Pamphlet No. 4: Gravitational Field. Apollo-Soyuz Experiments in Space.
ERIC Educational Resources Information Center
Page, Lou Williams; Page, Thornton
This booklet is the fourth in a series of nine that describe the Apollo-Soyuz mission and experiments. This set is designed as a curriculum supplement for teachers, supervisors, curriculum specialists, textbook writers, and the general public. These booklets provide sources of ideas, examples of the scientific method, references to standard…
ERIC Educational Resources Information Center
Tutunji, T. A.; Saleem, A.; Rabbo, S. A.
2009-01-01
Mechatronics is a branch of engineering whose final product should involve mechanical movements controlled by smart electronics. The design and implementation of functional prototypes are an essential learning experience for the students in this field. In this paper, the guidelines for a successful mechatronics project class are presented,…
Laboratory Experiences for Disadvantaged Youth in the Middle School.
ERIC Educational Resources Information Center
Baillie, John H.
This guide contains experiments in the fields of Physical Science, Earth Science, and Biological Science designed to be used with any series of texts in a sequence for disadvantaged youth in the middle school. Any standard classroom can be used, with minor modifications and inexpensive equipment and materials. All students could participate,…
ERIC Educational Resources Information Center
Walton, Gregory M.; Logel, Christine; Peach, Jennifer M.; Spencer, Steven J.; Zanna, Mark P.
2015-01-01
In a randomized-controlled trial, we tested 2 brief interventions designed to mitigate the effects of a "chilly climate" women may experience in engineering, especially in male-dominated fields. Participants were students entering a selective university engineering program. The "social-belonging intervention" aimed to protect…
Evaluation of effects of fertilizers on narrow brown leaf spot in organic rice, 2010
USDA-ARS?s Scientific Manuscript database
The experiment was established in a field of League soil (3% sand, 32% silt, and 64% clay) under organic management for many years at the Texas A&M University System's Agrilife Research and Extension Center, Beaumont. The experiment was conducted as a two factorial experimental design with five orga...
Multiple rolling/crimping effects on termination of two summer cover crops in a conservation system
USDA-ARS?s Scientific Manuscript database
A field experiment was initiated in the 2015 growing season at the USDA-NSDL to determine the effectiveness of a prototype two-stage roller/crimper in mechanical termination of two summer cover crops intended for organic systems. The experiment was a randomized complete block design with four replic...
Campaign for Levitation in LDX
NASA Astrophysics Data System (ADS)
Garnier, D. T.; Hansen, A. K.; Mauel, M. E.; Ortiz, E. E.; Boxer, A. C.; Ellsworth, J. L.; Karim, I.; Kesner, J.; Michael, P. C.; Zhukovsky, A.
2006-10-01
In the past year, preparations have been made for the first flight of the Levitated Dipole Experiment (LDX). LDX, which consists of a 560 kg superconducting coil floating within a 5 m diameter vacuum chamber, is designed to study fusion relevant plasmas confined in a dipole magnetic field. During the spring, a high temperature superconducting levitation coil was integrated into the LDX facility. Testing was undertaken to verify the thermal performance of the coil under expected levitation conditions. In addition, a real-time operating system digital control system was developed that will be used for the levitation control. In July, plasma experiments were conducted with all superconducting magnets in operation. While still supported, roughly 75% of the weight of the floating coil was magnetically lifted by the levitation coil above. A series of plasma experiments were conducted with the same magnetic geometry as will be the case during levitation. During August, the second generation launcher system will be installed. The launcher, which retracts beyond the plasma's last closed field lines during operation, is designed to safely catch the floating coil following an unexpected loss of control. After this installation, levitation experiments will commence.
Experimental Investigation of Effectiveness of Magnetic Field on Food Freezing Process
NASA Astrophysics Data System (ADS)
Suzuki, Toru; Takeuchi, Yuri; Masuda, Kazunori; Watanabe, Manabu; Shirakashi, Ryo; Fukuda, Yutaka; Tsuruta, Takaharu; Yamamoto, Kazutaka; Koga, Nobumitsu; Hiruma, Naoya; Ichioka, Jun; Takai, Kiyoshi
Recently, several food refrigeration equipments that utilize magnetic field have attracted much attention from food production companies, consumers and mass media. However, the effectiveness of the freezers is not scientifically examined. Therefore, the effectiveness should be clarified by experiments or theoretical considerations. In this study, the effect of weak magnetic field (about 0.0005 T) on freezing process of several kinds of foods was investigated by using a specially designed freezer facilitated with magnetic field generator. The investigation included the comparison of freezing curves, drip amount, physicochemical evaluations on color and texture, observation of microstructure, and sensory evaluation. From the results of the control experiments, it can be concluded that weak magnetic field around 0.0005 T provided no significant difference on temperature history during freezing and on the qualities of frozen foods, within our experimental conditions.
Development of a tactile display with 5 mm resolution using an array of magnetorheological fluid
NASA Astrophysics Data System (ADS)
Ishizuka, Hiroki; Miki, Norihisa
2017-06-01
In this study, we demonstrate the design and evaluation of a stiffness tactile display using a magnetorheological (MR) fluid. The tactile display is based on the change in mechanical properties under an external magnetic field. In the tactile display, the MR fluid is encapsulated in chambers of 3 mm diameter and arranged at intervals of 2 mm. Magnetic fields were spatially applied to the tactile display using neodymium magnets of 3.5 mm diameter. The design and spatial magnetic field application enable the tactile display to present stiff dots of 5 mm resolution. We confirmed that the tactile display can present a spatial stiff dot and its pattern on the surface by compression experiments. Sensory evaluation revealed that the users were able to perceive the approximate position of the stiff dots. From the experiments, the tactile display has potential as a palpation tactile display and requires improvement to present various types of tissues.
NASA Astrophysics Data System (ADS)
Wilson, R.; McMillan, W.; Shaw, J.
2006-12-01
Simultaneous measurements of atmospheric downwelling infrared radiances have been measured at UMBC's Atmospheric Remote sensing Facility (ARF). We present BBAERI and BNAERI spectral comparisons to demonstrate their consistent radiometric calibration and will show examples of retrieval products from each. The atmospheric emitted radiances were measured using two different Atmospheric Emitted Radiance Interferometers' (AERI): the Baltimore Bomem AERI (BBAERI) entirely built by ABB Bomem and the Baltimore NOAA AERI (BNAERI) assembled by research scientists at NOAA. BBAERI previously has been used for field experiments in support of satellite validation, but now will spend most of its time at UMBC. BNAERI was designed for autonomous field operations. Planned upcoming field campaigns for BNAERI include experiments in central Alaska or in the Baltimore-Washington area. AERI devices were originally designed by the University of Madison Wisconsin to retrieve temperature and water vapor profiles up to the boundary layer every eight to ten minutes. In addition to boundary layer temperature and water vapor profiling, we will report retrieved boundary layer abundances of trace gases.
Steam drum design for direct steam generation
NASA Astrophysics Data System (ADS)
Willwerth, Lisa; Müller, Svenja; Krüger, Joachim; Succo, Manuel; Feldhoff, Jan Fabian; Tiedemann, Jörg; Pandian, Yuvaraj; Krüger, Dirk; Hennecke, Klaus
2017-06-01
For the direct steam generation in solar fields, the recirculation concept has been demonstrated in several installations. Water masses in the solar field vary during transient phases, such as passing clouds. The volume of the steam drum can serve as a buffer during such transients by taking in excess water and providing water storage. The saturated steam mass flow to the superheating section or the consumer can be maintained almost constant during short transients; therefore the steam drum plays a key role for constant steam supply. Its buffer effect depends on the right sizing of the steam drum for the prevailing situations. Due to missing experiences, steam drums have been sized under conservative assumptions and are thereby usually oversized. With this paper, experiences on the steam drum of the 5 MWel TSE1 power plant are discussed for optimized future plant design. The results are also of relevance for process heat installations, in which saturated steam is produced by the solar field.
Supersonic Coaxial Jet Experiment for CFD Code Validation
NASA Technical Reports Server (NTRS)
Cutler, A. D.; Carty, A. A.; Doerner, S. E.; Diskin, G. S.; Drummond, J. P.
1999-01-01
A supersonic coaxial jet facility has been designed to provide experimental data suitable for the validation of CFD codes used to analyze high-speed propulsion flows. The center jet is of a light gas and the coflow jet is of air, and the mixing layer between them is compressible. Various methods have been employed in characterizing the jet flow field, including schlieren visualization, pitot, total temperature and gas sampling probe surveying, and RELIEF velocimetry. A Navier-Stokes code has been used to calculate the nozzle flow field and the results compared to the experiment.
NASA Astrophysics Data System (ADS)
Felkins, Joseph; Holley, Adam
2017-09-01
Determining the average lifetime of a neutron gives information about the fundamental parameters of interactions resulting from the charged weak current. It is also an input for calculations of the abundance of light elements in the early cosmos, which are also directly measured. Experimentalists have devised two major approaches to measure the lifespan of the neutron, the beam experiment, and the bottle experiment. For the bottle experiment, I have designed a computational algorithm based on a numerical technique that interpolates magnetic field values in between measured points. This algorithm produces interpolated fields that satisfy the Maxwell-Heaviside equations for use in a simulation that will investigate the rate of depolarization in magnetic traps used for bottle experiments, such as the UCN τ experiment at Los Alamos National Lab. I will present how UCN depolarization can cause a systematic error in experiments like UCN τ. I will then describe the technique that I use for the interpolation, and will discuss the accuracy of interpolation for changes with the number of measured points and the volume of the interpolated region. Supported by NSF Grant 1553861.
Observability of ionospheric space-time structure with ISR: A simulation study
NASA Astrophysics Data System (ADS)
Swoboda, John; Semeter, Joshua; Zettergren, Matthew; Erickson, Philip J.
2017-02-01
The sources of error from electronically steerable array (ESA) incoherent scatter radar (ISR) systems are investigated both theoretically and with use of an open-source ISR simulator, developed by the authors, called Simulator for ISR (SimISR). The main sources of error incorporated in the simulator include statistical uncertainty, which arises due to nature of the measurement mechanism and the inherent space-time ambiguity from the sensor. SimISR can take a field of plasma parameters, parameterized by time and space, and create simulated ISR data at the scattered electric field (i.e., complex receiver voltage) level, subsequently processing these data to show possible reconstructions of the original parameter field. To demonstrate general utility, we show a number of simulation examples, with two cases using data from a self-consistent multifluid transport model. Results highlight the significant influence of the forward model of the ISR process and the resulting statistical uncertainty on plasma parameter measurements and the core experiment design trade-offs that must be made when planning observations. These conclusions further underscore the utility of this class of measurement simulator as a design tool for more optimal experiment design efforts using flexible ESA class ISR systems.
NASA Astrophysics Data System (ADS)
Burr, Steven Reed
Dynamic Ionosphere Cubesat Experiment (DICE) is a satellite project funded by the National Science Foundation (NSF) to study the ionosphere, more particularly Storm Enhanced Densities (SED) with a payload consisting of plasma diagnostic instrumentation. Three instruments onboard DICE include an Electric Field Probe (EFP), Ion Langmuir Probe (ILP), and Three Axis Magnetometer (TAM). The EFP measures electric fields from +/-8V and consists of three channels a DC to 40Hz channel, a Floating Potential Probe (FPP), and an spectrographic channel with four bands from 16Hz to 512Hz. The ILP measures plasma densities from 1x104 cm--3 to 2x107 cm--3. The TAM measures magnetic field strength with a range +/-0.5 Gauss with a sensitivity of 2nT. To achieve desired mission requirements careful selection of instrument requirements and planning of the instrumentation design to achieve mission success. The analog design of each instrument is described in addition to the digital framework required to sample the science data at a 70Hz rate and prepare the data for the Command and Data Handing (C&DH) system. Calibration results are also presented and show fulfillment of the mission and instrumentation requirements.
NASA Astrophysics Data System (ADS)
Meier, D.; Lukin, G.; Thieme, N.; Bönisch, P.; Dadzis, K.; Büttner, L.; Pätzold, O.; Czarske, J.; Stelter, M.
2017-03-01
This paper describes novel equipment for model experiments designed for detailed studies on electromagnetically driven flows as well as solidification and melting processes with low-melting metals in a square-based container. Such model experiments are relevant for a validation of numerical flow simulation, in particular in the field of directional solidification of multi-crystalline photovoltaic silicon ingots. The equipment includes two square-shaped electromagnetic coils and a melt container with a base of 220×220 mm2 and thermostat-controlled heat exchangers at top and bottom. A system for dual-plane, spatial- and time-resolved flow measurements as well as for in-situ tracking of the solid-liquid interface is developed on the basis of the ultrasound Doppler velocimetry. The parameters of the model experiment are chosen to meet the scaling laws for a transfer of experimental results to real silicon growth processes. The eutectic GaInSn alloy and elemental gallium with melting points of 10.5 °C and 29.8 °C, respectively, are used as model substances. Results of experiments for testing the equipment are presented and discussed.
Euphrasie, S; Vairac, P; Cretin, B; Lengaigne, G
2008-03-01
We propose a new setup to measure an electrical field in one direction. This setup is made of a piezoelectric sintered lead zinconate titanate film and an optical interferometric probe. We used this setup to investigate how the shape of the extremity of a coaxial cable influences the longitudinal electrical near-field generated by it. For this application, we designed our setup to have a spatial resolution of 100 microm in the direction of the electrical field. Simulations and experiments are presented.
Recirculating planar magnetrons: simulations and experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franzi, Matthew; Gilgenbach, Ronald; French, David
2011-07-01
The Recirculating Planar Magnetron (RPM) is a novel crossed-field device whose geometry is expected to reduce thermal load, enhance current yield as well as ease the geometric limitations in scaling to high RF frequencies as compared to the conventional cylindrical magnetrons. The RPM has two different adaptations: A. Axial B field and radial E field; B. Radial B field and axial E field. The preliminary configuration (A) to be used in experiments at the University of Michigan consists of two parallel planar sections which join on either end by cylindrical regions to form a concentric extruded ellipse. Similar to conventionalmore » magnetrons, a voltage across the AK gap in conjunction with an axial magnetic field provides the electrons with an ExB drift. The device is named RPM because the drifting electrons recirculate from one planar region to the other. The drifting electrons interact with the resonantly tuned slow wave structure on the anode causing spoke formation. These electron spokes drive a RF electric field in the cavities from which RF power may be extracted to Waveguides. The RPM may be designed in either a conventional configuration with the anode on the outside, for simplified extraction, or as an inverted magnetron with the anode at the inner conductor, for fast start-up. Currently, experiments at the Pulsed Power and Microwave Laboratory at the University of Michigan are in the setup and design phase. A conventional RPM with planar cavities is to be installed on the Michigan Electron Long Beam Accelerator (MELBA) and is anticipated to operate at -200kV, 0.2T with a beam current of 1-10 kA at 1GHz. The conventional RPM consists of 12 identical planar cavities, 6 on each planar side, with simulated quality factor of 20.« less
The Study on Human-Computer Interaction Design Based on the Users’ Subconscious Behavior
NASA Astrophysics Data System (ADS)
Li, Lingyuan
2017-09-01
Human-computer interaction is human-centered. An excellent interaction design should focus on the study of user experience, which greatly comes from the consistence between design and human behavioral habit. However, users’ behavioral habits often result from subconsciousness. Therefore, it is smart to utilize users’ subconscious behavior to achieve design's intention and maximize the value of products’ functions, which gradually becomes a new trend in this field.
Ahn, Min Cheol; Yagai, Tsuyoshi; Hahn, Seungyong; Ando, Ryuya; Bascuñán, Juan; Iwasa, Yukikazu
2010-01-01
This paper presents experimental and simulation results of a screening current induced magnetic field (SCF) in a high temperature superconductor (HTS) insert that constitutes a low-/high-temperature superconductor (LTS/HTS) NMR magnet. In this experiment, the HTS insert, a stack of 50 double-pancake coils, each wound with Bi2223 tape, was operated at 77 K. A screening current was induced in the HTS insert by three magnetic field sources: 1) a self field from the HTS insert; 2) an external field from a 5-T background magnet; and 3) combinations of 1) and 2). For each field excitation, which induced an SCF, its axial field distribution and temporal variations were measured and compared with simulation results based on the critical state model. Agreement on field profile between experiment and simulation is satisfactory but more work is needed to make the simulation useful for designing shim coils that will cancel the SCF. PMID:20401187
Critiquing Systems for Decision Support
2006-02-01
errors and deficiencies. An example of a comparative critic is the ATTENDING system ( anaesthesiology ), which first parses the user’s solution into a...design tools at the times when those tools are useful. 9. Experiential critics provide reminders of past experiences with similar designs or design...technique for hypertension rather than the broader field of anaesthesiology ; and (2) critiquing systems are most appropriate for tasks that require
The ISS Fluids and Combustion Facility: Experiment Accommodations Summary
NASA Technical Reports Server (NTRS)
Corban, Robert R.; Simons, Stephen N. (Technical Monitor)
2001-01-01
The International Space Station's (ISS's) Fluids and Combustion Facility (FCF) is in the process of final design and development activities to accommodate a wide range of experiments in the fields of combustion science and fluid physics. The FCF is being designed to provide potential experiments with well defined interfaces that can meet the experimenters requirements, provide the flexibility for on-orbit reconfiguration, and provide the maximum capability within the ISS resources and constraints. As a multi-disciplined facility, the FCF supports various experiments and scientific objectives, which will be developed in the future and are not completely defined at this time. Since developing experiments to be performed within FCF is a continuous process throughout the FCF's operational lifetime, each individual experiment must determine the best configuration of utilizing facility capabilities and resources with augmentation of specific experiment hardware. Configurations of potential experiments in the FCF has been on-going to better define the FCF interfaces and provide assurances that the FCF design will meet its design requirements. This paper provides a summary of ISS resources and FCF capabilities, which are available for potential ISS FCF users. Also, to better understand the utilization of the FCF a description of a various experiment layouts and associated operations in the FCF are provided.
ERIC Educational Resources Information Center
Abbott, J. Anthony
2006-01-01
Students frequently struggle when scientific instruction seems divorced from personal experience, especially in the physical sub-disciplines, like climatology, where exercise books often present historical or abstracted case studies. In contrast I present a three-phase project involving student input on experimental design, data collection, and…
Designing and Using an Open Graphic Interface for Instruction in Geometrical Optics.
ERIC Educational Resources Information Center
Ronen, Miky; And Others
1993-01-01
Discusses conceptual difficulties in the field of geometrical optics and describes RAY, a microcomputer-based graphic interface that was designed to serve as a teaching aid and as a learning environment. The ability to combine theory and formal representations with real demonstrations and experiments is discussed. (Contains seven references.) (LRW)
Advertising Graphic Design and Its Effect on Recall and Attitude: A Field Experiment.
ERIC Educational Resources Information Center
Surlin, Stuart H.; Kosak, Hermann H.
Advertisers and other mass media communicators are interested in the potential cognitive and affective effects of various graphic designs, specifically relating to the recall of information and the attitude toward information presented. This study deals with the respondent's recall of information contained within an advertisement as well as the…
Traffic model for advanced satellite designs and experiments for ISDN services
NASA Technical Reports Server (NTRS)
Pepin, Gerard R.; Hager, E. Paul
1991-01-01
The data base structure and fields for categorizing and storing Integrated Services Digital Network (ISDN) user characteristics is outlined. This traffic model data base will be used to exercise models of the ISDN Advanced Communication Satellite to determine design parameters and performance for the NASA Satellite Communications Applications Research (SCAR) Program.
USDA-ARS?s Scientific Manuscript database
Aim: The relationships between early-season cold temperature germination and preflowering drought stress in eight grain sorghum inbreds were assessed using morphophysiological traits. Study Design: Field was laid out in a randomized complete block design. Place and Duration: The experiment was condu...
Design and Construction of Versatile Experiment Spherical Torus (VEST) at Seoul National University
NASA Astrophysics Data System (ADS)
An, Younghwa; Chung, Kyoung-Jae; Jung, Bongki; Lee, Hyunyeong; Sung, Choongki; Kim, Hyun-Seok; Na, Yong-Su; Hwang, Yong-Seok
2011-10-01
A new spherical torus, named as VEST (Versatile Experiment Spherical Torus), has been built at Seoul National University to investigate versatile research topics such as double null merging start-up, divertor engineering and non-inductive current drive. VEST is characterized by two partial solenoid coils installed at both vertical ends of a center stack, which will be used for double null merging start-up schemes. A poloidal field (PF) coil system including the partial solenoids for break-down and a long solenoid for the sustainment of merged plasma has been designed by solving circuit equations for the PF coils and vacuum vessel elements in consideration of required volt-second, null configuration and eddy current. To supply required currents to the PF coils and solenoids, power supplies based on double-swing circuit have been designed and fabricated with capacitor banks and thyristor switch assemblies. Also a power supply utilizing cost-effective commercial batteries has been developed for toroidal field(TF) coils. Detailed descriptions on the design of VEST and some initial test results will be presented.
Learning for All: The Value of Field Experience in Training a New Generation of Program Evaluators
ERIC Educational Resources Information Center
Buitrag, Carolina
2015-01-01
Professionals in various fields have the opportunity to train in real-life situations before they take on a job by themselves. In program evaluation, however, preservice training usually focuses on coursework oriented to research design and methods. After completing these studies, evaluators go off to conduct evaluations guided primarily by their…
National Household Education Surveys of 2003: Data File User's Manual, Volume I. NCES 2004-001
ERIC Educational Resources Information Center
Hagedorn, Mary; Montaquila, Jill; Vaden-Kiernan, Nancy; Kim, Kwang; Chapman, Christopher
2004-01-01
This manual describes the development of the surveys fielded in 2003 under the National Household Education Surveys Program (NHES: 2003). It describes how the questionnaires were designed, how the samples were developed, data collection experiences, and file information needed to analyze the NHES: 2003 data sets. The surveys fielded as part of…
Resuspension of uniform latex micro spheres deposited on a single seed pod of field rye grass stalk and head was investigated experimentally in a wind tunnel. The experiment was designed to distinguish aerodynamic (viscous and turbulent) mechanisms from mechanical resuspension re...
The Iterative Design of a Mobile Learning Application to Support Scientific Inquiry
ERIC Educational Resources Information Center
Marty, Paul F.; Mendenhall, Anne; Douglas, Ian; Southerland, Sherry A.; Sampson, Victor; Kazmer, Michelle M.; Alemanne, Nicole; Clark, Amanda; Schellinger, Jennifer
2013-01-01
The ubiquity of mobile devices makes them well suited for field-based learning experiences that require students to gather data as part of the process of developing scientific inquiry practices. The usefulness of these devices, however, is strongly influenced by the nature of the applications students use to collect data in the field. To…
In a field experiment at Vandenberg Air Force Base (VAFB) designed to mimic the impact of a small-volume release of E10, two plumes were created by injecting extracted groundwater spiked with benzene, toluene, and o-xylene, abbreviated BToX (No-Ethanol Lane) and BToX plus ethanol...
