Sample records for field experimental program

  1. Prediction of sonic boom from experimental near-field overpressure data. Volume 1: Method and results

    NASA Technical Reports Server (NTRS)

    Glatt, C. R.; Hague, D. S.; Reiners, S. J.

    1975-01-01

    A computerized procedure for predicting sonic boom from experimental near-field overpressure data has been developed. The procedure extrapolates near-field pressure signatures for a specified flight condition to the ground by the Thomas method. Near-field pressure signatures are interpolated from a data base of experimental pressure signatures. The program is an independently operated ODIN (Optimal Design Integration) program which obtains flight path information from other ODIN programs or from input.

  2. UIUC concrete tie and fastener field testing at TTC.

    DOT National Transportation Integrated Search

    2014-07-01

    In July 2012, the University of Illinois at Urbana-Champaign (UIUC) began an extensive : experimental program at the Transportation : Technology Center (TTC) in Pueblo, CO. The : field experimentation program was part of a : larger research program f...

  3. Experimental results for a hypersonic nozzle/afterbody flow field

    NASA Technical Reports Server (NTRS)

    Spaid, Frank W.; Keener, Earl R.; Hui, Frank C. L.

    1995-01-01

    This study was conducted to experimentally characterize the flow field created by the interaction of a single-expansion ramp-nozzle (SERN) flow with a hypersonic external stream. Data were obtained from a generic nozzle/afterbody model in the 3.5 Foot Hypersonic Wind Tunnel at the NASA Ames Research Center, in a cooperative experimental program involving Ames and McDonnell Douglas Aerospace. The model design and test planning were performed in close cooperation with members of the Ames computational fluid dynamics (CFD) team for the National Aerospace Plane (NASP) program. This paper presents experimental results consisting of oil-flow and shadow graph flow-visualization photographs, afterbody surface-pressure distributions, rake boundary-layer measurements, Preston-tube skin-friction measurements, and flow field surveys with five-hole and thermocouple probes. The probe data consist of impact pressure, flow direction, and total temperature profiles in the interaction flow field.

  4. The key roles of four Experimental Forests in the LTSP International Research Program

    Treesearch

    Robert F. Powers; Robert Denner; John D. Elioff; Gary O. Fiddler; Deborah Page-Dumroese; Felix Ponder; Allan E. Tiarks; Peter E. Avers; Richard G. Cline; Nelson S. Loftus

    2014-01-01

    Four Experimental Forests were pivotal in piloting the long-term soil productivity (LTSP) cooperative research program - one of the most successful and extensive collaborative science efforts yet undertaken by the USDA Forest Service. Launched on the Palustris, Challenge, Marcell, and Priest River Experimental Forests, LTSP traces to a seminal discussion during a field...

  5. Object-oriented programming for the biosciences.

    PubMed

    Wiechert, W; Joksch, B; Wittig, R; Hartbrich, A; Höner, T; Möllney, M

    1995-10-01

    The development of software systems for the biosciences is always closely connected to experimental practice. Programs must be able to handle the inherent complexity and heterogeneous structure of biological systems in combination with the measuring equipment. Moreover, a high degree of flexibility is required to treat rapidly changing experimental conditions. Object-oriented methodology seems to be well suited for this purpose. It enables an evolutionary approach to software development that still maintains a high degree of modularity. This paper presents experience with object-oriented technology gathered during several years of programming in the fields of bioprocess development and metabolic engineering. It concentrates on the aspects of experimental support, data analysis, interaction and visualization. Several examples are presented and discussed in the general context of the experimental cycle of knowledge acquisition, thus pointing out the benefits and problems of object-oriented technology in the specific application field of the biosciences. Finally, some strategies for future development are described.

  6. A TWO-YEAR POST-HIGH SCHOOL DISTRIBUTIVE EDUCATION PROGRAM IN THE WHOLESALING FIELD, REPORT OF THE OHIO WHOLESALE MANAGEMENT DEVELOPMENT PROGRAM. MANUAL 2, CURRICULUM FOR A PROGRAM.

    ERIC Educational Resources Information Center

    LOGAN, WILLIAM B.; AND OTHERS

    THE PURPOSE OF THIS MANUAL IS TO SERVE AS A CURRICULUM GUIDE FOR PLANNING COURSES FOR A 2-YEAR POST-HIGH SCHOOL DISTRIBUTIVE EDUCATION PROGRAM IN THE FIELD OF WHOLESALING. THE CONTENT WAS DEVELOPED BY A RESEARCH GROUP AND INCORPORATED SUGGESTIONS THE INSTRUCTORS IN AN EXPERIMENTAL PROGRAM CONDUCTED ON THE CAMPUS OF THE OHIO STATE UNIVERSITY FOR 4…

  7. An Experiment In Field-Based Elementary Teacher Education.

    ERIC Educational Resources Information Center

    Swann, Margaret H.

    The Experimental Program in Elementary Education (EXEL) at Shepherd College in West Virginia began in 1973 with authorization by the West Virginia State Department of Education. The program was developed with the hope of producing more confident and competent teachers. EXEL provides continuous field experience from the second semester of the…

  8. Nuclear Test-Experimental Science: Annual report, fiscal year 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Struble, G.L.; Donohue, M.L.; Bucciarelli, G.

    1988-01-01

    Fiscal year 1988 has been a significant, rewarding, and exciting period for Lawrence Livermore National Laboratory's nuclear testing program. It was significant in that the Laboratory's new director chose to focus strongly on the program's activities and to commit to a revitalized emphasis on testing and the experimental science that underlies it. It was rewarding in that revolutionary new measurement techniques were fielded on recent important and highly complicated underground nuclear tests with truly incredible results. And it was exciting in that the sophisticated and fundamental problems of weapons science that are now being addressed experimentally are yielding new challengesmore » and understanding in ways that stimulate and reward the brightest and best of scientists. During FY88 the program was reorganized to emphasize our commitment to experimental science. The name of the program was changed to reflect this commitment, becoming the Nuclear Test-Experimental Science (NTES) Program.« less

  9. Social Policy Planning Programs and Prospects.

    ERIC Educational Resources Information Center

    Todd, Frederick W.

    This study, a monitor of four experimental training programs in the field of social policy planning, has as its purpose to assess program development and outcomes and to relate any significant findings useful in educational program development for social policy professionals. The programs are discussed at two levels: individually in terms of their…

  10. Quasi-experimental evaluation without regression analysis.

    PubMed

    Rohrer, James E

    2009-01-01

    Evaluators of public health programs in field settings cannot always randomize subjects into experimental or control groups. By default, they may choose to employ the weakest study design available: the pretest, posttest approach without a comparison group. This essay argues that natural experiments involving comparison groups are within reach of public health program managers. Methods for analyzing natural experiments are discussed.

  11. Noise characteristics of upper surface blown configurations. Experimental program and results

    NASA Technical Reports Server (NTRS)

    Brown, W. H.; Searle, N.; Blakney, D. F.; Pennock, A. P.; Gibson, J. S.

    1977-01-01

    An experimental data base was developed from the model upper surface blowing (USB) propulsive lift system hardware. While the emphasis was on far field noise data, a considerable amount of relevant flow field data were also obtained. The data were derived from experiments in four different facilities resulting in: (1) small scale static flow field data; (2) small scale static noise data; (3) small scale simulated forward speed noise and load data; and (4) limited larger-scale static noise flow field and load data. All of the small scale tests used the same USB flap parts. Operational and geometrical variables covered in the test program included jet velocity, nozzle shape, nozzle area, nozzle impingement angle, nozzle vertical and horizontal location, flap length, flap deflection angle, and flap radius of curvature.

  12. Preparing Beginning Reading Teachers: An Experimental Comparison of Initial Early Literacy Field Experiences

    ERIC Educational Resources Information Center

    Al Otaiba, Stephanie; Lake, Vickie E.; Greulich, Luana; Folsom, Jessica S.; Guidry, Lisa

    2012-01-01

    This randomized-control trial examined the learning of preservice teachers taking an initial Early Literacy course in an early childhood education program and of the kindergarten or first grade students they tutored in their field experience. Preservice teachers were randomly assigned to one of two tutoring programs: Book Buddies and Tutor…

  13. Experimental field test of proposed anti-dart-out training programs. Volume 2, Implementation guidelines and program materials

    DOT National Transportation Integrated Search

    1981-12-01

    This report (Volume 2 of three volumes) provides detailed descriptions of all program materials employed with the recommended version of a child pedestrian safety program. Volume 1 of this report describes the conduct and results of the evaluation of...

  14. Experimental field test of proposed anti-dart-out training programs. Volume 3, Program staff training materials and videotape/film

    DOT National Transportation Integrated Search

    1981-12-01

    This report (Volume 3 of three volumes) provides detailed descriptions of additional program materials suggested for use with the recommended version of a child pedestrian safety program. Volume 1 of this report describes the conduct and results of t...

  15. Experimental field test of proposed anti-dart-out training programs. Volume 1, Conduct and results

    DOT National Transportation Integrated Search

    1981-12-01

    This report describes the conduct and results of an evaluation of a child pedestrian anti-dart-out training program. Two versions were tested: A film program and a film/simulator program. Before/after accident and street crossing behavior data were c...

  16. Modeling of the charge-state separation at ITEP experimental facility for material science based on a Bernas ion source.

    PubMed

    Barminova, H Y; Saratovskyh, M S

    2016-02-01

    The experiment automation system is supposed to be developed for experimental facility for material science at ITEP, based on a Bernas ion source. The program CAMFT is assumed to be involved into the program of the experiment automation. CAMFT is developed to simulate the intense charged particle bunch motion in the external magnetic fields with arbitrary geometry by means of the accurate solution of the particle motion equation. Program allows the consideration of the bunch intensity up to 10(10) ppb. Preliminary calculations are performed at ITEP supercomputer. The results of the simulation of the beam pre-acceleration and following turn in magnetic field are presented for different initial conditions.

  17. Modeling of the charge-state separation at ITEP experimental facility for material science based on a Bernas ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barminova, H. Y., E-mail: barminova@bk.ru; Saratovskyh, M. S.

    2016-02-15

    The experiment automation system is supposed to be developed for experimental facility for material science at ITEP, based on a Bernas ion source. The program CAMFT is assumed to be involved into the program of the experiment automation. CAMFT is developed to simulate the intense charged particle bunch motion in the external magnetic fields with arbitrary geometry by means of the accurate solution of the particle motion equation. Program allows the consideration of the bunch intensity up to 10{sup 10} ppb. Preliminary calculations are performed at ITEP supercomputer. The results of the simulation of the beam pre-acceleration and following turnmore » in magnetic field are presented for different initial conditions.« less

  18. Experimental Design Considerations for Establishing an Off-Road, Habitat-Specific Bird Monitoring Program Using Point Counts

    Treesearch

    JoAnn M. Hanowski; Gerald J. Niemi

    1995-01-01

    We established bird monitoring programs in two regions of Minnesota: the Chippewa National Forest and the Superior National Forest. The experimental design defined forest cover types as strata in which samples of forest stands were randomly selected. Subsamples (3 point counts) were placed in each stand to maximize field effort and to assess within-stand and between-...

  19. A STUDY OF THE EFFECTS OF EXPERIMENTAL PROGRAMS ON PUPIL ACHIEVEMENT OBSERVED DURING FIRST THREE YEARS OF THE PROJECT, SECONDARY MATHEMATICS EVALUATION PROJECT. INTERIM REPORT.

    ERIC Educational Resources Information Center

    ERICKSEN, GERALD L.; RYAN, JAMES J.

    A REPORT IS GIVEN OF THE FIRST 3 YEARS OF A FIELD STUDY CONDUCTED TO DETERMINE THE EFFECTIVENESS OF SEVERAL PROTOTYPE, SECONDARY MATHEMATICS PROGRAMS THAT WERE PRODUCED BY DIFFERENT CURRICULUM DEVELOPMENT GROUPS. MATHEMATICS TEACHERS WHO HAD NO PREVIOUS EXPERIENCE WITH "MODERN" OR EXPERIMENTAL APPROACHES TO MATHEMATICS TAUGHT A SELECTED…

  20. Education in the Field Influences Children's Ideas and Interest toward Science

    NASA Astrophysics Data System (ADS)

    Zoldosova, Kristina; Prokop, Pavol

    2006-10-01

    This paper explores the idea of informal science education in scientific field laboratory (The Science Field Centre). The experimental group of pupils ( N = 153) was experienced with approximately 5-day lasting field trips and experiments in the Field Centre in Slovakia. After finishing the course, two different research methods were used to discover their interest and ideas toward science. Pupils from the experimental group showed significant differences from those that did not experience education in the Field Centre (control group, N = 365). In comparison to the control group, pupils of the experimental group highly preferred book titles that were related to their program in the Field Centre. There were differences between the drawings of ideal school environment from both pupils groups. In the drawings of the experimental group, we found significantly more items connected with the educational environment of the Field Centre (e.g. laboratory equipment, live animals). We suppose field science education would be one of the most effective ways to increase interest of pupils to study science and to invaluable intrinsic motivation at the expense extrinsic motivation.

  1. SLC injector modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanerfeld, H; Herrmannsfeldt, W.B.; James, M.B.

    1985-03-01

    The injector for the Stanford Linear Collider is being studied using the fully electromagnetic particle-in-cell program MASK. The program takes account of cylindrically symmetrical rf fields from the external source, as well as fields produced by the beam and dc magnetic fields. It calculates the radial and longitudinal motion of electrons and plots their positions in various planes in phase space. Bunching parameters can be optimized and insights into the bunching process and emittance growth have been gained. The results of the simulations are compared to the experimental results.

  2. The Detection of Nonplanar Surfaces in Visual Space.

    DTIC Science & Technology

    1984-03-01

    involve quasi -dotted stimuli. For example, applications may be found in fields such as air traffic control ; geophysical surveys (e.g., to distinguish a...line microcomputers. The control program was initially loaded by the experimenter from the computer’s disk O memory into its randomly addressable... experimenter and the computer carried out certain initialization segments of the control program. Next, the observer signed on at the computer terminal with a

  3. Learning From Small-Scale Experimental Evaluations of After School Programs. Snapshot Number 8

    ERIC Educational Resources Information Center

    Harvard Family Research Project, Harvard University, 2006

    2006-01-01

    The Harvard Family Research Project (HFRP) Out-of-School Time Program Evaluation Database contains profiles of out-of-school time (OST) program evaluations. Its purpose is to provide accessible information about previous and current evaluations to support the development of high quality evaluations and programs in the OST field. Types of Programs…

  4. Status of fusion research and implications for D/He-3 systems

    NASA Technical Reports Server (NTRS)

    Miley, George H.

    1988-01-01

    World wide programs in both magnetic confinement and inertial confinement fusion research have made steady progress towards the experimental demonstration of energy breakeven. However, after breakeven is achieved, considerable time and effort must still be expended to develop a usable power plant. The main program described is focused on Deuterium-Tritium devices. In magnetic confinement, three of the most promising high beta approaches with a reasonable experimental data base are the Field Reversed Configuration, the high field tokamak, and the dense Z-pinch. The situation is less clear in inertial confinement where the first step requires an experimental demonstration of D/T spark ignition. It appears that fusion research has reached a point in time where an R and D plan to develop a D/He-3 fusion reactor can be laid out with some confidence of success.

  5. Experimental and computational surface and flow-field results for an all-body hypersonic aircraft

    NASA Technical Reports Server (NTRS)

    Lockman, William K.; Lawrence, Scott L.; Cleary, Joseph W.

    1990-01-01

    The objective of the present investigation is to establish a benchmark experimental data base for a generic hypersonic vehicle shape for validation and/or calibration of advanced computational fluid dynamics computer codes. This paper includes results from the comprehensive test program conducted in the NASA/Ames 3.5-foot Hypersonic Wind Tunnel for a generic all-body hypersonic aircraft model. Experimental and computational results on flow visualization, surface pressures, surface convective heat transfer, and pitot-pressure flow-field surveys are presented. Comparisons of the experimental results with computational results from an upwind parabolized Navier-Stokes code developed at Ames demonstrate the capabilities of this code.

  6. Assessment of analytical and experimental techniques utilized in conducting plume technology tests 575 and 593. [exhaust flow simulation (wind tunnel tests) of scale model Space Shuttle Orbiter

    NASA Technical Reports Server (NTRS)

    Baker, L. R.; Sulyma, P. R.; Tevepaugh, J. A.; Penny, M. M.

    1976-01-01

    Since exhaust plumes affect vehicle base environment (pressure and heat loads) and the orbiter vehicle aerodynamic control surface effectiveness, an intensive program involving detailed analytical and experimental investigations of the exhaust plume/vehicle interaction was undertaken as a pertinent part of the overall space shuttle development program. The program, called the Plume Technology program, has as its objective the determination of the criteria for simulating rocket engine (in particular, space shuttle propulsion system) plume-induced aerodynamic effects in a wind tunnel environment. The comprehensive experimental program was conducted using test facilities at NASA's Marshall Space Flight Center and Ames Research Center. A post-test examination of some of the experimental results obtained from NASA-MSFC's 14 x 14-inch trisonic wind tunnel is presented. A description is given of the test facility, simulant gas supply system, nozzle hardware, test procedure and test matrix. Analysis of exhaust plume flow fields and comparison of analytical and experimental exhaust plume data are presented.

  7. Derivation of force field parameters for SnO2-H2O surface systems from plane-wave density functional theory calculations.

    PubMed

    Bandura, A V; Sofo, J O; Kubicki, J D

    2006-04-27

    Plane-wave density functional theory (DFT-PW) calculations were performed on bulk SnO2 (cassiterite) and the (100), (110), (001), and (101) surfaces with and without H2O present. A classical interatomic force field has been developed to describe bulk SnO2 and SnO2-H2O surface interactions. Periodic density functional theory calculations using the program VASP (Kresse et al., 1996) and molecular cluster calculations using Gaussian 03 (Frisch et al., 2003) were used to derive the parametrization of the force field. The program GULP (Gale, 1997) was used to optimize parameters to reproduce experimental and ab initio results. The experimental crystal structure and elastic constants of SnO2 are reproduced reasonably well with the force field. Furthermore, surface atom relaxations and structures of adsorbed H2O molecules agree well between the ab initio and force field predictions. H2O addition above that required to form a monolayer results in consistent structures between the DFT-PW and classical force field results as well.

  8. Experimentally determined rock-fluid interactions applicable to a natural hot dry rock geothermal system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charles, R.W.; Holley, C.E. Jr.; Tester, J.W.

    1980-02-01

    The Los Alamos Scientific Laboratory is pursuing laboratory and field experiments in the development of the Hot Dry Rock concept of geothermal energy. The field program consists of experiments in a hydraulically fractured region of low permeability in which hot rock is intercepted by two wellbores. These experiments are designed to test reservoir engineering parameters such as: heat extraction rates, water loss rates, flow characteristics including impedance and buoyancy, seismic activity and fluid chemistry. Laboratory experiments have been designed to provide information on the mineral reactivity which may be encountered in the field program. Two experimental circulation systems have beenmore » built to study the rates of dissolution and alteration in dynamic flow. Solubility studies have been done in agitated systems. To date, pure minerals, samples of the granodiorite from the actual reservoir and Tijeras Canyon granite have been reacted with distilled water and various solutions of NaCl, NaOH, and Na/sub 2/CO/sub 3/. The results of these experimental systems are compared to observations made in field experiments done in a hot dry rock reservoir at a depth of approximately 3 km with initial rock temperatures of 150 to 200/sup 0/C.« less

  9. Sounding rocket research Aries/Firewheel, series 22, issue 15

    NASA Technical Reports Server (NTRS)

    Mozer, F. S.

    1981-01-01

    Rocket experiments in ionospheric particle and field research flow in seven programs during the last decade are summarized. Experimental techniques were developed and are discussed including the double-probe field technique. The auroral zone, polar cap, and equatorial spread F were studied.

  10. "They Sweat for Science": The Harvard Fatigue Laboratory and Self-Experimentation in American Exercise Physiology.

    PubMed

    Johnson, Andi

    2015-08-01

    In many scientific fields, the practice of self-experimentation waned over the course of the twentieth century. For exercise physiologists working today, however, the practice of self-experimentation is alive and well. This paper considers the role of the Harvard Fatigue Laboratory and its scientific director, D. Bruce Dill, in legitimizing the practice of self-experimentation in exercise physiology. Descriptions of self-experimentation are drawn from papers published by members of the Harvard Fatigue Lab. Attention is paid to the ethical and practical justifications for self-experimentation in both the lab and the field. Born out of the practical, immediate demands of fatigue protocols, self-experimentation performed the long-term, epistemological function of uniting physiological data across time and space, enabling researchers to contribute to a general human biology program.

  11. Experimental Evaluation of Field Trips on Instruction in Vocational Agriculture.

    ERIC Educational Resources Information Center

    McCaslin, Norval L.

    To determine the effect of field trips on student achievement in each of four subject matter areas in vocational agriculture, 12 schools offering approved programs were randomly selected and divided into a treatment group and a control group. Uniform teaching outlines and reference materials were provided to each group. While no field trips were…

  12. ptchg: A FORTRAN program for point-charge calculations of electric field gradients (EFGs)

    NASA Astrophysics Data System (ADS)

    Spearing, Dane R.

    1994-05-01

    ptchg, a FORTRAN program, has been developed to calculate electric field gradients (EFG) around an atomic site in crystalline solids using the point-charge direct-lattice summation method. It uses output from the crystal structure generation program Atoms as its input. As an application of ptchg, a point-charge calculation of the EFG quadrupolar parameters around the oxygen site in SiO 2 cristobalite is demonstrated. Although point-charge calculations of electric field gradients generally are limited to ionic compounds, the computed quadrupolar parameters around the oxygen site in SiO 2 cristobalite, a highly covalent material, are in good agreement with the experimentally determined values from nuclear magnetic resonance (NMR) spectroscopy.

  13. Hypersonic nozzle/afterbody CFD code validation. I - Experimental measurements

    NASA Technical Reports Server (NTRS)

    Spaid, Frank W.; Keener, Earl R.

    1993-01-01

    This study was conducted to obtain a detailed experimental description of the flow field created by the interaction of a single-expansion-ramp-nozzle flow with a hypersonic external stream. Data were obtained from a generic nozzle/afterbody model in the 3.5-Foot Hypersonic Wind Tunnel of the NASA Ames Research Center in a cooperative experimental program involving Ames and the McDonnell Douglas Research Laboratories. This paper presents experimental results consisting primarily of surveys obtained with a five-hole total-pressure/flow-direction probe and a total-temperature probe. These surveys were obtained in the flow field created by the interaction between the underexpanded jet plume and the external flow.

  14. Ergonomic office design and aging: a quasi-experimental field study of employee reactions to an ergonomics intervention program.

    PubMed

    May, Douglas R; Reed, Kendra; Schwoerer, Catherine E; Potter, Paul

    2004-04-01

    A naturally occurring quasi-experimental longitudinal field study of 87 municipal employees using pretest and posttest measures investigated the effects of an office workstation ergonomics intervention program on employees' perceptions of their workstation characteristics, levels of persistent pain, eyestrain, and workstation satisfaction. The study examined whether reactions differed between younger and older employees. Results revealed that workstation improvements were associated with enhanced perceptions of the workstation's ergonomic qualities, less upper back pain, and greater workstation satisfaction. Among those experiencing an improvement, the perceptions of workstation ergonomic qualities increased more for younger than older employees, supporting the "impressionable years" framework in the psychological literature on aging. Implications for human resources managers are discussed.

  15. Promoting Career Preparedness and Intrinsic Work-Goal Motivation: RCT Intervention

    ERIC Educational Resources Information Center

    Salmela-Aro, Katariina; Mutanen, Pertti; Vuori, Jukka

    2012-01-01

    We examined the role of an in-company training program aimed at enhancing employees' intrinsic work-goal motivation by increasing their career preparedness in a randomized field experimental study. The program activities were implemented using an organization-level two-trainer model with trainers from the human resources management and…

  16. Prediction of sonic boom from experimental near-field overpressure data. Volume 2: Data base construction

    NASA Technical Reports Server (NTRS)

    Glatt, C. R.; Reiners, S. J.; Hague, D. S.

    1975-01-01

    A computerized method for storing, updating and augmenting experimentally determined overpressure signatures has been developed. A data base of pressure signatures for a shuttle type vehicle has been stored. The data base has been used for the prediction of sonic boom with the program described in Volume I.

  17. Comparison of two computer programs by predicting turbulent mixing of helium in a ducted supersonic airstream

    NASA Technical Reports Server (NTRS)

    Pan, Y. S.; Drummond, J. P.; Mcclinton, C. R.

    1978-01-01

    Two parabolic flow computer programs, SHIP (a finite-difference program) and COMOC (a finite-element program), are used for predicting three-dimensional turbulent reacting flow fields in supersonic combustors. The theoretical foundation of the two computer programs are described, and then the programs are applied to a three-dimensional turbulent mixing experiment. The cold (nonreacting) flow experiment was performed to study the mixing of helium jets with a supersonic airstream in a rectangular duct. Surveys of the flow field at an upstream were used as the initial data by programs; surveys at a downstream station provided comparison to assess program accuracy. Both computer programs predicted the experimental results and data trends reasonably well. However, the comparison between the computations from the two programs indicated that SHIP was more accurate in computation and more efficient in both computer storage and computing time than COMOC.

  18. OPEX: (Olympus Propagation EXperiment)

    NASA Technical Reports Server (NTRS)

    Brussaard, Gert

    1988-01-01

    The Olympus-1 satellite carries four distinct payloads for experimental utilization and research in the field of satellite communications: (1) the Direct Broadcasting Service (DBS) payload; (2) the Specialized Services Payload; (3) the 20/30 GHz Advanced Communications Payload; and (4) the Propagation Payload. Experimental utilization of the first three payloads involves ground transmissions to the satellite and hence sharing of available satellite time among experimenters. This is coordinated through the Olympus Utilization Program.

  19. Onsite 40-kilowatt fuel cell power plant manufacturing and field test program

    NASA Technical Reports Server (NTRS)

    1985-01-01

    A joint Gas Research Institute and U.S. Department of Energy Program was initiated in 1982 to evaluate the use of fuel cell power systems for on-site energy service. Forty-six 40 kW fuel cell power plants were manufactured at the United Technologies Corporation facility in South Windsor, Connecticut, and are being delivered to host utilities and other program participants in the United States and Japan for field testing. The construction of the 46 fully-integrated power plants was completed in January 1985 within the constraints of the contract plan. The program has provided significant experience in the manufacture, acceptance testing, deployment, and support of on-site fuel cell systems. Initial field test results also show that these experimental power plants meet the performance and environmental requirements of a commercial specification. This Interim Report encompasses the design and manufacturing phases of the 40 kW Power Plant Manufacturing and Field Test program. The contract between UTC and NASA also provides UTC field engineering support to the host utilities, training programs and associated manuals for utility operating and maintenance personnel, spare parts support for a defined test period, and testing at UTC of a power plant made available from a preceding program phase. These activities are ongoing and will be reported subsequently.

  20. Evaluating the Role of Protected Natural Areas for Environmental Education in Italy

    ERIC Educational Resources Information Center

    De Dominicis, Stefano; Bonaiuto, Marino; Carrus, Giuseppe; Passafaro, Paola; Perucchini, Paola; Bonnes, Mirilia

    2017-01-01

    Two quasi-experimental field studies (N = 419; 248) tested the effects of an outdoor environmental education program based in local Protected Natural Areas (PNAs) on 3rd-to-6th-grade students' proenvironmental attitudes and behaviors. Results show the program increases children's place attachment, proenvironmental attitudes, ethics and…

  1. Problems Resulting from the Implementation of a Pilot Program in Accountability.

    ERIC Educational Resources Information Center

    Field, David A.

    The concept of accountability has become very important recently to both teachers and administrators. Despite this, very few experimental projects dealing with accountability have been attempted--especially in the field of physical education. A program of accountability was conducted at Ball State University, Muncie, Indiana, in the Department of…

  2. Inlets, ducts, and nozzles

    NASA Technical Reports Server (NTRS)

    Abbott, John M.; Anderson, Bernhard H.; Rice, Edward J.

    1990-01-01

    The internal fluid mechanics research program in inlets, ducts, and nozzles consists of a balanced effort between the development of computational tools (both parabolized Navier-Stokes and full Navier-Stokes) and the conduct of experimental research. The experiments are designed to better understand the fluid flow physics, to develop new or improved flow models, and to provide benchmark quality data sets for validation of the computational methods. The inlet, duct, and nozzle research program is described according to three major classifications of flow phenomena: (1) highly 3-D flow fields; (2) shock-boundary-layer interactions; and (3) shear layer control. Specific examples of current and future elements of the research program are described for each of these phenomenon. In particular, the highly 3-D flow field phenomenon is highlighted by describing the computational and experimental research program in transition ducts having a round-to-rectangular area variation. In the case of shock-boundary-layer interactions, the specific details of research for normal shock-boundary-layer interactions are described. For shear layer control, research in vortex generators and the use of aerodynamic excitation for enhancement of the jet mixing process are described.

  3. Proceedings of the Princeton Workshop on New Approaches to Experimental Turbulence Research Held in Princeton, New Jersey on September 5 - 7, 1990

    DTIC Science & Technology

    1991-06-24

    return to the discussion of the role of fundamental research in technology , and the different ways of viewing academic research programs in the context...something more complicated that becomes a system or with a general field of technology . In trying to put together a map, let us look at this graph of...for new’ ideas, and especially for new experimental diagnostics capabilities. It is ironic that technological advances in a number of fields like

  4. LIMAO: Cross-platform software for simulating laser-induced alignment and orientation dynamics of linear-, symmetric- and asymmetric tops

    NASA Astrophysics Data System (ADS)

    Szidarovszky, Tamás; Jono, Maho; Yamanouchi, Kaoru

    2018-07-01

    A user-friendly and cross-platform software called Laser-Induced Molecular Alignment and Orientation simulator (LIMAO) has been developed. The program can be used to simulate within the rigid rotor approximation the rotational dynamics of gas phase molecules induced by linearly polarized intense laser fields at a given temperature. The software is implemented in the Java and Mathematica programming languages. The primary aim of LIMAO is to aid experimental scientists in predicting and analyzing experimental data representing laser-induced spatial alignment and orientation of molecules.

  5. Estimation of constitutive parameters for the Belridge Diatomite, South Belridge Diatomite Field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fossum, A.F.; Fredrich, J.T.

    1998-06-01

    A cooperative national laboratory/industry research program was initiated in 1994 that improved understanding of the geomechanical processes causing well casing damage during oil production from weak, compactible formations. The program focused on the shallow diatomaceous oil reservoirs located in California`s San Joaquin Valley, and combined analyses of historical field data, experimental determination of rock mechanical behavior, and geomechanical simulation of the reservoir and overburden response to production and injection. Sandia National Laboratories` quasi-static, large-deformation structural mechanics finite element code JAS3D was used to perform the three-dimensional geomechanical simulations. One of the material models implemented in JAS3D to simulate the time-independentmore » inelastic (non-linear) deformation of geomaterials is a generalized version of the Sandler and Rubin cap plasticity model (Sandler and Rubin, 1979). This report documents the experimental rock mechanics data and material cap plasticity models that were derived to describe the Belridge Diatomite reservoir rock at the South Belridge Diatomite Field, Section 33.« less

  6. Interpretation of F106B and CV580 in-flight lightning data and form factor determination

    NASA Technical Reports Server (NTRS)

    Rudolph, T.; Horembala, J.; Eriksen, F. J.; Weigel, H. S.; Elliott, J. R.; Parker, S. L.; Perala, R. A.

    1989-01-01

    Two topics of in-flight aircraft/lightning interaction are addressed. The first is the analysis of measured data from the NASA F106B Thunderstorm Research Aircraft and the CV580 research program run by the FAA and Wright-Patterson Air Force Base. The CV580 data was investigated in a mostly qualitative sense, while the F106B data was subjected to both statistical and quantitative analysis using linear triggered lightning finite difference models. The second main topic is the analysis of field mill data and the calibration of the field mill systems. The calibration of the F106B field mill system was investigated using an improved finite difference model of the aircraft having a spatial resolution of one-quarter meter. The calibration was applied to measured field mill data acquired during the 1985 thunderstorm season. The experimental determination of form factors useful for field mill calibration was also investigated both experimentally and analytically. The experimental effort involved the use of conducting scale models and an electrolytic tank. An analytic technique was developed to aid in the understanding of the experimental results.

  7. [Development and evaluation of a program to promote self management in patients with chronic hepatitis B].

    PubMed

    Yang, Jin-Hyang

    2012-04-01

    The purpose of this study was to identify the effects of the program to promote self management for patients with chronic hepatitis B. The research was a quasi-experimental design using a non-equivalent control group pre-post test. The participants were 61 patients, 29 in the experimental group and 32 in the control group. A pretest and 2 posttests were conducted to measure main variables. For the experimental group, the self-management program, consisting of counseling-centered activities in small groups, was given for 6 weeks. Data were analyzed using χ², t-test, and repeated measures ANOVA with PASW statistics program. There were statistically significant increases in knowledge, self-efficacy, active ways of coping, and self-management compliance but not in passive ways of coping in the experimental group compared to the control group over two different times. The results of this study indicate that the self-management program is effective in increasing knowledge, self-efficacy, active ways of coping, and self-management compliance among patients with chronic hepatitis B. Therefore, it can be usefully utilized in the field of nursing for patients with chronic disease as a nursing intervention for people with chronic hepatitis B.

  8. The Effect of Problem-Solving Instruction on the Programming Self-efficacy and Achievement of Introductory Computer Science Students

    NASA Astrophysics Data System (ADS)

    Maddrey, Elizabeth

    Research in academia and industry continues to identify a decline in enrollment in computer science. One major component of this decline in enrollment is a shortage of female students. The primary reasons for the gender gap presented in the research include lack of computer experience prior to their first year in college, misconceptions about the field, negative cultural stereotypes, lack of female mentors and role models, subtle discriminations in the classroom, and lack of self-confidence (Pollock, McCoy, Carberry, Hundigopal, & You, 2004). Male students are also leaving the field due to misconceptions about the field, negative cultural stereotypes, and a lack of self-confidence. Analysis of first year attrition revealed that one of the major challenges faced by students of both genders is a lack of problem-solving skills (Beaubouef, Lucas & Howatt, 2001; Olsen, 2005; Paxton & Mumey, 2001). The purpose of this study was to investigate whether specific, non-mathematical problem-solving instruction as part of introductory programming courses significantly increased computer programming self-efficacy and achievement of students. The results of this study showed that students in the experimental group had significantly higher achievement than students in the control group. While this shows statistical significance, due to the effect size and disordinal nature of the data between groups, care has to be taken in its interpretation. The study did not show significantly higher programming self-efficacy among the experimental students. There was not enough data collected to statistically analyze the effect of the treatment on self-efficacy and achievement by gender. However, differences in means were observed between the gender groups, with females in the experimental group demonstrating a higher than average degree of self-efficacy when compared with males in the experimental group and both genders in the control group. These results suggest that the treatment from this study may provide a gender-based increase in self-efficacy and future research should focus on exploring this possibility.

  9. Curriculum Guide for Spanish Language Arts, Elementary Level L. Field Test, Working Draft = Guia para la ensenanza de las artes del lenguaje espanol, nivel elemental intermedio L. Edicion experimental.

    ERIC Educational Resources Information Center

    Chicago Board of Education, IL. Dept. of Curriculum.

    The curriculum guide for teachers of Spanish language arts for native Spanish-speaking students in the Chicago public schools' bilingual education program is introduced by a section outlining the program and defining the areas to be emphasized in the program: word attack, comprehension skills, study skills, and literature appreciation. Sections…

  10. Curriculum Guide for Spanish Language Arts, Elementary Level N. Field Test, Working Draft = Guia para la ensenanza de las artes del lenguaje espanol, nivel elemental adelantado N. Edicion experimental.

    ERIC Educational Resources Information Center

    Chicago Board of Education, IL. Dept. of Curriculum.

    The curriculum guide for teachers of Spanish language arts for native Spanish-speaking students in the Chicago public schools' bilingual education program is introduced by a section outlining the program and defining the areas to be emphasized in the program: word attack, comprehension skills, study skills, and literature appreciation. Sections…

  11. Curriculum Guide for Spanish Language Arts, Elementary Level F. Field Test = Guia para la ensenanza de las artes del lenguaje espanol, nivel elemental primario F. Edicion experimental.

    ERIC Educational Resources Information Center

    Chicago Board of Education, IL. Dept. of Curriculum.

    The curriculum guide for teachers of Spanish language arts for native Spanish-speaking primary students in the Chicago public schools' bilingual education program is introduced by a section outlining the program and defining the areas to be emphasized in the program: word attack, comprehension skills, study skills, and literature appreciation.…

  12. Curriculum Guide for Spanish Language Arts, Elementary Level M. Field Test, Working Draft = Guia para la ensenanza de las artes del lenguaje espanol, nivel elemental adelantado M. Edicion experimental.

    ERIC Educational Resources Information Center

    Chicago Board of Education, IL. Dept. of Curriculum.

    The curriculum guide for teachers of Spanish language arts for native Spanish-speaking students in the Chicago public schools' bilingual education program is introduced by a section outlining the program and defining the areas to be emphasized in the program: word attack, comprehension skills, study skills, and literature appreciation. Sections…

  13. Science Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1985

    1985-01-01

    Presents 23 experiments, activities, field projects and computer programs in the biological and physical sciences. Instructional procedures, experimental designs, materials, and background information are suggested. Topics include fluid mechanics, electricity, crystals, arthropods, limpets, acid neutralization, and software evaluation. (ML)

  14. Experimental and numerical modelling of the fluid flow in the continuous casting of steel

    NASA Astrophysics Data System (ADS)

    Timmel, K.; Miao, X.; Wondrak, T.; Stefani, F.; Lucas, D.; Eckert, S.; Gerbeth, G.

    2013-03-01

    This article gives an overview of recent research activities with respect to the mold flow in the continuous casting of steel in presence of DC magnetic fields. The magnetic fields appear to be an attractive tool for controlling the melt flow in a contactless way. Various kinds of magnetic systems are already in operation in industrial steel casting, but the actual impact on the melt flow has not been sufficiently verified by experimental studies. The rapid development of innovative diagnostic techniques in low-melting liquid metals over the last two decades enables new possibilities for systematic flow measurements in liquid metal model experiments. A new research program was initiated at HZDR comprising three experimental facilities providing a LIquid Metal Model for continuous CASTing of steel (LIMMCAST). The facilities operate in a temperature range from room temperature up to 400∘C using the low-melting alloys GaInSn and SnBi, respectively. The experimental program is focused on quantitative flow measurements in the mold, the submerged entry nozzle and the tundish. Local potential probes, Ultrasonic Doppler Velocimetry (UDV) and Contactless Inductive Flow Tomography (CIFT) are employed to measure the melt flow. The behavior of two-phase flows in case of argon injection is investigated by means of the Mutual Inductance Tomography (MIT) and X-ray radioscopy. The experimental results provide a substantial data basis for the validation of related numerical simulations. Numerical calculations were performed with the software package ANSYS-CFX with an implemented RANS-SST turbulence model. The non-isotropic nature of MHD turbulence was taken into account by specific modifications of the turbulence model. First results of the LIMMCAST program reveal important findings such as the peculiar, unexpected phenomenon that the application of a DC magnetic field may excite non-steady, non-isotropic large-scale flow oscillations in the mold. Another important result of our study is that electrical boundary conditions, namely the wall conductivity ratio, have a serious influence on the mold flow while it is exposed to an external magnetic field.

  15. Generalized three-dimensional experimental lightning code (G3DXL) user's manual

    NASA Technical Reports Server (NTRS)

    Kunz, Karl S.

    1986-01-01

    Information concerning the programming, maintenance and operation of the G3DXL computer program is presented and the theoretical basis for the code is described. The program computes time domain scattering fields and surface currents and charges induced by a driving function on and within a complex scattering object which may be perfectly conducting or a lossy dielectric. This is accomplished by modeling the object with cells within a three-dimensional, rectangular problem space, enforcing the appropriate boundary conditions and differencing Maxwell's equations in time. In the present version of the program, the driving function can be either the field radiated by a lightning strike or a direct lightning strike. The F-106 B aircraft is used as an example scattering object.

  16. ELF communications system ecological monitoring program: Pollinating insect studies

    NASA Astrophysics Data System (ADS)

    Strickler, Karen; Schriber, J. Mark

    1994-11-01

    High voltage transmission lines and the earth's and other magnetic fields have been shown to affect honeybee reproduction, survival, orientation, and nest structure. ELY EM fields could have similar effects on native megachilid bees. Two species in the genus Megachile were abundant in artificial nests at experimental and control areas in Dickinson and Iron Counties in Michigan. Data on their nest architecture, nest activity, and emergence/mortality were collected between 1983 and 1993. Eight hypotheses concerning the possible effects of ELY EM fields were considered using these data. The ELY antenna has been fully operational since the summer of 1989. Tests of the hypotheses compare control vs. experimental areas before and after the ELY antenna became fully operational.

  17. Effect of Delta Tabs on Free Jets from Complex Nozzles

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.

    2001-01-01

    Effects of 'delta-tabs' on the mixing and noise characteristics of two model-scale nozzles have been investigated experimentally. The two models are (1) an eight-lobed nozzle simulating the primary flow of a mixer-ejector configuration considered for the HSCT program, (2) an axisymmetric nozzle with a centerbody simulating the 'ACE' configuration also considered for the HSCT program. Details of the flow-field for model (1) are explored, while primarily the noise-field is explored for model (2). Effects of different tab configurations are documented.

  18. Highway concrete pavement technology development and testing : volume IV, field evaluation of Strategic Highway Research Program (SHRP) C-206 test sites (early opening of full-depth pavement repairs).

    DOT National Transportation Integrated Search

    2006-08-01

    The objective of this study was to monitor and evaluate the performance of experimental full-depth repairs made with high-early-strength (HES) materials placed under Strategic Highway Research Program (SHRP) project C-206, Optimization of Highway Con...

  19. Design of prototype charged particle fog dispersal unit

    NASA Technical Reports Server (NTRS)

    Collins, F. G.; Frost, W.; Kessel, P.

    1981-01-01

    The unit was designed to be easily modified so that certain features that influence the output current and particle size distribution could be examined. An experimental program was designed to measure the performance of the unit. The program described includes measurements in a fog chamber and in the field. Features of the nozzle and estimated nozzle characteristics are presented.

  20. Cognitive Style Factors and Learning from Micro-Computer Based and Programmed Instructional Materials: A Preliminary Analysis.

    ERIC Educational Resources Information Center

    Canelos, James; And Others

    This study examined the effects of two cognitive styles--field dependents-independents and reflectivity-impulsivity--on learning from microcomputer-based instruction. In the first of three experimental designs, a programmed instruction text on the human heart was used which contained both visual and verbal information in an instructional display,…

  1. Development of a new experimental device for long-duration magnetic reconnection in weakly ionized plasma

    NASA Astrophysics Data System (ADS)

    Yanai, Ryoma; Kaminou, Yasuhiro; Nishida, Kento; Inomoto, Michiaki

    2016-10-01

    Magnetic reconnection is a universal phenomenon which determines global structure and energy conversion in magnetized plasmas. Many experimental studies have been carried out to explore the physics of magnetic reconnection in fully ionized condition. However, it is predicted that the behavior of magnetic reconnection in weakly ionized plasmas such as solar chromosphere plasma will show different behavior such as ambipolar diffusion caused by interaction with neutral particles. In this research, we are developing a new experimental device to uncover the importance of ambipolar diffusion during magnetic reconnection in weakly ionized plasmas. We employ an inverter-driven rotating magnetic fields technique, which is used for generating steady azimuthal plasma current, to establish long-duration ( 1 ms) anti-parallel reconnection with magnetic field of 5 mT in weakly ionized plasma. We will present development status and initial results from the new experimental setup. This work was supported by JSPS A3 Foresight Program ``Innovative Tokamak Plasma Startup and Current Drive in Spherical Torus'', Giant-in Aid for Scientific Research (KAKENHI) 15H05750, 15K14279, 26287143 and the NIFS Collaboration Research program (NIFS14KNWP004).

  2. Comparison of Numerical and Experimental Time-Resolved Near-Field Hall Thruster Plasma Properties

    DTIC Science & Technology

    2014-03-06

    Near-Field Hall Thruster Plasma Properties 5a. CONTRACT NUMBER In-House 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d...Resolved Near-Field Hall Thruster Plasma Properties Ashley E. Gonzales, Justin W. Koo, and William A. Hargus, Jr. Abstract— Breathing mode oscillations... thruster , HPHall, plume emission. I. INTRODUCTION HALL thrusters are a plasma propulsion technologywidely used due to their low thrust, high specific impulse

  3. Curriculum Guide for Spanish Language Arts, Elementary Level G. Field Test, Working Draft = Guia para la ensenanza de las artes del lenguaje expanol, nivel elemental primario G. Edicion experimental.

    ERIC Educational Resources Information Center

    Chicago Board of Education, IL. Dept. of Curriculum.

    The curriculum guide for teachers of Spanish language arts for native Spanish-speaking primary students in the Chicago public schools' bilingual education program is introduced by a section outlining the program and defining the areas to be emphasized in the program: word attack, comprehension skills, study skills, and literature appreciation.…

  4. Curriculum Guide for Spanish Language Arts, Elementary Level H. Field Test, Working Draft = Guia para la ensenanza de las artes del lenguaje espanol, nivel elemental primario H. Edicion experimental.

    ERIC Educational Resources Information Center

    Chicago Board of Education, IL. Dept. of Curriculum.

    The curriculum guide for teachers of Spanish language arts for native Spanish-speaking primary students in the Chicago public schools' bilingual education program is introduced by a section outlining the program and defining the areas to be emphasized in the program: word attack, comprehension skills, study skills, and literature appreciation.…

  5. Rocket Engine Turbine Blade Surface Pressure Distributions Experiment and Computations

    NASA Technical Reports Server (NTRS)

    Hudson, Susan T.; Zoladz, Thomas F.; Dorney, Daniel J.; Turner, James (Technical Monitor)

    2002-01-01

    Understanding the unsteady aspects of turbine rotor flow fields is critical to successful future turbine designs. A technology program was conducted at NASA's Marshall Space Flight Center to increase the understanding of unsteady environments for rocket engine turbines. The experimental program involved instrumenting turbine rotor blades with miniature surface mounted high frequency response pressure transducers. The turbine model was then tested to measure the unsteady pressures on the rotor blades. The data obtained from the experimental program is unique in two respects. First, much more unsteady data was obtained (several minutes per set point) than has been possible in the past. Also, an extensive steady performance database existed for the turbine model. This allowed an evaluation of the effect of the on-blade instrumentation on the turbine's performance. A three-dimensional unsteady Navier-Stokes analysis was also used to blindly predict the unsteady flow field in the turbine at the design operating conditions and at +15 degrees relative incidence to the first-stage rotor. The predicted time-averaged and unsteady pressure distributions show good agreement with the experimental data. This unique data set, the lessons learned for acquiring this type of data, and the improvements made to the data analysis and prediction tools are contributing significantly to current Space Launch Initiative turbine airflow test and blade surface pressure prediction efforts.

  6. Nuffield Foundation 'Resources for Learning' Project. A Multi-Media Programmed Approach to Environmental Studies.

    ERIC Educational Resources Information Center

    Kefford, Colin W.

    This description of a unit for teaching about the environment at the junior high level is an experimental study. The focus of the program is the integration of several media; films and tapes play a large role in the unit. Students perform a combination of classroom work, field work, and simulated exercises; assessment procedures are described.…

  7. Is a Web Survey as Effective as a Mail Survey? A Field Experiment Among Computer Users

    ERIC Educational Resources Information Center

    Kiernan, Nancy; Kiernan, Michaela; Oyler, Mary; Gilles, Carolyn

    2005-01-01

    With the exponential increase in Web access, program evaluators need to understand the methodological benefits and barriers of using the Web to collect survey data from program participants. In this experimental study, the authors examined whether a Web survey can be as effective as the more established mail survey on three measures of survey…

  8. Turning the Ship: The Transformation of DESY, 1993-2009

    NASA Astrophysics Data System (ADS)

    Heinze, Thomas; Hallonsten, Olof; Heinecke, Steffi

    2017-12-01

    This article chronicles the most recent history of the Deutsches Elektronen-Synchrotron (DESY) located in Hamburg, Germany, with particular emphasis on how this national laboratory founded for accelerator-based particle physics shifted its research program toward multi-disciplinary photon science. Synchrotron radiation became DESY's central experimental research program through a series of changes in its organizational, scientific, and infrastructural setup and the science policy context. Furthermore, the turn toward photon science is part of a broader transformation in the late twentieth century in which nuclear and particle physics, once the dominating fields in national and international science budgets, gave way to increasing investment in the materials sciences and life sciences. Synchrotron radiation research took a lead position on the experimental side of these growing fields and became a new form of big science, generously funded by governments and with user communities expanding across both academia and industry.

  9. The Scientific Program of the U.S. Naval Research Laboratory

    DTIC Science & Technology

    1958-07-01

    systems, using mock-ups and simulated inputs. (2) Experimental determination of the quantitative parameters of systems, such as data-handling ability, time...naval service of equipment on ships, planes, and mis- siles are recorded, analyzed, and simulated . Methods are developed for the improve- ment of...H01 - NUCLEAR CONSTITUENTS AND STRUCTURE Theoretical and experimental studies concerned with elementary particles , field theory, nuclear structure

  10. Comparative effect of integrated pest management and farmers' standard pest control practice for managing insect pests on cabbage (Brassica spp.).

    PubMed

    Reddy, Gadi V P

    2011-08-01

    Studies were conducted on experimental cabbage plantings in 2009 and on experimental and commercial plantings in 2010, comparing farmers' current chemical standard pesticide practices with an integrated pest management (IPM) program based on the use of neem (Aza-Direct) and DiPel (Bacillus thuringiensis). In experimental plantings, the IPM program used six or eight applications of neem and DiPel on a rotational basis. The standard-practice treatments consisted of six or eight applications of carbaryl and malathion or control treatment. The IPM treatments reduced pest populations and damage, resulting in a better yield than with the standard chemical or control treatment. When IPM treatment included three applications of neem plus three applications of DiPel (on a rotational basis in experimental fields), it again reduced the pest population and damage and produced a better yield than the standard practice. The lower input costs of the IPM program resulted in better economic returns in both trials. The IPM components neem and DiPel are suitable for use in an IPM program for managing insect pests on cabbage (Brassica spp.). Copyright © 2011 Society of Chemical Industry.

  11. Development of a tuned interfacial force field parameter set for the simulation of protein adsorption to silica glass.

    PubMed

    Snyder, James A; Abramyan, Tigran; Yancey, Jeremy A; Thyparambil, Aby A; Wei, Yang; Stuart, Steven J; Latour, Robert A

    2012-12-01

    Adsorption free energies for eight host-guest peptides (TGTG-X-GTGT, with X = N, D, G, K, F, T, W, and V) on two different silica surfaces [quartz (100) and silica glass] were calculated using umbrella sampling and replica exchange molecular dynamics and compared with experimental values determined by atomic force microscopy. Using the CHARMM force field, adsorption free energies were found to be overestimated (i.e., too strongly adsorbing) by about 5-9 kcal/mol compared to the experimental data for both types of silica surfaces. Peptide adsorption behavior for the silica glass surface was then adjusted using a modified version of the CHARMM program, which we call dual force-field CHARMM, which allows separate sets of nonbonded parameters (i.e., partial charge and Lennard-Jones parameters) to be used to represent intra-phase and inter-phase interactions within a given molecular system. Using this program, interfacial force field (IFF) parameters for the peptide-silica glass systems were corrected to obtain adsorption free energies within about 0.5 kcal/mol of their respective experimental values, while IFF tuning for the quartz (100) surface remains for future work. The tuned IFF parameter set for silica glass will subsequently be used for simulations of protein adsorption behavior on silica glass with greater confidence in the balance between relative adsorption affinities of amino acid residues and the aqueous solution for the silica glass surface.

  12. Development of a Tuned Interfacial Force Field Parameter Set for the Simulation of Protein Adsorption to Silica Glass

    PubMed Central

    Snyder, James A.; Abramyan, Tigran; Yancey, Jeremy A.; Thyparambil, Aby A.; Wei, Yang; Stuart, Steven J.; Latour, Robert A.

    2012-01-01

    Adsorption free energies for eight host–guest peptides (TGTG-X-GTGT, with X = N, D, G, K, F, T, W, and V) on two different silica surfaces [quartz (100) and silica glass] were calculated using umbrella sampling and replica exchange molecular dynamics and compared with experimental values determined by atomic force microscopy. Using the CHARMM force field, adsorption free energies were found to be overestimated (i.e., too strongly adsorbing) by about 5–9 kcal/mol compared to the experimental data for both types of silica surfaces. Peptide adsorption behavior for the silica glass surface was then adjusted using a modified version of the CHARMM program, which we call dual force-field CHARMM, which allows separate sets of nonbonded parameters (i.e., partial charge and Lennard-Jones parameters) to be used to represent intra-phase and inter-phase interactions within a given molecular system. Using this program, interfacial force field (IFF) parameters for the peptide-silica glass systems were corrected to obtain adsorption free energies within about 0.5 kcal/mol of their respective experimental values, while IFF tuning for the quartz (100) surface remains for future work. The tuned IFF parameter set for silica glass will subsequently be used for simulations of protein adsorption behavior on silica glass with greater confidence in the balance between relative adsorption affinities of amino acid residues and the aqueous solution for the silica glass surface. PMID:22941539

  13. Issues in Estimating Program Effects and Studying Implementation in Large-Scale Educational Experiments: The Case of a Connected Classroom Technology Program

    ERIC Educational Resources Information Center

    Shin, Hye Sook

    2009-01-01

    Using data from a nationwide, large-scale experimental study of the effects of a connected classroom technology on student learning in algebra (Owens et al., 2004), this dissertation focuses on challenges that can arise in estimating treatment effects in educational field experiments when samples are highly heterogeneous in terms of various…

  14. What Works for Older Youth during the Transition to Adulthood: Lessons from Experimental Evaluations of Programs and Interventions. Fact Sheet. Publication #2010-05

    ERIC Educational Resources Information Center

    Hadley, Alena M.; Mbwana, Kassim; Hair, Elizabeth C.

    2010-01-01

    Major strides have been made in the field of youth development. However, youth transitioning into adulthood have not received similar attention. These older youth have frequently been overlooked by policymakers and practitioners who have been more focused on designing programs and services for adolescents and young children. Because older youth…

  15. Development of Hazards Classification Data on Propellants and Explosives

    DTIC Science & Technology

    1978-11-01

    scattering photometer. A near forward, dark field instrument called a Sinclair-Phoenix photometer is common- ly used for measuring a wide range of...hazardä classification pro- cedure for in-process materials, and 5) Experimental evaluation of selected small-scale tests for application in the hazards...responsible for the experimental por- tion of this work. In addition to the authors, other IITRI personnel who contributed to this program were R

  16. Assessing the Success Rate of Students Using a Learning Management System Together with a Collaborative Tool in Web-Based Teaching of Programming Languages

    ERIC Educational Resources Information Center

    Cavus, Nadire; Ibrahim, Dogan

    2007-01-01

    The development of collaborative studies in learning has led to a renewed interest in the field of Web-based education. In this experimental study a highly interactive and collaborative virtual teaching environment has been created by supporting Moodle LMS with collaborative learning tool GREWPtool. The aim of this experimental study has been to…

  17. A theoretical/experimental program to develop active optical pollution sensors

    NASA Technical Reports Server (NTRS)

    Mills, F. S.; Blais, R. N.; Kindle, E. C.

    1977-01-01

    Light detection and ranging (LIDAR) technology was applied to the assessment of air quality, and its usefulness was evaluated by actual field tests. Necessary hardware was successfully constructed and operated in the field. Measurements of necessary physical parameters, such as SO2 absorption coefficients were successfully completed and theoretical predictions of differential absorption performance were reported. Plume modeling improvements were proposed. A full scale field test of equipment, data analysis and auxiliary data support was conducted in Maryland during September 1976.

  18. Recycled concrete aggregate : field implementation at the Stan Musial Veterans Memorial Bridge.

    DOT National Transportation Integrated Search

    2014-08-01

    The main objective of this research is to evaluate the feasibility of using RCA for concrete production in rigid pavement applications. : The experimental program was undertaken to investigate the performance of different concrete made with different...

  19. Parallel barrier effectiveness : Dulles noise barrier project

    DOT National Transportation Integrated Search

    1990-05-01

    In an effort to minimize the cost and maximize the effectiveness of highway noise barriers, the Federal Highway Administration and a National Pooled Fund Panel (made up of 14 States) funded a field study program on an experimental highway noise barri...

  20. Parameterization of an interfacial force field for accurate representation of peptide adsorption free energy on high-density polyethylene

    PubMed Central

    Abramyan, Tigran M.; Snyder, James A.; Yancey, Jeremy A.; Thyparambil, Aby A.; Wei, Yang; Stuart, Steven J.; Latour, Robert A.

    2015-01-01

    Interfacial force field (IFF) parameters for use with the CHARMM force field have been developed for interactions between peptides and high-density polyethylene (HDPE). Parameterization of the IFF was performed to achieve agreement between experimental and calculated adsorption free energies of small TGTG–X–GTGT host–guest peptides (T = threonine, G = glycine, and X = variable amino-acid residue) on HDPE, with ±0.5 kcal/mol agreement. This IFF parameter set consists of tuned nonbonded parameters (i.e., partial charges and Lennard–Jones parameters) for use with an in-house-modified CHARMM molecular dynamic program that enables the use of an independent set of force field parameters to control molecular behavior at a solid–liquid interface. The R correlation coefficient between the simulated and experimental peptide adsorption free energies increased from 0.00 for the standard CHARMM force field parameters to 0.88 for the tuned IFF parameters. Subsequent studies are planned to apply the tuned IFF parameter set for the simulation of protein adsorption behavior on an HDPE surface for comparison with experimental values of adsorbed protein orientation and conformation. PMID:25818122

  1. Evaluation of STD/AIDS prevention programs: a review of approaches and methodologies.

    PubMed

    da Cruz, Marly Marques; dos Santos, Elizabeth Moreira; Monteiro, Simone

    2007-05-01

    The article presents a review of approaches and methodologies in the evaluation of STD/AIDS prevention programs, searching for theoretical and methodological support for the institutionalization of evaluation and decision-making. The review included the MEDLINE, SciELO, and ISI Web of Science databases and other sources like textbooks and congress abstracts from 1990 to 2005, with the key words: "evaluation", "programs", "prevention", "STD/AIDS", and similar terms. The papers showed a predominance of quantitative outcome or impact evaluative studies with an experimental or quasi-experimental design. The main use of evaluation is accountability, although knowledge output and program improvement were also identified in the studies. Only a few evaluative studies contemplate process evaluation and its relationship to the contexts. The review aimed to contribute to the debate on STD/AIDS, which requires more effective, consistent, and sustainable decisions in the field of prevention.

  2. The effects of Internet or interactive computer-based patient education in the field of breast cancer: a systematic literature review.

    PubMed

    Ryhänen, Anne M; Siekkinen, Mervi; Rankinen, Sirkku; Korvenranta, Heikki; Leino-Kilpi, Helena

    2010-04-01

    The aim of this systematic review was to analyze what kind of Internet or interactive computer-based patient education programs have been developed and to analyze the effectiveness of these programs in the field of breast cancer patient education. Patient education for breast cancer patients is an important intervention to empower the patient. However, we know very little about the effects and potential of Internet-based patient education in the empowerment of breast cancer patients. Complete databases were searched covering the period from the beginning of each database to November 2008. Studies were included if they concerned patient education for breast cancer patients with Internet or interactive computer programs and were based on randomized controlled, on clinical trials or quasi-experimental studies. We identified 14 articles involving 2374 participants. The design was randomized controlled trial in nine papers, in two papers clinical trial and in three quasi-experimental. Seven of the studies were randomized to experimental and control groups, in two papers participants were grouped by ethnic and racial differences and by mode of Internet use and three studies measured the same group pre- and post-tests after using a computer program. The interventions used were described as interactive computer or multimedia programs and use of the Internet. The methodological solutions of the studies varied. The effects of the studies were diverse except for knowledge-related issues. Internet or interactive computer-based patient education programs in the care of breast cancer patients may have positive effect increasing breast cancer knowledge. The results suggest a positive relationship between the Internet or computer-based patient education program use and the knowledge level of patients with breast cancer but a diverse relationship between patient's participation and other outcome measures. There is need to develop and research more Internet-based patient education. 2009 Elsevier Ireland Ltd. All rights reserved.

  3. The Laser Mega-Joule : LMJ & PETAL status and Program Overview

    NASA Astrophysics Data System (ADS)

    Miquel, J.-L.; Lion, C.; Vivini, P.

    2016-03-01

    The laser Megajoule (LMJ), developed by the French Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), will be a cornerstone of the French Simulation Program, which combines improvement of physics models, high performance numerical simulation, and experimental validation. The LMJ facility is under construction at CEA CESTA near Bordeaux and will provide the experimental capabilities to study High-Energy Density Physics (HEDP). One of its goals is to obtain ignition and burn of DT-filled capsules imploded, through indirect drive scheme, inside rugby-shape hohlraum. The PETAL project consists in the addition of one short-pulse (ps) ultra-high-power, high-energy beam (kJ) to the LMJ facility. PETAL will offer a combination of a very high intensity multi-petawatt beam, synchronized with the nanosecond beams of the LMJ. This combination will expand the LMJ experimental field on HEDP. This paper presents an update of LMJ & PETAL status, together with the development of the overall program including targets, plasma diagnostics and simulation tools.

  4. Utilization of a pneumatic tube mixing technique for processing and stabilization of contaminated dredged material.

    DOT National Transportation Integrated Search

    2016-12-01

    The following progress report describes the laboratory activities completed for the development of the experimental field program designed to evaluate sediment amendment using the Pneumatic Flow Tube Mixing Apparatus (PFTM) in NY/NJ Harbor. These act...

  5. Experimental Investigation of Gauge Widening and Rail Restraint Characteristics

    DOT National Transportation Integrated Search

    1984-11-01

    Gauge widening resulting from a loss of adequate rail restraint is one of the major track failure modes and the cause of a large number of derailments. A recent field and laboratory test program conducted by the Transportation Systems Center aimed at...

  6. Magnetic field effects on microwave absorbing materials

    NASA Technical Reports Server (NTRS)

    Goldberg, Ira; Hollingsworth, Charles S.; Mckinney, Ted M.

