DC Motor control using motor-generator set with controlled generator field
Belsterling, Charles A.; Stone, John
1982-01-01
A d.c. generator is connected in series opposed to the polarity of a d.c. power source supplying a d.c. drive motor. The generator is part of a motor-generator set, the motor of which is supplied from the power source connected to the motor. A generator field control means varies the field produced by at least one of the generator windings in order to change the effective voltage output. When the generator voltage is exactly equal to the d.c. voltage supply, no voltage is applied across the drive motor. As the field of the generator is reduced, the drive motor is supplied greater voltage until the full voltage of the d.c. power source is supplied when the generator has zero field applied. Additional voltage may be applied across the drive motor by reversing and increasing the reversed field on the generator. The drive motor may be reversed in direction from standstill by increasing the generator field so that a reverse voltage is applied across the d.c. motor.
Electrode assemblies, plasma generating apparatuses, and methods for generating plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kong, Peter C.; Grandy, Jon D.; Detering, Brent A.
Electrode assemblies for plasma reactors include a structure or device for constraining an arc endpoint to a selected area or region on an electrode. In some embodiments, the structure or device may comprise one or more insulating members covering a portion of an electrode. In additional embodiments, the structure or device may provide a magnetic field configured to control a location of an arc endpoint on the electrode. Plasma generating modules, apparatus, and systems include such electrode assemblies. Methods for generating a plasma include covering at least a portion of a surface of an electrode with an electrically insulating membermore » to constrain a location of an arc endpoint on the electrode. Additional methods for generating a plasma include generating a magnetic field to constrain a location of an arc endpoint on an electrode.« less
Field verified points showing presence or absence of submerged rooted vascular plants along Massachusetts coastline. In addition to the photo interpreted eelgrass coverage (EELGRASS), this point coverage (EGRASVPT) was generated based on field-verified sites as well as all field...
Kong, Peter C; Grandy, Jon D; Detering, Brent A; Zuck, Larry D
2013-09-17
Electrode assemblies for plasma reactors include a structure or device for constraining an arc endpoint to a selected area or region on an electrode. In some embodiments, the structure or device may comprise one or more insulating members covering a portion of an electrode. In additional embodiments, the structure or device may provide a magnetic field configured to control a location of an arc endpoint on the electrode. Plasma generating modules, apparatus, and systems include such electrode assemblies. Methods for generating a plasma include covering at least a portion of a surface of an electrode with an electrically insulating member to constrain a location of an arc endpoint on the electrode. Additional methods for generating a plasma include generating a magnetic field to constrain a location of an arc endpoint on an electrode.
Advanced Material Strategies for Next-Generation Additive Manufacturing
Chang, Jinke; He, Jiankang; Zhou, Wenxing; Lei, Qi; Li, Xiao; Li, Dichen
2018-01-01
Additive manufacturing (AM) has drawn tremendous attention in various fields. In recent years, great efforts have been made to develop novel additive manufacturing processes such as micro-/nano-scale 3D printing, bioprinting, and 4D printing for the fabrication of complex 3D structures with high resolution, living components, and multimaterials. The development of advanced functional materials is important for the implementation of these novel additive manufacturing processes. Here, a state-of-the-art review on advanced material strategies for novel additive manufacturing processes is provided, mainly including conductive materials, biomaterials, and smart materials. The advantages, limitations, and future perspectives of these materials for additive manufacturing are discussed. It is believed that the innovations of material strategies in parallel with the evolution of additive manufacturing processes will provide numerous possibilities for the fabrication of complex smart constructs with multiple functions, which will significantly widen the application fields of next-generation additive manufacturing. PMID:29361754
Advanced Material Strategies for Next-Generation Additive Manufacturing.
Chang, Jinke; He, Jiankang; Mao, Mao; Zhou, Wenxing; Lei, Qi; Li, Xiao; Li, Dichen; Chua, Chee-Kai; Zhao, Xin
2018-01-22
Additive manufacturing (AM) has drawn tremendous attention in various fields. In recent years, great efforts have been made to develop novel additive manufacturing processes such as micro-/nano-scale 3D printing, bioprinting, and 4D printing for the fabrication of complex 3D structures with high resolution, living components, and multimaterials. The development of advanced functional materials is important for the implementation of these novel additive manufacturing processes. Here, a state-of-the-art review on advanced material strategies for novel additive manufacturing processes is provided, mainly including conductive materials, biomaterials, and smart materials. The advantages, limitations, and future perspectives of these materials for additive manufacturing are discussed. It is believed that the innovations of material strategies in parallel with the evolution of additive manufacturing processes will provide numerous possibilities for the fabrication of complex smart constructs with multiple functions, which will significantly widen the application fields of next-generation additive manufacturing.
Electricity Generation in Microbial Fuel Cell (MFC) by Bacterium Isolated from Rice Paddy Field Soil
NASA Astrophysics Data System (ADS)
Fakhirruddin, Fakhriah; Amid, Azura; Salim, Wan Wardatul Amani Wan; Suhaida Azmi, Azlin
2018-03-01
Microbial fuel cell (MFC) is an alternative approach in generating renewable energy by utilising bacteria that will oxidize organic or inorganic substrates, producing electrons yielded as electrical energy. Different species of exoelectrogenic bacteria capable of generating significant amount of electricity in MFC has been identified, using various organic compounds for fuel. Soil sample taken from rice paddy field is proven to contain exoelectrogenic bacteria, thus electricity generation using mixed culture originally found in the soil, and pure culture isolated from the soil is studied. This research will isolate the exoelectrogenic bacterial species in the rice paddy field soil responsible for energy generation. Growth of bacteria isolated from the MFC is observed by measuring the optical density (OD), cell density weight (CDW) and viable cell count. Mixed bacterial species found in paddy field soil generates maximum power of 77.62 μW and 0.70 mA of current. In addition, the research also shows that the pure bacterium in rice paddy field soil can produce maximum power and current at 51.32 μW and 0.28 mA respectively.
NASA Astrophysics Data System (ADS)
Bao, Qian-Qian; Zhang, Yan; Cui, Cui-Li; Meng, Shao-Ying; Fang, You-Wei; Tian, Xue-Dong
2018-04-01
We propose an efficient scheme for generating and controlling beating stationary light pulses in a five-level atomic sample driven into electromagnetically induced transparency condition. This scheme relies on an asymmetrical procedure of light storage and retrieval tuned by two counter-propagating control fields where an additional coupling field, such as the microwave field, is introduced in the retrieval stage. A quantum probe field, incident upon such an atomic sample, is first transformed into spin coherence excitation of the atoms and then retrieved as beating stationary light pulses exhibiting a series of maxima and minima in intensity due to the alternative constructive and destructive interference. It is convenient to control the beating stationary light pulses just by manipulating the intensity and detuning of the additional microwave field. This interesting phenomenon involves in fact the coherent manipulation of dark-state polaritons and could be explored to achieve the efficient temporal splitting of stationary light pulses and accurate measurement of the microwave intensity.
Analysis of No-load Iron Losses of Turbine Generators by 3D Magnetic Field Analysis
NASA Astrophysics Data System (ADS)
Nakahara, Akihito; Mogi, Hisashi; Takahashi, Kazuhiko; Ide, Kazumasa; Kaneda, Junya; Hattori, Ken'Ichi; Watanabe, Takashi; Kaido, Chikara; Minematsu, Eisuke; Hanzawa, Kazufumi
This paper focuses on no-load iron losses of turbine generators. To calculate iron losses of turbine generators a program was developed. In the program, core loss curves of materials used for stator core were reproduced precisely by using tables of loss coefficients. Accuracy of calculation by this method was confirmed by comparing calculated values with measured in a model stator core. The iron loss of a turbine generator estimated with considering three-dimensional distribution of magnetic fluxes. And additional losses included in measured iron loss was evaluated with three-dimensional magnetic field analysis.
Z a Fast Pulsed Power Generator for Ultra-High Magnetic Field Generation
NASA Astrophysics Data System (ADS)
Spielman, R. B.; Stygar, W. A.; Struve, K. W.; Asay, J. R.; Hall, C. A.; Bernard, M. A.; Bailey, J. E.; McDaniel, D. H.
2004-11-01
Advances in fast, pulsed-power technologies have resulted in the development of very high current drivers that have current rise times ~100 ns. The largest such pulsed power driver today is the new Z accelerator located at Sandia National Laboratories in Albuquerque, New Mexico. Z can deliver more than 20 MA with a time-to-peak of 105 ns to low inductance (~1 nH) loads. Such large drivers are capable of directly generating magnetic fields approaching 3 kT in small, 1 cm3 volumes. In addition to direct field generation, Z can be used to compress an applied, axial seed field with a plasma. Flux compression schemes are not new and are, in fact, the basis of all explosive flux-compression generators, but we propose the use of plasma armatures rather than solid, conducting armatures. We present experimental results from the Z accelerator in which magnetic fields of ~2 kT are generated and measured with several diagnostics. Issues such as energy loss in solid conductors and dynamic response of current-carrying conductors to very large magnetic fields are reviewed in context with Z experiments. We describe planned flux-compression experiments that are expected to create the highest-magnitude uniform-field volumes yet attained in the laboratory.
Lin, Munan; Liu, Ming; Zhu, Guanghui; Wang, Yanpeng; Shi, Peiyun; Sun, Xuan
2017-08-01
A high voltage pulse generator based on a silicon-controlled rectifier has been designed and implemented for a field reversed configuration experiment. A critical damping circuit is used in the generator to produce the desired pulse waveform. Depending on the load, the rise time of the output trigger signal can be less than 1 μs, and the peak amplitudes of trigger voltage and current are up to 8 kV and 85 A in a single output. The output voltage can be easily adjusted by changing the voltage on a capacitor of the generator. In addition, the generator integrates an electrically floating heater circuit so it is capable of triggering either pseudosparks (TDI-type hydrogen thyratron) or ignitrons. Details of the circuits and their implementation are described in the paper. The trigger generator has successfully controlled the discharging sequence of the pulsed power supply for a field reversed configuration experiment.
NASA Astrophysics Data System (ADS)
Lin, Munan; Liu, Ming; Zhu, Guanghui; Wang, Yanpeng; Shi, Peiyun; Sun, Xuan
2017-08-01
A high voltage pulse generator based on a silicon-controlled rectifier has been designed and implemented for a field reversed configuration experiment. A critical damping circuit is used in the generator to produce the desired pulse waveform. Depending on the load, the rise time of the output trigger signal can be less than 1 μs, and the peak amplitudes of trigger voltage and current are up to 8 kV and 85 A in a single output. The output voltage can be easily adjusted by changing the voltage on a capacitor of the generator. In addition, the generator integrates an electrically floating heater circuit so it is capable of triggering either pseudosparks (TDI-type hydrogen thyratron) or ignitrons. Details of the circuits and their implementation are described in the paper. The trigger generator has successfully controlled the discharging sequence of the pulsed power supply for a field reversed configuration experiment.
Impulse Magnetic Fields Generated by Electrostatic Discharges in Protoplanetary Nebulae
NASA Technical Reports Server (NTRS)
Tunyi, I.; Guba, P.; Roth, L. E.; Timko, M.
2002-01-01
We examine quantitative aspects associated with the hypothesis of nebular lightnings as a source of impulse magnetic fields. Our findings support our previous accretion model in which a presence of impulse magnetic fields was of a key necessity. Additional information is contained in the original extended abstract.
Generation of strong pulsed magnetic fields using a compact, short pulse generator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yanuka, D.; Efimov, S.; Nitishinskiy, M.
2016-04-14
The generation of strong magnetic fields (∼50 T) using single- or multi-turn coils immersed in water was studied. A pulse generator with stored energy of ∼3.6 kJ, discharge current amplitude of ∼220 kA, and rise time of ∼1.5 μs was used in these experiments. Using the advantage of water that it has a large Verdet constant, the magnetic field was measured using the non-disturbing method of Faraday rotation of a polarized collimated laser beam. This approach does not require the use of magnetic probes, which are sensitive to electromagnetic noise and damaged in each shot. It also avoids the possible formation of plasma bymore » either a flashover along the conductor or gas breakdown inside the coil caused by an induced electric field. In addition, it was shown that this approach can be used successfully to investigate the interesting phenomenon of magnetic field enhanced diffusion into a conductor.« less
Generation of strong pulsed magnetic fields using a compact, short pulse generator
NASA Astrophysics Data System (ADS)
Yanuka, D.; Efimov, S.; Nitishinskiy, M.; Rososhek, A.; Krasik, Ya. E.
2016-04-01
The generation of strong magnetic fields (˜50 T) using single- or multi-turn coils immersed in water was studied. A pulse generator with stored energy of ˜3.6 kJ, discharge current amplitude of ˜220 kA, and rise time of ˜1.5 μs was used in these experiments. Using the advantage of water that it has a large Verdet constant, the magnetic field was measured using the non-disturbing method of Faraday rotation of a polarized collimated laser beam. This approach does not require the use of magnetic probes, which are sensitive to electromagnetic noise and damaged in each shot. It also avoids the possible formation of plasma by either a flashover along the conductor or gas breakdown inside the coil caused by an induced electric field. In addition, it was shown that this approach can be used successfully to investigate the interesting phenomenon of magnetic field enhanced diffusion into a conductor.
Ultrashort polarization-tailored bichromatic fields
NASA Astrophysics Data System (ADS)
Kerbstadt, Stefanie; Englert, Lars; Bayer, Tim; Wollenhaupt, Matthias
2017-06-01
We present a novel concept for the generation of ultrashort polarization-shaped bichromatic laser fields. The scheme utilizes a 4f polarization pulse shaper based on a liquid crystal spatial light modulator for independent amplitude and phase modulation of femtosecond laser pulses. By choice of either a conventional (p) or a composite (p-s) polarizer in the Fourier plane, the shaper setup enables the generation of parallel linearly and orthogonal linearly polarized bichromatic fields. Additional use of a ? wave plate behind the setup yields co-rotating and counter-rotating circularly polarized bichromatic fields. The scheme allows to independently control the spectral amplitude, phase and polarization profile of the output fields, offering an enormous versatility of bichromatic waveforms.
Third-harmonic generation of a laser-driven quantum dot with impurity
NASA Astrophysics Data System (ADS)
Sakiroglu, S.; Kilic, D. Gul; Yesilgul, U.; Ungan, F.; Kasapoglu, E.; Sari, H.; Sokmen, I.
2018-06-01
The third-harmonic generation (THG) coefficient for a laser-driven quantum dot with an on-center Gaussian impurity under static magnetic field is theoretically investigated. Laser field effect is treated within the high-frequency Floquet approach and the analytical expression of the THG coefficient is deduced from the compact density-matrix approach. The numerical results demonstrate that the application of intense laser field causes substantial changes on the behavior of THG. In addition the position and magnitude of the resonant peak of THG coefficient is significantly affected by the magnetic field, quantum dot size and the characteristic parameters of the impurity potential.
Vector optical fields with polarization distributions similar to electric and magnetic field lines.
Pan, Yue; Li, Si-Min; Mao, Lei; Kong, Ling-Jun; Li, Yongnan; Tu, Chenghou; Wang, Pei; Wang, Hui-Tian
2013-07-01
We present, design and generate a new kind of vector optical fields with linear polarization distributions modeling to electric and magnetic field lines. The geometric configurations of "electric charges" and "magnetic charges" can engineer the spatial structure and symmetry of polarizations of vector optical field, providing additional degrees of freedom assisting in controlling the field symmetry at the focus and allowing engineering of the field distribution at the focus to the specific applications.
Passive bottom reflection-loss estimation using ship noise and a vertical line array.
Muzi, Lanfranco; Siderius, Martin; Verlinden, Christopher M
2017-06-01
An existing technique for passive bottom-loss estimation from natural marine surface noise (generated by waves and wind) is adapted to use noise generated by ships. The original approach-based on beamforming of the noise field recorded by a vertical line array of hydrophones-is retained; however, additional processing is needed in order for the field generated by a passing ship to show features that are similar to those of the natural surface-noise field. A necessary requisite is that the ship position, relative to the array, varies over as wide a range of steering angles as possible, ideally passing directly over the array to ensure coverage of the steepest angles. The methodology is illustrated through simulation and applied to data from a field experiment conducted offshore of San Diego, CA in 2009.
Radio frequency discharge with control of plasma potential distribution.
Dudnikov, Vadim; Dudnikov, A
2012-02-01
A RF discharge plasma generator with additional electrodes for independent control of plasma potential distribution is proposed. With positive biasing of this ring electrode relative end flanges and longitudinal magnetic field a confinement of fast electrons in the discharge will be improved for reliable triggering of pulsed RF discharge at low gas density and rate of ion generation will be enhanced. In the proposed discharge combination, the electron energy is enhanced by RF field and the fast electron confinement is improved by enhanced positive plasma potential which improves the efficiency of plasma generation significantly. This combination creates a synergetic effect with a significantly improving the plasma generation performance at low gas density. The discharge parameters can be optimized for enhance plasma generation with acceptable electrode sputtering.
CHARMM additive and polarizable force fields for biophysics and computer-aided drug design
Vanommeslaeghe, K.
2014-01-01
Background Molecular Mechanics (MM) is the method of choice for computational studies of biomolecular systems owing to its modest computational cost, which makes it possible to routinely perform molecular dynamics (MD) simulations on chemical systems of biophysical and biomedical relevance. Scope of Review As one of the main factors limiting the accuracy of MD results is the empirical force field used, the present paper offers a review of recent developments in the CHARMM additive force field, one of the most popular bimolecular force fields. Additionally, we present a detailed discussion of the CHARMM Drude polarizable force field, anticipating a growth in the importance and utilization of polarizable force fields in the near future. Throughout the discussion emphasis is placed on the force fields’ parametrization philosophy and methodology. Major Conclusions Recent improvements in the CHARMM additive force field are mostly related to newly found weaknesses in the previous generation of additive force fields. Beyond the additive approximation is the newly available CHARMM Drude polarizable force field, which allows for MD simulations of up to 1 microsecond on proteins, DNA, lipids and carbohydrates. General Significance Addressing the limitations ensures the reliability of the new CHARMM36 additive force field for the types of calculations that are presently coming into routine computational reach while the availability of the Drude polarizable force fields offers a model that is an inherently more accurate model of the underlying physical forces driving macromolecular structures and dynamics. PMID:25149274
Flexible helical-axis stellarator
Harris, Jeffrey H.; Hender, Timothy C.; Carreras, Benjamin A.; Cantrell, Jack L.; Morris, Robert N.
1988-01-01
An 1=1 helical winding which spirals about a conventional planar, circular central conductor of a helical-axis stellarator adds a significant degree of flexibility by making it possible to control the rotational transform profile and shear of the magnetic fields confining the plasma in a helical-axis stellarator. The toroidal central conductor links a plurality of toroidal field coils which are separately disposed to follow a helical path around the central conductor in phase with the helical path of the 1=1 winding. This coil configuration produces bean-shaped magnetic flux surfaces which rotate around the central circular conductor in the same manner as the toroidal field generating coils. The additional 1=1 winding provides flexible control of the magnetic field generated by the central conductor to prevent the formation of low-order resonances in the rotational transform profile which can produce break-up of the equilibrium magnetic surfaces. Further, this additional winding can deepen the magnetic well which together with the flexible control provides increased stability.
Gu, Bing; Xu, Danfeng; Rui, Guanghao; Lian, Meng; Cui, Yiping; Zhan, Qiwen
2015-09-20
Generation of vectorial optical fields with arbitrary polarization distribution is of great interest in areas where exotic optical fields are desired. In this work, we experimentally demonstrate the versatile generation of linearly polarized vector fields, elliptically polarized vector fields, and circularly polarized vortex beams through introducing attenuators in a common-path interferometer. By means of Richards-Wolf vectorial diffraction method, the characteristics of the highly focused elliptically polarized vector fields are studied. The optical force and torque on a dielectric Rayleigh particle produced by these tightly focused vector fields are calculated and exploited for the stable trapping of dielectric Rayleigh particles. It is shown that the additional degree of freedom provided by the elliptically polarized vector field allows one to control the spatial structure of polarization, to engineer the focusing field, and to tailor the optical force and torque on a dielectric Rayleigh particle.
Tsatrafyllis, N; Kominis, I K; Gonoskov, I A; Tzallas, P
2017-04-27
High-order harmonics in the extreme-ultraviolet spectral range, resulting from the strong-field laser-atom interaction, have been used in a broad range of fascinating applications in all states of matter. In the majority of these studies the harmonic generation process is described using semi-classical theories which treat the electromagnetic field of the driving laser pulse classically without taking into account its quantum nature. In addition, for the measurement of the generated harmonics, all the experiments require diagnostics in the extreme-ultraviolet spectral region. Here by treating the driving laser field quantum mechanically we reveal the quantum-optical nature of the high-order harmonic generation process by measuring the photon number distribution of the infrared light exiting the harmonic generation medium. It is found that the high-order harmonics are imprinted in the photon number distribution of the infrared light and can be recorded without the need of a spectrometer in the extreme-ultraviolet.
Tsatrafyllis, N.; Kominis, I. K.; Gonoskov, I. A.; Tzallas, P.
2017-01-01
High-order harmonics in the extreme-ultraviolet spectral range, resulting from the strong-field laser-atom interaction, have been used in a broad range of fascinating applications in all states of matter. In the majority of these studies the harmonic generation process is described using semi-classical theories which treat the electromagnetic field of the driving laser pulse classically without taking into account its quantum nature. In addition, for the measurement of the generated harmonics, all the experiments require diagnostics in the extreme-ultraviolet spectral region. Here by treating the driving laser field quantum mechanically we reveal the quantum-optical nature of the high-order harmonic generation process by measuring the photon number distribution of the infrared light exiting the harmonic generation medium. It is found that the high-order harmonics are imprinted in the photon number distribution of the infrared light and can be recorded without the need of a spectrometer in the extreme-ultraviolet. PMID:28447616
Electro-optically Induced and Manipulated Terahertz Waves from Fe-doped InGaAs Surfaces
NASA Astrophysics Data System (ADS)
Hatem, O.
2018-03-01
We demonstrate the presence of dual simultaneous nonlinear mechanisms: field-induced optical rectification (FIOR) and field-induced surge current (FISC) for the generation of terahertz (THz) pulses from p-type and n-type Fe:In0.53Ga0.47As surfaces upon excitation with femtosecond laser pulses centered at 800 nm wavelength. Experimental investigations of the dependence of the generated THz waves on the incident angular optical polarization, optical irradiance, and the direction and magnitude of applied electric DC fields give confirming results to the proposed THz generation mechanisms. Applying external DC electric fields in the plane of the incident optical field shows efficient capability in manipulating the direction and phase of the generated THz waves, and controlling the refractive index of Fe:In0.53Ga0.47As material in the THz range, in addition to enhancing the emitted THz power up to two orders of magnitude. The fast and reliable response of Fe:In0.53Ga0.47As to the changes in the direction and magnitude of the optical and electrical fields suggests its use in amplitude and phase modulators, and ultrafast optoelectronic systems.
CHARMM additive and polarizable force fields for biophysics and computer-aided drug design.
Vanommeslaeghe, K; MacKerell, A D
2015-05-01
Molecular Mechanics (MM) is the method of choice for computational studies of biomolecular systems owing to its modest computational cost, which makes it possible to routinely perform molecular dynamics (MD) simulations on chemical systems of biophysical and biomedical relevance. As one of the main factors limiting the accuracy of MD results is the empirical force field used, the present paper offers a review of recent developments in the CHARMM additive force field, one of the most popular biomolecular force fields. Additionally, we present a detailed discussion of the CHARMM Drude polarizable force field, anticipating a growth in the importance and utilization of polarizable force fields in the near future. Throughout the discussion emphasis is placed on the force fields' parametrization philosophy and methodology. Recent improvements in the CHARMM additive force field are mostly related to newly found weaknesses in the previous generation of additive force fields. Beyond the additive approximation is the newly available CHARMM Drude polarizable force field, which allows for MD simulations of up to 1μs on proteins, DNA, lipids and carbohydrates. Addressing the limitations ensures the reliability of the new CHARMM36 additive force field for the types of calculations that are presently coming into routine computational reach while the availability of the Drude polarizable force fields offers an inherently more accurate model of the underlying physical forces driving macromolecular structures and dynamics. This article is part of a Special Issue entitled "Recent developments of molecular dynamics". Copyright © 2014 Elsevier B.V. All rights reserved.
Hall devices improve electric motor efficiency
NASA Technical Reports Server (NTRS)
Haeussermann, W.
1979-01-01
Efficiency of electric motors and generators is reduced by radial magnetic forces created by symmetric fields within device. Forces are sensed and counteracted by Hall devices on excitation or control windings. Hall generators directly measure and provide compensating control of anu asymmetry, eliminating additional measurements needed for calibration feedback control loop.
Ritter, Daniel J.; Vinson, David S.; Barnhart, Elliott P.; Akob, Denise M.; Fields, Matthew W.; Cunningham, Al B.; Orem, William H.; McIntosh, Jennifer C.
2015-01-01
Coalbed methane (CBM) makes up a significant portion of the world’s natural gas resources. The discovery that approximately 20% of natural gas is microbial in origin has led to interest in microbially enhanced CBM (MECoM), which involves stimulating microorganisms to produce additional CBM from existing production wells. This paper reviews current laboratory and field research on understanding processes and reservoir conditions which are essential for microbial CBM generation, the progress of efforts to stimulate microbial methane generation in coal beds, and key remaining knowledge gaps. Research has been primarily focused on identifying microbial communities present in areas of CBM generation and attempting to determine their function, in-situ reservoir conditions that are most favorable for microbial CBM generation, and geochemical indicators of metabolic pathways of methanogenesis (i.e., acetoclastic or hydrogenotrophic methanogenesis). Meanwhile, researchers at universities, government agencies, and companies have focused on four primary MECoM strategies: 1) microbial stimulation (i.e., addition of nutrients to stimulate native microbes); 2) microbial augmentation (i.e., addition of microbes not native to or abundant in the reservoir of interest); 3) physically increasing microbial access to coal and distribution of amendments; and 4) chemically increasing the bioavailability of coal organics. Most companies interested in MECoM have pursued microbial stimulation: Luca Technologies, Inc., successfully completed a pilot scale field test of their stimulation strategy, while two others, Ciris Energy and Next Fuel, Inc., have undertaken smaller scale field tests. Several key knowledge gaps remain that need to be addressed before MECoM strategies can be implemented commercially. Little is known about the bacterial community responsible for coal biodegradation and how these microorganisms may be stimulated to enhance microbial methanogenesis. In addition, research is needed to understand what fraction of coal is available for biodegradation, and methods need to be developed to determine the extent of in-situ coal biodegradation by MECoM processes for monitoring changes to coal quality. Questions also remain about how well field-scale pilot tests will scale to commercial production, how often amendments will need to be added to maintain new methane generation, and how well MECoM strategies transfer between coal basins with different formation water geochemistries and coal ranks. Addressing these knowledge gaps will be key in determining the feasibility and commercial viability of MECoM technology.
Generation of three wide frequency bands within a single white-light cavity
NASA Astrophysics Data System (ADS)
Othman, Anas; Yevick, David; Al-Amri, M.
2018-04-01
We theoretically investigate the double-Λ scheme inside a Fabry-Pérot cavity employing a weak probe beam and two strong driving fields together with an incoherent pumping mechanism. By generating analytical expressions for the susceptibility and applying the white-light cavity conditions, we devise a procedure that reaches the white-light condition at a smaller gas density than the values typically cited in similar previous studies. Further, when the intensities of the two driving fields are equal, a single giant white band is obtained, while for unequal driving fields three white bands can be present in the cavity. Two additional techniques are then advanced for generating three white bands and a method is described for displacing the center frequency of the bands. Finally, some potential applications are suggested.
Some Growth Points in African Child Development Research
ERIC Educational Resources Information Center
Serpell, Robert; Marfo, Kofi
2014-01-01
We reflect on ways in which research presented in earlier chapters responds to challenges of generating an African child development field and identify additional issues calling for the field's attention. The chapters collectively display a variety of African contexts and reflexive evidence of the authors' African cultural roots. Connecting…
African-American History: Origins, Development, and Current State of the Field.
ERIC Educational Resources Information Center
Trotter, Joe W.
1993-01-01
Reviews the development of African-American history as a scholarly field within U.S. history. Presents four generations of black historians who have contributed to the development and current status of African-American history. Concludes with a discussion of needed additional research and a 22-item bibliography. (CFR)
NASA Astrophysics Data System (ADS)
Takeda, Shun; Kumagai, Hiroshi
2018-02-01
Hyperpolarized (HP) noble gas has attracted attention in NMR / MRI. In an ultra-low magnetic field, the effectiveness of signal enhancement by HP noble gas should be required because reduction of the signal intensity is serious. One method of generating HP noble gas is spin exchange optical pumping which uses selective excitation of electrons of alkali metal vapor and spin transfer to nuclear spin by collision to noble gas. Although SEOP does not require extreme cooling or strong magnetic field, generally it required large-scale equipment including high power light source to generate HP noble gas with high efficiency. In this study, we construct a simply generation system of HP xenon-129 by SEOP with an ultralow magnetic field (up to 1 mT) and small-scale light source (about 1W). In addition, we measure in situ NMR signal at the same time, and then examine efficient conditions for SEOP in ultra-low magnetic fields.
NASA Astrophysics Data System (ADS)
Cho, Nahye; Kang, Youngok
2018-05-01
A numerous log data in addition to user input data are being generated as mobile and web users continue to increase recently, and the studies in order to explore the patterns and meanings of various movement activities by making use of these log data are also rising rapidly. On the other hand, in the field of education, people have recognized the importance of field trip as the creative education is highlighted. Also, the examples which utilize the mobile devices in the field trip in accordance to the development of information technology are growing. In this study, we try to explore the patterns of student's activity by visualizing the log data generated from high school students' field trip with mobile device.
Method and apparatus to trigger superconductors in current limiting devices
Yuan, Xing; Hazelton, Drew Willard; Walker, Michael Stephen
2004-10-26
A method and apparatus for magnetically triggering a superconductor in a superconducting fault current limiter to transition from a superconducting state to a resistive state. The triggering is achieved by employing current-carrying trigger coil or foil on either or both the inner diameter and outer diameter of a superconductor. The current-carrying coil or foil generates a magnetic field with sufficient strength and the superconductor is disposed within essentially uniform magnetic field region. For superconductor in a tubular-configured form, an additional magnetic field can be generated by placing current-carrying wire or foil inside the tube and along the center axial line.
Chiral magnetic effect in condensed matter systems
Li, Qiang; Kharzeev, Dmitri E.
2016-12-01
The chiral magnetic effect is the generation of electrical current induced by chirality imbalance in the presence of magnetic field. It is a macroscopic manifestation of the quantum anomaly in relativistic field theory of chiral fermions. In the quark-gluon plasma, the axial anomaly induces topological charge changing transition that results in the generation of electrical current along the magnetic field. In condensed matter systems, the chiral magnetic effect was first predicted in the gapless semiconductors with tow energy bands having pointlike degeneracies. In addition, thirty years later after this prediction, the chiral magnetic effect was finally observed in the 3Dmore » Dirac/Weyl semimetals.« less
Vector optical fields with bipolar symmetry of linear polarization.
Pan, Yue; Li, Yongnan; Li, Si-Min; Ren, Zhi-Cheng; Si, Yu; Tu, Chenghou; Wang, Hui-Tian
2013-09-15
We focus on a new kind of vector optical field with bipolar symmetry of linear polarization instead of cylindrical and elliptical symmetries, enriching members of family of vector optical fields. We design theoretically and generate experimentally the demanded vector optical fields and then explore some novel tightly focusing properties. The geometric configurations of states of polarization provide additional degrees of freedom assisting in engineering the field distribution at the focus to the specific applications such as lithography, optical trapping, and material processing.
Active control of turbomachine discrete tones
NASA Technical Reports Server (NTRS)
Fleeter, Sanford
1994-01-01
This paper was directed at active control of discrete frequency noise generated by subsonic blade rows through cancellation of the blade row interaction generated propagating acoustic waves. First discrete frequency noise generated by a rotor and stator in a duct was analyzed to determine the propagating acoustic pressure waves. Then a mathematical model was developed to analyze and predict the active control of discrete frequency noise generated by subsonic blade rows through cancellation of the propagating acoustic waves, accomplished by utilizing oscillating airfoil surfaces to generate additional control propagating pressure waves. These control waves interact with the propagating acoustic waves, thereby, in principle, canceling the acoustic waves and thus, the far field discrete frequency tones. This model was then applied to a fan exit guide vane to investigate active airfoil surface techniques for control of the propagating acoustic waves, and thus the far field discrete frequency tones, generated by blade row interactions.
Active control of turbomachine discrete tones
NASA Astrophysics Data System (ADS)
Fleeter, Sanford
This paper was directed at active control of discrete frequency noise generated by subsonic blade rows through cancellation of the blade row interaction generated propagating acoustic waves. First discrete frequency noise generated by a rotor and stator in a duct was analyzed to determine the propagating acoustic pressure waves. Then a mathematical model was developed to analyze and predict the active control of discrete frequency noise generated by subsonic blade rows through cancellation of the propagating acoustic waves, accomplished by utilizing oscillating airfoil surfaces to generate additional control propagating pressure waves. These control waves interact with the propagating acoustic waves, thereby, in principle, canceling the acoustic waves and thus, the far field discrete frequency tones. This model was then applied to a fan exit guide vane to investigate active airfoil surface techniques for control of the propagating acoustic waves, and thus the far field discrete frequency tones, generated by blade row interactions.
Biological and Health Effects of Electromagnetic (Nonionizing) Radiation. LC Science Tracer Bullet.
ERIC Educational Resources Information Center
Halasz, Hisako, Comp.
The environment we live in today is filled with human-created electromagnetic fields generated by a variety of sources, including radio and television transmitters, power lines, and visual display terminals. (In addition, there exists a natural background of electromagnetic fields.) The term "electromagnetic pollution" is often used to…
R1 dispersion contrast at high field with fast field-cycling MRI
NASA Astrophysics Data System (ADS)
Bödenler, Markus; Basini, Martina; Casula, Maria Francesca; Umut, Evrim; Gösweiner, Christian; Petrovic, Andreas; Kruk, Danuta; Scharfetter, Hermann
2018-05-01
Contrast agents with a strong R1 dispersion have been shown to be effective in generating target-specific contrast in MRI. The utilization of this R1 field dependence requires the adaptation of an MRI scanner for fast field-cycling (FFC). Here, we present the first implementation and validation of FFC-MRI at a clinical field strength of 3 T. A field-cycling range of ±100 mT around the nominal B0 field was realized by inserting an additional insert coil into an otherwise conventional MRI system. System validation was successfully performed with selected iron oxide magnetic nanoparticles and comparison to FFC-NMR relaxometry measurements. Furthermore, we show proof-of-principle R1 dispersion imaging and demonstrate the capability of generating R1 dispersion contrast at high field with suppressed background signal. With the presented ready-to-use hardware setup it is possible to investigate MRI contrast agents with a strong R1 dispersion at a field strength of 3 T.
NASA Astrophysics Data System (ADS)
Matía-Hernando, P.; Witting, T.; Walke, D. J.; Marangos, J. P.; Tisch, J. W. G.
2018-03-01
High-harmonic radiation in the extreme ultraviolet and soft X-ray spectral regions can be used to generate attosecond pulses and to obtain structural and dynamic information in atoms and molecules. However, these sources typically suffer from a limited photon flux. An additional issue at lower photon energies is the appearance of satellites in the time domain, stemming from insufficient temporal gating and the spectral filtering required for the isolation of attosecond pulses. Such satellites limit the temporal resolution. The use of multi-colour driving fields has been proven to enhance the harmonic yield and provide additional control, using the relative delays between the different spectral components for waveform shaping. We describe here a two-colour high-harmonic source that combines a few-cycle near-infrared pulse with a multi-cycle second harmonic pulse, with both relative phase and carrier-envelope phase stabilization. We observe strong modulations in the harmonic flux, and present simulations and experimental results supporting the suppression of satellites in sub-femtosecond pulses at 20 eV compared to the single colour field case, an important requirement for attosecond pump-probe measurements.
Bennett, Kochise; Mukamel, Shaul
2014-01-28
The semi-classical theory of radiation-matter coupling misses local-field effects that may alter the pulse time-ordering and cascading that leads to the generation of new signals. These are then introduced macroscopically by solving Maxwell's equations. This procedure is convenient and intuitive but ad hoc. We show that both effects emerge naturally by including coupling to quantum modes of the radiation field that are initially in the vacuum state to second order. This approach is systematic and suggests a more general class of corrections that only arise in a QED framework. In the semi-classical theory, which only includes classical field modes, the susceptibility of a collection of N non-interacting molecules is additive and scales as N. Second-order coupling to a vacuum mode generates an effective retarded interaction that leads to cascading and local field effects both of which scale as N(2).
Dust emissions of organic soils observed in the field and laboratory
NASA Astrophysics Data System (ADS)
Zobeck, T. M.; Baddock, M. C.; Guo, Z.; Van Pelt, R.; Acosta-Martinez, V.; Tatarko, J.
2011-12-01
According to the U.S. Soil Taxonomy, Histosols (also known as organic soils) are soils that are dominated by organic matter (>20% organic matter) in half or more of the upper 80 cm. These soils, when intensively cropped, are subject to wind erosion resulting in loss in crop productivity and degradation of soil, air, and water quality. Estimating wind erosion on Histosols has been determined by USDA-Natural Resources Conservation Service as a critical need for the Wind Erosion Prediction System (WEPS) model. WEPS has been developed to simulate wind erosion on agricultural land in the US, including soils with organic soil material surfaces. However, additional field measurements are needed to calibrate and validate estimates of wind erosion of organic soils using WEPS. In this study, we used a field portable wind tunnel to generate suspended sediment (dust) from agricultural surfaces for soils with a range of organic contents. The soils were tilled and rolled to provide a consolidated, friable surface. Dust emissions and saltation were measured using an isokinetic vertical slot sampler aspirated by a regulated suction source. Suspended dust was collected on filters of the dust slot sampler and sampled at a frequency of once every six seconds in the suction duct using a GRIMM optical particle size analyzer. In addition, bulk samples of airborne dust were collected using a sampler specifically designed to collect larger dust samples. The larger dust samples were analyzed for physical, chemical, and microbiological properties. In addition, bulk samples of the soils were tested in a laboratory wind tunnel similar to the field wind tunnel and a laboratory dust generator to compare field and laboratory results. For the field wind tunnel study, there were no differences between the highest and lowest organic content soils in terms of their steady state emission rate under an added abrader flux, but the soil with the mid-range of organic matter had less emission by one third. In the laboratory wind tunnel, samples with the same ratio of erodible to non-erodible aggregates as the field soils were abraded and dust emissions were observed with the same sampling system as used in the field wind tunnel. In the dust generator, 5 gm samples < 8 mm diameter of each organic soil were rotated in a 50 cm long tube and the dust generated was observed with the GRIMM during a 20 minute run. Comparisons of the field dust emission rates with the laboratory results will be presented.
Energy bounds in designer gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amsel, Aaron J.; Marolf, Donald
We consider asymptotically anti-de Sitter gravity coupled to tachyonic scalar fields with mass at or slightly above the Breitenlohner-Freedman bound in d{>=}4 spacetime dimensions. The boundary conditions in these ''designer gravity'' theories are defined in terms of an arbitrary function W. We give a general argument that the Hamiltonian generators of asymptotic symmetries for such systems will be finite, and proceed to construct these generators using the covariant phase space method. The direct calculation confirms that the generators are finite and shows that they take the form of the pure gravity result plus additional contributions from the scalar fields. Bymore » comparing the generators to the spinor charge, we derive a lower bound on the gravitational energy when W has a global minimum and the Breitenlohner-Freedman bound is not saturated.« less
A water tunnel flow visualization study of the F-15
NASA Technical Reports Server (NTRS)
Lorincz, D. J.
1978-01-01
Water tunnel studies were performed to qualitatively define the flow field of the F-15 aircraft. Two lengthened forebodies, one with a modified cross-sectional shape, were tested in addition to the basic forebody. Particular emphasis was placed on defining vortex flows generated at high angles of attack. The flow visualization tests were conducted in the Northrop diagnostic water tunnel using a 1/48-scale model of the F-15. Flow visualization pictures were obtained over an angle-of-attack range to 55 deg and sideslip angles up to 10 deg. The basic aircraft configuration was investigated in detail to determine the vortex flow field development, vortex path, and vortex breakdown characteristics as a function of angle of attack and sideslip. Additional tests showed that the wing upper surface vortex flow fields were sensitive to variations in inlet mass flow ratio and inlet cowl deflection angle. Asymmetries in the vortex systems generated by each of the three forebodies were observed in the water tunnel at zero sideslip and high angles of attack.
NASA Technical Reports Server (NTRS)
Paffenholz, Joseph; Fox, Jon W.; Gu, Xiaobai; Jewett, Greg S.; Datta, Subhendu K.
1990-01-01
Scattering of Rayleigh-Lamb waves by a normal surface-breaking crack in a plate has been studied both theoretically and experimentally. The two-dimensionality of the far field, generated by a ball impact source, is exploited to characterize the source function using a direct integration technique. The scattering of waves generated by this impact source by the crack is subsequently solved by employing a Green's function integral expression for the scattered field coupled with a finite element representation of the near field. It is shown that theoretical results of plate response, both in frequency and time, are similar to those obtained experimentally. Additionally, implication for practical applications are discussed.
Xu, Danfeng; Gu, Bing; Rui, Guanghao; Zhan, Qiwen; Cui, Yiping
2016-02-22
We present an arbitrary vector field with hybrid polarization based on the combination of a pair of orthogonal elliptically polarized base vectors on the Poincaré sphere. It is shown that the created vector field is only dependent on the latitude angle 2χ but is independent on the longitude angle 2ψ on the Poincaré sphere. By adjusting the latitude angle 2χ, which is related to two identical waveplates in a common path interferometric arrangement, one could obtain arbitrary type of vector fields. Experimentally, we demonstrate the generation of such kind of vector fields and confirm the distribution of state of polarization by the measurement of Stokes parameters. Besides, we investigate the tight focusing properties of these vector fields. It is found that the additional degree of freedom 2χ provided by arbitrary vector field with hybrid polarization allows one to control the spatial structure of polarization and to engineer the focusing field.
Description and test results of a variable speed, constant frequency generating system
NASA Astrophysics Data System (ADS)
Brady, F. J.
1985-12-01
The variable-speed, constant frequency generating system developed for the Mod-0 wind turbine is presented. This report describes the system as it existed at the conclusion of the project. The cycloconverter control circuit is described including the addition of field-oriented control. The laboratory test and actual wind turbine test results are included.
[Trends on generation and reproduction of knowledge about economic evaluation and health].
Arredondo, A; Parada, I
2001-08-01
This paper identifies the trends and recent progress in the generation and reproduction of knowledge on health economic evaluation. Analysis is organized along nine public health action fields, namely: health determinants and predictors, economic value of health, healthcare demand, healthcare supply, microeconomic evaluation of healthcare, healthcare market balance, evaluation of policy instruments, general evaluation of the health system, and healthcare planning, regulation and supervision. Each action field is defined to place the reader in the proper setting and level of analysis. In addition, thematic research topics developed in each action field are proposed and discussed. The generation and reproduction of knowledge on the different action fields was based on the review of the bibliographic databases MEDLINE and LILACS for the 1992-2000 period. Results lead to the conclusion that development and application of economic evaluation of healthcare has been uneven across different countries and that there is a growing increase of applications starting in 1994, the year of initiation of healthcare reform in Latin America.
B0 concomitant field compensation for MRI systems employing asymmetric transverse gradient coils.
Weavers, Paul T; Tao, Shengzhen; Trzasko, Joshua D; Frigo, Louis M; Shu, Yunhong; Frick, Matthew A; Lee, Seung-Kyun; Foo, Thomas K-F; Bernstein, Matt A
2018-03-01
Imaging gradients result in the generation of concomitant fields, or Maxwell fields, which are of increasing importance at higher gradient amplitudes. These time-varying fields cause additional phase accumulation, which must be compensated for to avoid image artifacts. In the case of gradient systems employing symmetric design, the concomitant fields are well described with second-order spatial variation. Gradient systems employing asymmetric design additionally generate concomitant fields with global (zeroth-order or B 0 ) and linear (first-order) spatial dependence. This work demonstrates a general solution to eliminate the zeroth-order concomitant field by applying the correct B 0 frequency shift in real time to counteract the concomitant fields. Results are demonstrated for phase contrast, spiral, echo-planar imaging (EPI), and fast spin-echo imaging. A global phase offset is reduced in the phase-contrast exam, and blurring is virtually eliminated in spiral images. The bulk image shift in the phase-encode direction is compensated for in EPI, whereas signal loss, ghosting, and blurring are corrected in the fast-spin echo images. A user-transparent method to compensate the zeroth-order concomitant field term by center frequency shifting is proposed and implemented. This solution allows all the existing pulse sequences-both product and research-to be retained without any modifications. Magn Reson Med 79:1538-1544, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
NASA Astrophysics Data System (ADS)
Krasnoholovets, Volodymyr; Skliarenko, Sergiy; Strokach, Olexander
We present studies of the behavior of the permittivity of such liquid systems as pure distilled water, alcohol and 50%-aqueous solutions of alcohol as affected by the inerton field generated by a special signal generator contained within a wrist-watch or bracelet made by so-called Teslar® technology. It has been found that the changes are in fact significant. The method employed has allowed us to fix the value of frequency of the field generated by the Teslar® chip. The frequency has been determined to be approximately 8 Hz. The phenomenological consideration and submicroscopic foundations of a significant increase of the permittivity are studied, taking into account an additional interaction, namely, the mass interaction between polar water molecules, which is caused by the inerton field of the Teslar® chip. This is one more proof of Krasnoholovets' concept regarding the existence of a substructure of the matter waves of moving/vibrating entities, i.e. the inerton field, which has been predicted in a series of his previous works.
BRST Formalism in Self-Dual Chern-Simons Theory with Matter Fields
NASA Astrophysics Data System (ADS)
Dai, Jialiang; Fan, Engui
2018-04-01
We apply BRST method to the self-dual Chern-Simons gauge theory with matter fields and the generators of symmetries of the system from an elegant Lie algebra structure under the operation of Poisson bracket. We discuss four different cases: abelian, nonabelian, relativistic, and nonrelativistic situations and extend the system to the whole phase space including ghost fields. In addition, we obtain the BRST charge of the field system and check its nilpotence of the BRST transformation which plays an important role such as in topological quantum field theory and string theory.
Trapping and Injecting Single Domain Walls in Magnetic Wire by Local Fields
NASA Astrophysics Data System (ADS)
Vázquez, Manuel; Basheed, G. A.; Infante, Germán; Del Real, Rafael P.
2012-01-01
A single domain wall (DW) moves at linearly increasing velocity under an increasing homogeneous drive magnetic field. Present experiments show that the DW is braked and finally trapped at a given position when an additional antiparallel local magnetic field is applied. That position and its velocity are further controlled by suitable tuning of the local field. In turn, the parallel local field of small amplitude does not significantly affect the effective wall speed at long distance, although it generates tail-to-tail and head-to-head pairs of walls moving along opposite directions when that field is strong enough.
Canopy in the Clouds: Integrating Science and Media to Inspire a New Generation of Scientists
NASA Astrophysics Data System (ADS)
Goldsmith, G. R.; Fulton, A. D.; Witherill, C. D.
2008-12-01
Innovative approaches to science education are critical for inspiring a new generation of scientists. In a world where students are inundated with digital media inviting them to explore exciting, emerging disciplines, science often lags behind in using progressive media techniques. Additionally, science education media often neglects to include the scientists conducting research, thereby disconnecting students from the excitement, adventure, and beauty of conducting research in the field. Here we present initial work from a science education media project entitled Canopy in the Clouds. In particular, we address the goals and approach of the project, the logistics associated with generating educational material at a foreign field site, and the challenges associated with effectively integrating science and media. Canopy in the Clouds is designed to engage students in research, motivate a new generation of young scientists, and promote conservation from the perspective of a current research project being conducted in the canopy of a tropical montane cloud forest located in Monteverde, Costa Rica. The project seeks to generate curriculum based on multiple, immersive forms of novel digital media that attract and maintain student attention. By doing so from the perspective of an adventurous research project in a beautiful and highly biodiverse region, we hope to engage students in science and enhance bioliteracy. However, there are considerable logistic considerations associated with such an approach, including safety, travel, permitting, and equipment maintenance. Additionally, the goals of both the scientific research and the educational media project must be balanced in order to meet objectives in a timely fashion. Finally, materials generated in the field must be translated to viable final products and distributed. Work associated with Canopy in the Clouds will thus provide insight into this process and can serve to inform future science education and outreach efforts.
Geospatial Standards and the Knowledge Generation Lifescycle
NASA Technical Reports Server (NTRS)
Khalsa, Siri Jodha S.; Ramachandran, Rahul
2014-01-01
Standards play an essential role at each stage in the sequence of processes by which knowledge is generated from geoscience observations, simulations and analysis. This paper provides an introduction to the field of informatics and the knowledge generation lifecycle in the context of the geosciences. In addition we discuss how the newly formed Earth Science Informatics Technical Committee is helping to advance the application of standards and best practices to make data and data systems more usable and interoperable.
The NASA Lewis large wind turbine program
NASA Technical Reports Server (NTRS)
Thomas, R. L.; Baldwin, D. H.
1981-01-01
The program is directed toward development of the technology for safe, reliable, environmentally acceptable large wind turbines that have the potential to generate a significant amount of electricity at costs competitive with conventional electric generation systems. In addition, these large wind turbines must be fully compatible with electric utility operations and interface requirements. Advances are made by gaining a better understanding of the system design drivers, improvements in the analytical design tools, verification of design methods with operating field data, and the incorporation of new technology and innovative designs. An overview of the program activities is presented and includes results from the first and second generation field machines (Mod-OA, -1, and -2), the design phase of the third generation wind turbine (Mod-5) and the advanced technology projects. Also included is the status of the Department of Interior WTS-4 machine.
NASA Astrophysics Data System (ADS)
Hua, Rui; Sio, Hong; Wilks, Scott; McGuffey, Christopher; Bailly-Grandvaux, Mathieu; Heeter, Bob; Beg, Farhat; Collins, Gilbert; Ping, Yuan; MIT Collaboration; LLNL Collaboration; UCSD Collaboration
2017-10-01
Self-generated electric fields arise from gradients in the electron pressure at shock fronts. We report observations of such E-fields from experiments conducted on OMEGA EP. In the experiments, strong shock waves were generated in low density gas under a quasi-planar geometry and diagnosed by broadband proton radiography. The broad proton spectrum allows energy-dependent measurements of deflection from which one can quantitatively constrain the electrical potential and field thickness. Three UV beams delivering up to 6.4 kJ energy in 2ns were used for shock generation and a short laser pulse of energy up to 850 J, 10 ps duration, was used to accelerate the broadband proton beam for point-projection radiography. Observations show the existence of electric fields with potential 300 V at the front of a Mach 9 shock in helium gas. A Mach 16 shock is also studied, from which both the field thickness and electric potential are reproduced. Simultaneous spatially resolved soft-x-ray spectroscopy provided additional measurements of shock velocity, particle velocity and thermal emission. This work was performed under DOE contract DE-AC52-07NA27 344 with support from OFES Early Career program and LLNL LDRD program. This work has been partially supported by the University of California Office of the President Lab Fee Grant Number LFR-17-449059.
Artificial neural networks for AC losses prediction in superconducting round filaments
NASA Astrophysics Data System (ADS)
Leclerc, J.; Makong Hell, L.; Lorin, C.; Masson, P. J.
2016-06-01
An extensive and fast method to estimate superconducting AC losses within a superconducting round filament carrying an AC current and subjected to an elliptical magnetic field (both rotating and oscillating) is presented. Elliptical fields are present in rotating machine stators and being able to accurately predict AC losses in fully superconducting machines is paramount to generating realistic machine designs. The proposed method relies on an analytical scaling law (ASL) combined with two artificial neural network (ANN) estimators taking 9 input parameters representing the superconductor, external field and transport current characteristics. The ANNs are trained with data generated by finite element (FE) computations with a commercial software (FlexPDE) based on the widely accepted H-formulation. After completion, the model is validated through comparison with additional randomly chosen data points and compared for simple field configurations to other predictive models. The loss estimation discrepancy is about 3% on average compared to the FEA analysis. The main advantages of the model compared to FE simulations is the fast computation time (few milliseconds) which allows it to be used in iterated design processes of fully superconducting machines. In addition, the proposed model provides a higher level of fidelity than the scaling laws existing in literature usually only considering pure AC field.
R1 dispersion contrast at high field with fast field-cycling MRI.
Bödenler, Markus; Basini, Martina; Casula, Maria Francesca; Umut, Evrim; Gösweiner, Christian; Petrovic, Andreas; Kruk, Danuta; Scharfetter, Hermann
2018-05-01
Contrast agents with a strong R 1 dispersion have been shown to be effective in generating target-specific contrast in MRI. The utilization of this R 1 field dependence requires the adaptation of an MRI scanner for fast field-cycling (FFC). Here, we present the first implementation and validation of FFC-MRI at a clinical field strength of 3 T. A field-cycling range of ±100 mT around the nominal B 0 field was realized by inserting an additional insert coil into an otherwise conventional MRI system. System validation was successfully performed with selected iron oxide magnetic nanoparticles and comparison to FFC-NMR relaxometry measurements. Furthermore, we show proof-of-principle R 1 dispersion imaging and demonstrate the capability of generating R 1 dispersion contrast at high field with suppressed background signal. With the presented ready-to-use hardware setup it is possible to investigate MRI contrast agents with a strong R 1 dispersion at a field strength of 3 T. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Houquan; Zhang, Xingchu
2017-03-01
In a semiconductor, optically excited electron-hole pairs, driven by a strong terahertz (THz) field, can recombine to create THz sidebands in the optical spectrum. The sideband spectrum exhibits a "plateau" up to a cutoff frequency of 3.17Up, where Up is the ponderomotive energy. In this letter, we predict that the bandwidth of this sideband spectrum plateau can be broadened by applying an additional direct-current (DC) electric field. We find that if applying a DC field of EDC=0.2ETHz (where EDC and ETHz are the amplitudes of the DC field and THz field, respectively), the sideband spectrum presents three plateaus with 5.8Up, 10.05Up and 16Up being the cutoff frequencies of the first, second and third plateaus, respectively. This bandwidth broadening occurs because the DC field can increase the kinetic energy that an electron-hole pair can gain from the THz field. This effect means that the bandwidth of the sideband spectrum can be controlled flexibly by changing the DC field, thereby facilitating the ultrafast electro-optical applications of THz sideband generation.
Lu, C B; Ouyang, G; Henderson, Z; Li, X
2011-03-17
The aim of this study was to examine the role of metabotropic glutamate receptors (mGluR) in the generation of oscillatory field activity at theta frequency (4-12 Hz) in the medial septal slice prepared from rat brain. Bath application of mGluR agonists and antagonists showed that activation of mGluR1-type receptors produces persistent theta frequency oscillations in a dose-responsive manner. This activity, induced by the group I mGluR agonist (RS)-3,5-dihydroxyphenylglycine (DHPG), was reduced by ionotropic glutamate receptor antagonists and abolished by further addition of a GABAA receptor antagonist. However, addition of a GABAA receptor antagonist on its own converted the DHPG-induced oscillations to intermittent episodes of accentuated theta frequency activity following a burst. In a proportion of slices, DHPG induced large amplitude field population spiking activity (100-300 μV) which is correlated linearly with the field theta oscillations and is sensitive to glutamate receptor antagonists, suggesting a role of this type of spikes in theta generation induced by DHPG. These data demonstrate that DHPG-sensitive neuronal networks within medial septum generate theta rhythmic activity and are differentially modulated by excitatory and inhibitory ionotropic neurotransmissions. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.
Perturbing laser field dependent high harmonic phase modulations
NASA Astrophysics Data System (ADS)
Li, Zhengyan; Kong, Fanqi; Brown, Graham; Hammond, TJ; Ko, Dong-Hyuk; Zhang, Chunmei; Corkum, P. B.
2018-06-01
A perturbing laser pulse modulates and controls the phase of the high harmonic radiation driven by an intense fundamental pulse. Thus, a structured wave front can impress a specific spatial phase onto the generated high harmonic wave front. This modulation procedure leads to all-optical spatial light modulators for VUV or XUV radiation created by high harmonic generation. Here, through theoretical analysis and experiment, we study the correlation between the high harmonic phase modulations and the perturbing laser field amplitude and phase, providing guidelines for practical high harmonic spatial light modulators. In addition, we show that the petahertz optical oscilloscope for measuring electric fields of a perturbing beam is most robust using low order harmonics, far from the cut-off.
Plasma generating apparatus for large area plasma processing
Tsai, C.C.; Gorbatkin, S.M.; Berry, L.A.
1991-07-16
A plasma generating apparatus for plasma processing applications is based on a permanent magnet line-cusp plasma confinement chamber coupled to a compact single-coil microwave waveguide launcher. The device creates an electron cyclotron resonance (ECR) plasma in the launcher and a second ECR plasma is created in the line cusps due to a 0.0875 tesla magnetic field in that region. Additional special magnetic field configuring reduces the magnetic field at the substrate to below 0.001 tesla. The resulting plasma source is capable of producing large-area (20-cm diam), highly uniform (.+-.5%) ion beams with current densities above 5 mA/cm[sup 2]. The source has been used to etch photoresist on 5-inch diam silicon wafers with good uniformity. 3 figures.
Plasma generating apparatus for large area plasma processing
Tsai, Chin-Chi; Gorbatkin, Steven M.; Berry, Lee A.
1991-01-01
A plasma generating apparatus for plasma processing applications is based on a permanent magnet line-cusp plasma confinement chamber coupled to a compact single-coil microwave waveguide launcher. The device creates an electron cyclotron resonance (ECR) plasma in the launcher and a second ECR plasma is created in the line cusps due to a 0.0875 tesla magnetic field in that region. Additional special magnetic field configuring reduces the magnetic field at the substrate to below 0.001 tesla. The resulting plasma source is capable of producing large-area (20-cm diam), highly uniform (.+-.5%) ion beams with current densities above 5 mA/cm.sup.2. The source has been used to etch photoresist on 5-inch diam silicon wafers with good uniformity.
Polarization resolved electric field measurements on plasma bullets in N2 using four-wave mixing
NASA Astrophysics Data System (ADS)
van der Schans, Marc; Boehm, Patrick; Nijdam, Sander; Ijzerman, Wilbert; Czarnetzki, Uwe
2016-09-01
Atmospheric pressure plasma jets generated by kHz AC or pulsed DC voltages typically consist of discrete guided ionization waves called plasma bullets. In this work, the electric field of plasma bullets generated in a pulsed DC jet with N2 as feed gas is investigated using the four-wave mixing method. In this diagnostic two laser beams, where one is Stokes shifted from the other, non-linearly interact with the N2 molecules and the bullet's electric field. As a result of the interaction a coherent anti-Stokes Raman scattered (CARS) beam and an infrared beam are generated from which the electric field can be determined. Compared to emission-based methods, this technique has the advantage of being able to also probe the electric field in regions around the plasma bullet where no photons are emitted. The four-wave mixing method and its analysis have been adapted to work with the non-uniform electric field of plasma bullets. In addition, an ex-situ calibration procedure using an electrode geometry different from the discharge geometry has been developed. An experimentally obtained radial profile of the axial electric field component of a plasma bullet in N2 is presented. The position of this profile is related to the location of the propagating bullet from temporally resolved images.
Electron cyclotron resonance heating by magnetic filter field in a negative hydrogen ion source.
Kim, June Young; Cho, Won-Hwi; Dang, Jeong-Jeung; Chung, Kyoung-Jae; Hwang, Y S
2016-02-01
The influence of magnetic filter field on plasma properties in the heating region has been investigated in a planar-type inductively coupled radio-frequency (RF) H(-) ion source. Besides filtering high energy electrons near the extraction region, the magnetic filter field is clearly observed to increase the electron temperature in the heating region at low pressure discharge. With increasing the operating pressure, enhancement of electron temperature in the heating region is reduced. The possibility of electron cyclotron resonance (ECR) heating in the heating region due to stray magnetic field generated by a filter magnet located at the extraction region is examined. It is found that ECR heating by RF wave field in the discharge region, where the strength of an axial magnetic field is approximately ∼4.8 G, can effectively heat low energy electrons. Depletion of low energy electrons in the electron energy distribution function measured at the heating region supports the occurrence of ECR heating. The present study suggests that addition of axial magnetic field as small as several G by an external electromagnet or permanent magnets can greatly increase the generation of highly ro-vibrationally excited hydrogen molecules in the heating region, thus improving the performance of H(-) ion generation in volume-produced negative hydrogen ion sources.
Artificial blood-flow controlling effects of inhomogeneity of twisted magnetic fields
NASA Astrophysics Data System (ADS)
Nakagawa, Hidenori; Ohuchi, Mikio
2017-06-01
We developed a blood-flow controlling system using magnetic therapy for some types of nervous diseases. In our research, we utilized overlapped extremely low frequency (ELF) fields for the most effective blood-flow for the system. Results showed the possibility that the inhomogeneous region obtained by overlapping the fields at 50 Hz, namely, a desirably twisted field revealed a significant difference in induced electromotive forces at the insertion points of electrodes. In addition, ELF exposures with a high inhomogeneity of the twisted field at 50 Hz out of phase were more effective in generating an induced electromotive difference by approximately 31%, as contrasted with the difference generated by the exposure in phase. We expect that the increase of the inhomogeneity of the twisted field around a blood vessel can produce the most effective electromotive difference in the blood, and also moderately affect the excitable cells relating to the autonomic nervous system for an outstanding blood-flow control in vivo.
NASA Astrophysics Data System (ADS)
Görgl, Richard; Brandstätter, Elmar
2017-01-01
The article presents an overview of what is possible nowadays in the field of laser materials processing. The state of the art in the complete process chain is shown, starting with the generation of a specific components CAD data and continuing with the automated motion path generation for the laser head carried by a CNC or robot system. Application examples from laser cladding and laser-based additive manufacturing are given.
NASA Astrophysics Data System (ADS)
Neyra, E.; Videla, F.; Ciappina, M. F.; Pérez-Hernández, J. A.; Roso, L.; Lewenstein, M.; Torchia, G. A.
2018-03-01
We study high-order harmonic generation (HHG) in model atoms driven by plasmonic-enhanced fields. These fields result from the illumination of plasmonic nanostructures by few-cycle laser pulses. We demonstrate that the spatial inhomogeneous character of the laser electric field, in a form of Gaussian-shaped functions, leads to an unexpected relationship between the HHG cutoff and the laser wavelength. Precise description of the spatial form of the plasmonic-enhanced field allows us to predict this relationship. We combine the numerical solutions of the time-dependent Schrödinger equation (TDSE) with the plasmonic-enhanced electric fields obtained from 3D finite element simulations. We additionally employ classical simulations to supplement the TDSE outcomes and characterize the extended HHG spectra by means of their associated electron trajectories. A proper definition of the spatially inhomogeneous laser electric field is instrumental to accurately describe the underlying physics of HHG driven by plasmonic-enhanced fields. This characterization opens up new perspectives for HHG control with various experimental nano-setups.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Podoshvedov, S. A., E-mail: podoshvedov@mail.ru
A method to generate Schroedinger cat states in free propagating optical fields based on the use of displaced states (or displacement operators) is developed. Some optical schemes with photon-added coherent states are studied. The schemes are modifications of the general method based on a sequence of displacements and photon additions or subtractions adjusted to generate Schroedinger cat states of a larger size. The effects of detection inefficiency are taken into account.
Kamau, Edwin N; Heine, Julian; Falldorf, Claas; Bergmann, Ralf B
2015-11-02
We present a novel approach for the design and fabrication of multiplexed computer generated volume holograms (CGVH) which allow for a dynamic synthesis of arbitrary wave field distributions. To achieve this goal, we developed a hybrid system that consists of a CGVH as a static element and an electronically addressed spatial light modulator as the dynamic element. We thereby derived a new model for describing the scattering process within the inhomogeneous dielectric material of the hologram. This model is based on the linearization of the scattering process within the Rytov approximation and incorporates physical constraints that account for voxel based laser-lithography using micro-fabrication of the holograms in a nonlinear optical material. In this article we demonstrate that this system basically facilitates a high angular Bragg selectivity on the order of 1°. Additionally, it allows for a qualitatively low cross-talk dynamic synthesis of predefined wave fields with a much larger space-bandwidth product (SBWP ≥ 8.7 × 10(6)) as compared to the current state of the art in computer generated holography.
Elastic parabolic equation solutions for underwater acoustic problems using seismic sources.
Frank, Scott D; Odom, Robert I; Collis, Jon M
2013-03-01
Several problems of current interest involve elastic bottom range-dependent ocean environments with buried or earthquake-type sources, specifically oceanic T-wave propagation studies and interface wave related analyses. Additionally, observed deep shadow-zone arrivals are not predicted by ray theoretic methods, and attempts to model them with fluid-bottom parabolic equation solutions suggest that it may be necessary to account for elastic bottom interactions. In order to study energy conversion between elastic and acoustic waves, current elastic parabolic equation solutions must be modified to allow for seismic starting fields for underwater acoustic propagation environments. Two types of elastic self-starter are presented. An explosive-type source is implemented using a compressional self-starter and the resulting acoustic field is consistent with benchmark solutions. A shear wave self-starter is implemented and shown to generate transmission loss levels consistent with the explosive source. Source fields can be combined to generate starting fields for source types such as explosions, earthquakes, or pile driving. Examples demonstrate the use of source fields for shallow sources or deep ocean-bottom earthquake sources, where down slope conversion, a known T-wave generation mechanism, is modeled. Self-starters are interpreted in the context of the seismic moment tensor.
