Sample records for field intensity method

  1. Formation of doughnut and super-Gaussian intensity distributions of laser radiation in the far field using a bimorph mirror

    NASA Astrophysics Data System (ADS)

    Lylova, A. N.; Sheldakova, Yu. V.; Kudryashov, A. V.; Samarkin, V. V.

    2018-01-01

    We consider the methods for modelling doughnut and super-Gaussian intensity distributions in the far field by means of deformable bimorph mirrors. A method for the rapid formation of a specified intensity distribution using a Shack - Hartmann sensor is proposed, and the results of the modelling of doughnut and super-Gaussian intensity distributions are presented.

  2. Optical Limiting Using the Two-Photon Absorption Electrical Modulation Effect in HgCdTe Photodiode

    PubMed Central

    Cui, Haoyang; Yang, Junjie; Zeng, Jundong; Tang, Zhong

    2013-01-01

    The electrical modulation properties of the output intensity of two-photon absorption (TPA) pumping were analyzed in this paper. The frequency dispersion dependence of TPA and the electric field dependence of TPA were calculated using Wherrett theory model and Garcia theory model, respectively. Both predicted a dramatic variation of TPA coefficient which was attributed into the increasing of the transition rate. The output intensity of the laser pulse propagation in the pn junction device was calculated by using function-transfer method. It shows that the output intensity increases nonlinearly with increasing intensity of incident light and eventually reaches saturation. The output saturation intensity depends on the electric field strength; the greater the electric field, the smaller the output intensity. Consequently, the clamped saturation intensity can be controlled by the electric field. The prior advantage of electrical modulation is that the TPA can be varied extremely continuously, thus adjusting the output intensity in a wide range. This large change provides a manipulate method to control steady output intensity of TPA by adjusting electric field. PMID:24198721

  3. The L0 Regularized Mumford-Shah Model for Bias Correction and Segmentation of Medical Images.

    PubMed

    Duan, Yuping; Chang, Huibin; Huang, Weimin; Zhou, Jiayin; Lu, Zhongkang; Wu, Chunlin

    2015-11-01

    We propose a new variant of the Mumford-Shah model for simultaneous bias correction and segmentation of images with intensity inhomogeneity. First, based on the model of images with intensity inhomogeneity, we introduce an L0 gradient regularizer to model the true intensity and a smooth regularizer to model the bias field. In addition, we derive a new data fidelity using the local intensity properties to allow the bias field to be influenced by its neighborhood. Second, we use a two-stage segmentation method, where the fast alternating direction method is implemented in the first stage for the recovery of true intensity and bias field and a simple thresholding is used in the second stage for segmentation. Different from most of the existing methods for simultaneous bias correction and segmentation, we estimate the bias field and true intensity without fixing either the number of the regions or their values in advance. Our method has been validated on medical images of various modalities with intensity inhomogeneity. Compared with the state-of-art approaches and the well-known brain software tools, our model is fast, accurate, and robust with initializations.

  4. Vibrational near-field mapping of planar and buried three-dimensional plasmonic nanostructures

    PubMed Central

    Dregely, Daniel; Neubrech, Frank; Duan, Huigao; Vogelgesang, Ralf; Giessen, Harald

    2013-01-01

    Nanoantennas confine electromagnetic fields at visible and infrared wavelengths to volumes of only a few cubic nanometres. Assessing their near-field distribution offers fundamental insight into light–matter coupling and is of special interest for applications such as radiation engineering, attomolar sensing and nonlinear optics. Most experimental approaches to measure near-fields employ either diffraction-limited far-field methods or intricate near-field scanning techniques. Here, using diffraction-unlimited far-field spectroscopy in the infrared, we directly map the intensity of the electric field close to plasmonic nanoantennas. We place a patch of probe molecules with 10 nm accuracy at different locations in the near-field of a resonant antenna and extract the molecular vibrational excitation. We map the field intensity along a dipole antenna and gap-type antennas. Moreover, this method is able to assess the near-field intensity of complex buried plasmonic structures. We demonstrate this by measuring for the first time the near-field intensity of a three-dimensional plasmonic electromagnetically induced transparency structure. PMID:23892519

  5. Strain intensity factor approach for predicting the strength of continuously reinforced metal matrix composites

    NASA Technical Reports Server (NTRS)

    Poe, Clarence C., Jr.

    1989-01-01

    A method was previously developed to predict the fracture toughness (stress intensity factor at failure) of composites in terms of the elastic constants and the tensile failing strain of the fibers. The method was applied to boron/aluminum composites made with various proportions of 0 deg and +/- 45 deg plies. Predicted values of fracture toughness were in gross error because widespread yielding of the aluminum matrix made the compliance very nonlinear. An alternate method was develolped to predict the strain intensity factor at failure rather than the stress intensity factor because the singular strain field was not affected by yielding as much as the stress field. Far-field strains at failure were calculated from the strain intensity factor, and then strengths were calculated from the far-field strains using uniaxial stress-strain curves. The predicted strengths were in good agreement with experimental values, even for the very nonlinear laminates that contained only +/- 45 deg plies. This approach should be valid for other metal matrix composites that have continuous fibers.

  6. A combined vector potential-scalar potential method for FE computation of 3D magnetic fields in electrical devices with iron cores

    NASA Technical Reports Server (NTRS)

    Wang, R.; Demerdash, N. A.

    1991-01-01

    A method of combined use of magnetic vector potential based finite-element (FE) formulations and magnetic scalar potential (MSP) based formulations for computation of three-dimensional magnetostatic fields is introduced. In this method, the curl-component of the magnetic field intensity is computed by a reduced magnetic vector potential. This field intensity forms the basic of a forcing function for a global magnetic scalar potential solution over the entire volume of the region. This method allows one to include iron portions sandwiched in between conductors within partitioned current-carrying subregions. The method is most suited for large-scale global-type 3-D magnetostatic field computations in electrical devices, and in particular rotating electric machinery.

  7. Steel characteristics measurement system using Barkhausen jump sum rate and magnetic field intensity and method of using same

    DOEpatents

    Kohn, Gabriel; Hicho, George; Swartzendruber, Lydon

    1997-01-01

    A steel hardness measurement system and method of using same are provided for measuring at least one mechanical or magnetic characteristic of a ferromagnetic sample as a function of at least one magnetic characteristic of the sample. A magnetic field generator subjects the sample to a variable external magnetic field. The magnetic field intensity of the magnetic field generated by the magnetic field generating means is measured and a signal sensor is provided for measuring Barkhausen signals from the sample when the sample is subjected to the external magnetic field. A signal processing unit calculates a jump sum rate first moment as a function of the Barkhausen signals measured by the signal sensor and the magnetic field intensity, and for determining the at least one mechanical or magnetic characteristic as a function of the jump sum rate first moment.

  8. Steel characteristics measurement system using Barkhausen jump sum rate and magnetic field intensity and method of using same

    DOEpatents

    Kohn, G.; Hicho, G.; Swartzendruber, L.

    1997-04-08

    A steel hardness measurement system and method of using same are provided for measuring at least one mechanical or magnetic characteristic of a ferromagnetic sample as a function of at least one magnetic characteristic of the sample. A magnetic field generator subjects the sample to a variable external magnetic field. The magnetic field intensity of the magnetic field generated by the magnetic field generating means is measured and a signal sensor is provided for measuring Barkhausen signals from the sample when the sample is subjected to the external magnetic field. A signal processing unit calculates a jump sum rate first moment as a function of the Barkhausen signals measured by the signal sensor and the magnetic field intensity, and for determining the at least one mechanical or magnetic characteristic as a function of the jump sum rate first moment. 7 figs.

  9. A DERATING METHOD FOR THERAPEUTIC APPLICATIONS OF HIGH INTENSITY FOCUSED ULTRASOUND

    PubMed Central

    Bessonova, O.V.; Khokhlova, V.A.; Canney, M.S.; Bailey, M.R.; Crum, L.A.

    2010-01-01

    Current methods of determining high intensity focused ultrasound (HIFU) fields in tissue rely on extrapolation of measurements in water assuming linear wave propagation both in water and in tissue. Neglecting nonlinear propagation effects in the derating process can result in significant errors. In this work, a new method based on scaling the source amplitude is introduced to estimate focal parameters of nonlinear HIFU fields in tissue. Focal values of acoustic field parameters in absorptive tissue are obtained from a numerical solution to a KZK-type equation and are compared to those simulated for propagation in water. Focal waveforms, peak pressures, and intensities are calculated over a wide range of source outputs and linear focusing gains. Our modeling indicates, that for the high gain sources which are typically used in therapeutic medical applications, the focal field parameters derated with our method agree well with numerical simulation in tissue. The feasibility of the derating method is demonstrated experimentally in excised bovine liver tissue. PMID:20582159

  10. A derating method for therapeutic applications of high intensity focused ultrasound

    NASA Astrophysics Data System (ADS)

    Bessonova, O. V.; Khokhlova, V. A.; Canney, M. S.; Bailey, M. R.; Crum, L. A.

    2010-05-01

    Current methods of determining high intensity focused ultrasound (HIFU) fields in tissue rely on extrapolation of measurements in water assuming linear wave propagation both in water and in tissue. Neglecting nonlinear propagation effects in the derating process can result in significant errors. A new method based on scaling the source amplitude is introduced to estimate focal parameters of nonlinear HIFU fields in tissue. Focal values of acoustic field parameters in absorptive tissue are obtained from a numerical solution to a KZK-type equation and are compared to those simulated for propagation in water. Focal wave-forms, peak pressures, and intensities are calculated over a wide range of source outputs and linear focusing gains. Our modeling indicates, that for the high gain sources which are typically used in therapeutic medical applications, the focal field parameters derated with our method agree well with numerical simulation in tissue. The feasibility of the derating method is demonstrated experimentally in excised bovine liver tissue.

  11. A DERATING METHOD FOR THERAPEUTIC APPLICATIONS OF HIGH INTENSITY FOCUSED ULTRASOUND.

    PubMed

    Bessonova, O V; Khokhlova, V A; Canney, M S; Bailey, M R; Crum, L A

    2010-01-01

    Current methods of determining high intensity focused ultrasound (HIFU) fields in tissue rely on extrapolation of measurements in water assuming linear wave propagation both in water and in tissue. Neglecting nonlinear propagation effects in the derating process can result in significant errors. In this work, a new method based on scaling the source amplitude is introduced to estimate focal parameters of nonlinear HIFU fields in tissue. Focal values of acoustic field parameters in absorptive tissue are obtained from a numerical solution to a KZK-type equation and are compared to those simulated for propagation in water. Focal waveforms, peak pressures, and intensities are calculated over a wide range of source outputs and linear focusing gains. Our modeling indicates, that for the high gain sources which are typically used in therapeutic medical applications, the focal field parameters derated with our method agree well with numerical simulation in tissue. The feasibility of the derating method is demonstrated experimentally in excised bovine liver tissue.

  12. Intense laser field effects on a Woods-Saxon potential quantum well

    NASA Astrophysics Data System (ADS)

    Restrepo, R. L.; Morales, A. L.; Akimov, V.; Tulupenko, V.; Kasapoglu, E.; Ungan, F.; Duque, C. A.

    2015-11-01

    This paper presents the results of the theoretical study of the effects of non-resonant intense laser field and electric and magnetic fields on the optical properties in an quantum well (QW) make with Woods-Saxon potential profile. The electric field and intense laser field are applied along the growth direction of the Woods-Saxon quantum well and the magnetic field is oriented perpendicularly. To calculate the energy and the wave functions of the electron in the Woods-Saxon quantum well, the effective mass approximation and the method of envelope wave function are used. The confinement in the Woods-Saxon quantum well is changed drastically by the application of intense laser field or either the effect of electric and magnetic fields. The optical properties are calculated using the compact density matrix.

  13. A modified method for MRF segmentation and bias correction of MR image with intensity inhomogeneity.

    PubMed

    Xie, Mei; Gao, Jingjing; Zhu, Chongjin; Zhou, Yan

    2015-01-01

    Markov random field (MRF) model is an effective method for brain tissue classification, which has been applied in MR image segmentation for decades. However, it falls short of the expected classification in MR images with intensity inhomogeneity for the bias field is not considered in the formulation. In this paper, we propose an interleaved method joining a modified MRF classification and bias field estimation in an energy minimization framework, whose initial estimation is based on k-means algorithm in view of prior information on MRI. The proposed method has a salient advantage of overcoming the misclassifications from the non-interleaved MRF classification for the MR image with intensity inhomogeneity. In contrast to other baseline methods, experimental results also have demonstrated the effectiveness and advantages of our algorithm via its applications in the real and the synthetic MR images.

  14. Influence of pitting defects on quality of high power laser light field

    NASA Astrophysics Data System (ADS)

    Ren, Huan; Zhang, Lin; Yang, Yi; Shi, Zhendong; Ma, Hua; Jiang, Hongzhen; Chen, Bo; Yang, XiaoYu; Zheng, Wanguo; Zhu, Rihong

    2018-01-01

    With the split-step-Fourier-transform method for solving the nonlinear paraxial wave equation, the intensity distribution of the light field when the pits diameter or depth change is obtained by using numerical simulation, include the intensity distribution inside optical element, the beam near-field, the different distances behind the element and the beam far-field. Results show that with the increase of pits diameter or depth, the light field peak intensity and the contrast inside of element corresponding enhancement. The contrast of the intensity distribution of the rear surface of the element will increase slightly. The peak intensity produced by a specific location element downstream of thermal effect will continue to increase, the damage probability in optics placed here is greatly increased. For the intensity distribution of the far-field, increase the pitting diameter or depth will cause the focal spot intensity distribution changes, and the energy of the spectrum center region increase constantly. This work provide a basis for quantitative design and inspection for pitting defects, which provides a reference for the design of optical path arrangement.

  15. Measuring dynamic infiltration rates during rainfall of fluctuating intensity: an approach using affine Horton equations.

    NASA Astrophysics Data System (ADS)

    Dunkerley, David

    2017-04-01

    It is important to develop methods for determining infiltrability and infiltration rates under conditions of fluctuating rainfall intensity, since rainfall intensity rarely remains constant. During rain of fluctuating intensity, ponding deepens and dissipates, and the drivers of soil infiltration, including sorptivity, fluctuate in value. This has been explored on dryland soils in the field, using small plots and rainfall simulation, involving repeated changes in intensity as well as short and long hiatuses in rainfall. The field area was the Fowlers Gap Arid Zone Research Station, in western NSW, Australia. The field experiments used multiple 60 minute design rainfall events that all had the same total depth and average rainfall intensity, but which included intensity bursts at various positions within the event. These were based on the character of local rainfall events in the field area. Infiltration was found from plot runoff rates measured every 2 minutes, and rainfall intensities that were adjusted by computer-controlled pumps at 1 second intervals. Data were analysed by fitting a family of affine Horton equations, all having the same final infiltrability (about 6-7 mm/h) but having initial infiltrabilities and exponential decay constants that were permitted to recover during periods of very low intensity rain, or rainfall hiatuses. Results show that the terms in the Horton equation, f0, fc, and Kf, can all be estimated from field data of the kind collected. This is a considerable advance over 'steady-state' rainfall simulation methods, which typically only allow the estimation of the final infiltrability fc. This may rarely be reached owing to the occurrence of short rainfall events, or to changing intensity under natural rainfall, that prohibits the establishment of steady-state infiltration and runoff. Importantly, this method allows a focus on the recovery of infiltrability during periods of reduced rainfall intensity. Recovery of infiltrability is shown to proceed at rates of up to 1 mm/h per minute of hiatus time, or by 20 mm/h during a 20 minute period of low rainfall intensity.

  16. [Electormagnetic field of the mobile phone base station: case study].

    PubMed

    Bieńkowski, Paweł; Zubrzak, Bartłomiej; Surma, Robert

    2011-01-01

    The paper presents changes in the electromagnetic field intensity in a school building and its surrounding after the mobile phone base station installation on the roof of the school. The comparison of EMF intensity measured before the base station was launched (electromagnetic background measurement) and after starting its operation (two independent control measurements) is discussed. Analyses of measurements are presented and the authors also propose the method of the electromagnetic field distribution adjustment in the area of radiation antennas side lobe to reduce the intensity of the EMF level in the base station proximity. The presented method involves the regulation of the inclination. On the basis of the measurements, it was found that the EMF intensity increased in the building and its surroundings, but the values measured with wide margins meet the requirements of the Polish law on environmental protection.

  17. Infrared mapping of ultrasound fields generated by medical transducers: Feasibility of determining absolute intensity levels

    PubMed Central

    Khokhlova, Vera A.; Shmeleva, Svetlana M.; Gavrilov, Leonid R.; Martin, Eleanor; Sadhoo, Neelaksh; Shaw, Adam

    2013-01-01

    Considerable progress has been achieved in the use of infrared (IR) techniques for qualitative mapping of acoustic fields of high intensity focused ultrasound (HIFU) transducers. The authors have previously developed and demonstrated a method based on IR camera measurement of the temperature rise induced in an absorber less than 2 mm thick by ultrasonic bursts of less than 1 s duration. The goal of this paper was to make the method more quantitative and estimate the absolute intensity distributions by determining an overall calibration factor for the absorber and camera system. The implemented approach involved correlating the temperature rise measured in an absorber using an IR camera with the pressure distribution measured in water using a hydrophone. The measurements were conducted for two HIFU transducers and a flat physiotherapy transducer of 1 MHz frequency. Corresponding correction factors between the free field intensity and temperature were obtained and allowed the conversion of temperature images to intensity distributions. The system described here was able to map in good detail focused and unfocused ultrasound fields with sub-millimeter structure and with local time average intensity from below 0.1 W/cm2 to at least 50 W/cm2. Significantly higher intensities could be measured simply by reducing the duty cycle. PMID:23927199

  18. Infrared mapping of ultrasound fields generated by medical transducers: feasibility of determining absolute intensity levels.

    PubMed

    Khokhlova, Vera A; Shmeleva, Svetlana M; Gavrilov, Leonid R; Martin, Eleanor; Sadhoo, Neelaksh; Shaw, Adam

    2013-08-01

    Considerable progress has been achieved in the use of infrared (IR) techniques for qualitative mapping of acoustic fields of high intensity focused ultrasound (HIFU) transducers. The authors have previously developed and demonstrated a method based on IR camera measurement of the temperature rise induced in an absorber less than 2 mm thick by ultrasonic bursts of less than 1 s duration. The goal of this paper was to make the method more quantitative and estimate the absolute intensity distributions by determining an overall calibration factor for the absorber and camera system. The implemented approach involved correlating the temperature rise measured in an absorber using an IR camera with the pressure distribution measured in water using a hydrophone. The measurements were conducted for two HIFU transducers and a flat physiotherapy transducer of 1 MHz frequency. Corresponding correction factors between the free field intensity and temperature were obtained and allowed the conversion of temperature images to intensity distributions. The system described here was able to map in good detail focused and unfocused ultrasound fields with sub-millimeter structure and with local time average intensity from below 0.1 W/cm(2) to at least 50 W/cm(2). Significantly higher intensities could be measured simply by reducing the duty cycle.

  19. Wetting and motion behaviors of water droplet on graphene under thermal-electric coupling field

    NASA Astrophysics Data System (ADS)

    Zhang, Zhong-Qiang; Dong, Xin; Ye, Hong-Fei; Cheng, Guang-Gui; Ding, Jian-Ning; Ling, Zhi-Yong

    2015-02-01

    Wetting dynamics and motion behaviors of a water droplet on graphene are characterized under the electric-thermal coupling field using classical molecular dynamics simulation method. The water droplet on graphene can be driven by the temperature gradient, while the moving direction is dependent on the electric field intensity. Concretely, the water droplet on graphene moves from the low temperature region to the high temperature region for the relatively weak electric field intensity. The motion acceleration increases with the electric field intensity on graphene, whereas the moving direction switches when the electric field intensity increases up to a threshold. The essence is the change from hydrophilic to hydrophobic for the water droplet on graphene at a threshold of the electric field intensity. Moreover, the driven force of the water droplet caused by the overall oscillation of graphene has important influence on the motion behaviors. The results are helpful to control the wettability of graphene and further develop the graphene-based fluidic nanodevices.

  20. Linear and nonlinear optical properties in an asymmetric double quantum well under intense laser field: Effects of applied electric and magnetic fields

    NASA Astrophysics Data System (ADS)

    Yesilgul, U.; Al, E. B.; Martínez-Orozco, J. C.; Restrepo, R. L.; Mora-Ramos, M. E.; Duque, C. A.; Ungan, F.; Kasapoglu, E.

    2016-08-01

    In the present study, the effects of electric and magnetic fields on the linear and third-order nonlinear optical absorption coefficients and relative change of the refractive index in asymmetric GaAs/GaAlAs double quantum wells under intense laser fields are theoretically investigated. The electric field is oriented along the growth direction of the heterostructure while the magnetic field is taken in-plane. The intense laser field is linear polarization along the growth direction. Our calculations are made using the effective-mass approximation and the compact density-matrix approach. Intense laser effects on the system are investigated with the use of the Floquet method with the consequent change in the confinement potential of heterostructures. Our results show that the increase of the electric and magnetic fields blue-shifts the peak positions of the total absorption coefficient and of the total refractive index while the increase of the intense laser field firstly blue-shifts the peak positions and later results in their red-shifting.

  1. MRI non-uniformity correction through interleaved bias estimation and B-spline deformation with a template.

    PubMed

    Fletcher, E; Carmichael, O; Decarli, C

    2012-01-01

    We propose a template-based method for correcting field inhomogeneity biases in magnetic resonance images (MRI) of the human brain. At each algorithm iteration, the update of a B-spline deformation between an unbiased template image and the subject image is interleaved with estimation of a bias field based on the current template-to-image alignment. The bias field is modeled using a spatially smooth thin-plate spline interpolation based on ratios of local image patch intensity means between the deformed template and subject images. This is used to iteratively correct subject image intensities which are then used to improve the template-to-image deformation. Experiments on synthetic and real data sets of images with and without Alzheimer's disease suggest that the approach may have advantages over the popular N3 technique for modeling bias fields and narrowing intensity ranges of gray matter, white matter, and cerebrospinal fluid. This bias field correction method has the potential to be more accurate than correction schemes based solely on intrinsic image properties or hypothetical image intensity distributions.

  2. MRI Non-Uniformity Correction Through Interleaved Bias Estimation and B-Spline Deformation with a Template*

    PubMed Central

    Fletcher, E.; Carmichael, O.; DeCarli, C.

    2013-01-01

    We propose a template-based method for correcting field inhomogeneity biases in magnetic resonance images (MRI) of the human brain. At each algorithm iteration, the update of a B-spline deformation between an unbiased template image and the subject image is interleaved with estimation of a bias field based on the current template-to-image alignment. The bias field is modeled using a spatially smooth thin-plate spline interpolation based on ratios of local image patch intensity means between the deformed template and subject images. This is used to iteratively correct subject image intensities which are then used to improve the template-to-image deformation. Experiments on synthetic and real data sets of images with and without Alzheimer’s disease suggest that the approach may have advantages over the popular N3 technique for modeling bias fields and narrowing intensity ranges of gray matter, white matter, and cerebrospinal fluid. This bias field correction method has the potential to be more accurate than correction schemes based solely on intrinsic image properties or hypothetical image intensity distributions. PMID:23365843

  3. Concentration Measurements in a Cold Flow Model Annular Combustor Using Laser Induced Fluorescence

    NASA Technical Reports Server (NTRS)

    Morgan, Douglas C.

    1996-01-01

    A nonintrusive concentration measurement method is developed for determining the concentration distribution in a complex flow field. The measurement method consists of marking a liquid flow with a water soluble fluorescent dye. The dye is excited by a two dimensional sheet of laser light. The fluorescent intensity is shown to be proportional to the relative concentration level. The fluorescent field is recorded on a video cassette recorder through a video camera. The recorded images are analyzed with image processing hardware and software to obtain intensity levels. Mean and root mean square (rms) values are calculated from these intensity levels. The method is tested on a single round turbulent jet because previous concentration measurements have been made on this configuration by other investigators. The previous results were used to comparison to qualify the current method. These comparisons showed that this method provides satisfactory results. 'Me concentration measurement system was used to measure the concentrations in the complex flow field of a model gas turbine annular combustor. The model annular combustor consists of opposing primary jets and an annular jet which discharges perpendicular to the primary jets. The mixing between the different jet flows can be visualized from the calculated mean and rms profiles. Concentration field visualization images obtained from the processing provide further qualitative information about the flow field.

  4. Light intensity related to stand density in mature stands of the western white pine type

    Treesearch

    C. A. Wellner

    1948-01-01

    Where tolerance of forest trees or subordinate vegetation is a factor in management, the forester needs a simple field method of Estimating or forecasting light intensities in forest stands. The following article describes a method developed for estimating light intensity beneath the canopy in western white pine forests which may have application in other types.

  5. Communication: Time-dependent optimized coupled-cluster method for multielectron dynamics

    NASA Astrophysics Data System (ADS)

    Sato, Takeshi; Pathak, Himadri; Orimo, Yuki; Ishikawa, Kenichi L.

    2018-02-01

    Time-dependent coupled-cluster method with time-varying orbital functions, called time-dependent optimized coupled-cluster (TD-OCC) method, is formulated for multielectron dynamics in an intense laser field. We have successfully derived the equations of motion for CC amplitudes and orthonormal orbital functions based on the real action functional, and implemented the method including double excitations (TD-OCCD) and double and triple excitations (TD-OCCDT) within the optimized active orbitals. The present method is size extensive and gauge invariant, a polynomial cost-scaling alternative to the time-dependent multiconfiguration self-consistent-field method. The first application of the TD-OCC method of intense-laser driven correlated electron dynamics in Ar atom is reported.

  6. Communication: Time-dependent optimized coupled-cluster method for multielectron dynamics.

    PubMed

    Sato, Takeshi; Pathak, Himadri; Orimo, Yuki; Ishikawa, Kenichi L

    2018-02-07

    Time-dependent coupled-cluster method with time-varying orbital functions, called time-dependent optimized coupled-cluster (TD-OCC) method, is formulated for multielectron dynamics in an intense laser field. We have successfully derived the equations of motion for CC amplitudes and orthonormal orbital functions based on the real action functional, and implemented the method including double excitations (TD-OCCD) and double and triple excitations (TD-OCCDT) within the optimized active orbitals. The present method is size extensive and gauge invariant, a polynomial cost-scaling alternative to the time-dependent multiconfiguration self-consistent-field method. The first application of the TD-OCC method of intense-laser driven correlated electron dynamics in Ar atom is reported.

  7. An investigation into possible quantum chaos in the H2 molecule under intense laser fields via Ehrenfest phase space (EPS) trajectories.

    PubMed

    Sadhukhan, Mainak; Deb, B M

    2018-06-21

    By employing the Ehrenfest "phase space" trajectory method for studying quantum chaos, developed in our laboratory, the present study reveals that the H 2 molecule under intense laser fields of three different intensities, I = 1 × 10 14  W/cm 2 , 5 × 10 14  W/cm 2 , and 1 × 10 15  W/cm 2 , does not show quantum chaos. A similar conclusion is also reached through the Loschmidt echo (also called quantum fidelity) calculations reported here for the first time for a real molecule under intense laser fields. Thus, a long-standing conjecture about the possible existence of quantum chaos in atoms and molecules under intense laser fields has finally been tested and not found to be valid in the present case.

  8. Surface area generation and droplet size control in solvent extraction systems utilizing high intensity electric fields

    DOEpatents

    Scott, Timothy C.; Wham, Robert M.

    1988-01-01

    A method and system for solvent extraction where droplets are shattered by a high intensity electric field. These shattered droplets form a plurality of smaller droplets which have a greater combined surface area than the original droplet. Dispersion, coalescence and phase separation are accomplished in one vessel through the use of the single pulsing high intensity electric field. Electric field conditions are chosen so that simultaneous dispersion and coalescence are taking place in the emulsion formed in the electric field. The electric field creates a large amount of interfacial surface area for solvent extraction when the droplet is disintegrated and is capable of controlling droplet size and thus droplet stability. These operations take place in the presence of a counter current flow of the continuous phase.

  9. Level set segmentation of medical images based on local region statistics and maximum a posteriori probability.

    PubMed

    Cui, Wenchao; Wang, Yi; Lei, Tao; Fan, Yangyu; Feng, Yan

    2013-01-01

    This paper presents a variational level set method for simultaneous segmentation and bias field estimation of medical images with intensity inhomogeneity. In our model, the statistics of image intensities belonging to each different tissue in local regions are characterized by Gaussian distributions with different means and variances. According to maximum a posteriori probability (MAP) and Bayes' rule, we first derive a local objective function for image intensities in a neighborhood around each pixel. Then this local objective function is integrated with respect to the neighborhood center over the entire image domain to give a global criterion. In level set framework, this global criterion defines an energy in terms of the level set functions that represent a partition of the image domain and a bias field that accounts for the intensity inhomogeneity of the image. Therefore, image segmentation and bias field estimation are simultaneously achieved via a level set evolution process. Experimental results for synthetic and real images show desirable performances of our method.

  10. Precisely detecting atomic position of atomic intensity images.

    PubMed

    Wang, Zhijun; Guo, Yaolin; Tang, Sai; Li, Junjie; Wang, Jincheng; Zhou, Yaohe

    2015-03-01

    We proposed a quantitative method to detect atomic position in atomic intensity images from experiments such as high-resolution transmission electron microscopy, atomic force microscopy, and simulation such as phase field crystal modeling. The evaluation of detection accuracy proves the excellent performance of the method. This method provides a chance to precisely determine atomic interactions based on the detected atomic positions from the atomic intensity image, and hence to investigate the related physical, chemical and electrical properties. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Strain intensity factor approach for predicting the strength of continuously reinforced metal matrix composites

    NASA Technical Reports Server (NTRS)

    Poe, C. C., Jr.

    1988-01-01

    A method was previously developed to predict the fracture toughness (stress intensity factor at failure) of composites in terms of the elastic constants and the tensile failing strain of the fibers. The method was applied to boron/aluminum composites made with various proportions of 0 to + or - 45 deg plies. Predicted values of fracture toughness were in gross error because widespread yielding of the aluminum matrix made the compliance very nonlinear. An alternate method was developed to predict the strain intensity factor at failure rather than the stress intensity factor because the singular strain field was not affected by yielding as much as the stress field. Strengths of specimens containing crack-like slits were calculated from predicted failing strains using uniaxial stress-strain curves. Predicted strengths were in good agreement with experimental values, even for the very nonlinear laminates that contained only + or - 45 deg plies. This approach should be valid for other metal matrix composites that have continuous fibers.

  12. Modeling super-resolution SERS using a T-matrix method to elucidate molecule-nanoparticle coupling and the origins of localization errors

    NASA Astrophysics Data System (ADS)

    Heaps, Charles W.; Schatz, George C.

    2017-06-01

    A computational method to model diffraction-limited images from super-resolution surface-enhanced Raman scattering microscopy is introduced. Despite significant experimental progress in plasmon-based super-resolution imaging, theoretical predictions of the diffraction limited images remain a challenge. The method is used to calculate localization errors and image intensities for a single spherical gold nanoparticle-molecule system. The light scattering is calculated using a modification of generalized Mie (T-matrix) theory with a point dipole source and diffraction limited images are calculated using vectorial diffraction theory. The calculation produces the multipole expansion for each emitter and the coherent superposition of all fields. Imaging the constituent fields in addition to the total field provides new insight into the strong coupling between the molecule and the nanoparticle. Regardless of whether the molecular dipole moment is oriented parallel or perpendicular to the nanoparticle surface, the anisotropic excitation distorts the center of the nanoparticle as measured by the point spread function by approximately fifty percent of the particle radius toward to the molecule. Inspection of the nanoparticle multipoles reveals that distortion arises from a weak quadrupole resonance interfering with the dipole field in the nanoparticle. When the nanoparticle-molecule fields are in-phase, the distorted nanoparticle field dominates the observed image. When out-of-phase, the nanoparticle and molecule are of comparable intensity and interference between the two emitters dominates the observed image. The method is also applied to different wavelengths and particle radii. At off-resonant wavelengths, the method predicts images closer to the molecule not because of relative intensities but because of greater distortion in the nanoparticle. The method is a promising approach to improving the understanding of plasmon-enhanced super-resolution experiments.

  13. Cluster mass inference via random field theory.

    PubMed

    Zhang, Hui; Nichols, Thomas E; Johnson, Timothy D

    2009-01-01

    Cluster extent and voxel intensity are two widely used statistics in neuroimaging inference. Cluster extent is sensitive to spatially extended signals while voxel intensity is better for intense but focal signals. In order to leverage strength from both statistics, several nonparametric permutation methods have been proposed to combine the two methods. Simulation studies have shown that of the different cluster permutation methods, the cluster mass statistic is generally the best. However, to date, there is no parametric cluster mass inference available. In this paper, we propose a cluster mass inference method based on random field theory (RFT). We develop this method for Gaussian images, evaluate it on Gaussian and Gaussianized t-statistic images and investigate its statistical properties via simulation studies and real data. Simulation results show that the method is valid under the null hypothesis and demonstrate that it can be more powerful than the cluster extent inference method. Further, analyses with a single subject and a group fMRI dataset demonstrate better power than traditional cluster size inference, and good accuracy relative to a gold-standard permutation test.

  14. Efficient variable time-stepping scheme for intense field-atom interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cerjan, C.; Kosloff, R.

    1993-03-01

    The recently developed Residuum method [Tal-Ezer, Kosloff, and Cerjan, J. Comput. Phys. 100, 179 (1992)], a Krylov subspace technique with variable time-step integration for the solution of the time-dependent Schroedinger equation, is applied to the frequently used soft Coulomb potential in an intense laser field. This one-dimensional potential has asymptotic Coulomb dependence with a softened'' singularity at the origin; thus it models more realistic phenomena. Two of the more important quantities usually calculated in this idealized system are the photoelectron and harmonic photon generation spectra. These quantities are shown to be sensitive to the choice of a numerical integration scheme:more » some spectral features are incorrectly calculated or missing altogether. Furthermore, the Residuum method allows much larger grid spacings for equivalent or higher accuracy in addition to the advantages of variable time stepping. Finally, it is demonstrated that enhanced high-order harmonic generation accompanies intense field stabilization and that preparation of the atom in an intermediate Rydberg state leads to stabilization at much lower laser intensity.« less

  15. Temporally diffeomorphic cardiac motion estimation from three-dimensional echocardiography by minimization of intensity consistency error.

    PubMed

    Zhang, Zhijun; Ashraf, Muhammad; Sahn, David J; Song, Xubo

    2014-05-01

    Quantitative analysis of cardiac motion is important for evaluation of heart function. Three dimensional (3D) echocardiography is among the most frequently used imaging modalities for motion estimation because it is convenient, real-time, low-cost, and nonionizing. However, motion estimation from 3D echocardiographic sequences is still a challenging problem due to low image quality and image corruption by noise and artifacts. The authors have developed a temporally diffeomorphic motion estimation approach in which the velocity field instead of the displacement field was optimized. The optimal velocity field optimizes a novel similarity function, which we call the intensity consistency error, defined as multiple consecutive frames evolving to each time point. The optimization problem is solved by using the steepest descent method. Experiments with simulated datasets, images of anex vivo rabbit phantom, images of in vivo open-chest pig hearts, and healthy human images were used to validate the authors' method. Simulated and real cardiac sequences tests showed that results in the authors' method are more accurate than other competing temporal diffeomorphic methods. Tests with sonomicrometry showed that the tracked crystal positions have good agreement with ground truth and the authors' method has higher accuracy than the temporal diffeomorphic free-form deformation (TDFFD) method. Validation with an open-access human cardiac dataset showed that the authors' method has smaller feature tracking errors than both TDFFD and frame-to-frame methods. The authors proposed a diffeomorphic motion estimation method with temporal smoothness by constraining the velocity field to have maximum local intensity consistency within multiple consecutive frames. The estimated motion using the authors' method has good temporal consistency and is more accurate than other temporally diffeomorphic motion estimation methods.

  16. Automatic segmentation for brain MR images via a convex optimized segmentation and bias field correction coupled model.

    PubMed

    Chen, Yunjie; Zhao, Bo; Zhang, Jianwei; Zheng, Yuhui

    2014-09-01

    Accurate segmentation of magnetic resonance (MR) images remains challenging mainly due to the intensity inhomogeneity, which is also commonly known as bias field. Recently active contour models with geometric information constraint have been applied, however, most of them deal with the bias field by using a necessary pre-processing step before segmentation of MR data. This paper presents a novel automatic variational method, which can segment brain MR images meanwhile correcting the bias field when segmenting images with high intensity inhomogeneities. We first define a function for clustering the image pixels in a smaller neighborhood. The cluster centers in this objective function have a multiplicative factor that estimates the bias within the neighborhood. In order to reduce the effect of the noise, the local intensity variations are described by the Gaussian distributions with different means and variances. Then, the objective functions are integrated over the entire domain. In order to obtain the global optimal and make the results independent of the initialization of the algorithm, we reconstructed the energy function to be convex and calculated it by using the Split Bregman theory. A salient advantage of our method is that its result is independent of initialization, which allows robust and fully automated application. Our method is able to estimate the bias of quite general profiles, even in 7T MR images. Moreover, our model can also distinguish regions with similar intensity distribution with different variances. The proposed method has been rigorously validated with images acquired on variety of imaging modalities with promising results. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Theoretical framework for quantitatively estimating ultrasound beam intensities using infrared thermography.

    PubMed

    Myers, Matthew R; Giridhar, Dushyanth

    2011-06-01

    In the characterization of high-intensity focused ultrasound (HIFU) systems, it is desirable to know the intensity field within a tissue phantom. Infrared (IR) thermography is a potentially useful method for inferring this intensity field from the heating pattern within the phantom. However, IR measurements require an air layer between the phantom and the camera, making inferences about the thermal field in the absence of the air complicated. For example, convection currents can arise in the air layer and distort the measurements relative to the phantom-only situation. Quantitative predictions of intensity fields based upon IR temperature data are also complicated by axial and radial diffusion of heat. In this paper, mathematical expressions are derived for use with IR temperature data acquired at times long enough that noise is a relatively small fraction of the temperature trace, but small enough that convection currents have not yet developed. The relations were applied to simulated IR data sets derived from computed pressure and temperature fields. The simulation was performed in a finite-element geometry involving a HIFU transducer sonicating upward in a phantom toward an air interface, with an IR camera mounted atop an air layer, looking down at the heated interface. It was found that, when compared to the intensity field determined directly from acoustic propagation simulations, intensity profiles could be obtained from the simulated IR temperature data with an accuracy of better than 10%, at pre-focal, focal, and post-focal locations. © 2011 Acoustical Society of America

  18. A simple method for determining stress intensity factors for a crack in bi-material interface

    NASA Astrophysics Data System (ADS)

    Morioka, Yuta

    Because of violently oscillating nature of stress and displacement fields near the crack tip, it is difficult to obtain stress intensity factors for a crack between two dis-similar media. For a crack in a homogeneous medium, it is a common practice to find stress intensity factors through strain energy release rates. However, individual strain energy release rates do not exist for bi-material interface crack. Hence it is necessary to find alternative methods to evaluate stress intensity factors. Several methods have been proposed in the past. However they involve mathematical complexity and sometimes require additional finite element analysis. The purpose of this research is to develop a simple method to find stress intensity factors in bi-material interface cracks. A finite element based projection method is proposed in the research. It is shown that the projection method yields very accurate stress intensity factors for a crack in isotropic and anisotropic bi-material interfaces. The projection method is also compared to displacement ratio method and energy method proposed by other authors. Through comparison it is found that projection method is much simpler to apply with its accuracy comparable to that of displacement ratio method.

  19. Study on the shrinkage behavior and conductivity of silver microwires during electrostatic field assisted sintering

    NASA Astrophysics Data System (ADS)

    Shangguan, Lei; Ma, Liuhong; Li, Mengke; Peng, Wei; Zhong, Yinghui; Su, Yufeng; Duan, Zhiyong

    2018-05-01

    An electrostatic field was applied to sintering Ag microwires to achieve a more compact structure and better conductivity. The shrinkage behavior of Ag microwires shows anisotropy, since bigger particle sizes, less micropores and smoother surfaces were observed in the direction of the electrostatic field in comparsion with the direction perpendicular to the electrostatic field, and the shrinkage rate of Ag microwires in the direction of electrostatic field improves about 2.4% with the electrostatic field intensity of 800 V cm‑1. The electrostatic field assisted sintering model of Ag microwires is proposed according to thermal diffuse dynamics analysis and experimental research. Moreover, the grain size of Ag microwres sintered with electrostatic field increases with the electrostatic field intensity and reaches 113 nm when the electrostatic field intensity is 800 V cm‑1, and the resistivity decreases to 2.07  ×  10‑8 Ω m as well. This method may overcome the restriction of metal wires which fabricated by the pseudoplastic metal nanoparticle fluid and be used as interconnects in nanoimprint lithography.