Electromagnetic fields and torque for a rotating gyroscope with a superconducting shield
NASA Technical Reports Server (NTRS)
Ebner, C.; Sung, C. C.
1975-01-01
In a proposed experiment, a measurement is to be made of the angular precession of a rotating superconducting gyroscope for the purpose of testing different general-relativity theories. For various reasons having to do with the design of the experiment, the superconducting shield surrounding the gyroscope is not spherically symmetric and produces a torque. There are two distinct features of the shield which lead to a torque on the gyroscope. First, its shape is a sphere intersected by a plane. If the angular momentum of the gyroscope is not parallel to the rotational symmetry axis of the shield, there is a torque which is calculated. Second, there are small holes in the spherical portion of the shield. The earth's field can penetrate through these holes and give an additional torque which is also calculated. In the actual experiment, these torques must be accurately known or made very small in order to obtain meaningful results. The present calculation is sufficiently general for application over a wide range of experimental design parameters.
Prospecting of popcorn hybrids for resistance to fall armyworm.
Crubelati-Mulati, N C S; Scapim, C A; Albuquerque, F A; Amaral Junior, A T; Vivas, M; Rodovalho, M A
2014-08-26
The fall armyworm, Spodoptera frugiperda, is the pest that causes the greatest economic losses for both common corn and popcorn crops, and the use of resistant plant genotypes is an important tool for integrated pest management. The goal of the present study was to evaluate the damage caused by S. frugiperda on single-cross popcorn hybrids under field conditions with natural infestation as well as to study the effect of 11 popcorn hybrids on the S. frugiperda life cycle under laboratory conditions. A completely randomized block design with 4 replicates was used for the field experiment, and a completely randomized design with 10 replicates was used for the laboratory experiment. In the field experiment, the damage caused by fall armyworm, grain yield, and popping expansion were quantified, and a diallel analysis was performed to select the best hybrids. For the laboratory experiment, caterpillars were obtained from laboratory cultures kept on an artificial diet and were fed with leaves from the 11 hybrids. Hybrids P7.0 x P9.4, P7.1 x P9.6, P7.2.0 x P9.3, P7.4.0 x P9.1 and P7.4.1 x P9.4 exhibited negative specific combining ability for injury by fall armyworm and positive specific combining ability for yield and popping expansion. In the laboratory experiment, the hybrids influenced the mean larval stage duration, mean larval mass, final larval mass, pupal stage duration, mean pupal mass, and adult longevity.
Designing Fault-Injection Experiments for the Reliability of Embedded Systems
NASA Technical Reports Server (NTRS)
White, Allan L.
2012-01-01
This paper considers the long-standing problem of conducting fault-injections experiments to establish the ultra-reliability of embedded systems. There have been extensive efforts in fault injection, and this paper offers a partial summary of the efforts, but these previous efforts have focused on realism and efficiency. Fault injections have been used to examine diagnostics and to test algorithms, but the literature does not contain any framework that says how to conduct fault-injection experiments to establish ultra-reliability. A solution to this problem integrates field-data, arguments-from-design, and fault-injection into a seamless whole. The solution in this paper is to derive a model reduction theorem for a class of semi-Markov models suitable for describing ultra-reliable embedded systems. The derivation shows that a tight upper bound on the probability of system failure can be obtained using only the means of system-recovery times, thus reducing the experimental effort to estimating a reasonable number of easily-observed parameters. The paper includes an example of a system subject to both permanent and transient faults. There is a discussion of integrating fault-injection with field-data and arguments-from-design.
The ISEE-1 and ISEE-2 plasma wave investigation
NASA Technical Reports Server (NTRS)
Gurnett, D. A.; Scarf, F. L.; Fredricks, R. W.; Smith, E. J.
1978-01-01
The ISEE-1 and ISEE-2 plasma wave experiments are designed to provide basic information on wave-particle interactions in the earth's magnetosphere and in the solar wind. The ISEE-1 plasma wave instrument uses three electric dipole antennas with lengths of 215, 73.5 and 0.61 m for electric field measurements, and a triaxial search coil antenna for magnetic field measurements. The ISEE-2 instrument uses two electric dipole antennas with lengths of 30 and 0.61 m for electric field measurements and a single-axis search coil antenna for magnetic field measurements. The primary scientific objectives of the experiments are described, including the resolution of space-time relationships of plasma wave phenomena and VLBI studies. The instrumentation is described, with emphasis on the antennas and the electronics.
Conceptual design of Dipole Research Experiment (DREX)
NASA Astrophysics Data System (ADS)
Xiao, Qingmei; Wang, Zhibin; Wang, Xiaogang; Xiao, Chijie; Yang, Xiaoyi; Zheng, Jinxing
2017-03-01
A new terrella-like device for laboratory simulation of inner magnetosphere plasmas, Dipole Research Experiment, is scheduled to be built at the Harbin Institute of Technology (HIT), China, as a major state scientific research facility for space physics studies. It is designed to provide a ground experimental platform to reproduce the inner magnetosphere to simulate the processes of trapping, acceleration, and transport of energetic charged particles restrained in a dipole magnetic field configuration. The scaling relation of hydromagnetism between the laboratory plasma of the device and the geomagnetosphere plasma is applied to resemble geospace processes in the Dipole Research Experiment plasma. Multiple plasma sources, different kinds of coils with specific functions, and advanced diagnostics are designed to be equipped in the facility for multi-functions. The motivation, design criteria for the Dipole Research Experiment experiments and the means applied to generate the plasma of desired parameters in the laboratory are also described. Supported by National Natural Science Foundation of China (Nos. 11505040, 11261140326 and 11405038), China Postdoctoral Science Foundation (Nos. 2016M591518, 2015M570283) and Project Supported by Natural Scientific Research Innovation Foundation in Harbin Institute of Technology (No. 2017008).
NASA Astrophysics Data System (ADS)
Nagatomo, M.; Kaya, N.; Matsumoto, H.
1984-10-01
One type of problem arising in connection with an evaluation of the feasibility of the Solar Power Satellite (SPS) and the definition of suitable SPS designs is related to environmental issues. Questions exist, for instance, regarding the interaction between microwave power and the upper atmosphere. The present investigation is concerned with the Microwave Ionosphere Nonlinear Interaction Experiment (MINIX), which is a space plasma experiment originally devoted to the research of space plasma physics. MINIX is eventually to observe possible effects of a strong microwave field in the ionospheric environment. The scientific requirements of the MINIX are discussed, taking into account functional and experimental conditions. Attention is also given to rocket characteristics, experimental design, the payload, the inflight experiment configuration, and details concerning the conduction of the experiment.
Qualifying the Sunpower M87N Cryocooler for Operation in the AMS-02 Magnetic Field
NASA Technical Reports Server (NTRS)
Mustafi, Shuvo; Banks, Stuart; Shirey, Kim; Breon, Susan
2003-01-01
The Alpha Magnetic Spectrometer-02 (AMs-02) experiment uses a superfluid helium dewar to cool a large superconducting magnet. The outer vapor-cooled shields of the dewar are to be held at 80 K by four Sunpower M87N cryocoolers. These cryocoolers have magnetic components that might interact with the external applied field generated by the superconducting magnet, thereby degrading the cryocoolers' performance. Engineering models of the Sunpower M87 have been qualified for operation in a magnetic environment similar to the AMs-02 magnetic environment. Although there was no noticeable performance degradation at field levels that were comparable to AMs-02 field levels, there appears to be a small performance degradation at higher field levels. It was theorized that there were three possible issues related to these performance losses at high magnetic fields: i) induced piston rubbing on the cylinder wall due to forces and torques on the linear motor due to the applied magnetic fields; ii) Magnetic hysteretic and/or eddy current damping of the balancer due to its motion in the applied magnetic fields; iii) Inductance losses in motor due to the applied magnetic field. The experiments conducted at the Massachusetts Institute of Technology (MIT) cyclotron facility in June 2002 were designed to test these. Tests were performed over a range of field levels that were lower, comparable, and higher than the field levels that the cryocoolers will experience in the AMs-02 operating environment. This paper describes the experiments and the inferences derived from them.
Examining Menstrual Tracking to Inform the Design of Personal Informatics Tools
Epstein, Daniel A.; Lee, Nicole B.; Kang, Jennifer H.; Agapie, Elena; Schroeder, Jessica; Pina, Laura R.; Fogarty, James; Kientz, Julie A.; Munson, Sean A.
2017-01-01
We consider why and how women track their menstrual cycles, examining their experiences to uncover design opportunities and extend the field's understanding of personal informatics tools. To understand menstrual cycle tracking practices, we collected and analyzed data from three sources: 2,000 reviews of popular menstrual tracking apps, a survey of 687 people, and follow-up interviews with 12 survey respondents. We find that women track their menstrual cycle for varied reasons that include remembering and predicting their period as well as informing conversations with healthcare providers. Participants described six methods of tracking their menstrual cycles, including use of technology, awareness of their premenstrual physiological states, and simply remembering. Although women find apps and calendars helpful, these methods are ineffective when predictions of future menstrual cycles are inaccurate. Designs can create feelings of exclusion for gender and sexual minorities. Existing apps also generally fail to consider life stages that women experience, including young adulthood, pregnancy, and menopause. Our findings encourage expanding the field's conceptions of personal informatics. PMID:28516176
NASA Technical Reports Server (NTRS)
Curry, J. A.; Hobbs, P. V.; King, M. D.; Randall, D. A.; Minnis, P.; Issac, G. A.; Pinto, J. O.; Uttal, T.; Bucholtz, A.; Cripe, D. G.;
1998-01-01
An overview is given of the First ISCCP Regional Experiment (FIRE) Arctic Clouds Experiment that was conducted in the Arctic during April through July, 1998. The principal goal of the field experiment was to gather the data needed to examine the impact of arctic clouds on the radiation exchange between the surface, atmosphere, and space, and to study how the surface influences the evolution of boundary layer clouds. The observations will be used to evaluate and improve climate model parameterizations of cloud and radiation processes, satellite remote sensing of cloud and surface characteristics, and understanding of cloud-radiation feedbacks in the Arctic. The experiment utilized four research aircraft that flew over surface-based observational sites in the Arctic Ocean and Barrow, Alaska. In this paper we describe the programmatic and science objectives of the project, the experimental design (including research platforms and instrumentation), conditions that were encountered during the field experiment, and some highlights of preliminary observations, modelling, and satellite remote sensing studies.
Results of nDOSE and HiDOSE Experiments for Dosimetric Evaluation During STS-134 Mission
NASA Astrophysics Data System (ADS)
Pugliese, M.; Loffredo, F.; Quarto, M.; Roca, V.; Mattone, C.; Borla, O.; Zanini, A.
2014-07-01
HiDOSE (Heavy ion DOSimetry Experiment) and nDOSE (neutron DOSimetry Experiment) experiments conducted as a part of BIOKIS (Biokon in Space) payload were designed to measure the dose equivalent due to charged particles and to neutron field, on the entire energy range, during STS-134 mission. Given the complexity of the radiation field in space environment, dose measurements should be considered an asset of any space mission, and for this reason HiDOSE and nDOSE experiments represent an important contribution to the radiation environment assessment during this mission, a short duration flight. The results of these experiments, obtained using Thermo Luminescence Dosimeters (TLDs) to evaluate the charged particles dosimetry and neutron bubbles dosimeters and stack bismuth track dosimeters for neutron dosimetry, indicate that the dose equivalent rate due to space radiation exposure during the STS-134 mission is in accordance with the results obtained from long duration flights.
Multisensory Technology for Flavor Augmentation: A Mini Review.
Velasco, Carlos; Obrist, Marianna; Petit, Olivia; Spence, Charles
2018-01-01
There is growing interest in the development of new technologies that capitalize on our emerging understanding of the multisensory influences on flavor perception in order to enhance human-food interaction design. This review focuses on the role of (extrinsic) visual, auditory, and haptic/tactile elements in modulating flavor perception and more generally, our food and drink experiences. We review some of the most exciting examples of recent multisensory technologies for augmenting such experiences. Here, we discuss applications for these technologies, for example, in the field of food experience design, in the support of healthy eating, and in the rapidly growing world of sensory marketing. However, as the review makes clear, while there are many opportunities for novel human-food interaction design, there are also a number of challenges that will need to be tackled before new technologies can be meaningfully integrated into our everyday food and drink experiences.
Multisensory Technology for Flavor Augmentation: A Mini Review
Velasco, Carlos; Obrist, Marianna; Petit, Olivia; Spence, Charles
2018-01-01
There is growing interest in the development of new technologies that capitalize on our emerging understanding of the multisensory influences on flavor perception in order to enhance human–food interaction design. This review focuses on the role of (extrinsic) visual, auditory, and haptic/tactile elements in modulating flavor perception and more generally, our food and drink experiences. We review some of the most exciting examples of recent multisensory technologies for augmenting such experiences. Here, we discuss applications for these technologies, for example, in the field of food experience design, in the support of healthy eating, and in the rapidly growing world of sensory marketing. However, as the review makes clear, while there are many opportunities for novel human–food interaction design, there are also a number of challenges that will need to be tackled before new technologies can be meaningfully integrated into our everyday food and drink experiences. PMID:29441030
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peter Daum
2008-10-06
Brookhaven researcher Peter Daum discusses an international field experiment designed to make observations of critical components of the climate system of the southeastern Pacific. Because elements of this system are poorly understood and poorly represent
Peter Daum
2017-12-09
Brookhaven researcher Peter Daum discusses an international field experiment designed to make observations of critical components of the climate system of the southeastern Pacific. Because elements of this system are poorly understood and poorly represent
NASA Astrophysics Data System (ADS)
Bastian, N.; O'Connell, R.; Kendrick, R.; Goldwin, J.; Forest, C. B.
1998-11-01
A liquid metal magneto-hydrodynamic (MHD) experiment at the University of Wisconsin is being constructed in order to validate 3 key elements of MHD dynamo theory: magnetic instabilities driven by flow shear, the effects of turbulence on current generation (primarily the α and β effects) and the nature of saturation for these on these processes. The experiment consists of two main stages, the first of which uses water to test impeller designs that are used to generate flows capable of supporting a dynamo. Since water has nearly the same viscosity and mass density as sodium, it is the ideal substance with which to test our impeller designs. The second stage of the experiment uses a one meter diameter sphere filled with ≈ 200 gallons of liquid sodium to directly test MHD theory. Impellers will be used to impose flows on the liquid sodium that are predicted by MHD theory to lead to a growing magnetic field. In addition, large scale flows will lead to small-scale turbulence which can produce a dynamo effect and a current. This is known as the turbulent α-effect which we will attempt to observe. The MHD theory also predicts an anomalously high resistivity or magnetic diffusivity (the β-effect). Once a growing magnetic field is present it should be possible to measure the effect that the growing magnetic field has on the flow that created it.
Pressure Distribution and Air Data System for the Aeroassist Flight Experiment
NASA Technical Reports Server (NTRS)
Gibson, Lorelei S.; Siemers, Paul M., III; Kern, Frederick A.
1989-01-01
The Aeroassist Flight Experiment (AFE) is designed to provide critical flight data necessary for the design of future Aeroassist Space Transfer Vehicles (ASTV). This flight experiment will provide aerodynamic, aerothermodynamic, and environmental data for verification of experimental and computational flow field techniques. The Pressure Distribution and Air Data System (PD/ADS), one of the measurement systems incorporated into the AFE spacecraft, is designed to provide accurate pressure measurements on the windward surface of the vehicle. These measurements will be used to determine the pressure distribution and air data parameters (angle of attack, angle of sideslip, and free-stream dynamic pressure) encountered by the blunt-bodied vehicle over an altitude range of 76.2 km to 94.5 km. Design and development data are presented and include: measurement requirements, measurement heritage, theoretical studies to define the vehicle environment, flush-mounted orifice configuration, pressure transducer selection and performance evaluation data, and pressure tubing response analysis.
Hu, Cheng; Wang, Jingyang; Tian, Weiming; Zeng, Tao; Wang, Rui
2017-03-15
Multiple-Input Multiple-Output (MIMO) radar provides much more flexibility than the traditional radar thanks to its ability to realize far more observation channels than the actual number of transmit and receive (T/R) elements. In designing the MIMO imaging radar arrays, the commonly used virtual array theory generally assumes that all elements are on the same line. However, due to the physical size of the antennas and coupling effect between T/R elements, a certain height difference between T/R arrays is essential, which will result in the defocusing of edge points of the scene. On the other hand, the virtual array theory implies far-field approximation. Therefore, with a MIMO array designed by this theory, there will exist inevitable high grating lobes in the imaging results of near-field edge points of the scene. To tackle these problems, this paper derives the relationship between target's point spread function (PSF) and pattern of T/R arrays, by which the design criterion is presented for near-field imaging MIMO arrays. Firstly, the proper height between T/R arrays is designed to focus the near-field edge points well. Secondly, the far-field array is modified to suppress the grating lobes in the near-field area. Finally, the validity of the proposed methods is verified by two simulations and an experiment.
Hu, Cheng; Wang, Jingyang; Tian, Weiming; Zeng, Tao; Wang, Rui
2017-01-01
Multiple-Input Multiple-Output (MIMO) radar provides much more flexibility than the traditional radar thanks to its ability to realize far more observation channels than the actual number of transmit and receive (T/R) elements. In designing the MIMO imaging radar arrays, the commonly used virtual array theory generally assumes that all elements are on the same line. However, due to the physical size of the antennas and coupling effect between T/R elements, a certain height difference between T/R arrays is essential, which will result in the defocusing of edge points of the scene. On the other hand, the virtual array theory implies far-field approximation. Therefore, with a MIMO array designed by this theory, there will exist inevitable high grating lobes in the imaging results of near-field edge points of the scene. To tackle these problems, this paper derives the relationship between target’s point spread function (PSF) and pattern of T/R arrays, by which the design criterion is presented for near-field imaging MIMO arrays. Firstly, the proper height between T/R arrays is designed to focus the near-field edge points well. Secondly, the far-field array is modified to suppress the grating lobes in the near-field area. Finally, the validity of the proposed methods is verified by two simulations and an experiment. PMID:28294996
B1 transmit phase gradient coil for single-axis TRASE RF encoding.
Deng, Qunli; King, Scott B; Volotovskyy, Vyacheslav; Tomanek, Boguslaw; Sharp, Jonathan C
2013-07-01
TRASE (Transmit Array Spatial Encoding) MRI uses RF transmit phase gradients instead of B0 field gradients for k-space traversal and high-resolution MR image formation. Transmit coil performance is a key determinant of TRASE image quality. The purpose of this work is to design an optimized RF transmit phase gradient array for spatial encoding in a transverse direction (x- or y- axis) for a 0.2T vertical B0 field MRI system, using a single transmitter channel. This requires the generation of two transmit B1 RF fields with uniform amplitude and positive and negative linear phase gradients respectively over the imaging volume. A two-element array consisting of a double Maxwell-type coil and a Helmholtz-type coil was designed using 3D field simulations. The phase gradient polarity is set by the relative phase of the RF signals driving the simultaneously energized elements. Field mapping and 1D TRASE imaging experiments confirmed that the constructed coil produced the fields and operated as designed. A substantially larger imaging volume relative to that obtainable from a non-optimized Maxwell-Helmholtz design was achieved. The Maxwell (sine)-Helmholtz (cosine) approach has proven successful for a horizontal phase gradient coil. A similar approach may be useful for other phase-gradient coil designs. Copyright © 2013 Elsevier Inc. All rights reserved.
Design of a Permanent-Magnet Zeeman Slower
NASA Astrophysics Data System (ADS)
Adler, Charles; Narducci, Frank; Sukenik, Charles; Mulholland, Jonathan; Goodale, Sarah
2006-05-01
During the past decade, low cost, flexible, and highly-polarized magnetic field sheet material has become available with field strengths useful for applications in modern atomic physics experiments. One advantage of using such material is that it can easily be cut to almost any desired shape without appreciable loss of field strength making it more versatile than ceramic magnets. We present the design of a Zeeman slower, made from such material, for cooling an atomic beam of neutral rubidium atoms and discuss results from an atomic beam trajectory simulation which indicates that the slower should perform well. We will also report on progress of a prototype permanent magnet Zeeman slower presently under construction in the laboratory.
NASA Astrophysics Data System (ADS)
Edler, Karl T.
The issue of eddy currents induced by the rapid switching of magnetic field gradients is a long-standing problem in magnetic resonance imaging. A new method for dealing with this problem is presented whereby spatial harmonic components of the magnetic field are continuously sensed, through their temporal rates of change, and corrected. In this way, the effects of the eddy currents on multiple spatial harmonic components of the magnetic field can be detected and corrections applied during the rise time of the gradients. Sensing the temporal changes in each spatial harmonic is made possible with specially designed detection coils. However to make the design of these coils possible, general relationships between the spatial harmonics of the field, scalar potential, and vector potential are found within the quasi-static approximation. These relationships allow the vector potential to be found from the field -- an inverse curl operation -- and may be of use beyond the specific problem of detection coil design. Using the detection coils as sensors, methods are developed for designing a negative feedback system to control the eddy current effects and optimizing that system with respect to image noise and distortion. The design methods are successfully tested in a series of proof-of-principle experiments which lead to a discussion of how to incorporate similar designs into an operational MRI. Keywords: magnetic resonance imaging, eddy currents, dynamic shimming, negative feedback, quasi-static fields, vector potential, inverse curl
A Novel Experimental Setup to Investigate Magnetized Dusty Plasmas
NASA Astrophysics Data System (ADS)
Romero-Talamas, C. A.; Larocque, P.; Alvarez, J.; Sardin, J.
2013-10-01
Progress on the design and construction of a novel experimental setup to investigate dusty plasmas at the University of Maryland, Baltimore County (UMBC) is presented. The setup includes separation adjustability of discharge electrodes and their orientation with respect to gravity without breaking vacuum, and a pair of water-cooled coils to produce magnetic fields with strengths of up to several Tesla. The coils' orientation is also designed to be adjustable with respect to gravity. A pulse-forming network to power the coils with flattop times of several seconds is under design. The setup is mounted inside a large glass bell jar to provide wide optical access to the dusty plasmas, and to minimize interference of chamber walls and mounts with imposed electric or magnetic fields. Planned experiments include crystallization and wave propagation under strong magnetic fields.
A New Facility for Testing Superconducting Solenoid Magnets with Large Fringe Fields at Fermilab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orris, D.; Carcagno, R.; Nogiec, J.