Fundamental study of flow field generated by rotorcraft blades using wide-field shadowgraph
NASA Technical Reports Server (NTRS)
Parthasarathy, S. P.; Cho, Y. I.; Back, L. H.
1985-01-01
The vortex trajectory and vortex wake generated by helicopter rotors are visualized using a wide-field shadowgraph technique. Use of a retro-reflective Scotchlite screen makes it possible to investigate the flow field generated by full-scale rotors. Tip vortex trajectories are visible in shadowgraphs for a range of tip Mach number of 0.38 to 0.60. The effect of the angle of attack is substantial. At an angle of attack greater than 8 degrees, the visibility of the vortex core is significant even at relatively low tip Mach numbers. The theoretical analysis of the sensitivity is carried out for a rotating blade. This analysis demonstrates that the sensitivity decreases with increasing dimensionless core radius and increases with increasing tip Mach number. The threshold value of the sensitivity is found to be 0.0015, below which the vortex core is not visible and above which it is visible. The effect of the optical path length is also discussed. Based on this investigation, it is concluded that the application of this wide-field shadowgraph technique to a large wind tunnel test should be feasible. In addition, two simultaneous shadowgraph views would allow three-dimensional reconstruction of vortex trajectories.
Effect of Contraction on Turbulence and Temperature Fluctuations Generated by a Warm Grid
NASA Technical Reports Server (NTRS)
Mills, Robert R., Jr.; Corrsin, Stanley
1959-01-01
Hot-wire anemometer measurements were made of several statistical properties of approximately homogeneous and isotropic fields of turbulence and temperature fluctuations generated by a warm grid in a uniform airstream sent through a 4-to-1 contraction. These measurements were made both in the contraction and in the axisymmetric domain farther downstream. In addition to confirming the well-known turbulence anisotropy induced by strain, the data show effects on the skewnesses of both longitudinal velocity fluctuation (which has zero skewness in isotropic turbulence) and its derivative. The concomitant anisotropy in the temperature field accelerates the decay of temperature fluctuations.
Chiral battery, scaling laws and magnetic fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anand, Sampurn; Bhatt, Jitesh R.; Pandey, Arun Kumar, E-mail: sampurn@prl.res.in, E-mail: jeet@prl.res.in, E-mail: arunp@prl.res.in
2017-07-01
We study the generation and evolution of magnetic field in the presence of chiral imbalance and gravitational anomaly which gives an additional contribution to the vortical current. The contribution due to gravitational anomaly is proportional to T {sup 2} which can generate seed magnetic field irrespective of plasma being chirally charged or neutral. We estimate the order of magnitude of the magnetic field to be 10{sup 30} G at T ∼ 10{sup 9} GeV, with a typical length scale of the order of 10{sup −18} cm, which is much smaller than the Hubble radius at that temperature (10{sup −8} cm).more » Moreover, such a system possess scaling symmetry. We show that the T {sup 2} term in the vorticity current along with scaling symmetry leads to more power transfer from lower to higher length scale as compared to only chiral anomaly without scaling symmetry.« less
NASA Astrophysics Data System (ADS)
Safari, Samaneh; Niknam, Ali Reza; Jahangiri, Fazel; Jazi, Bahram
2018-04-01
The nonlinear interaction of Hermite-Gaussian and Laguerre-Gaussian (LG) laser beams with a collisional inhomogeneous plasma is studied, and the amplitude of the emitted terahertz (THz) electric field is evaluated. The effects of laser beams and plasma parameters, including the beams width, LG modes, the plasma collision frequency, and the amplitude of density ripple on the evolution of THz electric field amplitude, are examined. It is found that the shape of the generated THz radiation pattern can be tuned by the laser parameters. In addition, the optimum values of the effective parameters for achieving the maximum THz electric field amplitude are proposed. It is shown that a significant enhancement up to 4.5% can be obtained in our scheme, which is much greater than the maximum efficiency obtained for laser beams with the same profiles.
Nonlinear conductivity in silicon nitride
NASA Astrophysics Data System (ADS)
Tuncer, Enis
2017-08-01
To better comprehend electrical silicon-package interaction in high voltage applications requires full characterization of the electrical properties of dielectric materials employed in wafer and package level design. Not only the packaging but wafer level dielectrics, i.e. passivation layers, would experience high electric fields generated by the voltage applied pads. In addition the interface between the passivation layer and a mold compound might develop space charge because of the mismatch in electrical properties of the materials. In this contribution electrical properties of a thin silicon nitride (Si3N4) dielectric is reported as a function of temperature and electric field. The measured values later analyzed using different temperature dependent exponential expressions and found that the Mott variable range hopping conduction model was successful to express the data. A full temperature/electric field dependency of conductivity is generated. It was found that the conduction in Si3N4 could be expressed like a field ionization or Fowler-Nordheim mechanism.
Sensing network for electromagnetic fields generated by seismic activities
NASA Astrophysics Data System (ADS)
Gershenzon, Naum I.; Bambakidis, Gust; Ternovskiy, Igor V.
2014-06-01
The sensors network is becoming prolific and play now increasingly more important role in acquiring and processing information. Cyber-Physical Systems are focusing on investigation of integrated systems that includes sensing, networking, and computations. The physics of the seismic measurement and electromagnetic field measurement requires special consideration how to design electromagnetic field measurement networks for both research and detection earthquakes and explosions along with the seismic measurement networks. In addition, the electromagnetic sensor network itself could be designed and deployed, as a research tool with great deal of flexibility, the placement of the measuring nodes must be design based on systematic analysis of the seismic-electromagnetic interaction. In this article, we review the observations of the co-seismic electromagnetic field generated by earthquakes and man-made sources such as vibrations and explosions. The theoretical investigation allows the distribution of sensor nodes to be optimized and could be used to support existing geological networks. The placement of sensor nodes have to be determined based on physics of electromagnetic field distribution above the ground level. The results of theoretical investigations of seismo-electromagnetic phenomena are considered in Section I. First, we compare the relative contribution of various types of mechano-electromagnetic mechanisms and then analyze in detail the calculation of electromagnetic fields generated by piezomagnetic and electrokinetic effects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lan Pengfei; Takahashi, Eiji J.; Midorikawa, Katsumi
2010-11-15
We present the optimization of the two-color synthesis method for generating an intense isolated attosecond pulse (IAP) in the multicycle regime. By mixing an infrared assistant pulse with a Ti:sapphire main pulse, we show that an IAP can be produced using a multicycle two-color pulse with a duration longer than 30 fs. We also discuss the influence of the carrier-envelope phase (CEP) and the relative intensity on the generation of IAPs. By optimizing the wavelength of the assistant field, IAP generation becomes insensitive to the CEP slip. Therefore, the optimized two-color method enables us to relax the requirements of pulsemore » duration and easily produce the IAP with a conventional multicycle laser pulse. In addition, it enables us to markedly suppress the ionization of the harmonic medium. This is a major advantage for efficiently generating intense IAPs from a neutral medium by applying the appropriate phase-matching and energy-scaling techniques.« less
Mashiko, Hiroki; Yamaguchi, Tomohiko; Oguri, Katsuya; Suda, Akira; Gotoh, Hideki
2014-01-01
In many atomic, molecular and solid systems, Lorentzian and Fano profiles are commonly observed in a broad research fields throughout a variety of spectroscopies. As the profile structure is related to the phase of the time-dependent dipole moment, it plays an important role in the study of quantum properties. Here we determine the dipole phase in the inner-shell transition using spectral phase interferometry for direct electric-field reconstruction (SPIDER) with isolated attosecond pulses (IAPs). In addition, we propose a scheme for pulse generation and compression by manipulating the inner-shell transition. The electromagnetic radiation generated by the transition is temporally compressed to a few femtoseconds in the extreme ultraviolet (XUV) region. The proposed pulse-compression scheme may provide an alternative route to producing attosecond pulses of light. PMID:25510971
Irreducible representations of finitely generated nilpotent groups
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beloshapka, I V; Gorchinskiy, S O
2016-01-31
We prove that irreducible complex representations of finitely generated nilpotent groups are monomial if and only if they have finite weight, which was conjectured by Parshin. Note that we consider (possibly infinite-dimensional) representations without any topological structure. In addition, we prove that for certain induced representations, irreducibility is implied by Schur irreducibility. Both results are obtained in a more general form for representations over an arbitrary field. Bibliography: 21 titles.
MTpy: A Python toolbox for magnetotellurics
Krieger, Lars; Peacock, Jared R.
2014-01-01
In this paper, we introduce the structure and concept of MTpy . Additionally, we show some examples from an everyday work-flow of MT data processing: the generation of standard EDI data files from raw electric (E-) and magnetic flux density (B-) field time series as input, the conversion into MiniSEED data format, as well as the generation of a graphical data representation in the form of a Phase Tensor pseudosection.
The Wide-area Energy Management System Phase 2 Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Ning; Makarov, Yuri V.; Weimar, Mark R.
2010-08-31
The higher penetration of intermittent generation resources (including wind and solar generation) in the Bonneville Power Administration (BPA) and California Independent System Operator (CAISO) balancing authorities (BAs) raises issue of requiring expensive additional fast grid balancing services in response to additional intermittency and fast up and down power ramps in the electric supply system. The overall goal of the wide-area energy management system (WAEMS) project is to develop the principles, algorithms, market integration rules, a functional design, and a technical specification for an energy storage system to help cope with unexpected rapid changes in renewable generation power output. The resultingmore » system will store excess energy, control dispatchable load and distributed generation, and utilize inter-area exchange of the excess energy between the California ISO and Bonneville Power Administration control areas. A further goal is to provide a cost-benefit analysis and develop a business model for an investment-based practical deployment of such a system. There are two tasks in Phase 2 of the WAEMS project: the flywheel field tests and the battery evaluation. Two final reports, the Wide-area Energy Management System Phase 2 Flywheel Field Tests Final Report and the Wide-area Energy Storage and Management System Battery Storage Evaluation, were written to summarize the results of the two tasks.« less
SAR Reduction in 7T C-Spine Imaging Using a “Dark Modes” Transmit Array Strategy
Eryaman, Yigitcan; Guerin, Bastien; Keil, Boris; Mareyam, Azma; Herraiz, Joaquin L.; Kosior, Robert K.; Martin, Adrian; Torrado-Carvajal, Angel; Malpica, Norberto; Hernandez-Tamames, Juan A.; Schiavi, Emanuele; Adalsteinsson, Elfar; Wald, Lawrence L.
2016-01-01
Purpose Local specific absorption rate (SAR) limits many applications of parallel transmit (pTx) in ultra high-field imaging. In this Note, we introduce the use of an array element, which is intentionally inefficient at generating spin excitation (a “dark mode”) to attempt a partial cancellation of the electric field from those elements that do generate excitation. We show that adding dipole elements oriented orthogonal to their conventional orientation to a linear array of conventional loop elements can lower the local SAR hotspot in a C-spine array at 7 T. Methods We model electromagnetic fields in a head/torso model to calculate SAR and excitation B1+ patterns generated by conventional loop arrays and loop arrays with added electric dipole elements. We utilize the dark modes that are generated by the intentional and inefficient orientation of dipole elements in order to reduce peak 10g local SAR while maintaining excitation fidelity. Results For B1+ shimming in the spine, the addition of dipole elements did not significantly alter the B1+ spatial pattern but reduced local SAR by 36%. Conclusion The dipole elements provide a sufficiently complimentary B1+ and electric field pattern to the loop array that can be exploited by the radiofrequency shimming algorithm to reduce local SAR. PMID:24753012
NASA Astrophysics Data System (ADS)
Pisanty, Emilio; Jiménez-Galán, Álvaro
2017-12-01
High-order harmonic generation with bicircular fields—the combination of counter-rotating circularly polarized pulses at different frequencies—results in a series of short-wavelength XUV harmonics with alternating circular polarizations, and experiments show that there is an asymmetry in the emission between the two helicities: a slight one in helium and a larger one in neon and argon, where the emission is carried out by p -shell electrons. Here we analyze this asymmetry by switching to a rotating frame in which the field is linearly polarized; this induces an effective magnetic field which lowers the ionization potential of the p + orbital that corotates with the lower-frequency driver, enhancing its harmonic emission and the overall helicity of the generated harmonics, while also introducing nontrivial effects from the transformation to a noninertial frame in complex time. In addition, this analysis directly relates the small asymmetry produced by s -shell emission to the imaginary part of the recollision velocity in the standard strong-field-approximation formalism.
Landau level splitting in Cd3As2 under high magnetic fields
NASA Astrophysics Data System (ADS)
Zhang, Cheng; Cao, Junzhi; Liang, Sihang; Xia, Zhengcai; Li, Liang; Xiu, Faxian
2015-03-01
Three-dimensional (3D) topological Dirac semimetals (TDSs) are a new kind of Dirac materials that adopt nontrivial topology in band structure and possess degenerated massless Dirac fermions in the bulk. It has been proposed that TDSs can be driven to other exotic phases like Weyl semimetals, topological insulators and topological superconductors by breaking certain symmetries. Here we report the first transport evidence of Landau level splitting in TDS Cd3As2 single crystals under high magnetic fields, suggesting the removal of spin degeneracy by breaking time reversal symmetry (TRS). The observed Landau level splitting is originated from the joint contributions of orbit and Zeeman splitting in Cd3As2. In addition, the detected Berry phase is found to vary from nontrivial to trivial at different field directions, revealing a fierce competition between the orbit-coupled field strength and the field-generated mass term. Our results demonstrate a feasible path to generate a Weyl semimetal phase based on the TDSs by breaking TRS.
Complementary bowtie aperture for localizing and enhancing optical magnetic field
NASA Astrophysics Data System (ADS)
Zhou, Nan; Kinzel, Edward C.; Xu, Xianfan
2011-08-01
Nanoscale bowtie antenna and bowtie aperture antenna have been shown to generate strongly enhanced and localized electric fields below the diffraction limit in the optical frequency range. According to Babinet's principle, their complements will be efficient for concentrating and enhancing magnetic fields. In this Letter, we discuss the enhancement of magnetic field intensity of nanoscale complementary bowtie aperture as well as complementary bowtie aperture antenna, or diabolo nanoantenna. We show that the complementary bowtie antenna resonates at a smaller wavelength and thus is more suitable for applications near visible wavelengths. The near-field magnetic intensity can be further enhanced by the addition of groove structures that scatter surface plasmon.
[Mechanism of ablation with nanosecond pulsed electric field].
Cen, Chao; Chen, Xin-hua; Zheng, Shu-sen
2015-11-01
Nanosecond pulsed electric field ablation has been widely applied in clinical cancer treatment, while its molecular mechanism is still unclear. Researchers have revealed that nanosecond pulsed electric field generates nanopores in plasma membrane, leading to a rapid influx of Ca²⁺; it has specific effect on intracellular organelle membranes, resulting in endoplasmic reticulum injuries and mitochondrial membrane potential changes. In addition, it may also change cellular morphology through damage of cytoskeleton. This article reviews the recent research advances on the molecular mechanism of cell membrane and organelle changes induced by nanosecond pulsed electric field ablation.
Corrugated Textile based Triboelectric Generator for Wearable Energy Harvesting
Choi, A Young; Lee, Chang Jun; Park, Jiwon; Kim, Dogyun; Kim, Youn Tae
2017-01-01
Triboelectric energy harvesting has been applied to various fields, from large-scale power generation to small electronics. Triboelectric energy is generated when certain materials come into frictional contact, e.g., static electricity from rubbing a shoe on a carpet. In particular, textile-based triboelectric energy-harvesting technologies are one of the most promising approaches because they are not only flexible, light, and comfortable but also wearable. Most previous textile-based triboelectric generators (TEGs) generate energy by vertically pressing and rubbing something. However, we propose a corrugated textile-based triboelectric generator (CT-TEG) that can generate energy by stretching. Moreover, the CT-TEG is sewn into a corrugated structure that contains an effective air gap without additional spacers. The resulting CT-TEG can generate considerable energy from various deformations, not only by pressing and rubbing but also by stretching. The maximum output performances of the CT-TEG can reach up to 28.13 V and 2.71 μA with stretching and releasing motions. Additionally, we demonstrate the generation of sufficient energy from various activities of a human body to power about 54 LEDs. These results demonstrate the potential application of CT-TEGs for self-powered systems. PMID:28349928
Corrugated Textile based Triboelectric Generator for Wearable Energy Harvesting
NASA Astrophysics Data System (ADS)
Choi, A. Young; Lee, Chang Jun; Park, Jiwon; Kim, Dogyun; Kim, Youn Tae
2017-03-01
Triboelectric energy harvesting has been applied to various fields, from large-scale power generation to small electronics. Triboelectric energy is generated when certain materials come into frictional contact, e.g., static electricity from rubbing a shoe on a carpet. In particular, textile-based triboelectric energy-harvesting technologies are one of the most promising approaches because they are not only flexible, light, and comfortable but also wearable. Most previous textile-based triboelectric generators (TEGs) generate energy by vertically pressing and rubbing something. However, we propose a corrugated textile-based triboelectric generator (CT-TEG) that can generate energy by stretching. Moreover, the CT-TEG is sewn into a corrugated structure that contains an effective air gap without additional spacers. The resulting CT-TEG can generate considerable energy from various deformations, not only by pressing and rubbing but also by stretching. The maximum output performances of the CT-TEG can reach up to 28.13 V and 2.71 μA with stretching and releasing motions. Additionally, we demonstrate the generation of sufficient energy from various activities of a human body to power about 54 LEDs. These results demonstrate the potential application of CT-TEGs for self-powered systems.
Characterization of Acoustic Droplet Vaporization Using MRI
NASA Astrophysics Data System (ADS)
Li, David; Allen, Steven; Hernandez-Garcia, Luis; Bull, Joseph
2013-11-01
Acoustic droplet vaporization (ADV) is the selective vaporization of liquid droplets to form larger gas bubbles. The ADV process is currently being researched for biomedical applications such as gas embolotherapy, drug delivery, and phase-change contrast agents. In this study an albumin encapsulated dodecafluoropentane (DDFP, CAS: 678-26-2) microdroplet suspension was vaporized using a single element focused (f/2, D = 19 mm) 3.5 MHz transducer (Panametrics A321S, Olympus, Waltham, MA). The resulting DDFP bubble clouds were imaged using both bright field microscopy and MRI (Varian 7T, Agilent Technologies Inc., Santa Clara, CA). Field distortions due to DDFP bubble generation were characterized against the bright field images as a function of acoustic power and bubble cloud size. Experimentally a direct correlation between bubble cloud dimensions generated and field distortions seen in the MRI was observed. Additionally, MR velocimetry was used to measure the flow field resulting from ADV. The field distortions due to the bubbles were further characterized by modeling Maxwell's equations using COMSOL (COMSOL Inc., Burlington, MA). The ability to characterize ADV with alternative imaging modalities may prove useful in further development of ADV based biomedical therapies.
NASA Technical Reports Server (NTRS)
Hathaway, David H.
1998-01-01
The solar dynamo is the process by which the Sun's magnetic field is generated through the interaction of the field with convection and rotation. In this, it is kin to planetary dynamos and other stellar dynamos. Although the precise mechanism by which the Sun generates its field remains poorly understood despite decades of theoretical and observational work, recent advances suggest that solutions to this solar dynamo problem may be forthcoming. Two basic processes are involved in dynamo activity. When the fluid stresses dominate the magnetic stresses (high plasma beta = 8(pi)rho/B(sup 2)), shear flows can stretch magnetic field lines in the direction of the shear (the "alpha effect") and helical flows can lift and twist field lines into orthogonal planes (the "alpha effect"). These two processes can be active anywhere in the solar convection zone but with different results depending upon their relative strengths and signs. Little is known about how and where these processes occur. Other processes, such as magnetic diffusion and the effects of the fine scale structure of the solar magnetic field, pose additional problems.
System and method for sub-sea cable termination
Chen, Qin; Yin, Weijun; Zhang, Lili
2016-04-05
An electrical connector includes a first cable termination chamber configured to receive a first power cable having at least a first conductor sheathed at least in part by a first insulating layer and a first insulation screen layer. Also, the electrical connector includes a first non-linear resistive layer configured to be coupled to a portion of the first conductor unsheathed by at least the first insulation screen layer and configured to control a direct current electric field generated in the first cable termination chamber. In addition, the electrical connector includes a first deflector configured to be coupled to the first power cable and control an alternating current electric field generated in the first cable termination chamber.
Wan, Quan; Galli, Giulia
2015-12-11
We present a first-principles framework to compute sum-frequency generation (SFG) vibrational spectra of semiconductors and insulators. The method is based on density functional theory and the use of maximally localized Wannier functions to compute the response to electric fields, and it includes the effect of electric field gradients at surfaces. In addition, it includes quadrupole contributions to SFG spectra, thus enabling the verification of the dipole approximation, whose validity determines the surface specificity of SFG spectroscopy. We compute the SFG spectra of ice I_{h} basal surfaces and identify which spectra components are affected by bulk contributions. Our results are in good agreement with experiments at low temperature.
Characteristics of chiral plasma plumes generated in the absence of external magnetic field
NASA Astrophysics Data System (ADS)
Nie, LanLan; Liu, FengWu; Zhou, XinCai; Lu, XinPei; Xian, YuBin
2018-05-01
A chiral plasma plume has recently been generated inside a dielectric tube without the use of an external magnetic field. In this paper, we seek to further study the key properties of such a chiral plume to improve our understanding of how this interesting structure is generated and controlled. The chiral plume is generated by externally mounting a stainless steel helical coil or a ring onto the dielectric tube. By changing the pitch of the helical coil, the pitch of the plasma plume can be controlled, with the shape of the plume following the shape of the helical coil. The addition of the helical coil significantly expands the range of parameters under which the chiral plasma plume appears. When the frequency of the applied voltage increases, additional stable discharge channels appear between the adjacent helices. The addition of two helical coils results in the formation of two chiral plasma plumes, which follow the shape of the helical coils. When a metal ring is placed on the outside of the tube, there is no chiral plasma plume between the high voltage electrode and the ring; however, a chiral plasma plume appears on the right side of the ring if the distance between the ring and the high voltage electrode is small. These findings suggest that the chiral plasma can be effectively modulated and guided using an externally mounted helical coil, which acts as the floating/actual ground to reduce the impedance of the discharge and as such contributes to the emergence of the chiral plasma plume behavior.
UV-fibers: two decades of improvements for new applications
NASA Astrophysics Data System (ADS)
Klein, Karl-Friedrich; Khalilov, Valery K.
2015-03-01
Multimode UV-fibers with high-OH synthetic silica core and F-doped silica cladding have been available for over 40 years. At the beginning, the spectral UV-range above 250 nm wavelength was commonly used, because the generation of UV-absorbing defect centers prevented reliable light transfer below 250 nm; even light from a low-power broadband deuterium-lamp was sufficient to damage these UV-fibers of the 1st generation. However, even then, applications in the field of spectroscopy, laser light delivery, sensors and process control were discussed and improvements of fiber quality in this very interesting UVC range required by researchers and industrial end-users. Starting in 1993 with hydrogen-loaded fibers, further modification in preform and fiber manufacturing including additional fiber treatments lead to currently available hydrogen-free UV-fiber (4th generation) with significantly improved stability in the UVC, enabling routine use of optical fibers in this field. In addition to the UV-fiber improvements, some selected UV fiber-optic applications using broadband deuterium-lamps will be discussed. Finally, there is still room for further improvements, especially in combination with newly available pulsed UV light sources, which are low-cost, small sized and highly reliable.
Tercjak, Agnieszka; Mondragon, Iñaki
2008-10-07
Meso/nanostructured thermoresponsive thermosetting materials based on an epoxy resin modified with two different molecular weight amphiphilic poly(styrene- block-ethylene oxide) block copolymers (PSEO) and a low molecular weight liquid crystal, 4'-(hexyloxy)-4-biphenylcarbonitrile (HOBC), were investigated. A strong influence of the addition of PSEO on the morphology generated in HOBC--(diglicydyl ether of bisphenol A epoxy resin/ m-xylylenediamine) was detected, especially in the case of the addition of PSEO block copolymers with a higher PEO-block content and a lower molecular weight. The morphologies generated in the ternary systems also influenced the thermoresponsive behavior of the HOBC separated phase provoked by applying an external field, such as a temperature gradient and an electrical field. Thermal analysis of the investigated materials allowed for a better understanding of the relationships between generated morphology/thermo-optical properties/PSEO:HOBC ratio, and HOBC content. Controlling the relationship between the morphology and thermoresponsive behavior in micro/nanostructured thermosetting materials based on a 4'-(hexyloxy)-4-biphenylcarbonitrile liquid crystal allows the development of materials which can find application in thermo- and in some cases electroresponsive devices, with a high contrast ratio between transparent and opaque states.
NASA Astrophysics Data System (ADS)
Hajiali, M. R.; Hamdi, M.; Roozmeh, S. E.; Mohseni, S. M.
2017-10-01
We study the ac current-driven domain wall motion in bilayer ferromagnetic metal (FM)/nonmagnetic metal (NM) nanowires. The solution of the modified Landau-Lifshitz-Gilbert equation including all the spin transfer torques is used to describe motion of the domain wall in the presence of the spin Hall effect. We show that the domain wall center has a second-harmonic frequency response in addition to the known first-harmonic excitation. In contrast to the experimentally observed second-harmonic response in harmonic Hall measurements of spin-orbit torque in magnetic thin films, this second-harmonic response directly originates from spin-orbit torque driven domain wall dynamics. Based on the spin current generated by domain wall dynamics, the longitudinal spin motive force generated voltage across the length of the nanowire is determined. The second-harmonic response introduces additionally a practical field-free and all-electrical method to probe the effective spin Hall angle for FM/NM bilayer structures that could be applied in experiments. Our results also demonstrate the capability of utilizing FM/NM bilayer structures in domain wall based spin-torque signal generators and resonators.
NASA Astrophysics Data System (ADS)
Brown, C. G.; Ayers, J.; Felker, B.; Ferguson, W.; Holder, J. P.; Nagel, S. R.; Piston, K. W.; Simanovskaia, N.; Throop, A. L.; Chung, M.; Hilsabeck, T.
2012-10-01
Electromagnetic interference (EMI) is an ever-present challenge at laser facilities such as the National Ignition Facility (NIF). The major source of EMI at such facilities is laser-target interaction that can generate intense electromagnetic fields within, and outside of, the laser target chamber. In addition, the diagnostics themselves can be a source of EMI, even interfering with themselves. In this paper we describe EMI generated by ARIANE and DIXI, present measurements, and discuss effects of the diagnostic-generated EMI on ARIANE's CCD and on a PMT nearby DIXI. Finally we present some of the efforts we have made to mitigate the effects of diagnostic-generated EMI on NIF diagnostics.
NASA Astrophysics Data System (ADS)
Im, Chang-Hwan; Park, Ji-Hye; Shim, Miseon; Chang, Won Hyuk; Kim, Yun-Hee
2012-04-01
In this study, local electric field distributions generated by transcranial direct current stimulation (tDCS) with an extracephalic reference electrode were evaluated to address extracephalic tDCS safety issues. To this aim, we generated a numerical model of an adult male human upper body and applied the 3D finite element method to electric current conduction analysis. In our simulations, the active electrode was placed over the left primary motor cortex (M1) and the reference electrode was placed at six different locations: over the right temporal lobe, on the right supraorbital region, on the right deltoid, on the left deltoid, under the chin, and on the right buccinator muscle. The maximum current density and electric field intensity values in the brainstem generated by the extracephalic reference electrodes were comparable to, or even less than, those generated by the cephalic reference electrodes. These results suggest that extracephalic reference electrodes do not lead to unwanted modulation of the brainstem cardio-respiratory and autonomic centers, as indicated by recent experimental studies. The volume energy density was concentrated at the neck area by the use of deltoid reference electrodes, but was still smaller than that around the active electrode locations. In addition, the distributions of elicited cortical electric fields demonstrated that the use of extracephalic reference electrodes might allow for the robust prediction of cortical modulations with little dependence on the reference electrode locations.
The Potential for Ambient Plasma Wave Propulsion
NASA Technical Reports Server (NTRS)
Gilland, James H.; Williams, George J.
2016-01-01
A truly robust space exploration program will need to make use of in-situ resources as much as possible to make the endeavor affordable. Most space propulsion concepts are saddled with one fundamental burden; the propellant needed to produce momentum. The most advanced propulsion systems currently in use utilize electric and/or magnetic fields to accelerate ionized propellant. However, significant planetary exploration missions in the coming decades, such as the now canceled Jupiter Icy Moons Orbiter, are restricted by propellant mass and propulsion system lifetimes, using even the most optimistic projections of performance. These electric propulsion vehicles are inherently limited in flexibility at their final destination, due to propulsion system wear, propellant requirements, and the relatively low acceleration of the vehicle. A few concepts are able to utilize the environment around them to produce thrust: Solar or magnetic sails and, with certain restrictions, electrodynamic tethers. These concepts focus primarily on using the solar wind or ambient magnetic fields to generate thrust. Technically immature, quasi-propellantless alternatives lack either the sensitivity or the power to provide significant maneuvering. An additional resource to be considered is the ambient plasma and magnetic fields in solar and planetary magnetospheres. These environments, such as those around the Sun or Jupiter, have been shown to host a variety of plasma waves. Plasma wave propulsion takes advantage of an observed astrophysical and terrestrial phenomenon: Alfven waves. These are waves that propagate in the plasma and magnetic fields around and between planets and stars. The generation of Alfven waves in ambient magnetic and plasma fields to generate thrust is proposed as a truly propellantless propulsion system which may enable an entirely new matrix of exploration missions. Alfven waves are well known, transverse electromagnetic waves that propagate in magnetized plasmas at frequencies below the ion cyclotron frequency. They have been observed in both laboratory and astrophysical settings. On Earth, they are being investigated as a possible means for plasma heating, current drive, and momentum addition in magnetic confinement fusion systems. In addition, Alfven waves have been proposed as a mechanism for acceleration of the solar wind away from the sun.
Additive manufacturing of permanent magnets
Paranthaman, M. P.; Nlebedim, I. C.; Johnson, F.; ...
2016-10-28
Here, permanent magnets enable energy conversion. Motors and generators are used to convert both electrical to mechanical energy and mechanical to electrical energy, respectively. They are precharged (magnetized) prior to being used in an application and must remain magnetized during operation. In addition, they should generate sufficient magnetic flux for a given application. Nevertheless permanent magnets can be demagnetized (discharged of their magnetization) by other magnetic materials in their service vicinity, temperature changes (thermal demagnetization), microstructural degradations and the magnet’s internal demagnetizing field. Therefore a permanent magnet can be qualified based on the properties that measure its ability to withstandmore » demagnetization and to supply sufficient magnetic flux required for a given application. Some of those properties are further discussed below. Additive manufacturing followed by exchange spring magnets will be discussed afterwards.« less
Utilization of curve offsets in additive manufacturing
NASA Astrophysics Data System (ADS)
Haseltalab, Vahid; Yaman, Ulas; Dolen, Melik
2018-05-01
Curve offsets are utilized in different fields of engineering and science. Additive manufacturing, which lately becomes an explicit requirement in manufacturing industry, utilizes curve offsets widely. One of the necessities of offsetting is for scaling which is required if there is shrinkage after the fabrication or if the surface quality of the resulting part is unacceptable. Therefore, some post-processing is indispensable. But the major application of curve offsets in additive manufacturing processes is for generating head trajectories. In a point-wise AM process, a correct tool-path in each layer can reduce lots of costs and increase the surface quality of the fabricated parts. In this study, different curve offset generation algorithms are analyzed to show their capabilities and disadvantages through some test cases and improvements on their drawbacks are suggested.
NASA Astrophysics Data System (ADS)
Abedi-Varaki, M.
2018-02-01
In this paper, the effects of planar magnetostatic wiggler and s-parameter on the terahertz (THz) radiation generation through rippled plasma have been investigated. Efficient THz radiation generation by photo-mixing of tophat lasers for rippled density plasma in the presence of the wiggler field has been presented. Fundamental equations for the analysis of the non-linear current density and THz radiation generation by wiggler magnetostatic field have been derived. It is shown that for the higher order of the tophat lasers, the values of THz amplitude are greater. In fact, the higher order of the tophat lasers has a sharp gradient in the intensity of lasers, which leads to a stronger nonlinear ponderomotive force and, consequently, a stronger current density. In addition, it is seen that by increasing s-parameter, the normalized transverse profile becomes more focused near the axis of y. Furthermore, it is observed that the normalized laser efficiency has a decreasing trend with increasing normalized THz frequency for different values of the wiggler field. Also, it is shown that by employing a greater order of the tophat lasers and a stronger wiggler field, the efficiency of order of 30% can be achieved. Moreover, it is found that we can control focus and intensity of THz radiation emitted in rippled plasma by choosing the appropriate order of the tophat lasers and tuning of the wiggler field.
Modeling Pulse Transmission in the Monterey Bay Using Parabolic Equation Methods
1991-12-01
Collins 9-13 was chosen for this purpose due its energy conservation scheme , and its ability to efficiently incorporate higher order terms in its...pressure field generated by the PE model into normal modes. Additionally, this process provides increased physical understanding of mode coupling and...separation of variables (i.e. normal modes or fast field), as well as pure numerical schemes such as the parabolic equation methods, can be used. However, as
Elementary school children's science learning from school field trips
NASA Astrophysics Data System (ADS)
Glick, Marilyn Petty
This research examines the impact of classroom anchoring activities on elementary school students' science learning from a school field trip. Although there is prior research demonstrating that students can learn science from school field trips, most of this research is descriptive in nature and does not examine the conditions that enhance or facilitate such learning. The current study draws upon research in psychology and education to create an intervention that is designed to enhance what students learn from school science field trips. The intervention comprises of a set of "anchoring" activities that include: (1) Orientation to context, (2) Discussion to activate prior knowledge and generate questions, (3) Use of field notebooks during the field trip to record observations and answer questions generated prior to field trip, (4) Post-visit discussion of what was learned. The effects of the intervention are examined by comparing two groups of students: an intervention group which receives anchoring classroom activities related to their field trip and an equivalent control group which visits the same field trip site for the same duration but does not receive any anchoring classroom activities. Learning of target concepts in both groups was compared using objective pre and posttests. Additionally, a subset of students in each group were interviewed to obtain more detailed descriptive data on what children learned through their field trip.
CHARMM-GUI ligand reader and modeler for CHARMM force field generation of small molecules.
Kim, Seonghoon; Lee, Jumin; Jo, Sunhwan; Brooks, Charles L; Lee, Hui Sun; Im, Wonpil
2017-06-05
Reading ligand structures into any simulation program is often nontrivial and time consuming, especially when the force field parameters and/or structure files of the corresponding molecules are not available. To address this problem, we have developed Ligand Reader & Modeler in CHARMM-GUI. Users can upload ligand structure information in various forms (using PDB ID, ligand ID, SMILES, MOL/MOL2/SDF file, or PDB/mmCIF file), and the uploaded structure is displayed on a sketchpad for verification and further modification. Based on the displayed structure, Ligand Reader & Modeler generates the ligand force field parameters and necessary structure files by searching for the ligand in the CHARMM force field library or using the CHARMM general force field (CGenFF). In addition, users can define chemical substitution sites and draw substituents in each site on the sketchpad to generate a set of combinatorial structure files and corresponding force field parameters for throughput or alchemical free energy simulations. Finally, the output from Ligand Reader & Modeler can be used in other CHARMM-GUI modules to build a protein-ligand simulation system for all supported simulation programs, such as CHARMM, NAMD, GROMACS, AMBER, GENESIS, LAMMPS, Desmond, OpenMM, and CHARMM/OpenMM. Ligand Reader & Modeler is available as a functional module of CHARMM-GUI at http://www.charmm-gui.org/input/ligandrm. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Aksoy, A.; Lee, J. H.; Kitanidis, P. K.
2016-12-01
Heterogeneity in hydraulic conductivity (K) impacts the transport and fate of contaminants in subsurface as well as design and operation of managed aquifer recharge (MAR) systems. Recently, improvements in computational resources and availability of big data through electrical resistivity tomography (ERT) and remote sensing have provided opportunities to better characterize the subsurface. Yet, there is need to improve prediction and evaluation methods in order to obtain information from field measurements for better field characterization. In this study, genetic algorithm optimization, which has been widely used in optimal aquifer remediation designs, was used to determine the spatial distribution of K. A hypothetical 2 km by 2 km aquifer was considered. A genetic algorithm library, PGAPack, was linked with a fast Fourier transform based random field generator as well as a groundwater flow and contaminant transport simulation model (BIO2D-KE). The objective of the optimization model was to minimize the total squared error between measured and predicted field values. It was assumed measured K values were available through ERT. Performance of genetic algorithm in predicting the distribution of K was tested for different cases. In the first one, it was assumed that observed K values were evaluated using the random field generator only as the forward model. In the second case, as well as K-values obtained through ERT, measured head values were incorporated into evaluation in which BIO2D-KE and random field generator were used as the forward models. Lastly, tracer concentrations were used as additional information in the optimization model. Initial results indicated enhanced performance when random field generator and BIO2D-KE are used in combination in predicting the spatial distribution in K.
Critical constraint on inflationary magnetogenesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fujita, Tomohiro; Yokoyama, Shuichiro, E-mail: tomohiro.fujita@ipmu.jp, E-mail: shu@icrr.u-tokyo.ac.jp
2014-03-01
Recently, there are several reports that the cosmic magnetic fields on Mpc scale in void region is larger than ∼ 10{sup −15}G with an uncertainty of a few orders from the current blazar observations. On the other hand, in inflationary magnetogenesis models, additional primordial curvature perturbations are inevitably produced from iso-curvature perturbations due to generated electromagnetic fields. We explore such induced curvature perturbations in a model independent way and obtained a severe upper bound for the energy scale of inflation from the observed cosmic magnetic fields and the observed amplitude of the curvature perturbation , as ρ{sub inf}{sup 1/4}
Hydrodynamic Torques and Rotations of Superparamagnetic Bead Dimers
NASA Astrophysics Data System (ADS)
Pease, Christopher; Etheridge, J.; Wijesinghe, H. S.; Pierce, C. J.; Prikockis, M. V.; Sooryakumar, R.
Chains of micro-magnetic particles are often rotated with external magnetic fields for many lab-on-a-chip technologies such as transporting beads or mixing fluids. These applications benefit from faster responses of the actuated particles. In a rotating magnetic field, the magnetization of superparamagnetic beads, created from embedded magnetic nano-particles within a polymer matrix, is largely characterized by induced dipoles mip along the direction of the field. In addition there is often a weak dipole mop that orients out-of-phase with the external rotating field. On a two-bead dimer, the simplest chain of beads, mop contributes a torque Γm in addition to the torque from mip. For dimers with beads unbound to each other, mop rotates individual beads which generate an additional hydrodynamic torque on the dimer. Whereas, mop directly torques bound dimers. Our results show that Γm significantly alters the average frequency-dependent dimer rotation rate for both bound and unbound monomers and, when mop exceeds a critical value, increases the maximum dimer rotation frequency. Models that include magnetic and hydrodynamics torques provide good agreement with the experimental findings over a range of field frequencies.
Effect of head motion on MRI B0 field distribution.
Liu, Jiaen; de Zwart, Jacco A; van Gelderen, Peter; Murphy-Boesch, Joseph; Duyn, Jeff H
2018-05-16
To identify and characterize the sources of B 0 field changes due to head motion, to reduce motion sensitivity in human brain MRI. B 0 fields were measured in 5 healthy human volunteers at various head poses. After measurement of the total field, the field originating from the subject was calculated by subtracting the external field generated by the magnet and shims. A subject-specific susceptibility model was created to quantify the contribution of the head and torso. The spatial complexity of the field changes was analyzed using spherical harmonic expansion. Minor head pose changes can cause substantial and spatially complex field changes in the brain. For rotations and translations of approximately 5 º and 5 mm, respectively, at 7 T, the field change that is associated with the subject's magnetization generates a standard deviation (SD) of about 10 Hz over the brain. The stationary torso contributes to this subject-associated field change significantly with a SD of about 5 Hz. The subject-associated change leads to image-corrupting phase errors in multi-shot T2*-weighted acquisitions. The B 0 field changes arising from head motion are problematic for multishot T2*-weighted imaging. Characterization of the underlying sources provides new insights into mitigation strategies, which may benefit from individualized predictive field models in addition to real-time field monitoring and correction strategies. © 2018 International Society for Magnetic Resonance in Medicine.
Nonlinear generation of large-scale magnetic fields in forced spherical shell dynamos
DOE Office of Scientific and Technical Information (OSTI.GOV)
Livermore, P. W.; Hughes, D. W.; Tobias, S. M.
2010-03-15
In an earlier paper [P. W. Livermore, D. W. Hughes, and S. M. Tobias, ''The role of helicity and stretching in forced kinematic dynamos in a spherical shell'', Phys. Fluids 19, 057101 (2007)], we considered the kinematic dynamo action resulting from a forced helical flow in a spherical shell. Although mean field electrodynamics suggests that the resulting magnetic field should have a significant mean (axisymmetric) component, we found no evidence for this; the dynamo action was distinctly small scale. Here we extend our investigation into the nonlinear regime in which the magnetic field reacts back on the velocity via themore » Lorentz force. Our main result is somewhat surprising, namely, that nonlinear effects lead to a considerable change in the structure of the magnetic field, its final state having a significant mean component. By investigating the dominant flow-field interactions, we isolate the dynamo mechanism and show schematically how the generation process differs between the kinematic and nonlinear regimes. In addition, we are able to calculate some components of the transport coefficient {alpha} and thus discuss our results within the context of mean field electrodynamics.« less
Analysis of Surface Electric Field Measurements from an Array of Electric Field Mills
NASA Astrophysics Data System (ADS)
Lucas, G.; Thayer, J. P.; Deierling, W.
2016-12-01
Kennedy Space Center (KSC) has operated an distributed array of over 30 electric field mills over the past 18 years, providing a unique data set of surface electric field measurements over a very long timespan. In addition to the electric field instruments there are many meteorological towers around KSC that monitor the local meteorological conditions. Utilizing these datasets we have investigated and found unique spatial and temporal signatures in the electric field data that are attributed to local meteorological effects and the global electric circuit. The local and global scale influences on the atmospheric electric field will be discussed including the generation of space charge from the ocean surf, local cloud cover, and a local enhancement in the electric field that is seen at sunrise.
Gow, J.D.; Wilcox, J.M.
1961-12-26
A device is designed for producing and confining highenergy plasma from which neutrons are generated in copious quantities. A rotating sheath of electrons is established in a radial electric field and axial magnetic field produced within the device. The electron sheath serves as a strong ionizing medium to gas introdueed thereto and also functions as an extremely effective heating mechanism to the resulting plasma. In addition, improved confinement of the plasma is obtained by ring magnetic mirror fields produced at the ends of the device. Such ring mirror fields are defined by the magnetic field lines at the ends of the device diverging radially outward from the axis of the device and thereafter converging at spatial annular surfaces disposed concentrically thereabout. (AFC)
Plasmonic core-satellite assemblies with high stability and yield (Conference Presentation)
NASA Astrophysics Data System (ADS)
Huang, Li-Ching; Lin, Tien-Hsin; Liu, Zhi-Yan; Chen, Jyun-Hao; Wang, Yi-Chen; Chen, Shiuan-Yeh
2016-09-01
Plasmonic structures are attractive due to their optical properties in the near-field and far-field. In the near-field, the enhanced field they generated strongly interacts with materials in proximity to the surface and even produces the quantum hybrid states in the strong coupling regime. In the far-field, the larger scattering cross section of plasmonic particles provides better contrast for tissue imaging. In addition, the strong absorption can generate substantial amount of heat for cancer cell elimination. These optical properties are usually engineered through tuning the size and morphology of individual nanoparticles by various chemical synthesis methods. The alternative way is to use coupled structure based on existing particles. The molecule-linked structure is a common way for 3D plasmonic materials. However, to produce a stable coupled structure in the solution phase is challenging. The formation of linkage between linker molecules is usually time-consuming and at low efficiency. Increasing the concentration of linker molecules may raise the reaction speed but also result in the random aggregation of particles. In this work, a polyelectrolyte coating is used to connect spherical nanoparticles of different sizes to form core-satellite assemblies (CSA). The coupled core-satellite structure is formed almost immediately after the solutions of two particles are mixed. The output efficiency is nearly 100%. The CSA is robust under the additional silica shell coating and strong laser illumination. The stability of this CSA is confirmed by the Raman spectra and this assembly can potentially be used as Raman tags.
Transient regime in second harmonic generation
NASA Astrophysics Data System (ADS)
Szeftel, Jacob; Sandeau, Laure; Sandeau, Nicolas; Delezoide, Camille; Khater, Antoine
2013-09-01
The time growth of the electromagnetic field at the fundamental and double frequencies is studied from the very onset of the second harmonic generation (SHG) process for a set of dipoles lacking a symmetry centre and exhibiting a nonresonant coupling with a classical electromagnetic field. This approach consists first of solving the Schrödinger equation by applying a generalised Rabi rotation to the Hamiltonian describing the light-dipole interaction. This rotation has been devised for the resulting Hamiltonian to show up time-independent for both components of the electromagnetic field at the fundamental frequency and the second harmonic one. Then an energy conservation argument, derived from the Poynting theorem, is introduced to work out an additional relationship between the electromagnetic field and its associated electric polarisation. Finally this analysis yields the full time behaviour of all physical quantities of interest. The calculated results reproduce accurately both the observed spatial oscillations of the SHG intensity (Maker's fringes) and its power law dependence on the intensity of the incoming light at the fundamental frequency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kampf, Karol; Institute of Particle and Nuclear Physics, Faculty of Mathematics and Physics, Charles University in Prague, V Holesovickach 2, 18000 Prague; Novotny, Jiri
2010-06-01
We study in detail various aspects of the renormalization of the spin-1 resonance propagator in the effective field theory framework. First, we briefly review the formalisms for the description of spin-1 resonances in the path integral formulation with the stress on the issue of propagating degrees of freedom. Then we calculate the one-loop 1{sup --} meson self-energy within the resonance chiral theory in the chiral limit using different methods for the description of spin-1 particles, namely, the Proca field, antisymmetric tensor field, and the first-order formalisms. We discuss in detail technical aspects of the renormalization procedure which are inherent tomore » the power-counting nonrenormalizable theory and give a formal prescription for the organization of both the counterterms and one-particle irreducible graphs. We also construct the corresponding propagators and investigate their properties. We show that the additional poles corresponding to the additional one-particle states are generated by loop corrections, some of which are negative norm ghosts or tachyons. We count the number of such additional poles and briefly discuss their physical meaning.« less
Binary black holes' effects on electromagnetic fields.
Palenzuela, Carlos; Anderson, Matthew; Lehner, Luis; Liebling, Steven L; Neilsen, David
2009-08-21
In addition to producing gravitational waves, the dynamics of a binary black hole system could induce emission of electromagnetic radiation by affecting the behavior of plasmas and electromagnetic fields in their vicinity. We here study how the electromagnetic fields are affected by a pair of orbiting black holes through the merger. In particular, we show how the binary's dynamics induce a variability in possible electromagnetically induced emissions as well as a possible enhancement of electromagnetic fields during the late-merge and merger epochs. These time dependent features will likely leave their imprint in processes generating detectable emissions and can be exploited in the detection of electromagnetic counterparts of gravitational waves.
PYROTRON WITH TRANSLATIONAL CLOSURE FIELDS
Hartwig, E.C.; Cummings, D.B.; Post, R.F.
1962-01-01
Circuit means is described for effecting inward transla- ' tory motion of the intensified terminal reflector field regions of a magnetic mirror plasma containment field with a simultaneous intensification of the over-all field configuration. The circuit includes a segmented magnetic field generating solenoid and sequentially actuated switch means to consecutively short-circuit the solenoid segments and place charged capacitor banks in shunt with the segments in an appropriate correlated sequence such that electrical energy is transferred inwardly between adjacent segments from the opposite ends of the solenoid. The resulting magnetic field is effective in both radially and axially adiabatically compressing a plasma in a reaction chamber disposed concentrically within the solenoid. In addition, one half of the circuit may be employed to unidirectionally accelerate plasma. (AEC)
A Global Electric Circuit on Mars
NASA Technical Reports Server (NTRS)
Delory, G. T.; Farrell, W. M.; Desch, M. D.
2001-01-01
We describe conditions on the surface of Mars conducive to the formation of a martian global electric circuit, in a direct analogy to the terrestrial case where atmospheric currents and electric fields are generated worldwide through the charging in thunderstorms. Additional information is contained in the original extended abstract.
Applications of aerospace technology in industry. A technology transfer profile: Cryogenics
NASA Technical Reports Server (NTRS)
1971-01-01
Cryogenics is especially interesting when viewed from the perspective of technology transfer. Its recent rapid growth has been due to demands of both industry and aerospace. This environment provides an unusual opportunity to identify some of the forces active during a period of broad technological change and at the same time further the understanding of the technology transfer process. That process is specifically defined here as the ways in which technology, generated in NASA programs, contributes to technological change. In addition to presenting a brief overview of the cryogenics field and describing certain representative examples of the transfer of NASA-generated technology to the private sector, this presentation explores a singular relationship between NASA and another federal agency, the National Bureau of Standards. The relationship has operated both to generate and disseminate information fundamental to the broad growth of the cryogenics field.
Basic Study on the Generation of RF Plasmas in Premixed Oxy-combustion with Methane
NASA Astrophysics Data System (ADS)
Osaka, Yugo; Kobayashi, Noriyuki; Razzak, M. A.; Ohno, Noriyasu; Takamura, Shuichi; Uesugi, Yoshihiko
Oxy-combustion generates a high temperature field (above 3000 K), which is applied to next generation power plants and high temperature industrial technologies because of N2 free processes. However, the combustion temperature is so high that the furnace wall may be fatally damaged. In addition, it is very difficult to control the heat flux and chemical species' concentrations because of rapid chemical reactions. We have developed a new method for controlling the flame by electromagnetic force on this field. In this paper, we experimentally investigated the power coupling between the premixed oxy-combustion with methane and radio frequency (RF) power through the induction coil. By optimizing the power coupling, we observed that the flame can absorb RF power up to 1.5 kW. Spectroscopic measurements also showed an increase in the emission intensity from OH radicals in the flame, indicating improved combustibility.
NASA Astrophysics Data System (ADS)
Steffen, Julien; Hartke, Bernd
2017-10-01
Building on the recently published quantum-mechanically derived force field (QMDFF) and its empirical valence bond extension, EVB-QMDFF, it is now possible to generate a reliable potential energy surface for any given elementary reaction step in an essentially black box manner. This requires a limited and pre-defined set of reference data near the reaction path and generates an accurate approximation of the reference potential energy surface, on and off the reaction path. This intermediate representation can be used to generate reaction rate data, with far better accuracy and reliability than with traditional approaches based on transition state theory (TST) or variational extensions thereof (VTST), even if those include sophisticated tunneling corrections. However, the additional expense at the reference level remains very modest. We demonstrate all this for three arbitrarily chosen example reactions.
2, 84, 30, 993, 560, 15456, 11962, 261485, . . .: higher dimension operators in the SM EFT
Henning, Brian; Lu, Xiaochuan; Melia, Tom; ...
2017-08-04
In a companion paper, we show that operator bases for general effective field theories are controlled by the conformal algebra. Equations of motion and integration by parts identities can be systematically treated by organizing operators into irreducible representations of the conformal group. In the present work, we use this result to study the standard model effective field theory (SM EFT), determining the content and number of higher dimension operators up to dimension 12, for an arbitrary number of fermion generations. We find additional operators to those that have appeared in the literature at dimension 7 (specifically in the case ofmore » more than one fermion generation) and at dimension 8. (The title sequence is the total number of independent operators in the SM EFT with one fermion generation, including hermitian conjugates, ordered in mass dimension, starting at dimension 5.)« less
Wide-field depth-sectioning fluorescence microscopy using projector-generated patterned illumination
NASA Astrophysics Data System (ADS)
Delica, Serafin; Mar Blanca, Carlo
2007-10-01
We present a simple and cost-effective wide-field, depth-sectioning, fluorescence microscope utilizing a commercial multimedia projector to generate excitation patterns on the sample. Highly resolved optical sections of fluorescent pollen grains at 1.9 μm axial resolution are constructed using the structured illumination technique. This requires grid excitation patterns to be scanned across the sample, which is straightforwardly implemented by creating slideshows of gratings at different phases, projecting them onto the sample, and synchronizing camera acquisition with slide transition. In addition to rapid dynamic pattern generation, the projector provides high illumination power and spectral excitation selectivity. We exploit these properties by imaging mouse neural cells in cultures multistained with Alexa 488 and Cy3. The spectral and structural neural information is effectively resolved in three dimensions. The flexibility and commercial availability of this light source is envisioned to open multidimensional imaging to a broader user base.
Surface- and tip-enhanced Raman spectroscopy reveals spin-waves in iron oxide nanoparticles
NASA Astrophysics Data System (ADS)
Rodriguez, Raul D.; Sheremet, Evgeniya; Deckert-Gaudig, Tanja; Chaneac, Corinne; Hietschold, Michael; Deckert, Volker; Zahn, Dietrich R. T.
2015-05-01
Nanomaterials have the remarkable characteristic of displaying physical properties different from their bulk counterparts. An additional degree of complexity and functionality arises when oxide nanoparticles interact with metallic nanostructures. In this context the Raman spectra due to plasmonic enhancement of iron oxide nanocrystals are here reported showing the activation of spin-waves. Iron oxide nanoparticles on gold and silver tips are found to display a band around 1584 cm-1 attributed to a spin-wave magnon mode. This magnon mode is not observed for nanoparticles deposited on silicon (111) or on glass substrates. Metal-nanoparticle interaction and the strongly localized electromagnetic field contribute to the appearance of this mode. The localized excitation that generates this mode is confirmed by tip-enhanced Raman spectroscopy (TERS). The appearance of the spin-waves only when the TERS tip is in close proximity to a nanocrystal edge suggests that the coupling of a localized plasmon with spin-waves arises due to broken symmetry at the nanoparticle border and the additional electric field confinement. Beyond phonon confinement effects previously reported in similar systems, this work offers significant insights on the plasmon-assisted generation and detection of spin-waves optically induced.Nanomaterials have the remarkable characteristic of displaying physical properties different from their bulk counterparts. An additional degree of complexity and functionality arises when oxide nanoparticles interact with metallic nanostructures. In this context the Raman spectra due to plasmonic enhancement of iron oxide nanocrystals are here reported showing the activation of spin-waves. Iron oxide nanoparticles on gold and silver tips are found to display a band around 1584 cm-1 attributed to a spin-wave magnon mode. This magnon mode is not observed for nanoparticles deposited on silicon (111) or on glass substrates. Metal-nanoparticle interaction and the strongly localized electromagnetic field contribute to the appearance of this mode. The localized excitation that generates this mode is confirmed by tip-enhanced Raman spectroscopy (TERS). The appearance of the spin-waves only when the TERS tip is in close proximity to a nanocrystal edge suggests that the coupling of a localized plasmon with spin-waves arises due to broken symmetry at the nanoparticle border and the additional electric field confinement. Beyond phonon confinement effects previously reported in similar systems, this work offers significant insights on the plasmon-assisted generation and detection of spin-waves optically induced. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr01277e
[Triton X-100 induces heritable changes of morphological characters in Triticum aestivum L].
Makhmudova, K Kh; Bogdanova, E D; Levites, E V
2009-04-01
The effect of the nonionic detergent polyethylene glycol octylphenyl ester (Triton X-100, TX-100) on the spring common wheat cultivar Alem was studied under laboratory and field conditions. Treatment of seeds and vegetating plants with 0.1 or 0.01% TX-100 (aqueous solution) changed the spike morphology in all plants of the first posttreatment generation. The changes were inherited by the second generation without additional treatment with TX-100. Square-headed dense spikes with doubled spikelets of the duospiculum type (an additional spikelet at the top of the main one), elongate dense and lax spikes, mid-dense spikes, and fusiform spikes were observed. An epigenetic nature was assumed for the observed changes.
Xu, Jun; Watson, David B.; Whitten, William B.
2013-01-22
An ion mobility sensor system including an ion mobility spectrometer and a differential mobility spectrometer coupled to the ion mobility spectrometer. The ion mobility spectrometer has a first chamber having first end and a second end extending along a first direction, and a first electrode system that generates a constant electric field parallel to the first direction. The differential mobility spectrometer includes a second chamber having a third end and a fourth end configured such that a fluid may flow in a second direction from the third end to the fourth end, and a second electrode system that generates an asymmetric electric field within an interior of the second chamber. Additionally, the ion mobility spectrometer and the differential mobility spectrometer form an interface region. Also, the first end and the third end are positioned facing one another so that the constant electric field enters the third end and overlaps the fluid flowing in the second direction.
Current-induced spin polarization in InGaAs and GaAs epilayers with varying doping densities
NASA Astrophysics Data System (ADS)
Luengo-Kovac, M.; Huang, S.; Del Gaudio, D.; Occena, J.; Goldman, R. S.; Raimondi, R.; Sih, V.
2017-11-01
The current-induced spin polarization and momentum-dependent spin-orbit field were measured in InxGa1 -xAs epilayers with varying indium concentrations and silicon doping densities. Samples with higher indium concentrations and carrier concentrations and lower mobilities were found to have larger electrical spin generation efficiencies. Furthermore, current-induced spin polarization was detected in GaAs epilayers despite the absence of measurable spin-orbit fields, indicating that the extrinsic contributions to the spin-polarization mechanism must be considered. Theoretical calculations based on a model that includes extrinsic contributions to the spin dephasing and the spin Hall effect, in addition to the intrinsic Rashba and Dresselhaus spin-orbit coupling, are found to reproduce the experimental finding that the crystal direction with the smaller net spin-orbit field has larger electrical spin generation efficiency and are used to predict how sample parameters affect the magnitude of the current-induced spin polarization.
Field dependent magnetic anisotropy of Fe1-xZnx thin films
NASA Astrophysics Data System (ADS)
Resnick, Damon A.; McClure, A.; Kuster, C. M.; Rugheimer, P.; Idzerda, Y. U.
2013-05-01
Using longitudinal magneto-optical Kerr effect in combination with a variable strength rotating magnetic field, called the Rotational Magneto-Optic Kerr Effect (ROTMOKE) method, we show that the magnetic anisotropy for thin Fe82Zn18 single crystal films, grown on MgO(001) substrates, depends linearly on the strength of the applied magnetic field at low fields but is constant (saturates) at fields greater than 350 Oe. The torque moment curves generated using ROTMOKE are well fit with a model that accounts for the uniaxial and cubic anisotropy with the addition of a cubic anisotropy that depends linearly on the applied magnetic field. The field dependent term is evidence of a large effect on the effective magnetic anisotropy in Fe1-xZnx thin films by the magnetostriction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, C G; Ayers, M J; Felker, B
2012-04-20
Electromagnetic interference (EMI) is an ever-present challenge at laser facilities such as the National Ignition Facility (NIF). The major source of EMI at such facilities is laser-target interaction that can generate intense electromagnetic fields within, and outside of, the laser target chamber. In addition, the diagnostics themselves can be a source of EMI, even interfering with themselves. In this paper we describe EMI generated by ARIANE and DIXI, present measurements, and discuss effects of the diagnostic-generated EMI on ARIANE's CCD and on a PMT nearby DIXI. Finally we present some of the efforts we have made to mitigate the effectsmore » of diagnostic-generated EMI on NIF diagnostics.« less
Status and Assessments of CSR GRACE Level-2 Data Products
NASA Astrophysics Data System (ADS)
Bettadpur, Srinivas; Kang, Zhigui; Nagel, Peter; Pastor, Rick; Poole, Steve; Ries, John; Save, Himanshu
2015-04-01
The joint NASA/DLR GRACE mission has successfully operated for more than 13 years, and has provided a remarkable record of global mass flux due to a large variety of geophysical and climate processes at various spatio-temporal scales. The University of Texas Center for Space Research (CSR) hosts the mission PI, and is responsible for delivery of operational (presently denoted as Release-05 or RL05) gravity field data products. In addition, CSR generates and distributes a variety of other gravity field data products, including products generated from the use of satellite laser ranging data. This poster will provide an overview of all these data products, their relative quality, potential applications, and future plans for their development and delivery.
Computer-Generated Diagrams for the Classroom.
ERIC Educational Resources Information Center
Carle, Mark A.; Greenslade, Thomas B., Jr.
1986-01-01
Describes 10 computer programs used to draw diagrams usually drawn on chalkboards, such as addition of three vectors, vector components, range of a projectile, lissajous figures, beats, isotherms, Snell's law, waves passing through a lens, magnetic field due to Helmholtz coils, and three curves. Several programming tips are included. (JN)
Orientational control of block copolymer microdomains by sub-tesla magnetic fields
NASA Astrophysics Data System (ADS)
Gopinadhan, Manesh; Choo, Youngwoo; Feng, Xunda; Kawabata, Kohsuke; di, Xiaojun; Osuji, Chinedum
Magnetic fields offer a versatile approach to controlling the orientation of block copolymer (BCP) microdomains during self-assembly. To date however, such control has required the imposition of large magnetic fields (>3T), necessitating the use of complex magnet systems - either superconducting or very large conventional resistive magnets. Here we demonstrate the ability to direct BCP self-assembly using considerably smaller fields (<1T) which are accessible using simple rare-earth permanent magnets. The low field alignment is enabled by the presence of small quantities of mesogenic species that are blended into, and co-assemble with the liquid crystalline (LC) mesophase of the side-chain LC BCP under study. In situ SAXS experiments reveal a pronounced dependence of the critical alignment field strength on the stoichiometry of the blend, and the ability to generate aligned microdomains with orientational distribution coefficients exceeding 0.95 at sub-1 T fields for appropriate stoichiometries. The alignment response overall can be rationalized in terms of increased mobility and grain size due to the presence of the mesogenic additive. We use a permanent magnet to fabricate films with aligned nanopores, and the utility of this approach to generate complex BCP microdomain patterns in thin films by local field screening are highlighted. NSF DMR-1410568 and DMR-0847534.
Time resolved measurements of the flow generated by suction feeding fish
NASA Astrophysics Data System (ADS)
Day, Steven W.; Higham, Timothy E.; Wainwright, Peter C.
2007-11-01
The majority of aquatic vertebrates are suction feeders: by rapidly expanding the mouth cavity they generate a fluid flow outside of their head in order to draw prey into their mouth. In addition to the biological relevance, the generated flow field is interesting fluid mechanically as it incorporates high velocities, is localized in front of the mouth, and is unsteady, typically lasting between 10 and 50 ms. Using manometry and high-speed particle image velocimetry, this is the first study to quantify pressure within and outside the mouth of a feeding fish while simultaneously measuring the velocity field outside the mouth. Measurements with a high temporal (2 ms) and spatial (<1 mm) resolution were made for several feeding events of a single largemouth bass ( Micropterus salmoides). General properties of the flow were evaluated, including the transient velocity field, its relationship to pressure within the mouth and pressure at the prey. We find that throughout the feeding event a relationship exists for the magnitude of fluid speed as a function of distance from the predator mouth that is based on scaling the velocity field according to the size of the mouth opening and the magnitude of fluid speed at the mouth. The velocity field is concentrated within an area extending approximately one mouth diameter from the fish and the generated pressure field is even more local to the mouth aperture. Although peak suction pressures measured inside the mouth were slightly larger than those that were predicted using the equations of motion, we find that these equations give a very accurate prediction of the timing of peak pressure, so long as the unsteady nature of the flow is included.
Time resolved measurements of the flow generated by suction feeding fish
NASA Astrophysics Data System (ADS)
Day, Steven W.; Higham, Timothy E.; Wainwright, Peter C.
The majority of aquatic vertebrates are suction feeders: by rapidly expanding the mouth cavity they generate a fluid flow outside of their head in order to draw prey into their mouth. In addition to the biological relevance, the generated flow field is interesting fluid mechanically as it incorporates high velocities, is localized in front of the mouth, and is unsteady, typically lasting between 10 and 50 ms. Using manometry and high-speed particle image velocimetry, this is the first study to quantify pressure within and outside the mouth of a feeding fish while simultaneously measuring the velocity field outside the mouth. Measurements with a high temporal (2 ms) and spatial (<1 mm) resolution were made for several feeding events of a single largemouth bass (Micropterus salmoides). General properties of the flow were evaluated, including the transient velocity field, its relationship to pressure within the mouth and pressure at the prey. We find that throughout the feeding event a relationship exists for the magnitude of fluid speed as a function of distance from the predator mouth that is based on scaling the velocity field according to the size of the mouth opening and the magnitude of fluid speed at the mouth. The velocity field is concentrated within an area extending approximately one mouth diameter from the fish and the generated pressure field is even more local to the mouth aperture. Although peak suction pressures measured inside the mouth were slightly larger than those that were predicted using the equations of motion, we find that these equations give a very accurate prediction of the timing of peak pressure, so long as the unsteady nature of the flow is included.
Pulsar Emission Geometry and Accelerating Field Strength
NASA Technical Reports Server (NTRS)
DeCesar, Megan E.; Harding, Alice K.; Miller, M. Coleman; Kalapotharakos, Constantinos; Parent, Damien
2012-01-01
The high-quality Fermi LAT observations of gamma-ray pulsars have opened a new window to understanding the generation mechanisms of high-energy emission from these systems, The high statistics allow for careful modeling of the light curve features as well as for phase resolved spectral modeling. We modeled the LAT light curves of the Vela and CTA I pulsars with simulated high-energy light curves generated from geometrical representations of the outer gap and slot gap emission models. within the vacuum retarded dipole and force-free fields. A Markov Chain Monte Carlo maximum likelihood method was used to explore the phase space of the magnetic inclination angle, viewing angle. maximum emission radius, and gap width. We also used the measured spectral cutoff energies to estimate the accelerating parallel electric field dependence on radius. under the assumptions that the high-energy emission is dominated by curvature radiation and the geometry (radius of emission and minimum radius of curvature of the magnetic field lines) is determined by the best fitting light curves for each model. We find that light curves from the vacuum field more closely match the observed light curves and multiwavelength constraints, and that the calculated parallel electric field can place additional constraints on the emission geometry
Hyperbolic-symmetry vector fields.