  20. Rough Sets and Stomped Normal Distribution for Simultaneous Segmentation and Bias Field Correction in Brain MR Images.

    PubMed

    Banerjee, Abhirup; Maji, Pradipta

    2015-12-01

    The segmentation of brain MR images into different tissue classes is an important task for automatic image analysis technique, particularly due to the presence of intensity inhomogeneity artifact in MR images. In this regard, this paper presents a novel approach for simultaneous segmentation and bias field correction in brain MR images. It integrates judiciously the concept of rough sets and the merit of a novel probability distribution, called stomped normal (SN) distribution. The intensity distribution of a tissue class is represented by SN distribution, where each tissue class consists of a crisp lower approximation and a probabilistic boundary region. The intensity distribution of brain MR image is modeled as a mixture of finite number of SN distributions and one uniform distribution. The proposed method incorporates both the expectation-maximization and hidden Markov random field frameworks to provide an accurate and robust segmentation. The performance of the proposed approach, along with a comparison with related methods, is demonstrated on a set of synthetic and real brain MR images for different bias fields and noise levels.

  1. Last three millennia Earth's Magnetic field strength in Mesoamerica and southern United States: Implications in geomagnetism and archaeology

    NASA Astrophysics Data System (ADS)

    Goguitchaichvili, Avto; Ruiz, Rafael García; Pavón-Carrasco, F. Javier; Contreras, Juan Julio Morales; Arechalde, Ana María Soler; Urrutia-Fucugauchi, Jaime

    2018-06-01

    Earth's Magnetic Field variation strength may provide crucial information to understand the geodynamo mechanism and elucidate the conditions on the physics of the Earth's deep interiors. Aimed to reveal the fine characteristics of the geomagnetic field during the last three millennia in Mesoamerica, we analyzed the available absolute geomagnetic intensities associated to absolute radiometric dating as well some ages provided by historical documents. This analysis is achieved using thermoremanent magnetization carried by volcanic lava flows and burned archaeological artefacts. A total of 106 selected intensities from Mesoamerica and other 100 from the southern part of the United States represent the main core of the dataset to construct the variation curve using both combined bootstrap method and temporal penalized B-spline methods. The obtained intensity paleosecular variation curve for Mesoamerica generally disagrees with the values predicted by the global geomagnetic field models. There is rather firm evidence of eastward drift when compared to similar reference curves in Western Europe, Asia and Pacific Ocean. The recent hypothesis about the relationship between the geomagnetic field strength and paleoclimate is also critically analyzed in the light of this new data compilation.

  2. A "two-objective, one-area" procedure in absorption microphotometry and its application using an inverted microscope.

    PubMed

    Chaubal, K A

    1988-08-01

    A 'two-objective, one-area' method and related equations are suggested to measure absorbance of microscopic stained objects. In such work, the measuring field invariably includes an image of the object and some clear area surrounding the image. The total intensity in the two areas is measured photometrically, using two different objectives, and substituted in the equation for absorbance. The equation is independent of the term representing intensity from the clear area and hence the error in the measurement of absorbance is reduced. The limitations of the 'two-objective, one-area' method are discussed and its pragmatic operation described with an experimental setup involving an inverted microscope. The method permits measurement of intensity in a part of a stained cell while the rest of the cell remains in the field of view. The method is applied to measure absorbance in Giemsa stained ascites cells and Feulgen stained liver and Human Amnion cells.

  3. Measuring magnetic field vector by stimulated Raman transitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Wenli; Wei, Rong, E-mail: weirong@siom.ac.cn; Lin, Jinda

    2016-03-21

    We present a method for measuring the magnetic field vector in an atomic fountain by probing the line strength of stimulated Raman transitions. The relative line strength for a Λ-type level system with an existing magnetic field is theoretically analyzed. The magnetic field vector measured by our proposed method is consistent well with that by the traditional bias magnetic field method with an axial resolution of 6.1 mrad and a radial resolution of 0.16 rad. Dependences of the Raman transitions on laser polarization schemes are also analyzed. Our method offers the potential advantages for magnetic field measurement without requiring additional bias fields,more » beyond the limitation of magnetic field intensity, and extending the spatial measurement range. The proposed method can be widely used for measuring magnetic field vector in other precision measurement fields.« less

  4. A Case Study Examining Egypt, Nigeria, and Venezuela and their Flaring Behavior Utilizing VIIRS Satellite Data

    NASA Astrophysics Data System (ADS)

    Englander, J. G.; Austin, A. T.; Brandt, A. R.

    2016-12-01

    The need to quantify flaring by oil and gas fields is receiving more scrutiny, as there has been scientific and regulatory interest in quantifying the greenhouse gas (GHG) impact of oil and gas production. The National Oceanic and Atmospheric Administration (NOAA) has developed a method to track flaring activity using a Visible Infrared Imaging Radiometer Suite (VIIRS) satellite.[1] This reports data on the average size, power, and light intensity of each flare. However, outside of some small studies, the flaring intensity has generally been estimated at the country level.[2]While informative, country-level assessments cannot provide guidance about the sustainability of particular crude streams or products produced. In this work we generate detailed oil-field-level flaring intensities for a number of global oilfield operations. We do this by merging the VIIRS dataset with global oilfield atlases and other spatial data sources. Joining these datasets together with production data allows us to provide better estimates for the GHG intensity of flaring at the field level for these countries.[3]First, we compute flaring intensities at the field level for 75 global oil fields representing approximately 25% of global production. In addition, we examine in detail three oil producing countries known to have high rates of flaring: Egypt, Nigeria, and Venezuela. For these countries we compute the flaring rate for all fields in the country and explore within-and between-country variation. The countries' fields will be analyzed to determine the correlation of flare activity to a certain field type, crude type, region, or production method. [1] Cao, C. "Visible Infrared Imaging Radiometer Suite (VIIRS)." NOAA NPP VIIRS. NOAA, 2013. Web. 30 July 2016. [2] Elvidge, C. D. et al., "A Fifteen Year Record of Global Natural Gas Flaring Derived from Satellite Data," Energies, vol. 2, no. 3, pp. 595-622, Aug. 2009. [3] World Energy Atlas. 6th ed. London: Petroleum Economist, 2011. Print.

  5. Acoustic processing method for MS/MS experiments

    NASA Technical Reports Server (NTRS)

    Whymark, R. R.

    1973-01-01

    Acoustical methods in which intense sound beams can be used to control the position of objects are considered. The position control arises from the radiation force experienced when a body is placed in a sound field. A description of the special properties of intense sound fields useful for position control is followed by a discussion of the more obvious methods of position, namely the use of multiple sound beams. A new type of acoustic position control device is reported that has advantages of simplicity and reliability and utilizes only a single sound beam. Finally a description is given of an experimental single beam levitator, and the results obtained in a number of key levitation experiments.

  6. Optical properties of porous polylactide scaffolds

    NASA Astrophysics Data System (ADS)

    Yusupov, Vladimir I.; Sviridov, Alexander P.; Zhigarkov, Vyacheslav S.; Shubnyy, Andrey G.; Vorobieva, Nataliya N.; Churbanov, Semyon N.; Minaev, Nikita V.; Timashev, Peter S.; Rochev, Yury A.; Bagratashvili, Victor N.

    2018-04-01

    Light field intensity distribution in three-dimensional polylactide scaffolds after irradiation with low-intensity light from one side of the samples has been determined in the visible and near-infrared regions of the spectrum. Two different types of scaffolds manufactured by the methods of supercritical fluid foaming and surface selective laser sintering have been investigated. The problem is solved by numerical calculation according to the Monte Carlo method involving experimentally obtained information about effective optical parameters of the scaffold material. Information about intensity distribution of the incident light in the matrix volume is needed to assess the radiation level for the scaffold cells after photobiostimulation. It has been shown that the formation of the light field in case of strongly scattering media, such as polylactide scaffolds, is determined by anisotropy g and the scattering coefficient μs.

  7. Pair-Wise, Deformable Mirror, Image Plane-Based Diversity Electric Field Estimation for High Contrast Coronagraphy

    NASA Technical Reports Server (NTRS)

    Give'on, Amir; Kern, Brian D.; Shaklan, Stuart

    2011-01-01

    In this paper we describe the complex electric field reconstruction from image plane intensity measurements for high contrast coronagraphic imaging. A deformable mirror (DM) surface is modied with pairs of complementary shapes to create diversity in the image plane of the science camera where the intensity of the light is measured. Along with the Electric Field Conjugation correction algorithm, this estimation method has been used in various high contrast imaging testbeds to achieve the best contrasts to date both in narrow and in broad band light. We present the basic methodology of estimation in easy to follow list of steps, present results from HCIT and raise several open quations we are confronted with using this method.

  8. Image-guided regularization level set evolution for MR image segmentation and bias field correction.

    PubMed

    Wang, Lingfeng; Pan, Chunhong

    2014-01-01

    Magnetic resonance (MR) image segmentation is a crucial step in surgical and treatment planning. In this paper, we propose a level-set-based segmentation method for MR images with intensity inhomogeneous problem. To tackle the initialization sensitivity problem, we propose a new image-guided regularization to restrict the level set function. The maximum a posteriori inference is adopted to unify segmentation and bias field correction within a single framework. Under this framework, both the contour prior and the bias field prior are fully used. As a result, the image intensity inhomogeneity can be well solved. Extensive experiments are provided to evaluate the proposed method, showing significant improvements in both segmentation and bias field correction accuracies as compared with other state-of-the-art approaches. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. TU-H-206-04: An Effective Homomorphic Unsharp Mask Filtering Method to Correct Intensity Inhomogeneity in Daily Treatment MR Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, D; Gach, H; Li, H

    Purpose: The daily treatment MRIs acquired on MR-IGRT systems, like diagnostic MRIs, suffer from intensity inhomogeneity issue, associated with B1 and B0 inhomogeneities. An improved homomorphic unsharp mask (HUM) filtering method, automatic and robust body segmentation, and imaging field-of-view (FOV) detection methods were developed to compute the multiplicative slow-varying correction field and correct the intensity inhomogeneity. The goal is to improve and normalize the voxel intensity so that the images could be processed more accurately by quantitative methods (e.g., segmentation and registration) that require consistent image voxel intensity values. Methods: HUM methods have been widely used for years. A bodymore » mask is required, otherwise the body surface in the corrected image would be incorrectly bright due to the sudden intensity transition at the body surface. In this study, we developed an improved HUM-based correction method that includes three main components: 1) Robust body segmentation on the normalized image gradient map, 2) Robust FOV detection (needed for body segmentation) using region growing and morphologic filters, and 3) An effective implementation of HUM using repeated Gaussian convolution. Results: The proposed method was successfully tested on patient images of common anatomical sites (H/N, lung, abdomen and pelvis). Initial qualitative comparisons showed that this improved HUM method outperformed three recently published algorithms (FCM, LEMS, MICO) in both computation speed (by 50+ times) and robustness (in intermediate to severe inhomogeneity situations). Currently implemented in MATLAB, it takes 20 to 25 seconds to process a 3D MRI volume. Conclusion: Compared to more sophisticated MRI inhomogeneity correction algorithms, the improved HUM method is simple and effective. The inhomogeneity correction, body mask, and FOV detection methods developed in this study would be useful as preprocessing tools for many MRI-related research and clinical applications in radiotherapy. Authors have received research grants from ViewRay and Varian.« less

  10. Full-vector geomagnetic field records from the East Eifel, Germany

    NASA Astrophysics Data System (ADS)

    Monster, Marilyn W. L.; Langemeijer, Jaap; Wiarda, Laura R.; Dekkers, Mark J.; Biggin, Andy J.; Hurst, Elliot A.; Groot, Lennart V. de

    2018-01-01

    To create meaningful models of the geomagnetic field, high-quality directional and intensity input data are needed. However, while it is fairly straightforward to obtain directional data, intensity data are much scarcer, especially for periods before the Holocene. Here, we present data from twelve flows (age range ∼ 200 to ∼ 470 ka) in the East Eifel volcanic field (Germany). These sites had been previously studied and are resampled to further test the recently proposed multi-method palaeointensity approach. Samples are first subjected to classic palaeomagnetic and rock magnetic analyses to optimise the subsequent palaeointensity experiments. Four different palaeointensity methods - IZZI-Thellier, the multispecimen method, calibrated pseudo-Thellier, and microwave-Thellier - are being used in the present study. The latter should be considered as supportive because only one or two specimens per site could be processed. Palaeointensities obtained for ten sites pass our selection criteria: two sites are successful with a single approach, four sites with two approaches, three more sites work with three approaches, and one site with all four approaches. Site-averaged intensity values typically range between 30 and 35 μT. No typically low palaeointensity values are found, in line with paleodirectional results which are compatible with regular palaeosecular variation of the Earth's magnetic field. Results from different methods are remarkably consistent and generally agree well with the values previously reported. They appear to be below the average for the Brunhes chron; there are no indications for relatively higher palaeointensities for units younger than 300 ka. However, our young sites could be close in age, and therefore may not represent the average intensity of the paleofield. Three of our sites are even considered coeval; encouragingly, these do yield the same palaeointensity within uncertainty bounds.

  11. Gravitational Lensing 2.0

    NASA Astrophysics Data System (ADS)

    Wittman, David M.; Benson, Bryant

    2018-06-01

    Weak lensing analyses use the image---the intensity field---of a distant galaxy to infer gravitational effects on that line of sight. What if we analyze the velocity field instead? We show that lensing imprints much more information onto a highly ordered velocity field, such as that of a rotating disk galaxy, than onto an intensity field. This is because shuffling intensity pixels yields a post-lensed image quite similar to an unlensed galaxy with a different orientation, a problem known as "shape noise." We show that velocity field analysis can eliminate shape noise and yield much more precise lensing constraints. Furthermore, convergence as well as shear can be constrained using the same target, and there is no need to assume the weak lensing limit of small convergence. We present Fisher matrix forecasts of the precision achievable with this method. Velocity field observations are expensive, so we derive guidelines for choosing suitable targets by exploring how precision varies with source parameters such as inclination angle and redshift. Finally, we present simulations that support our Fisher matrix forecasts.

  12. Dense motion estimation using regularization constraints on local parametric models.

    PubMed

    Patras, Ioannis; Worring, Marcel; van den Boomgaard, Rein

    2004-11-01

    This paper presents a method for dense optical flow estimation in which the motion field within patches that result from an initial intensity segmentation is parametrized with models of different order. We propose a novel formulation which introduces regularization constraints between the model parameters of neighboring patches. In this way, we provide the additional constraints for very small patches and for patches whose intensity variation cannot sufficiently constrain the estimation of their motion parameters. In order to preserve motion discontinuities, we use robust functions as a regularization mean. We adopt a three-frame approach and control the balance between the backward and forward constraints by a real-valued direction field on which regularization constraints are applied. An iterative deterministic relaxation method is employed in order to solve the corresponding optimization problem. Experimental results show that the proposed method deals successfully with motions large in magnitude, motion discontinuities, and produces accurate piecewise-smooth motion fields.

  13. An inverse method for estimation of the acoustic intensity in the focused ultrasound field

    NASA Astrophysics Data System (ADS)

    Yu, Ying; Shen, Guofeng; Chen, Yazhu

    2017-03-01

    Recently, a new method which based on infrared (IR) imaging was introduced. Authors (A. Shaw, et al and M. R. Myers, et al) have established the relationship between absorber surface temperature and incident intensity during the absorber was irradiated by the transducer. Theoretically, the shorter irradiating time makes estimation more in line with the actual results. But due to the influence of noise and performance constrains of the IR camera, it is hard to identify the difference in temperature with short heating time. An inverse technique is developed to reconstruct the incident intensity distribution using the surface temperature with shorter irradiating time. The algorithm is validated using surface temperature data generated numerically from three-layer model which was developed to calculate the acoustic field in the absorber, the absorbed acoustic energy during the irradiation, and the consequent temperature elevation. To assess the effect of noisy data on the reconstructed intensity profile, in the simulations, the different noise levels with zero mean were superposed on the exact data. Simulation results demonstrate that the inversion technique can provide fairly reliable intensity estimation with satisfactory accuracy.

  14. A level set method for multiple sclerosis lesion segmentation.

    PubMed

    Zhao, Yue; Guo, Shuxu; Luo, Min; Shi, Xue; Bilello, Michel; Zhang, Shaoxiang; Li, Chunming

    2018-06-01

    In this paper, we present a level set method for multiple sclerosis (MS) lesion segmentation from FLAIR images in the presence of intensity inhomogeneities. We use a three-phase level set formulation of segmentation and bias field estimation to segment MS lesions and normal tissue region (including GM and WM) and CSF and the background from FLAIR images. To save computational load, we derive a two-phase formulation from the original multi-phase level set formulation to segment the MS lesions and normal tissue regions. The derived method inherits the desirable ability to precisely locate object boundaries of the original level set method, which simultaneously performs segmentation and estimation of the bias field to deal with intensity inhomogeneity. Experimental results demonstrate the advantages of our method over other state-of-the-art methods in terms of segmentation accuracy. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Nonadiabatic dynamics in intense continuous wave laser fields and real-time observation of the associated wavepacket bifurcation in terms of spectrogram of induced photon emission.

    PubMed

    Mizuno, Yuta; Arasaki, Yasuki; Takatsuka, Kazuo

    2016-11-14

    We propose a theoretical principle to directly monitor the bifurcation of quantum wavepackets passing through nonadiabatic regions of a molecule that is placed in intense continuous wave (CW) laser fields. This idea makes use of the phenomenon of laser-driven photon emission from molecules that can undergo nonadiabatic transitions between ionic and covalent potential energy surfaces like Li + F - and LiF. The resultant photon emission spectra are of anomalous yet characteristic frequency and intensity, if pumped to an energy level in which the nonadiabatic region is accessible and placed in a CW laser field. The proposed method is designed to take the time-frequency spectrogram with an appropriate time-window from this photon emission to detect the time evolution of the frequency and intensity, which depends on the dynamics and location of the relevant nuclear wavepackets. This method is specifically designed for the study of dynamics in intense CW laser fields and is rather limited in scope than other techniques for femtosecond chemical dynamics in vacuum. The following characteristic features of dynamics can be mapped onto the spectrogram: (1) the period of driven vibrational motion (temporally confined vibrational states in otherwise dissociative channels, the period and other states of which dramatically vary depending on the CW driving lasers applied), (2) the existence of multiple nuclear wavepackets running individually on the field-dressed potential energy surfaces, (3) the time scale of coherent interaction between the nuclear wavepackets running on ionic and covalent electronic states after their branching (the so-called coherence time in the terminology of the theory of nonadiabatic interaction), and so on.

  16. Nonadiabatic dynamics in intense continuous wave laser fields and real-time observation of the associated wavepacket bifurcation in terms of spectrogram of induced photon emission

    NASA Astrophysics Data System (ADS)

    Mizuno, Yuta; Arasaki, Yasuki; Takatsuka, Kazuo

    2016-11-01

    We propose a theoretical principle to directly monitor the bifurcation of quantum wavepackets passing through nonadiabatic regions of a molecule that is placed in intense continuous wave (CW) laser fields. This idea makes use of the phenomenon of laser-driven photon emission from molecules that can undergo nonadiabatic transitions between ionic and covalent potential energy surfaces like Li+ F- and LiF. The resultant photon emission spectra are of anomalous yet characteristic frequency and intensity, if pumped to an energy level in which the nonadiabatic region is accessible and placed in a CW laser field. The proposed method is designed to take the time-frequency spectrogram with an appropriate time-window from this photon emission to detect the time evolution of the frequency and intensity, which depends on the dynamics and location of the relevant nuclear wavepackets. This method is specifically designed for the study of dynamics in intense CW laser fields and is rather limited in scope than other techniques for femtosecond chemical dynamics in vacuum. The following characteristic features of dynamics can be mapped onto the spectrogram: (1) the period of driven vibrational motion (temporally confined vibrational states in otherwise dissociative channels, the period and other states of which dramatically vary depending on the CW driving lasers applied), (2) the existence of multiple nuclear wavepackets running individually on the field-dressed potential energy surfaces, (3) the time scale of coherent interaction between the nuclear wavepackets running on ionic and covalent electronic states after their branching (the so-called coherence time in the terminology of the theory of nonadiabatic interaction), and so on.

  17. Herpin effective media resonant underlayers and resonant overlayer designs for ultra-high NA interference lithography.

    PubMed

    Bourke, Levi; Blaikie, Richard J

    2017-12-01

    Dielectric waveguide resonant underlayers are employed in ultra-high NA interference photolithography to effectively double the depth of field. Generally a single high refractive index waveguiding layer is employed. Here multilayer Herpin effective medium methods are explored to develop equivalent multilayer waveguiding layers. Herpin equivalent resonant underlayers are shown to be suitable replacements provided at least one layer within the Herpin trilayer supports propagating fields. In addition, a method of increasing the intensity incident upon the photoresist using resonant overlayers is also developed. This method is shown to greatly enhance the intensity within the photoresist making the use of thicker, safer, non-absorbing, low refractive index matching liquids potentially suitable for large-scale applications.

  18. Method to mosaic gratings that relies on analysis of far-field intensity patterns in two wavelengths

    NASA Astrophysics Data System (ADS)

    Hu, Yao; Zeng, Lijiang; Li, Lifeng

    2007-01-01

    We propose an experimental method to coherently mosaic two planar diffraction gratings. The method uses a Twyman-Green interferometer to guarantee the planar parallelism of the two sub-aperture gratings, and obtains the in-plane rotational error and the two translational errors from analysis of the far-field diffraction intensity patterns in two alignment wavelengths. We adjust the relative attitude and position of the two sub-aperture gratings to produce Airy disk diffraction patterns in both wavelengths. In our experiment, the repeatability of in-plane rotation adjustment was 2.35 μrad and that of longitudinal adjustment was 0.11 μm. The accuracy of lateral adjustment was about 2.9% of the grating period.

  19. Estimation of coupling efficiency of optical fiber by far-field method

    NASA Astrophysics Data System (ADS)

    Kataoka, Keiji

    2010-09-01

    Coupling efficiency to a single-mode optical fiber can be estimated with the field amplitudes at far-field of an incident beam and optical fiber mode. We call it the calculation by far-field method (FFM) in this paper. The coupling efficiency by FFM is formulated including effects of optical aberrations, vignetting of the incident beam, and misalignments of the optical fiber such as defocus, lateral displacements, and angle deviation in arrangement of the fiber. As the results, it is shown the coupling efficiency is proportional to the central intensity of the focused spot, i.e., Strehl intensity of a virtual beam determined by the incident beam and mode of the optical fiber. Using the FFM, a typical optics in which a laser beam is coupled to an optical fiber with a lens of finite numerical aperture (NA) is analyzed for several cases of amplitude distributions of the incident light.

  20. Laser-pulse compression using magnetized plasmas

    DOE PAGES

    Shi, Yuan; Qin, Hong; Fisch, Nathaniel J.

    2017-02-28

    Proposals to reach the next generation of laser intensities through Raman or Brillouin backscattering have centered on optical frequencies. Higher frequencies are beyond the range of such methods mainly due to the wave damping that accompanies the higher-density plasmas necessary for compressing higher frequency lasers. However, we find that an external magnetic field transverse to the direction of laser propagation can reduce the required plasma density. Using parametric interactions in magnetized plasmas to mediate pulse compression, both reduces the wave damping and alleviates instabilities, thereby enabling higher frequency or lower intensity pumps to produce pulses at higher intensities and longermore » durations. Finally, in addition to these theoretical advantages, our method in which strong uniform magnetic fields lessen the need for high-density uniform plasmas also lessens key engineering challenges or at least exchanges them for different challenges.« less

  1. Optimization of infrared two-color multicycle field synthesis for intense-isolated-attosecond-pulse generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lan Pengfei; Takahashi, Eiji J.; Midorikawa, Katsumi

    2010-11-15

    We present the optimization of the two-color synthesis method for generating an intense isolated attosecond pulse (IAP) in the multicycle regime. By mixing an infrared assistant pulse with a Ti:sapphire main pulse, we show that an IAP can be produced using a multicycle two-color pulse with a duration longer than 30 fs. We also discuss the influence of the carrier-envelope phase (CEP) and the relative intensity on the generation of IAPs. By optimizing the wavelength of the assistant field, IAP generation becomes insensitive to the CEP slip. Therefore, the optimized two-color method enables us to relax the requirements of pulsemore » duration and easily produce the IAP with a conventional multicycle laser pulse. In addition, it enables us to markedly suppress the ionization of the harmonic medium. This is a major advantage for efficiently generating intense IAPs from a neutral medium by applying the appropriate phase-matching and energy-scaling techniques.« less

  2. Features of the photometry of the superposition of coherent vector electromagnetic waves

    NASA Astrophysics Data System (ADS)

    Sakhnovskyj, Mykhajlo Yu.; Tymochko, Bogdan M.; Rudeichuk, Volodymyr M.

    2018-01-01

    In the paper we propose a general approach to the calculation of the forming the intensity and polarization fields of the superposition of arbitrary coherent vector beams at points of a given reference plane. The method of measuring photometric parameters of a field, formed in the neighborhood of an arbitrary point of the plane of analysis by minimizing the values of irradiance in the vicinity of a given point (method of zero-amplitude at a given point), which is achieved by superimposing on it the reference wave with the controlled values of intensity, polarization state, phase, and angle of incidence, is proposed.

  3. Tls Field Data Based Intensity Correction for Forest Environments

    NASA Astrophysics Data System (ADS)

    Heinzel, J.; Huber, M. O.

    2016-06-01

    Terrestrial laser scanning (TLS) is increasingly used for forestry applications. Besides the three dimensional point coordinates, the 'intensity' of the reflected signal plays an important role in forestry and vegetation studies. The benefit of the signal intensity is caused by the wavelength of the laser that is within the near infrared (NIR) for most scanners. The NIR is highly indicative for various vegetation characteristics. However, the intensity as recorded by most terrestrial scanners is distorted by both external and scanner specific factors. Since details about system internal alteration of the signal are often unknown to the user, model driven approaches are impractical. On the other hand, existing data driven calibration procedures require laborious acquisition of separate reference datasets or areas of homogenous reflection characteristics from the field data. In order to fill this gap, the present study introduces an approach to correct unwanted intensity variations directly from the point cloud of the field data. The focus is on the variation over range and sensor specific distortions. Instead of an absolute calibration of the values, a relative correction within the dataset is sufficient for most forestry applications. Finally, a method similar to time series detrending is presented with the only pre-condition of a relative equal distribution of forest objects and materials over range. Our test data covers 50 terrestrial scans captured with a FARO Focus 3D S120 scanner using a laser wavelength of 905 nm. Practical tests demonstrate that our correction method removes range and scanner based alterations of the intensity.

  4. Method and apparatus for measuring electromagnetic radiation

    NASA Technical Reports Server (NTRS)

    Been, J. F. (Inventor)

    1973-01-01

    An apparatus and method are described in which the capacitance of a semiconductor junction subjected to an electromagnetic radiation field is utilized to indicate the intensity or strength of the radiation.

  5. Position, rotation, and intensity invariant recognizing method

    DOEpatents

    Ochoa, E.; Schils, G.F.; Sweeney, D.W.

    1987-09-15

    A method for recognizing the presence of a particular target in a field of view which is target position, rotation, and intensity invariant includes the preparing of a target-specific invariant filter from a combination of all eigen-modes of a pattern of the particular target. Coherent radiation from the field of view is then imaged into an optical correlator in which the invariant filter is located. The invariant filter is rotated in the frequency plane of the optical correlator in order to produce a constant-amplitude rotational response in a correlation output plane when the particular target is present in the field of view. Any constant response is thus detected in the output plane to determine whether a particular target is present in the field of view. Preferably, a temporal pattern is imaged in the output plane with a optical detector having a plurality of pixels and a correlation coefficient for each pixel is determined by accumulating the intensity and intensity-square of each pixel. The orbiting of the constant response caused by the filter rotation is also preferably eliminated either by the use of two orthogonal mirrors pivoted correspondingly to the rotation of the filter or the attaching of a refracting wedge to the filter to remove the offset angle. Detection is preferably performed of the temporal pattern in the output plane at a plurality of different angles with angular separation sufficient to decorrelate successive frames. 1 fig.

  6. Compensation for the phase-type spatial periodic modulation of the near-field beam at 1053 nm

    NASA Astrophysics Data System (ADS)

    Gao, Yaru; Liu, Dean; Yang, Aihua; Tang, Ruyu; Zhu, Jianqiang

    2017-10-01

    A phase-only spatial light modulator is used to provide and compensate for the spatial periodic modulation (SPM) of the near-field beam at the near infrared at 1053nm wavelength with an improved iterative weight-based method. The transmission characteristics of the incident beam has been changed by a spatial light modulator (SLM) to shape the spatial intensity of the output beam. The propagation and reverse propagation of the light in free space are two important processes in the iterative process. The based theory is the beam angular spectrum transmit formula (ASTF) and the principle of the iterative weight-based method. We have made two improvements to the originally proposed iterative weight-based method. We select the appropriate parameter by choosing the minimum value of the output beam contrast degree and use the MATLAB built-in angle function to acquire the corresponding phase of the light wave function. The required phase that compensates for the intensity distribution of the incident SPM beam is iterated by this algorithm, which can decrease the magnitude of the SPM of the intensity on the observation plane. The experimental results show that the phase-type SPM of the near-field beam is subject to a certain restriction. We have also analyzed some factors that make the results imperfect. The experiment results verifies the possible applicability of this iterative weight-based method to compensate for the SPM of the near-field beam.

  7. Optical gain for the interband optical transition in InAsP/InP quantum well wire in the influence of laser field intensity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saravanan, S.; Peter, A. John, E-mail: a.john.peter@gmail.com

    Intense high frequency laser field induced electronic and optical properties of heavy hole exciton in the InAs{sub 0.8}P{sub 0.2}/InP quantum wire is studied taking into account the geometrical confinement effect. Laser field related exciton binding energies and the optical band gap in the InAs{sub 0.8}P{sub 0.2}/InP quantum well wire are investigated. The optical gain, for the interband optical transition, as a function of photon energy, in the InAs{sub 0.8}P{sub 0.2}/InP quantum wire, is obtained in the presence of intense laser field. The compact density matrix method is employed to obtain the optical gain. The obtained optical gain in group III-Vmore » narrow quantum wire can be applied for achieving the preferred telecommunication wavelength.« less

  8. Optical response in a laser-driven quantum pseudodot system

    NASA Astrophysics Data System (ADS)

    Kilic, D. Gul; Sakiroglu, S.; Ungan, F.; Yesilgul, U.; Kasapoglu, E.; Sari, H.; Sokmen, I.

    2017-03-01

    We investigate theoretically the intense laser-induced optical absorption coefficients and refractive index changes in a two-dimensional quantum pseudodot system under an uniform magnetic field. The effects of non-resonant, monochromatic intense laser field upon the system are treated within the framework of high-frequency Floquet approach in which the system is supposed to be governed by a laser-dressed potential. Linear and nonlinear absorption coefficients and relative changes in the refractive index are obtained by means of the compact-density matrix approach and iterative method. The results of numerical calculations for a typical GaAs quantum dot reveal that the optical response depends strongly on the magnitude of external magnetic field and characteristic parameters of the confinement potential. Moreover, we have demonstrated that the intense laser field modifies the confinement and thereby causes remarkable changes in the linear and nonlinear optical properties of the system.

  9. Direct monitoring of erythrocytes aggregation under the effect of the low-intensity magnetic field by measuring light transmission at wavelength 800 nm

    NASA Astrophysics Data System (ADS)

    Elblbesy, Mohamed A.

    2017-12-01

    Interacting electromagnetic field with the living organisms and cells became of the great interest in the last decade. Erythrocytes are the most common types of the blood cells and have unique rheological, electrical, and magnetic properties. Aggregation is one of the important characteristics of the erythrocytes which has a great impact in some clinical cases. The present study introduces a simple method to monitor the effect of static magnetic field on erythrocytes aggregation using light transmission. Features were extracted from the time course curve of the light transmission through the whole blood under different intensities of the magnetic field. The findings of this research showed that static magnetic field could influence the size and the rate of erythrocytes aggregation. The strong correlations confirmed these results between the static magnetic field intensity and both the time of aggregation and sedimentation of erythrocytes. From this study, it can be concluded that static magnetic field can be used to modify the mechanisms of erythrocytes aggregation.

  10. Electron acceleration in combined intense laser fields and self-consistent quasistatic fields in plasma

    NASA Astrophysics Data System (ADS)

    Qiao, Bin; He, X. T.; Zhu, Shao-ping; Zheng, C. Y.

    2005-08-01

    The acceleration of plasma electron in intense laser-plasma interaction is investigated analytically and numerically, where the conjunct effect of laser fields and self-consistent spontaneous fields (including quasistatic electric field Esl, azimuthal quasistatic magnetic field Bsθ and the axial one Bsz) is completely considered for the first time. An analytical relativistic electron fluid model using test-particle method has been developed to give an explicit analysis about the effects of each quasistatic fields. The ponderomotive accelerating and scattering effects on electrons are partly offset by Esl, furthermore, Bsθ pinches and Bsz collimates electrons along the laser axis. The dependences of energy gain and scattering angle of electron on its initial radial position, plasma density, and laser intensity are, respectively, studied. The qualities of the relativistic electron beam (REB), such as energy spread, beam divergence, and emitting (scattering) angle, generated by both circularly polarized (CP) and linearly polarized (LP) lasers are studied. Results show CP laser is of clear advantage comparing to LP laser for it can generate a better REB in collimation and stabilization.

  11. Computation of transmitted and received B1 fields in magnetic resonance imaging.

    PubMed

    Milles, Julien; Zhu, Yue Min; Chen, Nan-Kuei; Panych, Lawrence P; Gimenez, Gérard; Guttmann, Charles R G

    2006-05-01

    Computation of B1 fields is a key issue for determination and correction of intensity nonuniformity in magnetic resonance images. This paper presents a new method for computing transmitted and received B1 fields. Our method combines a modified MRI acquisition protocol and an estimation technique based on the Levenberg-Marquardt algorithm and spatial filtering. It enables accurate estimation of transmitted and received B1 fields for both homogeneous and heterogeneous objects. The method is validated using numerical simulations and experimental data from phantom and human scans. The experimental results are in agreement with theoretical expectations.

  12. Method for evaluating human exposure to 60 HZ electric fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deno, D.W.; Silva, M.

    1984-07-01

    This paper describes a method that has been successfully used to evaluate human exposure to 60 Hz electric fields. An exposure measuring system that uses an electric field sensor vest and data collection instrumentation is presented. Exposure concepts and activity factors are discussed and experimental data collected with the exposure system are provided. This method can be used to measure exposure to a wide range of electric field with intensities from less than 1 V/m to more than 10 kV/m. Results may be translated to characterize various exposure criteria (time histogram of unperturbed field, surface fields, internal current density, totalmore » body current, etc).« less

  13. An optical flow-based method for velocity field of fluid flow estimation

    NASA Astrophysics Data System (ADS)

    Głomb, Grzegorz; Świrniak, Grzegorz; Mroczka, Janusz

    2017-06-01

    The aim of this paper is to present a method for estimating flow-velocity vector fields using the Lucas-Kanade algorithm. The optical flow measurements are based on the Particle Image Velocimetry (PIV) technique, which is commonly used in fluid mechanics laboratories in both research institutes and industry. Common approaches for an optical characterization of velocity fields base on computation of partial derivatives of the image intensity using finite differences. Nevertheless, the accuracy of velocity field computations is low due to the fact that an exact estimation of spatial derivatives is very difficult in presence of rapid intensity changes in the PIV images, caused by particles having small diameters. The method discussed in this paper solves this problem by interpolating the PIV images using Gaussian radial basis functions. This provides a significant improvement in the accuracy of the velocity estimation but, more importantly, allows for the evaluation of the derivatives in intermediate points between pixels. Numerical analysis proves that the method is able to estimate even a separate vector for each particle with a 5× 5 px2 window, whereas a classical correlation-based method needs at least 4 particle images. With the use of a specialized multi-step hybrid approach to data analysis the method improves the estimation of the particle displacement far above 1 px.

  14. Monolayer phosphorene under time-dependent magnetic field

    NASA Astrophysics Data System (ADS)

    Nascimento, J. P. G.; Aguiar, V.; Guedes, I.

    2018-02-01

    We obtain the exact wave function of a monolayer phosphorene under a low-intensity time-dependent magnetic field using the dynamical invariant method. We calculate the quantum-mechanical energy expectation value and the transition probability for a constant and an oscillatory magnetic field. For the former we observe that the Landau level energy varies linearly with the quantum numbers n and m and the magnetic field intensity B0. No transition takes place. For the latter, we observe that the energy oscillates in time, increasing linearly with the Landau level n and m and nonlinearly with the magnetic field. The (k , l) →(n , m) transitions take place only for l = m. We investigate the (0,0) →(n , 0) and (1 , l) and (2 , l) probability transitions.

  15. Complex dark-field contrast and its retrieval in x-ray phase contrast imaging implemented with Talbot interferometry.

    PubMed

    Yang, Yi; Tang, Xiangyang

    2014-10-01

    Under the existing theoretical framework of x-ray phase contrast imaging methods implemented with Talbot interferometry, the dark-field contrast refers to the reduction in interference fringe visibility due to small-angle x-ray scattering of the subpixel microstructures of an object to be imaged. This study investigates how an object's subpixel microstructures can also affect the phase of the intensity oscillations. Instead of assuming that the object's subpixel microstructures distribute in space randomly, the authors' theoretical derivation starts by assuming that an object's attenuation projection and phase shift vary at a characteristic size that is not smaller than the period of analyzer grating G₂ and a characteristic length dc. Based on the paraxial Fresnel-Kirchhoff theory, the analytic formulae to characterize the zeroth- and first-order Fourier coefficients of the x-ray irradiance recorded at each detector cell are derived. Then the concept of complex dark-field contrast is introduced to quantify the influence of the object's microstructures on both the interference fringe visibility and the phase of intensity oscillations. A method based on the phase-attenuation duality that holds for soft tissues and high x-ray energies is proposed to retrieve the imaginary part of the complex dark-field contrast for imaging. Through computer simulation study with a specially designed numerical phantom, they evaluate and validate the derived analytic formulae and the proposed retrieval method. Both theoretical analysis and computer simulation study show that the effect of an object's subpixel microstructures on x-ray phase contrast imaging method implemented with Talbot interferometry can be fully characterized by a complex dark-field contrast. The imaginary part of complex dark-field contrast quantifies the influence of the object's subpixel microstructures on the phase of intensity oscillations. Furthermore, at relatively high energies, for soft tissues it can be retrieved for imaging with a method based on the phase-attenuation duality. The analytic formulae derived in this work to characterize the complex dark-field contrast in x-ray phase contrast imaging method implemented with Talbot interferometry are of significance, which may initiate more activities in the research and development of x-ray differential phase contrast imaging for extensive biomedical applications.

  16. 3D SAPIV particle field reconstruction method based on adaptive threshold.

    PubMed

    Qu, Xiangju; Song, Yang; Jin, Ying; Li, Zhenhua; Wang, Xuezhen; Guo, ZhenYan; Ji, Yunjing; He, Anzhi

    2018-03-01

    Particle image velocimetry (PIV) is a necessary flow field diagnostic technique that provides instantaneous velocimetry information non-intrusively. Three-dimensional (3D) PIV methods can supply the full understanding of a 3D structure, the complete stress tensor, and the vorticity vector in the complex flows. In synthetic aperture particle image velocimetry (SAPIV), the flow field can be measured with large particle intensities from the same direction by different cameras. During SAPIV particle reconstruction, particles are commonly reconstructed by manually setting a threshold to filter out unfocused particles in the refocused images. In this paper, the particle intensity distribution in refocused images is analyzed, and a SAPIV particle field reconstruction method based on an adaptive threshold is presented. By using the adaptive threshold to filter the 3D measurement volume integrally, the three-dimensional location information of the focused particles can be reconstructed. The cross correlations between images captured from cameras and images projected by the reconstructed particle field are calculated for different threshold values. The optimal threshold is determined by cubic curve fitting and is defined as the threshold value that causes the correlation coefficient to reach its maximum. The numerical simulation of a 16-camera array and a particle field at two adjacent time events quantitatively evaluates the performance of the proposed method. An experimental system consisting of a camera array of 16 cameras was used to reconstruct the four adjacent frames in a vortex flow field. The results show that the proposed reconstruction method can effectively reconstruct the 3D particle fields.

  17. Nonperturbative model for optical response under intense periodic fields with application to graphene in a strong perpendicular magnetic field

    NASA Astrophysics Data System (ADS)

    Cheng, J. L.; Guo, C.