2013-09-01
Testing superconducting solenoid with no iron flux return can be problematic for a magnet test facility due to the large magnetic fringe fields generated. These large external fields can interfere with the operation of equipment while precautions must be taken for personnel supporting the test. The magnetic forces between the solenoid under test and the external infrastructure must also be taken under consideration. A new test facility has been designed and built at Fermilab specifically for testing superconducting magnets with large external fringe fields. This paper discusses the test stand design, capabilities, and details of the instrumentation and controls withmore » data from the first solenoid tested in this facility: the Muon Ionization Cooling Experiment (MICE) coupling coil.« less
Stiffness control of magnetorheological gels for adaptive tunable vibration absorber
NASA Astrophysics Data System (ADS)
Kim, Hyun Kee; Kim, Hye Shin; Kim, Young-Keun
2017-01-01
In this study, a stiffness feedback control system for magnetorheological (MR) gel—a smart material of variable stiffness—is proposed, toward the design of a tunable vibration absorber that can adaptively tune to a time varying disturbance in real time. A PID controller was designed to track the required stiffness of the MR gel by controlling the magnitude of the target external magnetic field pervading the MR gel. This paper proposes a novel magnetic field generator that could produce a variable magnetic field with low energy consumption. The performance of the MR gel stiffness control was validated through experiments that showed the MR gel absorber system could be automatically tuned from 56 Hz to 67 Hz under a field of 100 mT to minimize the vibration of the primary system.
Accretion shocks in the laboratory: Design of an experiment to study star formation
Young, Rachel P.; Kuranz, C. C.; Drake, R. P.; ...
2017-02-13
Here, we present the design of a laboratory-astrophysics experiment to study magnetospheric accretion relevant to young, pre-main-sequence stars. Spectra of young stars show evidence of hotspots created when streams of accreting material impact the surface of the star and create shocks. The structures that form during this process are poorly understood, as the surfaces of young stars cannot be spatially resolved. Our experiment would create a scaled "accretion shock" at a major (several kJ) laser facility. The experiment drives a plasma jet (the "accretion stream") into a solid block (the "stellar surface"), in the presence of a parallel magnetic fieldmore » analogous to the star's local field.« less
A table top experiment to study plasma confined by a dipole magnet
NASA Astrophysics Data System (ADS)
Bhattacharjee, Sudeep; Baitha, Anuj Ram
2016-10-01
There has been a long quest to understand charged particle generation, confinement and underlying complex processes in a plasma confined by a dipole magnet. Our earth's magnetosphere is an example of such a naturally occurring system. A few laboratory experiments have been designed for such investigations, such as the Levitated Dipole Experiment (LDX) at MIT, the Terella experiment at Columbia university, and the Ring Trap-1 (RT-1) experiment at the University of Tokyo. However, these are large scale experiments, where the dipole magnetic field is created with superconducting coils, thereby, necessitating power supplies and stringent cryogenic requirements. We report a table top experiment to investigate important physical processes in a dipole plasma. A strong cylindrical permanent magnet, is employed to create the dipole field inside a vacuum chamber. The magnet is suspended and cooled by circulating chilled water. The plasma is heated by electromagnetic waves of 2.45 GHz and a second frequency in the range 6 - 11 GHz. Some of the initial results of measurements and numerical simulation of magnetic field, visual observations of the first plasma, and spatial measurements of plasma parameters will be presented.
Test of Relativistic Gravity for Propulsion at the Large Hadron Collider
NASA Astrophysics Data System (ADS)
Felber, Franklin
2010-01-01
A design is presented of a laboratory experiment that could test the suitability of relativistic gravity for propulsion of spacecraft to relativistic speeds. An exact time-dependent solution of Einstein's gravitational field equation confirms that even the weak field of a mass moving at relativistic speeds could serve as a driver to accelerate a much lighter payload from rest to a good fraction of the speed of light. The time-dependent field of ultrarelativistic particles in a collider ring is calculated. An experiment is proposed as the first test of the predictions of general relativity in the ultrarelativistic limit by measuring the repulsive gravitational field of bunches of protons in the Large Hadron Collider (LHC). The estimated `antigravity beam' signal strength at a resonant detector of each proton bunch is 3 nm/s2 for 2 ns during each revolution of the LHC. This experiment can be performed off-line, without interfering with the normal operations of the LHC.
Tzeferacos, Petros; Rigby, A.; Bott, A.; ...
2017-03-22
The universe is permeated by magnetic fields, with strengths ranging from a femtogauss in the voids between the filaments of galaxy clusters to several teragauss in black holes and neutron stars. The standard model behind cosmological magnetic fields is the nonlinear amplification of seed fields via turbulent dynamo to the values observed. We have conceived experiments that aim to demonstrate and study the turbulent dynamo mechanism in the laboratory. Here, we describe the design of these experiments through simulation campaigns using FLASH, a highly capable radiation magnetohydrodynamics code that we have developed, and large-scale three-dimensional simulations on the Mira supercomputermore » at the Argonne National Laboratory. The simulation results indicate that the experimental platform may be capable of reaching a turbulent plasma state and determining the dynamo amplification. As a result, we validate and compare our numerical results with a small subset of experimental data using synthetic diagnostics.« less
Quasi-experimental evaluation without regression analysis.
Rohrer, James E
2009-01-01
Evaluators of public health programs in field settings cannot always randomize subjects into experimental or control groups. By default, they may choose to employ the weakest study design available: the pretest, posttest approach without a comparison group. This essay argues that natural experiments involving comparison groups are within reach of public health program managers. Methods for analyzing natural experiments are discussed.
ERIC Educational Resources Information Center
Dopke, Nancy Carter; Lovett, Timothy Neal
2007-01-01
Mass spectrometry is a widely used and versatile tool for scientists in many different fields. Soft ionization techniques such as matrix-assisted laser desorption/ionization (MALDI) allow for the analysis of biomolecules, polymers, and clusters. This article describes a MALDI mass spectrometry experiment designed for students in introductory…
Well-planning programs give students field-like experience
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sifferman, T.R.; Chapman, L.
1983-01-01
The University of Tulsa recently was given a package of computer well planning and drilling programs that will enable petroleum engineering students to gain valuable experience in designing well programs while still in school. Comprehensive homework assignments are now given in areas of drilling fluids programing, hydraulics, directional wells and surveying. Additional programs are scheduled for next semester.
ERIC Educational Resources Information Center
Patterson, Nicola; Mavin, Sharon; Turner, Jane
2012-01-01
Purpose: This feminist standpoint study aims to make an empirical contribution to the entrepreneurial leadership and HRD fields. Women entrepreneur leaders' experiences of gender will be explored through a framework of doing gender well and doing gender differently to unsettle the gender binary. Design/methodology/approach: Against a backcloth of…
Computing Power of Tests of the Variance of Treatment Effects in Designs with Two Levels of Nesting
ERIC Educational Resources Information Center
Konstantopoulos, Spyros
2008-01-01
Experiments that involve nested structures may assign treatment conditions either to entire groups (such as classrooms or schools) or individuals within groups (such as students). Although typically the interest in field experiments is in determining the significance of the overall treatment effect, it is equally important to examine the…
ERIC Educational Resources Information Center
Grant, Adam M.; Campbell, Elizabeth M.; Chen, Grace; Cottone, Keenan; Lapedis, David; Lee, Karen
2007-01-01
We tested the hypothesis that employees are willing to maintain their motivation when their work is relationally designed to provide opportunities for respectful contact with the beneficiaries of their efforts. In Experiment 1, a longitudinal field experiment in a fundraising organization, callers in an intervention group briefly interacted with a…
ERIC Educational Resources Information Center
Horn, Ilana Seidel; Campbell, Sara Sunshine
2015-01-01
A common critique of teacher education centres on the gap between coursework and schools, with ample evidence that novice teachers seldom bring ambitious forms of instruction into classroom placements. We describe a 6-year design experiment conducted in a university teacher education program secondary mathematics methods course focused squarely on…
Expert Recommender: Designing for a Network Organization
NASA Astrophysics Data System (ADS)
Reichling, Tim; Veith, Michael; Wulf, Volker
Recent knowledge management initiatives focus on expertise sharing within formal organizational units and informal communities of practice. Expert recommender systems seem to be a promising tool in support of these initiatives. This paper presents experiences in designing an expert recommender system for a knowledge- intensive organization, namely the National Industry Association (NIA). Field study results provide a set of specific design requirements. Based on these requirements, we have designed an expert recommender system which is integrated into the specific software infrastructure of the organizational setting. The organizational setting is, as we will show, specific for historical, political, and economic reasons. These particularities influence the employees’ organizational and (inter-)personal needs within this setting. The paper connects empirical findings of a long-term case study with design experiences of an expertise recommender system.
ERIC Educational Resources Information Center
School Science Review, 1985
1985-01-01
Presents 23 experiments, activities, field projects and computer programs in the biological and physical sciences. Instructional procedures, experimental designs, materials, and background information are suggested. Topics include fluid mechanics, electricity, crystals, arthropods, limpets, acid neutralization, and software evaluation. (ML)
A Simulated Stream Ecology Study.
ERIC Educational Resources Information Center
Zampella, Robert A.
1979-01-01
Describes a simulated field experience to study stream ecology in the classroom. Secondary students determine the composition of the stream community, describe the distribution of the benthic invertebrates, and design a food web. (Author/MA)
Building Homes, Building Careers.
ERIC Educational Resources Information Center
Cohn, Meredith
1987-01-01
The Construction Trades Foundation, a nonprofit corporation of business, industry, and school leaders, provides high school students in Montgomery County, Maryland, with unique hands-on experiences in construction, home design, marketing, public relations, and other fields. (SK)
ASPIRE - Airborne Spectro-Polarization InfraRed Experiment
NASA Astrophysics Data System (ADS)
DeLuca, E.; Cheimets, P.; Golub, L.; Madsen, C. A.; Marquez, V.; Bryans, P.; Judge, P. G.; Lussier, L.; McIntosh, S. W.; Tomczyk, S.
2017-12-01
Direct measurements of coronal magnetic fields are critical for taking the next step in active region and solar wind modeling and for building the next generation of physics-based space-weather models. We are proposing a new airborne instrument to make these key observations. Building on the successful Airborne InfraRed Spectrograph (AIR-Spec) experiment for the 2017 eclipse, we will design and build a spectro-polarimeter to measure coronal magnetic field during the 2019 South Pacific eclipse. The new instrument will use the AIR-Spec optical bench and the proven pointing, tracking, and stabilization optics. A new cryogenic spectro-polarimeter will be built focusing on the strongest emission lines observed during the eclipse. The AIR-Spec IR camera, slit jaw camera and data acquisition system will all be reused. The poster will outline the optical design and the science goals for ASPIRE.
NASA Technical Reports Server (NTRS)
Dohm, J. M.; Cabrol, N. A.; Grin, E. A.; Moersch, J.; Diaz, G. Chong; Cockell, C.; Coppin, P.; Fisher, G.; Hock, A. N.; Ori, G. G.
2005-01-01
The "Life in the Atacama" (LITA) project included two field trials during the 2004 field season, each of which lasted about a week. The remote science team had no prior knowledge of the local geology, and relied entirely on orbital images and rover-acquired data to make interpretations. The sites for these trials were in different locations, and are designated "Site B" and "Site C" respectively. The primary objective of the experiment is to develop and test the means to locate, characterize, and identify habitats and life remotely through long-range roving, which included field testing the rover, named Zoe. Zoe has onboard autonomous navigation for long-range roving, a plow to overturn rocks and expose near-surface rock materials, and high-resolution imaging, spectral, and fluorescence sampling capabilities. Highlights from the experiment included characterizing the geology in and near the landing ellipse, assessing pre-mission, satellite-based hypotheses, and improving the approach and procedures used by the remote and field teams for upcoming experiments through combined satellite, field-based, and microscopic perspectives and long-range roving.
Delivering accessible fieldwork: preliminary findings from a collaborative international study
NASA Astrophysics Data System (ADS)
Stokes, Alison; Atchison, Christopher; Feig, Anthony; Gilley, Brett
2017-04-01
Students with disabilities are commonly excluded from full participation in geoscience programs, and encounter significant barriers when accessing field-learning experiences. In order to increase talent and diversity in the geoscience workforce, more inclusive learning experiences must be developed that will enable all students to complete the requirements of undergraduate degree programs, including fieldwork. We discuss the outcomes of a completely accessible field course developed through the collaborative effort of geoscience education practitioners from the US, Canada and the UK. This unique field workshop has brought together current geoscience academics and students with disabilities to share perspectives on commonly-encountered barriers to learning in the field, and explore methods and techniques for overcoming them. While the student participants had the opportunity to learn about Earth processes while situated in the natural environment, participating geoscience instructors began to identify how to improve the design of field courses, making them fully inclusive of learners with disabilities. The outcomes from this experience will be used to develop guidelines to facilitate future development and delivery of accessible geoscience fieldwork.
Lee, S Y; Lee, K J
2001-04-01
To develop a personal optically stimulated luminescence (OSL) dosimetry system for mixed radiation fields using alpha-Al2O3:C, a discriminating badge filter system was designed by taking advantage of its optically stimulable properties and energy dependencies. This was done by designing a multi-element badge system for powder layered alpha-Al2O3:C material and an optical reader system based on high-intensity blue light-emitting diode (LED). The design of the multielement OSL dosimeter badge system developed allows the measurement of a personal dose equivalent value Hp(d) in mixed radiation fields of beta and gamma. Dosimetric properties of the personal OSL dosimeter badge system investigated here were the dose response, energy response and multi-readability. Based on the computational simulations and experiments of the proposed dosimeter design, it was demonstrated that a multi-element dosimeter system with an OSL technology based on alpha-Al2O3:C is suitable to obtain personal dose equivalent information in mixed radiation fields.
A large-scale forest fragmentation experiment: the Stability of Altered Forest Ecosystems Project.
Ewers, Robert M; Didham, Raphael K; Fahrig, Lenore; Ferraz, Gonçalo; Hector, Andy; Holt, Robert D; Kapos, Valerie; Reynolds, Glen; Sinun, Waidi; Snaddon, Jake L; Turner, Edgar C
2011-11-27
Opportunities to conduct large-scale field experiments are rare, but provide a unique opportunity to reveal the complex processes that operate within natural ecosystems. Here, we review the design of existing, large-scale forest fragmentation experiments. Based on this review, we develop a design for the Stability of Altered Forest Ecosystems (SAFE) Project, a new forest fragmentation experiment to be located in the lowland tropical forests of Borneo (Sabah, Malaysia). The SAFE Project represents an advance on existing experiments in that it: (i) allows discrimination of the effects of landscape-level forest cover from patch-level processes; (ii) is designed to facilitate the unification of a wide range of data types on ecological patterns and processes that operate over a wide range of spatial scales; (iii) has greater replication than existing experiments; (iv) incorporates an experimental manipulation of riparian corridors; and (v) embeds the experimentally fragmented landscape within a wider gradient of land-use intensity than do existing projects. The SAFE Project represents an opportunity for ecologists across disciplines to participate in a large initiative designed to generate a broad understanding of the ecological impacts of tropical forest modification.
A large-scale forest fragmentation experiment: the Stability of Altered Forest Ecosystems Project
Ewers, Robert M.; Didham, Raphael K.; Fahrig, Lenore; Ferraz, Gonçalo; Hector, Andy; Holt, Robert D.; Kapos, Valerie; Reynolds, Glen; Sinun, Waidi; Snaddon, Jake L.; Turner, Edgar C.
2011-01-01
Opportunities to conduct large-scale field experiments are rare, but provide a unique opportunity to reveal the complex processes that operate within natural ecosystems. Here, we review the design of existing, large-scale forest fragmentation experiments. Based on this review, we develop a design for the Stability of Altered Forest Ecosystems (SAFE) Project, a new forest fragmentation experiment to be located in the lowland tropical forests of Borneo (Sabah, Malaysia). The SAFE Project represents an advance on existing experiments in that it: (i) allows discrimination of the effects of landscape-level forest cover from patch-level processes; (ii) is designed to facilitate the unification of a wide range of data types on ecological patterns and processes that operate over a wide range of spatial scales; (iii) has greater replication than existing experiments; (iv) incorporates an experimental manipulation of riparian corridors; and (v) embeds the experimentally fragmented landscape within a wider gradient of land-use intensity than do existing projects. The SAFE Project represents an opportunity for ecologists across disciplines to participate in a large initiative designed to generate a broad understanding of the ecological impacts of tropical forest modification. PMID:22006969
Developments in Sensitivity Methodologies and the Validation of Reactor Physics Calculations
Palmiotti, Giuseppe; Salvatores, Massimo
2012-01-01
The sensitivity methodologies have been a remarkable story when adopted in the reactor physics field. Sensitivity coefficients can be used for different objectives like uncertainty estimates, design optimization, determination of target accuracy requirements, adjustment of input parameters, and evaluations of the representativity of an experiment with respect to a reference design configuration. A review of the methods used is provided, and several examples illustrate the success of the methodology in reactor physics. A new application as the improvement of nuclear basic parameters using integral experiments is also described.
NASA Astrophysics Data System (ADS)
Abbasnezhadi, K.; Rasmussen, P. F.; Stadnyk, T.
2014-12-01
To gain a better understanding of the spatiotemporal distribution of rainfall over the Churchill River basin, this study was undertaken. The research incorporates gridded precipitation data from the Canadian Precipitation Analysis (CaPA) system. CaPA has been developed by Environment Canada and provides near real-time precipitation estimates on a 10 km by 10 km grid over North America at a temporal resolution of 6 hours. The spatial fields are generated by combining forecasts from the Global Environmental Multiscale (GEM) model with precipitation observations from the network of synoptic weather stations. CaPA's skill is highly influenced by the number of weather stations in the region of interest as well as by the quality of the observations. In an attempt to evaluate the performance of CaPA as a function of the density of the weather station network, a dual-stage design algorithm to simulate CaPA is proposed which incorporates generated weather fields. More specifically, we are adopting a controlled design algorithm which is generally known as Observing System Simulation Experiment (OSSE). The advantage of using the experiment is that one can define reference precipitation fields assumed to represent the true state of rainfall over the region of interest. In the first stage of the defined OSSE, a coupled stochastic model of precipitation and temperature gridded fields is calibrated and validated. The performance of the generator is then validated by comparing model statistics with observed statistics and by using the generated samples as input to the WATFLOOD™ hydrologic model. In the second stage of the experiment, in order to account for the systematic error of station observations and GEM fields, representative errors are to be added to the reference field using by-products of CaPA's variographic analysis. These by-products explain the variance of station observations and background errors.
Free–free experiments: the search for dressed atom effects
NASA Astrophysics Data System (ADS)
Martin, N. L. S.; Weaver, C. M.; Kim, B. N.; deHarak, B. A.
2018-07-01
Experiments on free–free electron scattering, specifically the absorption or emission of 1.17 eV photons from a Nd:YAG laser field by an unbound electron when it is scattered by an atom or molecule, are reviewed. For large scattering angles such experiments are well described by a simple analytical theory that is independent of the properties of the target. At small scattering angles this theory breaks down for targets with a high dipole polarizability α, and an additional term needs to be incorporated in the scattering amplitude. This term is proportional to the dipole polarizability, and hence introduces the properties of the target into the free–free cross section—i.e., the laser field ‘dresses’ the atom. A progress report is given of free–free experiments designed to look for such ‘dressed atom’ effects during the electron-impact excitation of argon in the presence of a laser field; the lowest excited states of argon have α ≈ 300 atomic units.
Error field measurement, correction and heat flux balancing on Wendelstein 7-X
Lazerson, Samuel A.; Otte, Matthias; Jakubowski, Marcin; ...
2017-03-10
The measurement and correction of error fields in Wendelstein 7-X (W7-X) is critical to long pulse high beta operation, as small error fields may cause overloading of divertor plates in some configurations. Accordingly, as part of a broad collaborative effort, the detection and correction of error fields on the W7-X experiment has been performed using the trim coil system in conjunction with the flux surface mapping diagnostic and high resolution infrared camera. In the early commissioning phase of the experiment, the trim coils were used to open an n/m = 1/2 island chain in a specially designed magnetic configuration. Themore » flux surfacing mapping diagnostic was then able to directly image the magnetic topology of the experiment, allowing the inference of a small similar to 4 cm intrinsic island chain. The suspected main sources of the error field, slight misalignment and deformations of the superconducting coils, are then confirmed through experimental modeling using the detailed measurements of the coil positions. Observations of the limiters temperatures in module 5 shows a clear dependence of the limiter heat flux pattern as the perturbing fields are rotated. Plasma experiments without applied correcting fields show a significant asymmetry in neutral pressure (centered in module 4) and light emission (visible, H-alpha, CII, and CIII). Such pressure asymmetry is associated with plasma-wall (limiter) interaction asymmetries between the modules. Application of trim coil fields with n = 1 waveform correct the imbalance. Confirmation of the error fields allows the assessment of magnetic fields which resonate with the n/m = 5/5 island chain.« less
NASA Astrophysics Data System (ADS)
Pondell, C.
2016-12-01
Microplastic pollution is becoming an increasing concern in oceanographic and environmental studies, and offers an opportunity to engage undergraduate students in environmental research using a highly relevant field of investigation. For instance, a majority of environmental science majors not only know about the Great Pacific Garbage Patch, but can also list off several statistics about its size and impact on marine life. Building on this enthusiasm for understanding the impact of microplastics on the environment, a laboratory class was designed to introduce environmental science majors to the rigors of scientific investigation using microplastic pollution in urban waterways as the focus of their laboratory experience. Over a seven-week period, students worked in small groups to design an experiment, collect samples in the field, analyze the samples in the lab, and present their findings in a university-wide forum. Their research questions focused on developing a better understanding of the transportation and fate of microplastics in the urban waterways of Washington, D.C. This presentation will explore the benefits and challenges associated with a student guided field study for environmental science undergraduates, and will describe results and student feedback from their urban microplastic field study.
Basic Welding Curriculum Guide. Vocational Education Curriculum Development. Bulletin No. 1859.
ERIC Educational Resources Information Center
Southeastern Louisiana Univ., Hammond.
This curriculum guide is designed to help teachers conduct a course that provides senior high school students with the opportunity for in-depth exploration in the field of welding. The course provides students with experiences related to the design, theory, and use of welding systems. The first part of the guide contains such information as course…
ERIC Educational Resources Information Center
Zhu, Yi; Weng, T.; Cheng, Chung-Kuan
2009-01-01
Incorporating programmable logic devices (PLD) in digital design courses has become increasingly popular. The advantages of using PLDs, such as complex programmable logic devices (CPLDs) and field programmable gate arrays (FPGA), have been discussed before. However, previous studies have focused on the experiences from the point of view of the…
Educational Kinesiology: Empowering Students and Athletes through Movement.
ERIC Educational Resources Information Center
Sifft, Josie M.