Gao, Xu-Zhen; Pan, Yue; Cai, Meng-Qiang; Li, Yongnan; Tu, Chenghou; Wang, Hui-Tian
2015-12-14
We present and construct a new kind of orthogonal coordinate system, hyperbolic coordinate system. We present and design a new kind of local linearly polarized vector fields, which is defined as the hyperbolic-symmetry vector fields because the points with the same polarization form a series of hyperbolae. We experimentally demonstrate the generation of such a kind of hyperbolic-symmetry vector optical fields. In particular, we also study the modified hyperbolic-symmetry vector optical fields with the twofold and fourfold symmetric states of polarization when introducing the mirror symmetry. The tight focusing behaviors of these vector fields are also investigated. In addition, we also fabricate micro-structures on the K9 glass surfaces by several tightly focused (modified) hyperbolic-symmetry vector fields patterns, which demonstrate that the simulated tightly focused fields are in good agreement with the fabricated micro-structures.
Solar Field Optical Characterization at Stillwater Geothermal/Solar Hybrid Plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Guangdong; Turchi, Craig
Concentrating solar power (CSP) can provide additional thermal energy to boost geothermal plant power generation. For a newly constructed solar field at a geothermal power plant site, it is critical to properly characterize its performance so that the prediction of thermal power generation can be derived to develop an optimum operating strategy for a hybrid system. In the past, laboratory characterization of a solar collector has often extended into the solar field performance model and has been used to predict the actual solar field performance, disregarding realistic impacting factors. In this work, an extensive measurement on mirror slope error andmore » receiver position error has been performed in the field by using the optical characterization tool called Distant Observer (DO). Combining a solar reflectance sampling procedure, a newly developed solar characterization program called FirstOPTIC and public software for annual performance modeling called System Advisor Model (SAM), a comprehensive solar field optical characterization has been conducted, thus allowing for an informed prediction of solar field annual performance. The paper illustrates this detailed solar field optical characterization procedure and demonstrates how the results help to quantify an appropriate tracking-correction strategy to improve solar field performance. In particular, it is found that an appropriate tracking-offset algorithm can improve the solar field performance by about 15%. The work here provides a valuable reference for the growing CSP industry.« less
Solar Field Optical Characterization at Stillwater Geothermal/Solar Hybrid Plant
Zhu, Guangdong; Turchi, Craig
2017-01-27
Concentrating solar power (CSP) can provide additional thermal energy to boost geothermal plant power generation. For a newly constructed solar field at a geothermal power plant site, it is critical to properly characterize its performance so that the prediction of thermal power generation can be derived to develop an optimum operating strategy for a hybrid system. In the past, laboratory characterization of a solar collector has often extended into the solar field performance model and has been used to predict the actual solar field performance, disregarding realistic impacting factors. In this work, an extensive measurement on mirror slope error andmore » receiver position error has been performed in the field by using the optical characterization tool called Distant Observer (DO). Combining a solar reflectance sampling procedure, a newly developed solar characterization program called FirstOPTIC and public software for annual performance modeling called System Advisor Model (SAM), a comprehensive solar field optical characterization has been conducted, thus allowing for an informed prediction of solar field annual performance. The paper illustrates this detailed solar field optical characterization procedure and demonstrates how the results help to quantify an appropriate tracking-correction strategy to improve solar field performance. In particular, it is found that an appropriate tracking-offset algorithm can improve the solar field performance by about 15%. The work here provides a valuable reference for the growing CSP industry.« less
Electromagnetic fields and potentials generated by massless charged particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azzurli, Francesco, E-mail: francesco.azzurli@gmail.com; Lechner, Kurt, E-mail: lechner@pd.infn.it; INFN, Sezione di Padova, Via F. Marzolo, 8, 35131 Padova
2014-10-15
We provide for the first time the exact solution of Maxwell’s equations for a massless charged particle moving on a generic trajectory at the speed of light. In particular we furnish explicit expressions for the vector potential and the electromagnetic field, which were both previously unknown, finding that they entail different physical features for bounded and unbounded trajectories. With respect to the standard Liénard–Wiechert field the electromagnetic field acquires singular δ-like contributions whose support and dimensionality depend crucially on whether the motion is (a) linear, (b) accelerated unbounded, (c) accelerated bounded. In the first two cases the particle generates amore » planar shock-wave-like electromagnetic field traveling along a straight line. In the second and third cases the field acquires, in addition, a δ-like contribution supported on a physical singularity-string attached to the particle. For generic accelerated motions a genuine radiation field is also present, represented by a regular principal-part type distribution diverging on the same singularity-string. - Highlights: • First exact solution of Maxwell’s equations for massless charges in arbitrary motion. • Explicit expressions of electromagnetic fields and potentials. • Derivations are rigorous and based on distribution theory. • The form of the field depends heavily on whether the motion is bounded or unbounded. • The electromagnetic field contains unexpected Dirac-delta-function contributions.« less
System and method for generating steady state confining current for a toroidal plasma fusion reactor
Fisch, Nathaniel J.
1981-01-01
A system for generating steady state confining current for a toroidal plasma fusion reactor providing steady-state generation of the thermonuclear power. A dense, hot toroidal plasma is initially prepared with a confining magnetic field with toroidal and poloidal components. Continuous wave RF energy is injected into said plasma to establish a spectrum of traveling waves in the plasma, where the traveling waves have momentum components substantially either all parallel, or all anti-parallel to the confining magnetic field. The injected RF energy is phased to couple to said traveling waves with both a phase velocity component and a wave momentum component in the direction of the plasma traveling wave components. The injected RF energy has a predetermined spectrum selected so that said traveling waves couple to plasma electrons having velocities in a predetermined range .DELTA.. The velocities in the range are substantially greater than the thermal electron velocity of the plasma. In addition, the range is sufficiently broad to produce a raised plateau having width .DELTA. in the plasma electron velocity distribution so that the plateau electrons provide steady-state current to generate a poloidal magnetic field component sufficient for confining the plasma. In steady state operation of the fusion reactor, the fusion power density in the plasma exceeds the power dissipated in the plasma.
System and method for generating steady state confining current for a toroidal plasma fusion reactor
Bers, Abraham
1981-01-01
A system for generating steady state confining current for a toroidal plasma fusion reactor providing steady-state generation of the thermonuclear power. A dense, hot toroidal plasma is initially prepared with a confining magnetic field with toroidal and poloidal components. Continuous wave RF energy is injected into said plasma to estalish a spectrum of traveling waves in the plasma, where the traveling waves have momentum components substantially either all parallel, or all anti-parallel to the confining magnetic field. The injected RF energy is phased to couple to said traveling waves with both a phase velocity component and a wave momentum component in the direction of the plasma traveling wave components. The injected RF energy has a predetermined spectrum selected so that said traveling waves couple to plasma electrons having velocities in a predetermined range .DELTA.. The velocities in the range are substantially greater than the thermal electron velocity of the plasma. In addition, the range is sufficiently broad to produce a raised plateau having width .DELTA. in the plasma electron velocity distribution so that the plateau electrons provide steady-state current to generate a poloidal magnetic field component sufficient for confining the plasma. In steady state operation of the fusion reactor, the fusion power density in the plasma exceeds the power dissipated inthe plasma.
Escovar, Jesús; Bello, Felio J; Morales, Alberto; Moncada, Ligia; Cárdenas, Estrella
2004-10-01
Lutzomyia spinicrassa is a vector of Leishmania braziliensis in Colombia. This sand fly has a broad geographical distribution in Colombia and Venezuela and it is found mainly in coffee plantations. Baseline biological growth data of L. spinicrassa were obtained under experimental laboratory conditions. The development time from egg to adult ranged from 59 to 121 days, with 12.74 weeks in average. Based on cohorts of 100 females, horizontal life table was constructed. The following predictive parameters were obtained: net rate of reproduction (8.4 females per cohort female), generation time (12.74 weeks), intrinsic rate of population increase (0.17), and finite rate of population increment (1.18). The reproductive value for each class age of the cohort females was calculated. Vertical life tables were elaborated and mortality was described for the generation obtained of the field cohort. In addition, for two successive generations, additive variance and heritability for fecundity were estimated.
Rodriguez-Falces, Javier
2013-12-01
In electrophysiology studies, it is becoming increasingly common to explain experimental observations using both descriptive methods and quantitative approaches. However, some electrophysiological phenomena, such as the generation of extracellular potentials that results from the propagation of the excitation source along the muscle fiber, are difficult to describe and conceptualize. In addition, most traditional approaches aimed at describing extracellular potentials consist of complex mathematical machinery that gives no chance for physical interpretation. The aim of the present study is to present a new method to teach the formation of extracellular potentials around a muscle fiber from both a descriptive and quantitative perspective. The implementation of this method was tested through a written exam and a satisfaction survey. The new method enhanced the ability of students to visualize the generation of bioelectrical potentials. In addition, the new approach improved students' understanding of how changes in the fiber-to-electrode distance and in the shape of the excitation source are translated into changes in the extracellular potential. The survey results show that combining general principles of electrical fields with accurate graphic imagery gives students an intuitive, yet quantitative, feel for electrophysiological signals and enhances their motivation to continue their studies in the biomedical engineering field.
NASA Astrophysics Data System (ADS)
Misra, Ajay; Dutta, Rina; Chowdhury, Mihir
1995-09-01
The magnetic response of the radical pair generated by the hydrogen abstraction of the photoexcited benzil triplet from sodium dodecyl sulphate is studied. It is found that radical decay curves, with or without magnetic field, are affected on addition of small amphiphiles such as 1,4-dioxane. The results have been interpreted on the basis of the ability of the latter to change the micellar aggregation number and intramicellar viscosity.
Preliminary Experiment of Non-Inductive Plasma Current Startup in SUNIST Spherical Tokamak
NASA Astrophysics Data System (ADS)
He, Yexi; Zhang, Liang; Xie, Lifeng; Tang, Yi; Yang, Xuanzong; Feng, Chunhua; Fu, Hongjun
2006-01-01
The non-inductive plasma current startup is an important motivation in SUNIST spherical tokamak. In the recent experiment, the magnetron microwave system of 100 kW and 2.45 GHz has been used to the ECR plasma current startup. Besides the toroidal field, a vertical field was applied to generate preliminary toroidal plasma current without the action of the central solenoid. As the evidence of plasma current startup with the effect of vertical field drift, the direction of plasma current is changed when the direction of vertical field changes during the ECR plasma current startup discharge. We also observed a maximum plasma current by scanning vertical field in both directions. Additionally, we used electrode discharge to assist the ECR plasma current startup.
Multimode four-wave mixing in an unresolved sideband optomechanical system
NASA Astrophysics Data System (ADS)
Li, Zongyang; You, Xiang; Li, Yongmin; Liu, Yong-Chun; Peng, Kunchi
2018-03-01
We have studied multimode four-wave mixing (FWM) in an unresolved sideband cavity optomechanical system. The radiation pressure coupling between the cavity fields and multiple mechanical modes results in the formation of a series of tripod-type energy-level systems, which induce the multimode FWM phenomenon. The FWM mechanism enables remarkable amplification of a weak signal field accompanied by the generation of an FWM field when only a microwatt-level pump field is applied. For proper system parameters, the amplified signal and FWM fields have equal intensity with opposite phases. The gain and frequency response bandwidth of the signal field can be dynamically tuned by varying the pump intensity, optomechanical coupling strength, and additional feedback control. Under certain conditions, the frequency response bandwidth can be very narrow and reaches the level of hertz.
Effective field theory of statistical anisotropies for primordial bispectrum and gravitational waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rostami, Tahereh; Karami, Asieh; Firouzjahi, Hassan, E-mail: t.rostami@ipm.ir, E-mail: karami@ipm.ir, E-mail: firouz@ipm.ir
2017-06-01
We present the effective field theory studies of primordial statistical anisotropies in models of anisotropic inflation. The general action in unitary gauge is presented to calculate the leading interactions between the gauge field fluctuations, the curvature perturbations and the tensor perturbations. The anisotropies in scalar power spectrum and bispectrum are calculated and the dependence of these anisotropies to EFT couplings are presented. In addition, we calculate the statistical anisotropy in tensor power spectrum and the scalar-tensor cross correlation. Our EFT approach incorporates anisotropies generated in models with non-trivial speed for the gauge field fluctuations and sound speed for scalar perturbationsmore » such as in DBI inflation.« less
Increasing power generation in horizontal axis wind turbines using optimized flow control
NASA Astrophysics Data System (ADS)
Cooney, John A., Jr.
In order to effectively realize future goals for wind energy, the efficiency of wind turbines must increase beyond existing technology. One direct method for achieving increased efficiency is by improving the individual power generation characteristics of horizontal axis wind turbines. The potential for additional improvement by traditional approaches is diminishing rapidly however. As a result, a research program was undertaken to assess the potential of using distributed flow control to increase power generation. The overall objective was the development of validated aerodynamic simulations and flow control approaches to improve wind turbine power generation characteristics. BEM analysis was conducted for a general set of wind turbine models encompassing last, current, and next generation designs. This analysis indicated that rotor lift control applied in Region II of the turbine power curve would produce a notable increase in annual power generated. This was achieved by optimizing induction factors along the rotor blade for maximum power generation. In order to demonstrate this approach and other advanced concepts, the University of Notre Dame established the Laboratory for Enhanced Wind Energy Design (eWiND). This initiative includes a fully instrumented meteorological tower and two pitch-controlled wind turbines. The wind turbines are representative in their design and operation to larger multi-megawatt turbines, but of a scale that allows rotors to be easily instrumented and replaced to explore new design concepts. Baseline data detailing typical site conditions and turbine operation is presented. To realize optimized performance, lift control systems were designed and evaluated in CFD simulations coupled with shape optimization tools. These were integrated into a systematic design methodology involving BEM simulations, CFD simulations and shape optimization, and selected experimental validation. To refine and illustrate the proposed design methodology, a complete design cycle was performed for the turbine model incorporated in the wind energy lab. Enhanced power generation was obtained through passive trailing edge shaping aimed at reaching lift and lift-to-drag goals predicted to optimize performance. These targets were determined by BEM analysis to improve power generation characteristics and annual energy production (AEP) for the wind turbine. A preliminary design was validated in wind tunnel experiments on a 2D rotor section in preparation for testing in the full atmospheric environment of the eWiND Laboratory. These tests were performed for the full-scale geometry and atmospheric conditions. Upon making additional improvements to the shape optimization tools, a series of trailing edge additions were designed to optimize power generation. The trailing edge additions were predicted to increase the AEP by up to 4.2% at the White Field site. The pieces were rapid-prototyped and installed on the wind turbine in March, 2014. Field tests are ongoing.
Operation of A Sunpower M87 Cryocooler In A Magnetic Field
NASA Technical Reports Server (NTRS)
Breon, S. R.; Shirey, K. A.; Banks, I. S.; Warner, B. A.; Boyle, R. F.; Mustafi, S.; Krebs,Carolyn A. (Technical Monitor)
2002-01-01
The Alpha Magnetic Spectrometer-02 (AMS-02) is an experiment that will be flown as an attached payload on the International Space Station to detect dark matter and antimatter. It uses large superconducting magnets cooled with superfluid helium to bend the path of cosmic particles through a series of detectors, which then measure the mass, speed, charge, and direction of the particles. Four Sunpower M87N Stirling-cycle cryocoolers are used to extend the mission life by cooling the outer vapor-cooled shield of the dewar. The main magnet coils are separated by a distance of approximately 1 m and the coolers are located approximately 1.5 m from the center line of the magnet, where the field is as high as 925 gauss perpendicular to the cryocooler axis and 400 gauss along the cryocooler axis. Interactions between the applied magnetic field and the linear motor may result in additional forces and torques on the compressor piston. Motion of the compressor arid displacer pistons through the magnetic field spatial gradients will generate eddy currents. Additional eddy currents are created during magnet charge, discharge, and quench by the time-varying magnetic field. The results of tests to determine the magnitude of the forces, torques, and heating effects, as well as the need for additional magnetic shielding, are presented.
NASA Astrophysics Data System (ADS)
Ren, Hengxin; Huang, Qinghua; Chen, Xiaofei
2018-03-01
We conduct numerical simulations and theoretical analyses to quantitatively study the amplitude decay characteristic of the evanescent electromagnetic (EM) waves, which has been neglected in previous studies on the seismoelectric conversion occurring at a porous-porous interface. Time slice snapshots of seismic and EM wave-fields generated by a vertical single force point source in a two-layer porous model show that evanescent EM waves can be induced at a porous-porous interface. The seismic and EM wave-fields computed for a receiver array located in a vertical line nearby the interface are investigated in detail. In addition to the direct and interface-response radiation EM waves, we identify three groups of coseismic EM fields and evanescent EM waves associated with the direct P, refracted SV-P and direct SV waves, respectively. Thereafter, we derive the mathematical expression of the amplitude decay factor of the evanescent EM waves. This mathematical expression is further validated by our numerical simulations. It turns out the amplitude decay of the evanescent EM waves generated by seismoelectric conversion is greatly dependent on the horizontal wavenumber of seismic waves. It is also found the evanescent EM waves have a higher detectability at a lower frequency range. This work provides a better understanding on the EM wave-fields generated by seismoelectric conversion, which probably will help improve the interpretation of the seismoelectric coupling phenomena associated with natural earthquakes or possibly will inspire some new ideas on the application of the seismoelectric coupling effect.
NASA Astrophysics Data System (ADS)
Chen, Shaohua; Xu, Yaopengxiao; Jiao, Yang
2018-06-01
Additive manufacturing such as selective laser sintering and electron beam melting has become a popular technique which enables one to build near-net-shape product from packed powders. The performance and properties of the manufactured product strongly depends on its material microstructure, which is in turn determined by the processing conditions including beam power density, spot size, scanning speed and path etc. In this paper, we develop a computational framework that integrates the finite element method (FEM) and cellular automaton (CA) simulation to model the 3D microstructure of additively manufactured Ti–6Al–4V alloy, focusing on the β → α + β transition pathway in a consolidated alloy region as the power source moves away from this region. Specifically, the transient temperature field resulted from a scanning laser/electron beam following a zig-zag path is first obtained by solving nonlinear heat transfer equations using the FEM. Next, a CA model for the β → α + β phase transformation in the consolidated alloy is developed which explicitly takes into account the temperature dependent heterogeneous nucleation and anisotropic growth of α grains from the parent β phase field. We verify our model by reproducing the overall transition kinetics predicted by the Johnson–Mehl–Avrami–Kolmogorov theory under a typical processing condition and by quantitatively comparing our simulation results with available experimental data. The utility of the model is further demonstrated by generating large-field realistic 3D alloy microstructures for subsequent structure-sensitive micro-mechanical analysis. In addition, we employ our model to generate a wide spectrum of alloy microstructures corresponding to different processing conditions for establishing quantitative process-structure relations for the system.
Computer-generated holograms by multiple wavefront recording plane method with occlusion culling.
Symeonidou, Athanasia; Blinder, David; Munteanu, Adrian; Schelkens, Peter
2015-08-24
We propose a novel fast method for full parallax computer-generated holograms with occlusion processing, suitable for volumetric data such as point clouds. A novel light wave propagation strategy relying on the sequential use of the wavefront recording plane method is proposed, which employs look-up tables in order to reduce the computational complexity in the calculation of the fields. Also, a novel technique for occlusion culling with little additional computation cost is introduced. Additionally, the method adheres a Gaussian distribution to the individual points in order to improve visual quality. Performance tests show that for a full-parallax high-definition CGH a speedup factor of more than 2,500 compared to the ray-tracing method can be achieved without hardware acceleration.
Time-resolved lateral spin-caloric transport of optically generated spin packets in n-GaAs
NASA Astrophysics Data System (ADS)
Göbbels, Stefan; Güntherodt, Gernot; Beschoten, Bernd
2018-05-01
We report on lateral spin-caloric transport (LSCT) of electron spin packets which are optically generated by ps laser pulses in the non-magnetic semiconductor n-GaAs at K. LSCT is driven by a local temperature gradient induced by an additional cw heating laser. The spatio-temporal evolution of the spin packets is probed using time-resolved Faraday rotation. We demonstrate that the local temperature-gradient induced spin diffusion is solely driven by a non-equilibrium hot spin distribution, i.e. without involvement of phonon drag effects. Additional electric field-driven spin drift experiments are used to verify directly the validity of the non-classical Einstein relation for moderately doped semiconductors at low temperatures for near band-gap excitation.
Apparatuses and methods for generating electric fields
Scott, Jill R; McJunkin, Timothy R; Tremblay, Paul L
2013-08-06
Apparatuses and methods relating to generating an electric field are disclosed. An electric field generator may include a semiconductive material configured in a physical shape substantially different from a shape of an electric field to be generated thereby. The electric field is generated when a voltage drop exists across the semiconductive material. A method for generating an electric field may include applying a voltage to a shaped semiconductive material to generate a complex, substantially nonlinear electric field. The shape of the complex, substantially nonlinear electric field may be configured for directing charged particles to a desired location. Other apparatuses and methods are disclosed.
NASA Astrophysics Data System (ADS)
Lai, Qiang; Zhao, Xiao-Wen; Rajagopal, Karthikeyan; Xu, Guanghui; Akgul, Akif; Guleryuz, Emre
2018-01-01
This paper considers the generation of multi-butterfly chaotic attractors from a generalised Sprott C system with multiple non-hyperbolic equilibria. The system is constructed by introducing an additional variable whose derivative has a switching function to the Sprott C system. It is numerically found that the system creates two-, three-, four-, five-butterfly attractors and any other multi-butterfly attractors. First, the dynamic analyses of multi-butterfly chaotic attractors are presented. Secondly, the field programmable gate array implementation, electronic circuit realisation and random number generator are done with the multi-butterfly chaotic attractors.
Low-cost, compact, cooled photomultiplier assembly for use in magnetic fields up to 1400 Gauss
NASA Technical Reports Server (NTRS)
Patch, R. W.; Tashjian, R. A.; Jentner, T. A.
1975-01-01
Use of vortex tube for cooling and concentric shielding have produced smaller and more compact unit than was previously available. Future uses of device could include installation in gas chromatographs and mass spectrometers. Additional uses would include measurements and controls in magnetohydrodynamic power generators and fusion reactors.
Active Targets For Capacitive Proximity Sensors
NASA Technical Reports Server (NTRS)
Jenstrom, Del T.; Mcconnell, Robert L.
1994-01-01
Lightweight, low-power active targets devised for use with improved capacitive proximity sensors described in "Capacitive Proximity Sensor Has Longer Range" (GSC-13377), and "Capacitive Proximity Sensors With Additional Driven Shields" (GSC-13475). Active targets are short-distance electrostatic beacons; they generate known alternating electro-static fields used for alignment and/or to measure distances.
Correlation in photon pairs generated using four-wave mixing in a cold atomic ensemble
NASA Astrophysics Data System (ADS)
Ferdinand, Andrew Richard; Manjavacas, Alejandro; Becerra, Francisco Elohim
2017-04-01
Spontaneous four-wave mixing (FWM) in atomic ensembles can be used to generate narrowband entangled photon pairs at or near atomic resonances. While extensive research has been done to investigate the quantum correlations in the time and polarization of such photon pairs, the study and control of high dimensional quantum correlations contained in their spatial degrees of freedom has not been fully explored. In our work we experimentally investigate the generation of correlated light from FWM in a cold ensemble of cesium atoms as a function of the frequencies of the pump fields in the FWM process. In addition, we theoretically study the spatial correlations of the photon pairs generated in the FWM process, specifically the joint distribution of their orbital angular momentum (OAM). We investigate the width of the distribution of the OAM modes, known as the spiral bandwidth, and the purity of OAM correlations as a function of the properties of the pump fields, collected photons, and the atomic ensemble. These studies will guide experiments involving high dimensional entanglement of photons generated from this FWM process and OAM-based quantum communication with atomic ensembles. This work is supported by AFORS Grant FA9550-14-1-0300.
Meckel, T. A.; Trevisan, L.; Krishnamurthy, P. G.
2017-08-23
Small-scale (mm to m) sedimentary structures (e.g. ripple lamination, cross-bedding) have received a great deal of attention in sedimentary geology. The influence of depositional heterogeneity on subsurface fluid flow is now widely recognized, but incorporating these features in physically-rational bedform models at various scales remains problematic. The current investigation expands the capability of an existing set of open-source codes, allowing generation of high-resolution 3D bedform architecture models. The implemented modifications enable the generation of 3D digital models consisting of laminae and matrix (binary field) with characteristic depositional architecture. The binary model is then populated with petrophysical properties using a texturalmore » approach for additional analysis such as statistical characterization, property upscaling, and single and multiphase fluid flow simulation. One example binary model with corresponding threshold capillary pressure field and the scripts used to generate them are provided, but the approach can be used to generate dozens of previously documented common facies models and a variety of property assignments. An application using the example model is presented simulating buoyant fluid (CO 2) migration and resulting saturation distribution.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meckel, T. A.; Trevisan, L.; Krishnamurthy, P. G.
Small-scale (mm to m) sedimentary structures (e.g. ripple lamination, cross-bedding) have received a great deal of attention in sedimentary geology. The influence of depositional heterogeneity on subsurface fluid flow is now widely recognized, but incorporating these features in physically-rational bedform models at various scales remains problematic. The current investigation expands the capability of an existing set of open-source codes, allowing generation of high-resolution 3D bedform architecture models. The implemented modifications enable the generation of 3D digital models consisting of laminae and matrix (binary field) with characteristic depositional architecture. The binary model is then populated with petrophysical properties using a texturalmore » approach for additional analysis such as statistical characterization, property upscaling, and single and multiphase fluid flow simulation. One example binary model with corresponding threshold capillary pressure field and the scripts used to generate them are provided, but the approach can be used to generate dozens of previously documented common facies models and a variety of property assignments. An application using the example model is presented simulating buoyant fluid (CO 2) migration and resulting saturation distribution.« less
The next generation Antarctic digital magnetic anomaly map
von Frese, R.R.B; Golynsky, A.V.; Kim, H.R.; Gaya-Piqué, L.; Thébault, E.; Chiappinii, M.; Ghidella, M.; Grunow, A.; ,
2007-01-01
S (Golynsky et al., 2001). This map synthesized over 7.1 million line-kms of survey data available up through 1999 from marine, airborne and Magsat satellite observations. Since the production of the initial map, a large number of new marine and airborne surveys and improved magnetic observations from the Ørsted and CHAMP satellite missions have become available. In addition, an improved core field model for the Antarctic has been developed to better isolate crustal anomalies in these data. The next generation compilation also will likely represent the magnetic survey observations of the region in terms of a high-resolution spherical cap harmonic model. In this paper, we review the progress and problems of developing an improved magnetic anomaly map to facilitate studies of the Antarctic crustal magnetic field
An algorithmic framework for multiobjective optimization.
Ganesan, T; Elamvazuthi, I; Shaari, Ku Zilati Ku; Vasant, P
2013-01-01
Multiobjective (MO) optimization is an emerging field which is increasingly being encountered in many fields globally. Various metaheuristic techniques such as differential evolution (DE), genetic algorithm (GA), gravitational search algorithm (GSA), and particle swarm optimization (PSO) have been used in conjunction with scalarization techniques such as weighted sum approach and the normal-boundary intersection (NBI) method to solve MO problems. Nevertheless, many challenges still arise especially when dealing with problems with multiple objectives (especially in cases more than two). In addition, problems with extensive computational overhead emerge when dealing with hybrid algorithms. This paper discusses these issues by proposing an alternative framework that utilizes algorithmic concepts related to the problem structure for generating efficient and effective algorithms. This paper proposes a framework to generate new high-performance algorithms with minimal computational overhead for MO optimization.
An Algorithmic Framework for Multiobjective Optimization
Ganesan, T.; Elamvazuthi, I.; Shaari, Ku Zilati Ku; Vasant, P.
2013-01-01
Multiobjective (MO) optimization is an emerging field which is increasingly being encountered in many fields globally. Various metaheuristic techniques such as differential evolution (DE), genetic algorithm (GA), gravitational search algorithm (GSA), and particle swarm optimization (PSO) have been used in conjunction with scalarization techniques such as weighted sum approach and the normal-boundary intersection (NBI) method to solve MO problems. Nevertheless, many challenges still arise especially when dealing with problems with multiple objectives (especially in cases more than two). In addition, problems with extensive computational overhead emerge when dealing with hybrid algorithms. This paper discusses these issues by proposing an alternative framework that utilizes algorithmic concepts related to the problem structure for generating efficient and effective algorithms. This paper proposes a framework to generate new high-performance algorithms with minimal computational overhead for MO optimization. PMID:24470795
Asymptotic symmetries of colored gravity in three dimensions
NASA Astrophysics Data System (ADS)
Joung, Euihun; Kim, Jaewon; Kim, Jihun; Rey, Soo-Jong
2018-03-01
Three-dimensional colored gravity refers to nonabelian isospin extension of Einstein gravity. We investigate the asymptotic symmetry algebra of the SU( N)-colored gravity in (2+1)-dimensional anti-de Sitter spacetime. Formulated by the Chern-Simons theory with SU( N, N) × SU( N, N) gauge group, the theory contains graviton, SU( N) Chern-Simons gauge fields and massless spin-two multiplets in the SU( N) adjoint representation, thus extending diffeomorphism to colored, nonabelian counterpart. We identify the asymptotic symmetry as Poisson algebra of generators associated with the residual global symmetries of the nonabelian diffeomorphism set by appropriately chosen boundary conditions. The resulting asymptotic symmetry algebra is a nonlinear extension of \\widehat{su(N)} Kac-Moody algebra, supplemented by additional generators corresponding to the massless spin-two adjoint matter fields.
A small signal amplifier based on ionic liquid gated black phosphorous field effect transistor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Saptarshi; Zhang, Wei; Thoutam, Laxman Raju
2015-04-10
In this article we report an analog small signal amplifier based on semiconducting black phosphorus (BP), the most recent addition to the family of two dimensional crystals. The amplifier, consisting of a BP load resistor and a BP field effect transistor (FET) was integrated on a single flake. The gain of the amplifier was found to be ~9 and it remained undistorted for input signal frequencies up to 15 kHz. In addition, we also report record high ON current of 200 µA/µm at V DD = -0.5V in BP FETs. Our results demonstrates the possibility for the implementation of BPmore » in the future generations of analog devices.« less
Recent Developments and Applications of the CHARMM force fields
Zhu, Xiao; Lopes, Pedro E.M.; MacKerell, Alexander D.
2011-01-01
Empirical force fields commonly used to describe the condensed phase properties of complex systems such as biological macromolecules are continuously being updated. Improvements in quantum mechanical (QM) methods used to generate target data, availability of new experimental target data, incorporation of new classes of compounds and new theoretical developments (eg. polarizable methods) make force-field development a dynamic domain of research. Accordingly, a number of improvements and extensions of the CHARMM force fields have occurred over the years. The objective of the present review is to provide an up-to-date overview of the CHARMM force fields. A limited presentation on the historical aspects of force fields will be given, including underlying methodologies and principles, along with a brief description of the strategies used for parameter development. This is followed by information on the CHARMM additive and polarizable force fields, including examples of recent applications of those force fields. PMID:23066428
Modeling Progressive Failure of Bonded Joints Using a Single Joint Finite Element
NASA Technical Reports Server (NTRS)
Stapleton, Scott E.; Waas, Anthony M.; Bednarcyk, Brett A.
2010-01-01
Enhanced finite elements are elements with an embedded analytical solution which can capture detailed local fields, enabling more efficient, mesh-independent finite element analysis. In the present study, an enhanced finite element is applied to generate a general framework capable of modeling an array of joint types. The joint field equations are derived using the principle of minimum potential energy, and the resulting solutions for the displacement fields are used to generate shape functions and a stiffness matrix for a single joint finite element. This single finite element thus captures the detailed stress and strain fields within the bonded joint, but it can function within a broader structural finite element model. The costs associated with a fine mesh of the joint can thus be avoided while still obtaining a detailed solution for the joint. Additionally, the capability to model non-linear adhesive constitutive behavior has been included within the method, and progressive failure of the adhesive can be modeled by using a strain-based failure criteria and re-sizing the joint as the adhesive fails. Results of the model compare favorably with experimental and finite element results.
Ac-loss measurement of a DyBCO-Roebel assembled coated conductor cable (RACC)
NASA Astrophysics Data System (ADS)
Schuller, S.; Goldacker, W.; Kling, A.; Krempasky, L.; Schmidt, C.
2007-10-01
Low ac-loss HTS cables for transport currents well above 1 kA are required for application in transformers and generators and are taken into consideration for future generations of fusion reactor coils. Coated conductors (CC) are suitable candidates for high field application at an operation temperature around 50-77 K, which is a crucial precondition for economical cooling costs. We prepared a short length of a Roebel bar cable made of industrial DyBCO coated conductor (Theva Company, Germany). Meander shaped tapes of 4 mm width with a twist pitch of 122 mm were cut from 10 mm wide CC tapes using a specially designed tool. Eleven of these strands were assembled to a cable. The electrical and mechanical connection of the tapes was achieved using a silver powder filled conductive epoxy resin. Ac-losses of a short sample in an external ac field were measured as a function of frequency and field amplitude in transverse and parallel field orientations. In addition, the coupling current time constant of the sample was directly measured.
2014-09-01
antibody (J591) against the external portion of PSMA that binds to viable PSMA-expressing cells and is internalized. Studies utilizing J591...metastatic CRPC to bone (Rad223, Xofigo ®) leading to excitement within the field. A more tumor-targeted approach utilizing J591 is of increased...has generated renewed scientific and clinical interest. In addition, recent studies utilizing J591-based immuno- PET imaging providing additional
DOE Office of Scientific and Technical Information (OSTI.GOV)
Catterall, Simon; Veernala, Aarti
We construct a lattice theory with one exact supersymmetry which consists of fields transforming in both the adjoint and fundamental representations of a U(Nc) gauge group. In addition to gluons and gluinos, the theory contains Nf flavors of fermion in the fundamental representation along with their scalar partners and is invariant under a global U(Nf) flavor symmetry. The lattice action contains an additional Fayet-Iliopoulos term which can be used to generate a scalar potential. We perform numerical simulations that corroborate the theoretical expectation that supersymmetry is spontaneously broken for Nf
Dielectrophoretic behaviours of microdroplet sandwiched between LN substrates
Chen, Lipin; Li, Shaobei; Fan, Bolin; Yan, Wenbo; Wang, Donghui; Shi, Lihong; Chen, Hongjian; Ban, Dechao; Sun, Shihao
2016-01-01
We demonstrate a sandwich configuration for microfluidic manipulation in LiNbO3 platform based on photovoltaic effect, and the behaviours of dielectric microdroplet under this sandwich configuration are investigated. It is found that the microdroplet can generate in the form of liquid bridge inside the LiNbO3-based sandwich structure under the governing dielectrophoretic force, and the dynamic process of microdroplet generation highly depends on the substrate combinations. Dynamic features found for different combinations are explained by the different electrostatic field distribution basing on the finite-element simulation results. Moreover, the electrostatic field required by the microdroplet generation is estimated through meniscus evolution and it is found in good agreement with the simulated electrostatic field inside the sandwich gap. Several kinds of microdroplet manipulations are attempted in this work. We suggest that the local dielectrophoretic force acting on the microdroplet depends on the distribution of the accumulated irradiation dosage. Without using any additional pumping or jetting actuator, the microdroplet can be step-moved, deformed or patterned by the inconsecutive dot-irradiation scheme, as well as elastically stretched out and back or smoothly guided in a designed pass by the consecutive line-irradiation scheme. PMID:27383027
Kotlyar, Victor V; Almazov, Anton A; Khonina, Svetlana N; Soifer, Victor A; Elfstrom, Henna; Turunen, Jari
2005-05-01
We deduce and study an analytical expression for Fresnel diffraction of a plane wave by a spiral phase plate (SPP) that imparts an arbitrary-order phase singularity on the light field. Estimates for the optical vortex radius that depends on the singularity's integer order n (also termed topological charge, or order of the dislocation) have been derived. The near-zero vortex intensity is shown to be proportional to rho2n, where p is the radial coordinate. Also, an analytical expression for Fresnel diffraction of the Gaussian beam by a SPP with nth-order singularity is analyzed. The far-field intensity distribution is derived. The radius of maximal intensity is shown to depend on the singularity number. The behavior of the Gaussian beam intensity after a SPP with second-order singularity (n = 2) is studied in more detail. The parameters of the light beams generated numerically with the Fresnel transform and via analytical formulas are in good agreement. In addition, the light fields with first- and second-order singularities were generated by a 32-level SPP fabricated on the resist by use of the electron-beam lithography technique.
Surface waves generated by shallow underwater explosions
NASA Technical Reports Server (NTRS)
Falade, A.; Holt, M.
1978-01-01
Surface water waves generated by surface and near surface point explosions are calculated. Taking the impulse distribution imparted at the water surface by the explosion as the overriding mechanism for transferring energy of the explosive to surface wave motion, the linearized theory of Kranzer and Keller is used to obtain the wave displacement in the far field. The impulse distribution is obtained by integrating the pressure wave over an appropriate time interval on a horizontal surface just beneath the undisturbed water surface. For surface explosions, a modified form of the similarity method first used by Collins and Holt is used to obtain the flow field. In the case of submerged explosions, the flow field is estimated by making necessary modifications to Sedov's similarity solution to account for the venting that accompanies the interaction of the leading (blast) wave with the ocean surface. Surface waves generated by a charge at six depths of placement (0.15 m, 0.30 m, 0.61 m, 0.91 m, 1.37 m, 3.05 m) are considered in addition to surface explosions. The results seem to support the existence of an upper critical depth phenomenon (of the type already established for chemical explosions) for point (nuclear) explosions.
Design study of electron cyclotron resonance-ion plasma accelerator for heavy ion cancer therapy.
Inoue, T; Hattori, T; Sugimoto, S; Sasai, K
2014-02-01
Electron Cyclotron Resonance-Ion Plasma Accelerator (ECR-IPAC) device, which theoretically can accelerate multiple charged ions to several hundred MeV with short acceleration length, has been proposed. The acceleration mechanism is based on the combination of two physical principles, plasma electron ion adiabatic ejection (PLEIADE) and Gyromagnetic Autoresonance (GYRAC). In this study, we have designed the proof of principle machine ECR-IPAC device and simulated the electromagnetic field distribution generating in the resonance cavity. ECR-IPAC device consisted of three parts, ECR ion source section, GYRAC section, and PLEIADE section. ECR ion source section and PLEIADE section were designed using several multi-turn solenoid coils and sextupole magnets, and GYRAC section was designed using 10 turns coil. The structure of ECR-IPAC device was the cylindrical shape, and the total length was 1024 mm and the maximum diameter was 580 mm. The magnetic field distribution, which maintains the stable acceleration of plasma, was generated on the acceleration center axis throughout three sections. In addition, the electric field for efficient acceleration of electrons was generated in the resonance cavity by supplying microwave of 2.45 GHz.
Patel, Mohak; Leggett, Susan E; Landauer, Alexander K; Wong, Ian Y; Franck, Christian
2018-04-03
Spatiotemporal tracking of tracer particles or objects of interest can reveal localized behaviors in biological and physical systems. However, existing tracking algorithms are most effective for relatively low numbers of particles that undergo displacements smaller than their typical interparticle separation distance. Here, we demonstrate a single particle tracking algorithm to reconstruct large complex motion fields with large particle numbers, orders of magnitude larger than previously tractably resolvable, thus opening the door for attaining very high Nyquist spatial frequency motion recovery in the images. Our key innovations are feature vectors that encode nearest neighbor positions, a rigorous outlier removal scheme, and an iterative deformation warping scheme. We test this technique for its accuracy and computational efficacy using synthetically and experimentally generated 3D particle images, including non-affine deformation fields in soft materials, complex fluid flows, and cell-generated deformations. We augment this algorithm with additional particle information (e.g., color, size, or shape) to further enhance tracking accuracy for high gradient and large displacement fields. These applications demonstrate that this versatile technique can rapidly track unprecedented numbers of particles to resolve large and complex motion fields in 2D and 3D images, particularly when spatial correlations exist.
Primary Generators of Visually Evoked Field Potentials Recorded in the Macaque Auditory Cortex.
Kajikawa, Yoshinao; Smiley, John F; Schroeder, Charles E
2017-10-18
Prior studies have reported "local" field potential (LFP) responses to faces in the macaque auditory cortex and have suggested that such face-LFPs may be substrates of audiovisual integration. However, although field potentials (FPs) may reflect the synaptic currents of neurons near the recording electrode, due to the use of a distant reference electrode, they often reflect those of synaptic activity occurring in distant sites as well. Thus, FP recordings within a given brain region (e.g., auditory cortex) may be "contaminated" by activity generated elsewhere in the brain. To determine whether face responses are indeed generated within macaque auditory cortex, we recorded FPs and concomitant multiunit activity with linear array multielectrodes across auditory cortex in three macaques (one female), and applied current source density (CSD) analysis to the laminar FP profile. CSD analysis revealed no appreciable local generator contribution to the visual FP in auditory cortex, although we did note an increase in the amplitude of visual FP with cortical depth, suggesting that their generators are located below auditory cortex. In the underlying inferotemporal cortex, we found polarity inversions of the main visual FP components accompanied by robust CSD responses and large-amplitude multiunit activity. These results indicate that face-evoked FP responses in auditory cortex are not generated locally but are volume-conducted from other face-responsive regions. In broader terms, our results underscore the caution that, unless far-field contamination is removed, LFPs in general may reflect such "far-field" activity, in addition to, or in absence of, local synaptic responses. SIGNIFICANCE STATEMENT Field potentials (FPs) can index neuronal population activity that is not evident in action potentials. However, due to volume conduction, FPs may reflect activity in distant neurons superimposed upon that of neurons close to the recording electrode. This is problematic as the default assumption is that FPs originate from local activity, and thus are termed "local" (LFP). We examine this general problem in the context of previously reported face-evoked FPs in macaque auditory cortex. Our findings suggest that face-FPs are indeed generated in the underlying inferotemporal cortex and volume-conducted to the auditory cortex. The note of caution raised by these findings is of particular importance for studies that seek to assign FP/LFP recordings to specific cortical layers. Copyright © 2017 the authors 0270-6474/17/3710139-15$15.00/0.
Interaction of biological systems with static and ELF electric and magnetic fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, L.E.; Kelman, B.J.; Weigel, R.J.
1987-01-01
Although background levels of atmospheric electric and geomagnetic field levels are extremely low, over the past several decades, human beings and other life forms on this planet have been subjected to a dramatically changing electromagnetic milieu. An exponential increase in exposure to electromagnetic fields has occurred, largely because of such technological advances as the growth of electrical power generation and transmission systems, the increased use of wireless communications, and the use of radar. In addition, electromagnetic field generating devices have proliferated in industrial plants, office buildings, homes, public transportation systems, and elsewhere. Although significant increases have occurred in electromagnetic fieldmore » strenghths spanning all frequency ranges, this symposium addresses only the impact of these fields at static and extremely low frequencies (ELF), primarily 50 and 60 Hz. This volume contains the proceedings of the symposium entitled /open quotes/Interaction of biological systems with static and ELF electric and magnetic fields/close quotes/. The purpose of the symposium was to provide a forum for discussions of all aspects of research on the interaction of static and ELF electromagnetic fields with biological systems. These systems include simple biophysical models, cell and organ preparations, whole animals, and man. Dosimetry, exposure system design, and artifacts in ELF bioeffects research were also addressed, along with current investigations that examine fundamental mechanisms of interactions between the fields and biological processes. Papers are indexed separately.« less
Wood, Joseph P; Blair Martin, G
2009-05-30
The numerous buildings that became contaminated with Bacillus anthracis (the bacterium causing the disease anthrax) in 2001, and more recent B. anthracis - related events, point to the need to have effective decontamination technologies for buildings contaminated with biological threat agents. The U.S. Government developed a portable chlorine dioxide (ClO(2)) generation system to decontaminate buildings contaminated with B. anthracis spores, and this so-called mobile decontamination trailer (MDT) prototype was tested through a series of three field trials. The first test of the MDT was conducted at Fort McClellan in Anniston, AL. during October 2004. Four test attempts occurred over two weekends; however, a number of system problems resulted in termination of the activity prior to any ClO(2) introduction into the test building. After making several design enhancements and equipment changes, the MDT was subjected to a second test. During this test, extensive leak checks were made using argon and nitrogen in lieu of chlorine gas; each subsystem was checked for functionality, and the MDT was operated for 24h. This second test demonstrated the MDT flow and control systems functioned satisfactorily, and thus it was decided to proceed to a third, more challenging field trial. In the last field test, ClO(2) was generated and routed directly to the scrubber in a 12-h continuous run. Measurement of ClO(2) levels at the generator outlet showed that the desired production rate was not achieved. Additionally, only one of the two scrubbers performed adequately with regard to maintaining ClO(2) emissions below the limit. Numerous lessons were learned in the field trials of this ClO(2) decontamination technology.
Linking high harmonics from gases and solids.
Vampa, G; Hammond, T J; Thiré, N; Schmidt, B E; Légaré, F; McDonald, C R; Brabec, T; Corkum, P B
2015-06-25
When intense light interacts with an atomic gas, recollision between an ionizing electron and its parent ion creates high-order harmonics of the fundamental laser frequency. This sub-cycle effect generates coherent soft X-rays and attosecond pulses, and provides a means to image molecular orbitals. Recently, high harmonics have been generated from bulk crystals, but what mechanism dominates the emission remains uncertain. To resolve this issue, we adapt measurement methods from gas-phase research to solid zinc oxide driven by mid-infrared laser fields of 0.25 volts per ångström. We find that when we alter the generation process with a second-harmonic beam, the modified harmonic spectrum bears the signature of a generalized recollision between an electron and its associated hole. In addition, we find that solid-state high harmonics are perturbed by fields so weak that they are present in conventional electronic circuits, thus opening a route to integrate electronics with attosecond and high-harmonic technology. Future experiments will permit the band structure of a solid to be tomographically reconstructed.
Lee, Jaeyul; Kwon, Hyungwoo; Song, Jaewon; Jeon, Mansik; Kim, Jeehyun
2017-01-01
A handheld line information reader and a line information generator were developed for the efficient management of optical communication lines. The line information reader consists of a photo diode, trans-impedance amplifier, voltage amplifier, microcontroller unit, display panel, and communication modules. The line information generator consists of a laser diode, laser driving circuits, microcontroller unit, and communication modules. The line information reader can detect the optical radiation field of the test line by bending the optical fiber. To enhance the sensitivity of the line information reader, an additional lens was used with a focal length of 4.51 mm. Moreover, the simulation results obtained through BeamPROP® software from Synopsys, Inc. demonstrated a stronger optical radiation field of the fiber due to a longer transmission wavelength and larger bending angle of the fiber. Therefore, the developed devices can be considered as useful tools for the efficient management of optical communication lines. PMID:28837058
Numerical analysis of propeller induced ground vortices by actuator disk model.
Yang, Y; Veldhuis, L L M; Eitelberg, G
2018-01-01
During the ground operation of aircraft, the interaction between the propulsor-induced flow field and the ground may lead to the generation of ground vortices. Utilizing numerical approaches, the source of vorticity entering ground vortices is investigated. The results show that the production of wall-parallel components of vorticity has a strong contribution from the wall-parallel components of the pressure gradient on the wall, which is generated by the action of the propulsor. This mechanism is a supplementation for the vorticity transported from the far-field boundary layer, which has been assumed the main vorticity source in a number of previous publications. Furthermore, the quantitative prediction of the occurrence of ground vortices is performed from the numerical results. As the distance of the propeller form the ground decreases, and as the thrust of the propeller increases, ground vortices are generated from the ground and enter the propeller. In addition, the vortices which exist near the ground but does not enter the propeller plane are observed and visualized by three-dimensional data.
NASA Astrophysics Data System (ADS)
Nilsson, Martin; Jamot, Jakob; Malm, Tommy
2017-06-01
To field test its Stirling-dish unit, Cleanergy AB of Sweden in Q1 2015 built a ten unit demo park in Dubai. The first STE (Solar Thermal Energy) generation of its Stirling genset, the C11S, had at its core an 11 kWel Stirling engine/generator combination. The genset was mated with a parabolic concentrator developed for the genset by a supplier. Local weather conditions in Dubai provide opportunities to test performance in an environment with high insolation and high ambient temperature. In addition, the conditions in Dubai are windy, salty, humid and dusty, historically challenging for solar technologies [1]. In Q1 2016 one of the C11S Stirling-dish units was replaced by the first prototype of Cleanergy's second generation Stirling genset, the Sunbox, and an in-house developed parabolic concentrator. Operational data from field testing during the spring of 2016 are presented and discussed and show the large performance improvement achieved with the Sunbox unit.
Generation of uniformly oriented in-plane magnetization with near-unity purity in 4π microscopy.
Wang, Sicong; Cao, Yaoyu; Li, Xiangping
2017-12-01
In this Letter, we numerically demonstrate the all-optical generation of uniformly oriented in-plane magnetization with near-unity purity (more than 99%) under a 4π microscopic configuration. This is achieved through focusing two counter-propagating vector beams consisting of coherently configured linear and radial components. Based on the Debye diffraction theory, constructive and destructive interferences of the focal field components can be tailored under the 4π configuration to generate high-purity uniformly polarized transverse and longitudinal electric-field components in the center of the focal region. Consequently, near-unity purity in-plane magnetization with a uniform orientation within the focal volume defined by the full width at half-maximum can be created through the inverse Faraday effect. In addition, it reveals that the purity of the in-plane magnetization is robust against the numerical aperture of the focal lens. This result expands the flexibility of magnetization manipulations through light and holds great potential in all-optical magnetic recording and spintronics.
Translation table for DOE/OSTI - COSATI bibliographic records to MARC format records
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gursky, K.; Holtkamp, I.; Landenberger, S.
1985-11-01
This report contains the recommendations of the committee for the conversion of data in OSTI fields to MARC fields. It is intended as a tool for OSTI to use in developing software that would enable DOE libraries to download OSTI records into MARC-based systems. Goal is to transfer as complete a set of data for each record as possible. No attempt was made to incorporate changes in the use of numerical tags that OSTI has made over the years. In addition, there are a few OSTI fields generated for internal OSTI use only, or that cannot be transferred into anymore » MARC field in the Books format; these OSTI fields have been designated as ''not converted'' in the table.« less
Current-induced spin polarization in InGaAs and GaAs epilayers with varying doping densities
Luengo-Kovac, Marta; Huang, Simon; Del Gaudio, Davide; ...
2017-11-16
Here, the current-induced spin polarization and momentum-dependent spin-orbit field were measured in In xGa 1-xAs epilayers with varying indium concentrations and silicon doping densities. Samples with higher indium concentrations and carrier concentrations and lower mobilities were found to have larger electrical spin generation efficiencies. Furthermore, current-induced spin polarization was detected in GaAs epilayers despite the absence of measurable spin-orbit fields, indicating that the extrinsic contributions to the spin-polarization mechanism must be considered. Theoretical calculations based on a model that includes extrinsic contributions to the spin dephasing and the spin Hall effect, in addition to the intrinsic Rashba and Dresselhaus spin-orbitmore » coupling, are found to reproduce the experimental finding that the crystal direction with the smaller net spin-orbit field has larger electrical spin generation efficiency and are used to predict how sample parameters affect the magnitude of the current-induced spin polarization.« less
Molecular cloud formation in high-shear, magnetized colliding flows
NASA Astrophysics Data System (ADS)
Fogerty, E.; Frank, A.; Heitsch, F.; Carroll-Nellenback, J.; Haig, C.; Adams, M.
2016-08-01
The colliding flows (CF) model is a well-supported mechanism for generating molecular clouds. However, to-date most CF simulations have focused on the formation of clouds in the normal-shock layer between head-on colliding flows. We performed simulations of magnetized colliding flows that instead meet at an oblique-shock layer. Oblique shocks generate shear in the post-shock environment, and this shear creates inhospitable environments for star formation. As the degree of shear increases (I.e. the obliquity of the shock increases), we find that it takes longer for sink particles to form, they form in lower numbers, and they tend to be less massive. With regard to magnetic fields, we find that even a weak field stalls gravitational collapse within forming clouds. Additionally, an initially oblique collision interface tends to reorient over time in the presence of a magnetic field, so that it becomes normal to the oncoming flows. This was demonstrated by our most oblique shock interface, which became fully normal by the end of the simulation.
NASA Astrophysics Data System (ADS)
Zhao, Yang; Wang, Junlan; Wu, Xiaoping; Williams, Fred W.; Schmidt, Richard J.
1997-12-01
Based on multi-scattering speckle theory, the speckle fields generated by plant specimens irradiated by laser light have been studied using a pointwise method. In addition, a whole-field method has been developed with which entire botanical specimens may be studied. Results are reported from measurements made on tomato and apple fruits, orange peel, leaves of tobacco seedlings, leaves of shihu seedlings (a Chinese medicinal herb), soy-bean sprouts, and leaves from an unidentified trailing houseplant. Although differences where observed in the temporal fluctuations of speckles that could be ascribed to differences in age and vitality, the growing tip of the bean sprout and the shihu seedling both generated virtually stationary speckles such as were observed from boiled orange peel and from localised heat-damaged regions on apple fruit. Our results suggest that both the identity of the botanical specimen and the site at which measurements are taken are likely to critically affect the observation or otherwise of temporal fluctuations of laser speckles.
Eliminating the η-problem in SUGRA hybrid inflation with vector backreaction
NASA Astrophysics Data System (ADS)
Dimopoulos, Konstantinos; Lazarides, George; Wagstaff, Jacques M.
2012-02-01
It is shown that, when the inflaton field modulates the gauge kinetic function of the gauge fields in supergravity realisations of inflation, the dynamic backreaction leads to a new inflationary attractor solution, in which the inflaton's variation suffers additional impedance. As a result, slow-roll inflation can naturally occur along directions of the scalar potential which would be too steep and curved to support it otherwise. This provides a generic solution to the infamous eta-problem of inflation in supergravity. Moreover, it is shown that, in the new inflationary attractor, the spectral index of the generated curvature perturbations is kept mildly red despite eta of order unity. The above findings are applied to a model of hybrid inflation in supergravity with a generic Kähler potential. The spectral index of the generated curvature perturbations is found to be 0.97-0.98, in excellent agreement with observations. The gauge field can play the role of the vector curvaton after inflation but observable statistical anisotropy requires substantial tuning of the gauge coupling.
Profiling Oman education data using data mining approach
NASA Astrophysics Data System (ADS)
Alawi, Sultan Juma Sultan; Shaharanee, Izwan Nizal Mohd; Jamil, Jastini Mohd
2017-10-01
Nowadays, with a large amount of data generated by many application services in different learning fields has led to the new challenges in education field. Education portal is an important system that leads to a better development of education field. This research paper presents an innovative data mining techniques to understand and summarizes the information of Oman's education data generated from the Ministry of Education Oman "Educational Portal". This research embarks into performing student profiling of the Oman student database. This study utilized the k-means clustering technique to determine the students' profiles. An amount of 42484-student records from Sultanate of Oman has been extracted for this study. The findings of this study show the practicality of clustering technique to investigating student's profiles. Allowing for a better understanding of student's behavior and their academic performance. Oman Education Portal contain a large amounts of user activity and interaction data. Analyses of this large data can be meaningful for educator to improve the student performance level and recognize students who needed additional attention.
Current-induced spin polarization in InGaAs and GaAs epilayers with varying doping densities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luengo-Kovac, Marta; Huang, Simon; Del Gaudio, Davide
Here, the current-induced spin polarization and momentum-dependent spin-orbit field were measured in In xGa 1-xAs epilayers with varying indium concentrations and silicon doping densities. Samples with higher indium concentrations and carrier concentrations and lower mobilities were found to have larger electrical spin generation efficiencies. Furthermore, current-induced spin polarization was detected in GaAs epilayers despite the absence of measurable spin-orbit fields, indicating that the extrinsic contributions to the spin-polarization mechanism must be considered. Theoretical calculations based on a model that includes extrinsic contributions to the spin dephasing and the spin Hall effect, in addition to the intrinsic Rashba and Dresselhaus spin-orbitmore » coupling, are found to reproduce the experimental finding that the crystal direction with the smaller net spin-orbit field has larger electrical spin generation efficiency and are used to predict how sample parameters affect the magnitude of the current-induced spin polarization.« less
Jones, Elizabeth J.P.; Voytek, Mary A.; Corum, Margo D.; Orem, William H.
2010-01-01
Biogenic formation of methane from coal is of great interest as an underexploited source of clean energy. The goal of some coal bed producers is to extend coal bed methane productivity and to utilize hydrocarbon wastes such as coal slurry to generate new methane. However, the process and factors controlling the process, and thus ways to stimulate it, are poorly understood. Subbituminous coal from a nonproductive well in south Texas was stimulated to produce methane in microcosms when the native population was supplemented with nutrients (biostimulation) or when nutrients and a consortium of bacteria and methanogens enriched from wetland sediment were added (bioaugmentation). The native population enriched by nutrient addition included Pseudomonas spp., Veillonellaceae, and Methanosarcina barkeri. The bioaugmented microcosm generated methane more rapidly and to a higher concentration than the biostimulated microcosm. Dissolved organics, including long-chain fatty acids, single-ring aromatics, and long-chain alkanes accumulated in the first 39 days of the bioaugmented microcosm and were then degraded, accompanied by generation of methane. The bioaugmented microcosm was dominated by Geobacter sp., and most of the methane generation was associated with growth of Methanosaeta concilii. The ability of the bioaugmentation culture to produce methane from coal intermediates was confirmed in incubations of culture with representative organic compounds. This study indicates that methane production could be stimulated at the nonproductive field site and that low microbial biomass may be limiting in situ methane generation. In addition, the microcosm study suggests that the pathway for generating methane from coal involves complex microbial partnerships.
Field dependent magnetic anisotropy of Ga0.2Fe0.8 thin films
NASA Astrophysics Data System (ADS)
Resnick, Damon A.; McClure, A.; Kuster, C. M.; Rugheimer, P.; Idzerda, Y. U.
2011-04-01
Using longitudinal MOKE in combination with a variable strength rotating magnetic field, called the rotational MOKE (ROTMOKE) method, we show that the magnetic anisotropy for a Ga0.2Fe0.8 single crystal film with a thickness of 17 nm, grown on GaAs (001) with a thick ZnSe buffer layer, depends linearly on the strength of the applied magnetic field. The torque moment curves generated using ROTMOKE are well fit with a model that accounts for the uniaxial, cubic, or fourfold anisotropy, as well as additional terms with a linear dependence on the applied magnetic field. The uniaxial and cubic anisotropy fields, taken from both the hard and the easy axis scans, are seen to remain field independent. The field dependent terms are evidence of a large affect of the magnetostriction and its contribution to the effective magnetic anisotropy in GaxFe1-x thin films.
Oscillation characteristics of zero-field spin transfer oscillators with field-like torque
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Yuan-Yuan; Xue, Hai-Bin, E-mail: xuehaibin@tyut.edu.cn; Department of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024
2015-05-15
We theoretically investigate the influence of the field-like spin torque term on the oscillation characteristics of spin transfer oscillators, which are based on MgO magnetic tunnel junctions (MTJs) consisting of a perpendicular magnetized free layer and an in-plane magnetized pinned layer. It is demonstrated that the field-like torque has a strong impact on the steady-state precession current region and the oscillation frequency. In particular, the steady-state precession can occur at zero applied magnetic field when the ratio between the field-like torque and the spin transfer torque takes up a negative value. In addition, the dependence of the oscillation properties onmore » the junction sizes has also been analyzed. The results indicate that this compact structure of spin transfer oscillator without the applied magnetic field is practicable under certain conditions, and it may be a promising configuration for the new generation of on-chip oscillators.« less
Çeliker, Metin; Özgür, Abdulkadir; Tümkaya, Levent; Terzi, Suat; Yılmaz, Mustafa; Kalkan, Yıldıray; Erdoğan, Ender
The use of mobile phones has become widespread in recent years. Although beneficial from the communication viewpoint, the electromagnetic fields generated by mobile phones may cause unwanted biological changes in the human body. In this study, we aimed to evaluate the effects of 2100MHz Global System for Mobile communication (GSM-like) electromagnetic field, generated by an electromagnetic fields generator, on the auditory system of rats by using electrophysiological, histopathologic and immunohistochemical methods. Fourteen adult Wistar albino rats were included in the study. The rats were divided randomly into two groups of seven rats each. The study group was exposed continuously for 30days to a 2100MHz electromagnetic fields with a signal level (power) of 5.4dBm (3.47mW) to simulate the talk mode on a mobile phone. The control group was not exposed to the aforementioned electromagnetic fields. After 30days, the Auditory Brainstem Responses of both groups were recorded and the rats were sacrificed. The cochlear nuclei were evaluated by histopathologic and immunohistochemical methods. The Auditory Brainstem Responses records of the two groups did not differ significantly. The histopathologic analysis showed increased degeneration signs in the study group (p=0.007). In addition, immunohistochemical analysis revealed increased apoptotic index in the study group compared to that in the control group (p=0.002). The results support that long-term exposure to a GSM-like 2100MHz electromagnetic fields causes an increase in neuronal degeneration and apoptosis in the auditory system. Copyright © 2016 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.
ERIC Educational Resources Information Center
Ngeru, James
2012-01-01
In the past few decades, adoption of Enterprise Integration (EI) through initiatives such as Service Oriented Architecture (SOA), Enterprise Application Integration (EAI) and Enterprise Resource Planning (ERP) has consistently dominated most of organizations' top strategic priorities. Additionally, the field of EI has generated a vast amount…
Cross-scale transport processes in the three-dimensional Kelvin-Helmholtz instability
NASA Astrophysics Data System (ADS)
Delamere, P. A.; Burkholder, B. L.; Ma, X.; Nykyri, K.
2017-12-01
The Kelvin-Helmholtz (KH) instability is a crucial aspect of the solar wind interaction with the giant magnetospheres. Rapid internal rotation of the magnetodisc produces conditions favorable for the growth of KH vortices along much of the equatorial magnetopause boundary. Pronounced dawn/dusk asymmetries at Jupiter and Saturn indicate a robust interaction with the solar wind. Using three-dimensional hybrid simulations we investigate the transport processes associated with the flow shear-driven KH instability. Of particular importance is small-scale and intermittent reconnection generated by the twisting of the magnetic field into configurations with antiparallel components. In three-dimensions strong guide field reconnection can occur even for initially parallel magnetic field configurations. Often the twisting motion leads to pairs of reconnection sites that can operate asynchronously, generating intermittent open flux and Maxwell stresses at the magnetopause boundary. We quantify the generation of open flux using field line tracing methods, determine the Reynolds and Maxwell stresses, and evaluate the mass transport as functions of magnetic shear, velocity shear, electron pressure and plasma beta. These results are compared with magnetohydrodynamic simulations (Ma et al., 2017). In addition, we present preliminary results for the role of cross-scale coupling processes, from fluid to ion scales. In particular, we characterize small-scale waves and the their role in mixing, diffusing and heating plasma at the magnetopause boundary.
The effect of nozzle inlet shape, lip thickness, and exit shape and size on subsonic jet noise
NASA Technical Reports Server (NTRS)
Olsen, W. A.; Gutierrez, O. A.; Dorsch, R. G.
1973-01-01
Far field noise data were taken for convergent nozzles of various shapes and sizes at subsonic velocities exceeding 400 feet per second. For a circular nozzle, the nozzle inlet shape and lip thickness had no effect on the noise level, directivity, or spectra when compared at the same nozzle exit diameter and peak exhaust velocity. A sharp edged orifice was one exception to this statement. Coannular nozzles can produce additional high frequency noise. Blunt ended centerbodies, where there is significant base drag, also generate significant additional noise. The total noise power generation was essentially the same for circular, slot, and plug nozzles of good aerodynamic shape. The noise radiation patterns were essentially the same for these nozzle shapes except near the nozzle exhaust axis.
NASA Astrophysics Data System (ADS)
Gamaly, Eugene G.; Rode, Andrei V.
2016-08-01
Powerful short laser pulse focused on a surface swiftly transforms the solid into the thermally and electrically inhomogeneous conductive plasma with the large temperature and dielectric permeability gradients across the focal spot. The laser-affected spot becomes thermally inhomogeneous with where temperature has maximum in the centre and gradually decreasing to the boundaries of the spot in accord to the spatial intensity distribution of the Gaussian pulse. Here we study the influence of laser polarisation on ionization and absorption of laser radiation in the focal spot. In this paper we would like to discuss new effect in thermally inhomogeneous plasma under the action of imposed high frequency electric field. We demonstrate that high-frequency (HF) electric field is coupled with the temperature gradient generating the additional contribution to the conventional electronic heat flow. The additional heat flow strongly depends on the polarisation of the external field. It appears that effect has maximum when the imposed electric field is collinear to the thermal gradient directed along the radius of a circular focal spot. Therefore, the linear polarised field converts the circular laser affected spot into an oval with the larger oval's axis parallel to the field direction. We compare the developed theory to the available experiments, discuss the results and future directions.