    2018-05-01

    Graphene exhibits extremely strong optical nonlinearity in a perpendicular magnetic field, the optical conductivities show complicated field dependence at a moderate light intensity, and the perturbation theory fails. The full optical currents induced by a periodic field are nonperturbatively investigated in an equation-of-motion framework based on the Floquet theorem, with the scattering described phenomenologically. The nonlinear responses are understood in terms of the dressed electronic states, or Floquet states, which could be characterized by a weak probe light field. The method is illustrated for a magnetic field at 5 T and a driving field with photon energy 0.05 eV. Our results show that the perturbation theory works for weak fields <3 kV/cm, confirming the unusual strong light-matter interaction for Landau levels of graphene. Our approach can be easily extended to other systems.

  18. Optimal spinneret layout in Von Koch curves of fractal theory based needleless electrospinning process

    NASA Astrophysics Data System (ADS)

    Yang, Wenxiu; Liu, Yanbo; Zhang, Ligai; Cao, Hong; Wang, Yang; Yao, Jinbo

    2016-06-01

    Needleless electrospinning technology is considered as a better avenue to produce nanofibrous materials at large scale, and electric field intensity and its distribution play an important role in controlling nanofiber diameter and quality of the nanofibrous web during electrospinning. In the current study, a novel needleless electrospinning method was proposed based on Von Koch curves of Fractal configuration, simulation and analysis on electric field intensity and distribution in the new electrospinning process were performed with Finite element analysis software, Comsol Multiphysics 4.4, based on linear and nonlinear Von Koch fractal curves (hereafter called fractal models). The result of simulation and analysis indicated that Second level fractal structure is the optimal linear electrospinning spinneret in terms of field intensity and uniformity. Further simulation and analysis showed that the circular type of Fractal spinneret has better field intensity and distribution compared to spiral type of Fractal spinneret in the nonlinear Fractal electrospinning technology. The electrospinning apparatus with the optimal Von Koch fractal spinneret was set up to verify the theoretical analysis results from Comsol simulation, achieving more uniform electric field distribution and lower energy cost, compared to the current needle and needleless electrospinning technologies.

  19. A Variational Approach to Simultaneous Image Segmentation and Bias Correction.

    PubMed

    Zhang, Kaihua; Liu, Qingshan; Song, Huihui; Li, Xuelong

    2015-08-01

    This paper presents a novel variational approach for simultaneous estimation of bias field and segmentation of images with intensity inhomogeneity. We model intensity of inhomogeneous objects to be Gaussian distributed with different means and variances, and then introduce a sliding window to map the original image intensity onto another domain, where the intensity distribution of each object is still Gaussian but can be better separated. The means of the Gaussian distributions in the transformed domain can be adaptively estimated by multiplying the bias field with a piecewise constant signal within the sliding window. A maximum likelihood energy functional is then defined on each local region, which combines the bias field, the membership function of the object region, and the constant approximating the true signal from its corresponding object. The energy functional is then extended to the whole image domain by the Bayesian learning approach. An efficient iterative algorithm is proposed for energy minimization, via which the image segmentation and bias field correction are simultaneously achieved. Furthermore, the smoothness of the obtained optimal bias field is ensured by the normalized convolutions without extra cost. Experiments on real images demonstrated the superiority of the proposed algorithm to other state-of-the-art representative methods.

  20. Infrared non-destructive evaluation method and apparatus

    DOEpatents

    Baleine, Erwan; Erwan, James F; Lee, Ching-Pang; Stinelli, Stephanie

    2014-10-21

    A method of nondestructive evaluation and related system. The method includes arranging a test piece (14) having an internal passage (18) and an external surface (15) and a thermal calibrator (12) within a field of view (42) of an infrared sensor (44); generating a flow (16) of fluid characterized by a fluid temperature; exposing the test piece internal passage (18) and the thermal calibrator (12) to fluid from the flow (16); capturing infrared emission information of the test piece external surface (15) and of the thermal calibrator (12) simultaneously using the infrared sensor (44), wherein the test piece infrared emission information includes emission intensity information, and wherein the thermal calibrator infrared emission information includes a reference emission intensity associated with the fluid temperature; and normalizing the test piece emission intensity information against the reference emission intensity.

  1. Brain MR image segmentation based on an improved active contour model

    PubMed Central

    Meng, Xiangrui; Gu, Wenya; Zhang, Jianwei

    2017-01-01

    It is often a difficult task to accurately segment brain magnetic resonance (MR) images with intensity in-homogeneity and noise. This paper introduces a novel level set method for simultaneous brain MR image segmentation and intensity inhomogeneity correction. To reduce the effect of noise, novel anisotropic spatial information, which can preserve more details of edges and corners, is proposed by incorporating the inner relationships among the neighbor pixels. Then the proposed energy function uses the multivariate Student's t-distribution to fit the distribution of the intensities of each tissue. Furthermore, the proposed model utilizes Hidden Markov random fields to model the spatial correlation between neigh-boring pixels/voxels. The means of the multivariate Student's t-distribution can be adaptively estimated by multiplying a bias field to reduce the effect of intensity inhomogeneity. In the end, we reconstructed the energy function to be convex and calculated it by using the Split Bregman method, which allows our framework for random initialization, thereby allowing fully automated applications. Our method can obtain the final result in less than 1 second for 2D image with size 256 × 256 and less than 300 seconds for 3D image with size 256 × 256 × 171. The proposed method was compared to other state-of-the-art segmentation methods using both synthetic and clinical brain MR images and increased the accuracies of the results more than 3%. PMID:28854235

  2. A Latent Heat Retrieval and its Effects on the Intensity and Structure Change of Hurricane Guillermo (1997). Part I: The Algorithm and Observations.

    NASA Technical Reports Server (NTRS)

    Guimond, Stephen R.; Bourassa, mark A.; Reasor, Paul D.

    2011-01-01

    The release of latent heat in clouds is an essential part of the formation and I intensification ohurricanes. The community knows very little about the intensity and structure of latent heating due largely to inadequate observations. In this paper, a new method for retrieving the latent heating field in hurricanes from airborne Dopple radar is presented and fields from rapidly intensifying Hurricane Guillermo (1997) are shown.

  3. Extracting physical quantities from BES data

    NASA Astrophysics Data System (ADS)

    Fox, Michael; Field, Anthony; Schekochihin, Alexander; van Wyk, Ferdinand; MAST Team

    2015-11-01

    We propose a method to extract the underlying physical properties of turbulence from measurements, thereby facilitating quantitative comparisons between theory and experiment. Beam Emission Spectroscopy (BES) diagnostics record fluctuating intensity time series, which are related to the density field in the plasma through Point-Spread Functions (PSFs). Assuming a suitable form for the correlation function of the underlying turbulence, analytical expressions are derived that relate the correlation parameters of the intensity field: the radial and poloidal correlation lengths and wavenumbers, the correlation time and the fluctuation amplitude, to the equivalent correlation properties of the density field. In many cases, the modification caused by the PSFs is substantial enough to change conclusions about physics. Our method is tested by applying PSFs to the ``real'' density field, generated by non-linear gyrokinetic simulations of MAST, to create synthetic turbulence data, from which the method successfully recovers the correlation function of the ``real'' density field. This method is applied to BES data from MAST to determine the scaling of the 2D structure of the ion-scale turbulence with equilibrium parameters, including the ExB flow shear. Work funded by the Euratom research and training programme 2014-2018 under grant agreement No 633053 and from the RCUK Energy Programme [grant number EP/I501045].

  4. Repeated sprints, high-intensity interval training, small-sided games: theory and application to field sports.

    PubMed

    Hoffmann, James J; Reed, Jacob P; Leiting, Keith; Chiang, Chieh-Ying; Stone, Michael H

    2014-03-01

    Due to the broad spectrum of physical characteristics necessary for success in field sports, numerous training modalities have been used develop physical preparedness. Sports like rugby, basketball, lacrosse, and others require athletes to be not only strong and powerful but also aerobically fit and able to recover from high-intensity intermittent exercise. This provides coaches and sport scientists with a complex range of variables to consider when developing training programs. This can often lead to confusion and the misuse of training modalities, particularly in the development of aerobic and anaerobic conditioning. This review outlines the benefits and general adaptations to 3 commonly used and effective conditioning methods: high-intensity interval training, repeated-sprint training, and small-sided games. The goals and outcomes of these training methods are discussed, and practical implementations strategies for coaches and sport scientists are provided.

  5. Novel Parallelized Electroporation by Electrostatic Manipulation of a Water-in-Oil Droplet as a Microreactor

    PubMed Central

    Takahashi, Shota; Asada, Atsushi; Matsuo, Minako; Kishikawa, Kenta; Mizuno, Akira

    2015-01-01

    Electroporation is the most widely used transfection method for delivery of cell-impermeable molecules into cells. We developed a novel gene transfection method, water-in-oil (W/O) droplet electroporation, using dielectric oil and an aqueous droplet containing mammalian cells and transgene DNA. When a liquid droplet suspended between a pair of electrodes in dielectric oil is exposed to a DC electric field, the droplet moves between the pair of electrodes periodically and droplet deformation occurs under the intense DC electric field. During electrostatic manipulation of the droplet, the local intense electric field and instantaneous short circuit via the droplet due to droplet deformation facilitate gene transfection. This method has several advantages over conventional transfection techniques, including co-transfection of multiple transgene DNAs into even as few as 103 cells, transfection into differentiated neural cells, and the capable establishment of stable cell lines. In addition, there have been improvements in W/O droplet electroporation electrodes for disposable 96-well plates making them suitable for concurrent performance without thermal loading by a DC electric field. This technique will lead to the development of cell transfection methods for novel regenerative medicine and gene therapy. PMID:26649904

  6. Labor efficiency and intensity of land use in rice production: an example from Kalimantan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Padoch, C.

    1986-09-01

    The ''Boserup hypothesis'' contends that land-intensive systems of agriculture will be adopted only when high population density precludes the use of land-extensive methods. In the Kerayan District of East Kalimantan (Indonesia) the Lun Dayeh practice permanent-field rice cultivation despite very low human densities. An examination of the relative labor efficiencies of shifting and permanent-field agriculture in the Kerayan, as well as of local environmental and historical variables, explains why this ''anomalous'' situation exists. It is argued that since relative success in production of rice by shifting- and permanent-field irrigated methods depends on many natural and social conditions other than levelsmore » of population density, the ''environment-free'' Boserup hypothesis cannot adequately explain or predict the occurrence of particular forms of rice agriculture.« less

  7. An improved level set method for brain MR images segmentation and bias correction.

    PubMed

    Chen, Yunjie; Zhang, Jianwei; Macione, Jim

    2009-10-01

    Intensity inhomogeneities cause considerable difficulty in the quantitative analysis of magnetic resonance (MR) images. Thus, bias field estimation is a necessary step before quantitative analysis of MR data can be undertaken. This paper presents a variational level set approach to bias correction and segmentation for images with intensity inhomogeneities. Our method is based on an observation that intensities in a relatively small local region are separable, despite of the inseparability of the intensities in the whole image caused by the overall intensity inhomogeneity. We first define a localized K-means-type clustering objective function for image intensities in a neighborhood around each point. The cluster centers in this objective function have a multiplicative factor that estimates the bias within the neighborhood. The objective function is then integrated over the entire domain to define the data term into the level set framework. Our method is able to capture bias of quite general profiles. Moreover, it is robust to initialization, and thereby allows fully automated applications. The proposed method has been used for images of various modalities with promising results.

  8. High-frequency, high-intensity photoionization

    NASA Astrophysics Data System (ADS)

    Reiss, H. R.

    1996-02-01

    Two analytical methods for computing ionization by high-frequency fields are compared. Predicted ionization rates compare well, but energy predictions for the onset of ionization differ radically. The difference is shown to arise from the use of a transformation in one of the methods that alters the zero from which energy is measured. This alteration leads to an apparent energy threshold for ionization that can, especially in the stabilization regime, differ strongly from the laboratory measurement. It is concluded that channel closings in intense-field ionization can occur at high as well as low frequencies. It is also found that the stabilization phenomenon at high frequencies, very prominent for hydrogen, is absent in a short-range potential.

  9. PREFACE: Joint IPPP Durham/Cockcroft Institute/ICFA Workshop on Advanced QED methods for Future Accelerators

    NASA Astrophysics Data System (ADS)

    Bailey, I. R.; Barber, D. P.; Chattopadhyay, S.; Hartin, A.; Heinzl, T.; Hesselbach, S.; Moortgat-Pick, G. A.

    2009-11-01

    The joint IPPP Durham/Cockcroft Institute/ICFA workshop on advanced QED methods for future accelerators took place at the Cockcroft Institute in early March 2009. The motivation for the workshop was the need for a detailed consideration of the physics processes associated with beam-beam effects at the interaction points of future high-energy electron-positron colliders. There is a broad consensus within the particle physics community that the next international facility for experimental high-energy physics research beyond the Large Hadron Collider at CERN should be a high-luminosity electron-positron collider working at the TeV energy scale. One important feature of such a collider will be its ability to deliver polarised beams to the interaction point and to provide accurate measurements of the polarisation state during physics collisions. The physics collisions take place in very dense charge bunches in the presence of extremely strong electromagnetic fields of field strength of order of the Schwinger critical field strength of 4.4×1013 Gauss. These intense fields lead to depolarisation processes which need to be thoroughly understood in order to reduce uncertainty in the polarisation state at collision. To that end, this workshop reviewed the formalisms for describing radiative processes and the methods of calculation in the future strong-field environments. These calculations are based on the Furry picture of organising the interaction term of the Lagrangian. The means of deriving the transition probability of the most important of the beam-beam processes - Beamsstrahlung - was reviewed. The workshop was honoured by the presentations of one of the founders, V N Baier, of the 'Operator method' - one means for performing these calculations. Other theoretical methods of performing calculations in the Furry picture, namely those due to A I Nikishov, V I Ritus et al, were reviewed and intense field quantum processes in fields of different form - namely those present in intense lasers - were also presented. Within the Furry picture the lowest order physics processes are represented by one vertex Feynman diagrams. Additionally, higher order processes in the Furry picture are thought to be important and are still not fully studied. The Advanced QED methods workshop also benefited greatly from reports on ongoing and planned experimental work on quantum processes in intense external fields. Some of the experiments reviewed were the NA43 and NA63 experiments using the inter atomic fields in aligned crystals at CERN. In the past, evidence has been obtained from successful experiments using an intense laser at the SLAC experiment E144. The possibility now exists for new experiments with intense laser light with the planned XFEL at DESY and the European Extreme Light Infrastructure. For upcoming accelerator projects, computer simulations of the first order processes in the Furry Picture during the bunch-bunch collision are being performed using the programs CAIN and Guinea-Pig++. The implementation of spin dynamics in these simulation programs was reported on at the workshop. This relatively small workshop generated a very productive intermix of theoretical, experimental and computational developments covering this important field of physics. Fruitful discussions took place covering improvements to the models, estimations of the remaining theoretical uncertainties and future updates to the existing simulations. It was felt that ongoing workshops in the same field would be of benefit to all those involved. The organisers would like to express their sincere thanks to all of the attendees for their contributions, to the staff of the Cockcroft Institute for hosting the workshop, to the IPPP at Durham for providing substantial funding and administrative support, and to ICFA for their sponsorship. We would also like to thank IOP Publishing for their assistance in publishing our proceedings in the Journal of Physics: Conference Series.

  10. Human perception of electric fields and ion currents associated with high-voltage DC transmission lines.

    PubMed

    Blondin, J P; Nguyen, D H; Sbeghen, J; Goulet, D; Cardinal, C; Maruvada, P S; Plante, M; Bailey, W H

    1996-01-01

    The objective of this study was to assess the ability of humans to detect the presence of DC electric field and ion currents. An exposure chamber simulating conditions present in the vicinity of high-voltage DC (HVDC) lines was designed and built for this purpose. In these experiments, the facility was used to expose observers to DC electric fields up to 50 kV/m and ion current densities up to 120 nA/m2. Forty-eight volunteers (25 women and 23 men) between the ages of 18 and 57 years served as observers. Perception of DC fields was examined by using two psychophysical methods: an adaptive staircase procedure and a rating method derived from signal-detection theory. Subjects completed three different series of observations by using each of these methods; one was conducted without ion currents, and the other two involved various combinations of electric fields and ion currents. Overall, subjects were significantly more likely to detect DC fields as the intensity increased. Observers were able to detect the presence of DC fields alone, but only at high intensities; the average threshold was 45 kV/m. Except in the most sensitive individuals, ion current densities up to 60 nA/m2 did not significantly facilitate the detection of DC fields. However, higher ion current densities were associated with a substantial lowering of sensory thresholds in a large majority of observers. Data analysis also revealed large variations in perceptual thresholds among observers. Normative data indicating DC field and ion current intensities that can be detected by 50% of all observers are provided. In addition, for the most sensitive observers, several other detection proportions were derived from the distribution of individual detection capabilities. These data can form the basis for environmental guidelines relating to the design of HVDC lines.

  11. Some remarks on elastic crack-tip stress fields.

    NASA Technical Reports Server (NTRS)

    Rice, J. R.

    1972-01-01

    It is shown that if the displacement field and stress intensity factor are known as functions of crack length for any symmetrical load system acting on a linear elastic body in plane strain, then the stress intensity factor for any other symmetrical load system whatsoever on the same body may be directly determined. The result is closely related to Bueckner's (1970) weight function, through which the stress intensity factor is expressed as a sum of work-like products between applied forces and values of the weight function at their points of application. An example of the method is given wherein the solution for a crack in a remotely uniform stress field is used to generate the expression for the stress intensity factor due to an arbitrary traction distribution on the faces of a crack. A corresponding theory is developed in an appendix for three-dimensional crack problems, although this appears to be directly useful chiefly for problems in which there is axial symmetry.

  12. Restoration of MRI Data for Field Nonuniformities using High Order Neighborhood Statistics

    PubMed Central

    Hadjidemetriou, Stathis; Studholme, Colin; Mueller, Susanne; Weiner, Michael; Schuff, Norbert

    2007-01-01

    MRI at high magnetic fields (> 3.0 T ) is complicated by strong inhomogeneous radio-frequency fields, sometimes termed the “bias field”. These lead to nonuniformity of image intensity, greatly complicating further analysis such as registration and segmentation. Existing methods for bias field correction are effective for 1.5 T or 3.0 T MRI, but are not completely satisfactory for higher field data. This paper develops an effective bias field correction for high field MRI based on the assumption that the nonuniformity is smoothly varying in space. Also, nonuniformity is quantified and unmixed using high order neighborhood statistics of intensity cooccurrences. They are computed within spherical windows of limited size over the entire image. The restoration is iterative and makes use of a novel stable stopping criterion that depends on the scaled entropy of the cooccurrence statistics, which is a non monotonic function of the iterations; the Shannon entropy of the cooccurrence statistics normalized to the effective dynamic range of the image. The algorithm restores whole head data, is robust to intense nonuniformities present in high field acquisitions, and is robust to variations in anatomy. This algorithm significantly improves bias field correction in comparison to N3 on phantom 1.5 T head data and high field 4 T human head data. PMID:18193095

  13. Relativistic Ionization with Intense Linearly Polarized Light

    NASA Astrophysics Data System (ADS)

    Crawford, Douglas Plummer

    The Strong Field Approximation (SFA) method is used to derive relativistic ionization rate expressions for ground state hydrogen-like atoms in the presence of an intense electromagnetic field. The emitted particle, which is initially bound to a hydrogen nucleus, is either an electron described by the Dirac equation, with spin effects fully included, or a spinless "electron" described by the Klein-Gordon equation. The derivations and subsequent calculations for both particles are made assuming a linearly polarized electromagnetic field which is monochromatic and which exhibits neither diffraction nor temporal dependence. From each of the relativistic ionization rate expressions, the corresponding expression in the nonrelativistic limit is derived. The resultant expressions are found to be equivalent to those derived using the SFA with the nonrelativistic formalism. This comparison provides the first check of the validity for the core results of this dissertation. Intensity-dependent ionization rates are then calculated for two ultraviolet frequencies using a numerical implementation of the derived expressions. Calculations of ionization rates and related phenomena demonstrate that there are negligible differences between relativistic and nonrelativistic predictions for low intensities. In addition, the differences in behavior between linearly and circularly polarized ionizing fields and between particles with and without spin are explored. The spin comparisons provide additional confidence in the derivations by showing negligible differences between ionization rates for Dirac and Klein -Gordon particles in strong linearly-polarized fields. Also of interest are the differential transition rates which exhibit dynamic profiles as the intensity is increased. This behavior is interpreted as an indication of more atomic influence for linearly polarized electromagnetic (em) fields than for circularly polarized em fields.

  14. The hydrodynamic design and critical techniques for 1m×1m water tunnel

    NASA Astrophysics Data System (ADS)

    Jiang, Yubiao; Gao, Chao; Geng, Zihai; Chen, Cheng

    2018-04-01

    China aerodynamics research and development Center has built 1m×1m water tunnel featured by good flow field quality and comprehensive experimental abilities for the researches on flow visualization and measurement. In detail, it has several advantages, such as low turbulence intensity, spatially homogeneous velocity field, stable flow velocity and convenience for use. The experimental section has low turbulence intensity and good quality of flow field over a wide range of flow velocity from 0.1m/s to 1m/s, implying that the hydrodynamic design method and critical techniques for the tunnel are worthy of popularization.

  15. Quantitative assessment of acoustic intensity in the focused ultrasound field using hydrophone and infrared imaging.

    PubMed

    Yu, Ying; Shen, Guofeng; Zhou, Yufeng; Bai, Jingfeng; Chen, Yazhu

    2013-11-01

    With the popularity of ultrasound therapy in clinics, characterization of the acoustic field is important not only to the tolerability and efficiency of ablation, but also for treatment planning. A quantitative method was introduced to assess the intensity distribution of a focused ultrasound beam using a hydrophone and an infrared camera with no prior knowledge of the acoustic and thermal parameters of the absorber or the configuration of the array elements. This method was evaluated in both theoretical simulations and experimental measurements. A three-layer model was developed to calculate the acoustic field in the absorber, the absorbed acoustic energy during the sonication and the consequent temperature elevation. Experiments were carried out to measure the acoustic pressure with the hydrophone and the temperature elevation with the infrared camera. The percentage differences between the derived results and the simulation are <4.1% for on-axis intensity and <21.1% for -6-dB beam width at heating times up to 360 ms in the focal region of three phased-array ultrasound transducers using two different absorbers. The proposed method is an easy, quick and reliable approach to calibrating focused ultrasound transducers with satisfactory accuracy. Copyright © 2013 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  16. The Steens Mountain (Oregon) geomagnetic polarity transition, 2. Field intensity variations and discussion of reversal models

    USGS Publications Warehouse

    Prevot, M.; Mankinen, Edward A.; Coe, Robert S.; Gromme, C. Sherman

    1985-01-01

    We carried out an extensive paleointensity study of the 15.5±0.3 m.y. Miocene reversed‐to‐normal polarity transition recorded in lava flows from Steens Mountain (south central Oregon). One hundred eighty‐five samples from the collection whose paleodirectional study is reported by Mankinen et al. (this issue) were chosen for paleointensity investigations because of their low viscosity index, high Curie point and reversibility, or near reversibility, of the strong field magnetization curve versus temperature. Application of the Thellier stepwise double heating method was very successful, yielding 157 usable paleointensity estimates corresponding to 73 distinct lava flows. After grouping successive lava flows that did not differ significantly in direction and intensity, we obtained 51 distinguishable, complete field vectors of which 10 are reversed, 28 are transitional, and 13 are normal. The record is complex, quite unlike that predicted by simple flooding or standing nondipole field models. It begins with an estimated several thousand years of reversed polarity with an average intensity of 31.5±8.5 μT, about one third lower than the expected Miocene intensity. This difference is interpreted as a long‐term reduction of the dipole moment prior to the reversal. When site directions and intensities are considered, truly transitional directions and intensities appear almost at the same time at the beginning of the transition, and they disappear simultaneously at the end of the reversal. Large deviations in declination occur during this approximately 4500±1000 year transition period that are compatible with roughly similar average magnitudes of zonal and nonzonal field components at the site. The transitional intensity is generally low, with an average of 10.9±4.9 μT for directions more than 45° away from the dipole field and a minimum of about 5 μT. The root‐mean‐square of the three field components X, Y, and Z are of the same order of magnitude for the transitional field and the historical nondipole field at the site latitude. However, a field intensity increase to pretransitional values occurs when the field temporarily reaches normal directions, which suggests that dipolar structure could have been briefly regenerated during the transition in an aborted attempt to reestablish a stationary field. Changes in the field vector are progressive but jerky, with at least two, and possibly three, large swings at astonishingly high rates. Each of those transitional geomagnetic impulses occurs when the field intensity is low (less than 10 μT) and is followed by an interval of directional stasis during which the magnitude of the field increases greatly. For the best documented geomagnetic impulse the rapid directional change corresponds to a vectorial intensity change of 6700±2700 nT yr−1, which is about 15–50 times larger than the maximum rate of change of the nondipole field observed during the last centuries. The occurrence of geomagnetic impulses seems to support reversal models assuming an increase in the level of turbulence within the liquid core during transitions. The record closes with an estimated several thousand years of normal polarity with an average intensity of 46.7±20.1 μT, agreeing with the expected Miocene value. However, the occurrence of rather large and apparently rapid intensity fluctuations accompanied by little change in direction suggests that the newly reestablished dipole was still somewhat unstable.

  17. Plasmonic nanorod arrays of a two-segment dimer and a coaxial cable with 1 nm gap for large field confinement and enhancement

    NASA Astrophysics Data System (ADS)

    Cheng, Zi-Qiang; Nan, Fan; Yang, Da-Jie; Zhong, Yu-Ting; Ma, Liang; Hao, Zhong-Hua; Zhou, Li; Wang, Qu-Quan

    2015-01-01

    Seeking plasmonic nanostructures with large field confinement and enhancement is significant for photonic and electronic nanodevices with high sensitivity, reproducibility, and tunability. Here, we report the synthesis of plasmonic arrays composed of two-segment dimer nanorods and coaxial cable nanorods with ~1 nm gap insulated by a self-assembled Raman molecule monolayer. The gap-induced plasmon coupling generates an intense field in the gap region of the dimer junction and the cable interlayer. As a result, the longitudinal plasmon resonance of nanorod arrays with high tunability is obviously enhanced. Most interestingly, the field enhancement of dimer nanorod arrays can be tuned by the length ratio L1/L2 of the two segments, and the maximal enhancement appears at L1/L2 = 1. In that case, the two-photon luminescence (TPL) of dimer nanorod arrays and the Raman intensity in the dimer junction is enhanced by 27 and 30 times, respectively, under resonant excitation. In the same way, the Raman intensity in the gap region is enhanced 16 times for the coaxial cable nanorod arrays. The plasmonic nanorod arrays synthesized by the facile method, having tunable plasmon properties and large field enhancement, indicate an attractive pathway to the photonic nanodevices.Seeking plasmonic nanostructures with large field confinement and enhancement is significant for photonic and electronic nanodevices with high sensitivity, reproducibility, and tunability. Here, we report the synthesis of plasmonic arrays composed of two-segment dimer nanorods and coaxial cable nanorods with ~1 nm gap insulated by a self-assembled Raman molecule monolayer. The gap-induced plasmon coupling generates an intense field in the gap region of the dimer junction and the cable interlayer. As a result, the longitudinal plasmon resonance of nanorod arrays with high tunability is obviously enhanced. Most interestingly, the field enhancement of dimer nanorod arrays can be tuned by the length ratio L1/L2 of the two segments, and the maximal enhancement appears at L1/L2 = 1. In that case, the two-photon luminescence (TPL) of dimer nanorod arrays and the Raman intensity in the dimer junction is enhanced by 27 and 30 times, respectively, under resonant excitation. In the same way, the Raman intensity in the gap region is enhanced 16 times for the coaxial cable nanorod arrays. The plasmonic nanorod arrays synthesized by the facile method, having tunable plasmon properties and large field enhancement, indicate an attractive pathway to the photonic nanodevices. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr05544f

  18. Direct acceleration in intense laser fields used for bunch amplification of relativistic electrons

    NASA Astrophysics Data System (ADS)

    Braenzel, J.; Andreev, A. A.; Ehrentraut, L.; Schnürer, M.

    2017-05-01

    A method, how electrons can be directly accelerated in intense laser fields, is investigated experimentally and discussed with numerical and analytical simulation. When ultrathin foil targets are exposed with peak laser intensities of 1x1020 W/cm2 , slow electrons ( keV kinetic energy), that are emitted from the ultrathin foil target along laser propagation direction, are post-accelerated in the transmitted laser field. They received significant higher kinetic energies (MeV), when this interaction was limited in duration and an enhanced number of fast electrons were detected. The decoupling of the light field from the electron interaction we realized with a second separator foil, blocking the transmitted laser light at a particular distance and allowing the fast electrons to pass. Variation of the propagation distance in the laser field results in different energy gains for the electrons. This finding is explained with electron acceleration in the electromagnetic field of a light pulse and confirms a concept being discussed for some time. In the experiments the effect manifests in an electron number amplification of about 3 times around a peak at 1 MeV electron energy. Measurements confirmed that the overall number in the whole bunch is enhanced to about 109 electrons covering kinetic energies between 0.5 to 5 MeV. The method holds promise for ultrashort electron bunch generation at MeV energies for direct application, e.g. ultra-fast electron diffraction, or for injection into post accelerator stages for different purposes.

  19. Novel method for detecting weak magnetic fields at low frequencies

    NASA Astrophysics Data System (ADS)

    González-Martínez, S.; Castillo-Torres, J.; Mendoza-Santos, J. C.; Zamorano-Ulloa, R.

    2005-06-01

    A low-level-intensity magnetic field detection system has been designed and developed based on the amplification-selection process of signals. This configuration is also very sensitive to magnetic field changes produced by harmonic-like electrical currents transported in finite-length wires. Experimental and theoretical results of magnetic fields detection as low as 10-9T at 120Hz are also presented with an accuracy of around 13%. The assembled equipment is designed to measure an electromotive force induced in a free-magnetic-core coil in order to recover signals which are previously selected, despite the fact that their intensities are much lower than the environment electromagnetic radiation. The prototype has a signal-to-noise ratio of 60dB. This system also presents the advantage for using it as a portable unit of measurement. The concept and prototype may be applied, for example, as a nondestructive method to analyze any corrosion formation in metallic oil pipelines which are subjected to cathodic protection.

  20. Method of using an electric field controlled emulsion phase contactor

    DOEpatents

    Scott, Timothy C.

    1993-01-01

    A system for contacting liquid phases comprising a column for transporting a liquid phase contacting system, the column having upper and lower regions. The upper region has a nozzle for introducing a dispersed phase and means for applying thereto a vertically oriented high intensity pulsed electric field. This electric field allows improved flow rates while shattering the dispersed phase into many micro-droplets upon exiting the nozzle to form a dispersion within a continuous phase. The lower region employs means for applying to the dispersed phase a horizontally oriented high intensity pulsed electric field so that the dispersed phase undergoes continuous coalescence and redispersion while being urged from side to side as it progresses through the system, increasing greatly the mass transfer opportunity.

  1. Far-field detection of sub-wavelength Tetris without extra near-field metal parts based on phase prints of time-reversed fields with intensive background interference.

    PubMed

    Chen, Yingming; Wang, Bing-Zhong

    2014-07-14

    Time-reversal (TR) phase prints are first used in far-field (FF) detection of sub-wavelength (SW) deformable scatterers without any extra metal structure positioned in the vicinity of the target. The 2D prints derive from discrete short-time Fourier transform of 1D TR electromagnetic (EM) signals. Because the time-invariant intensive background interference is effectively centralized by TR technique, the time-variant weak indication from FF SW scatterers can be highlighted. This method shows a different use of TR technique in which the focus peak of TR EM waves is unusually removed and the most useful information is conveyed by the other part.

  2. Gaussian representation of high-intensity focused ultrasound beams.

    PubMed

    Soneson, Joshua E; Myers, Matthew R

    2007-11-01

    A method for fast numerical simulation of high-intensity focused ultrasound beams is derived. The method is based on the frequency-domain representation of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation, and assumes for each harmonic a Gaussian transverse pressure distribution at all distances from the transducer face. The beamwidths of the harmonics are constrained to vary inversely with the square root of the harmonic number, and as such this method may be viewed as an extension of a quasilinear approximation. The technique is capable of determining pressure or intensity fields of moderately nonlinear high-intensity focused ultrasound beams in water or biological tissue, usually requiring less than a minute of computer time on a modern workstation. Moreover, this method is particularly well suited to high-gain simulations since, unlike traditional finite-difference methods, it is not subject to resolution limitations in the transverse direction. Results are shown to be in reasonable agreement with numerical solutions of the full KZK equation in both tissue and water for moderately nonlinear beams.

  3. Characterization of nonlinear ultrasound fields of 2D therapeutic arrays

    PubMed Central

    Yuldashev, Petr V.; Kreider, Wayne; Sapozhnikov, Oleg A.; Farr, Navid; Partanen, Ari; Bailey, Michael R.; Khokhlova, Vera

    2015-01-01

    A current trend in high intensity focused ultrasound (HIFU) technologies is to use 2D focused phased arrays that enable electronic steering of the focus, beamforming to avoid overheating of obstacles (such as ribs), and better focusing through inhomogeneities of soft tissue using time reversal methods. In many HIFU applications, the acoustic intensity in situ can reach thousands of W/cm2 leading to nonlinear propagation effects. At high power outputs, shock fronts develop in the focal region and significantly alter the bioeffects induced. Clinical applications of HIFU are relatively new and challenges remain for ensuring their safety and efficacy. A key component of these challenges is the lack of standard procedures for characterizing nonlinear HIFU fields under operating conditions. Methods that combine low-amplitude pressure measurements and nonlinear modeling of the pressure field have been proposed for axially symmetric single element transducers but have not yet been validated for the much more complex 3D fields generated by therapeutic arrays. Here, the method was tested for a clinical HIFU source comprising a 256-element transducer array. A numerical algorithm based on the Westervelt equation was used to enable 3D full-diffraction nonlinear modeling. With the acoustic holography method, the magnitude and phase of the acoustic field were measured at a low power output and used to determine the pattern of vibrations at the surface of the array. This pattern was then scaled to simulate a range of intensity levels near the elements up to 10 W/cm2. The accuracy of modeling was validated by comparison with direct measurements of the focal waveforms using a fiber-optic hydrophone. Simulation results and measurements show that shock fronts with amplitudes up to 100 MPa were present in focal waveforms at clinically relevant outputs, indicating the importance of strong nonlinear effects in ultrasound fields generated by HIFU arrays. PMID:26203345

  4. Testing paleointensity determinations on recent lava flows and scorias from Miyakejima, Japan

    NASA Astrophysics Data System (ADS)

    Fukuma, K.

    2013-12-01

    Still no consensus has been reached on paleointensity method. Even the classical Thellier method has not been fully tested on recent lava flows with known geomagnetic field intensity based on a systematic sampling scheme. In this study, Thellier method was applied for 1983, 1962 and 1940 basaltic lava flows and scorias from Miyakejima, Japan. Several vertical lava sections and quenched scorias, which are quite variable in magnetic mineralogy and grain size, provide an unparalleled opportunity to test paleointensity methods. Thellier experiments were conducted on a completely automated three-component spinner magnetometer with thermal demagnetizer 'tspin'. Specimens were heated in air, applied laboratory field was 45 microT, and pTRM checks were performed at every two heating steps. Curie points and hysteresis properties were obtained on small fragments removed from cylindrical specimens. For lava flows sigmoidal curves were commonly observed on the Arai diagrams. Especially the interior part of lava flows always revealed sigmoidal patterns and sometimes resulted in erroneously blurred behaviors. The directions after zero-field heating were not necessarily stable in the course of the Thellier experiments. It was very difficult, for the interior part, to ascertain linear segments on Arai diagrams corresponding to the geomagnetic field intensity at the eruption. Upper and lower clinker samples also generally revealed sigmoidal or upward concave curves on Arai diagrams. Neither lower nor higher temperature portions of the sigmoids or concaves gave the expected geomagnetic field intensities. However, there were two exceptional cases of lava flows giving correct field intensities: upper clinkers with relatively low unblocking temperatures (< 400 deg.C) and lower clinkers with broad unblocking temperature ranges from room temperature to 600 deg.C. A most promising target for paleointensity experiments within the volcanic rocks is scoria. Scoria samples always carry single Curie temperatures higher than 500 deg.C, and the ratios of saturation remanence to saturation magnetization (Mr/Ms) of about 0.5 are indicative of truly single-domain low-titanium titanomagnetite. Unambiguous straight lines were always observed on Arai diagrams covering broad temperature ranges like the lower clinker samples, and the gradients gave the expected field values within a few percent errors. Thellier experiments applied for the recent lava flows did not successfully recover the expected field intensity from most samples. No linear segment was recognized or incorrect paleointensity values were obtained from short segments with limited temperature ranges. In Thellier or other types of paleointensity experiments laboratory alteration is checked in details, but if a sample once passed the alteration check, the TRM/NRM ratios of any limited temperature or field ranges were accepted as reflecting paleointensity. Previously published paleointensity data from lava flows should include much of such dubious data. Generally lava flows are not suitable for paleointensity determinations in light of its large grain-size and mixed magnetic mineralogy, except for scoria and clinker.

  5. Position, rotation, and intensity invariant recognizing method

    DOEpatents

    Ochoa, Ellen; Schils, George F.; Sweeney, Donald W.

    1989-01-01

    A method for recognizing the presence of a particular target in a field of view which is target position, rotation, and intensity invariant includes the preparing of a target-specific invariant filter from a combination of all eigen-modes of a pattern of the particular target. Coherent radiation from the field of view is then imaged into an optical correlator in which the invariant filter is located. The invariant filter is rotated in the frequency plane of the optical correlator in order to produce a constant-amplitude rotational response in a correlation output plane when the particular target is present in the field of view. Any constant response is thus detected in the output The U.S. Government has rights in this invention pursuant to Contract No. DE-AC04-76DP00789 between the U.S. Department of Energy and AT&T Technologies, Inc.

  6. Correlation between the local stress and the grain misorientation in the polycrystalline Al2O3 measured by near-field luminescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Tomimatsu, Toru; Takigawa, Ryo

    2018-06-01

    Owing to its high spatial resolution, near-field spectroscopy is a useful method for sensing the stress in a narrow region of submicron order. Here, on the basis of the highly resolved images obtained by near-field luminescence spectroscopy, we propose a statistical method of analyzing grain anisotropy-induced stress in polycrystalline Al2O3. We focus on two characteristics of a spectra: the intensity ratio and peak shift of luminescence of two lines (R1 and R2) from Al2O3 to discuss crystal orientation and stress, respectively. By incorporating the concept of the crystal misorientation parameter using intensity ratio, an apparent correlation between the magnitude of stress and the misorientation is found. This correlation analysis provides an important insight for the investigation of local thermal stress in Al2O3.

  7. The electromagnetic pendulum in quickly changing magnetic field of constant intensity

    NASA Astrophysics Data System (ADS)

    Rodyukov, F. F.; Shepeljavyi, A. I.

    2018-05-01

    The Lagrange-Maxwell equations for the pendulum in the form of a conductive frame, which is suspended in a uniform sinusoidal electromagnetic field of constant intensity, are obtained. The procedure for obtaining simplified mathematical models by a traditional method of separating fast and slow motions with subsiquent averaging a fast time is used. It is shown that this traditional approach may lead to inappropriate mathematical models. Suggested ways on how this can be avoided for the case are considered. The main statements by numerical experiments are illustrated.

  8. Composite magnetorheological elastomers as dielectrics for plane capacitors: Effects of magnetic field intensity

    NASA Astrophysics Data System (ADS)

    Balasoiu, Maria; Bica, Ioan

    The fabrication of composite magnetorheological elastomers (MRECs) based on silicone rubber, carbonyl iron microparticles (10% vol.) and polyurethane elastomer doped with 0%, 10% and 20% volume concentration TiO2 microparticles is presented. The obtained MRECs have the shape of thin foils and are used as dielectric materials for manufacturing plane capacitors. Using the plane capacitor method and expression of capacitance as a function of magnetic field intensity, combined with linear elasticity theory, the static magnetoelastic model of the composite is obtained and analyzed.

  9. Method to determine and adjust the alignment of the transmitter and receiver fields of view of a LIDAR system

    DOEpatents

    Schmitt, Randal L [Tijeras, NM; Henson, Tammy D [Albuquerque, NM; Krumel, Leslie J [Cedar Crest, NM; Hargis, Jr., Philip J.

    2006-06-20

    A method to determine the alignment of the transmitter and receiver fields of view of a light detection and ranging (LIDAR) system. This method can be employed to determine the far-field intensity distribution of the transmitter beam, as well as the variations in transmitted laser beam pointing as a function of time, temperature, or other environmental variables that may affect the co-alignment of the LIDAR system components. In order to achieve proper alignment of the transmitter and receiver optical systems when a LIDAR system is being used in the field, this method employs a laser-beam-position-sensing detector as an integral part of the receiver optics of the LIDAR system.