    1991-01-01

    The objective of this program was to gather information to formulate a microwave absorber that can work in the presence of strong constant direct current (DC) magnetic fields. The program was conducted in four steps. The first step was to investigate the electrical and magnetic properties of magnetic and ferrite microwave absorbers in the presence of strong magnetic fields. This included both experimental measurements and a literature survey of properties that may be applicable to finding an appropriate absorbing material. The second step was to identify those material properties that will produce desirable absorptive properties in the presence of intense magnetic fields and determine the range of magnetic field in which the absorbers remain effective. The third step was to establish ferrite absorber designs that will produce low reflection and adequate absorption in the presence of intense inhomogeneous static magnetic fields. The fourth and final step was to prepare and test samples of such magnetic microwave absorbers if such designs seem practical.

  7. Computer programs of information processing of nuclear physical methods as a demonstration material in studying nuclear physics and numerical methods

    NASA Astrophysics Data System (ADS)

    Bateev, A. B.; Filippov, V. P.

    2017-01-01

    The principle possibility of using computer program Univem MS for Mössbauer spectra fitting as a demonstration material at studying such disciplines as atomic and nuclear physics and numerical methods by students is shown in the article. This program is associated with nuclear-physical parameters such as isomer (or chemical) shift of nuclear energy level, interaction of nuclear quadrupole moment with electric field and of magnetic moment with surrounded magnetic field. The basic processing algorithm in such programs is the Least Square Method. The deviation of values of experimental points on spectra from the value of theoretical dependence is defined on concrete examples. This value is characterized in numerical methods as mean square deviation. The shape of theoretical lines in the program is defined by Gaussian and Lorentzian distributions. The visualization of the studied material on atomic and nuclear physics can be improved by similar programs of the Mössbauer spectroscopy, X-ray Fluorescence Analyzer or X-ray diffraction analysis.

  8. A general-purpose computer program for studying ultrasonic beam patterns generated with acoustic lenses

    NASA Technical Reports Server (NTRS)

    Roberti, Dino; Ludwig, Reinhold; Looft, Fred J.

    1988-01-01

    A 3-D computer model of a piston radiator with lenses for focusing and defocusing is presented. To achieve high-resolution imaging, the frequency of the transmitted and received ultrasound must be as high as 10 MHz. Current ultrasonic transducers produce an extremely narrow beam at these high frequencies and thus are not appropriate for imaging schemes such as synthetic-aperture focus techniques (SAFT). Consequently, a numerical analysis program has been developed to determine field intensity patterns that are radiated from ultrasonic transducers with lenses. Lens shapes are described and the field intensities are numerically predicted and compared with experimental results.

  9. Assessment of Proton Deflectometry for Exploding Wire Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beg, Farhat Nadeem

    2013-09-25

    This project provides the first demonstration of the application of proton deflectometry for the diagnosis of electromagnetic field topology and current-carrying regions in Z-pinch plasma experiments. Over the course of this project several milestones were achieved. High-energy proton beam generation was demonstrated on the short-pulse high-intensity Leopard laser, (10 Joules in ~350 femtoseconds, and the proton beam generation was shown to be reproducible. Next, protons were used to probe the electromagnetic field structure of short circuit loads in order to benchmark the two numerical codes, the resistive-magnetohydrodynamics (MHD) code, Gorgon, and the hybrid particle-in-cell code, LSP for the interpretation ofmore » results. Lastly, the proton deflectometry technique was used to map the magnetic field structure of pulsed-power-driven plasma loads including wires and supersonic jets formed with metallic foils. Good agreement between the modeling and experiments has been obtained. The demonstrated technique holds great promise to significantly improve the understanding of current flow and electromagnetic field topology in pulsed power driven high energy density plasmas. Proton probing with a high intensity laser was for the first time implemented in the presence of the harsh debris and x-ray producing z-pinch environment driven by a mega-ampere-scale pulsed-power machine. The intellectual merit of the program was that it investigated strongly driven MHD systems and the influence of magnetic field topology on plasma evolution in pulsed power driven plasmas. The experimental program involved intense field-matter interaction in the generation of the proton probe, as well as the generation of plasma subjected to 1 MegaGauss scale magnetic fields. The computational aspect included two well-documented codes, in combination for the first time to provide accurate interpretation of the experimental results. The broader impact included the support of 2 graduate students, one at UCSD and one at NTF, who were exposed to both the experimental physics work, the MHD and PIC modeling of the system. A first generation college undergraduate student was employed to assist in experiments and data analysis throughout the project. Data resulting from the research program were broadly disseminated by publication in scientific journals, and presentation at international and national conferences and workshops.« less

  10. μ-PIV measurements of the ensemble flow fields surrounding a migrating semi-infinite bubble.

    PubMed

    Yamaguchi, Eiichiro; Smith, Bradford J; Gaver, Donald P

    2009-08-01

    Microscale particle image velocimetry (μ-PIV) measurements of ensemble flow fields surrounding a steadily-migrating semi-infinite bubble through the novel adaptation of a computer controlled linear motor flow control system. The system was programmed to generate a square wave velocity input in order to produce accurate constant bubble propagation repeatedly and effectively through a fused glass capillary tube. We present a novel technique for re-positioning of the coordinate axis to the bubble tip frame of reference in each instantaneous field through the analysis of the sudden change of standard deviation of centerline velocity profiles across the bubble interface. Ensemble averages were then computed in this bubble tip frame of reference. Combined fluid systems of water/air, glycerol/air, and glycerol/Si-oil were used to investigate flows comparable to computational simulations described in Smith and Gaver (2008) and to past experimental observations of interfacial shape. Fluorescent particle images were also analyzed to measure the residual film thickness trailing behind the bubble. The flow fields and film thickness agree very well with the computational simulations as well as existing experimental and analytical results. Particle accumulation and migration associated with the flow patterns near the bubble tip after long experimental durations are discussed as potential sources of error in the experimental method.

  11. Development of a %22solar patch%22 calculator to evaluate heliostat-field irradiance as a boundary condition in CFD models.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khalsa, Siri Sahib; Ho, Clifford Kuofei

    2010-04-01

    A rigorous computational fluid dynamics (CFD) approach to calculating temperature distributions, radiative and convective losses, and flow fields in a cavity receiver irradiated by a heliostat field is typically limited to the receiver domain alone for computational reasons. A CFD simulation cannot realistically yield a precise solution that includes the details within the vast domain of an entire heliostat field in addition to the detailed processes and features within a cavity receiver. Instead, the incoming field irradiance can be represented as a boundary condition on the receiver domain. This paper describes a program, the Solar Patch Calculator, written in Microsoftmore » Excel VBA to characterize multiple beams emanating from a 'solar patch' located at the aperture of a cavity receiver, in order to represent the incoming irradiance from any field of heliostats as a boundary condition on the receiver domain. This program accounts for cosine losses; receiver location; heliostat reflectivity, areas and locations; field location; time of day and day of year. This paper also describes the implementation of the boundary conditions calculated by this program into a Discrete Ordinates radiation model using Ansys{reg_sign} FLUENT (www.fluent.com), and compares the results to experimental data and to results generated by the code DELSOL.« less

  12. Development of a %22Solar Patch%22 calculator to evaluate heliostat-field irradiance as a boundary condition in CFD models.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khalsa, Siri Sahib S.; Ho, Clifford Kuofei

    2010-05-01

    A rigorous computational fluid dynamics (CFD) approach to calculating temperature distributions, radiative and convective losses, and flow fields in a cavity receiver irradiated by a heliostat field is typically limited to the receiver domain alone for computational reasons. A CFD simulation cannot realistically yield a precise solution that includes the details within the vast domain of an entire heliostat field in addition to the detailed processes and features within a cavity receiver. Instead, the incoming field irradiance can be represented as a boundary condition on the receiver domain. This paper describes a program, the Solar Patch Calculator, written in Microsoftmore » Excel VBA to characterize multiple beams emanating from a 'solar patch' located at the aperture of a cavity receiver, in order to represent the incoming irradiance from any field of heliostats as a boundary condition on the receiver domain. This program accounts for cosine losses; receiver location; heliostat reflectivity, areas and locations; field location; time of day and day of year. This paper also describes the implementation of the boundary conditions calculated by this program into a Discrete Ordinates radiation model using Ansys{reg_sign} FLUENT (www.fluent.com), and compares the results to experimental data and to results generated by the code DELSOL.« less

  13. ULTRASONIC STUDIES OF THE FUNDAMENTAL MECHANISMS OF RECRYSTALLIZATION AND SINTERING OF METALS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TURNER, JOSEPH A.

    2005-11-30

    The purpose of this project was to develop a fundamental understanding of the interaction of an ultrasonic wave with complex media, with specific emphases on recrystallization and sintering of metals. A combined analytical, numerical, and experimental research program was implemented. Theoretical models of elastic wave propagation through these complex materials were developed using stochastic wave field techniques. The numerical simulations focused on finite element wave propagation solutions through complex media. The experimental efforts were focused on corroboration of the models developed and on the development of new experimental techniques. The analytical and numerical research allows the experimental results to bemore » interpreted quantitatively.« less

  14. Facilitating Cognitive Development.

    ERIC Educational Resources Information Center

    Schwebel, Milton

    1985-01-01

    Human cognition research is shifting away from the importance of IQ and is emphasizing the stimulation and acceleration of a child's mental development. The emerging field of instructional psychology is trying to facilitate cognitive development. Current experimental programs--a university-school project in Belgium and a family project in…

  15. A letter of intent for an experiment to study strong electromagnetic fields at RHIC via multiple electromagnetic processes

    NASA Technical Reports Server (NTRS)

    Fatyga, M.; Norbury, John W.

    1992-01-01

    An experimental program at the Relativistic Heavy Ion Collider (RHIC) which is designed to study nonperturbative aspects of electrodynamics is outlined. Additional possibilities for new studies of electrodynamics via multiple electromagnetic processes are also described.

  16. The Construction of an Embankment with Frozen Soil.

    DTIC Science & Technology

    1980-05-01

    Idewlrty by block numlbe) Inls paper presents the construction procedure, data and analysis from an experimental field program to determine the rippability ...finite element computer solution. Also the frozen chunks, produced in the ripping operation, were analyzed to determine the rippability of the frozen

  17. Instrumentation and control of harmonic oscillators via a single-board microprocessor-FPGA device.

    PubMed

    Picone, Rico A R; Davis, Solomon; Devine, Cameron; Garbini, Joseph L; Sidles, John A

    2017-04-01

    We report the development of an instrumentation and control system instantiated on a microprocessor-field programmable gate array (FPGA) device for a harmonic oscillator comprising a portion of a magnetic resonance force microscope. The specific advantages of the system are that it minimizes computation, increases maintainability, and reduces the technical barrier required to enter the experimental field of magnetic resonance force microscopy. Heterodyne digital control and measurement yields computational advantages. A single microprocessor-FPGA device improves system maintainability by using a single programming language. The system presented requires significantly less technical expertise to instantiate than the instrumentation of previous systems, yet integrity of performance is retained and demonstrated with experimental data.

  18. Instrumentation and control of harmonic oscillators via a single-board microprocessor-FPGA device

    NASA Astrophysics Data System (ADS)

    Picone, Rico A. R.; Davis, Solomon; Devine, Cameron; Garbini, Joseph L.; Sidles, John A.

    2017-04-01

    We report the development of an instrumentation and control system instantiated on a microprocessor-field programmable gate array (FPGA) device for a harmonic oscillator comprising a portion of a magnetic resonance force microscope. The specific advantages of the system are that it minimizes computation, increases maintainability, and reduces the technical barrier required to enter the experimental field of magnetic resonance force microscopy. Heterodyne digital control and measurement yields computational advantages. A single microprocessor-FPGA device improves system maintainability by using a single programming language. The system presented requires significantly less technical expertise to instantiate than the instrumentation of previous systems, yet integrity of performance is retained and demonstrated with experimental data.

  19. Review of the findings of the Ignik Sikumi CO2-CH4 gas hydrate exchange field trial

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Brian J.; Boswell, Ray; Collett, Tim S.

    The Ignik Sikumi Gas Hydrate Exchange Field Trial was conducted by ConocoPhillips in partnership with the U.S. Department of Energy, the Japan Oil, Gas, and Metals National Corporation, and the U.S. Geological Survey within the Prudhoe Bay Unit on the Alaska North Slope (ANS) during 2011 and 2012. The 2011 field program included drilling the vertical test well and performing extensive wireline logging through a thick section of gas-hydrate-bearing sand reservoirs that provided substantial new insight into the nature of ANS gas hydrate occurrences. The 2012 field program involved an extended, scientific field trial conducted within a single vertical wellmore » (“huff-and-puff” design) through three primary operational phases: 1) injection of a gaseous phase mixture of CO2, N2, and chemical tracers; 2) flowback conducted at down-hole pressures above the stability threshold for native CH4-hydrate, and 3) extended (30-days) flowback at pressures below the stability threshold of native CH4-hydrate. Ignik Sikumi represents the first field investigation of gas hydrate response to chemical injection, and the longest-duration field reservoir response experiment yet conducted. Full descriptions of the operations and data collected have been fully reported by ConocoPhillips and are available to the science community. The 2011 field program indicated the presence of free water within the gas hydrate reservoir, a finding with significant implications to the design of the exchange trial – most notably the use of a mixed gas injectant. While this decision resulted in a complex chemical environment within the reservoir that greatly tests current experimental and modeling capabilities – without such a mixture, it is apparent that injection could not have been achieved. While interpretation of the field data are continuing, the primary scientific findings and implications of the program are: 1) gas hydrate destabilizing is self-limiting, dispelling any notion of the potential for uncontrolled destabilization; 2) wells must be carefully designed to enable rapid remediation of well-bore blockages that will occur during any cessation in operations; 3) appropriate gas mixes can be successfully injected into hydrate-bearing reservoirs; 4) sand production can be well-managed through standard engineering controls; 5) reservoir heat exchange during depressurization was much more favorable than expected – mitigating concerns for near-well-bore freezing and enabling consideration of more aggressive pressure reduction and; 6) CO2-CH4 exchange can be accomplished in natural reservoirs. The next steps in evaluation of exchange technology should feature multiple well applications; however such field programs will require extensive preparatory experimental and numerical modeling studies and will likely be a secondary priority to further field testing of production through depressurization.« less

  20. Effluent monitoring of the December 10, 1974, Titan 3-E launch at Air Force Eastern Test Range, Florida

    NASA Technical Reports Server (NTRS)

    Wornom, D. E.; Woods, D. C.

    1978-01-01

    Surface and airborne field measurements of the cloud behavior and effluent dispersion from a solid rocket motor launch vehicle are presented. The measurements were obtained as part of a continuing launch vehicle effluent monitoring program to obtain experimental field measurements in order to evaluate a model used to predict launch vehicle environmental impact. Results show that the model tends to overpredict effluent levels.

  1. Roadmap for the Hypersonics Programs of the Department of Defense

    DTIC Science & Technology

    2008-02-01

    development and integration of a 1MW e-bean system to provide the necessary energy into the wind tunnel flow field to enable longer duration experiments at...acquired. Finally, “Test and Evaluation” (T&E) is defined as tests and experiments in support of research development and acquisition of systems...Research Experimentation (HIFiRE) project, the DARPA/AF Falcon program, and the DoD Next Generation Launch planning activities. 13 Joint

  2. Evaluation of the three-dimensional parabolic flow computer program SHIP

    NASA Technical Reports Server (NTRS)

    Pan, Y. S.

    1978-01-01

    The three-dimensional parabolic flow program SHIP designed for predicting supersonic combustor flow fields is evaluated to determine its capabilities. The mathematical foundation and numerical procedure are reviewed; simplifications are pointed out and commented upon. The program is then evaluated numerically by applying it to several subsonic and supersonic, turbulent, reacting and nonreacting flow problems. Computational results are compared with available experimental or other analytical data. Good agreements are obtained when the simplifications on which the program is based are justified. Limitations of the program and the needs for improvement and extension are pointed out. The present three dimensional parabolic flow program appears to be potentially useful for the development of supersonic combustors.

  3. Air Traffic Control Experimentation and Evaluation with the NASA ATS-6 Satellite : Volume 4. Data Reduction and Analysis Software.

    DOT National Transportation Integrated Search

    1976-09-01

    Software used for the reduction and analysis of the multipath prober, modem evaluation (voice, digital data, and ranging), and antenna evaluation data acquired during the ATS-6 field test program is described. Multipath algorithms include reformattin...

  4. Microbiological Consequences of Different Housing Systems for Laying Hens: Field and Experimental Infection Studies

    USDA-ARS?s Scientific Manuscript database

    A significant proportion of human illnesses caused by Salmonella are linked to the consumption of contaminated eggs. In response, substantial government and private industry resources are committed to comprehensive Salmonella testing and risk reduction programs for commercial egg-laying flocks. Envi...

  5. [Development and Effects of a Coping Skill Training Program for Caregivers in Feeding Difficulty of Older Adults with Dementia in Long-Term Care Facilities].

    PubMed

    Hong, Hyun Hwa; Gu, Mee Ock

    2018-04-01

    We developed and tested the effects of a coping skill training program for caregivers in feeding difficulty among older adults with dementia in long-term care facilities. A non-equivalent control group pretest-posttest design was used. The subjects comprised 34 caregivers (experimental group: 17, control group: 17) and 40 older adults with dementia (experimental group: 20, control group: 20). The developed program was delivered in 4-hour sessions over 6 weeks (including 2 weeks of lectures and lab practice on feeding difficulty coping skills, and 4 weeks of field practice). Data were collected before, immediately after, and 4 weeks after the program (January 3 to April 6, 2016). The data were analyzed using t-test and repeated measures ANOVA using SPSS/WIN 20.0. Compared to their counterparts in the control group, caregivers in the experimental group showed a significantly greater improvement in feeding knowledge and feeding behavior, while older adults with dementia showed greater improvements in feeding difficulty and Body Mass Index. The study findings indicate that this coping skill training program for caregivers in feeding difficulty is an effective intervention for older adults with dementia in long-term care facilities. © 2018 Korean Society of Nursing Science.

  6. Alpha 97: Basic Education and Institutional Environments.

    ERIC Educational Resources Information Center

    Hautecoeur, Jean-Paul, Ed.

    This document was published by Alpha, a research program specializing in alternative, experimental approaches to adult basic education. It is an attempt to widen the field and examine the relationship between the micro and macro levels, between the diversity of different practices and the major policy orientations that foster or limit this…

  7. Methodological Foundations for the Empirical Evaluation of Non-Experimental Methods in Field Settings

    ERIC Educational Resources Information Center

    Wong, Vivian C.; Steiner, Peter M.

    2015-01-01

    Across the disciplines of economics, political science, public policy, and now, education, the randomized controlled trial (RCT) is the preferred methodology for establishing causal inference about program impacts. But randomized experiments are not always feasible because of ethical, political, and/or practical considerations, so non-experimental…

  8. Teaching About War, Peace, Conflict and Change.

    ERIC Educational Resources Information Center

    New York Friends Group, Inc., New York. Center for War/Peace Studies.

    This is a description of the objectives, program activities, and policy of an experimental curriculum development project in the war/peace field. Seven major concepts of content are defined: 1) Identity, 2) Obligation, 3) Change, 4) Power, 5) Conflict, 6) Institutions, 7) Interdependence, 8) Values and the Value Process. Rationale is that…

  9. A research program in magnetogasdynamics utilizing hypervelocity coaxial plasma generators

    NASA Technical Reports Server (NTRS)

    Spight, C.

    1976-01-01

    A broadly-gauged research program in magnetogasdynamics utilizing hypervelocity coaxial plasma generators is presented. A complete hypervelocity coaxial plasma generator facility was assembled and tested. Significant progress was made in the direction of understanding the important processes in the interaction of hypervelocity MGD flow with transverse applied fields. It is now proposed to utilize the accumulated experimental capability and theoretical analysis in application to the analysis and design parameterization of pulsed magnetogasdynamic direct energy convertor configurations.

  10. Human Factors in Field Experimentation Design and Analysis of Analytical Suppression Model

    DTIC Science & Technology

    1978-09-01

    men in uf"an-dachine- Systems " supports the development of new doctrines, design of weapon systems as well as training programs for trQops. One...Experimentation Design -Master’s thesis: and Analysis.of an Analytical Suppression.Spebr17 Model PR@~w 3.RPR 7. AUTHOR(@) COT RIETeo 31AN? wijMu~aw...influences to suppression. Techniques are examined for including. the suppre.ssive effects of weapon systems in Lanchester-type combat m~odels, whir~h may be

  11. A baseline assessment of forest composition, structure, and health in the Hawai‘i experimental tropical forests

    Treesearch

    Robert R. Pattison; Andrew N. Gray; Lori Tango

    2015-01-01

    The US Forest Service’s Forest Inventory and Analysis (FIA) Program of the Pacific Northwest (PNW) Research Station has been working in the Hawaiian islands since 2010. During this time they have installed a base grid of field plots across all of the Hawaiian Islands and an intensified sample of two experimental forests, the Laupāhoehoe and Pu‘u Wa‘awa‘a units of the...

  12. 9th International Workshop on the CKM Unitarity Triangle

    NASA Astrophysics Data System (ADS)

    The CKM series is a well-established international meeting in the field of quark-flavour physics that brings both experimenters and theorists on a common platform. On the experimental front, we bridge borders between neutron, kaon, charm and beauty hadron, and top quark physics. The theory program tries to cover a wide range of approaches. We shall discuss how this marriage can indirectly probe physics beyond the standard model, taking into account the interplay with high-pT collider searches.

  13. High Gradient Accelerator Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Temkin, Richard

    The goal of the MIT program of research on high gradient acceleration is the development of advanced acceleration concepts that lead to a practical and affordable next generation linear collider at the TeV energy level. Other applications, which are more near-term, include accelerators for materials processing; medicine; defense; mining; security; and inspection. The specific goals of the MIT program are: • Pioneering theoretical research on advanced structures for high gradient acceleration, including photonic structures and metamaterial structures; evaluation of the wakefields in these advanced structures • Experimental research to demonstrate the properties of advanced structures both in low-power microwave coldmore » test and high-power, high-gradient test at megawatt power levels • Experimental research on microwave breakdown at high gradient including studies of breakdown phenomena induced by RF electric fields and RF magnetic fields; development of new diagnostics of the breakdown process • Theoretical research on the physics and engineering features of RF vacuum breakdown • Maintaining and improving the Haimson / MIT 17 GHz accelerator, the highest frequency operational accelerator in the world, a unique facility for accelerator research • Providing the Haimson / MIT 17 GHz accelerator facility as a facility for outside users • Active participation in the US DOE program of High Gradient Collaboration, including joint work with SLAC and with Los Alamos National Laboratory; participation of MIT students in research at the national laboratories • Training the next generation of Ph. D. students in the field of accelerator physics.« less

  14. Microgravity sciences application visiting scientist program

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Contract NAS8-38785, Microgravity Experimental and Theoretical Research, is a project involving a large number of individual research programs related to: determination of the structure of human serum albumin and other biomedically important proteins; analysis of thermodynamic properties of various proteins and models of protein nucleation; development of experimental techniques for the growth of protein crystals in space; study of the physics of electrical double layers in the mechanics of liquid interfaces; computational analysis of vapor crystal growth processes in microgravity; analysis of the influence of magnetic fields in damping residual flows in directional solidification processes; crystal growth and characterization of II-VI semiconductor alloys; and production of thin films for nonlinear optics. It is not intended that the programs will be necessarily limited to this set at any one time. The visiting scientists accomplishing these programs shall serve on-site at MSFC to take advantage of existing laboratory facilities and the daily opportunities for technical communications with various senior scientists.

  15. Search for strongly coupled Chameleon scalar field with neutron interferometry

    NASA Astrophysics Data System (ADS)

    Li, K.; Arif, M.; Cory, D.; Haun, R.; Heacock, B.; Huber, M.; Nsofini, J.; Pushin, D. A.; Saggu, P.; Sarenac, D.; Shahi, C.; Skavysh, V.; Snow, M.; Young, A.

    2015-04-01

    The dark energy proposed to explain the observed accelerated expansion of the universe is not understood. A chameleon scalar field proposed as a dark energy candidate can explain the accelerated expansion and evade all current gravity experimental bounds. It features an effective range of the chameleon scalar field that depends on the local mass density. Hence a perfect crystal neutron interferometer, that measures relative phase shift between two paths, is a prefect tool to search for the chameleon field. We are preparing a two-chamber helium gas cell for the neutron interferometer. We can lower the pressure in one cell so low that the chameleon field range expands into the cell and causes a measurable neutron phase shift while keeping the pressure difference constant. We expect to set a new upper limit of the Chameleon field by at least one order of magnitude. This work is supported by NSF Grant 1205977, DOE Grant DE-FG02-97ER41042, Canadian Excellence Research Chairs program, Natural Sciences and Engineering Research Council of Canada and Collaborative Research and Training Experience Program

  16. Development of large wind energy power generation system

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The background and development of an experimental 100 kW wind-energy generation system are described, and the results of current field tests are presented. The experimental wind turbine is a two-bladed down-wind horizontal axis propeller type with a 29.4 m diameter rotor and a tower 28 m in height. The plant was completed in March, 1983, and has been undergoing trouble-free tests since then. The present program calls for field tests during two years from fiscal 1983 to 1984. The development of technologies relating to the linkage and operation of wind-energy power generation system networks is planned along with the acquisition of basic data for the development of a large-scale wind energy power generation system.

  17. A Preliminary Investigation of Hall Thruster Technology

    NASA Technical Reports Server (NTRS)

    Gallimore, Alec D.

    1997-01-01

    A three-year, NASA/BMDO-sponsored experimental program to conduct performance and plume plasma property measurements on two Russian Stationary Plasma Thrusters (SPTs) has been completed. The program utilized experimental facilitates at the University of Michigan's Plasmadynamics and Electric Propulsion Laboratory (PEPL). The main features of the proposed effort were as follows: We Characterized Hall thruster [and arcjet] performance by measuring ion exhaust velocity with probes at various thruster conditions. Used a variety of probe diagnostics in the thruster plume to measure plasma properties and flow properties including T(sub e) and n(sub e), ion current density and ion energy distribution, and electric fields by mapping plasma potential. Used emission spectroscopy to identify species within the plume and to measure electron temperatures.

  18. Ion trap simulation program, ITSIM: A powerful heuristic and predictive tool in ion trap mass spectrometry

    NASA Astrophysics Data System (ADS)

    Bui, Huy Anh

    The multi-particle simulation program, ITSIM version 4.0, takes advantage of the enhanced performance of the Windows 95 and NT operating systems in areas such as memory management, user friendliness, flexibility of graphics and speed, to investigate the motion of ions in the quadrupole ion trap. The objective of this program is to use computer simulations based on mathematical models to improve the performance of the ion trap mass spectrometer. The simulation program can provide assistance in understanding fundamental aspects of ion trap mass spectrometry, precede and help to direct the course of experiments, as well as having didactic value in elucidating and allowing visualization of ion behavior under different experimental conditions. The program uses the improved Euler method to calculate ion trajectories as numerical solutions to the Mathieu differential equation. This Windows version can simultaneously simulate the trajectories of ions with a virtually unlimited number of different mass-to-charge ratios and hence allows realistic mass spectra, ion kinetic energy distributions and other experimentally measurable properties to be simulated. The large number of simulated ions allows examination of (i) the offsetting effects of mutual ion repulsion and collisional cooling in an ion trap and (ii) the effects of higher order fields. Field inhomogeneities arising from exit holes, electrode misalignment, imperfect electrode surfaces or new trap geometries can be simulated with the program. The simulated data are used to obtain mass spectra from mass-selective instability scans as well as by Fourier transformation of image currents induced by coherently moving ion clouds. Complete instruments, from an ion source through the ion trap mass analyzer to a detector, can now be simulated. Applications of the simulation program are presented and discussed. Comparisons are made between the simulations and experimental data. Fourier transformed experiments and a novel six-electrode ion trap mass spectrometer illustrate cases in which simulations precede new experiments. Broadband non-destructive ion detection based on induced image current measurements are described in the case of a quadrupole ion trap having cylindrical geometry.

  19. FLOW FIELD IN SUPERSONIC MIXED-COMPRESSION INLETS AT ANGLE OF ATTACK USING THE THREE DIMENSIONAL METHOD OF CHARACTERISTICS WITH DISCRETE SHOCK WAVE FITTING

    NASA Technical Reports Server (NTRS)

    Bishop, A. R.

    1994-01-01

    This computer program calculates the flow field in the supersonic portion of a mixed-compression aircraft inlet at non-zero angle of attack. This approach is based on the method of characteristics for steady three-dimensional flow. The results of this program agree with those produced by the two-dimensional method of characteristics when axisymmetric flow fields are calculated. Except in regions of high viscous interaction and boundary layer removal, the results agree well with experimental data obtained for threedimensional flow fields. The flow field in a variety of axisymmetric mixed compression inlets can be calculated using this program. The bow shock wave and the internal shock wave system are calculated using a discrete shock wave fitting procedure. The internal flow field can be calculated either with or without the discrete fitting of the internal shock wave system. The influence of molecular transport can be included in the calculation of the external flow about the forebody and in the calculation of the internal flow when internal shock waves are not discretely fitted. The viscous and thermal diffussion effects are included by treating them as correction terms in the method of characteristics procedure. Dynamic viscosity is represented by Sutherland's law and thermal conductivity is represented as a quadratic function of temperature. The thermodynamic model used is that of a thermally and calorically perfect gas. The program assumes that the cowl lip is contained in a constant plane and that the centerbody contour and cowl contour are smooth and have continuous first partial derivatives. This program cannot calculate subsonic flow, the external flow field if the bow shock wave does not exist entirely around the forebody, or the internal flow field if the bow flow field is injected into the annulus. Input to the program consists of parameters to control execution, to define the geometry, and the vehicle orientation. Output consists of a list of parameters used, solution planes, and a description of the shock waves. This program is written in FORTRAN IV for batch execution and has been implemented on a CDC 6000 series machine with a central memory requirement of 110K (octal) of 60 bit words when it is overlayed. This flow analysis program was developed in 1978.

  20. Visual Acuity and Its Dependence Upon Receptor Density and Retinal Ganglion Cell Receptive Field Overlap.

    DTIC Science & Technology

    1981-11-01

    organization of retinal receptive fields in monkeys and cats has been used to model the information flow to the retina in relation to the psychophysical...EXPERIMENTAL PROCEDURE Types of Animals Used Three types of monkeys were used in the present study, rhesus (Macaca mulatta), the Himalayan Macaque (Macaca...during the course of the program, although one died of Shigella infection. Attempts were made to trade the animals with local users in order to obtain

  1. PROCEEDINGS OF RIKEN/BNL RESEARCH CENTER WORKSHOP FUTURE TRANSVERSITY MEASUREMENTS (VOLUME 29).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boer, D.; Grosse Perdekamp, M.

    2001-01-02

    The RIKEN-BNL Research Center workshop on ''Future Transversity Measurements'' was held at BNL from September 18-20, 2000. The main goal of the workshop was to explore future measurements of transversity distributions. This issue is of importance to the RHIC experiments, which will study polarized proton-proton collisions with great precision. One of the workshop's goals was to enhance interactions between the DIS community at HERA and the spin community at RHIC in this field. The workshop has been well received by the participants; the number of 69 registered participants demonstrates broad interest in the workshop's topics. The program contained 35 talksmore » and there was ample time for lively discussions. The program covered all recent work in the field and in addition some very elucidating educational talks were given. At the workshop the present status of the field was discussed and it has succeeded in stimulating new experimental and theoretical studies (e.g. model calculations for interference fragmentation functions (IFF), IFF analysis at DELPHI). It also functioned to focus attention on the open questions that need to be resolved for near future experiments. In general, the conclusions were optimistic, i.e. measuring the transversity functions seems to be possible, although some new experimental hurdles will have to be taken.« less

  2. NASA's space physics theory program - An opportunity for collaboration

    NASA Technical Reports Server (NTRS)

    Vinas, Adolfo F.

    1990-01-01

    The field of theoretical space physics offers a unique opportunity to Latin American scientists for collaborative participation in NASA programs where the greatly increased complexity of both experimental observations and theoretical simulations requires in-depth comparisons between theory and observational data. The key problem areas identified by NASA for aggressive work in the decade of the 1990s are the nature of flows and turbulence, acceleration and transport of particles, the coupling of microphysics and macrophysics, the coupling of local and global dynamics, and nonclassical plasmas.

  3. Note: Digital laser frequency auto-locking for inter-satellite laser ranging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Yingxin; Yeh, Hsien-Chi, E-mail: yexianji@mail.hust.edu.cn; Li, Hongyin

    2016-05-15

    We present a prototype of a laser frequency auto-locking and re-locking control system designed for laser frequency stabilization in inter-satellite laser ranging system. The controller has been implemented on field programmable gate arrays and programmed with LabVIEW software. The controller allows initial frequency calibrating and lock-in of a free-running laser to a Fabry-Pérot cavity. Since it allows automatic recovery from unlocked conditions, benefit derives to automated in-orbit operations. Program design and experimental results are demonstrated.

  4. United States Air Force Summer Research Program 1991. Graduate Student Research Program (GSRP) Reports. Volume 7. Phillips Laboratory, Civil Engineering Laboratory

    DTIC Science & Technology

    1992-01-09

    community and should form an impetus for future work in this rapidly developing field. SUMMARY A powerful experimental technique, that of X-ray...appropriate solar radiation absorption properties must be mixed with the hydrogen. Studies have been made which show the alkali metals to be powerful ...deposition of carbon. The treated substrates were placed in a tube furnace through which an acetylene-hydrogen or propane-hydrogen mixture flowed

  5. Department of Defense In-House RDT&E Activities

    DTIC Science & Technology

    1983-10-30

    CONDUCT.RESEARCH IN MICROBIOLOGY , CHEM- ISTRY, BIOCHEMISTRY, IMMUNOLOGY, RADIATION EFFECTS, PHlA1fACOLOGY, PHYSI- OLOf;Y, HISTOLOGY & PATHOLOGY AS THEY...IMPORTANT PROGRAMS BURN INFECTION, TREATMENT & PREVENTION. METABOLISM & NUTRITIONAL EFFECTS OF BURN INJURY IN SOLDIERS. INFECTION & MICROBIOLOGIC ...RESEARCH CAPABILITIES IN THE FIELDS OF PATHOLOGY, MICROBIOLOGY , EXPERIMENTAL SURGERY, & BIOCHEMISTRY. MAINTAINS AN ANIMAL COLONY, ELECTRONIC SHOP

  6. DEVELOPMENT OF EXPERIMENTAL AUDIOVISUAL DEVICES AND MATERIALS FOR BEGINNING READERS.

    ERIC Educational Resources Information Center

    GIBSON, CHRISTINE M.; RICHARDS, I.A.

    THIS STUDY TESTED THE ARRANGEMENT OF AN INTERRELATED PROGRAM OF PROCEDURES THAT CAN MUTUALLY GENERATE AND NURTURE THE LEARNING PROCESS FOR BEGINNING READING. CLOSE, SYSTEMATIC OBSERVATIONS OF PEOPLE OF VARYING AGES WERE MADE. THE MATERIALS HAD BEEN DESIGNED, FIELD TESTED, AND REFINED BY A LANGUAGE RESEARCH GROUP AT THE HARVARD GRADUATE SCHOOL OF…

  7. Modular Biopower System Providing Combined Heat and Power for DoD Installations

    DTIC Science & Technology

    2013-12-01

    Cycle Cost evaluation using the experimental results of the 6-month field demonstration and the system’s projected cost and performance for the...34 5.6 SAMPLING RESULTS ...premises, which resulted in a significant program delay. After a short period of operation, the custom-designed engine developed mechanical

  8. Pasadena City College SIGI Project Research Design. Pilot Study.

    ERIC Educational Resources Information Center

    Risser, John J.; Tulley, John E.

    A pilot study evaluation of SIGI (System of Interactive Guidance and Information) at Pasadena City College in 1974-75 tested the effectiveness of an experimental research design for an expanded field test of the system the following year. (SIGI is a computer based career guidance program designed by Educational Testing Service to assist community…

  9. Analyzing Empirical Evaluations of Non-Experimental Methods in Field Settings

    ERIC Educational Resources Information Center

    Steiner, Peter M.; Wong, Vivian

    2016-01-01

    Despite recent emphasis on the use of randomized control trials (RCTs) for evaluating education interventions, in most areas of education research, observational methods remain the dominant approach for assessing program effects. Over the last three decades, the within-study comparison (WSC) design has emerged as a method for evaluating the…

  10. A Randomized Trial of a Science, Technology, Engineering, and Mathematics Mentoring Program

    ERIC Educational Resources Information Center

    Sowers, Jo-Ann; Powers, Laurie; Schmidt, Jessica; Keller, Thomas E.; Turner, Alison; Salazar, Amy; Swank, Paul R.

    2017-01-01

    Individuals with disabilities are underrepresented in science, technology, engineering, and math (STEM) fields. The purpose of this study was to experimentally evaluate the impact of a STEM mentor intervention and differences between students matched with mentors with or without disabilities on career planning outcomes. An independent groups ×…

  11. The effects of the interaction between cognitive style and instructional strategy on the educational outcomes for a science exhibit

    NASA Astrophysics Data System (ADS)

    Knappenberger, Naomi

    This dissertation examines factors which may affect the educational effectiveness of science exhibits. Exhibit effectiveness is the result of a complex interaction among exhibit features, cognitive characteristics of the museum visitor, and educational outcomes. The purpose of this study was to determine the relative proportions of field-dependent and field-independent visitors in the museum audience, and to ascertain if the cognitive style of visitors interacted with instructional strategies to affect the educational outcomes for a computer-based science exhibit. Cognitive style refers to the self-consistent modes of selecting and processing information that an individual employs throughout his or her perceptual and intellectual activities. It has a broad influence on many aspects of personality and behavior, including perception, memory, problem solving, interest, and even social behaviors and self-concept. As such, it constitutes essential dimensions of individual differences among museum visitors and has important implications for instructional design in the museum. The study was conducted in the spring of 1998 at the Adler Planetarium and Astronomy Museum in Chicago. Two experimental treatments of a computer-based exhibit were tested in the study. The first experimental treatment utilized strategies designed for field-dependent visitors that limited the text and provided more structure and cueing than the baseline treatment of the computer program. The other experimental treatment utilized strategies designed for field-independent visitors that provided hypothesis-testing and more contextual information. Approximately two-thirds of the visitors were field-independent. The results of a multiple regression analysis indicated that there was a significant interaction between cognitive style and instructional strategy that affected visitors' posttest scores on a multiple-choice test of the content. Field-independent visitors out- performed the field-dependent visitors in the control, baseline, and both experimental treatments. Both field-dependent and field-independent visitor posttest scores increased in the field-dependent experimental treatment and in the field-independent treatment. The most effective treatment for all visitors was the field-independent treatment. Criteria for designing a computer-based exhibit to meet the needs of all visitors were recommended. These included organized, concise text; a structured, rather than exploratory design; and cueing in the form of questions, bold fonts, underlining of important words and concepts, and captioned images.

  12. Non-linear processes in the Earth atmosphere boundary layer

    NASA Astrophysics Data System (ADS)

    Grunskaya, Lubov; Valery, Isakevich; Dmitry, Rubay

    2013-04-01

    The work is connected with studying electromagnetic fields in the resonator Earth-Ionosphere. There is studied the interconnection of tide processes of geophysical and astrophysical origin with the Earth electromagnetic fields. On account of non-linear property of the resonator Earth-Ionosphere the tides (moon and astrophysical tides) in the electromagnetic Earth fields are kinds of polyharmonic nature. It is impossible to detect such non-linear processes with the help of the classical spectral analysis. Therefore to extract tide processes in the electromagnetic fields, the method of covariance matrix eigen vectors is used. Experimental investigations of electromagnetic fields in the atmosphere boundary layer are done at the distance spaced stations, situated on Vladimir State University test ground, at Main Geophysical Observatory (St. Petersburg), on Kamchatka pen., on Lake Baikal. In 2012 there was continued to operate the multichannel synchronic monitoring system of electrical and geomagnetic fields at the spaced apart stations: VSU physical experimental proving ground; the station of the Institute of Solar and Terrestrial Physics of Russian Academy of Science (RAS) at Lake Baikal; the station of the Institute of volcanology and seismology of RAS in Paratunka; the station in Obninsk on the base of the scientific and production society "Typhoon". Such investigations turned out to be possible after developing the method of scanning experimental signal of electromagnetic field into non- correlated components. There was used a method of the analysis of the eigen vectors ofthe time series covariance matrix for exposing influence of the moon tides on Ez. The method allows to distribute an experimental signal into non-correlated periodicities. The present method is effective just in the situation when energetical deposit because of possible influence of moon tides upon the electromagnetic fields is little. There have been developed and realized in program components in the form of PAS instruments of processes of geophysical and man-triggered nature; to predict the presence of the features of geophysical nature in the electromagnetic field of the atmosphere boundary surface layer; to study dynamics the analyzed signals coming from the geophysical and man-triggered sources in the electrical and magnetic fields of the atmosphere boundary surface layer; to expose changes of the investigated time series in the periods preceding the appearance of the predicted phenomena; to form clusters of the time series being the features of the predicted events. On the base of the exposed clusters of the time series there have been built the predicting rules allowing to coordinate the probability of appearing the groups of the occurred events. The work is carried out with supporting of Program FPP #14.B37.210668, FPP #5.2071.2011, RFBR #11-05-97518.

  13. Oil-shale program

    NASA Astrophysics Data System (ADS)

    Bader, B. E.

    1981-10-01

    The principal activities of the Sandia National Laboratories in the Department of Energy Oil shale program during the period April 1 to June 30, 1981 are discussed. Currently, Sandia's activities are focused upon: the development and use of analytical and experimental modeling techniques to describe and predict the retort properties and retorting process parameters that are important to the preparation, operation, and stability of in situ retorts, and the development, deployment, and field use of instrumentation, data acquisition, and process monitoring systems to characterize and evaluate in site up shale oil recovery operations. In-house activities and field activities (at the Geokinetics Oil Shale Project and the Occidental Oil Shale Project) are described under the headings: bed preparation, bed characterization, retorting process, and structural stability.

  14. International Symposium on Electromagnetic Compatibility, 25th, Arlington, VA, August 23-25, 1983, Symposium Record

    NASA Astrophysics Data System (ADS)

    Subjects related to electromagnetic compatibility (EMC) analysis are discussed, taking into account forcing terms of line equations for externally excited transmission lines, E-fields over ground, electromagnetic near fields as a function of electrical size, a program for experimental verification of EMC analysis models, random susceptability of an IC 7400 TTL NAND gate, and a comparison of IEMCAP and SEMCAP. Other topics explored are concerned with EMC measurements, spectrum management, the electromagnetic pulse (EMP), a Navy EMC program, measurement systems, filters, EMC design, electromagnetic vulnerability (EMV) assessment of weapon systems, FCC rules and regulations, shielding, and electromagnetic interference (EMI) in communication systems. Attention is also given to nonsinusoidal functions in radar and communications, transients/electrostatic discharge, open field testing, cables and connectors, interference effects of induced and conducted earth current at dc and ELF, test cells, and cable coupling.

  15. Separated flow over bodies of revolution using an unsteady discrete-vorticity cross wake. Part 2: Computer program description

    NASA Technical Reports Server (NTRS)

    Marshall, F. J.; Deffenbaugh, F. D.

    1974-01-01

    A method is developed to determine the flow field of a body of revolution in separated flow. The computer was used to integrate various solutions and solution properties of the sub-flow fields which made up the entire flow field without resorting to a finite difference solution to the complete Navier-Stokes equations. The technique entails the use of the unsteady cross flow analogy and a new solution to the two-dimensional unsteady separated flow problem based upon an unsteady, discrete-vorticity wake. Data for the forces and moments on aerodynamic bodies at low speeds and high angle of attack (outside the range of linear inviscid theories) such that the flow is substantially separated are produced which compare well with experimental data. In addition, three dimensional steady separated regions and wake vortex patterns are determined. The computer program developed to perform the numerical calculations is described.

  16. ElecSus: Extension to arbitrary geometry magneto-optics

    NASA Astrophysics Data System (ADS)

    Keaveney, James; Adams, Charles S.; Hughes, Ifan G.

    2018-03-01

    We present a major update to ElecSus, a computer program and underlying model to calculate the electric susceptibility of an alkali-metal atomic vapour. Knowledge of the electric susceptibility of a medium is essential to predict its absorptive and dispersive properties. In this version we implement several changes which significantly extend the range of applications of ElecSus, the most important of which is support for non-axial magnetic fields (i.e. fields which are not aligned with the light propagation axis). Supporting this change requires a much more general approach to light propagation in the system, which we have now implemented. We exemplify many of these new applications by comparing ElecSus to experimental data. In addition, we have developed a graphical user interface front-end which makes the program much more accessible, and have improved on several other minor areas of the program structure.

  17. Hatha yoga on body balance

    PubMed Central

    Prado, Erick Tadeu; Raso, Vagner; Scharlach, Renata Coelho; Kasse, Cristiane Akemi

    2014-01-01

    Background: A good body balance requires a proper function of vestibular, visual, and somatosensory systems which can be reach with exercise practice and/or yoga. Aim: To determine the effects of a 5-month hatha yoga training program on body balance in young adults. Materials and Methods: This study used a controlled, nonrandomized design, where the experimental group underwent a 5-month training program and were then compared with the control group that had a sedentary lifestyle. A convenience sample of 34 out of 40 men aged 25-55 years old (34.0 ± 0.9) were deemed eligible for this study. They were randomly divided into two groups: Experimental and control groups. Subjects in the experimental group were engaged in 60 min sessions of hatha yoga three times a week for 5 months. We evaluated postural control by measuring the limit of stability and velocity of oscillation (VOS) in three conditions of the balance rehabilitation unit (BRU) and through field procedures (four position, plane, flamingo, hopscotch, and dynamic test). Results: We observed differences (P < 0.05) in postintervention scores between the groups regardless of BRU parameters and field procedures (except for flamingo) even after adjusting for preintervention scores, suggesting that these changes were induced by hatha yoga training. The partial eta squared on BRU parameters ranged from 0.78 (VOS1)-0.97 (COP2), and from 0.00 (flamingo)-0.94 (four position) for the field procedures. Conclusions: Our results provide substantial evidence that postural control in healthy young adults can be improved through practicing hatha yoga. PMID:25035623

  18. Numerical simulation of NQR/NMR: Applications in quantum computing.

    PubMed

    Possa, Denimar; Gaudio, Anderson C; Freitas, Jair C C

    2011-04-01

    A numerical simulation program able to simulate nuclear quadrupole resonance (NQR) as well as nuclear magnetic resonance (NMR) experiments is presented, written using the Mathematica package, aiming especially applications in quantum computing. The program makes use of the interaction picture to compute the effect of the relevant nuclear spin interactions, without any assumption about the relative size of each interaction. This makes the program flexible and versatile, being useful in a wide range of experimental situations, going from NQR (at zero or under small applied magnetic field) to high-field NMR experiments. Some conditions specifically required for quantum computing applications are implemented in the program, such as the possibility of use of elliptically polarized radiofrequency and the inclusion of first- and second-order terms in the average Hamiltonian expansion. A number of examples dealing with simple NQR and quadrupole-perturbed NMR experiments are presented, along with the proposal of experiments to create quantum pseudopure states and logic gates using NQR. The program and the various application examples are freely available through the link http://www.profanderson.net/files/nmr_nqr.php. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Calculation of the flow field in supersonic mixed-compression inlets at angle of attack using the three-dimensional method of characteristics with discrete shock wave fitting

    NASA Technical Reports Server (NTRS)

    Vadyak, J.; Hoffman, J. D.

    1978-01-01

    The influence of molecular transport is included in the computation by treating viscous and thermal diffusion terms in the governing partial differential equations as correction terms in the method of characteristics scheme. The development of a production type computer program is reported which is capable of calculating the flow field in a variety of axisymmetric mixed-compression aircraft inlets. The results agreed well with those produced by the two-dimensional method characteristics when axisymmetric flow fields are computed. For three-dimensional flow fields, the results agree well with experimental data except in regions of high viscous interaction and boundary layer removal.

  20. Generating Long Scale-Length Plasma Jets Embedded in a Uniform, Multi-Tesla Magnetic-Field

    NASA Astrophysics Data System (ADS)

    Manuel, Mario; Kuranz, Carolyn; Rasmus, Alex; Klein, Sallee; Fein, Jeff; Belancourt, Patrick; Drake, R. P.; Pollock, Brad; Hazi, Andrew; Park, Jaebum; Williams, Jackson; Chen, Hui

    2013-10-01

    Collimated plasma jets emerge in many classes of astrophysical objects and are of great interest to explore in the laboratory. In many cases, these astrophysical jets exist within a background magnetic field where the magnetic pressure approaches the plasma pressure. Recent experiments performed at the Jupiter Laser Facility utilized a custom-designed solenoid to generate the multi-tesla fields necessary to achieve proper magnetization of the plasma. Time-gated interferometry, Schlieren imaging, and proton radiography were used to characterize jet evolution and collimation under varying degrees of magnetization. Experimental results will be presented and discussed. This work is funded by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, grant number DE-NA0001840, by the National Laser User Facility Program, grant number DE-NA0000850, by the Predictive Sciences Academic Alliances Program in NNSA-ASC, grant number DEFC52-08NA28616, and by NASA through Einstein Postdoctoral Fellowship grant number PF3-140111 awarded by the Chandra X-ray Center, which is operated by the Smithsonian Astrophysical Observatory for NASA under contract NAS8-03060.

  1. Validation of Magnetic Resonance Thermometry by Computational Fluid Dynamics

    NASA Astrophysics Data System (ADS)

    Rydquist, Grant; Owkes, Mark; Verhulst, Claire M.; Benson, Michael J.; Vanpoppel, Bret P.; Burton, Sascha; Eaton, John K.; Elkins, Christopher P.

    2016-11-01

    Magnetic Resonance Thermometry (MRT) is a new experimental technique that can create fully three-dimensional temperature fields in a noninvasive manner. However, validation is still required to determine the accuracy of measured results. One method of examination is to compare data gathered experimentally to data computed with computational fluid dynamics (CFD). In this study, large-eddy simulations have been performed with the NGA computational platform to generate data for a comparison with previously run MRT experiments. The experimental setup consisted of a heated jet inclined at 30° injected into a larger channel. In the simulations, viscosity and density were scaled according to the local temperature to account for differences in buoyant and viscous forces. A mesh-independent study was performed with 5 mil-, 15 mil- and 45 mil-cell meshes. The program Star-CCM + was used to simulate the complete experimental geometry. This was compared to data generated from NGA. Overall, both programs show good agreement with the experimental data gathered with MRT. With this data, the validity of MRT as a diagnostic tool has been shown and the tool can be used to further our understanding of a range of flows with non-trivial temperature distributions.

  2. Transforming Dissatisfaction with Services into Self-Determination: A Social Psychological Perspective on Community Program Effectiveness.

    PubMed

    Macias, Cathaleene; Aronson, Elliot; Hargreaves, William; Weary, Gifford; Barreira, Paul J; Harvey, John; Rodican, Charles F; Bickman, Leonard; Fisher, William

    2009-08-01

    A field study of supported employment for adults with mental illness (N=174) provided an experimental test of cognitive dissonance theory. We predicted that most work-interested individuals randomly assigned to a non-preferred program would reject services and lower their work aspirations. However, individuals who chose to pursue employment through a non-preferred program were expected to resolve this dissonance through favorable service evaluations and strong efforts to succeed at work. Significant work interest-by-service preference interactions supported these predictions. Over two years, participants interested in employment who obtained work through a non-preferred program stayed employed a median of 362 days versus 108 days for those assigned to a preferred program, and participants who obtained work through a non-preferred program had higher service satisfaction.

  3. Attenuation of radiation from distributed gamma sources as a function of wall thickness of a concrete blockhouse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmoke, M. A.; Rexroad, R. E.; Tiller, H. J.

    1963-06-15

    The experiment described constitutes part of the shielding program conducted by Army Nuclear Defense Laboratory and was designed to experimentally verify theoretical calculations used to predict the amount of radiation protection afforded by above-ground structures in a fallout radiation field. This method requires the knowledge of some physical parameters of a structure such as mass thickness of the walls and the geometric orientation of the detectors within the structure. From this information, a reduction factor for any given structure may be calculated. This Laboratory's experimental program was initially begun by measuring the attenuation of a simple structure with no complicatingmore » internal or external geometries and will proceed to more complex structures with basements, interior partitions, and upper floors. (auth)« less

  4. Project EX: A Program of Empirical Research on Adolescent Tobacco Use Cessation

    PubMed Central

    Sussman, Steve; McCuller, William J; Zheng, Hong; Pfingston, Yvonne M; Miyano, James; Dent, Clyde W

    2004-01-01

    This paper presents the Project EX research program. The historical background for Project EX is presented, including a brief summary of reasons youth fail to quit tobacco use, the disappointing status of previous cessation research, and the teen cessation trial that provided the template for the current project (Project TNT). Next, program development studies for Project EX are described. Through use of focus groups, a theme study (concept evaluation of written activity descriptions), a component study, and pilot studies, an eight-session program was developed. This program involves novel activities (e.g., "talk show enactments," games, and alternative medicine-type activities such as yoga and meditation) in combination with motivation enhancement and cognitive-behavioral strategies to motivate and instruct in cessation initiation and maintenance efforts. The outcomes of the first experimental trial of Project EX, a school-based clinic program, are described, followed by a posthoc analysis of its effects mediation. A second EX study, a multiple baseline single group pilot study design in Wuhan, China, is described next. Description of a second experimental trial follows, which tested EX with nicotine gum versus a natural herb. A third experimental trial that tests a classroom prevention/cessation version of EX is then introduced. Finally, the implications of this work are discussed. The intent-to-treat quit rate for Project EX is approximately 15% across studies, double that of a standard care comparison. Effects last up to a six-month post-program at regular and alternative high schools. Through a systematic protocol of empirical program development and field trials, an effective and replicable model teen tobacco use cessation program is established. Future cessation work might expand on this work.

  5. Project EX: A Program of Empirical Research on Adolescent Tobacco Use Cessation

    PubMed Central

    Sussman, Steve; McCuller, William J; Zheng, Hong; Pfingston, Yvonne M; Miyano, James; Dent, Clyde W

    2004-01-01

    This paper presents the Project EX research program. The historical background for Project EX is presented, including a brief summary of reasons youth fail to quit tobacco use, the disappointing status of previous cessation research, and the teen cessation trial that provided the template for the current project (Project TNT). Next, program development studies for Project EX are described. Through use of focus groups, a theme study (concept evaluation of written activity descriptions), a component study, and pilot studies, an eight-session program was developed. This program involves novel activities (e.g., "talk show enactments," games, and alternative medicine-type activities such as yoga and meditation) in combination with motivation enhancement and cognitive-behavioral strategies to motivate and instruct in cessation initiation and maintenance efforts. The outcomes of the first experimental trial of Project EX, a school-based clinic program, are described, followed by a posthoc analysis of its effects mediation. A second EX study, a multiple baseline single group pilot study design in Wuhan, China, is described next. Description of a second experimental trial follows, which tested EX with nicotine gum versus a natural herb. A third experimental trial that tests a classroom prevention/cessation version of EX is then introduced. Finally, the implications of this work are discussed. The intent-to-treat quit rate for Project EX is approximately 15% across studies, double that of a standard care comparison. Effects last up to a six-month post-program at regular and alternative high schools. Through a systematic protocol of empirical program development and field trials, an effective and replicable model teen tobacco use cessation program is established. Future cessation work might expand on this work. PMID:19570278

  6. Numerical simulations of tropical cyclones with assimilation of satellite, radar and in-situ observations: lessons learned from recent field programs and real-time experimental forecasts

    NASA Astrophysics Data System (ADS)

    Pu, Z.; Zhang, L.

    2010-12-01

    The impact of data assimilation on the predictability of tropical cyclones is examined with the cases from recent field programs and real-time hurricane forecast experiments. Mesoscale numerical simulations are performed to simulate major typhoons during the T-PARC/TCS08 field campaign with the assimilation of satellite, radar and in-situ observations. Results confirmed that data assimilation has indeed resulted in improved numerical simulations of tropical cyclones. However, positive impacts from the satellite and radar data are strongly depend on the quality of these data. Specifically, it is found that the overall impacts of assimilating AIRS retrieved atmospheric temperature and moisture profiles on numerical simulations of tropical cyclones are very sensitive to the bias corrections of the data.For instance, the dry biases of moisture profiles can cause the decay of tropical cyclones in the numerical simulations.In addition, the quality of airborne Doppler radar data has strong influence on numerical simulations of tropical cyclones in terms of their track, intensity and precipitation structures. Outcomes from assimilating radar data with various quality thresholds suggest that a trade-off between the quality and area coverage of the radar data is necessary in the practice. Some of those experiences obtained from the field case studies are applied to the near-real time experimental hurricane forecasts during the 2010 hurricane season. Results and issues raised from the case studies and real-time experiments will be discussed.

  7. Photon statistics of pulse-pumped four-wave mixing in fiber with weak signal injection

    NASA Astrophysics Data System (ADS)

    Nan-Nan, Liu; Yu-Hong, Liu; Jia-Min, Li; Xiao-Ying, Li

    2016-07-01

    We study the photon statistics of pulse-pumped four-wave mixing in fibers with weak coherent signal injection by measuring the intensity correlation functions of individual signal and idler fields. The experimental results show that the intensity correlation function of individual signal (idler) field decreases with the intensity of signal injection. After applying narrow band filter in signal (idler) band, the value of decreases from 1.9 ± 0.02 (1.9 ± 0.02) to 1.03 ± 0.02 (1.05 ± 0.02) when the intensity of signal injection varies from 0 to 120 photons/pulse. The results indicate that the photon statistics changes from Bose-Einstein distribution to Poisson distribution. We calculate the intensity correlation functions by using the multi-mode theory of four-wave mixing in fibers. The theoretical curves well fit the experimental results. Our investigation will be useful for mitigating the crosstalk between quantum and classical channels in a dense wavelength division multiplexing network. Project supported by the National Natural Science Foundation of China (Grant No. 11527808), the State Key Development Program for Basic Research of China (Grant No. 2014CB340103), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120032110055), the Natural Science Foundation of Tianjin, China (Grant No. 14JCQNJC02300), the Program for Changjiang Scholars and Innovative Research Team in University, China, and the Program of Introducing Talents of Discipline to Universities, China (Grant No. B07014).

  8. Experimental and computational flow-field results for an all-body hypersonic aircraft

    NASA Technical Reports Server (NTRS)

    Cleary, Joseph W.

    1989-01-01

    A comprehensive test program is defined which is being implemented in the NASA/Ames 3.5 foot Hypersonic Wind Tunnel for obtaining data on a generic all-body hypersonic vehicle for computational fluid dynamics (CFD) code validation. Computational methods (approximate inviscid methods and an upwind parabolized Navier-Stokes code) currently being applied to the all-body model are outlined. Experimental and computational results on surface pressure distributions and Pitot-pressure surveys for the basic sharp-nose model (without control surfaces) at a free-stream Mach number of 7 are presented.

  9. Experimental problem solving: An instructional improvement field experiment

    NASA Astrophysics Data System (ADS)

    Ross, John A.; Maynes, Florence J.

    An instructional program based on expert-novice differences in experimental problem-solving performance was taught to grade 6 students (N = 265). Classes of students were randomly assigned to conditions in a delayed treatment design. Performance was assessed with multiple-choice and open-ended measures of specific transfer. Between group comparisons using pretest scores as a covariate showed that treatment condition students consistently outperformed controls; similar results were revealed in the within group comparisons. The achievement of the early treatment group did not decline in tests administered one month after the posttest.

  10. Noise characteristics of upper surface blown configurations: Analytical Studies

    NASA Technical Reports Server (NTRS)

    Reddy, N. N.; Tibbetts, J. G.; Pennock, A. P.; Tam, C. K. W.

    1978-01-01

    Noise and flow results of upper surface blown configurations were analyzed. The dominant noise source mechanisms were identified from experimental data. From far-field noise data for various geometric and operational parameters, an empirical noise prediction program was developed and evaluated by comparing predicted results with experimental data from other tests. USB aircraft compatibility studies were conducted using the described noise prediction and a cruise performance data base. A final design aircraft was selected and theory was developed for the noise from the trailing edge wake assuming it as a highly sheared layer.

  11. Combining Collaborative Learning with Learning Management Systems in Teaching Programming Language

    ERIC Educational Resources Information Center

    Cavus, Nadire; Uzunboylu, Huseyin; Ibrahim, Dogan

    2006-01-01

    The development of collaborative studies in learning has led to a renewed interest in the field of web-based education. In this experimental study, a highly interactive and collaborative teaching environment was created using Moodle, a learning management system with two types of Collaborative Tools (CTs): Standard CT and Advanced CT to create a…

  12. Variations of In-Service Training for Primary Mathematics Teachers: An Empirical Study

    ERIC Educational Resources Information Center

    Selter, Christoph; Gräsel, Cornelia; Reinold, Martin; Trempler, Kati

    2015-01-01

    Previous findings indicate that the effectiveness of in-service teacher training can be increased by a (pedagogical) content knowledge orientation on the one hand and the stimulation of cooperation among teachers on the other. In this paper, three versions of a multi-phase training program were compared in a quasi-experimental field study with a…

  13. Evaluating Intention to Use Remote Robotics Experimentation in Programming Courses

    ERIC Educational Resources Information Center

    Cheng, Pericles L.

    2017-01-01

    The Digital Agenda for Europe (2015) states that there will be 825,000 unfilled vacancies for Information and Communications Technology by 2020. This lack of IT professionals stems from the small number of students graduating in computer science. To retain more students in the field, teachers can use remote robotic experiments to explain difficult…

  14. PGOPHER: A program for simulating rotational, vibrational and electronic spectra

    NASA Astrophysics Data System (ADS)

    Western, Colin M.

    2017-01-01

    The PGOPHER program is a general purpose program for simulating and fitting molecular spectra, particularly the rotational structure. The current version can handle linear molecules, symmetric tops and asymmetric tops and many possible transitions, both allowed and forbidden, including multiphoton and Raman spectra in addition to the common electric dipole absorptions. Many different interactions can be included in the calculation, including those arising from electron and nuclear spin, and external electric and magnetic fields. Multiple states and interactions between them can also be accounted for, limited only by available memory. Fitting of experimental data can be to line positions (in many common formats), intensities or band contours and the parameters determined can be level populations as well as rotational constants. PGOPHER is provided with a powerful and flexible graphical user interface to simplify many of the tasks required in simulating, understanding and fitting molecular spectra, including Fortrat diagrams and energy level plots in addition to overlaying experimental and simulated spectra. The program is open source, and can be compiled with open source tools. This paper provides a formal description of the operation of version 9.1.

  15. New technology in turbine aerodynamics

    NASA Technical Reports Server (NTRS)

    Glassman, A. J.; Moffitt, T. P.