NASA Astrophysics Data System (ADS)
Zuo, Zhifeng; Maekawa, Hiroshi
2014-02-01
The interaction between a moderate-strength shock wave and a near-wall vortex is studied numerically by solving the two-dimensional, unsteady compressible Navier-Stokes equations using a weighted compact nonlinear scheme with a simple low-dissipation advection upstream splitting method for flux splitting. Our main purpose is to clarify the development of the flow field and the generation of sound waves resulting from the interaction. The effects of the vortex-wall distance on the sound generation associated with variations in the flow structures are also examined. The computational results show that three sound sources are involved in this problem: (i) a quadrupolar sound source due to the shock-vortex interaction; (ii) a dipolar sound source due to the vortex-wall interaction; and (iii) a dipolar sound source due to unsteady wall shear stress. The sound field is the combination of the sound waves produced by all three sound sources. In addition to the interaction of the incident shock with the vortex, a secondary shock-vortex interaction is caused by the reflection of the reflected shock (MR2) from the wall. The flow field is dominated by the primary and secondary shock-vortex interactions. The generation mechanism of the third sound, which is newly discovered, due to the MR2-vortex interaction is presented. The pressure variations generated by (ii) become significant with decreasing vortex-wall distance. The sound waves caused by (iii) are extremely weak compared with those caused by (i) and (ii) and are negligible in the computed sound field.
NASA Astrophysics Data System (ADS)
Brown, S. M.; Behn, M. D.; Grove, T. L.
2017-12-01
We present results of a combined petrologic - geochemical (major and trace element) - geodynamical forward model for mantle melting and subsequent melt modification. The model advances Behn & Grove (2015), and is calibrated using experimental petrology. Our model allows for melting in the plagioclase, spinel, and garnet fields with a flexible retained melt fraction (from pure batch to pure fractional), tracks residual mantle composition, and includes melting with water, variable melt productivity, and mantle mode calculations. This approach is valuable for understanding oceanic crustal accretion, which involves mantle melting and melt modification by migration and aggregation. These igneous processes result in mid-ocean ridge basalts that vary in composition at the local (segment) and global scale. The important variables are geophysical and geochemical and include mantle composition, potential temperature, mantle flow, and spreading rate. Accordingly, our model allows us to systematically quantify the importance of each of these external variables. In addition to discriminating melt generation effects, we are able to discriminate the effects of different melt modification processes (inefficient pooling, melt-rock reaction, and fractional crystallization) in generating both local, segment-scale and global-scale compositional variability. We quantify the influence of a specific igneous process on the generation of oceanic crust as a function of variations in the external variables. We also find that it is unlikely that garnet lherzolite melting produces a signature in either major or trace element compositions formed from aggregated melts, because when melting does occur in the garnet field at high mantle temperature, it contributes a relatively small, uniform fraction (< 10%) of the pooled melt compositions at all spreading rates. Additionally, while increasing water content and/or temperature promote garnet melting, they also increase melt extent, pushing the pooled composition to lower Sm/Yb and higher Lu/Hf.
End-to-end workflow for finite element analysis of tumor treating fields in glioblastomas
NASA Astrophysics Data System (ADS)
Timmons, Joshua J.; Lok, Edwin; San, Pyay; Bui, Kevin; Wong, Eric T.
2017-11-01
Tumor Treating Fields (TTFields) therapy is an approved modality of treatment for glioblastoma. Patient anatomy-based finite element analysis (FEA) has the potential to reveal not only how these fields affect tumor control but also how to improve efficacy. While the automated tools for segmentation speed up the generation of FEA models, multi-step manual corrections are required, including removal of disconnected voxels, incorporation of unsegmented structures and the addition of 36 electrodes plus gel layers matching the TTFields transducers. Existing approaches are also not scalable for the high throughput analysis of large patient volumes. A semi-automated workflow was developed to prepare FEA models for TTFields mapping in the human brain. Magnetic resonance imaging (MRI) pre-processing, segmentation, electrode and gel placement, and post-processing were all automated. The material properties of each tissue were applied to their corresponding mask in silico using COMSOL Multiphysics (COMSOL, Burlington, MA, USA). The fidelity of the segmentations with and without post-processing was compared against the full semi-automated segmentation workflow approach using Dice coefficient analysis. The average relative differences for the electric fields generated by COMSOL were calculated in addition to observed differences in electric field-volume histograms. Furthermore, the mesh file formats in MPHTXT and NASTRAN were also compared using the differences in the electric field-volume histogram. The Dice coefficient was less for auto-segmentation without versus auto-segmentation with post-processing, indicating convergence on a manually corrected model. An existent but marginal relative difference of electric field maps from models with manual correction versus those without was identified, and a clear advantage of using the NASTRAN mesh file format was found. The software and workflow outlined in this article may be used to accelerate the investigation of TTFields in glioblastoma patients by facilitating the creation of FEA models derived from patient MRI datasets.
Field Testing of a Wet FGD Additive for Enhanced Mercury Control - Pilot-Scale Test Results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gary M. Blythe
2006-03-01
This Topical Report summarizes progress on Cooperative Agreement DE-FC26-04NT42309, ''Field Testing of a Wet FGD Additive.'' The objective of the project is to demonstrate the use of a flue gas desulfurization (FGD) additive, Degussa Corporation's TMT-15, to prevent the reemissions of elemental mercury (Hg{sup 0}) in flue gas exiting wet FGD systems on coal-fired boilers. Furthermore, the project intends to demonstrate that the additive can be used to precipitate most of the mercury (Hg) removed in the wet FGD system as a fine TMT salt that can be separated from the FGD liquor and bulk solid byproducts for separate disposal.more » The project will conduct pilot and full-scale tests of the TMT-15 additive in wet FGD absorbers. The tests are intended to determine required additive dosage requirements to prevent Hg{sup 0} reemissions and to separate mercury from the normal FGD byproducts for three coal types: Texas lignite/Power River Basin (PRB) coal blend, high-sulfur Eastern bituminous coal, and low-sulfur Eastern bituminous coal. The project team consists of URS Group, Inc., EPRI, TXU Generation Company LP, Southern Company, and Degussa Corporation. TXU Generation has provided the Texas lignite/PRB co-fired test site for pilot FGD tests, Monticello Steam Electric Station Unit 3. Southern Company is providing the low-sulfur Eastern bituminous coal host site for wet scrubbing tests, as well as the pilot and full-scale jet bubbling reactor (JBR) FGD systems to be tested. A third utility, to be named later, will provide the high-sulfur Eastern bituminous coal full-scale FGD test site. Degussa Corporation is providing the TMT-15 additive and technical support to the test program. The project is being conducted in six tasks. Of the six project tasks, Task 1 involves project planning and Task 6 involves management and reporting. The other four tasks involve field testing on FGD systems, either at pilot or full scale. The four tasks include: Task 2 - Pilot Additive Testing in Texas Lignite Flue Gas; Task 3 - Full-scale FGD Additive Testing in High Sulfur Eastern Bituminous Flue Gas; Task 4 - Pilot Wet Scrubber Additive Tests at Yates; and Task 5 - Full-scale Additive Tests at Plant Yates. This topical report presents the results from the Task 2 and Task 4 pilot-scale additive tests. The Task 3 and Task 5 full-scale additive tests will be conducted later in calendar year 2006.« less
NASA Astrophysics Data System (ADS)
Lucas, G.; Love, J. J.; Kelbert, A.; Bedrosian, P.; Rigler, E. J.
2017-12-01
Space weather induces significant geoelectric fields within Earth's subsurface that can adversely affect electric power grids. The complex interaction between space weather and the solid Earth has traditionally been approached with the use of simple 1-D impedance functions relating the inducing magnetic field to the induced geoelectric field. Ongoing data collection through the NSF EarthScope program has produced measured impedance data across much of the continental US. In this work, impedance data are convolved with magnetic field variations, obtained from USGS magnetic observatories, during a geomagnetic storm. This convolution produces geoelectric fields within the earth. These geoelectric fields are then integrated across power transmission lines to determine the voltage generated within each power line as a function of time during a geomagnetic storm. The voltages generated within the electric power grid will be shown for several historic geomagnetic storms. The estimated voltages calculated from 1-D and 3-D impedances differ by more than 100 V across some transmission lines. In combination with grounding resistance data and network topology, these voltage estimates can be utilized by power companies to estimate geomagnetically-induced currents throughout the network. These voltage estimates can provide information on which power lines are most vulnerable to geomagnetic storms, and assist power grid companies investigating where to install additional protections within their grid.
Electrical Aspects of Flames in Microgravity Combustion
NASA Technical Reports Server (NTRS)
Dunn-Rankin, D.; Strayer, B.; Weinberg, F.; Carleton, F.
1999-01-01
A principal characteristic of combustion in microgravity is the absence of buoyancy driven flows. In some cases, such as for spherically symmetrical droplet burning, the absence of buoyancy is desirable for matching analytical treatments with experiments. In other cases, however, it can be more valuable to arbitrarily control the flame's convective environment independent of the environmental gravitational condition. To accomplish this, we propose the use of ion generated winds driven by electric fields to control local convection of flames. Such control can produce reduced buoyancy (effectively zero buoyancy) conditions in the laboratory in 1-g facilitating a wide range of laser diagnostics that can probe the system without special packaging required for drop tower or flight tests. In addition, the electric field generated ionic winds allow varying gravitational convection equivalents even if the test occurs in reduced gravity environments.
NASA Astrophysics Data System (ADS)
Gu, W.; Heil, P. E.; Choi, H.; Kim, K.
2010-12-01
The I-V characteristics of flow-limited field-injection electrostatic spraying (FFESS) were investigated, exposing a new way to predict and control the specific spraying modes from single-jet to multi-jet. Monitoring the I-V characteristics revealed characteristic drops in the current upon formation of an additional jet in the multi-jet spraying mode. For fixed jet numbers, space-charge-limited current behaviour was measured which was attributed to space charge in the dielectric liquids between the needle electrode and the nozzle opening. The present work establishes that FFESS can, in particular, generate stable multiple jets and that their control is possible through monitoring the I-V characteristics. This can allow for automatic control of the FFESS process and expedite its future scientific and industrial applications.
Rapid water and lipid imaging with T2 mapping using a radial IDEAL-GRASE technique.
Li, Zhiqiang; Graff, Christian; Gmitro, Arthur F; Squire, Scott W; Bilgin, Ali; Outwater, Eric K; Altbach, Maria I
2009-06-01
Three-point Dixon methods have been investigated as a means to generate water and fat images without the effects of field inhomogeneities. Recently, an iterative algorithm (IDEAL, iterative decomposition of water and fat with echo asymmetry and least squares estimation) was combined with a gradient and spin-echo acquisition strategy (IDEAL-GRASE) to provide a time-efficient method for lipid-water imaging with correction for the effects of field inhomogeneities. The method presented in this work combines IDEAL-GRASE with radial data acquisition. Radial data sampling offers robustness to motion over Cartesian trajectories as well as the possibility of generating high-resolution T(2) maps in addition to the water and fat images. The radial IDEAL-GRASE technique is demonstrated in phantoms and in vivo for various applications including abdominal, pelvic, and cardiac imaging.
NASA Technical Reports Server (NTRS)
Adrian, Mark L.; Pollock, C. J.; Moore, T. E.; Kintner, P. M.; Arnoldy, R. L.; Whitaker, Ann F. (Technical Monitor)
2001-01-01
SCIFER TECHS observations of the variations in the thermal electron distribution in the 1400-km altitude cleft are associated with periods of intense ion heating and field-aligned currents. Energization of the thermal ion plasma in the mid-altitude cleft occurs within density cavities accompanied by enhanced thermal electron temperatures, large field-aligned thermal electron plasma flows and broadband low-frequency electric fields. Variations in the thermal electron contribution to field-aligned current densities indicate small scale (approximately 100's m) filamentary structure embedded within the ion energization periods. TECHS observations of the field-aligned drift velocities and temperatures of the thermal electron distribution are presented to evaluate the critical velocity thresholds necessary for the generation of electrostatic ion cyclotron and ion acoustic instabilities. This analysis suggests that, during periods of thermal ion energization, sufficient drift exists in the thermal electron distribution to excite the electrostatic ion cyclotron instability. In addition, brief periods exist within the same interval where the drift of the thermal electron distribution is sufficient to marginally excite the ion acoustic instability. In addition, the presence an enhancement in Langmuir emission at the plasma frequency at the center of the ion energization region, accompanied by the emission's second-harmonic, and collocated with observations of high-frequency electric field solitary structures suggest the presence of electron beam driven decay of Langmuir waves to ion acoustic modes as an additional free energy source for ion energization.
Sample design effects in landscape genetics
Oyler-McCance, Sara J.; Fedy, Bradley C.; Landguth, Erin L.
2012-01-01
An important research gap in landscape genetics is the impact of different field sampling designs on the ability to detect the effects of landscape pattern on gene flow. We evaluated how five different sampling regimes (random, linear, systematic, cluster, and single study site) affected the probability of correctly identifying the generating landscape process of population structure. Sampling regimes were chosen to represent a suite of designs common in field studies. We used genetic data generated from a spatially-explicit, individual-based program and simulated gene flow in a continuous population across a landscape with gradual spatial changes in resistance to movement. Additionally, we evaluated the sampling regimes using realistic and obtainable number of loci (10 and 20), number of alleles per locus (5 and 10), number of individuals sampled (10-300), and generational time after the landscape was introduced (20 and 400). For a simulated continuously distributed species, we found that random, linear, and systematic sampling regimes performed well with high sample sizes (>200), levels of polymorphism (10 alleles per locus), and number of molecular markers (20). The cluster and single study site sampling regimes were not able to correctly identify the generating process under any conditions and thus, are not advisable strategies for scenarios similar to our simulations. Our research emphasizes the importance of sampling data at ecologically appropriate spatial and temporal scales and suggests careful consideration for sampling near landscape components that are likely to most influence the genetic structure of the species. In addition, simulating sampling designs a priori could help guide filed data collection efforts.
Particle Acceleration and Magnetic Field Generation in Electron-Positron Relativistic Shocks
NASA Technical Reports Server (NTRS)
Nishikawa, K.-I.; Hardee, P.; Richardson, G.; Preece, R.; Sol, H.; Fishman, G. J.
2004-01-01
Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., Buneman, Weibel and other two-stream instabilities) created in collisionless shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic electron-positron jet front propagating into an ambient electron-positron plasma with and without initial magnetic fields. We find small differences in the results for no ambient and modest ambient magnetic fields. Simulations show that the Weibel instability created in the collisionless shock front accelerates jet and ambient particles both perpendicular and parallel to the jet propagation direction. The non-linear fluctuation amplitudes of densities, currents, electric, and magnetic fields in the electron-positron shock are larger than those found in the electron-ion shock studied in a previous paper. This comes from the fact that both electrons and positrons contribute to generation of the Weibel instability. Additionally, we have performed simulations with different electron skin depths. We find that growth times scale inversely with the plasma frequency, and the sizes of structures created by the Weibel instability scale proportional to the electron skin depth. This is the expected result and indicates that the simulations have sufficient grid resolution. While some Fermi acceleration may occur at the jet front, the majority of electron and positron acceleration takes place behind the jet front and cannot be characterized as Fermi acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying nonuniform, small-scale magnetic fields which contribute to the electron's (positron's) transverse deflection behind the jet head. This small scale magnetic field structure is appropriate to the generation of "jitter" radiation from deflected electrons (positrons) as opposed to synchrotron radiation. The jitter radiation has different properties than synchrotron radiation calculated assuming a a uniform magnetic field. The jitter radiation resulting from small scale magnetic field structures may be important for understanding the complex time structure and spectral evolution observed in gamma-ray bursts or other astrophysical sources containing relativistic jets and relativistic collisionless shocks.
Particle Acceleration and Magnetic Field Generation in Electron-Positron Relativistic Shocks
NASA Technical Reports Server (NTRS)
Nishikawa, K.-L.; Hardee, P.; Richardson, G.; Preece, R.; Sol, H.; Fishman, G. J.
2004-01-01
Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., Buneman, Weibel and other two-stream instabilities) created in collisionless shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic electron-positron jet front propagating into an ambient electron-positron plasma with and without initial magnetic fields. We find small differences in the results for no ambient and modest ambient magnetic fields. Simulations show that the Weibel instability created in the collisionless shock front accelerates jet and ambient particles both perpendicular and parallel to the jet propagation direction. The non-linear fluctuation amplitudes of densities, currents, electric, and magnetic fields in the electron-positron shock are larger than those found in the electron-ion shock studied in a previous paper at the comparable simulation time. This comes from the fact that both electrons and positrons contribute to generation of the Weibel instability. Additionally, we have performed simulations with different electron skin depths. We find that growth times scale inversely with the plasma frequency, and the sizes of structures created by the Weibel instability scale proportional to the electron skin depth. This is the expected result and indicates that the simulations have sufficient grid resolution. While some Fermi acceleration may occur at the jet front, the majority of electron and positron acceleration takes place behind the jet front and cannot be characterized as Fermi acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying nonuniform: small-scale magnetic fields which contribute to the electron's (positron's) transverse deflection behind the jet head. This small scale magnetic field structure is appropriate to the generation of jitter radiation from deflected electrons (positrons) as opposed to synchrotron radiation. The jitter radiation has different properties than synchrotron radiation calculated assuming a a uniform magnetic field. The jitter radiation resulting from small scale magnetic field structures may be important for understanding the complex time structure and spectral evolution observed in gamma-ray bursts or other astrophysical sources containing relativistic jets and relativistic collisionless shocks.
Particle Acceleration and Magnetic Field Generation in Electron-Positron Relativistic Shocks
NASA Technical Reports Server (NTRS)
Nishikawa, K.-I.; Hardee, P.; Richardson, G.; Preece, R.; Sol, H.; Fishman, G. J.
2005-01-01
Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., Buneman, Weibel, and other two-stream instabilities) created in collisionless shocks are responsible for particle (electron, positron, and ion) acceleration. Using a three-dimensional relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic electron-positron jet front propagating into an ambient electron-positron plasma with and without initial magnetic fields. We find small differences in the results for no ambient and modest ambient magnetic fields. New simulations show that the Weibel instability created in the collisionless shock front accelerates jet and ambient particles both perpendicular and parallel to the jet propagation direction. Furthermore, the nonlinear fluctuation amplitudes of densities, currents, and electric and magnetic fields in the electron-positron shock are larger than those found in the electron-ion shock studied in a previous paper at a comparable simulation time. This comes from the fact that both electrons and positrons contribute to generation of the Weibel instability. In addition, we have performed simulations with different electron skin depths. We find that growth times scale inversely with the plasma frequency, and the sizes of structures created by tine Weibel instability scale proportionally to the electron skin depth. This is the expected result and indicates that the simulations have sufficient grid resolution. While some Fermi acceleration may occur at the jet front, the majority of electron and positron acceleration takes place behind the jet front and cannot be characterized as Fermi acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying nonuniform, small-scale magnetic fields, which contribute to the electron s (positron s) transverse deflection behind the jet head. This small- scale magnetic field structure is appropriate to the generation of "jitter" radiation from deflected electrons (positrons) as opposed to synchrotron radiation. The jitter radiation has different properties than synchrotron radiation calculated assuming a uniform magnetic field. The jitter radiation resulting from small-scale magnetic field structures may be important for understanding the complex time structure and spectral evolution observed in gamma-ray bursts or other astrophysical sources containing relativistic jets and relativistic collisionless shocks.
Effect of Sub-Boundary Layer Vortex Generations on Incident Turbulence
NASA Technical Reports Server (NTRS)
Casper, J.; Lin, J. C.; Yao, C. S.
2003-01-01
Sub-boundary layer vortex generators were tested in a wind tunnel to assess their effect on the velocity field within the wake region of a turbulent boundary layer. Both mean flow quantities and turbulence statistics were measured. Although very small relative to the boundary layer thickness, these so-called micro vortex generators were found to have a measurable effect on the power spectra and integral length scales of the turbulence at a distance many times the height of the devices themselves. In addition, the potential acoustic impact of these devices is also discussed. Measured turbulence spectra are used as input to an acoustic formulation in a manner that compares predicted sound pressure levels that result from the incident boundary-layer turbulence, with and without the vortex generators in the flow.
A pseudoinverse deformation vector field generator and its applications
Yan, C.; Zhong, H.; Murphy, M.; Weiss, E.; Siebers, J. V.
2010-01-01
Purpose: To present, implement, and test a self-consistent pseudoinverse displacement vector field (PIDVF) generator, which preserves the location of information mapped back-and-forth between image sets. Methods: The algorithm is an iterative scheme based on nearest neighbor interpolation and a subsequent iterative search. Performance of the algorithm is benchmarked using a lung 4DCT data set with six CT images from different breathing phases and eight CT images for a single prostrate patient acquired on different days. A diffeomorphic deformable image registration is used to validate our PIDVFs. Additionally, the PIDVF is used to measure the self-consistency of two nondiffeomorphic algorithms which do not use a self-consistency constraint: The ITK Demons algorithm for the lung patient images and an in-house B-Spline algorithm for the prostate patient images. Both Demons and B-Spline have been QAed through contour comparison. Self-consistency is determined by using a DIR to generate a displacement vector field (DVF) between reference image R and study image S (DVFR–S). The same DIR is used to generate DVFS–R. Additionally, our PIDVF generator is used to create PIDVFS–R. Back-and-forth mapping of a set of points (used as surrogates of contours) using DVFR–S and DVFS–R is compared to back-and-forth mapping performed with DVFR–S and PIDVFS–R. The Euclidean distances between the original unmapped points and the mapped points are used as a self-consistency measure. Results: Test results demonstrate that the consistency error observed in back-and-forth mappings can be reduced two to nine times in point mapping and 1.5 to three times in dose mapping when the PIDVF is used in place of the B-Spline algorithm. These self-consistency improvements are not affected by the exchanging of R and S. It is also demonstrated that differences between DVFS–R and PIDVFS–R can be used as a criteria to check the quality of the DVF. Conclusions: Use of DVF and its PIDVF will improve the self-consistency of points, contour, and dose mappings in image guided adaptive therapy. PMID:20384247
NASA Astrophysics Data System (ADS)
Cai, Kaiming; Yang, Meiyin; Ju, Hailang; Wang, Sumei; Ji, Yang; Li, Baohe; Edmonds, Kevin William; Sheng, Yu; Zhang, Bao; Zhang, Nan; Liu, Shuai; Zheng, Houzhi; Wang, Kaiyou
2017-07-01
All-electrical and programmable manipulations of ferromagnetic bits are highly pursued for the aim of high integration and low energy consumption in modern information technology. Methods based on the spin-orbit torque switching in heavy metal/ferromagnet structures have been proposed with magnetic field, and are heading toward deterministic switching without external magnetic field. Here we demonstrate that an in-plane effective magnetic field can be induced by an electric field without breaking the symmetry of the structure of the thin film, and realize the deterministic magnetization switching in a hybrid ferromagnetic/ferroelectric structure with Pt/Co/Ni/Co/Pt layers on PMN-PT substrate. The effective magnetic field can be reversed by changing the direction of the applied electric field on the PMN-PT substrate, which fully replaces the controllability function of the external magnetic field. The electric field is found to generate an additional spin-orbit torque on the CoNiCo magnets, which is confirmed by macrospin calculations and micromagnetic simulations.
Electromagnetic Field Assessment as a Smart City Service: The SmartSantander Use-Case
Diez, Luis; Agüero, Ramón; Muñoz, Luis
2017-01-01
Despite the increasing presence of wireless communications in everyday life, there exist some voices raising concerns about their adverse effects. One particularly relevant example is the potential impact of the electromagnetic field they induce on the population’s health. Traditionally, very specialized methods and devices (dosimetry) have been used to assess the strength of the E-field, with the main objective of checking whether it respects the corresponding regulations. In this paper, we propose a complete novel approach, which exploits the functionality leveraged by a smart city platform. We deploy a number of measuring probes, integrated as sensing devices, to carry out a characterization embracing large areas, as well as long periods of time. This unique platform has been active for more than one year, generating a vast amount of information. We process such information, and the obtained results validate the whole methodology. In addition, we discuss the variation of the E-field caused by cellular networks, considering additional information, such as usage statistics. Finally, we establish the exposure that can be attributed to the base stations within the scenario under analysis. PMID:28561783
Sakakura, Eriko; Eiraku, Mototsugu; Takata, Nozomu
2016-08-01
The eyes are subdivided from the rostral diencephalon in early development. How the neuroectoderm regulates this subdivision, however, is largely unknown. Taking advantage of embryonic stem cell (ESC) culture using a Rax reporter line to monitor rostral diencephalon formation, we found that ESC-derived tissues at day 7 grown in Glasgow Minimum Expression Media (GMEM) containing knockout serum replacement (KSR) exhibited higher levels of expression of axin2, a Wnt target gene, than those grown in chemically defined medium (CDM). Surprisingly, Wnt agonist facilitated eye field-like tissue specification in CDM. In contrast, the addition of Wnt antagonist diminished eye field tissue formation in GMEM+KSR. Furthermore, the morphological formation of the eye tissue anlage, including the optic vesicle, was accompanied by Wnt signaling activation. Additionally, using CDM culture, we developed an efficient method for generating Rax+/Chx10+ retinal progenitors, which could become fully stratified retina. Here we provide a new avenue for exploring the mechanisms of eye field specification in vitro. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Electromagnetic Field Assessment as a Smart City Service: The SmartSantander Use-Case.
Diez, Luis; Agüero, Ramón; Muñoz, Luis
2017-05-31
Despite the increasing presence of wireless communications in everyday life, there exist some voices raising concerns about their adverse effects. One particularly relevant example is the potential impact of the electromagnetic field they induce on the population's health. Traditionally, very specialized methods and devices (dosimetry) have been used to assess the strength of the E-field, with the main objective of checking whether it respects the corresponding regulations. In this paper, we propose a complete novel approach, which exploits the functionality leveraged by a smart city platform. We deploy a number of measuring probes, integrated as sensing devices, to carry out a characterization embracing large areas, as well as long periods of time. This unique platform has been active for more than one year, generating a vast amount of information. We process such information, and the obtained results validate the whole methodology. In addition, we discuss the variation of the E-field caused by cellular networks, considering additional information, such as usage statistics. Finally, we establish the exposure that can be attributed to the base stations within the scenario under analysis.
Numerical modeling of Harmonic Imaging and Pulse Inversion fields
NASA Astrophysics Data System (ADS)
Humphrey, Victor F.; Duncan, Tracy M.; Duck, Francis
2003-10-01
Tissue Harmonic Imaging (THI) and Pulse Inversion (PI) Harmonic Imaging exploit the harmonics generated as a result of nonlinear propagation through tissue to improve the performance of imaging systems. A 3D finite difference model, that solves the KZK equation in the frequency domain, is used to investigate the finite amplitude fields produced by rectangular transducers driven with short pulses and their inverses, in water and homogeneous tissue. This enables the characteristic of the fields and the effective PI field to be calculated. The suppression of the fundamental field in PI is monitored, and the suppression of side lobes and a reduction in the effective beamwidth for each field are calculated. In addition, the differences between the pulse and inverse pulse spectra resulting from the use of very short pulses are noted, and the differences in the location of the fundamental and second harmonic spectral peaks observed.
NASA Astrophysics Data System (ADS)
TenBarge, J. M.; Shay, M. A.; Sharma, P.; Juno, J.; Haggerty, C. C.; Drake, J. F.; Bhattacharjee, A.; Hakim, A.
2017-12-01
Turbulence and magnetic reconnection are the primary mechanisms responsible for the conversion of stored magnetic energy into particle energy in many space and astrophysical plasmas. The magnetospheric multiscale mission (MMS) has given us unprecedented access to high cadence particle and field data of turbulence and magnetic reconnection at earth's magnetopause. The observations include large guide field reconnection events generated within the turbulent magnetopause. Motivated by these observations, we present a study of large guide reconnection using the fully kinetic Eulerian Vlasov-Maxwell component of the Gkeyll simulation framework, and we also employ and compare with gyrokinetics to explore the asymptotically large guide field limit. In addition to studying the configuration space dynamics, we leverage the recently developed field-particle correlations to diagnose the dominant sources of dissipation and compare the results of the field-particle correlation to other energy dissipation measures.
Generation of a sub-half-wavelength focal spot with purely transverse spin angular momentum
NASA Astrophysics Data System (ADS)
Hang, Li; Fu, Jian; Yu, Xiaochang; Wang, Ying; Chen, Peifeng
2017-11-01
We theoretically demonstrate that optical focus fields with purely transverse spin angular momentum (SAM) can be obtained when a kind of special incident fields is focused by a high numerical aperture (NA) aplanatic lens (AL). When the incident pupil fields are refracted by an AL, two transverse Cartesian components of the electric fields at the exit pupil plane do not have the same order of sinusoidal or cosinoidal components, resulting in zero longitudinal SAMs of the focal fields. An incident field satisfying above conditions is then proposed. Using the Richard-Wolf vectorial diffraction theory, the energy density and SAM density distributions of the tightly focused beam are calculated and the results clearly validate the proposed theory. In addition, a sub-half-wavelength focal spot with purely transverse SAM can be achieved and a flattop energy density distribution parallel to z-axis can be observed around the maximum energy density point.
Synthetic Jet Flow Field Database for CFD Validation
NASA Technical Reports Server (NTRS)
Yao, Chung-Sheng; Chen, Fang Jenq; Neuhart, Dan; Harris, Jerome
2004-01-01
An oscillatory zero net mass flow jet was generated by a cavity-pumping device, namely a synthetic jet actuator. This basic oscillating jet flow field was selected as the first of the three test cases for the Langley workshop on CFD Validation of Synthetic Jets and Turbulent Separation Control. The purpose of this workshop was to assess the current CFD capabilities to predict unsteady flow fields of synthetic jets and separation control. This paper describes the characteristics and flow field database of a synthetic jet in a quiescent fluid. In this experiment, Particle Image Velocimetry (PIV), Laser Doppler Velocimetry (LDV), and hot-wire anemometry were used to measure the jet velocity field. In addition, the actuator operating parameters including diaphragm displacement, internal cavity pressure, and internal cavity temperature were also documented to provide boundary conditions for CFD modeling.
NASA Astrophysics Data System (ADS)
Chavez, Roberto; Lozano, Sergio; Correia, Pedro; Sanz-Rodrigo, Javier; Probst, Oliver
2013-04-01
With the purpose of efficiently and reliably generating long-term wind resource maps for the wind energy industry, the application and verification of a statistical methodology for the climate downscaling of wind fields at surface level is presented in this work. This procedure is based on the combination of the Monte Carlo and the Principal Component Analysis (PCA) statistical methods. Firstly the Monte Carlo method is used to create a huge number of daily-based annual time series, so called climate representative years, by the stratified sampling of a 33-year-long time series corresponding to the available period of the NCAR/NCEP global reanalysis data set (R-2). Secondly the representative years are evaluated such that the best set is chosen according to its capability to recreate the Sea Level Pressure (SLP) temporal and spatial fields from the R-2 data set. The measure of this correspondence is based on the Euclidean distance between the Empirical Orthogonal Functions (EOF) spaces generated by the PCA (Principal Component Analysis) decomposition of the SLP fields from both the long-term and the representative year data sets. The methodology was verified by comparing the selected 365-days period against a 9-year period of wind fields generated by dynamical downscaling the Global Forecast System data with the mesoscale model SKIRON for the Iberian Peninsula. These results showed that, compared to the traditional method of dynamical downscaling any random 365-days period, the error in the average wind velocity by the PCA's representative year was reduced by almost 30%. Moreover the Mean Absolute Errors (MAE) in the monthly and daily wind profiles were also reduced by almost 25% along all SKIRON grid points. These results showed also that the methodology presented maximum error values in the wind speed mean of 0.8 m/s and maximum MAE in the monthly curves of 0.7 m/s. Besides the bulk numbers, this work shows the spatial distribution of the errors across the Iberian domain and additional wind statistics such as the velocity and directional frequency. Additional repetitions were performed to prove the reliability and robustness of this kind-of statistical-dynamical downscaling method.
Sonoluminescence and sonochemiluminescence study of cavitation field in a 1.2MHz focused ultrasound
NASA Astrophysics Data System (ADS)
Yin, Hui; Qiao, Yangzi; Cao, Hua; Wan, Mingxi
2017-03-01
An intensified CCD (ICCD) and an electron-multiplying CCD (EMCCD) were employed to observe the spatial distribution of sonoluminescence (SL) and sonochemiluminescence (SCL) generated by cavitation bubbles in a 1.2MHz HIFU field. Various sonication conditions, which are free field and focal region near a water-parenchyma interface, were studied. In addition, the differences of two shells coated UCAs were also investigated. In this study, an acoustic radiation force (ARF) counterbalance appliance was added to reduce bubble displacement. Cavitation mapping in this situation was also operated through SCL recording. SCL was also employed to measure cavitation does and map the spatial distribution of cavitation near a boundary of parenchyma.
Effect of magnetic field on the physical properties of water
NASA Astrophysics Data System (ADS)
Wang, Youkai; Wei, Huinan; Li, Zhuangwen
2018-03-01
In this study, the effect of magnetic field (MF) on the partial physical properties of water are reported, tap water (TW) and 4 types of magnetized water (MW) were measured in the same condition. It was found that the properties of TW were changed following the MF treatment, shown as the increase of evaporation amount, the decrease of specific heat and boiling point after magnetization, the changes depend on the magnetization effect. In addition, magnetic field strength (MFS) has a marked influence on the magnetization effect, the optimal magnetizing condition was determined as the MFS of 300 mT. The findings of this study offered a facile approach to improve cooling and power generation efficiency in industrial.
Pérez Suárez, Santiago T.; Travieso González, Carlos M.; Alonso Hernández, Jesús B.
2013-01-01
This article presents a design methodology for designing an artificial neural network as an equalizer for a binary signal. Firstly, the system is modelled in floating point format using Matlab. Afterward, the design is described for a Field Programmable Gate Array (FPGA) using fixed point format. The FPGA design is based on the System Generator from Xilinx, which is a design tool over Simulink of Matlab. System Generator allows one to design in a fast and flexible way. It uses low level details of the circuits and the functionality of the system can be fully tested. System Generator can be used to check the architecture and to analyse the effect of the number of bits on the system performance. Finally the System Generator design is compiled for the Xilinx Integrated System Environment (ISE) and the system is described using a hardware description language. In ISE the circuits are managed with high level details and physical performances are obtained. In the Conclusions section, some modifications are proposed to improve the methodology and to ensure portability across FPGA manufacturers.
California's geothermal resource potential
NASA Technical Reports Server (NTRS)
Leibowitz, L. P.
1978-01-01
According to a U.S. Geological Survey estimate, recoverable hydrothermal energy in California may amount to 19,000 MW of electric power for a 30-year period. At present, a geothermal installation in the Geysers region of the state provides 502 MWe of capacity; an additional 1500 MWe of electric generating capacity is scheduled to be in operation in geothermal fields by 1985. In addition to hydrothermal energy sources, hot-igneous and conduction-dominated resources are under investigation for possible development. Land-use conflicts, environmental concerns and lack of risk capital may limit this development.
Simulation of 'stationary' SAP and SEP phenomena by 2-dimensional potential field modelling.
Cunningham, K; Halliday, A M; Jones, S J
1986-11-01
In order to model the distribution of potentials in the hand due to antidromic SAP propagation and in the body due to afferent conduction of the median nerve volley, 2-dimensional matrices of the appropriate shape were constructed, each containing a 'generator' consisting of up to 3 'source' and 3 'sink' points. The value of the field potential at other sites was calculated using a finite difference method. It was shown that the potential gradient is virtually zero in matrix zones which are separated from the region containing the generator by a constriction in the boundary of the conductor. Points on the far side of the constriction remain virtually equipotential, at a level determined by the potential at the junction. This is naturally influenced by the proximity of the generator, so that as the generator approaches the constriction a potential difference will develop between points on the far side, irrespective of their distance from the junction, and other remote parts of the matrix. In the context of human SAPs and SEPs, such factors may be of paramount importance in the generation of so-called 'stationary' or 'far-field' potentials. With additional postulates concerning the manner in which the SAP is attenuated by the termination of axons as it propagates through the hand, and the course taken by the median nerve volley between the arm and neck, it was possible to model the majority of stationary SAP phenomena described by Kimura et al. (1984), and also the distribution and latency of the P9 SEP component following median nerve stimulation.
ERIC Educational Resources Information Center
Assaf, Lori Czop; López, Minda Morren
2015-01-01
Research on literacy tutoring such as working in an after-school reading or writing club, situated as a service-learning project, suggests that such work can foster culturally responsive teaching for prospective teachers by increasing additive perspectives toward students from diverse backgrounds and transforming views of diversity. The purpose of…
NASA Astrophysics Data System (ADS)
Xu, Jin
2017-12-01
When an electric field is applied on a topological insulator, not only the electric field is generated, but also the magnetic field is generated, vice versa. I designed topological insulator and superconductor bi-layer magnetic cloak, derived the electric field and magnetic field inside and outside the topological insulator and superconductor sphere. Simulation and calculation results show that the applied magnetic field is screened by the topological insulator and superconductor bi-layer, and the electric field is generated in the cloaked region.
Calculation of the electric field resulting from human body rotation in a magnetic field
NASA Astrophysics Data System (ADS)
Cobos Sánchez, Clemente; Glover, Paul; Power, Henry; Bowtell, Richard
2012-08-01
A number of recent studies have shown that the electric field and current density induced in the human body by movement in and around magnetic resonance imaging installations can exceed regulatory levels. Although it is possible to measure the induced electric fields at the surface of the body, it is usually more convenient to use numerical models to predict likely exposure under well-defined movement conditions. Whilst the accuracy of these models is not in doubt, this paper shows that modelling of particular rotational movements should be treated with care. In particular, we show that v × B rather than -(v · ∇)A should be used as the driving term in potential-based modelling of induced fields. Although for translational motion the two driving terms are equivalent, specific examples of rotational rigid-body motion are given where incorrect results are obtained when -(v · ∇)A is employed. In addition, we show that it is important to take into account the space charge which can be generated by rotations and we also consider particular cases where neglecting the space charge generates erroneous results. Along with analytic calculations based on simple models, boundary-element-based numerical calculations are used to illustrate these findings.
Broken symmetry phase transition in solid p-H 2, o-D 2 and HD: crystal field effects
NASA Astrophysics Data System (ADS)
Freiman, Yu. A.; Hemley, R. J.; Jezowski, A.; Tretyak, S. M.
1999-04-01
We report the effect of the crystal field (CF) on the broken symmetry phase transition (BSP) in solid parahydrogen, orthodeuterium, and hydrogen deuteride. The CF was calculated taking into account a distortion from the ideal HCP structure. We find that, in addition to the molecular field generated by the coupling terms in the intermolecular potential, the Hamiltonian of the system contains a crystal-field term, originating from single-molecular terms in the intermolecular potential. Ignoring the CF is the main cause of the systematic underestimation of the transition pressure, characteristic of published theories of the BSP transition. The distortion of the lattice that gives rise to the negative CF in response to the applied pressure is in accord with the general Le Chatelier-Braun principle.
Esplandiu, Maria J; Farniya, Ali Afshar; Bachtold, Adrian
2015-11-24
We report a simple yet highly efficient chemical motor that can be controlled with visible light. The motor made from a noble metal and doped silicon acts as a pump, which is driven through a light-activated catalytic reaction process. We show that the actuation is based on electro-osmosis with the electric field generated by chemical reactions at the metal and silicon surfaces, whereas the contribution of diffusio-osmosis to the actuation is negligible. Surprisingly, the pump can be operated using water as fuel. This is possible because of the large ζ-potential of silicon, which makes the electro-osmotic fluid motion sizable even though the electric field generated by the reaction is weak. The electro-hydrodynamic process is greatly amplified with the addition of reactive species, such as hydrogen peroxide, which generates higher electric fields. Another remarkable finding is the tunability of silicon-based pumps. That is, it is possible to control the speed of the fluid with light. We take advantage of this property to manipulate the spatial distribution of colloidal microparticles in the liquid and to pattern colloidal microparticle structures at specific locations on a wafer surface. Silicon-based pumps hold great promise for controlled mass transport in fluids.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fulton, John; Gallagher, Linda K.; Whitener, Dustin
The Turbo FRMAC (TF) software automates the calculations described in volumes 1-3 of "The Federal Manual for Assessing Environmental Data During a Radiological Emergency" (2010 version). This software automates the process of assessing radiological data during a Federal Radiological Emergency. The manual upon which the software is based is unclassified and freely available on the Internet. TF takes values generated by field samples or computer dispersion models and assesses the data in a way which is meaningful to a decision maker at a radiological emergency; such as, do radiation values exceed city, state, or federal limits; should the crops bemore » destroyed or can they be utilized; do residents need to be evacuated, sheltered in place, or should another action taken. The software also uses formulas generated by the EPA, FDA, and other federal agencies to generate field observable values specific to the radiological event that can be used to determine where regulatory limit values are exceeded. In addition to these calculations, TF calculates values which indicate how long an emergency worker can work in the contaminated area during a radiological emergency, the dose received from drinking contaminated water or milk, the dose from eating contaminated food, the does expected down or upwind of a given field sample, along with a significant number of other similar radiological health values.« less
Primary Generators of Visually Evoked Field Potentials Recorded in the Macaque Auditory Cortex
Smiley, John F.; Schroeder, Charles E.
2017-01-01
Prior studies have reported “local” field potential (LFP) responses to faces in the macaque auditory cortex and have suggested that such face-LFPs may be substrates of audiovisual integration. However, although field potentials (FPs) may reflect the synaptic currents of neurons near the recording electrode, due to the use of a distant reference electrode, they often reflect those of synaptic activity occurring in distant sites as well. Thus, FP recordings within a given brain region (e.g., auditory cortex) may be “contaminated” by activity generated elsewhere in the brain. To determine whether face responses are indeed generated within macaque auditory cortex, we recorded FPs and concomitant multiunit activity with linear array multielectrodes across auditory cortex in three macaques (one female), and applied current source density (CSD) analysis to the laminar FP profile. CSD analysis revealed no appreciable local generator contribution to the visual FP in auditory cortex, although we did note an increase in the amplitude of visual FP with cortical depth, suggesting that their generators are located below auditory cortex. In the underlying inferotemporal cortex, we found polarity inversions of the main visual FP components accompanied by robust CSD responses and large-amplitude multiunit activity. These results indicate that face-evoked FP responses in auditory cortex are not generated locally but are volume-conducted from other face-responsive regions. In broader terms, our results underscore the caution that, unless far-field contamination is removed, LFPs in general may reflect such “far-field” activity, in addition to, or in absence of, local synaptic responses. SIGNIFICANCE STATEMENT Field potentials (FPs) can index neuronal population activity that is not evident in action potentials. However, due to volume conduction, FPs may reflect activity in distant neurons superimposed upon that of neurons close to the recording electrode. This is problematic as the default assumption is that FPs originate from local activity, and thus are termed “local” (LFP). We examine this general problem in the context of previously reported face-evoked FPs in macaque auditory cortex. Our findings suggest that face-FPs are indeed generated in the underlying inferotemporal cortex and volume-conducted to the auditory cortex. The note of caution raised by these findings is of particular importance for studies that seek to assign FP/LFP recordings to specific cortical layers. PMID:28924008
NASA Astrophysics Data System (ADS)
Matsushita, Taiki; Liu, Tianyu; Mizushima, Takeshi; Fujimoto, Satoshi
2018-04-01
It has been predicted that emergent chiral magnetic fields can be generated by crystal deformation in Weyl/Dirac metals and superconductors. The emergent fields give rise to chiral anomaly phenomena as in the case of Weyl semimetals with usual electromagnetic fields. Here, we clarify effects of the chiral magnetic field on Cooper pairs in Weyl/Dirac superconductors on the basis of the Ginzburg-Landau equation microscopically derived from the quasiclassical Eilenberger formalism. It is found that Cooper pairs are affected by the emergent chiral magnetic field in a dramatic way, and the pseudo-Lorentz force due to the chiral magnetic field stabilizes the Fulde-Ferrell state and causes a charge/spin supercurrent, which flows parallel to the chiral magnetic field in the case of Weyl/Dirac superconductors. This effect is in analogy with the chiral magnetic effect of Weyl semimetals. In addition, we elucidate that neither Meissner effect nor vortex state due to chiral magnetic fields occurs.
Simulation of Strain Induced Pseudomagnetic Fields in Graphene Suspended on MEMS Chevron Actuators
NASA Astrophysics Data System (ADS)
Vutukuru, Mounika; Christopher, Jason; Bishop, David; Swan, Anna
Graphene has been shown to withstand remarkable levels of mechanical strain an order of magnitude larger than bulk crystalline materials. This exceptional stretchability of graphene allows for the direct tuning of fundamental material properties, as well as for the investigation of novel physics such as generation of strain induced pseudomagnetic fields. However, current methods for strain such as polymer elongation or pressurized wells do not integrate well into devices. We propose microelectromechanical (MEMS) Chevron actuators as a reliable platform for applying strain to graphene. In addition to their advantageous controllable output force, low input power and ease of integration into existing technologies, MEMS allow for different strain orientations to optimize pseudomagnetic field generation in graphene. Here, we model nonuniform strain in suspended graphene on Chevron actuators using COMSOL Multiphysics. By simulating the deformation of the graphene geometry under the device actuation, we explore the pseudomagnetic field map induced by numerically calculating the components of the strain tensor. Our models provide the theoretical framework with which experimental analysis is compared, and optimize our MEMS designs for further exploration of novel physics in graphene. The authors would like to thank NSF DMR 1411008 for their support on this project.
Equilibrium reconstruction with 3D eddy currents in the Lithium Tokamak eXperiment
Hansen, C.; Boyle, D. P.; Schmitt, J. C.; ...
2017-04-18
Axisymmetric free-boundary equilibrium reconstructions of tokamak plasmas in the Lithium Tokamak eXperiment (LTX) are performed using the PSI-Tri equilibrium code. Reconstructions in LTX are complicated by the presence of long-lived non-axisymmetric eddy currents generated by a vacuum vessel and first wall structures. To account for this effect, reconstructions are performed with additional toroidal current sources in these conducting regions. The eddy current sources are fixed in their poloidal distributions, but their magnitude is adjusted as part of the full reconstruction. Eddy distributions are computed by toroidally averaging currents, generated by coupling to vacuum field coils, from a simplified 3D filamentmore » model of important conducting structures. The full 3D eddy current fields are also used to enable the inclusion of local magnetic field measurements, which have strong 3D eddy current pick-up, as reconstruction constraints. Using this method, equilibrium reconstruction yields good agreement with all available diagnostic signals. Here, an accompanying field perturbation produced by 3D eddy currents on the plasma surface with a primarily n = 2, m = 1 character is also predicted for these equilibria.« less
Chemical Analysis through CL-Detection Assisted by Periodate Oxidation
Evmiridis, Nicholaos P.; Vlessidis, Athanasios G.; Thanasoulias, Nicholas C.
2007-01-01
The progress of the research work of the author and his colleagues on the field of CL-emission generated by pyrogallol oxidation and further application for the direct determination of periodate and indirect or direct determination of other compounds through flow-injection manifold/CL-detection set up is described. The instrumentation used for these studies was a simple flow-injection manifold that provides good reproducibility, coupled to a red sensitive photomultiplier that gives sensitive CL-detection. In addition, recent reports on studies and analytical methods based on CL-emission generated by periodate oxidation by other authors are included. PMID:17611611
NASA Technical Reports Server (NTRS)
Elishakoff, Isaac; Lin, Y. K.; Zhu, Li-Ping; Fang, Jian-Jie; Cai, G. Q.
1994-01-01
This report supplements a previous report of the same title submitted in June, 1992. It summarizes additional analytical techniques which have been developed for predicting the response of linear and nonlinear structures to noise excitations generated by large propulsion power plants. The report is divided into nine chapters. The first two deal with incomplete knowledge of boundary conditions of engineering structures. The incomplete knowledge is characterized by a convex set, and its diagnosis is formulated as a multi-hypothesis discrete decision-making algorithm with attendant criteria of adaptive termination.
Laser-plasmas in the relativistic-transparency regime: Science and applications
NASA Astrophysics Data System (ADS)
Fernández, Juan C.; Cort Gautier, D.; Huang, Chengkung; Palaniyappan, Sasikumar; Albright, Brian J.; Bang, Woosuk; Dyer, Gilliss; Favalli, Andrea; Hunter, James F.; Mendez, Jacob; Roth, Markus; Swinhoe, Martyn; Bradley, Paul A.; Deppert, Oliver; Espy, Michelle; Falk, Katerina; Guler, Nevzat; Hamilton, Christopher; Hegelich, Bjorn Manuel; Henzlova, Daniela; Ianakiev, Kiril D.; Iliev, Metodi; Johnson, Randall P.; Kleinschmidt, Annika; Losko, Adrian S.; McCary, Edward; Mocko, Michal; Nelson, Ronald O.; Roycroft, Rebecca; Santiago Cordoba, Miguel A.; Schanz, Victor A.; Schaumann, Gabriel; Schmidt, Derek W.; Sefkow, Adam; Shimada, Tsutomu; Taddeucci, Terry N.; Tebartz, Alexandra; Vogel, Sven C.; Vold, Erik; Wurden, Glen A.; Yin, Lin
2017-05-01
Laser-plasma interactions in the novel regime of relativistically induced transparency (RIT) have been harnessed to generate intense ion beams efficiently with average energies exceeding 10 MeV/nucleon (>100 MeV for protons) at "table-top" scales in experiments at the LANL Trident Laser. By further optimization of the laser and target, the RIT regime has been extended into a self-organized plasma mode. This mode yields an ion beam with much narrower energy spread while maintaining high ion energy and conversion efficiency. This mode involves self-generation of persistent high magnetic fields (˜104 T, according to particle-in-cell simulations of the experiments) at the rear-side of the plasma. These magnetic fields trap the laser-heated multi-MeV electrons, which generate a high localized electrostatic field (˜0.1 T V/m). After the laser exits the plasma, this electric field acts on a highly structured ion-beam distribution in phase space to reduce the energy spread, thus separating acceleration and energy-spread reduction. Thus, ion beams with narrow energy peaks at up to 18 MeV/nucleon are generated reproducibly with high efficiency (≈5%). The experimental demonstration has been done with 0.12 PW, high-contrast, 0.6 ps Gaussian 1.053 μm laser pulses irradiating planar foils up to 250 nm thick at 2-8 × 1020 W/cm2. These ion beams with co-propagating electrons have been used on Trident for uniform volumetric isochoric heating to generate and study warm-dense matter at high densities. These beam plasmas have been directed also at a thick Ta disk to generate a directed, intense point-like Bremsstrahlung source of photons peaked at ˜2 MeV and used it for point projection radiography of thick high density objects. In addition, prior work on the intense neutron beam driven by an intense deuterium beam generated in the RIT regime has been extended. Neutron spectral control by means of a flexible converter-disk design has been demonstrated, and the neutron beam has been used for point-projection imaging of thick objects. The plans and prospects for further improvements and applications are also discussed.
Laser-plasmas in the relativistic-transparency regime: science and applications
Fernandez, Juan Carlos; Gautier, Donald Cort; Huang, Chengkun; ...
2017-05-30
Laser-plasma interactions in the novel regime of relativistically induced transparency (RIT) have been harnessed to generate intense ion beams efficiently with average energies exceeding 10 MeV/nucleon (>100 MeV for protons) at “table-top” scales in experiments at the LANL Trident Laser. By further optimization of the laser and target, the RIT regime has been extended into a self-organized plasma mode. This mode yields an ion beam with much narrower energy spread while maintaining high ion energy and conversion efficiency. This mode involves self-generation of persistent high magnetic fields (~10 4 T, according to particle-in-cell simulations of the experiments) at the rear-sidemore » of the plasma. These magnetic fields trap the laser-heated multi-MeV electrons, which generate a high localized electrostatic field (~0.1 TV/m). After the laser exits the plasma, this electric field acts on a highly structured ion-beam distribution in phase space to reduce the energy spread, thus separating acceleration and energy-spread reduction. Thus, ion beams with narrow energy peaks at up to 18 MeV/nucleon are generated reproducibly with high efficiency (≈5%). The experimental demonstration has been done with 0.12 PW, high-contrast, 0.6 ps Gaussian 1.053 μm laser pulses irradiating planar foils up to 250 nm thick at 2–8 × 10 20 W/cm 2. These ion beams with co-propagating electrons have been used on Trident for uniform volumetric isochoric heating to generate and study warm-dense matter at high densities. These beam plasmas have been directed also at a thick Ta disk to generate a directed, intense point-like Bremsstrahlung source of photons peaked at ~2 MeV and used it for point projection radiography of thick high density objects. In addition, prior work on the intense neutron beam driven by an intense deuterium beam generated in the RIT regime has been extended. Neutron spectral control by means of a flexible converter-disk design has been demonstrated, and the neutron beam has been used for point-projection imaging of thick objects. Finally, we discuss the plans and prospects for further improvements and applications.« less
Design of portable electric and magnetic field generators
NASA Astrophysics Data System (ADS)
Stewart, M. G.; Siew, W. H.; Campbell, L. C.; Stewart, M. G.; Siew, W. H.
2000-11-01
Electric and magnetic field generators capable of producing high-amplitude output are not readily available. This presents difficulties for electromagnetic compatibility testing of new measurement systems where these systems are intended to operate in a particularly hostile electromagnetic environment. A portable electric and a portable magnetic field generator having high pulsed field output are described in this paper. The output of these generators were determined using an electromagnetic-compatible measurement system. These generators allow immunity testing in the laboratory of electronic systems to very high electrical fields, as well as for functional verification of the electronic systems on site. In the longer term, the basic design of the magnetic field generator may be developed as the generator to provide the damped sinusoid magnetic field specified in IEC 61000-4-10, which is adopted in BS EN 61000-4-10.
Lightning Magnetic Field Measurements around Langmuir Laboratory
NASA Astrophysics Data System (ADS)
Stock, M.; Krehbiel, P. R.; Rison, W.; Aulich, G. D.; Edens, H. E.; Sonnenfeld, R. G.
2010-12-01
In the absence of artificial conductors, underground lightning transients are produced by diffusion of the horizontal surface magnetic field of a return stroke vertically downward into the conducting earth. The changing magnetic flux produces an orthogonal horizontal electric field, generating a dispersive, lossy transverse electromagnetic wave that penetrates a hundred meters or more into the ground according to the skin depth of the medium. In turn, the electric field produces currents that flow toward or away from the channel to ground depending on the stroke polarity. The underground transients can produce large radial horizontal potential gradients depending on the distance from the discharge and depth below the surface. In this study we focus on the surface excitation field. The goal of the work is to compare measurements of surface magnetic field waveforms B(t) at different distances from natural lightning discharges with simple and detailed models of the return stroke fields. In addition to providing input to the diffusion mechanism, the results should aid in further understanding return stroke field generation processes. The observational data are to be obtained using orthogonal sets of straightened Rogowski coils to measure magnetic field waveforms in N-S and E-W directions. The waveforms are sampled at 500 kS/s over 1.024 second time intervals and recorded directly onto secure digital cards. The instrument operates off of battery power for several days or weeks at a time in remote, unattended locations and measures magnetic field strengths of up to several tens of amperes/meter. The observations are being made in conjunction with collocated slow electric field change measurements and under good 3-D lightning mapping array (LMA) and fast electric field change coverage.
NASA Astrophysics Data System (ADS)
Irimia, Andrei; Swinney, Kenneth R.; Wikswo, John P.
2009-05-01
In this paper, we clearly demonstrate that the electric potential and the magnetic field can contain different information about current sources in three-dimensional conducting media. Expressions for the magnetic fields of electric dipole and quadrupole current sources immersed in an infinite conducting medium are derived, and it is shown that two different point dipole distributions that are electrically equivalent have different magnetic fields. Although measurements of the electric potential are not sufficient to determine uniquely the characteristics of a quadrupolar source, the radial component of the magnetic field can supply the additional information needed to resolve these ambiguities and to determine uniquely the configuration of dipoles required to specify the electric quadrupoles. We demonstrate how the process can be extended to even higher-order terms in an electrically silent series of magnetic multipoles. In the context of a spherical brain source model, it has been mathematically demonstrated that the part of the neuronal current generating the electric potential lives in the orthogonal complement of the part of the current generating the magnetic potential. This implies a mathematical relationship of complementarity between electroencephalography and magnetoencephalography, although the theoretical result in question does not apply to the nonspherical case [G. Dassios, Math. Med. Biol. 25, 133 (2008)]. Our results have important practical applications in cases where electrically silent sources that generate measurable magnetic fields are of interest. Moreover, electrically silent, magnetically active moments of higher order can be useful when cancellation due to superposition of fields can occur, since this situation leads to a substantial reduction in the measurable amplitude of the signal. In this context, information derived from magnetic recordings of electrically silent, magnetically active multipoles can supplement electrical recordings for the purpose of studying the physiology of the brain. Magnetic fields of the electric multipole sources in a conducting medium surrounded by an insulating spherical shell are also presented and the relevance of this calculation to cardiographic and encephalographic experimentation is discussed.
Internal split field generator
Thundat,; George, Thomas [Knoxville, TN; Van Neste, Charles W [Kingston, TN; Vass, Arpad Alexander [Oak Ridge, TN
2012-01-03
A generator includes a coil of conductive material. A stationary magnetic field source applies a stationary magnetic field to the coil. An internal magnetic field source is disposed within a cavity of the coil to apply a moving magnetic field to the coil. The stationary magnetic field interacts with the moving magnetic field to generate an electrical energy in the coil.
Combining configurational energies and forces for molecular force field optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vlcek, Lukas; Sun, Weiwei; Kent, Paul R. C.
While quantum chemical simulations have been increasingly used as an invaluable source of information for atomistic model development, the high computational expenses typically associated with these techniques often limit thorough sampling of the systems of interest. It is therefore of great practical importance to use all available information as efficiently as possible, and in a way that allows for consistent addition of constraints that may be provided by macroscopic experiments. We propose a simple approach that combines information from configurational energies and forces generated in a molecular dynamics simulation to increase the effective number of samples. Subsequently, this information ismore » used to optimize a molecular force field by minimizing the statistical distance similarity metric. We also illustrate the methodology on an example of a trajectory of configurations generated in equilibrium molecular dynamics simulations of argon and water and compare the results with those based on the force matching method.« less
Combining configurational energies and forces for molecular force field optimization
Vlcek, Lukas; Sun, Weiwei; Kent, Paul R. C.
2017-07-21
While quantum chemical simulations have been increasingly used as an invaluable source of information for atomistic model development, the high computational expenses typically associated with these techniques often limit thorough sampling of the systems of interest. It is therefore of great practical importance to use all available information as efficiently as possible, and in a way that allows for consistent addition of constraints that may be provided by macroscopic experiments. We propose a simple approach that combines information from configurational energies and forces generated in a molecular dynamics simulation to increase the effective number of samples. Subsequently, this information ismore » used to optimize a molecular force field by minimizing the statistical distance similarity metric. We also illustrate the methodology on an example of a trajectory of configurations generated in equilibrium molecular dynamics simulations of argon and water and compare the results with those based on the force matching method.« less
X-ray Generation in Strongly Nonlinear Plasma Waves
NASA Astrophysics Data System (ADS)
Kiselev, S.; Pukhov, A.; Kostyukov, I.
2004-09-01
We show that a laser wake field in the “bubble” regime [
Observation of broadband terahertz wave generation from liquid water
NASA Astrophysics Data System (ADS)
Jin, Qi; E, Yiwen; Williams, Kaia; Dai, Jianming; Zhang, X.-C.
2017-08-01
Bulk liquid water is a strong absorber in the terahertz (THz) frequency range, due to which liquid water has historically been sworn off as a source for THz radiation. Here, we experimentally demonstrate the generation of broadband THz waves from liquid water excited by femtosecond laser pulses. Our measurements reveal the critical dependence of the THz field upon the relative position between the water film and the focal point of the laser beam. The THz radiation from liquid water shows distinct characteristics when compared with the THz radiation from air plasmas with single color optical excitation. First, the THz field is maximized with the laser beam of longer pulse durations. In addition, the p-polarized component of the emitted THz waves will be influenced by the polarization of the optical excitation beam. It is also shown that the energy of the THz radiation is linearly dependent on the excitation pulse energy.
NASA Astrophysics Data System (ADS)
Konstantinou, Georgios; Moulopoulos, Konstantinos
2016-11-01
Due to the importance of gauge symmetry in all fields of physics, and motivated by an article written almost three decades ago that warns against a naive handling of gauge transformations in the Landau level problem (a quantum electron moving in a spatially uniform magnetic field), we point out a proper use of the generators of dynamical symmetries combined with gauge transformation methods to easily obtain exact analytical solutions for all Landau level-wavefunctions in arbitrary gauge. Our method is different from the old argument and provides solutions in an easier manner and in a broader set of geometries and gauges; in so doing, it eliminates the need for extra procedures (i.e. a change of basis) pointed out as a necessary step in the old literature, and gives back the standard simple result, provided that an appropriate use is made of the dynamical symmetries of the system and their generators. In this way the present work will at least be useful for university-level education, i.e. in advanced classes in quantum mechanics and condensed matter physics. In addition, it clarifies the actual role of the gauge in the Landau level problem, which often appears confusing in the usual derivations provided in textbooks. Finally, we go further by showing that a similar methodology can be made to apply to the more difficult case of a spatially non-uniform magnetic field (where closed analytical results are rare), in which case the various generators (pseudomomentum and pseudo-angular momentum) appear as line integrals of the inhomogeneous magnetic field; we give closed analytical solutions for all cases, and show how the old and rather forgotten Bawin-Burnel gauge shows up naturally as a ‘reference gauge’ in all solutions.
A vacuum-sealed miniature X-ray tube based on carbon nanotube field emitters
NASA Astrophysics Data System (ADS)
Heo, Sung Hwan; Kim, Hyun Jin; Ha, Jun Mok; Cho, Sung Oh
2012-05-01
A vacuum-sealed miniature X-ray tube based on a carbon nanotube field-emission electron source has been demonstrated. The diameter of the X-ray tube is 10 mm; the total length of the tube is 50 mm, and no external vacuum pump is required for the operation. The maximum tube voltage reaches up to 70 kV, and the X-ray tube generates intense X-rays with the air kerma strength of 108 Gy·cm2 min-1. In addition, X-rays produced from the miniature X-ray tube have a comparatively uniform spatial dose distribution.
The nonlocal elastomagnetoelectrostatics of disordered micropolar media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kabychenkov, A. F.; Lisiovskii, F. V., E-mail: lisf@rambler.ru
The interactions of electric, magnetic, and elastic subsystems in nonlinear disordered micropolar media that possess a bending–torsion tensor and an nonsymmetric strain tensor have been studied in the framework of phenomenological elastomagnetoelectrostatics. A system of nonlinear equations for determining the ground state of these media has been obtained by the variational method. It is shown that nonuniform external and internal rotations not only create elastic stresses, but also generate additional electric and magnetic fields, while nonuniform elastic stresses and external fields induce internal rotations. The nonlocal character of the micropolar media significantly influences elementary excitations and nonlinear dynamic processes.
Colloidal Microworms Propelling via a Cooperative Hydrodynamic Conveyor Belt.
Martinez-Pedrero, Fernando; Ortiz-Ambriz, Antonio; Pagonabarraga, Ignacio; Tierno, Pietro
2015-09-25
We study propulsion arising from microscopic colloidal rotors dynamically assembled and driven in a viscous fluid upon application of an elliptically polarized rotating magnetic field. Close to a confining plate, the motion of this self-assembled microscopic worm results from the cooperative flow generated by the spinning particles which act as a hydrodynamic "conveyor belt." Chains of rotors propel faster than individual ones, until reaching a saturation speed at distances where induced-flow additivity vanishes. By combining experiments and theoretical arguments, we elucidate the mechanism of motion and fully characterize the propulsion speed in terms of the field parameters.
Random number generators for large-scale parallel Monte Carlo simulations on FPGA
NASA Astrophysics Data System (ADS)
Lin, Y.; Wang, F.; Liu, B.
2018-05-01
Through parallelization, field programmable gate array (FPGA) can achieve unprecedented speeds in large-scale parallel Monte Carlo (LPMC) simulations. FPGA presents both new constraints and new opportunities for the implementations of random number generators (RNGs), which are key elements of any Monte Carlo (MC) simulation system. Using empirical and application based tests, this study evaluates all of the four RNGs used in previous FPGA based MC studies and newly proposed FPGA implementations for two well-known high-quality RNGs that are suitable for LPMC studies on FPGA. One of the newly proposed FPGA implementations: a parallel version of additive lagged Fibonacci generator (Parallel ALFG) is found to be the best among the evaluated RNGs in fulfilling the needs of LPMC simulations on FPGA.
NASA Astrophysics Data System (ADS)
Fujii, Ayaka; Wakatsuki, Naoto; Mizutani, Koichi
2016-01-01
A method of suppressing sound radiation to the far field of a near-field acoustic communication system using an evanescent sound field is proposed. The amplitude of the evanescent sound field generated from an infinite vibrating plate attenuates exponentially with increasing a distance from the surface of the vibrating plate. However, a discontinuity of the sound field exists at the edge of the finite vibrating plate in practice, which broadens the wavenumber spectrum. A sound wave radiates over the evanescent sound field because of broadening of the wavenumber spectrum. Therefore, we calculated the optimum distribution of the particle velocity on the vibrating plate to reduce the broadening of the wavenumber spectrum. We focused on a window function that is utilized in the field of signal analysis for reducing the broadening of the frequency spectrum. The optimization calculation is necessary for the design of window function suitable for suppressing sound radiation and securing a spatial area for data communication. In addition, a wide frequency bandwidth is required to increase the data transmission speed. Therefore, we investigated a suitable method for calculating the sound pressure level at the far field to confirm the variation of the distribution of sound pressure level determined on the basis of the window shape and frequency. The distribution of the sound pressure level at a finite distance was in good agreement with that obtained at an infinite far field under the condition generating the evanescent sound field. Consequently, the window function was optimized by the method used to calculate the distribution of the sound pressure level at an infinite far field using the wavenumber spectrum on the vibrating plate. According to the result of comparing the distributions of the sound pressure level in the cases with and without the window function, it was confirmed that the area whose sound pressure level was reduced from the maximum level to -50 dB was extended. Additionally, we designed a sound insulator so as to realize a similar distribution of the particle velocity to that obtained using the optimized window function. Sound radiation was suppressed using a sound insulator put above the vibrating surface in the simulation using the three-dimensional finite element method. On the basis of this finding, it was suggested that near-field acoustic communication which suppressed sound radiation can be realized by applying the optimized window function to the particle velocity field.