This workshop is designed to provide teachers and coaches with hands-on experiences regarding the field of Educational Kinesiology (Edu-K) and its influence on learning and performance. Edu-K is a practical and dynamic method that utilizes simple body movements to integrate the functioning of the brain. It was designed by Dr. Paul Dennison in 1981…
"No Wonder Out-of-Field Teachers Struggle!": Unpacking the Thinking of Expert Teachers
ERIC Educational Resources Information Center
Beswick, Kim; Fraser, Sharon; Crowley, Suzanne
2016-01-01
In this paper, the authors describe the initial stage of developing a framework designed to support out-of-field, less experiences or isolated mathematics and science teachers to make decisions about the use of resources in their teaching. The process highlighted the complexity and extent of the knowledge on which expert teachers draw in making…
Forum Theatre and Parables: A Qualitative Field Experiment in a Seventh-Day Adventist Academy
ERIC Educational Resources Information Center
Freed, Dena Davis
2012-01-01
In this article, the author describes a qualitative field study designed to test the effectiveness of Forum Theatre (FT) as a cross-disciplinary approach to Biblical parabolic literature analysis for students enrolled in a Seventh-day Adventist (SDA) Academy. The author provides a brief overview of the theoretical framework of the study, the study…
The purpose of this paper is to present an overview and the initial results of a pilot-scale experiment designated to test the use of cyclodextrin for enhanced in-situ flushing of an aquifer contaminated by immiscible liquid. This is the first field test of this technology, terme...
Integrated RF-shim coil allowing two degrees of freedom shim current.
Jiazheng Zhou; Ying-Hua Chu; Yi-Cheng Hsu; Pu-Yeh Wu; Stockmann, Jason P; Fa-Hsuan Lin
2016-08-01
High-quality magnetic resonance imaging and spectroscopic measurements require a highly homogeneous magnetic field. Different from global shimming, localized off-resonance can be corrected by using multi-coil shimming. Previously, integrated RF and shimming coils have been used to implement multi-coil shimming. Such coils share the same conductor for RF signal reception and shim field generation. Here we propose a new design of the integrated RF-shim coil at 3-tesla, where two independent shim current paths are allowed in each coil. This coil permits a higher degree of freedom in shim current distribution design. We use both phantom experiments and simulations to demonstrate the feasibility of this new design.
The Garden Banks 388 horizontal tree design and development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Granhaug, O.; Soul, J.
1995-12-31
This paper describes the Horizontal Subsea Production Tree System, later referred to as a SpoolTree{trademark}, developed for the Enserch Garden Banks 388 field in the Gulf of Mexico. The paper starts with a project overview followed by a comparison between the SpoolTree and the Conventional Tree design. A brief discussion explains why Enserch elected to use the SpoolTree for this field development, including available technology, workover frequency, cost etc. The rigorous safety analysis carried out for the subsea production equipment is then explained in depth. The paper continues with a technical discussion of the main features specific to the SpoolTreemore » design and the Garden Banks 388 field development. Issues discussed include the SpoolTree itself, BOP Adapter Plate (for control during installation, workover and production), Tubing Hanger and pressure barrier design, debris cap design, downhole communication (SCSSV, chemical injection, pressure and temperature) ROV intervention, template wellbay insert design and other relevant issues. The use of computer based 3-D modelling tool is also briefly described. The experience and results described in this paper have direct application to numerous subsea development prospects worldwide, particularly in deep water. In addition, the ``system development`` aspect of the project is relevant to most marine equipment development projects. This includes the use of safety analysis techniques, 3-D computer modelling tools and clearly defined engineering procedures. A full account of the final design configuration of the SpoolTree system is given in the paper. A summary of the experience gained during the extensive testing at the factory and during the template integration tests is also provided.« less
Radiofrequency fields in MAS solid state NMR probes
NASA Astrophysics Data System (ADS)
Tošner, Zdeněk; Purea, Armin; Struppe, Jochem O.; Wegner, Sebastian; Engelke, Frank; Glaser, Steffen J.; Reif, Bernd
2017-11-01
We present a detailed analysis of the radiofrequency (RF) field over full volume of a rotor that is generated in a solenoid coil. On top of the usually considered static distribution of amplitudes along the coil axis we describe dynamic radial RF inhomogeneities induced by sample rotation. During magic angle spinning (MAS), the mechanical rotation of the sample about the magic angle, a spin packet travels through areas of different RF fields and experiences periodical modulations of both the RF amplitude and the phase. These modulations become particularly severe at the end regions of the coil where the relative RF amplitude varies up to ±25% and the RF phase changes within ±30°. Using extensive numerical simulations we demonstrate effects of RF inhomogeneity on pulse calibration and for the ramped CP experiment performed at a wide range of MAS rates. In addition, we review various methods to map RF fields using a B0 gradient along the sample (rotor axis) for imaging purposes. Under such a gradient, a nutation experiment provides directly the RF amplitude distribution, a cross polarization experiment images the correlation of the RF fields on the two channels according to the Hartmann-Hahn matching condition, while a spin-lock experiment allows to calibrate the RF amplitude employing the rotary resonance recoupling condition. Knowledge of the RF field distribution in a coil provides key to understand its effects on performance of a pulse sequence at the spectrometer and enables to set robustness requirements in the experimental design.
NASA Astrophysics Data System (ADS)
You, Setthivoine; von der Linden, Jens; Sander Lavine, Eric; Carroll, Evan Grant; Card, Alexander; Quinley, Morgan; Azuara-Rosales, Manuel
2018-06-01
The Mochi device is a new pulsed power plasma experiment designed to produce long, collimated, stable, magnetized plasma jets when set up in the LabJet configuration. The LabJet configuration aims to simulate an astrophysical jet in the laboratory by mimicking an accretion disk threaded by a poloidal magnetic field with concentric planar electrodes in front of a solenoidal coil. The unique setup consists of three electrodes, each with azimuthally symmetric gas slits. Two of the electrodes are biased independently with respect to the third electrode to control the radial electric field profile across the poloidal bias magnetic field. This design approximates a shear azimuthal rotation profile in an accretion disk. The azimuthally symmetric gas slits provide a continuously symmetric mass source at the footpoint of the plasma jet, so any azimuthal rotation of the plasma jet is not hindered by a discrete number of gas holes. The initial set of diagnostics consists of current Rogowski coils, voltage probes, magnetic field probe arrays, an interferometer and ion Doppler spectroscopy, supplemented by a fast ion gauge and a retarding grid energy analyzer. The measured parameters of the first plasmas are ∼1022 m‑3, ∼0.4 T, and 5–25 eV, with velocities of ∼20–80 km s‑1. The combination of a controllable electric field profile, a flared poloidal magnetic field, and azimuthally symmetric mass sources in the experiment successfully produces short-lived (∼10 μs, ≳5 Alfvén times) collimated magnetic jets with a ∼10:1 aspect ratio and long-lived (∼100 μs, ≳40 Alfvén times) flow-stabilized, collimated, magnetic jets with a ∼30:1 aspect ratio.
NASA Astrophysics Data System (ADS)
Strawitz, Barbara M.; Malone, Mark R.
The purpose of the study was to determine whether the field experience component of an undergraduate science methods course influenced teachers' concerns and attitudes toward science and science teaching. Age, grade-point average, openmindedness, and school assignment were examined as factors which might explain some of the variance in the dependent measures. A one-group pretest-posttest design was used. Students were administered the Teacher Concerns Questionnaire, the Science Teaching Attitude Scales, and the Rokeach Dogmatism Scale approximately eight weeks after the pretest. Results indicated that field experiences did not significantly change student concerns about teaching science but significantly improved student attitudes toward science and science teaching. Students differing in age, grade-point average, and openmindedness did not difer significantly in changes in concerns and changes in attitude toward science and science teaching. Students assigned to different schools differed significantly in changes in attitude toward science.
Lin, Munan; Liu, Ming; Zhu, Guanghui; Wang, Yanpeng; Shi, Peiyun; Sun, Xuan
2017-08-01
A high voltage pulse generator based on a silicon-controlled rectifier has been designed and implemented for a field reversed configuration experiment. A critical damping circuit is used in the generator to produce the desired pulse waveform. Depending on the load, the rise time of the output trigger signal can be less than 1 μs, and the peak amplitudes of trigger voltage and current are up to 8 kV and 85 A in a single output. The output voltage can be easily adjusted by changing the voltage on a capacitor of the generator. In addition, the generator integrates an electrically floating heater circuit so it is capable of triggering either pseudosparks (TDI-type hydrogen thyratron) or ignitrons. Details of the circuits and their implementation are described in the paper. The trigger generator has successfully controlled the discharging sequence of the pulsed power supply for a field reversed configuration experiment.
NASA Astrophysics Data System (ADS)
Lin, Munan; Liu, Ming; Zhu, Guanghui; Wang, Yanpeng; Shi, Peiyun; Sun, Xuan
2017-08-01
A high voltage pulse generator based on a silicon-controlled rectifier has been designed and implemented for a field reversed configuration experiment. A critical damping circuit is used in the generator to produce the desired pulse waveform. Depending on the load, the rise time of the output trigger signal can be less than 1 μs, and the peak amplitudes of trigger voltage and current are up to 8 kV and 85 A in a single output. The output voltage can be easily adjusted by changing the voltage on a capacitor of the generator. In addition, the generator integrates an electrically floating heater circuit so it is capable of triggering either pseudosparks (TDI-type hydrogen thyratron) or ignitrons. Details of the circuits and their implementation are described in the paper. The trigger generator has successfully controlled the discharging sequence of the pulsed power supply for a field reversed configuration experiment.
NASA Astrophysics Data System (ADS)
Shipman, J. S.; Webley, P. W.; Burke, S.; Chebul, E.; Dempsey, A.; Hastings, H.; Terry, R.; Drake, J.
2012-12-01
The Alaska Summer Research Academy (ASRA) annually provides the opportunity for ~150 exceptional high school students to engage in scientific exploration at the university level. In July 2012, University of Alaska Fairbanks instructors led a two-week long ASRA module, called 'Denali Geographic', where eight student participants from across the USA and Canada learned how to observe changes in the natural world and design their own experiments for a field expedition to Denali National Park and Preserve, with assistance from the National Park Service. Each student designed an experiment/observational project prior to the expedition to investigate changes across the expanse of the park. Projects included wildlife documentation; scat and track observations; soil ph and moisture with elevation and vegetation changes; wildflowers species distribution; waterborne insect populations; atmospheric pressure and temperature variations; construction of sustainable buildings to minimize human impact on the park; and park geology comparisons between outcrop and distal stream deposits. The students learned how to design experiments, purchase supplies needed to conduct the work, and select good locations in which to sample in the park. Students used equipment such as GPS to mark field locations; a range finder to determine distance from wildlife; a hygrometer for temperature and pressure; nets and sorting equipments to analyze insects; and the preparation of Plaster of Paris for creating casts of animal tracks. All observations were documented in their field notebooks and blog entries made to share their experiences. Day excursions as part of the module included Poker Flats Research Range, where students learned about the use of unmanned aerial vehicles in scientific exploration; Alaska Volcano Observatory, where students learned about volcanic hazards in Alaska and the North Pacific; Chena Hot Springs and the Ice Museum, where students learned about thermal imaging using a Forward Looking Infrared Radiometer; and Pioneer Park to learn how to pan for gold. After the completion of the expedition, students had to then synthesize each of their research projects and create a collaborative presentation of their findings. On the final day of the camp, students delivered a presentation to 150 of their peers and instructors in the other ASRA modules. Presented here are details of the field camp and experiences gained by the students. The camp and two-week long module showed students how to pursue their own curiosities about the natural world. By encouraging students to take an idea and develop it into a research topic, we engaged them in the scientific method and illustrated possibilities for future avenues of academic study.
'The Real Classroom Is Outside—Get into It!' Teaching through Field Experiences
NASA Astrophysics Data System (ADS)
Passow, M. J.
2015-12-01
Field-based experiences can be powerful influences on students of any age, from pre-college through grad school, as well as on the general public. Every place-based learning experience will be different because the combination of location, participant background, available resources, and other factors will be unique. But certain shared goals, necessities, and similarities can be recognized. Intended outcomes should be identified in advance to inform planning. Preparation for field experiences should involve the students along with other participants. More-experienced students can become role models for new-comers. Field experiences involve active learning, as participants are fully immersed in the sampling site and have all senses stimulated. Constantly-changing variables highlight interconnectedness of Earth processes and fosters Systems Thinking. Decisions about the most effective ways to communicate data and results will differ from what might be based on classroom or laboratory venues. Three examples of field-based learning will be provided. One involves collaboration between educational specialists at a scientific research institution, the Lamont-Doherty Earth Observatory of Columbia University, with high school students enrolled in their school's Authentic Science Research program. The second describes orientation for beginning graduate students to the geology, geography, and history of their new home region through a tourist boat ride, the well-known Circle Ride around Manhattan. The third illustrates use of 'eco-hikes' to enhance environmental understanding for Open House and other visitors. These can serve as models for designing experience-based programs in other situations.
Shimming of a Magnet for Calibration of NMR Probes for the Muon g-2 Experiment
NASA Astrophysics Data System (ADS)
Bielajew, Rachel
2013-10-01
The Muon g-2 Experiment at Fermilab aims to measure the anomalous magnetic moment aμ ≡ (g-2)/2 of the muon to the precision of 0.14 parts per million. This experimental value of aμ can then be compared to the similarly precise theoretical predictions of the Standard Model in order to test the completeness of the model. The value of aμ is extracted from muons precessing in a magnetic field. The magnetic field will be measured with a set of 400 Nuclear Magnetic Resonance (NMR) probes, which have the ability to measure the field to a precision of tens of parts per billion. Before the Muon g-2 Experiment can take place, new NMR probes must be designed, built, and tested using a 1.45 Tesla test magnet at the University of Washington Center for Experimental Nuclear Physics and Astrophysics (CENPA). In order to achieve a significant signal from NMR probes, the magnetic field in which the probes are immersed must be extremely uniform. The existing magnet at CENPA has an approximately linear gradient in magnetic field of about 1 Gauss per centimeter in the smoothest direction. A pair of adjacent square Helmholtz coils was designed and built to create a linear gradient in order to cancel the existing gradient. The length of the NMR signals improved with the implementation of the coils. The results of the addition of the coils to the magnet on the signals from the NMR probes will be presented.
Designing Input Fields for Non-Narrative Open-Ended Responses in Web Surveys
Couper, Mick P.; Kennedy, Courtney; Conrad, Frederick G.; Tourangeau, Roger
2012-01-01
Web surveys often collect information such as frequencies, currency amounts, dates, or other items requiring short structured answers in an open-ended format, typically using text boxes for input. We report on several experiments exploring design features of such input fields. We find little effect of the size of the input field on whether frequency or dollar amount answers are well-formed or not. By contrast, the use of templates to guide formatting significantly improves the well-formedness of responses to questions eliciting currency amounts. For date questions (whether month/year or month/day/year), we find that separate input fields improve the quality of responses over single input fields, while drop boxes further reduce the proportion of ill-formed answers. Drop boxes also reduce completion time when the list of responses is short (e.g., months), but marginally increases completion time when the list is long (e.g., birth dates). These results suggest that non-narrative open questions can be designed to help guide respondents to provide answers in the desired format. PMID:23411468
Design and Practice: Enacting Functional Linguistics.
ERIC Educational Resources Information Center
Martin, James R.
2000-01-01
Draws on experience with a transdisciplinary literacy project in writing development at the secondary level to address the sub-field of "writing-literacy," writing as a linguist working across an applied versus theoretical frontier. (Author/VWL)
UCSD High Energy X-ray Timing Experiment magnetic shield design and test results
NASA Technical Reports Server (NTRS)
Rothschild, Richard E.; Pelling, Michael R.; Hink, Paul L.
1991-01-01
Results are reported from an effort to define a passive magnetic field concept for the High Energy X-ray Timing Experiment (HEXTE), in the interest of reducing the detector-gain variations due to 0.5-1.0-sec timescale magnetic field variations. This will allow a sensitivity of the order of 1 percent of the HEXTE background. While aperture modulation and automatic gain control will minimize effects on timescales of tens of seconds and longer, passive magnetic shielding of the photomultiplier tubes will address 1-sec timescale variations due to aperture motions.
reaxFF Reactive Force Field for Disulfide Mechanochemistry, Fitted to Multireference ab Initio Data.
Müller, Julian; Hartke, Bernd
2016-08-09
Mechanochemistry, in particular in the form of single-molecule atomic force microscopy experiments, is difficult to model theoretically, for two reasons: Covalent bond breaking is not captured accurately by single-determinant, single-reference quantum chemistry methods, and experimental times of milliseconds or longer are hard to simulate with any approach. Reactive force fields have the potential to alleviate both problems, as demonstrated in this work: Using nondeterministic global parameter optimization by evolutionary algorithms, we have fitted a reaxFF force field to high-level multireference ab initio data for disulfides. The resulting force field can be used to reliably model large, multifunctional mechanochemistry units with disulfide bonds as designed breaking points. Explorative calculations show that a significant part of the time scale gap between AFM experiments and dynamical simulations can be bridged with this approach.
Experimental results from magnetized-jet experiments executed at the Jupiter Laser Facility
NASA Astrophysics Data System (ADS)
Manuel, M. J.-E.; Kuranz, C. C.; Rasmus, A. M.; Klein, S. R.; MacDonald, M. J.; Trantham, M. R.; Fein, J. R.; Belancourt, P. X.; Young, R. P.; Keiter, P. A.; Drake, R. P.; Pollock, B. B.; Park, J.; Hazi, A. U.; Williams, G. J.; Chen, H.
2015-12-01
Recent experiments at the Jupiter Laser Facility investigated magnetization effects on collimated plasma jets. Laser-irradiated plastic-cone-targets produced collimated, millimeter-scale plasma flows as indicated by optical interferometry. Proton radiography of these jets showed no indication of strong, self-generated magnetic fields, suggesting a dominantly hydrodynamic collimating mechanism. Targets were placed in a custom-designed solenoid capable of generating field strengths up to 5 T. Proton radiographs of the well-characterized B-field, without a plasma jet, suggested an external source of trapped electrons that affects proton trajectories. The background magnetic field was aligned with the jet propagation direction, as is the case in many astrophysical systems. Optical interferometry showed that magnetization of the plasma results in disruption of the collimated flow and instead produces a hollow cavity. This result is a topic of ongoing investigation.
NASA Astrophysics Data System (ADS)
Vauderwange, Oliver; Wozniak, Peter; Javahiraly, Nicolas; Curticapean, Dan
2016-09-01
The Paper presents the design and development of a blended learning concept for an engineering course in the field of color representation and display technologies. A suitable learning environment is crucial for the success of the teaching scenario. A mixture of theoretical lectures and hands-on activities with practical applications and experiments, combined with the advantages of modern digital media is the main topic of the paper. Blended learning describes the didactical change of attendance periods and online periods. The e-learning environment for the online period is designed toward an easy access and interaction. Present digital media extends the established teaching scenarios and enables the presentation of videos, animations and augmented reality (AR). Visualizations are effective tools to impart learning contents with lasting effect. The preparation and evaluation of the theoretical lectures and the hands-on activities are stimulated and affects positively the attendance periods. The tasks and experiments require the students to work independently and to develop individual solution strategies. This engages and motivates the students, deepens the knowledge. The authors will present their experience with the implemented blended learning scenario in this field of optics and photonics. All aspects of the learning environment will be introduced.
A balloon-borne experiment to investigate the Martian magnetic field
NASA Astrophysics Data System (ADS)
Schwingenschuh, K.; Feldhofer, H.; Koren, W.; Jernej, I.; Stachel, M.; Riedler, W.; Slamanig, H.; Auster, H.-U.; Rustenbach, J.; Fornacon, H. K.; Schenk, H. J.; Hillenmaier, O.; Haerendel, G.; Yeroshenko, Ye.; Styashkin, V.; Zaroutzky, A.; Best, A.; Scholz, G.; Russell, C. T.; Means, J.; Pierce, D.; Luhmann, J. G.
1996-03-01
The Space Research Institute of the Austrian Academy, of Sciences (Graz, Austria) in cooperation with MPE (Berlin, Germany), GFZ Potsdam (Obs. Niemegk, Germany) IZMIRAN/IOFAN (Moscow, Russian) and IGPP/UCLA (Los Angeles, USA) is designing the magnetic field experiment MAGIBAL (MAGnetic field experiment aboard a martian BALloon) to investigate the magnetic field on the surface of Mars. The dual sensor fluxgate magnetometer is part of the MARS-98/MARS-TOGETHER balloon payload. During a ten days period the balloon will float over a distance of about 2000 km at altitudes between 0 and 4 km. Due to the limited power and telemetry allocation the magnetometer can transmit only one vector per ten seconds and spectral information in the frequency range from 2 - 25 Hz. The dynamic range is +/- 2000 nT. The main scientific objectives of the experiment are: • Determination of the magnetism of the Martian rocks • Investigation of the leakage of the solar wind induced magnetosphere using the correlation between orbiter and balloon observations • Measurement of the magnetic field profile between the orbiter and the surface of Mars during the descent phase of the balloon. Terrestrial test flights with a hot air balloon were performed in order to test the original MAGIBAL equipment under balloon flight conditions.
NASA Technical Reports Server (NTRS)
Herman, Cila; Iacona, Estelle; Acquaviva, Tom; Coho, Bill; Grant, Nechelle; Nahra, Henry; Sankaran, Subramanian; Taylor, Al; Julian, Ed; Robinson, Dale;
2001-01-01
The BCOEL project focuses on improving pool boiling heat transfer and bubble control in microgravity by exposing the fluid to electric fields. The electric fields induce a body force that can replace gravity in the low gravity environment, and enhance bubble removal from thc heated surface. A better understanding of microgravity effects on boiling with and without electric fields is critical to the proper design of the phase-change-heat-removal equipment for use in space-based applications. The microgravity experiments will focus on the visualization of bubble formation and shape during boiling. Heat fluxes on the boiling surface will be measured, and, together with the measured driving temperature differences, used to plot boiling curvcs for different electric field magnitudes. Bubble formation and boiling processes were found to be extremely sensitive to g-jitter. The duration of the experimental run is critical in order to achieve steady state in microgravity experiments. The International Space Station provides conditions suitable for such experiments. The experimental appararus to be used in the study is described in the paper. The apparatus will be tested in the KC-135 first, and microgravity experiments will be conducted on board of the International Space Station using the Microgravity Science Glovebox as the experimental platform.
NASA Technical Reports Server (NTRS)
Herman, Cila; Iacona, Estelle; Acquaviva, Tom; Coho, Bill; Grant, Nechelle; Nahra, Henry; Taylor, Al; Julian, Ed; Robinson, Dale; VanZandt, Dave
2001-01-01
The BCOEL project focuses on improving pool boiling heat transfer and bubble control in microgravity by exposing the fluid to electric fields. The electric fields induce a body force that can replace gravity in the low gravity environment, and enhance bubble removal from the heated surface. A better understanding of microgravity effects on boiling with and without electric fields is critical to the proper design of the phase-change-heat-removal equipment for use in spacebased applications. The microgravity experiments will focus on the visualization of bubble formation and shape during boiling. Heat fluxes on the boiling surface will be measured, and, together with the measured driving temperature differences, used to plot boiling curves for different electric field magnitudes. Bubble formation and boiling processes were found to be extremely sensitive to g-jitter. The duration of the experimental run is critical in order to achieve steady state in microgravity experiments. The International Space Station provides conditions suitable for such experiments. The experimental apparatus to be used in the study is described in the paper. The apparatus will be tested in the KC-135 first, and microgravity experiments will be conducted on board of the International Space Station using the Microgravity Science Glovebox as the experimental platform.