    1972-01-01

    A cursory review is presented of some of the recent work that has been done in turbine aerodynamic research at NASA-Lewis Research Center. Topics discussed include the aerodynamic effect of turbine coolant, high work-factor (ratio of stage work to square of blade speed) turbines, and computer methods for turbine design and performance prediction. An extensive bibliography is included. Experimental cooled-turbine aerodynamics programs using two-dimensional cascades, full annular cascades, and cold rotating turbine stage tests are discussed with some typical results presented. Analytically predicted results for cooled blade performance are compared to experimental results. The problems and some of the current programs associated with the use of very high work factors for fan-drive turbines of high-bypass-ratio engines are discussed. Turbines currently being investigated make use of advanced blading concepts designed to maintain high efficiency under conditions of high aerodynamic loading. Computer programs have been developed for turbine design-point performance, off-design performance, supersonic blade profile design, and the calculation of channel velocities for subsonic and transonic flow fields. The use of these programs for the design and analysis of axial and radial turbines is discussed.

  16. A study of the electromagnetic interaction between planetary bodies and the solar wind

    NASA Technical Reports Server (NTRS)

    Schwartz, K.

    1971-01-01

    Theoretical and computational techniques were developed for calculating the time dependent electromagnetic response of a radially inhomogeneous moon. The techniques were used to analyze the experimental data from the LSM (lunar surface magnetometer) thus providing an in-depth diagnostic of the Lunar interior. The theory was also incorporated into an existing computer code designed to calculate the thermal evolution of planetary bodies. The program will provide a tool for examining the effect of heating from the TE mode (poloidal magnetic field) as well as the TM mode (toroidal magnetic field).

  17. Optical synthesizer for a large quadrant-array CCD camera: Center director's discretionary fund

    NASA Technical Reports Server (NTRS)

    Hagyard, Mona J.

    1992-01-01

    The objective of this program was to design and develop an optical device, an optical synthesizer, that focuses four contiguous quadrants of a solar image on four spatially separated CCD arrays that are part of a unique CCD camera system. This camera and the optical synthesizer will be part of the new NASA-Marshall Experimental Vector Magnetograph, and instrument developed to measure the Sun's magnetic field as accurately as present technology allows. The tasks undertaken in the program are outlined and the final detailed optical design is presented.

  18. Recent progress of the Laser-driven Ion-beam Trace Probe

    NASA Astrophysics Data System (ADS)

    Yang, Xiaoyi; Xiao, Chijie; Chen, Yihang; Xu, Tianchao; Yu, Yi; Xu, Min; Wang, Long; Lin, Chen; Wang, Xiaogang

    2017-10-01

    The Laser-driven Ion-beam Trace Probe (LITP) is a new method to diagnose the poloidal magnetic field and radial electric field in tokamaks. Recently significant progresses have been made as follows. 1) The experimental system has been set up on the PKU Plasma Test (PPT) linear device and begun to validate the principle of LITP, including the ion source, the ion detector and the poloidal magnetic field cable. Preliminary experimental results matched the theoretical prediction well. 2) The reconstruction principle has been improved including the nonlinear effect. 3) Tomography methods have been applied in the reconstruction codes. Now the laser-driven ion-beam accelerator has been setup on the PPT device, and further test of LITP will start soon. After that a prototype of LITP system will be designed and setup on the HL-2A tokamak device. This work was supported by the CHINA MOST under 2012YQ030142, ITER-CHINA program 2015GB120001 and National Natural Science Foundation of China under 11575014 and 11375053.

  19. Topological transitions induced by antiferromagnetism in a thin-film topological insulator

    NASA Astrophysics Data System (ADS)

    Yin, Gen; He, Qinglin; Yu, Luyan; Pan, Lei; Wang, Kang

    Ferromagnetism introduced in topological insulators (TIs) opens a non-trivial exchange band gap, providing an exciting platform to control the topological order through an external magnetic field. The magnetization induces a topological transition that breaks time-reversal symmetry, resulting in anomalous Hall effects. Recently, it was experimentally shown that the surface of an antiferromagnetic (AFM) thin film can magnetize the surface Dirac fermions in a TI thin film similar to the case induced by ferromagnetism. Here, we show that when a TI thin film is sandwiched between two antiferromagnetic layers, an unsynchronized magnetic reversal introduces two intermediate spin configurations during the scan of the external field, resulting in a new topological phase with second Chern numbers. This topological phase introduces two counter-propagating chiral edge modes inside the exchange gap, changing the total number of transport channels drastically when the fermi level is close to the Dirac point. Induced by this change, the magnetoresistance of the channel presents an antisymmetric feature during the field scan. With the the help of the high ordering temperature of AFM layers, this transport signature of the phase transition persists up to 90K experimentally. This work is supported by (i) SHINES, an EFRC by US-DOE, Office of Science, BES, #SC0012670. (ii) US-NSF (DMR-1411085), (iii) ARO program W911NF-15-1-10561, and (iv) FAME Center in STARnet, an SRC program by MARCO and DARPA.

  20. Transforming Dissatisfaction with Services into Self-Determination: A Social Psychological Perspective on Community Program Effectiveness

    PubMed Central

    Macias, Cathaleene; Aronson, Elliot; Hargreaves, William; Weary, Gifford; Barreira, Paul J.; Harvey, John; Rodican, Charles F.; Bickman, Leonard; Fisher, William

    2009-01-01

    A field study of supported employment for adults with mental illness (N=174) provided an experimental test of cognitive dissonance theory. We predicted that most work-interested individuals randomly assigned to a non-preferred program would reject services and lower their work aspirations. However, individuals who chose to pursue employment through a non-preferred program were expected to resolve this dissonance through favorable service evaluations and strong efforts to succeed at work. Significant work interest-by-service preference interactions supported these predictions. Over two years, participants interested in employment who obtained work through a non-preferred program stayed employed a median of 362 days versus 108 days for those assigned to a preferred program, and participants who obtained work through a non-preferred program had higher service satisfaction. PMID:20037662

  1. Study of magnetic perturbations on SEC vidicon tubes. [large space telescope

    NASA Technical Reports Server (NTRS)

    Long, D. C.; Zucchino, P.; Lowrance, J.

    1973-01-01

    A laboratory measurements program was conducted to determine the tolerances that must be imposed to achieve optimum performance from SEC-vidicon data sensors in the LST mission. These measurements along with other data were used to formulate recommendations regarding the necessary telemetry and remote control for the television data sensors when in orbit. The study encompassed the following tasks: (1) Conducted laboratory measurements of the perturbations which an external magnetic field produces on a magnetically focused, SEC-vidicon. Evaluated shielding approaches. (2) Experimentally evaluated the effects produced on overall performance by variations of the tube electrode potentials, and the focus, deflection and alignment fields. (3) Recommended the extent of ground control of camera parameters and camera parameter telemetry required for optimizing the performance of the television system in orbit. The experimental data are summarized in a set of graphs.

  2. Research of microwave scattering properties of snow fields

    NASA Technical Reports Server (NTRS)

    Angelakos, D. J.

    1978-01-01

    The results obtained in the research program of microwave scattering properties of snow fields are presented. Experimental results are presented showing backscatter dependence on frequency (5.8-8.0 GHz), angle of incidence (0-60 degrees), snow wetness (time of day), and frequency modulation (0-500 MHz). Theoretical studies are being made of the inverse scattering problem yielding some preliminary results concerning the determination of the dielectric constant of the snow layer. The experimental results lead to the following conclusions: snow layering affects backscatter, layer response is significant up to 45 degrees of incidence, wetness modifies snow layer effects, frequency modulation masks the layer response, and for the proper choice of probing frequency and for nominal snow depths, it appears to be possible to measure the effective dielectric constant and the corresponding water content of a snow pack.

  3. Cultivation and breeding of Chinese medicinal plants in Germany.

    PubMed

    Heuberger, Heidi; Bauer, Rudolf; Friedl, Fritz; Heubl, Günther; Hummelsberger, Josef; Nögel, Rainer; Seidenberger, Rebecca; Torres-Londoño, Paula

    2010-12-01

    Chinese herbal medicine (CHM) is increasingly used in Germany and Europe. Due to the need for herbal drugs of consistent quality and reliable supply, methods for commercial field cultivation and post-harvest processing under south German conditions have been developed for selected plant species used in CHM since 1999. The project used an interdisciplinary approach covering all aspects from seed sourcing to medicinal application. This paper describes the outcome of the agricultural seed and field experiments, breeding program, botanical and chemical characterization of the experimental material, comparison of experimental and imported herbal material with respect to their pharmaceutical quality, transfer of production methods and plant material to specialized farmers, medicinal application and, finally, information for users along the chain of distribution about the benefits of the locally produced herbal material. © Georg Thieme Verlag KG Stuttgart · New York.

  4. Oxidation of Ethidium using TAML Activators: A Model for High School Research Performed in Partnership with University Scientists

    PubMed Central

    Pueyo, Natalie C.; Raub, Andrew G.; Jackson, Sean; Metz, Madalyn M.; Mount, Allegra C.; Naughton, Kyle L.; Eaton, Ashley L.; Thomas, Nicole M.; Hastings, Peter; Greaves, John; Blumberg, Bruce; Collins, Terrence J.; Sogo, Steven G.

    2013-01-01

    A chemical research program at a public high school has been developed. The full-year Advanced Chemical Research class (ACR) in the high school enrolls 20 to 30 seniors each year, engaging them in long-term experimental projects. Through partnerships involving university scientists, ACR high school students have had the opportunity to explore a number of highly sophisticated original research projects. As an example of the quality of experimental work made possible through these high school–university partnerships, this article describes the development of a novel method for the oxidation of ethidium bromide, a mutagen commonly used in molecular biology. Data collected from ACR alumni show that the ACR program is instrumental in encouraging students to pursue careers in scientific fields and in creating life-long problem-solvers. PMID:23585695

  5. Oxidation of Ethidium using TAML Activators: A Model for High School Research Performed in Partnership with University Scientists.

    PubMed

    Pueyo, Natalie C; Raub, Andrew G; Jackson, Sean; Metz, Madalyn M; Mount, Allegra C; Naughton, Kyle L; Eaton, Ashley L; Thomas, Nicole M; Hastings, Peter; Greaves, John; Blumberg, Bruce; Collins, Terrence J; Sogo, Steven G

    2013-03-12

    A chemical research program at a public high school has been developed. The full-year Advanced Chemical Research class (ACR) in the high school enrolls 20 to 30 seniors each year, engaging them in long-term experimental projects. Through partnerships involving university scientists, ACR high school students have had the opportunity to explore a number of highly sophisticated original research projects. As an example of the quality of experimental work made possible through these high school-university partnerships, this article describes the development of a novel method for the oxidation of ethidium bromide, a mutagen commonly used in molecular biology. Data collected from ACR alumni show that the ACR program is instrumental in encouraging students to pursue careers in scientific fields and in creating life-long problem-solvers.

  6. Design review of the Brazilian Experimental Solar Telescope

    NASA Astrophysics Data System (ADS)

    Dal Lago, A.; Vieira, L. E. A.; Albuquerque, B.; Castilho, B.; Guarnieri, F. L.; Cardoso, F. R.; Guerrero, G.; Rodríguez, J. M.; Santos, J.; Costa, J. E. R.; Palacios, J.; da Silva, L.; Alves, L. R.; Costa, L. L.; Sampaio, M.; Dias Silveira, M. V.; Domingues, M. O.; Rockenbach, M.; Aquino, M. C. O.; Soares, M. C. R.; Barbosa, M. J.; Mendes, O., Jr.; Jauer, P. R.; Branco, R.; Dallaqua, R.; Stekel, T. R. C.; Pinto, T. S. N.; Menconi, V. E.; Souza, V. M. C. E. S.; Gonzalez, W.; Rigozo, N.

    2015-12-01

    The Brazilian's National Institute for Space Research (INPE), in collaboration with the Engineering School of Lorena/University of São Paulo (EEL/USP), the Federal University of Minas Gerais (UFMG), and the Brazilian's National Laboratory for Astrophysics (LNA), is developing a solar vector magnetograph and visible-light imager to study solar processes through observations of the solar surface magnetic field. The Brazilian Experimental Solar Telescope is designed to obtain full disk magnetic field and line-of-sight velocity observations in the photosphere. Here we discuss the system requirements and the first design review of the instrument. The instrument is composed by a Ritchey-Chrétien telescope with a 500 mm aperture and 4000 mm focal length. LCD polarization modulators will be employed for the polarization analysis and a tuning Fabry-Perot filter for the wavelength scanning near the Fe II 630.25 nm line. Two large field-of-view, high-resolution 5.5 megapixel sCMOS cameras will be employed as sensors. Additionally, we describe the project management and system engineering approaches employed in this project. As the magnetic field anchored at the solar surface produces most of the structures and energetic events in the upper solar atmosphere and significantly influences the heliosphere, the development of this instrument plays an important role in advancing scientific knowledge in this field. In particular, the Brazilian's Space Weather program will benefit most from the development of this technology. We expect that this project will be the starting point to establish a strong research program on Solar Physics in Brazil. Our main aim is to progressively acquire the know-how to build state-of-art solar vector magnetograph and visible-light imagers for space-based platforms.

  7. Electronic materials high-T(sub c) superconductivity polymers and composites structural materials surface science and catalysts industry participation

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The fifth year of the Center for Advanced Materials was marked primarily by the significant scientific accomplishments of the research programs. The Electronics Materials program continued its work on the growth and characterization of gallium arsenide crystals, and the development of theories to understand the nature and distribution of defects in the crystals. The High Tc Superconductivity Program continued to make significant contributions to the field in theoretical and experimental work on both bulk materials and thin films and devices. The Ceramic Processing group developed a new technique for cladding YBCO superconductors for high current applications in work with the Electric Power Research Institute. The Polymers and Composites program published a number of important studies involving atomistic simulations of polymer surfaces with excellent correlations to experimental results. The new Enzymatic Synthesis of Materials project produced its first fluorinated polymers and successfully began engineering enzymes designed for materials synthesis. The structural Materials Program continued work on novel alloys, development of processing methods for advanced ceramics, and characterization of mechanical properties of these materials, including the newly documented characterization of cyclic fatigue crack propagation behavior in toughened ceramics. Finally, the Surface Science and Catalysis program made significant contributions to the understanding of microporous catalysts and the nature of surface structures and interface compounds.

  8. A counterfactual impact evaluation of a bilingual program on students' grade point average at a spanish university.

    PubMed

    Arco-Tirado, J L; Fernández-Martín, F; Ramos-García, A M; Littvay, L; Villoria, J; Naranjo, J A

    2018-06-01

    This observational study intends to estimate the causal effects of an English as a Medium of Instruction (EMI) program (as predictor) on students Grade Point Average (GPA) (as outcome) at a particular University in Spain by using a Counterfactual Impact Evaluation (CIE). The need to address the crucial question of causal inferences in EMI programs to produce credible evidences of successful interventions contrasts, however, with the absence of experimental or quasi-experimental research and evaluation designs in the field. CIE approach is emerging as a methodologically viable solution to bridge that gap. The program evaluated here consisted in delivering an EMI program in a Primary Education Teacher Training Degree group. After achieving balance on the observed covariates and recreating a situation that would have been expected in a randomized experiment, three matching approaches such as genetic matching, nearest neighbor matching and Coarsened Exact Matching were used to analyze observational data from a total of 1288 undergraduate students, including both treatment and control group. Results show unfavorable effects of the bilingual group treatment condition. Potential interpretations and recommendations are provided in order to strengthen future causal evidences of bilingual education programs' effectiveness in Higher Education. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Adult Career Counseling Using Possible Selves--A Quasi-Experimental Field Study in Naturalistic Settings

    ERIC Educational Resources Information Center

    Plimmer, Geoff

    2012-01-01

    This study examined the effectiveness of an adult career development program designed to reflect the diversity and demands of career choices, the low level of comfort many have with career choices, and the limited resources available to resolve complex adult career problems. A possible selves process was used, delivered through a blend of computer…

  10. Me and My Environment. Unit IV: Transfer and Cycling of Materials in My Environment.

    ERIC Educational Resources Information Center

    Biological Sciences Curriculum Study, Boulder, CO.

    Presented is the experimental edition of Unit IV: Transfer and Cycling of Materials in My Environment, which consists of 29 life science curriculum activities intended for the 13-to-15-year-old educable mentally retarded child. The curriculum guide is being used in the final field test prior to revision. Stressed throughout the program are…

  11. Simulation Model of A Ferroelectric Field Effect Transistor

    NASA Technical Reports Server (NTRS)

    MacLeod, Todd C.; Ho, Fat Duen; Russell, Larry W. (Technical Monitor)

    2002-01-01

    An electronic simulation model has been developed of a ferroelectric field effect transistor (FFET). This model can be used in standard electrical circuit simulation programs to simulate the main characteristics of the FFET. The model uses a previously developed algorithm that incorporates partial polarization as a basis for the design. The model has the main characteristics of the FFET, which are the current hysterisis with different gate voltages and decay of the drain current when the gate voltage is off. The drain current has values matching actual FFET's, which were measured experimentally. The input and output resistance in the model is similar to that of the FFET. The model is valid for all frequencies below RF levels. A variety of different ferroelectric material characteristics can be modeled. The model can be used to design circuits using FFET'S with standard electrical simulation packages. The circuit can be used in designing non-volatile memory circuits and logic circuits and is compatible with all SPICE based circuit analysis programs. The model is a drop in library that integrates seamlessly into a SPICE simulation. A comparison is made between the model and experimental data measured from an actual FFET.

  12. Overview of C-2W Field-Reversed Configuration Experimental Program

    NASA Astrophysics Data System (ADS)

    Gota, H.; Binderbauer, M. W.; Tajima, T.; Putvinski, S.; Tuszewski, M.; Dettrick, S.; Korepanov, S.; Romero, J.; Smirnov, A.; Song, Y.; Thompson, M. C.; van Drie, A.; Yang, X.; Ivanov, A. A.; TAE Team

    2017-10-01

    Tri Alpha Energy's research has been devoted to producing a high temperature, stable, long-lived field-reversed configuration (FRC) plasma state by neutral-beam injection (NBI) and edge biasing/control. C-2U experiments have demonstrated drastic improvements in particle and energy confinement properties of FRC's, and the plasma performance obtained via 10 MW NBI has achieved plasma sustainment of up to 5 ms and plasma (diamagnetism) lifetimes of 10 + ms. The emerging confinement scaling, whereby electron energy confinement time is proportional to a positive power of the electron temperature, is very attractive for higher energy plasma confinement; accordingly, verification of the observed Te scaling law will be a key future research objective. The new experimental device, C-2W (now also called ``Norman''), has the following key subsystem upgrades from C-2U: (i) higher injected power, optimum energies, and extended pulse duration of the NBI system; (ii) installation of inner divertors with upgraded edge-biasing systems; (iii) fast external equilibrium/mirror-coil current ramp-up capability; and (iv) installation of trim/saddle coils for active feedback control of the FRC plasma. This paper will review highlights of the C-2W program.

  13. A methodology to emulate and evaluate a productive virtual workstation

    NASA Technical Reports Server (NTRS)

    Krubsack, David; Haberman, David

    1992-01-01

    The Advanced Display and Computer Augmented Control (ADCACS) Program at ACT is sponsored by NASA Ames to investigate the broad field of technologies which must be combined to design a 'virtual' workstation for the Space Station Freedom. This program is progressing in several areas and resulted in the definition of requirements for a workstation. A unique combination of technologies at the ACT Laboratory have been networked to effectively create an experimental environment. This experimental environment allows the integration of nonconventional input devices with a high power graphics engine within the framework of an expert system shell which coordinates the heterogeneous inputs with the 'virtual' presentation. The flexibility of the workstation is evolved as experiments are designed and conducted to evaluate the condition descriptions and rule sets of the expert system shell and its effectiveness in driving the graphics engine. Workstation productivity has been defined by the achievable performance in the emulator of the calibrated 'sensitivity' of input devices, the graphics presentation, the possible optical enhancements to achieve a wide field of view color image and the flexibility of conditional descriptions in the expert system shell in adapting to prototype problems.

  14. What's in a norm? Sources and processes of norm change.

    PubMed

    Paluck, Elizabeth Levy

    2009-03-01

    This reply to the commentary by E. Staub and L. A. Pearlman (2009) revisits the field experimental results of E. L. Paluck (2009). It introduces further evidence and theoretical elaboration supporting Paluck's conclusion that exposure to a reconciliation-themed radio soap opera changed perceptions of social norms and behaviors, not beliefs. Experimental and longitudinal survey evidence reinforces the finding that the radio program affected socially shared perceptions of typical or prescribed behavior-that is, social norms. Specifically, measurements of perceptions of social norms called into question by Staub and Pearlman are shown to correlate with perceptions of public opinion and public, not private, behaviors. Although measurement issues and the mechanisms of the radio program's influence merit further testing, theory and evidence point to social interactions and emotional engagement, not individual education, as the likely mechanisms of change. The present exchange makes salient what is at stake in this debate: a model of change based on learning and personal beliefs versus a model based on group influence and social norms. These theoretical models recommend very different strategies for prejudice and conflict reduction. Future field experiments should attempt to adjudicate between these models by testing relevant policies in real-world settings.

  15. Using Genetic Programming with Prior Formula Knowledge to Solve Symbolic Regression Problem.

    PubMed

    Lu, Qiang; Ren, Jun; Wang, Zhiguang

    2016-01-01

    A researcher can infer mathematical expressions of functions quickly by using his professional knowledge (called Prior Knowledge). But the results he finds may be biased and restricted to his research field due to limitation of his knowledge. In contrast, Genetic Programming method can discover fitted mathematical expressions from the huge search space through running evolutionary algorithms. And its results can be generalized to accommodate different fields of knowledge. However, since GP has to search a huge space, its speed of finding the results is rather slow. Therefore, in this paper, a framework of connection between Prior Formula Knowledge and GP (PFK-GP) is proposed to reduce the space of GP searching. The PFK is built based on the Deep Belief Network (DBN) which can identify candidate formulas that are consistent with the features of experimental data. By using these candidate formulas as the seed of a randomly generated population, PFK-GP finds the right formulas quickly by exploring the search space of data features. We have compared PFK-GP with Pareto GP on regression of eight benchmark problems. The experimental results confirm that the PFK-GP can reduce the search space and obtain the significant improvement in the quality of SR.

  16. Preparing beginning reading teachers: An experimental comparison of initial early literacy field experiences.

    PubMed

    Al Otaiba, Stephanie; Lake, Vickie E; Greulich, Luana; Folsom, Jessica S; Guidry, Lisa

    2012-01-01

    This randomized-control trial examined the learning of preservice teachers taking an initial Early Literacy course in an early childhood education program and of the kindergarten or first grade students they tutored in their field experience. Preservice teachers were randomly assigned to one of two tutoring programs: Book Buddies and Tutor Assisted Intensive Learning Strategies (TAILS), which provided identical meaning-focused instruction (shared book reading), but differed in the presentation of code-focused skills. TAILS used explicit, scripted lessons, and the Book Buddies required that code-focused instruction take place during shared book reading. Our research goal was to understand which tutoring program would be most effective in improving knowledge about reading, lead to broad and deep language and preparedness of the novice preservice teachers, and yield the most successful student reading outcomes. Findings indicate that all pre-service teachers demonstrated similar gains in knowledge, but preservice teachers in the TAILS program demonstrated broader and deeper application of knowledge and higher self-ratings of preparedness to teach reading. Students in both conditions made similar comprehension gains, but students tutored with TAILS showed significantly stronger decoding gains.

  17. A systems-based food safety evaluation: an experimental approach.

    PubMed

    Higgins, Charles L; Hartfield, Barry S

    2004-11-01

    Food establishments are complex systems with inputs, subsystems, underlying forces that affect the system, outputs, and feedback. Building on past exploration of the hazard analysis critical control point concept and Ludwig von Bertalanffy General Systems Theory, the National Park Service (NPS) is attempting to translate these ideas into a realistic field assessment of food service establishments and to use information gathered by these methods in efforts to improve food safety. Over the course of the last two years, an experimental systems-based methodology has been drafted, developed, and tested by the NPS Public Health Program. This methodology is described in this paper.

  18. Remotely Piloted Vehicles for Experimental Flight Control Testing

    NASA Technical Reports Server (NTRS)

    Motter, Mark A.; High, James W.

    2009-01-01

    A successful flight test and training campaign of the NASA Flying Controls Testbed was conducted at Naval Outlying Field, Webster Field, MD during 2008. Both the prop and jet-powered versions of the subscale, remotely piloted testbeds were used to test representative experimental flight controllers. These testbeds were developed by the Subsonic Fixed Wing Project s emphasis on new flight test techniques. The Subsonic Fixed Wing Project is under the Fundamental Aeronautics Program of NASA's Aeronautics Research Mission Directorate (ARMD). The purpose of these testbeds is to quickly and inexpensively evaluate advanced concepts and experimental flight controls, with applications to adaptive control, system identification, novel control effectors, correlation of subscale flight tests with wind tunnel results, and autonomous operations. Flight tests and operator training were conducted during four separate series of tests during April, May, June and August 2008. Experimental controllers were engaged and disengaged during fully autonomous flight in the designated test area. Flaps and landing gear were deployed by commands from the ground control station as unanticipated disturbances. The flight tests were performed NASA personnel with support from the Maritime Unmanned Development and Operations (MUDO) team of the Naval Air Warfare Center, Aircraft Division

  19. Overview of C-2U FRC Experimental Program and Plans for C-2W

    NASA Astrophysics Data System (ADS)

    Gota, H.; Binderbauer, M. W.; Tajima, T.; Putvinski, S.; Tuszewski, M.; Dettrick, S.; Korepanov, S.; Smirnov, A.; Thompson, M. C.; Yang, X.; Cappello, M.; Ivanov, A. A.; TAE Team

    2016-10-01

    Tri Alpha Energy's experimental program has been focused on a demonstration of reliable field-reversed configuration (FRC) formation and sustainment, driven by fast ions via high-power neutral-beam (NB) injection. The world's largest compact-toroid experimental devices, C-2 and C-2U, have successfully produced a well-stabilized, sustainable FRC plasma state with NB injection (input power, PNB 10 + MW; 15 keV hydrogen) and end-on coaxial plasma guns. Remarkable improvements in confinement and stability of FRC plasmas have led to further improved fast-ion build up; thereby, an advanced beam-driven FRC state has been produced and sustained for up to 5 + ms (longer than all characteristic system time scales), only limited by hardware and electric supply constraints such as NB and plasma-gun power supplies. To further improve the FRC performance the C-2U device is being replaced by C-2W featuring higher injected NB power, longer pulse duration as well as enhanced edge-biasing systems and substantially upgraded divertors. Main C-2U experimental results and key features of C-2W will be presented. Tri Alpha Energy, Inc.

  20. Residual stresses in injection molded shape memory polymer parts

    NASA Astrophysics Data System (ADS)

    Katmer, Sukran; Esen, Huseyin; Karatas, Cetin

    2016-03-01

    Shape memory polymers (SMPs) are materials which have shape memory effect (SME). SME is a property which has the ability to change shape when induced by a stimulator such as temperature, moisture, pH, electric current, magnetic field, light, etc. A process, known as programming, is applied to SMP parts in order to alter them from their permanent shape to their temporary shape. In this study we investigated effects of injection molding and programming processes on residual stresses in molded thermoplastic polyurethane shape memory polymer, experimentally. The residual stresses were measured by layer removal method. The study shows that injection molding and programming process conditions have significantly influence on residual stresses in molded shape memory polyurethane parts.

  1. An experimental and computational investigation of the flow field about a transonic airfoil in supercritical flow with turbulent boundary-layer separation

    NASA Technical Reports Server (NTRS)

    Rubesin, M. W.; Okuno, A. F.; Levy, L. L., Jr.; Mcdevitt, J. B.; Seegmiller, H. L.

    1976-01-01

    A combined experimental and computational research program is described for testing and guiding turbulence modeling within regions of separation induced by shock waves incident in turbulent boundary layers. Specifically, studies are made of the separated flow the rear portion of an 18%-thick circular-arc airfoil at zero angle of attack in high Reynolds number supercritical flow. The measurements include distributions of surface static pressure and local skin friction. The instruments employed include highfrequency response pressure cells and a large array of surface hot-wire skin-friction gages. Computations at the experimental flow conditions are made using time-dependent solutions of ensemble-averaged Navier-Stokes equations, plus additional equations for the turbulence modeling.

  2. Artificial Gauge Fields for Ultracold Neutral Atoms

    NASA Astrophysics Data System (ADS)

    Jimenez-Garcia, Karina

    2013-05-01

    Ultracold atoms are a versatile probe for physics at the core of the most intriguing and fascinating systems in the quantum world. Due to the high degree of experimental control offered by such systems, effective Hamiltonians can be designed and experimentally implemented on them. This unique feature makes ultracold atom systems ideal for quantum simulation of complex phenomena as important as high-temperature superconductivity, and recently of novel artificial gauge fields. Suitably designed artificial gauge fields allow neutral particles to experience synthetic- electric or magnetic fields; furthermore, their generalization to matrix valued gauge fields leads to spin-orbit coupling featuring unprecedented control in contrast to ordinary condensed matter systems, thus allowing the characterization of the underlying mechanism of phenomena such as the spin Hall effect and topological insulators. In this talk, I will present an overview of our experiments on quantum simulation with ultracold atom systems by focusing on the realization of light induced artificial gauge fields. We illuminate our Bose-Einstein condensates with a pair of far detuned ``Raman'' lasers, thus creating dressed states that are spin and momentum superpositions. We adiabatically load the atoms into the lowest energy dressed state, where they acquire an experimentally-tunable effective dispersion relation, i.e. we introduce gauge terms into the Hamiltonian. We control such light-induced gauge terms via the strength of the Raman coupling and the detuning from Raman resonance. Our experimental techniques for ultracold bosons have surpassed the apparent limitations imposed by their neutral charge, bosonic nature, and ultra-low energy and have allowed the observation of these new and exciting phenomena. Future work might allow the realization of the bosonic quantum Hall effect, of topological insulators and of systems supporting Majorana fermions using cold atoms. This work was partially supported by the ONR; the ARO with funds from the DARPA OLE program; the Atomtronics MURI; and the NSF through the PFC at the JQI. I acknowledge the support from CONACYT.

  3. Comparison of simulated and measured nonlinear ultrasound fields

    NASA Astrophysics Data System (ADS)

    Du, Yigang; Jensen, Henrik; Jensen, Jørgen Arendt

    2011-03-01

    In this paper results from a non-linear AS (angular spectrum) based ultrasound simulation program are compared to water-tank measurements. A circular concave transducer with a diameter of 1 inch (25.4 mm) is used as the emitting source. The measured pulses are first compared with the linear simulation program Field II, which will be used to generate the source for the AS simulation. The generated non-linear ultrasound field is measured by a hydrophone in the focal plane. The second harmonic component from the measurement is compared with the AS simulation, which is used to calculate both fundamental and second harmonic fields. The focused piston transducer with a center frequency of 5 MHz is excited by a waveform generator emitting a 6-cycle sine wave. The hydrophone is mounted in the focal plane 118 mm from the transducer. The point spread functions at the focal depth from Field II and measurements are illustrated. The FWHM (full width at half maximum) values are 1.96 mm for the measurement and 1.84 mm for the Field II simulation. The fundamental and second harmonic components of the experimental results are plotted compared with the AS simulations. The RMS (root mean square) errors of the AS simulations are 7.19% and 10.3% compared with the fundamental and second harmonic components of the measurements.

  4. Field programmable gate array processing of eye-safe all-fiber coherent wind Doppler lidar return signals

    NASA Astrophysics Data System (ADS)

    Abdelazim, S.; Santoro, D.; Arend, M.; Moshary, F.; Ahmed, S.

    2011-11-01

    A field deployable all-fiber eye-safe Coherent Doppler LIDAR is being developed at the Optical Remote Sensing Lab at the City College of New York (CCNY) and is designed to monitor wind fields autonomously and continuously in urban settings. Data acquisition is accomplished by sampling lidar return signals at 400 MHz and performing onboard processing using field programmable gate arrays (FPGAs). The FPGA is programmed to accumulate signal information that is used to calculate the power spectrum of the atmospherically back scattered signal. The advantage of using FPGA is that signal processing will be performed at the hardware level, reducing the load on the host computer and allowing for 100% return signal processing. An experimental setup measured wind speeds at ranges of up to 3 km.

  5. Changing the Structure and Functioning of an Organization: Report of a Field Experiment. Monograph No. 33.

    ERIC Educational Resources Information Center

    Seashore, Stanley E.; Bowers, David G.

    A three-year study was made at a printing firm which had experienced rapid post-war expansion followed by conditions of tension, uncertainty, and confusion when some product lines were found to be in over supply or unprofitable. There was a growing distance between management and workers. An experimental program for three of the five company…

  6. JPRS Report, Science & Technology Europe

    DTIC Science & Technology

    1988-05-10

    given environment essentially depends on three parameters ; these are: • the adhesion between the adhesive and the supports; • the cohesion of the...durability/CND J Electric current under high field/Tensile test at 4 degrees K I Synthetic hydroxyapatite /behavior under friction and wear GB NaCl, s...French programs GB Inventory of accelerated test procedures, correlation among parameters FC Influence of experimental parameters 8615 JPRS-EST-88

  7. A Brief History of the NPS Field Experimentation Program: Spanning STAN, TNT, and JIFX

    DTIC Science & Technology

    2014-08-01

    located near the post’s southern boundary at 35o 43’N 120o 46’W (UTM Grid 10SGQ 025546). McMillan Ai rfield is 3500’ long, 65’ wide with 10’ shoulders ...Reconnaissance Vehicle. Advisor: Dr. Alex Bordetsky. Second Reader: Dr. Dave Netzer 57 LtCol Tim Lamb , USA Future Unmanned Aerial Vehicle (UAV

  8. Future hadron colliders: From physics perspectives to technology R&D

    NASA Astrophysics Data System (ADS)

    Barletta, William; Battaglia, Marco; Klute, Markus; Mangano, Michelangelo; Prestemon, Soren; Rossi, Lucio; Skands, Peter

    2014-11-01

    High energy hadron colliders have been instrumental to discoveries in particle physics at the energy frontier and their role as discovery machines will remain unchallenged for the foreseeable future. The full exploitation of the LHC is now the highest priority of the energy frontier collider program. This includes the high luminosity LHC project which is made possible by a successful technology-readiness program for Nb3Sn superconductor and magnet engineering based on long-term high-field magnet R&D programs. These programs open the path towards collisions with luminosity of 5×1034 cm-2 s-1 and represents the foundation to consider future proton colliders of higher energies. This paper discusses physics requirements, experimental conditions, technological aspects and design challenges for the development towards proton colliders of increasing energy and luminosity.

  9. Procedural Quantum Programming

    NASA Astrophysics Data System (ADS)

    Ömer, Bernhard

    2002-09-01

    While classical computing science has developed a variety of methods and programming languages around the concept of the universal computer, the typical description of quantum algorithms still uses a purely mathematical, non-constructive formalism which makes no difference between a hydrogen atom and a quantum computer. This paper investigates, how the concept of procedural programming languages, the most widely used classical formalism for describing and implementing algorithms, can be adopted to the field of quantum computing, and how non-classical features like the reversibility of unitary transformations, the non-observability of quantum states or the lack of copy and erase operations can be reflected semantically. It introduces the key concepts of procedural quantum programming (hybrid target architecture, operator hierarchy, quantum data types, memory management, etc.) and presents the experimental language QCL, which implements these principles.

  10. Using the Binary Phase-Field Crystal Model to Describe Non-Classical Nucleation Pathways in Gold Nanoparticles

    NASA Astrophysics Data System (ADS)

    Smith, Nathan; Provatas, Nikolas

    Recent experimental work has shown that gold nanoparticles can precipitate from an aqueous solution through a non-classical, multi-step nucleation process. This multi-step process begins with spinodal decomposition into solute-rich and solute-poor liquid domains followed by nucleation from within the solute-rich domains. We present a binary phase-field crystal theory that shows the same phenomology and examine various cross-over regimes in the growth and coarsening of liquid and solid domains. We'd like to the thank Canada Research Chairs (CRC) program for funding this work.

  11. Acoustical characteristics of the NASA Langley full scale wind tunnel test section

    NASA Technical Reports Server (NTRS)

    Abrahamson, A. L.; Kasper, P. K.; Pappa, R. S.

    1975-01-01

    The full-scale wind tunnel at NASA-Langley Research Center was designed for low-speed aerodynamic testing of aircraft. Sound absorbing treatment has been added to the ceiling and walls of the tunnel test section to create a more anechoic condition for taking acoustical measurements during aerodynamic tests. The results of an experimental investigation of the present acoustical characteristics of the tunnel test section are presented. The experimental program included measurements of ambient nosie levels existing during various tunnel operating conditions, investigation of the sound field produced by an omnidirectional source, and determination of sound field decay rates for impulsive noise excitation. A comparison of the current results with previous measurements shows that the added sound treatment has improved the acoustical condition of the tunnel test section. An analysis of the data indicate that sound reflections from the tunnel ground-board platform could create difficulties in the interpretation of actual test results.

  12. Theory and Experimental Program for p-B11 Fusion with the Dense Plasma Focus

    NASA Astrophysics Data System (ADS)

    Lerner, Eric J.; Krupakar Murali, S.; Haboub, A.

    2011-10-01

    Lawrenceville Plasma Physics Inc. has initiated a 2-year-long experimental project to test the scientific feasibility of achieving controlled fusion using the dense plasma focus (DPF) device with hydrogen-boron (p-B11) fuel. The goals of the experiment are: first, to confirm the achievement of high ion and electron energies observed in previous experiments from 2001; second, to greatly increase the efficiency of energy transfer into the plasmoid where the fusion reactions take place; third, to achieve the high magnetic fields (>1 GG) needed for the quantum magnetic field effect, which will reduce cooling of the plasma by X-ray emission; and finally, to use p-B11 fuel to demonstrate net energy gain. The experiments are being conducted with a newly constructed dense plasma focus in Middlesex, NJ which is expected to generate peak currents in excess of 2 MA. Some preliminary results are reported.

  13. The contribution of the Georges Heights Experimental Radar Antenna to Australian radio astronomy

    NASA Astrophysics Data System (ADS)

    Orchiston, Wayne; Wendt, Harry

    2017-12-01

    During the late 1940s and throughout the1950s Australia was one of the world’s foremost astronomical nations owing primarily to the dynamic Radio Astronomy Group within the Commonwealth Scientific and Industrial Organisation’s Division of Radiophysics based in Sydney. The earliest celestial observations were made with former WWII radar antennas and simple Yagi aerials attached to recycled radar receivers, before more sophisticated purpose-built radio telescopes of various types were designed and developed. One of the recycled WWII antennas that was used extensively for pioneering radio astronomical research was an experimental radar antenna that initially was located at the Division’s short-lived Georges Heights Field Station but in 1948 was relocated to the new Potts Hill Field Station in suburban Sydney. In this paper we describe this unique antenna, and discuss the wide-ranging solar, galactic and extragalactic research programs that it was used for.

  14. Mobile satellite communications technology - A summary of NASA activities

    NASA Technical Reports Server (NTRS)

    Dutzi, E. J.; Knouse, G. H.

    1986-01-01

    Studies in recent years indicate that future high-capacity mobile satellite systems are viable only if certain high-risk enabling technologies are developed. Accordingly, NASA has structured an advanced technology development program aimed at efficient utilization of orbit, spectrum, and power. Over the last two years, studies have concentrated on developing concepts and identifying cost drivers and other issues associated with the major technical areas of emphasis: vehicle antennas, speech compression, bandwidth-efficient digital modems, network architecture, mobile satellite channel characterization, and selected space segment technology. The program is now entering the next phase - breadboarding, development, and field experimentation.

  15. Multi-scale computation methods: Their applications in lithium-ion battery research and development

    NASA Astrophysics Data System (ADS)

    Siqi, Shi; Jian, Gao; Yue, Liu; Yan, Zhao; Qu, Wu; Wangwei, Ju; Chuying, Ouyang; Ruijuan, Xiao

    2016-01-01

    Based upon advances in theoretical algorithms, modeling and simulations, and computer technologies, the rational design of materials, cells, devices, and packs in the field of lithium-ion batteries is being realized incrementally and will at some point trigger a paradigm revolution by combining calculations and experiments linked by a big shared database, enabling accelerated development of the whole industrial chain. Theory and multi-scale modeling and simulation, as supplements to experimental efforts, can help greatly to close some of the current experimental and technological gaps, as well as predict path-independent properties and help to fundamentally understand path-independent performance in multiple spatial and temporal scales. Project supported by the National Natural Science Foundation of China (Grant Nos. 51372228 and 11234013), the National High Technology Research and Development Program of China (Grant No. 2015AA034201), and Shanghai Pujiang Program, China (Grant No. 14PJ1403900).

  16. Exploring magnetized liner inertial fusion with a semi-analytic model

    DOE PAGES

    McBride, Ryan D.; Slutz, Stephen A.; Vesey, Roger A.; ...

    2016-01-01

    In this study, we explore magnetized liner inertial fusion (MagLIF) [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)] using a semi-analytic model [R. D. McBride and S. A. Slutz, Phys. Plasmas 22, 052708 (2015)]. Specifically, we present simulation results from this model that: (a) illustrate the parameter space, energetics, and overall system efficiencies of MagLIF; (b) demonstrate the dependence of radiative loss rates on the radial fraction of the fuel that is preheated; (c) explore some of the recent experimental results of the MagLIF program at Sandia National Laboratories [M. R. Gomez et al., Phys. Rev. Lett. 113,more » 155003 (2014)]; (d) highlight the experimental challenges presently facing the MagLIF program; and (e) demonstrate how increases to the preheat energy, fuel density, axial magnetic field, and drive current could affect future MagLIF performance.« less

  17. Exploring magnetized liner inertial fusion with a semi-analytic model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McBride, R. D.; Slutz, S. A.; Vesey, R. A.

    In this paper, we explore magnetized liner inertial fusion (MagLIF) [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)] using a semi-analytic model [R. D. McBride and S. A. Slutz, Phys. Plasmas 22, 052708 (2015)]. Specifically, we present simulation results from this model that: (a) illustrate the parameter space, energetics, and overall system efficiencies of MagLIF; (b) demonstrate the dependence of radiative loss rates on the radial fraction of the fuel that is preheated; (c) explore some of the recent experimental results of the MagLIF program at Sandia National Laboratories [M. R. Gomez et al., Phys. Rev. Lett. 113,more » 155003 (2014)]; (d) highlight the experimental challenges presently facing the MagLIF program; and (e) demonstrate how increases to the preheat energy, fuel density, axial magnetic field, and drive current could affect future MagLIF performance.« less

  18. Exploring magnetized liner inertial fusion with a semi-analytic model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McBride, Ryan D.; Slutz, Stephen A.; Vesey, Roger A.

    In this study, we explore magnetized liner inertial fusion (MagLIF) [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)] using a semi-analytic model [R. D. McBride and S. A. Slutz, Phys. Plasmas 22, 052708 (2015)]. Specifically, we present simulation results from this model that: (a) illustrate the parameter space, energetics, and overall system efficiencies of MagLIF; (b) demonstrate the dependence of radiative loss rates on the radial fraction of the fuel that is preheated; (c) explore some of the recent experimental results of the MagLIF program at Sandia National Laboratories [M. R. Gomez et al., Phys. Rev. Lett. 113,more » 155003 (2014)]; (d) highlight the experimental challenges presently facing the MagLIF program; and (e) demonstrate how increases to the preheat energy, fuel density, axial magnetic field, and drive current could affect future MagLIF performance.« less

  19. Simulation of 3-D Nonequilibrium Seeded Air Flow in the NASA-Ames MHD Channel

    NASA Technical Reports Server (NTRS)

    Gupta, Sumeet; Tannehill, John C.; Mehta, Unmeel B.

    2004-01-01

    The 3-D nonequilibrium seeded air flow in the NASA-Ames experimental MHD channel has been numerically simulated. The channel contains a nozzle section, a center section, and an accelerator section where magnetic and electric fields can be imposed on the flow. In recent tests, velocity increases of up to 40% have been achieved in the accelerator section. The flow in the channel is numerically computed us ing a 3-D parabolized Navier-Stokes (PNS) algorithm that has been developed to efficiently compute MHD flows in the low magnetic Reynolds number regime: The MHD effects are modeled by introducing source terms into the PNS equations which can then be solved in a very efficient manner. The algorithm has been extended in the present study to account for nonequilibrium seeded air flows. The electrical conductivity of the flow is determined using the program of Park. The new algorithm has been used to compute two test cases that match the experimental conditions. In both cases, magnetic and electric fields are applied to the seeded flow. The computed results are in good agreement with the experimental data.

  20. Comparison of Experimental Surface and Flow Field Measurements to Computational Results of the Juncture Flow Model

    NASA Technical Reports Server (NTRS)

    Roozeboom, Nettie H.; Lee, Henry C.; Simurda, Laura J.; Zilliac, Gregory G.; Pulliam, Thomas H.

    2016-01-01

    Wing-body juncture flow fields on commercial aircraft configurations are challenging to compute accurately. The NASA Advanced Air Vehicle Program's juncture flow committee is designing an experiment to provide data to improve Computational Fluid Dynamics (CFD) modeling in the juncture flow region. Preliminary design of the model was done using CFD, yet CFD tends to over-predict the separation in the juncture flow region. Risk reduction wind tunnel tests were requisitioned by the committee to obtain a better understanding of the flow characteristics of the designed models. NASA Ames Research Center's Fluid Mechanics Lab performed one of the risk reduction tests. The results of one case, accompanied by CFD simulations, are presented in this paper. Experimental results suggest the wall mounted wind tunnel model produces a thicker boundary layer on the fuselage than the CFD predictions, resulting in a larger wing horseshoe vortex suppressing the side of body separation in the juncture flow region. Compared to experimental results, CFD predicts a thinner boundary layer on the fuselage generates a weaker wing horseshoe vortex resulting in a larger side of body separation.

  1. Effect of thermo-mechanical stress during quench on Nb3Sn cable performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linda Imbasciati et al.

    2002-12-09

    Several high field magnets using Nb{sub 3}Sn superconductor are under development for future particle accelerators. The high levels of stored energy in these magnets can cause high peak temperatures during a quench. The thermomechanical stress generated in the winding during the fast temperature rise can result in a permanent damage of the brittle Nb{sub 3}Sn. Although there are several studies of the critical current degradation of Nb{sub 3}Sn strands due to strain, little is known about how to apply the strain limitations to define a maximum acceptable temperature in the coils during a quench. Therefore, an experimental program was launched,more » aimed at improving the understanding of the effect of thermo-mechanical stress in coils made from brittle Nb{sub 3}Sn. A first experiment, reported here, was performed on cables. The experimental results were compared to analytical and finite element models. The next step in the experimental program will be to repeat similar measurements in small racetrack coils and later in full size magnets.« less

  2. Keck Geology Consortium Lava Project: Undergraduate Research Linking Natural and Experimental Basaltic Lava Flows

    NASA Astrophysics Data System (ADS)

    Karson, J. A.; Hazlett, R. W.; Wysocki, R.; Bromfield, M. E.; Browne, N. C.; Davis, N. C.; Pelland, C. G.; Rowan, W. L.; Warner, K. A.

    2014-12-01

    Undergraduate students in the Keck Geology Consortium Lava Project participated in a month-long investigation of features of basaltic lava flows from two very different perspectives. The first half of the project focused on field relations in basaltic lava flows from the 1984 Krafla Fires eruption in northern Iceland. Students gained valuable experience in the collection of observations and samples in the field leading to hypotheses for the formation of selected features related to lava flow dynamics. Studies focused on a wide range of features including: morphology and heat loss in lava tubes (pyroducts), growth and collapse of lava ponds and overflow deposits, textural changes of lava falls (flow over steep steps), spaced spatter cones from flows over wet ground, and anisotropy of magnetic susceptibility related to flow kinematics. In the second half of the program students designed, helped execute, documented, and analyzed features similar to those they studied in the field with large-scale (50-250 kg) basaltic lava flows created in the Syracuse University Lava Project (http://lavaproject.syr.edu). Data collected included video from multiple perspectives, infrared thermal (FLIR) images, still images, detailed measurements of flow dimensions and rates, and samples for textural and magnetic analyses. Experimental lava flow features provided critical tests of hypotheses generated in the field and a refined understanding of the behavior and final morphology of basaltic lava flows. The linked field and experimental studies formed the basis for year-long independent research projects under the supervision of their faculty mentors, leading to senior theses at the students' respective institutions.

  3. The effectiveness of parent participation in occupational therapy for children with developmental delay

    PubMed Central

    Lin, Chien-Lin; Lin, Chin-Kai; Yu, Jia-Jhen

    2018-01-01

    Introduction This study aims to explore the impact of Parent Participation Program on the development of developmental delay children. Methods Pretest-posttest equivalent-group experimental design study was used in this paper. A total of 30 pairs of developmental delay children aged 0–72 months and their parents participated into this study. They were divided into two groups, namely control group and experimental group, according to parents’ wishes. The objects of study in control group received 16 courses of direct rehabilitation therapy; those in experimental group received 8 courses of direct rehabilitation therapy and 8 courses of instruction and tracking of Parent Participation Program. The duration of the intervention was 8 weeks. All cases should be evaluated before and after the intervention, to analyze the difference before and after intervention and among groups. The statistical methods in this paper included descriptive analysis, Chi-square test, independent sample t-test, pair-sample t-test. Results and conclusion The intervention of Parent Participation Occupational Program has positive impact on the development of developmental delay children in various fields. Among all the intervention results, the progress of the experimental group is 1.895 times more than that of the control group. With parent involvement, Parent Participation Occupational Therapy can promote the cognitive ability, language ability, action ability (gross and fine movement), social competence and self-care ability of children with developmental delay. Finally, the researcher presents suggestions and directions for future research in accordance with the results. PMID:29503546

  4. Experimental and numerical study on optimization of the single point incremental forming of AINSI 304L stainless steel sheet

    NASA Astrophysics Data System (ADS)

    Saidi, B.; Giraud-Moreau, L.; Cherouat, A.; Nasri, R.

    2017-09-01

    AINSI 304L stainless steel sheets are commonly formed into a variety of shapes for applications in the industrial, architectural, transportation and automobile fields, it’s also used for manufacturing of denture base. In the field of dentistry, there is a need for personalized devises that are custom made for the patient. The single point incremental forming process is highly promising in this area for manufacturing of denture base. The single point incremental forming process (ISF) is an emerging process based on the use of a spherical tool, which is moved along CNC controlled tool path. One of the major advantages of this process is the ability to program several punch trajectories on the same machine in order to obtain different shapes. Several applications of this process exist in the medical field for the manufacturing of personalized titanium prosthesis (cranial plate, knee prosthesis...) due to the need of product customization to each patient. The objective of this paper is to study the incremental forming of AISI 304L stainless steel sheets for future applications in the dentistry field. During the incremental forming process, considerable forces can occur. The control of the forming force is particularly important to ensure the safe use of the CNC milling machine and preserve the tooling and machinery. In this paper, the effect of four different process parameters on the maximum force is studied. The proposed approach consists in using an experimental design based on experimental results. An analysis of variance was conducted with ANOVA to find the input parameters allowing to minimize the maximum forming force. A numerical simulation of the incremental forming process is performed with the optimal input process parameters. Numerical results are compared with the experimental ones.

  5. Composite-Based High Performance Electroactive Polymers For Remotely Controlled Mechanical Manipulations in NASA Applications

    NASA Technical Reports Server (NTRS)

    Zhang, Q. M.

    2003-01-01

    This program supported investigation of an all-polymer percolative composite which exhibits very high dielectric constant (less than 7,000). The experimental results show that the dielectric behavior of this new class of percolative composites follows the prediction of the percolation theory and the analysis of the conductive percolation phenomena. The very high dielectric constant of the all-polymer composites which are also very flexible and possess elastic modulus not very much different from that of the insulation polymer matrix makes it possible to induce a high electromechanical response under a much reduced electric field (a strain of 2.65% with an elastic energy density of 0.18 J/cu cm can be achieved under a field of 16 MV/m). Data analysis also suggests that in these composites, the non-uniform local field distribution as well as interface effects can significantly enhance the strain responses. Furthermore, the experimental data as well as the data analysis indicate that the conduction loss in these composites will not affect the strain hysteresis.

  6. An experimental study of the validity of the heat-field concept for sonic-boom alleviation

    NASA Technical Reports Server (NTRS)

    Swigart, R. J.

    1974-01-01

    An experimental program was carried out in the NASA-Langley 4 ft x 4 ft supersonic pressure tunnel to investigate the validity of the heat-field concept for sonic boom alleviation. The concept involves heating the flow about a supersonic aircraft in such a manner as to obtain an increase in effective aircraft length and yield an effective aircraft shape that will result in a shock-free pressure signature on the ground. First, a basic body-of-revolution representing an SST configuration with its lift equivalence in volume was tested to provide a baseline pressure signature. Second, a model having a 5/2-power area distribution which, according to theory, should yield a linear pressure rise with no front shock wave was tested. Third, the concept of providing the 5/2-power area distribution by using an off-axis slender fin below the basic body was investigated. Then a substantial portion (approximately 40 percent) of the solid fin was replaced by a heat field generated by passing heated nitrogen through the rear of the fin.

  7. Progress on Variable Cycle Engines

    NASA Technical Reports Server (NTRS)

    Westmoreland, J. S.; Howlett, R. A.; Lohmann, R. P.

    1979-01-01

    Progress in the development and future requirements of the Variable Stream Control Engine (VSCE) are presented. The two most critical components of this advanced system for future supersonic transports, the high performance duct burner for thrust augmentation, and the low jet coannular nozzle were studied. Nozzle model tests substantiated the jet noise benefit associated with the unique velocity profile possible with a coannular nozzle system on a VSCE. Additional nozzle model performance tests have established high thrust efficiency levels only at takeoff and supersonic cruise for this nozzle system. An experimental program involving both isolated component and complete engine tests has been conducted for the high performance, low emissions duct burner with good results and large scale testing of these two components is being conducted using a F100 engine as the testbed for simulating the VSCE. Future work includes application of computer programs for supersonic flow fields to coannular nozzle geometries, further experimental testing with the duct burner segment rig, and the use of the Variable Cycle Engine (VCE) Testbed Program for evaluating the VSCE duct burner and coannular nozzle technologies.

  8. A Preliminary Investigation of Hall Thruster Technology

    NASA Technical Reports Server (NTRS)

    Gallimore, Alec D.

    1997-01-01

    A three-year NASA/BMDO-sponsored experimental program to conduct performance and plume plasma property measurements on two Russian Stationary Plasma Thrusters (SPTs) has been completed. The program utilized experimental facilitates at the University of Michigan's Plasmadynamics and Electric Propulsion Laboratory (PEPL). The main features of the proposed effort were as follows: (1) Characterized Hall thruster (and arcjet) performance by measuring ion exhaust velocity with probes at various thruster conditions; (2) Used a variety of probe diagnostics in the thruster plume to measure plasma properties and flow properties including T(sub e) and n(sub e) ion current density and ion energy distribution, and electric fields by mapping plasma potential; (3) Used emission spectroscopy to identify species within the plume and to measure electron temperatures. A key and unique feature of our research was our collaboration with Russian Hall thruster researcher Dr. Sergey A Khartov, Deputy Dean of International Relations at the Moscow Aviation Institute (MAI). His activities in this program included consulting on and participation in research at PEPL through use of a MAI-built SPT and ion energy probe.

  9. Surprise and opportunity for learning in Grand Canyon: the Glen Canyon Dam Adaptive Management Program

    USGS Publications Warehouse

    Melis, Theodore S.; Walters, Carl; Korman, Josh

    2015-01-01

    With a focus on resources of the Colorado River ecosystem below Glen Canyon Dam, the Glen Canyon Dam Adaptive Management Program has included a variety of experimental policy tests, ranging from manipulation of water releases from the dam to removal of non-native fish within Grand Canyon National Park. None of these field-scale experiments has yet produced unambiguous results in terms of management prescriptions. But there has been adaptive learning, mostly from unanticipated or surprising resource responses relative to predictions from ecosystem modeling. Surprise learning opportunities may often be viewed with dismay by some stakeholders who might not be clear about the purpose of science and modeling in adaptive management. However, the experimental results from the Glen Canyon Dam program actually represent scientific successes in terms of revealing new opportunities for developing better river management policies. A new long-term experimental management planning process for Glen Canyon Dam operations, started in 2011 by the U.S. Department of the Interior, provides an opportunity to refocus management objectives, identify and evaluate key uncertainties about the influence of dam releases, and refine monitoring for learning over the next several decades. Adaptive learning since 1995 is critical input to this long-term planning effort. Embracing uncertainty and surprise outcomes revealed by monitoring and ecosystem modeling will likely continue the advancement of resource objectives below the dam, and may also promote efficient learning in other complex programs.

  10. TH-AB-BRA-12: Experimental Results From the First High-Field Inline MRI-Linac

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keall, P; Dong, B; Zhang, K

    Purpose: The pursuit of real-time image guided radiotherapy using optimal tissue contrast has seen the development of several hybrid MRI-treatment systems, high field and low field, and inline and perpendicular configurations. As part of a new MRI-Linac program, an MRI scanner was integrated with a linear accelerator to enable investigations of a coupled inline MRI-Linac system. This work describes our experimental results from the first high-field inline MRI-Linac. Methods: A 1.5 Tesla magnet (Sonata, Siemens) was located in a purpose built RF cage enabling shielding from and close proximity to a linear accelerator with inline orientation. A portable linear acceleratormore » (Linatron, Varian) was installed together with a multi-leaf collimator (Millennium, Varian) to provide dynamic field collimation and the whole assembly built onto a stainless-steel rail system. A series of MRI-Linac experiments was performed to investigate: (1) image quality with beam on measured using a macropodine (kangaroo) ex vivo phantom; (2) the noise as a function of beam state measured using a 6-channel surface coil array and; (3) electron focusing measured using GafChromic film. Results: (1) The macropodine phantom image quality with the beam on was almost identical to that with the beam off. (2) Noise measured with a surface RF coil produced a 25% elevation of background noise when the radiation beam was on. (3) Film measurements demonstrated electron focusing occurring at the center of the radiation field. Conclusion: The first high-field MRI-Linac has been built and experimentally characterized. This system has allowed us to establish the efficacy of a high field in-line MRI-Linac and study a number of the technical challenges and solutions. Supported by the Australian National Health and Medical Research Council, the Australian Research Council, the Australian Cancer Research Foundation and the Health and Hospitals Fund.« less

  11. The Russian-American high magnetic field collaboration

    NASA Astrophysics Data System (ADS)

    Fowler, C. M.; Christian, J. M.; Freeman, B. L.

    We report here on a joint experimental shot series with teams from Russia and the United States. The program was based largely upon the MC-1 generator, a high magnetic field explosive flux compressor, developed by the Pavlovskii group at Arzamas-16. The series was of historical interest in that it was carried out in a Los Alamos security area, the first time for such a collaboration. We discuss a number of technical issues involved in matching Russian hardware with Los Alamos explosives, initiation systems and the seed field energy source, as well as comparison of field measuring diagnostics finished by the two teams. We conclude with a discussion of an investigation of the high temperature superconductor YBa2Cu3O7 (YBCO), employing these generators. The low temperature critical magnetic field of this material was found to be 340 +/- 40 T, as determined from a 94 GHz microwave interferometer developed for this purpose.

  12. High-performance reconfigurable coincidence counting unit based on a field programmable gate array.

    PubMed

    Park, Byung Kwon; Kim, Yong-Su; Kwon, Osung; Han, Sang-Wook; Moon, Sung

    2015-05-20

    We present a high-performance reconfigurable coincidence counting unit (CCU) using a low-end field programmable gate array (FPGA) and peripheral circuits. Because of the flexibility guaranteed by the FPGA program, we can easily change system parameters, such as internal input delays, coincidence configurations, and the coincidence time window. In spite of a low-cost implementation, the proposed CCU architecture outperforms previous ones in many aspects: it has 8 logic inputs and 4 coincidence outputs that can measure up to eight-fold coincidences. The minimum coincidence time window and the maximum input frequency are 0.47 ns and 163 MHz, respectively. The CCU will be useful in various experimental research areas, including the field of quantum optics and quantum information.

  13. Investigation of outside visual cues required for low speed and hover

    NASA Technical Reports Server (NTRS)

    Hoh, R. H.

    1985-01-01

    Knowledge of the visual cues required in the performance of stabilized hover in VTOL aircraft is a prerequisite for the development of both cockpit displays and ground-based simulation systems. Attention is presently given to the viability of experimental test flight techniques as the bases for the identification of essential external cues in aggressive and precise low speed and hovering tasks. The analysis and flight test program conducted employed a helicopter and a pilot wearing lenses that could be electronically fogged, where the primary variables were field-of-view, large object 'macrotexture', and fine detail 'microtexture', in six different fields-of-view. Fundamental metrics are proposed for the quantification of the visual field, to allow comparisons between tests, simulations, and aircraft displays.

  14. Intermediate experimental vehicle, ESA program aerodynamics-aerothermodynamics key technologies for spacecraft design and successful flight

    NASA Astrophysics Data System (ADS)

    Dutheil, Sylvain; Pibarot, Julien; Tran, Dac; Vallee, Jean-Jacques; Tribot, Jean-Pierre

    2016-07-01

    With the aim of placing Europe among the world's space players in the strategic area of atmospheric re-entry, several studies on experimental vehicle concepts and improvements of critical re-entry technologies have paved the way for the flight of an experimental space craft. The successful flight of the Intermediate eXperimental Vehicle (IXV), under ESA's Future Launchers Preparatory Programme (FLPP), is definitively a significant step forward from the Atmospheric Reentry Demonstrator flight (1998), establishing Europe as a key player in this field. The IXV project objectives were the design, development, manufacture and ground and flight verification of an autonomous European lifting and aerodynamically controlled reentry system, which is highly flexible and maneuverable. The paper presents, the role of aerodynamics aerothermodynamics as part of the key technologies for designing an atmospheric re-entry spacecraft and securing a successful flight.