Floating electrode dielectrophoresis.
Golan, Saar; Elata, David; Orenstein, Meir; Dinnar, Uri
2006-12-01
In practice, dielectrophoresis (DEP) devices are based on micropatterned electrodes. When subjected to applied voltages, the electrodes generate nonuniform electric fields that are necessary for the DEP manipulation of particles. In this study, electrically floating electrodes are used in DEP devices. It is demonstrated that effective DEP forces can be achieved by using floating electrodes. Additionally, DEP forces generated by floating electrodes are different from DEP forces generated by excited electrodes. The floating electrodes' capabilities are explained theoretically by calculating the electric field gradients and demonstrated experimentally by using test-devices. The test-devices show that floating electrodes can be used to collect erythrocytes (red blood cells). DEP devices which contain many floating electrodes ought to have fewer connections to external signal sources. Therefore, the use of floating electrodes may considerably facilitate the fabrication and operation of DEP devices. It can also reduce device dimensions. However, the key point is that DEP devices can integrate excited electrodes fabricated by microtechnology processes and floating electrodes fabricated by nanotechnology processes. Such integration is expected to promote the use of DEP devices in the manipulation of nanoparticles.
NASA Astrophysics Data System (ADS)
Carter, T. A.; Auerbach, D. W.; Brugman, B. T.
2007-11-01
Large amplitude kinetic Alfv'en waves (δB/B ˜1% > k/k) are generated in the Large Plasma Device (LAPD) at UCLA using loop antennas. Substantial electron heating is observed, localized to the wave current channels. The Poynting flux associated with the Alfv'en waves is substantial and the observed heating may be at least in part due to collisional and Landau damping of these waves. However, heating by antenna near inductive electric fields may also be responsible for the observations. A discussion of both possibilities will be presented, including measurements of near fields of the antenna. The heating structures the background plasma and results in the excitation of drift-Alfv'en waves. These drift waves then interact with the incident Alfv'en wave, causing sideband generation which results in a nearly broadband state at high wave power. This process may represent an alternate mechanism by which unidirectional kinetic Alfv'en waves can nonlinearly generate a turbulent spectrum. In addition to electron heating, evidence for background density modification and electron acceleration is observed and will be presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rintoul, B.
1970-09-15
The newest addition to Getty Oil Co.'s imposing array of steam equipment at Kern River is a 240-million-btu-per-hr boiler. This boiler is almost 5 times more powerful than the previous largest piece of steam-generating hardware in use in the field. The huge boiler went into operation in Aug. on the Canfield Fee property on Sec. 29, 28S-28E. It is being used to furnish steam for 60 wells in a displacement project. The components that have made Getty Oil Co. the leading steamer at Kern River and the field, in turn, the world capital for oil-field steam operations include shallow wells,more » steam generators, and--since last year--a computer. There are more than 4,500 oil wells in the Kern River field, including more than 2,600 on Getty Oil properties. Getty Oil's steam operations involve 2,469 producing wells and 151 injection wells, including 2,167 producing wells in stimulation projects and 302 producing wells in displacement projects. The Kern River drilling program for 1970 consists of 313 wells of which 179 are steam-injection wells for the expansion of displacement projects. Wells are shallow, drilled mainly to the Kern River Series sands at an average depth of 900 ft, with a few drilled to the China Grade zone at an average depth of 1,300 ft. To furnish steam for the massive Kern River program, Getty Oil has assembled a force of 96 steam generators.« less
Realisation of a holographic microlaser scalpel using a digital micromirror device
NASA Astrophysics Data System (ADS)
Zwick, Susanne; Warber, Michael; Haist, Tobias; Osten, Wolfgang
2007-06-01
Modern spatial light modulators (SLM) enable the generation of more or less arbitrary light fields in three dimensions. Such light fields can be used for different future applications in the field of biomedical optics. One example is the processing/cutting of biological material on a microscopic scale. By displaying computer generated holograms by suitable SLMs it is possible to ablate complex structures into three-dimensional objects without scanning with very high accuracy on a microscopic scale. To effectively cut biological materials by light, pulsed ultraviolet light is preferable. We will present a combined setup of a holographic laser scalpel using a digital micromirror device (DMD) and holographic optical tweezers using a liquid crystal display (LCD). The setup enables to move and cut or process micro-scaled objects like biological cells or tissue in three dimensions with high accuracy and without any mechanical movements just by changing the hologram displayed by the SLMs. We will show that holograms can be used to compensate aberrations implemented by the DMD or other optical components of the setup. Also we can generate arbitrary light fields like stripes, circles or arbitrary curves. Additionally we will present results for the fast optimization of holograms for the system. In particular we will show results obtained by implementing iterative Fourier transform based algorithms on a standard consumer graphics board (Nvidia 8800GLX). By this approach we are able to compute more than 360 complex 2D FFTs (512 × 512 pixels) per second with floating point precision.
Metusalem, Ross; Kutas, Marta; Urbach, Thomas P.; Elman, Jeffrey L.
2016-01-01
During incremental language comprehension, the brain activates knowledge of described events, including knowledge elements that constitute semantic anomalies in their linguistic context. The present study investigates hemispheric asymmetries in this process, with the aim of advancing our understanding of the neural basis and functional properties of event knowledge activation during incremental comprehension. In a visual half-field event-related brain potential (ERP) experiment, participants read brief discourses in which the third sentence contained a word that was either highly expected, semantically anomalous but related to the described event, or semantically anomalous but unrelated to the described event. For both visual fields of target word presentation, semantically anomalous words elicited N400 ERP components of greater amplitude than did expected words. Crucially, event-related anomalous words elicited a reduced N400 relative to event-unrelated anomalous words only with left visual field/right hemisphere presentation. This result suggests that right hemisphere processes are critical to the activation of event knowledge elements that violate the linguistic context, and in doing so informs existing theories of hemispheric asymmetries in semantic processing during language comprehension. Additionally, this finding coincides with past research suggesting a crucial role for the right hemisphere in elaborative inference generation, raises interesting questions regarding hemispheric coordination in generating event-specific linguistic expectancies, and more generally highlights the possibility of functional dissociation between event knowledge activation for the generation of elaborative inferences and for linguistic expectancies. PMID:26878980
Metusalem, Ross; Kutas, Marta; Urbach, Thomas P; Elman, Jeffrey L
2016-04-01
During incremental language comprehension, the brain activates knowledge of described events, including knowledge elements that constitute semantic anomalies in their linguistic context. The present study investigates hemispheric asymmetries in this process, with the aim of advancing our understanding of the neural basis and functional properties of event knowledge activation during incremental comprehension. In a visual half-field event-related brain potential (ERP) experiment, participants read brief discourses in which the third sentence contained a word that was either highly expected, semantically anomalous but related to the described event (Event-Related), or semantically anomalous but unrelated to the described event (Event-Unrelated). For both visual fields of target word presentation, semantically anomalous words elicited N400 ERP components of greater amplitude than did expected words. Crucially, Event-Related anomalous words elicited a reduced N400 relative to Event-Unrelated anomalous words only with left visual field/right hemisphere presentation. This result suggests that right hemisphere processes are critical to the activation of event knowledge elements that violate the linguistic context, and in doing so informs existing theories of hemispheric asymmetries in semantic processing during language comprehension. Additionally, this finding coincides with past research suggesting a crucial role for the right hemisphere in elaborative inference generation, raises interesting questions regarding hemispheric coordination in generating event-specific linguistic expectancies, and more generally highlights the possibility of functional dissociation of event knowledge activation for the generation of elaborative inferences and for linguistic expectancies. Copyright © 2016 Elsevier Ltd. All rights reserved.
User's manual for three-dimensional analysis of propeller flow fields
NASA Technical Reports Server (NTRS)
Chaussee, D. S.; Kutler, P.
1983-01-01
A detailed operating manual is presented for the prop-fan computer code (in addition to supporting programs) recently developed by Kutler, Chaussee, Sorenson, and Pulliam while at the NASA'S Ames Research Center. This code solves the inviscid Euler equations using an implicit numerical procedure developed by Beam and Warming of Ames. A description of the underlying theory, numerical techniques, and boundary conditions with equations, formulas, and methods for the mesh generation program (MGP), three dimensional prop-fan flow field program (3DPFP), and data reduction program (DRP) is provided, together with complete operating instructions. In addition, a programmer's manual is also provided to assist the user interested in modifying the codes. Included in the programmer's manual for each program is a description of the input and output variables, flow charts, program listings, sample input and output data, and operating hints.
The dynamics of a surface plasma generated by an independent source in the field of laser emission
NASA Astrophysics Data System (ADS)
Kovalev, A. S.; Popov, A. M.; Seleznev, B. V.; Feoktistov, V. A.
1986-09-01
A study is made of the evolution of a plasma formation generated by a high-power short pulse of an Nd laser on a metal surface, with the relatively weak emission of a CO2 laser focused on the surface. The thresholds of a sustained breakdown plasma are measured as a function of the plasma-generating pulse energy. The dynamics of plasma front propagation along the target surface and in the direction opposite to the laser beam direction is investigated. It is shown that the use of an additional laser with an energy less than that of the CO2 laser by 2-3 orders of magnitude makes it possible to generate a surface plasma capable of absorbing and transferring to the target a significantly greater fraction of the CO2 laser energy.
Near-Field Enhanced Photochemistry of Single Molecules in a Scanning Tunneling Microscope Junction.
Böckmann, Hannes; Gawinkowski, Sylwester; Waluk, Jacek; Raschke, Markus B; Wolf, Martin; Kumagai, Takashi
2018-01-10
Optical near-field excitation of metallic nanostructures can be used to enhance photochemical reactions. The enhancement under visible light illumination is of particular interest because it can facilitate the use of sunlight to promote photocatalytic chemical and energy conversion. However, few studies have yet addressed optical near-field induced chemistry, in particular at the single-molecule level. In this Letter, we report the near-field enhanced tautomerization of porphycene on a Cu(111) surface in a scanning tunneling microscope (STM) junction. The light-induced tautomerization is mediated by photogenerated carriers in the Cu substrate. It is revealed that the reaction cross section is significantly enhanced in the presence of a Au tip compared to the far-field induced process. The strong enhancement occurs in the red and near-infrared spectral range for Au tips, whereas a W tip shows a much weaker enhancement, suggesting that excitation of the localized plasmon resonance contributes to the process. Additionally, using the precise tip-surface distance control of the STM, the near-field enhanced tautomerization is examined in and out of the tunneling regime. Our results suggest that the enhancement is attributed to the increased carrier generation rate via decay of the excited near-field in the STM junction. Additionally, optically excited tunneling electrons also contribute to the process in the tunneling regime.
Measuring Plasma Formation Field Strength and Current Loss in Pulsed Power Diodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnston, Mark D.; Patel, Sonal G.; Falcon, Ross Edward
This LDRD investigated plasma formation, field strength, and current loss in pulsed power diodes. In particular the Self-Magnetic Pinch (SMP) e-beam diode was studied on the RITS-6 accelerator. Magnetic fields of a few Tesla and electric fields of several MV/cm were measured using visible spectroscopy techniques. The magnetic field measurements were then used to determine the current distribution in the diode. This distribution showed that significant beam current extends radially beyond the few millimeter x-ray focal spot diameter. Additionally, shielding of the magnetic field due to dense electrode surface plasmas was observed, quantified, and found to be consistent with themore » calculated Spitzer resistivity. In addition to the work on RITS, measurements were also made on the Z-machine looking to quantify plasmas within the power flow regions. Measurements were taken in the post-hole convolute and final feed gap regions on Z. Dopants were applied to power flow surfaces and measured spectroscopically. These measurements gave species and density/temperature estimates. Preliminary B-field measurements in the load region were attempted as well. Finally, simulation work using the EMPHASIS, electromagnetic particle in cell code, was conducted using the Z MITL conditions. The purpose of these simulations was to investigate several surface plasma generations models under Z conditions for comparison with experimental data.« less
Theoretical investigation of operation modes of MHD generators for energy-bypass engines
NASA Astrophysics Data System (ADS)
Tang, Jingfeng; Li, Nan; Yu, Daren
2014-12-01
A MHD generator with different arrangements of electromagnetic fields will lead the generator working in three modes. A quasi-one-dimensional approximation is used for the model of the MHD generator to analyze the inner mechanism of operation modes. For the MHD generator with a uniform constant magnetic field, a specific critical electric field E cr is required to decelerate a supersonic entrance flow into a subsonic exit flow. Otherwise, the generator works in a steady mode with a larger electric field than E cr in which a steady supersonic flow is provided at the exit, or the generator works in a choked mode with a smaller electric field than E cr in which the supersonic entrance flow is choked in the channel. The detailed flow field characteristics in different operation modes are discussed, demonstrating the relationship of operation modes with electromagnetic fields.
NASA Astrophysics Data System (ADS)
Weisheng, CUI; Wenzheng, LIU; Jia, TIAN; Xiuyang, CHEN
2018-02-01
At present, spark plugs are used to trigger discharge in pulsed plasma thrusters (PPT), which are known to be life-limiting components due to plasma corrosion and carbon deposition. A strong electric field could be formed in a cathode triple junction (CTJ) to achieve a trigger function under vacuum conditions. We propose an induction-triggered electrode structure on the basis of the CTJ trigger principle. The induction-triggered electrode structure could increase the electric field strength of the CTJ without changing the voltage between electrodes, contributing to a reduction in the electrode breakdown voltage. Additionally, it can maintain the plasma generation effect when the breakdown voltage is reduced in the discharge experiments. The induction-triggered electrode structure could ensure an effective trigger when the ablation distance of Teflon increases, and the magnetic field produced by the discharge current could further improve the plasma density and propagation velocity. The induction-triggered coaxial PPT we propose has a simplified trigger structure, and it is an effective attempt to optimize the micro-satellite thruster.
NASA Technical Reports Server (NTRS)
Herring, Gregory C.; Meyers, James F.
2011-01-01
A nonintrusive technique Doppler global velocimetry (DGV) was used to determine conical shock strengths on a supersonic-cruise low-boom aircraft model. The work was performed at approximately Mach 2 in the Unitary Plan Wind Tunnel. Water is added to the wind tunnel flow circuit, generating small ice particles used as seed particles for the laser-based velocimetry. DGV generates two-dimensional (2-D) maps of three components of velocity that span the oblique shock. Shock strength (i.e. fractional pressure increase) is determined from observation of the flow deflection angle across the shock in combination with the standard shock relations. Although DGV had conveniently and accurately determined shock strengths from the homogenous velocity fields behind 2-D planar shocks, the inhomogeneous 3-D velocity fields behind the conical shocks presented additional challenges. Shock strength measurements for the near-field conical nose shock were demonstrated and compared with previously-published static pressure probe data for the same model in the same wind tunnel. Fair agreement was found between the two sets of results.
Eliminating the η-problem in SUGRA hybrid inflation with vector backreaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dimopoulos, Konstantinos; Wagstaff, Jacques M.; Lazarides, George, E-mail: k.dimopoulos1@lancaster.ac.uk, E-mail: lazaride@eng.auth.gr, E-mail: j.wagstaff@lancaster.ac.uk
2012-02-01
It is shown that, when the inflaton field modulates the gauge kinetic function of the gauge fields in supergravity realisations of inflation, the dynamic backreaction leads to a new inflationary attractor solution, in which the inflaton's variation suffers additional impedance. As a result, slow-roll inflation can naturally occur along directions of the scalar potential which would be too steep and curved to support it otherwise. This provides a generic solution to the infamous eta-problem of inflation in supergravity. Moreover, it is shown that, in the new inflationary attractor, the spectral index of the generated curvature perturbations is kept mildly redmore » despite eta of order unity. The above findings are applied to a model of hybrid inflation in supergravity with a generic Kähler potential. The spectral index of the generated curvature perturbations is found to be 0.97–0.98, in excellent agreement with observations. The gauge field can play the role of the vector curvaton after inflation but observable statistical anisotropy requires substantial tuning of the gauge coupling.« less
Efficient variable time-stepping scheme for intense field-atom interactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cerjan, C.; Kosloff, R.
1993-03-01
The recently developed Residuum method [Tal-Ezer, Kosloff, and Cerjan, J. Comput. Phys. 100, 179 (1992)], a Krylov subspace technique with variable time-step integration for the solution of the time-dependent Schroedinger equation, is applied to the frequently used soft Coulomb potential in an intense laser field. This one-dimensional potential has asymptotic Coulomb dependence with a softened'' singularity at the origin; thus it models more realistic phenomena. Two of the more important quantities usually calculated in this idealized system are the photoelectron and harmonic photon generation spectra. These quantities are shown to be sensitive to the choice of a numerical integration scheme:more » some spectral features are incorrectly calculated or missing altogether. Furthermore, the Residuum method allows much larger grid spacings for equivalent or higher accuracy in addition to the advantages of variable time stepping. Finally, it is demonstrated that enhanced high-order harmonic generation accompanies intense field stabilization and that preparation of the atom in an intermediate Rydberg state leads to stabilization at much lower laser intensity.« less
Characteristics of the Swirling Flow Generated by an Axial Swirler
NASA Technical Reports Server (NTRS)
Fu, Yongqiang; Jeng, San-Mou; Tacina, Robert
2005-01-01
An experimental investigation was conducted to study the aerodynamic characteristics of the confined, non-reacting, swirling flow field. The flow was generated by a helicoidal axial-vaned swirler with a short internal convergent-divergent venturi, which was confined within 2-inch square test section. A series of helicoidal axial-vaned swirlers have been designed with tip vane angles of 40 deg., 45 deg., 50 deg., 55 deg., 60 deg. and 65 deg.. The swirler with the tip vane angle of 60 deg. was combined with several simulated fuel nozzle insertions of varying lengths. A two-component Laser Doppler Velocimetry (LDV) system was employed to measure the three-component mean velocities and Reynolds stresses. Detailed data are provided to enhance understanding swirling flow with different swirl degrees and geometries and to support the development of more accurate physicaVnumerica1 models. The data indicated that the degree of swirl had a clear impact on the mean and turbulent flow fields. The swirling flow fields changed significantly with the addition of a variety of simulated fuel nozzle insertion lengths
Persinger, M A
1988-12-01
Luminous phenomena and anomalous physical forces have been hypothesized to be generated by focal tectonic strain fields that precede earthquakes. If these geophysical processes exist, then their spatial and temporal density should be greatest during periods of protracted, localized UFO reports; they might be used as dosimetric indicators. Contemporary epidemiological data concerning the health risks of power frequency electromagnetic fields and radon gas levels (expected correlates of certain tectonic strain fields), suggest that increased incidence (odds ratios greater 1:3) of brain tumors and leukemia should be evident within "flap" areas. In addition the frequency of variants of temporal lobe lability, psychological depression and posttraumatic stress should be significantly elevated. UFO field investigators, because they have repeated, intermittent close proximity to these fields, are considered to be a particularly high risk population for these disorders.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Persinger, M.A.
Luminous phenomena and anomalous physical forces have been hypothesized to be generated by focal tectonic strain fields that precede earthquakes. If these geophysical processes exist, then their spatial and temporal density should be greatest during periods of protracted, localized UFO reports; they might be used as dosimetric indicators. Contemporary epidemiological data concerning the health risks of power frequency electromagnetic fields and radon gas levels (expected correlates of certain tectonic strain fields), suggest that increased incidence (odds ratios greater 1:3) of brain tumors and leukemia should be evident within flap areas. In addition the frequency of variants of temporal lobe lability,more » psychological depression and posttraumatic stress should be significantly elevated. UFO field investigators, because they have repeated, intermittent close proximity to these fields, are considered to be a particularly high risk population for these disorders. 22 references.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jun; College of Physics and Electronic Engineering, Henan Normal University, 453007 Xinxiang, Henan; Zhang, Xiangdong, E-mail: zhangxd@bit.edu.cn
2015-09-28
Simultaneous negative refraction for both the fundamental frequency (FF) and second-harmonic (SH) fields in two-dimensional nonlinear photonic crystals have been found through both the physical analysis and exact numerical simulation. By combining such a property with the phase-matching condition and strong second-order susceptibility, we have designed a SH lens to realize focusing for both the FF and SH fields at the same time. Good-quality non-near field images for both FF and SH fields have been observed. The physical mechanism for such SH focusing phenomena has been disclosed, which is different from the backward SH generation as has been pointed outmore » in the previous investigations. In addition, the effect of absorption losses on the phenomena has also been discussed. Thus, potential applications of these phenomena to biphotonic microscopy technique are anticipated.« less
Electrostatic dispersion lenses and ion beam dispersion methods
Dahl, David A [Idaho Falls, ID; Appelhans, Anthony D [Idaho Falls, ID
2010-12-28
An EDL includes a case surface and at least one electrode surface. The EDL is configured to receive through the EDL a plurality of ion beams, to generate an electrostatic field between the one electrode surface and either the case surface or another electrode surface, and to increase the separation between the beams using the field. Other than an optional mid-plane intended to contain trajectories of the beams, the electrode surface or surfaces do not exhibit a plane of symmetry through which any beam received through the EDL must pass. In addition or in the alternative, the one electrode surface and either the case surface or the other electrode surface have geometries configured to shape the field to exhibit a less abrupt entrance and/or exit field transition in comparison to another electrostatic field shaped by two nested, one-quarter section, right cylindrical electrode surfaces with a constant gap width.
The Rotational and Gravitational Effect of Earthquakes
NASA Technical Reports Server (NTRS)
Gross, Richard
2000-01-01
The static displacement field generated by an earthquake has the effect of rearranging the Earth's mass distribution and will consequently cause the Earth's rotation and gravitational field to change. Although the coseismic effect of earthquakes on the Earth's rotation and gravitational field have been modeled in the past, no unambiguous observations of this effect have yet been made. However, the Gravity Recovery And Climate Experiment (GRACE) satellite, which is scheduled to be launched in 2001, will measure time variations of the Earth's gravitational field to high degree and order with unprecedented accuracy. In this presentation, the modeled coseismic effect of earthquakes upon the Earth's gravitational field to degree and order 100 will be computed and compared to the expected accuracy of the GRACE measurements. In addition, the modeled second degree changes, corresponding to changes in the Earth's rotation, will be compared to length-of-day and polar motion excitation observations.
Method And Apparatus For Launching Microwave Energy Into A Plasma Processing Chamber
DOUGHTY, FRANK C.; [et al
2001-05-01
A method and apparatus for launching microwave energy to a plasma processing chamber in which the required magnetic field is generated by a permanent magnet structure and the permanent magnet material effectively comprises one or more surfaces of the waveguide structure. The waveguide structure functions as an impedance matching device and controls the field pattern of the launched microwave field to create a uniform plasma. The waveguide launcher may comprise a rectangular waveguide, a circular waveguide, or a coaxial waveguide with permanent magnet material forming the sidewalls of the guide and a magnetization pattern which produces the required microwave electron cyclotron resonance magnetic field, a uniform field absorption pattern, and a rapid decay of the fields away from the resonance zone. In addition, the incorporation of permanent magnet material as a portion of the waveguide structure places the magnetic material in close proximity to the vacuum chamber, allowing for a precisely controlled magnetic field configuration, and a reduction of the amount of permanent magnet material required.
Assessment of gene order computing methods for Alzheimer's disease
2013-01-01
Background Computational genomics of Alzheimer disease (AD), the most common form of senile dementia, is a nascent field in AD research. The field includes AD gene clustering by computing gene order which generates higher quality gene clustering patterns than most other clustering methods. However, there are few available gene order computing methods such as Genetic Algorithm (GA) and Ant Colony Optimization (ACO). Further, their performance in gene order computation using AD microarray data is not known. We thus set forth to evaluate the performances of current gene order computing methods with different distance formulas, and to identify additional features associated with gene order computation. Methods Using different distance formulas- Pearson distance and Euclidean distance, the squared Euclidean distance, and other conditions, gene orders were calculated by ACO and GA (including standard GA and improved GA) methods, respectively. The qualities of the gene orders were compared, and new features from the calculated gene orders were identified. Results Compared to the GA methods tested in this study, ACO fits the AD microarray data the best when calculating gene order. In addition, the following features were revealed: different distance formulas generated a different quality of gene order, and the commonly used Pearson distance was not the best distance formula when used with both GA and ACO methods for AD microarray data. Conclusion Compared with Pearson distance and Euclidean distance, the squared Euclidean distance generated the best quality gene order computed by GA and ACO methods. PMID:23369541
Screech Noise Generation From Supersonic Underexpanded Jets Investigated
NASA Technical Reports Server (NTRS)
Panda, Jayanta; Seasholtz, Richard G.
2000-01-01
Many supersonic military aircraft and some of the modern civilian aircraft (such as the Boeing 777) produce shock-associated noise. This noise is generated from the jet engine plume when the engine nozzle is operated beyond the subsonic operation limit to gain additional thrust. At these underexpanded conditions, a series of shock waves appear in the plume. The turbulent vortices present in the jet interact with the shock waves and produce the additional shock-associated noise. Screech belongs to this noise category, where sound is generated in single or multiple pure tones. The high dynamic load associated with screech can damage the tailplane. One purpose of this study at the NASA Glenn Research Center at Lewis Field was to provide an accurate data base for validating various computational fluid dynamics (CFD) codes. These codes will be used to predict the frequency and amplitude of screech tones. A second purpose was to advance the fundamental physical understanding of how shock-turbulence interactions generate sound. Previously, experiments on shock-turbulence interaction were impossible to perform because no suitable technique was available. As one part of this program, an optical Rayleigh-scattering measurement technique was devised to overcome this difficulty.
Horizontal fields generated by return strokes
NASA Technical Reports Server (NTRS)
Cooray, Vernon
1991-01-01
Horizontal fields generated by return strokes play an important role in the interaction of lightning generated electric fields with power lines. In many of the recent investigations on the interaction of lightning electromagnetic fields with power lines, the horizontal field was calculated by employing the expression for the tilt of the electric field of a plane wave propagating over finitely conducting earth. The method is suitable for calculating horizontal fields generated by return strokes at distances as close as 200m. At these close ranges, the use of the wavetilt expression can cause large errors.
Initialization and Setup of the Coastal Model Test Bed: STWAVE
2017-01-01
Laboratory (CHL) Field Research Facility (FRF) in Duck , NC. The improved evaluation methodology will promote rapid enhancement of model capability and focus...Blanton 2008) study . This regional digital elevation model (DEM), with a cell size of 10 m, was generated from numerous datasets collected at different...INFORMATION: For additional information, contact Spicer Bak, Coastal Observation and Analysis Branch, Coastal and Hydraulics Laboratory, 1261 Duck Road
Classifying Particles By Acoustic Levitation
NASA Technical Reports Server (NTRS)
Barmatz, Martin B.; Stoneburner, James D.
1983-01-01
Separation technique well suited to material processing. Apparatus with rectangular-cross-section chamber used to measure equilibrium positions of low-density spheres in gravitational field. Vertical acoustic forces generated by two opposing compression drivers exciting fundamental plane-wave mode at 1.2 kHz. Additional horizontal drivers centered samples along vertical axis. Applications in fusion-target separation, biological separation, and manufacturing processes in liquid or gas media.
USDA-ARS?s Scientific Manuscript database
Tropospheric ozone (O3) is a pollutant that is generated by volatile organic compounds, nitrogen oxides and sunlight. When plants take in O3 through stomata, harmful reactive oxygen species (ROS) are produced that induce the production of ROS scavenging antioxidants. Climate change predictions indic...
Field Testing of a Wet FGD Additive for Enhanced Mercury Control - Task 3 Full-scale Test Results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gary Blythe
2007-05-01
This Topical Report summarizes progress on Cooperative Agreement DE-FC26-04NT42309, 'Field Testing of a Wet FGD Additive'. The objective of the project is to demonstrate the use of a flue gas desulfurization (FGD) additive, Degussa Corporation's TMT-15, to prevent the reemission of elemental mercury (Hg{sup 0}) in flue gas exiting wet FGD systems on coal-fired boilers. Furthermore, the project intends to demonstrate whether the additive can be used to precipitate most of the mercury (Hg) removed in the wet FGD system as a fine TMT salt that can be separated from the FGD liquor and bulk solid byproducts for separate disposal.more » The project is conducting pilot- and full-scale tests of the TMT-15 additive in wet FGD absorbers. The tests are intended to determine required additive dosages to prevent Hg{sup 0} reemissions and to separate mercury from the normal FGD byproducts for three coal types: Texas lignite/Power River Basin (PRB) coal blend, high-sulfur Eastern bituminous coal, and low-sulfur Eastern bituminous coal. The project team consists of URS Group, Inc., EPRI, TXU Generation Company LP, Southern Company, and Degussa Corporation. TXU Generation has provided the Texas lignite/PRB cofired test site for pilot FGD tests, Monticello Steam Electric Station Unit 3. Southern Company is providing the low-sulfur Eastern bituminous coal host site for wet scrubbing tests, as well as the pilot- and full-scale jet bubbling reactor (JBR) FGD systems to be tested. IPL, an AES company, provided the high-sulfur Eastern bituminous coal full-scale FGD test site and cost sharing. Degussa Corporation is providing the TMT-15 additive and technical support to the test program as cost sharing. The project is being conducted in six tasks. Of the six project tasks, Task 1 involves project planning and Task 6 involves management and reporting. The other four tasks involve field testing on FGD systems, either at pilot or full scale. The four tasks include: Task 2 - Pilot Additive Testing in Texas Lignite Flue Gas; Task 3 - Full-scale FGD Additive Testing in High-sulfur Eastern Bituminous Flue Gas; Task 4 - Pilot Wet Scrubber Additive Tests at Plant Yates; and Task 5 - Full-scale Additive Tests at Plant Yates. The pilot-scale tests were completed in 2005 and have been previously reported. This topical report presents the results from the Task 3 full-scale additive tests, conducted at IPL's Petersburg Station Unit 2. The Task 5 full-scale additive tests will be conducted later in calendar year 2007.« less
NASA Astrophysics Data System (ADS)
Fiksel, G.; Agliata, A.; Barnak, D.; Brent, G.; Chang, P.-Y.; Folnsbee, L.; Gates, G.; Hasset, D.; Lonobile, D.; Magoon, J.; Mastrosimone, D.; Shoup, M. J.; Betti, R.
2015-01-01
An upgrade of the pulsed magnetic field generator magneto-inertial fusion electrical discharge system [O. Gotchev et al., Rev. Sci. Instrum. 80, 043504 (2009)] is described. The device is used to study magnetized high-energy-density plasma and is capable of producing a pulsed magnetic field of tens of tesla in a volume of a few cubic centimeters. The magnetic field is created by discharging a high-voltage capacitor through a small wire-wound coil. The coil current pulse has a duration of about 1 μs and a peak value of 40 kA. Compared to the original, the updated version has a larger energy storage and improved switching system. In addition, magnetic coils are fabricated using 3-D printing technology which allows for a greater variety of the magnetic field topology.
Fiksel, G; Agliata, A; Barnak, D; Brent, G; Chang, P-Y; Folnsbee, L; Gates, G; Hasset, D; Lonobile, D; Magoon, J; Mastrosimone, D; Shoup, M J; Betti, R
2015-01-01
An upgrade of the pulsed magnetic field generator magneto-inertial fusion electrical discharge system [O. Gotchev et al., Rev. Sci. Instrum. 80, 043504 (2009)] is described. The device is used to study magnetized high-energy-density plasma and is capable of producing a pulsed magnetic field of tens of tesla in a volume of a few cubic centimeters. The magnetic field is created by discharging a high-voltage capacitor through a small wire-wound coil. The coil current pulse has a duration of about 1 μs and a peak value of 40 kA. Compared to the original, the updated version has a larger energy storage and improved switching system. In addition, magnetic coils are fabricated using 3-D printing technology which allows for a greater variety of the magnetic field topology.
Anisotopic inflation with a non-abelian gauge field in Gauss-Bonnet gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lahiri, Sayantani, E-mail: sayantani.lahiri@gmail.com
2017-01-01
In presence of Gauss-Bonnet corrections, we study anisotropic inflation aided by a massless SU(2) gauge field where both the gauge field and the Gauss-Bonnet term are non-minimally coupled to the inflaton. In this scenario, under slow-roll approximations, the anisotropic inflation is realized as an attractor solution with quadratic forms of inflaton potential and Gauss-Bonnet coupling function. We show that the degree of anisotropy is proportional to the additive combination of two slow-roll parameters of the theory. The anisotropy may become either positive or negative similar to the non-Gauss-Bonnet framework, a feature of the model for anisotropic inflation supported by amore » non-abelian gauge field but the effect of Gauss-Bonnet term further enhances or suppresses the generated anisotropy.« less
Topology optimized and 3D printed polymer-bonded permanent magnets for a predefined external field
NASA Astrophysics Data System (ADS)
Huber, C.; Abert, C.; Bruckner, F.; Pfaff, C.; Kriwet, J.; Groenefeld, M.; Teliban, I.; Vogler, C.; Suess, D.
2017-08-01
Topology optimization offers great opportunities to design permanent magnetic systems that have specific external field characteristics. Additive manufacturing of polymer-bonded magnets with an end-user 3D printer can be used to manufacture permanent magnets with structures that had been difficult or impossible to manufacture previously. This work combines these two powerful methods to design and manufacture permanent magnetic systems with specific properties. The topology optimization framework is simple, fast, and accurate. It can also be used for the reverse engineering of permanent magnets in order to find the topology from field measurements. Furthermore, a magnetic system that generates a linear external field above the magnet is presented. With a volume constraint, the amount of magnetic material can be minimized without losing performance. Simulations and measurements of the printed systems show very good agreement.
A lattice approach to spinorial quantum gravity
NASA Technical Reports Server (NTRS)
Renteln, Paul; Smolin, Lee
1989-01-01
A new lattice regularization of quantum general relativity based on Ashtekar's reformulation of Hamiltonian general relativity is presented. In this form, quantum states of the gravitational field are represented within the physical Hilbert space of a Kogut-Susskind lattice gauge theory. The gauge field of the theory is a complexified SU(2) connection which is the gravitational connection for left-handed spinor fields. The physical states of the gravitational field are those which are annihilated by additional constraints which correspond to the four constraints of general relativity. Lattice versions of these constraints are constructed. Those corresponding to the three-dimensional diffeomorphism generators move states associated with Wilson loops around on the lattice. The lattice Hamiltonian constraint has a simple form, and a correspondingly simple interpretation: it is an operator which cuts and joins Wilson loops at points of intersection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weinzierl, Marion; Yeates, Anthony R.; Mackay, Duncan H.
2016-05-20
In this paper, we develop a new technique for driving global non-potential simulations of the Sun’s coronal magnetic field solely from sequences of radial magnetic maps of the solar photosphere. A primary challenge to driving such global simulations is that the required horizontal electric field cannot be uniquely determined from such maps. We show that an “inductive” electric field solution similar to that used by previous authors successfully reproduces specific features of the coronal field evolution in both single and multiple bipole simulations. For these cases, the true solution is known because the electric field was generated from a surfacemore » flux-transport model. The match for these cases is further improved by including the non-inductive electric field contribution from surface differential rotation. Then, using this reconstruction method for the electric field, we show that a coronal non-potential simulation can be successfully driven from a sequence of ADAPT maps of the photospheric radial field, without including additional physical observations which are not routinely available.« less
NASA Astrophysics Data System (ADS)
Wanke, R.; Hassink, G. W. J.; Stephanos, C.; Rastegar, I.; Braun, W.; Mannhart, J.
2016-06-01
Mobile energy converters require, in addition to high conversion efficiency and low cost, a low mass. We propose to utilize thermoelectronic converters that use 2D-materials such as graphene for their gate electrodes. Deriving the ultimate limit for their specific energy output, we show that the positive energy output is likely close to the fundamental limit for any conversion of heat into electric power. These converters may be valuable as electric power sources of spacecraft, and with the addition of vacuum enclosures, for power generation in electric planes and cars.
NASA Astrophysics Data System (ADS)
Goderniaux, Pascal; BrouyèRe, Serge; Blenkinsop, Stephen; Burton, Aidan; Fowler, Hayley J.; Orban, Philippe; Dassargues, Alain
2011-12-01
Several studies have highlighted the potential negative impact of climate change on groundwater reserves, but additional work is required to help water managers plan for future changes. In particular, existing studies provide projections for a stationary climate representative of the end of the century, although information is demanded for the near future. Such time-slice experiments fail to account for the transient nature of climatic changes over the century. Moreover, uncertainty linked to natural climate variability is not explicitly considered in previous studies. In this study we substantially improve upon the state-of-the-art by using a sophisticated transient weather generator in combination with an integrated surface-subsurface hydrological model (Geer basin, Belgium) developed with the finite element modeling software "HydroGeoSphere." This version of the weather generator enables the stochastic generation of large numbers of equiprobable climatic time series, representing transient climate change, and used to assess impacts in a probabilistic way. For the Geer basin, 30 equiprobable climate change scenarios from 2010 to 2085 have been generated for each of six different regional climate models (RCMs). Results show that although the 95% confidence intervals calculated around projected groundwater levels remain large, the climate change signal becomes stronger than that of natural climate variability by 2085. Additionally, the weather generator's ability to simulate transient climate change enabled the assessment of the likely time scale and associated uncertainty of a specific impact, providing managers with additional information when planning further investment. This methodology constitutes a real improvement in the field of groundwater projections under climate change conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dawson, S.; Lewis, I. M.
One of the simplest extensions of the Standard Model (SM) is the addition of a scalar gauge singlet, S . If S is not forbidden by a symmetry from mixing with the Standard Model Higgs boson, the mixing will generate non-SM rates for Higgs production and decays. Generally, there could also be unknown high energy physics that generates additional effective low energy interactions. We show that interference effects between the scalar resonance of the singlet model and the effective field theory (EFT) operators can have significant effects in the Higgs sector. Here, we examine a non- Z 2 symmetricmore » scalar singlet model and demonstrate that a fit to the 125 GeV Higgs boson couplings and to limits on high mass resonances, S , exhibit an interesting structure and possible large cancellations of effects between the resonance contribution and the new EFT interactions, that invalidate conclusions based on the renormalizable singlet model alone.« less
Singlet model interference effects with high scale UV physics
Dawson, S.; Lewis, I. M.
2017-01-06
One of the simplest extensions of the Standard Model (SM) is the addition of a scalar gauge singlet, S . If S is not forbidden by a symmetry from mixing with the Standard Model Higgs boson, the mixing will generate non-SM rates for Higgs production and decays. Generally, there could also be unknown high energy physics that generates additional effective low energy interactions. We show that interference effects between the scalar resonance of the singlet model and the effective field theory (EFT) operators can have significant effects in the Higgs sector. Here, we examine a non- Z 2 symmetricmore » scalar singlet model and demonstrate that a fit to the 125 GeV Higgs boson couplings and to limits on high mass resonances, S , exhibit an interesting structure and possible large cancellations of effects between the resonance contribution and the new EFT interactions, that invalidate conclusions based on the renormalizable singlet model alone.« less
Boost breaking in the EFT of inflation
Delacrétaz, Luca V.; Noumi, Toshifumi; Senatore, Leonardo
2017-02-17
If time-translations are spontaneously broken, so are boosts. This symmetry breaking pattern can be non-linearly realized by either just the Goldstone boson of time translations, or by four Goldstone bosons associated with time translations and boosts. Here in this paper we extend the Effective Field Theory of Multifield Inflation to consider the case in which the additional Goldstone bosons associated with boosts are light and coupled to the Goldstone boson of time translations. The symmetry breaking pattern forces a coupling to curvature so that the mass of the additional Goldstone bosons is predicted to be equal to √2H in themore » vast majority of the parameter space where they are light. This pattern therefore offers a natural way of generating self-interacting particles with Hubble mass during inflation. After constructing the general effective Lagrangian, we study how these particles mix and interact with the curvature fluctuations, generating potentially detectable non-Gaussian signals.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delacrétaz, Luca V.; Senatore, Leonardo; Noumi, Toshifumi, E-mail: lvd@stanford.edu, E-mail: tnoumi@phys.sci.kobe-u.ac.jp, E-mail: senatore@stanford.edu
If time-translations are spontaneously broken, so are boosts. This symmetry breaking pattern can be non-linearly realized by either just the Goldstone boson of time translations, or by four Goldstone bosons associated with time translations and boosts. In this paper we extend the Effective Field Theory of Multifield Inflation to consider the case in which the additional Goldstone bosons associated with boosts are light and coupled to the Goldstone boson of time translations. The symmetry breaking pattern forces a coupling to curvature so that the mass of the additional Goldstone bosons is predicted to be equal to √2 H in themore » vast majority of the parameter space where they are light. This pattern therefore offers a natural way of generating self-interacting particles with Hubble mass during inflation. After constructing the general effective Lagrangian, we study how these particles mix and interact with the curvature fluctuations, generating potentially detectable non-Gaussian signals.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delacrétaz, Luca V.; Noumi, Toshifumi; Senatore, Leonardo
If time-translations are spontaneously broken, so are boosts. This symmetry breaking pattern can be non-linearly realized by either just the Goldstone boson of time translations, or by four Goldstone bosons associated with time translations and boosts. Here in this paper we extend the Effective Field Theory of Multifield Inflation to consider the case in which the additional Goldstone bosons associated with boosts are light and coupled to the Goldstone boson of time translations. The symmetry breaking pattern forces a coupling to curvature so that the mass of the additional Goldstone bosons is predicted to be equal to √2H in themore » vast majority of the parameter space where they are light. This pattern therefore offers a natural way of generating self-interacting particles with Hubble mass during inflation. After constructing the general effective Lagrangian, we study how these particles mix and interact with the curvature fluctuations, generating potentially detectable non-Gaussian signals.« less
Nonlinear self-reflection of intense ultra-wideband femtosecond pulses in optical fiber
NASA Astrophysics Data System (ADS)
Konev, Leonid S.; Shpolyanskiy, Yuri A.
2013-05-01
We simulated propagation of few-cycle femtosecond pulses in fused silica fiber based on the set of first-order equations for forward and backward waves that generalizes widely used equation of unidirectional approximation. Appearance of a weak reflected field in conditions default to the unidirectional approach is observed numerically. It arises from nonmatched initial field distribution with the nonlinear medium response. Besides additional field propagating forward along with the input pulse is revealed. The analytical solution of a simplified set of equations valid over distances of a few wavelengths confirms generation of reflected and forward-propagating parts of the backward wave. It allowed us to find matched conditions when the reflected field is eliminated and estimate the amplitude of backward wave via medium properties. The amplitude has the order of the nonlinear contribution to the refractive index divided by the linear refractive index. It is small for the fused silica so the conclusions obtained in the unidirectional approach are valid. The backward wave should be proportionally higher in media with stronger nonlinear response. We did not observe in simulations additional self-reflection not related to non-matched boundary conditions.
NASA Astrophysics Data System (ADS)
Bailey, Wendell; Wen, Hauming; Yang, Yifeng; Forsyth, Andrew; Jia, Chungjiang
A dc-dc converter has been developed for retrofitting inside the vacuum space of the HTS rotor of a synchronous generator. The heavy copper sections of the current leads used for energising the HTS field winding were replaced by cryogenic power electronics; consisting of the converter and a rotor control unit. The converter board was designed using an H-bridge configuration with two 5A rated wires connecting the cryogenic boards to the stator control board located on the outside of the generator and drawing power from a (5A, 50 V) dc power source. The robustness of converter board was well demonstrated when it was powered up from a cold start at 82K. When charging the field winding with moderate currents (30A), the heat in-leak to the 'cold' rotor core was only 2W. It continued to function down to 74K, surviving several quenches. However, the quench protection function failed when injecting 75A into the field winding, resulting in the burn out of one of the DC-link capacitors. The magnitudes of the critical currents measured with the original current leads were compared to the quench currents, which was defined as the current which triggered quench protection protocol. The difference between the two currents was rather large, (∼20A). However, additional measurements using a single HTS coil in liquid nitrogen found that this reduction should not be so dramatic and in the region of 4A. Our conclusions identified the converter's switching voltage and its operating frequency as two parameters, which could have contributed to lowering the quench current. Magnetic fields and eddy currents are expected to be more prominent the field winding and its impact on the converter also need further investigation.
Force Balance and Substorm Effects in the Magnetotail
NASA Technical Reports Server (NTRS)
Kaufmann, Richard L.; Larson, Douglas J.; Kontodinas, Ioannis D.; Ball, Bryan M.
1997-01-01
A model of the quiet time middle magnetotail is developed using a consistent orbit tracing technique. The momentum equation is used to calculate geocentric solar magnetospheric components of the particle and electromagnetic forces throughout the current sheet. Ions generate the dominant x and z force components. Electron and ion forces almost cancel in the y direction because the two species drift earthward at comparable speeds. The force viewpoint is applied to a study of some substorm processes. Generation of the rapid flows seen during substorm injection and bursty bulk flow events implies substantial force imbalances. The formation of a substorm diversion loop is one cause of changes in the magnetic field and therefore in the electromagnetic force. It is found that larger forces are produced when the cross-tail current is diverted to the ionosphere than would be produced if the entire tail current system simply decreased. Plasma is accelerated while the forces are unbalanced resulting in field lines within a diversion loop becoming more dipolar. Field lines become more stretched and the plasma sheet becomes thinner outside a diversion loop. Mechanisms that require thin current sheets to produce current disruption then can create additional diversion loops in the newly thinned regions. This process may be important during multiple expansion substorms and in differentiating pseudoexpansions from full substorms. It is found that the tail field model used here can be generated by a variety of particle distribution functions. However, for a given energy distribution the mixture of particle mirror or reflection points is constrained by the consistency requirement. The study of uniqueness also leads to the development of a technique to select guiding center electrons that will produce charge neutrality all along a flux tube containing nonguiding center ions without the imposition of a parallel electric field.
Krienin, Frank
1990-01-01
A magnetic field generating device provides a useful magnetic field within a specific retgion, while keeping nearby surrounding regions virtually field free. By placing an appropriate current density along a flux line of the source, the stray field effects of the generator may be contained. One current carrying structure may support a truncated cosine distribution, and it may be surrounded by a current structure which follows a flux line that would occur in a full coaxial double cosine distribution. Strong magnetic fields may be generated and contained using superconducting cables to approximate required current surfaces.
NASA Astrophysics Data System (ADS)
Sherwood, R.; Mutz, D.; Estlin, T.; Chien, S.; Backes, P.; Norris, J.; Tran, D.; Cooper, B.; Rabideau, G.; Mishkin, A.; Maxwell, S.
2001-07-01
This article discusses a proof-of-concept prototype for ground-based automatic generation of validated rover command sequences from high-level science and engineering activities. This prototype is based on ASPEN, the Automated Scheduling and Planning Environment. This artificial intelligence (AI)-based planning and scheduling system will automatically generate a command sequence that will execute within resource constraints and satisfy flight rules. An automated planning and scheduling system encodes rover design knowledge and uses search and reasoning techniques to automatically generate low-level command sequences while respecting rover operability constraints, science and engineering preferences, environmental predictions, and also adhering to hard temporal constraints. This prototype planning system has been field-tested using the Rocky 7 rover at JPL and will be field-tested on more complex rovers to prove its effectiveness before transferring the technology to flight operations for an upcoming NASA mission. Enabling goal-driven commanding of planetary rovers greatly reduces the requirements for highly skilled rover engineering personnel. This in turn greatly reduces mission operations costs. In addition, goal-driven commanding permits a faster response to changes in rover state (e.g., faults) or science discoveries by removing the time-consuming manual sequence validation process, allowing rapid "what-if" analyses, and thus reducing overall cycle times.
Fokker-Planck simulation of runaway electron generation in disruptions with the hot-tail effect
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nuga, H., E-mail: nuga@p-grp.nucleng.kyoto-u.ac.jp; Fukuyama, A.; Yagi, M.
2016-06-15
To study runaway electron generation in disruptions, we have extended the three-dimensional (two-dimensional in momentum space; one-dimensional in the radial direction) Fokker-Planck code, which describes the evolution of the relativistic momentum distribution function of electrons and the induced toroidal electric field in a self-consistent manner. A particular focus is placed on the hot-tail effect in two-dimensional momentum space. The effect appears if the drop of the background plasma temperature is sufficiently rapid compared with the electron-electron slowing down time for a few times of the pre-quench thermal velocity. It contributes to not only the enhancement of the primary runaway electronmore » generation but also the broadening of the runaway electron distribution in the pitch angle direction. If the thermal energy loss during the major disruption is assumed to be isotropic, there are hot-tail electrons that have sufficiently large perpendicular momentum, and the runaway electron distribution becomes broader in the pitch angle direction. In addition, the pitch angle scattering also yields the broadening. Since the electric field is reduced due to the burst of runaway electron generation, the time required for accelerating electrons to the runaway region becomes longer. The longer acceleration period makes the pitch-angle scattering more effective.« less
A field test for determining the speed obtained through anaerobic glycolysis in runners.
Borsetto, C; Ballarin, E; Casoni, I; Cellini, M; Vitiello, P; Conconi, F
1989-10-01
A field test for the evaluation of the speed generated by the anaerobic lactacid mechanism has been developed in runners. The test consists of 1200 m of continuous running: in the first 1000 m the speed corresponding to the anaerobic threshold is progressively reached; in the last 200 m an all-out sprint is performed. The speed at the anaerobic threshold is subtracted from the speed reached in the final 200-m all-out sprint. In 39 runners examined (marathon runners, n = 13; 5000-10000-m runners, n = 10; 400-800-m runners, n = 7; sprinters, n = 9), the additional speed generated above the anaerobic threshold was correlated with the venous blood lactate concentration reached 5 min after the all-out effort (r = 0.93). The anaerobic speeds measured by the test were in keeping with the characteristics of the runners under study, i.e., anaerobic speeds were highest for the sprinters, intermediate for the middle-distance runners, and lowest for the marathon runners. Since the speed generated above the anaerobic threshold by the aerobic fuel breakdown can be subtracted, the contribution of creatine phosphate is minimal, and the speed exceeding the anaerobic threshold is highly correlated with lactate accumulation, the present test should measure the speed generated by anaerobic glycolysis.
NASA Astrophysics Data System (ADS)
Ganguly, Jayanta; Saha, Surajit; Bera, Aindrila; Ghosh, Manas
2016-10-01
We examine the profiles of optical rectification (OR), second harmonic generation (SHG) and third harmonic generation (THG) of impurity doped QDs under the combined influence of hydrostatic pressure (HP) and temperature (T) in presence and absence of Gaussian white noise. Noise has been incorporated to the system additively and multiplicatively. In order to study the above nonlinear optical (NLO) properties the doped dot has been subjected to a polarized monochromatic electromagnetic field. Effect of application of noise is nicely reflected through alteration of peak shift (blue/red) and variation of peak height (increase/decrease) of above NLO properties as temperature and pressure are varied. All such changes again sensitively depends on mode of application (additive/multiplicative) of noise. The remarkable influence of interplay between noise strength and its mode of application on the said profiles has also been addressed. The findings illuminate fascinating role played by noise in tuning above NLO properties of doped QD system under the active presence of both hydrostatic pressure and temperature.
Generating mouse lines for lineage tracing and knockout studies.
Kraus, Petra; Sivakamasundari, V; Xing, Xing; Lufkin, Thomas
2014-01-01
In 2007 Capecchi, Evans, and Smithies received the Nobel Prize in recognition for discovering the principles for introducing specific gene modifications in mice via embryonic stem cells, a technology, which has revolutionized the field of biomedical science allowing for the generation of genetically engineered animals. Here we describe detailed protocols based on and developed from these ground-breaking discoveries, allowing for the modification of genes not only to create mutations to study gene function but additionally to modify genes with fluorescent markers, thus permitting the isolation of specific rare wild-type and mutant cell types for further detailed analysis at the biochemical, pathological, and genomic levels.
Customised 3D Printing: An Innovative Training Tool for the Next Generation of Orbital Surgeons.
Scawn, Richard L; Foster, Alex; Lee, Bradford W; Kikkawa, Don O; Korn, Bobby S
2015-01-01
Additive manufacturing or 3D printing is the process by which three dimensional data fields are translated into real-life physical representations. 3D printers create physical printouts using heated plastics in a layered fashion resulting in a three-dimensional object. We present a technique for creating customised, inexpensive 3D orbit models for use in orbital surgical training using 3D printing technology. These models allow trainee surgeons to perform 'wet-lab' orbital decompressions and simulate upcoming surgeries on orbital models that replicate a patient's bony anatomy. We believe this represents an innovative training tool for the next generation of orbital surgeons.
Programmable wide field spectrograph for earth observation
NASA Astrophysics Data System (ADS)
Zamkotsian, Frédéric; Lanzoni, Patrick; Liotard, Arnaud; Viard, Thierry; Costes, Vincent; Hébert, Philippe-Jean
2017-11-01
In Earth Observation, Universe Observation and Planet Exploration, scientific return of the instruments must be optimized in future missions. Micro-Opto-Electro-Mechanical Systems (MOEMS) could be key components in future generation of space instruments. These devices are based on the mature micro-electronics technology and in addition to their compactness, scalability, and specific task customization, they could generate new functions not available with current technologies. French and European space agencies, the Centre National d'Etudes Spatiales (CNES) and the European Space Agency (ESA) have initiated several studies with LAM and TAS for listing the new functions associated with several types of MEMS, and developing new ideas of instruments.
Scanning Electron Microscopy (SEM) Procedure for HE Powders on a Zeiss Sigma HD VP SEM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zaka, F.
This method describes the characterization of inert and HE materials by the Zeiss Sigma HD VP field emission Scanning Electron Microscope (SEM). The SEM uses an accelerated electron beam to generate high-magnification images of explosives and other materials. It is fitted with five detectors (SE, Inlens, STEM, VPSE, HDBSD) to enable imaging of the sample via different secondary electron signatures, angles, and energies. In addition to imaging through electron detection, the microscope is also fitted with two Oxford Instrument Energy Dispersive Spectrometer (EDS) 80 mm detectors to generate elemental constituent spectra and two-dimensional maps of the material being scanned.
Bespoke optical springs and passive force clamps from shaped dielectric particles
NASA Astrophysics Data System (ADS)
Simpson, S. H.; Phillips, D. B.; Carberry, D. M.; Hanna, S.
2013-09-01
By moulding optical fields, holographic optical tweezers are able to generate structured force fields with magnitudes and length scales of great utility for experiments in soft matter and biological physics. It has recently been noted that optically induced force fields are determined not only by the incident optical field, but by the shape and composition of the particles involved [Gluckstad J. Optical manipulation: sculpting the object. Nat Photonics 2011;5:7-8]. Indeed, there are desirable but simple attributes of a force field, such as orientational control, that cannot be introduced by sculpting optical fields alone. With this insight in mind, we show, theoretically, how relationships between force and displacement can be controlled by optimizing particle shapes. We exhibit a constant force optical spring, made from a tapered microrod and discuss methods by which it could be fabricated. In addition, we investigate the optical analogue of streamlining, and show how objects can be shaped so as to reduce the effects of radiation pressure, and hence switch from non-trapping to trapping regimes.
Early Time Dynamics of Gluon Fields in High Energy Nuclear Collisions
NASA Astrophysics Data System (ADS)
Kapusta, Joseph I.; Chen, Guangyao; Fries, Rainer J.; Li, Yang
2016-12-01
Nuclei colliding at very high energy create a strong, quasi-classical gluon field during the initial phase of their interaction. We present an analytic calculation of the initial space-time evolution of this field in the limit of very high energies using a formal recursive solution of the Yang-Mills equations. We provide analytic expressions for the initial chromo-electric and chromo-magnetic fields and for their energy-momentum tensor. In particular, we discuss event-averaged results for energy density and energy flow as well as for longitudinal and transverse pressure of this system. Our results are generally applicable if τ < 1 /Qs. The transverse energy flow of the gluon field exhibits hydrodynamic-like contributions that follow transverse gradients of the energy density. In addition, a rapidity-odd energy flow also emerges from the non-abelian analog of Gauss' Law and generates non-vanishing angular momentum of the field. We will discuss the space-time picture that emerges from our analysis and its implications for observables in heavy ion collisions.
Lymphocyte Electrotaxis in vitro and in vivo
Lin, Francis; Baldessari, Fabio; Gyenge, Christina Crenguta; Sato, Tohru; Chambers, Robert D.; Santiago, Juan G.; Butcher, Eugene C.
2008-01-01
Electric fields are generated in vivo in a variety of physiologic and pathologic settings, including penetrating injury to epithelial barriers. An applied electric field with strength within the physiologic range can induce directional cell migration (i.e. electrotaxis) of epithelial cells, endothelial cells, fibroblasts, and neutrophils suggesting a potential role in cell positioning during wound healing. In the present study, we investigated the ability of lymphocytes to respond to applied direct current (DC) electric fields. Using a modified transwell assay and a simple microfluidic device, we show that human peripheral blood lymphocytes migrate toward the cathode in physiologically relevant DC electric fields. Additionally, electrical stimulation activates intracellular kinase signaling pathways shared with chemotactic stimuli. Finally, video microscopic tracing of GFP-tagged immunocytes in the skin of mouse ears reveals that motile cutaneous T cells actively migrate toward the cathode of an applied DC electric field. Lymphocyte positioning within tissues can thus be manipulated by externally applied electric fields, and may be influenced by endogenous electrical potential gradients as well. PMID:18684937
Lymphocyte electrotaxis in vitro and in vivo.
Lin, Francis; Baldessari, Fabio; Gyenge, Christina Crenguta; Sato, Tohru; Chambers, Robert D; Santiago, Juan G; Butcher, Eugene C
2008-08-15
Electric fields are generated in vivo in a variety of physiologic and pathologic settings, including penetrating injury to epithelial barriers. An applied electric field with strength within the physiologic range can induce directional cell migration (i.e., electrotaxis) of epithelial cells, endothelial cells, fibroblasts, and neutrophils suggesting a potential role in cell positioning during wound healing. In the present study, we investigated the ability of lymphocytes to respond to applied direct current (DC) electric fields. Using a modified Transwell assay and a simple microfluidic device, we show that human PBLs migrate toward the cathode in physiologically relevant DC electric fields. Additionally, electrical stimulation activates intracellular kinase signaling pathways shared with chemotactic stimuli. Finally, video microscopic tracing of GFP-tagged immunocytes in the skin of mouse ears reveals that motile cutaneous T cells actively migrate toward the cathode of an applied DC electric field. Lymphocyte positioning within tissues can thus be manipulated by externally applied electric fields, and may be influenced by endogenous electrical potential gradients as well.
Simulation of the electromagnetic field in a cylindrical cavity of an ECR ions source
NASA Astrophysics Data System (ADS)
Estupiñán, A.; Orozco, E. A.; Dugar-Zhabon, V. D.; Murillo Acevedo, M. T.
2017-12-01
Now there are numerous sources for multicharged ions production, each being designed for certain science or technological objectives. Electron cyclotron resonance ion sources (ECRIS) are best suited for designing heavy ion accelerators of very high energies, because they can generate multicharged ion beams at relatively great intensities. In these sources, plasma heating and its confinement are effected predominantly in minimum-B magnetic traps, this type of magnetic trap consist of two current coils used for the longitudinal magnetic confinement and a hexapole system around the cavity to generate a transversal confinement of the plasma. In an ECRIS, the electron cyclotron frequency and the microwave frequency are maintained equal on a quasi-ellipsoidal surface localized in the trap volume. It is crucial to heat electrons to energies sufficient to ionize K- and L-levels of heavy atoms. In this work, we present the preliminary numerical results concerning the space distribution of TE 111 microwave field in a cylindrical cavity. The 3D microwave field is calculated by solving the Maxwell equations through the Yee’s method. The magnetic field of minimum-B configuration is determined using the Biot-Savart law. The parameters of the magnetic system are that which guarantee the ECR surface location in a zone of a reasonably high microwave tension. Additionally, the accuracy of electric and magnetic fields calculations are checked.
Imaging local electric fields produced upon synchrotron X-ray exposure
Dettmar, Christopher M.; Newman, Justin A.; Toth, Scott J.; ...
2014-12-31
Electron–hole separation following hard X-ray absorption during diffraction analysis of soft materials under cryogenic conditions produces substantial local electric fields visualizable by second harmonic generation (SHG) microscopy. Monte Carlo simulations of X-ray photoelectron trajectories suggest the formation of substantial local electric fields in the regions adjacent to those exposed to X-rays, indicating a possible electric-field–induced SHG (EFISH) mechanism for generating the observed signal. In studies of amorphous vitreous solvents, analysis of the SHG spatial profiles following X-ray microbeam exposure was consistent with an EFISH mechanism. Within protein crystals, exposure to 12-keV (1.033-Å) X-rays resulted in increased SHG in the regionmore » extending ~3 μm beyond the borders of the X-ray beam. Moderate X-ray exposures typical of those used for crystal centering by raster scanning through an X-ray beam were sufficient to produce static electric fields easily detectable by SHG. The X-ray–induced SHG activity was observed with no measurable loss for longer than 2 wk while maintained under cryogenic conditions, but disappeared if annealed to room temperature for a few seconds. In conclusion, these results provide direct experimental observables capable of validating simulations of X-ray–induced damage within soft materials. Additionally, X-ray–induced local fields may potentially impact diffraction resolution through localized piezoelectric distortions of the lattice.« less
Nonuniform sampling techniques for antenna applications
NASA Technical Reports Server (NTRS)
Rahmat-Samii, Yahya; Cheung, Rudolf Lap-Tung
1987-01-01
A two-dimensional sampling technique, which can employ irregularly spaced samples (amplitude and phase) in order to generate the complete far-field patterns is presented. The technique implements a matrix inversion algorithm, which depends only on the nonuniform sampled data point locations and with no dependence on the actual field values at these points. A powerful simulation algorithm is presented to allow a real-life simulation of many reflector/feed configurations and to determine the usefulness of the nonuniform sampling technique for the copolar and cross-polar patterns. Additionally, an overlapped window concept and a generalized error simulation model are discussed to identify the stability of the technique for recovering the field data among the nonuniform sampled data. Numerical results are tailored for the pattern reconstruction of a 20-m offset reflector antenna operating at L-band. This reflector is planned to be used in a proposed measurement concept of large antenna aboard the Space Shuttle, whereby it would be almost impractical to accurately control the movement of the Shuttle with respect to the RF source in prescribed directions in order to generate uniform sampled points. Also, application of the nonuniform sampling technique to patterns obtained using near-field measured data is demonstrated. Finally, results of an actual far-field measurement are presented for the construction of patterns of a reflector antenna from a set of nonuniformly distributed measured amplitude and phase data.
NASA Astrophysics Data System (ADS)
Degrassie, J. S.
1990-12-01
The Soliton Microwave Generator (SMG) represents a truly new concept in the field of high power microwave (HPM) generation. A nonlinear, dispersive transmission line is used to convert an input voltage pulse into an HPM burst at the output. The system is all solid state and projects to be efficient and reliable. Single module peak powers in excess of 1 GW appear feasible, while combining modular units leads to a 10 GW system projection. This project for the DOE has allowed the first steps necessary in experimentally demonstrating the SMG. The project has ended successfully. A relatively high power lumped circuit SMG operating in the uhf band was designed, fabricated, and tested. The maximum peak output RF power was 16 MW from this line approx. 90 cm in length and 2 sq cm in cross section with a peak power efficiency of roughly 20 percent. Additionally a low power continuous strip-line approach demonstrated microwave generation well into L band, at approx. 2 GHz.
Femtosecond laser generated gold nanoparticles and their plasmonic properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Rupali, E-mail: phz148121@iitd.ac.in; Navas, M. P.; Soni, R. K.
The pulsed laser ablation in liquid medium is now commonly used to generate stable colloidal nanoparticles (NPs) in absence of any chemical additives or stabilizer with diverse applications. In this paper, we report generation of gold NPs (Au NPs) by ultra-short laser pulses. Femtosecond (fs) laser radiation (λ = 800 nm) has been used to ablate a gold target in pure de-ionized water to produce gold colloids with smallsize distribution. The average size of the particles can be further controlled by subjecting to laser-induced post-irradiation providing a versatile physical method of size-selected gold nanoparticles. The optical extinction and morphological dimensions weremore » investigated with UV-Vis spectroscopy and Transmission Electron Microscopy measurements, respectively. Finite difference time domain (FDTD) method is employed to calculate localized surface plasmon (LSPR) wavelength and the near-field generated by Au NPs and their hybrids.« less
Retrofitting a Geothermal Plant with Solar and Storage to Increase Power Generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Guangdong; McTigue, Joshua Dominic P; Turchi, Craig S
Solar hybridization using concentrating solar power (CSP) can be an effective approach to augment the power generation and power cycle efficiency of a geothermal power plant with a declining resource. Thermal storage can further increase the dispatchability of a geothermal/solar hybrid system, which is particularly valued for a national grid with high renewable penetration. In this paper, a hybrid plant design with thermal storage is proposed based on the requirements of the Coso geothermal field in China Lake, California. The objective is to increase the power production by 4 MWe. In this system, a portion of the injection brine ismore » recirculated through a heat exchanger with the solar heat transfer fluid, before being mixed with the production well brine. In the solar heating loop the brine should be heated to at least 155 degrees C to increase the net power. The solar field and storage were sized based on solar data for China Lake. Thermal storage is used to store excess power at the high-solar-irradiation hours and generate additional power during the evenings. The solar field size, the type and capacity of thermal storage and the operating temperatures are critical factors in determining the most economic hybrid system. Further investigations are required to optimize the hybrid system and evaluate its economic feasibility.« less
NASA Astrophysics Data System (ADS)
Shan, Feng; Guo, Xiasheng; Tu, Juan; Cheng, Jianchun; Zhang, Dong
The high-intensity focused ultrasound (HIFU) has become an attractive therapeutic tool for the noninvasive tumor treatment. The ultrasonic transducer is the key component in HIFU treatment to generate the HIFU energy. The dimension of focal region generated by the transducer is closely relevant to the safety of HIFU treatment. Therefore, it is essential to numerically investigate the focal region of the transducer. Although the conventional acoustic wave equations have been used successfully to describe the acoustic field, there still exist some inherent drawbacks. In this work, we presented an axisymmetric isothermal multi-relaxation-time lattice Boltzmann method (MRT-LBM) model with the Bouzidi-Firdaouss-Lallemand (BFL) boundary condition in cylindrical coordinate system. With this model, some preliminary simulations were firstly conducted to determine a reasonable value of the relaxation parameter. Then, the validity of the model was examined by comparing the results obtained with the LBM results with the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and the Spheroidal beam equation (SBE) for the focused transducers with different aperture angles, respectively. In addition, the influences of the aperture angle on the focal region were investigated. The proposed model in this work will provide significant references for the parameter optimization of the focused transducer for applications in the HIFU treatment or other fields, and provide new insights into the conventional acoustic numerical simulations.