NASA Technical Reports Server (NTRS)
Anderson, K. A.
1972-01-01
Design studies for an X-ray experiment using solid state detectors and for an experiment using a proportional counter for investigating Jovian and Saturnian magnetospheres are reported. Background counting rates through the forward aperture and leakage fluxes are discussed for each design. It is concluded that the best choice of instrument appears to have following the characteristics: (1) two separate multiwire proportional counters for redundancy; (2) passive collimation to restrict the field to about 5 deg, wiregrid modulation collimation to about 0.1 deg angular resolution; (3) no active shielding system around the counter body; and (4) light passive shielding around any portion of the counter body exposed to space to absorb most of the cosmic X-ray background.
A new magnet design for future Kibble balances
NASA Astrophysics Data System (ADS)
Li, Shisong; Stock, Michael; Schlamminger, Stephan
2018-06-01
We propose a new permanent magnet system for Kibble balance experiments, which combines advantages of the magnet designs invented by the National Physical Laboratory (NPL) and by the Bureau International des Poids et Mesures (BIPM). The goal of the proposed magnet system is to minimize the coil-current effect and to optimize the shielding at the same time. In the proposed design, a permanent magnet system with two gaps, each housing a coil, is employed to minimize the coil current effect, by reducing the linear coil-current dependence reported for the single air gap design by at least one order of magnitude. Both air gaps of the magnet are completely surrounded by high-permeability material, and hence the coils are shielded from outside magnetic fields and no magnetic field leaks outside of the magnet system. An example of the new magnet system is given and the analysis shows that the magnetic field in the air gap can be optimized to meet the requirement to be used in Kibble balances.
New research on women's low participation in science and technology
NASA Astrophysics Data System (ADS)
Stout, Jane
It is well known that women have historically been and continue to be grossly underrepresented in technical fields (i.e., the physical sciences, engineering, and computing). This presentation will address the following research questions: What dissuades women from entering into a technical career track, and what are women's experiences like within technical fields? At the same time, this presentation will acknowledge a shortcoming of decades of social science research and interventions designed to improve women's interest and persistence in technical fields: a narrow definition of ``women''. Given that the majority of women in colleges and universities (i.e., the typical sites of social science research) tend to be affluent and/or White, STEM education research that relies on convenience samples at colleges and universities paints a skewed picture of gender issues in technical fields. This presentation will showcase research findings that call into question conventional conceptions of gender disparities in technical fields. Specifically, the presentation will emphasize the importance of recognizing that women constitute more than their gender; women come from a diverse array of backgrounds, which no doubt play a role in the experience of being a woman in technical fields. By understanding the experiences of women from a broad array of demographics groups, the STEM education community can develop a corresponding set of strategies to recruit and retain women with diverse interests, experiences, and values (e.g., first generation versus second college students; women of different racial/ethnic backgrounds). The aim of this presentation is to promote social science research and interventions that acknowledge the nuanced experiences of diverse women in technical fields, in order to address the seemingly intractable problem of women's underrepresentation in technical fields. NSF DUE-1431112, NSF CNS-1246649.
NASA Astrophysics Data System (ADS)
Melville, R.; Stillinger, A.; Gerrard, A.; Weatherwax, A.
2014-04-01
The need to provide power to unmanned instrumentation over the course of an entire year on the Antarctic plateau presents a large number of engineering and logistical challenges. Designs formulated in ideal laboratory environments often fail in the Antarctic due to the harsh operating conditions, and field experience is necessary to achieve year-round operation in the 100 W power range. In this paper we present our current power design for the Automatic Geophysical Observatories; a design based on over two decades of experience on the ice and allows for relatively continuous operation at the aforementioned power level. We also discuss our various implementation methods, both failures and successes, in an effort assist other unmanned deployments on the ice.
Melville, R; Stillinger, A; Gerrard, A; Weatherwax, A
2014-04-01
The need to provide power to unmanned instrumentation over the course of an entire year on the Antarctic plateau presents a large number of engineering and logistical challenges. Designs formulated in ideal laboratory environments often fail in the Antarctic due to the harsh operating conditions, and field experience is necessary to achieve year-round operation in the 100 W power range. In this paper we present our current power design for the Automatic Geophysical Observatories; a design based on over two decades of experience on the ice and allows for relatively continuous operation at the aforementioned power level. We also discuss our various implementation methods, both failures and successes, in an effort assist other unmanned deployments on the ice.
ERIC Educational Resources Information Center
Ayar, Mehmet C.
2015-01-01
The purpose of this study is to present students' experiences, interest in engineering, and personal narratives while participating in a robotics summer camp in a metropolitan city in Turkey. In this study, I used qualitative data collection methods such as interviews, field notes, and observations. I used the four principles of Engle and Conant…
2008-08-01
identified for static experiments , target arrays have been designed and ground truth systems are already in place. Participation in field ...key objectives are rapid launch and on-orbit checkout, theater commanding, and near -real time theater data integration. It will also feature a rapid...Organisation (DSTO) plan to participate in TacSat-3 experiments . 1. INTRODUCTION In future conflicts, military space forces will likely face
Gourdain, P-A; Peebles, W A
2008-10-01
Reflectometry has successfully demonstrated measurements of many important parameters in high temperature tokamak fusion plasmas. However, implementing such capabilities in a high-field, large plasma, such as ITER, will be a significant challenge. In ITER, the ratio of plasma size (meters) to the required reflectometry source wavelength (millimeters) is significantly larger than in existing fusion experiments. This suggests that the flow of the launched reflectometer millimeter-wave power can be realistically analyzed using three-dimensional ray tracing techniques. The analytical and numerical studies presented will highlight the fact that the group velocity (or power flow) of the launched microwaves is dependent on the direction of wave propagation relative to the internal magnetic field. It is shown that this dependence strongly modifies power flow near the cutoff layer in a manner that embeds the local magnetic field direction in the "footprint" of the power returned toward the launch antenna. It will be shown that this can potentially be utilized to locally determine the magnetic field pitch angle at the cutoff location. The resultant beam drift and distortion due to magnetic field and relativistic effects also have significant consequences on the design of reflectometry systems for large, high-field fusion experiments. These effects are discussed in the context of the upcoming ITER burning plasma experiment.
Biswas, Subir; Chattopadhyay, Monobir; Pal, Rabindranath
2011-01-01
The turbo molecular pump of the Magnetized Plasma Linear Experimental device is protected from damage by a magnetic shield. As the pump runs continuously in a magnetic field environment during a plasma physics experiment, it may get damaged owing to eddy current effect. For design and testing of the shield, first we simulate in details various aspects of magnetic shield layouts using a readily available field design code. The performance of the shield made from two half cylinders of soft iron material, is experimentally observed to agree very well with the simulation results.
Mechanism design and optimization of a bionic kangaroo jumping robot
NASA Astrophysics Data System (ADS)
Zhang, Y. H.; Zheng, L.; Ge, W. J.; Zou, Z. H.
2018-03-01
Hopping robots have broad application prospects in the fields of military reconnaissance, field search or life rescue. However, current hopping robots still face the problems of weak jumping ability and load bearing. Inspired by the jumping of kangaroo, we design a Kangaroo hopping robot “Zbot”, which has two degrees of freedom and three joints. The geared five-bar mechanism is used to decouple the knee and ankle joints of the robot. In order to get a bionic performance, the coupling mechanism parameters are optimized. The simulation and experiments show that the robot has an excellent jumping ability and load capacity.
Straight scaling FFAG beam line
NASA Astrophysics Data System (ADS)
Lagrange, J.-B.; Planche, T.; Yamakawa, E.; Uesugi, T.; Ishi, Y.; Kuriyama, Y.; Qin, B.; Okabe, K.; Mori, Y.
2012-11-01
Fixed field alternating gradient (FFAG) accelerators are recently subject to a strong revival. They are usually designed in a circular shape; however, it would be an asset to guide particles with no overall bend in this type of accelerator. An analytical development of a straight FFAG cell which keeps zero-chromaticity is presented here. A magnetic field law is thus obtained, called "straight scaling law", and an experiment has been conducted to confirm this zero-chromatic law. A straight scaling FFAG prototype has been designed and manufactured, and horizontal phase advances of two different energies are measured. Results are analyzed to clarify the straight scaling law.
Tolerance Studies of the Mu2e Solenoid System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopes, M. L.; Ambrosio, G.; Buehler, M.
2014-01-01
The muon-to-electron conversion experiment at Fermilab is designed to explore charged lepton flavor violation. It is composed of three large superconducting solenoids, namely, the production solenoid, the transport solenoid, and the detector solenoid. Each subsystem has a set of field requirements. Tolerance sensitivity studies of the magnet system were performed with the objective of demonstrating that the present magnet design meets all the field requirements. Systematic and random errors were considered on the position and alignment of the coils. The study helps to identify the critical sources of errors and which are translated to coil manufacturing and mechanical support tolerances.
Antenna design for propagating spin wave spectroscopy in ferromagnetic thin films
NASA Astrophysics Data System (ADS)
Zhang, Yan; Yu, Ting; Chen, Ji-lei; Zhang, You-guang; Feng, Jian; Tu, Sa; Yu, Haiming
2018-03-01
In this paper, we investigate the characteristics of antenna for propagating-spin-wave-spectroscopy (PSWS) experiment in ferromagnetic thin films. Firstly, we simulate the amplitude and phase distribution of the high-frequency magnetic field around antenna by high frequency structure simulator (HFSS). And then k distribution of the antenna is obtained by fast Fourier transformation (FFT). Furthermore, three kinds of antenna designs, i.e. micro-strip line, coplanar waveguide (CPW), loop, are studied and compared. How the dimension parameter of antenna influence the corresponding high-frequency magnetic field amplitude and k distribution are investigated in details.
A z-gradient array for simultaneous multi-slice excitation with a single-band RF pulse.
Ertan, Koray; Taraghinia, Soheil; Sadeghi, Alireza; Atalar, Ergin
2018-07-01
Multi-slice radiofrequency (RF) pulses have higher specific absorption rates, more peak RF power, and longer pulse durations than single-slice RF pulses. Gradient field design techniques using a z-gradient array are investigated for exciting multiple slices with a single-band RF pulse. Two different field design methods are formulated to solve for the required current values of the gradient array elements for the given slice locations. The method requirements are specified, optimization problems are formulated for the minimum current norm and an analytical solution is provided. A 9-channel z-gradient coil array driven by independent, custom-designed gradient amplifiers is used to validate the theory. Performance measures such as normalized slice thickness error, gradient strength per unit norm current, power dissipation, and maximum amplitude of the magnetic field are provided for various slice locations and numbers of slices. Two and 3 slices are excited by a single-band RF pulse in simulations and phantom experiments. The possibility of multi-slice excitation with a single-band RF pulse using a z-gradient array is validated in simulations and phantom experiments. Magn Reson Med 80:400-412, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Jahandideh, Samad; Abdolmaleki, Parviz; Movahedi, Mohammad Mehdi
2010-02-01
Various studies have been reported on the bioeffects of magnetic field exposure; however, no consensus or guideline is available for experimental designs relating to exposure conditions as yet. In this study, logistic regression (LR) and artificial neural networks (ANNs) were used in order to analyze and predict the melatonin excretion patterns in the rat exposed to extremely low frequency magnetic fields (ELF-MF). Subsequently, on a database containing 33 experiments, performances of LR and ANNs were compared through resubstitution and jackknife tests. Predictor variables were more effective parameters and included frequency, polarization, exposure duration, and strength of magnetic fields. Also, five performance measures including accuracy, sensitivity, specificity, Matthew's Correlation Coefficient (MCC) and normalized percentage, better than random (S) were used to evaluate the performance of models. The LR as a conventional model obtained poor prediction performance. Nonetheless, LR distinguished the duration of magnetic fields as a statistically significant parameter. Also, horizontal polarization of magnetic fields with the highest logit coefficient (or parameter estimate) with negative sign was found to be the strongest indicator for experimental designs relating to exposure conditions. This means that each experiment with horizontal polarization of magnetic fields has a higher probability to result in "not changed melatonin level" pattern. On the other hand, ANNs, a more powerful model which has not been introduced in predicting melatonin excretion patterns in the rat exposed to ELF-MF, showed high performance measure values and higher reliability, especially obtaining 0.55 value of MCC through jackknife tests. Obtained results showed that such predictor models are promising and may play a useful role in defining guidelines for experimental designs relating to exposure conditions. In conclusion, analysis of the bioelectromagnetic data could result in finding a relationship between electromagnetic fields and different biological processes. (c) 2009 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Stinson, Harry Theodore, III
This dissertation describes the design and construction of the world's first cryogenic apertureless near-field microscope designed for terahertz sources and detectors. I first provide motivation for the creation of this instrument in the context of spectroscopy of correlated electron materials, and background information on the two techniques that the instrument combines, scanning near-field optical microscopy and terahertz time-domain spectroscopy. I then detail key components of the instrument design, including proof-of-principle results obtained at room and cryogenic temperatures. Following this, I discuss an imaging experiment performed with this instrument on vanadium dioxide, an insulator-metal transition material, which sheds new light on the nature of the phase transition and provides support for a new model Hamiltonian for the system. Finally, I discuss a theoretical proposal for the study of cuprate superconductors using this instrument.
1983-06-01
program specifically designed to solve IME equations. The IME measure is a useful index because it translates system performance characteristics of...8.0 SUMMARY The purpose of this study was to design the field evaluation of a camou- flage system in such a manner that the camoufleur could...analysis of complex factorial designs and their associated systems of confounding ((44), [46)) and to the introduction of incomplete block designs . My
Evaluating the Healthy Start program. Design development to evaluative assessment.
Raykovich, K S; McCormick, M C; Howell, E M; Devaney, B L
1996-09-01
The national evaluation of the federally funded Healthy Start program involved translating a design for a process and outcomes evaluation and standard maternal and infant data set, both developed prior to the national evaluation contract award, into an evaluation design and client data collection protocol that could be used to evaluate 15 diverse grantees. This article discusses the experience of creating a process and outcomes evaluation design that was both substantively and methodologically appropriate given such issues as the diversity of grantees and their community-based intervention strategies; the process of accessing secondary data sources, including vital records; the quality of client level data submissions; and the need to incorporate both qualitative and quantitative approaches into the evaluation design. The relevance of this experience for the conduct of other field studies of public health interventions is discussed.
The Penn State ``Cyber Wind Facility''
NASA Astrophysics Data System (ADS)
Brasseur, James; Vijayakumar, Ganesh; Lavely, Adam; Nandi, Tarak; Jayaraman, Balaji; Jha, Pankaj; Dunbar, Alex; Motta-Mena, Javier; Haupt, Sue; Craven, Brent; Campbell, Robert; Schmitz, Sven; Paterson, Eric
2012-11-01
We describe development and results from a first generation Penn State ``Cyber Wind Facility'' (CWF). The aim of the CWF program is to develop and validate a computational ``facility'' that, in the most powerful HPC environments, will be basis for the design and implementation of cyber ``experiments'' at a level of complexity, fidelity and resolution to be treated similarly to field experiments on wind turbines operating in true atmospheric environments. We see cyber experiments as complimentary to field experiments in the sense that, whereas field data can record over ranges of events not representable in the cyber environment, with sufficient resolution, numerical accuracy, and HPC power, it is theoretically possible to collect cyber data from more true, albeit canonical, atmospheric environments can produce data from extraordinary numbers of sensors impossible to obtain in the field. I will describe our first generation CWF, from which we have quantified and analyzed useful details of the interactions between atmospheric turbulence and wind turbine loadings for an infinitely stiff commercial-scale turbine rotor in a canonical convective daytime atmospheric boundary layer over horizontally homogeneous rough flat terrain. Supported by the DOE Offshore Initiative and the National Science Foundation.
NASA Technical Reports Server (NTRS)
Hasenstein, Karl H.; Boody, April; Cox, David (Technical Monitor)
2002-01-01
The BioTube/Magnetic Field Apparatus (MFA) research is designed to provide insight into the organization and operation of the gravity sensing systems of plants and other small organisms. This experiment on STS-107 uses magnetic fields to manipulate sensory cells in plant roots, thus using magnetic fields as a tool to study gravity-related phenomena. The experiment will be located in the SPACEHAB module and is about the size of a household microwave oven. The goal of the experiment is to improve our understanding of the basic phenomenon of how plants respond to gravity. The BioTube/MFA experiment specifically examines how gravitational forces serve as a directional signal for growth in the low-gravity environment of space. As with all basic research, this study will contribute to an improved understanding of how plants grow and will have important implications for improving plant growth and productivity on Earth. In BioTube/MFA, magnetic fields will be used to determine whether the distribution of subcellular starch grains, called amyloplasts, within plant cells predicts the direction in which roots will grow and curve in microgravity.
Uses of infrared thermography in the low-cost solar array program
NASA Technical Reports Server (NTRS)
Glazer, S. D.
1982-01-01
The Jet Propulsion Laboratory has used infrared thermography extensively in the Low-Cost Solar Array (LSA) photovoltaics program. A two-dimensional scanning infrared radiometer has been used to make field inspections of large free-standing photovoltaic arrays and smaller demonstration sites consisting of integrally mounted rooftop systems. These field inspections have proven especially valuable in the research and early development phases of the program, since certain types of module design flaws and environmental degradation manifest themselves in unique thermal patterns. The infrared camera was also used extensively in a series of laboratory tests on photovoltaic cells to obtain peak cell temperatures and thermal patterns during off-design operating conditions. The infrared field inspections and the laboratory experiments are discussed, and sample results are presented.
A new high current laboratory and pulsed homopolar generator power supply at the University of Texas
NASA Astrophysics Data System (ADS)
Floyd, J. E.; Aanstoos, T. A.
1984-03-01
The University of Texas at Austin is constructing a facility for research in pulse power technology for the Center for Electromechanics at the Balcones Research Center. The facility, designed to support high-current experiments, will be powered by six homopolar generators, each rated at 10 MJ and arranged to allow matching the requirements of resistive and inductive loads at various voltage and current combinations. Topics covered include the high bay, the power supply configuration and parameters, the speed and field control, and the magnetic circuit. Also considered are the removable air-cooled brushes, the water-cooled field coils, the hydraulic motor sizing and direct coupling, the low-impedance removable field coils, and the hydrostatic bearing design.
Steering Quantum Dynamics of a Two-Qubit System via Optimal Bang-Bang Control
NASA Astrophysics Data System (ADS)
Hu, Juju; Ke, Qiang; Ji, Yinghua
2018-02-01
The optimization of control time for quantum systems has been an important field of control science attracting decades of focus, which is beneficial for efficiency improvement and decoherence suppression caused by the environment. Based on analyzing the advantages and disadvantages of the existing Lyapunov control, using a bang-bang optimal control technique, we investigate the fast state control in a closed two-qubit quantum system, and give three optimized control field design methods. Numerical simulation experiments indicate the effectiveness of the methods. Compared to the standard Lyapunov control or standard bang-bang control method, the optimized control field design methods effectively shorten the state control time and avoid high-frequency oscillation that occurs in bang-bang control.
Designing a hands-on brain computer interface laboratory course.
Khalighinejad, Bahar; Long, Laura Kathleen; Mesgarani, Nima
2016-08-01
Devices and systems that interact with the brain have become a growing field of research and development in recent years. Engineering students are well positioned to contribute to both hardware development and signal analysis techniques in this field. However, this area has been left out of most engineering curricula. We developed an electroencephalography (EEG) based brain computer interface (BCI) laboratory course to educate students through hands-on experiments. The course is offered jointly by the Biomedical Engineering, Electrical Engineering, and Computer Science Departments of Columbia University in the City of New York and is open to senior undergraduate and graduate students. The course provides an effective introduction to the experimental design, neuroscience concepts, data analysis techniques, and technical skills required in the field of BCI.
Andersson, Lars; Andreasen, Jens O
2011-08-01
The purpose of this article is to suggest important considerations for epidemiologic and clinical studies in the field of dental traumatology. The article is based on the authors' experiences from research in this field and editorial board work for the scientific journal Dental Traumatology. Examples are given of issues where development is important. The importance of planning ahead of the study and consulting with experts in other fields is emphasized. © 2011 John Wiley & Sons A/S.
Optical System Design for Noncontact, Normal Incidence, THz Imaging of in vivo Human Cornea.
Sung, Shijun; Dabironezare, Shahab; Llombart, Nuria; Selvin, Skyler; Bajwa, Neha; Chantra, Somporn; Nowroozi, Bryan; Garritano, James; Goell, Jacob; Li, Alex; Deng, Sophie X; Brown, Elliott; Grundfest, Warren S; Taylor, Zachary D
2018-01-01
Reflection mode Terahertz (THz) imaging of corneal tissue water content (CTWC) is a proposed method for early, accurate detection and study of corneal diseases. Despite promising results from ex vivo and in vivo cornea studies, interpretation of the reflectivity data is confounded by the contact between corneal tissue and dielectric windows used to flatten the imaging field. Herein, we present an optical design for non-contact THz imaging of cornea. A beam scanning methodology performs angular, normal incidence sweeps of a focused beam over the corneal surface while keeping the source, detector, and patient stationary. A quasioptical analysis method is developed to analyze the theoretical resolution and imaging field intensity profile. These results are compared to the electric field distribution computed with a physical optics analysis code. Imaging experiments validate the optical theories behind the design and suggest that quasioptical methods are sufficient for designing of THz corneal imaging systems. Successful imaging operations support the feasibility of non-contact in vivo imaging. We believe that this optical system design will enable the first, clinically relevant, in vivo exploration of CTWC using THz technology.
VHF Data Link Communication Characteristics
DOT National Transportation Integrated Search
1977-11-01
This report describes the results of a series of laboratory, field, and flight test experiments designed to characterize the performance of current VHF communication equipment and the VHF channel relative to the communication of digital data in the A...
Technical design and commissioning of the KATRIN large-volume air coil system
NASA Astrophysics Data System (ADS)
Erhard, M.; Behrens, J.; Bauer, S.; Beglarian, A.; Berendes, R.; Drexlin, G.; Glück, F.; Gumbsheimer, R.; Hergenhan, J.; Leiber, B.; Mertens, S.; Osipowicz, A.; Plischke, P.; Reich, J.; Thümmler, T.; Wandkowsky, N.; Weinheimer, C.; Wüstling, S.