  15. A web interface for easy flexible protein-protein docking with ATTRACT.

    PubMed

    de Vries, Sjoerd J; Schindler, Christina E M; Chauvot de Beauchêne, Isaure; Zacharias, Martin

    2015-02-03

    Protein-protein docking programs can give valuable insights into the structure of protein complexes in the absence of an experimental complex structure. Web interfaces can facilitate the use of docking programs by structural biologists. Here, we present an easy web interface for protein-protein docking with the ATTRACT program. While aimed at nonexpert users, the web interface still covers a considerable range of docking applications. The web interface supports systematic rigid-body protein docking with the ATTRACT coarse-grained force field, as well as various kinds of protein flexibility. The execution of a docking protocol takes up to a few hours on a standard desktop computer. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  16. The NIH Science of Behavior Change Program: Transforming the science through a focus on mechanisms of change

    PubMed Central

    Nielsen, Lisbeth; Riddle, Melissa; King, Jonathan W.; Aklin, Will M.; Chen, Wen; Clark, David; Collier, Elaine; Czajkowski, Susan; Esposito, Layla; Ferrer, Rebecca; Green, Paige; Hunter, Christine; Kehl, Karen; King, Rosalind; Onken, Lisa; Simmons, Janine M.; Stoeckel, Luke; Stoney, Catherine; Tully, Lois; Weber, Wendy

    2017-01-01

    The goal of the NIH Science of Behavior Change (SOBC) Common Fund Program is to provide the basis for an experimental medicine approach to behavior change that focuses on identifying and measuring the mechanisms that underlie behavioral patterns we are trying to change. This paper frames the development of the program within a discussion of the substantial disease burden in the U.S. attributable to behavioral factors, and details our strategies for breaking down the disease- and condition-focused silos in the behavior change field to accelerate discovery and translation. These principles serve as the foundation for our vision for a unified science of behavior change at the NIH and in the broader research community. PMID:29110885

  17. Numerical implementation of the S-matrix algorithm for modeling of relief diffraction gratings

    NASA Astrophysics Data System (ADS)

    Yaremchuk, Iryna; Tamulevičius, Tomas; Fitio, Volodymyr; Gražulevičiūte, Ieva; Bobitski, Yaroslav; Tamulevičius, Sigitas

    2013-11-01

    A new numerical implementation is developed to calculate the diffraction efficiency of relief diffraction gratings. In the new formulation, vectors containing the expansion coefficients of electric and magnetic fields on boundaries of the grating layer are expressed by additional constants. An S-matrix algorithm has been systematically described in detail and adapted to a simple matrix form. This implementation is suitable for the study of optical characteristics of periodic structures by using modern object-oriented programming languages and different standard mathematical software. The modeling program has been developed on the basis of this numerical implementation and tested by comparison with other commercially available programs and experimental data. Numerical examples are given to show the usefulness of the new implementation.

  18. USAF Radiofrequency Radiation Bioeffects Research Program - A Review

    DTIC Science & Technology

    1981-12-01

    Experimental Methods--SARa have been measured in scaled saline spheroidal phantoms irradiated by the near fields of short electric monopoles above ground planes...aperture analysis might be the case where some industrial machines have an equivalent electric dipole parallel to the operator, which causes maximum...short electric monopoles on a ground plane simulating electric dipoles. Some results of these measurements are shown in Fig. 16, with the measured

  19. Mathematics Curriculum Guide for Spanish-Speaking Students, Levels E, F. Field Test. Working Draft = Guia didactica de matematicas, Niveles E, F. Edicion Experimental.

    ERIC Educational Resources Information Center

    Chicago Board of Education, IL. Dept. of Curriculum.

    The curriculum guide for mathematics instruction in the bilingual education program of the Chicago public schools is designed to assist teachers in the instruction of limited-English-speaking students in their native language. The guide outlines, for each of two levels, lessons on absolute and relative values of numbers, whole number operations,…

  20. Reliability of Next Generation Power Electronics Packaging Under Concurrent Vibration, Thermal and High Power Loads

    DTIC Science & Technology

    2008-02-01

    combined thermal g effect and initial current field. The model is implemented using Abaqus user element subroutine and verified against the experimental...Finite Element Formulation The proposed model is implemented with ABAQUS general purpose finite element program using thermal -displacement analysis...option. ABAQUS and other commercially available finite element codes do not have the capability to solve general electromigration problem directly. Thermal

  1. Summary and recent results from the NASA advanced High Speed Propeller Research Program

    NASA Technical Reports Server (NTRS)

    Mitchell, G. A.; Mikkelson, D. C.

    1982-01-01

    Advanced high-speed propellers offer large performance improvements for aircraft that cruise in the Mach 0.7 to 0.8 speed regime. The current status of the NASA research program on high-speed propeller aerodynamics, acoustics, and aeroelastics is described. Recent wind tunnel results for five 8- to 10-blade advanced models are compared with analytical predictions. Test results show that blade sweep was important in achieving net efficiencies near 80 percent at Mach 0.8 and reducing near-field cruise noise by dB. Lifting line and lifting surface aerodynamic analysis codes are under development and some initial lifting line results are compared with propeller force and probe data. Some initial laser velocimeter measurements of the flow field velocities of an 8-bladed 45 deg swept propeller are shown. Experimental aeroelastic results indicate that cascade effects and blade sweep strongly affect propeller aeroelastic characteristics. Comparisons of propeller near-field noise data with linear acoustic theory indicate that the theory adequate predicts near-field noise for subsonic tip speeds but overpredicts the noise for supersonic tip speeds. Potential large gains in propeller efficiency of 7 to 11 percent at Mach 0.8 may be possible with advanced counter-rotation propellers.

  2. Electronic Model of a Ferroelectric Field Effect Transistor

    NASA Technical Reports Server (NTRS)

    MacLeod, Todd C.; Ho, Fat Duen; Russell, Larry (Technical Monitor)

    2001-01-01

    A pair of electronic models has been developed of a Ferroelectric Field Effect transistor. These models can be used in standard electrical circuit simulation programs to simulate the main characteristics of the FFET. The models use the Schmitt trigger circuit as a basis for their design. One model uses bipolar junction transistors and one uses MOSFET's. Each model has the main characteristics of the FFET, which are the current hysterisis with different gate voltages and decay of the drain current when the gate voltage is off. The drain current from each model has similar values to an actual FFET that was measured experimentally. T'he input and o Output resistance in the models are also similar to that of the FFET. The models are valid for all frequencies below RF levels. No attempt was made to model the high frequency characteristics of the FFET. Each model can be used to design circuits using FFET's with standard electrical simulation packages. These circuits can be used in designing non-volatile memory circuits and logic circuits and is compatible with all SPICE based circuit analysis programs. The models consist of only standard electrical components, such as BJT's, MOSFET's, diodes, resistors, and capacitors. Each model is compared to the experimental data measured from an actual FFET.

  3. Experimental, Theoretical and Computational Studies of Plasma-Based Concepts for Future High Energy Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshi, Chan; Mori, W.

    2013-10-21

    This is the final report on the DOE grant number DE-FG02-92ER40727 titled, “Experimental, Theoretical and Computational Studies of Plasma-Based Concepts for Future High Energy Accelerators.” During this grant period the UCLA program on Advanced Plasma Based Accelerators, headed by Professor C. Joshi has made many key scientific advances and trained a generation of students, many of whom have stayed in this research field and even started research programs of their own. In this final report however, we will focus on the last three years of the grant and report on the scientific progress made in each of the four tasksmore » listed under this grant. Four tasks are focused on: Plasma Wakefield Accelerator Research at FACET, SLAC National Accelerator Laboratory, In House Research at UCLA’s Neptune and 20 TW Laser Laboratories, Laser-Wakefield Acceleration (LWFA) in Self Guided Regime: Experiments at the Callisto Laser at LLNL, and Theory and Simulations. Major scientific results have been obtained in each of the four tasks described in this report. These have led to publications in the prestigious scientific journals, graduation and continued training of high quality Ph.D. level students and have kept the U.S. at the forefront of plasma-based accelerators research field.« less

  4. Workshop on High-Field NMR and Biological Applications

    NASA Astrophysics Data System (ADS)

    Scientists at the Pacific Northwest Laboratory have been working toward the establishment of a new Molecular Science Research Center (MSRC). The primary scientific thrust of this new research center is in the areas of theoretical chemistry, chemical dynamics, surface and interfacial science, and studies on the structure and interactions of biological macromolecules. The MSRC will provide important new capabilities for studies on the structure of biological macromolecules. The MSRC program includes several types of advanced spectroscopic techniques for molecular structure analysis, and a theory and modeling laboratory for molecular mechanics/dynamics calculations and graphics. It is the goal to closely integrate experimental and theoretical studies on macromolecular structure, and to join these research efforts with those of the molecular biological programs to provide new insights into the structure/function relationships of biological macromolecules. One of the areas of structural biology on which initial efforts in the MSRC will be focused is the application of high field, 2-D NMR to the study of biological macromolecules. First, there is interest in obtaining 3-D structural information on large proteins and oligonucleotides. Second, one of the primary objectives is to closely link theoretical approaches to molecular structure analysis with the results obtained in experimental research using NMR and other spectroscopies.

  5. Understanding groundwater - students' pre-conceptions and conceptual change by a theory-guided multimedia learning program

    NASA Astrophysics Data System (ADS)

    Unterbruner, U.; Hilberg, S.; Schiffl, I.

    2015-11-01

    Groundwater is a crucial topic in education for sustainable development. Nevertheless, international studies with students of different ages have shown that the basic hydrogeological concept of groundwater defined as water within porous and permeable rocks is not an established everyday notion. Building upon international research a multimedia learning program ("Between the raincloud and the tap") was developed. Insights from the fields of conceptual change research, multimedia research, and the Model of Educational Reconstruction were specifically implemented. Two studies were conducted with Austrian pupils (7th grade) and teacher training students from the fields of biology and geography in order to ascertain the effectiveness of the learning program. Using a quasi-experimental research design, the participants' conceptions and knowledge regarding groundwater were determined in a pre- and post-test. The pupils and students greatly profited from independently working through the learning software. Their knowledge of groundwater increased significantly compared to the control group and there was a highly significant increase in the number of scientifically correct notions of groundwater. The acceptance of the program was also generally very high. The results speak for the fact that theory-guided multimedia learning programs can play an important role in the transfer of research results into the classroom, particularly in science education.

  6. Effect of electric and magnetic fields near an HVDC converter terminal on implanted cardiac pacemakers. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frazier, M.J.

    1980-08-01

    The electromagnetic fields associated with HVDC converters and transmission lines constitute a unique environment for persons with implanted cardiac pacemakers. A measurement program has been conducted to assess the potential interfering effects of these harmonically rich fields on implanted pacemakers. The experimental procedures that were employed take into account the combined effects of the electric and magnetic fields. The effect of the resulting body current on the response of six pacemakers was assessed in the laboratory, using a previously developed model to relate body current to pacemaker pickup voltage. The results show that R-wave pacemaker reversion can be expected atmore » some locations within the converter facility, but that a large safety margin for unperturbed pacemaker operation exists beneath the transmission lines.« less

  7. High School and Undergraduate Participation in Field Experiments as a Means of Teaching Global Change Science

    NASA Astrophysics Data System (ADS)

    Chiariello, N. R.; Gomez, W.; Field, C. B.

    2004-12-01

    Field experiments offer unique opportunities to teach undergraduates and high school students many of the principles and methods of global change science. The Jasper Ridge Global Change Experiment (JRGCE) studies the response of California grassland to four environmental factors changing globally, and has emphasized a tiered program of outreach that combines curriculum supplements, demonstration tours, sample data sets, and internship opportunities. The program emphasizes translating a complex environmental question into an experiment. High school outreach by the JRGCE has focused on the environmental studies classes at a nearby public high school. Students begin with background material via a website and in-class sessions that focus on global and regional changes in the four environmental factors incorporated in the experiment: warming, elevated CO2, increased precipitation, and nitrogen deposition. Each class also visits the experiment to see and discuss many aspects of experimental design: environmental heterogeneity, the importance of replication and randomization, the role of experimental controls, the possibility of experimental artifacts, the importance of minimally disruptive measurements, and the complexity of ecosystems and their responses to experimental treatments. These demonstration tours also emphasize hands-on measurements to illustrate how ecosystem responses to global change are quantified across a wide range of mechanisms. Finally, students use data from the experiment to test for effects of the treatments. For undergraduate classes, outreach focuses on either broad-based or more specialized demonstration tours to support their already well-developed curriculum. A few strongly interested high school students and undergraduates also conduct studies within the JRGCE under the supervision of a graduate student, postdoc, or professor. These educational activities depend crucially on three factors: 1) involvement of many members of the experiment team so that demonstration tours can be subdivided into small groups, 2) communication skills of dedicated volunteers to create and implement a broad set of educational materials, and 3) collaboration with participating teachers so that the activities merge with their curriculum. Feedback from students suggests that the outreach has been most successful when small groups of students are in the field with volunteers or researchers who engage them in well-crafted thought experiments or hands-on measurements.

  8. A sense of life: computational and experimental investigations with models of biochemical and evolutionary processes.

    PubMed

    Mishra, Bud; Daruwala, Raoul-Sam; Zhou, Yi; Ugel, Nadia; Policriti, Alberto; Antoniotti, Marco; Paxia, Salvatore; Rejali, Marc; Rudra, Archisman; Cherepinsky, Vera; Silver, Naomi; Casey, William; Piazza, Carla; Simeoni, Marta; Barbano, Paolo; Spivak, Marina; Feng, Jiawu; Gill, Ofer; Venkatesh, Mysore; Cheng, Fang; Sun, Bing; Ioniata, Iuliana; Anantharaman, Thomas; Hubbard, E Jane Albert; Pnueli, Amir; Harel, David; Chandru, Vijay; Hariharan, Ramesh; Wigler, Michael; Park, Frank; Lin, Shih-Chieh; Lazebnik, Yuri; Winkler, Franz; Cantor, Charles R; Carbone, Alessandra; Gromov, Mikhael

    2003-01-01

    We collaborate in a research program aimed at creating a rigorous framework, experimental infrastructure, and computational environment for understanding, experimenting with, manipulating, and modifying a diverse set of fundamental biological processes at multiple scales and spatio-temporal modes. The novelty of our research is based on an approach that (i) requires coevolution of experimental science and theoretical techniques and (ii) exploits a certain universality in biology guided by a parsimonious model of evolutionary mechanisms operating at the genomic level and manifesting at the proteomic, transcriptomic, phylogenic, and other higher levels. Our current program in "systems biology" endeavors to marry large-scale biological experiments with the tools to ponder and reason about large, complex, and subtle natural systems. To achieve this ambitious goal, ideas and concepts are combined from many different fields: biological experimentation, applied mathematical modeling, computational reasoning schemes, and large-scale numerical and symbolic simulations. From a biological viewpoint, the basic issues are many: (i) understanding common and shared structural motifs among biological processes; (ii) modeling biological noise due to interactions among a small number of key molecules or loss of synchrony; (iii) explaining the robustness of these systems in spite of such noise; and (iv) cataloging multistatic behavior and adaptation exhibited by many biological processes.

  9. Investigation of Dispersed and Dispersed Annular (rivulet or Thin Film) Flow Phase Separation in Tees.

    NASA Astrophysics Data System (ADS)

    McCreery, Glenn Ernest

    An experimental and analytical investigation of dispersed and dispersed-annular (rivulet or thin film) flow phase separation in tees has been successfully completed. The research was directed at, but is not specific to, determining flow conditions, following a loss of coolant accident, in the large rectangular passageways leading to vacuum buildings in the containment envelope of some CANDU nuclear reactors. The primary objectives of the research were to: (1) obtain experimental data to help formulate and test mechanistic analytical models of phase separation, and (2) develop the analytical models in computer programs which predict phase separation from upstream flow and pressure conditions and downstream and side branch pressure boundary conditions. To meet these objectives an air-water experimental apparatus was constructed, and consists of large air blowers attached to a long rectangular duct leading to a tee in the horizontal plane. A variety of phenomena was investigated including, for comparison with computer predictions, air streamlines and eddy boundary geometry, drop size spectra, macroscopic mass balances, liquid rivulet pathlines, and trajectories of drops of known size and velocity. Four separate computer programs were developed to analyze phase separation. Three of the programs are used sequentially to calculate dispersed mist phase separation in a tee. The fourth is used to calculate rivulet or thin film pathlines. Macroscopic mass balances are calculated from a summation of mass balances for drops with representative sizes (and masses) spaced across the drop size spectrum. The programs are tested against experimental data, and accurately predict gas flow fields, drop trajectories, rivulet pathlines and macroscopic mass balances. In addition to development of the computer programs, analysis was performed to specify the scaling of dispersed mist and rivulet or thin film flow, to investigate pressure losses in tees, and the inter-relationship of loss coefficients, contraction coefficients, and eddy geometry. The important transient effects of liquid storage in eddies were also analyzed.

  10. LINEAR COLLIDER PHYSICS RESOURCE BOOK FOR SNOWMASS 2001.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ABE,T.; DAWSON,S.; HEINEMEYER,S.

    The American particle physics community can look forward to a well-conceived and vital program of experimentation for the next ten years, using both colliders and fixed target beams to study a wide variety of pressing questions. Beyond 2010, these programs will be reaching the end of their expected lives. The CERN LHC will provide an experimental program of the first importance. But beyond the LHC, the American community needs a coherent plan. The Snowmass 2001 Workshop and the deliberations of the HEPAP subpanel offer a rare opportunity to engage the full community in planning our future for the next decademore » or more. A major accelerator project requires a decade from the beginning of an engineering design to the receipt of the first data. So it is now time to decide whether to begin a new accelerator project that will operate in the years soon after 2010. We believe that the world high-energy physics community needs such a project. With the great promise of discovery in physics at the next energy scale, and with the opportunity for the uncovering of profound insights, we cannot allow our field to contract to a single experimental program at a single laboratory in the world. We believe that an e{sup +}e{sup {minus}} linear collider is an excellent choice for the next major project in high-energy physics. Applying experimental techniques very different from those used at hadron colliders, an e{sup +}e{sup {minus}} linear collider will allow us to build on the discoveries made at the Tevatron and the LHC, and to add a level of precision and clarity that will be necessary to understand the physics of the next energy scale. It is not necessary to anticipate specific results from the hadron collider programs to argue for constructing an e{sup +}e{sup {minus}} linear collider; in any scenario that is now discussed, physics will benefit from the new information that e{sup +}e{sup {minus}} experiments can provide.« less

  11. Linear Collider Physics Resource Book for Snowmass 2001

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peskin, Michael E

    The American particle physics community can look forward to a well-conceived and vital program of experimentation for the next ten years, using both colliders and fixed target beams to study a wide variety of pressing questions. Beyond 2010, these programs will be reaching the end of their expected lives. The CERN LHC will provide an experimental program of the first importance. But beyond the LHC, the American community needs a coherent plan. The Snowmass 2001 Workshop and the deliberations of the HEPAP subpanel offer a rare opportunity to engage the full community in planning our future for the next decademore » or more. A major accelerator project requires a decade from the beginning of an engineering design to the receipt of the first data. So it is now time to decide whether to begin a new accelerator project that will operate in the years soon after 2010. We believe that the world high-energy physics community needs such a project. With the great promise of discovery in physics at the next energy scale, and with the opportunity for the uncovering of profound insights, we cannot allow our field to contract to a single experimental program at a single laboratory in the world. We believe that an e{sup +}e{sup -} linear collider is an excellent choice for the next major project in high-energy physics. Applying experimental techniques very different from those used at hadron colliders, an e{sup +}e{sup -} linear collider will allow us to build on the discoveries made at the Tevatron and the LHC, and to add a level of precision and clarity that will be necessary to understand the physics of the next energy scale. It is not necessary to anticipate specific results from the hadron collider programs to argue for constructing an e{sup +}e{sup -} linear collider; in any scenario that is now discussed, physics will benefit from the new information that e{sup +}e{sup -} experiments can provide.« less

  12. Understanding groundwater - students' pre-conceptions and conceptual change by means of a theory-guided multimedia learning program

    NASA Astrophysics Data System (ADS)

    Unterbruner, Ulrike; Hilberg, Sylke; Schiffl, Iris

    2016-06-01

    Education on the subject of groundwater is crucial for sustainability. Nevertheless, international studies with students across different age groups have shown that the basic hydrogeological concept of groundwater defined as water within porous and permeable rocks is not an established everyday notion. Drawing from international research, a multimedia learning program Zwischen Regenwolke und Wasserhahn (between the rain cloud and the tap) was developed, which incorporates specific insights from the fields of conceptual change research, multimedia research, and the model of educational reconstruction. The effectiveness of the learning program was ascertained by means of two studies with Austrian seventh grade pupils as well as teacher-training students from the fields of biology and geography in order to ascertain the effectiveness of the learning program. Using a quasi-experimental research design, the participants' conceptions and knowledge of groundwater were determined in a pre- and post-test. The pupils and students greatly benefitted from working through the learning software independently. Their knowledge of groundwater increased significantly compared to the control group and there was a highly significant increase in the number of scientifically correct notions of groundwater. The acceptance of the program was also generally very high. The results indicate that theory-guided multimedia learning programs can play an important role in the transfer of research results to classroom settings, especially in science education.

  13. Further Development of the Gyrotron- Powered Pellet Accelerator

    NASA Astrophysics Data System (ADS)

    Perkins, Francis

    2007-11-01

    The Gyrotron-Powered Pellet Accelerator provides an enabling technology to efficiently fuel ITER with fast pellets launched from the High Field Side (HFS) separatrix. Pellet experiments have repeatedly found that fuel efficiently is high - consistent with 100%. In contrast, Low Field Side (LFS) launch experiments find efficiencies of 50% or less. This report addresses what experimental program and what material choices can be made to retain program momentum. An initial program seeks to establish that our heterogeneous approach to conductivity works, maintaining s 1 mho/m. A demonstration of acceleration can be carried out in a very simple laboratory when the pusher material D2[Be] is replaced by LiH[C] which is a room temperature solid with a graphite particle suspension. No cryogenics or hazard chemicals. The mm-wave mirror will be graphite, the tamper is sapphire, and the payload LiD. The payload has a pellet has diameter = 3mm and a mass M = 4.4x10-4 kg which is 220 joules at V=1000 m/s. A barrel length of 15 cm completes the design specification.

  14. Rotordynamic Instability Problems in High-Performance Turbomachinery 1996

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The first rotordynamics workshop proceedings emphasized a feeling of uncertainty in predicting the stability of characteristics of high-performance turbomachinery. In the second workshop proceedings these uncertainties were reduced through programs established to systematically resolve problems, with emphasis on experimental validation of the forces that influence rotordynamics. In the third proceedings many programs for predicting or measuring forces and force coefficients in high-performance turbomachinery produced results. Data became available for designing new machines with enhanced stability characteristics or for upgrading existing machines. In the fourth proceedings there emerged trends towards a more unified view of rotordynamic instability problems and several encouraging new analytical developments. The fifth workshop supported the continuing trend toward a unified view with several new developments in the design and manufacture of new turbomachineries with enhanced stability characteristics along with new data and associated numerical/theoretical results. The sixth workshop report provided field experience and experimental results, and expanded the use of computational and control techniques with integration of damper, bearing, and eccentric seal operation results. The seventh workshop report provided field experiences, numerical, theoretical, and experimental results and control methods for seals, bearings, and dampers with some attention given to variable thermophysical properties and turbulence measurements, and introduction of two-phase flow results. In the present workshop, active magnetic bearings (AMB's) evolve into a new method of measuring rotordynamic coefficients with discussions on honeycomb seals, drop of magnetically supported rotors, seals, bearings and dampers with new data being reported. The intent of the workshop and this proceedings is to provide a continuing impetus for an understanding and resolution of these problems.

  15. Crew behavior and performance in space analog environments

    NASA Technical Reports Server (NTRS)

    Kanki, Barbara G.

    1992-01-01

    The objectives and the current status of the Crew Factors research program conducted at NASA-Ames Research Center are reviewed. The principal objectives of the program are to determine the effects of a broad class of input variables on crew performance and to provide guidance with respect to the design and management of crews assigned to future space missions. A wide range of research environments are utilized, including controlled experimental settings, high fidelity full mission simulator facilities, and fully operational field environments. Key group processes are identified, and preliminary data are presented on the effect of crew size, type, and structure on team performance.

  16. PREFACE: 30th Winter Workshop on Nuclear Dynamics (WWND2014)

    NASA Astrophysics Data System (ADS)

    Bellwied, Rene; Geurts, Frank; Timmins, Anthony

    2014-09-01

    These are the proceedings of the 30th Winter Workshop on Nuclear Dynamics, which was held in Galveston, Texas, in April 2014. As in previous years, the unique character of this conference series has allowed us to bring together nuclear scientists with very different interests to discuss recent progress and scientific achievements. Out of the 67 contributions at WWND 2014 we have selected these 34 manuscripts. The topics capture the range of theoretical and experimental advances in our field. On the experimental side we saw very exciting results from the RHIC beam energy scan program and the p-p, p-Pb and Pb-Pb runs at the highest collision energies at the LHC. On the theory side the system size dependence of the experimental measurements led to a detailed evaluation of the initial conditions and plasma propagation using a wide variety of phenomenological approaches. These results were complemented by the most recent continuum extrapolated data from lattice in order to model the complete evolution of the relativistic heavy ion system. These proceedings of the 30th Winter Workshop on Nuclear Dynamics again provide a snapshot of the status of the field. The articles, many of which were written by some of the most promising young scientists in the field, are documenting the excitement and achievements that are characteristic for modern day nuclear science. Rene Bellwied (University of Houston) Frank Geurts (Rice University) Anthony Timmins (University of Houston)

  17. Monitoring and modeling of long-term settlements of an experimental landfill in Brazil.

    PubMed

    Simões, Gustavo Ferreira; Catapreta, Cícero Antônio Antunes

    2013-02-01

    Settlement evaluation in sanitary landfills is a complex process, due to the waste heterogeneity, time-varying properties and influencing factors and mechanisms, such as mechanical compression due to load application and creep, and physical-chemical and biological processes caused by the wastes decomposition. Many empirical models for the analysis of long-term settlement in landfills are reported in the literature. This paper presents the results of a settlement monitoring program carried out during 6 years in Belo Horizonte experimental landfill. Different sets of field data were used to calibrate three long-term settlement prediction models (rheological, hyperbolic and composite). The parameters obtained in the calibration were used to predict the settlements and to compare with actual field data. During the monitoring period of 6 years, significant vertical strains were observed (of up to 31%) in relation to the initial height of the experimental landfill. The results for the long-term settlement prediction obtained by the hyperbolic and rheological models significantly underestimate the settlements, regardless the period of data used in the calibration. The best fits were obtained with the composite model, except when 1 year field data were used in the calibration. The results of the composite model indicate settlements stabilization at larger times and with larger final settlements when compared to the hyperbolic and rheological models. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Soviet ionospheric modification research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duncan, L.M.; Carlson, H.C.; Djuth, F.T.

    1988-07-01

    Soviet published literature in ionospheric modification research by high-power radio waves is assessed, including an evaluation of its impact on and applications to future remote-sensing and telecommunications systems. This assessment is organized to place equal emphasis on basic research activities, designed to investigate both the natural geophysical environment and fundamental plasma physics; advanced research programs, such as those studying artificial ionization processes and oblique high-power radio propagation and practical system applications and operational limitations addressed by this research. The assessment indicates that the Soviet Union sustains high-quality theoretical and experimental research programs in ionospheric modification, with a breadth and levelmore » of effort greatly exceeding comparable Western programs. Soviet theoretical research tends to be analytical and intuitive, as compared to the Western emphasis on numerical simulation techniques. The Soviet experimental approach is less exploratory, designed principally to confirm theoretical predictions. Although limited by inferior diagnostic capabilities, Soviet experimental facilities are more numerous, operate on a more regular basis, and transmit radio wave powers exceeding those os Western facilities. Because of its broad scope of activity, the Soviet Union is better poised to quickly exploit new technologies and system applications as they are developed. This panel has identified several key areas of Soviet research activity and emerging technology that may offer long-term opportunities for remote-sensing and telecommunications advantages. However, we have found no results that suggest imminent breakthrough discoveries in these fields.« less

  19. Technical Note: Experimental results from a prototype high-field inline MRI-linac

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liney, G. P., E-mail: gary.liney@sswahs.nsw.gov.au

    Purpose: The pursuit of real-time image guided radiotherapy using optimal tissue contrast has seen the development of several hybrid magnetic resonance imaging (MRI)-treatment systems, high field and low field, and inline and perpendicular configurations. As part of a new MRI-linac program, an MRI scanner was integrated with a linear accelerator to enable investigations of a coupled inline MRI-linac system. This work describes results from a prototype experimental system to demonstrate the feasibility of a high field inline MR-linac. Methods: The magnet is a 1.5 T MRI system (Sonata, Siemens Healthcare) was located in a purpose built radiofrequency (RF) cage enablingmore » shielding from and close proximity to a linear accelerator with inline (and future perpendicular) orientation. A portable linear accelerator (Linatron, Varian) was installed together with a multileaf collimator (Millennium, Varian) to provide dynamic field collimation and the whole assembly built onto a stainless-steel rail system. A series of MRI-linac experiments was performed to investigate (1) image quality with beam on measured using a macropodine (kangaroo) ex vivo phantom; (2) the noise as a function of beam state measured using a 6-channel surface coil array; and (3) electron contamination effects measured using Gafchromic film and an electronic portal imaging device (EPID). Results: (1) Image quality was unaffected by the radiation beam with the macropodine phantom image with the beam on being almost identical to the image with the beam off. (2) Noise measured with a surface RF coil produced a 25% elevation of background intensity when the radiation beam was on. (3) Film and EPID measurements demonstrated electron focusing occurring along the centerline of the magnet axis. Conclusions: A proof-of-concept high-field MRI-linac has been built and experimentally characterized. This system has allowed us to establish the efficacy of a high field inline MRI-linac and study a number of the technical challenges and solutions.« less

  20. Anti-levitation of Landau levels in vanishing magnetic fields

    NASA Astrophysics Data System (ADS)

    Pan, W.; Baldwin, K. W.; West, K. W.; Pfeiffer, L. N.; Tsui, D. C.

    Soon after the discovery of the quantum Hall effects in two-dimensional electron systems, the question on the fate of the extended states in a Landau level in vanishing magnetic (B) field arose. Many theoretical models have since been proposed, and experimental results remain inconclusive. In this talk, we report experimental observation of anti-levitation behavior of Landau levels in vanishing B fields (down to as low as B 58 mT) in a high quality heterojunction insulated-gated field-effect transistor (HIGFET). We observed that, in the Landau fan diagram of electron density versus magnetic field, the positions of the magneto-resistance minima at Landau level fillings ν = 4, 5, 6 move below the ``traditional'' Landau level line to lower electron densities. This clearly differs from what was observed in the earlier experiments where in the same Landau fan plot the density moved up. Our result strongly supports the anti-levitation behavior predicted recently. Moreover, the even and odd Landau level filling states show quantitatively different behaviors in anti-levitation, suggesting that the exchange interactions, which are important at odd fillings, may play a role. SNL is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energys National Nuclear Security Administration under contract DE-AC04-94AL85000.

  1. Excitation of the ionospheric Alfvén resonator from the ground: Theory and experiments

    NASA Astrophysics Data System (ADS)

    Streltsov, A. V.; Chang, C.-L.; Labenski, J.; Milikh, G.; Vartanyan, A.; Snyder, A. L.

    2011-10-01

    We report results from numerical and experimental studies of the excitation of ULF shear Alfvén waves inside the ionospheric Alfvén resonator (IAR) by heating the ionosphere with powerful HF waves launched from the High Frequency Active Auroral Research Program (HAARP) facility in Alaska. Numerical simulations of the two-fluid MHD model describing IAR in a dipole magnetic field geometry with plasma parameters taken from the observations at HAARP during the October-November 2010 experimental campaign reveal that the IAR quality is higher during nighttime conditions, when the ionospheric conductivity is very low. Simulations also reveal that the resonance wave cannot be identified from the magnetic measurements on the ground or at an altitude above 600 km because the magnetic field in this wave has nodes on both ends of the resonator, and the best way to detect IAR modes is by measuring the electric field on low Earth orbit satellites. These theoretical predictions are in good, quantitative agreement with results from observations: In particular, (1) observations from the ground-based magnetometer at the HAARP site demonstrate no significant difference in the amplitudes of the magnetic field generated by HAARP in the frequency range from 0 to 5 Hz, and (2) the DEMETER satellite detected the electric field of the IAR first harmonic at an altitude of 670 km above HAARP during the heating experiment.

  2. Excitation of Ionospheric Alfvén Resonator with HAARP

    NASA Astrophysics Data System (ADS)

    Streltsov, A. V.; Chang, C.; Labenski, J.; Milikh, G. M.; Vartanyan, A.; Snyder, A. L.

    2011-12-01

    We report results from numerical and experimental studies of the excitation of ULF waves inside the ionospheric Alfvén resonator (IAR) by heating the ionosphere with powerful HF waves launched from the High Frequency Active Auroral Research Program (HAARP) facility in Alaska. Numerical simulations of the two-fluid MHD model describing IAR in a dipole magnetic field geometry with plasma parameters taken from the observations at HAARP during October-November 2010 experimental campaign reveal that the IAR quality is higher during night-time conditions, when the ionospheric conductivity is very low. Simulations also reveal that the resonance wave cannot be identified from the magnetic measurements on the ground or at an altitude above 600 km because the magnetic field in this wave has nodes on both ends of the resonator, and the best way to detect IAR modes is by measuring the electric field on low-Earth-orbit satellites. These theoretical predictions are in good, quantitative agreement with results from observations: In particular, 1) observations from the ground-based magnetometer at the HAARP site demonstrate no any significant difference in the amplitudes of the magnetic field generated by HAARP in the frequency range from 0 to 5 Hz, and 2) the DEMETER satellite detected the electric field of the IAR first harmonic at an altitude of 670 km above HAARP during the heating experiment.

  3. Experimental and Numerical Study of Wind and Turbulence in a Near-Field Dispersion Campaign at an Inhomogeneous Site

    NASA Astrophysics Data System (ADS)

    Wei, Xiao; Dupont, Eric; Gilbert, Eric; Musson-Genon, Luc; Carissimo, Bertrand

    2016-09-01

    We present a detailed experimental and numerical study of the local flow field for a pollutant dispersion experimental program conducted at SIRTA (Site Instrumental de Recherche par Télédétection Atmosphérique), a complex and intensively instrumented site in a southern suburb of Paris. Global analysis of continuous measurements over 2 years highlights the impact of terrain heterogeneity on wind and turbulence. It shows that the forest to the north of the experimental field induces strong directional shear and wind deceleration below the forest canopy height. This directional shear is stronger with decreasing height and decreasing distance from the forest edge. Numerical simulations are carried out using Code_Saturne, a computational fluid dynamics code, in Reynolds-averaged Navier-Stokes mode with a standard k{-}ɛ closure and a canopy model, in neutral and stable stratifications. These simulations are shown to reproduce globally well the characteristics of the mean flow, especially the directional wind shear in northeasterly and northwesterly cases and the turbulent kinetic energy increase induced by the forest. However, they slightly underestimate wind speed and the directional shear of the flow below the forest canopy height. Sensitivity studies are performed to investigate the influence of leaf area density, inlet stability condition, and roughness length. These studies show that the typical features of the canopy flow become more pronounced as canopy density increases. Performance statistics indicate that the impact of the forest and adequate inlet profiles are the most important factors in the accurate reproduction of flow at the site, especially under stable stratification.

  4. Evaluation of advanced materials through experimental mechanics and modelling

    NASA Technical Reports Server (NTRS)

    Yang, Yii-Ching

    1993-01-01

    Composite materials have been frequently used in aerospace vehicles. Very often defects are inherited during the manufacture and damages are inherited during the construction and services. It becomes critical to understand the mechanical behavior of such composite structure before it can be further used. One good example of these composite structures is the cylindrical bottle of solid rocket motor case with accidental impact damages. Since the replacement of this cylindrical bottle is expensive, it is valuable to know how the damages affects the material, and how it can be repaired. To reach this goal, the damage must be characterized and the stress/strain field must be carefully analyzed. First the damage area, due to impact, is surveyed and identified with a shearography technique which uses the principle of speckle shearing interferometry to measure displacement gradient. Within the damage area of a composite laminate, such as the bottle of solid rocket motor case, all layers are considered to be degraded. Once a lamina being degraded the stiffness as well as strength will be drastically decreased. It becomes a critical area of failure to the whole bottle. And hence the stress/strain field within and around a damage should be accurately evaluated for failure prediction. To investigate the stress/strain field around damages a Hybrid-Numerical method which combines experimental measurement and finite element analysis is used. It is known the stress or strain at the singular point can not be accurately measured by an experimental technique. Nevertheless, if the location is far away from the singular spot, the displacement can be found accurately. Since it reflects the true displacement field locally regardless of the boundary conditions, it is an excellent input data for a finite element analysis to replace the usually assumed boundary conditions. Therefore, the Hybrid-Numerical method is chosen to avoid the difficulty and to take advantage of both experimental technique and finite element analysis. Experimentally, the digital image correlation technique is employed to measure the displacement field. It is done by comparing two digitized images, before and after loading. Numerically, the finite element program, ABAQUS (version 5.2), is used to analyze the stress and strain field. It takes advantage of the high speed and huge memory size of modern supercomputer, CRAY Y-MP, at NASA Marshall Space Flight Center.

  5. Numerical Modeling of Ultra Wideband Combined Antennas

    NASA Astrophysics Data System (ADS)

    Zorkal'tseva, M. Yu.; Koshelev, V. I.; Petkun, A. A.

    2017-12-01

    With the help of a program we developed, based on the finite difference method in the time domain, we have investigated the characteristics of ultra wideband combined antennas in detail. The antennas were developed to radiate bipolar pulses with durations in the range 0.5-3 ns. Data obtained by numerical modeling are compared with the data of experimental studies on antennas and have been used in the synthesis of electromagnetic pulses with maximum field strength.

  6. Teaching biomedical applications to secondary students.

    PubMed

    Openshaw, S; Fleisher, A; Ljunggren, C

    1999-01-01

    Certain aspects of biomedical engineering applications lend themselves well to experimentation that can be done by high school students. This paper describes two experiments done during a six-week summer internship program in which two high school students used electrodes, circuit boards, and computers to mimic a sophisticated heart monitor and also to control a robotic car. Our experience suggests that simple illustrations of complex instrumentation can be effective in introducing adolescents to the biomedical engineering field.

  7. Experimental and Analytical Determination of the Geometric Far Field for Round Jets

    NASA Technical Reports Server (NTRS)

    Koch, L. Danielle; Bridges, James E.; Brown, Clifford E.; Khavaran, Abbas

    2005-01-01

    An investigation was conducted at the NASA Glenn Research Center using a set of three round jets operating under unheated subsonic conditions to address the question: "How close is too close?" Although sound sources are distributed at various distances throughout a jet plume downstream of the nozzle exit, at great distances from the nozzle the sound will appear to emanate from a point and the inverse-square law can be properly applied. Examination of normalized sound spectra at different distances from a jet, from experiments and from computational tools, established the required minimum distance for valid far-field measurements of the sound from subsonic round jets. Experimental data were acquired in the Aeroacoustic Propulsion Laboratory at the NASA Glenn Research Center. The WIND computer program solved the Reynolds-Averaged Navier-Stokes equations for aerodynamic computations; the MGBK jet-noise prediction computer code was used to predict the sound pressure levels. Results from both the experiments and the analytical exercises indicated that while the shortest measurement arc (with radius approximately 8 nozzle diameters) was already in the geometric far field for high-frequency sound (Strouhal number >5), low-frequency sound (Strouhal number <0.2) reached the geometric far field at a measurement radius of at least 50 nozzle diameters because of its extended source distribution.

  8. Virginia physical science teachers' content knowledge assessment and professional development preferences

    NASA Astrophysics Data System (ADS)

    Hendrick, M. Georgeann

    The course content for middle school physical science in Virginia is defined by the Standards of Learning. These eleven categories include topics in scientific experimentation, the nature of matter, chemistry and physics. Content knowledge is essential if teachers are to provide effective teaching, which includes analogies, illustrations, examples, and most importantly, hands-on experimentation. One means of assessing teacher content knowledge is by determining their academic major and minor. Teachers lacking a major or minor in the classes they teach are defined as "out-of-field" by Ingersoll (1996). When he examined data for middle school physical science teachers, 74% were "out-of-field." This survey study had two major facets. First, Virginia teachers were asked to assess their content knowledge in all eleven categories. They were also asked to provide descriptive and demographic data about themselves (including their academic degrees) and their schools. Secondly, the teachers were asked for their professional development preferences as well as organizational logistics including location, time, other participants, and use of technology. The survey was mailed to each school containing an eighth grade within the Commonwealth. The survey response rate was 73%. The data was analyzed descriptively and analytically, using frequency, percentages, T-tests, and ANOVA. Three major findings emerged. (1) The three areas which teachers assessed as lowest content knowledge included PS.11 (Electricity and Magnetism), PS.9 (Light), and PS.8 (Sound). These exactly match the three topics most desired for professional development. (2) Based on Ingersoll's definition, 68% of Virginia's teachers are providing "out-of-field" instruction. In addition, teachers with fewer years of teaching experience or mixed assignments, and/or those teaching in smaller, more rural schools report lower content knowledge. (3) Teachers desire professional development in all eleven categories. They are especially interested in programs which provide hands-on materials. Programs should be organized locally, enabling them to create collaborative teams. This study highlights the importance of professional development support for teachers who often lack an in-depth academic background in the physical sciences. This teacher input should inform program developers. In addition, inquiry into changing student SOL scores after teachers attend such programs could continue this line of inquiry.

  9. Melt Stabilization of PbSnTe in a Magnetic Field

    NASA Technical Reports Server (NTRS)

    Fripp, Archibald L.; Debnam, William J.; Rosch, William; Chait, Arnon; Yao, Minwu; Szofran, Frank R.

    1999-01-01

    Both the experimental observation and numerical simulation indicate that the Bridgman growth of PbSnTe under the microgravity environment in space is still greatly influenced by buoyancy-induced convection. The application of a magnetic field during the semiconductor growth can dampen the convective flow in the metal-like melt. However, for Bridgman growth of PbSnTe on earth (with either vertical or horizontal configuration), both experimental observation and numerical modeling suggest that even with a strong magnetic furnace (5-Tesla constant axial magnetic field), the convective flow in the melt still cannot be sufficiently suppressed to reach the diffusion-controlled level. In order to completely dampen the buoyancy-induced convection on earth, estimates based on scaling analysis indicate that for common experimental conditions, an extremely high magnetic field is required, far beyond the capacity of the experimental apparatus currently available. Therefore, it is proposed that only the combination of microgravity environment and magnetic damping will produce the desired diffusion-controlled growth state for this particular material. The primary objectives of this study are to provide a quantitative understanding of the complex transport phenomena during solidification of non-dilute binarys, to furnish a numerical tool for furnace design and growth condition optimization, to provide estimates of the required magnetic field strength for low gravity growth, and to assess the role of magnetic damping for space and earth control of the double-diffusive convection. As an integral part of a NASA research program, our numerical simulation supports both the flight and ground-based experiments in an effort to bring together a complete picture of the complex physical phenomena involved in the crystal growth process. For Bridgman growth of PbSnTe under microgravity (with both vertical and horizontal configurations), the simulations suggest that a moderate axial magnetic field of only a few kilo-Gauss in strength could effectively eliminate buoyancy-induced convection in the melt and control solute segregation. Therefore, this work confirms the idea that the combination of microgravity environment and the magnetic damping will indeed be sufficient to produce the desired diffusion-controlled growth state for PbSnTe.

  10. Turbofan forced mixer lobe flow modeling. 1: Experimental and analytical assessment

    NASA Technical Reports Server (NTRS)

    Barber, T.; Paterson, R. W.; Skebe, S. A.

    1988-01-01

    A joint analytical and experimental investigation of three-dimensional flowfield development within the lobe region of turbofan forced mixer nozzles is described. The objective was to develop a method for predicting the lobe exit flowfield. In the analytical approach, a linearized inviscid aerodynamical theory was used for representing the axial and secondary flows within the three-dimensional convoluted mixer lobes and three-dimensional boundary layer analysis was applied thereafter to account for viscous effects. The experimental phase of the program employed three planar mixer lobe models having different waveform shapes and lobe heights for which detailed measurements were made of the three-dimensional velocity field and total pressure field at the lobe exit plane. Velocity data was obtained using Laser Doppler Velocimetry (LDV) and total pressure probing and hot wire anemometry were employed to define exit plane total pressure and boundary layer development. Comparison of data and analysis was performed to assess analytical model prediction accuracy. As a result of this study a planar mixed geometry analysis was developed. A principal conclusion is that the global mixer lobe flowfield is inviscid and can be predicted from an inviscid analysis and Kutta condition.

  11. Developments in new aircraft tire tread materials. [fatigue life of elastomeric materials

    NASA Technical Reports Server (NTRS)

    Yager, T. J.; Mccarty, J. L.; Riccitiello, S. R.; Golub, M. A.

    1976-01-01

    Comparative laboratory and field tests were conducted on experimental and state-of-the-art aircraft tire tread materials in a program aimed at seeking new elastomeric materials which would provide improved aircraft tire tread wear, traction, and blowout resistance in the interests of operational safety and economy. The experimental stock was formulated of natural rubber and amorphous vinyl polybutadiene to provide high thermal-oxidative resistance, a characteristic pursued on the premise that thermal oxidation is involved both in the normal abrasion or wear of tire treads and probably in the chain of events leading to blowout failures. Results from the tests demonstrate that the experimental stock provided better heat buildup (hysteresis) and fatigue properties, at least equal wet and dry traction, and greater wear resistance than the state-of-the-art stock.

  12. Experimental Lithium-Ion Battery Developed for Demonstration at the 2007 NASA Desert Research and Technology Studies (D-RATS) Program

    NASA Technical Reports Server (NTRS)

    Bennett, William R.; Baldwin, Richard S.

    2010-01-01

    The NASA Glenn Research Center (GRC) Electrochemistry Branch designed and built five lithium-ion battery packs for demonstration in spacesuit simulators as a part of the 2007 Desert Research and Technology Studies (D-RATS) activity at Cinder Lake, Arizona. The experimental batteries incorporated advanced, NASA-developed electrolytes and included internal protection against over-current, overdischarge and over-temperature. The 500-g experimental batteries were designed to deliver a constant power of 22 W for 2.5 hr with a minimum voltage of 13 V. When discharged at the maximum expected power output of 38.5 W, the batteries operated for 103 min of discharge time, achieving a specific energy of 130 Wh/kg. This report summarizes design details and safety considerations. Results for field trials and laboratory testing are summarized.

  13. Louisiana NASA EPSCoR Preparation Grant

    NASA Technical Reports Server (NTRS)

    Wefel, John P.; Savoie, E. Joseph

    2002-01-01

    In August, 1999, the National Aeronautics and Space Administration issued a Cooperative Agreement (CA) to the State of Louisiana, through the Louisiana Board of Regents (BOB), for the performance of scientific research and graduate fellowships under the NASA Experimental Program to Stimulate Competitive Research (EPSCoR) -- Preparation Grant. Originally constructed as a one year program, with an optional one year continuation, this federal-state partnership culminated on 14 August 2002, including a successful continuation proposal and a no cost extension. The total value of the project reached $450K in NASA funding, matched by state funds and institutional contributions. The purpose of the Preparation Grant program was to develop and nurture strong research ties between the state and NASA field centers and Enterprises, in order to prepare for the upcoming full competition for NASA EPSCoR.

  14. The NIH Science of Behavior Change Program: Transforming the science through a focus on mechanisms of change.

    PubMed

    Nielsen, Lisbeth; Riddle, Melissa; King, Jonathan W; Aklin, Will M; Chen, Wen; Clark, David; Collier, Elaine; Czajkowski, Susan; Esposito, Layla; Ferrer, Rebecca; Green, Paige; Hunter, Christine; Kehl, Karen; King, Rosalind; Onken, Lisa; Simmons, Janine M; Stoeckel, Luke; Stoney, Catherine; Tully, Lois; Weber, Wendy

    2018-02-01

    The goal of the NIH Science of Behavior Change (SOBC) Common Fund Program is to provide the basis for an experimental medicine approach to behavior change that focuses on identifying and measuring the mechanisms that underlie behavioral patterns we are trying to change. This paper frames the development of the program within a discussion of the substantial disease burden in the U.S. attributable to behavioral factors, and details our strategies for breaking down the disease- and condition-focused silos in the behavior change field to accelerate discovery and translation. These principles serve as the foundation for our vision for a unified science of behavior change at the NIH and in the broader research community. Copyright © 2017. Published by Elsevier Ltd.

  15. Monte Carlo simulation of TrueBeam flattening-filter-free beams using varian phase-space files: comparison with experimental data.

    PubMed

    Belosi, Maria F; Rodriguez, Miguel; Fogliata, Antonella; Cozzi, Luca; Sempau, Josep; Clivio, Alessandro; Nicolini, Giorgia; Vanetti, Eugenio; Krauss, Harald; Khamphan, Catherine; Fenoglietto, Pascal; Puxeu, Josep; Fedele, David; Mancosu, Pietro; Brualla, Lorenzo

    2014-05-01

    Phase-space files for Monte Carlo simulation of the Varian TrueBeam beams have been made available by Varian. The aim of this study is to evaluate the accuracy of the distributed phase-space files for flattening filter free (FFF) beams, against experimental measurements from ten TrueBeam Linacs. The phase-space files have been used as input in PRIMO, a recently released Monte Carlo program based on the PENELOPE code. Simulations of 6 and 10 MV FFF were computed in a virtual water phantom for field sizes 3 × 3, 6 × 6, and 10 × 10 cm(2) using 1 × 1 × 1 mm(3) voxels and for 20 × 20 and 40 × 40 cm(2) with 2 × 2 × 2 mm(3) voxels. The particles contained in the initial phase-space files were transported downstream to a plane just above the phantom surface, where a subsequent phase-space file was tallied. Particles were transported downstream this second phase-space file to the water phantom. Experimental data consisted of depth doses and profiles at five different depths acquired at SSD = 100 cm (seven datasets) and SSD = 90 cm (three datasets). Simulations and experimental data were compared in terms of dose difference. Gamma analysis was also performed using 1%, 1 mm and 2%, 2 mm criteria of dose-difference and distance-to-agreement, respectively. Additionally, the parameters characterizing the dose profiles of unflattened beams were evaluated for both measurements and simulations. Analysis of depth dose curves showed that dose differences increased with increasing field size and depth; this effect might be partly motivated due to an underestimation of the primary beam energy used to compute the phase-space files. Average dose differences reached 1% for the largest field size. Lateral profiles presented dose differences well within 1% for fields up to 20 × 20 cm(2), while the discrepancy increased toward 2% in the 40 × 40 cm(2) cases. Gamma analysis resulted in an agreement of 100% when a 2%, 2 mm criterion was used, with the only exception of the 40 × 40 cm(2) field (∼95% agreement). With the more stringent criteria of 1%, 1 mm, the agreement reduced to almost 95% for field sizes up to 10 × 10 cm(2), worse for larger fields. Unflatness and slope FFF-specific parameters are in line with the possible energy underestimation of the simulated results relative to experimental data. The agreement between Monte Carlo simulations and experimental data proved that the evaluated Varian phase-space files for FFF beams from TrueBeam can be used as radiation sources for accurate Monte Carlo dose estimation, especially for field sizes up to 10 × 10 cm(2), that is the range of field sizes mostly used in combination to the FFF, high dose rate beams.

  16. 34 CFR 387.1 - What is the Experimental and Innovative Training Program?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 34 Education 2 2014-07-01 2013-07-01 true What is the Experimental and Innovative Training Program...) OFFICE OF SPECIAL EDUCATION AND REHABILITATIVE SERVICES, DEPARTMENT OF EDUCATION EXPERIMENTAL AND INNOVATIVE TRAINING General § 387.1 What is the Experimental and Innovative Training Program? This program is...

  17. 34 CFR 387.1 - What is the Experimental and Innovative Training Program?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 2 2011-07-01 2010-07-01 true What is the Experimental and Innovative Training Program...) OFFICE OF SPECIAL EDUCATION AND REHABILITATIVE SERVICES, DEPARTMENT OF EDUCATION EXPERIMENTAL AND INNOVATIVE TRAINING General § 387.1 What is the Experimental and Innovative Training Program? This program is...

  18. Modeling of Diamond Field-Emitter-Arrays for high brightness photocathode applications

    NASA Astrophysics Data System (ADS)

    Kwan, Thomas; Huang, Chengkun; Piryatinski, Andrei; Lewellen, John; Nichols, Kimberly; Choi, Bo; Pavlenko, Vitaly; Shchegolkov, Dmitry; Nguyen, Dinh; Andrews, Heather; Simakov, Evgenya

    2017-10-01

    We propose to employ Diamond Field-Emitter-Arrays (DFEAs) as high-current-density ultra-low-emittance photocathodes for compact laser-driven dielectric accelerators capable of generating ultra-high brightness electron beams for advanced applications. We develop a semi-classical Monte-Carlo photoemission model for DFEAs that includes carriers' transport to the emitter surface and tunneling through the surface under external fields. The model accounts for the electronic structure size quantization affecting the transport and tunneling process within the sharp diamond tips. We compare this first principle model with other field emission models, such as the Child-Langmuir and Murphy-Good models. By further including effects of carrier photoexcitation, we perform simulations of the DFEAs' photoemission quantum yield and the emitted electron beam. Details of the theoretical model and validation against preliminary experimental data will be presented. Work ssupported by LDRD program at LANL.

  19. On the search for the electric dipole moment of strange and charm baryons at LHC

    NASA Astrophysics Data System (ADS)

    Botella, F. J.; Garcia Martin, L. M.; Marangotto, D.; Martinez Vidal, F.; Merli, A.; Neri, N.; Oyanguren, A.; Ruiz Vidal, J.

    2017-03-01

    Permanent electric dipole moments (EDMs) of fundamental particles provide powerful probes for physics beyond the Standard Model. We propose to search for the EDM of strange and charm baryons at LHC, extending the ongoing experimental program on the neutron, muon, atoms, molecules and light nuclei. The EDM of strange Λ baryons, selected from weak decays of charm baryons produced in p p collisions at LHC, can be determined by studying the spin precession in the magnetic field of the detector tracking system. A test of CPT symmetry can be performed by measuring the magnetic dipole moment of Λ and \\overline{Λ} baryons. For short-lived {Λ} ^+c and {Ξ} ^+c baryons, to be produced in a fixed-target experiment using the 7 TeV LHC beam and channeled in a bent crystal, the spin precession is induced by the intense electromagnetic field between crystal atomic planes. The experimental layout based on the LHCb detector and the expected sensitivities in the coming years are discussed.

  20. Performance Improvement of Diagonal Type MHD Generator by Modification of PTO Electrode Configuration

    NASA Astrophysics Data System (ADS)

    Takahashi, Toru; Fujino, Takayasu; Ishikawa, Motoo

    Time dependent three-dimensional numerical analysis is carried out in order to clarify causes of voltage loss occurring near power takeoff regions and to suggest how to reduce the voltage loss for the scramjet engine driven MHD generator which was developed under the hypersonic vehicle electric power system program in USA. The numerical results under the experimental condition show that the local positive electric field is induced near the power takeoff electrodes. The phenomenon is due to the electric field loss by the high electric current through the weakly ionized plasma with low temperature and also by the low electromotive force near the power takeoff electrodes. When the configuration of power takeoff electrodes is modified, the current density near the power takeoff electrodes becomes small and the electromotive force becomes strong. The electric power output under the optimum electrode configuration of power takeoff is improved by 22 percent, compared with the value under the experimental condition.

  1. Charged lepton mixing - an experimental overview

    NASA Astrophysics Data System (ADS)

    Rusu, Vadim

    2015-04-01

    Exploring the flavor sector of the Standard Model has always been a powerful probe in particle physics. Searches for charged leptons mixing, in particular muon decays, effectively pioneered this program almost 100 years ago. Still, even what one might consider, naively, simple questions, like why three lepton generations, are left unanswered. We do know now that neutral leptons (neutrinos) mix. We also know that, in all likelihood, the physics behind charged lepton mixing is also somehow responsible for generating neutrino masses. Not surprisingly, a revived interest in this field is currently under way, with experiments either ongoing or at planning stage throughout the world. The advent of powerful high intensity beams opens up new venues for exploration. Coupled with clever experimental ideas, sensitivities that were previously impossible to attain, are now within reach. I will review here the current status of charged lepton mixing experiments, what should we expect from the next generation projects and my view on how the field will progress in the future.

  2. Technical basis for external dosimetry at the Waste Isolation Pilot Plant (WIPP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradley, E.W.; Wu, C.F.; Goff, T.E.

    1993-12-31

    The WIPP External Dosimetry Program, administered by Westinghouse Electric Corporation, Waste Isolation Division, for the US Department of Energy (DOE), provides external dosimetry support services for operations at the Waste Isolation Pilot Plant (WIPP) Site. These operations include the receipt, experimentation with, storage, and disposal of transuranic (TRU) wastes. This document describes the technical basis for the WIPP External Radiation Dosimetry Program. The purposes of this document are to: (1) provide assurance that the WIPP External Radiation Dosimetry Program is in compliance with all regulatory requirements, (2) provide assurance that the WIPP External Radiation Dosimetry Program is derived from amore » sound technical base, (3) serve as a technical reference for radiation protection personnel, and (4) aid in identifying and planning for future needs. The external radiation exposure fields are those that are documented in the WIPP Final Safety Analysis Report.« less

  3. The aerodynamic characteristics of large angled cones with retrorockets

    NASA Technical Reports Server (NTRS)

    Jarvinen, P. O.; Adams, R. H.

    1970-01-01

    Analytical and experimental phases of the subject investigation are described. The analytical program for the single jet determines the terminal shock location, the jet boundary, the interface profile, the bow shock profile, the shear layer growth and the dead air region pressure. The experimental program described was conducted over the range from free stream Mach 0.4 to 2.0 at angles-of-attack up to 18 deg and at thrusting coefficients up to C sub T = T/q sub infinity A sub m = 30. Variables investigated included aeroshell angle, number of nozzles, engine thrust, size of nozzles, nozzle throttling and gas composition. The influence of these variables on the aeroshell stability, drag, and loads was determined by integrating pressure measurements on the aeroshell. The total system forces consist of components due to pure thrust and components due to pressure on the aeroshell arising from the jet-free stream interaction. Shadowgraphs provided flow field geometries which proved to be within 10% of those predicted analytically.

  4. Fizeau simultaneous phase-shifting interferometry based on extended source

    NASA Astrophysics Data System (ADS)

    Wang, Shanshan; Zhu, Qiudong; Hou, Yinlong; Cao, Zheng

    2016-09-01

    Coaxial Fizeau simultaneous phase-shifting interferometer plays an important role in many fields for its characteristics of long optical path, miniaturization, and elimination of reference surface high-frequency error. Based on the matching of coherence between extended source and interferometer, orthogonal polarization reference wave and measurement wave can be obtained by Fizeau interferometry with Michelson interferometer preposed. Through matching spatial coherence length between preposed interferometer and primary interferometer, high contrast interference fringes can be obtained and additional interference fringes can be eliminated. Thus, the problem of separation of measurement and reference surface in the common optical path Fizeau interferometer is solved. Numerical simulation and principle experiment is conducted to verify the feasibility of extended source interferometer. Simulation platform is established by using the communication technique of DDE (dynamic data exchange) to connect Zemax and Matlab. The modeling of the extended source interferometer is realized by using Zemax. Matlab codes are programmed to automatically rectify the field parameters of the optical system and conveniently calculate the visibility of interference fringes. Combined with the simulation, the experimental platform of the extended source interferometer is established. After experimental research on the influence law of scattering screen granularity to interference fringes, the granularity of scattering screen is determined. Based on the simulation platform and experimental platform, the impacts on phase measurement accuracy of the imaging system aberration and collimation system aberration of the interferometer are analyzed. Compared the visibility relation curves between experimental measurement and simulation result, the experimental result is in line with the theoretical result.

  5. A tangled web: Interactions and structures in university-school collaborations

    NASA Astrophysics Data System (ADS)

    Ohana, Christina Pickerell

    1999-10-01

    In this volume, I examine some of the structures and beliefs embedded in a university-school partnership. I try to untangle the complex web of interests, ideologies, and information that participants bring to the project. This dissertation includes three research papers. In the first paper, "Integration of Theory with Practice: A Comparison of Two Science Methods Courses," I studied the work of students in two science methods courses. One class was a preservice cohort involved in an experimental program with significant levels of field experiences. Their work was compared to students in the regular program who have a modest field component. In this analysis, cohort students made many more references to field placements than students in the regular program. Cohort students also used peers as sources of information and authority. Students in the regular program used sources from university coursework to help them interpret field experiences. They rarely mentioned peers. These differences were interpreted in light of their meaning for efforts to improve teacher education. In the second paper, "Preservice Cohorts and their Implications for Mathematics and Science Education," I surveyed the literature on cohorts in preservice teacher education. I described the structure of three preservice programs at different universities that have mathematics- or science-focused preservice cohorts. While some progress is apparent, there are many areas which were unaffected by the new structure. There are also effects that may be undesirable. Both the literature and site visits highlighted the need for program developers in teacher education to attend to both design and purpose. In the final paper, "Interests, Ideology, Information, and Institutions in a University-School Partnership," I examined the programs from a broader perspective. I used a model of interests, ideology, information, and institution (the "4 I's,") to examine how university-school partnerships link two very complex institutions. I found that in order for the two institutions to work together, they must accommodate the interests, ideology, and information of the other. This accommodation allowed the two organizations to work together but prevents more fundamental change.

  6. Artium mater in relativistic astrophysics : New perspectives for a European-Latin American PhD program

    NASA Astrophysics Data System (ADS)

    Chardonnet, Pascal

    2015-12-01

    Following the successful scientific space missions by the European Space Agency (ESA) and the European Southern Observatory (ESO) in Chile, as well as the high-energy particle activities at CERN in Genve, we have created a Ph.D. program dedicated to the formation of scientists in the field of relativistic astrophysics. The students of such a program will lead the theoretical developments of one of the most active fields of research, based on the above observational and experimental facilities. This program needs expertise in the most advanced topics of mathematical and theoretical physics, and in relativistic field theories. It requires the ability to model the observational data received from the above facilities, as well as all the basic knowledge in astronomy, astrophysics and cosmology. This activity is necessarily international, no single university can cover the broad expertises. From this, the proposed program of the IRAP Ph.D., in one of the youngest and most dynamical French universities, pole of research and teaching in the Euro-Mediterranean region (PRES): the University of Nice. It benefits from the presence of the astrophysics research institute of Observatoire de la Cte d'Azur involved in relativistic and non-photonic astrophysics. The participation of the Freie Universitaet Berlin, Oldenburg and Bremen Universities and of the Einstein Institute in Potsdam offers the possibility of teaching in relativistic field theories at the highest level. The University of Savoy offers the link to the particle physics at CERN. The activities at the University of Rome, at Stockholm University and at ICRANet offer teaching programs in all the fields of relativistic astrophysics, including cosmology, the physics of gravitational collapse, gamma-ray bursts, and black hole physics. Finally, the University of Ferrara will be present with lectures and researches in the topics they have pioneered such as x-ray astrophysics and observational cosmology. Through ICRANet the extra-European connections with Brazil, China and India will be guaranteed: in China, with the Shanghai Observatory of the Chinese Academy of Science, studying the formation and evolution of large-scale structure and galaxies; in India, with the Indian Centre for Space Physics (ICSP), renowned for its research on compact objects as well as on solar physics and astrochemistry; in Brazil with ICRANet Brazil where a successful program of research and teaching in relativistic astrophysics has been established in recent years.