The Additional Error of Inertial Sensors Induced by Hypersonic Flight Conditions
Karachun, Volodimir; Mel’nick, Viktorij; Korobiichuk, Igor; Nowicki, Michał; Szewczyk, Roman; Kobzar, Svitlana
2016-01-01
The emergence of hypersonic technology pose a new challenge for inertial navigation sensors, widely used in aerospace industry. The main problems are: extremely high temperatures, vibration of the fuselage, penetrating acoustic radiation and shock N-waves. The nature of the additional errors of the gyroscopic inertial sensor with hydrostatic suspension components under operating conditions generated by forced precession of the movable part of the suspension due to diffraction phenomena in acoustic fields is explained. The cause of the disturbing moments in the form of the Coriolis inertia forces during the transition of the suspension surface into the category of impedance is revealed. The boundaries of occurrence of the features on the resonance wave match are described. The values of the “false” angular velocity as a result of the elastic-stress state of suspension in the acoustic fields are determined. PMID:26927122
Wang, Sen; Wang, Xinke; Zhang, Yan
2017-10-02
Based on the amplitude and phase modulation of subwavelength slits, a metasurface which can simultaneously generate Airy beam for surface plasmon polaritons (SPPs) and transmitted wave is presented. Interestingly, by changing the handedness of circularly polarized light, the position of SPPs Airy beam can be switched to the left or right side of the metasurface, while the field distribution and the position of the Airy beam for transmitted wave are not affected. The nondiffracting, self-bending and self-healing properties of the generated Airy beams are analyzed as well. In addition, abruptly autofocusing of SPPs and transmitted wave are demonstrated by interfering two Airy beams. The dual functionality and chirality features of the metasurface can provide more freedoms in the potential applications of Airy beams.
Surface-Micromachined Microfluidic Devices
Galambos, Paul C.; Okandan, Murat; Montague, Stephen; Smith, James H.; Paul, Phillip H.; Krygowski, Thomas W.; Allen, James J.; Nichols, Christopher A.; Jakubczak, II, Jerome F.
2004-09-28
Microfluidic devices are disclosed which can be manufactured using surface-micromachining. These devices utilize an electroosmotic force or an electromagnetic field to generate a flow of a fluid in a microchannel that is lined, at least in part, with silicon nitride. Additional electrodes can be provided within or about the microchannel for separating particular constituents in the fluid during the flow based on charge state or magnetic moment. The fluid can also be pressurized in the channel. The present invention has many different applications including electrokinetic pumping, chemical and biochemical analysis (e.g. based on electrophoresis or chromatography), conducting chemical reactions on a microscopic scale, and forming hydraulic actuators. Microfluidic devices are disclosed which can be manufactured using surface-micromachining. These devices utilize an electroosmotic force or an electromagnetic field to generate a flow of a fluid in a microchannel that is lined, at least in part, with silicon nitride. Additional electrodes can be provided within or about the microchannel for separating particular constituents in the fluid during the flow based on charge state or magnetic moment. The fluid can also be pressurized in the channel. The present invention has many different applications including electrokinetic pumping, chemical and biochemical analysis (e.g. based on electrophoresis or chromatography), conducting chemical reactions on a microscopic scale, and forming hydraulic actuators.
NASA Astrophysics Data System (ADS)
Lim, Mikyung; Song, Jaeman; Kim, Jihoon; Lee, Seung S.; Lee, Ikjin; Lee, Bong Jae
2018-05-01
The present work successfully achieves a strong enhancement in performance of a near-field thermophotovoltaic (TPV) system operating at low temperature and large-vacuum-gap width by introducing a hyperbolic-metamaterial (HMM) emitter, multilayered graphene, and an Au-backside reflector. Design variables for the HMM emitter and the multilayered-graphene-covered TPV cell are optimized for maximizing the power output of the near-field TPV system with the genetic algorithm. The near-field TPV system with the optimized configuration results in 24.2 times of enhancement in power output compared with that of the system with a bulk emitter and a bare TPV cell. Through the analysis of the radiative heat transfer together with surface-plasmon-polariton (SPP) dispersion curves, it is found that coupling of SPPs generated from both the HMM emitter and the multilayered-graphene-covered TPV cell plays a key role in a substantial increase in the heat transfer even at a 200-nm vacuum gap. Further, the backside reflector at the bottom of the TPV cell significantly increases not only the conversion efficiency, but also the power output by generating additional polariton modes which can be readily coupled with the existing SPPs of the HMM emitter and the multilayered-graphene-covered TPV cell.
Experimental investigation of internal tides generated by finite-height topography
NASA Astrophysics Data System (ADS)
Wang, Shuya; Chen, Xu; Wang, Jinhu; Meng, Jing
2018-06-01
Internal tides generated by finite-height topography are investigated in the laboratory, and the particle image velocimetry (PIV) technique is applied to measure the velocity fields. The energy, energy flux, and vertical mode structure of the internal tides are calculated and analyzed. The experimental results indicate that the strength of the wave field is mainly affected by the normalized topography height. The rays radiated from the taller topography are wider than those radiated from the lower topography. Both the experimental and theoretical results indicate that the normalized energy and energy flux of the internal tides are mainly determined by the normalized topography height, and the increase of the two quantities follows a quadratic function, and they almost remain unchanged with different normalized frequencies except for higher frequency. The percentage of energy for mode-1 and mode-2 internal tides is determined not only by frequency but also by topography height. In addition, an "inherent normalized frequency" is observed in the experiment, at which the percentage of energy for mode 1 and mode 2 does not vary with topography height. The decay rate of internal tide energy in the near field and far field is also estimated, with average values of 36.5 and 7.5%, respectively.
Effects of a Rotating Aerodynamic Probe on the Flow Field of a Compressor Rotor
NASA Technical Reports Server (NTRS)
Lepicovsky, Jan
2008-01-01
An investigation of distortions of the rotor exit flow field caused by an aerodynamic probe mounted in the rotor is described in this paper. A rotor total pressure Kiel probe, mounted on the rotor hub and extending up to the mid-span radius of a rotor blade channel, generates a wake that forms additional flow blockage. Three types of high-response aerodynamic probes were used to investigate the distorted flow field behind the rotor. These probes were: a split-fiber thermo-anemometric probe to measure velocity and flow direction, a total pressure probe, and a disk probe for in-flow static pressure measurement. The signals acquired from these high-response probes were reduced using an ensemble averaging method based on a once per rotor revolution signal. The rotor ensemble averages were combined to construct contour plots for each rotor channel of the rotor tested. In order to quantify the rotor probe effects, the contour plots for each individual rotor blade passage were averaged into a single value. The distribution of these average values along the rotor circumference is a measure of changes in the rotor exit flow field due to the presence of a probe in the rotor. These distributions were generated for axial flow velocity and for static pressure.
NASA Astrophysics Data System (ADS)
Mridula, N.; Pant, Tarun Kumar
2018-05-01
In the present paper, occurrence of post noon F3 layers over Thiruvananthapuram (8.5°N; 77°E; dip latitude ∼ 1.5 °N), a dip equatorial station in India have been investigated. F3 layers that occur beyond 13 IST and as observed using ground based ionosonde, for the years 2004-2008 have been studied. Our analysis shows that post noon F3 layers occur mostly on CEJ days around 16 IST to 18 IST. It is found that the time of the ionospheric E-region electric field reversal as inferred from collocated ground based magnetometer observations plays a crucial role in the generation of post noon F3 layers. In fact an early reversal of electric field emerged to be the necessary condition for the formation of post noon F3 layers. A time delay of three to 4 h is observed between the electric field reversal and the formation of F3 layer. It is proposed that this early reversal causes enhanced ionization over dip equatorial region, providing an additional ion drag to the flow of thermospheric zonal wind. This leads to accumulation of more ionization and neutrals culminating in the generation of post noon F3 layers as in the case of pre noon F3 layers. These results reveal that the generation of post noon F3 layers over the dip equatorial region is a natural consequence of the variability associated with the spatio-temporal evolution of EIA and prevailing thermospheric and ionospheric dynamics, and adds a new perspective to the present understanding.
Stokes-Doppler coherence imaging for ITER boundary tomography.
Howard, J; Kocan, M; Lisgo, S; Reichle, R
2016-11-01
An optical coherence imaging system is presently being designed for impurity transport studies and other applications on ITER. The wide variation in magnetic field strength and pitch angle (assumed known) across the field of view generates additional Zeeman-polarization-weighting information that can improve the reliability of tomographic reconstructions. Because background reflected light will be somewhat depolarized analysis of only the polarized fraction may be enough to provide a level of background suppression. We present the principles behind these ideas and some simulations that demonstrate how the approach might work on ITER. The views and opinions expressed herein do not necessarily reflect those of the ITER Organization.
[Current advances and future prospects of genome editing technology in the field of biomedicine.
Sakuma, Tetsushi
Genome editing technology can alter the genomic sequence at will, contributing the creation of cellular and animal models of human diseases including hereditary disorders and cancers, and the generation of the mutation-corrected human induced pluripotent stem cells for ex vivo regenerative medicine. In addition, novel approaches such as drug development using genome-wide CRISPR screening and cancer suppression using epigenome editing technology, which can change the epigenetic modifications in a site-specific manner, have also been conducted. In this article, I summarize the current advances and future prospects of genome editing technology in the field of biomedicine.
Cryogenically enhanced magneto-Archimedes levitation
NASA Astrophysics Data System (ADS)
Catherall, A. T.; López-Alcaraz, P.; Benedict, K. A.; King, P. J.; Eaves, L.
2005-05-01
The application of both a strong magnetic field and magnetic field gradient to a diamagnetic body can produce a vertical force which is sufficient to counteract its weight due to gravity. By immersing the body in a paramagnetic fluid, an additional adjustable magneto-buoyancy force is generated which enhances the levitation effect. Here we show that cryogenic oxygen and oxygen-nitrogen mixtures in both gaseous and liquid form provide sufficient buoyancy to permit the levitation and flotation of a wide range of materials. These fluids may provide an alternative to synthetic ferrofluids for the separation of minerals. We also report the dynamics of corrugation instabilities on the surface of magnetized liquid oxygen.
Evaluation of GIS Technology in Assessing and Modeling Land Management Practices
NASA Technical Reports Server (NTRS)
Archer, F.; Coleman, T. L.; Manu, A.; Tadesse, W.; Liu, G.
1997-01-01
There is an increasing concern of land owners to protect and maintain healthy and sustainable agroecosystems through the implementation of best management practices (BMP). The objectives of this study were: (1) To develop and evaluate the use of a Geographic Information System (GIS) technology for enhancing field-scale management practices; (2) evaluate the use of 2-dimensional displays of the landscape and (3) define spatial classes of variables from interpretation of geostatistical parameters. Soil samples were collected to a depth of 2 m at 15 cm increments. Existing data from topographic, land use, and soil survey maps of the Winfred Thomas Agricultural Research Station were converted to digital format. Additional soils data which included texture, pH, and organic matter were also generated. The digitized parameters were used to create a multilayered field-scale GIS. Two dimensional (2-D) displays of the parameters were generated using the ARC/INFO software. The spatial distribution of the parameters evaluated in both fields were similar which could be attributed to the similarity in vegetation and surface elevation. The ratio of the nugget to total semivariance, expressed as a percentage, was used to assess the degree of spatial variability. The results indicated that most of the parameters were moderate spatially dependent Biophysical constraint maps were generated from the database layers, and used in multiple combination to visualize results of the BMP. Understanding the spatial relationships of physical and chemical parameters that exists within a field should enable land managers to more effectively implement BMP to ensure a safe and sustainable environment.
Belinato, Thiago Affonso; Valle, Denise
2015-01-01
Several Aedes aegypti field populations are resistant to neurotoxic insecticides, mainly organophoshates and pyrethroids, which are extensively used as larvicides and adulticides, respectively. Diflubenzuron (DFB), a chitin synthesis inhibitor (CSI), was recently approved for use in drinking water, and is presently employed in Brazil for Ae. aegypti control, against populations resistant to the organophosphate temephos. However, tests of DFB efficacy against field Ae. aegypti populations are lacking. In addition, information regarding the dynamics of CSI resistance, and characterization of any potential fitness effects that may arise in conjunction with resistance are essential for new Ae. aegypti control strategies. Here, the efficacy of DFB was evaluated for two Brazilian Ae. aegypti populations known to be resistant to both temephos and the pyrethroid deltamethrin. Laboratory selection for DFB resistance was then performed over six or seven generations, using a fixed dose of insecticide that inhibited 80% of adult emergence in the first generation. The selection process was stopped when adult emergence in the diflubenzuron-treated groups was equivalent to that of the control groups, kept without insecticide. Diflubenzuron was effective against the two Ae. aegypti field populations evaluated, regardless of their resistance level to neurotoxic insecticides. However, only a few generations of DFB selection were sufficient to change the susceptible status of both populations to this compound. Several aspects of mosquito biology were affected in both selected populations, indicating that diflubenzuron resistance acquisition is associated with a fitness cost. We believe that these results can significantly contribute to the design of control strategies involving the use of insect growth regulators.
Wireless Electrical Device Using Open-Circuit Elements Having No Electrical Connections
NASA Technical Reports Server (NTRS)
Taylor, Bryant Douglas (Inventor); Woodard, Stanley E. (Inventor)
2012-01-01
A wireless electrical device includes an electrically unconnected electrical conductor and at least one electrically unconnected electrode spaced apart from the electrical conductor. The electrical conductor is shaped for storage of an electric field and a magnetic field. In the presence of a time-varying magnetic field, the electrical conductor so-shaped resonates to generate harmonic electric and magnetic field responses. Each electrode is at a location lying within the magnetic field response so-generated and is constructed such that a linear movement of electric charges is generated in each electrode due to the magnetic field response so-generated.
NASA Astrophysics Data System (ADS)
Yu, Wansik; Nakakita, Eiichi; Kim, Sunmin; Yamaguchi, Kosei
2016-08-01
The use of meteorological ensembles to produce sets of hydrological predictions increased the capability to issue flood warnings. However, space scale of the hydrological domain is still much finer than meteorological model, and NWP models have challenges with displacement. The main objective of this study to enhance the transposition method proposed in Yu et al. (2014) and to suggest the post-processing ensemble flood forecasting method for the real-time updating and the accuracy improvement of flood forecasts that considers the separation of the orographic rainfall and the correction of misplaced rain distributions using additional ensemble information through the transposition of rain distributions. In the first step of the proposed method, ensemble forecast rainfalls from a numerical weather prediction (NWP) model are separated into orographic and non-orographic rainfall fields using atmospheric variables and the extraction of topographic effect. Then the non-orographic rainfall fields are examined by the transposition scheme to produce additional ensemble information and new ensemble NWP rainfall fields are calculated by recombining the transposition results of non-orographic rain fields with separated orographic rainfall fields for a generation of place-corrected ensemble information. Then, the additional ensemble information is applied into a hydrologic model for post-flood forecasting with a 6-h interval. The newly proposed method has a clear advantage to improve the accuracy of mean value of ensemble flood forecasting. Our study is carried out and verified using the largest flood event by typhoon 'Talas' of 2011 over the two catchments, which are Futatsuno (356.1 km2) and Nanairo (182.1 km2) dam catchments of Shingu river basin (2360 km2), which is located in the Kii peninsula, Japan.
NASA Astrophysics Data System (ADS)
Dwyer, J. R.
2016-12-01
Lightning leader models of terrestrial gamma-ray flashes (TGFs) are based on the observations that leaders emit bursts of hard x-rays. These x-rays are thought to be generated by runaway electrons created in the high-field regions associated with the leader tips and/or streamers heads. Inside a thunderstorm, it has been proposed that these runaway electrons may experience additional relativistic runaway electron avalanche (RREA) multiplication, increasing the number and the average energy of the electrons, and possibly resulting in a TGF. When modeling TGFs it is important to include the discharge currents resulting from the ionization produced by the runaway electrons, since these currents may alter the electric fields and affect the TGF. In addition, relativistic feedback effects, caused by backward propagating positrons and backscattered x-rays, need to be included, since relativistic feedback limits the size of the electric field and the amount of a RREA multiplication that may occur. In this presentation, a lightning leader model of terrestrial gamma-ray flashes that includes the effects of the discharge currents and relativistic feedback will be described and compared with observations.
[Investigation of sleep disorders in the vicinity of high frequency transmitters].
Leitgeb, N; Schröttner, J; Cech, R; Kerbl, R
2004-08-01
To investigate the potential impact of RF electromagnetic fields of transmitters on the sleep quality of nearby residents, a new study design is presented. In a double-blind crossover field study the effect of on-site shielding, rather than of additional exposure, is investigated. For improved sleep quality differentiation the polysomnographic parameters are expanded by additional parameters. The feasibility study showed that checking the raw data and correcting the software-generated results by visual reading of the polysomnographic recordings is essential. Long-term RF measurement showed that exposure may vary considerably throughout the night, as well as from one night to the next. This variation may be greater than the GSM contribution itself. Mostly, the contributions of USW radio frequency fields dominated over GSM. Thus, continuous broadband RF recording is required for reliable interpretation of the results, in particular with regard to the potential role of mobile telephony emissions. Results show that simple sleep monitoring systems based on single-channel EEG analysis without acces to original biosignals are not adequate for sleep studies.
LMSD: LIPID MAPS structure database
Sud, Manish; Fahy, Eoin; Cotter, Dawn; Brown, Alex; Dennis, Edward A.; Glass, Christopher K.; Merrill, Alfred H.; Murphy, Robert C.; Raetz, Christian R. H.; Russell, David W.; Subramaniam, Shankar
2007-01-01
The LIPID MAPS Structure Database (LMSD) is a relational database encompassing structures and annotations of biologically relevant lipids. Structures of lipids in the database come from four sources: (i) LIPID MAPS Consortium's core laboratories and partners; (ii) lipids identified by LIPID MAPS experiments; (iii) computationally generated structures for appropriate lipid classes; (iv) biologically relevant lipids manually curated from LIPID BANK, LIPIDAT and other public sources. All the lipid structures in LMSD are drawn in a consistent fashion. In addition to a classification-based retrieval of lipids, users can search LMSD using either text-based or structure-based search options. The text-based search implementation supports data retrieval by any combination of these data fields: LIPID MAPS ID, systematic or common name, mass, formula, category, main class, and subclass data fields. The structure-based search, in conjunction with optional data fields, provides the capability to perform a substructure search or exact match for the structure drawn by the user. Search results, in addition to structure and annotations, also include relevant links to external databases. The LMSD is publicly available at PMID:17098933
Fluorescent lamp with static magnetic field generating means
Moskowitz, Philip E.; Maya, Jakob
1987-01-01
A fluorescent lamp wherein magnetic field generating means (e.g., permanent magnets) are utilized to generate a static magnetic field across the respective electrode structures of the lamp such that maximum field strength is located at the electrode's filament. An increase in efficacy during operation has been observed.
Fluorescent lamp with static magnetic field generating means
Moskowitz, P.E.; Maya, J.
1987-09-08
A fluorescent lamp wherein magnetic field generating means (e.g., permanent magnets) are utilized to generate a static magnetic field across the respective electrode structures of the lamp such that maximum field strength is located at the electrode's filament. An increase in efficacy during operation has been observed. 2 figs.
Dry particle generation with a 3-D printed fluidized bed generator
Roesch, Michael; Roesch, Carolin; Cziczo, Daniel J.
2017-06-02
We describe the design and testing of PRIZE (PRinted fluidIZed bed gEnerator), a compact fluidized bed aerosol generator manufactured using stereolithography (SLA) printing. Dispersing small quantities of powdered materials – due to either rarity or expense – is challenging due to a lack of small, low-cost dry aerosol generators. With this as motivation, we designed and built a generator that uses a mineral dust or other dry powder sample mixed with bronze beads that sit atop a porous screen. A particle-free airflow is introduced, dispersing the sample as airborne particles. The total particle number concentrations and size distributions were measured duringmore » different stages of the assembling process to show that the SLA 3-D printed generator did not generate particles until the mineral dust sample was introduced. Furthermore, time-series measurements with Arizona Test Dust (ATD) showed stable total particle number concentrations of 10–150 cm -3, depending on the sample mass, from the sub- to super-micrometer size range. Additional tests with collected soil dust samples are also presented. PRIZE is simple to assemble, easy to clean, inexpensive and deployable for laboratory and field studies that require dry particle generation.« less
Dry particle generation with a 3-D printed fluidized bed generator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roesch, Michael; Roesch, Carolin; Cziczo, Daniel J.
We describe the design and testing of PRIZE (PRinted fluidIZed bed gEnerator), a compact fluidized bed aerosol generator manufactured using stereolithography (SLA) printing. Dispersing small quantities of powdered materials – due to either rarity or expense – is challenging due to a lack of small, low-cost dry aerosol generators. With this as motivation, we designed and built a generator that uses a mineral dust or other dry powder sample mixed with bronze beads that sit atop a porous screen. A particle-free airflow is introduced, dispersing the sample as airborne particles. The total particle number concentrations and size distributions were measured duringmore » different stages of the assembling process to show that the SLA 3-D printed generator did not generate particles until the mineral dust sample was introduced. Furthermore, time-series measurements with Arizona Test Dust (ATD) showed stable total particle number concentrations of 10–150 cm -3, depending on the sample mass, from the sub- to super-micrometer size range. Additional tests with collected soil dust samples are also presented. PRIZE is simple to assemble, easy to clean, inexpensive and deployable for laboratory and field studies that require dry particle generation.« less
Guo, Yong; Li, Hejuan; Wang, Ying; Yan, Xingrong; Sheng, Xihui; Chang, Di; Qi, Xiaolong; Wang, Xiangguo; Liu, Yunhai; Li, Junya; Ni, Hemin
2017-02-01
Somatic cell nuclear transfer (SCNT) is frequently used to produce transgenic cloned livestock, but it is still associated with low success rates. To our knowledge, we are the first to report successful production of transgenic cattle that overexpress bovine adipocyte-type fatty acid binding proteins (A-FABPs) with the aid of SCNT. Intragenomic integration of additional A-FABP gene copies has been found to be positively correlated with the intramuscular fat content in different farm livestock species. First, we optimized the cloning parameters to produce bovine embryos integrated with A-FABP by SCNT, such as applied voltage field strength and pulse duration for electrofusion, morphology and size of donor cells, and number of donor cells passages. Then, bovine fibroblast cells from Qinchuan cattle were transfected with A-FABP and used as donor cells for SCNT. Hybrids of Simmental and Luxi local cattle were selected as the recipient females for A-FABP transgenic SCNT-derived embryos. The results showed that a field strength of 2.5 kV/cm with two 10-μs duration electrical pulses was ideal for electrofusion, and 4-6th generation circular smooth type donor cells with diameters of 15-25 μm were optimal for producing transgenic bovine embryos by SCNT, and resulted in higher fusion (80%), cleavage (73%), and blastocyst (27%) rates. In addition, we obtained two transgenic cloned calves that expressed additional bovine A-FABP gene copies, as detected by PCR-amplified cDNA sequencing. We proposed a set of optimal protocols to produce transgenic SCNT-derived cattle with intragenomic integration of ectopic A-FABP-inherited exon sequences.
Size-dependent avoidance of a strong magnetic anomaly in Caribbean spiny lobsters.
Ernst, David A; Lohmann, Kenneth J
2018-03-01
On a global scale, the geomagnetic field varies predictably across the Earth's surface, providing animals that migrate long distances with a reliable source of directional and positional information that can be used to guide their movements. In some locations, however, magnetic minerals in the Earth's crust generate an additional field that enhances or diminishes the overall field, resulting in unusually steep gradients of field intensity within a limited area. How animals respond to such magnetic anomalies is unclear. The Caribbean spiny lobster, Panulirus argus , is a benthic marine invertebrate that possesses a magnetic sense and is likely to encounter magnetic anomalies during migratory movements and homing. As a first step toward investigating whether such anomalies affect the behavior of lobsters, a two-choice preference experiment was conducted in which lobsters were allowed to select one of two artificial dens, one beneath a neodymium magnet and the other beneath a non-magnetic weight of similar size and mass (control). Significantly more lobsters selected the control den, demonstrating avoidance of the magnetic anomaly. In addition, lobster size was found to be a significant predictor of den choice: lobsters that selected the anomaly den were significantly smaller as a group than those that chose the control den. Taken together, these findings provide additional evidence for magnetoreception in spiny lobsters, raise the possibility of an ontogenetic shift in how lobsters respond to magnetic fields, and suggest that magnetic anomalies might influence lobster movement in the natural environment. © 2018. Published by The Company of Biologists Ltd.
Coherent state amplification using frequency conversion and a single photon source
NASA Astrophysics Data System (ADS)
Kasture, Sachin
2017-11-01
Quantum state discrimination lies at the heart of quantum communication and quantum cryptography protocols. Quantum Key Distribution (QKD) using coherent states and homodyne detection has been shown to be a feasible method for quantum communication over long distances. However, this method is still limited because of optical losses. Noiseless coherent state amplification has been proposed as a way to overcome this. Photon addition using stimulated Spontaneous Parametric Down-conversion followed by photon subtraction has been used as a way to implement amplification. However, this process occurs with very low probability which makes it very difficult to implement cascaded stages of amplification due to dark count probability in the single photon detectors used to herald the addition and subtraction of single photons. We discuss a scheme using the χ (2) and χ (3) optical non-linearity and frequency conversion (sum and difference frequency generation) along with a single photon source to implement photon addition. Unlike the photon addition scheme using SPDC, this scheme allows us to tune the success probability at the cost of reduced amplification. The photon statistics of the converted field can be controlled using the power of the pump field and the interaction time.
A Merged Dataset for Solar Probe Plus FIELDS Magnetometers
NASA Astrophysics Data System (ADS)
Bowen, T. A.; Dudok de Wit, T.; Bale, S. D.; Revillet, C.; MacDowall, R. J.; Sheppard, D.
2016-12-01
The Solar Probe Plus FIELDS experiment will observe turbulent magnetic fluctuations deep in the inner heliosphere. The FIELDS magnetometer suite implements a set of three magnetometers: two vector DC fluxgate magnetometers (MAGs), sensitive from DC- 100Hz, as well as a vector search coil magnetometer (SCM), sensitive from 10Hz-50kHz. Single axis measurements are additionally made up to 1MHz. To study the full range of observations, we propose merging data from the individual magnetometers into a single dataset. A merged dataset will improve the quality of observations in the range of frequencies observed by both magnetometers ( 10-100 Hz). Here we present updates on the individual MAG and SCM calibrations as well as our results on generating a cross-calibrated and merged dataset.
Numerical simulation of plasma processes driven by transverse ion heating
NASA Technical Reports Server (NTRS)
Singh, Nagendra; Chan, C. B.
1993-01-01
The plasma processes driven by transverse ion heating in a diverging flux tube are investigated with numerical simulation. The heating is found to drive a host of plasma processes, in addition to the well-known phenomenon of ion conics. The downward electric field near the reverse shock generates a doublestreaming situation consisting of two upflowing ion populations with different average flow velocities. The electric field in the reverse shock region is modulated by the ion-ion instability driven by the multistreaming ions. The oscillating fields in this region have the possibility of heating electrons. These results from the simulations are compared with results from a previous study based on a hydrodynamical model. Effects of spatial resolutions provided by simulations on the evolution of the plasma are discussed.
Simulations of Cold Electroweak Baryogenesis: quench from portal coupling to new singlet field
NASA Astrophysics Data System (ADS)
Mou, Zong-Gang; Saffin, Paul M.; Tranberg, Anders
2018-01-01
We compute the baryon asymmetry generated from Cold Electroweak Baryogenesis, when a dynamical Beyond-the-Standard-Model scalar singlet field triggers the spinodal transition. Using a simple potential for this additional field, we match the speed of the quench to earlier simulations with a "by-hand" mass flip. We find that for the parameter subspace most similar to a by-hand transition, the final baryon asymmetry shows a similar dependence on quench time and is of the same magnitude. For more general parameter choices the Higgs-singlet dynamics can be very complicated, resulting in an enhancement of the final baryon asymmetry. Our results validate and generalise results of simulations in the literature and open up the Cold Electroweak Baryogenesis scenario to further model building.
Issues on generating primordial anisotropies at the end of inflation
NASA Astrophysics Data System (ADS)
Emami, Razieh; Firouzjahi, Hassan
2012-01-01
We revisit the idea of generating primordial anisotropies at the end of inflation in models of inflation with gauge fields. To be specific we consider the charged hybrid inflation model where the waterfall field is charged under a U(1) gauge field so the surface of end of inflation is controlled both by inflaton and the gauge fields. Using δN formalism properly we find that the anisotropies generated at the end of inflation from the gauge field fluctuations are exponentially suppressed on cosmological scales. This is because the gauge field evolves exponentially during inflation while in order to generate appreciable anisotropies at the end of inflation the spectator gauge field has to be frozen. We argue that this is a generic feature, that is, one can not generate observable anisotropies at the end of inflation within an FRW background.
D'Alessandro, Angelo; Reisz, Julie A; Culp-Hill, Rachel; Korsten, Herbert; van Bruggen, Robin; de Korte, Dirk
2018-04-06
Over a century of advancements in the field of additive solutions for red blood cell (RBC) storage has made transfusion therapy a safe and effective practice for millions of recipients worldwide. Still, storage in the blood bank results in the progressive accumulation of metabolic alterations, a phenomenon that is mitigated by storage in novel storage additives, such as alkaline additive solutions. While novel alkaline additive formulations have been proposed, no metabolomics characterization has been performed to date. We performed UHPLC-MS metabolomics analyses of red blood cells stored in SAGM (standard additive in Europe), (PAGGSM), or alkaline additives SOLX, E-SOL 5 and PAG3M for either 1, 21, 35 (end of shelf-life in the Netherlands), or 56 days. Alkaline additives (especially PAG3M) better preserved 2,3-diphosphoglycerate and adenosine triphosphate (ATP). Deaminated purines such as hypoxanthine were predictive of hemolysis and morphological alterations. Guanosine supplementation in PAGGSM and PAG3M fueled ATP generation by feeding into the nonoxidative pentose phosphate pathway via phosphoribolysis. Decreased urate to hypoxanthine ratios were observed in alkaline additives, suggestive of decreased generation of urate and hydrogen peroxide. Despite the many benefits observed in purine and redox metabolism, alkaline additives did not prevent accumulation of free fatty acids and oxidized byproducts, opening a window for future alkaline formulations including (lipophilic) antioxidants. Alkalinization via different strategies (replacement of chloride anions with either high bicarbonate, high citrate/phosphate, or membrane impermeant gluconate) results in different metabolic outcomes, which are superior to current canonical additives in all cases. © 2018 AABB.
Laser-plasmas in the relativistic-transparency regime: Science and applications
Cort Gautier, D.; Palaniyappan, Sasikumar; Albright, Brian J.; Favalli, Andrea; Hunter, James F.; Mendez, Jacob; Roth, Markus; Deppert, Oliver; Espy, Michelle; Guler, Nevzat; Hamilton, Christopher; Hegelich, Bjorn Manuel; Henzlova, Daniela; Ianakiev, Kiril D.; Iliev, Metodi; Johnson, Randall P.; Kleinschmidt, Annika; Losko, Adrian S.; McCary, Edward; Mocko, Michal; Nelson, Ronald O.; Roycroft, Rebecca; Schanz, Victor A.; Schaumann, Gabriel; Schmidt, Derek W.; Sefkow, Adam; Taddeucci, Terry N.; Yin, Lin
2017-01-01
Laser-plasma interactions in the novel regime of relativistically induced transparency (RIT) have been harnessed to generate intense ion beams efficiently with average energies exceeding 10 MeV/nucleon (>100 MeV for protons) at “table-top” scales in experiments at the LANL Trident Laser. By further optimization of the laser and target, the RIT regime has been extended into a self-organized plasma mode. This mode yields an ion beam with much narrower energy spread while maintaining high ion energy and conversion efficiency. This mode involves self-generation of persistent high magnetic fields (∼104 T, according to particle-in-cell simulations of the experiments) at the rear-side of the plasma. These magnetic fields trap the laser-heated multi-MeV electrons, which generate a high localized electrostatic field (∼0.1 T V/m). After the laser exits the plasma, this electric field acts on a highly structured ion-beam distribution in phase space to reduce the energy spread, thus separating acceleration and energy-spread reduction. Thus, ion beams with narrow energy peaks at up to 18 MeV/nucleon are generated reproducibly with high efficiency (≈5%). The experimental demonstration has been done with 0.12 PW, high-contrast, 0.6 ps Gaussian 1.053 μm laser pulses irradiating planar foils up to 250 nm thick at 2–8 × 1020 W/cm2. These ion beams with co-propagating electrons have been used on Trident for uniform volumetric isochoric heating to generate and study warm-dense matter at high densities. These beam plasmas have been directed also at a thick Ta disk to generate a directed, intense point-like Bremsstrahlung source of photons peaked at ∼2 MeV and used it for point projection radiography of thick high density objects. In addition, prior work on the intense neutron beam driven by an intense deuterium beam generated in the RIT regime has been extended. Neutron spectral control by means of a flexible converter-disk design has been demonstrated, and the neutron beam has been used for point-projection imaging of thick objects. The plans and prospects for further improvements and applications are also discussed. PMID:28652684
Model with a gauged lepton flavor SU(2) symmetry
NASA Astrophysics Data System (ADS)
Chiang, Cheng-Wei; Tsumura, Koji
2018-05-01
We propose a model having a gauged SU(2) symmetry associated with the second and third generations of leptons, dubbed SU(2) μτ , of which U{(1)}_{L_{μ }-L_{τ }} is an Abelian subgroup. In addition to the Standard Model fields, we introduce two types of scalar fields. One exotic scalar field is an SU(2) μτ doublet and SM singlet that develops a nonzero vacuum expectation value at presumably multi-TeV scale to completely break the SU(2) μτ symmetry, rendering three massive gauge bosons. At the same time, the other exotic scalar field, carrying electroweak as well as SU(2) μτ charges, is induced to have a nonzero vacuum expectation value as well and breaks mass degeneracy between the muon and tau. We examine how the new particles in the model contribute to the muon anomalous magnetic moment in the parameter space compliant with the Michel decays of tau.
Chu, Dong; Guo, Dong; Tao, Yunli; Jiang, Defeng; Li, Jie; Zhang, Youjun
2014-01-01
The sweetpotato whitefly Bemisia tabaci Q species is a recent invader and important pest of agricultural crops in China. This research tested the hypothesis that the Q populations that establish in agricultural fields in northern China each year are derived from multiple secondary introductions and/or local populations that overwinter in greenhouses (the pest cannot survive winters in the field in northern China). Here, we report the evidence that the Q populations in agricultural fields mainly derive from multiple secondary introductions. In addition, the common use of greenhouses during the winter in certain locations in northern China helps increase the genetic diversity and the genetic structure of the pest. The genetic structure information generated from this long-term and large-scale field analysis increases our understanding of B. tabaci Q as an invasive pest and has important implications for B. tabaci Q management. PMID:24637851
Fiksel, G.; Agliata, A.; Barnak, D.; ...
2015-01-12
Here, an upgrade of the pulsed magnetic field generator magneto-inertial fusion electrical discharge system [O. Gotchev et al., Rev. Sci. Instrum. 80, 043504 (2009)] is described. The device is used to study magnetized high-energy-density plasma and is capable of producing a pulsed magnetic field of tens of tesla in a volume of a few cubic centimeters. The magnetic field is created by discharging a high-voltage capacitor through a small wire-wound coil. The coil current pulse has a duration of about 1 μs and a peak value of 40 kA. Compared to the original, the updated version has a larger energymore » storage and improved switching system. In addition, magnetic coils are fabricated using 3-D printing technology which allows for a greater variety of the magnetic field topology.« less
Tree-level correlations in the strong field regime
NASA Astrophysics Data System (ADS)
Gelis, François
2017-09-01
We consider the correlation function of an arbitrary number of local observables in quantum field theory, in situations where the field amplitude is large. Using a quasi-classical approximation (valid for a highly occupied initial mixed state, or for a coherent initial state if the classical dynamics has instabilities), we show that at tree level these correlations are dominated by fluctuations at the initial time. We obtain a general expression of the correlation functions in terms of the classical solution of the field equation of motion and its derivatives with respect to its initial conditions, that can be arranged graphically as the sum of labeled trees where the nodes are the individual observables, and the links are pairs of derivatives acting on them. For 3-point (and higher) correlation functions, there are additional tree-level terms beyond the quasi-classical approximation, generated by fluctuations in the bulk.
The Substorm Current Wedge: Further Insights from MHD Simulations
NASA Technical Reports Server (NTRS)
Birn, J.; Hesse, M.
2015-01-01
Using a recent magnetohydrodynamic simulation of magnetotail dynamics, we further investigate the buildup and evolution of the substorm current wedge (SCW), resulting from flow bursts generated by near-tail reconnection. Each flow burst generates an individual current wedge, which includes the reduction of cross-tail current and the diversion to region 1 (R1)-type field-aligned currents (earthward on the dawn and tailward on the duskside), connecting the tail with the ionosphere. Multiple flow bursts generate initially multiple SCW patterns, which at later times combine to a wider single SCW pattern. The standard SCWmodel is modified by the addition of several current loops, related to particular magnetic field changes: the increase of Bz in a local equatorial region (dipolarization), the decrease of |Bx| away from the equator (current disruption), and increases in |By| resulting from azimuthally deflected flows. The associated loop currents are found to be of similar magnitude, 0.1-0.3 MA. The combined effect requires the addition of region 2 (R2)-type currents closing in the near tail through dawnward currents but also connecting radially with the R1 currents. The current closure at the inner boundary, taken as a crude proxy of an idealized ionosphere, demonstrates westward currents as postulated in the original SCW picture as well as North-South currents connecting R1- and R2-type currents, which were larger than the westward currents by a factor of almost 2. However, this result should be applied with caution to the ionosphere because of our neglect of finite resistance and Hall effects.
In vitro and in vivo approaches to study osteocyte biology.
Kalajzic, Ivo; Matthews, Brya G; Torreggiani, Elena; Harris, Marie A; Divieti Pajevic, Paola; Harris, Stephen E
2013-06-01
Osteocytes, the most abundant cell population of the bone lineage, have been a major focus in the bone research field in recent years. This population of cells that resides within mineralized matrix is now thought to be the mechanosensory cell in bone and plays major roles in the regulation of bone formation and resorption. Studies of osteocytes had been impaired by their location, resulting in numerous attempts to isolate primary osteocytes and to generate cell lines representative of the osteocytic phenotype. Progress has been achieved in recent years by utilizing in vivo genetic technology and generation of osteocyte directed transgenic and gene deficiency mouse models. We will provide an overview of the current in vitro and in vivo models utilized to study osteocyte biology. We discuss generation of osteocyte-like cell lines and isolation of primary osteocytes and summarize studies that have utilized these cellular models to understand the functional role of osteocytes. Approaches that attempt to selectively identify and isolate osteocytes using fluorescent protein reporters driven by regulatory elements of genes that are highly expressed in osteocytes will be discussed. In addition, recent in vivo studies utilizing overexpression or conditional deletion of various genes using dentin matrix protein (Dmp1) directed Cre recombinase are outlined. In conclusion, evaluation of the benefits and deficiencies of currently used cell lines/genetic models in understanding osteocyte biology underlines the current progress in this field. The future efforts will be directed towards developing novel in vitro and in vivo models that would additionally facilitate in understanding the multiple roles of osteocytes. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Dimant, Y. S.; Oppenheim, M. M.; Fletcher, A. C.
2016-08-01
In weakly ionized plasmas neutral flows drag plasma across magnetic field lines generating intense electric fields and currents. An example occurs in the Earth's ionosphere near the geomagnetic equator. Similar processes take place in the Solar chromosphere and magnetohydrodynamic generators. This paper argues that not all convective neutral flows generate electric fields and currents and it introduces the corresponding universal criterion for their formation, ∇×(U ×B )≠∂B /∂t , where U is the neutral flow velocity, B is the magnetic field, and t is time. This criterion does not depend on the conductivity tensor, σ ̂ . For many systems, the displacement current, ∂B /∂t , is negligible making the criterion even simpler. This theory also shows that the neutral-dynamo driver that generates E-fields and currents plays the same role as the DC electric current plays for the generation of the magnetic field in the Biot-Savart law.
NASA Astrophysics Data System (ADS)
Myrbo, A.; Swain, E. B.; Engstrom, D. R.; Coleman Wasik, J.; Brenner, J.; Dykhuizen Shore, M.; Peters, E. B.; Blaha, G.
2017-11-01
Field observations suggest that surface water sulfate concentrations control the distribution of wild rice, an aquatic grass (Zizania palustris). However, hydroponic studies show that sulfate is not toxic to wild rice at even unrealistically high concentrations. To determine how sulfate might directly or indirectly affect wild rice, potential wild rice habitat was characterized for 64 chemical and physical variables in over 100 sites spanning a relatively steep climatic and geological gradient in Minnesota. Habitat suitability was assessed by comparing the occurrence of wild rice with the field variables, through binary logistic regression. This analysis demonstrated that sulfide in sediment pore water, generated by the microbial reduction of sulfate that diffuses or advects into the sediment, is the primary control of wild rice occurrence. Water temperature and water transparency independently control the suitability of habitat for wild rice. In addition to generating phytotoxic sulfide, sulfate reduction also supports anaerobic decomposition of organic matter, releasing nutrients that can compound the harm of direct sulfide toxicity. These results are important because they show that increases in sulfate loading to surface water can have multiple negative consequences for ecosystems, even though sulfate itself is relatively benign.
NASA Astrophysics Data System (ADS)
Waleed Ahmed Khan, M.; Ijaz Khan, M.; Hayat, T.; Alsaedi, A.
2018-04-01
Entropy generation minimization (EGM) and heat transport in nonlinear radiative flow of nanomaterials over a thin moving needle has been discussed. Nonlinear thermal radiation and viscous dissipation terms are merged in the energy expression. Water is treated as ordinary fluid while nanomaterials comprise titanium dioxide, copper and aluminum oxide. The nonlinear governing expressions of flow problems are transferred to ordinary ones and then tackled for numerical results by Built-in-shooting technique. In first section of this investigation, the entropy expression is derived as a function of temperature and velocity gradients. Geometrical and physical flow field variables are utilized to make it nondimensionalized. An entropy generation analysis is utilized through second law of thermodynamics. The results of temperature, velocity, concentration, surface drag force and heat transfer rate are explored. Our outcomes reveal that surface drag force and Nusselt number (heat transfer) enhanced linearly for higher nanoparticle volume fraction. Furthermore drag force decays for aluminum oxide and it enhances for copper nanoparticles. In addition, the lowest heat transfer rate is achieved for higher radiative parameter. Temperature field is enhanced with increase in temperature ratio parameter.
NASA Astrophysics Data System (ADS)
Daras, Ilias; Visser, Pieter; Sneeuw, Nico; van Dam, Tonie; Pail, Roland; Gruber, Thomas; Tabibi, Sajad; Chen, Qiang; Liu, Wei; Tourian, Mohammad; Engels, Johannes; Saemian, Peyman; Siemes, Christian; Haagmans, Roger
2017-04-01
Next Generation Gravity Missions (NGGMs) expected to be launched in the mid-term future have set high anticipations for an enhanced monitoring of mass transport in the Earth system, establishing their products applicable to new scientific fields and serving societal needs. The European Space Agency (ESA) has issued several studies on concepts of NGGMs. Following this tradition, the project "Additional Constellations & Scientific Analysis Studies of the Next Generation Gravity Mission" picks up where the previous study ESA-SC4MGV left off. One of the ESA-ADDCON project objectives is to investigate the impact of different orbit configurations and parameters on the gravity field retrieval. Given a two-pair Bender-type constellation, consisting of a polar and an inclined pair, choices for orbit design such as the altitude profile during mission lifetime, the length of retrieval period, the value of sub-cycles and the choice of a prograde over a retrograde orbit are investigated. Moreover, the problem of aliasing due to ocean tide model inaccuracies, as well as methods for mitigating their effect on gravity field solutions are investigated in the context of NGGMs. The performed simulations make use of the gravity field processing approach where low-resolution gravity field solutions are co-parameterized in short-term periods (e.g. daily) together with the long-term solutions (e.g. 11-day solution). This method proved to be beneficial for NGGMs (ESA-SC4MGV project) since the enhanced spatio-temporal sampling enables a self-de-aliasing of high-frequency atmospheric and oceanic signals, which may now be a part of the retrieved signal. The potential added value of having such signals for the first time in near real-time is assessed within the project. This paper demonstrates the preliminary results of the ESA-ADDCON project focusing on aspects of orbit design choices for NGGMs.
Jorge-Peñas, Alvaro; Bové, Hannelore; Sanen, Kathleen; Vaeyens, Marie-Mo; Steuwe, Christian; Roeffaers, Maarten; Ameloot, Marcel; Van Oosterwyck, Hans
2017-08-01
To advance our current understanding of cell-matrix mechanics and its importance for biomaterials development, advanced three-dimensional (3D) measurement techniques are necessary. Cell-induced deformations of the surrounding matrix are commonly derived from the displacement of embedded fiducial markers, as part of traction force microscopy (TFM) procedures. However, these fluorescent markers may alter the mechanical properties of the matrix or can be taken up by the embedded cells, and therefore influence cellular behavior and fate. In addition, the currently developed methods for calculating cell-induced deformations are generally limited to relatively small deformations, with displacement magnitudes and strains typically of the order of a few microns and less than 10% respectively. Yet, large, complex deformation fields can be expected from cells exerting tractions in fibrillar biomaterials, like collagen. To circumvent these hurdles, we present a technique for the 3D full-field quantification of large cell-generated deformations in collagen, without the need of fiducial markers. We applied non-rigid, Free Form Deformation (FFD)-based image registration to compute full-field displacements induced by MRC-5 human lung fibroblasts in a collagen type I hydrogel by solely relying on second harmonic generation (SHG) from the collagen fibrils. By executing comparative experiments, we show that comparable displacement fields can be derived from both fibrils and fluorescent beads. SHG-based fibril imaging can circumvent all described disadvantages of using fiducial markers. This approach allows measuring 3D full-field deformations under large displacement (of the order of 10 μm) and strain regimes (up to 40%). As such, it holds great promise for the study of large cell-induced deformations as an inherent component of cell-biomaterial interactions and cell-mediated biomaterial remodeling. Copyright © 2017 Elsevier Ltd. All rights reserved.
External split field generator
Thundat, Thomas George [Knoxville, TN; Van Neste, Charles W [Kingston, TN; Vass, Arpad Alexander [Oak Ridge, TN
2012-02-21
A generator includes a coil disposed about a core. A first stationary magnetic field source may be disposed on a first end portion of the core and a second stationary magnetic field source may be disposed on a second end portion of core. The first and second stationary magnetic field sources apply a stationary magnetic field to the coil. An external magnetic field source may be disposed outside the coil to apply a moving magnetic field to the coil. Electrical energy is generated in response to an interaction between the coil, the moving magnetic field, and the stationary magnetic field.
Magnetic and optical effects in TiO2 based dye sensitized solar cells
NASA Astrophysics Data System (ADS)
Kannan U., M.; Jammalamadaka, S. Narayana
2018-04-01
We report on the magnetic effects on the solar cell efficiency of TiO2 based dye sensitized solar cells (DSSC). The strong spin orbit coupling of rare earth Ho3+ ions introduced by the addition of Ho2O3 into the photoanode resulted in a 28% enhancement in the power conversion efficiency of DSSC. Such an enhancement in the efficiency may be attributed to the improved lifetime of photo generated excitons as a result of the accelerated intersystem crossing phenomenon. This observation is supported by our photoluminescence (PL) measurements where we could observe a decrease in the photo emission intensity with the addition of Ho2O3. In addition, we have used a low magnetic field of 100 Oe to further enhance the overall efficiency to 5.6%, which in turn proves that the Lorentz force plays a significant role in magnetic field controlled charge transport in DSSC. Finally, we have carried out a transfer matrix model based theoretical simulation for studying the optical properties of the multilayer device stack.
Extragalactic magnetic fields unlikely generated at the electroweak phase transition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagstaff, Jacques M.; Banerjee, Robi, E-mail: jwagstaff@hs.uni-hamburg.de, E-mail: banerjee@hs.uni-hamburg.de
2016-01-01
In this paper we show that magnetic fields generated at the electroweak phase transition are most likely too weak to explain the void magnetic fields apparently observed today unless they have considerable helicity. We show that, in the simplest estimates, the helicity naturally produced in conjunction with the baryon asymmetry is too small to explain observations, which require a helicity fraction at least of order 10{sup −14}–10{sup −10} depending on the void fields constraint used. Therefore new mechanisms to generate primordial helicity are required if magnetic fields generated during the electroweak phase transition should explain the extragalactic fields.
The influence of an interface electric field on the distribution coefficient of chromium in LiNbO 3
NASA Astrophysics Data System (ADS)
Uda, Satoshi; Tiller, William A.
1992-06-01
The effective solute partitioning of chromium was investigated on single crystals of LiNbO 3 grown by the laser-heated pedestal growth (LHPG) technique. Electric field effects at the interface influence this solute partitioning, leading to an electric field-dependent effective solute distribution coefficient, kE. The LHPG technique made it possible to explore these field effects by controllably changing the growth velocity ( V) and the temperature gradient ( GS, GL) near the interface over a wide range. The electric field generated via the temperature gradient is associated with the thermoelectric power while an additional electric field is growth rate associated via a charge separation effect. By applying the Burton-Prim-Slichter (BPS) theory to our experimental data, we found the phase diagram solute partition coefficient to be k0 ≈ 3.65, while the field-influenced solute partition coefficient ( V = 0) was k' EO ≈ 8.17 at GL ≈ 11500°C/cm. It is theoretically shown that the same considerations can be applied to all ionic partitioning at a solid-liquid interface.
Terahertz Radiation from Laser Created Plasma by Applying a Transverse Static Electric Field
NASA Astrophysics Data System (ADS)
Fukuda, Takuya; Katahira, Koji; Yugami, Noboru; Sentoku, Yasuhiko; Sakagami, Hitoshi; Nagatomo, Hideo
2016-10-01
Terahertz (THz) radiation, which is emitted in narrow cone in the forward direction from laser created plasma has been observed by N.Yugami et al.. Additionally, Löffler et al. have observed that a significantly increased THz emission intensity in the forward direction when the transverse static electric field is applied to the plasma. The purpose of our study is to derive the mechanism of the THz radiation from laser created plasma by applying the transverse static electric field. To study the radiation mechanism, we conducted 2D-PIC simulation. With the static electric field of 10 kV/cm and gas density of 1020 cm-3, we obtain 1.2 THz single cycle pulse radiation, whose intensity is 1.3 ×105 W/cm2. The magnetic field called ``picket fence mode'' is generated in the laser created plasma. At the boundary surface between the plasma and vacuum, the magnetic field is canceled because eddy current flows. We conclude that the temporal behavior of the magnetic field at the boundary surface radiates the THz wave.
A Proper-Motion Corrected, Cross-Matched Catalog Of M Dwarfs In SDSS And FIRST
NASA Astrophysics Data System (ADS)
Arai, Erin; West, A. A.; Thyagarajan, N.; Agüeros, M.; Helfand, D.
2011-05-01
We present a preliminary analysis of M dwarfs identified in both the Sloan Digital Sky Survey (SDSS) and the Very Large Array's (VLA) Faint Images of the Radio Sky at Twenty-centimeters survey (FIRST). The presence of magnetic fields is often associated with indirect magnetic activity measurements, such as H-alpha or X-ray emission. Radio emission, in contrast, is directly proportional to the magnetic field strength in addition to being another measure of activity. We search for stellar radio emission by cross-matching the SDSS DR7 M dwarf sample with the FIRST catalog. The SDSS data allow us to examine the spectra of our objects and correlate the magnetic activity (H-alpha) with the magnetic field strength (radio emission). Accurate positions and proper motions are important for obtaining a complete list of overlapping targets. Positions in FIRST and SDSS need to be proper motion corrected in order to ensure unique target matches since nearby M dwarfs can have significant proper motions (up to 1'' per year). Some previous studies have neglected the significance of proper motions in identifying overlapping targets between SDSS and FIRST; we correct for some of these previous oversights. In addition the FIRST data were taken in multiple epochs; individual images need to be proper motion corrected before the images can be co-added. Our cross-match catalog puts important constraints on models of magnetic field generation in low-mass stars in addition to the true habitability of attending planets.
Computational Simulation of Explosively Generated Pulsed Power Devices
2013-03-21
to practical applications. These are the magnetic flux compression generators (FCG), ferromagnetic generators (FMG) and ferroelectric generators (FEG...The first device works on the concept of field interaction between a conducting medium and a magnetic field. The last two devices make use of either... magnetic or electric fields stored in a prepared material (4). This research will focus on the ferroelectric generator as a high voltage source for
Generation of excited coherent states for a charged particle in a uniform magnetic field
NASA Astrophysics Data System (ADS)
Mojaveri, B.; Dehghani, A.
2015-04-01
We introduce excited coherent states, |β , α ; n| ≔ a† n | β , α|, where n is an integer and states |β , α| denote the coherent states of a charged particle in a uniform magnetic field. States |β , α| minimize the Schrödinger-Robertson uncertainty relation while having the nonclassical properties. It has been shown that the resolution of identity condition is realized with respect to an appropriate measure on the complex plane. Some of the nonclassical features such as sub-Poissonian statistics and quadrature squeezing of these states are investigated. Our results are compared with similar Agarwal's type photon added coherent states (PACSs) and it is shown that, while photon-counting statistics of |β , α , n| are the same as PACSs, their squeezing properties are different. It is also shown that for large values of |β|, while they are squeezed, they minimize the uncertainty condition. Additionally, it has been demonstrated that by changing the magnitude of the external magnetic field, Bext, the squeezing effect is transferred from one component to another. Finally, a new scheme is proposed to generate states |beta; , α ; n| in cavities.
Computer Aided Dosimetry and Verification of Exposure to Radiation
NASA Astrophysics Data System (ADS)
Waller, Edward; Stodilka, Robert Z.; Leach, Karen E.; Lalonde, Louise
2002-06-01
In the timeframe following the September 11th attacks on the United States, increased emphasis has been placed on Chemical, Biological, Radiological and Nuclear (CBRN) preparedness. Of prime importance is rapid field assessment of potential radiation exposure to Canadian Forces field personnel. This work set up a framework for generating an 'expert' computer system for aiding and assisting field personnel in determining the extent of radiation insult to military personnel. Data was gathered by review of the available literature, discussions with medical and health physics personnel having hands-on experience dealing with radiation accident victims, and from experience of the principal investigator. Flow charts and generic data fusion algorithms were developed. Relationships between known exposure parameters, patient interview and history, clinical symptoms, clinical work-ups, physical dosimetry, biological dosimetry, and dose reconstruction as critical data indicators were investigated. The data obtained was examined in terms of information theory. A main goal was to determine how best to generate an adaptive model (i.e. when more data becomes available, how is the prediction improved). Consideration was given to determination of predictive algorithms for health outcome. In addition. the concept of coding an expert medical treatment advisor system was developed (U)
Characterization of an induced pressure pumping force for microfluidics
NASA Astrophysics Data System (ADS)
Jiang, Hai; Fan, Na; Peng, Bei; Weng, Xuan
2017-05-01
The electro-osmotic pumping and pressure-driven manipulation of fluids are considered as the most common strategies in microfluidic devices. However, both of them exhibit major disadvantages such as hard integration and high reagent consumption, and they are destructive methods for detection and photo bleaching. In this paper, an electric field-effect flow control approach, combining the electro-osmotic pumping force and the pressure-driven pumping force, was developed to generate the induced pressure-driven flow in a T-shaped microfluidic chip. Electro-osmotic flow between the T-intersection and two reservoirs was demonstrated, and it provided a stable, continuous, and electric field-free flow in the section of the microchannel without the electrodes. The velocity of the induced pressure-driven flow was linearly proportional to the applied voltages. Both numerical and experimental investigations were conducted to prove the concept, and the experimental results showed good agreement with the numerical simulations. In comparison to other induced pressure pumping methods, this approach can induce a high and controllable pressure drop in the electric field-free segment, subsequently causing an induced pressure-driven flow for transporting particles or biological cells. In addition, the generation of bubbles and the blocking of the microchannel are avoided.
NASA Technical Reports Server (NTRS)
Cicon, D. E.; Sofrin, T. G.
1995-01-01
This report describes a procedure for enhancing the use of the basic rotating microphone system so as to determine the forward propagating mode components of the acoustic field in the inlet duct at the microphone plane in order to predict more accurate far-field radiation patterns. In addition, a modification was developed to obtain, from the same microphone readings, the forward acoustic modes generated at the fan face, which is generally some distance downstream of the microphone plane. Both these procedures employ computer-simulated calibrations of sound propagation in the inlet duct, based upon the current radiation code. These enhancement procedures were applied to previously obtained rotating microphone data for the 17-inch ADP fan. The forward mode components at the microphone plane were obtained and were used to compute corresponding far-field directivities. The second main task of the program involved finding the forward wave modes generated at the fan face in terms of the same total radial mode structure measured at the microphone plane. To obtain satisfactory results with the ADP geometry it was necessary to limit consideration to the propagating modes. Sensitivity studies were also conducted to establish guidelines for use in other fan configurations.
Graphene Distributed Amplifiers: Generating Desirable Gain for Graphene Field-Effect Transistors
Lyu, Hongming; Lu, Qi; Huang, Yilin; Ma, Teng; Zhang, Jinyu; Wu, Xiaoming; Yu, Zhiping; Ren, Wencai; Cheng, Hui-Ming; Wu, Huaqiang; Qian, He
2015-01-01
Ever since its discovery, graphene bears great expectations in high frequency electronics due to its irreplaceably high carrier mobility. However, it has long been blamed for the weakness in generating gains, which seriously limits its pace of development. Distributed amplification, on the other hand, has successfully been used in conventional semiconductors to increase the amplifiers’ gain-bandwidth product. In this paper, distributed amplification is first applied to graphene. Transmission lines phase-synchronize paralleled graphene field-effect transistors (GFETs), combining the gain of each stage in an additive manner. Simulations were based on fabricated GFETs whose fT ranged from 8.5 GHz to 10.5 GHz and fmax from 12 GHz to 14 GHz. A simulated four-stage graphene distributed amplifier achieved up to 4 dB gain and 3.5 GHz bandwidth, which could be realized with future IC processes. A PCB level graphene distributed amplifier was fabricated as a proof of circuit concept. PMID:26634442
Improved Apparatus to Study Matter-Wave Quantum Optics in a Sodium Spinor Bose-Einstein Condensate
NASA Astrophysics Data System (ADS)
Zhong, Shan; Bhagat, Anita; Zhang, Qimin; Schwettmann, Arne
2017-04-01
We present and characterize our recently improved experimental apparatus for studying matter-wave quantum optics in spin space in ultracold sodium gases. Improvements include our recent addition of a 3D-printed Helmholtz coil frame for field stabilization and a crossed optical dipole trap. Spin-exchange collisions in the F = 1 spinor Bose-Einstein condensate can be precisely controlled by microwave dressing, and generate pairs of entangled atoms with magnetic quantum numbers mF = + 1 and mF = - 1 from pairs of mF = 0 atoms. Spin squeezing generated by the collisions can reduce the noise of population measurements below the shot noise limit. Versatile microwave pulse sequences will be used to implement an interferometer, a phase-sensitive amplifier and other devices with sub-shot noise performance. With an added ion detector to detect Rydberg atoms via pulse-field ionization, we later plan to study the effect of Rydberg excitations on the spin evolution of the ultracold gas.
Overview of Vaccine Adjuvants: Introduction, History, and Current Status.
Shah, Ruchi R; Hassett, Kimberly J; Brito, Luis A
2017-01-01
Adjuvants are included in sub-unit or recombinant vaccines to enhance the potency of poorly immunogenic antigens. Adjuvant discovery is as complex as it is a multidiscplinary intersection of formulation science, immunology, toxicology, and biology. Adjuvants such as alum, which have been in use for the past 90 years, have illustrated that adjuvant research is a methodical process. As science advances, new analytical tools are developed which allows us to delve deeper into the various mechanisms that generates a potent immune response. Additionally, these new techniques help the field learn about our existing vaccines and what makes them safe, and effective, allowing us to leverage that in the next generation of vaccines. Our goal in this chapter is to define the concept, need, and mechanism of adjuvants in the vaccine field while describing its history, present use, and future prospects. More details on individual adjuvants and their formulation, development, mechanism, and use will be covered in depth in the next chapters.
Optical cage generated by azimuthal- and radial-variant vector beams.
Man, Zhongsheng; Bai, Zhidong; Li, Jinjian; Zhang, Shuoshuo; Li, Xiaoyu; Zhang, Yuquan; Ge, Xiaolu; Fu, Shenggui
2018-05-01
We propose a method to generate an optical cage using azimuthal- and radial-variant vector beams in a high numerical aperture optical system. A new kind of vector beam that has azimuthal- and radial-variant polarization states is proposed and demonstrated theoretically. Then, an integrated analytical model to calculate the electromagnetic field and Poynting vector distributions of the input azimuthal- and radial-variant vector beams is derived and built based on the vector diffraction theory of Richards and Wolf. From calculations, a full polarization-controlled optical cage is obtained by simply tailoring the radial index of the polarization, the uniformity U of which is up to 0.7748, and the cleanness C is zero. Additionally, a perfect optical cage can be achieved with U=1, and C=0 by introducing an amplitude modulation; its magnetic field and energy flow are also demonstrated in detail. Such optical cages may be helpful in applications such as optical trapping and high-resolution imaging.
Controlled gas-liquid interfacial plasmas for synthesis of nano-bio-carbon conjugate materials
NASA Astrophysics Data System (ADS)
Kaneko, Toshiro; Hatakeyama, Rikizo
2018-01-01
Plasmas generated in contact with a liquid have been recognized to be a novel reactive field in nano-bio-carbon conjugate creation because several new chemical reactions have been yielded at the gas-liquid interface, which were induced by the physical dynamics of non-equilibrium plasmas. One is the ion irradiation to a liquid, which caused the spatially selective dissociation of the liquid and the generation of additive reducing and oxidizing agents, resulting in the spatially controlled synthesis of nanostructures. The other is the electron irradiation to a liquid, which directly enhanced the reduction action at the plasma-liquid interface, resulting in temporally controlled nanomaterial synthesis. Using this novel reaction field, gold nanoparticles with controlled interparticle distance were synthesized using carbon nanotubes as a template. Furthermore, nanoparticle-biomolecule conjugates and nanocarbon-biomolecule conjugates were successfully synthesized by an aqueous-solution contact plasma and an electrolyte plasma, respectively, which were rapid and low-damage processes suitable for nano-bio-carbon conjugate materials.
Plasmon enhanced terahertz emission from single layer graphene.
Bahk, Young-Mi; Ramakrishnan, Gopakumar; Choi, Jongho; Song, Hyelynn; Choi, Geunchang; Kim, Yong Hyup; Ahn, Kwang Jun; Kim, Dai-Sik; Planken, Paul C M
2014-09-23
We show that surface plasmons, excited with femtosecond laser pulses on continuous or discontinuous gold substrates, strongly enhance the generation and emission of ultrashort, broadband terahertz pulses from single layer graphene. Without surface plasmon excitation, for graphene on glass, 'nonresonant laser-pulse-induced photon drag currents' appear to be responsible for the relatively weak emission of both s- and p-polarized terahertz pulses. For graphene on a discontinuous layer of gold, only the emission of the p-polarized terahertz electric field is enhanced, whereas the s-polarized component remains largely unaffected, suggesting the presence of an additional terahertz generation mechanism. We argue that in the latter case, 'surface-plasmon-enhanced optical rectification', made possible by the lack of inversion symmetry at the graphene on gold surface, is responsible for the strongly enhanced emission. The enhancement occurs because the electric field of surface plasmons is localized and enhanced where the graphene is located: at the surface of the metal. We believe that our results point the way to small, thin, and more efficient terahertz photonic devices.