  10. The scattering of Lyα radiation in the intergalactic medium: numerical methods and solutions

    NASA Astrophysics Data System (ADS)

    Higgins, Jonathan; Meiksin, Avery

    2012-11-01

    Two methods are developed for solving the steady-state spherically symmetric radiative transfer equation for resonance line radiation emitted by a point source in the intergalactic medium, in the context of the Wouthuysen-Field mechanism for coupling the hyperfine structure spin temperature of hydrogen to the gas temperature. One method is based on solving the ray and moment equations using finite differences. The second uses a Monte Carlo approach incorporating methods that greatly improve the accuracy compared with previous approaches in this context. Several applications are presented serving as test problems for both a static medium and an expanding medium, including inhomogeneities in the density and velocity fields. Solutions are obtained in the coherent scattering limit and for Doppler RII redistribution with and without recoils. We find generally that the radiation intensity is linear in the cosine of the azimuthal angle with respect to radius to high accuracy over a broad frequency region across the line centre for both linear and perturbed velocity fields, yielding the Eddington factors fν ≃ 1/3 and gν ≃ 3/5. The radiation field produced by a point source divides into three spatial regimes for a uniformly expanding homogeneous medium. The regimes are governed by the fraction of the distance r from the source in terms of the distance r* required for a photon to redshift from line centre to the frequency needed to escape from the expanding gas. For a standard cosmology, before the Universe was reionized r* takes on the universal value independent of redshift of 1.1 Mpc, depending only on the ratio of the baryon to dark matter density. At r/r* < 1, the radiation field is accurately described in the diffusion approximation, with the scattering rate declining with the distance from the source as r-7/3, except at r/r* ≪ 1 where frequency redistribution nearly doubles the mean intensity around line centre. At r/r* > 1, the diffusion approximation breaks down and the decline of the mean intensity near line centre and the scattering rate approach the geometric dilution scaling 1/r2. The mean intensity and scattering rate are found to be very sensitive to the gradient of the velocity field, growing exponentially with the amplitude of the perturbation as the limit of a vanishing velocity gradient is approached near the source. We expect the 21-cm signal from the epoch of reionization to thus be a sensitive probe of both the density and the peculiar velocity fields. The solutions for the mean intensity are made available in machine-readable format.

  11. Effect of signal intensity and camera quantization on laser speckle contrast analysis

    PubMed Central

    Song, Lipei; Elson, Daniel S.

    2012-01-01

    Laser speckle contrast analysis (LASCA) is limited to being a qualitative method for the measurement of blood flow and tissue perfusion as it is sensitive to the measurement configuration. The signal intensity is one of the parameters that can affect the contrast values due to the quantization of the signals by the camera and analog-to-digital converter (ADC). In this paper we deduce the theoretical relationship between signal intensity and contrast values based on the probability density function (PDF) of the speckle pattern and simplify it to a rational function. A simple method to correct this contrast error is suggested. The experimental results demonstrate that this relationship can effectively compensate the bias in contrast values induced by the quantized signal intensity and correct for bias induced by signal intensity variations across the field of view. PMID:23304650

  12. Method and apparatus for inspecting reflection masks for defects

    DOEpatents

    Bokor, Jeffrey; Lin, Yun

    2003-04-29

    An at-wavelength system for extreme ultraviolet lithography mask blank defect detection is provided. When a focused beam of wavelength 13 nm is incident on a defective region of a mask blank, three possible phenomena can occur. The defect will induce an intensity reduction in the specularly reflected beam, scatter incoming photons into an off-specular direction, and change the amplitude and phase of the electric field at the surface which can be monitored through the change in the photoemission current. The magnitude of these changes will depend on the incident beam size, and the nature, extent and size of the defect. Inspection of the mask blank is performed by scanning the mask blank with 13 nm light focused to a spot a few .mu.m in diameter, while measuring the reflected beam intensity (bright field detection), the scattered beam intensity (dark-field detection) and/or the change in the photoemission current.

  13. Locally-enhanced light scattering by a monocrystalline silicon wafer

    NASA Astrophysics Data System (ADS)

    Ma, Li; Zhang, Pan; Li, Zhen-Hua; Liu, Chun-Xiang; Li, Xing; Zhan, Zi-Jun; Ren, Xiao-Rong; He, Chang-Wei; Chen, Chao; Cheng, Chuan-Fu

    2018-03-01

    We study the optical properties of light scattering by a monocrystalline silicon wafer, by using transparent material to replicate its surface structure and illuminating a fabricated sample with a laser source. The experimental results show that the scattering field contains four spots of concentrated intensity with high local energy, and these spots are distributed at the four vertices of a square with lines of intensity linking adjacent spots. After discussing simulations of and theory about the formation of this light scattering, we conclude that the scattering field is formed by the effects of both geometrical optics and physical optics. Moreover, we calculate the central angle of the spots in the light field, and the result indicates that the locally-enhanced intensity spots have a definite scattering angle. These results may possibly provide a method for improving energy efficiency within mono-Si based solar cells.

  14. Advanced Magnetic Materials Methods and Numerical Models for Fluidization in Microgravity and Hypogravity

    NASA Technical Reports Server (NTRS)

    Atwater, James; Wheeler, Richard, Jr.; Akse, James; Jovanovic, Goran; Reed, Brian

    2013-01-01

    To support long-duration manned missions in space such as a permanent lunar base, Mars transit, or Mars Surface Mission, improved methods for the treatment of solid wastes, particularly methods that recover valuable resources, are needed. The ability to operate under microgravity and hypogravity conditions is essential to meet this objective. The utilization of magnetic forces to manipulate granular magnetic media has provided the means to treat solid wastes under variable gravity conditions by filtration using a consolidated magnetic media bed followed by thermal processing of the solid wastes in a fluidized bed reactor. Non-uniform magnetic fields will produce a magnetic field gradient in a bed of magnetically susceptible media toward the distributor plate of a fluidized bed reactor. A correctly oriented magnetic field gradient will generate a downward direct force on magnetic media that can substitute for gravitational force in microgravity, or which may augment low levels of gravity, such as on the Moon or Mars. This approach is termed Gradient Magnetically Assisted Fluidization (G-MAFB), in which the magnitude of the force on the fluidized media depends upon the intensity of the magnetic field (H), the intensity of the field gradient (dH/dz), and the magnetic susceptibility of the media. Fluidized beds based on the G-MAFB process can operate in any gravitational environment by tuning the magnetic field appropriately. Magnetic materials and methods have been developed that enable G-MAFB operation under variable gravity conditions.

  15. Peak intensity measurement of relativistic lasers via nonlinear Thomson scattering.

    PubMed

    Har-Shemesh, Omri; Di Piazza, Antonino

    2012-04-15

    The measurement of peak laser intensities exceeding 10(20) W/cm(2) is in general a very challenging task. We suggest a simple method to accurately measure such high intensities up to about 10(23) W/cm(2), by colliding a beam of ultrarelativistic electrons with the laser pulse. The method exploits the high directionality of the radiation emitted by ultrarelativistic electrons via nonlinear Thomson scattering. Initial electron energies well within the reach of laser wake-field accelerators are required, allowing in principle for an all-optical setup. Accuracies of the order of 10% are theoretically envisaged. © 2012 Optical Society of America

  16. On the relative intensity of Poisson’s spot

    NASA Astrophysics Data System (ADS)

    Reisinger, T.; Leufke, P. M.; Gleiter, H.; Hahn, H.

    2017-03-01

    The Fresnel diffraction phenomenon referred to as Poisson’s spot or spot of Arago has, beside its historical significance, become relevant in a number of fields. Among them are for example fundamental tests of the super-position principle in the transition from quantum to classical physics and the search for extra-solar planets using star shades. Poisson’s spot refers to the positive on-axis wave interference in the shadow of any spherical or circular obstacle. While the spot’s intensity is equal to the undisturbed field in the plane wave picture, its intensity in general depends on a number of factors, namely the size and wavelength of the source, the size and surface corrugation of the diffraction obstacle, and the distances between source, obstacle and detector. The intensity can be calculated by solving the Fresnel-Kirchhoff diffraction integral numerically, which however tends to be computationally expensive. We have therefore devised an analytical model for the on-axis intensity of Poisson’s spot relative to the intensity of the undisturbed wave field and successfully validated it both using a simple light diffraction setup and numerical methods. The model will be useful for optimizing future Poisson-spot matter-wave diffraction experiments and determining under what experimental conditions the spot can be observed.

  17. Breast density quantification using magnetic resonance imaging (MRI) with bias field correction: A postmortem study

    PubMed Central

    Ding, Huanjun; Johnson, Travis; Lin, Muqing; Le, Huy Q.; Ducote, Justin L.; Su, Min-Ying; Molloi, Sabee

    2013-01-01

    Purpose: Quantification of breast density based on three-dimensional breast MRI may provide useful information for the early detection of breast cancer. However, the field inhomogeneity can severely challenge the computerized image segmentation process. In this work, the effect of the bias field in breast density quantification has been investigated with a postmortem study. Methods: T1-weighted images of 20 pairs of postmortem breasts were acquired on a 1.5 T breast MRI scanner. Two computer-assisted algorithms were used to quantify the volumetric breast density. First, standard fuzzy c-means (FCM) clustering was used on raw images with the bias field present. Then, the coherent local intensity clustering (CLIC) method estimated and corrected the bias field during the iterative tissue segmentation process. Finally, FCM clustering was performed on the bias-field-corrected images produced by CLIC method. The left–right correlation for breasts in the same pair was studied for both segmentation algorithms to evaluate the precision of the tissue classification. Finally, the breast densities measured with the three methods were compared to the gold standard tissue compositions obtained from chemical analysis. The linear correlation coefficient, Pearson's r, was used to evaluate the two image segmentation algorithms and the effect of bias field. Results: The CLIC method successfully corrected the intensity inhomogeneity induced by the bias field. In left–right comparisons, the CLIC method significantly improved the slope and the correlation coefficient of the linear fitting for the glandular volume estimation. The left–right breast density correlation was also increased from 0.93 to 0.98. When compared with the percent fibroglandular volume (%FGV) from chemical analysis, results after bias field correction from both the CLIC the FCM algorithms showed improved linear correlation. As a result, the Pearson's r increased from 0.86 to 0.92 with the bias field correction. Conclusions: The investigated CLIC method significantly increased the precision and accuracy of breast density quantification using breast MRI images by effectively correcting the bias field. It is expected that a fully automated computerized algorithm for breast density quantification may have great potential in clinical MRI applications. PMID:24320536

  18. Acoustic Methods Remove Bubbles From Liquids

    NASA Technical Reports Server (NTRS)

    Trinh, E.; Elleman, D. D.; Wang, T. G.

    1983-01-01

    Two acoustic methods applied to molten glass or other viscous liquids to remove bubbles. Bubbles are either absorbed or brought to surface by applying high-intensity Sonic field at resonant frequency. Sonic oscillation increases surface area of bubbles and causes them to dissipate.

  19. Electromagnetic fields in medicine - The state of art.

    PubMed

    Pasek, Jarosław; Pasek, Tomasz; Sieroń-Stołtny, Karolina; Cieślar, Grzegorz; Sieroń, Aleksander

    2016-01-01

    Intense development of methods belonging to physical medicine has been noted recently. There are treatment methods, which in many cases lead to reduction treatment time and positively influence on quality of life treatment patients. The present physical medicine systematically extends their therapeutic possibilities. This above applies to illnesses and injuries of locomotor system, diseases affecting of soft tissues, as well as chronic wounds. The evidence on this are the results of basic and clinical examinations relating the practical use of electromagnetic fields in medicine. In this work the authors introduced the procedure using the current knowledge relating to physical characteristic and biological effects of the magnetic fields. In the work the following methods were used: static magnetic fields, spatial magnetic fields, the variable magnetic fields both with laser therapy (magnetolaserotherapy) and variable magnetic fields both with light optical non-laser (magnetoledtherapy) talked.

  20. Restoration of MRI data for intensity non-uniformities using local high order intensity statistics

    PubMed Central

    Hadjidemetriou, Stathis; Studholme, Colin; Mueller, Susanne; Weiner, Michael; Schuff, Norbert

    2008-01-01

    MRI at high magnetic fields (>3.0 T) is complicated by strong inhomogeneous radio-frequency fields, sometimes termed the “bias field”. These lead to non-biological intensity non-uniformities across the image. They can complicate further image analysis such as registration and tissue segmentation. Existing methods for intensity uniformity restoration have been optimized for 1.5 T, but they are less effective for 3.0 T MRI, and not at all satisfactory for higher fields. Also, many of the existing restoration algorithms require a brain template or use a prior atlas, which can restrict their practicalities. In this study an effective intensity uniformity restoration algorithm has been developed based on non-parametric statistics of high order local intensity co-occurrences. These statistics are restored with a non-stationary Wiener filter. The algorithm also assumes a smooth non-uniformity and is stable. It does not require a prior atlas and is robust to variations in anatomy. In geriatric brain imaging it is robust to variations such as enlarged ventricles and low contrast to noise ratio. The co-occurrence statistics improve robustness to whole head images with pronounced non-uniformities present in high field acquisitions. Its significantly improved performance and lower time requirements have been demonstrated by comparing it to the very commonly used N3 algorithm on BrainWeb MR simulator images as well as on real 4 T human head images. PMID:18621568

  1. Multiphoton ionization of many-electron atoms and highly-charged ions in intense laser fields: a relativistic time-dependent density functional theory approach

    NASA Astrophysics Data System (ADS)

    Tumakov, Dmitry A.; Telnov, Dmitry A.; Maltsev, Ilia A.; Plunien, Günter; Shabaev, Vladimir M.

    2017-10-01

    We develop an efficient numerical implementation of the relativistic time-dependent density functional theory (RTDDFT) to study multielectron highly-charged ions subject to intense linearly-polarized laser fields. The interaction with the electromagnetic field is described within the electric dipole approximation. The resulting time-dependent relativistic Kohn-Sham (RKS) equations possess an axial symmetry and are solved accurately and efficiently with the help of the time-dependent generalized pseudospectral method. As a case study, we calculate multiphoton ionization probabilities of the neutral argon atom and argon-like xenon ion. Relativistic effects are assessed by comparison of our present results with existing non-relativistic data.

  2. Versatile generation of optical vector fields and vector beams using a non-interferometric approach.

    PubMed

    Tripathi, Santosh; Toussaint, Kimani C

    2012-05-07

    We present a versatile, non-interferometric method for generating vector fields and vector beams which can produce all the states of polarization represented on a higher-order Poincaré sphere. The versatility and non-interferometric nature of this method is expected to enable exploration of various exotic properties of vector fields and vector beams. To illustrate this, we study the propagation properties of some vector fields and find that, in general, propagation alters both their intensity and polarization distribution, and more interestingly, converts some vector fields into vector beams. In the article, we also suggest a modified Jones vector formalism to represent vector fields and vector beams.

  3. Synchrotron Intensity Gradients as Tracers of Interstellar Magnetic Fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lazarian, A.; Yuen, Ka Ho; Lee, Hyeseung

    On the basis of the modern understanding of MHD turbulence, we propose a new way of using synchrotron radiation: using synchrotron intensity gradients (SIGs) for tracing astrophysical magnetic fields. We successfully test the new technique using synthetic data obtained with 3D MHD simulations and provide the demonstration of the practical utility of the technique by comparing the directions of magnetic fields that are obtained with PLANCK synchrotron intensity data to the directions obtained with PLANCK synchrotron polarization data. We demonstrate that the SIGs can reliably trace magnetic fields in the presence of noise and can provide detailed maps of magneticmore » field directions. We also show that the SIGs are relatively robust for tracing magnetic fields while the low spatial frequencies of the synchrotron image are removed. This makes the SIGs applicable to the tracing of magnetic fields using interferometric data with single-dish measurement absent. We discuss the synergy of using the SIGs together with synchrotron polarization in order to find the actual direction of the magnetic fields and quantify the effects of Faraday rotation as well as with other ways of studying astrophysical magnetic fields. We test our method in the presence of noise and the resolution effects. We stress the complementary nature of the studies using the SIG technique and those employing the recently introduced velocity gradient techniques that trace magnetic fields using spectroscopic data.« less

  4. Synchrotron Intensity Gradients as Tracers of Interstellar Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Lazarian, A.; Yuen, Ka Ho; Lee, Hyeseung; Cho, J.

    2017-06-01

    On the basis of the modern understanding of MHD turbulence, we propose a new way of using synchrotron radiation: using synchrotron intensity gradients (SIGs) for tracing astrophysical magnetic fields. We successfully test the new technique using synthetic data obtained with 3D MHD simulations and provide the demonstration of the practical utility of the technique by comparing the directions of magnetic fields that are obtained with PLANCK synchrotron intensity data to the directions obtained with PLANCK synchrotron polarization data. We demonstrate that the SIGs can reliably trace magnetic fields in the presence of noise and can provide detailed maps of magnetic field directions. We also show that the SIGs are relatively robust for tracing magnetic fields while the low spatial frequencies of the synchrotron image are removed. This makes the SIGs applicable to the tracing of magnetic fields using interferometric data with single-dish measurement absent. We discuss the synergy of using the SIGs together with synchrotron polarization in order to find the actual direction of the magnetic fields and quantify the effects of Faraday rotation as well as with other ways of studying astrophysical magnetic fields. We test our method in the presence of noise and the resolution effects. We stress the complementary nature of the studies using the SIG technique and those employing the recently introduced velocity gradient techniques that trace magnetic fields using spectroscopic data.

  5. Raw data normalization for a multi source inverse geometry CT system

    PubMed Central

    Baek, Jongduk; De Man, Bruno; Harrison, Daniel; Pelc, Norbert J.

    2015-01-01

    A multi-source inverse-geometry CT (MS-IGCT) system consists of a small 2D detector array and multiple x-ray sources. During data acquisition, each source is activated sequentially, and may have random source intensity fluctuations relative to their respective nominal intensity. While a conventional 3rd generation CT system uses a reference channel to monitor the source intensity fluctuation, the MS-IGCT system source illuminates a small portion of the entire field-of-view (FOV). Therefore, it is difficult for all sources to illuminate the reference channel and the projection data computed by standard normalization using flat field data of each source contains error and can cause significant artifacts. In this work, we present a raw data normalization algorithm to reduce the image artifacts caused by source intensity fluctuation. The proposed method was tested using computer simulations with a uniform water phantom and a Shepp-Logan phantom, and experimental data of an ice-filled PMMA phantom and a rabbit. The effect on image resolution and robustness of the noise were tested using MTF and standard deviation of the reconstructed noise image. With the intensity fluctuation and no correction, reconstructed images from simulation and experimental data show high frequency artifacts and ring artifacts which are removed effectively using the proposed method. It is also observed that the proposed method does not degrade the image resolution and is very robust to the presence of noise. PMID:25837090

  6. Method of using an electric field controlled emulsion phase contactor

    DOEpatents

    Scott, T.C.

    1993-11-16

    A system is described for contacting liquid phases comprising a column for transporting a liquid phase contacting system, the column having upper and lower regions. The upper region has a nozzle for introducing a dispersed phase and means for applying thereto a vertically oriented high intensity pulsed electric field. This electric field allows improved flow rates while shattering the dispersed phase into many micro-droplets upon exiting the nozzle to form a dispersion within a continuous phase. The lower region employs means for applying to the dispersed phase a horizontally oriented high intensity pulsed electric field so that the dispersed phase undergoes continuous coalescence and redispersion while being urged from side to side as it progresses through the system, increasing greatly the mass transfer opportunity. 5 figures.

  7. Acoustic intensity calculations for axisymmetrically modeled fluid regions

    NASA Technical Reports Server (NTRS)

    Hambric, Stephen A.; Everstine, Gordon C.

    1992-01-01

    An algorithm for calculating acoustic intensities from a time harmonic pressure field in an axisymmetric fluid region is presented. Acoustic pressures are computed in a mesh of NASTRAN triangular finite elements of revolution (TRIAAX) using an analogy between the scalar wave equation and elasticity equations. Acoustic intensities are then calculated from pressures and pressure derivatives taken over the mesh of TRIAAX elements. Intensities are displayed as vectors indicating the directions and magnitudes of energy flow at all mesh points in the acoustic field. A prolate spheroidal shell is modeled with axisymmetric shell elements (CONEAX) and submerged in a fluid region of TRIAAX elements. The model is analyzed to illustrate the acoustic intensity method and the usefulness of energy flow paths in the understanding of the response of fluid-structure interaction problems. The structural-acoustic analogy used is summarized for completeness. This study uncovered a NASTRAN limitation involving numerical precision issues in the CONEAX stiffness calculation causing large errors in the system matrices for nearly cylindrical cones.

  8. Utilization of Plasmonic and Photonic Crystal Nanostructures for Enhanced Micro- and Nanoparticle Manipulation

    PubMed Central

    Simmons, Cameron S.; Knouf, Emily Christine; Tewari, Muneesh; Lin, Lih Y.

    2011-01-01

    A method to manipulate the position and orientation of submicron particles nondestructively would be an incredibly useful tool for basic biological research. Perhaps the most widely used physical force to achieve noninvasive manipulation of small particles has been dielectrophoresis(DEP).1 However, DEP on its own lacks the versatility and precision that are desired when manipulating cells since it is traditionally done with stationary electrodes. Optical tweezers, which utilize a three dimensional electromagnetic field gradient to exert forces on small particles, achieve this desired versatility and precision.2 However, a major drawback of this approach is the high radiation intensity required to achieve the necessary force to trap a particle which can damage biological samples.3 A solution that allows trapping and sorting with lower optical intensities are optoelectronic tweezers (OET) but OET's have limitations with fine manipulation of small particles; being DEP-based technology also puts constraint on the property of the solution.4,5 This video article will describe two methods that decrease the intensity of the radiation needed for optical manipulation of living cells and also describe a method for orientation control. The first method is plasmonic tweezers which use a random gold nanoparticle (AuNP) array as a substrate for the sample as shown in Figure 1. The AuNP array converts the incident photons into localized surface plasmons (LSP) which consist of resonant dipole moments that radiate and generate a patterned radiation field with a large gradient in the cell solution. Initial work on surface plasmon enhanced trapping by Righini et al and our own modeling have shown the fields generated by the plasmonic substrate reduce the initial intensity required by enhancing the gradient field that traps the particle.6,7,8 The plasmonic approach allows for fine orientation control of ellipsoidal particles and cells with low optical intensities because of more efficient optical energy conversion into mechanical energy and a dipole-dependent radiation field. These fields are shown in figure 2 and the low trapping intensities are detailed in figures 4 and 5. The main problems with plasmonic tweezers are that the LSP's generate a considerable amount of heat and the trapping is only two dimensional. This heat generates convective flows and thermophoresis which can be powerful enough to expel submicron particles from the trap.9,10 The second approach that we will describe is utilizing periodic dielectric nanostructures to scatter incident light very efficiently into diffraction modes, as shown in figure 6.11 Ideally, one would make this structure out of a dielectric material to avoid the same heating problems experienced with the plasmonic tweezers but in our approach an aluminum-coated diffraction grating is used as a one-dimensional periodic dielectric nanostructure. Although it is not a semiconductor, it did not experience significant heating and effectively trapped small particles with low trapping intensities, as shown in figure 7. Alignment of particles with the grating substrate conceptually validates the proposition that a 2-D photonic crystal could allow precise rotation of non-spherical micron sized particles.10 The efficiencies of these optical traps are increased due to the enhanced fields produced by the nanostructures described in this paper. PMID:21988841

  9. Application of parametric equations of motion to study the laser induced multiphoton dissociation of H2+ in intense laser field.

    PubMed

    Kalita, Dhruba J; Rao, Akshay; Rajvanshi, Ishir; Gupta, Ashish K

    2011-06-14

    We have applied parametric equations of motion (PEM) to study photodissociation dynamics of H(2)(+). The resonances are extracted using smooth exterior scaling method. This is the first application of PEM to non-Hermitian Hamiltonian that includes resonances and the continuum. Here, we have studied how the different resonance states behave with respect to the change in field amplitude. The advantage of this method is that one can easily trace the different states that are changing as the field parameter changes.

  10. [Determination of electric field distribution in dielectric barrier surface glow discharge by spectroscopic method].

    PubMed

    Li, Xue-chen; Jia, Peng-ying; Liu, Zhi-hui; Li, Li-chun; Dong, Li-fang

    2008-12-01

    In the present paper, stable glow discharges were obtained in air at low pressure with a dielectric barrier surface discharge device. Light emission from the discharge was detected by photomultiplier tubes and the research results show that the light signal exhibited one discharge pulse per half cycle of the applied voltage. The light pulses were asymmetric between the positive half cycle and the negative one of the applied voltage. The images of the glow surface discharge were processed by Photoshop software and the results indicate that the emission intensity remained almost constant for different places with the same distance from the powered electrode, while the emission intensity decreased with the distance from the powered electrode increasing. In dielectric barrier discharge, net electric field is determined by the applied voltage and the wall charges accumulated on the dielectric layer during the discharge, and consequently, it is important to obtain information about the net electric field distribution. For this purpose, optical emission spectroscopy method was used. The distribution of the net electric field can be deduced from the intensity ratio of spectral line 391.4 nm emitted from the first negative system of N2+ (B 2sigma u+ -->X 2sigma g+) to 337.1 nm emitted from the second positive system of N2 (C 3IIu-B 3IIg). The research results show that the electric field near the powered electric field is higher than at the edge of the discharge. These experimental results are very important for numerical study and industrial application of the surface discharge.

  11. Further studies on the problems of geomagnetic field intensity determination from archaeological baked clay materials

    NASA Astrophysics Data System (ADS)

    Kostadinova-Avramova, M.; Kovacheva, M.

    2015-10-01

    Archaeological baked clay remains provide valuable information about the geomagnetic field in historical past, but determination of the geomagnetic field characteristics, especially intensity, is often a difficult task. This study was undertaken to elucidate the reasons for unsuccessful intensity determination experiments obtained from two different Bulgarian archaeological sites (Nessebar - Early Byzantine period and Malenovo - Early Iron Age). With this aim, artificial clay samples were formed in the laboratory and investigated. The clay used for the artificial samples preparation differs according to its initial state. Nessebar clay was baked in the antiquity, but Malenovo clay was raw, taken from the clay deposit near the site. The obtained artificial samples were repeatedly heated eight times in known magnetic field to 700 °C. X-ray diffraction analyses and rock-magnetic experiments were performed to obtain information about the mineralogical content and magnetic properties of the initial and laboratory heated clays. Two different protocols were applied for the intensity determination-Coe version of Thellier and Thellier method and multispecimen parallel differential pTRM protocol. Various combinations of laboratory fields and mutual positions of the directions of laboratory field and carried thermoremanence were used in the performed Coe experiment. The obtained results indicate that the failure of this experiment is probably related to unfavourable grain sizes of the prevailing magnetic carriers combined with the chosen experimental conditions. The multispecimen parallel differential pTRM protocol in its original form gives excellent results for the artificial samples, but failed for the real samples (samples coming from previously studied kilns of Nessebar and Malenovo sites). Obviously the strong dependence of this method on the homogeneity of the used subsamples hinders its implementation in its original form for archaeomaterials. The latter are often heterogeneous due to variable heating conditions in the different parts of the archaeological structures. The study draws attention to the importance of multiple heating for the stabilization of grain size distribution in baked clay materials and the need of elucidation of this question.

  12. Knowledge training and the change of fertilizer use intensity: Evidence from wheat farmers in China.

    PubMed

    Pan, Dan; Kong, Fanbin; Zhang, Ning; Ying, Ruiyao

    2017-07-15

    High fertilizer use intensity is a serious issue throughout China, with adverse environmental and economic impacts. The lack of knowledge of Chinese farmers has been found to be the primary constraint. Using a propensity score matching (PSM) method to create a credible counterfactual analysis, this study examines the causal effects of two kinds of knowledge training approaches, traditional one-time training and in-field guidance, on the change of fertilizer use intensity of wheat farmers in China. The estimated results provide evidence that the traditional one-time training approach has a small effect on fertilizer use intensity reduction (only a 4% average), while the in-field guidance has a larger effect on fertilizer use intensity reduction (a 17% average). Moreover, we also found knowledge training has heterogeneous treatment effects. The reduction in fertilizer use intensity is larger for the farmers who are male and middle aged, have acquired a middle level of education, receive a lower share of off-farm income, collect a lower income, and operate a larger farm. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Breast density quantification using magnetic resonance imaging (MRI) with bias field correction: a postmortem study.

    PubMed

    Ding, Huanjun; Johnson, Travis; Lin, Muqing; Le, Huy Q; Ducote, Justin L; Su, Min-Ying; Molloi, Sabee

    2013-12-01

    Quantification of breast density based on three-dimensional breast MRI may provide useful information for the early detection of breast cancer. However, the field inhomogeneity can severely challenge the computerized image segmentation process. In this work, the effect of the bias field in breast density quantification has been investigated with a postmortem study. T1-weighted images of 20 pairs of postmortem breasts were acquired on a 1.5 T breast MRI scanner. Two computer-assisted algorithms were used to quantify the volumetric breast density. First, standard fuzzy c-means (FCM) clustering was used on raw images with the bias field present. Then, the coherent local intensity clustering (CLIC) method estimated and corrected the bias field during the iterative tissue segmentation process. Finally, FCM clustering was performed on the bias-field-corrected images produced by CLIC method. The left-right correlation for breasts in the same pair was studied for both segmentation algorithms to evaluate the precision of the tissue classification. Finally, the breast densities measured with the three methods were compared to the gold standard tissue compositions obtained from chemical analysis. The linear correlation coefficient, Pearson's r, was used to evaluate the two image segmentation algorithms and the effect of bias field. The CLIC method successfully corrected the intensity inhomogeneity induced by the bias field. In left-right comparisons, the CLIC method significantly improved the slope and the correlation coefficient of the linear fitting for the glandular volume estimation. The left-right breast density correlation was also increased from 0.93 to 0.98. When compared with the percent fibroglandular volume (%FGV) from chemical analysis, results after bias field correction from both the CLIC the FCM algorithms showed improved linear correlation. As a result, the Pearson's r increased from 0.86 to 0.92 with the bias field correction. The investigated CLIC method significantly increased the precision and accuracy of breast density quantification using breast MRI images by effectively correcting the bias field. It is expected that a fully automated computerized algorithm for breast density quantification may have great potential in clinical MRI applications.

  14. Calculation of intensity of high energy muon groups observed deep underground

    NASA Technical Reports Server (NTRS)

    Vavilov, Y. N.; Dedenko, L. G.

    1985-01-01

    The intensity of narrow muon groups observed in Kolar Gold Field (KGF) at the depth of 3375 m.w.e. was calculated in terms of quark-gluon strings model for high energy hadron - air nuclei interactions by the method of direct modeling of nuclear cascade in the air and muon propagation in the ground for normal primary cosmic ray composition. The calculated intensity has been found to be approx. 10 to the 4 times less than one observed experimentally.

  15. Validating One-on-One GPS Instruction Methodology for Natural Resource Area Assessments Using Forestry Undergraduate Students

    ERIC Educational Resources Information Center

    Unger, Daniel R.

    2014-01-01

    Undergraduate students pursuing a Bachelor of Science in Forestry (BSF) at Stephen F. Austin State University (SFA) attend an intensive 6-week residential hands-on instruction in applied field methods. The intensive 6-week instruction includes learning how to use the Global Positioning System (GPS) with a Garmin eTrex HCx GPS unit to accurately…

  16. Boundary element methods for the analysis of crack growth in the presence of residual stress fields

    NASA Astrophysics Data System (ADS)

    Leitao, V. M. A.; Aliabadi, M. H.; Rooke, D. P.; Cook, R.

    1998-06-01

    Two boundary element methods of simulating crack growth in the presence of residual stress fields are presented, and the results are compared to experimental measurements. The first method utilizes linear elastic fracture mechanics (LEFM) and superimposes the solutions due to the applied load and the residual stress field. In this method, the residual stress fields are obtained from an elastoplastic BEM analysis, and numerical weight functions are used to obtain the stress intensity factors due to the fatigue loading. The second method presented is an elastoplastic fracture mechanics (EPFM) approach for crack growth simulation. A nonlinear J-integral is used in the fatigue life calculations. The methods are shown to agree well with experimental measurements of crack growth in prestressed open hole specimens. Results are also presented for the case where the prestress is applied to specimens that have been precracked.

  17. Innovative techniques with multi-purpose survey vehicle for automated analysis of cross-slope data.

    DOT National Transportation Integrated Search

    2007-11-02

    Manual surveying methods have long been used in the field of highway engineering to determine : the cross-slope, and longitudinal grade of an existing roadway. However, these methods are : slow, tedious and labor intensive. Moreover, manual survey me...

  18. Underwater unidirectional acoustic transmission through a plate with bilateral asymmetric gratings

    NASA Astrophysics Data System (ADS)

    Song, Ailing; Chen, Tianning; Wang, Xiaopeng; Xi, Yanhui; Liang, Qingxuan

    2018-04-01

    In this paper, a novel underwater unidirectional acoustic transmission (UAT) device consisting of a plate with bilateral asymmetric gratings is proposed and numerically investigated. The transmission spectra, the acoustic intensity field distributions, and the displacement field distributions are numerically calculated based on the finite element method. The transmission spectra show that the proposed device exhibits different UAT effects in three bands. The acoustic intensity field distributions demonstrate that the proposed device can realize UAT, which agree well with the transmission spectra. The mechanism is discussed by analyzing the displacement field distributions, and the UAT is attributed to the symmetric mode excited in brass plate. Furthermore, the effects of the lattice constant, the upper slit width, and the lower slit width on bands are discussed. Our design provides a good reference for designing underwater UAT devices and has potential applications in some fields, such as medical ultrasonic devices, acoustic barrier, and noise insulation.

  19. A determination of the intensity of the ancient lunar magnetic field.

    NASA Technical Reports Server (NTRS)

    Gose, W. A.; Strangway, D. W.; Pearce, G. W.

    1973-01-01

    Thermal demagnetization of lunar breccia 15498,36 shows that the natural remanent magnetization is a simple thermoremanence carried by metallic iron. Using the classical Thellier-Thellier method the strength of the magnetizing field at the time of sample formation was found to be 2100 plus or minus 80 gammas.

  20. Development and Testing of a Decision Making Based Method to Adjust Automatically the Harrowing Intensity

    PubMed Central

    Rueda-Ayala, Victor; Weis, Martin; Keller, Martina; Andújar, Dionisio; Gerhards, Roland

    2013-01-01

    Harrowing is often used to reduce weed competition, generally using a constant intensity across a whole field. The efficacy of weed harrowing in wheat and barley can be optimized, if site-specific conditions of soil, weed infestation and crop growth stage are taken into account. This study aimed to develop and test an algorithm to automatically adjust the harrowing intensity by varying the tine angle and number of passes. The field variability of crop leaf cover, weed density and soil density was acquired with geo-referenced sensors to investigate the harrowing selectivity and crop recovery. Crop leaf cover and weed density were assessed using bispectral cameras through differential images analysis. The draught force of the soil opposite to the direction of travel was measured with electronic load cell sensor connected to a rigid tine mounted in front of the harrow. Optimal harrowing intensity levels were derived in previously implemented experiments, based on the weed control efficacy and yield gain. The assessments of crop leaf cover, weed density and soil density were combined via rules with the aforementioned optimal intensities, in a linguistic fuzzy inference system (LFIS). The system was evaluated in two field experiments that compared constant intensities with variable intensities inferred by the system. A higher weed density reduction could be achieved when the harrowing intensity was not kept constant along the cultivated plot. Varying the intensity tended to reduce the crop leaf cover, though slightly improving crop yield. A real-time intensity adjustment with this system is achievable, if the cameras are attached in the front and at the rear or sides of the harrow. PMID:23669712

  1. Subsurface Structure Determination of Geotermal Area in Siogung-ogung Samosir District by Using Magnetic Method

    NASA Astrophysics Data System (ADS)

    Tampubolon, Togi; Hutahaean, Juniar; Siregar, Suryani N. J.

    2018-03-01

    Underwater research often uses geomagnets. It is one of the geophysical methods for measuring magnetic field variations. This research was done to identify how the subsurface rock structure is and determine kinds of rock based on its susceptibility value in Siogung-ogung geothermal area, Pangururan, Samosir District. The tool measurement of total magnetic field called Proton Precission Magnetometer, positioning using Global Position System, and north axis determination using geological compass. Data collection was done randomly with total 51 measuring points obtained. Data analysis started with International geomagnetics Reference Field correction to obtain the total magnetic field anomaly. Then, the data analysis of total magnetic anomaly was done by using surfer program 12. To get a magnetic anomaly cross section used Magdc For Windows program. Magnetic measurement results indicated that the variation of magnetic field strength in each point with the lowest magnetic intensity value of 41785.67 nano tesla. The highest magnetic intensity value is 43140, 33. From the results of qualitative interpretation, the magnetic anomaly value is at -200.92 to 1154.45 whereas the quantitative interpretive results of model show the existence of degradation and andesitic rocks, with the value of susceptibility

  2. WE-G-18C-05: Characterization of Cross-Vendor, Cross-Field Strength MR Image Intensity Variations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paulson, E; Prah, D

    2014-06-15

    Purpose: Variations in MR image intensity and image intensity nonuniformity (IINU) can challenge the accuracy of intensity-based image segmentation and registration algorithms commonly applied in radiotherapy. The goal of this work was to characterize MR image intensity variations across scanner vendors and field strengths commonly used in radiotherapy. Methods: ACR-MRI phantom images were acquired at 1.5T and 3.0T on GE (450w and 750, 23.1), Siemens (Espree and Verio, VB17B), and Philips (Ingenia, 4.1.3) scanners using commercial spin-echo sequences with matched parameters (TE/TR: 20/500 ms, rBW: 62.5 kHz, TH/skip: 5/5mm). Two radiofrequency (RF) coil combinations were used for each scanner: bodymore » coil alone, and combined body and phased-array head coils. Vendorspecific B1- corrections (PURE/Pre-Scan Normalize/CLEAR) were applied in all head coil cases. Images were transferred offline, corrected for IINU using the MNI N3 algorithm, and normalized. Coefficients of variation (CV=σ/μ) and peak image uniformity (PIU = 1−(Smax−Smin)/(Smax+Smin)) estimates were calculated for one homogeneous phantom slice. Kruskal-Wallis and Wilcoxon matched-pairs tests compared mean MR signal intensities and differences between original and N3 image CV and PIU. Results: Wide variations in both MR image intensity and IINU were observed across scanner vendors, field strengths, and RF coil configurations. Applying the MNI N3 correction for IINU resulted in significant improvements in both CV and PIU (p=0.0115, p=0.0235). However, wide variations in overall image intensity persisted, requiring image normalization to improve consistency across vendors, field strengths, and RF coils. These results indicate that B1- correction routines alone may be insufficient in compensating for IINU and image scaling, warranting additional corrections prior to use of MR images in radiotherapy. Conclusions: MR image intensities and IINU vary as a function of scanner vendor, field strength, and RF coil configuration. A two-step strategy consisting of MNI N3 correction followed by normalization was required to improve MR image consistency. Funding provided by Advancing a Healthier Wisconsin.« less

  3. An instrument to assess the statistical intensity of medical research papers.

    PubMed

    Nieminen, Pentti; Virtanen, Jorma I; Vähänikkilä, Hannu

    2017-01-01

    There is widespread evidence that statistical methods play an important role in original research articles, especially in medical research. The evaluation of statistical methods and reporting in journals suffers from a lack of standardized methods for assessing the use of statistics. The objective of this study was to develop and evaluate an instrument to assess the statistical intensity in research articles in a standardized way. A checklist-type measure scale was developed by selecting and refining items from previous reports about the statistical contents of medical journal articles and from published guidelines for statistical reporting. A total of 840 original medical research articles that were published between 2007-2015 in 16 journals were evaluated to test the scoring instrument. The total sum of all items was used to assess the intensity between sub-fields and journals. Inter-rater agreement was examined using a random sample of 40 articles. Four raters read and evaluated the selected articles using the developed instrument. The scale consisted of 66 items. The total summary score adequately discriminated between research articles according to their study design characteristics. The new instrument could also discriminate between journals according to their statistical intensity. The inter-observer agreement measured by the ICC was 0.88 between all four raters. Individual item analysis showed very high agreement between the rater pairs, the percentage agreement ranged from 91.7% to 95.2%. A reliable and applicable instrument for evaluating the statistical intensity in research papers was developed. It is a helpful tool for comparing the statistical intensity between sub-fields and journals. The novel instrument may be applied in manuscript peer review to identify papers in need of additional statistical review.