2018-02-01
The KATRIN experiment is a next-generation direct neutrino mass experiment with a sensitivity of 0.2 eV (90% C.L.) to the effective mass of the electron neutrino. It measures the tritium β-decay spectrum close to its endpoint with a spectrometer based on the MAC-E filter technique. The β-decay electrons are guided by a magnetic field that operates in the mT range in the central spectrometer volume; it is fine-tuned by a large-volume air coil system surrounding the spectrometer vessel. The purpose of the system is to provide optimal transmission properties for signal electrons and to achieve efficient magnetic shielding against background. In this paper we describe the technical design of the air coil system, including its mechanical and electrical properties. We outline the importance of its versatile operation modes in background investigation and suppression techniques. We compare magnetic field measurements in the inner spectrometer volume during system commissioning with corresponding simulations, which allows to verify the system's functionality in fine-tuning the magnetic field configuration. This is of major importance for a successful neutrino mass measurement at KATRIN.
Microstrip resonators for electron paramagnetic resonance experiments
NASA Astrophysics Data System (ADS)
Torrezan, A. C.; Mayer Alegre, T. P.; Medeiros-Ribeiro, G.
2009-07-01
In this article we evaluate the performance of an electron paramagnetic resonance (EPR) setup using a microstrip resonator (MR). The design and characterization of the resonator are described and parameters of importance to EPR and spin manipulation are examined, including cavity quality factor, filling factor, and microwave magnetic field in the sample region. Simulated microwave electric and magnetic field distributions in the resonator are also presented and compared with qualitative measurements of the field distribution obtained by a perturbation technique. Based on EPR experiments carried out with a standard marker at room temperature and a MR resonating at 8.17 GHz, the minimum detectable number of spins was found to be 5×1010 spins/GHz1/2 despite the low MR unloaded quality factor Q0=60. The functionality of the EPR setup was further evaluated at low temperature, where the spin resonance of Cr dopants present in a GaAs wafer was detected at 2.3 K. The design and characterization of a more versatile MR targeting an improved EPR sensitivity and featuring an integrated biasing circuit for the study of samples that require an electrical contact are also discussed.
Photovoltaic module reliability improvement through application testing and failure analysis
NASA Technical Reports Server (NTRS)
Dumas, L. N.; Shumka, A.
1982-01-01
During the first four years of the U.S. Department of Energy (DOE) National Photovoltatic Program, the Jet Propulsion Laboratory Low-Cost Solar Array (LSA) Project purchased about 400 kW of photovoltaic modules for test and experiments. In order to identify, report, and analyze test and operational problems with the Block Procurement modules, a problem/failure reporting and analysis system was implemented by the LSA Project with the main purpose of providing manufacturers with feedback from test and field experience needed for the improvement of product performance and reliability. A description of the more significant types of failures is presented, taking into account interconnects, cracked cells, dielectric breakdown, delamination, and corrosion. Current design practices and reliability evaluations are also discussed. The conducted evaluation indicates that current module designs incorporate damage-resistant and fault-tolerant features which address field failure mechanisms observed to date.
Numerical design of a magnetized turbulence experiment at the National Ignition Facility
NASA Astrophysics Data System (ADS)
Feister, Scott; Tzeferacos, Petros; Meinecke, Jena; Bott, Archie; Caprioli, Damiano; Laune, Jt; Bell, Tony; Casner, Alexis; Koenig, Michel; Li, Chikang; Miniati, Francesco; Petrasso, Richard; Remington, Bruce; Reville, Brian; Ross, J. Steven; Ryu, Dongsu; Ryutov, Dmitri; Sio, Hong; Turnbull, David; Zylstra, Alex; Schekochihin, Alexander; Froula, Dustin; Park, Hye-Sook; Lamb, Don; Gregori, Gianluca
2017-10-01
The origin and amplification of magnetic fields remains an active astrophysical research topic. We discuss design (using three-dimensional FLASH simulations) of a magnetized turbulence experiment at the National Ignition Facility (NIF). NIF lasers drive together two counter-propagating plasma flows to form a hot, turbulent plasma at the center. In the simulations, plasma temperatures are high enough to reach super-critical values of magnetic Reynolds number (Rm). Biermann battery seed magnetic fields (generated during laser-target interaction) are advected into the turbulent region and amplified by fluctuation dynamo in the above-unity Prandtl number regime. Plasma diagnostics are modeled with FLASH for planning and direct comparison with NIF experimental data. This work was supported in part at the University of Chicago by the DOE NNSA, the DOE Office of Science, and the NSF. The numerical simulations were conducted at ALCF's Mira under the auspices of the DOE Office of Science ALCC program.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curley, C.C.; Olesen, P.
1976-09-01
The Martins Creek SES units 3 and 4 are 820 MW crude oil- or residual oil-fired power units. The forced draft and induced draft fans used in the plants are variable pitch axial flow units. The design, operation, maintenance, and field testing of these fans are discussed. (LCL)
ERIC Educational Resources Information Center
Weiss, Brian; Castaldi, Marco J.
2006-01-01
A reactor to convert waste rubber tires to useful products such as CO and H2, was investigated in a university undergraduate design project. The student worked individually with mentorship from a faculty professor who aided the student with professional critique. The student was able to research the background of the field and conceive of a novel…
ERIC Educational Resources Information Center
Chou, Huey-Wen; Wang, Yu-Fang
1999-01-01
Compares the effects of two training methods on computer attitude and performance in a World Wide Web page design program in a field experiment with high school students in Taiwan. Discusses individual differences, Kolb's Experiential Learning Theory and Learning Style Inventory, Computer Attitude Scale, and results of statistical analyses.…
Designing an Exploratory Text Analysis Tool for Humanities and Social Sciences Research
ERIC Educational Resources Information Center
Shrikumar, Aditi
2013-01-01
This dissertation presents a new tool for exploratory text analysis that attempts to improve the experience of navigating and exploring text and its metadata. The design of the tool was motivated by the unmet need for text analysis tools in the humanities and social sciences. In these fields, it is common for scholars to have hundreds or thousands…
Ambience in Social Learning: Student Engagement with New Designs for Learning Spaces
ERIC Educational Resources Information Center
Crook, Charles; Mitchell, Gemma
2012-01-01
An imperative to develop the social experience of learning has led to the design of informal learning spaces within libraries. Yet little is known about how these spaces are used by students or how students perceive them. Field work in one such space is reported. The general private study practice of undergraduates was captured through audio…
Katimavik Field Staff Manual = Katimavik Manuel du Personnel D'Encadrement. Revised Edition.
ERIC Educational Resources Information Center
OPCAN, Montreal (Quebec).
Based upon accumulated field staff experience from years past, the bilingual manual is designed to be used on both a day-to-day basis as needs present themselves and for long-term planning by staff of Katimavik, a nine-month volunteer community service and learning program for 17 to 21-year-old Canadian youth. The manual is divided into three…
ERIC Educational Resources Information Center
Rosenthal, Harvey M.
This Elementary and Secondary Education Act Title I project was developed in order to provide educationally enriching experiences to New York City elementary school students in disadvantaged non-public schools by means of field trips to places of civic and cultural interest. The 182 schools chosen were in designated poverty areas. Evaluation of…
The MJS-77 magnetometer actuator
NASA Technical Reports Server (NTRS)
Stange, W. C.
1977-01-01
A two-position (0 deg and 180 deg) actuating mechanism (flipper) driven by alternately-heated wax motors (pellets) used to rotate the low field triaxial fluxgate magnetometer experiment on the 1977 Mariner Jupiter-Saturn spacecraft to its 0 deg and 180 deg positions is described. The magnetic field, power requirements, weight and volume of this device are discussed. The problems encountered in design and development of this mechanism are presented.
ERIC Educational Resources Information Center
Delaware Univ., Newark. Coll. of Education.
The materials in this packet are designed to aid teachers in the implementation of a science field studies unit concerning tidal rivers. The packet consists of the following: (1) background material for the teacher; (2) lab exercises; (3) field activities; and (4) classroom activities. The overall purpose of this packet is to provide information…
How to Make a Field Trip a Hands-On Investigative Laboratory: Learning about Marine Invertebrates
ERIC Educational Resources Information Center
Burrowes, Patricia A.
2007-01-01
Research has shown that when students are given the opportunity to ask their own questions and design their own experiments, they become more interested in learning the answers. In this article, the author describes an effective method to do a field trip to the beach and gets her students to make observations about marine animals, come up with a…
Solar Refrigerator/Freezers For Vaccines
NASA Technical Reports Server (NTRS)
Ratajczak, Anthony F.
1988-01-01
Report presents results of field tests of solar-cell-powered refrigerator/freezers for vaccines. Covers following topics: explanation of project; descriptions of refrigerator/freezer systems; account of installation experiences; performance data for 22 systems for which field-test data reported; summary of operational reliability; comments of users of some systems tested; and recommendations for design and future use. Photovoltaic systems store vaccines in remote regions where powerlines unavailable.
McIntyre, Scott E; Gugerty, Leo
2014-06-01
This field experiment takes a novel approach in applying methodologies and theories of visual search to the subject of conspicuity in automobile rear lighting. Traditional rear lighting research has not used the visual search paradigm in experimental design. It is our claim that the visual search design uniquely uncovers visual attention processes operating when drivers search the visual field that current designs fail to capture. This experiment is a validation and extension of previous simulator research on this same topic and demonstrates that detection of red automobile brake lamps will be improved if tail lamps are another color (in this test, amber) rather than the currently mandated red. Results indicate that when drivers miss brake lamp onset in low ambient light, RT and error are reduced in detecting the presence and absence of red brake lamps with multiple lead vehicles when tail lamps are not red compared to current rear lighting which mandates red tail lamps. This performance improvement is attributed to efficient visual processing that automatically segregates tail (amber) and brake (red) lamp colors into distractors and targets respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harben, P E; Harris, D; Myers, S
Seismic imaging and tracking methods have intelligence and monitoring applications. Current systems, however, do not adequately calibrate or model the unknown geological heterogeneity. Current systems are also not designed for rapid data acquisition and analysis in the field. This project seeks to build the core technological capabilities coupled with innovative deployment, processing, and analysis methodologies to allow seismic methods to be effectively utilized in the applications of seismic imaging and vehicle tracking where rapid (minutes to hours) and real-time analysis is required. The goal of this project is to build capabilities in acquisition system design, utilization and in full 3Dmore » finite difference modeling as well as statistical characterization of geological heterogeneity. Such capabilities coupled with a rapid field analysis methodology based on matched field processing are applied to problems associated with surveillance, battlefield management, finding hard and deeply buried targets, and portal monitoring. This project benefits the U.S. military and intelligence community in support of LLNL's national-security mission. FY03 was the final year of this project. In the 2.5 years this project has been active, numerous and varied developments and milestones have been accomplished. A wireless communication module for seismic data was developed to facilitate rapid seismic data acquisition and analysis. The E3D code was enhanced to include topographic effects. Codes were developed to implement the Karhunen-Loeve (K-L) statistical methodology for generating geological heterogeneity that can be utilized in E3D modeling. The matched field processing methodology applied to vehicle tracking and based on a field calibration to characterize geological heterogeneity was tested and successfully demonstrated in a tank tracking experiment at the Nevada Test Site. A 3-seismic-array vehicle tracking testbed was installed on-site at LLNL for testing real-time seismic tracking methods. A field experiment was conducted over a tunnel at the Nevada Site that quantified the tunnel reflection signal and, coupled with modeling, identified key needs and requirements in experimental layout of sensors. A large field experiment was conducted at the Lake Lynn Laboratory, a mine safety research facility in Pennsylvania, over a tunnel complex in realistic, difficult conditions. This experiment gathered the necessary data for a full 3D attempt to apply the methodology. The experiment also collected data to analyze the capabilities to detect and locate in-tunnel explosions for mine safety and other applications.« less
Nogueira d'Eurydice, Marcel; Galvosas, Petrik
2014-11-01
Single-sided NMR systems are becoming a relevant tool in industry and laboratory environments due to their low cost, low maintenance and capacity to evaluate quantity and quality of hydrogen based materials. The performance of such devices has improved significantly over the last decade, providing increased field homogeneity, field strength and even controlled static field gradients. For a class of these devices, the configuration of the permanent magnets provides a linear variation of the magnetic field and can be used in diffusion measurements. However, magnet design depends directly on its application and, according to the purpose, the field homogeneity may significantly be compromised. This may prevent the determination of diffusion properties of fluids based on the natural inhomogeneity of the field using known techniques. This work introduces a new approach that extends the applicability of diffusion-editing CPMG experiments to NMR devices with highly inhomogeneous magnetic fields, which do not vary linearly in space. Herein, we propose a method to determine a custom diffusion kernel based on the gradient distribution, which can be seen as a signature of each NMR device. This new diffusion kernel is then utilised in the 2D inverse Laplace transform (2D ILT) in order to determine diffusion-relaxation correlation maps of homogeneous multi-phasic fluids. The experiments were performed using NMR MObile Lateral Explore (MOLE), which is a single-sided NMR device designed to maximise the volume at the sweet spot with enhanced depth penetration. Copyright © 2014 Elsevier Inc. All rights reserved.
Harding, D. R.; Ulreich, J.; Wittman, M. D.; ...
2017-12-06
Improving the performance of direct-drive cryogenic targets at the Omega Laser Facility requires the development of a new cryogenic system to (i) field non permeable targets with a fill tube, and (ii) provide a clean environment around the target. This capability is to demonstrate that imploding a scaled-down version of the direct-drive–ignition target for the National Ignition Facility (NIF) on the OMEGA laser will generate the hot-spot pressure that is needed for ignition; this will justify future cryogenic direct-drive experiments on the NIF. The paper describes the target, the cryogenic equipment that is being constructed to achieve this goal, andmore » the proposed target delivery process. Thermal calculations, fill-tube–based target designs, and structural/vibrational analyses are provided to demonstrate the credibility of the design. This new design will include capabilities not available (or possible) with the existing OMEGA cryogenic system, with the emphasis being to preserve a pristinely clean environment around the target, and to provide upgraded diagnostics to characterize both the ice layer and the target’s surface. The conceptual design is complete and testing of prototypes and subcomponents is underway. The rationale and capabilities of the new design are discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harding, D. R.; Ulreich, J.; Wittman, M. D.
Improving the performance of direct-drive cryogenic targets at the Omega Laser Facility requires the development of a new cryogenic system to (i) field non permeable targets with a fill tube, and (ii) provide a clean environment around the target. This capability is to demonstrate that imploding a scaled-down version of the direct-drive–ignition target for the National Ignition Facility (NIF) on the OMEGA laser will generate the hot-spot pressure that is needed for ignition; this will justify future cryogenic direct-drive experiments on the NIF. The paper describes the target, the cryogenic equipment that is being constructed to achieve this goal, andmore » the proposed target delivery process. Thermal calculations, fill-tube–based target designs, and structural/vibrational analyses are provided to demonstrate the credibility of the design. This new design will include capabilities not available (or possible) with the existing OMEGA cryogenic system, with the emphasis being to preserve a pristinely clean environment around the target, and to provide upgraded diagnostics to characterize both the ice layer and the target’s surface. The conceptual design is complete and testing of prototypes and subcomponents is underway. The rationale and capabilities of the new design are discussed.« less
NASA Technical Reports Server (NTRS)
1972-01-01
The selection and definition of candidate experiments and the associated experiment instrumentation requirements are described. Information is presented that addresses the following study objectives: (1) determine specific research and technology needs in the comm/nav field through a survey of the scientific/technical community; (2) develop manned low earth orbit space screening criteria and compile lists of potential candidate experiments; (3) in Blue Book format, define and describe selected candidate experiments in sufficient detail to develop laboratory configuration designs and layouts; and (4) develop experiment time phasing criteria and recommend a payload for sortie can/early laboratory missions.
Self-running and self-floating two-dimensional actuator using near-field acoustic levitation
NASA Astrophysics Data System (ADS)
Chen, Keyu; Gao, Shiming; Pan, Yayue; Guo, Ping
2016-09-01
Non-contact actuators are promising technologies in metrology, machine-tools, and hovercars, but have been suffering from low energy efficiency, complex design, and low controllability. Here we report a new design of a self-running and self-floating actuator capable of two-dimensional motion with an unlimited travel range. The proposed design exploits near-field acoustic levitation for heavy object lifting, and coupled resonant vibration for generation of acoustic streaming for non-contact motion in designated directions. The device utilizes resonant vibration of the structure for high energy efficiency, and adopts a single piezo element to achieve both levitation and non-contact motion for a compact and simple design. Experiments demonstrate that the proposed actuator can reach a 1.65 cm/s or faster moving speed and is capable of transporting a total weight of 80 g under 1.2 W power consumption.
Design, Simulation and Experiments on the Recirculating Crossed-Field Planar Amplifier
NASA Astrophysics Data System (ADS)
Exelby, Steven; Greening, Geoffrey; Jordan, Nicholas; Packard, Drew; Lau, Yue Ying; Gilgenbach, Ronald; Simon, David; Hoff, Brad
2017-10-01
The Recirculating Planar Crossed-Field Amplifier (RPCFA) is the focus of simulation and experimental work. This amplifier, inspired by the Recirculating Planar Magnetron, is driven by the Michigan Electron Long Beam Accelerator (MELBA), configured to deliver a -300 kV, 1-10 kA, 0.3-1.0 µs pulse. For these parameters, a slow wave structure (SWS), cathode, and housing were designed using the finite element frequency domain code Ansys HFSS, and verified using the PIC code, MAGIC. Simulations of this device demonstrated amplification of 1.3 MW, 3 GHz signal to approximately 29 MW (13.5 dB) with nearly 53% electronic efficiency. Simulations have also shown the device is zero-drive stable, operates under a range of voltages, with bandwidth of 10%, on par with existing CFAs. The RPCFA SWS has been fabricated using 3D printing, while the rest of the device has been developed using traditional machining. Experimental RPCFA cold tube characteristics matched those from simulation. Experiments on MELBA have demonstrated zero-drive stability and amplifier experiments are underway. This work was supported by the AFOSR Grant FA9550-15-1-0097.
Renner, Bettina; Prilla, Michael; Cress, Ulrike; Kimmerle, Joachim
2016-01-01
Reflective learning is an important type of learning both in formal and informal situations-in school, higher education, at the workplace, and in everyday life. People may benefit from technical support for reflective learning, in particular when supporting each other by reflecting not only upon their own but also upon other people's problems. We refer to this collective approach where people come together to think about experiences and find solutions to problems as "collaborative reflection." We present three empirical studies about the effects of prompting in reflective learning tools in such situations where people reflect on others' issues. In Study 1 we applied a three-stage within-group design in a field experiment, where 39 participants from two organizations received different types of prompts while they used a reflection app. We found that prompts that invited employees to write down possible solutions led to more comprehensive comments on their colleagues' experiences. In Study 2 we used a three-stage between-group design in a laboratory experiment, where 78 university students were invited to take part in an experiment about the discussion of problems at work or academic studies in online forums. Here we found that short, abstract prompts showed no superiority to a situation without any prompts with respect to quantity or quality of contributions. Finally, Study 3 featured a two-stage between-group design in an online experiment, where 60 participants received either general reflection instructions or detailed instructions about how to reflect on other people's problems. We could show that detailed reflection instructions supported people in producing more comprehensive comments that included more general advice. The results demonstrate that to increase activity and to improve quality of comments with prompting tools require detailed instructions and specific wording of the prompts.
Tobner, Cornelia M; Paquette, Alain; Reich, Peter B; Gravel, Dominique; Messier, Christian
2014-03-01
Increasing concern about loss of biodiversity and its effects on ecosystem functioning has triggered a series of manipulative experiments worldwide, which have demonstrated a general trend for ecosystem functioning to increase with diversity. General mechanisms proposed to explain diversity effects include complementary resource use and invoke a key role for species' functional traits. The actual mechanisms by which complementary resource use occurs remain, however, poorly understood, as well as whether they apply to tree-dominated ecosystems. Here we present an experimental approach offering multiple innovative aspects to the field of biodiversity-ecosystem functioning (BEF) research. The International Diversity Experiment Network with Trees (IDENT) allows research to be conducted at several hierarchical levels within individuals, neighborhoods, and communities. The network investigates questions related to intraspecific trait variation, complementarity, and environmental stress. The goal of IDENT is to identify some of the mechanisms through which individuals and species interact to promote coexistence and the complementary use of resources. IDENT includes several implemented and planned sites in North America and Europe, and uses a replicated design of high-density tree plots of fixed species-richness levels varying in functional diversity (FD). The design reduces the space and time needed for trees to interact allowing a thorough set of mixtures varying over different diversity gradients (specific, functional, phylogenetic) and environmental conditions (e.g., water stress) to be tested in the field. The intention of this paper is to share the experience in designing FD-focused BEF experiments with trees, to favor collaborations and expand the network to different conditions.
Transport Simulations for Fast Ignition on NIF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strozzi, D J; Tabak, M; Grote, D P
2009-10-26
We are designing a full hydro-scale cone-guided, indirect-drive FI coupling experiment, for NIF, with the ARC-FIDO short-pulse laser. Current rad-hydro designs with limited fuel jetting into cone tip are not yet adequate for ignition. Designs are improving. Electron beam transport simulations (implicit-PIC LSP) show: (1) Magnetic fields and smaller angular spreads increase coupling to ignition-relevant 'hot spot' (20 um radius); (2) Plastic CD (for a warm target) produces somewhat better coupling than pure D (cryogenic target) due to enhanced resistive B fields; and (3) The optimal T{sub hot} for this target is {approx} 1 MeV; coupling falls by 3x asmore » T{sub hot} rises to 4 MeV.« less
Gravitation theory - Empirical status from solar system experiments.
NASA Technical Reports Server (NTRS)
Nordtvedt, K. L., Jr.
1972-01-01
Review of historical and recent experiments which speak in favor of a post-Newtonian relativistic gravitational theory. The topics include the foundational experiments, metric theories of gravity, experiments designed to differentiate among the metric theories, and tests of Machian concepts of gravity. It is shown that the metric field for any metric theory can be specified by a series of potential terms with several parameters. It is pointed out that empirical results available up to date yield values of the parameters which are consistent with the prediction of Einstein's general relativity.
Development of aluminum-stabilized superconducting cables for the Mu2e detector solenoid
Lombardo, Vito; Buehler, M.; Lamm, M.; ...