2016-09-26
toolkit of additional promoters, RBS, and proteolysis tags to control gene expression at the transcrip- tional, translational, and protein levels. CRISPR ...synthetic promoters, high efficiency RBS, and terminators. Furthermore, the CRISPR -Cas system has been investigated for one cyanobacteria species,10 which...Development of a CRISPR -Cas9 toolkit for comprehensive engineer- ing of Bacillus subtilis. Appl. Environ. Microbiol. 82, 01159−01116. (9) Hussein, A. H
Durability Testing of Additively Manufactured High Power Microwave Structures
2017-10-29
the aluminum anode, generating microwave powers in excess of 150 MW. After 100 shots on each structure, neither anode showed any signs of...with an average instantaneous peak total efficiency of 27% ± 10%. After 100 shots on each structure, neither anode showed any signs of...uniform axial magnetic field, which was varied on a per- shot basis from 0.13 to 0.31 T. A #304 stainless steel vacuum chamber housed the magnetron
Liu, Shu-Yen; Sheu, J K; Lee, M L; Lin, Yu-Chuan; Tu, S J; Huang, F W; Lai, W C
2012-03-12
In this study, we demonstrated photoelectrochemical (PEC) hydrogen generation using p-GaN photoelectrodes associated with immersed finger-type indium tin oxide (IF-ITO) ohmic contacts. The IF-ITO/p-GaN photoelectrode scheme exhibits higher photocurrent and gas generation rate compared with p-GaN photoelectrodes without IF-ITO ohmic contacts. In addition, the critical external bias for detectable hydrogen generation can be effectively reduced by the use of IF-ITO ohmic contacts. This finding can be attributed to the greatly uniform distribution of the IF-ITO/p-GaN photoelectrode applied fields over the whole working area. As a result, the collection efficiency of photo-generated holes by electrode contacts is higher than that of p-GaN photoelectrodes without IF-ITO contacts. Microscopy revealed a tiny change on the p-GaN surfaces before and after hydrogen generation. In contrast, photoelectrodes composed of n-GaN have a short lifetime due to n-GaN corrosion during hydrogen generation. Findings of this study indicate that the ITO finger contacts on p-GaN layer is a potential candidate as photoelectrodes for PEC hydrogen generation.
The effect of generation on retention of women engineers in aerospace and industry
NASA Astrophysics Data System (ADS)
Kiernan, Kristine Maria
The purpose of this dissertation was to determine the nature and extent of differences between generational cohorts regarding the effect of family factors on retention of women in engineering, with an emphasis on women in the aerospace industry. While 6% of the aerospace workforce is made up of aeronautical engineers, an additional 11.2% of the aerospace workforce is drawn from other engineering disciplines. Therefore, the analysis included all engineering sub-disciplines. In order to include women who had left the workforce, women in all industries were used as a proxy for women in aerospace. Exits to other fields were modeled separately from exits out of the workforce. The source of data was the National Survey of College Graduates. Women engineers were divided into the Baby Boom cohort (born 1945-1964), the Generation X cohort (born 1965-1980), and the Millennial cohort (born 1981-1997). A time-lag design was used to compare generational cohorts when they were the same age. The results of this study showed that generational cohort did not affect retention of women in engineering. However, generational cohort affected family formation decisions, with Millennial women marrying and having children later than their counterparts in the Generation X and Baby Boom cohorts. Generational cohort also affected the influence of motherhood on retention in the workforce, with Generation X and Millennial mothers more likely to stay in the workforce than their counterparts in the Baby Boom cohort. There was no significant difference between Generation X and Millennial women in the proportion of mothers who stayed in the workforce. Generational cohort influenced the reasons women left the workforce. Women in the Millennial cohort were more likely to cite not needing or wanting to work, while women in the Generation X cohort were more likely to cite family responsibilities. Among mothers in the Millennial cohort who were out of the workforce, the proportion who cited not needing or wanting to work as a reason for being out of the workforce was much larger than the proportion citing family responsibilities. Among mothers in the Generation X cohort who were out of the workforce, the relationship was reversed, with a larger proportion of women citing family factors than not needing or wanting to work. Generational cohort also affected the influence of motherhood on leaving engineering for another professional field, with Generation X and Millennial mothers more likely to stay in engineering than their counterparts in the Baby Boom cohort. Women in the Baby Boom cohort were more likely than women in the Generation X cohort to cite family factors as the most important reason they left engineering for another professional field. There was no significant difference between women in the Generation X cohort and women in the Millennial cohort regarding the most important reason they left engineering for another field. These results should help aerospace leaders understand the role of family factors in the workforce decisions of Millennial women engineers, and enhance the aerospace industry's ability to recruit and retain the best and brightest for tomorrow's aerospace workforce.
Theory and design of electrical rotating machinery
NASA Astrophysics Data System (ADS)
Carr, W. J., Jr.
1980-04-01
The objective of this program was to contribute toward new and improved rotating machines for Naval applications, with emphasis on superconducting machinery. Work has been performed on the theory of ac losses in multifilament superconductors and experiments were made to check the theory. A list of publications and abstracts of scientific papers published under the contract is given, and a review is given of the theory of losses. A macroscopic theory for superconductivity in multifilament superconductors was developed, and the theory was used to calculate the hysteresis and eddy current losses which occur in the presence of changing magnetic fields. Both the transverse field and the longitudinal field cases were considered, and also the self-field loss of an alternating transport current, along with some examples of the combined loss due to alternating applied field and transport current. The results are useful for the design of superconducting devices, such as superconducting motors and generators. A small amount of additional work was done on studies of novel homo- and heteropolar motors.
Phase Structure of Strong-Field Tunneling Wave Packets from Molecules.
Liu, Ming-Ming; Li, Min; Wu, Chengyin; Gong, Qihuang; Staudte, André; Liu, Yunquan
2016-04-22
We study the phase structure of the tunneling wave packets from strong-field ionization of molecules and present a molecular quantum-trajectory Monte Carlo model to describe the laser-driven dynamics of photoelectron momentum distributions of molecules. Using our model, we reproduce and explain the alignment-dependent molecular frame photoelectron spectra of strong-field tunneling ionization of N_{2} reported by M. Meckel et al. [Nat. Phys. 10, 594 (2014)]. In addition to modeling the low-energy photoelectron angular distributions quantitatively, we extract the phase structure of strong-field molecular tunneling wave packets, shedding light on its physical origin. The initial phase of the tunneling wave packets at the tunnel exit depends on both the initial transverse momentum distribution and the molecular internuclear distance. We further show that the ionizing molecular orbital has a critical effect on the initial phase of the tunneling wave packets. The phase structure of the photoelectron wave packet is a key ingredient for modeling strong-field molecular photoelectron holography, high-harmonic generation, and molecular orbital imaging.
Ultra wide band 3-D cross section (RCS) holography
NASA Astrophysics Data System (ADS)
Collins, H. D.; Hall, T. E.
1992-07-01
Ultra wide band impulse holography is an exciting new concept for predictive radar cross section (RCS) evaluation employing near-field measurements. Reconstruction of the near-field hologram data maps the target's scattering areas, and uniquely identifies the 'hot spot' locations on the target. In addition, the target and calibration sphere's plane wave angular spectrums are computed (via digital algorithm) and used to generate the target's far-field RCS values in three dimensions for each frequency component in the impulse. Thin and thick targets are defined in terms of their near-field amplitude variations in range. Range gating and computer holographic techniques are applied to correct these variations. Preliminary experimental results on various targets verify the concept of RCS holography. The unique 3-D presentation (i.e., typically containing 524,288 RCS values for a 1024 (times) 512 sampled aperture for every frequency component) illustrates the efficacy of target recognition in terms of its far-field plane wave angular spectrum image. RCS images can then be viewed at different angles for target recognition, etc.
Strain-induced intervortex interaction and vortex lattices in tetragonal superconductors
Lin, Shi -Zeng; Kogan, Vladimir G.
2017-02-22
In superconductors with strong coupling between superconductivity and elasticity manifested in a strong dependence of transition temperature on pressure, there is an additional contribution to intervortex interactions due to the strain field generated by vortices. When vortex lines are along the c axis of a tetragonal crystal, a square vortex lattice (VL) is favored at low vortex densities, because the vortex-induced strains contribution to the intervortex interactions is long range. At intermediate magnetic fields, the triangular lattice is stabilized. Furthermore, the triangular lattice evolves to the square lattice upon increasing magnetic field, and eventually the system locks to the squaremore » structure. We argue, however, that as magnetic field approaches the upper critical field H c2 the elastic intervortex interactions disappear faster than the standard London interactions, so that VL should return to the triangular structure. Our results are compared to VLs observed in the heavy fermion superconductor CeCoIn 5.« less
Grid Generation Techniques Utilizing the Volume Grid Manipulator
NASA Technical Reports Server (NTRS)
Alter, Stephen J.
1998-01-01
This paper presents grid generation techniques available in the Volume Grid Manipulation (VGM) code. The VGM code is designed to manipulate existing line, surface and volume grids to improve the quality of the data. It embodies an easy to read rich language of commands that enables such alterations as topology changes, grid adaption and smoothing. Additionally, the VGM code can be used to construct simplified straight lines, splines, and conic sections which are common curves used in the generation and manipulation of points, lines, surfaces and volumes (i.e., grid data). These simple geometric curves are essential in the construction of domain discretizations for computational fluid dynamic simulations. By comparison to previously established methods of generating these curves interactively, the VGM code provides control of slope continuity and grid point-to-point stretchings as well as quick changes in the controlling parameters. The VGM code offers the capability to couple the generation of these geometries with an extensive manipulation methodology in a scripting language. The scripting language allows parametric studies of a vehicle geometry to be efficiently performed to evaluate favorable trends in the design process. As examples of the powerful capabilities of the VGM code, a wake flow field domain will be appended to an existing X33 Venturestar volume grid; negative volumes resulting from grid expansions to enable flow field capture on a simple geometry, will be corrected; and geometrical changes to a vehicle component of the X33 Venturestar will be shown.
Ravi, Koustuban; Schimpf, Damian N; Kärtner, Franz X
2016-10-31
The use of laser pulse sequences to drive the cascaded difference frequency generation of high energy, high peak-power and multi-cycle terahertz pulses in cryogenically cooled (100 K) periodically poled Lithium Niobate is proposed and studied. Detailed simulations considering the coupled nonlinear interaction of terahertz and optical waves (or pump depletion), show that unprecedented optical-to-terahertz energy conversion efficiencies > 5%, peak electric fields of hundred(s) of mega volts/meter at terahertz pulse durations of hundred(s) of picoseconds can be achieved. The proposed methods are shown to circumvent laser induced damage limitations at Joule-level pumping by 1µm lasers to enable multi-cycle terahertz sources with pulse energies > 10 milli-joules. Various pulse sequence formats are proposed and analyzed. Numerical calculations for periodically poled structures accounting for cascaded difference frequency generation, self-phase-modulation, cascaded second harmonic generation and laser induced damage are introduced. The physics governing terahertz generation using pulse sequences in this high conversion efficiency regime, limitations and practical considerations are discussed. It is shown that varying the poling period along the crystal length and further reduction of absorption can lead to even higher energy conversion efficiencies >10%. In addition to numerical calculations, an analytic formulation valid for arbitrary pulse formats and closed-form expressions for important cases are presented. Parameters optimizing conversion efficiency in the 0.1-1 THz range, the corresponding peak electric fields, crystal lengths and terahertz pulse properties are furnished.
MSW-resonant fermion mixing during reheating
NASA Astrophysics Data System (ADS)
Kanai, Tsuneto; Tsujikawa, Shinji
2003-10-01
We study the dynamics of reheating in which an inflaton field couples two flavor fermions through Yukawa-couplings. When two fermions have a mixing term with a constant coupling, we show that the Mikheyev-Smirnov-Wolfenstein (MSW)-type resonance emerges due to a time-dependent background in addition to the standard fermion creation via parametric resonance. This MSW resonance not only alters the number densities of fermions generated by a preheating process but also can lead to the larger energy transfer from the inflaton to fermions. Our mechanism can provide additional source terms for the creation of superheavy fermions which may be relevant for the leptogenesis scenario.
Second- and third-harmonic generation in metal-based structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scalora, M.; Akozbek, N.; Bloemer, M. J.
We present a theoretical approach to the study of second- and third-harmonic generation from metallic structures and nanocavities filled with a nonlinear material in the ultrashort pulse regime. We model the metal as a two-component medium, using the hydrodynamic model to describe free electrons and Lorentz oscillators to account for core electron contributions to both the linear dielectric constant and harmonic generation. The active nonlinear medium that may fill a metallic nanocavity, or be positioned between metallic layers in a stack, is also modeled using Lorentz oscillators and surface phenomena due to symmetry breaking are taken into account. We studymore » the effects of incident TE- and TM-polarized fields and show that a simple reexamination of the basic equations reveals additional, exploitable dynamical features of nonlinear frequency conversion in plasmonic nanostructures.« less
Multiple Exciton Generation in Colloidal Nanocrystals
Smith, Charles; Binks, David
2013-01-01
In a conventional solar cell, the energy of an absorbed photon in excess of the band gap is rapidly lost as heat, and this is one of the main reasons that the theoretical efficiency is limited to ~33%. However, an alternative process, multiple exciton generation (MEG), can occur in colloidal quantum dots. Here, some or all of the excess energy is instead used to promote one or more additional electrons to the conduction band, potentially increasing the photocurrent of a solar cell and thereby its output efficiency. This review will describe the development of this field over the decade since the first experimental demonstration of multiple exciton generation, including the controversies over experimental artefacts, comparison with similar effects in bulk materials, and the underlying mechanisms. We will also describe the current state-of-the-art and outline promising directions for further development. PMID:28348283
Magnetospheric convection during quiet or moderately disturbed times
NASA Technical Reports Server (NTRS)
Caudal, G.; Blanc, M.
1988-01-01
The processes which contribute to the large-scale plasma circulation in the earth's environment during quiet times, or during reasonable stable magnetic conditions are reviewed. The various sources of field-aligned current generation in the solar wind and the magnetosphere are presented. The generation of field-aligned currents on open field lines connected to either polar cap and the generation of closed field lines of the inner magnetosphere are examined. Consideration is given to the hypothesis of Caudal (1987) that loss processes of trapped particles are competing with adiabatic motions in the generation of field-aligned currents in the inner magnetosphere.
Genome assembly reborn: recent computational challenges
2009-01-01
Research into genome assembly algorithms has experienced a resurgence due to new challenges created by the development of next generation sequencing technologies. Several genome assemblers have been published in recent years specifically targeted at the new sequence data; however, the ever-changing technological landscape leads to the need for continued research. In addition, the low cost of next generation sequencing data has led to an increased use of sequencing in new settings. For example, the new field of metagenomics relies on large-scale sequencing of entire microbial communities instead of isolate genomes, leading to new computational challenges. In this article, we outline the major algorithmic approaches for genome assembly and describe recent developments in this domain. PMID:19482960
DOE Office of Scientific and Technical Information (OSTI.GOV)
Volkoff, T. J., E-mail: adidasty@gmail.com
We motivate and introduce a class of “hierarchical” quantum superposition states of N coupled quantum oscillators. Unlike other well-known multimode photonic Schrödinger-cat states such as entangled coherent states, the hierarchical superposition states are characterized as two-branch superpositions of tensor products of single-mode Schrödinger-cat states. In addition to analyzing the photon statistics and quasiprobability distributions of prominent examples of these nonclassical states, we consider their usefulness for highprecision quantum metrology of nonlinear optical Hamiltonians and quantify their mode entanglement. We propose two methods for generating hierarchical superpositions in N = 2 coupled microwave cavities, exploiting currently existing quantum optical technology formore » generating entanglement between spatially separated electromagnetic field modes.« less
Studies on the preparation of Caro’s acid by ultrasonic enhanced electrochemistry
NASA Astrophysics Data System (ADS)
Li, Linbo; Yu, Zeli; Hong, Tao; Fang, Zhao; Peng, Jishi; Yang, Zhao
2017-06-01
Ultrasonic cavitation effects can generate hydroxyl radicals and high energy, which is widely applied in the field of oxidation currently. Ultrasound-enhanced electrochemical is used to prepare Caro’s acid, which improves the generate rate of Caro’s acid. In this article, the influences of ultrasonic frequency and ultrasonic power on the electrolysis voltage, electrolyte temperature, electrolyte concentration and the concentration of additive in the process of electrochemical preparation of Caro’s acid was studied. And the optimal production conditions were determined. The research results showed that ultrasonic can significantly improve the production of Caro’s acid and the product can increase by about 20 g/L under the best condition.
Mukherjee, Samik; Watanabe, Hideyuki; Isheim, Dieter; Seidman, David N; Moutanabbir, Oussama
2016-02-10
It addition to its high evaporation field, diamond is also known for its limited photoabsorption, strong covalent bonding, and wide bandgap. These characteristics have been thought for long to also complicate the field evaporation of diamond and make its control hardly achievable on the atomistic-level. Herein, we demonstrate that the unique behavior of nanoscale diamond and its interaction with pulsed laser lead to a controlled field evaporation thus enabling three-dimensional atom-by-atom mapping of diamond (12)C/(13)C homojunctions. We also show that one key element in this process is to operate the pulsed laser at high energy without letting the dc bias increase out of bounds for diamond nanotip to withstand. Herein, the role of the dc bias in evaporation of diamond is essentially to generate free charge carriers within the nanotip via impact ionization. The mobile free charges screen the internal electric field, eventually creating a hole rich surface where the pulsed laser is effectively absorbed leading to an increase in the nanotip surface temperature. The effect of this temperature on the uncertainty in the time-of-flight of an ion, the diffusion of atoms on the surface of the nanotip, is also discussed. In addition to paving the way toward a precise manipulation of isotopes in diamond-based nanoscale and quantum structures, this result also elucidates some of the basic properties of dielectric nanostructures under high electric field.
Balancing the Interactions of Ions, Water, and DNA in the Drude Polarizable Force Field
2015-01-01
Recently we presented a first-generation all-atom Drude polarizable force field for DNA based on the classical Drude oscillator model, focusing on optimization of key dihedral angles followed by extensive validation of the force field parameters. Presently, we describe the procedure for balancing the electrostatic interactions between ions, water, and DNA as required for development of the Drude force field for DNA. The proper balance of these interactions is shown to impact DNA stability and subtler conformational properties, including the conformational equilibrium between the BI and BII states, and the A and B forms of DNA. The parametrization efforts were simultaneously guided by gas-phase quantum mechanics (QM) data on small model compounds and condensed-phase experimental data on the hydration and osmotic properties of biologically relevant ions and their solutions, as well as theoretical predictions for ionic distribution around DNA oligomer. In addition, fine-tuning of the internal base parameters was performed to obtain the final DNA model. Notably, the Drude model is shown to more accurately reproduce counterion condensation theory predictions of DNA charge neutralization by the condensed ions as compared to the CHARMM36 additive DNA force field, indicating an improved physical description of the forces dictating the ionic solvation of DNA due to the explicit treatment of electronic polarizability. In combination with the polarizable DNA force field, the availability of Drude polarizable parameters for proteins, lipids, and carbohydrates will allow for simulation studies of heterogeneous biological systems. PMID:24874104
Dependence of efficiency of magnetic storm generation on the types of interplanetary drivers.
NASA Astrophysics Data System (ADS)
Yermolaev, Yuri; Nikolaeva, Nadezhda; Lodkina, Irina
2015-04-01
To compare the coupling coefficients between the solar-wind electric field Ey and Dst (and corrected Dst*) index during the magnetic storms generated by different types of interplanetary drivers, we use the Kyoto Dst-index data, the OMNI data of solar wind plasma and magnetic field measurements, and our "Catalog of large scale phenomena during 1976-2000" (published in [1] and presented on websites: ftp://ftp.iki.rssi.ru/pub/omni/). Both indexes at the main phase of magnetic storms are approximated by the linear dependence on the following solar wind parameters: integrated electric field of solar wind (sumEy), solar wind dynamic pressure (Pd), and the level of magnetic field fluctuations (sB), and the fitting coefficients are determined by the technique of least squares. We present the results of the main phase modelling for magnetic storms with Dst<-50 nT induced by 4 types of the solar wind streams: MC (10 events), CIR (41), Sheath (26), Ejecta (45). Our analysis [2, 3] shows that the coefficients of coupling between Dst and Dst* indexes and integral electric field are significantly higher for Sheath (for Dst*and Dst they are -3.4 and -3.3 nT/V m-1 h, respectively) and CIR (-3.0 and -2.8) than for MC (-2.0 and -2.5) and Ejecta (-2.1 and -2.3). Thus we obtained additional confirmation of experimental fact that Sheath and CIR have higher efficiency in generation of magnetic storms than MC and Ejecta. This work was supported by the RFBR, project 13-02-00158a, and by the Program 9 of Presidium of Russian Academy of Sciences. References 1. Yu. I. Yermolaev, N. S. Nikolaeva, I. G. Lodkina, and M. Yu. Yermolaev, Catalog of Large-Scale Solar Wind Phenomena during 1976-2000, Cosmic Research, 2009, Vol. 47, No. 2, pp. 81-94. 2. N.S. Nikolaeva, Yu.I. Yermolaev, I.G. Lodkina, Modeling of Dst-index temporal profile on the main phase of the magnetic storms generated by different types of solar wind, Cosmic Research, 2013, Vol. 51, No. 6, pp. 401-412 3. Nikolaeva N.S., Yermolaev Yu.I., Lodkina I.G., Modeling of corrected Dst-index temporal profile on the main phase of the magnetic storms generated by different types of solar wind, Cosmic Research, 2015, Vol.53, No. 2, 81, DOI: 10.7868/S0023420615020077
NASA Technical Reports Server (NTRS)
Nishikawa, K.-I.; Hartmann, D. H.; Hardee, P.; Hededal, C.; Mizunno, Y.; Fishman, G. J.
2006-01-01
We performed numerical simulations of particle acceleration, magnetic field generation, and emission from shocks in order to understand the observed emission from relativistic jets and supernova remnants. The investigation involves the study of collisionless shocks, where the Weibel instability is responsible for particle acceleration as well as magnetic field generation. A 3-D relativistic particle-in-cell (RPIC) code has been used to investigate the shock processes in electron-positron plasmas. The evolution of theWeibe1 instability and its associated magnetic field generation and particle acceleration are studied with two different jet velocities (0 = 2,5 - slow, fast) corresponding to either outflows in supernova remnants or relativistic jets, such as those found in AGNs and microquasars. Slow jets have intrinsically different structures in both the generated magnetic fields and the accelerated particle spectrum. In particular, the jet head has a very weak magnetic field and the ambient electrons are strongly accelerated and dragged by the jet particles. The simulation results exhibit jitter radiation from inhomogeneous magnetic fields, generated by the Weibel instability, which has different spectral properties than standard synchrotron emission in a homogeneous magnetic field.
Lee, M.W.; Meuwly, M.
2013-01-01
The evaluation of hydration free energies is a sensitive test to assess force fields used in atomistic simulations. We showed recently that the vibrational relaxation times, 1D- and 2D-infrared spectroscopies for CN(-) in water can be quantitatively described from molecular dynamics (MD) simulations with multipolar force fields and slightly enlarged van der Waals radii for the C- and N-atoms. To validate such an approach, the present work investigates the solvation free energy of cyanide in water using MD simulations with accurate multipolar electrostatics. It is found that larger van der Waals radii are indeed necessary to obtain results close to the experimental values when a multipolar force field is used. For CN(-), the van der Waals ranges refined in our previous work yield hydration free energy between -72.0 and -77.2 kcal mol(-1), which is in excellent agreement with the experimental data. In addition to the cyanide ion, we also study the hydroxide ion to show that the method used here is readily applicable to similar systems. Hydration free energies are found to sensitively depend on the intermolecular interactions, while bonded interactions are less important, as expected. We also investigate in the present work the possibility of applying the multipolar force field in scoring trajectories generated using computationally inexpensive methods, which should be useful in broader parametrization studies with reduced computational resources, as scoring is much faster than the generation of the trajectories.
Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems.
Ilic, Ognjen; Jablan, Marinko; Joannopoulos, John D; Celanovic, Ivan; Soljacić, Marin
2012-05-07
Near-field thermophotovoltaic (TPV) systems with carefully tailored emitter-PV properties show large promise for a new temperature range (600 – 1200K) solid state energy conversion, where conventional thermoelectric (TE) devices cannot operate due to high temperatures and far-field TPV schemes suffer from low efficiency and power density. We present a detailed theoretical study of several different implementations of thermal emitters using plasmonic materials and graphene. We find that optimal improvements over the black body limit are achieved for low bandgap semiconductors and properly matched plasmonic frequencies. For a pure plasmonic emitter, theoretically predicted generated power density of 14 W/cm2 and efficiency of 36% can be achieved at 600K (hot-side), for 0.17eV bandgap (InSb). Developing insightful approximations, we argue that large plasmonic losses can, contrary to intuition, be helpful in enhancing the overall near-field transfer. We discuss and quantify the properties of an optimal near-field photovoltaic (PV) diode. In addition, we study plasmons in graphene and show that doping can be used to tune the plasmonic dispersion relation to match the PV cell bangap. In case of graphene, theoretically predicted generated power density of 6(120) W/cm2 and efficiency of 35(40)% can be achieved at 600(1200)K, for 0.17eV bandgap. With the ability to operate in intermediate temperature range, as well as high efficiency and power density, near-field TPV systems have the potential to complement conventional TE and TPV solid state heat-to-electricity conversion devices.
A multifunctional energy-saving magnetic field generator.
Xiong, Hui; Sun, Wanpeng; Liu, Jinzhen; Shi, Jinhua
2018-03-01
To improve the energy utilization of magnetic field generators for biological applications, a multifunctional energy-saving magnetic field generator (ESMFG) is presented. It is capable of producing both an alternating magnetic field (AMF) and a bipolar pulse magnetic field (BPMF) with high energy-saving and energy-reuse rates. Based on a theoretical analysis of an RLC second-order circuit, the energy-saving and energy-reuse rates of both types of magnetic fields can be calculated and are found to have acceptable values. The results of an experimental study using the proposed generator show that for the BPMF, the peak current reaches 130 A and the intensity reaches 70.3 mT. For the AMF, the intensity is 11.0 mT and the RMS current is 20 A. The energy-saving and energy-reuse rates for the AMF generator are 61.3% and 63.5%, respectively, while for the BPMF generator, the energy-saving rate is 33.6%. Thus, the proposed ESMFG has excellent potential for use in biomedical applications.
A multifunctional energy-saving magnetic field generator
NASA Astrophysics Data System (ADS)
Xiong, Hui; Sun, Wanpeng; Liu, Jinzhen; Shi, Jinhua
2018-03-01
To improve the energy utilization of magnetic field generators for biological applications, a multifunctional energy-saving magnetic field generator (ESMFG) is presented. It is capable of producing both an alternating magnetic field (AMF) and a bipolar pulse magnetic field (BPMF) with high energy-saving and energy-reuse rates. Based on a theoretical analysis of an RLC second-order circuit, the energy-saving and energy-reuse rates of both types of magnetic fields can be calculated and are found to have acceptable values. The results of an experimental study using the proposed generator show that for the BPMF, the peak current reaches 130 A and the intensity reaches 70.3 mT. For the AMF, the intensity is 11.0 mT and the RMS current is 20 A. The energy-saving and energy-reuse rates for the AMF generator are 61.3% and 63.5%, respectively, while for the BPMF generator, the energy-saving rate is 33.6%. Thus, the proposed ESMFG has excellent potential for use in biomedical applications.
NASA Astrophysics Data System (ADS)
Nguyen, L.; Chee, T.; Minnis, P.; Palikonda, R.; Smith, W. L., Jr.; Spangenberg, D.
2016-12-01
The NASA LaRC Satellite ClOud and Radiative Property retrieval System (SatCORPS) processes and derives near real-time (NRT) global cloud products from operational geostationary satellite imager datasets. These products are being used in NRT to improve forecast model, aircraft icing warnings, and support aircraft field campaigns. Next generation satellites, such as the Japanese Himawari-8 and the upcoming NOAA GOES-R, present challenges for NRT data processing and product dissemination due to the increase in temporal and spatial resolution. The volume of data is expected to increase to approximately 10 folds. This increase in data volume will require additional IT resources to keep up with the processing demands to satisfy NRT requirements. In addition, these resources are not readily available due to cost and other technical limitations. To anticipate and meet these computing resource requirements, we have employed a hybrid cloud computing environment to augment the generation of SatCORPS products. This paper will describe the workflow to ingest, process, and distribute SatCORPS products and the technologies used. Lessons learn from working on both AWS Clouds and GovCloud will be discussed: benefits, similarities, and differences that could impact decision to use cloud computing and storage. A detail cost analysis will be presented. In addition, future cloud utilization, parallelization, and architecture layout will be discussed for GOES-R.
Electron transport through magnetic quantum point contacts
NASA Astrophysics Data System (ADS)
Day, Timothy Ellis
Spin-based electronics, or spintronics, has generated a great deal of interest as a possible next-generation integrated circuit technology. Recent experimental and theoretical work has shown that these devices could exhibit increased processing speed, decreased power consumption, and increased integration densities as compared with conventional semiconductor devices. The spintronic device that was designed, fabricated, and tested throughout the course of this work aimed to study the generation of spin-polarized currents in semiconductors using magnetic fringe fields. The device scheme relied on the Zeeman effect in combination with a quantum mechanical barrier to generate spin-polarized currents. The Zeeman effect was used to break the degeneracy of spin-up and spin-down electrons and the quantum mechanical potential to transmit one while rejecting the other. The design was dictated by the drive to maximize the strength of the magnetic fringe field and in turn maximize the energy separation of the two spin species. The device was fabricated using advanced techniques in semiconductor processing including electron beam lithography and DC magnetron sputtering. Measurements were performed in a 3He cryostat equipped with a superconducting magnet at temperatures below 300 mK. Preliminary characterization of the device revealed magnetoconductance oscillations produced by the effect of the transverse confining potential on the density of states and the mobility. Evidence of the effect of the magnetic fringe fields on the transport properties of electrons in the device were observed in multiple device measurements. An abrupt washout of the quantized conductance steps was observed over a minute range of the applied magnetic field. The washout was again observed as electrons were shifted closer to the magnetic gates. In addition, bias spectroscopy demonstrated that the washout occurred despite stronger electron confinement, as compared to a non-magnetic split-gate. Thus, the measurements indicated that conductance quantization breaks down in a non-uniform magnetic field, possibly due to changes to the stationary Landau states. It was also demonstrated that non-integer conductance plateaus at high source-drain bias are not caused by a macroscopic asymmetry in the potential drop.
Embedded random matrix ensembles from nuclear structure and their recent applications
NASA Astrophysics Data System (ADS)
Kota, V. K. B.; Chavda, N. D.
Embedded random matrix ensembles generated by random interactions (of low body rank and usually two-body) in the presence of a one-body mean field, introduced in nuclear structure physics, are now established to be indispensable in describing statistical properties of a large number of isolated finite quantum many-particle systems. Lie algebra symmetries of the interactions, as identified from nuclear shell model and the interacting boson model, led to the introduction of a variety of embedded ensembles (EEs). These ensembles with a mean field and chaos generating two-body interaction generate in three different stages, delocalization of wave functions in the Fock space of the mean-field basis states. The last stage corresponds to what one may call thermalization and complex nuclei, as seen from many shell model calculations, lie in this region. Besides briefly describing them, their recent applications to nuclear structure are presented and they are (i) nuclear level densities with interactions; (ii) orbit occupancies; (iii) neutrinoless double beta decay nuclear transition matrix elements as transition strengths. In addition, their applications are also presented briefly that go beyond nuclear structure and they are (i) fidelity, decoherence, entanglement and thermalization in isolated finite quantum systems with interactions; (ii) quantum transport in disordered networks connected by many-body interactions with centrosymmetry; (iii) semicircle to Gaussian transition in eigenvalue densities with k-body random interactions and its relation to the Sachdev-Ye-Kitaev (SYK) model for majorana fermions.
Patel, Maulik V; Nanayakkara, Imaly A; Simon, Melinda G; Lee, Abraham P
2014-10-07
We present a microfluidic platform for simultaneous on-chip pumping and size-based separation of cells and particles without external fluidic control systems required for most existing platforms. The device utilizes an array of acoustically actuated air/liquid interfaces generated using dead-end side channels termed Lateral Cavity Acoustic Transducers (LCATs). The oscillating interfaces generate local streaming flow while the angle of the LCATs relative to the main channel generates a global bulk flow from the inlet to the outlet. The interaction of these two competing velocity fields (i.e. global bulk velocity vs. local streaming velocity) is responsible for the observed separation. It is shown that the separation of 5 μm and 10 μm polystyrene beads is dependent on the ratio of these two competing velocity fields. The experimental and simulation results suggest that particle trajectories based only on Stokes drag force cannot fully explain the separation behavior and that the impact of additional forces due to the oscillating flow field must be considered to determine the trajectory of the beads and ultimately the separation behavior of the device. To demonstrate an application of this separation platform with cellular components, smaller red blood cells (7.5 ± 0.8 μm) are separated from larger K562 cells (16.3 ± 2.0 μm) with viabilities comparable to those of controls based on a trypan blue exclusion assay.
DFT study on the interfacial properties of vertical and in-plane BiOI/BiOIO3 hetero-structures.
Dai, Wen-Wu; Zhao, Zong-Yan
2017-04-12
Composite photocatalysts with hetero-structures usually favor the effective separation of photo-generated carriers. In this study, BiOIO 3 was chosen to form a hetero-structure with BiOI, due to its internal polar field and good lattice matching with BiOI. The interfacial properties and band offsets were focused on and analyzed in detail by DFT calculations. The results show that the charge depletion and accumulation mainly occur in the region near the interface. This effect leads to an interfacial electric field and thus, the photo-generated electron-hole pairs can be easily separated and transferred along opposite directions at the interface, which is significant for the enhancement of the photocatalytic activity. Moreover, according to the analysis of band offsets, the vertical BiOI/BiOIO 3 belongs to the type-II hetero-structure, while the in-plane BiOI/BiOIO 3 belongs to the type-I hetero-structure. The former type of hetero-structure has more favorable effects to enhance the photocatalytic activity of BiOI than that of the latter type of hetero-structure. In the case of the vertical BiOI/BiOIO 3 hetero-structure, photo-generated electrons can move from the conduction band of BiOI to that of BiOIO 3 , while holes can move from the valence band of BiOIO 3 to that of BiOI under solar radiation. In addition, the introduced internal electric field functions as a selector that can promote the separation of photo-generated carriers, resulting in the higher photocatalytic quantum efficiency. These findings illustrate the underlying mechanism for the reported experiments, and can be used as a basis for the design of novel highly efficient composite photocatalysts with hetero-structures.
Advances in colloidal manipulation and transport via hydrodynamic interactions.
Martínez-Pedrero, F; Tierno, P
2018-06-01
In this review article, we highlight many recent advances in the field of micromanipulation of colloidal particles using hydrodynamic interactions (HIs), namely solvent mediated long-range interactions. At the micrsocale, the hydrodynamic laws are time reversible and the flow becomes laminar, features that allow precise manipulation and control of colloidal matter. We focus on different strategies where externally operated microstructures generate local flow fields that induce the advection and motion of the surrounding components. In addition, we review cases where the induced flow gives rise to hydrodynamic bound states that may synchronize during the process, a phenomenon essential in different systems such as those that exhibit self-assembly and swarming. Copyright © 2018 Elsevier Inc. All rights reserved.
High intensity, plasma-induced electron emission from large area carbon nanotube array cathodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liao Qingliang; Yang Ya; Qi Junjie
2010-02-15
The plasma-induced electron emission properties of large area carbon nanotube (CNT) array cathodes under different pulse electric fields were investigated. The formation and expansion of cathode plasmas were proved; in addition, the cathodes have higher emission current in the double-pulse mode than that in the single-pulse mode due to the expansion of plasma. Under the double-pulse electric field of 8.16 V/mum, the plasma's expansion velocity is about 12.33 cm/mus and the highest emission current density reached 107.72 A/cm{sup 2}. The Cerenkov radiation was used to diagnose the distribution of electron beams, and the electron beams' generating process was plasma-induced emission.
Diagrammatic routes to nonlocal correlations beyond dynamical mean field theory
NASA Astrophysics Data System (ADS)
Rohringer, G.; Hafermann, H.; Toschi, A.; Katanin, A. A.; Antipov, A. E.; Katsnelson, M. I.; Lichtenstein, A. I.; Rubtsov, A. N.; Held, K.
2018-04-01
Strong electronic correlations pose one of the biggest challenges to solid state theory. Recently developed methods that address this problem by starting with the local, eminently important correlations of dynamical mean field theory (DMFT) are reviewed. In addition, nonlocal correlations on all length scales are generated through Feynman diagrams, with a local two-particle vertex instead of the bare Coulomb interaction as a building block. With these diagrammatic extensions of DMFT long-range charge, magnetic, and superconducting fluctuations as well as (quantum) criticality can be addressed in strongly correlated electron systems. An overview is provided of the successes and results achieved, mainly for model Hamiltonians, and an outline is given of future prospects for realistic material calculations.
Tribrid Inflation in Supergravity
NASA Astrophysics Data System (ADS)
Antusch, Stefan; Dutta, Koushik; Kostka, Philipp M.
We propose a novel class of F-term hybrid inflation models in supergravity (SUGRA) where the η-problem is resolved using either a Heisenberg symmetry or a shift symmetry of the Kähler potential. In addition to the inflaton and the waterfall field, this class (referred to as tribrid inflation) contains a third "driving" field which contributes the large vacuum energy during inflation by its F-term. In contrast to the "standard" hybrid scenario, it has several attractive features due to the property of vanishing inflationary superpotential (Winf = 0) during inflation. Quantum corrections induced by symmetry breaking terms in the superpotential generate a slope of the potential and lead to a spectral tilt consistent with recent WMAP observations.
Belinato, Thiago Affonso; Valle, Denise
2015-01-01
Several Aedes aegypti field populations are resistant to neurotoxic insecticides, mainly organophoshates and pyrethroids, which are extensively used as larvicides and adulticides, respectively. Diflubenzuron (DFB), a chitin synthesis inhibitor (CSI), was recently approved for use in drinking water, and is presently employed in Brazil for Ae. aegypti control, against populations resistant to the organophosphate temephos. However, tests of DFB efficacy against field Ae. aegypti populations are lacking. In addition, information regarding the dynamics of CSI resistance, and characterization of any potential fitness effects that may arise in conjunction with resistance are essential for new Ae. aegypti control strategies. Here, the efficacy of DFB was evaluated for two Brazilian Ae. aegypti populations known to be resistant to both temephos and the pyrethroid deltamethrin. Laboratory selection for DFB resistance was then performed over six or seven generations, using a fixed dose of insecticide that inhibited 80% of adult emergence in the first generation. The selection process was stopped when adult emergence in the diflubenzuron-treated groups was equivalent to that of the control groups, kept without insecticide. Diflubenzuron was effective against the two Ae. aegypti field populations evaluated, regardless of their resistance level to neurotoxic insecticides. However, only a few generations of DFB selection were sufficient to change the susceptible status of both populations to this compound. Several aspects of mosquito biology were affected in both selected populations, indicating that diflubenzuron resistance acquisition is associated with a fitness cost. We believe that these results can significantly contribute to the design of control strategies involving the use of insect growth regulators. PMID:26107715
Simulation of Runoff Concentration on Arable Fields and the Impact of Adapted Tillage Practises
NASA Astrophysics Data System (ADS)
Winter, F.; Disse, M.
2012-04-01
Conservational tillage can reduce runoff on arable fields. Due to crop residues remaining on the fields a seasonal constant ground cover is achieved. This additional soil cover not only decreases the drying of the topsoil but also reduces the mechanical impact of raindrops and the possibly resulting soil crust. Further implications of the mulch layer can be observed during heavy precipitation events and occurring surface runoff. The natural roughness of the ground surface is further increased and thus the flow velocity is decreased, resulting in an enhanced ability of runoff to infiltrate into the soil (so called Runon-Infiltration). The hydrological model system WaSiM-ETH hitherto simulates runoff concentration by a flow time grid in the catchment, which is derived from topographical features of the catchment during the preprocessing analysis. The retention of both surface runoff and interflow is modelled by a single reservoir in every discrete flow time zone until the outlet of a subcatchment is reached. For a more detailed analysis of the flow paths in catchments of the lower mesoscale (< 1 km2) the model was extended by a kinematic wave approach for the surface runoff concentration. This allows the simulation of small-scale variation in runoff generation and its temporal distribution in detail. Therefore the assessment of adapted tillage systems can be derived. On singular fields of the Scheyern research farm north-west of Munich it can be shown how different crops and tillage practises can influence runoff generation and concentration during single heavy precipitation events. From the simulation of individual events in agricultural areas of the lower mesoscale hydrologically susceptible areas can be identified and the positive impact of an adapted agricultural management on runoff generation and concentration can be quantifed.
A model study of assisted adiabatic transfer of population in the presence of collisional dephasing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masuda, Shumpei, E-mail: shumpei.masuda@aalto.fi; Rice, Stuart A., E-mail: s-rice@uchicago.edu
2015-06-28
Previous studies have demonstrated that when experimental conditions generate non-adiabatic dynamics that prevents highly efficient population transfer between states of an isolated system by stimulated Raman adiabatic passage (STIRAP), the addition of an auxiliary counter-diabatic field (CDF) can restore most or all of that efficiency. This paper examines whether that strategy is also successful in a non-isolated system in which the energies of the states fluctuate, e.g., when a solute is subject to collisions with solvent. We study population transfer in two model systems: (i) the three-state system used by Demirplak and Rice [J. Chem. Phys. 116, 8028 (2002)] andmore » (ii) a four-state system, derived from the simulation studies of Demirplak and Rice [J. Chem. Phys. 125, 194517 (2006)], that mimics HCl in liquid Ar. Simulation studies of the vibrational manifold of HCl in dense fluid Ar show that the collision induced vibrational energy level fluctuations have asymmetric distributions. Representations of these asymmetric energy level fluctuation distributions are used in both models (i) and (ii). We identify three sources of degradation of the efficiency of STIRAP generated selective population transfer in model (ii): too small pulse areas of the laser fields, unwanted interference arising from use of strong fields, and the vibrational detuning. For both models (i) and (ii), our examination of the efficiency of STIRAP + CDF population transfer under the influence of the asymmetric distribution of the vibrational energy fluctuations shows that there is a range of field strengths and pulse durations under which STIRAP + CDF control of population transfer has greater efficiency than does STIRAP generated population transfer.« less
Skyberg, K; Hansteen, I L; Vistnes, A I
2001-04-01
The objective was to study the risk of cytogenetic damage among high voltage laboratory workers exposed to electromagnetic fields and mineral oil. This is a cross sectional study of 24 exposed and 24 matched controls in a Norwegian transformer factory. The exposure group included employees in the high voltage laboratory and in the generator soldering department. Electric and magnetic fields and oil mist and vapor were measured. Blood samples were analyzed for chromosomal aberrations in cultured lymphocytes. In addition to conventional cultures, the lymphocytes were also treated with hydroxyurea and caffeine. This procedure inhibits DNA synthesis and repair in vitro, revealing in vivo genotoxic lesions that are repaired during conventional culturing. In conventional cultures, the exposure group and the controls showed similar values for all cytogenetic parameters. In the DNA synthesis- and repair-inhibited cultures, generator welders showed no differences compared to controls. Among high voltage laboratory testers, compared to the controls, the median number of chromatid breaks was doubled (5 vs. 2.5 per 50 cells; P<0.05) the median number of chromosome breaks was 2 vs. 0.5 (P>0.05) and the median number of aberrant cells was 5 vs. 3.5 (P<0.05). Further analysis of the inhibited culture data from this and a previous study indicated that years of exposure and smoking increase the risk of aberrations. We conclude that there was no increase in cytogenetic damage among exposed workers compared to controls in the conventional lymphocyte assay. In inhibited cultures, however, there were indications that electromagnetic fields in combination with mineral oil exposure may produce chromosomal aberrations. Copyright 2001 Wiley-Liss, Inc.
Plasma characterization for application in ballistics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katulka, G.; Nusca, M.; White, K.
1996-12-31
There is currently a strong motivation for improving the existing performance of fielded military gun systems. For that objective, research over the past several years has been carried out in an effort to enhance performance by addition of energy into the gun chamber by way of a plasma generator. This energy addition, referred to as Electro-thermal Chemical (ETC) propulsion, can be readily controlled electrically where it can be used to ignite the chamber`s energetic material, enhance the total energy, and control the interior process through control of the propellant combustion. To realize the potential advantages of this system it ismore » important to characterize the plasma generator in terms of (a) the impedance characteristics and its relationship to the pulse forming network used to generate the plasma, (b) the plasma output energy components such as radiation and convection in both time and space, (c) the details of the hydrodynamic interactions of the plasma with the propelling charge bed in the gun chamber and, (d) the direct effect of the plasma on the propellant reactions. Experimental studies have been carried out to study the effect of the plasma radiation on the propellant characteristics related to combustion.« less
Generation and Radiation of Acoustic Waves from a 2D Shear Layer
NASA Technical Reports Server (NTRS)
Dahl, Milo D.
2000-01-01
A thin free shear layer containing an inflection point in the mean velocity profile is inherently unstable. Disturbances in the flow field can excite the unstable behavior of a shear layer, if the appropriate combination of frequencies and shear layer thicknesses exists, causing instability waves to grow. For other combinations of frequencies and thicknesses, these instability waves remain neutral in amplitude or decay in the downstream direction. A growing instability wave radiates noise when its phase velocity becomes supersonic relative to the ambient speed of sound. This occurs primarily when the mean jet flow velocity is supersonic. Thus, the small disturbances in the flow, which themselves may generate noise, have generated an additional noise source. It is the purpose of this problem to test the ability of CAA to compute this additional source of noise. The problem is idealized such that the exciting disturbance is a fixed known acoustic source pulsating at a single frequency. The source is placed inside of a 2D jet with parallel flow; hence, the shear layer thickness is constant. With the source amplitude small enough, the problem is governed by the following set of linear equations given in dimensional form.
Guo, Kai; Zhang, Yong-Liang; Qian, Cheng; Fung, Kin-Hung
2018-04-30
In this work, we demonstrate computationally that electric dipole-quadrupole hybridization (EDQH) could be utilized to enhance plasmonic SHG efficiency. To this end, we construct T-shaped plasmonic heterodimers consisting of a short and a long gold nanorod with finite element method simulation. By controlling the strength of capacitive coupling between two gold nanorods, we explore the effect of EDQH evolution on the SHG process, including the SHG efficiency enhancement, corresponding near-field distribution, and far-field radiation pattern. Simulation results demonstrate that EDQH could enhance the SHG efficiency by a factor >100 in comparison with that achieved by an isolated gold nanorod. Additionally, the far-field pattern of the SHG could be adjusted beyond the well-known quadrupolar distribution and confirms that EDQH plays an important role in the SHG process.
On the mathematical modeling of the Reynolds stress's equations
NASA Technical Reports Server (NTRS)
Lin, Avi
1990-01-01
By considering the Reynolds stress equations as a possible descriptor of complex turbulent fields, pressure-velocity interaction and turbulence dissipation are studied as two of the main physical contributions to Reynolds stress balancing in turbulent flow fields. It is proven that the pressure interaction term contains turbulence generation elements. However, the usual 'return to isotropy' element appears more weakly than in the standard models. In addition, convection-like elements are discovered mathematically, but there is no mathematical evidence that the pressure fluctuations contribute to the turbulent transport mechanism. Calculations of some simple one-dimensional fields indicate that this extra convection, rather than the turbulent transport, is needed mathematically. Similarly, an expression for the turbulence dissipation is developed. The end result is a dynamic equation for the dissipation tensor which is based on the tensorial length scales.
Two-Photon Infrared Resonance Can Enhance Coherent Raman Scattering
NASA Astrophysics Data System (ADS)
Traverso, Andrew J.; Hokr, Brett; Yi, Zhenhuan; Yuan, Luqi; Yamaguchi, Shoichi; Scully, Marlan O.; Yakovlev, Vladislav V.
2018-02-01
In this Letter we present a new technique for attaining efficient low-background coherent Raman scattering where the Raman coherence is mediated by a tunable infrared laser in two-photon resonance with a chosen vibrational transition. In addition to the traditional benefits of conventional coherent Raman schemes, this approach offers a number of advantages including potentially higher emission intensity, reduction of nonresonant four-wave mixing background, preferential excitation of the anti-Stokes field, and simplified phase matching conditions. In particular, this is demonstrated in gaseous methane along the ν1 (A1) and ν3 (T2) vibrational levels using an infrared field tuned between 1400 and 1600 cm-1 and a 532-nm pump field. This approach has broad applications, from coherent light generation to spectroscopic remote sensing and chemically specific imaging in microscopy.
NASA Astrophysics Data System (ADS)
Hu, Liang; Zhao, Nannan; Gao, Zhijian; Mao, Kai; Chen, Wenyu; Fu, Xin
2018-05-01
Determination of the distribution of a generated acoustic field is valuable for studying ultrasonic transducers, including providing the guidance for transducer design and the basis for analyzing their performance, etc. A method calculating the acoustic field based on laser-measured vibration velocities on the ultrasonic transducer surface is proposed in this paper. Without knowing the inner structure of the transducer, the acoustic field outside it can be calculated by solving the governing partial differential equation (PDE) of the field based on the specified boundary conditions (BCs). In our study, the BC on the transducer surface, i.e. the distribution of the vibration velocity on the surface, is accurately determined by laser scanning measurement of discrete points and follows a data fitting computation. In addition, to ensure the calculation accuracy for the whole field even in an inhomogeneous medium, a finite element method is used to solve the governing PDE based on the mixed BCs, including the discretely measured velocity data and other specified BCs. The method is firstly validated on numerical piezoelectric transducer models. The acoustic pressure distributions generated by a transducer operating in an homogeneous and inhomogeneous medium, respectively, are both calculated by the proposed method and compared with the results from other existing methods. Then, the method is further experimentally validated with two actual ultrasonic transducers used for flow measurement in our lab. The amplitude change of the output voltage signal from the receiver transducer due to changing the relative position of the two transducers is calculated by the proposed method and compared with the experimental data. This method can also provide the basis for complex multi-physical coupling computations where the effect of the acoustic field should be taken into account.
Test Bench for Coupling and Shielding Magnetic Fields
NASA Astrophysics Data System (ADS)
Jordan, J.; Esteve, V.; Dede, E.; Sanchis, E.; Maset, E.; Ferreres, A.; Ejea, J. B.; Cases, C.
2016-05-01
This paper describes a test bench for training purposes, which uses a magnetic field generator to couple this magnetic field to a victim circuit. It can be very useful to test for magnetic susceptibility as well. The magnetic field generator consists of a board, which generates a variable current that flows into a printed circuit board with spiral tracks (noise generator). The victim circuit consists of a coaxial cable concentric with the spiral tracks and its generated magnetic field. The coaxial cable is part of a circuit which conducts a signal produced by a signal generator and a resistive load. In the paper three cases are studied. First, the transmitted signal from the signal generator uses the central conductor of the coaxial cable and the shield is floating. Second, the shield is short circuited at its ends (and thus forming a loop). Third, when connecting the shield in series with the inner conductor and therefore having the current flowing into the coax via the inner conductor and returning via the shield.
Magnetic field generation in core-sheath jets via the kinetic Kelvin-Helmholtz instability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishikawa, K.-I.; Hardee, P. E.; Duţan, I.
2014-09-20
We have investigated magnetic field generation in velocity shears via the kinetic Kelvin-Helmholtz instability (kKHI) using a relativistic plasma jet core and stationary plasma sheath. Our three-dimensional particle-in-cell simulations consider plasma jet cores with Lorentz factors of 1.5, 5, and 15 for both electron-proton and electron-positron plasmas. For electron-proton plasmas, we find generation of strong large-scale DC currents and magnetic fields that extend over the entire shear surface and reach thicknesses of a few tens of electron skin depths. For electron-positron plasmas, we find generation of alternating currents and magnetic fields. Jet and sheath plasmas are accelerated across the shearmore » surface in the strong magnetic fields generated by the kKHI. The mixing of jet and sheath plasmas generates a transverse structure similar to that produced by the Weibel instability.« less
Development of Dielectric Elastomer Nanocomposites as Stretchable and Flexible Actuating Materials
NASA Astrophysics Data System (ADS)
Wang, Yu
Dielectric elastomers (DEs) are a new type of smart materials showing promising functionalities as energy harvesting materials as well as actuating materials for potential applications such as artificial muscles, implanted medical devices, robotics, loud speakers, micro-electro-mechanical systems (MEMS), tunable optics, transducers, sensors, and even generators due to their high electromechanical efficiency, stability, lightweight, low cost, and easy processing. Despite the advantages of DEs, technical challenges must be resolved for wider applications. A high electric field of at least 10-30 V/um is required for the actuation of DEs, which limits the practical applications especially in biomedical fields. We tackle this problem by introducing the multiwalled carbon nanotubes (MWNTs) in DEs to enhance their relative permittivity and to generate their high electromechanical responses with lower applied field level. This work presents the dielectric, mechanical and electromechanical properties of DEs filled with MWNTs. The micromechanics-based finite element models are employed to describe the dielectric, and mechanical behavior of the MWNT-filled DE nanocomposites. A sufficient number of models are computed to reach the acceptable prediction of the dielectric and mechanical responses. In addition, experimental results are analyzed along with simulation results. Finally, laser Doppler vibrometer is utilized to directly detect the enhancement of the actuation strains of DE nanocomposites filled with MWNTs. All the results demonstrate the effective improvement in the electromechanical properties of DE nanocomposites filled with MWNTs under the applied electric fields.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levko, Dmitry; Raja, Laxminarayan L.
2016-04-21
The influence of field emission of electrons from surfaces on the fast ionization wave (FIW) propagation in high-voltage nanosecond pulse discharge in the atmospheric-pressure nitrogen is studied by a one-dimensional Particle-in-Cell Monte Carlo Collisions model. A strong influence of field emission on the FIW dynamics and plasma parameters is obtained. Namely, the accounting for the field emission makes possible the bridging of the cathode–anode gap by rather dense plasma (∼10{sup 13 }cm{sup −3}) in less than 1 ns. This is explained by the generation of runaway electrons from the field emitted electrons. These electrons are able to cross the entire gap pre-ionizingmore » it and promoting the ionization wave propagation. We have found that the propagation of runaway electrons through the gap cannot be accompanied by the streamer propagation, because the runaway electrons align the plasma density gradients. In addition, we have obtained that the field enhancement factor allows controlling the speed of ionization wave propagation.« less
Several examples where turbulence models fail in inlet flow field analysis
NASA Technical Reports Server (NTRS)
Anderson, Bernhard H.
1993-01-01
Computational uncertainties in turbulence modeling for three dimensional inlet flow fields include flows approaching separation, strength of secondary flow field, three dimensional flow predictions of vortex liftoff, and influence of vortex-boundary layer interactions; computational uncertainties in vortex generator modeling include representation of generator vorticity field and the relationship between generator and vorticity field. The objectives of the inlet flow field studies presented in this document are to advance the understanding, prediction, and control of intake distortion and to study the basic interactions that influence this design problem.
Generation of dynamo magnetic fields in the primordial solar nebula
NASA Technical Reports Server (NTRS)
Stepinski, Tomasz F.
1992-01-01
The present treatment of dynamo-generated magnetic fields in the primordial solar nebula proceeds in view of the ability of the combined action of Keplerian rotation and helical convention to generate, via alpha-omega dynamo, large-scale magnetic fields in those parts of the nebula with sufficiently high, gas-and magnetic field coupling electrical conductivity. Nebular gas electrical conductivity and the radial distribution of the local dynamo number are calculated for both a viscous-accretion disk model and the quiescent-minimum mass nebula. It is found that magnetic fields can be easily generated and maintained by alpha-omega dynamos occupying the inner and outer parts of the nebula.
Laser-generated magnetic fields in quasi-hohlraum geometries
NASA Astrophysics Data System (ADS)
Pollock, Bradley; Turnbull, David; Ross, Steven; Hazi, Andrew; Ralph, Joseph; Lepape, Sebastian; Froula, Dustin; Haberberger, Dan; Moody, John
2014-10-01
Laser-generated magnetic fields of 10--40 T have been produced with 100--4000 J laser drives at Omega EP and Titan. The fields are generated using the technique described by Daido et al. [Phys. Rev. Lett. 56, 846 (1986)], which works by directing a laser through a hole in one plate to strike a second plate. Hot electrons generated in the laser-produced plasma on the second plate collect on the first plate. A strap connects the two plates allowing a current of 10 s of kA to flow and generate a solenoidal magnetic field. The magnetic field is characterized using Faraday rotation, b-dot probes, and proton radiography. Further experiments to study the effect of the magnetic field on hohlraum performance are currently scheduled for Omega. This work was performed under the auspices of the United States Department of Energy by the Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA-27344.
The static quark potential from the gauge independent Abelian decomposition
NASA Astrophysics Data System (ADS)
Cundy, Nigel; Cho, Y. M.; Lee, Weonjong; Leem, Jaehoon
2015-06-01
We investigate the relationship between colour confinement and the gauge independent Cho-Duan-Ge Abelian decomposition. The decomposition is defined in terms of a colour field n; the principle novelty of our study is that we have used a unique definition of this field in terms of the eigenvectors of the Wilson Loop. This allows us to establish an equivalence between the path-ordered integral of the non-Abelian gauge fields and an integral over an Abelian restricted gauge field which is tractable both theoretically and numerically in lattice QCD. We circumvent path ordering without requiring an additional path integral. By using Stokes' theorem, we can compute the Wilson Loop in terms of a surface integral over a restricted field strength, and show that the restricted field strength may be dominated by certain structures, which occur when one of the quantities parametrising the colour field n winds itself around a non-analyticity in the colour field. If they exist, these structures will lead to an area law scaling for the Wilson Loop and provide a mechanism for quark confinement. Unlike most studies of confinement using the Abelian decomposition, we do not rely on a dual-Meissner effect to create the inter-quark potential. We search for these structures in quenched lattice QCD. We perform the Abelian decomposition, and compare the electric and magnetic fields with the patterns expected theoretically. We find that the restricted field strength is dominated by objects which may be peaks of a single lattice spacing in size or extended string-like lines of electromagnetic flux. The objects are not isolated monopoles, as they generate electric fields in addition to magnetic fields, and the fields are not spherically symmetric, but may be either caused by a monopole/anti-monopole condensate, some other types of topological objects, or a combination of these. Removing these peaks removes the area law scaling of the string tension, suggesting that they are responsible for confinement.
The Department of the Navy Systems Engineering Career Competency Model
2015-04-30
competencies (Delgado, 2014). The SECCM has enhanced the current ENG model through the addition of extensive sets of KSAs mapped to each of the...SECCM then added KSA details from several other existing systems engineering competency models , many provided to the original NDIA SE WG, from a...to generate as complete a scope of SE KSA as possible. The ENG (formerly SPRDE) Career Field Competency Model was used as a basis for the set of
Baryons as Fock states of 3,5,... Quarks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dmitri Diakonov; Victor Petrov
2004-09-01
We present a generating functional producing quark wave functions of all Fock states in the octet, decuplet and antidecuplet baryons in the mean field approximation, both in the rest and infinite momentum frames. In particular, for the usual octet and decuplet baryons we get the SU(6)-symmetric wave functions for their 3-quark component but with specific corrections from relativism and from additional quark-antiquark pairs. For the exotic antidecuplet baryons we obtain the 5-quark wave function.
Pyridynes and indolynes as building blocks for functionalized heterocycles and natural products.
Goetz, Adam E; Shah, Tejas K; Garg, Neil K
2015-01-04
Heterocyclic arynes, or hetarynes, have been studied for over 100 years. However, challenges associated with observing these reactive species, as well as developing synthetically useful methods for their generation and trapping, have limited their use. This review provides a brief historical perspective on the field of hetarynes, in addition to a discussion of pyridyne and indolyne methodologies. Moreover, this review highlights the use of pyridynes, indolynes, and related strained intermediates in natural product synthesis.
Sea Ice Outlook for September 2017: June Report - NASA Global Modeling and Assimilation Office
NASA Technical Reports Server (NTRS)
Cullather, Richard I.; Borovikov, Anna Y.; Hackert, Eric C.; Kovach, Robin M.; Marshak, Jelena; Molod, Andrea M.; Pawson, Steven; Suarez, Max J.; Vikhliaev, Yury V.; Zhao, Bin
2017-01-01
The GMAO seasonal forecast is produced from coupled model integrations that are initialized every five days, with seven additional ensemble members generated by coupled model breeding and initialized on the date closest to the beginning of the month. The main components of the AOGCM are the GEOS-5 atmospheric model, the MOM4 ocean model, and CICE sea ice model. Forecast fields were re-gridded to the passive microwave grid for averaging.
Sea Ice Outlook for September 2017 July Report - NASA Global Modeling and Assimilation Office
NASA Technical Reports Server (NTRS)
Cullather, Richard I.; Borovikov, Anna Y.; Hackert, Eric C.; Kovach, Robin M.; Marshak, Jelena; Molod, Andrea M.; Pawson, Steven; Suarez, Max J.; Vikhliaev, Yury V.; Zhao, Bin
2017-01-01
The GMAO seasonal forecast is produced from coupled model integrations that are initialized every five days, with seven additional ensemble members generated by coupled model breeding and initialized on the date closest to the beginning of the month. The main components of the AOGCM are the GEOS-5 atmospheric model, the MOM4 ocean model, and CICE sea ice model. Forecast fields were re-gridded to the passive microwave grid for averaging.
Polylactides in additive biomanufacturing.
Poh, Patrina S P; Chhaya, Mohit P; Wunner, Felix M; De-Juan-Pardo, Elena M; Schilling, Arndt F; Schantz, Jan-Thorsten; van Griensven, Martijn; Hutmacher, Dietmar W
2016-12-15
New advanced manufacturing technologies under the alias of additive biomanufacturing allow the design and fabrication of a range of products from pre-operative models, cutting guides and medical devices to scaffolds. The process of printing in 3 dimensions of cells, extracellular matrix (ECM) and biomaterials (bioinks, powders, etc.) to generate in vitro and/or in vivo tissue analogue structures has been termed bioprinting. To further advance in additive biomanufacturing, there are many aspects that we can learn from the wider additive manufacturing (AM) industry, which have progressed tremendously since its introduction into the manufacturing sector. First, this review gives an overview of additive manufacturing and both industry and academia efforts in addressing specific challenges in the AM technologies to drive toward AM-enabled industrial revolution. After which, considerations of poly(lactides) as a biomaterial in additive biomanufacturing are discussed. Challenges in wider additive biomanufacturing field are discussed in terms of (a) biomaterials; (b) computer-aided design, engineering and manufacturing; (c) AM and additive biomanufacturing printers hardware; and (d) system integration. Finally, the outlook for additive biomanufacturing was discussed. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Glassmeier, F.; Arnold, L.; Lohmann, U.; Dietlicher, R.; Paukert, M.
2016-12-01
Our current understanding of charge generation in thunderclouds is based on collisional charge transfer between graupel and ice crystals in the presence of liquid water droplets as dominant mechanism. The physical process of charge transfer and the sign of net charge generated on graupel and ice crystals under different cloud conditions is not yet understood. The Relative-Diffusional-Growth-Rate (RDGR) theory (Baker et al. 1987) suggests that the particle with the faster diffusional radius growth is charged positively. In this contribution, we use simulations of idealized thunderclouds with two-moment warm and cold cloud microphysics to generate realistic combinations of RDGR-parameters. We find that these realistic parameter combinations result in a relationship between sign of charge, cloud temperature and effective water content that deviates from previous theoretical and laboratory studies. This deviation indicates that the RDGR theory is sensitive to correlations between parameters that occur in clouds but are not captured in studies that vary temperature and water content while keeping other parameters at fixed values. In addition, our results suggest that diffusional growth from the riming-related local water vapor field, a key component of the RDGR theory, is negligible for realistic parameter combinations. Nevertheless, we confirm that the RDGR theory results in positive or negative charging of particles under different cloud conditions. Under specific conditions, charge generation via the RDGR theory alone might thus be sufficient to explain tripolar charge structures in thunderclouds. In general, however, additional charge generation mechanisms and adaptations to the RDGR theory that consider riming other than via local vapor deposition seem necessary.
Characterization of a deuterium-deuterium plasma fusion neutron generator
NASA Astrophysics Data System (ADS)
Lang, R. F.; Pienaar, J.; Hogenbirk, E.; Masson, D.; Nolte, R.; Zimbal, A.; Röttger, S.; Benabderrahmane, M. L.; Bruno, G.
2018-01-01
We characterize the neutron output of a deuterium-deuterium plasma fusion neutron generator, model 35-DD-W-S, manufactured by NSD/Gradel-Fusion. The measured energy spectrum is found to be dominated by neutron peaks at 2.2 MeV and 2.7 MeV. A detailed GEANT4 simulation accurately reproduces the measured energy spectrum and confirms our understanding of the fusion process in this generator. Additionally, a contribution of 14 . 1 MeV neutrons from deuterium-tritium fusion is found at a level of 3 . 5%, from tritium produced in previous deuterium-deuterium reactions. We have measured both the absolute neutron flux as well as its relative variation on the operational parameters of the generator. We find the flux to be proportional to voltage V 3 . 32 ± 0 . 14 and current I 0 . 97 ± 0 . 01. Further, we have measured the angular dependence of the neutron emission with respect to the polar angle. We conclude that it is well described by isotropic production of neutrons within the cathode field cage.
Vasquez-Sancho, Fabian; Abdollahi, Amir; Damjanovic, Dragan; Catalan, Gustau
2018-03-01
Bones generate electricity under pressure, and this electromechanical behavior is thought to be essential for bone's self-repair and remodeling properties. The origin of this response is attributed to the piezoelectricity of collagen, which is the main structural protein of bones. In theory, however, any material can also generate voltages in response to strain gradients, thanks to the property known as flexoelectricity. In this work, the flexoelectricity of bone and pure bone mineral (hydroxyapatite) are measured and found to be of the same order of magnitude; the quantitative similarity suggests that hydroxyapatite flexoelectricity is the main source of bending-induced polarization in cortical bone. In addition, the measured flexoelectric coefficients are used to calculate the (flexo)electric fields generated by cracks in bone mineral. The results indicate that crack-generated flexoelectricity is theoretically large enough to induce osteocyte apoptosis and thus initiate the crack-healing process, suggesting a central role of flexoelectricity in bone repair and remodeling. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Generating Neuron Geometries for Detailed Three-Dimensional Simulations Using AnaMorph.