  7. Artium mater in relativistic astrophysics : New perspectives for a European-Latin American PhD program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chardonnet, Pascal; LAPTh, Université de Savoie, CNRS, B.P. 110, Annecy-le-Vieux F-74941; ICRANet, Piazza della Repubblica 10, 65122 Pescara

    Following the successful scientific space missions by the European Space Agency (ESA) and the European Southern Observatory (ESO) in Chile, as well as the high-energy particle activities at CERN in Genve, we have created a Ph.D. program dedicated to the formation of scientists in the field of relativistic astrophysics. The students of such a program will lead the theoretical developments of one of the most active fields of research, based on the above observational and experimental facilities. This program needs expertise in the most advanced topics of mathematical and theoretical physics, and in relativistic field theories. It requires the abilitymore » to model the observational data received from the above facilities, as well as all the basic knowledge in astronomy, astrophysics and cosmology. This activity is necessarily international, no single university can cover the broad expertises. From this, the proposed program of the IRAP Ph.D., in one of the youngest and most dynamical French universities, pole of research and teaching in the Euro-Mediterranean region (PRES): the University of Nice. It benefits from the presence of the astrophysics research institute of Observatoire de la Cte d’Azur involved in relativistic and non-photonic astrophysics. The participation of the Freie Universitaet Berlin, Oldenburg and Bremen Universities and of the Einstein Institute in Potsdam offers the possibility of teaching in relativistic field theories at the highest level. The University of Savoy offers the link to the particle physics at CERN. The activities at the University of Rome, at Stockholm University and at ICRANet offer teaching programs in all the fields of relativistic astrophysics, including cosmology, the physics of gravitational collapse, gamma-ray bursts, and black hole physics. Finally, the University of Ferrara will be present with lectures and researches in the topics they have pioneered such as x-ray astrophysics and observational cosmology. Through ICRANet the extra-European connections with Brazil, China and India will be guaranteed: in China, with the Shanghai Observatory of the Chinese Academy of Science, studying the formation and evolution of large-scale structure and galaxies; in India, with the Indian Centre for Space Physics (ICSP), renowned for its research on compact objects as well as on solar physics and astrochemistry; in Brazil with ICRANet Brazil where a successful program of research and teaching in relativistic astrophysics has been established in recent years.« less

  8. Controllable optical activity of non-spherical Ag and Co SERS substrate with different magnetic field

    NASA Astrophysics Data System (ADS)

    Fan, Chun-Zhen; Zhu, Shuang-Mei; Xin, Hao-Yi

    2017-02-01

    We experimentally fabricate a non-spherical Ag and Co surface-enhanced Raman scattering (SERS) substrate, which not only retains the metallic plasmon resonant effect, but also possesses the magnetic field controllable characteristics. Raman detections are carried out with the test crystal violet (CV) and rhodamine 6G (R6G) molecules with the initiation of different magnitudes of external magnetic field. Experimental results indicate that our prepared substrate shows a higher SERS activity and magnetic controllability, where non-spherical Ag nanoparticles are driven to aggregate effectively by the magnetized Co and plenty of hot-spots are built around the metallic Ag nanoparticles, thereby leading to the enhancement of local electromagnetic field. Moreover, when the external magnetic field is increased, our prepared substrate demonstrates excellent SERS enhancement. With the 2500 Gs and 3500 Gs (1 Gs = 10-4 T) magnetic fields, SERS signal can also be obtained with the detection limit lowering down to 10-9 M. These results indicate that our proposed magnetic field controlled substrate enables us to freely achieve the enhanced and controllable SERS effect, which can be widely used in the optical sensing, single molecule detection and bio-medical applications. Project supported by the Key Science and Technology Research Project of Henan Province, China (Grant No. 162102210164), the Natural Science Foundation of Henan Educational Committee, China (Grant No. 17A140002), the National Natural Science Foundations of China (Grant Nos. 11574276, 11404291, and 11604079), and the Program for Science & Technology Innovation Talents in Universities of Henan Province, China (Grant No. 17HASTIT0).

  9. Glenn Heat Transfer Simulation and Solver Graphical User Interface: Development and Testing

    NASA Technical Reports Server (NTRS)

    Kardamis, Joseph R.

    2004-01-01

    In the Tui ine Branch of the Turbomachinery and Propulsion Systems Division, researching and developing efficient turbine aerothermodynamics technologies is the main objective. Creating effective turbines for jet engines is a process which, if based purely on physical experimental testing, would be extremely expensive. It is for this reason, and also for the reasons of speed and ease, that the Turbine Branch spends a large amount of effort working with simulations of turbines. Specifically, they focus their work on two main fields: Computational Field Dynamics (CFD), and Experimental data analysis. The experimental field involves comparing experimental results to simulated results, whereas the CFD field involves running these simulations. The simulations are applied to aerodynamics and heat transfer cases, for both steady and unsteady flow conditions. By and large this work is applied to the domain of flow and heat transfer in axial turbines. The main application used to run these heat flow simulations is GlennHT. This program, recently rewritten in FORTRAN 90, allows the user to input a job file which specifies all the necessary parameters needed to simulate flow through a user-defined grid. There are several other executables used as well, ranging in application from converting grid files to and from particular formats, to merging blocks in a connectivity file, to converting connectivity files to a GlennHT compatible format. All of these executables are run from the command line in a terminal; some of them have interactive prompts where the user must specify the files to be manipulated after the program starts, while others take all of their parameters from the command line. With this amount of variation comes a good deal of commands and formats to memorize, which can cause slower and less efficient work, as users may forget how to execute a certain program, or not remember the pathnames of the files they wish to use. Two years ago, steps were made to expedite this process with a graphical user interface (GUI) that combines the functionality of all the executables along with adding some new functionality, such as residuals graphing and boundary conditions creation. Upon my beginning here at Glenn, many parts of the GUI, which was developed in Java, were nonfunctional. There were also issues with cross-platforming, as systems in the branch were transitioning from Silicon Graphics (SGI) machines to Linux machines. My goals this summer are to finish the parts of the GUI that are not yet completed, fix parts that did not work correctly, expand the functionality to include other useful features, such as grid surface highlighting, and make the system compatible with both Linux and SGI. I will also be heavily testing the system and providing sufficient documentation on how to use the GUI, as no such documentation existed previously.

  10. A framework program for the teaching of alternative methods (replacement, reduction, refinement) to animal experimentation.

    PubMed

    Daneshian, Mardas; Akbarsha, Mohammad A; Blaauboer, Bas; Caloni, Francesca; Cosson, Pierre; Curren, Rodger; Goldberg, Alan; Gruber, Franz; Ohl, Frauke; Pfaller, Walter; van der Valk, Jan; Vinardell, Pilar; Zurlo, Joanne; Hartung, Thomas; Leist, Marcel

    2011-01-01

    Development of improved communication and education strategies is important to make alternatives to the use of animals, and the broad range of applications of the 3Rs concept better known and understood by different audiences. For this purpose, the Center for Alternatives to Animal Testing in Europe (CAAT-Europe) together with the Transatlantic Think Tank for Toxicology (t(4)) hosted a three-day workshop on "Teaching Alternative Methods to Animal Experimentation". A compilation of the recommendations by a group of international specialists in the field is summarized in this report. Initially, the workshop participants identified the different audience groups to be addressed and also the communication media that may be used. The main outcome of the workshop was a framework for a comprehensive educational program. The modular structure of the teaching program presented here allows adaptation to different audiences with their specific needs; different time schedules can be easily accommodated on this basis. The topics cover the 3Rs principle, basic research, toxicological applications, method development and validation, regulatory aspects, case studies and ethical aspects of 3Rs approaches. This expert consortium agreed to generating teaching materials covering all modules and providing them in an open access online repository.

  11. South Central Coast Cooperative Aerometric Monitoring Program (SCCCAMP).

    NASA Astrophysics Data System (ADS)

    Dabberdt, Waiter F.; Viezee, William

    1987-09-01

    The SCCCAMP field measurement program, conducted 3 September to 7 October 1985, is the most comprehensive mesoscale photochemical study of its type ever undertaken. The study area encompasses 2 × 104 km2 of coastal and interior south-central California including the Santa Barbara Channel. A review of earlier experimental and analytical studies in the area is followed by the organizational framework and planning for this cooperative program. The experimental design and measurement systems are described. Existing ground-based meteorological and air pollution networks were supplemented by additional surface aerometric stations, dual Doppler radars, rawinsondes, and a network of Doppler acoustic profilers. Airborne measurement platforms included one dual-channel lidar, three aerometric sampling aircraft, and a meteorological research aircraft. Gas tracer tests included 4-h releases of three perfluorocarbon gas tracers. Tracer measurements were made over two-day periods at 50 surface locations and aloft by aircraft with a near-realtime two-trap chromatographic system. Four multi-day intensive operational periods (IOP) are described, and illustrative results from one IOP are presented when extremely high ozone concentrations were observed at ground level (230 ppb) and aloft (290 ppb). The availability of the composite data base is indicated.

  12. Effects of weak electromagnetic fields on Escherichia coli and Staphylococcus aureus

    NASA Astrophysics Data System (ADS)

    Smith, Derek A.

    Previous studies of electromagnetic field effects on bacteria are examined, and new experimental procedures and their results are discussed. Experimental samples of Escherichia coli and Staphylococcus aureus were prepared in different conditions, and measurements of optical density were used to track growth rates after removing the samples from their associated experimental environments. Experimental environments varied in magnetic field intensities and frequencies, including a control environment of minimal field intensity. Plots of experimental data sets and their associated averages are used to visualize the experimental outcomes, and differences in growth patterns are evaluated. Results are then used to hypothesize the mechanisms and consequences of the potentially observed field effects.

  13. A Program of Research on Microfabrication Techniques for VLSI Magnetic Devices.

    DTIC Science & Technology

    1982-10-01

    contribution to the implantation- induced uniaxial anisotropy field change. BACKGROUND Magnetic garnet films are grown by liquid phase epitaxy ( LPE ) on non...a single crystal, non-magnetic garnet substrate by the liquid phase epitaxy ( LPE ) method. These thin films , usually one to three microns in thickness...microscopy. Experimental Procedures Films of (SmYGdTm)3Ca0a.Fe4.6012 garnet were grown by liquid phase epitaxy ( LPE ) on gadolinium-gallium garnet (GGG

  14. Near field interaction of microwave signals with a bounded plasma plume

    NASA Technical Reports Server (NTRS)

    Ling, Hao; Hallock, Gary A.; Kim, Hyeongdong; Birkner, Bjorn

    1991-01-01

    The objective was to study the effect of the arcjet thruster plume on the performance of an onboard satellite reflector antenna. A project summary is presented along with sections on plasma and electromagnetic modeling. The plasma modeling section includes the following topics: wave propagation; plasma analysis; plume electron density model; and the proposed experimental program. The section on electromagnetic modeling includes new developments in ray modeling and the validation of three dimensional ray results.

  15. Mechanical models for the self-organization of tubular patterns.

    PubMed

    Guo, Chin-Lin

    2013-01-01

    Organogenesis, such as long tubule self-organization, requires long-range coordination of cell mechanics to arrange cell positions and to remodel the extracellular matrix. While the current mainstream in the field of tissue morphogenesis focuses primarily on genetics and chemical signaling, the influence of cell mechanics on the programming of patterning cues in tissue morphogenesis has not been adequately addressed. Here, we review experimental evidence and propose quantitative mechanical models by which cells can create tubular patterns.

  16. Experimental Two-Phase Liquid-Metal Magnetohydrodynamic Generator Program

    DTIC Science & Technology

    1979-04-01

    34 ME 5-77, Ben Gurlon University of the Negev , Beer- Sheva, Israel. BRANOVER, H., ELBOCHER, A., HOCH, E., UNGER, Y., YAKHOT, A., and ZILBERMAN, I...1978, "Hydrodynamic Investigation of Single and Two-Phase Flow Ill Liquid Metal MHD Generator Channels," ME 4-78, Ben Gurion University o the Negev , Beer...Conducting Fluid Flows in Magnetic Fields," UCRL-51010, Lawrence Radiation Laboratory, Livermore, CA. LAVRENTIEV, I. V., 1967, "Effect of Baffle Location

  17. Active Aging Promotion: Results from the Vital Aging Program

    PubMed Central

    Caprara, Mariagiovanna; Molina, María Ángeles; Schettini, Rocío; Santacreu, Marta; Orosa, Teresa; Mendoza-Núñez, Víctor Manuel; Rojas, Macarena; Fernández-Ballesteros, Rocío

    2013-01-01

    Active aging is one of the terms in the semantic network of aging well, together with others such as successful, productive, competent aging. All allude to the new paradigm in gerontology, whereby aging is considered from a positive perspective. Most authors in the field agree active aging is a multidimensional concept, embracing health, physical and cognitive fitness, positive affect and control, social relationships and engagement. This paper describes Vital Aging, an individual active aging promotion program implemented through three modalities: Life, Multimedia, and e-Learning. The program was developed on the basis of extensive evidence about individual determinants of active aging. The different versions of Vital Aging are described, and four evaluation studies (both formative and summative) are reported. Formative evaluation reflected participants' satisfaction and expected changes; summative evaluations yielded some quite encouraging results using quasi-experimental designs: those who took part in the programs increased their physical exercise, significantly improved their diet, reported better memory, had better emotional balance, and enjoyed more cultural, intellectual, affective, and social activities than they did before the course, thus increasing their social relationships. These results are discussed in the context of the common literature within the field and, also, taking into account the limitations of the evaluations accomplished. PMID:23476644

  18. Success in tutoring electronic troubleshooting

    NASA Technical Reports Server (NTRS)

    Parker, Ellen M.

    1990-01-01

    Two years ago Dr. Sherrie Gott of the Air Force Human Resources Laboratory described an avionics troubleshooting tutor being developed under the Basic Job Skills Research Program. The tutor, known as Sherlock, is directed at teaching the diagnostic procedures necessary to investigate complex test equipment used to maintain F-15 fighter aircraft. Since Dr. Gott's presentation in 1987, the tutor has undergone field testing at two Air Force F-15 flying wings. The results of the field test showed that after an average of 20 hours on the tutor, the 16 airmen in the experimental group (who average 28 months of experience) showed significant performance gains when compared to a control group (having a mean experience level of 37 months) who continued participating in the existing on-the-job training program. Troubleshooting performance of the tutored group approached the level of proficiency of highly experienced airmen (averaging approximately 114 months of experience), and these performance gains were confirmed in delayed testing six months following the intervention. The tutor is currently undergoing a hardware and software conversion form a Xerox Lisp environment to a PC-based environment using an object-oriented programming language. Summarized here are the results of the successful field test. The focus is on: (1) the instructional features that contributed to Sherlock's success; and (2) the implementation of these features in the PC-based version of the avionics troubleshooting tutor.

  19. Three dimensional viscous analysis of a hypersonic inlet

    NASA Technical Reports Server (NTRS)

    Reddy, D. R.; Smith, G. E.; Liou, M.-F.; Benson, Thomas J.

    1989-01-01

    The flow fields in supersonic/hypersonic inlets are currently being studied at NASA Lewis Research Center using 2- and 3-D full Navier-Stokes and Parabolized Navier-Stokes solvers. These tools have been used to analyze the flow through the McDonnell Douglas Option 2 inlet which has been tested at Calspan in support of the National Aerospace Plane Program. Comparisons between the computational and experimental results are presented. These comparisons lead to better overall understanding of the complex flows present in this class of inlets. The aspects of the flow field emphasized in this work are the 3-D effects, the transition from laminar to turbulent flow, and the strong nonuniformities generated within the inlet.

  20. Innovative MIOR Process Utilizing Indigenous Reservoir Constituents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. O. Hitzman; A. K. Stepp; D. M. Dennis

    This research program is directed at improving the knowledge of reservoir ecology and developing practical microbial solutions for improving oil production. The goal is to identify indigenous microbial populations which can produce beneficial metabolic products and develop a methodology to stimulate those select microbes with nutrient amendments to increase oil recovery. This microbial technology has the capability of producing multiple oil-releasing agents. Experimental laboratory work is underway. Microbial cultures have been isolated from produced water samples. Comparative laboratory studies demonstrating in situ production of microbial products as oil recovery agents were conducted in sand packs with natural field waters withmore » cultures and conditions representative of oil reservoirs. Field pilot studies are underway.« less

  1. First satellite mobile communication trials using BLQS-CDMA

    NASA Technical Reports Server (NTRS)

    Luzdemateo, Maria; Johns, Simon; Dothey, Michel; Vanhimbeeck, Carl; Deman, Ivan; Wery, Bruno

    1993-01-01

    In this paper, technical results obtained in the first MSBN Land mobile technical trial are reported. MSBN (Mobile Satellite Business Network) is a new program undertaken by the European Space Agency (ESA) to promote mobile satellite communication in Europe, in particular voice capability. The first phase of the MSBN system implementation plan is an experimental phase. Its purpose is to evaluate through field experiments the performance of the MSBN system prior to finalization of its specifications. Particularly, the objective is to verify in the field and possibly improve the performance of the novel satellite access technique BLQS-CDMA (Band Limited Quasi-Synchronous-Code Division Multiple Access), which is proposed as baseline for the MSBN.

  2. Programming experience promotes higher STEM motivation among first-grade girls.

    PubMed

    Master, Allison; Cheryan, Sapna; Moscatelli, Adriana; Meltzoff, Andrew N

    2017-08-01

    The gender gap in science, technology, engineering, and math (STEM) engagement is large and persistent. This gap is significantly larger in technological fields such as computer science and engineering than in math and science. Gender gaps begin early; young girls report less interest and self-efficacy in technology compared with boys in elementary school. In the current study (N=96), we assessed 6-year-old children's stereotypes about STEM fields and tested an intervention to develop girls' STEM motivation despite these stereotypes. First-grade children held stereotypes that boys were better than girls at robotics and programming but did not hold these stereotypes about math and science. Girls with stronger stereotypes about robotics and programming reported lower interest and self-efficacy in these domains. We experimentally tested whether positive experience with programming robots would lead to greater interest and self-efficacy among girls despite these stereotypes. Children were randomly assigned either to a treatment group that was given experience in programming a robot using a smartphone or to control groups (no activity or other activity). Girls given programming experience reported higher technology interest and self-efficacy compared with girls without this experience and did not exhibit a significant gender gap relative to boys' interest and self-efficacy. These findings show that children's views mirror current American cultural messages about who excels at computer science and engineering and show the benefit of providing young girls with chances to experience technological activities. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. NOAA's Ocean Acidification Program - Funding Studies of Species' Responses to Ocean Acidification Since 2012

    NASA Astrophysics Data System (ADS)

    Ombres, E. H.

    2016-02-01

    NOAA's Ocean Acidification Program (OAP) was created as a mandate of the 2009 Federal Ocean Acidification Research and Monitoring (FOARAM) Act and has been directly funding species response research since 2012. Although OA species response is a relatively young field of science, this program built on research already underway across NOAA. That research platform included experimental facilities in the Fishery Sciences Centers of the National Marine Fishery Service (NMFS), `wet' labs of Oceanic and Atmospheric Research (OAR), and the coral reef monitoring studies within the National Ocean Service (NOS). The diversity of research across NOAA allows the program to make interdisciplinary connections among chemists, biologists and oceanographers and creates a more comprehensive and robust approach to understanding species response to this change in the carbon cycle. To date, the program has studied a range of taxa including phytoplankton, molluscs, crustaceans, and fish. This poster describes representative results from the collection of OAP-funded species at nationwide NOAA facilities.

  4. Methods for heat transfer and temperature field analysis of the insulated diesel

    NASA Technical Reports Server (NTRS)

    Morel, T.; Blumberg, P. N.; Fort, E. F.; Keribar, R.

    1984-01-01

    Work done during phase 1 of a three-year program aimed at developing a comprehensive heat transfer and thermal analysis methodology oriented specifically to the design requirements of insulated diesel engines is reported. The technology developed in this program makes possible a quantitative analysis of the low heat rejection concept. The program is comprehensive in that it addresses all the heat transfer issues that are critical to the successful development of the low heat rejection diesel engine: (1) in-cylinder convective and radiative heat transfer; (2) cyclic transient heat transfer in thin solid layers at component surfaces adjacent to the combustion chamber; and (3) steady-state heat conduction in the overall engine structure. The Integral Technologies, Inc. (ITI) program is comprised of a set of integrated analytical and experimental tasks. A detailed review of the ITI program approach is provided, including the technical issues which underlie it and a summay of the methods that were developed.

  5. Calculation of stability derivatives for slowly oscillating bodies of revolution at Mach 1.0

    NASA Technical Reports Server (NTRS)

    Ruo, S. Y.; Liu, D. D.

    1971-01-01

    A parabolic method for steady transonic flow is extended to bodies of revolution oscillating in a sonic flow field. A Laplace transform technique is employed to derive the dipole solution, and the Adams-Sears iterative technique is used in the stability derivative calculation. A computer program is developed to perform the stability derivative calculation for the slowly oscillating cone and parabolic ogive. Inputs for the program are body geometry thickness ratio, acceleration constant, and pitch axis location. Sample calculations were performed for the parabolic ogive and circular cone and results are compared with those obtained by using other techniques and the available experimental data for circular cones.

  6. Rigid Polyurethane Foam (RPF) Technology for Countermines (Sea) Program Phase II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    WOODFIN,RONALD L.; FAUCETT,DAVID L.; HANCE,BRADLEY G.

    This Phase II report documents the results of one subtask initiated under the joint Department of Energy (DOE)/Department of Defense (DoD) Memorandum of Understanding (MOU) for Countermine Warfare. The development of Rigid Polyurethane Foams for neutralization of mines and barriers in amphibious assault was the objective of the tasking. This phase of the program concentrated on formation of RPF in water, explosive mine simulations, and development of foam and fabric pontoons. Field experimentation was done primarily at the Energetic Materials Research and Testing Center (EMRTC) of the New Mexico Institute of Mining and Technology, Socorro, NM between February 1996 andmore » September 1998.« less

  7. Shortcuts to Adiabaticity in Transport of a Single Trapped Ion

    NASA Astrophysics Data System (ADS)

    An, Shuoming; Lv, Dingshun; Campo, Adolfo Del; Kim, Kihwan

    2015-05-01

    We report an experimental study on shortcuts to adiabaticity in the transport of a single 171Yb+ ion trapped in a harmonic potential. In these driving schemes, the application of a force induces a nonadiabatic dynamics in which excitations are tailored so as to preserve the ion motional state in the ground state upon completion of the process. We experimentally apply the laser induced force and realize three different protocols: (1) a transitionless driving with a counterdiabatic term out of phase with the displacement force, (2) a classical protocol assisted by counterdiabatic fields in phase with the main force, (3) and an engineered transport protocol based on the Fourier transform of the trap acceleration. We experimentally compare and discuss the robustness of these protocols under given experimental limitations such as trap frequency drifts. This work was supported by the National Basic Research Program of China under Grants No. 2011CBA00300 (No. 2011CBA00301), the National Natural Science Foundation of China 11374178, and the University of Massachusetts Boston (No. P20150000029279).

  8. A database for propagation models

    NASA Technical Reports Server (NTRS)

    Kantak, Anil V.; Suwitra, Krisjani; Le, Choung

    1993-01-01

    The NASA Propagation Program supports academic research that models various propagation phenomena in the space research frequency bands. NASA supports such research via school and institutions prominent in the field. The products of such efforts are particularly useful for researchers in the field of propagation phenomena and telecommunications systems engineers. The systems engineer usually needs a few propagation parameter values for a system design. Published literature on the subject, such as the Cunsultative Committee for International Radio (CCIR) publications, may help somewhat, but often times, the parameter values given in such publications use a particular set of conditions which may not quite include the requirements of the system design. The systems engineer must resort to programming the propagation phenomena model of interest and to obtain the parameter values to be used in the project. Furthermore, the researcher in the propagation field must then program the propagation models either to substantiate the model or to generate a new model. The researcher or the systems engineer must either be a skillful computer programmer or hire a programmer, which of course increases the cost of the effort. An increase in cost due to the inevitable programming effort may seem particularly inappropriate if the data generated by the experiment is to be used to substantiate the already well-established models, or a slight variation thereof. To help researchers and the systems engineers, it was recommended by the participants of NASA Propagation Experimenters (NAPEX) 15 held in London, Ontario, Canada on 28-29 June 1991, that propagation software should be constructed which will contain models and prediction methods of most propagation phenomenon. Moreover, the software should be flexible enough for the user to make slight changes to the models without expending a substantial effort in programming.

  9. 2017 GTO Project review Laboratory Evaluation of EGS Shear Stimulation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauer, Stephen J.

    The objectives and purpose of this research has been to produce laboratory-based experimental and numerical analyses to provide a physics-based understanding of shear stimulation phenomena (hydroshearing) and its evolution during stimulation. Water was flowed along fractures in hot and stressed fractured rock, to promote slip. The controlled laboratory experiments provide a high resolution/high quality data resource for evaluation of analysis methods developed by DOE to assess EGS “behavior” during this stimulation process. Segments of the experimental program will provide data sets for model input parameters, i.e., material properties, and other segments of the experimental program will represent small scale physicalmore » models of an EGS system, which may be modeled. The coupled lab/analysis project has been a study of the response of a fracture in hot, water-saturated fractured rock to shear stress experiencing fluid flow. Under this condition, the fracture experiences a combination of potential pore pressure changes and fracture surface cooling, resulting in slip along the fracture. The laboratory work provides a means to assess the role of “hydroshearing” on permeability enhancement in reservoir stimulation. Using the laboratory experiments and results to define boundary and input/output conditions of pore pressure, thermal stress, fracture shear deformation and fluid flow, and models were developed and simulations completed by the University of Oklahoma team. The analysis methods are ones used on field scale problems. The sophisticated numerical models developed contain parameters present in the field. The analysis results provide insight into the role of fracture slip on permeability enhancement-“hydroshear” is to be obtained. The work will provide valuable input data to evaluate stimulation models, thus helping design effective EGS.« less

  10. Propeller noise prediction

    NASA Technical Reports Server (NTRS)

    Zorumski, W. E.

    1983-01-01

    Analytic propeller noise prediction involves a sequence of computations culminating in the application of acoustic equations. The prediction sequence currently used by NASA in its ANOPP (aircraft noise prediction) program is described. The elements of the sequence are called program modules. The first group of modules analyzes the propeller geometry, the aerodynamics, including both potential and boundary layer flow, the propeller performance, and the surface loading distribution. This group of modules is based entirely on aerodynamic strip theory. The next group of modules deals with the actual noise prediction, based on data from the first group. Deterministic predictions of periodic thickness and loading noise are made using Farassat's time-domain methods. Broadband noise is predicted by the semi-empirical Schlinker-Amiet method. Near-field predictions of fuselage surface pressures include the effects of boundary layer refraction and (for a cylinder) scattering. Far-field predictions include atmospheric and ground effects. Experimental data from subsonic and transonic propellers are compared and NASA's future direction is propeller noise technology development are indicated.

  11. Physics through the 1990s: Elementary-particle physics

    NASA Astrophysics Data System (ADS)

    The volume begins with a non-mathematical discussion of the motivation behind, and basic ideas of, elementary-particle physics theory and experiment. The progress over the past two decades with the quark model and unification of the electromagnetic and weak interactions is reviewed. Existing theoretical problems in the field, such as the origin of mass and the unification of the fundamental forces, are detailed, along with experimental programs to test the new theories. Accelerators, instrumentation, and detectors are described for both current and future facilities. Interactions with other areas of both theoretical and applied physics are presented. The sociology of the field is examined regarding the education of graduate students, the organization necessary in large-scale experiments, and the decision-making process involved in high-cost experiments. Finally, conclusions and recommendations for maintaining US excellence in theory and experiment are given. Appendices list both current and planned accelerators, and present statistical data on the US elementary-particle physics program. A glossary is included.

  12. A technical note about Phidel: a new software for evaluating magnetic induction field generated by power lines.

    PubMed

    Comelli, M; Benes, M; Bampo, A; Villalta, R

    2007-01-01

    The Regional Environment Protection Agency of Friuli Venezia Giulia (ARPA FVG, Italy) has performed an analysis on existing software designed to calculate magnetic induction field generated by power lines. As far as the agency's requirements are concerned the tested programs display some difficulties in the immediate processing of electrical and geometrical data supplied by plant owners, and in certain cases turn out to be inadequate in representing complex configurations of power lines. Phidel, an innovative software, tackles and works out all the above-mentioned problems. Therefore, the obtained results, when compared with those of other programs, are the closest to experimental measurements. The output data can be employed both in the GIS and Excel environments, allowing the immediate overlaying of digital cartography and the determining of the 3 and 10 muT bands, in compliance with the Italian Decree of the President of the Council of Ministers of 8 July 2003.

  13. The Fast Scattering Code (FSC): Validation Studies and Program Guidelines

    NASA Technical Reports Server (NTRS)

    Tinetti, Ana F.; Dunn, Mark H.

    2011-01-01

    The Fast Scattering Code (FSC) is a frequency domain noise prediction program developed at the NASA Langley Research Center (LaRC) to simulate the acoustic field produced by the interaction of known, time harmonic incident sound with bodies of arbitrary shape and surface impedance immersed in a potential flow. The code uses the equivalent source method (ESM) to solve an exterior 3-D Helmholtz boundary value problem (BVP) by expanding the scattered acoustic pressure field into a series of point sources distributed on a fictitious surface placed inside the actual scatterer. This work provides additional code validation studies and illustrates the range of code parameters that produce accurate results with minimal computational costs. Systematic noise prediction studies are presented in which monopole generated incident sound is scattered by simple geometric shapes - spheres (acoustically hard and soft surfaces), oblate spheroids, flat disk, and flat plates with various edge topologies. Comparisons between FSC simulations and analytical results and experimental data are presented.

  14. Physics through the 1990s: Elementary-particle physics

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The volume begins with a non-mathematical discussion of the motivation behind, and basic ideas of, elementary-particle physics theory and experiment. The progress over the past two decades with the quark model and unification of the electromagnetic and weak interactions is reviewed. Existing theoretical problems in the field, such as the origin of mass and the unification of the fundamental forces, are detailed, along with experimental programs to test the new theories. Accelerators, instrumentation, and detectors are described for both current and future facilities. Interactions with other areas of both theoretical and applied physics are presented. The sociology of the field is examined regarding the education of graduate students, the organization necessary in large-scale experiments, and the decision-making process involved in high-cost experiments. Finally, conclusions and recommendations for maintaining US excellence in theory and experiment are given. Appendices list both current and planned accelerators, and present statistical data on the US elementary-particle physics program. A glossary is included.

  15. Accuracy of genomic selection in European maize elite breeding populations.

    PubMed

    Zhao, Yusheng; Gowda, Manje; Liu, Wenxin; Würschum, Tobias; Maurer, Hans P; Longin, Friedrich H; Ranc, Nicolas; Reif, Jochen C

    2012-03-01

    Genomic selection is a promising breeding strategy for rapid improvement of complex traits. The objective of our study was to investigate the prediction accuracy of genomic breeding values through cross validation. The study was based on experimental data of six segregating populations from a half-diallel mating design with 788 testcross progenies from an elite maize breeding program. The plants were intensively phenotyped in multi-location field trials and fingerprinted with 960 SNP markers. We used random regression best linear unbiased prediction in combination with fivefold cross validation. The prediction accuracy across populations was higher for grain moisture (0.90) than for grain yield (0.58). The accuracy of genomic selection realized for grain yield corresponds to the precision of phenotyping at unreplicated field trials in 3-4 locations. As for maize up to three generations are feasible per year, selection gain per unit time is high and, consequently, genomic selection holds great promise for maize breeding programs.

  16. Neonatal corticosterone administration in rodents as a tool to investigate the maternal programming of emotional and immune domains.

    PubMed

    Macrì, Simone

    2017-02-01

    Neonatal experiences exert persistent influences on individual development. These influences encompass numerous domains including emotion, cognition, reactivity to external stressors and immunity. The comprehensive nature of the neonatal programming of individual phenotype is reverberated in the large amount of experimental data collected by many authors in several scientific fields: biomedicine, evolutionary and molecular biology. These data support the view that variations in precocious environmental conditions may calibrate the individual phenotype at many different levels. Environmental influences have been traditionally addressed through experimental paradigms entailing the modification of the neonatal environment and the multifactorial (e.g. behaviour, endocrinology, cellular and molecular biology) analysis of the developing individual's phenotype. These protocols suggested that the role of the mother in mediating the offspring's phenotype is often associated with the short-term effects of environmental manipulations on dam's physiology. Specifically, environmental manipulations may induce fluctuations in maternal corticosteroids (corticosterone in rodents) which, in turn, are translated to the offspring through lactation. Herein, I propose that this mother-offspring transfer mechanism can be leveraged to devise experimental protocols based on the exogenous administration of corticosterone during lactation. To support this proposition, I refer to a series of studies in which these protocols have been adopted to investigate the neonatal programming of individual phenotype at the level of emotional and immune regulations. While these paradigms cannot replace traditional studies, I suggest that they can be considered a valid complement.

  17. Experimental aerothermodynamic research of hypersonic aircraft

    NASA Technical Reports Server (NTRS)

    Cleary, Joseph W.

    1987-01-01

    The 2-D and 3-D advance computer codes being developed for use in the design of such hypersonic aircraft as the National Aero-Space Plane require comparison of the computational results with a broad spectrum of experimental data to fully assess the validity of the codes. This is particularly true for complex flow fields with control surfaces present and for flows with separation, such as leeside flow. Therefore, the objective is to provide a hypersonic experimental data base required for validation of advanced computational fluid dynamics (CFD) computer codes and for development of more thorough understanding of the flow physics necessary for these codes. This is being done by implementing a comprehensive test program for a generic all-body hypersonic aircraft model in the NASA/Ames 3.5 foot Hypersonic Wind Tunnel over a broad range of test conditions to obtain pertinent surface and flowfield data. Results from the flow visualization portion of the investigation are presented.

  18. Proton deflectometry of laser-driven relativistic electron jet from thin foil target

    NASA Astrophysics Data System (ADS)

    Huang, Chengkun; Palaniyappan, S.; Gautier, D. C.; Johnson, R. P.; Shimada, T.; Fernandez, J. C.; Tsung, F. S.; Mori, W. B.

    2017-10-01

    Near critical density relativistic electron jets from laser solid interaction carry currents approaching the Alfvén-limit and tens of kilo-Tesla magnetic fields. Such jets are often found in kinetic simulations with low areal density targets, but have not been confirmed experimentally. They may be used for X/gamma-ray generation and is also important for the understanding of post-transparency plasma dynamics. With a short-pulse probe beam at the Trident laser facility, we employed proton deflectometry to infer the jet's properties, structure and the long-time dynamics. We develop corresponding GEANT4 simulation model of the proton deflectometry, with input from the kinetic PIC simulations in 2D and quasi-3D geometry, to compare with the experimental radiography images. Detail comparison of the experimental and simulation features in the deflectometry will be discussed. Work supported by the LDRD program at LANL.

  19. Alabama NASA EPSCoR Preparation Grant Program: Grant No. NCC5-391

    NASA Technical Reports Server (NTRS)

    Gregory, John C.

    2003-01-01

    The funded research projects under the Experimental Program to Stimulate Cooperative Research (EPSCoR) grant program and the student fellowship awards are summarized in this report. The projects include: 1) Crystallization of Dehydratase/DcoH: A Target in Lung Disease; 2) Measuring Velocity Profiles in Liquid Metals using an Ultrasonic Doppler Velocimeter; 3) Synthesis, Structure, and Properties of New Thermoelectric Materials; 4) Computational Determination of Structures and Reactivity of Phenol-Formaldehyde Resins; 5) Synthesis of Microbial Polyesters in the NASA Bioreactor; 6) Visualization of Flow-Fields in Magnetocombustion; 7) Synthesis of Fluorescent Saccharide Derivatives. The student fellowship awards include: 1) Distributed Fusion of Satellite Images; 2) Study of the Relationship between Urban Development, Local Climate, and Water Quality for the Atlanta, Georgia Metrop; 3) Computer Simulation of the Effectiveness of a Spring-Loaded Exercise Device.

  20. February 2017 - NIF Highlights

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fournier, K. B.

    2017-03-13

    February was a very productive month with only 20 shot days on the calendar. There were 41 target shots performed for the HED, ICF, and the Discovery Science (DS) program. The DS program had a week dedicated to their experiments that was extraordinarily fruitful: 14 target shots were performed for five independent teams, each of whom had a unique experimental platform to field. The teams and the facility worked extraordinarily well to pull off this feat! Additionally, the facility developed high-energy laser operations on a demonstration quad to investigate taking NIF to a new level of performance, and the ICFmore » program demonstrated a 40% increase in the yield from a capsule that had a new, 5-μm-diameter fill tube that apparently mitigates some of the issues that have affected implosions to date. Details follow below.« less

  1. Calculation of Coherent Radiation from Ultra-short Electron Beams Using a Lienard-Wiechert Based Simulation Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flacco, A.; Fairchild, M.; Reiche, S.

    2004-12-07

    The coherent radiation emitted by electrons in high brightness beam-based experiments is important from the viewpoints of both radiation source development, and the understanding and diagnosing the basic physical processes important in beam manipulations at high intensity. While much theoretical work has been developed to aid in calculating aspects of this class of radiation, these methods do not often produce accurate information concerning the experimentally relevant aspects of the radiation. At UCLA, we are particularly interested in coherent synchrotron radiation and the related phenomena of coherent edge radiation, in the context of a fs-beam chicane compression experiment at the BNLmore » ATF. To analyze this and related problems, we have developed a program that acts as an extension to the Lienard-Wiechert-based 3D simulation code TREDI, termed FieldEye. This program allows the evaluation of electromagnetic fields in the time and frequency domain in an arbitrary 2D detector planar area. We discuss here the implementation of the FieldEye code, and give examples of results relevant to the case of the ATF chicane compressor experiment.« less

  2. Ab initio protein structure assembly using continuous structure fragments and optimized knowledge-based force field.

    PubMed

    Xu, Dong; Zhang, Yang

    2012-07-01

    Ab initio protein folding is one of the major unsolved problems in computational biology owing to the difficulties in force field design and conformational search. We developed a novel program, QUARK, for template-free protein structure prediction. Query sequences are first broken into fragments of 1-20 residues where multiple fragment structures are retrieved at each position from unrelated experimental structures. Full-length structure models are then assembled from fragments using replica-exchange Monte Carlo simulations, which are guided by a composite knowledge-based force field. A number of novel energy terms and Monte Carlo movements are introduced and the particular contributions to enhancing the efficiency of both force field and search engine are analyzed in detail. QUARK prediction procedure is depicted and tested on the structure modeling of 145 nonhomologous proteins. Although no global templates are used and all fragments from experimental structures with template modeling score >0.5 are excluded, QUARK can successfully construct 3D models of correct folds in one-third cases of short proteins up to 100 residues. In the ninth community-wide Critical Assessment of protein Structure Prediction experiment, QUARK server outperformed the second and third best servers by 18 and 47% based on the cumulative Z-score of global distance test-total scores in the FM category. Although ab initio protein folding remains a significant challenge, these data demonstrate new progress toward the solution of the most important problem in the field. Copyright © 2012 Wiley Periodicals, Inc.

  3. Calibration of a Background Oriented Schlieren (BOS) Set-up

    NASA Astrophysics Data System (ADS)

    Porta, David; Echeverría, Carlos; Cardoso, Hiroki; Aguayo, Alejandro; Stern, Catalina

    2014-11-01

    We use two materials with different known indexes of refraction to calibrate a Background Oriented Schlieren (BOS) experimental set-up, and to validate the Lorenz-Lorentz equation. BOS is used in our experiments to determine local changes of density in the shock pattern of an axisymmetric supersonic air jet. It is important to validate, in particular, the Gladstone Dale approximation (index of refraction close to one) in our experimental conditions and determine the uncertainty of our density measurements. In some cases, the index of refraction of the material is well known, but in others the density is measured and related to the displacement field. We acknowledge support from UNAM through DGAPA PAPIIT IN117712 and the Graduate Program in Mechanical Engineering.

  4. Mixing, Noise and Thrust Benefits Using Corrugated Designs

    NASA Technical Reports Server (NTRS)

    Morgan, Morris H., III; Gilinsky, Mikhail M.

    2000-01-01

    These projects are directed toward the analysis of several concepts for nozzle and inlet performance improvement and noise reduction from jet exhausts. Currently. The FM&AL also initiates new joint research between the HU/FM&AL, the Hyper-X Program Team at the LaRC, and the Central Institute of Aviation Motors (CIAM), Moscow, Russia in the field of optimization of fuel injection and mixing in air-breathing propulsion systems. The main results of theoretical, numerical simulation and experimental tests obtained in the previous research are in the papers and patents. The goals of the 14U/FM&AL programs are twofold: 1) to improve the working efficiency of the HU/FM&AL team in generating new innovative ideas and in conducting research in the field of fluid dynamics and acoustics, basically for improvement of supersonic and subsonic aircraft engines, and 2) to attract promising minority students to this research and training and, in cooperation with other HU departments, to teach them basic knowledge in Aerodynamics, Gas Dynamics, and Theoretical and Experimental Methods in Aeroacoustics and Computational Fluid Dynamics (CFD). The research at the HU/FM&AL supports reduction schemes associated with the emission of en 'ne pollutants for commercial aircraft and concepts for reduction of 91 observables for military aircraft. These research endeavors relate to the goals of the NASA Strategic Enterprise in Aeronautics concerning the development of environmentally acceptable aircraft. It is in this precise area, where the US aircraft industry, academia, and Government are in great need of trained professionals and which is a high priority goal of the Minority University Research and Education (MLTREP) Program, that the HU/FM&AL can make its most important contribution.

  5. An Experimental Investigation of the Whistler Nozzle and an Analytical Investigation of a Ring Wing in Supersonic Flow

    DTIC Science & Technology

    1976-03-01

    those of reference 14, for the case shown. As can be seen agreement is fair. In reference 12, which developed the basic inner flow field program used...through which the nozzle protruded, the other end being open to the outside. Orifice plates of specific diameters were constructed and mated to cylinders...corresponding to the orifice diameters. The purpose of the orifice was to seal the open end such that entrained air could only enter through the porous

  6. 34 CFR 387.1 - What is the Experimental and Innovative Training Program?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 2 2010-07-01 2010-07-01 false What is the Experimental and Innovative Training... (Continued) OFFICE OF SPECIAL EDUCATION AND REHABILITATIVE SERVICES, DEPARTMENT OF EDUCATION EXPERIMENTAL AND INNOVATIVE TRAINING General § 387.1 What is the Experimental and Innovative Training Program? This program is...

  7. 34 CFR 387.1 - What is the Experimental and Innovative Training Program?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 34 Education 2 2012-07-01 2012-07-01 false What is the Experimental and Innovative Training... (Continued) OFFICE OF SPECIAL EDUCATION AND REHABILITATIVE SERVICES, DEPARTMENT OF EDUCATION EXPERIMENTAL AND INNOVATIVE TRAINING General § 387.1 What is the Experimental and Innovative Training Program? This program is...

  8. 34 CFR 387.1 - What is the Experimental and Innovative Training Program?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 34 Education 2 2013-07-01 2013-07-01 false What is the Experimental and Innovative Training... (Continued) OFFICE OF SPECIAL EDUCATION AND REHABILITATIVE SERVICES, DEPARTMENT OF EDUCATION EXPERIMENTAL AND INNOVATIVE TRAINING General § 387.1 What is the Experimental and Innovative Training Program? This program is...

  9. Monte Carlo simulation of TrueBeam flattening-filter-free beams using Varian phase-space files: Comparison with experimental data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belosi, Maria F.; Fogliata, Antonella, E-mail: antonella.fogliata-cozzi@eoc.ch, E-mail: afc@iosi.ch; Cozzi, Luca

    2014-05-15

    Purpose: Phase-space files for Monte Carlo simulation of the Varian TrueBeam beams have been made available by Varian. The aim of this study is to evaluate the accuracy of the distributed phase-space files for flattening filter free (FFF) beams, against experimental measurements from ten TrueBeam Linacs. Methods: The phase-space files have been used as input in PRIMO, a recently released Monte Carlo program based on thePENELOPE code. Simulations of 6 and 10 MV FFF were computed in a virtual water phantom for field sizes 3 × 3, 6 × 6, and 10 × 10 cm{sup 2} using 1 × 1more » × 1 mm{sup 3} voxels and for 20 × 20 and 40 × 40 cm{sup 2} with 2 × 2 × 2 mm{sup 3} voxels. The particles contained in the initial phase-space files were transported downstream to a plane just above the phantom surface, where a subsequent phase-space file was tallied. Particles were transported downstream this second phase-space file to the water phantom. Experimental data consisted of depth doses and profiles at five different depths acquired at SSD = 100 cm (seven datasets) and SSD = 90 cm (three datasets). Simulations and experimental data were compared in terms of dose difference. Gamma analysis was also performed using 1%, 1 mm and 2%, 2 mm criteria of dose-difference and distance-to-agreement, respectively. Additionally, the parameters characterizing the dose profiles of unflattened beams were evaluated for both measurements and simulations. Results: Analysis of depth dose curves showed that dose differences increased with increasing field size and depth; this effect might be partly motivated due to an underestimation of the primary beam energy used to compute the phase-space files. Average dose differences reached 1% for the largest field size. Lateral profiles presented dose differences well within 1% for fields up to 20 × 20 cm{sup 2}, while the discrepancy increased toward 2% in the 40 × 40 cm{sup 2} cases. Gamma analysis resulted in an agreement of 100% when a 2%, 2 mm criterion was used, with the only exception of the 40 × 40 cm{sup 2} field (∼95% agreement). With the more stringent criteria of 1%, 1 mm, the agreement reduced to almost 95% for field sizes up to 10 × 10 cm{sup 2}, worse for larger fields. Unflatness and slope FFF-specific parameters are in line with the possible energy underestimation of the simulated results relative to experimental data. Conclusions: The agreement between Monte Carlo simulations and experimental data proved that the evaluated Varian phase-space files for FFF beams from TrueBeam can be used as radiation sources for accurate Monte Carlo dose estimation, especially for field sizes up to 10 × 10 cm{sup 2}, that is the range of field sizes mostly used in combination to the FFF, high dose rate beams.« less

  10. Dynamics of a Finite Liquid Oxygen (LOX) Column in a Pulsed Magnetic Field

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert; Immer, Christopher; Lane, John; Simpson, James; Steinrock, T. (Technical Monitor)

    2002-01-01

    It is well known that liquid oxygen has a sufficient paramagnetic susceptibility that a strong magnetic field gradient can lift it in the earth's gravitational field. The movement of liquid oxygen is vital to the space program since it one of the primary oxidizers used for propulsion. Transport of liquid oxygen (LOX) via direct interaction of the magnetic fields (B field) with the fluid is a current topic of research and development at Kennedy Space Center, FL. This method of transporting (i.e. pumping) LOX may have particular advantages on Mars and other reduced gravitational environments, namely safety and reliability. This paper will address transport of a magnetic fluid, LOX, via phased-pulsed electromagnets acting on the edge of the column of fluid. The authors have developed a physical model from first-principles for the motion of a magnetic fluid in a particular U-tube geometry subjected to a pulsed magnetic field from an arbitrary solenoidal electromagnet. Experimental data that have been collected from the analogous geometry correlate well to that of the ab-initio calculations.

  11. A program to calculate pulse transmission responses through transversely isotropic media

    NASA Astrophysics Data System (ADS)

    Li, Wei; Schmitt, Douglas R.; Zou, Changchun; Chen, Xiwei

    2018-05-01

    We provide a program (AOTI2D) to model responses of ultrasonic pulse transmission measurements through arbitrarily oriented transversely isotropic rocks. The program is built with the distributed point source method that treats the transducers as a series of point sources. The response of each point source is calculated according to the ray-tracing theory of elastic plane waves. The program could offer basic wave parameters including phase and group velocities, polarization, anisotropic reflection coefficients and directivity patterns, and model the wave fields, static wave beam, and the observed signals for pulse transmission measurements considering the material's elastic stiffnesses and orientations, sample dimensions, and the size and positions of the transmitters and the receivers. The program could be applied to exhibit the ultrasonic beam behaviors in anisotropic media, such as the skew and diffraction of ultrasonic beams, and analyze its effect on pulse transmission measurements. The program would be a useful tool to help design the experimental configuration and interpret the results of ultrasonic pulse transmission measurements through either isotropic or transversely isotropic rock samples.

  12. Application of the docking program SOL for CSAR benchmark.

    PubMed

    Sulimov, Alexey V; Kutov, Danil C; Oferkin, Igor V; Katkova, Ekaterina V; Sulimov, Vladimir B

    2013-08-26

    This paper is devoted to results obtained by the docking program SOL and the post-processing program DISCORE at the CSAR benchmark. SOL and DISCORE programs are described. SOL is the original docking program developed on the basis of the genetic algorithm, MMFF94 force field, rigid protein, precalculated energy grid including desolvation in the frame of simplified GB model, vdW, and electrostatic interactions and taking into account the ligand internal strain energy. An important SOL feature is the single- or multi-processor performance for up to hundreds of CPUs. DISCORE improves the binding energy scoring by the local energy optimization of the ligand docked pose and a simple linear regression on the base of available experimental data. The docking program SOL has demonstrated a good ability for correct ligand positioning in the active sites of the tested proteins in most cases of CSAR exercises. SOL and DISCORE have not demonstrated very exciting results on the protein-ligand binding free energy estimation. Nevertheless, for some target proteins, SOL and DISCORE were among the first in prediction of inhibition activity. Ways to improve SOL and DISCORE are discussed.

  13. Effect of a parenting education program on girls’ life satisfaction in governmental guidance schools of Shiraz

    PubMed Central

    KAVEH, MOHAMMAD HOSSIEN; MORADI, LEILA; GHAHREMANI, LEILA; TABATABAEE, HAMID REZA

    2014-01-01

    Introduction: One of the main determinants of adolescents’ life satisfaction is parenting skills. Due to the lack of educational trials in this field, this research was done to evaluate the effect of a parenting education program on girls’ life satisfaction in governmental guidance schools of Shiraz.  Methods: This study is an educational randomized controlled trial. At first, 152 female students in 2nd grade of governmental guidance schools and 304 parents (152 mother and 152 father) were selected by multistage random cluster sampling method. Then, they were categorized into experimental and control groups. Before and after the intervention, data were collected from two groups using multidimensional students’ life satisfaction scale with stability (Cronbach's alpha=0.89), test–retest and correlation coefficient (r=0.70). Educational intervention for parents was performed in the experimental group through presentations with question and answer, discussion in small groups and distribution of educational booklets in 5 volumes. Finally, the data were analyzed using SPSS 14 and through Mann-Whitney test, Chi-square test, Fisher’s Exact test, Wilcoxon test. Results: Before the intervention, the experimental and control groups did not show a statistically significant difference based on the demographic variables. Thetotal of life satisfaction scores and also its subscales in the experimental and controlgroup, before and six weeks afterthe educational interventiondid showstatisticallysignificant difference (p<0.001). The scores of differences (pre-test/post-test) in total life satisfaction between the experimental and control groups were statistically significant difference (p<0.001). Conclusion: According to low scores of the students in the pre-test, especially in the control group which didn’t undergo any educational program, holding scheduled educational intervention is necessary. This study not only supports the effectiveness of educational intervention but also recommends further educational research to develop knowledge regarding patterns of parenting education. PMID:25512913

  14. In pursuit of a science of agriculture: the role of statistics in field experiments.

    PubMed

    Parolini, Giuditta

    2015-09-01

    Since the beginning of the twentieth century statistics has reshaped the experimental cultures of agricultural research taking part in the subtle dialectic between the epistemic and the material that is proper to experimental systems. This transformation has become especially relevant in field trials and the paper will examine the British agricultural institution, Rothamsted Experimental Station, where statistical methods nowadays popular in the planning and analysis of field experiments were developed in the 1920s. At Rothamsted statistics promoted randomisation over systematic arrangements, factorisation over one-question trials, and emphasised the importance of the experimental error in assessing field trials. These changes in methodology transformed also the material culture of agricultural science, and a new body, the Field Plots Committee, was created to manage the field research of the agricultural institution. Although successful, the vision of field experimentation proposed by the Rothamsted statisticians was not unproblematic. Experimental scientists closely linked to the farming community questioned it in favour of a field research that could be more easily understood by farmers. The clash between the two agendas reveals how the role attributed to statistics in field experimentation defined different pursuits of agricultural research, alternately conceived of as a scientists' science or as a farmers' science.

  15. Analytical and experimental studies of an optimum multisegment phased liner noise suppression concept

    NASA Technical Reports Server (NTRS)

    Sawdy, D. T.; Beckemeyer, R. J.; Patterson, J. D.

    1976-01-01

    Results are presented from detailed analytical studies made to define methods for obtaining improved multisegment lining performance by taking advantage of relative placement of each lining segment. Properly phased liner segments reflect and spatially redistribute the incident acoustic energy and thus provide additional attenuation. A mathematical model was developed for rectangular ducts with uniform mean flow. Segmented acoustic fields were represented by duct eigenfunction expansions, and mode-matching was used to ensure continuity of the total field. Parametric studies were performed to identify attenuation mechanisms and define preliminary liner configurations. An optimization procedure was used to determine optimum liner impedance values for a given total lining length, Mach number, and incident modal distribution. Optimal segmented liners are presented and it is shown that, provided the sound source is well-defined and flow environment is known, conventional infinite duct optimum attenuation rates can be improved. To confirm these results, an experimental program was conducted in a laboratory test facility. The measured data are presented in the form of analytical-experimental correlations. Excellent agreement between theory and experiment verifies and substantiates the analytical prediction techniques. The results indicate that phased liners may be of immediate benefit in the development of improved aircraft exhaust duct noise suppressors.

  16. Experimental progress in positronium laser physics

    NASA Astrophysics Data System (ADS)

    Cassidy, David B.

    2018-03-01

    The field of experimental positronium physics has advanced significantly in the last few decades, with new areas of research driven by the development of techniques for trapping and manipulating positrons using Surko-type buffer gas traps. Large numbers of positrons (typically ≥106) accumulated in such a device may be ejected all at once, so as to generate an intense pulse. Standard bunching techniques can produce pulses with ns (mm) temporal (spatial) beam profiles. These pulses can be converted into a dilute Ps gas in vacuum with densities on the order of 107 cm-3 which can be probed by standard ns pulsed laser systems. This allows for the efficient production of excited Ps states, including long-lived Rydberg states, which in turn facilitates numerous experimental programs, such as precision optical and microwave spectroscopy of Ps, the application of Stark deceleration methods to guide, decelerate and focus Rydberg Ps beams, and studies of the interactions of such beams with other atomic and molecular species. These methods are also applicable to antihydrogen production and spectroscopic studies of energy levels and resonances in positronium ions and molecules. A summary of recent progress in this area will be given, with the objective of providing an overview of the field as it currently exists, and a brief discussion of some future directions.

  17. The pointillism method for creating stimuli suitable for use in computer-based visual contrast sensitivity testing.

    PubMed

    Turner, Travis H

    2005-03-30

    An increasingly large corpus of clinical and experimental neuropsychological research has demonstrated the utility of measuring visual contrast sensitivity. Unfortunately, existing means of measuring contrast sensitivity can be prohibitively expensive, difficult to standardize, or lack reliability. Additionally, most existing tests do not allow full control over important characteristics, such as off-angle rotations, waveform, contrast, and spatial frequency. Ideally, researchers could manipulate characteristics and display stimuli in a computerized task designed to meet experimental needs. Thus far, 256-bit color limitation in standard cathode ray tube (CRT) monitors has been preclusive. To this end, the pointillism method (PM) was developed. Using MATLAB software, stimuli are created based on both mathematical and stochastic components, such that differences in regional luminance values of the gradient field closely approximate the desired contrast. This paper describes the method and examines its performance in sine and square-wave image sets from a range of contrast values. Results suggest the utility of the method for most experimental applications. Weaknesses in the current version, the need for validation and reliability studies, and considerations regarding applications are discussed. Syntax for the program is provided in an appendix, and a version of the program independent of MATLAB is available from the author.

  18. High power microwave hazard facing smart ammunitions

    NASA Astrophysics Data System (ADS)

    Bohl, J.

    1995-03-01

    The battle field of the present and even more the one in future will be characterized by the use of weapon systems with a high degree of electronics, computers, and sensors, designed and built to keep not only the man out of the loop. But the higher the technology used for smart weapon systems, the more these systems are endangered by numerous sources of hazard. One of those sources is the threat caused by induced or natural electromagnetic fields. These threat factors can be generated by natural, civil and military environment. In principle there are two main applications which must be considered in military applications: Firstly, weapon systems, that is, high power microwave sources as well as intelligent electromagnetic radiation systems to defeat ammunition on the battle field and secondly, the hardening of the own smart ammunition systems and missiles against the interference sources created by the different types of electromagnetic fields. This report will discuss the possible electromagnetic coupling effects on smart ammunition and missiles and their typical interference caused on the electronics and sensor level. Real time 6-DOF simulations show the flight mission which may be compromised depending on the coupled electromagnetic fields. The German MOD has established a research program where smart ammunitions with different seeker systems are investigated in respect of the coupling effects on smart ammunition caused by high power microwaves. This program considers all available resources and know how in Germany. The systems are investigated by analytical, numerical, and experimental methods with passive and activated missiles.

  19. Biological and Chemical Security

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fitch, P J

    2002-12-19

    The LLNL Chemical & Biological National Security Program (CBNP) provides science, technology and integrated systems for chemical and biological security. Our approach is to develop and field advanced strategies that dramatically improve the nation's capabilities to prevent, prepare for, detect, and respond to terrorist use of chemical or biological weapons. Recent events show the importance of civilian defense against terrorism. The 1995 nerve gas attack in Tokyo's subway served to catalyze and focus the early LLNL program on civilian counter terrorism. In the same year, LLNL began CBNP using Laboratory-Directed R&D investments and a focus on biodetection. The Nunn-Lugar-Domenici Defensemore » Against Weapons of Mass Destruction Act, passed in 1996, initiated a number of U.S. nonproliferation and counter-terrorism programs including the DOE (now NNSA) Chemical and Biological Nonproliferation Program (also known as CBNP). In 2002, the Department of Homeland Security was formed. The NNSA CBNP and many of the LLNL CBNP activities are being transferred as the new Department becomes operational. LLNL has a long history in national security including nonproliferation of weapons of mass destruction. In biology, LLNL had a key role in starting and implementing the Human Genome Project and, more recently, the Microbial Genome Program. LLNL has over 1,000 scientists and engineers with relevant expertise in biology, chemistry, decontamination, instrumentation, microtechnologies, atmospheric modeling, and field experimentation. Over 150 LLNL scientists and engineers work full time on chemical and biological national security projects.« less

  20. Final Report on ITER Task Agreement 81-10

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brad J. Merrill

    An International Thermonuclear Experimental Reactor (ITER) Implementing Task Agreement (ITA) on Magnet Safety was established between the ITER International Organization (IO) and the Idaho National Laboratory (INL) Fusion Safety Program (FSP) during calendar year 2004. The objectives of this ITA were to add new capabilities to the MAGARC code and to use this updated version of MAGARC to analyze unmitigated superconductor quench events for both poloidal field (PF) and toroidal field (TF) coils of the ITER design. This report documents the completion of the work scope for this ITA. Based on the results obtained for this ITA, an unmitigated quenchmore » event in an ITER larger PF coil does not appear to be as severe an accident as in an ITER TF coil.« less

  1. Recent Progress on Sonic Boom Research at NASA

    NASA Technical Reports Server (NTRS)

    Loubeau, Alexandra

    2012-01-01

    Sonic boom research conducted at NASA through the Supersonics Project of the Fundamental Aeronautics Program is oriented toward understanding the potential impact of sonic boom noise on communities from new low-boom supersonic aircraft designs. Encompassing research in atmospheric propagation, structural response, and human response, NASA research contributes to knowledge in key areas needed to support development of a new noise-based standard for supersonic aircraft certification. Partnerships with several industry, government, and academic institutions have enabled the recent execution of several acoustic field studies on sonic booms. An overview of recent activities funded by NASA includes: focus boom model development and experimental validation, field experiments of structural transmission of sonic booms into large buildings, and low boom community response testing.

  2. An Extended Damage Plasticity Model for Shotcrete: Formulation and Comparison with Other Shotcrete Models

    PubMed Central

    Neuner, Matthias; Gamnitzer, Peter; Hofstetter, Günter

    2017-01-01

    The aims of the present paper are (i) to briefly review single-field and multi-field shotcrete models proposed in the literature; (ii) to propose the extension of a damage-plasticity model for concrete to shotcrete; and (iii) to evaluate the capabilities of the proposed extended damage-plasticity model for shotcrete by comparing the predicted response with experimental data for shotcrete and with the response predicted by shotcrete models, available in the literature. The results of the evaluation will be used for recommendations concerning the application and further improvements of the investigated shotcrete models and they will serve as a basis for the design of a new lab test program, complementing the existing ones. PMID:28772445

  3. Localization of the magnetic field in a plasma flow in laboratory simulations of astrophysical jets at the KPF-4-PHOENIX installation

    NASA Astrophysics Data System (ADS)

    Mitrofanov, K. N.; Anan'ev, S. S.; Voitenko, D. A.; Krauz, V. I.; Astapenko, G. I.; Markoliya, A. I.; Myalton, V. V.

    2017-09-01

    The results of experiments aimed at investigating axial plasma flows forming during the compression of a current-plasma sheath are presented. These experiments were carried out at the KPF-4-PHOENIX plasma-focus installation, as part of a program of laboratory simulations of astrophysical jets. The plasma flows were generated in a discharge when the chamber was filled with the working gas (argon) at initial pressures of 0.5-2 Torr. Experimental data obtained using a magnetic probe and optical diagnostics are compared. The data obtained can be used to determine the location of trapped magnetic field relative to regions of intense optical glow in the plasma flow.

  4. Comparison of experimental and theoretical reaction rail currents, rail voltages, and airgap fields for the linear induction motor research vehicle

    NASA Technical Reports Server (NTRS)

    Elliott, D. G.