  4. Adaptive quantification and longitudinal analysis of pulmonary emphysema with a hidden Markov measure field model.

    PubMed

    Hame, Yrjo; Angelini, Elsa D; Hoffman, Eric A; Barr, R Graham; Laine, Andrew F

    2014-07-01

    The extent of pulmonary emphysema is commonly estimated from CT scans by computing the proportional area of voxels below a predefined attenuation threshold. However, the reliability of this approach is limited by several factors that affect the CT intensity distributions in the lung. This work presents a novel method for emphysema quantification, based on parametric modeling of intensity distributions and a hidden Markov measure field model to segment emphysematous regions. The framework adapts to the characteristics of an image to ensure a robust quantification of emphysema under varying CT imaging protocols, and differences in parenchymal intensity distributions due to factors such as inspiration level. Compared to standard approaches, the presented model involves a larger number of parameters, most of which can be estimated from data, to handle the variability encountered in lung CT scans. The method was applied on a longitudinal data set with 87 subjects and a total of 365 scans acquired with varying imaging protocols. The resulting emphysema estimates had very high intra-subject correlation values. By reducing sensitivity to changes in imaging protocol, the method provides a more robust estimate than standard approaches. The generated emphysema delineations promise advantages for regional analysis of emphysema extent and progression.

  5. Acoustic characterization of high intensity focused ultrasound fields: A combined measurement and modeling approach

    PubMed Central

    Canney, Michael S.; Bailey, Michael R.; Crum, Lawrence A.; Khokhlova, Vera A.; Sapozhnikov, Oleg A.

    2008-01-01

    Acoustic characterization of high intensity focused ultrasound (HIFU) fields is important both for the accurate prediction of ultrasound induced bioeffects in tissues and for the development of regulatory standards for clinical HIFU devices. In this paper, a method to determine HIFU field parameters at and around the focus is proposed. Nonlinear pressure waveforms were measured and modeled in water and in a tissue-mimicking gel phantom for a 2 MHz transducer with an aperture and focal length of 4.4 cm. Measurements were performed with a fiber optic probe hydrophone at intensity levels up to 24 000 W∕cm2. The inputs to a Khokhlov–Zabolotskaya–Kuznetsov-type numerical model were determined based on experimental low amplitude beam plots. Strongly asymmetric waveforms with peak positive pressures up to 80 MPa and peak negative pressures up to 15 MPa were obtained both numerically and experimentally. Numerical simulations and experimental measurements agreed well; however, when steep shocks were present in the waveform at focal intensity levels higher than 6000 W∕cm2, lower values of the peak positive pressure were observed in the measured waveforms. This underrepresentation was attributed mainly to the limited hydrophone bandwidth of 100 MHz. It is shown that a combination of measurements and modeling is necessary to enable accurate characterization of HIFU fields. PMID:19062878

  6. Influence of external magnetic field on laser-induced gold nanoparticles fragmentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serkov, A. A.; The Federal State Educational Institution of Higher Professional Education, “Moscow Institute of Physics and Technology; Rakov, I. I.

    Laser-assisted fragmentation is an efficient method of the nanoparticles size and morphology control. However, its exact mechanisms are still under consideration. One of the remaining problems is the plasma formation, inevitably occurring upon the high intensity laser irradiation. In this Letter, the role of the laser-induced plasma is studied via introduction of high-intensity external magnetic field (up to 7.5 T). Its presence is found to cause the plasma emission to start earlier regarding to a laser pulse, also increasing the plume luminosity. Under these conditions, the acceleration of nanoparticles fragmentation down to a few nanometers is observed. Laser-induced plasma interaction withmore » magnetic field and consequent energy transfer from plasma to nanoparticles are discussed.« less

  7. Optimized two- and three-colour laser pulses for the intense terahertz wave generation

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Wang, Guo-Li; Zhou, Xiao-Xin

    2016-11-01

    Based on the photocurrent model, we perform a theoretical study on the optimization of terahertz (THz) wave emission from argon gas irradiated by the two- and three-colour laser fields. To obtain stronger THz radiation for the given conditions, a genetic algorithm method is applied to search for the optimum laser parameters. For the two-colour field, our optimizations reveal two types of optimal scheme, and each one dominates the THz generation in different regions of intensity ratio for a given total laser intensity. One scheme is the combination of a fundamental laser pulse and its second harmonic, while the other is the fundamental pulse with its fourth harmonic. For each scheme, the optimal intensity ratio and phase delay are obtained. For the three-colour case, our optimization shows that the excellent waveform for the strongest THz radiation is composed of a fundamental laser pulse, and its second, third harmonics, with appropriate intensity ratio and carrier-envelope phase. Such a 3-colour field can generate strong THz radiation comparable with a 10-colour sawtooth wave [Martínez et al., Phys. Rev. Lett. 114, 183901 (2015)]. The physical mechanisms for the enhancement of THz wave emission in gases are also discussed in detail. Our results give helpful guidance for intense THz generation with tabletop femtosecond laser device in experiment.

  8. A Technique for Estimating the Surface Conductivity of Single Molecules

    NASA Astrophysics Data System (ADS)

    Bau, Haim; Arsenault, Mark; Zhao, Hui; Purohit, Prashant; Goldman, Yale

    2007-11-01

    When an AC electric field at 2MHz was applied across a small gap between two metal electrodes elevated above a surface, rhodamine-phalloidin-labeled actin filaments were attracted to the gap and became suspended between the two electrodes. The variance of each filament's horizontal, lateral displacement was measured as a function of electric field intensity and position along the filament. The variance significantly decreased as the electric field intensity increased. Hypothesizing that the electric field induces electroosmotic flow around the filament that, in turn, induces drag on the filament, which appears as effective tension, we estimated the tension using a linear, Brownian dynamic model. Based on the tension, we estimated the filament's surface conductivity. Our experimental method provides a novel means for trapping and manipulating biological filaments and for probing the surface conductance and mechanical properties of single polymers.

  9. Optical properties of a multibarrier structure under intense laser fields

    NASA Astrophysics Data System (ADS)

    Ospina, D. A.; Akimov, V.; Mora-Ramos, M. E.; Morales, A. L.; Tulupenko, V.; Duque, C. A.

    2015-11-01

    Using the diagonalization method and within the effective mass and parabolic band approximations, the energy spectrum and the wave functions are investigated in biased multibarrier structure taking into account the effects of nonresonant intense laser fields. We calculated the optical properties from the susceptibility using a nonperturbative formalism recently reported. We study the changes in the intersubband optical absorption coefficients and refraction index for several values of the dressing laser parameter and for some specific values of the electric field applied along the growth direction of the heterostructure. It is concluded from our study that the peaks in the optical absorption spectrum have redshifts or blueshifts as a function of the laser parameter and the electric field. These parameters could be suitable tools for tuning the electronic and optical properties of the multibarrier structure.

  10. Optimized multi-electrode stimulation increases focality and intensity at target

    NASA Astrophysics Data System (ADS)

    Dmochowski, Jacek P.; Datta, Abhishek; Bikson, Marom; Su, Yuzhuo; Parra, Lucas C.

    2011-08-01

    Transcranial direct current stimulation (tDCS) provides a non-invasive tool to elicit neuromodulation by delivering current through electrodes placed on the scalp. The present clinical paradigm uses two relatively large electrodes to inject current through the head resulting in electric fields that are broadly distributed over large regions of the brain. In this paper, we present a method that uses multiple small electrodes (i.e. 1.2 cm diameter) and systematically optimize the applied currents to achieve effective and targeted stimulation while ensuring safety of stimulation. We found a fundamental trade-off between achievable intensity (at the target) and focality, and algorithms to optimize both measures are presented. When compared with large pad-electrodes (approximated here by a set of small electrodes covering 25cm2), the proposed approach achieves electric fields which exhibit simultaneously greater focality (80% improvement) and higher target intensity (98% improvement) at cortical targets using the same total current applied. These improvements illustrate the previously unrecognized and non-trivial dependence of the optimal electrode configuration on the desired electric field orientation and the maximum total current (due to safety). Similarly, by exploiting idiosyncratic details of brain anatomy, the optimization approach significantly improves upon prior un-optimized approaches using small electrodes. The analysis also reveals the optimal use of conventional bipolar montages: maximally intense tangential fields are attained with the two electrodes placed at a considerable distance from the target along the direction of the desired field; when radial fields are desired, the maximum-intensity configuration consists of an electrode placed directly over the target with a distant return electrode. To summarize, if a target location and stimulation orientation can be defined by the clinician, then the proposed technique is superior in terms of both focality and intensity as compared to previous solutions and is thus expected to translate into improved patient safety and increased clinical efficacy.

  11. Could Magnetic Fields Affect the Circadian Clock Function of Cryptochromes? Testing the Basic Premise of the Cryptochrome Hypothesis (ELF Magnetic Fields).

    PubMed

    Vanderstraeten, Jacques; Burda, Hynek; Verschaeve, Luc; De Brouwer, Christophe

    2015-07-01

    It has been suggested that weak 50/60 Hz [extremely low frequency (ELF)] magnetic fields (MF) could affect circadian biorhythms by disrupting the clock function of cryptochromes (the "cryptochrome hypothesis," currently under study). That hypothesis is based on the premise that weak (Earth strength) static magnetic fields affect the redox balance of cryptochromes, thus possibly their signaling state as well. An appropriate method for testing this postulate could be real time or short-term study of the circadian clock function of retinal cryptochromes under exposure to the static field intensities that elicit the largest redox changes (maximal "low field" and "high field" effects, respectively) compared to zero field. Positive results might encourage further study of the cryptochrome hypothesis itself. However, they would indicate the need for performing a similar study, this time comparing the effects of only slight intensity changes (low field range) in order to explore the possible role of the proximity of metal structures and furniture as a confounder under the cryptochrome hypothesis.

  12. Multilevel Space-Time Aggregation for Bright Field Cell Microscopy Segmentation and Tracking

    PubMed Central

    Inglis, Tiffany; De Sterck, Hans; Sanders, Geoffrey; Djambazian, Haig; Sladek, Robert; Sundararajan, Saravanan; Hudson, Thomas J.

    2010-01-01

    A multilevel aggregation method is applied to the problem of segmenting live cell bright field microscope images. The method employed is a variant of the so-called “Segmentation by Weighted Aggregation” technique, which itself is based on Algebraic Multigrid methods. The variant of the method used is described in detail, and it is explained how it is tailored to the application at hand. In particular, a new scale-invariant “saliency measure” is proposed for deciding when aggregates of pixels constitute salient segments that should not be grouped further. It is shown how segmentation based on multilevel intensity similarity alone does not lead to satisfactory results for bright field cells. However, the addition of multilevel intensity variance (as a measure of texture) to the feature vector of each aggregate leads to correct cell segmentation. Preliminary results are presented for applying the multilevel aggregation algorithm in space time to temporal sequences of microscope images, with the goal of obtaining space-time segments (“object tunnels”) that track individual cells. The advantages and drawbacks of the space-time aggregation approach for segmentation and tracking of live cells in sequences of bright field microscope images are presented, along with a discussion on how this approach may be used in the future work as a building block in a complete and robust segmentation and tracking system. PMID:20467468

  13. Corrugated Waveguide Mode Content Analysis Using Irradiance Moments

    PubMed Central

    Jawla, Sudheer K.; Shapiro, Michael A.; Idei, Hiroshi; Temkin, Richard J.

    2015-01-01

    We present a novel, relatively simple method for determining the mode content of the linearly polarized modes of a corrugated waveguide using the moments of the intensity pattern of the field radiated from the end of the waveguide. This irradiance moment method is based on calculating the low-order irradiance moments, using measured intensity profiles only, of the radiated field from the waveguide aperture. Unlike the phase retrieval method, this method does not use or determine the phase distribution at the waveguide aperture. The new method was benchmarked numerically by comparison with sample mode mixtures. The results predict less than ±0.7% error bar in the retrieval of the mode content. The method was also tested using high-resolution experimental data from beams radiated from 63.5 mm and 19 mm corrugated waveguides at 170 and 250 GHz, respectively. The results showed a very good agreement of the mode content retrieved using the irradiance moment method versus the phase retrieval technique. The irradiance moment method is most suitable for cases where the modal power is primarily in the fundamental HE11 mode, with <8% of the power in high-order modes. PMID:25821260

  14. Magnetic-field-induced rotation of light with orbital angular momentum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Shuai; Ding, Dong-Sheng, E-mail: dds@ustc.edu.cn; Zhou, Zhi-Yuan

    Light carrying orbital angular momentum (OAM) has attractive applications in the fields of precise optical measurements and high capacity optical communications. We study the rotation of a light beam propagating in warm {sup 87}Rb atomic vapor using a method based on magnetic-field-induced circular birefringence. The dependence of the rotation angle on the magnetic field makes it appropriate for weak magnetic field measurements. We quote a detailed theoretical description that agrees well with the experimental observations. The experiment shown here provides a method to measure the magnetic field intensity precisely and expands the application of OAM-carrying light. This technique has advantagemore » in measurement of magnetic field weaker than 0.5 G, and the precision we achieved is 0.8 mG.« less

  15. Acoustic characterization of high intensity focused ultrasound fields generated from a transmitter with a large aperture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Tao; Fan, Tingbo; Jiangsu Province Institute for Medical Equipment Testing, Nanjing 210012

    Prediction and measurement of the acoustic field emitted from a high intensity focused ultrasound (HIFU) is essential for the accurate ultrasonic treatment. In this study, the acoustic field generated from a strongly focused HIFU transmitter was characterized by a combined experiment and simulation method. The spheroidal beam equation (SBE) was utilized to describe the nonlinear sound propagation. The curve of the source pressure amplitude versus voltage excitation was determined by fitting the measured ratio of the second harmonic to the fundamental component of the focal waveform to the simulation result; finally, the acoustic pressure field generated by the strongly focusedmore » HIFU transmitter was predicted by using the SBE model. A commercial fiber optic probe hydrophone was utilized to measure the acoustic pressure field generated from a 1.1 MHz HIFU transmitter with a large half aperture angle of 30°. The maximum measured peak-to-peak pressure was up to 72 MPa. The validity of this combined approach was confirmed by the comparison between the measured results and the calculated ones. The results indicate that the current approach might be useful to describe the HIFU field. The results also suggest that this method is not valid for low excitations owing to low sensitivity of the second harmonic.« less

  16. Frequency domain and full waveform time domain inversion of ground based magnetometer, electrometer and incoherent scattering radar arrays to image strongly heterogenous 3-D Earth structure, ionospheric structure, and to predict the intensity of GICs in the power grid

    NASA Astrophysics Data System (ADS)

    Schultz, A.; Imamura, N.; Bonner, L. R., IV; Cosgrove, R. B.

    2016-12-01

    Ground-based magnetometer and electrometer arrays provide the means to probe the structure of the Earth's interior, the interactions of space weather with the ionosphere, and to anticipate the intensity of geomagnetically induced currents (GICs) in power grids. We present a local-to-continental scale view of a heterogeneous 3-D crust and mantle as determined from magnetotelluric (MT) observations across arrays of ground-based electric and magnetic field sensors. MT impedance tensors describe the relationship between electric and magnetic fields at a given site, thus implicitly they contain all known information on the 3-D electrical resistivity structure beneath and surrounding that site. By using multivariate transfer functions to project real-time magnetic observatory network data to areas surrounding electric power grids, and by projecting those magnetic fields through MT impedance tensors, the projected magnetic field can be transformed into predictions of electric fields along the path of the transmission lines, an essential element of predicting the intensity of GICs in the grid. Finally, we explore GICs, i.e. Earth-ionosphere coupling directly in the time-domain. We consider the fully coupled EM system, where we allow for a non-stationary ionospheric source field of arbitrary complexity above a 3-D Earth. We solve the simultaneous inverse problem for 3-D Earth conductivity and source field structure directly in the time domain. In the present work, we apply this method to magnetotelluric data obtained from a synchronously operating array of 25 MT stations that collected continuous MT waveform data in the interior of Alaska during the autumn and winter of 2015 under the footprint of the Poker Flat (Alaska) Incoherent Scattering Radar (PFISR). PFISR data yield functionals of the ionospheric electric field and ionospheric conductivity that constrain the MT source field. We show that in this region conventional robust MT processing methods struggle to produce reliable MT response functions at periods much greater than about 2,000 s, a consequence, we believe, of the complexity of the ionospheric source fields in this high latitude setting. This provides impetus for direct waveform inversion methods that dispense with typical parametric assumptions made about the MT source fields.

  17. A new gradient shimming method based on undistorted field map of B0 inhomogeneity.

    PubMed

    Bao, Qingjia; Chen, Fang; Chen, Li; Song, Kan; Liu, Zao; Liu, Chaoyang

    2016-04-01

    Most existing gradient shimming methods for NMR spectrometers estimate field maps that resolve B0 inhomogeneity spatially from dual gradient-echo (GRE) images acquired at different echo times. However, the distortions induced by B0 inhomogeneity that always exists in the GRE images can result in estimated field maps that are distorted in both geometry and intensity, leading to inaccurate shimming. This work proposes a new gradient shimming method based on undistorted field map of B0 inhomogeneity obtained by a more accurate field map estimation technique. Compared to the traditional field map estimation method, this new method exploits both the positive and negative polarities of the frequency encoded gradients to eliminate the distortions caused by B0 inhomogeneity in the field map. Next, the corresponding automatic post-data procedure is introduced to obtain undistorted B0 field map based on knowledge of the invariant characteristics of the B0 inhomogeneity and the variant polarity of the encoded gradient. The experimental results on both simulated and real gradient shimming tests demonstrate the high performance of this new method. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Locally adaptive MR intensity models and MRF-based segmentation of multiple sclerosis lesions

    NASA Astrophysics Data System (ADS)

    Galimzianova, Alfiia; Lesjak, Žiga; Likar, Boštjan; Pernuš, Franjo; Špiclin, Žiga

    2015-03-01

    Neuroimaging biomarkers are an important paraclinical tool used to characterize a number of neurological diseases, however, their extraction requires accurate and reliable segmentation of normal and pathological brain structures. For MR images of healthy brains the intensity models of normal-appearing brain tissue (NABT) in combination with Markov random field (MRF) models are known to give reliable and smooth NABT segmentation. However, the presence of pathology, MR intensity bias and natural tissue-dependent intensity variability altogether represent difficult challenges for a reliable estimation of NABT intensity model based on MR images. In this paper, we propose a novel method for segmentation of normal and pathological structures in brain MR images of multiple sclerosis (MS) patients that is based on locally-adaptive NABT model, a robust method for the estimation of model parameters and a MRF-based segmentation framework. Experiments on multi-sequence brain MR images of 27 MS patients show that, compared to whole-brain model and compared to the widely used Expectation-Maximization Segmentation (EMS) method, the locally-adaptive NABT model increases the accuracy of MS lesion segmentation.

  19. Monitoring of concentrated radiation beam for photovoltaic and thermal solar energy conversion applications.

    PubMed

    Parretta, Antonio; Privato, Carlo; Nenna, Giuseppe; Antonini, Andrea; Stefancich, Marco

    2006-10-20

    Methods for evaluating the light intensity distribution on receivers of concentrated solar radiation systems are described. They are based on the use of Lambertian diffusers in place of the illuminated receiver and on the acquisition of the scattered light, in reflection or transmission mode, by a CCD camera. The spatial distribution of intensity radiation is then numerically derived from the recorded images via a proprietary code. The details of the method are presented and a short survey of the main applications of the method in the photovoltaic and thermal solar energy conversion field is proposed. Methods for investigating the Lambertian character of commercial diffusers are also discussed.

  20. Features of the energy structure of acoustic fields in the ocean with two-dimensional random inhomogeneities

    NASA Astrophysics Data System (ADS)

    Gulin, O. E.; Yaroshchuk, I. O.

    2017-03-01

    The paper is devoted to the analytic study and numerical simulation of mid-frequency acoustic signal propagation in a two-dimensional inhomogeneous random shallow-water medium. The study was carried out by the cross section method (local modes). We present original theoretical estimates for the behavior of the average acoustic field intensity and show that at different distances, the features of propagation loss behavior are determined by the intensity of fluctuations and their horizontal scale and depend on the initial regular parameters, such as the emission frequency and size of sound losses in the bottom. We establish analytically that for the considered waveguide and sound frequency parameters, mode coupling effect has a local character and weakly influences the statistics. We establish that the specific form of the spatial spectrum of sound velocity inhomogeneities for the statistical patterns of the field intensity is insignificant during observations in the range of shallow-water distances of practical interest.

  1. Quantifying time-of-flight-resolved optical field dynamics in turbid media with interferometric near-infrared spectroscopy (iNIRS) (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Borycki, Dawid; Kholiqov, Oybek; Zhou, Wenjun; Srinivasan, Vivek J.

    2017-03-01

    Sensing and imaging methods based on the dynamic scattering of coherent light, including laser speckle, laser Doppler, and diffuse correlation spectroscopy quantify scatterer motion using light intensity (speckle) fluctuations. The underlying optical field autocorrelation (OFA), rather than being measured directly, is typically inferred from the intensity autocorrelation (IA) through the Siegert relationship, by assuming that the scattered field obeys Gaussian statistics. In this work, we demonstrate interferometric near-infrared spectroscopy (iNIRS) for measurement of time-of-flight (TOF) resolved field and intensity autocorrelations in fluid tissue phantoms and in vivo. In phantoms, we find a breakdown of the Siegert relationship for short times-of-flight due to a contribution from static paths whose optical field does not decorrelate over experimental time scales, and demonstrate that eliminating such paths by polarization gating restores the validity of the Siegert relationship. Inspired by these results, we developed a method, called correlation gating, for separating the OFA into static and dynamic components. Correlation gating enables more precise quantification of tissue dynamics. To prove this, we show that iNIRS and correlation gating can be applied to measure cerebral hemodynamics of the nude mouse in vivo using dynamically scattered (ergodic) paths and not static (non-ergodic) paths, which may not be impacted by blood. More generally, correlation gating, in conjunction with TOF resolution, enables more precise separation of diffuse and non-diffusive contributions to OFA than is possible with TOF resolution alone. Finally, we show that direct measurements of OFA are statistically more efficient than indirect measurements based on IA.

  2. Method for Remotely Measuring Fluctuations in the Optical Index of Refraction of a Medium

    DTIC Science & Technology

    2011-11-09

    space where the spatial spectrum is multiplied by a Kolmogorv spectrum before an inverse transform is used to return to position space. An index of...electric field at the end of the first slab. A two-dimensional inverse transform at 50 is used to generate the electric field intensity E_\\r,L.j

  3. Probabilistic segmentation and intensity estimation for microarray images.

    PubMed

    Gottardo, Raphael; Besag, Julian; Stephens, Matthew; Murua, Alejandro

    2006-01-01

    We describe a probabilistic approach to simultaneous image segmentation and intensity estimation for complementary DNA microarray experiments. The approach overcomes several limitations of existing methods. In particular, it (a) uses a flexible Markov random field approach to segmentation that allows for a wider range of spot shapes than existing methods, including relatively common 'doughnut-shaped' spots; (b) models the image directly as background plus hybridization intensity, and estimates the two quantities simultaneously, avoiding the common logical error that estimates of foreground may be less than those of the corresponding background if the two are estimated separately; and (c) uses a probabilistic modeling approach to simultaneously perform segmentation and intensity estimation, and to compute spot quality measures. We describe two approaches to parameter estimation: a fast algorithm, based on the expectation-maximization and the iterated conditional modes algorithms, and a fully Bayesian framework. These approaches produce comparable results, and both appear to offer some advantages over other methods. We use an HIV experiment to compare our approach to two commercial software products: Spot and Arrayvision.

  4. The swimming polarity of multicellular magnetotactic prokaryotes can change during an isolation process employing magnets: evidence of a relation between swimming polarity and magnetic moment intensity.

    PubMed

    de Melo, Roger Duarte; Acosta-Avalos, Daniel

    2017-09-01

    Magnetotactic microorganisms are characterized by swimming in the direction of an applied magnetic field. In nature, two types of swimming polarity have been observed: north-seeking microorganisms that swim in the same direction as the magnetic field, and south-seeking microorganisms that swim in the opposite direction. The present work studies the reversal in the swimming polarity of the multicellular magnetotactic prokaryote Candidatus Magnetoglobus multicellularis following an isolation process using high magnetic fields from magnets. The proportion of north- and south-seeking organisms was counted as a function of the magnetic field intensity used during the isolation of the organisms from sediment. It was observed that the proportion of north-seeking organisms increased when the magnetic field was increased. The magnetic moment for north- and south-seeking populations was estimated using the U-turn method. The average magnetic moment was higher for north- than south-seeking organisms. The results suggest that the reversal of swimming polarity must occur during the isolation process in the presence of high magnetic fields and magnetic field gradients. It is shown for the first time that the swimming polarity reversal depends on the magnetic moment intensity of multicellular magnetotactic prokaryotes, and new studies must be undertaken to understand the role of magnetic moment polarity and oxygen gradients in determination of swimming polarity.

  5. A brief introduction to computer-intensive methods, with a view towards applications in spatial statistics and stereology.

    PubMed

    Mattfeldt, Torsten

    2011-04-01

    Computer-intensive methods may be defined as data analytical procedures involving a huge number of highly repetitive computations. We mention resampling methods with replacement (bootstrap methods), resampling methods without replacement (randomization tests) and simulation methods. The resampling methods are based on simple and robust principles and are largely free from distributional assumptions. Bootstrap methods may be used to compute confidence intervals for a scalar model parameter and for summary statistics from replicated planar point patterns, and for significance tests. For some simple models of planar point processes, point patterns can be simulated by elementary Monte Carlo methods. The simulation of models with more complex interaction properties usually requires more advanced computing methods. In this context, we mention simulation of Gibbs processes with Markov chain Monte Carlo methods using the Metropolis-Hastings algorithm. An alternative to simulations on the basis of a parametric model consists of stochastic reconstruction methods. The basic ideas behind the methods are briefly reviewed and illustrated by simple worked examples in order to encourage novices in the field to use computer-intensive methods. © 2010 The Authors Journal of Microscopy © 2010 Royal Microscopical Society.

  6. Computer Analysis of Electromagnetic Field Exposure Hazard for Space Station Astronauts during Extravehicular Activity

    NASA Technical Reports Server (NTRS)

    Hwu, Shian U.; Kelley, James S.; Panneton, Robert B.; Arndt, G. Dickey

    1995-01-01

    In order to estimate the RF radiation hazards to astronauts and electronics equipment due to various Space Station transmitters, the electric fields around the various Space Station antennas are computed using the rigorous Computational Electromagnetics (CEM) techniques. The Method of Moments (MoM) was applied to the UHF and S-band low gain antennas. The Aperture Integration (AI) method and the Geometrical Theory of Diffraction (GTD) method were used to compute the electric field intensities for the S- and Ku-band high gain antennas. As a result of this study, The regions in which the electric fields exceed the specified exposure levels for the Extravehicular Mobility Unit (EMU) electronics equipment and Extravehicular Activity (EVA) astronaut are identified for various Space Station transmitters.

  7. Geomagnetic field observations in the Kopaonik thrust region, Yugoslavia.

    NASA Astrophysics Data System (ADS)

    Bicskei, T.; Popeskov, M.

    1991-09-01

    In the absence of continuous registrations of the geomagnetic field variations in the surveyed region, the nearest permanent observatory records had to be used in the data reduction procedure. The proposed method estimates the differences between the hourly mean values at the particular measuring site, which are not actually known, and at the observatory on the basis of a series of instantaneous total field intensity values measured simultaneously at these two places. The application of this method to the geomagnetic field data from the wider area of the Kopaonik thrust region has revealed local field changes which show connection with pronounced seismic activity that has been going on in this region since it was affected by the M = 6.0 earthquake on May 18, 1980.

  8. A Novel Database to Rank and Display Archeomagnetic Intensity Data

    NASA Astrophysics Data System (ADS)

    Donadini, F.; Korhonen, K.; Riisager, P.; Pesonen, L. J.; Kahma, K.

    2005-12-01

    To understand the content and the causes of the changes in the Earth's magnetic field beyond the observatory records one has to rely on archeomagnetic and lake sediment paleomagnetic data. The regional archeointensity curves are often of different quality and temporally variable which hampers the global analysis of the data in terms of dipole vs non-dipole field. We have developed a novel archeointensity database application utilizing MySQL, PHP (PHP Hypertext Preprocessor), and the Generic Mapping Tools (GMT) for ranking and displaying geomagnetic intensity data from the last 12000 years. Our application has the advantage that no specific software is required to query the database and view the results. Querying the database is performed using any Web browser; a fill-out form is used to enter the site location and a minimum ranking value to select the data points to be displayed. The form also features the possibility to select plotting of the data as an archeointensity curve with error bars, and a Virtual Axial Dipole Moment (VADM) or ancient field value (Ba) curve calculated using the CALS7K model (Continuous Archaeomagnetic and Lake Sediment geomagnetic model) of (Korte and Constable, 2005). The results of a query are displayed on a Web page containing a table summarizing the query parameters, a table showing the archeointensity values satisfying the query parameters, and a plot of VADM or Ba as a function of sample age. The database consists of eight related tables. The main one, INTENSITIES, stores the 3704 archeointensity measurements collected from 159 publications as VADM (and VDM when available) and Ba values, including their standard deviations and sampling locations. It also contains the number of samples and specimens measured from each site. The REFS table stores the references to a particular study. The names, latitudes, and longitudes of the regions where the samples were collected are stored in the SITES table. The MATERIALS, METHODS, SPECIMEN_TYPES and DATING_METHODS tables store information about the sample materials, intensity determination methods, specimen types and age determination methods. The SIGMA_COUNT table is used indirectly for ranking data according to the number of samples measured and their standard deviations. Each intensity measurement is assigned a score (0--2) depending on the number of specimens measured and their standard deviations, the intensity determination method, the type of specimens measured and materials. The ranking of each data point is calculated as the sum of the four scores and varies between 0 and 8. Additionally, users can select the parameters that will be included in the ranking.

  9. Theory of molecular rate processes in the presence of intense laser radiation

    NASA Technical Reports Server (NTRS)

    George, T. F.; Zimmerman, I. H.; Devries, P. L.; Yuan, J.-M.; Lam, K.-S.; Bellum, J. C.; Lee, H.-W.; Slutsky, M. S.; Lin, J.-T.

    1979-01-01

    The present paper deals with the influence of intense laser radiation on gas-phase molecular rate processes. Representations of the radiation field, the particle system, and the interaction involving these two entities are discussed from a general rather than abstract point of view. The theoretical methods applied are outlined, and the formalism employed is illustrated by application to a variety of specific processes. Quantum mechanical and semiclassical treatments of representative atom-atom and atom-diatom collision processes in the presence of a field are examined, and examples of bound-continuum processes and heterogeneous catalysis are discussed within the framework of both quantum-mechanical and semiclassical theories.

  10. Lineshape-asymmetry elimination in weak atomic transitions driven by an intense standing wave field

    NASA Astrophysics Data System (ADS)

    Antypas, Dionysios; Fabricant, Anne; Budker, Dmitry

    2018-05-01

    Owing to the ac-Stark effect, the lineshape of a weak optical transition in an atomic beam can become significantly distorted, when driven by an intense standing wave field. We use an Yb atomic beam to study the lineshape of the 6s2 1S0 -> 5d6s 3D1 transition, which is excited with light circulating in a Fabry-Perot resonator. We demonstrate two methods to avoid the distortion of the transition profile. Of these, one relies on the operation of the resonator in multiple longitudinal modes, and the other in multiple transverse modes.

  11. A method for the elimination of artefacts in electric field plethysmography of the lung.

    PubMed

    Pfützner, H; Futschik, K; Doblander, A; Schenz, G; Zwick, H

    1990-01-01

    The reliability of electric plethysmography for respiration monitoring is reduced by artefacts caused by the cardiac activity, by motions, electromagnetic cross-talk and others. For artefact suppression, a constant-current field-plethysmography technique is discussed which uses the voltage of an auxiliary electrode in addition to the conventional four-electrode arrangement. By means of a differential amplifier, a respiration signal is produced which is almost entirely free from heart artefacts, while the intensity of additional artefacts is suppressed. In principle, the technique can also be used for the separate determination of the ventilation intensity of the two lungs.

  12. Intense Femtosecond Laser-Mediated Electrical Discharge Enables Preparation of Amorphous Nickel Phosphide Nanoparticles.

    PubMed

    Ma, Zhuo-Chen; Chen, Qi-Dai; Han, Bing; Li, He-Long; Wang, Lei; Zhang, Yong-Lai; Sun, Hong-Bo

    2018-05-09

    Reported here is a high-efficiency preparation method of amorphous nickel phosphide (Ni-P) nanoparticles by intense femtosecond laser irradiation of nickel sulfate and sodium hypophosphite aqueous solution. The underlying mechanism of the laser-assisted preparation was discussed in terms of the breaking of chemical bond in reactants via highly intense electric field discharge generated by the intense femtosecond laser. The morphology and size of the nanoparticles can be tuned by varying the reaction parameters such as ion concentration, ion molar ratio, laser power, and irradiation time. X-ray diffraction and transmission electron microscopy results demonstrated that the nanoparticles were amorphous. Finally, the thermogravimetric-differential thermal analysis experiment verified that the as-synthesized noncrystalline Ni-P nanoparticles had an excellent catalytic capability toward thermal decomposition of ammonium perchlorate. This strategy of laser-mediated electrical discharge under such an extremely intense field may create new opportunities for the decomposition of molecules or chemical bonds that could further facilitate the recombination of new atoms or chemical groups, thus bringing about new possibilities for chemical reaction initiation and nanomaterial synthesis that may not be realized under normal conditions.

  13. Reduction of susceptibility-induced signal losses in multi-gradient-echo images: application to improved visualization of the subthalamic nucleus.

    PubMed

    Volz, Steffen; Hattingen, Elke; Preibisch, Christine; Gasser, Thomas; Deichmann, Ralf

    2009-05-01

    T2-weighted gradient echo (GE) images yield good contrast of iron-rich structures like the subthalamic nuclei due to microscopic susceptibility induced field gradients, providing landmarks for the exact placement of deep brain stimulation electrodes in Parkinson's disease treatment. An additional advantage is the low radio frequency (RF) exposure of GE sequences. However, T2-weighted images are also sensitive to macroscopic field inhomogeneities, resulting in signal losses, in particular in orbitofrontal and temporal brain areas, limiting anatomical information from these areas. In this work, an image correction method for multi-echo GE data based on evaluation of phase information for field gradient mapping is presented and tested in vivo on a 3 Tesla whole body MR scanner. In a first step, theoretical signal losses are calculated from the gradient maps and a pixelwise image intensity correction is performed. In a second step, intensity corrected images acquired at different echo times TE are combined using optimized weighting factors: in areas not affected by macroscopic field inhomogeneities, data acquired at long TE are weighted more strongly to achieve the contrast required. For large field gradients, data acquired at short TE are favored to avoid signal losses. When compared to the original data sets acquired at different TE and the respective intensity corrected data sets, the resulting combined data sets feature reduced signal losses in areas with major field gradients, while intensity profiles and a contrast-to-noise (CNR) analysis between subthalamic nucleus, red nucleus and the surrounding white matter demonstrate good contrast in deep brain areas.

  14. Wide-field absolute transverse blood flow velocity mapping in vessel centerline

    NASA Astrophysics Data System (ADS)

    Wu, Nanshou; Wang, Lei; Zhu, Bifeng; Guan, Caizhong; Wang, Mingyi; Han, Dingan; Tan, Haishu; Zeng, Yaguang

    2018-02-01

    We propose a wide-field absolute transverse blood flow velocity measurement method in vessel centerline based on absorption intensity fluctuation modulation effect. The difference between the light absorption capacities of red blood cells and background tissue under low-coherence illumination is utilized to realize the instantaneous and average wide-field optical angiography images. The absolute fuzzy connection algorithm is used for vessel centerline extraction from the average wide-field optical angiography. The absolute transverse velocity in the vessel centerline is then measured by a cross-correlation analysis according to instantaneous modulation depth signal. The proposed method promises to contribute to the treatment of diseases, such as those related to anemia or thrombosis.

  15. Stochastic Resonance and Safe Basin of Single-Walled Carbon Nanotubes with Strongly Nonlinear Stiffness under Random Magnetic Field.

    PubMed

    Xu, Jia; Li, Chao; Li, Yiran; Lim, Chee Wah; Zhu, Zhiwen

    2018-05-04

    In this paper, a kind of single-walled carbon nanotube nonlinear model is developed and the strongly nonlinear dynamic characteristics of such carbon nanotubes subjected to random magnetic field are studied. The nonlocal effect of the microstructure is considered based on Eringen’s differential constitutive model. The natural frequency of the strongly nonlinear dynamic system is obtained by the energy function method, the drift coefficient and the diffusion coefficient are verified. The stationary probability density function of the system dynamic response is given and the fractal boundary of the safe basin is provided. Theoretical analysis and numerical simulation show that stochastic resonance occurs when varying the random magnetic field intensity. The boundary of safe basin has fractal characteristics and the area of safe basin decreases when the intensity of the magnetic field permeability increases.

  16. Optoelectrofluidic field separation based on light-intensity gradients

    PubMed Central

    Lee, Sanghyun; Park, Hyun Jin; Yoon, Jin Sung; Kang, Kwan Hyoung

    2010-01-01

    Optoelectrofluidic field separation (OEFS) of particles under light -intensity gradient (LIG) is reported, where the LIG illumination on the photoconductive layer converts the short-ranged dielectrophoresis (DEP) force to the long-ranged one. The long-ranged DEP force can compete with the hydrodynamic force by alternating current electro-osmosis (ACEO) over the entire illumination area for realizing effective field separation of particles. In the OEFS system, the codirectional illumination and observation induce the levitation effect, compensating the attenuation of the DEP force under LIG illumination by slightly floating particles from the surface. Results of the field separation and concentration of diverse particle pairs (0.82–16 μm) are well demonstrated, and conditions determining the critical radius and effective particle manipulation are discussed. The OEFS with codirectional LIG strategy could be a promising particle manipulation method in many applications where a rapid manipulation of biological cells and particles over the entire working area are of interest. PMID:20697461

  17. Optoelectrofluidic field separation based on light-intensity gradients.

    PubMed

    Lee, Sanghyun; Park, Hyun Jin; Yoon, Jin Sung; Kang, Kwan Hyoung

    2010-07-14

    Optoelectrofluidic field separation (OEFS) of particles under light -intensity gradient (LIG) is reported, where the LIG illumination on the photoconductive layer converts the short-ranged dielectrophoresis (DEP) force to the long-ranged one. The long-ranged DEP force can compete with the hydrodynamic force by alternating current electro-osmosis (ACEO) over the entire illumination area for realizing effective field separation of particles. In the OEFS system, the codirectional illumination and observation induce the levitation effect, compensating the attenuation of the DEP force under LIG illumination by slightly floating particles from the surface. Results of the field separation and concentration of diverse particle pairs (0.82-16 mum) are well demonstrated, and conditions determining the critical radius and effective particle manipulation are discussed. The OEFS with codirectional LIG strategy could be a promising particle manipulation method in many applications where a rapid manipulation of biological cells and particles over the entire working area are of interest.

  18. Galactic cosmic ray gradients, field-aligned and latitudinal, among Voyagers 1/2 and IMP-8

    NASA Technical Reports Server (NTRS)

    Roelof, E. C.; Decker, R. B.; Krimigis, S. M.; Venkatesan, D.; Lazarus, A. J.

    1982-01-01

    The present investigation represents a summary of a comprehensive analysis of the same subject conducted by Roelof et al. (1981). It is pointed out that the tandem earth-Jupiter trajectories of the Voyager 1/2 spacecraft, combined with baseline measurements from the earth-orbiting IMP 7/8 spacecraft, provide the first opportunity for unambiguously separating latitude from radial or field-aligned effects in galactic cosmic ray gradients. Attention is given to the method of data analysis, and the separation of field-aligned and latitudinal gradients. It is found that latitudinal gradients approximately equal to or greater than 1 percent per deg in the cosmic ray intensity were a common feature of the interplanetary medium between 1 and 5 AU in 1977-78. Except in the most disturbed periods, cosmic ray intensities are well-ordered in field-aligned structures.

  19. Application of the BMWP-Costa Rica biotic index in aquatic biomonitoring: sensitivity to collection method and sampling intensity.