Mörschel, Konstantin; Breit, Markus; Queisser, Gillian
2017-07-01
Generating realistic and complex computational domains for numerical simulations is often a challenging task. In neuroscientific research, more and more one-dimensional morphology data is becoming publicly available through databases. This data, however, only contains point and diameter information not suitable for detailed three-dimensional simulations. In this paper, we present a novel framework, AnaMorph, that automatically generates water-tight surface meshes from one-dimensional point-diameter files. These surface triangulations can be used to simulate the electrical and biochemical behavior of the underlying cell. In addition to morphology generation, AnaMorph also performs quality control of the semi-automatically reconstructed cells coming from anatomical reconstructions. This toolset allows an extension from the classical dimension-reduced modeling and simulation of cellular processes to a full three-dimensional and morphology-including method, leading to novel structure-function interplay studies in the medical field. The developed numerical methods can further be employed in other areas where complex geometries are an essential component of numerical simulations.
Characteristics of Honeycomb-Type Oxygen Generator with Electrolyte Based on Doped Bismuth Oxide
NASA Astrophysics Data System (ADS)
Chen, Yu-Wen; Liu, Yi-Xin; Wang, Sea-Fue; Devasenathipathy, Rajkumar
2018-03-01
An oxygen generator using Y-doped Bi2O3 as electrolyte to transport oxygen ions has been developed, having honeycomb-type structure with dimensions of 40 mm × 35 mm × 30 mm and consisting of 13 × 12 channels. External wire circuitry for the channels arrayed using parallel, series, and hybrid connection was evaluated to achieve the best oxygen separation efficiency. It was observed that the oxygen generator with hybrid connection facilitated evolution of oxygen at maximum of 117 sccm and high purity > 99.9% at 550°C under current flow of 14 A. Addition of 5 wt.% silane and 3 wt.% glass-ceramic powder to the Ag slurry used at both electrodes not only increased the coverage of the metal electrode on the ceramic substrate during dip coating but also prevented cracking at the electrode layer of the module under stress from the electric field and temperature during high-temperature operation, thus reducing the decay rate of the oxygen generator in durability testing.
Automated objective characterization of visual field defects in 3D
NASA Technical Reports Server (NTRS)
Fink, Wolfgang (Inventor)
2006-01-01
A method and apparatus for electronically performing a visual field test for a patient. A visual field test pattern is displayed to the patient on an electronic display device and the patient's responses to the visual field test pattern are recorded. A visual field representation is generated from the patient's responses. The visual field representation is then used as an input into a variety of automated diagnostic processes. In one process, the visual field representation is used to generate a statistical description of the rapidity of change of a patient's visual field at the boundary of a visual field defect. In another process, the area of a visual field defect is calculated using the visual field representation. In another process, the visual field representation is used to generate a statistical description of the volume of a patient's visual field defect.
Managing the rate of increase in average co-ancestry in a rolling front tree breeding strategy.
Kerr, R J; McRae, T A; Dutkowski, G W; Tier, B
2015-04-01
In breeding forest trees, as for livestock, the goal is to capture as much genetic gain as possible for the breeding objective, while limiting long- and short-term inbreeding. The Southern Tree Breeding Association (STBA) is responsible for breeding Australia's two main commercial forest tree species and has adopted algorithms and methods commonly used in animal breeding to achieve this balance. Discrete generation breeding is the norm for most tree breeding programmes. However, the STBA uses an overlapping generation strategy, with a new stream of breeding initiated each year. A feature of the species bred by the STBA (Pinus radiata and Eucalyptus globulus) is the long interval (up to 7 years) between when an individual is mated and when its progeny is first assessed in field trials and performance data included in the national performance database. Mate selection methods must therefore recognize the large pool of unmeasured progeny generated over recent years of crossing. In addition, the substantial delay between when an individual is selected in a field trial and when it is clonally copied into a mating facility (breeding arboretum) means that selection and mating must occur as a two-step process. In this article, we describe modifications to preselection and mate selection algorithms that allow unmeasured progeny (juveniles) to be recognized. We also demonstrate that the addition of hypothetical new progeny to the juvenile pool is important for computing the increase in average co-ancestry in the population. Methods outlined in this article may have relevance to animal breeding programmes where between mating and progeny measurement, new rounds of mating are initiated. © 2015 Blackwell Verlag GmbH.
Middle East fuel supply & gas exports for power generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, G.K.; Newendorp, T.
1995-12-31
The Middle East countries that border on, or are near, the Persian Gulf hold over 65% of the world`s estimated proven crude oil reserves and 32% of the world`s estimated proven natural gas reserves. In fact, approximately 5% of the world`s total proven gas reserves are located in Qatar`s offshore North Field. This large natural gas/condensate field is currently under development to supply three LNG export projects, as well as a sub-sea pipeline proposal to export gas to Pakistan. The Middle East will continue to be a major source of crude oil and oil products to world petroleum markets, includingmore » fuel for existing and future base load, intermediate cycling and peaking electric generation plants. In addition, as the Persian Gulf countries turn their attention to exploiting their natural gas resources, the fast-growing need for electricity in the Asia-Pacific and east Africa areas offers a potential market for both pipeline and LNG export opportunities to fuel high efficiency, gas-fired combustion turbine power plants. Mr. Mitchell`s portion of this paper will discuss the background, status and timing of several Middle Eastern gas export projects that have been proposed. These large gas export projects are difficult and costly to develop and finance. Consequently, any IPP developers that are considering gas-fired projects which require Mid-East LNG as a fuel source, should understand the numerous sources and timing to securing project debt, loan terms and conditions, and, restrictions/credit rating issues associated with securing financing for these gas export projects. Mr. Newendorp`s section of the paper will cover the financing aspects of these projects, providing IPP developers with additional considerations in selecting the primary fuel supply for an Asian-Pacific or east African electric generation project.« less
Dynamics of a reconnection-driven runaway ion tail in a reversed field pinch plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, J. K., E-mail: jkanders@wisc.edu; Kim, J.; Bonofiglo, P. J.
2016-05-15
While reconnection-driven ion heating is common in laboratory and astrophysical plasmas, the underlying mechanisms for converting magnetic to kinetic energy remain not fully understood. Reversed field pinch discharges are often characterized by rapid ion heating during impulsive reconnection, generating an ion distribution with an enhanced bulk temperature, mainly perpendicular to magnetic field. In the Madison Symmetric Torus, a subset of discharges with the strongest reconnection events develop a very anisotropic, high energy tail parallel to magnetic field in addition to bulk perpendicular heating, which produces a fusion neutron flux orders of magnitude higher than that expected from a Maxwellian distribution.more » Here, we demonstrate that two factors in addition to a perpendicular bulk heating mechanism must be considered to explain this distribution. First, ion runaway can occur in the strong parallel-to-B electric field induced by a rapid equilibrium change triggered by reconnection-based relaxation; this effect is particularly strong on perpendicularly heated ions which experience a reduced frictional drag relative to bulk ions. Second, the confinement of ions varies dramatically as a function of velocity. Whereas thermal ions are governed by stochastic diffusion along tearing-altered field lines (and radial diffusion increases with parallel speed), sufficiently energetic ions are well confined, only weakly affected by a stochastic magnetic field. High energy ions traveling mainly in the direction of toroidal plasma current are nearly classically confined, while counter-propagating ions experience an intermediate confinement, greater than that of thermal ions but significantly less than classical expectations. The details of ion confinement tend to reinforce the asymmetric drive of the parallel electric field, resulting in a very asymmetric, anisotropic distribution.« less
The importance of electrothermal terms in Ohm's law for magnetized spherical implosions
Davies, J. R.; Betti, R.; Chang, P. -Y.; ...
2015-11-06
The magnetohydrodynamics (MHD) of magnetic-field compression in laser-driven spherical targets is considered. Magnetic-field evolution is cast in terms of an effective fluid velocity, a convective term resulting from resistivity gradients, a resistive diffusion term, and a source term. Effective velocity is the sum of fluid velocity, drift velocity, and heat-flux velocity, given by electron heat flux divided by electron enthalpy density, which has two components: the perpendicular or Nernst velocity and the cross-field velocity. The Nernst velocity compresses the magnetic field as a heat front moves into the gas. The cross-field velocity leads to dynamo generation of an azimuthal magneticmore » field. It is proposed that the heat-flux velocity should be flux limited using a “Nernst” flux limiter independent of the thermal flux limiter but should not exceed it. The addition of MHD routines to the 1-D, Lagrangian hydrocode LILAC and the Eulerian version of the 2-D hydrocode DRACO is described, and the codes are used to model a magnetized spherical compression on the OMEGA laser. Thermal flux limiting at a shock front is found to cause unphysical electron temperature gradients that lead to large, unphysical magnetic fields caused by the resistivity gradient, so thermal flux limiting in the gas is removed. The Nernst term reduces the benefits of magnetization in inertial fusion. In addition, a Nernst flux limiter ≤ 0.12 is required in the gas in order to agree with measured neutron yield and increases in the neutron-averaged ion temperature caused by magnetization. This corresponds to maintaining the Nernst velocity below the shock velocity, which prevents significant decoupling of the magnetic field and gas compression.« less
Upper-Tropospheric Winds Derived from Geostationary Satellite Water Vapor Observations
NASA Technical Reports Server (NTRS)
Velden, Christopher S.; Hayden, Christopher M.; Nieman, Steven J.; Menzel, W. Paul; Wanzong, Steven; Goerss, James S.
1997-01-01
The coverage and quality of remotely sensed upper-tropospheric moisture parameters have improved considerably with the deployment of a new generation of operational geostationary meteorological satellites: GOES-8/9 and GMS-5. The GOES-8/9 water vapor imaging capabilities have increased as a result of improved radiometric sensitivity and higher spatial resolution. The addition of a water vapor sensing channel on the latest GMS permits nearly global viewing of upper-tropospheric water vapor (when joined with GOES and Meteosat) and enhances the commonality of geostationary meteorological satellite observing capabilities. Upper-tropospheric motions derived from sequential water vapor imagery provided by these satellites can be objectively extracted by automated techniques. Wind fields can be deduced in both cloudy and cloud-free environments. In addition to the spatially coherent nature of these vector fields, the GOES-8/9 multispectral water vapor sensing capabilities allow for determination of wind fields over multiple tropospheric layers in cloud-free environments. This article provides an update on the latest efforts to extract water vapor motion displacements over meteorological scales ranging from subsynoptic to global. The potential applications of these data to impact operations, numerical assimilation and prediction, and research studies are discussed.
Son of IXION: A Steady State Centrifugally Confined Plasma for Fusion*
NASA Astrophysics Data System (ADS)
Hassam, Adil
1996-11-01
A magnetic confinement scheme in which the inertial, u.grad(u), forces effect parallel confinement is proposed. The basic geometry is mirror-like as far as the poloidal field goes or, more simply, multipole (FM-1) type. The rotation is toroidal in this geometry. A supersonic rotation can effect complete parallel confinement, with the usual magnetic mirror force rendered irrelevant. The rotation shear, in addition, aids in the suppression of the flute mode. This suppression is not complete which indicates the addition of a toroidal field, at maximum of the order of the poloidal field. We show that at rotation in excess of Mach 3, the parallel particle and heat losses can be minimized to below the Lawson breakeven point. The crossfield transport can be expected to be better than tokamaks on account of the large velocity shear. Other advantages of the scheme are that it is steady state and disruption free. An exploratory experiment that tests equilibrium, parallel detachment, and MHD stability is proposed. The concept resembles earlier (Geneva, 1958) experiments on "homopolar generators" and a mirror configuration called IXION. Ixion, Greek mythological king, was forever strapped to a rotating, flaming wheel. *Work supported by DOE
Schmitter, Sebastian; Bock, Michael; Johst, Sören; Auerbach, Edward J.; Uğurbil, Kâmil; Van de Moortele, Pierre-François
2011-01-01
Cerebral 3D time of flight (TOF) angiography significantly benefits from ultra high fields, mainly due to higher SNR and to longer T1 relaxation time of static brain tissues, however, SAR significantly increases with B0. Thus, additional RF pulses commonly used at lower field strengths to improve TOF contrast such as saturation of venous signal and improved background suppression by magnetization transfer typically cannot be used at higher fields. In this work we aimed at reducing SAR for each RF pulse category in a TOF sequence. We use the VERSE principle for the slab selective TOF excitation as well as the venous saturation RF pulses. Additionally, MT pulses are implemented by sparsely applying the pulses only during acquisition of the central k-space lines to limit their SAR contribution. Image quality, angiographic contrast and SAR reduction were investigated as a function of VERSE parameters and of the total number of MT pulses applied. Based on these results, a TOF protocol was generated that increases the angiographic contrast by more than 50% and reduces subcutaneous fat signal while keeping the resulting SAR within regulatory limits. PMID:22139829
Highly stable and finely tuned magnetic fields generated by permanent magnet assemblies.
Danieli, E; Perlo, J; Blümich, B; Casanova, F
2013-05-03
Permanent magnetic materials are the only magnetic source that can be used to generate magnetic fields without power consumption or maintenance. Such stand-alone magnets are very attractive for many scientific and engineering areas, but they suffer from poor temporal field stability, which arises from the strong sensitivity of the magnetic materials and mechanical support to temperature variation. In this work, we describe a highly efficient method useful to cancel the temperature coefficient of permanent magnet assemblies in a passive and accurate way. It is based on the combination of at least two units made of magnetic materials with different temperature coefficients arranged in such a way that the ratio of the fields generated by each unit matches the ratio of their effective temperature coefficients defined by both the magnetic and mechanical contributions. Although typically available magnetic materials have negative temperature coefficients, the cancellation is achieved by aligning the fields generated by each unit in the opposite direction. We demonstrate the performance of this approach by stabilizing the field generated by a dipolar Halbach magnet, recently proposed to achieve high field homogeneity. Both the field drift and the homogeneity are monitored via nuclear magnetic resonance spectroscopy experiments. The results demonstrate the compatibility of the thermal compensation approach with existing strategies useful to fine-tune the spatial dependence of the field generated by permanent magnet arrays.
NASA Astrophysics Data System (ADS)
Song, Y.; Lysak, R. L.
2017-12-01
Parallel electrostatic electric fields provide a powerful mechanism to accelerate auroral particles to high energy in the auroral acceleration region (AAR), creating both quasi-static and Alfvenic discrete aurorae. The total field-aligned current can be written as J||total=J||+J||D, where the displacement current is denoted as J||D=(1/4π)(∂E||/∂t), which describes the E||-generation (Song and Lysak, 2006). The generation of the total field-aligned current is related to spatial gradients of the parallel vorticity caused by the axial torque acting on field-aligned flux tubes in M-I coupling system. It should be noticed that parallel electric fields are not produced by the field-aligned current. In fact, the E||-generation is caused by Alfvenic interaction in the M-I coupling system, and is favored by a low plasma density and the enhanced localized azimuthal magnetic flux. We suggest that the nonlinear interaction of incident and reflected Alfven wave packets in the AAR can create reactive stress concentration, and therefore can generate the parallel electrostatic electric fields together with a seed low density cavity. The generated electric fields will quickly deepen the seed low density cavity, which can effectively create even stronger electrostatic electric fields. The electrostatic electric fields nested in a low density cavity and surrounded by enhanced azimuthal magnetic flux constitute Alfvenic electromagnetic plasma structures, such as Alfvenic Double Layers (DLs). The Poynting flux carried by Alfven waves can continuously supply energy from the generator region to the auroral acceleration region, supporting and sustaining Alfvenic DLs with long-lasting electrostatic electric fields which accelerate auroral particles to high energy. The generation of parallel electric fields and the formation of auroral arcs can redistribute perpendicular mechanical and magnetic stresses in auroral flux tubes, decoupling the magnetosphere from ionosphere drag locally. This may enhance the magnetotail earthward shear flows and rapidly buildup stronger parallel electric fields in the auroral acceleration region, leading to a sudden and violent tail energy release, if there is accumulated free magnetic energy in the tail.
Modular Hamiltonians on the null plane and the Markov property of the vacuum state
NASA Astrophysics Data System (ADS)
Casini, Horacio; Testé, Eduardo; Torroba, Gonzalo
2017-09-01
We compute the modular Hamiltonians of regions having the future horizon lying on a null plane. For a CFT this is equivalent to regions with a boundary of arbitrary shape lying on the null cone. These Hamiltonians have a local expression on the horizon formed by integrals of the stress tensor. We prove this result in two different ways, and show that the modular Hamiltonians of these regions form an infinite dimensional Lie algebra. The corresponding group of unitary transformations moves the fields on the null surface locally along the null generators with arbitrary null line dependent velocities, but act non-locally outside the null plane. We regain this result in greater generality using more abstract tools on the algebraic quantum field theory. Finally, we show that modular Hamiltonians on the null surface satisfy a Markov property that leads to the saturation of the strong sub-additive inequality for the entropies and to the strong super-additivity of the relative entropy.
Brochu, Alice B. W.; Craig, Stephen L.; Reichert, William M.
2010-01-01
The goal of this review is to introduce the biomaterials community to the emerging field of self-healing materials, and also to suggest how one could utilize and modify self-healing approaches to develop new classes of biomaterials. A brief discussion of the in vivo mechanical loading and resultant failures experienced by biomedical implants is followed by presentation of the self-healing methods for combating mechanical failure. If conventional composite materials that retard failure may be considered zeroth generation self-healing materials, then taxonomically-speaking, first generation self-healing materials describe approaches that “halt” and “fill” damage, whereas second generation self-healing materials strive to “fully restore” the pre-failed material structure. In spite of limited commercial use to date, primarily because the technical details have not been suitably optimized, it is likely from a practical standpoint that first generation approaches will be the first to be employed commercially, whereas second generation approaches may take longer to implement. For self-healing biomaterials the optimization of technical considerations is further compounded by the additional constraints of toxicity and biocompatibility, necessitating inclusion of separate discussions of design criteria for self-healing biomaterials. PMID:21171168
A grid generation and flow solution method for the Euler equations on unstructured grids
NASA Astrophysics Data System (ADS)
Anderson, W. Kyle
1994-01-01
A grid generation and flow solution algorithm for the Euler equations on unstructured grids is presented. The grid generation scheme utilizes Delaunay triangulation and self-generates the field points for the mesh based on cell aspect ratios and allows for clustering near solid surfaces. The flow solution method is an implicit algorithm in which the linear set of equations arising at each time step is solved using a Gauss Seidel procedure which is completely vectorizable. In addition, a study is conducted to examine the number of subiterations required for good convergence of the overall algorithm. Grid generation results are shown in two dimensions for a National Advisory Committee for Aeronautics (NACA) 0012 airfoil as well as a two-element configuration. Flow solution results are shown for two-dimensional flow over the NACA 0012 airfoil and for a two-element configuration in which the solution has been obtained through an adaptation procedure and compared to an exact solution. Preliminary three-dimensional results are also shown in which subsonic flow over a business jet is computed.
Generation SMH (shaking my head): Work-Life Balance and Generational Realities
NASA Astrophysics Data System (ADS)
Jones, M. B.
2012-12-01
Many Federal Agencies have 'workforce development' programs that focus on preparing the next generation of scientists and engineers at the graduate and undergraduate level. Several of the science Agencies (e.g., NASA, NOAA, EPA, etc.), have programs that support students in many of the diverse disciplines that are unique to those Agency missions. While financial support certainly is critical to assist students in the STEM and other fields, professional development is just as important to equip students with a balanced arsenal of tactics to be successful professionals in the STEM workforce of today. Finding life balance as one moves through a STEM career path poses unique challenges that require a certain skill set that is not always intuitive. Some of those challenges include: selecting grad or post doc positions (negotiating to a family's advantage); balancing work and family commitments; and dealing with employer/advisor perceptions and expectations. For current and future generations in STEM, many of the above mentioned challenges require additional skill in negotiating interactions with individuals from other generations. Understanding perceptions and managing expectations are learnable skills that do not necessarily come with project funding.
Highly Efficient Vector-Inversion Pulse Generators
NASA Technical Reports Server (NTRS)
Rose, Franklin
2004-01-01
Improved transmission-line pulse generators of the vector-inversion type are being developed as lightweight sources of pulsed high voltage for diverse applications, including spacecraft thrusters, portable x-ray imaging systems, impulse radar systems, and corona-discharge systems for sterilizing gases. In this development, more than the customary attention is paid to principles of operation and details of construction so as to the maximize the efficiency of the pulse-generation process while minimizing the sizes of components. An important element of this approach is segmenting a pulse generator in such a manner that the electric field in each segment is always below the threshold for electrical breakdown. One design of particular interest, a complete description of which was not available at the time of writing this article, involves two parallel-plate transmission lines that are wound on a mandrel, share a common conductor, and are switched in such a manner that the pulse generator is divided into a "fast" and a "slow" section. A major innovation in this design is the addition of ferrite to the "slow" section to reduce the size of the mandrel needed for a given efficiency.
Hatherly, K E; Smylie, J C; Rodger, A; Dally, M J; Davis, S R; Millar, J L
2001-01-01
At the William Buckland Radiotherapy Center (WBRC), field-only electronic portal image (EPI) hard copies are used for radiation treatment field verification for whole brain, breast, chest, spine, and large pelvic fields, as determined by a previous study. A subsequent research project, addressing the quality of double exposed EPI hard copies for sites where field only EPI was not considered adequate to determine field placement, has been undertaken. The double exposed EPI hard copies were compared to conventional double exposed port films for small pelvic, partial brain, and head and neck fields and for a miscellaneous group. All double exposed EPIs were captured during routine clinical procedures using liquid ion chamber cassettes. EPI hard copies were generated using a Visiplex multi-format camera. In sites where port film remained the preferred verification format, the port films were generated as per department protocol. In addition EPIs were collected specifically for this project. Four radiation oncologists performed the evaluation of EPI and port film images independently with a questionnaire completed at each stage of the evaluation process to assess the following: Adequacy of information in the image to assess field placement. Adequacy of information for determining field placement correction. Clinician's preferred choice of imaging for field placement assessment The results indicate that double exposed EPI hard copies generally do containsufficient information to permit evaluation of field placement and can replace conventionaldouble exposed port films in a significant number of sites. These include the following:pelvis fields < 12 X 12 cm, partial brain fields, and a miscellaneous group. However forradical head and neck fields, the preferred verification image format remained port film dueto the image hard copy size and improved contrast for this media. Thus in this departmenthard copy EPI is the preferred modality of field verification for all sites except radical headand neck treatments. This should result in an increase in efficiency of workloadmanagement and patient care.
Khan, Hafiz Azhar Ali; Akram, Waseem; Iqbal, Javaid; Naeem-Ullah, Unsar
2015-01-01
The house fly, Musca domestica L., is an important ectoparasite with the ability to develop resistance to insecticides used for their control. Thiamethoxam, a neonicotinoid, is a relatively new insecticide and effectively used against house flies with a few reports of resistance around the globe. To understand the status of resistance to thiamethoxam, eight adult house fly strains were evaluated under laboratory conditions. In addition, to assess the risks of resistance development, cross-resistance potential and possible biochemical mechanisms, a field strain of house flies was selected with thiamethoxam in the laboratory. The results revealed that the field strains showed varying level of resistance to thiamethoxam with resistance ratios (RR) at LC50 ranged from 7.66-20.13 folds. Continuous selection of the field strain (Thia-SEL) for five generations increased the RR from initial 7.66 fold to 33.59 fold. However, resistance declined significantly when the Thia-SEL strain reared for the next five generations without exposure to thiamethoxam. Compared to the laboratory susceptible reference strain (Lab-susceptible), the Thia-SEL strain showed cross-resistance to imidacloprid. Synergism tests revealed that S,S,S-tributylphosphorotrithioate (DEF) and piperonyl butoxide (PBO) produced synergism of thiamethoxam effects in the Thia-SEL strain (2.94 and 5.00 fold, respectively). In addition, biochemical analyses revealed that the activities of carboxylesterase (CarE) and mixed function oxidase (MFO) in the Thia-SEL strain were significantly higher than the Lab-susceptible strain. It seems that metabolic detoxification by CarE and MFO was a major mechanism for thiamethoxam resistance in the Thia-SEL strain of house flies. The results could be helpful in the future to develop an improved control strategy against house flies.
Khan, Hafiz Azhar Ali; Akram, Waseem; Iqbal, Javaid; Naeem-Ullah, Unsar
2015-01-01
The house fly, Musca domestica L., is an important ectoparasite with the ability to develop resistance to insecticides used for their control. Thiamethoxam, a neonicotinoid, is a relatively new insecticide and effectively used against house flies with a few reports of resistance around the globe. To understand the status of resistance to thiamethoxam, eight adult house fly strains were evaluated under laboratory conditions. In addition, to assess the risks of resistance development, cross-resistance potential and possible biochemical mechanisms, a field strain of house flies was selected with thiamethoxam in the laboratory. The results revealed that the field strains showed varying level of resistance to thiamethoxam with resistance ratios (RR) at LC50 ranged from 7.66-20.13 folds. Continuous selection of the field strain (Thia-SEL) for five generations increased the RR from initial 7.66 fold to 33.59 fold. However, resistance declined significantly when the Thia-SEL strain reared for the next five generations without exposure to thiamethoxam. Compared to the laboratory susceptible reference strain (Lab-susceptible), the Thia-SEL strain showed cross-resistance to imidacloprid. Synergism tests revealed that S,S,S-tributylphosphorotrithioate (DEF) and piperonyl butoxide (PBO) produced synergism of thiamethoxam effects in the Thia-SEL strain (2.94 and 5.00 fold, respectively). In addition, biochemical analyses revealed that the activities of carboxylesterase (CarE) and mixed function oxidase (MFO) in the Thia-SEL strain were significantly higher than the Lab-susceptible strain. It seems that metabolic detoxification by CarE and MFO was a major mechanism for thiamethoxam resistance in the Thia-SEL strain of house flies. The results could be helpful in the future to develop an improved control strategy against house flies. PMID:25938578
Miniature low voltage beam systems producable by combined lithographies
NASA Astrophysics Data System (ADS)
Koops, Hans W. P.; Munro, Eric; Rouse, John; Kretz, Johannes; Rudolph, Michael; Weber, Markus; Dahm, Gerold
The project of a miniaturized vacuum microelectronic 100 GHz switch is described. It implies the development of a field emission electron gun as well as the investigation of miniaturized lenses and deflectors. Electrostatic elements are designed and developed for this application. Connector pads and wiring pattern are created by conventional electron beam lithography and a lift-off or etching process. Wire and other 3-dimensional structures are grown using electron beam induced deposition. This additive lithography allows to form electrodes and resistors of a preset conductivity. The scanning electron microscope features positioning the structures with nm precision. An unconventional lithography system is used that is capable of controlling the pixel dwell time within a shape with different time functions. With this special function 3-dimensional structures can be generated like free standing square shaped electrodes. The switch is built by computer controlled additive lithography avoiding assembly from parts. Lenses of micrometer dimensions were investigated with numerical electron optics programs computing the 3-dimensional potential and field distribution. From the extracted axial field distribution the electron optic characteristic parameters, like focal length, chromatic and spherical aberration, were calculated for various lens excitations. The analysis reveals that miniaturized optics for low energy electrons, as low as 30 eV, are diffraction limited. For a lens with 2 μm focal length, a chromatic aberration disc of 1 nm contributes to 12 nm diffraction disc. The spherical aberration blurs the probe by 0.02 nm, assuming an aperture of 0.01 rad. Employing hydrogen ions at 100 V, a probe diameter of 0.3 nm generated by chromatic aberration is possible. Miniaturized electron optical probe forming systems and imaging systems can be constructed with those lenses. Its application as lithography systems with massive parallel beams can be forseen.
NASA Astrophysics Data System (ADS)
Yoshida, Tsuyoshi; Saito, Naoaki; Ohmura, Hideki
2018-03-01
Intense (5.0 × 1012 W cm-2) nanosecond Fourier-synthesized laser fields consisting of fundamental, second-, third-, and fourth-harmonic light generated by an interferometer-free Fourier-synthesized laser field generator induce orientation-selective ionization based on directionally asymmetric molecular tunneling ionization (TI). The laser field generator ensures adjustment-free operation, high stability, and high reproducibility. Phase-sensitive, orientation-selective molecular TI provides a simple way to estimate the relative phase differences between the fundamental light and each harmonic by data-fitting analysis. This application of Fourier-synthesized laser fields will facilitate not only lightwave engineering but also the control of matter.
A Protocol for Generating and Exchanging (Genome-Scale) Metabolic Resource Allocation Models.
Reimers, Alexandra-M; Lindhorst, Henning; Waldherr, Steffen
2017-09-06
In this article, we present a protocol for generating a complete (genome-scale) metabolic resource allocation model, as well as a proposal for how to represent such models in the systems biology markup language (SBML). Such models are used to investigate enzyme levels and achievable growth rates in large-scale metabolic networks. Although the idea of metabolic resource allocation studies has been present in the field of systems biology for some years, no guidelines for generating such a model have been published up to now. This paper presents step-by-step instructions for building a (dynamic) resource allocation model, starting with prerequisites such as a genome-scale metabolic reconstruction, through building protein and noncatalytic biomass synthesis reactions and assigning turnover rates for each reaction. In addition, we explain how one can use SBML level 3 in combination with the flux balance constraints and our resource allocation modeling annotation to represent such models.
Quantum control on entangled bipartite qubits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delgado, Francisco
2010-04-15
Ising interactions between qubits can produce distortion on entangled pairs generated for engineering purposes (e.g., for quantum computation or quantum cryptography). The presence of parasite magnetic fields destroys or alters the expected behavior for which it was intended. In addition, these pairs are generated with some dispersion in their original configuration, so their discrimination is necessary for applications. Nevertheless, discrimination should be made after Ising distortion. Quantum control helps in both problems; making some projective measurements upon the pair to decide the original state to replace it, or just trying to reconstruct it using some procedures which do not altermore » their quantum nature. Results about the performance of these procedures are reported. First, we will work with pure systems studying restrictions and advantages. Then, we will extend these operations for mixed states generated with uncertainty in the time of distortion, correcting them by assuming the control prescriptions for the most probable one.« less
On the reversibility of the Meissner effect and the angular momentum puzzle
NASA Astrophysics Data System (ADS)
Hirsch, J. E.
2016-10-01
It is generally believed that the laws of thermodynamics govern superconductivity as an equilibrium state of matter, and hence that the normal-superconductor transition in a magnetic field is reversible under ideal conditions. Because eddy currents are generated during the transition as the magnetic flux changes, the transition has to proceed infinitely slowly to generate no entropy. Experiments showed that to a high degree of accuracy no entropy was generated in these transitions. However, in this paper we point out that for the length of times over which these experiments extended, a much higher degree of irreversibility due to decay of eddy currents should have been detected than was actually observed. We also point out that within the conventional theory of superconductivity no explanation exists for why no Joule heat is generated in the superconductor to normal transition when the supercurrent stops. In addition we point out that within the conventional theory of superconductivity no mechanism exists for the transfer of momentum between the supercurrent and the body as a whole, which is necessary to ensure that the transition in the presence of a magnetic field respects momentum conservation. We propose a solution to all these questions based on the alternative theory of hole superconductivity. The theory proposes that in the normal-superconductor transition there is a flow and backflow of charge in direction perpendicular to the phase boundary when the phase boundary moves. We show that this flow and backflow explains the absence of Joule heat generated by Faraday eddy currents, the absence of Joule heat generated in the process of the supercurrent stopping, and the reversible transfer of momentum between the supercurrent and the body, provided the current carriers in the normal state are holes.
Laser-pulse shape effects on magnetic field generation in underdense plasmas
NASA Astrophysics Data System (ADS)
Gopal, Krishna; Raja, Md. Ali; Gupta, Devki Nandan; Avinash, K.; Sharma, Suresh C.
2018-07-01
Laser pulse shape effect has been considered to estimate the self-generated magnetic field in laser-plasma interaction. A ponderomotive force based physical mechanism has been proposed to investigate the self-generated magnetic field for different spatial profiles of the laser pulse in inhomogeneous plasmas. The spatially inhomogeneous electric field of a laser pulse imparts a stronger ponderomotive force on plasma electrons. Thus, the stronger ponderomotive force associated with the asymmetric laser pulse generates a stronger magnetic field in comparison to the case of a symmetric laser pulse. Scaling laws for magnetic field strength with the laser and plasma parameters for different shape of the pulse have been suggested. Present study might be helpful to understand the plasma dynamics relevant to the particle trapping and injection in laser-plasma accelerators.
Generation of a Large-scale Magnetic Field in a Convective Full-sphere Cross-helicity Dynamo
NASA Astrophysics Data System (ADS)
Pipin, V. V.; Yokoi, N.
2018-05-01
We study the effects of the cross-helicity in the full-sphere large-scale mean-field dynamo models of a 0.3 M ⊙ star rotating with a period of 10 days. In exploring several dynamo scenarios that stem from magnetic field generation by the cross-helicity effect, we found that the cross-helicity provides the natural generation mechanisms for the large-scale scale axisymmetric and nonaxisymmetric magnetic field. Therefore, the rotating stars with convective envelopes can produce a large-scale magnetic field generated solely due to the turbulent cross-helicity effect (we call it γ 2-dynamo). Using mean-field models we compare the properties of the large-scale magnetic field organization that stems from dynamo mechanisms based on the kinetic helicity (associated with the α 2 dynamos) and cross-helicity. For the fully convective stars, both generation mechanisms can maintain large-scale dynamos even for the solid body rotation law inside the star. The nonaxisymmetric magnetic configurations become preferable when the cross-helicity and the α-effect operate independently of each other. This corresponds to situations with purely γ 2 or α 2 dynamos. The combination of these scenarios, i.e., the γ 2 α 2 dynamo, can generate preferably axisymmetric, dipole-like magnetic fields at strengths of several kGs. Thus, we found a new dynamo scenario that is able to generate an axisymmetric magnetic field even in the case of a solid body rotation of the star. We discuss the possible applications of our findings to stellar observations.
Reinforced Adversarial Neural Computer for de Novo Molecular Design.
Putin, Evgeny; Asadulaev, Arip; Ivanenkov, Yan; Aladinskiy, Vladimir; Sanchez-Lengeling, Benjamin; Aspuru-Guzik, Alán; Zhavoronkov, Alex
2018-06-12
In silico modeling is a crucial milestone in modern drug design and development. Although computer-aided approaches in this field are well-studied, the application of deep learning methods in this research area is at the beginning. In this work, we present an original deep neural network (DNN) architecture named RANC (Reinforced Adversarial Neural Computer) for the de novo design of novel small-molecule organic structures based on the generative adversarial network (GAN) paradigm and reinforcement learning (RL). As a generator RANC uses a differentiable neural computer (DNC), a category of neural networks, with increased generation capabilities due to the addition of an explicit memory bank, which can mitigate common problems found in adversarial settings. The comparative results have shown that RANC trained on the SMILES string representation of the molecules outperforms its first DNN-based counterpart ORGANIC by several metrics relevant to drug discovery: the number of unique structures, passing medicinal chemistry filters (MCFs), Muegge criteria, and high QED scores. RANC is able to generate structures that match the distributions of the key chemical features/descriptors (e.g., MW, logP, TPSA) and lengths of the SMILES strings in the training data set. Therefore, RANC can be reasonably regarded as a promising starting point to develop novel molecules with activity against different biological targets or pathways. In addition, this approach allows scientists to save time and covers a broad chemical space populated with novel and diverse compounds.
Coiled transmission line pulse generators
McDonald, Kenneth Fox
2010-11-09
Methods and apparatus are provided for fabricating and constructing solid dielectric "Coiled Transmission Line" pulse generators in radial or axial coiled geometries. The pour and cure fabrication process enables a wide variety of geometries and form factors. The volume between the conductors is filled with liquid blends of monomers, polymers, oligomers, and/or cross-linkers and dielectric powders; and then cured to form high field strength and high dielectric constant solid dielectric transmission lines that intrinsically produce ideal rectangular high voltage pulses when charged and switched into matched impedance loads. Voltage levels may be increased by Marx and/or Blumlein principles incorporating spark gap or, preferentially, solid state switches (such as optically triggered thyristors) which produce reliable, high repetition rate operation. Moreover, these Marxed pulse generators can be DC charged and do not require additional pulse forming circuitry, pulse forming lines, transformers, or an a high voltage spark gap output switch. The apparatus accommodates a wide range of voltages, impedances, pulse durations, pulse repetition rates, and duty cycles. The resulting mobile or flight platform friendly cylindrical geometric configuration is much more compact, light-weight, and robust than conventional linear geometries, or pulse generators constructed from conventional components. Installing additional circuitry may accommodate optional pulse shape improvements. The Coiled Transmission Lines can also be connected in parallel to decrease the impedance, or in series to increase the pulse length.
Oxidative nanopatterning of titanium generates mesoporous surfaces with antimicrobial properties
Variola, Fabio; Zalzal, Sylvia Francis; Leduc, Annie; Barbeau, Jean; Nanci, Antonio
2014-01-01
Mesoporous surfaces generated by oxidative nanopatterning have the capacity to selectively regulate cell behavior, but their impact on microorganisms has not yet been explored. The main objective of this study was to test the effects of such surfaces on the adherence of two common bacteria and one yeast strain that are responsible for nosocomial infections in clinical settings and biomedical applications. In addition, because surface characteristics are known to affect bacterial adhesion, we further characterized the physicochemical properties of the mesoporous surfaces. Focused ion beam (FIB) was used to generate ultrathin sections for elemental analysis by energy-dispersive X-ray spectroscopy (EDS), nanobeam electron diffraction (NBED), and high-angle annular dark field (HAADF) scanning transmission electron microscopy (STEM) imaging. The adherence of Staphylococcus aureus, Escherichia coli and Candida albicans onto titanium disks with mesoporous and polished surfaces was compared. Disks with the two surfaces side-by-side were also used for direct visual comparison. Qualitative and quantitative results from this study indicate that bacterial adhesion is significantly hindered by the mesoporous surface. In addition, we provide evidence that it alters structural parameters of C. albicans that determine its invasiveness potential, suggesting that microorganisms can sense and respond to the mesoporous surface. Our findings demonstrate the efficiency of a simple chemical oxidative treatment in generating nanotextured surfaces with antimicrobial capacity with potential applications in the implant manufacturing industry and hospital setting. PMID:24872694
He, Juan; Cao, Zhu; Yang, Jie; Zhao, Hui-Yan; Pan, Wei-Dong
2016-01-01
Insects show a variety of responses to electric fields and most of them are associated with immediate effects. To investigate the long-term effects of static electric field on the wheat aphid Sitbion avenae, the insert was exposed to 4 min of a static electric field at intensities of 0, 2, 4, or 6 kV/cm. Development effects over 30 consecutive generations of the insect were studied. The results showed that the electric field could exert adverse effects on the developmental duration and total longevity of S. avenae nymphs regardless of exposure intensities or generations. The effects appeared to be more intense and fluctuated at higher electric field intensities and more insect generations. The most favorable exposure for development was 6 kV/cm for 4 min while the most detrimental electric fields were 2 kV/cm for 4 min and 4 kV/cm for 4 min. Among the treatments, the first instar duration was significantly prolonged while the adult longevities were significantly shortened in the sixth generation. The intrinsic rate of increase and net reproductive rate in the sixth generation were also the lowest among the 30 consecutive generations studied. Based on the results, the adverse effects of electric fields on insects may be used in the bio-control of pest insects in terms of pest management.
NASA Astrophysics Data System (ADS)
Jones, Kenneth B., II
2015-04-01
Many attempts have been made to determine an earthquake forecasting method and warn the public in turn. Presently, the animal kingdom leads the precursor list alluding to a transmission related source. By applying the animal-based model to an electromagnetic wave model, various hypotheses were formed, but only two seemed to take shape with the most interesting one requiring a magnetometer of a unique design. To date, numerous, high-end magnetometers have been in use in close proximity to fault zones for potential earthquake forecasting; however, results have had wide variability and problems still reside with what exactly is forecastable and the investigative direction of a true precursor. After a number of custom rock experiments, the two hypotheses were thoroughly tested to correlate the EM wave model. The first hypothesis involved sufficient and continuous electron movement either by surface or penetrative flow, and the second regarded a novel approach to radio wave generation. The second hypothesis resulted best with highly reproducible data, radio wave generation and detection, and worked numerous times with each laboratory test administered. In addition, internally introduced force on a small scale stressed a number of select rock types to emit radio waves well before catastrophic failure, and failure always went to completion. Comparatively, at a larger scale, highly detailed studies were procured to establish legitimate wave guides from potential hypocenters to epicenters and map the results, accordingly. Field testing in Southern California from 2006 to 2011 and outside the NE Texas town of Timpson in February, 2013 was conducted for detecting similar, laboratory generated, radio wave sources. At the Southern California field sites, signals were detected in numerous directions with varying amplitudes; therefore, a reactive approach was investigated in hopes of detecting possible aftershocks from large, tectonically related M5.0+ earthquakes. At the Timpson, Texas field sites, a proactive detection approach was taken, due to the heavy presence of hydraulic fracturing activity for regional hydrocarbon extraction, which appeared to be causing several rare M4.0+ earthquakes. As a result, detailed Southern California and Timpson, Texas field studies led to the improved design of two newer, prototype antennae and the first ever earthquake epicenter map. With more antennae and continuous monitoring, more fracture cycles can be established well ahead of the next earthquake. In addition, field data could be ascertained longer by the proper authorities and lead to significantly improved earthquake forecasting. The EM precursor determined by this method appears to surpass all prior precursor claims, and the general public may finally receive long overdue forecasting.
NASA Technical Reports Server (NTRS)
Cohen, C.
1981-01-01
A hierarchy of experiments was run, starting with an all water planet with zonally symmetric sea surface temperatures, then adding, one at a time, flat continents, mountains, surface physics, and realistic sea surface temperatures. The model was run with the sun fixed at a perpetual January. Ensemble means and standard deviations were computed and the t-test was used to determine the statistical significance of the results. The addition of realistic surface physics does not affect the model climatology to as large as extent as does the addition of mountains. Departures from zonal symmetry of the SST field result in a better simulation of the real atmosphere.
Synthetic biology: Novel approaches for microbiology.
Padilla-Vaca, Felipe; Anaya-Velázquez, Fernando; Franco, Bernardo
2015-06-01
In the past twenty years, molecular genetics has created powerful tools for genetic manipulation of living organisms. Whole genome sequencing has provided necessary information to assess knowledge on gene function and protein networks. In addition, new tools permit to modify organisms to perform desired tasks. Gene function analysis is speed up by novel approaches that couple both high throughput data generation and mining. Synthetic biology is an emerging field that uses tools for generating novel gene networks, whole genome synthesis and engineering. New applications in biotechnological, pharmaceutical and biomedical research are envisioned for synthetic biology. In recent years these new strategies have opened up the possibilities to study gene and genome editing, creation of novel tools for functional studies in virus, parasites and pathogenic bacteria. There is also the possibility to re-design organisms to generate vaccine subunits or produce new pharmaceuticals to combat multi-drug resistant pathogens. In this review we provide our opinion on the applicability of synthetic biology strategies for functional studies of pathogenic organisms and some applications such as genome editing and gene network studies to further comprehend virulence factors and determinants in pathogenic organisms. We also discuss what we consider important ethical issues for this field of molecular biology, especially for potential misuse of the new technologies. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.
Operation of the ORNL High Particle Flux Helicon Plasma Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goulding, R. H.; Biewer, T. M.; Caughman, J. B. O.
2011-12-23
A high power, high particle flux rf-based helicon plasma source has been constructed at ORNL and operated at power levels up to 30 kW. High-density hydrogen and helium plasmas have been produced. The source has been designed as the basis for a linear plasma materials interaction (PMI) test facility that will generate particle fluxes {Gamma}{sub p}10{sup 23} m{sup -3} s{sup -1}, and utilize additional ion and electron cyclotron heating to produce high parallel (to the magnetic field) heat fluxes of {approx}10 MW/m{sup 2}. An rf-based source for PMI research is of interest because high plasma densities are generated with nomore » internal electrodes, allowing true steady state operation with minimal impurity generation. The ORNL helicon source has a diameter of 15 cm and to-date has operated at a frequency f = 13.56 MHz, with magnetic field strength |B| in the antenna region up to {approx}0.15 T. Maximum densities of 3x10{sup 19} m{sup -3} in He and 2.5x10{sup 19} m{sup -3} in H have been achieved. Radial density profiles have been seen to be dependent on the axial |B| profile.« less
Operation of the ORNL High Particle Flux Helicon Plasma Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goulding, Richard Howell; Biewer, Theodore M; Caughman, John B
2011-01-01
A high power, high particle flux rf-based helicon plasma source has been constructed at ORNL and operated at power levels up to 30 kW. High-density hydrogen and helium plasmas have been produced. The source has been designed as the basis for a linear plasma materials interaction (PMI) test facility that will generate particle fluxes Gamma(p) > 10(23) M-3 s(-1), and utilize additional ion and electron cyclotron heating to produce high parallel (to the magnetic field) heat fluxes of similar to 10 MW/m(2). An rf-based source for PMI research is of interest because high plasma densities are generated with no internalmore » electrodes, allowing true steady state operation with minimal impurity generation. The ORNL helicon source has a diameter of 15 cm and to-date has operated at a frequency f = 13.56 MHz, with magnetic field strength vertical bar B vertical bar in the antenna region up to similar to 0.15 T. Maximum densities of 3 x 10(19) M-3 in He and 2.5 x 10(19) m(-3) in H have been achieved. Radial density profiles have been seen to be dependent on the axial vertical bar B vertical bar profile.« less
Simulations of vertical disruptions with VDE code: Hiro and Evans currents
NASA Astrophysics Data System (ADS)
Li, Xujing; Di Hu Team; Leonid Zakharov Team; Galkin Team
2014-10-01
The recently created numerical code VDE for simulations of vertical instability in tokamaks is presented. The numerical scheme uses the Tokamak MHD model, where the plasma inertia is replaced by the friction force, and an adaptive grid numerical scheme. The code reproduces well the surface currents generated at the plasma boundary by the instability. Five regimes of the vertical instability are presented: (1) Vertical instability in a given plasma shaping field without a wall; (2) The same with a wall and magnetic flux ΔΨ|plX< ΔΨ|Xwall(where X corresponds to the X-point of a separatrix); (3) The same with a wall and magnetic flux ΔΨ|plX> ΔΨ|Xwall; (4) Vertical instability without a wall with a tile surface at the plasma path; (5) The same in the presence of a wall and a tile surface. The generation of negative Hiro currents along the tile surface, predicted earlier by the theory and measured on EAST in 2012, is well-reproduced by simulations. In addition, the instability generates the force-free Evans currents at the free plasma surface. The new pattern of reconnection of the plasma with the vacuum magnetic field is discovered. This work is supported by US DoE Contract No. DE-AC02-09-CH11466.
NASA Technical Reports Server (NTRS)
Lipo, Thomas A.; Alan, Irfan
1991-01-01
Hard and soft switching test results conducted with one of the samples of first generation MOS-controlled thyristor (MCTs) and similar test results with several different samples of second generation MCT's are reported. A simple chopper circuit is used to investigate the basic switching characteristics of MCT under hard switching and various types of resonant circuits are used to determine soft switching characteristics of MCT under both zero voltage and zero current switching. Next, operation principles of a pulse density modulated converter (PDMC) for three phase (3F) to 3F two-step power conversion via parallel resonant high frequency (HF) AC link are reviewed. The details for the selection of power switches and other power components required for the construction of the power circuit for the second generation 3F to 3F converter system are discussed. The problems encountered in the first generation system are considered. Design and performance of the first generation 3F to 3F power converter system and field oriented induction moter drive based upon a 3 kVA, 20 kHz parallel resonant HF AC link are described. Low harmonic current at the input and output, unity power factor operation of input, and bidirectional flow capability of the system are shown via both computer and experimental results. The work completed on the construction and testing of the second generation converter and field oriented induction motor drive based upon specifications for a 10 hp squirrel cage dynamometer and a 20 kHz parallel resonant HF AC link is discussed. The induction machine is designed to deliver 10 hp or 7.46 kW when operated as an AC-dynamo with power fed back to the source through the converter. Results presented reveal that the proposed power level requires additional energy storage elements to overcome difficulties with a peak link voltage variation problem that limits reaching to the desired power level. The power level test of the second generation converter after the addition of extra energy storage elements to the HF link are described. The importance of the source voltage level to achieve a better current regulation for the source side PDMC is also briefly discussed. The power levels achieved in the motoring mode of operation show that the proposed power levels achieved in the generating mode of operation can also be easily achieved provided that no mechanical speed limitation were present to drive the induction machine at the proposed power level.
Magnetic Field Observations near Mercury: Preliminary Results from Mariner 10.
Ness, N F; Behannon, K W; Lepping, R P; Whang, Y C; Schatten, K H
1974-07-12
Results are presented from a preliminary analysis of data obtained near Mercury on 29 March 1974 by the NASA-GSFC magnetic field experiment on Mariner 10. Rather unexpectedly, a very well-developed, detached bow shock wave, which develops as the super-Alfvénic solar wind interacts with the planet, has been observed. In addition, a magnetosphere-like region, with maximum field strength of 98 gammas at closest approach (704 kilometers altitude), has been observed, contained within boundaries similar to the terrestrial magnetopause. The obstacle deflecting the solar wind flow is global in size, but the origin of the enhanced magnetic field has not yet been uniquely established. The field may be intrinsic to the planet and distorted by interaction with the solar wind. It may also be associated with a complex induction process whereby the planetary interior-atmosphere-ionosphere interacts with the solar wind flow to generate the observed field by a dynamo action. The complete body of data favors the preliminary conclusion that Mercury has an intrinsic magnetic field. If this is correct, it represents a major scientific discovery in planetary magnetism and will have considerable impact on studies of the origin of the solar system.
The spatial distribution and time evolution of impact-generated magnetic fields
NASA Technical Reports Server (NTRS)
Crawford, D. A.; Schultz, P. H.
1991-01-01
The production of magnetic fields was revealed by laboratory hypervelocity impacts in easily vaporized targets. As quantified by pressure measurements, high frame-rate photography, and electrostatic probes, these impacts tend to produce large quantities of slightly ionized vapor, which is referred to as impact-generated plasma. Nonaligned electron density and temperature gradients within this plasma may lead to production of the observed magnetic fields. Past experiments were limited to measuring a single component of the impact-generated magnetic fields at only a few locations about the developing impact crater and consequently gave little information about the field production mechanism. To understand this mechanism, the techniques were extended to map the three components of the magnetic field both in space and time. By conducting many otherwise identical experiments with arrayed magnetic detectors, a preliminary 3-D picture was produced of impact-generated magnetic fields as they develop through time.
Preliminary Computational Study for Future Tests in the NASA Ames 9 foot' x 7 foot Wind Tunnel
NASA Technical Reports Server (NTRS)
Pearl, Jason M.; Carter, Melissa B.; Elmiligui, Alaa A.; WInski, Courtney S.; Nayani, Sudheer N.
2016-01-01
The NASA Advanced Air Vehicles Program, Commercial Supersonics Technology Project seeks to advance tools and techniques to make over-land supersonic flight feasible. In this study, preliminary computational results are presented for future tests in the NASA Ames 9 foot x 7 foot supersonic wind tunnel to be conducted in early 2016. Shock-plume interactions and their effect on pressure signature are examined for six model geometries. Near- field pressure signatures are assessed using the CFD code USM3D to model the proposed test geometries in free-air. Additionally, results obtained using the commercial grid generation software Pointwise Reigistered Trademark are compared to results using VGRID, the NASA Langley Research Center in-house mesh generation program.
BESTIA - the next generation ultra-fast CO 2 laser for advanced accelerator research
Pogorelsky, Igor V.; Babzien, Markus; Ben-Zvi, Ilan; ...
2015-12-02
Over the last two decades, BNL’s ATF has pioneered the use of high-peak power CO 2 lasers for research in advanced accelerators and radiation sources. In addition, our recent developments in ion acceleration, Compton scattering, and IFELs have further underscored the benefits from expanding the landscape of strong-field laser interactions deeper into the mid-infrared (MIR) range of wavelengths. This extension validates our ongoing efforts in advancing CO 2 laser technology, which we report here. Our next-generation, multi-terawatt, femtosecond CO 2 laser will open new opportunities for studying ultra-relativistic laser interactions with plasma in the MIR spectral domain, including new regimesmore » in the particle acceleration of ions and electrons.« less
Integrated Field Testing of Fuel Cells and Micro-Turbines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jerome R. Temchin; Stephen J. Steffel
A technical and economic evaluation of the prospects for the deployment of distributed generation on Long Beach Island, New Jersey concluded that properly sited DG would defer upgrading of the electric power grid for 10 years. This included the deployment of fuel cells or microturbines as well as reciprocating engines. The implementation phase of this project focused on the installation of a 120 kW CHP microturbine system at the Harvey Cedars Bible Conference in Harvey Cedars, NJ. A 1.1 MW generator powered by a gas-fired reciprocating engine for additional grid support was also installed at a local substation. This reportmore » contains installation and operation issues as well as the utility perspective on DG deployment.« less
Quark mass variations of nuclear forces, BBN, and all that
NASA Astrophysics Data System (ADS)
Meissner, Ulf-G.
2014-03-01
In this talk, I discuss the modifications of the nuclear forces due to variations of the light quark masses and of the fine structure constant. This is based on the chiral nuclear effective field theory, that successfully describes a large body of data. The generation of the light elements in the Big Bang Nucleosynthesis provides important constraints on these modifications. In addition, I discuss the role of the anthropic principle in the triple-alpha process that underlies carbon and oxygen generation in hot stars. It appears that a fine-tuning of the quark masses and the fine structure constant within 2 to 3 per cent is required to make life on Earth viable. Supported in part by DFG, HGF and the BMBF.
A single-solenoid pulsed-magnet system for single-crystal scattering studies
NASA Astrophysics Data System (ADS)
Islam, Zahirul; Capatina, Dana; Ruff, Jacob P. C.; Das, Ritesh K.; Trakhtenberg, Emil; Nojiri, Hiroyuki; Narumi, Yasuo; Welp, Ulrich; Canfield, Paul C.
2012-03-01
We present a pulsed-magnet system that enables x-ray single-crystal diffraction in addition to powder and spectroscopic studies with the magnetic field applied on or close to the scattering plane. The apparatus consists of a single large-bore solenoid, cooled by liquid nitrogen. A second independent closed-cycle cryostat is used for cooling samples near liquid helium temperatures. Pulsed magnetic fields close to ˜30 T with a zero-to-peak-field rise time of ˜2.9 ms are generated by discharging a 40 kJ capacitor bank into the magnet coil. The unique characteristic of this instrument is the preservation of maximum scattering angle (˜23.6°) on the entrance and exit sides of the magnet bore by virtue of a novel double-funnel insert. This instrument will facilitate x-ray diffraction and spectroscopic studies that are impractical, if not impossible, to perform using split-pair and narrow-opening solenoid magnets. Furthermore, it offers a practical solution for preserving optical access in future higher-field pulsed magnets.
Spin-Orbit-Coupled Interferometry with Ring-Trapped Bose-Einstein Condensates
NASA Astrophysics Data System (ADS)
Helm, J. L.; Billam, T. P.; Rakonjac, A.; Cornish, S. L.; Gardiner, S. A.
2018-02-01
We propose a method of atom interferometry using a spinor Bose-Einstein condensate with a time-varying magnetic field acting as a coherent beam splitter. Our protocol creates long-lived superpositional counterflow states, which are of fundamental interest and can be made sensitive to both the Sagnac effect and magnetic fields on the sub-μ G scale. We split a ring-trapped condensate, initially in the mf=0 hyperfine state, into superpositions of internal mf=±1 states and condensate superflow, which are spin-orbit coupled. After interrogation, the relative phase accumulation can be inferred from a population transfer to the mf=±1 states. The counterflow generation protocol is adiabatically deterministic and does not rely on coupling to additional optical fields or mechanical stirring techniques. Our protocol can maximize the classical Fisher information for any rotation, magnetic field, or interrogation time and so has the maximum sensitivity available to uncorrelated particles. Precision can increase with the interrogation time and so is limited only by the lifetime of the condensate.
A Geomagnetic Estimate of Mean Paleointensity
NASA Technical Reports Server (NTRS)
Voorhies, Coerte V.
2004-01-01
To test a statistical hypothesis about Earth's magnetic field against paleomagnetism, the present field is used to estimate time averaged paleointensity. The estimate used the modern magnetic multipole spectrum R(n), which gives the mean square induction represented by spherical harmonics of degree n averaged over the sphere of radius a = 6371.2 km. The hypothesis asserts that low degree multi-pole powers of the coresource field are distributed as chi-squared with 2n+1 degrees of freedom and expectation values, where c is the 3480 km radius of the Earth's core. (This is compatible with a usually mainly geocentric axial dipolar field). Amplitude K is estimated by fitting theoretical to observational spectra through degree 12. The resulting calibrated expectation spectrum is summed through degree 12 to estimate expected square intensity F(exp 2). The sum also estimates F(exp 2) averaged over geologic time, in so far as the present magnetic spectrum is a fair sample of that generated in the past by core geodynamic processes. Additional information is included in the original extended abstract.
NASA Astrophysics Data System (ADS)
Tangarife, Walter; Tobioka, Kohsaku; Ubaldi, Lorenzo; Volansky, Tomer
2018-02-01
The cosmological relaxation of the electroweak scale has been proposed as a mechanism to address the hierarchy problem of the Standard Model. A field, the relaxion, rolls down its potential and, in doing so, scans the squared mass parameter of the Higgs, relaxing it to a parametrically small value. In this work, we promote the relaxion to an inflaton. We couple it to Abelian gauge bosons, thereby introducing the necessary dissipation mechanism which slows down the field in the last stages. We describe a novel reheating mechanism, which relies on the gauge-boson production leading to strong electro-magnetic fields, and proceeds via the vacuum production of electron-positron pairs through the Schwinger effect. We refer to this mechanism as Schwinger reheating. We discuss the cosmological dynamics of the model and the phenomenological constraints from CMB and other experiments. We find that a cutoff close to the Planck scale may be achieved. In its minimal form, the model does not generate sufficient curvature perturbations and additional ingredients, such as a curvaton field, are needed.
Plemmons, Dayne A; Flannigan, David J
2016-05-26
In femtosecond ultrafast electron microscopy (UEM) experiments, the initial excitation period is composed of spatiotemporal overlap of the temporally commensurate pump photon pulse and probe photoelectron packet. Generation of evanescent near-fields at the nanostructure specimens produces a dispersion relation that enables coupling of the photons (ℏω = 2.4 eV, for example) and freely propagating electrons (200 keV, for example) in the near-field. Typically, this manifests as discrete peaks occurring at integer multiples (n) of the photon energy in the low-loss/gain region of electron-energy spectra (i.e., at 200 keV ± nℏω eV). Here, we examine the UEM imaging resolution implications of the strong inelastic near-field interactions between the photons employed in optical excitation and the probe photoelectrons. We find that the additional photoinduced energy dispersion occurring when swift electrons pass through intense evanescent near-fields results in a discrete chromatic aberration that limits the spatial resolving power to several angstroms during the excitation period.
NASA Astrophysics Data System (ADS)
Pawar, S. D.; Kamra, A. K.
2002-12-01
Surface observations of the electric field recovery curves of the lightning discharges occurring between the positive charge pocket and negative main charge centre in an overhead thundercloud are reported. Such recovery curves are observed to have an additional step of very slow field-change observed at an after-discharge value of electric field equal to 5-6 kV m-1. The behavior of recovery curves is explained in terms of the coronae charge and the relative efficiencies of the charge generating processes responsible for growth of positive charge pocket and main negative charge centre in the thundercloud. The charging currents responsible for the growth of charge in positive charge pockets is computed to be 2-4 times larger than that for the growth of the main negative charge. However, the charge destroyed in such a discharge is found to be comparable to that in a discharge between the main charge centres of the thundercloud.
Biological effects and physical safety aspects of NMR imaging and in vivo spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tenforde, T.S.; Budinger, T.F.
1985-08-01
An assessment is made of the biological effects and physical hazards of static and time-varying fields associated with the NMR devices that are being used for clinical imaging and in vivo spectroscopy. A summary is given of the current state of knowledge concerning the mechanisms of interaction and the bioeffects of these fields. Additional topics that are discussed include: (1) physical effects on pacemakers and metallic implants such as aneurysm clips, (2) human health studies related to the effects of exposure to nonionizing electromagnetic radiation, and (3) extant guidelines for limiting exposure of patients and medical personnel to the fieldsmore » produced by NMR devices. On the basis of information available at the present time, it is concluded that the fields associated with the current generation of NMR devices do not pose a significant health risk in themselves. However, rigorous guidelines must be followed to avoid the physical interaction of these fields with metallic implants and medical electronic devices. 476 refs., 5 figs., 2 tabs.« less
Dual metal gate tunneling field effect transistors based on MOSFETs: A 2-D analytical approach
NASA Astrophysics Data System (ADS)
Ramezani, Zeinab; Orouji, Ali A.
2018-01-01
A novel 2-D analytical drain current model of novel Dual Metal Gate Tunnel Field Effect Transistors Based on MOSFETs (DMG-TFET) is presented in this paper. The proposed Tunneling FET is extracted from a MOSFET structure by employing an additional electrode in the source region with an appropriate work function to induce holes in the N+ source region and hence makes it as a P+ source region. The electric field is derived which is utilized to extract the expression of the drain current by analytically integrating the band to band tunneling generation rate in the tunneling region based on the potential profile by solving the Poisson's equation. Through this model, the effects of the thin film thickness and gate voltage on the potential, the electric field, and the effects of the thin film thickness on the tunneling current can be studied. To validate our present model we use SILVACO ATLAS device simulator and the analytical results have been compared with it and found a good agreement.
MUSIC for localization of thunderstorm cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mosher, J.C.; Lewis, P.S.; Rynne, T.M.
1993-12-31
Lightning represents an event detectable optically, electrically, and acoustically, and several systems are already in place to monitor such activity. Unfortunately, such detection of lightning can occur too late, since operations need to be protected in advance of the first lightning strike. Additionally, the bolt itself can traverse several kilometers before striking the ground, leaving a large region of uncertainty as to the center of the storm and its possible strike regions. NASA Kennedy Space Center has in place an array of electric field mills that monitor the (effectively) DC electric field. Prior to the first lightning strike, the surfacemore » electric fields rise as the storm generator within a thundercloud begins charging. Extending methods we developed for an analogous source localization problem in mangnetoencephalography, we present Cramer-Rao lower bounds and MUSIC scans for fitting a point-charge source model to the electric field mill data. Such techniques can allow for the identification and localization of charge centers in cloud structures.« less
NASA Astrophysics Data System (ADS)
Yesilgul, U.; Sari, H.; Ungan, F.; Martínez-Orozco, J. C.; Restrepo, R. L.; Mora-Ramos, M. E.; Duque, C. A.; Sökmen, I.
2017-03-01
In this study, the effects of electric and magnetic fields on the optical rectification and second and third harmonic generation in asymmetric double quantum well under the intense non-resonant laser field is theoretically investigated. We calculate the optical rectification and second and third harmonic generation within the compact density-matrix approach. The theoretical findings show that the influence of electric, magnetic, and intense laser fields leads to significant changes in the coefficients of nonlinear optical rectification, second and third harmonic generation.
Spectral distortions of the cosmic microwave background
NASA Technical Reports Server (NTRS)
Adams, Fred C.; Mcdowell, Jonathan C.; Freese, Katherine; Levin, Janna
1989-01-01
Recent experiments indicate that the spectrum of the cosmic microwave background deviates from a pure blackbody; here, spectral distortions produced by cosmic dust are considered. The main result is that cosmic dust in conjunction with an injected radiation field (perhaps produced by an early generation of very massive stars) can explain the observed spectral distortions without violating existing cosmological constraints. In addition, it is shown that Compton y-distortions can also explain the observed spectral shape, but the energetic requirements are more severe.
Multiscale Modeling of Non-crystalline Ceramics (Glass)
2011-02-01
4). 5.3 Approach: We will produce high silica glasses with additions of up to 10 wt% of network formers and modifiers using Momentive’s lab scale...Aij , rij , ρ, and Cij are constants, which are provided by van Beest et al. (16); we refer to equation 2 as the BKS potential. 7.2 Generating...Optischer und Elektrostatischer Gitterpotentiale. Ann. Phys. 1921, 369, 253–287. 16. van Beest , B. W. H.; Kramer, G. J.; van Santen, R. A. Force-fields for
2009-11-30
generate exposure-rate contours at the fixed time is not an additional source of uncertainty when relative activities of radionuclides on the ground are...deposition or transit and other target organs or tissues, and calculations of radiation transport between a source and target. These uncertainties are...Beck, H., and de Planque, G., 1968. The Radiation Field in Air Due to Distributed Gamma-Ray Sources in the Ground, HASL-195, Health and Safety
Updated methodology for nuclear magnetic resonance characterization of shales
NASA Astrophysics Data System (ADS)
Washburn, Kathryn E.; Birdwell, Justin E.
2013-08-01
Unconventional petroleum resources, particularly in shales, are expected to play an increasingly important role in the world's energy portfolio in the coming years. Nuclear magnetic resonance (NMR), particularly at low-field, provides important information in the evaluation of shale resources. Most of the low-field NMR analyses performed on shale samples rely heavily on standard T1 and T2 measurements. We present a new approach using solid echoes in the measurement of T1 and T1-T2 correlations that addresses some of the challenges encountered when making NMR measurements on shale samples compared to conventional reservoir rocks. Combining these techniques with standard T1 and T2 measurements provides a more complete assessment of the hydrogen-bearing constituents (e.g., bitumen, kerogen, clay-bound water) in shale samples. These methods are applied to immature and pyrolyzed oil shale samples to examine the solid and highly viscous organic phases present during the petroleum generation process. The solid echo measurements produce additional signal in the oil shale samples compared to the standard methodologies, indicating the presence of components undergoing homonuclear dipolar coupling. The results presented here include the first low-field NMR measurements performed on kerogen as well as detailed NMR analysis of highly viscous thermally generated bitumen present in pyrolyzed oil shale.