    1977-01-01

    Measurements of reaction rail currents, reaction rail voltages, and airgap magnetic fields in tests of the Linear Induction Motor Research Vehicle (LIMRV) were compared with theoretical calculations from the mesh/matrix theory. It was found that the rail currents and magnetic fields predicted by the theory are within 20 percent of the measured currents and fields at most motor locations in most of the runs, but differ by as much as a factor of two in some cases. The most consistent difference is a higher experimental than theoretical magnetic field near the entrance of the motor and a lower experimental than theoretical magnetic field near the exit. The observed differences between the theoretical and experimental magnetic fields and currents do not account for the differences of as much as 26 percent between the theoretical and experimental thrusts.

  5. Phoretic Force Measurement for Microparticles Under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Davis, E. J.; Zheng, R.

    1999-01-01

    This theoretical and experimental investigation of the collisional interactions between gas molecules and solid and liquid surfaces of microparticles involves fundamental studies of the transfer of energy, mass and momentum between gas molecules and surfaces. The numerous applications include particle deposition on semiconductor surfaces and on surfaces in combustion processes, containerless processing, the production of nanophase materials, pigments and ceramic precursors, and pollution abatement technologies such as desulfurization of gaseous effluents from combustion processes. Of particular emphasis are the forces exerted on microparticles present in a nonuniform gas, that is, in gaseous surroundings involving temperature and concentration gradients. These so-called phoretic forces become the dominant forces when the gravitational force is diminished, and they are strongly dependent on the momentum transfer between gas molecules and the surface. The momentum transfer, in turn, depends on the gas and particle properties and the mean free path and kinetic energy of the gas molecules. The experimental program involves the particle levitation system shown. A micrometer size particle is held between two heat exchangers enclosed in a vacuum chamber by means of ac and dc electric fields. The ac field keeps the particle centered on the vertical axis of the chamber, and the dc field balances the gravitational force and the thermophoretic force. Some measurements of the thermophoretic force are presented in this paper.

  6. Mean-field scaling of the superfluid to Mott insulator transition in a 2D optical superlattice.

    NASA Astrophysics Data System (ADS)

    Okano, Masayuki; Thomas, Claire; Barter, Thomas; Leung, Tsz-Him; Jo, Gyu-Boong; Guzman, Jennie; Kimchi, Itamar; Vishwanath, Ashvin; Stamper-Kurn, Dan

    2017-04-01

    Quantum gases within optical lattices provide a nearly ideal experimental representation of the Bose-Hubbard model. The mean-field treatment of this model predicts properties of non-zero temperature lattice-trapped gasses to be insensitive to the specific lattice geometry once system energies are scaled by the lattice coordination number z. We examine an ultracold Bose gas of rubidium atoms prepared within a two-dimensional lattice whose geometry can be tuned between two configurations, triangular and kagome, for which z varies from six to four, respectively. Measurements of the coherent fraction of the gas thereby provide a quantitative test of the mean-field scaling prediction. We observe the suppression of superfluidity upon decreasing z, and find our results to be consistent with the predicted mean-field scaling. These optical lattice systems can offer a way to study paradigmatic solid-state phenomena in highly controlled crystal structures. This work was supported by the NSF and by the Army Research Office with funding from the DARPA OLE program.

  7. EPR and optical investigation of Mn2+ doped L-histidine-4-nitrophenolate 4-nitrophenol single crystal

    NASA Astrophysics Data System (ADS)

    Prabakaran, R.; Subramanian, P.

    2018-04-01

    Single crystals of L-histidine-4-nitrophenolate 4-nitrophenol[LHFNP] complex doped with Mn2+ were grown by the slow evaporation method at room temperature. The EPR spectrum reveals the entry of one Mn2+ ion in the lattice. The angular variation plot was drawn between the angles and the magnetic field position. The spin Hamiltonian parameters were obtained by EPR-NMR program. The D and E values show the rhombic field around the ion and is an interstitial one. The g value obtained here suggests that the Mn2+ ion experiences a strong field and there is a transfer of electron from the metal ion to the ligand atom. The optical absorption study shows various bands and are assigned to the transition from the ground state 6A1g(S). The Racah and crystal field parameters have also been evaluated and fitted to the experimental values. The Racah parameter shows the covalent bonding between the metal ion to the ligand.

  8. Maximum entropy reconstruction of poloidal magnetic field and radial electric field profiles in tokamaks

    NASA Astrophysics Data System (ADS)

    Chen, Yihang; Xiao, Chijie; Yang, Xiaoyi; Wang, Tianbo; Xu, Tianchao; Yu, Yi; Xu, Min; Wang, Long; Lin, Chen; Wang, Xiaogang

    2017-10-01

    The Laser-driven Ion beam trace probe (LITP) is a new diagnostic method for measuring poloidal magnetic field (Bp) and radial electric field (Er) in tokamaks. LITP injects a laser-driven ion beam into the tokamak, and Bp and Er profiles can be reconstructed using tomography methods. A reconstruction code has been developed to validate the LITP theory, and both 2D reconstruction of Bp and simultaneous reconstruction of Bp and Er have been attained. To reconstruct from experimental data with noise, Maximum Entropy and Gaussian-Bayesian tomography methods were applied and improved according to the characteristics of the LITP problem. With these improved methods, a reconstruction error level below 15% has been attained with a data noise level of 10%. These methods will be further tested and applied in the following LITP experiments. Supported by the ITER-CHINA program 2015GB120001, CHINA MOST under 2012YQ030142 and National Natural Science Foundation Abstract of China under 11575014 and 11375053.

  9. Application of remote sensing for prediction and detection of thermal pollution, phase 2

    NASA Technical Reports Server (NTRS)

    Veziroglu, T. N.; Lee, S. S.

    1975-01-01

    The development of a predictive mathematical model for thermal pollution in connection with remote sensing measurements was continued. A rigid-lid model has been developed and its application to far-field study has been completed. The velocity and temperature fields have been computed for different atmospheric conditions and for different boundary currents produced by tidal effects. In connection with the theoretical work, six experimental studies of the two sites in question (Biscayne Bay site and Hutchinson Island site) have been carried out. The temperature fields obtained during the tests at the Biscayne Bay site have been compared with the predictions of the rigid-lid model and these results are encouraging. The rigid-lid model is also being applied to near-field study. Preliminary results for a simple case have been obtained and execution of more realistic cases has been initiated. The development of a free-surface model also been initiated. The governing equations have been formulated and the computer programs have been written.

  10. Solid-State 87Sr NMR Spectroscopy at Natural Abundance and High Magnetic Field Strength.

    PubMed

    Faucher, Alexandra; Terskikh, Victor V; Ye, Eric; Bernard, Guy M; Wasylishen, Roderick E

    2015-12-10

    Twenty-five strontium-containing solids were characterized via (87)Sr NMR spectroscopy at natural abundance and high magnetic field strength (B0 = 21.14 T). Strontium nuclear quadrupole coupling constants in these compounds are sensitive to the strontium site symmetry and range from 0 to 50.5 MHz. An experimental (87)Sr chemical shift scale is proposed, and available data indicate a chemical shift range of approximately 550 ppm, from -200 to +350 ppm relative to Sr(2+)(aq). In general, magnetic shielding increased with strontium coordination number. Experimentally measured chemical shift anisotropy is reported for stationary samples of solid powdered SrCl2·6H2O, SrBr2·6H2O, and SrCO3, with δaniso((87)Sr) values of +28, +26, and -65 ppm, respectively. NMR parameters were calculated using CASTEP, a gauge including projector augmented wave (GIPAW) DFT-based program, which addresses the periodic nature of solids using plane-wave basis sets. Calculated NMR parameters are in good agreement with those measured.

  11. Studying Sexual Aggression: A Review of the Evolution and Validity of Laboratory Paradigms

    PubMed Central

    Davis, Kelly Cue; George, William H.; Nagayama Hall, Gordon C.; Parrott, Dominic J.; Tharp, Andra Teten; Stappenbeck, Cynthia A.

    2018-01-01

    Objective Researchers have endeavored for decades to develop and implement experimental assessments of sexual aggression and its precursors to capitalize on the many scientific advantages offered by laboratory experiments, such as rigorous control of key variables and identification of causal relationships. The purpose of this review is to provide an overview of and commentary on the evolution of these laboratory-based methods. Conclusions To date, two primary types of sexual aggression laboratory studies have been developed: those that involve behavioral analogues of sexual aggression and those that assess postulated precursors to sexually aggressive behavior. Although the study of sexual aggression in the laboratory is fraught with methodological challenges, validity concerns, and ethical considerations, advances in the field have resulted in greater methodological rigor, more precise dependent measures, and improved experimental validity, reliability, and realism. Because highly effective sexual aggression prevention strategies remain elusive, continued laboratory-based investigation of sexual aggression coupled with translation of critical findings to the development and modification of sexual aggression prevention programs remains an important task for the field. PMID:29675289

  12. Proceedings, phenomenology and applications of high temperature superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bedell, K.S.

    1991-01-01

    Phenomenology and Applications of High Temperature Superconductors, The Los Alamos Symposium: 1991, was sponsored by the Los Alamos National Laboratory, Center for Materials Science, the Advanced Studies Program on High Temperature Superconductivity Theory (ASP) and the Exploratory Research and Development Center. This is the second symposium in the series. High Temperature Superconductivity, The Los Alamos Symposium: 1989, also published by Addison Wesley, focused on the cutting-edge theoretical and experimental issues in high temperature superconductors. This symposium, with its focus on the phenomenology and applications of high temperature superconductors, gives a complementary review of the aspects of the field closely relatedmore » to the impact of high temperature superconductors on technology. The objective of ASP is to advance the field on a broad front with no specific point of view by bringing a team of leading academic theorists into a joint effort with the theoretical and experimental scientists of a major DOE national laboratory. The ASP consisted of fellows led by Robert Schrieffer (UCSB and now FSU) joined by David Pines (University of illinois), Elihu Abrahams (Rutgers), Sebastian Doniach (Stanford), and Maurice Rice (ETH, Zurich) and theoretical and experimental staff of Los Alamos National Laboratory. This synergism of academic, laboratory, theoretical and experimental research produced a level of interaction and excitement that would not be possible otherwise. This publication and the previous one in the series are just examples of how this approach to advancing science can achieve significant contributions.« less

  13. Proceedings, phenomenology and applications of high temperature superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bedell, K.S.

    1991-12-31

    Phenomenology and Applications of High Temperature Superconductors, The Los Alamos Symposium: 1991, was sponsored by the Los Alamos National Laboratory, Center for Materials Science, the Advanced Studies Program on High Temperature Superconductivity Theory (ASP) and the Exploratory Research and Development Center. This is the second symposium in the series. High Temperature Superconductivity, The Los Alamos Symposium: 1989, also published by Addison Wesley, focused on the cutting-edge theoretical and experimental issues in high temperature superconductors. This symposium, with its focus on the phenomenology and applications of high temperature superconductors, gives a complementary review of the aspects of the field closely relatedmore » to the impact of high temperature superconductors on technology. The objective of ASP is to advance the field on a broad front with no specific point of view by bringing a team of leading academic theorists into a joint effort with the theoretical and experimental scientists of a major DOE national laboratory. The ASP consisted of fellows led by Robert Schrieffer (UCSB and now FSU) joined by David Pines (University of illinois), Elihu Abrahams (Rutgers), Sebastian Doniach (Stanford), and Maurice Rice (ETH, Zurich) and theoretical and experimental staff of Los Alamos National Laboratory. This synergism of academic, laboratory, theoretical and experimental research produced a level of interaction and excitement that would not be possible otherwise. This publication and the previous one in the series are just examples of how this approach to advancing science can achieve significant contributions.« less

  14. Contribution of the polarization moments of different rank to the integral CPT signal

    NASA Astrophysics Data System (ADS)

    Taskova, E.; Alipieva, E.; Todorov, G.

    2016-01-01

    In the present work we investigate the relation of the polarization moments having different ranks with the tensor components which form the observable integral CPT signal, in the presence of a stray magnetic field. A numerical experiment with parameters close to the real ones is performed, using a program based on the irreducible tensor operator formalism1. The integral fluorescent signal is calculated for the non-polarized fluorescence at different laser power excitation. Detailed analysis of the numerical solutions for all tensor components which describe population and alignment allows visualizing the dynamics of their behavior in dependence on the experimental geometry and laboratory magnetic field B'. The dependence of population f00, longitudinal f02 and transverse f22 alignment in the presence of transverse magnetic field is investigated. The shape and sign of the resonance change with laser power.

  15. Experimental investigation of vector static magnetic field detection using an NV center with a single first-shell 13C nuclear spin in diamond

    NASA Astrophysics Data System (ADS)

    Jiang, Feng-Jian; Ye, Jian-Feng; Jiao, Zheng; Jiang, Jun; Ma, Kun; Yan, Xin-Hu; Lv, Hai-Jiang

    2018-05-01

    We perform a proof-of-principle experiment that uses a single negatively charged nitrogen–vacancy (NV) color center with a nearest neighbor 13C nuclear spin in diamond to detect the strength and direction (including both polar and azimuth angles) of a static vector magnetic field by optical detection magnetic resonance (ODMR) technique. With the known hyperfine coupling tensor between an NV center and a nearest neighbor 13C nuclear spin, we show that the information of static vector magnetic field could be extracted by observing the pulsed continuous wave (CW) spectrum. Project supported by the National Natural Science Foundation of China (Grant Nos. 11305074, 11135002, and 11275083), the Key Program of the Education Department Outstanding Youth Foundation of Anhui Province, China (Grant No. gxyqZD2017080), and the Education Department Natural Science Foundation of Anhui Province, China (Grant No. KJHS2015B09).

  16. Experiments with a New, Unique Large-Scale Rig Investigating the Effects of Background System Rotation on Vortex Rings in Water

    NASA Astrophysics Data System (ADS)

    Brend, Mark A.; Verzicco, Roberto

    2005-11-01

    We introduce our unique, new large-scale experimental facility [1] designed for our long-term research program investigating the effects of background system rotation on the stability and the dynamics of vortex rings. The new rig constitutes a large water-filled tank positioned on a rotating turntable and its overall height and diameter are 5.7m and 1.4 m, respectively. First experimental and computational results of our program are summarized. We will show various videos of flow visualizations that illustrate some major, qualitative differences between rings propagating in rotating and non-rotating flows. Some of the investigated characteristics of the vortex rings include their translation velocity, the velocity field inside and surrounding the rings, and, in particular, their stability. We will briefly outline experiments employing the relatively new Ultrasonic-Velocity-Profiler technique (UVP). This technique appears to be particularly suited for some of our measurements and it was, as far as we are aware, not previously used in the context of vortex-ring studies. [1] http://www.eng.warwick.ac.uk/staff/pjt/turntabpics/voriskt.html

  17. Software and mathematical support of Kazakhstani star tracker

    NASA Astrophysics Data System (ADS)

    Akhmedov, D.; Yelubayev, S.; Ten, V.; Bopeyev, T.; Alipbayev, K.; Sukhenko, A.

    2016-10-01

    Currently the specialists of Kazakhstan have been developing the star tracker that is further planned to use on Kazakhstani satellites of various purposes. At the first stage it has been developed the experimental model of star tracker that has following characteristics: field of view 20°, update frequency 2 Hz, exclusion angle 40°, accuracy of attitude determination of optical axis/around optical axis 15/50 arcsec. Software and mathematical support are the most high technology parts of star tracker. The results of software and mathematical support development of experimental model of Kazakhstani star tracker are represented in this article. In particular, there are described the main mathematical models and algorithms that have been used as a basis for program units of preliminary image processing of starry sky, stars identification and star tracker attitude determination. The results of software and mathematical support testing with the help of program simulation complex using various configurations of defects including image sensor noises, point spread function modeling, optical system distortion up to 2% are presented. Analysis of testing results has shown that accuracy of attitude determination of star tracker is within the permissible range

  18. SPAR electrophoretic separation experiments, part 2

    NASA Technical Reports Server (NTRS)

    Cosmi, F. M.

    1978-01-01

    The opportunity to use a sounding rocket for separation experiments is a logical continuation of earlier electrophoresis demonstrations and experiments. A free-flow electrophoresis system, developed under the Advanced Applications Flight Experiment (AAFE) Program, was designed so that it would fit into a rocket payload. The SPAR program provides a unique opportunity to complete the intial stages of microgravity testing prior to any Shuttle applications. The objective of the work described in this report was to ensure proper operating parameters for the defined experimental samples to be used in the SPAR Electrophoretic Separation Experiment. Ground based experiments were undertaken not only to define flight parameters but also to serve as a point of comparison for flight results. Possible flight experiment problem areas were also studied such as sample interaction due to sedimentation, concentration effects and storage effects. Late in the program anomalies of field strengths and buffer conductivities were also investigated.

  19. Research program for a search of the origin of Darwinian evolution. Research program for a vesicle-based model of the origin of Darwinian evolution on prebiotic early Earth

    NASA Astrophysics Data System (ADS)

    Tessera, Marc

    2017-03-01

    The search for origin of `life' is made even more complicated by differing definitions of the subject matter, although a general consensus is that an appropriate definition should center on Darwinian evolution (Cleland and Chyba 2002). Within a physical approach which has been defined as a level-4 evolution (Tessera and Hoelzer 2013), one mechanism could be described showing that only three conditions are required to allow natural selection to apply to populations of different system lineages. This approach leads to a vesicle- based model with the necessary properties. Of course such a model has to be tested. Thus, after a brief presentation of the model an experimental program is proposed that implements the different steps able to show whether this new direction of the research in the field is valid and workable.

  20. Stabilized Liner Compressor: The Return of Linus

    NASA Astrophysics Data System (ADS)

    Turchi, Peter; Frese, Sherry; Frese, Michael; Mielke, Charles; Hinrichs, Mark; Nguyen, Doan

    2015-11-01

    To access the lower cost regime of magneto-inertial fusion at megagauss magnetic field-levels requires the use of dynamic conductors in the form of imploding cylindrical shells, aka, liners. Such liner implosions can compress magnetic flux and plasma to attain fusion conditions, but are subject to Rayleigh-Taylor instabilities, both in the launch and recovery of the liner material and in the final few diameters of implosion. These instabilities were overcome in the Linus program at the Naval Research Laboratory, c. 1979, providing the experimentally-demonstrated basis for repetitive operation and leading to an economical reactor concept at low fusion gain. The recent ARPA-E program for low-cost fusion technology has revived interest in this approach. We shall discuss progress in modeling and design of a Stabilized Liner Compressor (SLC) that extends the earlier work to higher pressures and liner speeds appropriate to potential plasma targets. Sponsored by ARPA-E ALPHA Program.

  1. Research program for a search of the origin of Darwinian evolution : Research program for a vesicle-based model of the origin of Darwinian evolution on prebiotic early Earth.

    PubMed

    Tessera, Marc

    2017-03-01

    The search for origin of 'life' is made even more complicated by differing definitions of the subject matter, although a general consensus is that an appropriate definition should center on Darwinian evolution (Cleland and Chyba 2002). Within a physical approach which has been defined as a level-4 evolution (Tessera and Hoelzer 2013), one mechanism could be described showing that only three conditions are required to allow natural selection to apply to populations of different system lineages. This approach leads to a vesicle- based model with the necessary properties. Of course such a model has to be tested. Thus, after a brief presentation of the model an experimental program is proposed that implements the different steps able to show whether this new direction of the research in the field is valid and workable.

  2. Replicator equations, maximal cliques, and graph isomorphism.

    PubMed

    Pelillo, M

    1999-11-15

    We present a new energy-minimization framework for the graph isomorphism problem that is based on an equivalent maximum clique formulation. The approach is centered around a fundamental result proved by Motzkin and Straus in the mid-1960s, and recently expanded in various ways, which allows us to formulate the maximum clique problem in terms of a standard quadratic program. The attractive feature of this formulation is that a clear one-to-one correspondence exists between the solutions of the quadratic program and those in the original, combinatorial problem. To solve the program we use the so-called replicator equations--a class of straightforward continuous- and discrete-time dynamical systems developed in various branches of theoretical biology. We show how, despite their inherent inability to escape from local solutions, they nevertheless provide experimental results that are competitive with those obtained using more elaborate mean-field annealing heuristics.

  3. A Formative-Summative Evaluation Design for a State-Sponsored Program of Educational Experimentation.

    ERIC Educational Resources Information Center

    Kniefel, Tanya M.

    An evaluation design created to provide information for a multiple-project program of educational experimentation is presented. Project SEED (State Experimentation in Educational Development) became an official education effort in North Carolina on July 1, 1971. Model for the program was that of the State's ESEA Title III program with certain…

  4. MMOC- MODIFIED METHOD OF CHARACTERISTICS SONIC BOOM EXTRAPOLATION

    NASA Technical Reports Server (NTRS)

    Darden, C. M.

    1994-01-01

    The Modified Method of Characteristics Sonic Boom Extrapolation program (MMOC) is a sonic boom propagation method which includes shock coalescence and incorporates the effects of asymmetry due to volume and lift. MMOC numerically integrates nonlinear equations from data at a finite distance from an airplane configuration at flight altitude to yield the sonic boom pressure signature at ground level. MMOC accounts for variations in entropy, enthalpy, and gravity for nonlinear effects near the aircraft, allowing extrapolation to begin nearer the body than in previous methods. This feature permits wind tunnel sonic boom models of up to three feet in length, enabling more detailed, realistic models than the previous six-inch sizes. It has been shown that elongated airplanes flying at high altitude and high Mach numbers can produce an acceptably low sonic boom. Shock coalescence in MMOC includes three-dimensional effects. The method is based on an axisymmetric solution with asymmetric effects determined by circumferential derivatives of the standard shock equations. Bow shocks and embedded shocks can be included in the near-field. The method of characteristics approach in MMOC allows large computational steps in the radial direction without loss of accuracy. MMOC is a propagation method rather than a predictive program. Thus input data (the flow field on a cylindrical surface at approximately one body length from the axis) must be supplied from calculations or experimental results. The MMOC package contains a uniform atmosphere pressure field program and interpolation routines for computing the required flow field data. Other user supplied input to MMOC includes Mach number, flow angles, and temperature. MMOC output tabulates locations of bow shocks and embedded shocks. When the calculations reach ground level, the overpressure and distance are printed, allowing the user to plot the pressure signature. MMOC is written in FORTRAN IV for batch execution and has been implemented on a CDC 170 series computer operating under NOS with a central memory requirement of approximately 223K of 60 bit words. This program was developed in 1983.

  5. A Review of Out-of-School Time Program Quasi-Experimental and Experimental Evaluation Results. Out-of-School Time Evaluation Snapshot.

    ERIC Educational Resources Information Center

    Little, Priscilla M. D.; Harris, Erin

    As the amount of resources allocated to out-of-school (OST) programming and policymakers' demands for research-based results increase, there is increasing interest in rigorous research designs to examine OST program outcomes. This issue of "Out-of-School Time Evaluation Snapshots" reviews 27 quasi-experimental and experimental OST…

  6. Development of a mercury electromagnetic centrifugal pump for the SNAP-8 refractory boiler development program

    NASA Technical Reports Server (NTRS)

    Fuller, R. A.; Schnacke, A. W.

    1974-01-01

    An electromagnetic pump, in which pressure is developed in mercury because of the interaction of the magnetic field and current which flows as a result of the voltage induced in the mercury contained in the pump duct, was developed for the SNAP-8 refractory boiler test facility. Pump performance results are presented for ten duct configurations and two stator sizes. These test results were used to design and fabricate a pump which met the SNAP-8 criteria of 530 psi developed pressure at 12,500 lb/hr. The pump operated continuously for over 13,000 hours without failure or performance degradation. Included in this report are descriptions of the experimental equipment, measurement techniques, all experimental data, and an analysis of the electrical losses in the pump.

  7. The IAEA stopping power database, following the trends in stopping power of ions in matter

    NASA Astrophysics Data System (ADS)

    Montanari, C. C.; Dimitriou, P.

    2017-10-01

    The aim of this work is to present an overview of the state of art of the energy loss of ions in matter, based on the new developments in the stopping power database of the International Atomic Energy Agency (IAEA). This exhaustive collection of experimental data, graphs, programs and comparisons, is the legacy of Helmut Paul, who made it accessible to the global scientific community, and has been extensively employed in theoretical and experimental research during the last 25 years. The field of stopping power in matter is evolving, with new trends in materials of interest, including oxides, nitrides, polymers, and biological targets. Our goal is to identify areas of interest and emerging data needs to meet the requirements of a continuously developing user community.

  8. Ab Initio Protein Structure Assembly Using Continuous Structure Fragments and Optimized Knowledge-based Force Field

    PubMed Central

    Xu, Dong; Zhang, Yang

    2012-01-01

    Ab initio protein folding is one of the major unsolved problems in computational biology due to the difficulties in force field design and conformational search. We developed a novel program, QUARK, for template-free protein structure prediction. Query sequences are first broken into fragments of 1–20 residues where multiple fragment structures are retrieved at each position from unrelated experimental structures. Full-length structure models are then assembled from fragments using replica-exchange Monte Carlo simulations, which are guided by a composite knowledge-based force field. A number of novel energy terms and Monte Carlo movements are introduced and the particular contributions to enhancing the efficiency of both force field and search engine are analyzed in detail. QUARK prediction procedure is depicted and tested on the structure modeling of 145 non-homologous proteins. Although no global templates are used and all fragments from experimental structures with template modeling score (TM-score) >0.5 are excluded, QUARK can successfully construct 3D models of correct folds in 1/3 cases of short proteins up to 100 residues. In the ninth community-wide Critical Assessment of protein Structure Prediction (CASP9) experiment, QUARK server outperformed the second and third best servers by 18% and 47% based on the cumulative Z-score of global distance test-total (GDT-TS) scores in the free modeling (FM) category. Although ab initio protein folding remains a significant challenge, these data demonstrate new progress towards the solution of the most important problem in the field. PMID:22411565

  9. Recent Developments in the Formability of Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Banabic, Dorel; Cazacu, Oana; Paraianu, Liana; Jurco, Paul

    2005-08-01

    The paper presents a few recent contributions brought by the authors in the field of the formability of aluminum alloys. A new concept for calculating Forming Limit Diagrams (FLD) using the finite element method is presented. The article presents a new strategy for calculating both branches of an FLD, using a Hutchinson - Neale model implemented in a finite element code. The simulations have been performed with Abaqus/Standard. The constitutive model has been implemented using a UMAT subroutine. The plastic anisotropy of the sheet metal is described by the Cazacu-Barlat and the BBC2003 yield criteria. The theoretical predictions have been compared with the results given by the classical Hutchinson - Neale method and also with experimental data for different aluminum alloys. The comparison proves the capability of the finite element method to predict the strain localization. A computer program used for interactive calculation and graphical representation of different Yield Loci and Forming Limit Diagrams has also been developed. The program is based on a Hutchinson-Neale model. Different yield criteria (Hill 1948, Barlat-Lian and BBC 2003) are implemented in this model. The program consists in three modules: a graphical interface for input, a module for the identification and visualization of the yield surfaces, and a module for calculating and visualizing the forming limit curves. A useful facility offered by the program is the possibility to perform the sensitivity analysis both for the yield surface and the forming limit curves. The numerical results can be compared with experimental data, using the import/export facilities included in the program.

  10. Recent Developments in the Formability of Aluminum Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banabic, Dorel; Paraianu, Liana; Jurco, Paul

    The paper presents a few recent contributions brought by the authors in the field of the formability of aluminum alloys. A new concept for calculating Forming Limit Diagrams (FLD) using the finite element method is presented. The article presents a new strategy for calculating both branches of an FLD, using a Hutchinson - Neale model implemented in a finite element code. The simulations have been performed with Abaqus/Standard. The constitutive model has been implemented using a UMAT subroutine. The plastic anisotropy of the sheet metal is described by the Cazacu-Barlat and the BBC2003 yield criteria. The theoretical predictions have beenmore » compared with the results given by the classical Hutchinson - Neale method and also with experimental data for different aluminum alloys. The comparison proves the capability of the finite element method to predict the strain localization. A computer program used for interactive calculation and graphical representation of different Yield Loci and Forming Limit Diagrams has also been developed. The program is based on a Hutchinson-Neale model. Different yield criteria (Hill 1948, Barlat-Lian and BBC 2003) are implemented in this model. The program consists in three modules: a graphical interface for input, a module for the identification and visualization of the yield surfaces, and a module for calculating and visualizing the forming limit curves. A useful facility offered by the program is the possibility to perform the sensitivity analysis both for the yield surface and the forming limit curves. The numerical results can be compared with experimental data, using the import/export facilities included in the program.« less

  11. Distinctive features of kinetics of plasma at high specific energy deposition

    NASA Astrophysics Data System (ADS)

    Lepikhin, Nikita; Popov, Nikolay; Starikovskaia, Svetlana

    2016-09-01

    A nanosecond capillary discharge in pure nitrogen at moderate pressures is used as an experimental tool for plasma kinetics studies at conditions of high specific deposited energy up to 1 eV/molecule. Experimental observations based on electrical (back current shunts, capacitive probe) and spectroscopic measurements (quenching rates; translational, rotational and vibrational temperature measurements) demonstrate that high specific deposited energy, at electric fields of 200-300 Td, can significantly change gas kinetics in the discharge and in the afterglow. The numerical calculations in 1D axially symmetric geometry using experimental data as input parameters show that changes in the plasma kinetics are caused by extremely high excitation degree: up to 10% of molecular nitrogen is electronically excited at present conditions. Distinctive features of kinetics of plasma at high specific energy deposition as well as details of the experimental technique and numerical calculations will be present. The work was partially supported by French National Agency, ANR (PLASMAFLAME Project, 2011 BS09 025 01), AOARD AFOSR, FA2386-13-1-4064 grant (Program Officer Prof. Chiping Li), LabEx Plas@Par and Linked International Laboratory LIA KaPPA (France-Russia).

  12. Game-XP: Action Games as Experimental Paradigms for Cognitive Science.

    PubMed

    Gray, Wayne D

    2017-04-01

    Why games? How could anyone consider action games an experimental paradigm for Cognitive Science? In 1973, as one of three strategies he proposed for advancing Cognitive Science, Allen Newell exhorted us to "accept a single complex task and do all of it." More specifically, he told us that rather than taking an "experimental psychology as usual approach," we should "focus on a series of experimental and theoretical studies around a single complex task" so as to demonstrate that our theories of human cognition were powerful enough to explain "a genuine slab of human behavior" with the studies fitting into a detailed theoretical picture. Action games represent the type of experimental paradigm that Newell was advocating and the current state of programming expertise and laboratory equipment, along with the emergence of Big Data and naturally occurring datasets, provide the technologies and data needed to realize his vision. Action games enable us to escape from our field's regrettable focus on novice performance to develop theories that account for the full range of expertise through a twin focus on expertise sampling (across individuals) and longitudinal studies (within individuals) of simple and complex tasks. Copyright © 2017 Cognitive Science Society, Inc.

  13. Methodological convergence of program evaluation designs.

    PubMed

    Chacón-Moscoso, Salvador; Anguera, M Teresa; Sanduvete-Chaves, Susana; Sánchez-Martín, Milagrosa

    2014-01-01

    Nowadays, the confronting dichotomous view between experimental/quasi-experimental and non-experimental/ethnographic studies still exists but, despite the extensive use of non-experimental/ethnographic studies, the most systematic work on methodological quality has been developed based on experimental and quasi-experimental studies. This hinders evaluators and planners' practice of empirical program evaluation, a sphere in which the distinction between types of study is changing continually and is less clear. Based on the classical validity framework of experimental/quasi-experimental studies, we carry out a review of the literature in order to analyze the convergence of design elements in methodological quality in primary studies in systematic reviews and ethnographic research. We specify the relevant design elements that should be taken into account in order to improve validity and generalization in program evaluation practice in different methodologies from a practical methodological and complementary view. We recommend ways to improve design elements so as to enhance validity and generalization in program evaluation practice.

  14. Community-Oriented Biodiversity Environmental education: Its effect on knowledge, values, and behavior among rural fifth- and sixth-grade students in northeastern Thailand

    NASA Astrophysics Data System (ADS)

    Ratanapojnard, Sorrayut

    The goals of this study were to (a) develop and implement Community-Orient Biodiversity Environmental Education (COBEE) program in Buriram, northeastern Thailand; and (b) determine its effect on biodiversity-related knowledge, values, and behavior among rural fifth- and sixth-grade students. Local teachers, community leaders, and the author, in association with Thailand's Ministry of Education, together developed a multidisciplinary curriculum to study the community of Satuk, Buriram---its history, lifestyles, and economy, and how these were interconnected with biodiversity issues. The COBEE program provided intensive and ongoing teacher training workshops, supervisory visits, and support group meetings for teachers. Over the 1996--1997 academic year, teachers delivered the COBEE curriculum using both indoor and outdoor activities, including community studies, interviews with local people, developing a species inventory with descriptions of biology, habitats, and uses, and field trips to agricultural fields, local forests, and protected areas. Seven primary schools were randomly assigned as four experimental and three control schools. There were 218 and 198 fifth- and sixth-grade students in the experimental and control schools respectively. The Solomon four-group research design was used to compare students before and after the COBEE program. A set of survey instruments was developed to gather quantitative data. Qualitative data were collected from interviews, participant observations, and students' schoolwork. Three major findings are: (1) An environmental education program can be designed and implemented to produce positive effects not only on objectives identified as the foundation of environmental education (e.g., knowledge, attitudes, and behavior), but also on students' other academic attitudes and development. (2) Based on qualitative data, the relative success of COBEE indicates that curriculum, instruction, nature experience, and other facilitating components are critical to the effectiveness of an environmental education program. (3) Fifth- and sixth-grade children in rural northeastern Thailand have an environmental value system different from peers in Connecticut. The findings imply that (a) to make an environmental education program successful, sufficient supports must be provided, (b) the natural world is a heightened learning environment rich with potential teaching possibilities and diverse learning challenges, and (c) environmental education can have a significant role in general education reform efforts.

  15. Experimental verification of the spectral shift between near- and far-field peak intensities of plasmonic infrared nanoantennas.

    PubMed

    Alonso-González, P; Albella, P; Neubrech, F; Huck, C; Chen, J; Golmar, F; Casanova, F; Hueso, L E; Pucci, A; Aizpurua, J; Hillenbrand, R

    2013-05-17

    Theory predicts a distinct spectral shift between the near- and far-field optical response of plasmonic antennas. Here we combine near-field optical microscopy and far-field spectroscopy of individual infrared-resonant nanoantennas to verify experimentally this spectral shift. Numerical calculations corroborate our experimental results. We furthermore discuss the implications of this effect in surface-enhanced infrared spectroscopy.

  16. Hospital graduate social work field work programs: a study in New York City.

    PubMed

    Showers, N

    1990-02-01

    Twenty-seven hospital field work programs in New York City were studied. Questionnaires were administered to program coordinators and 238 graduate social work students participating in study programs. High degrees of program structural complexity and variation were found, indicating a state of art well beyond that described in the general field work literature. High rates of student satisfaction with learning, field instructors, programs, and the overall field work experience found suggest that the complexity of study programs may be more effective than traditional field work models. Statistically nonsignificant study findings indicate areas in which hospital social work departments may develop field work programs consistent with shifting organizational needs, without undue risk to educational effectiveness. Statistically significant findings suggest areas in which inflexibility in program design may be more beneficial in the diagnostic related groups era.

  17. Characterizing Sorghum Panicles using 3D Point Clouds

    NASA Astrophysics Data System (ADS)

    Lonesome, M.; Popescu, S. C.; Horne, D. W.; Pugh, N. A.; Rooney, W.

    2017-12-01

    To address demands of population growth and impacts of global climate change, plant breeders must increase crop yield through genetic improvement. However, plant phenotyping, the characterization of a plant's physical attributes, remains a primary bottleneck in modern crop improvement programs. 3D point clouds generated from terrestrial laser scanning (TLS) and unmanned aerial systems (UAS) based structure from motion (SfM) are a promising data source to increase the efficiency of screening plant material in breeding programs. This study develops and evaluates methods for characterizing sorghum (Sorghum bicolor) panicles (heads) in field plots from both TLS and UAS-based SfM point clouds. The TLS point cloud over experimental sorghum field at Texas A&M farm in Burleston County TX were collected using a FARO Focus X330 3D laser scanner. SfM point cloud was generated from UAS imagery captured using a Phantom 3 Professional UAS at 10m altitude and 85% image overlap. The panicle detection method applies point cloud reflectance, height and point density attributes characteristic of sorghum panicles to detect them and estimate their dimensions (panicle length and width) through image classification and clustering procedures. We compare the derived panicle counts and panicle sizes with field-based and manually digitized measurements in selected plots and study the strengths and limitations of each data source for sorghum panicle characterization.

  18. Polarized lepton-nucleon scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, E.

    1994-12-01

    The author provides a summary of the proposed and published statistical (systematic) uncertainties from the world experiments on nucleon spin structure function integrals. By the time these programs are complete, there will be a vast resource of data on nucleon spin structure functions. Each program has quite different experimental approaches regarding the beams, targets, and spectrometers thus ensuring systematically independent tests of the spin structure function measurements. Since the field of spin structure function measurements began, there has been a result appearing approximately every five years. With advances in polarized target technology and high polarization in virtually all of themore » lepton beams, results are now coming out each year; this is a true signature of the growth in the field. Hopefully, the experiments will provide a consistent picture of nucleon spin structure at their completion. In summary, there are still many open questions regarding the internal spin structure of the nucleon. Tests of QCD via the investigation of the Bjorken sum rule is a prime motivator for the field, and will continue with the next round of precision experiments. The question of the origin of spin is still a fundamental problem. Researchers hope is that high-energy probes using spin will shed light on this intriguing mystery, in addition to characterizing the spin structure of the nucleon.« less

  19. Optimizing Learning of Scientific Category Knowledge in the Classroom: The Case of Plant Identification

    PubMed Central

    Kirchoff, Bruce K.; Delaney, Peter F.; Horton, Meg; Dellinger-Johnston, Rebecca

    2014-01-01

    Learning to identify organisms is extraordinarily difficult, yet trained field biologists can quickly and easily identify organisms at a glance. They do this without recourse to the use of traditional characters or identification devices. Achieving this type of recognition accuracy is a goal of many courses in plant systematics. Teaching plant identification is difficult because of variability in the plants’ appearance, the difficulty of bringing them into the classroom, and the difficulty of taking students into the field. To solve these problems, we developed and tested a cognitive psychology–based computer program to teach plant identification. The program incorporates presentation of plant images in a homework-based, active-learning format that was developed to stimulate expert-level visual recognition. A controlled experimental test using a within-subject design was performed against traditional study methods in the context of a college course in plant systematics. Use of the program resulted in an 8–25% statistically significant improvement in final exam scores, depending on the type of identification question used (living plants, photographs, written descriptions). The software demonstrates how the use of routines to train perceptual expertise, interleaved examples, spaced repetition, and retrieval practice can be used to train identification of complex and highly variable objects. PMID:25185226

  20. VHDL Descriptions for the FPGA Implementation of PWL-Function-Based Multi-Scroll Chaotic Oscillators

    PubMed Central

    2016-01-01

    Nowadays, chaos generators are an attractive field for research and the challenge is their realization for the development of engineering applications. From more than three decades ago, chaotic oscillators have been designed using discrete electronic devices, very few with integrated circuit technology, and in this work we propose the use of field-programmable gate arrays (FPGAs) for fast prototyping. FPGA-based applications require that one be expert on programming with very-high-speed integrated circuits hardware description language (VHDL). In this manner, we detail the VHDL descriptions of chaos generators for fast prototyping from high-level programming using Python. The cases of study are three kinds of chaos generators based on piecewise-linear (PWL) functions that can be systematically augmented to generate even and odd number of scrolls. We introduce new algorithms for the VHDL description of PWL functions like saturated functions series, negative slopes and sawtooth. The generated VHDL-code is portable, reusable and open source to be synthesized in an FPGA. Finally, we show experimental results for observing 2, 10 and 30-scroll attractors. PMID:27997930

  1. VHDL Descriptions for the FPGA Implementation of PWL-Function-Based Multi-Scroll Chaotic Oscillators.

    PubMed

    Tlelo-Cuautle, Esteban; Quintas-Valles, Antonio de Jesus; de la Fraga, Luis Gerardo; Rangel-Magdaleno, Jose de Jesus

    2016-01-01

    Nowadays, chaos generators are an attractive field for research and the challenge is their realization for the development of engineering applications. From more than three decades ago, chaotic oscillators have been designed using discrete electronic devices, very few with integrated circuit technology, and in this work we propose the use of field-programmable gate arrays (FPGAs) for fast prototyping. FPGA-based applications require that one be expert on programming with very-high-speed integrated circuits hardware description language (VHDL). In this manner, we detail the VHDL descriptions of chaos generators for fast prototyping from high-level programming using Python. The cases of study are three kinds of chaos generators based on piecewise-linear (PWL) functions that can be systematically augmented to generate even and odd number of scrolls. We introduce new algorithms for the VHDL description of PWL functions like saturated functions series, negative slopes and sawtooth. The generated VHDL-code is portable, reusable and open source to be synthesized in an FPGA. Finally, we show experimental results for observing 2, 10 and 30-scroll attractors.

  2. SedWorks: A 3-D visualisation software package to help students link surface processes with depositional product

    NASA Astrophysics Data System (ADS)

    Jones, M. A.; Edwards, A.; Boulton, P.

    2010-12-01

    Helping students to develop a cognitive and intuitive feel for the different temporal and spatial scales of processes through which the rock record is assembled is a primary goal of geoscience teaching. SedWorks is a 3-D virtual geoscience world that integrates both quantitative modelling and field-based studies into one interactive package. The program aims to help students acquire scientific content, cultivate critical thinking skills, and hone their problem solving ability, while also providing them with the opportunity to practice the activities undertaken by professional earth scientists. SedWorks is built upon a game development platform used for constructing interactive 3-D applications. Initially the software has been developed for teaching the sedimentology component of a Geoscience degree and consists of a series of continents or land masses each possessing sedimentary environments which the students visit on virtual field trips. The students are able to interact with the software to collect virtual field data from both the modern environment and the stratigraphic record, and to formulate hypotheses based on their observations which they can test through virtual physical experimentation within the program. The program is modular in design in order to enhance its adaptability and to allow scientific content to be updated so that the knowledge and skills acquired are at the cutting edge. We will present an example module in which students undertake a virtual field study of a 2-km long stretch of a river to observe how sediment is transported and deposited. On entering the field area students are able to observe different bedforms in different parts of the river as they move up- and down-stream, as well as in and out of the river. As they explore, students discover ‘hot spots’ at which particular tools become available to them. This includes tools for measuring the physical parameters of the flow and sediment bed (e.g. velocity, depth, grain size, bed slope), a zoom-in/zoom-out function (to increase or decrease the resolution of the observations, e.g. zoom-in to observe the motion of individual grains on the bed) and a sectioning tool (to allow students to cut a cross-section through a bedform to observe the sedimentary structure being created). Students are encouraged to make notes of their observations in a field notebook, as they would in the real world. Based on their observations, students form hypotheses about the relationship between the physical attributes of the flow and the way in which sediment is transported, bedforms produced and sedimentary structures created. They are able to test these hypotheses using a virtual flume in an experimental field station, conveniently located within the field area. Concepts investigated by the students during the virtual field study include controls on bedload sediment transport, bedform phase diagrams, flow structure within channels (and its effect on sediment erosion and deposition), fluvial facies models and controls on facies architecture, and landscape evolution over different temporal and spatial scales.

  3. NPS Field Experimentation Program For Special Operations (FEPSO) TNT 13-2 Report

    DTIC Science & Technology

    2013-04-01

    self -­‐form   and   self -­‐ heal  with  without   operator   intervention.   Trends  in  current  tactical...layer   two   self -­‐forming-­‐ self   healing  peer-­‐to-­‐peer   topologies.  In  this  later  group,  we  see  emerging  mesh...the   shock.   The   electrically   insulative   sub-­‐layer,   made   of   rubber   or

  4. An experimental measurement of galactic cosmic radiation dose in conventional aircraft between San Francisco and London compared to theoretical values for conventional and supersonic aircraft

    NASA Technical Reports Server (NTRS)

    Wallace, R.; Boyer, M. F.

    1972-01-01

    These direct measurements are in fair agreement with computations made using a program which considers both basic cosmic ray atmospheric physics and the focusing effect of the earth's magnetic field. These measurements also agree with those made at supersonic jet aircraft altitudes in Rb-57 aircraft. It is concluded that experiments and theory show that the doses received at conventional jet aircraft altitudes are slightly higher than those encountered in supersonic flights at much higher altitudes.

  5. Regeneration, morphogenesis and self-organization.

    PubMed

    Goldman, Daniel

    2014-07-01

    The RIKEN Center for Developmental Biology in Kobe, Japan, hosted a meeting entitled 'Regeneration of Organs: Programming and Self-Organization' in March, 2014. Scientists from across the globe met to discuss current research on regeneration, organ morphogenesis and self-organization - and the links between these fields. A diverse range of experimental models and organ systems was presented, and the speakers aptly illustrated the unique power of each. This Meeting Review describes the major advances reported and themes emerging from this exciting meeting. © 2014. Published by The Company of Biologists Ltd.

  6. Lithium-ion Battery Demonstration for the 2007 NASA Desert Research and Technology Studies (Desert RATS) Program

    NASA Technical Reports Server (NTRS)

    Bennett, William; Baldwin, Richard

    2007-01-01

    The NASA Glenn Research Center (GRC) Electrochemistry Branch designed and produced five lithium-ion battery packs for demonstration in a portable life support system (PLSS) on spacesuit simulators. The experimental batteries incorporated advanced, NASA-developed electrolytes and included internal protection against over-current, over-discharge and over-temperature. The 500-gram batteries were designed to deliver a constant power of 38 watts over 103 minutes of discharge time (130 Wh/kg). Battery design details are described and field and laboratory test results are summarized.

  7. Application of thrusting ejectors to tactical aircraft having vertical lift and short-field capability

    NASA Technical Reports Server (NTRS)

    Koenig, D. G.; Stoll, F.; Aoyagi, K.

    1981-01-01

    The status of ejector development in terms of application to V/STOL aircraft is reported in three categories: aircraft systems and ejector concepts; ejector performance including prediction techniques and experimental data base available; and, integration of the ejector with complete aircraft configurations. Available prediction techniques are reviewed and performance of three ejector designs with vertical lift capability is summarized. Applications of the 'fuselage' and 'short diffuser' ejectors to fighter aircraft are related to current and planned research programs. Recommendations are listed for effort needed to evaluate installed performance.

  8. HCIT Contrast Performance Sensitivity Studies: Simulation Versus Experiment

    NASA Technical Reports Server (NTRS)

    Sidick, Erkin; Shaklan, Stuart; Krist, John; Cady, Eric J.; Kern, Brian; Balasubramanian, Kunjithapatham

    2013-01-01

    Using NASA's High Contrast Imaging Testbed (HCIT) at the Jet Propulsion Laboratory, we have experimentally investigated the sensitivity of dark hole contrast in a Lyot coronagraph for the following factors: 1) Lateral and longitudinal translation of an occulting mask; 2) An opaque spot on the occulting mask; 3) Sizes of the controlled dark hole area. Also, we compared the measured results with simulations obtained using both MACOS (Modeling and Analysis for Controlled Optical Systems) and PROPER optical analysis programs with full three-dimensional near-field diffraction analysis to model HCIT's optical train and coronagraph.

  9. Attitudes of College Freshmen in an Experimental Program.

    ERIC Educational Resources Information Center

    Smith, M. Daniel

    This report describes the results of 2 questionnaires designed to measure students' perceptions of and satisfaction with aspects of their small liberal arts college environment. The test was administered to samples of students enrolled in the experimental program, alternates (students who had volunteered for the experimental program but were not…

  10. A molecular-field-based similarity study of non-nucleoside HIV-1 reverse transcriptase inhibitors

    NASA Astrophysics Data System (ADS)

    Mestres, Jordi; Rohrer, Douglas C.; Maggiora, Gerald M.

    1999-01-01

    This article describes a molecular-field-based similarity method for aligning molecules by matching their steric and electrostatic fields and an application of the method to the alignment of three structurally diverse non-nucleoside HIV-1 reverse transcriptase inhibitors. A brief description of the method, as implemented in the program MIMIC, is presented, including a discussion of pairwise and multi-molecule similarity-based matching. The application provides an example that illustrates how relative binding orientations of molecules can be determined in the absence of detailed structural information on their target protein. In the particular system studied here, availability of the X-ray crystal structures of the respective ligand-protein complexes provides a means for constructing an 'experimental model' of the relative binding orientations of the three inhibitors. The experimental model is derived by using MIMIC to align the steric fields of the three protein P66 subunit main chains, producing an overlay with a 1.41 Å average rms distance between the corresponding Cα's in the three chains. The inter-chain residue similarities for the backbone structures show that the main-chain conformations are conserved in the region of the inhibitor-binding site, with the major deviations located primarily in the 'finger' and RNase H regions. The resulting inhibitor structure overlay provides an experimental-based model that can be used to evaluate the quality of the direct a priori inhibitor alignment obtained using MIMIC. It is found that the 'best' pairwise alignments do not always correspond to the experimental model alignments. Therefore, simply combining the best pairwise alignments will not necessarily produce the optimal multi-molecule alignment. However, the best simultaneous three-molecule alignment was found to reproduce the experimental inhibitor alignment model. A pairwise consistency index has been derived which gauges the quality of combining the pairwise alignments and aids in efficiently forming the optimal multi-molecule alignment analysis. Two post-alignment procedures are described that provide information on feature-based and field-based pharmacophoric patterns. The former corresponds to traditional pharmacophore models and is derived from the contribution of individual atoms to the total similarity. The latter is based on molecular regions rather than atoms and is constructed by computing the percent contribution to the similarity of individual points in a regular lattice surrounding the molecules, which when contoured and colored visually depict regions of highly conserved similarity. A discussion of how the information provided by each of the procedures is useful in drug design is also presented.

  11. Experimental Studies of the Brownian Diffusion of Boomerang Colloidal Particle in a Confined Geometry

    NASA Astrophysics Data System (ADS)

    Chakrabarty, Ayan; Wang, Feng; Joshi, Bhuwan; Wei, Qi-Huo

    2011-03-01

    Recent studies shows that the boomerang shaped molecules can form various kinds of liquid crystalline phases. One debated topic related to boomerang molecules is the existence of biaxial nematic liquid crystalline phase. Developing and optical microscopic studies of colloidal systems of boomerang particles would allow us to gain better understanding of orientation ordering and dynamics at ``single molecule'' level. Here we report the fabrication and experimental studies of the Brownian motion of individual boomerang colloidal particles confined between two glass plates. We used dark-field optical microscopy to directly visualize the Brownian motion of the single colloidal particles in a quasi two dimensional geometry. An EMCCD was used to capture the motion in real time. An indigenously developed imaging processing algorithm based on MatLab program was used to precisely track the position and orientation of the particles with sub-pixel accuracy. The experimental finding of the Brownian diffusion of a single boomerang colloidal particle will be discussed.

  12. Modeling out-of-plane actuation in thin-film nematic polymer networks: From chiral ribbons to auto-origami boxes via twist and topology

    PubMed Central

    Gimenez-Pinto, Vianney; Ye, Fangfu; Mbanga, Badel; Selinger, Jonathan V.; Selinger, Robin L. B.

    2017-01-01

    Various experimental and theoretical studies demonstrate that complex stimulus-responsive out-of-plane distortions such as twist of different chirality, emergence of cones, simple and anticlastic bending can be engineered and pre-programmed in a liquid crystalline rubbery material given a well-controlled director microstructure. Via 3-d finite element simulation studies, we demonstrate director-encoded chiral shape actuation in thin-film nematic polymer networks under external stimulus. Furthermore, we design two complex director fields with twisted nematic domains and nematic disclinations that encode a pattern of folds for an auto-origami box. This actuator will be flat at a reference nematic state and form four well-controlled bend distortions as orientational order changes. Device fabrication is applicable via current experimental techniques. These results are in qualitative agreement with theoretical predictions, provide insight into experimental observations, and demonstrate the value of finite element methods at the continuum level for designing and engineering liquid crystal polymeric devices. PMID:28349949

  13. Where have we been? Where are we going?

    PubMed

    Gildenberg, P L

    1997-01-01

    The field of human stereotactic and functional neurosurgery is 50 years old. It began with the pioneering work of Spiegel and Wycis, who developed an apparatus to be used in human neurosurgery designed like the Horsley-Clarke apparatus invented for animal experimentation 40 years earlier, but based on targeting by intracerebral landmarks. During the past half century, the field of stereotactic surgery has evolved from a small field involving a handful of scientists to a field dominated by a technology that is permeating all of neurosurgery. A review of the scientific programs and activities of the World Society for Stereotactic and Functional Neurosurgery reflects the changing level of activity in these fields, the waxing and waning of functional neurosurgery that is now vital and active, and the evolution of stereotactic guidance into the field of computer-assisted neurosurgery. Functional neurosurgery involves the application of human neurophysiology to the treatment of various diseases that produce malfunction of the nervous system, and remains the domain of those few neurosurgeons well versed in neurological pathophysiology. Image-based or computerized stereotactic surgery, on the other hand, is used in those procedures common to neurosurgery, and should be available to any operating neurosurgeon.

  14. Experimental Study of Magnetic Field Production and Dielectric Breakdown of Auto-Magnetizing Liners

    NASA Astrophysics Data System (ADS)

    Shipley, Gabriel; Awe, Thomas; Hutchinson, Trevor; Hutsel, Brian; Slutz, Stephen; Lamppa, Derek

    2017-10-01

    AutoMag liners premagnetize the fuel in MagLIF targets and provide enhanced x-ray diagnostic access and increased current delivery without requiring external field coils. AutoMag liners are composite liners made with discrete metallic helical conduction paths separated by insulating material. First, a low dI/dt ``foot'' current pulse (1 MA in 100 ns) premagnetizes the fuel. Next, a higher dI/dt pulse with larger induced electric field initiates breakdown on the composite liner's; surface, switching the current from helical to axial to implode the liner. Experiments on MYKONOS have tested the premagnetization and breakdown phases of AutoMag and demonstrate axial magnetic fields above 90 Tesla for a 550 kA peak current pulse. Electric fields of 17 MV/m have been generated before breakdown. AutoMag may enhance MagLIF performance by increasing the premagnetization strength significantly above 30 T, thus reducing thermal-conduction losses and mitigating anomalous diffusion of magnetic field out of hotter fuel regions, by, for example, the Nernst thermoelectric effect. This project was funded in part by Sandia's Laboratory Directed Research and Development Program (Projects No. 200169 and 195306).

  15. Periodic acoustic radiation from a low aspect ratio propeller

    NASA Astrophysics Data System (ADS)

    Muench, John David

    An experimental program was conducted with the objective of providing high fidelity measurements of propeller inflow, unsteady blade surface pressures, and discrete acoustic radiation over a wide range of speeds. Anechoic wind tunnel experiments were preformed using the SISUP propeller. The upstream stator blades generate large wake deficits that result in periodic unsteady blade forces that acoustically radiate at blade passing frequency and higher harmonics. The experimental portion of this research successfully measured the inflow velocity, blade span unsteady pressures and directive characteristics of the blade-rate radiated noise associated with this complex propeller geometry while the propeller was operating on design. The spatial harmonic decomposition of the inflow revealed significant coefficients at 8, 16 and 24. The magnitude of the unsteady blade forces scale as U4 and linearly shift in frequency with speed. The magnitude of the discrete frequency acoustic levels associated with blade rate scale as U6 and also shift linearly with speed. At blade-rate, the far-field acoustic directivity has a dipole-like directivity oriented perpendicular to the inflow. At the first harmonic of blade-rate, the far-field directivity is not as well defined. The experimental inflow and blade surface pressure results were used to generate an acoustic prediction at blade rate based on a blade strip theory model developed by Blake (1986). The predicted acoustic levels were compared to the experimental results. The model adequately predicts the measured sound field at blade rate at 120 ft/sec. Radiated noise at blade-rate for 120 ft/s can be described by a dipole, whose orientation is perpendicular to the flow and is generated by the interaction of the rotating propeller with the 8th harmonic of the inflow. At blade-rate for 60 ft/s, the model under predicts measured levels. At the first harmonic of blade-rate, for 120 ft/s, the sound field is described as a combination of dipole sources, one generated by the 16 th harmonic, perpendicular to the inflow, and the other generated by the 12th harmonic of the inflow parallel to the inflow. At the first harmonic of blade-rate for 60 ft/s, the model under predicts measured levels.

  16. Three new bachelors of photonics in Ontario

    NASA Astrophysics Data System (ADS)

    Nantel, Marc; Beda, Johann; Grevatt, Treena; Chebbi, Brahim; Jessop, Paul; Song, Shaowen

    2004-10-01

    After the introduction in 2001 of community college programs at the Photonics Technician/Technologist levels, the need to cover the photonics educational space at the undergraduate level was addressed. In the last year, three very different new undergraduate degrees in photonics have started to develop in Ontario. These programs are presented in this paper. The Honours B.Sc. in Photonics at Wilfrid Laurier University (Waterloo) will develop a strong understanding of the theory and application of photonics, with practical hands-on exposure to optics, fibre optics, and lasers. This program benefits from the particularity that the department offering it combines both Physics and Computer Science. At McMaster University, the Engineering Physics program will provide students with a broad background in basic Engineering, Mathematics, Electronics, and Semiconductors, as well as an opportunity to pursue Photonics in greater depth and to have that fact recognized in the program designation. The Niagara and Algonquin College Bachelor of Applied Technology in Photonics program is co-op and joint between the two institutions. Emphasis is placed on the applied aspects of the field, with the more hands-on experimental learning taking precedence in the first years and the more advanced theoretical subjects following in the latter years.

  17. Large-scale experimental technology with remote sensing in land surface hydrology and meteorology

    NASA Technical Reports Server (NTRS)

    Brutsaert, Wilfried; Schmugge, Thomas J.; Sellers, Piers J.; Hall, Forrest G.

    1988-01-01

    Two field experiments to study atmospheric and land surface processes and their interactions are summarized. The Hydrologic-Atmospheric Pilot Experiment, which tested techniques for measuring evaporation, soil moisture storage, and runoff at scales of about 100 km, was conducted over a 100 X 100 km area in France from mid-1985 to early 1987. The first International Satellite Land Surface Climatology Program field experiment was conducted in 1987 to develop and use relationships between current satellite measurements and hydrologic, climatic, and biophysical variables at the earth's surface and to validate these relationships with ground truth. This experiment also validated surface parameterization methods for simulation models that describe surface processes from the scale of vegetation leaves up to scales appropriate to satellite remote sensing.

  18. Three-dimensional transonic potential flow about complex 3-dimensional configurations

    NASA Technical Reports Server (NTRS)

    Reyhner, T. A.

    1984-01-01

    An analysis has been developed and a computer code written to predict three-dimensional subsonic or transonic potential flow fields about lifting or nonlifting configurations. Possible condfigurations include inlets, nacelles, nacelles with ground planes, S-ducts, turboprop nacelles, wings, and wing-pylon-nacelle combinations. The solution of the full partial differential equation for compressible potential flow written in terms of a velocity potential is obtained using finite differences, line relaxation, and multigrid. The analysis uses either a cylindrical or Cartesian coordinate system. The computational mesh is not body fitted. The analysis has been programmed in FORTRAN for both the CDC CYBER 203 and the CRAY-1 computers. Comparisons of computed results with experimental measurement are presented. Descriptions of the program input and output formats are included.

  19. Investigation of space radiation effects in polymeric film-forming materials

    NASA Technical Reports Server (NTRS)

    Giori, C.; Yamauchi, T.; Jarke, F.

    1975-01-01

    The literature search in the field of ultraviolet radiation effects that was conducted during the previous program, Contract No. NAS1-12549, has been expanded to include the effects of charged particle radiation and high energy electromagnetic radiation. The literature from 1958 to 1969 was searched manually, while the literature from 1969 to present was searched by using a computerized keyword system. The information generated from this search was utilized for the design of an experimental program aimed at the development of materials with improved resistance to the vacuum-radiation environment of space. Preliminary irradiation experiments were performed which indicate that the approaches and criteria employed are very promising and may provide a solution to the challenging problem of polymer stability to combined ultraviolet/high energy radiation.

  20. Hydrodynamic investigation of a self-propelled robotic fish based on a force-feedback control method.

    PubMed

    Wen, L; Wang, T M; Wu, G H; Liang, J H

    2012-09-01

    We implement a mackerel (Scomber scombrus) body-shaped robot, programmed to display the three most typical body/caudal fin undulatory kinematics (i.e. anguilliform, carangiform and thunniform), in order to biomimetically investigate hydrodynamic issues not easily tackled experimentally with live fish. The robotic mackerel, mounted on a servo towing system and initially at rest, can determine its self-propelled speed by measuring the external force acting upon it and allowing for the simultaneous measurement of power, flow field and self-propelled speed. Experimental results showed that the robotic swimmer with thunniform kinematics achieved a faster final swimming speed (St = 0.424) relative to those with carangiform (St = 0.43) and anguilliform kinematics (St = 0.55). The thrust efficiency, estimated from a digital particle image velocimetry (DPIV) flow field, showed that the robotic swimmer with thunniform kinematics is more efficient (47.3%) than those with carangiform (31.4%) and anguilliform kinematics (26.6%). Furthermore, the DPIV measurements illustrate that the large-scale characteristics of the flow pattern generated by the robotic swimmer with both anguilliform and carangiform kinematics were wedge-like, double-row wake structures. Additionally, a typical single-row reverse Karman vortex was produced by the robotic swimmer using thunniform kinematics. Finally, we discuss this novel force-feedback-controlled experimental method, and review the relative self-propelled hydrodynamic results of the robot when utilizing the three types of undulatory kinematics.

  1. Characterization of Unsteady Flow Structures Near Leading-Edge Slat. Part 1; PIV Measurements

    NASA Technical Reports Server (NTRS)

    Jenkins, Luther N.; Khorrami, Mehdi R.; Choudhari, Meelan

    2004-01-01

    A comprehensive computational and experimental study has been performed at the NASA Langley Research Center as part of the Quiet Aircraft Technology (QAT) Program to investigate the unsteady flow near a leading-edge slat of a two-dimensional, high-lift system. This paper focuses on the experimental effort conducted in the NASA Langley Basic Aerodynamics Research Tunnel (BART) where Particle Image Velocimetry (PIV) data was acquired in the slat cove and at the slat trailing edge of a three-element, high-lift model at 4, 6, and 8 degrees angle of attack and a freestream Mach Number of 0.17. Instantaneous velocities obtained from PIV images are used to obtain mean and fluctuating components of velocity and vorticity. The data show the recirculation in the cove, reattachment of the shear layer on the slat lower surface, and discrete vortical structures within the shear layer emanating from the slat cusp and slat trailing edge. Detailed measurements are used to examine the shear layer formation at the slat cusp, vortex shedding at the slat trailing edge, and convection of vortical structures through the slat gap. Selected results are discussed and compared with unsteady, Reynolds-Averaged Navier-Stokes (URANS) computations for the same configuration in a companion paper by Khorrami, Choudhari, and Jenkins (2004). The experimental dataset provides essential flow-field information for the validation of near-field inputs to noise prediction tools.