    PubMed

    Gutiérrez-Fonseca, Pablo E; Lorion, Christopher M

    2014-04-01

    The use of aquatic macroinvertebrates as bio-indicators in water quality studies has increased considerably over the last decade in Costa Rica, and standard biomonitoring methods have now been formulated at the national level. Nevertheless, questions remain about the effectiveness of different methods of sampling freshwater benthic assemblages, and how sampling intensity may influence biomonitoring results. In this study, we compared the results of qualitative sampling using commonly applied methods with a more intensive quantitative approach at 12 sites in small, lowland streams on the southern Caribbean slope of Costa Rica. Qualitative samples were collected following the official protocol using a strainer during a set time period and macroinvertebrates were field-picked. Quantitative sampling involved collecting ten replicate Surber samples and picking out macroinvertebrates in the laboratory with a stereomicroscope. The strainer sampling method consistently yielded fewer individuals and families than quantitative samples. As a result, site scores calculated using the Biological Monitoring Working Party-Costa Rica (BMWP-CR) biotic index often differed greatly depending on the sampling method. Site water quality classifications using the BMWP-CR index differed between the two sampling methods for 11 of the 12 sites in 2005, and for 9 of the 12 sites in 2006. Sampling intensity clearly had a strong influence on BMWP-CR index scores, as well as perceived differences between reference and impacted sites. Achieving reliable and consistent biomonitoring results for lowland Costa Rican streams may demand intensive sampling and requires careful consideration of sampling methods.

  20. Production of confluent hypergeometric beam by computer-generated hologram

    NASA Astrophysics Data System (ADS)

    Chen, Jiannong; Wang, Gang; Xu, Qinfeng

    2011-02-01

    Because of their spiral wave front, phase singularity, zero-intensity center and orbital angular momentum, dark hollow vortex beams have been found many applications in the field of atom optics such as atom cooling, atom transport and atom guiding. In this paper, a method for generating confluent hypergeometric beam by computer-generated hologram displayed on the spatial light modulator is presented. The hologram is formed by interference between a single ring Laguerre-Gaussian beam and a plane wave. The far-field Fraunhofer diffraction of this optical field transmitted from the hologram is the confluent hypergeometric beam. This beam is a circular symmetric beam which has a phase singularity, spiral wave front, zero-intensity center, and intrinsic orbital angular momentum. It is a new dark hollow vortex beam.

  1. Using Electromagnetic Microwave Field Combined With Laserotherapy in Postoperative Period of Patients With Purulent-Inflammatory Diseases of the Hand in Outpatient Clinic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rabenok, L.; Grimalsky, V.; Juarez R, D.

    2008-08-11

    The results of a treatment of 51 patients with purulent-inflammatory diseases of the hand in outpatient clinic are analyzed; a new method of treatment using electromagnetic (EM) microwave field combined with laserotherapy was applied. A portable apparatus was used that operates in the millimeter (mm) wave range in 4 regimes of an intensity 2-10 mW/cm{sup 2} and a red laser of 0.65 {mu}m wavelength of a low intensity 10-15 mW/cm{sup 2}. A peculiarity of the method was an absence of any antibacterial medicine. An exposure of an influence was 10 min. The total course included 5-7 applications. An influence ofmore » low intensity EM radiation was started 15-20 min before the operation. The action was to the center of purulent inflammation and to the biological active points of acupuncture (G14, E36). Starting from the first day since the operation, the low intensity EM radiation was applied to the biological active points combined with laserotherapy to the wound in the sedative regime (the repetition rate 9-10 Hz) during 10 min. Clinical symptomatology, radiographic findings, the results of microbiologic, morphologic studies were analyzed as well and were satisfactory (without any complications)« less

  2. Using Electromagnetic Microwave Field Combined With Laserotherapy in Postoperative Period of Patients With Purulent-Inflammatory Diseases of the Hand in Outpatient Clinic

    NASA Astrophysics Data System (ADS)

    Rabenok, L.; Grimalsky, V.; Juárez-R., D.

    2008-08-01

    The results of a treatment of 51 patients with purulent-inflammatory diseases of the hand in outpatient clinic are analyzed; a new method of treatment using electromagnetic (EM) microwave field combined with laserotherapy was applied. A portable apparatus was used that operates in the millimeter (mm) wave range in 4 regimes of an intensity 2-10 mW / cm2 and a red laser of 0.65 μm wavelength of a low intensity 10-15 mW / cm2 . A peculiarity of the method was an absence of any antibacterial medicine. An exposure of an influence was 10 min. The total course included 5-7 applications. An influence of low intensity EM radiation was started 15-20 min before the operation. The action was to the center of purulent inflammation and to the biological active points of acupuncture (G14, E36). Starting from the first day since the operation, the low intensity EM radiation was applied to the biological active points combined with laserotherapy to the wound in the sedative regime (the repetition rate 9-10 Hz) during 10 min. Clinical symptomatology, radiographic findings, the results of microbiologic, morphologic studies were analyzed as well and were satisfactory (without any complications).

  3. Rapid regional perturbations to the recent global geomagnetic decay revealed by a new Hawaiian record

    PubMed Central

    de Groot, L. V.; Biggin, A. J.; Dekkers, M. J.; Langereis, C. G.; Herrero-Bervera, E.

    2013-01-01

    The dominant dipolar component of the Earth’s magnetic field has been steadily weakening for at least the last 170 years. Prior to these direct measurements, archaeomagnetic records show short periods of significantly elevated geomagnetic intensity. These striking phenomena are not captured by current field models and their relationship to the recent dipole decay is highly unclear. Here we apply a novel multi-method archaeomagnetic approach to produce a new high-quality record of geomagnetic intensity variations for Hawaii, a crucial locality in the central Pacific. It reveals a short period of high intensity occurring ~1,000 years ago, qualitatively similar to behaviour observed 200 years earlier in Europe and 500 years later in Mesoamerica. We combine these records with one from Japan to produce a coherent picture that includes the dipole decaying steadily over the last millennium. Strong, regional, short-term intensity perturbations are superimposed on this global trend; their asynchronicity necessitates a highly non-dipolar nature. PMID:24177390

  4. Mapping the spatial patterns of field traffic and traffic intensity to predict soil compaction risks at the field scale

    NASA Astrophysics Data System (ADS)

    Duttmann, Rainer; Kuhwald, Michael; Nolde, Michael

    2015-04-01

    Soil compaction is one of the main threats to cropland soils in present days. In contrast to easily visible phenomena of soil degradation, soil compaction, however, is obscured by other signals such as reduced crop yield, delayed crop growth, and the ponding of water, which makes it difficult to recognize and locate areas impacted by soil compaction directly. Although it is known that trafficking intensity is a key factor for soil compaction, until today only modest work has been concerned with the mapping of the spatially distributed patterns of field traffic and with the visual representation of the loads and pressures applied by farm traffic within single fields. A promising method for for spatial detection and mapping of soil compaction risks of individual fields is to process dGPS data, collected from vehicle-mounted GPS receivers and to compare the soil stress induced by farm machinery to the load bearing capacity derived from given soil map data. The application of position-based machinery data enables the mapping of vehicle movements over time as well as the assessment of trafficking intensity. It also facilitates the calculation of the trafficked area and the modeling of the loads and pressures applied to soil by individual vehicles. This paper focuses on the modeling and mapping of the spatial patterns of traffic intensity in silage maize fields during harvest, considering the spatio-temporal changes in wheel load and ground contact pressure along the loading sections. In addition to scenarios calculated for varying mechanical soil strengths, an example for visualizing the three-dimensional stress propagation inside the soil will be given, using the Visualization Toolkit (VTK) to construct 2D or 3D maps supporting to decision making due to sustainable field traffic management.

  5. MO-A-BRD-01: An Investigation of the Dynamic Response of a Novel Acousto-Optic Liquid Crystal Detector for Full-Field Transmission Ultrasound Breast Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenfield, J.R.; La Riviere, P.J.; Sandhu, J.S.

    Purpose: To characterize the dynamic response of a novel acousto-optic (AO) liquid crystal detector for high-resolution transmission ultrasound breast imaging. Transient and steady-state lesion contrast were investigated to identify optimal transducer settings for our prototype imaging system consistent with the FDA limits of 1 W/cm{sup 2} and 50 J/cm{sup 2} on the incident acoustic intensity and the transmitted acoustic energy flux density. Methods: We have developed a full-field transmission ultrasound breast imaging system that uses monochromatic plane-wave illumination to acquire projection images of the compressed breast. The acoustic intensity transmitted through the breast is converted into a visual image bymore » a proprietary liquid crystal detector operating on the basis of the AO effect. The dynamic response of the AO detector in the absence of an imaged breast was recorded by a CCD camera as a function of the acoustic field intensity and the detector exposure time. Additionally, a stereotactic needle biopsy breast phantom was used to investigate the change in opaque lesion contrast with increasing exposure time for a range of incident acoustic field intensities. Results: Using transducer voltages between 0.3 V and 0.8 V and exposure times of 3 minutes, a unique one-to-one mapping of incident acoustic intensity to steady-state optical brightness in the AO detector was observed. A transfer curve mapping acoustic intensity to steady-state optical brightness shows a high-contrast region analogous to the linear portion of the Hurter-Driffield curves of radiography. Using transducer voltages between 1 V and 1.75 V and exposure times of 90 s, the lesion contrast study demonstrated increasing lesion contrast with increasing breast exposure time and acoustic field intensity. Lesion-to-background contrast on the order of 0.80 was observed. Conclusion: Maximal lesion contrast in our prototype system can be obtained using the highest acoustic field intensity and the longest breast exposure time allowable under FDA standards. Department of Defense (DOD) Breast Cancer Research Program IDEA Award W81XWH-11-1-0332; National Institutes of Health (NIH) Grant T32 EB002103-21 from the National Institute of Biomedical Imaging and Bioengineering (NIBIB)« less

  6. Simultaneous reconstruction of 3D refractive index, temperature, and intensity distribution of combustion flame by double computed tomography technologies based on spatial phase-shifting method

    NASA Astrophysics Data System (ADS)

    Guo, Zhenyan; Song, Yang; Yuan, Qun; Wulan, Tuya; Chen, Lei

    2017-06-01

    In this paper, a transient multi-parameter three-dimensional (3D) reconstruction method is proposed to diagnose and visualize a combustion flow field. Emission and transmission tomography based on spatial phase-shifted technology are combined to reconstruct, simultaneously, the various physical parameter distributions of a propane flame. Two cameras triggered by the internal trigger mode capture the projection information of the emission and moiré tomography, respectively. A two-step spatial phase-shifting method is applied to extract the phase distribution in the moiré fringes. By using the filtered back-projection algorithm, we reconstruct the 3D refractive-index distribution of the combustion flow field. Finally, the 3D temperature distribution of the flame is obtained from the refractive index distribution using the Gladstone-Dale equation. Meanwhile, the 3D intensity distribution is reconstructed based on the radiation projections from the emission tomography. Therefore, the structure and edge information of the propane flame are well visualized.

  7. Effect Of Molecular Rotations On High Intensity Absorption In CO2

    NASA Astrophysics Data System (ADS)

    Bandrauk, Andre D.; Claveau, Lorraine

    1986-10-01

    In intense fields, the Rabi frequency ωR = pE/h can easily be of the order of rotational and vibrational energies of molecules. This means that rotations as well as vibrations become strongly perturbed so that perturbative methods no longer apply. We will show that nonperturbative methods can be derived from the concept of the dressed molecule. This leads to coupled equations which are used ko simulate numerically the multiphoton processes which will occur at intensities > 108 W/cm2. Furthermore, for multiphoton rotational tran-sitions, one can derive analytical models which help one understand the temporal behaviour of energy flow in a molecule in terms of its dressed spectrum, such as chaotic or regular (nonchaotic) behaviour. These results are of relevance to the manifestation of multiphoton coherences in a CO2 spectrum at very high intensities (I % 1012 W/cm2).

  8. Effect of variable rates of daily sampling of fly larvae on decomposition and carrion insect community assembly: implications for forensic entomology field study protocols.

    PubMed

    Michaud, Jean-Philippe; Moreau, Gaétan

    2013-07-01

    Experimental protocols in forensic entomology successional field studies generally involve daily sampling of insects to document temporal changes in species composition on animal carcasses. One challenge with that method has been to adjust the sampling intensity to obtain the best representation of the community present without affecting the said community. To this date, little is known about how such investigator perturbations affect decomposition-related processes. Here, we investigated how different levels of daily sampling of fly eggs and fly larvae affected, over time, carcass decomposition rate and the carrion insect community. Results indicated that a daily sampling of <5% of the egg and larvae volumes present on a carcass, a sampling intensity believed to be consistent with current accepted practices in successional field studies, had little effect overall. Higher sampling intensities, however, slowed down carcass decomposition, affected the abundance of certain carrion insects, and caused an increase in the volume of eggs laid by dipterans. This study suggests that the carrion insect community not only has a limited resilience to recurrent perturbations but that a daily sampling intensity equal to or <5% of the egg and larvae volumes appears adequate to ensure that the system is representative of unsampled conditions. Hence we propose that this threshold be accepted as best practice in future forensic entomology successional field studies.

  9. Application of Terahertz Field Enhancement Effect in Metal Microstructures

    NASA Astrophysics Data System (ADS)

    Nakajima, M.; Kurihara, T.; Tadokoro, Y.; Kang, B.; Takano, K.; Yamaguchi, K.; Watanabe, H.; Oto, K.; Suemoto, T.; Hangyo, M.

    2016-12-01

    Applications of high-field terahertz pulses are attractive in physics and terahertz technology. In this study, two applications related to high-intensity terahertz pulses are demonstrated. The field enhancement effect by subwavelength metallic microstructures is utilized for terahertz excitation measurement. The spin precession dynamics in magnetic materials was induced by a terahertz magnetic field. Spin precession was amplified by one order of magnitude in amplitude by the enhanced magnetic terahertz field in orthoferrite ErFeO3 with metal microstructures. The induced spin dynamics was analyzed and explained by LLG-LCR model. Moreover, a detection method for terahertz pulses was developed using a cholesteric liquid crystal at room temperature without any electronic devices. The beam profile of terahertz pulses was visualized and compared to other methods such as the knife edge method using pyroelectric detector and micro-bolometer array. The liquid crystal terahertz imager is very simple and has good applicability as a portable terahertz-sensing card.

  10. Temporal and spatial heterogeneity of rupture process application in shakemaps of Yushu Ms7.1 earthquake, China

    NASA Astrophysics Data System (ADS)

    Kun, C.

    2015-12-01

    Studies have shown that estimates of ground motion parameter from ground motion attenuation relationship often greater than the observed value, mainly because multiple ruptures of the big earthquake reduce the source pulse height of source time function. In the absence of real-time data of the station after the earthquake, this paper attempts to make some constraints from the source, to improve the accuracy of shakemaps. Causative fault of Yushu Ms 7.1 earthquake is vertical approximately (dip 83 °), and source process in time and space was dispersive distinctly. Main shock of Yushu Ms7.1 earthquake can be divided into several sub-events based on source process of this earthquake. Magnitude of each sub-events depended on each area under the curve of source pulse of source time function, and location derived from source process of each sub-event. We use ShakeMap method with considering the site effect to generate shakeMap for each sub-event, respectively. Finally, ShakeMaps of mainshock can be aquired from superposition of shakemaps for all the sub-events in space. Shakemaps based on surface rupture of causative Fault from field survey can also be derived for mainshock with only one magnitude. We compare ShakeMaps of both the above methods with Intensity of investigation. Comparisons show that decomposition method of main shock more accurately reflect the shake of earthquake in near-field, but for far field the shake is controlled by the weakening influence of the source, the estimated Ⅵ area was smaller than the intensity of the actual investigation. Perhaps seismic intensity in far-field may be related to the increasing seismic duration for the two events. In general, decomposition method of main shock based on source process, considering shakemap of each sub-event, is feasible for disaster emergency response, decision-making and rapid Disaster Assessment after the earthquake.

  11. Focal-plane electric field sensing with pupil-plane holograms

    NASA Astrophysics Data System (ADS)

    Por, Emiel H.; Keller, Christoph U.

    2016-07-01

    The direct detection and spectral characterization of exoplanets requires a coronagraph to suppress the diffracted star light. Amplitude and phase aberrations in the optical train fill the dark zone of the coronagraph with quasi-static speckles that limit the achievable contrast. Focal-plane electric field sensing, such as phase diversity introduced by a deformable mirror (DM), is a powerful tool to minimize this residual star light. The residual electric field can be estimated by sequentially applying phase probes on the DM to inject star light with a well-known amplitude and phase into the dark zone and analyzing the resulting intensity images. The DM can then be used to add light with the same amplitude but opposite phase to destructively interfere with this residual star light. Using a static phase-only pupil-plane element we create holographic copies of the point spread function (PSF), each superimposed with a certain pupil-plane phase probe. We therefore obtain all intensity images simultaneously while still retaining a central, unaltered science PSF. The electric field sensing method only makes use of the holographic copies, allowing for correction of the residual electric field while retaining the central PSF for uninterrupted science data collection. In this paper we demonstrate the feasibility of this method with numerical simulations.

  12. Optical field enhancement of nanometer-sized gaps at near-infrared frequencies.

    PubMed

    Ahn, Jae Sung; Kang, Taehee; Singh, Dilip K; Bahk, Young-Mi; Lee, Hyunhwa; Choi, Soo Bong; Kim, Dai-Sik

    2015-02-23

    We report near-field and far-field measurements of transmission through nanometer-sized gaps at near-infrared frequencies with varying the gap size from 1 nm to 10 nm. In the far-field measurements, we excluded direct transmission on the metal film surface via interferometric method. Kirchhoff integral formalism was used to relate the far-field intensity to the electric field at the nanogaps. In near-field measurements, field enhancement factors of the nanogaps were quantified by measuring transmission of the nanogaps using near-field scanning optical microscopy. All the measurements produce similar field enhancements of about ten, which we put in the context of comparing with the giant field enhancements in the terahertz regime.

  13. Fast polarimetric dehazing method for visibility enhancement in HSI colour space

    NASA Astrophysics Data System (ADS)

    Zhang, Wenfei; Liang, Jian; Ren, Liyong; Ju, Haijuan; Bai, Zhaofeng; Wu, Zhaoxin

    2017-09-01

    Image haze removal has attracted much attention in optics and computer vision fields in recent years due to its wide applications. In particular, the fast and real-time dehazing methods are of significance. In this paper, we propose a fast dehazing method in hue, saturation and intensity colour space based on the polarimetric imaging technique. We implement the polarimetric dehazing method in the intensity channel, and the colour distortion of the image is corrected using the white patch retinex method. This method not only reserves the detailed information restoration capacity, but also improves the efficiency of the polarimetric dehazing method. Comparison studies with state of the art methods demonstrate that the proposed method obtains equal or better quality results and moreover the implementation is much faster. The proposed method is promising in real-time image haze removal and video haze removal applications.

  14. A new method of spatial analysis of irregularly spaced HLB data and biological implications

    USDA-ARS?s Scientific Manuscript database

    Field data on intensity of plant diseases is very often irregularly spaced (i.e., there are varying amounts of distance between rows, ponds, voids, roads, houses, or other land areas). A new method of analysis, sometimes called second-generation wavelet analysis, can be used on this type of irregula...

  15. Practice-Near and Practice-Distant Methods in Human Services Research

    ERIC Educational Resources Information Center

    Froggett, Lynn; Briggs, Stephen

    2012-01-01

    This article discusses practice-near research in human services, a cluster of methodologies that may include thick description, intensive reflexivity, and the study of emotional and relational processes. Such methods aim to get as near as possible to experiences at the relational interface between institutions and the practice field.…

  16. Plasmonic nanorod arrays of a two-segment dimer and a coaxial cable with 1 nm gap for large field confinement and enhancement.

    PubMed

    Cheng, Zi-Qiang; Nan, Fan; Yang, Da-Jie; Zhong, Yu-Ting; Ma, Liang; Hao, Zhong-Hua; Zhou, Li; Wang, Qu-Quan

    2015-01-28

    Seeking plasmonic nanostructures with large field confinement and enhancement is significant for photonic and electronic nanodevices with high sensitivity, reproducibility, and tunability. Here, we report the synthesis of plasmonic arrays composed of two-segment dimer nanorods and coaxial cable nanorods with ∼1 nm gap insulated by a self-assembled Raman molecule monolayer. The gap-induced plasmon coupling generates an intense field in the gap region of the dimer junction and the cable interlayer. As a result, the longitudinal plasmon resonance of nanorod arrays with high tunability is obviously enhanced. Most interestingly, the field enhancement of dimer nanorod arrays can be tuned by the length ratio L1/L2 of the two segments, and the maximal enhancement appears at L1/L2 = 1. In that case, the two-photon luminescence (TPL) of dimer nanorod arrays and the Raman intensity in the dimer junction is enhanced by 27 and 30 times, respectively, under resonant excitation. In the same way, the Raman intensity in the gap region is enhanced 16 times for the coaxial cable nanorod arrays. The plasmonic nanorod arrays synthesized by the facile method, having tunable plasmon properties and large field enhancement, indicate an attractive pathway to the photonic nanodevices.

  17. Method for generating a plasma wave to accelerate electrons

    DOEpatents

    Umstadter, D.; Esarey, E.; Kim, J.K.

    1997-06-10

    The invention provides a method and apparatus for generating large amplitude nonlinear plasma waves, driven by an optimized train of independently adjustable, intense laser pulses. In the method, optimal pulse widths, interpulse spacing, and intensity profiles of each pulse are determined for each pulse in a series of pulses. A resonant region of the plasma wave phase space is found where the plasma wave is driven most efficiently by the laser pulses. The accelerator system of the invention comprises several parts: the laser system, with its pulse-shaping subsystem; the electron gun system, also called beam source, which preferably comprises photo cathode electron source and RF-LINAC accelerator; electron photo-cathode triggering system; the electron diagnostics; and the feedback system between the electron diagnostics and the laser system. The system also includes plasma source including vacuum chamber, magnetic lens, and magnetic field means. The laser system produces a train of pulses that has been optimized to maximize the axial electric field amplitude of the plasma wave, and thus the electron acceleration, using the method of the invention. 21 figs.

  18. Method for generating a plasma wave to accelerate electrons

    DOEpatents

    Umstadter, Donald; Esarey, Eric; Kim, Joon K.

    1997-01-01

    The invention provides a method and apparatus for generating large amplitude nonlinear plasma waves, driven by an optimized train of independently adjustable, intense laser pulses. In the method, optimal pulse widths, interpulse spacing, and intensity profiles of each pulse are determined for each pulse in a series of pulses. A resonant region of the plasma wave phase space is found where the plasma wave is driven most efficiently by the laser pulses. The accelerator system of the invention comprises several parts: the laser system, with its pulse-shaping subsystem; the electron gun system, also called beam source, which preferably comprises photo cathode electron source and RF-LINAC accelerator; electron photo-cathode triggering system; the electron diagnostics; and the feedback system between the electron diagnostics and the laser system. The system also includes plasma source including vacuum chamber, magnetic lens, and magnetic field means. The laser system produces a train of pulses that has been optimized to maximize the axial electric field amplitude of the plasma wave, and thus the electron acceleration, using the method of the invention.

  19. Optimization study on the magnetic field of superconducting Halbach Array magnet

    NASA Astrophysics Data System (ADS)

    Shen, Boyang; Geng, Jianzhao; Li, Chao; Zhang, Xiuchang; Fu, Lin; Zhang, Heng; Ma, Jun; Coombs, T. A.

    2017-07-01

    This paper presents the optimization on the strength and homogeneity of magnetic field from superconducting Halbach Array magnet. Conventional Halbach Array uses a special arrangement of permanent magnets which can generate homogeneous magnetic field. Superconducting Halbach Array utilizes High Temperature Superconductor (HTS) to construct an electromagnet to work below its critical temperature, which performs equivalently to the permanent magnet based Halbach Array. The simulations of superconducting Halbach Array were carried out using H-formulation based on B-dependent critical current density and bulk approximation, with the FEM platform COMSOL Multiphysics. The optimization focused on the coils' location, as well as the geometry and numbers of coils on the premise of maintaining the total amount of superconductor. Results show Halbach Array configuration based superconducting magnet is able to generate the magnetic field with intensity over 1 Tesla and improved homogeneity using proper optimization methods. Mathematical relation of these optimization parameters with the intensity and homogeneity of magnetic field was developed.

  20. Wind Shear Identification with the Retrieval Wind of Doppler Wearth Radar

    NASA Astrophysics Data System (ADS)

    Zhou, S.; Cui, Y.; Zheng, H.; Zhang, T.

    2018-05-01

    A new method, which based on the wind field retrieval algorithm of Volume Velocity Process (VVP), has been used to identified the intensity of wind shear occurred in a severe convection process in Guangzhou. The intensity of wind shear's strength shown that new cells would be more likely to generate in areas where the magnitude generally larger than 3.0 m/(s*km). Moreover, in the areas of potential areas of rainfall, the wind shear's strength would larger than 4.5 m/(s*km). This wind shear identify method is very helpful to forecasting severe convections' moving and developments.

  1. A pilot study on quantification of training load: The use of HRV in training practice.

    PubMed

    Saboul, Damien; Balducci, Pascal; Millet, Grégoire; Pialoux, Vincent; Hautier, Christophe

    2016-01-01

    Recent laboratory studies have suggested that heart rate variability (HRV) may be an appropriate criterion for training load (TL) quantification. The aim of this study was to validate a novel HRV index that may be used to assess TL in field conditions. Eleven well-trained long-distance male runners performed four exercises of different duration and intensity. TL was evaluated using Foster and Banister methods. In addition, HRV measurements were performed 5 minutes before exercise and 5 and 30 minutes after exercise. We calculated HRV index (TLHRV) based on the ratio between HRV decrease during exercise and HRV increase during recovery. HRV decrease during exercise was strongly correlated with exercise intensity (R = -0.70; p < 0.01) but not with exercise duration or training volume. TLHRV index was correlated with Foster (R = 0.61; p = 0.01) and Banister (R = 0.57; p = 0.01) methods. This study confirms that HRV changes during exercise and recovery phase are affected by both intensity and physiological impact of the exercise. Since the TLHRV formula takes into account the disturbance and the return to homeostatic balance induced by exercise, this new method provides an objective and rational TL index. However, some simplification of the protocol measurement could be envisaged for field use.

  2. Light field creating and imaging with different order intensity derivatives

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Jiang, Huan

    2014-10-01

    Microscopic image restoration and reconstruction is a challenging topic in the image processing and computer vision, which can be widely applied to life science, biology and medicine etc. A microscopic light field creating and three dimensional (3D) reconstruction method is proposed for transparent or partially transparent microscopic samples, which is based on the Taylor expansion theorem and polynomial fitting. Firstly the image stack of the specimen is divided into several groups in an overlapping or non-overlapping way along the optical axis, and the first image of every group is regarded as reference image. Then different order intensity derivatives are calculated using all the images of every group and polynomial fitting method based on the assumption that the structure of the specimen contained by the image stack in a small range along the optical axis are possessed of smooth and linear property. Subsequently, new images located any position from which to reference image the distance is Δz along the optical axis can be generated by means of Taylor expansion theorem and the calculated different order intensity derivatives. Finally, the microscopic specimen can be reconstructed in 3D form using deconvolution technology and all the images including both the observed images and the generated images. The experimental results show the effectiveness and feasibility of our method.

  3. Field Air Sampling and Simultaneous Chemical and Sensory Analysis of Livestock Odorants with Sorbent Tube GC-MS/Olfactometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Shicheng; Department of Environmental Science and Engineering, Fudan University, Shanghai 200433; Cai Lingshuang

    2009-05-23

    Characterization and quantification of livestock odorants is one of the most challenging analytical tasks because odor-causing gases are very reactive, polar and often present at very low concentrations in a complex matrix of less important or irrelevant gases. The objective of this research was to develop a novel analytical method for characterization of the livestock odorants including their odor character, odor intensity, and hedonic tone and to apply this method for quantitative analysis of the key odorants responsible for livestock odor. Sorbent tubes packed with Tenax TA were used for field sampling. The automated one-step thermal desorption module coupled withmore » multidimensional gas chromatography-mass spectrometry/olfactometry system was used for simultaneous chemical and odor analysis. Fifteen odorous VOCs and semi-VOCs identified from different livestock species operations were quantified. Method detection limits ranges from 40 pg for skatole to 3590 pg for acetic acid. In addition, odor character, odor intensity and hedonic tone associated with each of the target odorants are also analyzed simultaneously. We found that the mass of each VOCs in the sample correlates well with the log stimulus intensity. All of the correlation coefficients (R{sup 2}) are greater than 0.74, and the top 10 correlation coefficients were greater than 0.90.« less

  4. Normalized gradient fields cross-correlation for automated detection of prostate in magnetic resonance images

    NASA Astrophysics Data System (ADS)

    Fotin, Sergei V.; Yin, Yin; Periaswamy, Senthil; Kunz, Justin; Haldankar, Hrishikesh; Muradyan, Naira; Cornud, François; Turkbey, Baris; Choyke, Peter L.

    2012-02-01

    Fully automated prostate segmentation helps to address several problems in prostate cancer diagnosis and treatment: it can assist in objective evaluation of multiparametric MR imagery, provides a prostate contour for MR-ultrasound (or CT) image fusion for computer-assisted image-guided biopsy or therapy planning, may facilitate reporting and enables direct prostate volume calculation. Among the challenges in automated analysis of MR images of the prostate are the variations of overall image intensities across scanners, the presence of nonuniform multiplicative bias field within scans and differences in acquisition setup. Furthermore, images acquired with the presence of an endorectal coil suffer from localized high-intensity artifacts at the posterior part of the prostate. In this work, a three-dimensional method for fast automated prostate detection based on normalized gradient fields cross-correlation, insensitive to intensity variations and coil-induced artifacts, is presented and evaluated. The components of the method, offline template learning and the localization algorithm, are described in detail. The method was validated on a dataset of 522 T2-weighted MR images acquired at the National Cancer Institute, USA that was split in two halves for development and testing. In addition, second dataset of 29 MR exams from Centre d'Imagerie Médicale Tourville, France were used to test the algorithm. The 95% confidence intervals for the mean Euclidean distance between automatically and manually identified prostate centroids were 4.06 +/- 0.33 mm and 3.10 +/- 0.43 mm for the first and second test datasets respectively. Moreover, the algorithm provided the centroid within the true prostate volume in 100% of images from both datasets. Obtained results demonstrate high utility of the detection method for a fully automated prostate segmentation.

  5. Spherical Harmonic Analyses of Intensity Mapping Power Spectra

    NASA Astrophysics Data System (ADS)

    Liu, Adrian; Zhang, Yunfan; Parsons, Aaron R.

    2016-12-01

    Intensity mapping is a promising technique for surveying the large-scale structure of our universe from z = 0 to z ˜ 150, using the brightness temperature field of spectral lines to directly observe previously unexplored portions of our cosmic timeline. Examples of targeted lines include the 21 cm hyperfine transition of neutral hydrogen, rotational lines of carbon monoxide, and fine-structure lines of singly ionized carbon. Recent efforts have focused on detections of the power spectrum of spatial fluctuations, but have been hindered by systematics such as foreground contamination. This has motivated the decomposition of data into Fourier modes perpendicular and parallel to the line of sight, which has been shown to be a particularly powerful way to diagnose systematics. However, such a method is well-defined only in the limit of a narrow-field, flat-sky approximation. This limits the sensitivity of intensity mapping experiments, as it means that wide surveys must be separately analyzed as a patchwork of smaller fields. In this paper, we develop a framework for analyzing intensity mapping data in a spherical Fourier-Bessel basis, which incorporates curved sky effects without difficulty. We use our framework to generalize a number of techniques in intensity mapping data analysis from the flat sky to the curved sky. These include visibility-based estimators for the power spectrum, treatments of interloper lines, and the “foreground wedge” signature of spectrally smooth foregrounds.

  6. Method for producing solid or hollow spherical particles of chosen chemical composition and of uniform size

    DOEpatents

    Hendricks, Charles D.

    1988-01-01

    A method is provided for producing commercially large quantities of high melting temperature solid or hollow spherical particles of a predetermined chemical composition and having a uniform and controlled size distribution. An end (18, 50, 90) of a solid or hollow rod (20, 48, 88) of the material is rendered molten by a laser beam (14, 44, 82). Because of this, there is no possibility of the molten rod material becoming contaminated with extraneous material. In various aspects of the invention, an electric field is applied to the molten rod end (18, 90), and/or the molten rod end (50, 90) is vibrated. In a further aspect of the invention, a high-frequency component is added to the electric field applied to the molten end of the rod (90). By controlling the internal pressure of the rod, the rate at which the rod is introduced into the laser beam, the environment of the process, the vibration amplitude and frequency of the molten rod end, the electric field intensity applied to the molten rod end, and the frequency and intensity of the component added to the electric field, the uniformity and size distribution of the solid or hollow spherical particles (122) produced by the inventive method is controlled. The polarity of the electric field applied to the molten rod end can be chosen to eliminate backstreaming electrons, which tend to produce run-away heating in the rod, from the process.

  7. Estimating nonrigid motion from inconsistent intensity with robust shape features

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wenyang; Ruan, Dan, E-mail: druan@mednet.ucla.edu; Department of Radiation Oncology, University of California, Los Angeles, California 90095

    2013-12-15

    Purpose: To develop a nonrigid motion estimation method that is robust to heterogeneous intensity inconsistencies amongst the image pairs or image sequence. Methods: Intensity and contrast variations, as in dynamic contrast enhanced magnetic resonance imaging, present a considerable challenge to registration methods based on general discrepancy metrics. In this study, the authors propose and validate a novel method that is robust to such variations by utilizing shape features. The geometry of interest (GOI) is represented with a flexible zero level set, segmented via well-behaved regularized optimization. The optimization energy drives the zero level set to high image gradient regions, andmore » regularizes it with area and curvature priors. The resulting shape exhibits high consistency even in the presence of intensity or contrast variations. Subsequently, a multiscale nonrigid registration is performed to seek a regular deformation field that minimizes shape discrepancy in the vicinity of GOIs. Results: To establish the working principle, realistic 2D and 3D images were subject to simulated nonrigid motion and synthetic intensity variations, so as to enable quantitative evaluation of registration performance. The proposed method was benchmarked against three alternative registration approaches, specifically, optical flow, B-spline based mutual information, and multimodality demons. When intensity consistency was satisfied, all methods had comparable registration accuracy for the GOIs. When intensities among registration pairs were inconsistent, however, the proposed method yielded pronounced improvement in registration accuracy, with an approximate fivefold reduction in mean absolute error (MAE = 2.25 mm, SD = 0.98 mm), compared to optical flow (MAE = 9.23 mm, SD = 5.36 mm), B-spline based mutual information (MAE = 9.57 mm, SD = 8.74 mm) and mutimodality demons (MAE = 10.07 mm, SD = 4.03 mm). Applying the proposed method on a real MR image sequence also provided qualitatively appealing results, demonstrating good feasibility and applicability of the proposed method. Conclusions: The authors have developed a novel method to estimate the nonrigid motion of GOIs in the presence of spatial intensity and contrast variations, taking advantage of robust shape features. Quantitative analysis and qualitative evaluation demonstrated good promise of the proposed method. Further clinical assessment and validation is being performed.« less

  8. An Investigation of Energy Transmission Due to Flexural Wave Propagation in Lightweight, Built-Up Structures. Thesis

    NASA Technical Reports Server (NTRS)

    Mickol, John Douglas; Bernhard, R. J.

    1986-01-01

    A technique to measure flexural structure-borne noise intensity is investigated. Two accelerometers serve as transducers in this cross-spectral technique. The structure-borne sound power is obtained by two different techniques and compared. In the first method, a contour integral of intensity is performed from the values provided by the two-accelerometer intensity technique. In the second method, input power is calculated directly from the output of force and acceleration transducers. A plate and two beams were the subjects of the sound power comparisons. Excitation for the structures was either band-limited white noise or a deterministic signal similar to a swept sine. The two-accelerometer method was found to be sharply limited by near field and transducer spacing limitations. In addition, for the lightweight structures investigated, it was found that the probe inertia can have a significant influence on the power input to the structure. In addition to the experimental investigation of structure-borne sound energy, an extensive study of the point harmonically forced, point-damped beam boundary value problem was performed to gain insight into measurements of this nature. The intensity formulations were also incorporated into the finite element method. Intensity mappings were obtained analytically via finite element modeling of simple structures.

  9. Characteristics and applications of diffuse discharge of water electrode in air

    NASA Astrophysics Data System (ADS)

    Wenzheng, LIU; Tahan, WANG; Xiaozhong, CHEN; Chuanlong, MA

    2018-01-01

    Plasma water treatment technology, which aims to produce strong oxidizing reactive particles that act on the gas-liquid interface by way of discharging, is used to treat the organic pollutants that do not degrade easily in water. This paper presents a diffuse-discharge plasma water treatment method, which is realized by constructing a conical air gap through an uneven medium layer. The proposed method uses water as one electrode, and a dielectric barrier discharge electrode is constructed by using an uneven dielectric. The electric field distribution in the discharge space will be uneven, wherein the long gap electric field will have a smaller intensity, while the short one will have a larger intensity. A diffuse glow discharge is formed in the cavity. With this type of plasma water treatment equipment, a methyl orange solution with a concentration of 10 mg l-1 was treated, and the removal rate was found to reach 88.96%.

  10. Forecasting intense geomagnetic activity using interplanetary magnetic field data

    NASA Astrophysics Data System (ADS)

    Saiz, E.; Cid, C.; Cerrato, Y.

    2008-12-01

    Southward interplanetary magnetic fields are considered traces of geoeffectiveness since they are a main agent of magnetic reconnection of solar wind and magnetosphere. The first part of this work revises the ability to forecast intense geomagnetic activity using different procedures available in the literature. The study shows that current methods do not succeed in making confident predictions. This fact led us to develop a new forecasting procedure, which provides trustworthy results in predicting large variations of Dst index over a sample of 10 years of observations and is based on the value Bz only. The proposed forecasting method appears as a worthy tool for space weather purposes because it is not affected by the lack of solar wind plasma data, which usually occurs during severe geomagnetic activity. Moreover, the results obtained guide us to provide a new interpretation of the physical mechanisms involved in the interaction between the solar wind and the magnetosphere using Faraday's law.

  11. Nanofocusing of the free-space optical energy with plasmonic Tamm states.

    PubMed

    Niu, Linyu; Xiang, Yinxiao; Luo, Weiwei; Cai, Wei; Qi, Jiwei; Zhang, Xinzheng; Xu, Jingjun

    2016-12-20

    To achieve extreme electromagnetic enhancement, we propose a plasmonic Tamm states (PTSs) configuration based on the metal-insulator-metal Bragg reflector, which is realized by periodically modulating the width of the insulator. Both the thick (2D) and thin (3D) structures are discussed. Through optimization performed by the impedance-based transfer matrix method and the finite difference time domain method, we find that both the electric field and magnetic field intensities can be increased by three orders of magnitude. The field-enhancement inside the PTSs configuration is not limited to extremely sharp waveguide terminal, which can greatly reduce processing difficulties.

  12. Segmentation-based retrospective shading correction in fluorescence microscopy E. coli images for quantitative analysis

    NASA Astrophysics Data System (ADS)

    Mai, Fei; Chang, Chunqi; Liu, Wenqing; Xu, Weichao; Hung, Yeung S.

    2009-10-01

    Due to the inherent imperfections in the imaging process, fluorescence microscopy images often suffer from spurious intensity variations, which is usually referred to as intensity inhomogeneity, intensity non uniformity, shading or bias field. In this paper, a retrospective shading correction method for fluorescence microscopy Escherichia coli (E. Coli) images is proposed based on segmentation result. Segmentation and shading correction are coupled together, so we iteratively correct the shading effects based on segmentation result and refine the segmentation by segmenting the image after shading correction. A fluorescence microscopy E. Coli image can be segmented (based on its intensity value) into two classes: the background and the cells, where the intensity variation within each class is close to zero if there is no shading. Therefore, we make use of this characteristics to correct the shading in each iteration. Shading is mathematically modeled as a multiplicative component and an additive noise component. The additive component is removed by a denoising process, and the multiplicative component is estimated using a fast algorithm to minimize the intra-class intensity variation. We tested our method on synthetic images and real fluorescence E.coli images. It works well not only for visual inspection, but also for numerical evaluation. Our proposed method should be useful for further quantitative analysis especially for protein expression value comparison.

  13. SUPERFAST THERMALIZATION OF PLASMA

    DOEpatents

    Chang, C.C.

    1962-06-12

    A method is given for the superfast thermalization of plasma by shock conversion of the kinetic energy stored in rotating plasma rings or plasmoids colliding at near supersonic speeds in a containment field to heat energy in the resultant confined plasma mass. The method includes means for generating rotating plasmoids at the opposite ends of a Pyrotron or Astron containment field. The plasmoids are magnetically accelerated towards each other into the opposite ends of time containment field. During acceleration of the plasmoids toward the center of the containment field, the intensity of the field is sequentially increased to adiabatically compress the plasmoids and increase the plasma energy. The plasmoids hence collide with a violent shock at the eenter of the containment field, causing the substantial kinetic energy stored in the plasmoids to be converted to heat in the resultant plasma mass. (AEC)

  14. Spatial electromagnetic field intensity modelling of global system for mobile communication base stations in the Istanbul Technical University Ayazaga campus area.