2016-06-01
Here, the Mu2e experiment at Fermilab is designed to measure the rare process of direct muon-to-electron conversion in the field of a nucleus. The experiment comprises a system of three superconducting solenoids, which focus secondary muons from the production target and transport them to an aluminum stopping target, while minimizing the associated background. The Detector Solenoid (DS) is the last magnet in the transport line and its main functions are to provide a graded field in the region of the stopping target as well as a precision magnetic field in a volume large enough to house the tracker downstream ofmore » the stopping target. The Detector Solenoid coils are designed to be wound using NbTi Rutherford cables conformed in high purity aluminum for stabilization and then cold-worked for strength. Two types of Al-stabilized conductor are required to build the DS coils, one for the gradient section and one for the spectrometer section of the solenoid. The dimensions are optimized to generate the required field profile when the same current is transported in both conductors. The conductors contain NbTi Rutherford cables with 12 (DS1) and 8 (DS2) strands respectively and are manufactured by two different vendors. This paper describes the results of the manufacturing of production lengths of the Al-stabilized cables needed to build the Mu2e Detector Solenoid as well as the testing campaigns and main results. The main cable properties and results of electrical and mechanical tests are summarized and discussed for each stage of the cable development process. Results are compared to design values to show how the production cables satisfy all the design criteria starting from the NbTi wires to the Al-stabilized cables.« less
NASA Astrophysics Data System (ADS)
Asay-Davis, Xylar; Cornford, Stephen; Martin, Daniel; Gudmundsson, Hilmar; Holland, David; Holland, Denise
2015-04-01
The MISMIP and MISMIP3D marine ice sheet model intercomparison exercises have become popular benchmarks, and several modeling groups have used them to show how their models compare to both analytical results and other models. Similarly, the ISOMIP (Ice Shelf-Ocean Model Intercomparison Project) experiments have acted as a proving ground for ocean models with sub-ice-shelf cavities.As coupled ice sheet-ocean models become available, an updated set of benchmark experiments is needed. To this end, we propose sequel experiments, MISMIP+ and ISOMIP+, with an end goal of coupling the two in a third intercomparison exercise, MISOMIP (the Marine Ice Sheet-Ocean Model Intercomparison Project). Like MISMIP3D, the MISMIP+ experiments take place in an idealized, three-dimensional setting and compare full 3D (Stokes) and reduced, hydrostatic models. Unlike the earlier exercises, the primary focus will be the response of models to sub-shelf melting. The chosen configuration features an ice shelf that experiences substantial lateral shear and buttresses the upstream ice, and so is well suited to melting experiments. Differences between the steady states of each model are minor compared to the response to melt-rate perturbations, reflecting typical real-world applications where parameters are chosen so that the initial states of all models tend to match observations. The three ISOMIP+ experiments have been designed to to make use of the same bedrock topography as MISMIP+ and using ice-shelf geometries from MISMIP+ results produced by the BISICLES ice-sheet model. The first two experiments use static ice-shelf geometries to simulate the evolution of ocean dynamics and resulting melt rates to a quasi-steady state when far-field forcing changes in either from cold to warm or from warm to cold states. The third experiment prescribes 200 years of dynamic ice-shelf geometry (with both retreating and advancing ice) based on a BISICLES simulation along with similar flips between warm and cold states in the far-field ocean forcing. The MISOMIP experiment combines the MISMIP+ experiments with the third ISOMIP+ experiment. Changes in far-field ocean forcing lead to a rapid (over ~1-2 years) increase in sub-ice-shelf melting, which is allowed to drive ice-shelf retreat for ~100 years. Then, the far-field forcing is switched to a cold state, leading to a rapid decrease in melting and a subsequent advance over ~100 years. To illustrate, we present results from BISICLES and POP2x experiments for each of the three intercomparison exercises.
Sodium Handling Technology and Engineering Design of the Madison Dynamo Experiment.
NASA Astrophysics Data System (ADS)
Kendrick, R.; Forest, C. B.; O'Connell, R.; Wright, A.; Robinson, K.
1998-11-01
A new liquid metal MHD experiment is being constructed at the University of Wisconsin to test several key predictions of dynamo theory: magnetic instabilities driven by sheared flow, the effects of turbulence on current generation, and the back-reaction of the self-generated magnetic field on the fluid motion which brings saturation. This presentation describes the engineering design of the experiment, which is a 0.5 m radius spherical vessel, filled with liquid sodium at 150 degrees Celsius. The experiment is designed to achieve a magnetic Reynolds number in excess of 100, which requires approximately 80 Hp of mechanical drive, producing flow velocities in sodium of 15 m/s through impellers. Handling liquid sodium offers a number of technical challenges, but routine techniques have been developed over the past several decades for safely handling large quantities for the fast breeder reactor. The handling strategy is discussed, technical details concerning seals and pressurazation are presented, and safety elements are highlighted.
Ontology for the Intelligence Analyst
2012-12-01
Intelligence and Information Warfare Directorate Shouvik Bardhan , High Performance Technologies, Incorporated Jamie Johnson, EOIR Technologies...to soldiers. E-mail: kesny.parent@us.army.mil Shouvik Bardhan has more than 25 years of experience in the field of complex software design and
Marine Natural Product Chemistry and the Interim: A Novel Approach
ERIC Educational Resources Information Center
Bland, Jeffrey S.; Medcalf, Darrell G.
1974-01-01
Describes a course designed to strengthen a student's background in organic chemistry, demonstrate the interfacing of chemistry and biology, expose undergraduates to graduate research, provide familiarity with instrumentation, and provide a novel field experience. (Author/GS)
Turbulent Recirculating Flows in Isothermal Combustor Geometries
NASA Technical Reports Server (NTRS)
Lilley, D.; Rhode, D.
1985-01-01
Computer program developed that provides mathematical solution to design and construction of combustion chambers for jet engines. Improved results in areas of combustor flow fields accomplished by this computerprogram solution, cheaper and quicker than experiments involving real systems for models.
Radiofrequency fields in MAS solid state NMR probes.
Tošner, Zdeněk; Purea, Armin; Struppe, Jochem O; Wegner, Sebastian; Engelke, Frank; Glaser, Steffen J; Reif, Bernd
2017-11-01
We present a detailed analysis of the radiofrequency (RF) field over full volume of a rotor that is generated in a solenoid coil. On top of the usually considered static distribution of amplitudes along the coil axis we describe dynamic radial RF inhomogeneities induced by sample rotation. During magic angle spinning (MAS), the mechanical rotation of the sample about the magic angle, a spin packet travels through areas of different RF fields and experiences periodical modulations of both the RF amplitude and the phase. These modulations become particularly severe at the end regions of the coil where the relative RF amplitude varies up to ±25% and the RF phase changes within ±30°. Using extensive numerical simulations we demonstrate effects of RF inhomogeneity on pulse calibration and for the ramped CP experiment performed at a wide range of MAS rates. In addition, we review various methods to map RF fields using a B 0 gradient along the sample (rotor axis) for imaging purposes. Under such a gradient, a nutation experiment provides directly the RF amplitude distribution, a cross polarization experiment images the correlation of the RF fields on the two channels according to the Hartmann-Hahn matching condition, while a spin-lock experiment allows to calibrate the RF amplitude employing the rotary resonance recoupling condition. Knowledge of the RF field distribution in a coil provides key to understand its effects on performance of a pulse sequence at the spectrometer and enables to set robustness requirements in the experimental design. Copyright © 2017 Elsevier Inc. All rights reserved.
Inclusion of quasi-experimental studies in systematic reviews of health systems research.
Rockers, Peter C; Røttingen, John-Arne; Shemilt, Ian; Tugwell, Peter; Bärnighausen, Till
2015-04-01
Systematic reviews of health systems research commonly limit studies for evidence synthesis to randomized controlled trials. However, well-conducted quasi-experimental studies can provide strong evidence for causal inference. With this article, we aim to stimulate and inform discussions on including quasi-experiments in systematic reviews of health systems research. We define quasi-experimental studies as those that estimate causal effect sizes using exogenous variation in the exposure of interest that is not directly controlled by the researcher. We incorporate this definition into a non-hierarchical three-class taxonomy of study designs - experiments, quasi-experiments, and non-experiments. Based on a review of practice in three disciplines related to health systems research (epidemiology, economics, and political science), we discuss five commonly used study designs that fit our definition of quasi-experiments: natural experiments, instrumental variable analyses, regression discontinuity analyses, interrupted times series studies, and difference studies including controlled before-and-after designs, difference-in-difference designs and fixed effects analyses of panel data. We further review current practices regarding quasi-experimental studies in three non-health fields that utilize systematic reviews (education, development, and environment studies) to inform the design of approaches for synthesizing quasi-experimental evidence in health systems research. Ultimately, the aim of any review is practical: to provide useful information for policymakers, practitioners, and researchers. Future work should focus on building a consensus among users and producers of systematic reviews regarding the inclusion of quasi-experiments. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Semenov, Alexander V; Elsas, Jan Dirk; Glandorf, Debora C M; Schilthuizen, Menno; Boer, Willem F
2013-01-01
Abstract To fulfill existing guidelines, applicants that aim to place their genetically modified (GM) insect-resistant crop plants on the market are required to provide data from field experiments that address the potential impacts of the GM plants on nontarget organisms (NTO's). Such data may be based on varied experimental designs. The recent EFSA guidance document for environmental risk assessment (2010) does not provide clear and structured suggestions that address the statistics of field trials on effects on NTO's. This review examines existing practices in GM plant field testing such as the way of randomization, replication, and pseudoreplication. Emphasis is placed on the importance of design features used for the field trials in which effects on NTO's are assessed. The importance of statistical power and the positive and negative aspects of various statistical models are discussed. Equivalence and difference testing are compared, and the importance of checking the distribution of experimental data is stressed to decide on the selection of the proper statistical model. While for continuous data (e.g., pH and temperature) classical statistical approaches – for example, analysis of variance (ANOVA) – are appropriate, for discontinuous data (counts) only generalized linear models (GLM) are shown to be efficient. There is no golden rule as to which statistical test is the most appropriate for any experimental situation. In particular, in experiments in which block designs are used and covariates play a role GLMs should be used. Generic advice is offered that will help in both the setting up of field testing and the interpretation and data analysis of the data obtained in this testing. The combination of decision trees and a checklist for field trials, which are provided, will help in the interpretation of the statistical analyses of field trials and to assess whether such analyses were correctly applied. We offer generic advice to risk assessors and applicants that will help in both the setting up of field testing and the interpretation and data analysis of the data obtained in field testing. PMID:24567836
Semenov, Alexander V; Elsas, Jan Dirk; Glandorf, Debora C M; Schilthuizen, Menno; Boer, Willem F
2013-08-01
To fulfill existing guidelines, applicants that aim to place their genetically modified (GM) insect-resistant crop plants on the market are required to provide data from field experiments that address the potential impacts of the GM plants on nontarget organisms (NTO's). Such data may be based on varied experimental designs. The recent EFSA guidance document for environmental risk assessment (2010) does not provide clear and structured suggestions that address the statistics of field trials on effects on NTO's. This review examines existing practices in GM plant field testing such as the way of randomization, replication, and pseudoreplication. Emphasis is placed on the importance of design features used for the field trials in which effects on NTO's are assessed. The importance of statistical power and the positive and negative aspects of various statistical models are discussed. Equivalence and difference testing are compared, and the importance of checking the distribution of experimental data is stressed to decide on the selection of the proper statistical model. While for continuous data (e.g., pH and temperature) classical statistical approaches - for example, analysis of variance (ANOVA) - are appropriate, for discontinuous data (counts) only generalized linear models (GLM) are shown to be efficient. There is no golden rule as to which statistical test is the most appropriate for any experimental situation. In particular, in experiments in which block designs are used and covariates play a role GLMs should be used. Generic advice is offered that will help in both the setting up of field testing and the interpretation and data analysis of the data obtained in this testing. The combination of decision trees and a checklist for field trials, which are provided, will help in the interpretation of the statistical analyses of field trials and to assess whether such analyses were correctly applied. We offer generic advice to risk assessors and applicants that will help in both the setting up of field testing and the interpretation and data analysis of the data obtained in field testing.
The Effect of External Magnetic Fields on the MRT Instability in MagLIF
NASA Astrophysics Data System (ADS)
Hess, Mark; Peterson, Kyle; Weis, Matthew; Lau, Yue Ying
2014-10-01
Recent experiments on MagLIF which incorporate an external B-field suggest that the MRT instability within the liner has a different behavior than without the B-field. Previous work by Chandrasekhar and Harris have illustrated how the MRT growth rate, assuming fixed liner density and fixed acceleration, can change due to the presence of an external B-field. In this work, we show how the growth rate of the MRT instability is dynamically affected by the rapidly varying acceleration, liner density, and surface magnetic field, which is composed of the external B-field and the drive B-field of the liner in the MagLIF experiments. In addition, we also examine the effects of finite liner resistivity on MRT growth, which gives rise to an additional time scale corresponding to magnetic diffusion. We discuss the implications of this result for future MagLIF designs. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000.
NASA Technical Reports Server (NTRS)
Holmgren, G.; Bostroem, R.; Kelley, M. C.; Kintner, P. M.; Lundin, R.; Fahleson, U. V.; Bering, E. A.; Sheldon, W. R.
1979-01-01
The experiment design, including a description of the diagnostic and chemical release payload, and the general results are given for an auroral process simulation experiment. A drastic increase of the field aligned charged particle flux was observed over the approximate energy range 10 eV to more than 300 keV, starting about 150 ms after the release and lasting about one second. The is evidence of a second particle burst, starting one second after the release and lasting for tens of seconds, and evidence for a periodic train of particle bursts occurring with a 7.7 second period from 40 to 130 seconds after the release. A transient electric field pulse of 200 mv/m appeared just before the particle flux increase started. Electrostatic wave emissions around 2 kHz, as well as a delayed perturbation of the E-region below the plasma cloud were also observed. Some of the particle observations are interpreted in terms of field aligned electrostatic acceleration a few hundred kilometers above the injected plasma cloud. It is suggested that the acceleration electric field was created by an instability driven by field aligned currents originating in the plasma cloud.
DC breakdown characteristics of silicone polymer composites for HVDC insulator applications
NASA Astrophysics Data System (ADS)
Han, Byung-Jo; Seo, In-Jin; Seong, Jae-Kyu; Hwang, Young-Ho; Yang, Hai-Won
2015-11-01
Critical components for HVDC transmission systems are polymer insulators, which have stricter requirements that are more difficult to achieve compared to those of HVAC insulators. In this study, we investigated the optimal design of HVDC polymer insulators by using a DC electric field analysis and experiments. The physical properties of the polymer specimens were analyzed to develop an optimal HVDC polymer material, and four polymer specimens were prepared for DC breakdown experiments. Single and reverse polarity breakdown tests were conducted to analyze the effect of temperature on the breakdown strength of the polymer. In addition, electric fields were analyzed via simulations, in which a small-scale polymer insulator model was applied to prevent dielectric breakdown due to electric field concentration, with four DC operating conditions taken into consideration. The experimental results show that the electrical breakdown strength and the electric field distribution exhibit significant differences in relation to different DC polarity transition procedures.
Experimental results from magnetized-jet experiments executed at the Jupiter Laser Facility
Manuel, M. J. -E.; Kuranz, C. C.; Rasmus, A. M.; ...
2014-08-20
Recent experiments at the Jupiter Laser Facility investigated magnetization effects on collimated plasma jets. Laser-irradiated plastic-cone-targets produced collimated, millimeter-scale plasma flows as indicated by optical interferometry. Proton radiography of these jets showed no indication of strong, self-generated magnetic fields, suggesting a dominantly hydrodynamic collimating mechanism. Targets were placed in a custom-designed solenoid capable of generating field strengths up to 5 T. Proton radiographs of the well-characterized B-field, without a plasma jet, suggested an external source of trapped electrons that affects proton trajectories. The background magnetic field was aligned with the jet propagation direction, as is the case in many astrophysicalmore » systems. Optical interferometry showed that magnetization of the plasma results in disruption of the collimated flow and instead produces a hollow cavity. Furthermore, this result is a topic of ongoing investigation.« less
Experimental results from magnetized-jet experiments executed at the Jupiter Laser Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manuel, M. J. -E.; Kuranz, C. C.; Rasmus, A. M.
Recent experiments at the Jupiter Laser Facility investigated magnetization effects on collimated plasma jets. Laser-irradiated plastic-cone-targets produced collimated, millimeter-scale plasma flows as indicated by optical interferometry. Proton radiography of these jets showed no indication of strong, self-generated magnetic fields, suggesting a dominantly hydrodynamic collimating mechanism. Targets were placed in a custom-designed solenoid capable of generating field strengths up to 5 T. Proton radiographs of the well-characterized B-field, without a plasma jet, suggested an external source of trapped electrons that affects proton trajectories. The background magnetic field was aligned with the jet propagation direction, as is the case in many astrophysicalmore » systems. Optical interferometry showed that magnetization of the plasma results in disruption of the collimated flow and instead produces a hollow cavity. Furthermore, this result is a topic of ongoing investigation.« less
NASA Technical Reports Server (NTRS)
Ordaz, Miguel Angel
1997-01-01
The University of Texas at El Paso (UTEP) in conjunction with the Jet Propulsion Laboratory (JPL), North Carolina A&T and California State University of Los Angeles participated during the summer of 1996 in a prototype program known as Minority University Systems Engineering (MUSE). The program consisted of a ten week internship at JPL for students and professors of the three universities. The purpose of MUSE as set forth in the MUSE program review August 5, 1996 was for the participants to gain experience in the following areas: 1) Gain experience in a multi-disciplinary project; 2) Gain experience working in a culturally diverse atmosphere; 3) Provide field experience for students to reinforce book learning; and 4) Streamline the design process in two areas: make it more financially feasible; and make it faster.
Dynamic model of target charging by short laser pulse interactions
NASA Astrophysics Data System (ADS)
Poyé, A.; Dubois, J.-L.; Lubrano-Lavaderci, F.; D'Humières, E.; Bardon, M.; Hulin, S.; Bailly-Grandvaux, M.; Ribolzi, J.; Raffestin, D.; Santos, J. J.; Nicolaï, Ph.; Tikhonchuk, V.
2015-10-01
A model providing an accurate estimate of the charge accumulation on the surface of a metallic target irradiated by a high-intensity laser pulse of fs-ps duration is proposed. The model is confirmed by detailed comparisons with specially designed experiments. Such a model is useful for understanding the electromagnetic pulse emission and the quasistatic magnetic field generation in laser-plasma interaction experiments.
ERIC Educational Resources Information Center
Massey, Dixie D.; Lewis, Jan
2011-01-01
As teacher educators, we continue to focus on tutoring experiences as ways to help tutors connect coursework to practice. This study presents a preservice tutoring program designed to provide a field-based experience where the tutors would be able to (a) learn about literacy instruction, (b) use a multitude of assessment data rather than…
Dynamic model of target charging by short laser pulse interactions.
Poyé, A; Dubois, J-L; Lubrano-Lavaderci, F; D'Humières, E; Bardon, M; Hulin, S; Bailly-Grandvaux, M; Ribolzi, J; Raffestin, D; Santos, J J; Nicolaï, Ph; Tikhonchuk, V
2015-10-01
A model providing an accurate estimate of the charge accumulation on the surface of a metallic target irradiated by a high-intensity laser pulse of fs-ps duration is proposed. The model is confirmed by detailed comparisons with specially designed experiments. Such a model is useful for understanding the electromagnetic pulse emission and the quasistatic magnetic field generation in laser-plasma interaction experiments.
A linear helicon plasma device with controllable magnetic field gradient.
Barada, Kshitish K; Chattopadhyay, P K; Ghosh, J; Kumar, Sunil; Saxena, Y C
2012-06-01
Current free double layers (CFDLs) are localized potential structures having spatial dimensions - Debye lengths and potential drops of more than local electron temperature across them. CFDLs do not need a current for them to be sustained and hence they differ from the current driven double layers. Helicon antenna produced plasmas in an expanded chamber along with an expanding magnetic field have shown the existence of CFDL near the expansion region. A helicon plasma device has been designed, fabricated, and installed in the Institute for Plasma Research, India to study the role of maximum magnetic field gradient as well as its location with respect to the geometrical expansion region of the chamber in CFDL formation. The special feature of this machine consisting of two chambers of different radii is its capability of producing different magnetic field gradients near the physical boundary between the two chambers either by changing current in one particular coil in the direction opposite to that in other coils and/or by varying the position of this particular coil. Although, the machine is primarily designed for CFDL experiments, it is also capable of carrying out many basic plasma physics experiments such as wave propagation, wave coupling, and plasma instabilities in a varying magnetic field topology. In this paper, we will present the details of the machine construction, its specialties, and some preliminary results about the production and characterization of helicon plasma in this machine.
A Field-Sweep/Field-Lock System for Superconducting Magnets-Application to High-Field EPR
Maly, Thorsten; Bryant, Jeff; Ruben, David; Griffin, Robert G.
2007-01-01
We describe a field-lock/field-sweep system for the use in superconducting magnets. The system is based on a commercially available field mapping unit and a custom designed broad-band 1H-NMR probe. The NMR signal of a small water sample is used in a feedback loop to set and control the magnetic field to high accuracy. The current instrumental configuration allows field sweeps of ± 0.4 T and a resolution of up to 10-5 T (0.1 G) and the performance of the system is demonstrated in a high-field electron paramagnetic resonance (EPR) application. The system should also be of utility in other experiments requiring precise and reproducible sweeps of the magnetic field such as DNP, ENDOR or PELDOR. PMID:17027306
A field-sweep/field-lock system for superconducting magnets--Application to high-field EPR.
Maly, Thorsten; Bryant, Jeff; Ruben, David; Griffin, Robert G
2006-12-01
We describe a field-lock/field-sweep system for the use in superconducting magnets. The system is based on a commercially available field mapping unit and a custom designed broad-band 1H NMR probe. The NMR signal of a small water sample is used in a feedback loop to set and control the magnetic field to high accuracy. The current instrumental configuration allows field sweeps of +/-0.4 T and a resolution of up to 10(-5) T (0.1 G) and the performance of the system is demonstrated in a high-field electron paramagnetic resonance (EPR) application. The system should also be of utility in other experiments requiring precise and reproducible sweeps of the magnetic field such as DNP, ENDOR or PELDOR.
Field failure mechanisms for photovoltaic modules
NASA Technical Reports Server (NTRS)
Dumas, L. N.; Shumka, A.
1981-01-01
Beginning in 1976, Department of Energy field centers have installed and monitored a number of field tests and application experiments using current state-of-the-art photovoltaic modules. On-site observations of module physical and electrical degradation, together with in-depth laboratory analysis of failed modules, permits an overall assessment of the nature and causes of early field failures. Data on failure rates are presented, and key failure mechanisms are analyzed with respect to origin, effect, and prospects for correction. It is concluded that all failure modes identified to date are avoidable or controllable through sound design and production practices.
NASA Astrophysics Data System (ADS)
Poormohammadi, Jaber; Rezagholizadeh, Hessam
The idea of action immediate propagation has been in physicists' mind from the beginning, until Faraday raised the idea of delayed propagation. Using this idea and the delayed theory of fields, we face consequences which can be interesting for anyone who has learned physics. We can mention non-equivalency between stationary frames and moving frames, dependency of field to medium, different velocity barriers for different mediums and non-equivalency of inertial reference frames are among these consequences. By designing an experiment we can challenge this theory and its consequences. All of these sections processed in the article titled ''The delayed theory of fields''.