  2. 75 FR 12003 - Investing in Innovation Fund

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-12

    ..., Proposed Practice, Strategy, or implemented experimental implemented strategy, or program, Program. study or well-designed experimental or quasi- or one similar to it, and well-implemented experimental study, has been attempted quasi-experimental with small sample sizes previously, albeit on a study; or (2...

  3. Effects of two different programs of modern sports dancing on motor coordination, strength, and speed.

    PubMed

    Uzunovic, Slavoljub; Kostic, Radmila; Zivkovic, Dobrica

    2010-09-01

    This study aimed to determine the effects of two different programs of modern sports dancing on coordination, strength, and speed in 60 beginner-level female dancers, aged 13 and 14 yrs. The subjects were divided into two experimental groups (E1 and E2), each numbering 30 subjects, drawn from local dance clubs. In order to determine motor coordination, strength, and speed, we used 15 measurements. The groups were tested before and after the experimental programs. Both experimental programs lasted for 18 wks, with training sessions twice a week for 60 minutes. The subjects from the E1 group trained according to a new experimental program of disco dance (DD) modern sports dance, and the E2 group trained according to the classic DD program of the same kind for beginner selections. The obtained results were assessed by statistical analysis: a paired-samples t-test and MANCOVA/ANCOVA. The results indicated that following the experimental programs, both groups showed a statistically significant improvement in the evaluated skills, but the changes among the E1 group subjects were more pronounced. The basic assumption of this research was confirmed, that the new experimental DD program has a significant influence on coordination, strength, and speed. In relation to these changes, the application of the new DD program was recommended for beginner dancers.

  4. Practical application of computer programs for supersonic combustion

    NASA Technical Reports Server (NTRS)

    Groves, F. R., Jr.

    1972-01-01

    Experimental data were interpreted using two supersonic combustion computer programs. The P1 program is based on a conventional boundary layer treatment of the mixing of concentric gas streams and complete combustion chemistry. The H1 program is based on a modified boundary layer approach which accounts for radial pressure gradients in the flow and also incorporates a finite rate chemistry calculation. The objective of the investigation was to compare the experimental data with theoretical predictions of the two programs with special emphasis on the prediction of radial pressure gradients by the H1 program. A test of the H1 program was also desired through comparison with the experimental data and with the P1 program.

  5. SiC JFET Transistor Circuit Model for Extreme Temperature Range

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.

    2008-01-01

    A technique for simulating extreme-temperature operation of integrated circuits that incorporate silicon carbide (SiC) junction field-effect transistors (JFETs) has been developed. The technique involves modification of NGSPICE, which is an open-source version of the popular Simulation Program with Integrated Circuit Emphasis (SPICE) general-purpose analog-integrated-circuit-simulating software. NGSPICE in its unmodified form is used for simulating and designing circuits made from silicon-based transistors that operate at or near room temperature. Two rapid modifications of NGSPICE source code enable SiC JFETs to be simulated to 500 C using the well-known Level 1 model for silicon metal oxide semiconductor field-effect transistors (MOSFETs). First, the default value of the MOSFET surface potential must be changed. In the unmodified source code, this parameter has a value of 0.6, which corresponds to slightly more than half the bandgap of silicon. In NGSPICE modified to simulate SiC JFETs, this parameter is changed to a value of 1.6, corresponding to slightly more than half the bandgap of SiC. The second modification consists of changing the temperature dependence of MOSFET transconductance and saturation parameters. The unmodified NGSPICE source code implements a T(sup -1.5) temperature dependence for these parameters. In order to mimic the temperature behavior of experimental SiC JFETs, a T(sup -1.3) temperature dependence must be implemented in the NGSPICE source code. Following these two simple modifications, the Level 1 MOSFET model of the NGSPICE circuit simulation program reasonably approximates the measured high-temperature behavior of experimental SiC JFETs properly operated with zero or reverse bias applied to the gate terminal. Modification of additional silicon parameters in the NGSPICE source code was not necessary to model experimental SiC JFET current-voltage performance across the entire temperature range from 25 to 500 C.

  6. Measurements of Turbulent Flow Field in Separate Flow Nozzles with Enhanced Mixing Devices - Test Report

    NASA Technical Reports Server (NTRS)

    Bridges, James

    2002-01-01

    As part of the Advanced Subsonic Technology Program, a series of experiments was conducted at NASA Glenn Research Center on the effect of mixing enhancement devices on the aeroacoustic performance of separate flow nozzles. Initial acoustic evaluations of the devices showed that they reduced jet noise significantly, while creating very little thrust loss. The explanation for the improvement required that turbulence measurements, namely single point mean and RMS statistics and two-point spatial correlations, be made to determine the change in the turbulence caused by the mixing enhancement devices that lead to the noise reduction. These measurements were made in the summer of 2000 in a test program called Separate Nozzle Flow Test 2000 (SFNT2K) supported by the Aeropropulsion Research Program at NASA Glenn Research Center. Given the hot high-speed flows representative of a contemporary bypass ratio 5 turbofan engine, unsteady flow field measurements required the use of an optical measurement method. To achieve the spatial correlations, the Particle Image Velocimetry technique was employed, acquiring high-density velocity maps of the flows from which the required statistics could be derived. This was the first successful use of this technique for such flows, and shows the utility of this technique for future experimental programs. The extensive statistics obtained were likewise unique and give great insight into the turbulence which produces noise and how the turbulence can be modified to reduce jet noise.

  7. NSCL and FRIB at Michigan State University: Nuclear science at the limits of stability

    NASA Astrophysics Data System (ADS)

    Gade, A.; Sherrill, B. M.

    2016-05-01

    The National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University (MSU) is a scientific user facility that offers beams of rare isotopes at a wide range of energies. This article describes the facility, its capabilities, and some of the experimental devices used to conduct research with rare isotopes. The versatile nuclear science program carried out by researchers at NSCL continues to address the broad challenges of the field, employing sensitive experimental techniques that have been developed and optimized for measurements with rare isotopes produced by in-flight separation. Selected examples showcase the broad program, capabilities, and the relevance for forefront science questions in nuclear physics, addressing, for example, the limits of nuclear existence; the nature of the nuclear force; the origin of the elements in the cosmos; the processes that fuel explosive scenarios in the Universe; and tests for physics beyond the standard model of particle physics. NSCL will cease operations in approximately 2021. The future program will be carried out at the Facility for Rare Isotope Beams, FRIB, presently under construction on the MSU campus adjacent to NSCL. FRIB will provide fast, stopped, and reaccelerated beams of rare isotopes at intensities exceeding NSCL’s capabilities by three orders of magnitude. An outlook will be provided on the enormous opportunities that will arise upon completion of FRIB in the early 2020s.

  8. Multiple-Station Observation of Frequency Dependence and Polarization Characteristics of ELF/VLF waves generated via Ionospheric Modification

    NASA Astrophysics Data System (ADS)

    Maxworth, A. S.; Golkowski, M.; Cohen, M.; Moore, R. C.

    2014-12-01

    Generation of Extremely Low Frequency (ELF) and Very Low Frequency (VLF) signals through ionospheric modification has been practiced for many years. Heating the lower ionosphere with high power HF waves allows for modulation of natural current systems. Our experiments were carried out at the High Frequency Active Auroral Research Program (HAARP) facility in Alaska, USA. In this experiment, the ionosphere was heated with a vertical amplitude modulating signal and the modulation frequency was changed sequentially within an array of 40 frequencies followed by a frequency ramp. The observed magnetic field amplitude and polarization of the generated ELF/VLF signals were analyzed for multiple sites and as a function of modulation frequency. Our three observation sites: Chistochina, Paxson and Paradise are located within 36km (azimuth 47.7°), 50.2km (azimuth -20°) and 99km (azimuth 80.3°) respectively. We show that the peak amplitudes observed as a function of frequency result from vertical resonance in the Earth-ionosphere waveguide and can be used to diagnose the D-region profile. Polarization analysis showed that out of the three sites Paxson shows the highest circularity in the magnetic field polarization, compared to Chistochina and Paradise which show highly linear polarizations. The experimental results were compared with a theoretical simulation model results and it was clear that in both cases, the modulated Hall current dominates the observed signals at Chistochina and Paradise sites and at Paxson there is an equal contribution from Hall and Pedersen currents. The Chistochina site shows the highest magnetic field amplitudes in both experimental and simulation environments. Depending upon the experimental and simulation observations at the three sites, a radiation pattern for the HAARP ionospheric heater can be mapped

  9. Loop-mediated isothermal amplification (LAMP) assay for the identification of Echinococcus multilocularis infections in canine definitive hosts.

    PubMed

    Ni, Xingwei; McManus, Donald P; Yan, Hongbin; Yang, Jifei; Lou, Zhongzi; Li, Hongmin; Li, Li; Lei, Mengtong; Cai, Jinzhong; Fan, Yanlei; Li, Chunhua; Liu, Quanyuan; Shi, Wangui; Liu, Xu; Zheng, Yadong; Fu, Baoquan; Yang, Yurong; Jia, Wanzhong

    2014-05-30

    Alveolar echinococcosis, caused by the metacestode larval stage of Echinococcus multilocularis, is a zoonosis of public health significance and is highly prevalent in northwest China. To effectively monitor its transmission, we developed a new rapid and cheap diagnostic assay, based on loop-mediated isothermal amplification (LAMP), to identify canine definitive hosts infected with E. multilocularis. The primers used in the LAMP assay were based on the mitochondrial nad5 gene of E. multilocularis and were designed using Primer Explorer V4 software. The developed LAMP assay was compared with a conventional PCR assay, using DNA extracted from the feces of dogs experimentally infected with E. multilocularis, on 189 dog fecal samples collected from three E. multilocularis-endemic regions in Qinghai province, the People's Republic of China, and 30 negative control copro-samples from dogs from an area in Gansu province that had been subjected to an intensive de-worming program. Light microscopy was also used to examine the experimentally obtained and field collected dog copro-samples for the presence of E. multilocularis eggs. The E. multilocularis-positivity rates obtained for the field-collected fecal samples were 16.4% and 5.3% by the LAMP and PCR assays, respectively, and all samples obtained from the control dogs were negative. The LAMP assay was able to detect E. multilocularis DNA in the feces of experimentally infected dogs at 12 days post-infection, whereas the PCR assay was positive on the 17th day and eggs were first detectable by light microscopy at day 44 post-challenge. The earlier specific detection of an E. multilocularis infection in dog copro-samples indicates that the LAMP assay we developed is a realistic alternative method for the field surveillance of canines in echinococcosis-endemic areas.

  10. Laser diagnostics for microgravity droplet studies

    NASA Technical Reports Server (NTRS)

    Winter, Michael

    1993-01-01

    Rapid advances have recently been made in numerical simulation of droplet combustion under microgravity conditions, while experimental capabilities remain relatively primitive. Calculations can now provide detailed information on mass and energy transport, complex gas-phase chemistry, multi-component molecular diffusion, surface evaporation and heterogeneous reaction, which provides a clearer picture of both quasi-steady as well as dynamic behavior of droplet combustion. Experiments concerning these phenomena typically result in pictures of the burning droplets, and the data therefrom describe droplet surface regression along with flame and soot shell position. With much more precise, detailed, experimental diagnostics, significant gains could be made on the dynamics and flame structural changes which occur during droplet combustion. Since microgravity experiments become increasingly more expensive as they progress from drop towers and flights to spaceborne experiments, there is a great need to maximize the information content from these experiments. Sophisticated measurements using laser diagnostics on individual droplets and combustion phenomena are now possible. These include measuring flow patterns and temperature fields within droplets, vaporization rates and vaporization enhancement, radical species profiling in flames and gas-phase flow-tagging velocimetry. Although these measurements are sophisticated, they have undergone maturation to the degree where with some development, they are applicable to studies of microgravity droplet combustion. This program beginning in September of 1992, will include a series of measurements in the NASA Learjet, KC-135 and Drop Tower facilities for investigating the range of applicability of these diagnostics while generating and providing fundamental data to ongoing NASA research programs in this area. This program is being conducted in collaboration with other microgravity investigators and is aimed toward supplementing their experimental efforts.

  11. Accelerator-based validation of shielding codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeitlin, Cary; Heilbronn, Lawrence; Miller, Jack

    2002-08-12

    The space radiation environment poses risks to astronaut health from a diverse set of sources, ranging from low-energy protons and electrons to highly-charged, high-energy atomic nuclei and their associated fragmentation products, including neutrons. The low-energy protons and electrons are the source of most of the radiation dose to Shuttle and ISS crews, while the more energetic particles that comprise the Galactic Cosmic Radiation (protons, He, and heavier nuclei up to Fe) will be the dominant source for crews on long-duration missions outside the earth's magnetic field. Because of this diversity of sources, a broad ground-based experimental effort is required tomore » validate the transport and shielding calculations used to predict doses and dose-equivalents under various mission scenarios. The experimental program of the LBNL group, described here, focuses principally on measurements of charged particle and neutron production in high-energy heavy-ion fragmentation. Other aspects of the program include measurements of the shielding provided by candidate spacesuit materials against low-energy protons (particularly relevant to extra-vehicular activities in low-earth orbit), and the depth-dose relations in tissue for higher-energy protons. The heavy-ion experiments are performed at the Brookhaven National Laboratory's Alternating Gradient Synchrotron and the Heavy-Ion Medical Accelerator in Chiba in Japan. Proton experiments are performed at the Lawrence Berkeley National Laboratory's 88'' Cyclotron with a 55 MeV beam, and at the Loma Linda University Proton Facility with 100 to 250 MeV beam energies. The experimental results are an important component of the overall shielding program, as they allow for simple, well-controlled tests of the models developed to handle the more complex radiation environment in space.« less

  12. Spatial encoding using the nonlinear field perturbations from magnetic materials.

    PubMed

    Karimi, Hirad; Dominguez-Viqueira, William; Cunningham, Charles H

    2014-08-01

    A proof-of-concept study was performed to assess the technical feasibility of using magnetic materials to generate spatial encoding fields. Spatially varying magnetic fields were generated by the placement of markers with different volume susceptibilities within the imaging volume. No linear gradients were used for spatial encoding during the signal acquisition. A signal-encoding model is described for reconstructing the images encoded with these field perturbations. Simulation and proof-of-concept experimental results are presented. Experiments were performed using field perturbations from a cylindrical marker as an example of the new encoding fields. Based on this experimental setup, annular rings were reconstructed from signals encoded with the new fields. Simulation results were presented for different acquisition parameters. Proof-of-concept was supported by the correspondence of regions in an image reconstructed from experimental data compared to those in a conventional gradient-echo image. Experimental results showed that inclusions of dimensions 1.5 mm in size could be resolved with the experimental setup. This study shows the technical feasibility of using magnetic markers to produce encoding fields. Magnetic materials will allow generating spatial encoding fields, which can be tailored to an imaging application with less complexity and at lower cost compared to the use of gradient inserts. Copyright © 2013 Wiley Periodicals, Inc.

  13. Variable-Field Analytical Ultracentrifugation: I. Time-Optimized Sedimentation Equilibrium

    PubMed Central

    Ma, Jia; Metrick, Michael; Ghirlando, Rodolfo; Zhao, Huaying; Schuck, Peter

    2015-01-01

    Sedimentation equilibrium (SE) analytical ultracentrifugation (AUC) is a gold standard for the rigorous determination of macromolecular buoyant molar masses and the thermodynamic study of reversible interactions in solution. A significant experimental drawback is the long time required to attain SE, which is usually on the order of days. We have developed a method for time-optimized SE (toSE) with defined time-varying centrifugal fields that allow SE to be attained in a significantly (up to 10-fold) shorter time than is usually required. To achieve this, numerical Lamm equation solutions for sedimentation in time-varying fields are computed based on initial estimates of macromolecular transport properties. A parameterized rotor-speed schedule is optimized with the goal of achieving a minimal time to equilibrium while limiting transient sample preconcentration at the base of the solution column. The resulting rotor-speed schedule may include multiple over- and underspeeding phases, balancing the formation of gradients from strong sedimentation fluxes with periods of high diffusional transport. The computation is carried out in a new software program called TOSE, which also facilitates convenient experimental implementation. Further, we extend AUC data analysis to sedimentation processes in such time-varying centrifugal fields. Due to the initially high centrifugal fields in toSE and the resulting strong migration, it is possible to extract sedimentation coefficient distributions from the early data. This can provide better estimates of the size of macromolecular complexes and report on sample homogeneity early on, which may be used to further refine the prediction of the rotor-speed schedule. In this manner, the toSE experiment can be adapted in real time to the system under study, maximizing both the information content and the time efficiency of SE experiments. PMID:26287634

  14. The Use of Wiki in Teaching Programming: Effects upon Achievement, Attitudes, and Collaborative Programming Behaviors

    ERIC Educational Resources Information Center

    Lin, Yu-Tzu; Wu, Cheng-Chih; Chiu, Chiung-Fang

    2018-01-01

    This article explores the feasibility of employing cooperative program editing tools in teaching programming. A quasi-experimental study was conducted, in which the experimental group co-edited the programs with peers using the wiki. The control group co-edited the programs with peers using only the face-to-face approach. The findings show that…

  15. 47 CFR 5.305 - Program license not permitted.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Program license not permitted. 5.305 Section 5.305 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL EXPERIMENTAL RADIO SERVICE Program Experimental Radio Licenses § 5.305 Program license not permitted. Experiments are not permitted under this...

  16. 47 CFR 5.305 - Program license not permitted.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Program license not permitted. 5.305 Section 5.305 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL EXPERIMENTAL RADIO SERVICE Program Experimental Radio Licenses § 5.305 Program license not permitted. Experiments are not permitted under this...

  17. Computational Materials Program for Alloy Design

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo

    2005-01-01

    The research program sponsored by this grant, "Computational Materials Program for Alloy Design", covers a period of time of enormous change in the emerging field of computational materials science. The computational materials program started with the development of the BFS method for alloys, a quantum approximate method for atomistic analysis of alloys specifically tailored to effectively deal with the current challenges in the area of atomistic modeling and to support modern experimental programs. During the grant period, the program benefited from steady growth which, as detailed below, far exceeds its original set of goals and objectives. Not surprisingly, by the end of this grant, the methodology and the computational materials program became an established force in the materials communitiy, with substantial impact in several areas. Major achievements during the duration of the grant include the completion of a Level 1 Milestone for the HITEMP program at NASA Glenn, consisting of the planning, development and organization of an international conference held at the Ohio Aerospace Institute in August of 2002, finalizing a period of rapid insertion of the methodology in the research community worlwide. The conference, attended by citizens of 17 countries representing various fields of the research community, resulted in a special issue of the leading journal in the area of applied surface science. Another element of the Level 1 Milestone was the presentation of the first version of the Alloy Design Workbench software package, currently known as "adwTools". This software package constitutes the first PC-based piece of software for atomistic simulations for both solid alloys and surfaces in the market.Dissemination of results and insertion in the materials community worldwide was a primary focus during this period. As a result, the P.I. was responsible for presenting 37 contributed talks, 19 invited talks, and publishing 71 articles in peer-reviewed journals, as detailed later in this Report.

  18. Field experimental data for crop modeling of wheat growth response to nitrogen fertilizer, elevated CO2, water stress, and high temperature

    USDA-ARS?s Scientific Manuscript database

    Field experimental data of five experiments covering a wide range Field experimental data of five experiments covering a wide range of growing conditions are assembled for wheat growth and cropping systems modeling. The data include (i) an experiment on interactive effects of elevated CO2 by water a...

  19. Development of improved space sampling strategies for ocean chemical properties: Total carbon dioxide and dissolved nitrate

    NASA Technical Reports Server (NTRS)

    Goyet, Catherine; Davis, Daniel; Peltzer, Edward T.; Brewer, Peter G.

    1995-01-01

    Large-scale ocean observing programs such as the Joint Global Ocean Flux Study (JGOFS) and the World Ocean Circulation Experiment (WOCE) today, must face the problem of designing an adequate sampling strategy. For ocean chemical variables, the goals and observing technologies are quite different from ocean physical variables (temperature, salinity, pressure). We have recently acquired data on the ocean CO2 properties on WOCE cruises P16c and P17c that are sufficiently dense to test for sampling redundancy. We use linear and quadratic interpolation methods on the sampled field to investigate what is the minimum number of samples required to define the deep ocean total inorganic carbon (TCO2) field within the limits of experimental accuracy (+/- 4 micromol/kg). Within the limits of current measurements, these lines were oversampled in the deep ocean. Should the precision of the measurement be improved, then a denser sampling pattern may be desirable in the future. This approach rationalizes the efficient use of resources for field work and for estimating gridded (TCO2) fields needed to constrain geochemical models.

  20. The development of laser speckle velocimetry for the study of vortical flows

    NASA Technical Reports Server (NTRS)

    Krothapalli, A.

    1991-01-01

    A research program was undertaken to develop a new experimental technique commonly known as particle image displacement velocity (PIVD) to measure an instantaneous two dimensional velocity field in a selected plane of flow field. This technique was successfully developed and applied to the study of several aerodynamic problems. A detailed description of the technique and a broad review of all the research activity carried out in this field are reported. A list of technical publications is also provided. The application of PIDV to unsteady flows with large scale structures is demonstrated in a study of the temporal evolution of the flow past an impulsively started circular cylinder. The instantaneous two dimensional flow in the transition region of a rectangular air jet was measured using PIDV and the details are presented. This experiment clearly demonstrates the PIDV capability in the measurement of turbulent flows. Preliminary experiments were also conducted to measure the instantaneous flow over a circular bump in a transonic flow. Several other experiments now routinely use PIDV as a non-intrustive measurement technique to obtain instantaneous two dimensional velocity fields.

  1. The use of a digital computer for calculation of acoustic fields of complex vibrating structures by the reciprocity principle

    NASA Technical Reports Server (NTRS)

    Rimskiy-Korsakov, A. V.; Belousov, Y. I.

    1973-01-01

    A program was compiled for calculating acoustical pressure levels, which might be created by vibrations of complex structures (an assembly of shells and rods), under the influence of a given force, for cases when these fields cannot be measured directly. The acoustical field is determined according to transition frequency and pulse characteristics of the structure in the projection mode. Projection characteristics are equal to the reception characteristics, for vibrating systems in which the reciprocity principle holds true. Characteristics in the receiving mode are calculated on the basis of experimental data on a point pulse space velocity source (input signal) and vibration response of the structure (output signal). The space velocity of a pulse source, set at a point in space r, where it is necessary to calculate the sound field of the structure p(r,t), is determined by measurements of acoustic pressure, created by a point source at a distance R. The vibration response is measured at the point where the forces F and f exciting the system should act.

  2. Vapor cell geometry effect on Rydberg atom-based microwave electric field measurement

    NASA Astrophysics Data System (ADS)

    Zhang, Linjie; Liu, Jiasheng; Jia, Yue; Zhang, Hao; Song, Zhenfei; Jia, Suotang

    2018-03-01

    The geometry effect of a vapor cell on the metrology of a microwave electric field is investigated. Based on the splitting of the electromagnetically induced transparency spectra of cesium Rydberg atoms in a vapor cell, high-resolution spatial distribution of the microwave electric field strength is achieved for both a cubic cell and a cylinder cell. The spatial distribution of the microwave field strength in two dimensions is measured with sub-wavelength resolution. The experimental results show that the shape of a vapor cell has a significant influence on the abnormal spatial distribution because of the Fabry–Pérot effect inside a vapor cell. A theoretical simulation is obtained for different vapor cell wall thicknesses and shows that a restricted wall thickness results in a measurement fluctuation smaller than 3% at the center of the vapor cell. Project supported by the National Key Research and Development Program of China (Grant Nos. 2017YFA03044200 and 2016YFF0200104), the National Natural Science Foundation of China (Grant Nos. 91536110, 61505099, and 61378013), and the Fund for Shanxi “331 Project” Key Subjects Construction, China.

  3. Large anomalous Hall effect in a non-collinear antiferromagnet Mn3Sn at room temperature

    NASA Astrophysics Data System (ADS)

    Higo, Tomoya; Kiyohara, Naoki; Nakatsuji, Satoru

    Recent development in theoretical and experimental studies have provided a framework for understanding the anomalous Hall effect using Berry-phase concepts, and this perspective has led to predictions that, under certain conditions, a large anomalous Hall effect may appear in spin liquids and antiferromagnets. In this talk, we will present experimental results showing that the antiferromagnet Mn3Sn, which has a non-collinear 120-degree spin order, exhibits a large anomalous Hall effect. The magnitude of the Hall conductivity is ~ 20 Ω-1 cm-1 at room temperature and > 100 Ω-1 cm-1 at low temperatures. We found that a main component of the Hall signal, which is nearly independent of a magnetic field and magnetization, can change the sign with the reversal of a small applied field, corresponding to the rotation of the staggered moments of the non-collinear antiferromagnetic spin order which carries a very small net moment of a few of mμB. Supported by PRESTO, JST, and Grants-in-Aid for Program for Advancing Strategic International Networks to Accelerate the Circulation of Talented Researchers (No. R2604) and Scientific Research on Innovative Areas (15H05882 and 15H05883) from JSPS.

  4. Resource Letter GrW-1: Gravitational Waves

    NASA Technical Reports Server (NTRS)

    White, Nicholas E. (Technical Monitor); Centrella, Joan M.

    2003-01-01

    The phenomenon of gravitational radiation was one of the first predictions of Einstein's general theory of relativity. Progress in understanding this radiation theoretically was slow at first, owing to the difficulty of the nonlinear field equations and the subtleties of their physical effects. The experimental side of this subject also has taken a long time to develop, with efforts at detection severely challenged by the extreme weakness of the waves impinging on the Earth. However, as the 21st century begins, observations of the gravitational waves from astrophysical sources such as black holes, neutron stars, and stellar collapse are expected to open a new window on the universe. Vigorous experimental programs centered on ground-based detectors are being carried out worldwide, and a space-based detector is in the planning stages. On the theoretical side, much effort is being expended to produce robust models of the astrophysical sources and accurate calculations of the waveforms they produce. In this Resource Letter, a set of basic references will be presented first, to provide a general introduction to and overview of the literature in this field. The focus then will shift to highlighting key resources in more specialized areas at the forefront of current research.

  5. Bosons with Synthetic Rashba Spin-Orbit Coupling at Finite Power

    NASA Astrophysics Data System (ADS)

    Anderson, Brandon; Clark, Charles

    2013-05-01

    Isotropic spin-orbit couplings, such as Rashba in two dimensions, have a continuous symmetry that produces a large degeneracy in the momentum-space dispersion. This degeneracy leads to an enhanced density-of-states, producing novel phases in systems of bosonic atoms. This model is idealistic, however, in that the symmetry of the lasers will weakly break the continuous symmetry to a discrete one in experimental manifestations. This perturbation typically scales inversely with the optical power, and only at infinite power will ideal symmetry be restored. In this talk, we consider the effects of this weak symmetry breaking in a system of bosons at finite power with synthetic Rashba coupling. We solve the mean-field equations and find new phases, such as a stripe phase with a larger symmetry group. We then consider the experimentally relevant scheme where the spin-orbit fields are turned on adiabatically from an initial spin-polarized state. At intermediate power, stripe phases are found, while at sufficiently high power it appears that the system quenches to phases similar to that of the ideal limit. Techniques for optimizing the adiabatic ramping sequence are discussed. NSF PFC Grant PHY-0822671 and by the ARO under the DARPA OLE program.

  6. Density functional theory in the solid state

    PubMed Central

    Hasnip, Philip J.; Refson, Keith; Probert, Matt I. J.; Yates, Jonathan R.; Clark, Stewart J.; Pickard, Chris J.

    2014-01-01

    Density functional theory (DFT) has been used in many fields of the physical sciences, but none so successfully as in the solid state. From its origins in condensed matter physics, it has expanded into materials science, high-pressure physics and mineralogy, solid-state chemistry and more, powering entire computational subdisciplines. Modern DFT simulation codes can calculate a vast range of structural, chemical, optical, spectroscopic, elastic, vibrational and thermodynamic phenomena. The ability to predict structure–property relationships has revolutionized experimental fields, such as vibrational and solid-state NMR spectroscopy, where it is the primary method to analyse and interpret experimental spectra. In semiconductor physics, great progress has been made in the electronic structure of bulk and defect states despite the severe challenges presented by the description of excited states. Studies are no longer restricted to known crystallographic structures. DFT is increasingly used as an exploratory tool for materials discovery and computational experiments, culminating in ex nihilo crystal structure prediction, which addresses the long-standing difficult problem of how to predict crystal structure polymorphs from nothing but a specified chemical composition. We present an overview of the capabilities of solid-state DFT simulations in all of these topics, illustrated with recent examples using the CASTEP computer program. PMID:24516184

  7. Field Monitoring of Experimental Hot Mix Asphalt Projects Placed in Massachusetts

    DOT National Transportation Integrated Search

    2017-06-30

    Since 2000, Massachusetts has been involved with numerous field trials of experimental hot mix asphalt mixtures. These experimental mixtures included several pilot projects using the Superpave mixture design methodology, utilization of warm mix aspha...

  8. Inlet Unstart Propulsion Integration Wind Tunnel Test Program Completed for High-Speed Civil Transport

    NASA Technical Reports Server (NTRS)

    Porro, A. Robert

    2000-01-01

    One of the propulsion system concepts to be considered for the High-Speed Civil Transport (HSCT) is an underwing, dual-propulsion, pod-per-wing installation. Adverse transient phenomena such as engine compressor stall and inlet unstart could severely degrade the performance of one of these propulsion pods. The subsequent loss of thrust and increased drag could cause aircraft stability and control problems that could lead to a catastrophic accident if countermeasures are not in place to anticipate and control these detrimental transient events. Aircraft system engineers must understand what happens during an engine compressor stall and inlet unstart so that they can design effective control systems to avoid and/or alleviate the effects of a propulsion pod engine compressor stall and inlet unstart. The objective of the Inlet Unstart Propulsion Airframe Integration test program was to assess the underwing flow field of a High-Speed Civil Transport propulsion system during an engine compressor stall and subsequent inlet unstart. Experimental research testing was conducted in the 10- by 10-Foot Supersonic Wind Tunnel at the NASA Glenn Research Center at Lewis Field. The representative propulsion pod consisted of a two-dimensional, bifurcated inlet mated to a live turbojet engine. The propulsion pod was mounted below a large flat plate that acted as a wing simulator. Because of the plate s long length (nominally 10-ft wide by 18-ft long), realistic boundary layers could form at the inlet cowl plane. Transient instrumentation was used to document the aerodynamic flow-field conditions during an unstart sequence. Acquiring these data was a significant technical challenge because a typical unstart sequence disrupts the local flow field for about only 50 msec. Flow surface information was acquired via static pressure taps installed in the wing simulator, and intrusive pressure probes were used to acquire flow-field information. These data were extensively analyzed to determine the impact of the unstart transient on the surrounding flow field. This wind tunnel test program was a success, and for the first time, researchers acquired flow-field aerodynamic data during a supersonic propulsion system engine compressor stall and inlet unstart sequence. In addition to obtaining flow-field pressure data, Glenn researchers determined other properties such as the transient flow angle and Mach number. Data are still being reduced, and a comprehensive final report will be released during calendar year 2000.

  9. Transcriptional Basis of Drought-Induced Susceptibility to the Rice Blast Fungus Magnaporthe oryzae

    PubMed Central

    Bidzinski, Przemyslaw; Ballini, Elsa; Ducasse, Aurélie; Michel, Corinne; Zuluaga, Paola; Genga, Annamaria; Chiozzotto, Remo; Morel, Jean-Benoit

    2016-01-01

    Plants are often facing several stresses simultaneously. Understanding how they react and the way pathogens adapt to such combinational stresses is poorly documented. Here, we developed an experimental system mimicking field intermittent drought on rice followed by inoculation by the pathogenic fungus Magnaporthe oryzae. This experimental system triggers an enhancement of susceptibility that could be correlated with the dampening of several aspects of plant immunity, namely the oxidative burst and the transcription of several pathogenesis-related genes. Quite strikingly, the analysis of fungal transcription by RNASeq analysis under drought reveals that the fungus is greatly modifying its virulence program: genes coding for small secreted proteins were massively repressed in droughted plants compared to unstressed ones whereas genes coding for enzymes involved in degradation of cell-wall were induced. We also show that drought can lead to the partial breakdown of several major resistance genes by affecting R plant gene and/or pathogen effector expression. We propose a model where a yet unknown plant signal can trigger a change in the virulence program of the pathogen to adapt to a plant host that was affected by drought prior to infection. PMID:27833621

  10. A high-power fiber-coupled semiconductor light source with low spatio-temporal coherence

    NASA Astrophysics Data System (ADS)

    Schittko, Robert; Mazurenko, Anton; Tai, M. Eric; Lukin, Alexander; Rispoli, Matthew; Menke, Tim; Kaufman, Adam M.; Greiner, Markus

    2017-04-01

    Interference-induced distortions pose a significant challenge to a variety of experimental techniques, ranging from full-field imaging applications in biological research to the creation of optical potentials in quantum gas microscopy. Here, we present a design of a high-power, fiber-coupled semiconductor light source with low spatio-temporal coherence that bears the potential to reduce the impact of such distortions. The device is based on an array of non-lasing semiconductor emitters mounted on a single chip whose optical output is coupled into a multi-mode fiber. By populating a large number of fiber modes, the low spatial coherence of the input light is further reduced due to the differing optical path lengths amongst the modes and the short coherence length of the light. In addition to theoretical calculations showcasing the feasibility of this approach, we present experimental measurements verifying the low degree of spatial coherence achievable with such a source, including a detailed analysis of the speckle contrast at the fiber end. We acknowledge support from the National Science Foundation, the Gordon and Betty Moore Foundation's EPiQS Initiative, an Air Force Office of Scientific Research MURI program and an Army Research Office MURI program.

  11. Planning Beyond the Next Trial in Adaptive Experiments: A Dynamic Programming Approach.

    PubMed

    Kim, Woojae; Pitt, Mark A; Lu, Zhong-Lin; Myung, Jay I

    2017-11-01

    Experimentation is at the heart of scientific inquiry. In the behavioral and neural sciences, where only a limited number of observations can often be made, it is ideal to design an experiment that leads to the rapid accumulation of information about the phenomenon under study. Adaptive experimentation has the potential to accelerate scientific progress by maximizing inferential gain in such research settings. To date, most adaptive experiments have relied on myopic, one-step-ahead strategies in which the stimulus on each trial is selected to maximize inference on the next trial only. A lingering question in the field has been how much additional benefit would be gained by optimizing beyond the next trial. A range of technical challenges has prevented this important question from being addressed adequately. This study applies dynamic programming (DP), a technique applicable for such full-horizon, "global" optimization, to model-based perceptual threshold estimation, a domain that has been a major beneficiary of adaptive methods. The results provide insight into conditions that will benefit from optimizing beyond the next trial. Implications for the use of adaptive methods in cognitive science are discussed. Copyright © 2016 Cognitive Science Society, Inc.

  12. Resistive wall modes in the EXTRAP T2R reversed-field pinch

    NASA Astrophysics Data System (ADS)

    Brunsell, P. R.; Malmberg, J.-A.; Yadikin, D.; Cecconello, M.

    2003-10-01

    Resistive wall modes (RWM) in the reversed field pinch are studied and a detailed comparison of experimental growth rates and linear magnetohydrodynamic (MHD) theory is made. RWM growth rates are experimentally measured in the thin shell device EXTRAP T2R [P. R. Brunsell et al., Plasma Phys. Controlled Fusion 43, 1 (2001)]. Linear MHD calculations of RWM growth rates are based on experimental equilibria. Experimental and linear MHD RWM growth rate dependency on the equilibrium profiles is investigated experimentally by varying the pinch parameter Θ=Bθ(a)/ in the range Θ=1.5-1.8. Quantitative agreement between experimental and linear MHD growth rates is seen. The dominating RWMs are the internal on-axis modes (having the same helicity as the central equilibrium field). At high Θ, external nonresonant modes are also observed. For internal modes experimental growth rates decrease with Θ while for external modes, growth rates increase with Θ. The effect of RWMs on the reversed-field pinch plasma performance is discussed.

  13. The Distinction between Experimental and Historical Sciences as a Framework for Improving Classroom Inquiry

    ERIC Educational Resources Information Center

    Gray, Ron

    2014-01-01

    Inquiry experiences in secondary science classrooms are heavily weighted toward experimentation. We know, however, that many fields of science (e.g., evolutionary biology, cosmology, and paleontology), while they may utilize experiments, are not justified by experimental methodologies. With the focus on experimentation in schools, these fields of…

  14. On the measurement of magnetic viscosity

    NASA Astrophysics Data System (ADS)

    Serletis, C.; Efthimiadis, K. G.

    2012-08-01

    This work is an investigation of the experimental method used for measuring the magnetic viscosity in a hard ferromagnetic material, i.e. the recording of the magnetization under constant applied field and temperature, after the material has been magnetically saturated. It investigates how the experimental results are affected by the initial conditions of the method (saturation field, field change rate and field oscillation prior to its stabilization), and by minor variations of field and temperature during the recording. Based on the arising conclusions and the use of a more complex fitting function of measurements, the accuracy and repeatability of experimental results is improved.

  15. Characterization of magnetic nanoparticles using programmed quadrupole magnetic field-flow fractionation

    PubMed Central

    Williams, P. Stephen; Carpino, Francesca; Zborowski, Maciej

    2010-01-01

    Quadrupole magnetic field-flow fractionation is a relatively new technique for the separation and characterization of magnetic nanoparticles. Magnetic nanoparticles are often of composite nature having a magnetic component, which may be a very finely divided material, and a polymeric or other material coating that incorporates this magnetic material and stabilizes the particles in suspension. There may be other components such as antibodies on the surface for specific binding to biological cells, or chemotherapeutic drugs for magnetic drug delivery. Magnetic field-flow fractionation (MgFFF) has the potential for determining the distribution of the magnetic material among the particles in a given sample. MgFFF differs from most other forms of field-flow fractionation in that the magnetic field that brings about particle separation induces magnetic dipole moments in the nanoparticles, and these potentially can interact with one another and perturb the separation. This aspect is examined in the present work. Samples of magnetic nanoparticles were analysed under different experimental conditions to determine the sensitivity of the method to variation of conditions. The results are shown to be consistent and insensitive to conditions, although magnetite content appeared to be somewhat higher than expected. PMID:20732895

  16. TAS: A Transonic Aircraft/Store flow field prediction code

    NASA Technical Reports Server (NTRS)

    Thompson, D. S.

    1983-01-01

    A numerical procedure has been developed that has the capability to predict the transonic flow field around an aircraft with an arbitrarily located, separated store. The TAS code, the product of a joint General Dynamics/NASA ARC/AFWAL research and development program, will serve as the basis for a comprehensive predictive method for aircraft with arbitrary store loadings. This report described the numerical procedures employed to simulate the flow field around a configuration of this type. The validity of TAS code predictions is established by comparison with existing experimental data. In addition, future areas of development of the code are outlined. A brief description of code utilization is also given in the Appendix. The aircraft/store configuration is simulated using a mesh embedding approach. The computational domain is discretized by three meshes: (1) a planform-oriented wing/body fine mesh, (2) a cylindrical store mesh, and (3) a global Cartesian crude mesh. This embedded mesh scheme enables simulation of stores with fins of arbitrary angular orientation.

  17. Modeling Microscale Electro-thermally Induced Vortex Flows

    NASA Astrophysics Data System (ADS)

    Paul, Rajorshi; Tang, Tian; Kumar, Aloke

    2017-11-01

    In presence of a high frequency alternating electric field and a laser induced heat source, vortex flows are generated inside micro-channels. Such electro-thermally influenced micro-vortices can be used for manipulating nano-particles, programming colloidal assemblies, trapping biological cells as well as for fabricating designed bacterial biofilms. In this study, a theoretical model is developed for microscale electro-thermally induced vortex flows with multiple heat sources. Semi-analytical solutions are obtained, using Hankel transformation and linear superposition, for the temperature, pressure and velocity fields. The effect of material properties such as electrical and thermal conductivities, as well as experimental parameters such as the frequency and strength of the alternating electric field, and the intensity and heating profile of the laser source, are systematically investigated. Resolution for a pair of laser sources is determined by analyzing the strength of the micro-vortices under the influence of two heating sources. Results from this work will provide useful insights into the design of efficient optical tweezers and Rapid Electrokinetic Patterning techniques.

  18. Competition Field Perceptions of Table-tennis Athletes and their Performance

    PubMed Central

    Liu, Ying-Chieh; Wang, Ming-Yueh; Hsu, Chi-Yueh

    2018-01-01

    Abstract The distinction between positive and negative perceptions is fundamental in perception models. The purpose of this study was to investigate the correlation between field perceptions of table tennis players and the outcome (net result) during the matches in a competition. Experimental data were collected from 10 elite table tennis players and analysed. The results addressed the following three competition field perceptions: (1) before the service, the player’s positive perceptions had significant effect on the positive outcome (winning rate) of that service; (2) the perception after the net result of the previous service increased the positive outcome of the next service, and (3) the player’s positive/negative perception during the matches affected the win/loss outcome of that competition. In conclusion, the player’s positive perceptions enhanced their winning rate during table tennis competitions. Therefore, during the training program, coaches need to develop positive perceptions and strengthen the psychological quality of table tennis players. PMID:29599876

  19. Influence and Correction from the Human Body on the Measurement of a Power-Frequency Electric Field Sensor

    PubMed Central

    Xiao, Dongping; Liu, Huaitong; Zhou, Qiang; Xie, Yutong; Ma, Qichao

    2016-01-01

    According to the operating specifications of existing electric field measuring instruments, measuring technicians must be located far from the instruments to eliminate the influence of the human body occupancy on a spatial electric field. Nevertheless, in order to develop a portable safety protection instrument with an effective electric field warning function for working staff in a high-voltage environment, it is necessary to study the influence of an approaching human body on the measurement of an electric field and to correct the measurement results. A single-shaft electric field measuring instrument called the Type LP-2000, which was developed by our research team, is used as the research object in this study. First, we explain the principle of electric field measurement and describe the capacitance effect produced by the human body. Through a theoretical analysis, we show that the measured electric field value decreases as a human body approaches. Their relationship is linearly proportional. Then, the ratio is identified as a correction coefficient to correct for the influence of human body proximity. The conclusion drawn from the theoretical analysis is proved via simulation. The correction coefficient kb = 1.8010 is obtained on the basis of the linear fitting of simulated data. Finally, a physical experiment is performed. When no human is present, we compare the results from the Type LP-2000 measured with Narda EFA-300 and the simulated value to verify the accuracy of the Type LP-2000. For the case of an approaching human body, the correction coefficient kb* = 1.9094 is obtained by comparing the data measured with the Type LP-2000 to the simulated value. The correction coefficient obtained from the experiment (i.e., kb*) is highly consistent with that obtained from the simulation (i.e., kb). Two experimental programs are set; under these programs, the excitation voltages and distance measuring points are regulated to produce different electric field intensities. Using kb = 1.9094, the corrected measurement of electric field intensity can accurately reflect the original environmental electric field intensity, and the maximal error is less than 6% in all the data comparisons. These results verify the effectiveness of our proposed method. PMID:27294936

  20. Influence and Correction from the Human Body on the Measurement of a Power-Frequency Electric Field Sensor.

    PubMed

    Xiao, Dongping; Liu, Huaitong; Zhou, Qiang; Xie, Yutong; Ma, Qichao

    2016-06-10

    According to the operating specifications of existing electric field measuring instruments, measuring technicians must be located far from the instruments to eliminate the influence of the human body occupancy on a spatial electric field. Nevertheless, in order to develop a portable safety protection instrument with an effective electric field warning function for working staff in a high-voltage environment, it is necessary to study the influence of an approaching human body on the measurement of an electric field and to correct the measurement results. A single-shaft electric field measuring instrument called the Type LP-2000, which was developed by our research team, is used as the research object in this study. First, we explain the principle of electric field measurement and describe the capacitance effect produced by the human body. Through a theoretical analysis, we show that the measured electric field value decreases as a human body approaches. Their relationship is linearly proportional. Then, the ratio is identified as a correction coefficient to correct for the influence of human body proximity. The conclusion drawn from the theoretical analysis is proved via simulation. The correction coefficient kb = 1.8010 is obtained on the basis of the linear fitting of simulated data. Finally, a physical experiment is performed. When no human is present, we compare the results from the Type LP-2000 measured with Narda EFA-300 and the simulated value to verify the accuracy of the Type LP-2000. For the case of an approaching human body, the correction coefficient kb* = 1.9094 is obtained by comparing the data measured with the Type LP-2000 to the simulated value. The correction coefficient obtained from the experiment (i.e., kb*) is highly consistent with that obtained from the simulation (i.e., kb). Two experimental programs are set; under these programs, the excitation voltages and distance measuring points are regulated to produce different electric field intensities. Using kb = 1.9094, the corrected measurement of electric field intensity can accurately reflect the original environmental electric field intensity, and the maximal error is less than 6% in all the data comparisons. These results verify the effectiveness of our proposed method.

  1. [The effects of foot reflexology on nausea, vomiting and fatigue of breast cancer patients undergoing chemotherapy].

    PubMed

    Yang, Jin-Hyang

    2005-02-01

    The purpose of this study was to identify the effects of foot reflexology on nausea, vomiting and fatigue in breast cancer patients undergoing chemotherapy. The research was a quasi-experimental study using a non-equivalent pre-post design and was conducted from Jan. 26, to Mar. 20, 2004. The subjects consisted of 34 patients with 18 in the experimental group and 16 in control group. A pretest and 2 posttests were conducted to measure nausea, vomiting and fatigue. For the experimental group, foot reflexology, which was consisted of 4 phases for 40 minutes, was given by a researcher and 4 research assistants. The collected data were analyzed by repeated measures ANOVA using the SPSS WIN 10.0 program. There was a statistically significant decrease in nausea, and vomiting in the experimental group compared to the control group over two different times. In addition, there was a statistically significant decrease in fatigue in the experimental group compared to the control group over two different times. Foot reflexology was effective on nausea, vomiting and fatigue in breast cancer patients receiving chemotherapy in this study. Therefore, foot reflexology can be usefully utilized as a nursing intervention in the field of cancer nursing for breast cancer patients receiving chemotherapy.

  2. Ad Hoc modeling, expert problem solving, and R&T program evaluation

    NASA Technical Reports Server (NTRS)

    Silverman, B. G.; Liebowitz, J.; Moustakis, V. S.

    1983-01-01

    A simplified cost and time (SCAT) analysis program utilizing personal-computer technology is presented and demonstrated in the case of the NASA-Goddard end-to-end data system. The difficulties encountered in implementing complex program-selection and evaluation models in the research and technology field are outlined. The prototype SCAT system described here is designed to allow user-friendly ad hoc modeling in real time and at low cost. A worksheet constructed on the computer screen displays the critical parameters and shows how each is affected when one is altered experimentally. In the NASA case, satellite data-output and control requirements, ground-facility data-handling capabilities, and project priorities are intricately interrelated. Scenario studies of the effects of spacecraft phaseout or new spacecraft on throughput and delay parameters are shown. The use of a network of personal computers for higher-level coordination of decision-making processes is suggested, as a complement or alternative to complex large-scale modeling.

  3. An update of engine system research at the Army Propulsion Directorate

    NASA Technical Reports Server (NTRS)

    Bobula, George A.

    1990-01-01

    The Small Turboshaft Engine Research (STER) program provides a vehicle for evaluating the application of emerging technologies to Army turboshaft engine systems and to investigate related phenomena. Capitalizing on the resources at hand, in the form of both the NASA facilities and the Army personnel, the program goal of developing a physical understanding of engine system dynamics and/or system interactions is being realized. STER entries investigate concepts and components developed both in-house and out-of-house. Emphasis is placed upon evaluations which evolved from on-going basic research and advanced development programs. Army aviation program managers are also encouraged to make use of STER resources, both people and facilities. The STER personnel have established their reputations as experts in the fields of engine system experimental evaluations and engine system related phenomena. The STER facility has STER program provides the Army aviation community the opportunity to perform system level investigations, and then to offer the findings to the entire engine community for their consideration in next generation propulsion systems. In this way results of the fundamental research being conducted to meet small turboshaft engine technology challenges expeditiously find their way into that next generation of propulsion systems.

  4. EVALUATION OF EXPERIMENTAL PRESCHOOL PROGRAM FOR EDUCATIONALLY DEPRIVED CHILDREN (1964).

    ERIC Educational Resources Information Center

    STEWART, LUCILLE M.

    THE AIM OF AN EXPERIMENTAL PRESCHOOL PROGRAM FOR EDUCATIONALLY DEPRIVED CHILDREN WAS TO PREPARE THEM FOR REGULAR KINDERGARTEN CLASSES. ACTIVITIES AND EXPERIENCES WERE PROVIDED WHICH HELPED THE CHILDREN EXPRESS THEMSELVES VERBALLY AND BECOME AWARE OF THEIR ENVIRONMENT. THE BUDGET FOR A 6-WEEK PROGRAM, INCLUDING STAFF, PROGRAM SUPPLIES, AND…

  5. Transient Analysis of a Magnetic Heat Pump

    NASA Technical Reports Server (NTRS)

    Schroeder, E. A.

    1985-01-01

    An experimental heat pump that uses a rare earth element as the refrigerant is modeled using NASTRAN. The refrigerant is a ferromagnetic metal whose temperature rises when a magnetic field is applied and falls when the magnetic field is removed. The heat pump is used as a refrigerator to remove heat from a reservoir and discharge it through a heat exchanger. In the NASTRAN model the components modeled are represented by one-dimensional ROD elements. Heat flow in the solids and fluid are analyzed. The problem is mildly nonlinear since the heat capacity of the refrigerant is temperature-dependent. One simulation run consists of a series of transient analyses, each representing one stroke of the heat pump. An auxiliary program was written that uses the results of one NASTRAN analysis to generate data for the next NASTRAN analysis.

  6. Chemical nonequilibrium effects on the inviscid flow in the windward plane of symmetry of two simplified shuttle configurations

    NASA Technical Reports Server (NTRS)

    Lordi, J. A.; Vidal, R. J.; Johnson, C. B.

    1973-01-01

    A theoretical study was made to delineate the effects of thermochemical nonequilibrium in the inviscid flow field of a representative space shuttle orbiter configuration. The study was based on experimental pressure data which was used as an input to a stream tube computer program. The pressure data from two configurations are tabulated. Calculations were restricted to the windward plane of symmetry and the calculations covered an altitude range from 200,000 to 250,000 feet at velocities of 16,000 to 24,000 feet per second respectively. Angles of attack of 20 and 40 degrees were included. The calculations show that the nonequilibrium effects are confined largely to the entropy layer expect at the highest altitude, where significant nonequilibrium effects are observed in the entire inviscid flow field.

  7. Mathematical model of the current density for the 30-cm engineering model thruster

    NASA Technical Reports Server (NTRS)

    Cuffel, R. F.

    1975-01-01

    Mathematical models are presented for both the singly and doubly charged ion current densities downstream of the 30-cm engineering model thruster with 0.5% compensated dished grids. These models are based on the experimental measurements of Vahrenkamp at a 2-amp ion beam operating condition. The cylindrically symmetric beam of constant velocity ions is modeled with continuous radial source and focusing functions across 'plane' grids with similar angular distribution functions. A computer program is used to evaluate the double integral for current densities in the near field and to obtain a far field approximation beyond 10 grid radii. The utility of the model is demonstrated for (1) calculating the directed thrust and (2) determining the impingement levels on various spacecraft surfaces from a two-axis gimballed, 2 x 3 thruster array.

  8. A hybrid experimental-numerical technique for determining 3D velocity fields from planar 2D PIV data

    NASA Astrophysics Data System (ADS)

    Eden, A.; Sigurdson, M.; Mezić, I.; Meinhart, C. D.

    2016-09-01

    Knowledge of 3D, three component velocity fields is central to the understanding and development of effective microfluidic devices for lab-on-chip mixing applications. In this paper we present a hybrid experimental-numerical method for the generation of 3D flow information from 2D particle image velocimetry (PIV) experimental data and finite element simulations of an alternating current electrothermal (ACET) micromixer. A numerical least-squares optimization algorithm is applied to a theory-based 3D multiphysics simulation in conjunction with 2D PIV data to generate an improved estimation of the steady state velocity field. This 3D velocity field can be used to assess mixing phenomena more accurately than would be possible through simulation alone. Our technique can also be used to estimate uncertain quantities in experimental situations by fitting the gathered field data to a simulated physical model. The optimization algorithm reduced the root-mean-squared difference between the experimental and simulated velocity fields in the target region by more than a factor of 4, resulting in an average error less than 12% of the average velocity magnitude.

  9. A method to integrate descriptive and experimental field studies at the level of data and empirical concepts1

    PubMed Central

    Bijou, Sidney W.; Peterson, Robert F.; Ault, Marion H.

    1968-01-01

    It is the thesis of this paper that data from descriptive and experimental field studies can be interrelated at the level of data and empirical concepts if both sets are derived from frequency-of-occurrence measures. The methodology proposed for a descriptive field study is predicated on three assumptions: (1) The primary data of psychology are the observable interactions of a biological organism and environmental events, past and present. (2) Theoretical concepts and laws are derived from empirical concepts and laws, which in turn are derived from the raw data. (3) Descriptive field studies describe interactions between behavioral and environmental events; experimental field studies provide information on their functional relationships. The ingredients of a descriptive field investigation using frequency measures consist of: (1) specifying in objective terms the situation in which the study is conducted, (2) defining and recording behavioral and environmental events in observable terms, and (3) measuring observer reliability. Field descriptive studies following the procedures suggested here would reveal interesting new relationships in the usual ecological settings and would also provide provocative cues for experimental studies. On the other hand, field-experimental studies using frequency measures would probably yield findings that would suggest the need for describing new interactions in specific natural situations. PMID:16795175

  10. Solar energy program evaluation: an introduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    deLeon, P.

    The Program Evaluation Methodology provides an overview of the practice and methodology of program evaluation and defines more precisely the evaluation techniques and methodologies that would be most appropriate to government organizations which are actively involved in the research, development, and commercialization of solar energy systems. Formal evaluation cannot be treated as a single methodological approach for assessing a program. There are four basic types of evaluation designs - the pre-experimental design; the quasi-experimental design based on time series; the quasi-experimental design based on comparison groups; and the true experimental design. This report is organized to first introduce the rolemore » and issues of evaluation. This is to provide a set of issues to organize the subsequent sections detailing the national solar energy programs. Then, these two themes are integrated by examining the evaluation strategies and methodologies tailored to fit the particular needs of the various individual solar energy programs. (MCW)« less

  11. U.S. Geological Survey Karst Interest Group Proceedings, Fayetteville, Arkansas, April 26-29, 2011

    USGS Publications Warehouse

    Kuniansky, Eve L.

    2011-01-01

    This fifth workshop is a joint workshop of the USGS Karst Interest Group and University of Arkansas HydroDays workshop, sponsored by the USGS, the Department of Geosciences at the University of Arkansas in Fayetteville. Additional sponsors are: the National Cave and Karst Research Institute, the Edwards Aquifer Authority, San Antonio, Texas, and Beaver Water District, northwest Arkansas. The majority of funding for the proceedings preparation and workshop was provided by the USGS Groundwater Resources Program, National Cooperative Mapping Program, and the Regional Executives of the Northeast, Southeast, Midwest, South Central and Rocky Mountain Areas. The University of Arkansas provided the rooms and facilities for the technical and poster presentations of the workshop, vans for the field trips, and sponsored the HydroDays banquet at the Savoy Experimental Watershed on Wednesday after the technical sessions.

  12. A new method of radio frequency links by coplanar coils for implantable medical devices.

    PubMed

    Xue, L; Hao, H W; Li, L; Ma, B Z

    2005-01-01

    A new method based on coplanar coils for the design of radio frequency links has been developed, to realize the communication between the programming wand and the implantable medical devices with shielding container simply and reliably. With the analysis of electronic and magnetic field theory, the communication model has been established and simulated, and the circuit has been designed and tested. The experimental results are consistent with the simulation fairly well. The voltage transfer ratio of the typical circuit with present parameters can reach as high as 0.02, which can fulfill the requirements of communication.

  13. Digital image profilers for detecting faint sources which have bright companions, phase 2

    NASA Technical Reports Server (NTRS)

    Morris, Elena; Flint, Graham

    1991-01-01

    A breadboard image profiling system developed for the first phase of this project demonstrated the potential for detecting extremely faint optical sources in the presence of light companions. Experimental data derived from laboratory testing of the device supports the theory that image profilers of this type may approach the theoretical limit imposed by photon statistics. The objective of Phase 2 of this program is the development of a ground-based multichannel image profiling system capable of detecting faint stellar objects slightly displaced from brighter stars. We have finalized the multichannel image profiling system and attempted three field tests.

  14. The finite element method in the deformation and consolidation of porous media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, R.W.; Schrefler, B.A.

    1987-01-01

    The authors start with an introduction to the concepts involved in physics giving the equations of flow through porous media and the deformation characteristics of soils and rocks. Succeeding chapters deal with the practical implications of these phenomena and explain the application of theory in both experimental and field work. Details are given of actual incidents, such as the subsidence experienced in Venice and Ravenna. The authors have also formulated a consolidation code, which is detailed at the end of the book, and provide instructions on how to modify the given program.

  15. NORSTAR Project: Norfolk public schools student team for acoustical research

    NASA Technical Reports Server (NTRS)

    Fortunato, Ronald C.

    1987-01-01

    Development of the NORSTAR (Norfolk Public Student Team for Acoustical Research) Project includes the definition, design, fabrication, testing, analysis, and publishing the results of an acoustical experiment. The student-run program is based on a space flight organization similar to the Viking Project. The experiment will measure the scattering transfer of momentum from a sound field to spheres in a liquid medium. It is hoped that the experimental results will shed light on a difficult physics problem - the difference in scattering cross section (the overall effect of the sound wave scattering) for solid spheres and hollow spheres of differing wall thicknesses.

  16. Future space experiments on cosmic rays and radiation on Russian segments of ISS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panasyuk, Mikhail; Galper, Arkady; Stozhov, Yurii

    1999-01-22

    The report presents a survey of the Russian space program in the field of radiation and cosmic ray studies. The experimental projects were developed by scientists of different Russian Institutes and are intended for implementation on the future ISS. All the projects mentioned in this report have undergone various expertise stages in the Space Council of the Russian Science Academy ('Cosmic Ray Physics' section); the International Science-Technology Center of the Rocket-Space Corporation 'Energia' ('Astrophysics and radiation Measurements' section); Committee on Science-Technical Co-operation of the Russian Space Agency.

  17. A network thermodynamic method for numerical solution of the Nernst-Planck and Poisson equation system with application to ionic transport through membranes.

    PubMed

    Horno, J; González-Caballero, F; González-Fernández, C F

    1990-01-01

    Simple techniques of network thermodynamics are used to obtain the numerical solution of the Nernst-Planck and Poisson equation system. A network model for a particular physical situation, namely ionic transport through a thin membrane with simultaneous diffusion, convection and electric current, is proposed. Concentration and electric field profiles across the membrane, as well as diffusion potential, have been simulated using the electric circuit simulation program, SPICE. The method is quite general and extremely efficient, permitting treatments of multi-ion systems whatever the boundary and experimental conditions may be.

  18. The RIB facility EXOTIC and its experimental program at INFN-LNL

    NASA Astrophysics Data System (ADS)

    Parascandolo, Concetta

    2018-05-01

    In this contribution, I will present a review about the EXOTIC facility and the research field accessible by using its Radioactive Ion Beams. The EXOTIC facility, installed at the INFN-Laboratori Nazionali di Legnaro, is devoted to the in-flight production of light Radioactive Ion Beams in the energy range between 3-5 MeV/nucleon. The scientific activity performed at EXOTIC concerns different aspects of nuclear physics and nuclear astrophysics, such as, the investigation of reaction mechanisms and nuclear structure, resonant scattering experiments and measurements of nuclear reaction cross sections of astrophysical interest.

  19. NPS Field Experimentation Program for Special Operations (FEPSO) TNT 13-1 Report

    DTIC Science & Technology

    2013-03-01

    testing  is  already  providing  results  in  ឬ  minutes),  gait,   sweat,  periocular,  iris,  heartbeat,  sweat...Successful urban operations conducted by SOF require a thorough understanding of the urban environment, which may include: • The psychological impact of...deprived  environments.  NSW CRANE ‐ Results of 2012 Urban Combat  testing  of how a Marine Corps Ring Mount Gunner (RMG)  does their job and what senses

  20. Effect of stress concentrations in composite structures

    NASA Technical Reports Server (NTRS)

    Babcock, C. D.; Waas, A. M.

    1985-01-01

    Composite structures have found wide use in many engineering fields and a sound understanding of their response under load is important to their utilization. An experimental program is being carried out to gain a fundamental understanding of the failure mechanics of multilayered composite structures at GALCIT. As a part of this continuing study, the performance of laminated composite plates in the presence of a stress gradient and the failure of composite structures at points of thickness discontinuity is assessed. In particular, the questions of initiation of failure and its subsequent growth to complete failure of the structure are addressed.

  1. NASA programs in advanced sensors and measurement technology for aeronautical applications

    NASA Astrophysics Data System (ADS)

    Conway, Bruce A.

    NASA involvement in the development, implementation, and experimental use of advanced aeronautical sensors and measurement technologies is presently discussed within the framework of specific NASA research centers' activities. The technology thrusts are in the fields of high temperature strain gages and microphones, laser light-sheet flow visualization, LTA, LDV, and LDA, tunable laser-based aviation meteorology, and fiber-optic CARS measurements. IR thermography and close-range photogrammetry are undergoing substantial updating and application. It is expected that 'smart' sensors will be increasingly widely used, especially in conjunction with smart structures in aircraft and spacecraft.

  2. Conceptual planning for Space Station life sciences human research project

    NASA Technical Reports Server (NTRS)

    Primeaux, Gary R.; Miller, Ladonna J.; Michaud, Roger B.

    1986-01-01

    The Life Sciences Research Facility dedicated laboratory is currently undergoing system definition within the NASA Space Station program. Attention is presently given to the Humam Research Project portion of the Facility, in view of representative experimentation requirement scenarios and with the intention of accommodating the Facility within the Initial Operational Capability configuration of the Space Station. Such basic engineering questions as orbital and ground logistics operations and hardware maintenance/servicing requirements are addressed. Biospherics, calcium homeostasis, endocrinology, exercise physiology, hematology, immunology, muscle physiology, neurosciences, radiation effects, and reproduction and development, are among the fields of inquiry encompassed by the Facility.