    PubMed

    Boz, Kubra; Denli, Hayri Hakan

    2018-05-07

    The rapid development of the global system for mobile communication services and the consequent increased electromagnetic field (EMF) exposure to the human body have generated debate on the potential danger with respect to human health. The many research studies focused on this subject have, however, not provided any certain evidence about harmful consequences due to mobile communication systems. On the other hand, there are still views suggesting such exposure might affect the human body in different ways. To reduce such effects to a minimum, the International Commission on Non-Ionizing Radiation Protection (ICNIRP) has declared boundary values for the energy released by the base stations, which are the main source of the electromagnetic fields. These values are accepted by many countries in various parts of the world. The aim of this study was to create EMF intensity maps for the area covered by Istanbul Technical University (ITU) and find areas of potential risk with regard to health considering the current situation and future trends. In this study, the field intensities of electromagnetic signals issued at the frequencies of 900 and 1800 MHz were measured in V/m at 29 pre-specified survey points using a spectrum analyzer (Spectran HF-6065). Geographic information systems and spatial interpolation techniques were used to produce EMF intensity maps. Three different spatial interpolation methods, minimum mean square error, Radial Basis and Empirical Bayesian Kriging, were compared. The results were geographically analyzed and the measurements expressed as heat maps covering the study area. Using these maps, the values measured were compared with the EMF intensity standards issued by ICNIRP. The results showed that the exposure levels to the EMF intensities were all within the ICNIRP limits at the ITU study area. However, since the EMF intensity level with respect to human health is not known, it is not possible to confirm if these levels are safe or not.

  15. The frequency-domain method of calculation for the pulsed electromagnetic field in a conductive ferromagnetic plate

    NASA Astrophysics Data System (ADS)

    Nosov, G. V.; Kuleshova, E. O.; Lefebvre, S.; Plyusnin, A. A.; Tokmashev, D. M.

    2017-02-01

    The technique for parameters determination of magnetic skin effect on ferromagnetic plate at a specified pulse of magnetic field intensity on the plate surface is proposed. It is based on a frequency-domain method and could be applied for a pulsing transformer, a dynamoelectric pulse generator and a commutating inductor that contains an imbricated core. Due to this technique, such plate parameters as specific heat loss energy, the average power of this energy and the plate temperature raise, the magnetic flux attenuation factor and the plate q-factor could be calculated. These parameters depend on the steel type, the amplitude, the rms value, the duration and the form of the magnetic field intensity impulse on the plate surface. The plate thickness is defined by the value of the flux attenuation factor and the plate q-factor that should be maximal. The reliability of the proposed technique is built on a common frequency-domain usage applicable for pulse transient study under zero boundary conditions of the electric circuit and the conformity of obtained results with the sinusoidal steady-state mode.

  16. Estimating nonrigid motion from inconsistent intensity with robust shape features.

    PubMed

    Liu, Wenyang; Ruan, Dan

    2013-12-01

    To develop a nonrigid motion estimation method that is robust to heterogeneous intensity inconsistencies amongst the image pairs or image sequence. Intensity and contrast variations, as in dynamic contrast enhanced magnetic resonance imaging, present a considerable challenge to registration methods based on general discrepancy metrics. In this study, the authors propose and validate a novel method that is robust to such variations by utilizing shape features. The geometry of interest (GOI) is represented with a flexible zero level set, segmented via well-behaved regularized optimization. The optimization energy drives the zero level set to high image gradient regions, and regularizes it with area and curvature priors. The resulting shape exhibits high consistency even in the presence of intensity or contrast variations. Subsequently, a multiscale nonrigid registration is performed to seek a regular deformation field that minimizes shape discrepancy in the vicinity of GOIs. To establish the working principle, realistic 2D and 3D images were subject to simulated nonrigid motion and synthetic intensity variations, so as to enable quantitative evaluation of registration performance. The proposed method was benchmarked against three alternative registration approaches, specifically, optical flow, B-spline based mutual information, and multimodality demons. When intensity consistency was satisfied, all methods had comparable registration accuracy for the GOIs. When intensities among registration pairs were inconsistent, however, the proposed method yielded pronounced improvement in registration accuracy, with an approximate fivefold reduction in mean absolute error (MAE = 2.25 mm, SD = 0.98 mm), compared to optical flow (MAE = 9.23 mm, SD = 5.36 mm), B-spline based mutual information (MAE = 9.57 mm, SD = 8.74 mm) and mutimodality demons (MAE = 10.07 mm, SD = 4.03 mm). Applying the proposed method on a real MR image sequence also provided qualitatively appealing results, demonstrating good feasibility and applicability of the proposed method. The authors have developed a novel method to estimate the nonrigid motion of GOIs in the presence of spatial intensity and contrast variations, taking advantage of robust shape features. Quantitative analysis and qualitative evaluation demonstrated good promise of the proposed method. Further clinical assessment and validation is being performed.

  17. Focal Spot and Wavefront Sensing of an X-Ray Free Electron laser using Ronchi shearing interferometry

    DOE PAGES

    Nagler, Bob; Aquila, Andrew; Boutet, Sebastien; ...

    2017-10-20

    The Linac Coherent Light Source (LCLS) is an X-ray source of unmatched brilliance, that is advancing many scientific fields at a rapid pace. The highest peak intensities that are routinely produced at LCLS take place at the Coherent X-ray Imaging (CXI) instrument, which can produce spotsize at the order of 100 nm, and such spotsizes and intensities are crucial for experiments ranging from coherent diffractive imaging, non-linear x-ray optics and high field physics, and single molecule imaging. Nevertheless, a full characterisation of this beam has up to now not been performed. In this paper we for the first time characterisemore » this nanofocused beam in both phase and intensity using a Ronchi Shearing Interferometric technique. The method is fast, in-situ, uses a straightforward optimization algoritm, and is insensitive to spatial jitter.« less

  18. Comparison of online and offline based merging methods for high resolution rainfall intensities

    NASA Astrophysics Data System (ADS)

    Shehu, Bora; Haberlandt, Uwe

    2016-04-01

    Accurate rainfall intensities with high spatial and temporal resolution are crucial for urban flow prediction. Commonly, raw or bias corrected radar fields are used for forecasting, while different merging products are employed for simulation. The merging products are proven to be adequate for rainfall intensities estimation, however their application in forecasting is limited as they are developed for offline mode. This study aims at adapting and refining the offline merging techniques for the online implementation, and at comparing the performance of these methods for high resolution rainfall data. Radar bias correction based on mean fields and quantile mapping are analyzed individually and also are implemented in conditional merging. Special attention is given to the impact of different spatial and temporal filters on the predictive skill of all methods. Raw radar data and kriging interpolation of station data are considered as a reference to check the benefit of the merged products. The methods are applied for several extreme events in the time period 2006-2012 caused by different meteorological conditions, and their performance is evaluated by split sampling. The study area is located within the 112 km radius of Hannover radar in Lower Saxony, Germany and the data set constitutes of 80 recording stations in 5 min time steps. The results of this study reveal how the performance of the methods is affected by the adjustment of radar data, choice of merging method and selected event. Merging techniques can be used to improve the performance of online rainfall estimation, which gives way to the application of merging products in forecasting.

  19. Entanglement Dynamics of Linear and Nonlinear Interaction of Two Two-Level Atoms with a Quantized Phase-Damped Field in the Dispersive Regime

    NASA Astrophysics Data System (ADS)

    Tavassoly, M. K.; Daneshmand, R.; Rustaee, N.

    2018-06-01

    In this paper we study the linear and nonlinear (intensity-dependent) interactions of two two-level atoms with a single-mode quantized field far from resonance, while the phase-damping effect is also taken into account. To find the analytical solution of the atom-field state vector corresponding to the considered model, after deducing the effective Hamiltonian we evaluate the time-dependent elements of the density operator using the master equation approach and superoperator method. Consequently, we are able to study the influences of the special nonlinearity function f (n) = √ {n}, the intensity of the initial coherent state field and the phase-damping parameter on the degree of entanglement of the whole system as well as the field and atom. It is shown that in the presence of damping, by passing time, the amount of entanglement of each subsystem with the rest of system, asymptotically reaches to its stationary and maximum value. Also, the nonlinear interaction does not have any effect on the entanglement of one of the atoms with the rest of system, but it changes the amplitude and time period of entanglement oscillations of the field and the other atom. Moreover, this may cause that, the degree of entanglement which may be low (high) at some moments of time becomes high (low) by entering the intensity-dependent function in the atom-field coupling.

  20. A computational study for investigating acoustic streaming and tissue heating during high intensity focused ultrasound through blood vessel with an obstacle

    NASA Astrophysics Data System (ADS)

    Parvin, Salma; Sultana, Aysha

    2017-06-01

    The influence of High Intensity Focused Ultrasound (HIFU) on the obstacle through blood vessel is studied numerically. A three-dimensional acoustics-thermal-fluid coupling model is employed to compute the temperature field around the obstacle through blood vessel. The model construction is based on the linear Westervelt and conjugate heat transfer equations for the obstacle through blood vessel. The system of equations is solved using Finite Element Method (FEM). We found from this three-dimensional numerical study that the rate of heat transfer is increasing from the obstacle and both the convective cooling and acoustic streaming can considerably change the temperature field.

  1. Terahertz near-field imaging using subwavelength plasmonic apertures and a quantum cascade laser source.

    PubMed

    Baragwanath, Adam J; Freeman, Joshua R; Gallant, Andrew J; Zeitler, J Axel; Beere, Harvey E; Ritchie, David A; Chamberlain, J Martyn

    2011-07-01

    The first demonstration, to our knowledge, of near-field imaging using subwavelength plasmonic apertures with a terahertz quantum cascade laser source is presented. "Bull's-eye" apertures, featuring subwavelength circular apertures flanked by periodic annular corrugations were created using a novel fabrication method. A fivefold increase in intensity was observed for plasmonic apertures over plain apertures of the same diameter. Detailed studies of the transmitted beam profiles were undertaken for apertures with both planarized and corrugated exit facets, with the former producing spatially uniform intensity profiles and subwavelength spatial resolution. Finally, a proof-of-concept imaging experiment is presented, where an inhomogeneous pharmaceutical drug coating is investigated.

  2. Tunnel effect measuring systems and particle detectors

    NASA Technical Reports Server (NTRS)

    Kaiser, William J. (Inventor); Waltman, Steven B. (Inventor); Kenny, Thomas W. (Inventor)

    1994-01-01

    Methods and apparatus for measuring gravitational and inertial forces, magnetic fields, or wave or radiant energy acting on an object or fluid in space provide an electric tunneling current through a gap between an electrode and that object or fluid in space and vary that gap with any selected one of such forces, magnetic fields, or wave or radiant energy acting on that object or fluid. These methods and apparatus sense a corresponding variation in an electric property of that gap and determine the latter force, magnetic fields, or wave or radiant energy in response to that corresponding variation, and thereby sense or measure such parameters as acceleration, position, particle mass, velocity, magnetic field strength, presence or direction, or wave or radiant energy intensity, presence or direction.

  3. Tunnel effect measuring systems and particle detectors

    NASA Technical Reports Server (NTRS)

    Kaiser, William J. (Inventor); Waltman, Steven B. (Inventor); Kenny, Thomas W. (Inventor)

    1993-01-01

    Methods and apparatus for measuring gravitational and inertial forces, magnetic fields, or wave or radiant energy acting on an object or fluid in space provide an electric tunneling current through a gap between an electrode and that object or fluid in space and vary that gap with any selected one of such forces, magnetic fields, or wave or radiant energy acting on that object or fluid. These methods and apparatus sense a corresponding variation in an electric property of that gap and determine the latter force, magnetic fields, or wave or radiant energy in response to that corresponding variation, and thereby sense or measure such parameters as acceleration, position, particle mass, velocity, magnetic field strength, presence or direction, or wave or radiant energy intensity, presence or direction.

  4. Tunnel effect wave energy detection

    NASA Technical Reports Server (NTRS)

    Kaiser, William J. (Inventor); Waltman, Steven B. (Inventor); Kenny, Thomas W. (Inventor)

    1995-01-01

    Methods and apparatus for measuring gravitational and inertial forces, magnetic fields, or wave or radiant energy acting on an object or fluid in space provide an electric tunneling current through a gap between an electrode and that object or fluid in space and vary that gap with any selected one of such forces, magnetic fields, or wave or radiant energy acting on that object or fluid. These methods and apparatus sense a corresponding variation in an electric property of that gap and determine the latter force, magnetic fields, or wave or radiant energy in response to that corresponding variation, and thereby sense or measure such parameters as acceleration, position, particle mass, velocity, magnetic field strength, presence or direction, or wave or radiant energy intensity, presence or direction.

  5. Combining functional weed ecology and crop stable isotope ratios to identify cultivation intensity: a comparison of cereal production regimes in Haute Provence, France and Asturias, Spain.

    PubMed

    Bogaard, Amy; Hodgson, John; Nitsch, Erika; Jones, Glynis; Styring, Amy; Diffey, Charlotte; Pouncett, John; Herbig, Christoph; Charles, Michael; Ertuğ, Füsun; Tugay, Osman; Filipovic, Dragana; Fraser, Rebecca

    This investigation combines two independent methods of identifying crop growing conditions and husbandry practices-functional weed ecology and crop stable carbon and nitrogen isotope analysis-in order to assess their potential for inferring the intensity of past cereal production systems using archaeobotanical assemblages. Present-day organic cereal farming in Haute Provence, France features crop varieties adapted to low-nutrient soils managed through crop rotation, with little to no manuring. Weed quadrat survey of 60 crop field transects in this region revealed that floristic variation primarily reflects geographical differences. Functional ecological weed data clearly distinguish the Provence fields from those surveyed in a previous study of intensively managed spelt wheat in Asturias, north-western Spain: as expected, weed ecological data reflect higher soil fertility and disturbance in Asturias. Similarly, crop stable nitrogen isotope values distinguish between intensive manuring in Asturias and long-term cultivation with minimal manuring in Haute Provence. The new model of cereal cultivation intensity based on weed ecology and crop isotope values in Haute Provence and Asturias was tested through application to two other present-day regimes, successfully identifying a high-intensity regime in the Sighisoara region, Romania, and low-intensity production in Kastamonu, Turkey. Application of this new model to Neolithic archaeobotanical assemblages in central Europe suggests that early farming tended to be intensive, and likely incorporated manuring, but also exhibited considerable variation, providing a finer grained understanding of cultivation intensity than previously available.

  6. The substrate matters in the Raman spectroscopy analysis of cells

    PubMed Central

    Mikoliunaite, Lina; Rodriguez, Raul D.; Sheremet, Evgeniya; Kolchuzhin, Vladimir; Mehner, Jan; Ramanavicius, Arunas; Zahn, Dietrich R.T.

    2015-01-01

    Raman spectroscopy is a powerful analytical method that allows deposited and/or immobilized cells to be evaluated without complex sample preparation or labeling. However, a main limitation of Raman spectroscopy in cell analysis is the extremely weak Raman intensity that results in low signal to noise ratios. Therefore, it is important to seize any opportunity that increases the intensity of the Raman signal and to understand whether and how the signal enhancement changes with respect to the substrate used. Our experimental results show clear differences in the spectroscopic response from cells on different surfaces. This result is partly due to the difference in spatial distribution of electric field at the substrate/cell interface as shown by numerical simulations. We found that the substrate also changes the spatial location of maximum field enhancement around the cells. Moreover, beyond conventional flat surfaces, we introduce an efficient nanostructured silver substrate that largely enhances the Raman signal intensity from a single yeast cell. This work contributes to the field of vibrational spectroscopy analysis by providing a fresh look at the significance of the substrate for Raman investigations in cell research. PMID:26310910

  7. The substrate matters in the Raman spectroscopy analysis of cells

    NASA Astrophysics Data System (ADS)

    Mikoliunaite, Lina; Rodriguez, Raul D.; Sheremet, Evgeniya; Kolchuzhin, Vladimir; Mehner, Jan; Ramanavicius, Arunas; Zahn, Dietrich R. T.

    2015-08-01

    Raman spectroscopy is a powerful analytical method that allows deposited and/or immobilized cells to be evaluated without complex sample preparation or labeling. However, a main limitation of Raman spectroscopy in cell analysis is the extremely weak Raman intensity that results in low signal to noise ratios. Therefore, it is important to seize any opportunity that increases the intensity of the Raman signal and to understand whether and how the signal enhancement changes with respect to the substrate used. Our experimental results show clear differences in the spectroscopic response from cells on different surfaces. This result is partly due to the difference in spatial distribution of electric field at the substrate/cell interface as shown by numerical simulations. We found that the substrate also changes the spatial location of maximum field enhancement around the cells. Moreover, beyond conventional flat surfaces, we introduce an efficient nanostructured silver substrate that largely enhances the Raman signal intensity from a single yeast cell. This work contributes to the field of vibrational spectroscopy analysis by providing a fresh look at the significance of the substrate for Raman investigations in cell research.

  8. Method and apparatus for separating materials magnetically. [Patent application; iron pyrite from coal

    DOEpatents

    Hise, E.C. Jr.; Holman, A.S.; Friedlaender, F.J.

    1980-11-06

    Magnetic and nonmagnetic materials are separated by passing stream thereof past coaxial current-carrying coils which produce a magnetic field wherein intensity varies sharply with distance radially of the axis of the coils.

  9. Automated Detection of Solar Loops by the Oriented Connectivity Method

    NASA Technical Reports Server (NTRS)

    Lee, Jong Kwan; Newman, Timothy S.; Gary, G. Allen

    2004-01-01

    An automated technique to segment solar coronal loops from intensity images of the Sun s corona is introduced. It exploits physical characteristics of the solar magnetic field to enable robust extraction from noisy images. The technique is a constructive curve detection approach, constrained by collections of estimates of the magnetic fields orientation. Its effectiveness is evaluated through experiments on synthetic and real coronal images.

  10. Vegetation Cover Affects Mammal Herbivory on Planted Oaks and Success of Reforesting Missouri River Bottomland Fields

    Treesearch

    Shannon Dugger; Daniel C. Dey; Joshua J. Millspaugh

    2004-01-01

    We are evaluating oak regeneration methods at Plowboy Bend and Smoky Waters Conservation Areas in the Missouri River floodplain by planting oak seedlings in different cover types (redtop grass vs. natural vegetation) on four 40- acre fields. After 1 year, survival of planted oaks was high; however, herbivory from rabbits was intense depending on cover type. Damage to...

  11. Evaluation and Comparison of Methods for Measuring Ozone and NO2 Concentrations in Ambient Air during DISCOVER-AQ

    EPA Science Inventory

    Ambient evaluations of the various ozone and NO2 methods were conducted during field intensive studies as part of the NASA DISCOVER-AQ project conducted during July 2011 near Baltimore, MD; January – February 2013 in the San Juaquin valley, CA; September 2013 in Houston, TX...

  12. Electric Field Induce Blue Shift and Intensity Enhancement in 2D Exciplex Organic Light Emitting Diodes; Controlling Electron-Hole Separation.

    PubMed

    Al Attar, Hameed A; Monkman, Andy P

    2016-09-01

    A simple but novel method is designed to study the characteristics of the exciplex state pinned at a donor-acceptor abrupt interface and the effect an external electric field has on these excited states. The reverse Onsager process, where the field induces blue-shifted emission and increases the efficiency of the exciplex emission as the e-h separation reduces, is discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Thermal x-ray diffraction and near-field phase contrast imaging

    NASA Astrophysics Data System (ADS)

    Li, Zheng; Classen, Anton; Peng, Tao; Medvedev, Nikita; Wang, Fenglin; Chapman, Henry N.; Shih, Yanhua

    2017-10-01

    Using higher-order coherence of thermal light sources, the resolution power of standard x-ray imaging techniques can be enhanced. In this work, we applied the higher-order measurement to far-field x-ray diffraction and near-field phase contrast imaging (PCI), in order to achieve superresolution in x-ray diffraction and obtain enhanced intensity contrast in PCI. The cost of implementing such schemes is minimal compared to the methods that achieve similar effects by using entangled x-ray photon pairs.

  14. Superconductive magnetic-field-trapping device

    NASA Technical Reports Server (NTRS)

    Hildebrandt, A. F.; Elleman, D. D.; Whitmore, F. C. (Inventor)

    1965-01-01

    An apparatus which enables the establishment of a magnetic field in air that has the same intensity as the ones in ferromagnetic materials is described. The apparatus is comprised of a core of ferromagnetic material and is surrounded by a cylinder made of a material that has superconducting properties when cooled below a critical temperature. A method is provided for producing a magnetic field through the ferromagnetic core. The core can also be split and pulled apart when it is required that the center of the cavity be left empty.

  15. Thermal x-ray diffraction and near-field phase contrast imaging

    DOE PAGES

    Li, Zheng; Classen, Anton; Peng, Tao; ...

    2017-12-27

    Using higher-order coherence of thermal light sources, the resolution power of standard x-ray imaging techniques can be enhanced. Here in this work, we applied the higher-order measurement to far-field x-ray diffraction and near-field phase contrast imaging (PCI), in order to achieve superresolution in x-ray diffraction and obtain enhanced intensity contrast in PCI. The cost of implementing such schemes is minimal compared to the methods that achieve similar effects by using entangled x-ray photon pairs.

  16. Nonlinear response of a harmonic diatomic molecule: Algebraic nonperturbative calculation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Recamier, Jose; Mochan, W. Luis; Maytorena, Jesus A.

    2005-08-15

    Even harmonic molecules display a nonlinear behavior when driven by an inhomogeneous field. We calculate the response of single harmonic molecules to a monochromatic time and space dependent electric field E(r,t) of frequency {omega} employing exact algebraic methods. We evaluate the responses at the fundamental frequency {omega} and at successive harmonics 2{omega}, 3{omega}, etc., as a function of the intensity and of the frequency of the field and compare the results with those of first and second order perturbation theory.

  17. A tesselation-based model for intensity estimation and laser plasma interactions calculations in three dimensions

    NASA Astrophysics Data System (ADS)

    Colaïtis, A.; Chapman, T.; Strozzi, D.; Divol, L.; Michel, P.

    2018-03-01

    A three-dimensional laser propagation model for computation of laser-plasma interactions is presented. It is focused on indirect drive geometries in inertial confinement fusion and formulated for use at large temporal and spatial scales. A modified tesselation-based estimator and a relaxation scheme are used to estimate the intensity distribution in plasma from geometrical optics rays. Comparisons with reference solutions show that this approach is well-suited to reproduce realistic 3D intensity field distributions of beams smoothed by phase plates. It is shown that the method requires a reduced number of rays compared to traditional rigid-scale intensity estimation. Using this field estimator, we have implemented laser refraction, inverse-bremsstrahlung absorption, and steady-state crossed-beam energy transfer with a linear kinetic model in the numerical code Vampire. Probe beam amplification and laser spot shapes are compared with experimental results and pf3d paraxial simulations. These results are promising for the efficient and accurate computation of laser intensity distributions in holhraums, which is of importance for determining the capsule implosion shape and risks of laser-plasma instabilities such as hot electron generation and backscatter in multi-beam configurations.

  18. Transient electroosmotic flow induced by DC or AC electric fields in a curved microtube.

    PubMed

    Luo, W-J

    2004-10-15

    This study investigates transient electroosmotic flow in a rectangular curved microtube in which the fluid is driven by the application of an external DC or AC electric field. The resultant flow-field evolutions within the microtube are simulated using the backwards-Euler time-stepping numerical method to clarify the relationship between the changes in the axial-flow velocity and the intensity of the applied electric field. When the electric field is initially applied or varies, the fluid within the double layer responds virtually immediately, and the axial velocity within the double layer tends to follow the varying intensity of the applied electric field. The greatest net charge density exists at the corners of the microtube as a result of the overlapping electrical double layers of the two walls. It results in local maximum or minimum axial velocities in the corners during increasing or decreasing applied electric field intensity in either the positive or negative direction. As the fluid within the double layer starts to move, the bulk fluid is gradually dragged into motion through the diffusion of momentum from the double layer. A finite time is required for the full momentum of the double layer to diffuse to the bulk fluid; hence, a certain phase shift between the applied electric field and the flow response is inevitable. The patterns of the axial velocity contours during the transient evolution are investigated in this study. It is found that these patterns are determined by the efficiency of momentum diffusion from the double layer to the central region of the microtube.

  19. High-resolution records of non-dipole variations derived from volcanic edifices

    NASA Astrophysics Data System (ADS)

    de Groot, Lennart; Biggin, Andrew; Dekkers, Mark

    2014-05-01

    Our understanding of the short-term behavior of the Earth's magnetic field is currently mainly hampered by a lack of coeval high-resolution records of geomagnetic intensity variations that are well distributed over the globe. Lavas are the only recorder of short-term fluctuations of the geomagnetic field that are available for all parts of the world and on geological time scales. Therefore, many efforts have been made to improve the methodology to obtain reliable estimates of the paleointensity from igneous rocks over the past decades. It is well known that some paleointensity methods will work on certain lavas with specific thermomagnetic behaviour, but fail for others. We therefore propose a 'multi-method paleointensity approach' that consists of Thellier-style, multispecimen-style, and calibrated pseudo-Thellier-style experiments to construct high-resolution records of regional variations in the intensity of the Earth's magnetic field. With our new approach we obtain a reliable estimate of the paleointensity for 60-70 percent of all cooling units sampled. By applying our new approach to suites of lavas from Hawaii (USA), and the Canary Islands (Spain) we obtain important constraints for short-term local geomagnetic intensity highs, and insight into their possible driving mechanisms. Our new record for Hawai'i indicates that, approximately 1000 years ago, the local field intensity increased on the order of 50% for 200 years - a qualitatively similar phenomenon observed 200 years earlier in western Europe (Gallet et al., 2005; Gomez-Paccard et al., 2012) and 500 years later in southwestern USA (Bowles et al., 2002). When these records are combined with a record for Japan (Yu, 2012), a coherent picture emerges that includes the dipole component decaying steadily since at least 1000 years ago. Superimposed onto this decay are strong but shorter-term intensity variations at a regional level whose asynchronicity necessitates a highly non-dipolar nature. Our paleointensity data obtained for Tenerife reveal high paleointensities temporally coinciding with an intensity high occurring in the Middle East around 1000 BC. If our findings are related to this 'archeomagnetic jerk', it must have extended more than 50 degrees westward in longitude. References: Gallet et al., 2005, EPSL vol. 236, pp. 339-347 Gomez-Paccard et al., 2012, EPSL, vol. 355-356, pp. 131-143 Bowles et al, 2002, EPSL, vol. 203, pp. 967-981 Yu et al., 2012, JGR, vol. 177, p. B08101

  20. Calculating accurate aboveground dry weight biomass of herbaceous vegetation in the Great Plains: A comparison of three calculations to determine the least resource intensive and most accurate method

    Treesearch

    Ben Butler

    2007-01-01

    Obtaining accurate biomass measurements is often a resource-intensive task. Data collection crews often spend large amounts of time in the field clipping, drying, and weighing grasses to calculate the biomass of a given vegetation type. Such a problem is currently occurring in the Great Plains region of the Bureau of Indian Affairs. A study looked at six reservations...

  1. High sensitivity optical measurement of skin gloss

    PubMed Central

    Ezerskaia, Anna; Ras, Arno; Bloemen, Pascal; Pereira, Silvania F.; Urbach, H. Paul; Varghese, Babu

    2017-01-01

    We demonstrate a low-cost optical method for measuring the gloss properties with improved sensitivity in the low gloss regime, relevant for skin gloss properties. The gloss estimation method is based on, on the one hand, the slope of the intensity gradient in the transition regime between specular and diffuse reflection and on the other on the sum over the intensities of pixels above threshold, derived from a camera image obtained using unpolarized white light illumination. We demonstrate the improved sensitivity of the two proposed methods using Monte Carlo simulations and experiments performed on ISO gloss calibration standards with an optical prototype. The performance and linearity of the method was compared with different professional gloss measurement devices based on the ratio of specular to diffuse intensity. We demonstrate the feasibility for in-vivo skin gloss measurements by quantifying the temporal evolution of skin gloss after application of standard paraffin cream bases on skin. The presented method opens new possibilities in the fields of cosmetology and dermatopharmacology for measuring the skin gloss and resorption kinetics and the pharmacodynamics of various external agents. PMID:29026683

  2. High sensitivity optical measurement of skin gloss.

    PubMed

    Ezerskaia, Anna; Ras, Arno; Bloemen, Pascal; Pereira, Silvania F; Urbach, H Paul; Varghese, Babu

    2017-09-01

    We demonstrate a low-cost optical method for measuring the gloss properties with improved sensitivity in the low gloss regime, relevant for skin gloss properties. The gloss estimation method is based on, on the one hand, the slope of the intensity gradient in the transition regime between specular and diffuse reflection and on the other on the sum over the intensities of pixels above threshold, derived from a camera image obtained using unpolarized white light illumination. We demonstrate the improved sensitivity of the two proposed methods using Monte Carlo simulations and experiments performed on ISO gloss calibration standards with an optical prototype. The performance and linearity of the method was compared with different professional gloss measurement devices based on the ratio of specular to diffuse intensity. We demonstrate the feasibility for in-vivo skin gloss measurements by quantifying the temporal evolution of skin gloss after application of standard paraffin cream bases on skin. The presented method opens new possibilities in the fields of cosmetology and dermatopharmacology for measuring the skin gloss and resorption kinetics and the pharmacodynamics of various external agents.

  3. Mitigating effect on turbulent scintillation using non-coherent multi-beam overlapped illumination

    NASA Astrophysics Data System (ADS)

    Zhou, Lu; Tian, Yuzhen; Wang, Rui; Wang, Tingfeng; Sun, Tao; Wang, Canjin; Yang, Xiaotian

    2017-12-01

    In order to find an effective method to mitigate the turbulent scintillation for applications involved laser propagation through atmosphere, we demonstrated one model using non-coherent multi-beam overlapped illumination. Based on lognormal distribution and the statistical moments of overlapped field, the reduction effect on turbulent scintillation of this method was discussed and tested against numerical wave optics simulation and laboratory experiments with phase plates. Our analysis showed that the best mitigating effect, the scintillation index of overlapped field reduced to 1/N of that when using single beam illuminating, could be obtained using this method when the intensity of N emitting beams equaled to each other.

  4. Edge delamination in angle-ply composite laminates, part 5

    NASA Technical Reports Server (NTRS)

    Wang, S. S.

    1981-01-01

    A theoretical method was developed for describing the edge delamination stress intensity characteristics in angle-ply composite laminates. The method is based on the theory of anisotropic elasticity. The edge delamination problem is formulated using Lekhnitskii's complex-variable stress potentials and an especially developed eigenfunction expansion method. The method predicts exact orders of the three-dimensional stress singularity in a delamination crack tip region. With the aid of boundary collocation, the method predicts the complete stress and displacement fields in a finite-dimensional, delaminated composite. Fracture mechanics parameters such as the mixed-mode stress intensity factors and associated energy release rates for edge delamination can be calculated explicity. Solutions are obtained for edge delaminated (theta/-theta theta/-theta) angle-ply composites under uniform axial extension. Effects of delamination lengths, fiber orientations, lamination and geometric variables are studied.

  5. Recovery of chemical Estimates by Field Inhomogeneity Neighborhood Error Detection (REFINED): Fat/Water Separation at 7T

    PubMed Central

    Narayan, Sreenath; Kalhan, Satish C.; Wilson, David L.

    2012-01-01

    I.Abstract Purpose To reduce swaps in fat-water separation methods, a particular issue on 7T small animal scanners due to field inhomogeneity, using image postprocessing innovations that detect and correct errors in the B0 field map. Materials and Methods Fat-water decompositions and B0 field maps were computed for images of mice acquired on a 7T Bruker BioSpec scanner, using a computationally efficient method for solving the Markov Random Field formulation of the multi-point Dixon model. The B0 field maps were processed with a novel hole-filling method, based on edge strength between regions, and a novel k-means method, based on field-map intensities, which were iteratively applied to automatically detect and reinitialize error regions in the B0 field maps. Errors were manually assessed in the B0 field maps and chemical parameter maps both before and after error correction. Results Partial swaps were found in 6% of images when processed with FLAWLESS. After REFINED correction, only 0.7% of images contained partial swaps, resulting in an 88% decrease in error rate. Complete swaps were not problematic. Conclusion Ex post facto error correction is a viable supplement to a priori techniques for producing globally smooth B0 field maps, without partial swaps. With our processing pipeline, it is possible to process image volumes rapidly, robustly, and almost automatically. PMID:23023815

  6. Spatial and temporal traction response in human airway smooth muscle cells

    NASA Technical Reports Server (NTRS)

    Tolic-Norrelykke, Iva Marija; Butler, James P.; Chen, Jianxin; Wang, Ning

    2002-01-01

    Tractions that cells exert on their substrates are essential in cell spreading, migration, and contraction. These tractions can be determined by plating the cells on a flexible gel and measuring the deformation of the gel by using fluorescent beads embedded just below the surface of the gel. In this article we describe the image correlation method (ICM) optimized for determining the displacement field of the gel under a contracting cell. For the calculation of the traction field from the displacement field we use the recently developed method of Fourier transform traction cytometry (FTTC). The ICM and FTTC methods are applied to human airway smooth muscle cells during stimulation with the contractile agonist histamine or the relaxing agonist isoproterenol. The overall intensity of the cell contraction (the median traction magnitude, the energy transferred from the cell to the gel, and the net contractile moment) increased after activation with histamine, and decreased after treatment with isoproterenol. Cells exhibited regional differences in the time course of traction during the treatment. Both temporal evolution and magnitude of traction increase induced by histamine varied markedly among different cell protrusions, whereas the nuclear region showed the smallest response. These results suggest that intracellular mediators of cell adhesion and contraction respond to contractile stimuli with different rates and intensities in different regions of the cell.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paudel, Nava Raj, E-mail: nrpaudel@yahoo.com; Shvydka, Diana; Parsai, E. Ishmael

    Purpose: Gold nanoparticles (GNPs) are known to be effective mediators in microwave hyperthermia. Interaction with an electromagnetic field, large surface to volume ratio, and size quantization of nanoparticles (NPs) can lead to increased cell killing beyond pure heating effects. The purpose of this study is to explore the possibility of free radical generation by GNPs in aqueous media when they are exposed to a microwave field. Methods: A number of samples with 500 mM 5,5-dimethyl-1-pyrroline N-oxide (DMPO) in 20 ppm GNP colloidal suspensions were scanned with an electron paramagnetic resonance (EPR)/electron spin resonance spectrometer to generate and detect free radicals.more » A fixed (9.68 GHz) frequency microwave from the spectrometer has served for both generation and detection of radicals. EPR spectra obtained as first derivatives of intensity with the spectrometer were double integrated to get the free radical signal intensities. Power dependence of radical intensity was studied by applying various levels of microwave power (12.5, 49.7, and 125 mW) while keeping all other scan parameters the same. Free radical signal intensities from initial and final scans, acquired at the same power levels, were compared. Results: Hydroxyl radical (OH⋅) signal was found to be generated due to the exposure of GNP–DMPO colloidal samples to a microwave field. Intensity of OH⋅ signal thus generated at 12.5 mW microwave power for 2.8 min was close to the intensity of OH⋅ signal obtained from a water–DMPO sample exposed to 1.5 Gy ionizing radiation dose. For repeated scans, higher OH⋅ intensities were observed in the final scan for higher power levels applied between the initial and the final scans. Final intensities were higher also for a shorter time interval between the initial and the final scans. Conclusions: Our results observed for the first time demonstrate that GNPs generate OH⋅ radicals in aqueous media when they are exposed to a microwave field. If OH⋅ radicals can be generated close to deoxyribonucleic acid of cells by proper localization of NPs, NP-aided microwave hyperthermia can yield cell killing via both elevated temperature and free radical generation.« less

  8. Automatic single questionnaire intensity (SQI, EMS98 scale) estimation using ranking models built on the existing BCSF database

    NASA Astrophysics Data System (ADS)

    Schlupp, A.; Sira, C.; Schmitt, K.; Schaming, M.

    2013-12-01

    In charge of intensity estimations in France, BCSF has collected and manually analyzed more than 47000 online individual macroseismic questionnaires since 2000 up to intensity VI. These macroseismic data allow us to estimate one SQI value (Single Questionnaire Intensity) for each form following the EMS98 scale. The reliability of the automatic intensity estimation is important as they are today used for automatic shakemaps communications and crisis management. Today, the automatic intensity estimation at BCSF is based on the direct use of thumbnails selected on a menu by the witnesses. Each thumbnail corresponds to an EMS-98 intensity value, allowing us to quickly issue an intensity map of the communal intensity by averaging the SQIs at each city. Afterwards an expert, to determine a definitive SQI, manually analyzes each form. This work is time consuming and not anymore suitable considering the increasing number of testimonies at BCSF. Nevertheless, it can take into account incoherent answers. We tested several automatic methods (USGS algorithm, Correlation coefficient, Thumbnails) (Sira et al. 2013, IASPEI) and compared them with 'expert' SQIs. These methods gave us medium score (between 50 to 60% of well SQI determined and 35 to 40% with plus one or minus one intensity degree). The best fit was observed with the thumbnails. Here, we present new approaches based on 3 statistical ranking methods as 1) Multinomial logistic regression model, 2) Discriminant analysis DISQUAL and 3) Support vector machines (SVMs). The two first methods are standard methods, while the third one is more recent. Theses methods could be applied because the BCSF has already in his database more then 47000 forms and because their questions and answers are well adapted for a statistical analysis. The ranking models could then be used as automatic method constrained on expert analysis. The performance of the automatic methods and the reliability of the estimated SQI can be evaluated thanks to the fact that each definitive BCSF SQIs is determined by an expert analysis. We compare the SQIs obtained by these methods from our database and discuss the coherency and variations between automatic and manual processes. These methods lead to high scores with up to 85% of the forms well classified and most of the remaining forms classified with only a shift of one intensity degree. This allows us to use the ranking methods as the best automatic methods to fast SQIs estimation and to produce fast shakemaps. The next step, to improve the use of these methods, will be to identify explanations for the forms not classified at the correct value and a way to select the few remaining forms that should be analyzed by the expert. Note that beyond intensity VI, on-line questionnaires are insufficient and a field survey is indispensable to estimate intensity. For such survey, in France, BCSF leads a macroseismic intervention group (GIM).

  9. Monitoring low density avian populations: An example using Mountain Plovers

    USGS Publications Warehouse

    Dreitz, V.J.; Lukacs, P.M.; Knopf, F.L.

    2006-01-01

    Declines in avian populations highlight a need for rigorous, broad-scale monitoring programs to document trends in avian populations that occur in low densities across expansive landscapes. Accounting for the spatial variation and variation in detection probability inherent to monitoring programs is thought to be effort-intensive and time-consuming. We determined the feasibility of the analytical method developed by Royle and Nichols (2003), which uses presence-absence (detection-non-detection) field data, to estimate abundance of Mountain Plovers (Charadrius montanus) per sampling unit in agricultural fields, grassland, and prairie dog habitat in eastern Colorado. Field methods were easy to implement and results suggest that the analytical method provides valuable insight into population patterning among habitats. Mountain Plover abundance was highest in prairie dog habitat, slightly lower in agricultural fields, and substantially lower in grassland. These results provided valuable insight to focus future research into Mountain Plover ecology and conservation. ?? The Cooper Ornithological Society 2006.

  10. Adaptive Quantification and Longitudinal Analysis of Pulmonary Emphysema with a Hidden Markov Measure Field Model

    PubMed Central

    Häme, Yrjö; Angelini, Elsa D.; Hoffman, Eric A.; Barr, R. Graham; Laine, Andrew F.

    2014-01-01

    The extent of pulmonary emphysema is commonly estimated from CT images by computing the proportional area of voxels below a predefined attenuation threshold. However, the reliability of this approach is limited by several factors that affect the CT intensity distributions in the lung. This work presents a novel method for emphysema quantification, based on parametric modeling of intensity distributions in the lung and a hidden Markov measure field model to segment emphysematous regions. The framework adapts to the characteristics of an image to ensure a robust quantification of emphysema under varying CT imaging protocols and differences in parenchymal intensity distributions due to factors such as inspiration level. Compared to standard approaches, the present model involves a larger number of parameters, most of which can be estimated from data, to handle the variability encountered in lung CT scans. The method was used to quantify emphysema on a cohort of 87 subjects, with repeated CT scans acquired over a time period of 8 years using different imaging protocols. The scans were acquired approximately annually, and the data set included a total of 365 scans. The results show that the emphysema estimates produced by the proposed method have very high intra-subject correlation values. By reducing sensitivity to changes in imaging protocol, the method provides a more robust estimate than standard approaches. In addition, the generated emphysema delineations promise great advantages for regional analysis of emphysema extent and progression, possibly advancing disease subtyping. PMID:24759984

  11. The reduced basis method for the electric field integral equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fares, M., E-mail: fares@cerfacs.f; Hesthaven, J.S., E-mail: Jan_Hesthaven@Brown.ed; Maday, Y., E-mail: maday@ann.jussieu.f

    We introduce the reduced basis method (RBM) as an efficient tool for parametrized scattering problems in computational electromagnetics for problems where field solutions are computed using a standard Boundary Element Method (BEM) for the parametrized electric field integral equation (EFIE). This combination enables an algorithmic cooperation which results in a two step procedure. The first step consists of a computationally intense assembling of the reduced basis, that needs to be effected only once. In the second step, we compute output functionals of the solution, such as the Radar Cross Section (RCS), independently of the dimension of the discretization space, formore » many different parameter values in a many-query context at very little cost. Parameters include the wavenumber, the angle of the incident plane wave and its polarization.« less

  12. Reliable detection of fluence anomalies in EPID-based IMRT pretreatment quality assurance using pixel intensity deviations

    PubMed Central

    Gordon, J. J.; Gardner, J. K.; Wang, S.; Siebers, J. V.