NASA Astrophysics Data System (ADS)
Keshet, Aviv; Ketterle, Wolfgang
2013-01-01
Atomic physics experiments often require a complex sequence of precisely timed computer controlled events. This paper describes a distributed graphical user interface-based control system designed with such experiments in mind, which makes use of off-the-shelf output hardware from National Instruments. The software makes use of a client-server separation between a user interface for sequence design and a set of output hardware servers. Output hardware servers are designed to use standard National Instruments output cards, but the client-server nature should allow this to be extended to other output hardware. Output sequences running on multiple servers and output cards can be synchronized using a shared clock. By using a field programmable gate array-generated variable frequency clock, redundant buffers can be dramatically shortened, and a time resolution of 100 ns achieved over effectively arbitrary sequence lengths.
Keshet, Aviv; Ketterle, Wolfgang
2013-01-01
Atomic physics experiments often require a complex sequence of precisely timed computer controlled events. This paper describes a distributed graphical user interface-based control system designed with such experiments in mind, which makes use of off-the-shelf output hardware from National Instruments. The software makes use of a client-server separation between a user interface for sequence design and a set of output hardware servers. Output hardware servers are designed to use standard National Instruments output cards, but the client-server nature should allow this to be extended to other output hardware. Output sequences running on multiple servers and output cards can be synchronized using a shared clock. By using a field programmable gate array-generated variable frequency clock, redundant buffers can be dramatically shortened, and a time resolution of 100 ns achieved over effectively arbitrary sequence lengths.
Simulation of a Radio-Frequency Photogun for the Generation of Ultrashort Beams
NASA Astrophysics Data System (ADS)
Nikiforov, D. A.; Levichev, A. E.; Barnyakov, A. M.; Andrianov, A. V.; Samoilov, S. L.
2018-04-01
A radio-frequency photogun for the generation of ultrashort electron beams to be used in fast electron diffractoscopy, wakefield acceleration experiments, and the design of accelerating structures of the millimeter range is modeled. The beam parameters at the photogun output needed for each type of experiment are determined. The general outline of the photogun is given, its electrodynamic parameters are calculated, and the accelerating field distribution is obtained. The particle dynamics is analyzed in the context of the required output beam parameters. The optimal initial beam characteristics and field amplitudes are chosen. A conclusion is made regarding the obtained beam parameters.
Charge sniffer for electrostatics demonstrations
NASA Astrophysics Data System (ADS)
Dinca, Mihai P.
2011-02-01
An electronic electroscope with a special design for demonstrations and experiments on static electricity is described. It operates as an electric charge sniffer by detecting slightly charged objects when they are brought to the front of its sensing electrode. The sniffer has the advantage of combining high directional sensitivity with a logarithmic bar display. It allows for the identification of electric charge polarity during charge separation by friction, peeling, electrostatic induction, batteries, or secondary coils of power transformers. Other experiments in electrostatics, such as observing the electric field of an oscillating dipole and the distance dependence of the electric field generated by simple charge configurations, are also described.
NASA Astrophysics Data System (ADS)
Fox, W.; Bhattacharjee, A.; Fiksel, G.
2016-10-01
Colliding plasmas are ubiquitous in astrophysical environments and allow conversion of kinetic energy into heat and, most importantly, the acceleration of particles to extremely high energies to form the cosmic ray spectrum. In collisionless astrophysical plasmas, kinetic plasma processes govern the interaction and particle acceleration processes, including shock formation, self-generation of magnetic fields by kinetic plasma instabilities, and magnetic field compression and reconnection. How each of these contribute to the observed spectra of cosmic rays is not fully understood, in particular both shock acceleration processes and magnetic reconnection have been proposed. We will review recent results of laboratory astrophysics experiments conducted at high-power, inertial-fusion-class laser facilities, which have uncovered significant results relevant to these processes. Recent experiments have now observed the long-sought Weibel instability between two interpenetrating high temperature plasma plumes, which has been proposed to generate the magnetic field necessary for shock formation in unmagnetized regimes. Secondly, magnetic reconnection has been studied in systems of colliding plasmas using either self-generated magnetic fields or externally applied magnetic fields, and show extremely fast reconnection rates, indicating fast destruction of magnetic energy and further possibilities to accelerate particles. Finally, we highlight kinetic plasma simulations, which have proven to be essential tools in the design and interpretation of these experiments.
NASA Astrophysics Data System (ADS)
Reich, Marvin; Mikolaj, Michal; Blume, Theresa; Güntner, Andreas
2017-04-01
Hydrological process research at the plot to catchment scale commonly involves invasive field methods, leading to a large amount of point data. A promising alternative, which gained increasing interest in the hydrological community over the last years, is gravimetry. The combination of its non-invasive and integrative nature opens up new possibilities to approach hydrological process research. In this study we combine a field-scale sprinkling experiment with continuous superconducting gravity (SG) measurements. The experimental design consists of 8 sprinkler units, arranged symmetrically within a radius of about ten meters around an iGrav (SG) in a field enclosure. The gravity signal of the infiltrating sprinkling water is analyzed using a simple 3D water mass distribution model. We first conducted a number of virtual sprinkling experiments resulting in different idealized infiltration patterns and determined the pattern specific gravity response. In a next step we determined which combination of idealized infiltration patterns was able to reproduce the gravity response of our real-world experiment at the Wettzell Observatory (Germany). This process hypothesis is then evaluated with measured point-scale soil moisture responses and the results of the time-lapse electric resistivity survey which was carried out during the sprinkling experiment. This study demonstrates that a controlled sprinkling experiment around a gravimeter in combination with a simple infiltration model is sufficient to identify subsurface flow patterns and thus the dominant infiltration processes. As gravimeters become more portable and can actually be deployed in the field, their combination with sprinkling experiments as shown here constitutes a promising possibility to investigate hydrological processes in a non-invasive way.
Testing neoclassical competitive market theory in the field.
List, John A
2002-11-26
This study presents results from a pilot field experiment that tests predictions of competitive market theory. A major advantage of this particular field experimental design is that my laboratory is the marketplace: subjects are engaged in buying, selling, and trading activities whether I run an exchange experiment or am a passive observer. In this sense, I am gathering data in a natural environment while still maintaining the necessary control to execute a clean comparison between treatments. The main results of the study fall into two categories. First, the competitive model predicts reasonably well in some market treatments: the expected price and quantity levels are approximated in many market rounds. Second, the data suggest that market composition is important: buyer and seller experience levels impact not only the distribution of rents but also the overall level of rents captured. An unexpected result in this regard is that average market efficiency is lowest in markets that match experienced buyers and experienced sellers and highest when experienced buyers engage in bargaining with inexperienced sellers. Together, these results suggest that both market experience and market composition play an important role in the equilibrium discovery process.
Early Pottery Making in Northern Coastal Peru. Part II: Field Firing Experiments
NASA Astrophysics Data System (ADS)
Shimada, I.; Goldstein, D.; Sosa, J.; Wagner, U.
2003-09-01
We present data from three seasons of experimental field work designed to recreate ancient Andean coastal ceramic firing techniques. Based on the recent discovery of two different archaeological ceramic production sites in the La Leche river valley of northern coastal Peru, the opportunity arose to apply Mössbauer spectroscopy and other analytical methods to reconstruct ancient firing procedures. Two sets of firings took place in 1993 and 1997 in Batán Grande using a partially restored Formative kiln from about 800 BC, local hardwood and cow dung as fuel. A third experiment followed in 2000 after the discovery of a Middle Sicán ceramics workshop in use between ca. AD 950 and 1050 at Huaca Sialupe, where an exact replica of an ancient kiln was built from local clay, and fired with local wood and cow dung. Additionally, inverted urns found at Huaca Sialupe were tested for their potential use as furnaces for metal working. Mössbauer spectroscopy was used to compare the physical and chemical state of specimens produced in the field experiments with ancient ceramics and with specimens produced in controlled laboratory experiments.
Fluctuation driven EMFs in the Madison Dynamo Experiment
NASA Astrophysics Data System (ADS)
Kaplan, Elliot; Brown, Ben; Clark, Mike; Nornberg, Mark; Rahbarnia, Kian; Rasmus, Alex; Taylor, Zane; Forest, Cary
2013-04-01
The Madison Dynamo Experiment is a 1 m diameter sphere filled with liquid Sodium designed to study MHD in a simply connected geometry. Two impellers drive a two-vortex flow, based on the calculations of Dudley and James, intended to excite system-scale dynamo instability. We present a collection of results from experiments measuring hydrodynamic fluctuations and their MHD effects. An equatorial baffle was added to the experiment in order to diminish the large-eddy hydrodynamic fluctuations by stabilizing the shear layer between the two counter-rotating flow cells. The change in the fluctuation levels was inferred from the change in the spatial spectrum of the induced magnetic field. This reduction correlated with a 2.4 times increase in the induced toroidal magnetic field (a proxy measure of the effective resistivity). Furthermore, the local velocity fluctuations were directly measured by the addition of a 3-d emf probe (a strong permanent magnet inserted into the flow with electrical leads to measure the induced voltage, and magnetic probes to determine the magnetic fluctuations). The measured emfs are consistent with the enhanced magnetic diffusivity interpretation of mean-field MHD.
NASA Astrophysics Data System (ADS)
Brenders, A. J.; Banerjee, N.; Pratt, R. G.
2010-12-01
The pedagogical value of the field experience is unequaled: students, teaching assistants, and professors alike return with a renewed sense of purpose, community, and the context in which to place classroom education. It is widely regarded as valuable to personal development, and is required by the Canadian Council of Professional Geoscientists for professional registration. As part of our ongoing International Geoscience Field Experience Initiative, Earth Sciences students at the University of Western Ontario have the opportunity to enhance their education through a study abroad program. The focus is on a residential field experience to world-class localities, offered with the collaboration of internationally recognized academic researchers, government survey personnel, and industry leaders. Recent trips have included the Sn-W mineralization in the Cornwall district of the U.K., the Iberian Pyrite Belt (IPB) in Portugal and Spain, and the metallogenic belts of Western Turkey. The integration of geological knowledge with geophysical data was one of the key organizing principles of our recent field trips to the IPB and Western Turkey. This integration is a foundation of modern Earth Sciences, and common practice in industry, it is relatively rare in classroom settings. Lectures before departure and evening exercises during the field trip supplemented the core undergraduate curriculum in geophysics, reviewing gravity, DC resistivity, induced polarization (IP), and magnetotelluric methods, focusing on application to mineral exploration. During our trip to the IPB, partnership with industry allowed students the opportunity to work with state of the art geophysical data, acquired on an exploration prospect visited during the field trip. Multi-parameter geophysical inversions of the IP and MT data produced cross-sections in depth - results interpretable by the students in the complex geological environment of the Iberian Pyrite Belt. Although the students gained valuable geological insight, the lack of practical experience in the acquisition and processing of geophysical data was identified in course evaluations. To address this, in Western Turkey, students had the opportunity to design and acquire total magnetic field surveys using a walking magnetometer, combining a GPS receiver and proton-precession magnetometer. Using this instrument, students identified the geophysical response of subsurface features, visible in both outcrop and during traverse through open pit mines. A transect across a buried basalt - limestone contact was made, and the strike of the contact identified during subsequent data processing. Students also had the opportunity to visit an active IP-resistivity survey, observing the acquisition of this data in the field, and learn how project geologists integrate this data with geological drill cores. Finally, students designed and acquired a total magnetic field survey over an archaeological site: the Acropolis at Pergamon. By integrating data acquisition, processing, and interpretation with field visits to sites of both geological and archaeological interest, students acquired field and technical skills that ideally prepared them for a future in research or industry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steele, L. G.; Lawson, M.; Onyszczak, M.
Optically detected magnetic resonance of nitrogen vacancy centers in diamond offers a route to both DC and AC magnetometry in diamond anvil cells under high pressures (>3 GPa). However, a serious challenge to realizing experiments has been the insertion of microwave radiation into the sample space without screening by the gasket material. We utilize designer anvils with lithographically deposited metallic microchannels on the diamond culet as a microwave antenna. We detected the spin resonance of an ensemble of microdiamonds under pressure and measured the pressure dependence of the zero field splitting parameters. Furthermore, these experiments enable the possibility for all-opticalmore » magnetic resonance experiments on nanoliter sample volumes at high pressures.« less
Steele, L. G.; Lawson, M.; Onyszczak, M.; ...
2017-11-28
Optically detected magnetic resonance of nitrogen vacancy centers in diamond offers a route to both DC and AC magnetometry in diamond anvil cells under high pressures (>3 GPa). However, a serious challenge to realizing experiments has been the insertion of microwave radiation into the sample space without screening by the gasket material. We utilize designer anvils with lithographically deposited metallic microchannels on the diamond culet as a microwave antenna. We detected the spin resonance of an ensemble of microdiamonds under pressure and measured the pressure dependence of the zero field splitting parameters. Furthermore, these experiments enable the possibility for all-opticalmore » magnetic resonance experiments on nanoliter sample volumes at high pressures.« less
The MJS-77 magnetometer actuator
NASA Technical Reports Server (NTRS)
Stange, W. C.
1977-01-01
A two-position (0 deg and 180 deg) actuating mechanism (flipper) driven by alternately-heated wax motors (pellets) will be used to rotate the low field triaxial fluxgate magnetometer experiment on the 1977 Mariner Jupiter-Saturn spacecraft to its 0 deg and 180 deg positions. The magnetic field, power requirements, weight and volume of this device are very restrictive. The problems encountered in design and development of this mechanism are presented.
ERIC Educational Resources Information Center
Fry-Ahearn, Betty; Collins, David
2016-01-01
A grant from the School Leadership Program sponsored by the U.S. Department of Education during 2008-14 provided the opportunities and resources for SREB to bring together its cutting-edge knowledge base, field experience, and substantial bank of publications and training materials in the closely related fields of school improvement and school…
Bi-Modal Micro-Cathode Arc Thruster for Cube Satellites
NASA Astrophysics Data System (ADS)
Chiu, Dereck
A new concept design, named the Bi-Modal Micro-Cathode Arc Thruster (BM-muCAT), has been introduced utilizing features from previous generations of muCATs and incorporating a multi-propellant functionality. This arc thruster is a micro-Newton level thruster based off of vacuum arc technology utilizing an enhanced magnetic field. Adjusting the magnetic field allows the thrusters performance to be varied. The goal of this thesis is to present a new generation of micro-cathode arc thrusters utilizing a bi-propellant, nickel and titanium, system. Three experimental procedures were run to test the new designs capabilities. Arc rotation experiment was used as a base experiment to ensure erosion was occurring uniformly along each electrode. Ion utilization efficiency was found, using an ion collector, to be up to 2% with the nickel material and 2.5% with the titanium material. Ion velocities were also studied using a time-of-flight method with an enhanced ion detection system. This system utilizes double electrostatic probes to measure plasma propagation. Ion velocities were measured to be 10km/s and 20km/s for nickel and titanium without a magnetic field. With an applied magnetic field of 0.2T, nickel ion velocities almost doubled to about 17km/s, while titanium ion velocities also increased to about 30km/s.
IsoDesign: a software for optimizing the design of 13C-metabolic flux analysis experiments.
Millard, Pierre; Sokol, Serguei; Letisse, Fabien; Portais, Jean-Charles
2014-01-01
The growing demand for (13) C-metabolic flux analysis ((13) C-MFA) in the field of metabolic engineering and systems biology is driving the need to rationalize expensive and time-consuming (13) C-labeling experiments. Experimental design is a key step in improving both the number of fluxes that can be calculated from a set of isotopic data and the precision of flux values. We present IsoDesign, a software that enables these parameters to be maximized by optimizing the isotopic composition of the label input. It can be applied to (13) C-MFA investigations using a broad panel of analytical tools (MS, MS/MS, (1) H NMR, (13) C NMR, etc.) individually or in combination. It includes a visualization module to intuitively select the optimal label input depending on the biological question to be addressed. Applications of IsoDesign are described, with an example of the entire (13) C-MFA workflow from the experimental design to the flux map including important practical considerations. IsoDesign makes the experimental design of (13) C-MFA experiments more accessible to a wider biological community. IsoDesign is distributed under an open source license at http://metasys.insa-toulouse.fr/software/isodes/ © 2013 Wiley Periodicals, Inc.
Hemispheric asymmetries of a motor memory in a recognition test after learning a movement sequence.
Leinen, Peter; Panzer, Stefan; Shea, Charles H
2016-11-01
Two experiments utilizing a spatial-temporal movement sequence were designed to determine if the memory of the sequence is lateralized in the left or right hemisphere. In Experiment 1, dominant right-handers were randomly assigned to one of two acquisition groups: a left-hand starter and a right-hand starter group. After an acquisition phase, reaction time (RT) was measured in a recognition test by providing the learned sequential pattern in the left or right visual half-field for 150ms. In a retention test and two transfer tests the dominant coordinate system for sequence production was evaluated. In Experiment 2 dominant left-handers and dominant right-handers had to acquire the sequence with their dominant limb. The results of Experiment 1 indicated that RT was significantly shorter when the acquired sequence was provided in the right visual field during the recognition test. The same results occurred in Experiment 2 for dominant right-handers and left-handers. These results indicated a right visual field left hemisphere advantage in the recognition test for the practiced stimulus for dominant left and right-handers, when the task was practiced with the dominant limb. Copyright © 2016 Elsevier B.V. All rights reserved.
Focusing behavior of the fractal vector optical fields designed by fractal lattice growth model.
Gao, Xu-Zhen; Pan, Yue; Zhao, Meng-Dan; Zhang, Guan-Lin; Zhang, Yu; Tu, Chenghou; Li, Yongnan; Wang, Hui-Tian
2018-01-22
We introduce a general fractal lattice growth model, significantly expanding the application scope of the fractal in the realm of optics. This model can be applied to construct various kinds of fractal "lattices" and then to achieve the design of a great diversity of fractal vector optical fields (F-VOFs) combinating with various "bases". We also experimentally generate the F-VOFs and explore their universal focusing behaviors. Multiple focal spots can be flexibly enginnered, and the optical tweezers experiment validates the simulated tight focusing fields, which means that this model allows the diversity of the focal patterns to flexibly trap and manipulate micrometer-sized particles. Furthermore, the recovery performance of the F-VOFs is also studied when the input fields and spatial frequency spectrum are obstructed, and the results confirm the robustness of the F-VOFs in both focusing and imaging processes, which is very useful in information transmission.
Use of an electric field in an electrostatic liquid film radiator.
Bankoff, S G; Griffing, E M; Schluter, R A
2002-10-01
Experimental and numerical work was performed to further the understanding of an electrostatic liquid film radiator (ELFR) that was originally proposed by Kim et al.(1) The ELFR design utilizes an electric field that exerts a normal force on the interface of a flowing film. The field lowers the pressure under the film in a space radiator and, thereby, prevents leakage through a puncture in the radiator wall. The flowing film is subject to the Taylor cone instability, whereby a cone of fluid forms underneath an electrode and sharpens until a jet of fluid is pulled toward the electrode and disintegrates into droplets. The critical potential for the instability is shown to be as much as an order of magnitude higher than that used in previous designs.(2) Furthermore, leak stoppage experiments indicate that the critical field is adequate to stop leaks in a working radiator.
Design study of a low cost civil aviation GPS receiver system
NASA Technical Reports Server (NTRS)
Cnossen, R.; Gilbert, G. A.
1979-01-01
A low cost Navstar receiver system for civil aviation applications was defined. User objectives and constraints were established. Alternative navigation processing design trades were evaluated. Receiver hardware was synthesized by comparing technology projections with various candidate system designs. A control display unit design was recommended as the result of field test experience with Phase I GPS sets and a review of special human factors for general aviation users. Areas requiring technology development to ensure a low cost Navstar Set in the 1985 timeframe were identified.
Microgravity nucleation and particle coagulation experiments support
NASA Technical Reports Server (NTRS)
Lilleleht, L. U.; Ferguson, F. T.; Stephens, J. R.
1988-01-01
Researchers at NASA Goddard Space Flight Center have embarked on a program to study the formation and growth of cosmic grains. This includes experiments on the homogeneous nucleation of refractory vapors of materials such as magnesium, lead, tin, and silicon oxides. As part of this program, the Chemical Engineering Department of the University of Virginia has undertaken to develop a math model for these experiments, to assist in the design and construction of the apparatus, and to analyze the data once the experiments have begun. Status Reports 1 and 2 addressed the design of the apparatus and the development of math models for temperature and concentration fields. The bulk of this report discusses the continued refinement of these models, and the assembly and testing of the nucleation chamber along with its ancillary equipment, which began in the spring of 1988.
Kummer, K; Fondacaro, A; Jimenez, E; Velez-Fort, E; Amorese, A; Aspbury, M; Yakhou-Harris, F; van der Linden, P; Brookes, N B
2016-03-01
A new high-field magnet endstation for X-ray magnetic dichroism experiments has been installed and commissioned at the ESRF soft X-ray beamline ID32. The magnet consists of two split-pairs of superconducting coils which can generate up to 9 T along the beam and up to 4 T orthogonal to the beam. It is connected to a cluster of ultra-high-vacuum chambers that offer a comprehensive set of surface preparation and characterization techniques. The endstation and the beam properties have been designed to provide optimum experimental conditions for X-ray magnetic linear and circular dichroism experiments in the soft X-ray range between 400 and 1600 eV photon energy. User operation started in November 2014.
EFEDA - European field experiment in a desertification-threatened area
NASA Technical Reports Server (NTRS)
Bolle, H.-J.; Andre, J.-C.; Arrue, J. L.; Barth, H. K.; Bessemoulin, P.; Brasa, A.; De Bruin, H. A. R.; Cruces, J.; Dugdale, G.; Engman, E. T.
1993-01-01
During June 1991 more than 30 scientific teams worked in Castilla-La Mancha, Spain, studying the energy and water transfer processes between soil, vegetation, and the atmosphere in semiarid conditions within the coordinated European research project EFEDA (European Field Experiment in Desertification-threatened Areas). Measurements were made from the microscale (e.g., measurements on single plants) up to a scale compatible with the grid size of global models. For this purpose three sites were selected 70 km apart and heavily instrumented at a scale in the order of 30 sq km. Aircraft missions, satellite data, and movable equipment were deployed to provide a bridge to the larger scale. This paper gives a description of the experimental design along with some of the preliminary results of this successful experiment.
DOT National Transportation Integrated Search
1984-04-01
A field experiment was conducted to determine the extent of conspicuity enhancement provided pedestrians and bicyclists at night by various commercially available retroreflective materials and lights. The conspicuous materials were designed to be wor...
EFFECTS OF SIMULATED ACIDIC RAIN ON YIELDS OF FIELD-GROWN CROPS
Experiments were performed to determine the effects of simulated acidic rainfall on yields of radish (Raphanus sativa), garden beet (Beta vulgaris), kidney bean (Phaseolus vulgaris), and alfalfa (Medicago sativa) grown under standard agronomic practices. The experimental design a...
Development, field testing, and implementation of improved bridge parapet designs.
DOT National Transportation Integrated Search
2015-03-01
A total of 22 test parapets was constructed as part of this project to evaluate different approaches to address : premature cracking. The experiments included the use of deeper saw cuts through glass fiber reinforced polymer : (GFRP) reinforcement or...