  3. Technique for controlling spread of limnotic oncomelania

    NASA Astrophysics Data System (ADS)

    Li, Damei; Wang, Xiangsan; Lai, Yonggen

    2003-09-01

    Schistosomiasis is a parasitic disease mostly found in areas along the Changjiang River of China. The disease is spread solely through an intermediary named oncomelania, so its spread of schistosomiasis can be controlled by properly designing water intakes which prevent oncomelania from entering farming land or residential areas. This paper reports a successful design process and a new oncomelania-free intake device. The design of the new intake is based on a sound research program in which extensive experimental studies were carried out to gain knowledge of oncomelania eco-hydraulic behavior and detailed flow field information through CFD simulation.

  4. Ferroelectric materials for applications in sensor protection

    NASA Astrophysics Data System (ADS)

    Bhalla, Amar S.; Cross, L. Eric

    1995-07-01

    The focus of this program has been upon producing and characterizing new functional materials whose properties can be fine tuned to provide eye sensor protection against laser threats and to suit a range of optoelectronic device applications. Material systems that maximize orientational anisotropy (for use in scattering mode systems) and systems that minimize orientational anisotropy (for use in high field modulators and field induced photorefractive applications) were both approached. Relaxor ferroelectric tungsten bronze single crystals (Sr,Ba)Nb2O6 and (Pb,Ba)Nb2O6 solid solution families and relaxor ferroelectric perovskite (1-x)Pb(Mg(1/3)Nb(2/3))O(3-x)PbTiO3 (PMN-PT) families, were studied extensively. The unique capabilities of a laser heated pedestal growth (LHPG) system were utilized for growth of new materials in single crystal fiber form that produces crystals of long interaction length for optical wave in the crystal and high crystal perfection with maximized properties along chosen directions. Hot uniaxial pressing, hot forging, or appropriate solid state reaction processing methods were used to produce transparent polycrystalline ceramics to provide low scattering, high anisotropy ceramics or high scattering, high anisotropy ceramics. This final report summarizes significant results produced from this program through combination of experimental and crystal chemistry approaches in this field, delineates conclusions drawn from the research, and provides recommendations for future research.

  5. ELMO Bumpy Square proposal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dory, R.A.; Uckan, N.A.; Ard, W.B.

    The ELMO Bumpy Square (EBS) concept consists of four straight magnetic mirror arrays linked by four high-field corner coils. Extensive calculations show that this configuration offers major improvements over the ELMO Bumpy Torus (EBT) in particle confinement, heating, transport, ring production, and stability. The components of the EBT device at Oak Ridge National Laboratory can be reconfigured into a square arrangement having straight sides composed of EBT coils, with new microwave cavities and high-field corners designed and built for this application. The elimination of neoclassical convection, identified as the dominant mechanism for the limited confinement in EBT, will give themore » EBS device substantially improved confinement and the flexibility to explore the concepts that produce this improvement. The primary goals of the EBS program are twofold: first, to improve the physics of confinement in toroidal systems by developing the concepts of plasma stabilization using the effects of energetic electrons and confinement optimization using magnetic field shaping and electrostatic potential control to limit particle drift, and second, to develop bumpy toroid devices as attractive candidates for fusion reactors. This report presents a brief review of the physics analyses that support the EBS concept, discussions of the design and expected performance of the EBS device, a description of the EBS experimental program, and a review of the reactor potential of bumpy toroid configurations. Detailed information is presented in the appendices.« less

  6. [Evaluation of an education program for patients with asthma who use inhalers].

    PubMed

    Lee, Jong Kyung; Yang, Young Hee

    2010-04-01

    This study was done to evaluate the effectiveness of an education program for patients with asthma who use inhalers. The research design for this study was a non-equivalent control group quasi-experimental study. Participants in this study were 36 patients for the control group, and 43 patients for the experimental group. The experimental group participated in the education program. The control group received the usual care. Data were collected before and 1 month and 2 months after the program finished and were analyzed using the SPSS 12.0 program. The experimental group had significantly higher scores of knowledge of inhalers, and inhalation technique compared to the control group. However, no significant differences were found between two groups for PEFR, asthma instability, and satisfaction with inhalers. According to the results, the education program was effective in improving knowledge of inhalers, and inhalation technique. Therefore, it is recommended that this education program be used in clinical practice as an effective nursing intervention for patients with asthma on inhalers.

  7. Standard procedures and quality-control practices for the U.S. Geological Survey National Field Quality Assurance Program from 1982 through 1993

    USGS Publications Warehouse

    Stanley, D.L.

    1995-01-01

    The U.S. Geological Survey operates the National Field Quality Assurance Program to provide quality- assurance reference samples to field personnel who make water-quality field measurements. The program monitors the accuracy and precision of pH, specific conductance, and alkalinity field measurements. This report documents the operational procedures and quality-control techniques used in operating the quality-assurance program.

  8. Effects of a Stretching Development and Maintenance Program on Hamstring Extensibility in Schoolchildren: A Cluster-Randomized Controlled Trial

    PubMed Central

    Mayorga-Vega, Daniel; Merino-Marban, Rafael; Manzano-Lagunas, Jorge; Blanco, Humberto; Viciana, Jesús

    2016-01-01

    The main purpose of the present study was to examine the effects of a physical education-based stretching development and maintenance program on hamstring extensibility in schoolchildren. A sample of 150 schoolchildren aged 7-10 years old from a primary school participated in the present study (140 participants were finally included). The six classes balanced by grade were cluster randomly assigned to the experimental group 1 (n = 51), experimental group 2 (n = 51) or control group (n = 49) (i.e., a cluster randomized controlled trial design was used). During the physical education classes, the students from the experimental groups 1 and 2 performed a four-minute stretching program twice a week for nine weeks (first semester). Then, after a five-week period of detraining coinciding with the Christmas holidays, the students from the experimental groups 1 and 2 completed another stretching program twice a week for eleven weeks (second semester). The students from the experimental group 1 continued performing the stretching program for four minutes while those from the experimental group 2 completed a flexibility maintenance program for only one minute. The results of the two-way analysis of variance showed that the physical education-based stretching development program significantly improved the students’ hamstring extensibility (p < 0.001), as well as that these gains obtained remained after the stretching maintenance program (p < 0.001). Additionally, statistically significant differences between the two experimental groups were not found (p > 0.05). After a short-term stretching development program, a physical education-based stretching maintenance program of only one-minute sessions twice a week is effective in maintaining hamstring extensibility among schoolchildren. This knowledge could help and guide teachers to design programs that allow a feasible and effective development and maintenance of students’ flexibility in the physical education setting. Key points A physical education-based stretching maintenance program of only one-minute sessions twice a week is effective in maintaining hamstring extensibility among schoolchildren. A four-minute maintenance program shows similar effects that the one-minute maintenance program on hamstring extensibility among schoolchildren. Physical education teachers and other practitioners could carry out one-minute programs for a feasible and effective maintenance of students’ flexibility. PMID:26957928

  9. Retrospective estimation of the electric and magnetic field exposure conditions in in vitro experimental reports reveal considerable potential for uncertainty.

    PubMed

    Portelli, Lucas A; Falldorf, Karsten; Thuróczy, György; Cuppen, Jan

    2018-04-01

    Experiments on cell cultures exposed to extremely low frequency (ELF, 3-300 Hz) magnetic fields are often subject to multiple sources of uncertainty associated with specific electric and magnetic field exposure conditions. Here we systemically quantify these uncertainties based on exposure conditions described in a group of bioelectromagnetic experimental reports for a representative sampling of the existing literature. The resulting uncertainties, stemming from insufficient, ambiguous, or erroneous description, design, implementation, or validation of the experimental methods and systems, were often substantial enough to potentially make any successful reproduction of the original experimental conditions difficult or impossible. Without making any assumption about the true biological relevance of ELF electric and magnetic fields, these findings suggest another contributing factor which may add to the overall variability and irreproducibility traditionally associated with experimental results of in vitro exposures to low-level ELF magnetic fields. Bioelectromagnetics. 39:231-243, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  10. Overview of NASA tire experimental programs

    NASA Technical Reports Server (NTRS)

    Tanner, J. A.

    1983-01-01

    Ongoing aircraft tire experimental programs are reported. These programs are designed to measure profile growth due to inflation pressure and vertical loading, contact pressures in the tire footprint, and a number of tire mechanical properties including spring, damping, and relaxation characteristics.

  11. The Early Nutrition Programming Project (EARNEST): 5 y of successful multidisciplinary collaborative research.

    PubMed

    Koletzko, Berthold; Brands, Brigitte; Demmelmair, Hans

    2011-12-01

    Differences in nutritional experiences during sensitive periods in early life, both before and after birth, can program a person's future development, metabolism, and health. A better scientific understanding of early nutrition programming holds enormous potential for implementing preventive strategies to enhance individuals' long-term health, well-being, and performance. This understanding could reduce costs of health care and social services and may enhance the wealth of societies. The Early Nutrition Programming Project (EARNEST) brought together a multidisciplinary team of international scientists and leaders in key areas of the early nutrition programming field from 40 major research centers across 16 European countries. The project had a total budget of 16.5 million Euros and was funded by the European Communities under the Sixth Framework Program for Research and Technical Development and coordinated by the Children's Hospital at Ludwig-Maximilians-University of Munich. The integrated program of work combined experimental studies in humans, prospective observational studies, and mechanistic animal work, including physiologic studies, cell culture models, and molecular biology techniques. The project lasted from April 2005 to October 2010. After the end of the project, the Early Nutrition Academy (http://www.early-nutrition.org) continues to serve as a platform for the exchange of information, scientific collaboration, and training activities in the area of programming. This article highlights some of the scientific results, achievements, and efforts of EARNEST.

  12. Characterization of ultrahigh-molecular weight cationic polyacrylamide using frit-inlet asymmetrical flow field-flow fractionation and multi-angle light scattering.

    PubMed

    Woo, Sohee; Lee, Ju Yong; Choi, Woonjin; Moon, Myeong Hee

    2016-01-15

    In this study, frit inlet asymmetrical flow field-flow fractionation (FlFFF) with multi-angle light scattering (MALS) and differential refractive index (DRI) detection is utilized for size separation, determination of molecular weight (MW), and conformation of ultrahigh-MW (10(7)-10(9) g/mol) cationic polyacrylamides (C-PAMs), a class of water-soluble copolymers based on acrylamide and vinyl-type comonomers with quaternary ammonium cations that are widely used in wastewater treatment and in paper industries. Linear and branched C-PAM copolymers prepared in two different polymerization methods (solution and emulsion) from varying amounts of crosslinking agent and initiator were size fractionated by FlFFF with field-programming. It was found experimentally that the linear copolymers from both polymerization methods were less than 10(8) g/mol in MW with compact, nearly spherical structures, while the branched C-PAM copolymers from the emulsion polymerization showed a significant increase in average MW up to ∼ 10(9)g/mol, which was about 20-fold greater than those from the solution method, and the branched copolymers had more compact or shrunken conformations. While both linear and branched copolymers less than 10(8) g/mol MW were well resolved in an increasing order of MW (normal mode), it was noted that branched copolymers prepared through emulsion polymerization exhibited significantly larger MWs of 10(8-)10(9) g/mol and eluted in the steric/hyperlayer mode, in which the elution order is reversed in an extreme run condition (strong initial field strength followed by a fast field decay during programming). Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Implementing Intervention Movement Programs for Kindergarten Children

    ERIC Educational Resources Information Center

    Deli, Eleni; Bakle, Iliana; Zachopoulou, Evridiki

    2006-01-01

    The reported study aimed to identify the effects of two 10-week intervention programs on fundamental locomotor skill performance in kindergarten children. Seventy-five children with mean age 5.4 plus or minus 0.5 years participated. Experimental Group A followed a movement program, experimental Group B followed a music and movement program, and…

  14. Experimental Programs and Programmatic Experiments.

    ERIC Educational Resources Information Center

    Kent, Robert

    When assembling or evaluating experimental programs in college English, the crucial fact to be remembered is that the success of the undertaking depends more on the teachers than on the program itself, for it is men, not programs, who fail in the constant experiment with books. Teachers need to be adventurous, constantly rereading, rethinking, and…

  15. The Development and Experimental Analysis of a Self-Instructional Program in Graphical Kinematics.

    ERIC Educational Resources Information Center

    Nee, John G.

    A project to help vocational-technical teachers in the development and experimental analysis of self-instructional programs is presented. The emphasis in developing the program was on maximizing effectiveness and efficiency of program-learner interaction as measured by criterion items. These items emphasized cognitive content dealing with the…

  16. Effect of an empowerment-based nutrition promotion program on food consumption and serum lipid levels in hyperlipidemic Thai elderly.

    PubMed

    Boonyasopun, Umaporn; Aree, Patcharaporn; Avant, Kay C

    2008-06-01

    This quasi-experimental study examined the effects of an empowerment-based nutrition promotion program on food consumption and serum lipid levels among hyperlipidemic Thai elderly. Fifty-six experimental subjects received the program; 48 control subjects maintained their habitual lifestyle. The statistical methods used were the t-test, Z-test, and chi2/Fisher's exact test. After the program, the consumption of high saturated fat, cholesterol, and simple sugar diets was significantly lower for the experimental group than for the control group. The percentage change of the serum total cholesterol of the experimental subjects was significantly higher than that of the control subjects. The number of experimental subjects that changed from hyperlipidemia to normolipidemia significantly increased compared to that for the control subjects. The implementation of this program was related to an improvement in food consumption and serum lipid levels among hyperlipidemic Thai elderly and, therefore, has implications for practice.

  17. An update of engine system research at the Army Propulsion Directorate

    NASA Technical Reports Server (NTRS)

    Bobula, George A.

    1990-01-01

    The Small Turboshaft Engine Research (STER) program provides a vehicle for evaluating the application of emerging technologies to Army turboshaft engine systems and to investigate related phenomena. Capitalizing on the resources at hand, in the form of both the NASA facilities and the Army personnel, the program goal of developing a physical understanding of engine system dynamics and/or system interactions is being realized. STER entries investigate concepts and components developed both in-house and out-of-house. Emphasis is placed upon evaluations which have evolved from on-going basic research and advanced development programs. Army aviation program managers are also encouraged to make use of STER resources, both people and facilities. The STER personnel have established their reputations as experts in the fields of engine system experimental evaluations and engine system related phenomena. The STER facility has demonstrated its utility in both research and development programs. The STER program provides the Army aviation community the opportunity to perform system level investigations, and then to offer the findings to the entire engine community for their consideration in next generation propulsion systems. In this way results of the fundamental research being conducted to meet small turboshaft engine technology challenges expeditiously find their way into that next generation of propulsion systems.

  18. Phun Physics 4 Phemales: Physics Camp for High School Girls

    NASA Astrophysics Data System (ADS)

    Kwon, Chuhee; Gu, Jiyeong; Henriquez, Laura

    2014-03-01

    The department of Physics and Astronomy with the department of Science Education at California State University, Long Beach hosted summer program of ``Phun Physics 4 Phemales (PP4P)'' during summer 2012 and summer 2013 with the support from APS public outreach program. PP4P summer camp was hosted along with a two-week summer science camp, Young Scientists Camp, which has been institutionalized for the last 14 years since 1999. More than 2,500 3rd -8th grade students and 250 teachers have participated in the program. PP4P program provided the tools and support that female high school students need to pursue careers in physics and/or science, technology, engineering and math (STEM) field. This girls-only camp created connections among the girls and built confidence. In addition PP4P program introduced students to key principles in physics by a hands-on lab environment and demonstrated the real-world social impact of physics. In summer 2012, high school girls worked on physics experimental project on electronics and in summer 2013 they worked on the mechanics. I would share our experience in this program and the impact on the female high school students. This work was supported by 2012 Public Outreach and Informing the Public Grants from American Physical Society.

  19. Particle acceleration on a chip: A laser-driven micro-accelerator for research and industry

    NASA Astrophysics Data System (ADS)

    Yoder, R. B.; Travish, G.

    2013-03-01

    Particle accelerators are conventionally built from radio-frequency metal cavities, but this technology limits the maximum energy available and prevents miniaturization. In the past decade, laser-powered acceleration has been intensively studied as an alternative technology promising much higher accelerating fields in a smaller footprint and taking advantage of recent advances in photonics. Among the more promising approaches are those based on dielectric field-shaping structures. These ``dielectric laser accelerators'' (DLAs) scale with the laser wavelength employed and can be many orders of magnitude smaller than conventional accelerators; DLAs may enable the production of high-intensity, ultra-short relativistic electron bunches in a chip-scale device. When combined with a high- Z target or an optical-period undulator, these systems could produce high-brilliance x-rays from a breadbox-sized device having multiple applications in imaging, medicine, and homeland security. In our research program we have developed one such DLA, the Micro-Accelerator Platform (MAP). We describe the fundamental physics, our fabrication and testing program, and experimental results to date, along with future prospects for MAP-based light-sources and some remaining challenges. Supported in part by the Defense Threat Reduction Agency and National Nuclear Security Administration.

  20. Construction of a Thermal Vacuum Chamber for Environment Test of Triple CubeSat Mission TRIO-CINEMA

    NASA Astrophysics Data System (ADS)

    Jeon, Jeheon; Lee, Seongwhan; Yoon, Seyoung; Seon, Jongho; Jin, Ho; Lee, Donghun; Lin, Robert P.

    2013-12-01

    TRiplet Ionospheric Observatory-CubeSat for Ion, Neutron, Electron & MAgnetic fields (TRIO-CINEMA) is a CubeSat with 3.14 kg in weight and 3-U (10 × 10 × 30 cm) in size, jointly developed by Kyung Hee University and UC Berkeley to measure magnetic fields of near Earth space and detect plasma particles. When a satellite is launched into orbit, it encounters ultrahigh vacuum and extreme temperature. To verify the operation and survivability of the satellite in such an extreme space environment, experimental tests are conducted on the ground using thermal vacuum chamber. This paper describes the temperature control device and monitoring system suitable for CubeSat test environment using the thermal vacuum chamber of the School of Space Research, Kyung Hee University. To build the chamber, we use a general purpose thermal analysis program and NX 6.0 TMG program. We carry out thermal vacuum tests on the two flight models developed by Kyung Hee University based on the thermal model of the TRIO-CINEMA satellite. It is expected from this experiment that proper operation of the satellite in the space environment will be achieved.

  1. Influence of field dependent critical current density on flux profiles in high Tc superconductors

    NASA Technical Reports Server (NTRS)

    Takacs, S.

    1990-01-01

    The field distribution for superconducting cylinders and slabs with field dependent critical current densities in combined DC and AC magnetic fields and the corresponding magnetic fluxes are calculated. It is shown that all features of experimental magnetic-field profile measurements can be explained in the framework of field dependent critical current density. Even the quantitative agreement between the experimental and theoretical results using Kim's model is very good.

  2. Performance of concrete incorporating colloidal nano-silica

    NASA Astrophysics Data System (ADS)

    Zeidan, Mohamed Sabry

    Nanotechnology, as one of the most modern fields of science, has great market potential and economic impact. The need for research in the field of nanotechnology is continuously on the rise. During the last few decades, nanotechnology was developing rapidly into many fields of applied sciences, engineering and industrial applications, especially through studies of physics, chemistry, medicine and fundamental material science. These new developments may be attributed to the fact that material properties and performance can be significantly improved and controlled through nano-scale processes and nano-structures. This research program aims at 1) further understanding the behavior of cementitious materials when amended on the nano-scale level and 2) exploring the effect of this enhancement on the microstructure of cement matrix. This study may be considered as an important step towards better understanding the use of nano-silica in concrete. The main goal of the study is to investigate the effect of using colloidal nano-silica on properties of concrete, including mechanical properties, durability, transport properties, and microstructure. The experimental program that was conducted included a laboratory investigation of concrete mixtures in which nano-silica was added to cement or to a combination of cement and Class F fly ash. Various ratios of nano-silica were used in concrete mixtures to examine the extent and types of improvements that could be imparted to concrete. The conducted experimental program assessed these improvements in terms of reactivity, mechanical properties, and durability of the mixtures under investigation. Advanced testing techniques---including mercury intrusion porosimetry (MIP) and scanning electron microscopy (SEM)---were used to investigate the effect of nano-silica on the microstructure of the tested mixtures. In addition, the effect of nano-silica on the alkali-silica reaction (ASR) was examined using various techniques, including testing of accelerated mortar-bar and strength. Furthermore, this study investigated the deterioration of concrete caused by salt crystallization in concrete pores. This physical effect of salt on concrete may cause significant damage under certain environmental conditions in regions where soil is laden with large amounts of certain salts. The effect of nano-silica on this special type of environmental attack was explored by means of a new non-standard testing procedure, including the simulation of changing seasons, on concrete specimens partially immersed in salt solution. These concrete specimens represented concrete structures with foundations in salt-rich soils.

  3. Fuel-injector/air-swirl characterization

    NASA Technical Reports Server (NTRS)

    Mcvey, J. B.; Kennedy, J. B.; Bennett, J. C.

    1985-01-01

    The objectives of this program are to establish an experimental data base documenting the behavior of gas turbine engine fuel injector sprays as the spray interacts with the swirling gas flow existing in the combustor dome, and to conduct an assessment of the validity of current analytical techniques for predicting fuel spray behavior. Emphasis is placed on the acquisition of data using injector/swirler components which closely resemble components currently in use in advanced aircraft gas turbine engines, conducting tests under conditions that closely simulate or closely approximate those developed in actual combustors, and conducting a well-controlled experimental effort which will comprise using a combination of low-risk experiments and experiments requiring the use of state-of-the-art diagnostic instrumentation. Analysis of the data is to be conducted using an existing, TEACH-type code which employs a stochastic analysis of the motion of the dispersed phase in the turbulent continuum flow field.

  4. Computer simulation of supersonic rarefied gas flow in the transition region, about a spherical probe; a Monte Carlo approach with application to rocket-borne ion probe experiments

    NASA Technical Reports Server (NTRS)

    Horton, B. E.; Bowhill, S. A.

    1971-01-01

    This report describes a Monte Carlo simulation of transition flow around a sphere. Conditions for the simulation correspond to neutral monatomic molecules at two altitudes (70 and 75 km) in the D region of the ionosphere. Results are presented in the form of density contours, velocity vector plots and density, velocity and temperature profiles for the two altitudes. Contours and density profiles are related to independent Monte Carlo and experimental studies, and drag coefficients are calculated and compared with available experimental data. The small computer used is a PDP-15 with 16 K of core, and a typical run for 75 km requires five iterations, each taking five hours. The results are recorded on DECTAPE to be printed when required, and the program provides error estimates for any flow field parameter.

  5. Comparison Between Predicted and Experimentally Measured Flow Fields at the Exit of the SSME HPFTP Impeller

    NASA Technical Reports Server (NTRS)

    Bache, George

    1993-01-01

    Validation of CFD codes is a critical first step in the process of developing CFD design capability. The MSFC Pump Technology Team has recognized the importance of validation and has thus funded several experimental programs designed to obtain CFD quality validation data. The first data set to become available is for the SSME High Pressure Fuel Turbopump Impeller. LDV Data was taken at the impeller inlet (to obtain a reliable inlet boundary condition) and three radial positions at the impeller discharge. Our CFD code, TASCflow, is used within the Propulsion and Commercial Pump industry as a tool for pump design. The objective of this work, therefore, is to further validate TASCflow for application in pump design. TASCflow was used to predict flow at the impeller discharge for flowrates of 80, 100 and 115 percent of design flow. Comparison to data has been made with encouraging results.

  6. Large scale propagation intermittency in the atmosphere

    NASA Astrophysics Data System (ADS)

    Mehrabi, Ali

    2000-11-01

    Long-term (several minutes to hours) amplitude variations observed in outdoor sound propagation experiments at Disneyland, California, in February 1998 are explained in terms of a time varying index of refraction. The experimentally propagated acoustic signals were received and recorded at several locations ranging from 300 meters to 2,800 meters. Meteorological data was taken as a function of altitude simultaneously with the received signal levels. There were many barriers along the path of acoustic propagation that affected the received signal levels, especially at short ranges. In a downward refraction situation, there could be a random change of amplitude in the predicted signals. A computer model based on the Fast Field Program (FFP) was used to compute the signal loss at the different receiving locations and to verify that the variations in the received signal levels can be predicted numerically. The calculations agree with experimental data with the same trend variations in average amplitude.

  7. An experimental investigation of the subcritical and supercritical flow about a swept semispan wing

    NASA Technical Reports Server (NTRS)

    Lockman, W. K.; Seegmiller, H. L.

    1983-01-01

    An experimental investigation of the turbulent, subcritical and supercritical flow over a swept, semispan wing in a solid wall wind tunnel is described. The program was conducted over a range of Mach numbers, Reynolds numbers, and angles of attack to provide a variety of test cases for assessment of wing computer codes and tunnel wall interference effects. Wing flows both without and with three dimensional flow separation are included. Data include mean surface pressures for both the wing and tunnel walls; surface oil flow patterns on the wing; and mean velocity, flow field surveys. The results are given in tabular form and presented graphically to illustrate some of the effects of the test parameters. Comparisons of the wing pressure data with the results from two inviscid wing codes are also shown to assess the importance of viscous flow and tunnel wall effects.

  8. The materials processing research base of the Materials Processing Center. Report for FY 1982

    NASA Technical Reports Server (NTRS)

    Flemings, M. C.

    1983-01-01

    The work described, while involving research in the broad field of materials processing, has two common features: the problems are closed related to space precessing of materials and have both practical and fundamental significance. An interesting and important feature of many of the projects is that the interdisciplinary nature of the problem mandates complementary analytical modeling/experimental approaches. An other important aspect of many of the projects is the increasing use of mathematical modeling techniques as one of the research tools. The predictive capability of these models, when tested against measurements, plays a very important role in both the planning of experimental programs and in the rational interpretation of the results. Many of the projects described have a space experiment as their ultimate objective. Mathematical models are proving to be extremely valuable in projecting the findings of ground - based experiments to microgravity conditions.

  9. Improvement of the mechanical reliability of monolithic refractory linings for coal gasification process vessels. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Potter, R.A.

    1981-09-01

    Eighteen heat-up tests were run on nine standard and experimental dual component monolithic refractory concrete linings. These tests were run with a five foot diameter by 14-ft high Pressure Vessel/Test Furnace designed to accommodate a 12-inch thick by 5-ft high refractory lining, heat the hot face to 2000/sup 0/F and expose the lining to air or steam pressures up to 150 psig. Results obtained from standard type linings in the test facility indicated that lining degradation duplicated that observed in field installations. The lining performance was significantly improved due to information gained from a systematic study of the cracking thatmore » occurred in the linings; the analysis of the lining strains, shell stresses and acoustic emission results; and the stress analyses performed on the standard and experimental lining designs with the finite element analysis computer programs, REFSAM and RESGAP.« less

  10. V/STOL and STOL ground effects and testing techniques

    NASA Technical Reports Server (NTRS)

    Kuhn, R. E.

    1987-01-01

    The ground effects associated with V/STOL operation were examined and an effort was made to develop the equipment and testing techniques needed for that understanding. Primary emphasis was on future experimental programs in the 40 x 80 and the 80 x 120 foot test sections and in the outdoor static test stand associated with these facilities. The commonly used experimental techniques are reviewed and data obtained by various techniques are compared with each other and with available estimating methods. These reviews and comparisons provide insight into the limitations of past studies and the testing techniques used and identify areas where additional work is needed. The understanding of the flow mechanics involved in hovering and in transition in and out of ground effect is discussed. The basic flow fields associated with hovering, transition and STOL operation of jet powered V/STOL aircraft are depicted.

  11. Development and Assessment of CFD Models Including a Supplemental Program Code for Analyzing Buoyancy-Driven Flows Through BWR Fuel Assemblies in SFP Complete LOCA Scenarios

    NASA Astrophysics Data System (ADS)

    Artnak, Edward Joseph, III

    This work seeks to illustrate the potential benefits afforded by implementing aspects of fluid dynamics, especially the latest computational fluid dynamics (CFD) modeling approach, through numerical experimentation and the traditional discipline of physical experimentation to improve the calibration of the severe reactor accident analysis code, MELCOR, in one of several spent fuel pool (SFP) complete loss-ofcoolant accident (LOCA) scenarios. While the scope of experimental work performed by Sandia National Laboratories (SNL) extends well beyond that which is reasonably addressed by our allotted resources and computational time in accordance with initial project allocations to complete the report, these simulated case trials produced a significant array of supplementary high-fidelity solutions and hydraulic flow-field data in support of SNL research objectives. Results contained herein show FLUENT CFD model representations of a 9x9 BWR fuel assembly in conditions corresponding to a complete loss-of-coolant accident scenario. In addition to the CFD model developments, a MATLAB based controlvolume model was constructed to independently assess the 9x9 BWR fuel assembly under similar accident scenarios. The data produced from this work show that FLUENT CFD models are capable of resolving complex flow fields within a BWR fuel assembly in the realm of buoyancy-induced mass flow rates and that characteristic hydraulic parameters from such CFD simulations (or physical experiments) are reasonably employed in corresponding constitutive correlations for developing simplified numerical models of comparable solution accuracy.

  12. SICONID: a FORTRAN-77 program for conditional simulation in one dimension

    NASA Astrophysics Data System (ADS)

    Pardo-Igúzquiza, E.; Chica-Olmo, M.; Delgado-García, J.

    1992-07-01

    The SICONID program, written in FORTRAN 77 for the conditional simulation of geological variables in one dimension, is presented. The program permits all the necessary steps to obtain a simulated series of the experimental data to be carried out. These states are: acquisition of the experimental values, modelization of the anamorphosis function, variogram of the normal scores, conditional simulation, and restoration of the experimental histogram. A practical case of simulation of the evolution of the groundwater level in a survey to show the operation of the program is given.

  13. Paradox of vaccination: is vaccination really effective against avian flu epidemics?

    PubMed

    Iwami, Shingo; Suzuki, Takafumi; Takeuchi, Yasuhiro

    2009-01-01

    Although vaccination can be a useful tool for control of avian influenza epidemics, it might engender emergence of a vaccine-resistant strain. Field and experimental studies show that some avian influenza strains acquire resistance ability against vaccination. We investigated, in the context of the emergence of a vaccine-resistant strain, whether a vaccination program can prevent the spread of infectious disease. We also investigated how losses from immunization by vaccination imposed by the resistant strain affect the spread of the disease. We designed and analyzed a deterministic compartment model illustrating transmission of vaccine-sensitive and vaccine-resistant strains during a vaccination program. We investigated how the loss of protection effectiveness impacts the program. Results show that a vaccination to prevent the spread of disease can instead spread the disease when the resistant strain is less virulent than the sensitive strain. If the loss is high, the program does not prevent the spread of the resistant strain despite a large prevalence rate of the program. The epidemic's final size can be larger than that before the vaccination program. We propose how to use poor vaccines, which have a large loss, to maximize program effects and describe various program risks, which can be estimated using available epidemiological data. We presented clear and simple concepts to elucidate vaccination program guidelines to avoid negative program effects. Using our theory, monitoring the virulence of the resistant strain and investigating the loss caused by the resistant strain better development of vaccination strategies is possible.

  14. Interplay of charge distribution and conformation in peptides: comparison of theory and experiment.

    PubMed

    Makowska, Joanna; Bagińska, Katarzyna; Kasprzykowski, F; Vila, Jorge A; Jagielska, Anna; Liwo, Adam; Chmurzyński, Lech; Scheraga, Harold A

    2005-01-01

    We assessed the correlation between charge distribution and conformation of flexible peptides by comparing the theoretically calculated potentiometric-titration curves of two model peptides, Ac-Lys5-NHMe (a model of poly-L-lysine) and Ac-Lys-Ala11-Lys-Gly2-Tyr-NH2 (P1) in water and methanol, with the experimental curves. The calculation procedure consisted of three steps: (i) global conformational search of the peptide under study using the electrostatically driven Monte Carlo (EDMC) method with the empirical conformational energy program for peptides (ECEPP)/3 force field plus the surface-hydration (SRFOPT) or the generalized Born surface area (GBSA) solvation model as well as a molecular dynamics method with the assisted model building and energy refinement (AMBER)99/GBSA force field; (ii) reevaluation of the energy in the pH range considered by using the modified Poisson-Boltzmann approach and taking into account all possible protonation microstates of each conformation, and (iii) calculation of the average degree of protonation of the peptide at a given pH value by Boltzmann averaging over conformations. For Ac-Lys5-NHMe, the computed titration curve agrees qualitatively with the experimental curve of poly-L-lysine in 95% methanol. The experimental titration curves of peptide P1 in water and methanol indicate a remarkable downshift of the first pK(a) value compared to the values for reference compounds (n-butylamine and phenol, respectively), suggesting the presence of a hydrogen bond between the tyrosine hydroxyl oxygen and the H(epsilon) proton of a protonated lysine side chain. The theoretical titration curves agree well with the experimental curves, if conformations with such hydrogen bonds constitute a significant part of the ensemble; otherwise, the theory predicts too small a downward pH shift. Copyright 2005 Wiley Periodicals, Inc

  15. The Fresnel Zone Light Field Spectral Imager

    DTIC Science & Technology

    2017-03-23

    Marciniak Member AFIT-ENP-MS-17-M-095 Abstract This thesis provides a computational model and the first experimental demonstration of a Fresnel zone...Fresnel propagation. It was validated experimentally and provides excellent demonstration of system capabilities. The experimentally demonstrated system...in the measured light fields, they did not degrade the system’s performance. Experimental demonstration also showed the capability to resolve between

  16. Laboratory for Extraterrestrial Physics

    NASA Technical Reports Server (NTRS)

    Vondrak, Richard R. (Technical Monitor)

    2001-01-01

    The NASA Goddard Space Flight Center (GSFC) Laboratory for Extraterrestrial Physics (LEP) performs experimental and theoretical research on the heliosphere, the interstellar medium, and the magnetospheres and upper atmospheres of the planets, including Earth. LEP space scientists investigate the structure and dynamics of the magnetospheres of the planets including Earth. Their research programs encompass the magnetic fields intrinsic to many planetary bodies as well as their charged-particle environments and plasma-wave emissions. The LEP also conducts research into the nature of planetary ionospheres and their coupling to both the upper atmospheres and their magnetospheres. Finally, the LEP carries out a broad-based research program in heliospheric physics covering the origins of the solar wind, its propagation outward through the solar system all the way to its termination where it encounters the local interstellar medium. Special emphasis is placed on the study of solar coronal mass ejections (CME's), shock waves, and the structure and properties of the fast and slow solar wind. LEP planetary scientists study the chemistry and physics of planetary stratospheres and tropospheres and of solar system bodies including meteorites, asteroids, comets, and planets. The LEP conducts a focused program in astronomy, particularly in the infrared and in short as well as very long radio wavelengths. We also perform an extensive program of laboratory research, including spectroscopy and physical chemistry related to astronomical objects. The Laboratory proposes, develops, fabricates, and integrates experiments on Earth-orbiting, planetary, and heliospheric spacecraft to measure the characteristics of planetary atmospheres and magnetic fields, and electromagnetic fields and plasmas in space. We design and develop spectrometric instrumentation for continuum and spectral line observations in the x-ray, gamma-ray, infrared, and radio regimes; these are flown on spacecraft to study the interplanetary medium, asteroids, comets, and planets. Suborbital sounding rockets and groundbased observing platforms form an integral part of these research activities. This report covers the period from approximately October 1999 through September 2000.

  17. [The analytical setting of rotary speed of centrifuge rotor and centrifugation time in chemical, biochemical and microbiological practice].

    PubMed

    Zolotarev, K V

    2012-08-01

    The researchers happen to face with suspensions in their chemical, biochemical and microbiological practice. The suspensions are the disperse systems with solid dispersed phase and liquid dispersion medium and with dispersed phase particle size > 100 nm (10-7 m). Quite often the necessity occurs to separate solid particles from liquid. To use for this purpose the precipitation in gravitation field can make the process to progress too long. In this respect an effective mode is the precipitation in the field of centrifugal forces--the centrifugation. The rotary speed of centrifuge rotor and centrifugation time can be set analytically using regularities of general dynamics and hydrodynamics. To this effect, should be written and transformed the equation of First and Second Newton Laws for suspension particle being in the field of centrifugal forces and forces of resistance of liquid and vessel wall. The force of liquid resistance depends on particle motion condition in liquid. To determine the regimen the Archimedes and Reynolds numerical dimensionless criteria are to be applied. The article demonstrates the results of these transformations as analytical inverse ratio dependence of centrifugation time from rotary speed. The calculation of series of "rate-time" data permits to choose the optimal data pair on the assumption of centrifuge capacity and practical reasonability. The results of calculations are validated by actual experimental data hence the physical mathematical apparatus can be considered as effective one. The setting progress depends both from parameter (Reynolds criterion) and data series calculation. So, the most convenient way to apply this operation is the programming approach. The article proposes to use the program Microsoft Excel and VBA programming language for this purpose. The possibility to download the file from Internet to use it for fast solution is proposed.

  18. Using Remotely Sensed Data to Automate and Improve Census Bureau Update Activities

    NASA Astrophysics Data System (ADS)

    Desch, A., IV

    2017-12-01

    Location of established and new housing structures is fundamental in the Census Bureau's planning and execution of each decennial census. Past Census address list compilation and update programs have involved sending more than 100,000 workers into the field to find and verify housing units. The 2020 Census program has introduced an imagery based In-Office Address Canvassing Interactive Review (IOAC-IR) program in an attempt to reduce the in-field workload. The human analyst driven, aerial image based IOAC-IR operation has proven to be a cost effective and accurate substitute for a large portion of the expensive in-field address canvassing operations. However, the IOAC-IR still required more than a year to complete and over 100 full-time dedicated employees. Much of the basic image analysis work done in IOAC-IR can be handled with established remote sensing and computer vision techniques. The experience gained from the Interactive Review phase of In-Office Address Canvassing has led to the development of a prototype geo-processing tool to automate much of this process for future and ongoing Address Canvassing operations. This prototype utilizes high-resolution aerial imagery and LiDAR to identify structures and compare their location to existing Census geographic information. In this presentation, we report on the comparison of this exploratory system's results to the human based IOAC-IR. The experimental image and LiDAR based change detection approach has itself led to very promising follow-on experiments utilizing very current, high repeat datasets and scalable cloud computing. We will discuss how these new techniques can be used to both aid the US Census Bureau meet its goals of identify all the housing units in the US as well as aid developing countries better identify where there population is currently distributed.

  19. Popular video for rural development in Peru.

    PubMed

    Calvelo Rios, J M

    1989-01-01

    Peru developed its first use of video for training and education in rural areas over a decade ago. On completion of the project in 1986, over 400,000 peasants had attended video courses lasting from 5-20 days. The courses included rural health, family planning, reforestation, agriculture, animal husbandry, housing, nutrition, and water sanitation. There were 125 course packages made and 1,260 video programs from 10-18 minutes in length. There were 780 additional video programs created on human resource development, socioeconomic diagnostics and culture. 160 specialists were trained to produce audiovisual materials and run the programs. Also, 70 trainers from other countries were trained. The results showed many used the training in practical applications. To promote rural development 2 things are needed , capital and physical inputs, such as equipment, fertilizers, pesticides, etc. The video project provided peasants an additional input that would help them manage the financial and physical inputs more efficiently. Video was used because many farmers are illiterate or speak a language different from the official one. Printed guides that contained many illustrations and few words served as memory aids and group discussions reinforced practical learning. By seeing, hearing, and doing, the training was effective. There were 46% women which made fertility and family planning subjects more easily communicated. The production of teaching modules included field investigations, academic research, field recording, tape editing, and experimental application in the field. An agreement with the peasants was initiated before a course began to help insure full participation and to also make sure resources were available to use the knowledge gained. The courses were limited to 30 and the cost per participant was $34 per course.

  20. 47 CFR 73.1510 - Experimental authorizations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Experimental authorizations. 73.1510 Section 73... conducted at any time the station is authorized to operate, but the minimum required schedule of programming... regularly scheduled programming concurrently with the experimental transmission if there is no significant...

  1. 47 CFR 73.1510 - Experimental authorizations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Experimental authorizations. 73.1510 Section 73... conducted at any time the station is authorized to operate, but the minimum required schedule of programming... regularly scheduled programming concurrently with the experimental transmission if there is no significant...

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yokosawa, Akihiko

    Experimental results are reviewed on polarization phenomena in nucleon-nucleon scattering at intermediate energies. The present status of S = 0 dibaryon resonances is presented. The status of the Fermilab polarized beam program is presented, including the construction of polarized beam, two polarimeters being installed in the experimental hall, and the experimental program. (LEW)

  3. Nonlinear dynamics of drops and bubbles and chaotic phenomena

    NASA Technical Reports Server (NTRS)

    Trinh, Eugene H.; Leal, L. G.; Feng, Z. C.; Holt, R. G.

    1994-01-01

    Nonlinear phenomena associated with the dynamics of free drops and bubbles are investigated analytically, numerically and experimentally. Although newly developed levitation and measurement techniques have been implemented, the full experimental validation of theoretical predictions has been hindered by interfering artifacts associated with levitation in the Earth gravitational field. The low gravity environment of orbital space flight has been shown to provide a more quiescent environment which can be utilized to better match the idealized theoretical conditions. The research effort described in this paper is a closely coupled collaboration between predictive and guiding theoretical activities and a unique experimental program involving the ultrasonic and electrostatic levitation of single droplets and bubbles. The goal is to develop and to validate methods based on nonlinear dynamics for the understanding of the large amplitude oscillatory response of single drops and bubbles to both isotropic and asymmetric pressure stimuli. The first specific area on interest has been the resonant coupling between volume and shape oscillatory modes isolated gas or vapor bubbles in a liquid host. The result of multiple time-scale asymptotic treatment, combined with domain perturbation and bifurcation methods, has been the prediction of resonant and near-resonant coupling between volume and shape modes leading to stable as well as chaotic oscillations. Experimental investigations of the large amplitude shape oscillation modes of centimeter-size single bubbles trapped in water at 1 G and under reduced hydrostatic pressure, have suggested the possibility of a low gravity experiment to study the direct coupling between these low frequency shape modes and the volume pulsation, sound-radiating mode. The second subject of interest has involved numerical modeling, using the boundary integral method, of the large amplitude shape oscillations of charged and uncharged drops in the presence of a static or time-varying electric field. Theoretically predicted non linearity in the resonant frequency of the fundamental quadrupole mode has been verified by the accompanying experimental studies. Additional phenomena such as hysteresis in the frequency response of ultrasoncially levitated droplets in the presence of a time varying electric field, and mode coupling in the oscillations of ultrasonically modulated droplets, have also been uncovered. One of the results of this ground-based research has been the identification and characterization of phenomena strictly associated with the influence of the gravitational field. This has also allowed us to identify the specific requirements for potential microgravity investigations yielding new information not obtainable on Earth.

  4. Nonlinear dynamics of drops and bubbles and chaotic phenomena

    NASA Astrophysics Data System (ADS)

    Trinh, Eugene H.; Leal, L. G.; Feng, Z. C.; Holt, R. G.

    1994-08-01

    Nonlinear phenomena associated with the dynamics of free drops and bubbles are investigated analytically, numerically and experimentally. Although newly developed levitation and measurement techniques have been implemented, the full experimental validation of theoretical predictions has been hindered by interfering artifacts associated with levitation in the Earth gravitational field. The low gravity environment of orbital space flight has been shown to provide a more quiescent environment which can be utilized to better match the idealized theoretical conditions. The research effort described in this paper is a closely coupled collaboration between predictive and guiding theoretical activities and a unique experimental program involving the ultrasonic and electrostatic levitation of single droplets and bubbles. The goal is to develop and to validate methods based on nonlinear dynamics for the understanding of the large amplitude oscillatory response of single drops and bubbles to both isotropic and asymmetric pressure stimuli. The first specific area on interest has been the resonant coupling between volume and shape oscillatory modes isolated gas or vapor bubbles in a liquid host. The result of multiple time-scale asymptotic treatment, combined with domain perturbation and bifurcation methods, has been the prediction of resonant and near-resonant coupling between volume and shape modes leading to stable as well as chaotic oscillations. Experimental investigations of the large amplitude shape oscillation modes of centimeter-size single bubbles trapped in water at 1 G and under reduced hydrostatic pressure, have suggested the possibility of a low gravity experiment to study the direct coupling between these low frequency shape modes and the volume pulsation, sound-radiating mode. The second subject of interest has involved numerical modeling, using the boundary integral method, of the large amplitude shape oscillations of charged and uncharged drops in the presence of a static or time-varying electric field. Theoretically predicted non linearity in the resonant frequency of the fundamental quadrupole mode has been verified by the accompanying experimental studies. Additional phenomena such as hysteresis in the frequency response of ultrasoncially levitated droplets in the presence of a time varying electric field, and mode coupling in the oscillations of ultrasonically modulated droplets, have also been uncovered. One of the results of this ground-based research has been the identification and characterization of phenomena strictly associated with the influence of the gravitational field. This has also allowed us to identify the specific requirements for potential microgravity investigations yielding new information not obtainable on Earth.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, A.; Chadwick, T.; Makhlouf, M.

    This paper deals with the effects of various solidification variables such as cooling rate, temperature gradient, solidification rate, etc. on the microstructure and shrinkage defects in aluminum alloy (A356) castings. The effects are first predicted using commercial solidification modeling softwares and then verified experimentally. For this work, the authors are considering a rectangular bar cast in a sand mold. Simulation is performed using SIMULOR, a finite volume based casting simulation program. Microstructural variables such as dendritic arm spacing (DAS) and defects (percentage porosity) are calculated from the temperature fields, cooling rate, solidification time, etc. predicted by the computer softwares. Themore » same variables are then calculated experimentally in the foundry. The test piece is cast in a resin (Sodium Silicate) bonded sand mold and the DAS and porosity variables are calculated using Scanning Electron Microscopy and Image Analysis. The predictions from the software are compared with the experimental results. The results are presented and critically analyzed to determine the quality of the predicted results. The usefulness of the commercial solidification modeling softwares as a tool for the foundry are also discussed.« less

  6. Analytical and experimental investigations of the oblique detonation wave engine concept

    NASA Technical Reports Server (NTRS)

    Menees, Gene P.; Adelman, Henry G.; Cambier, Jean-Luc

    1990-01-01

    Wave combustors, which include the oblique detonation wave engine (ODWE), are attractive propulsion concepts for hypersonic flight. These engines utilize oblique shock or detonation waves to rapidly mix, ignite, and combust the air-fuel mixture in thin zones in the combustion chamber. Benefits of these combustion systems include shorter and lighter engines which require less cooling and can provide thrust at higher Mach numbers than conventional scramjets. The wave combustor's ability to operate at lower combustor inlet pressures may allow the vehicle to operate at lower dynamic pressures which could lessen the heating loads on the airframe. The research program at NASA-Ames includes analytical studies of the ODWE combustor using Computational Fluid Dynamics (CFD) codes which fully couple finite rate chemistry with fluid dynamics. In addition, experimental proof-of-concept studies are being performed in an arc heated hypersonic wind tunnel. Several fuel injection design were studied analytically and experimentally. In-stream strut fuel injectors were chosen to provide good mixing with minimal stagnation pressure losses. Measurements of flow field properties behind the oblique wave are compared to analytical predictions.

  7. Electrical characteristics in reverse electrodialysis using nanoporous membranes

    NASA Astrophysics Data System (ADS)

    Chanda, Sourayon; Tsai, Peichun Amy

    2017-11-01

    We experimentally and numerically investigate the effects of concentration difference and flow velocity on sustainable electricity generation and associated fluid dynamics using a single reverse electrodialysis (RED) cell. By exploiting the charge-selective nature of nanoporous interfaces, electrical energy is generated by reverse electrodialysis harnessing chemical Gibbs energy via a salinity gradient. Experimentally, a RED cell was designed with two reservoirs, which are separated by a nanoporous, cation-selective membrane. We injected deionized water through one reservoir, whereas a solution of high salt concentration through the other. The gradient of salt concentration primarily drives the flow in the charged nano-pores, due to the interplay between charge selectivity, diffusion processes, and electro-migration. The current-voltage characteristics of the single RED cell shows a linear current-voltage relationship, similar to an electrochemical cell. The membrane resistance is increased with increasing salt concentration difference and external flow rate. The present experimental work was further analyzed numerically to better understand the detailed electrical and flow fields under different concentration gradients and external flows. NSERC Discovery, Accelerator, and CRC Programs.

  8. Towards validated chemistry at extreme conditions: reactive MD simulations of shocked Polyvinyl Nitrate and Nitromethane

    NASA Astrophysics Data System (ADS)

    Islam, Md Mahbubul; Strachan, Alejandro

    A detailed atomistic-level understanding of the ultrafast chemistry of detonation processes of high energy materials is crucial to understand their performance and safety. Recent advances in laser shocks and ultra-fast spectroscopy is yielding the first direct experimental evidence of chemistry at extreme conditions. At the same time, reactive molecular dynamics (MD) in current high-performance computing platforms enable an atomic description of shock-induced chemistry with length and timescales approaching those of experiments. We use MD simulations with the reactive force field ReaxFF to investigate the shock-induced chemical decomposition mechanisms of polyvinyl nitrate (PVN) and nitromethane (NM). The effect of shock pressure on chemical reaction mechanisms and kinetics of both the materials are investigated. For direct comparison of our simulation results with experimentally derived IR absorption data, we performed spectral analysis using atomistic velocity at various shock conditions. The combination of reactive MD simulations and ultrafast spectroscopy enables both the validation of ReaxFF at extreme conditions and contributes to the interpretation of the experimental data relating changes in spectral features to atomic processes. Office of Naval Research MURI program.

  9. Analytical and experimental investigations of the oblique detonation wave engine concept

    NASA Technical Reports Server (NTRS)

    Menees, Gene P.; Adelman, Henry G.; Cambier, Jean-Luc

    1991-01-01

    Wave combustors, which include the Oblique Detonation Wave Engine (ODWE), are attractive propulsion concepts for hypersonic flight. These engines utilize oblique shock or detonation waves to rapidly mix, ignite, and combust the air-fuel mixture in thin zones in the combustion chamber. Benefits of these combustion systems include shorter and lighter engines which will require less cooling and can provide thrust at higher Mach numbers than conventional scramjets. The wave combustor's ability to operate at lower combustor inlet pressures may allow the vehicle to operate at lower dynamic pressures which could lessen the heating loads on the airframe. The research program at NASA-Ames includes analytical studies of the ODWE combustor using CFD codes which fully couple finite rate chemistry with fluid dynamics. In addition, experimental proof-of-concept studies are being carried out in an arc heated hypersonic wind tunnel. Several fuel injection designs were studied analytically and experimentally. In-stream strut fuel injectors were chosen to provide good mixing with minimal stagnation pressure losses. Measurements of flow field properties behind the oblique wave are compared to analytical predictions.

  10. A Field-Based Curriculum Model for Earth Science Teacher-Preparation Programs.

    ERIC Educational Resources Information Center

    Dubois, David D.

    1979-01-01

    This study proposed a model set of cognitive-behavioral objectives for field-based teacher education programs for earth science teachers. It describes field experience integration into teacher education programs. The model is also applicable for evaluation of earth science teacher education programs. (RE)

  11. Evaluating an Experimental Audio-Visual Module Programmed to Teach a Basic Anatomical and Physiological System.

    ERIC Educational Resources Information Center

    Federico, Pat-Anthony

    The learning efficiency and effectiveness of teaching an anatomical and physiological system to Air Force enlisted trainees utilizing an experimental audiovisual programed module was compared to that of a commercial linear programed text. It was demonstrated that the audiovisual programed approach to training was more efficient than and equally as…

  12. Impact of the Siena College Tech Valley Scholars Program on Student Outcomes

    ERIC Educational Resources Information Center

    Medsker, Larry; Allard, Lee; Tucker, Lucas J.; O'Donnell, Jodi L.; Sterne-Marr, Rachel; Bannon, Jon; Finn, Rose; Weatherwax, Allan

    2016-01-01

    The Tech Valley Scholars (TVS) program included 38 students who joined this program over the course of three academic years, from 2009 to 2012. These students comprise the experimental group for this study to determine if participating in the NSF-funded Tech Valley Scholars program improved academic outcomes. The experimental group was compared to…

  13. Frontier Fields: Engaging Educators, the Youth, and the Public in Exploring the Cosmic Frontier

    NASA Astrophysics Data System (ADS)

    Lawton, Brandon L.; Eisenhamer, Bonnie; Smith, Denise A.; Summers, Frank; Darnell, John A.; Ryer, Holly

    2015-01-01

    The Frontier Fields is a multi-cycle program of six deep-field observations of strong-lensing galaxy clusters that will be taken in parallel with six deep 'blank fields.' The three-year long collaborative program is led by observations from NASA's Great Observatories. The observations allow astronomers to look deeper into the universe than ever before, and potentially uncover galaxies that are as much as 100 times fainter than what the telescopes can typically observe. The Frontier Fields science program is ideal for informing audiences about scientific advances and topics in STEM. The study of galaxy properties, statistics, optics, and Einstein's theory of general relativity naturally leverages off of the science returns of the Frontier Fields program. As a result, the Space Telescope Science Institute's Office of Public Outreach (OPO) has initiated an education and public outreach (EPO) project to follow the progress of the Frontier Fields.For over two decades, the Hubble EPO program has sought to bring the wonders of the universe to the education community, the youth, and the public, and engage audiences in the adventure of scientific discovery. Program components include standards-based curriculum-support materials, exhibits and exhibit components, professional development workshops, and direct interactions with scientists. We are also leveraging our new social media strategy to bring the science program to the public in the form of an ongoing blog. The main underpinnings of the program's infrastructure are scientist-educator development teams, partnerships, and an embedded program evaluation component. OPO is leveraging this existing infrastructure to bring the Frontier Fields science program to the education community and the public in a cost-effective way.The Frontier Fields program has just completed its first year. This talk will feature the goals and current status of the Frontier Fields EPO program. We will highlight OPO's strategies and infrastructure that allows for the quick delivery of groundbreaking science to the education community and public.

  14. Strong field QED in lepton colliders and electron/laser interactions

    NASA Astrophysics Data System (ADS)

    Hartin, Anthony

    2018-05-01

    The studies of strong field particle physics processes in electron/laser interactions and lepton collider interaction points (IPs) are reviewed. These processes are defined by the high intensity of the electromagnetic fields involved and the need to take them into account as fully as possible. Thus, the main theoretical framework considered is the Furry interaction picture within intense field quantum field theory. In this framework, the influence of a background electromagnetic field in the Lagrangian is calculated nonperturbatively, involving exact solutions for quantized charged particles in the background field. These “dressed” particles go on to interact perturbatively with other particles, enabling the background field to play both macroscopic and microscopic roles. Macroscopically, the background field starts to polarize the vacuum, in effect rendering it a dispersive medium. Particles encountering this dispersive vacuum obtain a lifetime, either radiating or decaying into pair particles at a rate dependent on the intensity of the background field. In fact, the intensity of the background field enters into the coupling constant of the strong field quantum electrodynamic Lagrangian, influencing all particle processes. A number of new phenomena occur. Particles gain an intensity-dependent rest mass shift that accounts for their presence in the dispersive vacuum. Multi-photon events involving more than one external field photon occur at each vertex. Higher order processes which exchange a virtual strong field particle resonate via the lifetimes of the unstable strong field states. Two main arenas of strong field physics are reviewed; those occurring in relativistic electron interactions with intense laser beams, and those occurring in the beam-beam physics at the interaction point of colliders. This review outlines the theory, describes its significant novel phenomenology and details the experimental schema required to detect strong field effects and the simulation programs required to model them.

  15. Survey of engineering computational methods and experimental programs for estimating supersonic missile aerodynamic characteristics

    NASA Technical Reports Server (NTRS)

    Sawyer, W. C.; Allen, J. M.; Hernandez, G.; Dillenius, M. F. E.; Hemsch, M. J.

    1982-01-01

    This paper presents a survey of engineering computational methods and experimental programs used for estimating the aerodynamic characteristics of missile configurations. Emphasis is placed on those methods which are suitable for preliminary design of conventional and advanced concepts. An analysis of the technical approaches of the various methods is made in order to assess their suitability to estimate longitudinal and/or lateral-directional characteristics for different classes of missile configurations. Some comparisons between the predicted characteristics and experimental data are presented. These comparisons are made for a large variation in flow conditions and model attitude parameters. The paper also presents known experimental research programs developed for the specific purpose of validating analytical methods and extending the capability of data-base programs.

  16. Large-Grain Superconducting Gun Cavity Testing Program Phase One Closing Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hammons, L.; Bellavia, S.; Belomestnykh, S.

    2013-10-31

    This report details the experimental configuration and RF testing results for the first phase of a large-grained niobium electron gun cavity testing program being conducted in the Small Vertical Testing Facility in the Collider-Accelerator Department. This testing is meant to explore multi-pacting in the cavity and shed light on the behavior of a counterpart cavity of identical geometry installed in the Energy Recovery LINAC being constructed in the Collider-Accelerator Department at Brookhaven National Laboratory. This test found that the Q of the large-grained cavity at 4 K reached ~6.5 × 10 8 and at 2 K reached a value ofmore » ~6 × 10 9. Both of these values are about a factor of 10 lower than would be expected for this type of cavity given the calculated surface resistance and the estimated geometry factor for this half-cell cavity. In addition, the cavity reached a peak voltage of 0.6 MV before there was sig-nificant decline in the Q value and a substantial increase in field emission. This relatively low volt-age, coupled with the low Q and considerable field emission suggest contamination of the cavity interior, possibly during experimental assembly. The results may also suggest that additional chemical etching of the interior surface of the cavity may be beneficial. Throughout the course of testing, various challenges arose including slow helium transfer to the cryostat and cable difficulties. These difficulties and others were eventually resolved, and the re-port discusses the operating experience of the experiment thus far and the plans for future work aimed at exploring the nature of multipacting with a copper cathode inserted into the cavity.« less

  17. [Effects of a Facial Muscle Exercise Program including Facial Massage for Patients with Facial Palsy].

    PubMed

    Choi, Hyoung Ju; Shin, Sung Hee

    2016-08-01

    The purpose of this study was to examine the effects of a facial muscle exercise program including facial massage on the facial muscle function, subjective symptoms related to paralysis and depression in patients with facial palsy. This study was a quasi-experimental research with a non-equivalent control group non-synchronized design. Participants were 70 patients with facial palsy (experimental group 35, control group 35). For the experimental group, the facial muscular exercise program including facial massage was performed 20 minutes a day, 3 times a week for two weeks. Data were analyzed using descriptive statistics, χ²-test, Fisher's exact test and independent sample t-test with the SPSS 18.0 program. Facial muscular function of the experimental group improved significantly compared to the control group. There was no significant difference in symptoms related to paralysis between the experimental group and control group. The level of depression in the experimental group was significantly lower than the control group. Results suggest that a facial muscle exercise program including facial massage is an effective nursing intervention to improve facial muscle function and decrease depression in patients with facial palsy.

  18. A Cosmetic Content-Based Nutrition Education Program Improves Fruit and Vegetable Consumption Among Grade 11 Thai Students.

    PubMed

    Somsri, Pattraporn; Satheannoppakao, Warapone; Tipayamongkholgul, Mathuros; Vatanasomboon, Paranee; Kasemsup, Rachada

    2016-03-01

    To examine and compare the effectiveness of a cosmetic content-based nutrition education (CCBNEd) program and a health content-based nutrition education (HCBNEd) program on the promotion of fruit and vegetable (F&V) consumption. Quasi-experimental. Three secondary schools in Nonthaburi, Thailand. Three classes of students were randomly assigned to 3 study groups: experimental group 1 (n = 41) participated in the CCBNEd program, experimental group 2 (n = 35) experienced the HCBNEd program, and a comparison group (n = 37) did not participate in a program. All groups received F&V information. Data were collected between July and September, 2013. Knowledge about F&V, attitude toward F&V consumption, and the amount and variety of F&V consumed were measured at baseline, posttest, and follow-up. Nonparametric statistics were used to compare the programs' effectiveness. After the test, experimental group 1 had significantly increased knowledge scores, attitude scores, and the amount and variety of F&V consumed compared with those at baseline (P < .001). These positive changes were maintained until follow-up. In experimental group 2, knowledge and attitude scores increased (P < .001) at posttest and then decreased at follow-up whereas the comparison group positively changed only in knowledge. The CCBNEd program was most effective at increasing F&V consumption. Copyright © 2016 Society for Nutrition Education and Behavior. Published by Elsevier Inc. All rights reserved.

  19. [Effect of school-based peer leader centered smoking prevention program].

    PubMed

    Shin, Sung Rae; Oh, Pok Ja; Youn, Hye Kyung; Shin, Sun Hwa

    2014-12-01

    The purpose of this study was to develop and evaluate a school-based peer leader centered smoking prevention program. Non-equivalent control group with a pre/post-test design was used. Students (n=174) in two boys' junior high schools located in D city, Korea participated with 85 being selected for the experimental group and 89 for the control group. Five sessions were given to the experimental group and a 50 minute lecture to the control group. Knowledge, attitude, non-smoking intention, and non-smoking efficacy were measured for the both experimental and control group at two weeks before the program and one month after the program was completed. Data were analyzed using χ²-test, Fisher's exact test, independent t-test and paired t-test with the SPSS 21.0 program. The experimental group showed higher overall knowledge, negative attitude toward smoking, and higher non-smoking intention and efficacy. After receiving the school based peer leader centered smoking prevention program scores for attitude toward smoking and non-smoking efficacy increased in the experimental group were higher than in the control group. The school-based peer leader centered smoking prevention program needs longitudinal evaluation, but from this study, there is an indication that this program can be used with junior high school students and effectively change students' attitude toward smoking and promote non-smoking efficacy.

  20. A fast field-cycling device for high-resolution NMR: Design and application to spin relaxation and hyperpolarization experiments

    NASA Astrophysics Data System (ADS)

    Kiryutin, Alexey S.; Pravdivtsev, Andrey N.; Ivanov, Konstantin L.; Grishin, Yuri A.; Vieth, Hans-Martin; Yurkovskaya, Alexandra V.

    2016-02-01

    A device for performing fast magnetic field-cycling NMR experiments is described. A key feature of this setup is that it combines fast switching of the external magnetic field and high-resolution NMR detection. The field-cycling method is based on precise mechanical positioning of the NMR probe with the mounted sample in the inhomogeneous fringe field of the spectrometer magnet. The device enables field variation over several decades (from 100 μT up to 7 T) within less than 0.3 s; progress in NMR probe design provides NMR linewidths of about 10-3 ppm. The experimental method is very versatile and enables site-specific studies of spin relaxation (NMRD, LLSs) and spin hyperpolarization (DNP, CIDNP, and SABRE) at variable magnetic field and at variable temperature. Experimental examples of such studies are demonstrated; advantages of the experimental method are described and existing challenges in the field are outlined.

Top