    2012-01-01

    Purpose: This work uses repeat images of intensity modulated radiation therapy (IMRT) fields to quantify fluence anomalies (i.e., delivery errors) that can be reliably detected in electronic portal images used for IMRT pretreatment quality assurance. Methods: Repeat images of 11 clinical IMRT fields are acquired on a Varian Trilogy linear accelerator at energies of 6 MV and 18 MV. Acquired images are corrected for output variations and registered to minimize the impact of linear accelerator and electronic portal imaging device (EPID) positioning deviations. Detection studies are performed in which rectangular anomalies of various sizes are inserted into the images. The performance of detection strategies based on pixel intensity deviations (PIDs) and gamma indices is evaluated using receiver operating characteristic analysis. Results: Residual differences between registered images are due to interfraction positional deviations of jaws and multileaf collimator leaves, plus imager noise. Positional deviations produce large intensity differences that degrade anomaly detection. Gradient effects are suppressed in PIDs using gradient scaling. Background noise is suppressed using median filtering. In the majority of images, PID-based detection strategies can reliably detect fluence anomalies of ≥5% in ∼1 mm2 areas and ≥2% in ∼20 mm2 areas. Conclusions: The ability to detect small dose differences (≤2%) depends strongly on the level of background noise. This in turn depends on the accuracy of image registration, the quality of the reference image, and field properties. The longer term aim of this work is to develop accurate and reliable methods of detecting IMRT delivery errors and variations. The ability to resolve small anomalies will allow the accuracy of advanced treatment techniques, such as image guided, adaptive, and arc therapies, to be quantified. PMID:22894421

  13. Frozen lattice and absorptive model for high angle annular dark field scanning transmission electron microscopy: A comparison study in terms of integrated intensity and atomic column position measurement.

    PubMed

    Alania, M; Lobato, I; Van Aert, S

    2018-01-01

    In this paper, both the frozen lattice (FL) and the absorptive potential (AP) approximation models are compared in terms of the integrated intensity and the precision with which atomic columns can be located from an image acquired using high angle annular dark field (HAADF) scanning transmission electron microscopy (STEM). The comparison is made for atoms of Cu, Ag, and Au. The integrated intensity is computed for both an isolated atomic column and an atomic column inside an FCC structure. The precision has been computed using the so-called Cramér-Rao Lower Bound (CRLB), which provides a theoretical lower bound on the variance with which parameters can be estimated. It is shown that the AP model results into accurate measurements for the integrated intensity only for small detector ranges under relatively low angles and for small thicknesses. In terms of the attainable precision, both methods show similar results indicating picometer range precision under realistic experimental conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Escherichia coli Fiber Sensors Using Concentrated Dielectrophoretic Force with Optical Defocusing Method.

    PubMed

    Tai, Yi-Hsin; Lee, Chia-Wei; Chang, Dao-Ming; Lai, Yu-Sheng; Huang, Ding-Wei; Wei, Pei-Kuen

    2018-05-25

    A sensitive tapered optical fiber tip combined with dielectrophoretic (DEP) trapping was used for rapid and label-free detection of bacteria in water. The angular spectrum of the optical field at the fiber tip was changed with the surrounding refractive index (RI). By measuring far-field intensity change at the defocus plane, the intensity sensitivity was up to 95 200%/RIU (RI unit), and the detection limit was 5.2 × 10 -6 RIU at 0.5% intensity stability. By applying an AC voltage to a Ti/Al coated fiber tip and an indium-tin-oxide glass, the DEP force effectively trapped the Escherichia coli ( E. coli) near the fiber tip. Those bacteria can be directly measured from optical intensity change due to the increase of surrounding RI. By immobilizing the antibody on the Ti/Al fiber tip, the tests for specific K12 bacteria and nonspecific BL21 bacteria verified the specificity. The antibody-immobilized Ti/Al coated fiber tip with DEP trapping can detect bacteria at a concentration about 100 CFU/mL.

  15. Electric field measurements in a near atmospheric pressure nanosecond pulse discharge with picosecond electric field induced second harmonic generation

    NASA Astrophysics Data System (ADS)

    Goldberg, Benjamin M.; Chng, Tat Loon; Dogariu, Arthur; Miles, Richard B.

    2018-02-01

    We present an optical electric field measurement method for use in high pressure plasma discharges. The method is based upon the field induced second harmonic generation technique and can be used for localized electric field measurements with sub-nanosecond resolution in any gaseous species. When an external electric field is present, a dipole is induced in the typically centrosymmetric medium, allowing for second harmonic generation with signal intensities which scale by the square of the electric field. Calibrations have been carried out in 100 Torr room air, and a minimum sensitivity of 450 V/cm is demonstrated. Measurements were performed with nanosecond or faster temporal resolution in a 100 Torr room air environment both with and without a plasma present. It was shown that with no plasma present, the field follows the applied voltage to gap ratio, as measured using the back current shunt method. When the electric field is strong enough to exceed the breakdown threshold, the measured field was shown to exceed the anticipated voltage to gap ratio which is taken as an indication of the ionization wave front as it sweeps through the plasma volume.

  16. Sonochemiluminescence observation of lipid- and polymer-shelled ultrasound contrast agents in 1.2 MHz focused ultrasound field.

    PubMed

    Qiao, Yangzi; Cao, Hua; Zhang, Shusheng; Yin, Hui; Wan, Mingxi

    2013-01-01

    Ultrasound contrast agents (UCAs) are frequently added into the focused ultrasound field as cavitation nuclei to enhance the therapeutic efficiency. Since their presence will distort the pressure field and make the process unpredictable, comprehension of their behaviors especially the active zone spatial distribution is an important part of better monitoring and using of UCAs. As shell materials can strongly alter the acoustic behavior of UCAs, two different shells coated UCAs, lipid-shelled and polymer-shelled UCAs, in a 1.2 MHz focused ultrasound field were studied by the Sonochemiluminescence (SCL) method and compared. The SCL spatial distribution of lipid-shelled group differed from that of polymer-shelled group. The shell material and the character of focused ultrasound field work together to the SCL distribution, causing the lipid-shelled group to have a maximum SCL intensity in pre-focal region at lower input power than that of polymer-shelled group, and a brighter SCL intensity in post-focal region at high input power. The SCL inactive area of these two groups both increased with the input power. The general behavior of the UCAs can be studied by both the average SCL intensity and the backscatter signals. As polymer-shelled UCAs are more resistant to acoustic pressure, they had a higher destruction power and showed less reactivation than lipid-shelled ones. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Separating twin images and locating the center of a microparticle in dense suspensions using correlations among reconstructed fields of two parallel holograms.

    PubMed

    Ling, Hangjian; Katz, Joseph

    2014-09-20

    This paper deals with two issues affecting the application of digital holographic microscopy (DHM) for measuring the spatial distribution of particles in a dense suspension, namely discriminating between real and virtual images and accurate detection of the particle center. Previous methods to separate real and virtual fields have involved applications of multiple phase-shifted holograms, combining reconstructed fields of multiple axially displaced holograms, and analysis of intensity distributions of weakly scattering objects. Here, we introduce a simple approach based on simultaneously recording two in-line holograms, whose planes are separated by a short distance from each other. This distance is chosen to be longer than the elongated trace of the particle. During reconstruction, the real images overlap, whereas the virtual images are displaced by twice the distance between hologram planes. Data analysis is based on correlating the spatial intensity distributions of the two reconstructed fields to measure displacement between traces. This method has been implemented for both synthetic particles and a dense suspension of 2 μm particles. The correlation analysis readily discriminates between real and virtual images of a sample containing more than 1300 particles. Consequently, we can now implement DHM for three-dimensional tracking of particles when the hologram plane is located inside the sample volume. Spatial correlations within the same reconstructed field are also used to improve the detection of the axial location of the particle center, extending previously introduced procedures to suspensions of microscopic particles. For each cross section within a particle trace, we sum the correlations among intensity distributions in all planes located symmetrically on both sides of the section. This cumulative correlation has a sharp peak at the particle center. Using both synthetic and recorded particle fields, we show that the uncertainty in localizing the axial location of the center is reduced to about one particle's diameter.

  18. Observing quantum control of up-conversion luminescence in Dy3+ ion doped glass from weak to intermediate shaped femtosecond laser fields

    NASA Astrophysics Data System (ADS)

    Liu, Pei; Cheng, Wenjing; Yao, Yunhua; Xu, Cheng; Zheng, Ye; Deng, Lianzhong; Jia, Tianqing; Qiu, Jianrong; Sun, Zhenrong; Zhang, Shian

    2017-11-01

    Controlling the up-conversion luminescence of rare-earth ions in real-time, in a dynamical and reversible manner, is very important for their application in laser sources, fiber-optic communications, light-emitting diodes, color displays and biological systems. In previous studies, the up-conversion luminescence control mainly focused on the weak femtosecond laser field. Here, we further extend this control behavior from weak to intermediate femtosecond laser fields. In this work, we experimentally and theoretically demonstrate that the up-conversion luminescence in Dy3+ ion doped glass can be artificially controlled by a π phase step modulation, but the up-conversion luminescence control behavior will be affected by the femtosecond laser intensity, and the up-conversion luminescence is suppressed by lower laser intensity while enhanced by higher laser intensity. We establish a new theoretical model (i.e. the fourth-order perturbation theory) to explain the physical control mechanism by considering the two- and four-photon absorption processes, and the theoretical results show that the relative weight of four-photon absorption in the whole excitation process will increase with the increase in laser intensity, and the interference between two- and four-photon absorptions results in up-conversion luminescence control modulation under different laser intensities. These theoretical and experimental works can provide a new method to control and understand up-conversion luminescence in rare-earth ions, and also may open a new opportunity to the related application areas of rare-earth ions.

  19. An empirical model of the quiet daily geomagnetic field variation

    USGS Publications Warehouse

    Yamazaki, Y.; Yumoto, K.; Cardinal, M.G.; Fraser, B.J.; Hattori, P.; Kakinami, Y.; Liu, J.Y.; Lynn, K.J.W.; Marshall, R.; McNamara, D.; Nagatsuma, T.; Nikiforov, V.M.; Otadoy, R.E.; Ruhimat, M.; Shevtsov, B.M.; Shiokawa, K.; Abe, S.; Uozumi, T.; Yoshikawa, A.

    2011-01-01

    An empirical model of the quiet daily geomagnetic field variation has been constructed based on geomagnetic data obtained from 21 stations along the 210 Magnetic Meridian of the Circum-pan Pacific Magnetometer Network (CPMN) from 1996 to 2007. Using the least squares fitting method for geomagnetically quiet days (Kp ??? 2+), the quiet daily geomagnetic field variation at each station was described as a function of solar activity SA, day of year DOY, lunar age LA, and local time LT. After interpolation in latitude, the model can describe solar-activity dependence and seasonal dependence of solar quiet daily variations (S) and lunar quiet daily variations (L). We performed a spherical harmonic analysis (SHA) on these S and L variations to examine average characteristics of the equivalent external current systems. We found three particularly noteworthy results. First, the total current intensity of the S current system is largely controlled by solar activity while its focus position is not significantly affected by solar activity. Second, we found that seasonal variations of the S current intensity exhibit north-south asymmetry; the current intensity of the northern vortex shows a prominent annual variation while the southern vortex shows a clear semi-annual variation as well as annual variation. Thirdly, we found that the total intensity of the L current system changes depending on solar activity and season; seasonal variations of the L current intensity show an enhancement during the December solstice, independent of the level of solar activity. Copyright 2011 by the American Geophysical Union.

  20. Theoretical analysis of metamaterial-gold auxiliary grating sensing structure for surface plasmon resonance sensing application based on polarization control method

    NASA Astrophysics Data System (ADS)

    Sun, Yi; Cai, Haoyuan; Wang, Xiaoping

    2017-12-01

    A metamaterial-gold multilayer sensing structure designed using the particle swarm optimization (PSO) algorithm with an auxiliary grating is proposed for using in a surface plasmon resonance (SPR) sensor system based on the polarization control method. After numerical calculations and simulation analysis, it was found that the metamaterial sensing structure significantly improves the sensitivity of the SPR signal with intensity singularity. The metamaterial sensing structure also increases the penetration depth of evanescent wave, making it possible to detect low-molecular-weight biomolecules and larger cells such as bacteria. The auxiliary grating structure was designed to identify the refractive index of the sensing region on both sides of intensity singularity. The stability of recognition and the electric field intensity of the visible light band were also studied.

  1. Quantum-electrodynamic cascades in intense laser fields

    NASA Astrophysics Data System (ADS)

    Narozhny, N. B.; Fedotov, A. M.

    2015-01-01

    It is shown that in an intense laser field, along with cascades similar to extensive air showers, self-sustaining field-energized cascades can develop. For intensities of 1024~ \\text {W cm}-2 or higher, such cascades can even be initiated by a particle at rest in the focal area of a tightly focused laser pulse. The cascade appearance effect can considerably alter the progression of any process occurring in a high-intensity laser field. At very high intensities, the evolvement of such cascades can lead to the depletion of the laser field. This paper presents a design of an experiment to observe these two cascade types simultaneously already in next-generation laser facilities.

  2. Detection of the secondary meridional circulation associated with the quasi-biennial oscillation

    NASA Astrophysics Data System (ADS)

    Ribera, P.; PeñA-Ortiz, C.; Garcia-Herrera, R.; Gallego, D.; Gimeno, L.; HernáNdez, E.

    2004-09-01

    The quasi-biennial oscillation (QBO) signal in stratospheric zonal and meridional wind, temperature, and geopotential height fields is analyzed based on the use of the National Centers for Environmental Prediction (NCEP) reanalysis (1958-2001). The multitaper method-singular value decomposition (MTM-SVD), a multivariate frequency domain analysis method, is used to detect significant and spatially coherent narrowband oscillations. The QBO is found as the most intense signal in the stratospheric zonal wind. Then, the MTM-SVD method is used to determine the patterns induced by the QBO at every stratospheric level and data field. The secondary meridional circulation associated with the QBO is identified in the obtained patterns. This circulation can be characterized by negative (positive) temperature anomalies associated with adiabatic rising (sinking) motions over zones of easterly (westerly) wind shear and over the subtropics and midlatitudes, while meridional convergence and divergence levels are found separated by a level of maximum zonal wind shear. These vertical and meridional motions form quasi-symmetric circulation cells over both hemispheres, though less intense in the Southern Hemisphere.

  3. Feasibility of Higher-Order Differential Ion Mobility Separations Using New Asymmetric Waveforms

    PubMed Central

    Shvartsburg, Alexandre A.; Mashkevich, Stefan V.; Smith, Richard D.

    2011-01-01

    Technologies for separating and characterizing ions based on their transport properties in gases have been around for three decades. The early method of ion mobility spectrometry (IMS) distinguished ions by absolute mobility that depends on the collision cross section with buffer gas atoms. The more recent technique of field asymmetric waveform IMS (FAIMS) measures the difference between mobilities at high and low electric fields. Coupling IMS and FAIMS to soft ionization sources and mass spectrometry (MS) has greatly expanded their utility, enabling new applications in biomedical and nanomaterials research. Here, we show that time-dependent electric fields comprising more than two intensity levels could, in principle, effect an infinite number of distinct differential separations based on the higher-order terms of expression for ion mobility. These analyses could employ the hardware and operational procedures similar to those utilized in FAIMS. Methods up to the 4th or 5th order (where conventional IMS is 1st order and FAIMS is 2nd order) should be practical at field intensities accessible in ambient air, with still higher orders potentially achievable in insulating gases. Available experimental data suggest that higher-order separations should be largely orthogonal to each other and to FAIMS, IMS, and MS. PMID:16494377

  4. FDTD simulation of radar cross section reduction by a collisional inhomogeneous magnetized plasma

    NASA Astrophysics Data System (ADS)

    Foroutan, V.; Azarmanesh, M. N.; Foroutan, G.

    2018-02-01

    The recursive convolution finite difference time domain method is addressed in the scattered field formulation and employed to investigate the bistatic radar cross-section (RCS) of a square conductive plate covered by a collisional inhomogeneous magnetized plasma. The RCS is calculated for two different configurations of the magnetic field, i.e., parallel and perpendicular to the plate. The results of numerical simulations show that, for a perpendicularly applied magnetic field, the backscattered RCS is significantly reduced when the magnetic field intensity coincides with the value corresponding to the electron cyclotron resonance. By increasing the collision frequency, the resonant absorption is suppressed, but due to enhanced wave penetration and bending, the reduction in the bistatic RCS is improved. At very high collision frequencies, the external magnetic field has no significant impact on the bistatic RCS reduction. Application of a parallel magnetic field has an adverse effect near the electron cyclotron resonance and results in a large and asymmetric RCS profile. But, the problem is resolved by increasing the magnetic field and/or the collision frequency. By choosing proper values of the collision frequency and the magnetic field intensity, a perpendicular magnetic field can be effectively used to reduce the bistatic RCS of a conductive plate.

  5. Magneto-therapy of human joint cartilage.

    PubMed

    Wierzcholski, Krzysztof; Miszczak, Andrzej

    2017-01-01

    The topic of the present paper concerns the human joint cartilage therapy performed by the magnetic induction field. There is proved the thesis that the applied magnetic field for concrete cartilage illness should depend on the proper relative and concrete values of applied magnetic induction, intensity as well the time of treatment duration. Additionally, very important are frequencies and amplitudes of magnetic field as well as magnetic permeability of the synovial fluid. The research methods used in this paper include: magnetic induction field produced by a new Polish and German magneto electronic devices for the therapy of human joint cartilage diseases, stationary and movable magnetic applicators, magnetic bandage, ferrofluid injections, author's experience gained in Germany research institutes and practical results after measurements and information from patients. The results of this paper concern concrete parameters of time dependent electro-magnetic field administration during the joint cartilage therapy duration and additionally concern the corollaries which are implied from reading values gained on the magnetic induction devices. The main conclusions obtained in this paper are as follows: Time dependent magnetic induction field increases the dynamic viscosity of movable synovial fluid and decreases symptoms of cartilage illness for concrete intensity of magnetic field and concrete field line architecture. The ferrofluid therapy and phospholipids bilayer simultaneously with the administrated external electromagnetic field, increases the dynamic viscosity of movable synovial fluid.

  6. Oxidation-state sensitive imaging of cerium dioxide by atomic-resolution low-angle annular dark field scanning transmission electron microscopy.

    PubMed

    Johnston-Peck, Aaron C; Winterstein, Jonathan P; Roberts, Alan D; DuChene, Joseph S; Qian, Kun; Sweeny, Brendan C; Wei, Wei David; Sharma, Renu; Stach, Eric A; Herzing, Andrew A

    2016-03-01

    Low-angle annular dark field (LAADF) scanning transmission electron microscopy (STEM) imaging is presented as a method that is sensitive to the oxidation state of cerium ions in CeO2 nanoparticles. This relationship was validated through electron energy loss spectroscopy (EELS), in situ measurements, as well as multislice image simulations. Static displacements caused by the increased ionic radius of Ce(3+) influence the electron channeling process and increase electron scattering to low angles while reducing scatter to high angles. This process manifests itself by reducing the high-angle annular dark field (HAADF) signal intensity while increasing the LAADF signal intensity in close proximity to Ce(3+) ions. This technique can supplement STEM-EELS and in so doing, relax the experimental challenges associated with acquiring oxidation state information at high spatial resolutions. Published by Elsevier B.V.

  7. Propagation based phase retrieval of simulated intensity measurements using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Kemp, Z. D. C.

    2018-04-01

    Determining the phase of a wave from intensity measurements has many applications in fields such as electron microscopy, visible light optics, and medical imaging. Propagation based phase retrieval, where the phase is obtained from defocused images, has shown significant promise. There are, however, limitations in the accuracy of the retrieved phase arising from such methods. Sources of error include shot noise, image misalignment, and diffraction artifacts. We explore the use of artificial neural networks (ANNs) to improve the accuracy of propagation based phase retrieval algorithms applied to simulated intensity measurements. We employ a phase retrieval algorithm based on the transport-of-intensity equation to obtain the phase from simulated micrographs of procedurally generated specimens. We then train an ANN with pairs of retrieved and exact phases, and use the trained ANN to process a test set of retrieved phase maps. The total error in the phase is significantly reduced using this method. We also discuss a variety of potential extensions to this work.

  8. Job satisfaction among neonatal nurses.

    PubMed

    Archibald, Cynthia

    2006-01-01

    The purpose of this study was to understand the job satisfaction of nurses who work in intensive care nurseries. The design used a convenience sample of eight nurses with an average of 11 years of active and current experience as neonatal intensive care nurses. METHOD/DATA COLLECTION: Human rights were protected according to the institutional guidelines. Data collection included semi-structured, intensive face-to-face interviews, observation, and field notes. The interviews were tape recorded and transcribed. Collaizzi's (1978) interpretation method was used to interpret and analyze the data using significant statements, formulated meanings, and clustering. Each participant was allowed to review the typed interview as one means of credibility. Analysis of the described experiences revealed that nurses were able to identify enough satisfying situations that compelled them to continue working in the neonatal intensive care unit (NICU). These rewards included compensation, team spirit, support from physicians, and advocacy. Knowledge of the factors that contribute to nurses' job satisfaction can provide a useful framework to implement policies to improve working conditions for nurses.

  9. Determination of boundaries between ranges of high and low gradient of beam profile.

    PubMed

    Wendykier, Jacek; Bieniasiewicz, Marcin; Grządziel, Aleksandra; Jedynak, Tadeusz; Kośniewski, Wiktor; Reudelsdorf, Marta; Wendykier, Piotr

    2016-01-01

    This work addresses the problem of treatment planning system commissioning by introducing a new method of determination of boundaries between high and low gradient in beam profile. The commissioning of a treatment planning system is a very important task in the radiation therapy. One of the main goals of this task is to compare two field profiles: measured and calculated. Applying points of 80% and 120% of nominal field size can lead to the incorrect determination of boundaries, especially for small field sizes. The method that is based on the beam profile gradient allows for proper assignment of boundaries between high and low gradient regions even for small fields. TRS 430 recommendations for commissioning were used. The described method allows a separation between high and low gradient, because it directly uses the value of the gradient of a profile. For small fields, the boundaries determined by the new method allow a commissioning of a treatment planning system according to the TRS 430, while the point of 80% of nominal field size is already in the high gradient region. The method of determining the boundaries by using the beam profile gradient can be extremely helpful during the commissioning of the treatment planning system for Intensity Modulated Radiation Therapy or for other techniques which require very small field sizes.

  10. Singularity computations

    NASA Technical Reports Server (NTRS)

    Swedlow, J. L.

    1976-01-01

    An approach is described for singularity computations based on a numerical method for elastoplastic flow to delineate radial and angular distribution of field quantities and measure the intensity of the singularity. The method is applicable to problems in solid mechanics and lends itself to certain types of heat flow and fluid motion studies. Its use is not limited to linear, elastic, small strain, or two-dimensional situations.

  11. From 1937 to 1959 : Elaboration of the Thellier and Thellier’s paleointensity method

    NASA Astrophysics Data System (ADS)

    Gallet, Y.; Le Goff, M.

    2009-12-01

    Between 1937 and 1959, Emile and Odette Thellier published a series of articles in French dealing with the determination of ancient geomagnetic field intensity data from baked archeological material. We will present the history of this research, which culminated in 1959 in the publication of the well-known and still highly cited Thellier and Thellier’s paleointensity method.

  12. Thermoelectric magnetohydrodynamic effects on the crystal growth rate of undercooled Ni dendrites

    NASA Astrophysics Data System (ADS)

    Kao, A.; Gao, J.; Pericleous, K.

    2018-01-01

    In the undercooled solidification of pure metals, the dendrite tip velocity has been shown experimentally to have a strong dependence on the intensity of an external magnetic field, exhibiting several maxima and minima. In the experiments conducted in China, the undercooled solidification dynamics of pure Ni was studied using the glass fluxing method. Visual recordings of the progress of solidification are compared at different static fields up to 6 T. The introduction of microscopic convective transport through thermoelectric magnetohydrodynamics is a promising explanation for the observed changes of tip velocities. To address this problem, a purpose-built numerical code was used to solve the coupled equations representing the magnetohydrodynamic, thermal and solidification mechanisms. The underlying phenomena can be attributed to two competing flow fields, which were generated by orthogonal components of the magnetic field, parallel and transverse to the direction of growth. Their effects are either intensified or damped out with increasing magnetic field intensity, leading to the observed behaviour of the tip velocity. The results obtained reflect well the experimental findings. This article is part of the theme issue `From atomistic interfaces to dendritic patterns'.

  13. Exposure assessment of extremely low frequency electric fields in Tehran, Iran, 2010.

    PubMed

    Nassiri, Parvin; Esmaeilpour, Mohammad Reza Monazzam; Gharachahi, Ehsan; Haghighat, Gholamali; Yunesian, Masoud; Zaredar, Narges

    2013-01-01

    Extremely Low-Frequency (ELF) electric and magnetic fields belonging to the nonionizing electromagnetic radiation spectrum have a frequency of 50 - 60 Hz. All people are exposed to a complex set of electric and magnetic fields that spread throughout the environment. The current study was carried out to assess people's exposure to an ELF electric field in the Tehran metropolitan area in 2010. The measurement of the electronic fields was performed using an HI-3604 power frequency field strength measurement device. A total number of 2,753 measurements were performed. Afterward, the data obtained were transferred to the base map using Arc View Version 3.2 and Arc Map Version 9.3. Finally, an interpolation method was applied to expand the intensity of the electric field to the entire city. Based on the results obtained, the electric field was divided into three parts with various intensities including 0-5 V m, 5-15 V m, and >15 V m. It should be noted that the status of high voltage transmission lines, electric substations, and specific points including schools and hospitals were also marked on the map. Minimum and maximum electric field intensities were measured tantamount to 0.31 V m and 19.80 V m, respectively. In all measurements, the electric field was much less than the amount provided in the ICNIRP Guide. The results revealed that 141 hospitals and 6,905 schools are situated in an area with electric field intensity equal to 0-5 V m, while 15 hospitals and 95 schools are located in zones of 5-15 V m and more than 15 V m. Examining high voltage transmission lines and electric substations in Tehran and its suburbs suggested that the impact of the lines on the background electric field of the city was low. Accordingly, 0.97 km of Tehran located on the city border adjacent to the high voltage transmission lines have an electric field in the range of 5 to 15 V m. The noted range is much lower than the available standards. In summary, it can be concluded that the public is not exposed to a risky background electric field in metropolitan Tehran. The result of comparing sensitive recipients showed that the schools have a more desirable status than the hospitals. Nonetheless, epidemiologic studies can lead to more understanding of the impact on public health.

  14. On the theory of the relativistic motion of a charged particle in the field of intense electromagnetic radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milant'ev, V. P., E-mail: vmilantiev@sci.pfu.edu.ru; Castillo, A. J., E-mail: vmilant@mail.ru

    2013-04-15

    Averaged relativistic equations of motion of a charged particle in the field of intense electromagnetic radiation have been obtained in the geometrical optics approximation using the Bogoliubov method. Constraints are determined under which these equations are valid. Oscillating additions to the smoothed dynamical variables of the particle have been found; they are reduced to known expressions in the case of the circularly and linearly polarized plane waves. It has been shown that the expressions for the averaged relativistic force in both cases contain new additional small terms weakening its action. The known difference between the expressions for the ponderomotive forcemore » in the cases of circularly and linearly polarized waves has been confirmed.« less

  15. A novel automated method for doing registration and 3D reconstruction from multi-modal RGB/IR image sequences

    NASA Astrophysics Data System (ADS)

    Kirby, Richard; Whitaker, Ross

    2016-09-01

    In recent years, the use of multi-modal camera rigs consisting of an RGB sensor and an infrared (IR) sensor have become increasingly popular for use in surveillance and robotics applications. The advantages of using multi-modal camera rigs include improved foreground/background segmentation, wider range of lighting conditions under which the system works, and richer information (e.g. visible light and heat signature) for target identification. However, the traditional computer vision method of mapping pairs of images using pixel intensities or image features is often not possible with an RGB/IR image pair. We introduce a novel method to overcome the lack of common features in RGB/IR image pairs by using a variational methods optimization algorithm to map the optical flow fields computed from different wavelength images. This results in the alignment of the flow fields, which in turn produce correspondences similar to those found in a stereo RGB/RGB camera rig using pixel intensities or image features. In addition to aligning the different wavelength images, these correspondences are used to generate dense disparity and depth maps. We obtain accuracies similar to other multi-modal image alignment methodologies as long as the scene contains sufficient depth variations, although a direct comparison is not possible because of the lack of standard image sets from moving multi-modal camera rigs. We test our method on synthetic optical flow fields and on real image sequences that we created with a multi-modal binocular stereo RGB/IR camera rig. We determine our method's accuracy by comparing against a ground truth.

  16. An effective parameter optimization technique for vibration flow field characterization of PP melts via LS-SVM combined with SALS in an electromagnetism dynamic extruder

    NASA Astrophysics Data System (ADS)

    Xian, Guangming

    2018-03-01

    A method for predicting the optimal vibration field parameters by least square support vector machine (LS-SVM) is presented in this paper. One convenient and commonly used technique for characterizing the the vibration flow field of polymer melts films is small angle light scattering (SALS) in a visualized slit die of the electromagnetism dynamic extruder. The optimal value of vibration vibration frequency, vibration amplitude, and the maximum light intensity projection area can be obtained by using LS-SVM for prediction. For illustrating this method and show its validity, the flowing material is used with polypropylene (PP) and fifteen samples are tested at the rotation speed of screw at 36rpm. This paper first describes the apparatus of SALS to perform the experiments, then gives the theoretical basis of this new method, and detail the experimental results for parameter prediction of vibration flow field. It is demonstrated that it is possible to use the method of SALS and obtain detailed information on optimal parameter of vibration flow field of PP melts by LS-SVM.

  17. Application of strong vertical magnetic fields to growth of II-VI pseudo-binary alloys - HgMnTe

    NASA Astrophysics Data System (ADS)

    Becla, Piotr; Han, Jian-Chiu; Motakef, Shahryar

    1992-07-01

    HgMnTe crystals are grown by the vertical Bridgman method in the presence of an applied vertical magnetic field of 30 kG. Reduction of convective intensity in the melt through application of the magnetic field is found to decrease radial macro-segregation and eliminate small-scale compositional undulations in the grown material; the axial compositional profile is found not to be influenced by the magnetic field. These observations are shown to be consistent with a previously proposed model for the residual convection present during growth of this and other similar materials.

  18. EFFECTS OF LASER RADIATION ON MATTER: Spectrum of the barium atom in a laser radiation field

    NASA Astrophysics Data System (ADS)

    Bondar', I. I.; Suran, V. V.

    1990-08-01

    An experimental investigation was made of the influence of a laser radiation field on the spectrum of barium atoms. The investigation was carried out by the method of three-photon ionization spectroscopy using dye laser radiation (ω = 14 800-18 700 cm - 1). The electric field intensity of the laser radiation was 103-106 V/cm. This laser radiation field had a strong influence on a number of bound and autoionizing states. The nature of this influence depended on the ratio of the excitation frequencies of bound and autoionizing states.

  19. A quick earthquake disaster loss assessment method supported by dasymetric data for emergency response in China

    NASA Astrophysics Data System (ADS)

    Xu, Jinghai; An, Jiwen; Nie, Gaozong

    2016-04-01

    Improving earthquake disaster loss estimation speed and accuracy is one of the key factors in effective earthquake response and rescue. The presentation of exposure data by applying a dasymetric map approach has good potential for addressing this issue. With the support of 30'' × 30'' areal exposure data (population and building data in China), this paper presents a new earthquake disaster loss estimation method for emergency response situations. This method has two phases: a pre-earthquake phase and a co-earthquake phase. In the pre-earthquake phase, we pre-calculate the earthquake loss related to different seismic intensities and store them in a 30'' × 30'' grid format, which has several stages: determining the earthquake loss calculation factor, gridding damage probability matrices, calculating building damage and calculating human losses. Then, in the co-earthquake phase, there are two stages of estimating loss: generating a theoretical isoseismal map to depict the spatial distribution of the seismic intensity field; then, using the seismic intensity field to extract statistics of losses from the pre-calculated estimation data. Thus, the final loss estimation results are obtained. The method is validated by four actual earthquakes that occurred in China. The method not only significantly improves the speed and accuracy of loss estimation but also provides the spatial distribution of the losses, which will be effective in aiding earthquake emergency response and rescue. Additionally, related pre-calculated earthquake loss estimation data in China could serve to provide disaster risk analysis before earthquakes occur. Currently, the pre-calculated loss estimation data and the two-phase estimation method are used by the China Earthquake Administration.

  20. The Effect of Electric Field on the Explosive Sensitivity of Silver Azide

    NASA Astrophysics Data System (ADS)

    Rodzevich, A. P.; Gazenaur, E. G.; Kuzmina, L. V.; Krasheninin, V. I.; Gazenaur, N. V.

    2017-05-01

    The effect of a constant contactless electric field on the rate of a chemical reaction in silver azide is explored in this paper. The technology of growing and processing silver azide whiskers in the constant contactless electric field (field intensity was varied in the range from 10-3 V/m to 100 V/m) allows supervising their explosive sensitivity, therefore, the results of experiments can be relevant for purposeful controlling the resistance of explosive materials. This paper is one of the first attempts to develop efficient methods to affect the explosive sensitivity of energy-related materials in a weak electric field (up to 10-3 V/m).

  1. Laser photolysis of caged compounds at 405 nm: photochemical advantages, localisation, phototoxicity and methods for calibration.

    PubMed

    Trigo, Federico F; Corrie, John E T; Ogden, David

    2009-05-30

    Rapid, localised photolytic release of neurotransmitters from caged precursors at synaptic regions in the extracellular space is greatly hampered at irradiation wavelengths in the near-UV, close to the wavelength of maximum absorption of the caged precursor, because of inner-filtering by strong absorption of light in the cage solution between the objective and cell. For this reason two-photon excitation is commonly used for photolysis, particularly at multiple points distributed over large fields; or, with near-UV, if combined with local perfusion of the cage. These methods each have problems: the small cross-sections of common cages with two-photon excitation require high cage concentrations and light intensities near the phototoxic limit, while local perfusion gives non-uniform cage concentrations over the field of view. Single-photon photolysis at 405 nm, although less efficient than at 330-350 nm, with present cages is more efficient than two-photon photolysis. The reduced light absorption in the bulk cage solution permits efficient wide-field uncaging at non-toxic intensities with uniform cage concentration. Full photolysis of MNI-glutamate with 100 micros pulses required intensities of 2 mW microm(-2) at the preparation, shown to be non-toxic with repeated exposures. Light scattering at 405 nm was estimated as 50% at 18 microm depth in 21-day rat cerebellum. Methods are described for: (1) varying the laser spot size; (2) photolysis calibration in the microscope with the caged fluorophore NPE-HPTS over the wavelength range 347-405 nm; and (3) determining the point-spread function of excitation. Furthermore, DM-Nitrophen photolysis at 405 nm was efficient for intracellular investigations of Ca2+-dependent processes.

  2. Sound intensity probe for ultrasonic field in water using light-emitting diodes and piezoelectric elements

    NASA Astrophysics Data System (ADS)

    Zeng, Xi; Mizuno, Yosuke; Nakamura, Kentaro

    2017-12-01

    The sound intensity vector provides useful information on the state of an ultrasonic field in water, since sound intensity is a vector quantity expressing the direction and magnitude of the sound field. In the previous studies on sound intensity measurement in water, conventional piezoelectric sensors and metal cables were used, and the transmission distance was limited. A new configuration of a sound intensity probe suitable for ultrasonic measurement in water is proposed and constructed for trial in this study. The probe consists of light-emitting diodes and piezoelectric elements, and the output signals are transmitted through fiber optic cables as intensity-modulated light. Sound intensity measurements of a 26 kHz ultrasonic field in water are demonstrated. The difference in the intensity vector state between the water tank with and without sound-absorbing material on its walls was successfully observed.

  3. Design and evaluation of a freeform lens by using a method of luminous intensity mapping and a differential equation

    NASA Astrophysics Data System (ADS)

    Essameldin, Mahmoud; Fleischmann, Friedrich; Henning, Thomas; Lang, Walter

    2017-02-01

    Freeform optical systems are playing an important role in the field of illumination engineering for redistributing the light intensity, because of its capability of achieving accurate and efficient results. The authors have presented the basic idea of the freeform lens design method at the 117th annual meeting of the German Society of Applied Optics (DGAOProceedings). Now, we demonstrate the feasibility of the design method by designing and evaluating a freeform lens. The concepts of luminous intensity mapping, energy conservation and differential equation are combined in designing a lens for non-imaging applications. The required procedures to design a lens including the simulations are explained in detail. The optical performance is investigated by using a numerical simulation of optical ray tracing. For evaluation, the results are compared with another recently published design method, showing the accurate performance of the proposed method using a reduced number of mapping angles. As a part of the tolerance analyses of the fabrication processes, the influence of the light source misalignments (translation and orientation) on the beam-shaping performance is presented. Finally, the importance of considering the extended light source while designing a freeform lens using the proposed method is discussed.

  4. Levitation forces of a bulk YBCO superconductor in gradient varying magnetic fields

    NASA Astrophysics Data System (ADS)

    Jiang, J.; Gong, Y. M.; Wang, G.; Zhou, D. J.; Zhao, L. F.; Zhang, Y.; Zhao, Y.

    2015-09-01

    The levitation forces of a bulk YBCO superconductor in gradient varying high and low magnetic fields generated from a superconducting magnet were investigated. The magnetic field intensity of the superconducting magnet was measured when the exciting current was 90 A. The magnetic field gradient and magnetic force field were both calculated. The YBCO bulk was cooled by liquid nitrogen in field-cooling (FC) and zero-field-cooling (ZFC) condition. The results showed that the levitation forces increased with increasing the magnetic field intensity. Moreover, the levitation forces were more dependent on magnetic field gradient and magnetic force field than magnetic field intensity.

  5. Highly sensitive mode mapping of whispering-gallery modes by scanning thermocouple-probe microscopy.

    PubMed

    Klein, Angela E; Schmidt, Carsten; Liebsch, Mattes; Janunts, Norik; Dobynde, Mikhail; Tünnermann, Andreas; Pertsch, Thomas

    2014-03-01

    We propose a method for mapping optical near-fields with the help of a thermocouple scanning-probe microscope tip. As the tip scans the sample surface, its apex is heated by light absorption, generating a thermovoltage. The thermovoltage map represents the intensity distribution of light at the sample surface. The measurement technique has been employed to map optical whispering-gallery modes in fused silica microdisk resonators operating at near-infrared wavelengths. The method could potentially be employed for near-field imaging of a variety of systems in the near-infrared and visible spectral range.

  6. Geometric, Kinematic and Radiometric Aspects of Image-Based Measurements

    NASA Technical Reports Server (NTRS)

    Liu, Tianshu

    2002-01-01

    This paper discusses theoretical foundations of quantitative image-based measurements for extracting and reconstructing geometric, kinematic and dynamic properties of observed objects. New results are obtained by using a combination of methods in perspective geometry, differential geometry. radiometry, kinematics and dynamics. Specific topics include perspective projection transformation. perspective developable conical surface, perspective projection under surface constraint, perspective invariants, the point correspondence problem. motion fields of curves and surfaces. and motion equations of image intensity. The methods given in this paper arc useful for determining morphology and motion fields of deformable bodies such as elastic bodies. viscoelastic mediums and fluids.

  7. Development and Application of Integrated Optical Sensors for Intense E-Field Measurement

    PubMed Central

    Zeng, Rong; Wang, Bo; Niu, Ben; Yu, Zhanqing

    2012-01-01

    The measurement of intense E-fields is a fundamental need in various research areas. Integrated optical E-field sensors (IOESs) have important advantages and are potentially suitable for intense E-field detection. This paper comprehensively reviews the development and applications of several types of IOESs over the last 30 years, including the Mach-Zehnder interferometer (MZI), coupler interferometer (CI) and common path interferometer (CPI). The features of the different types of IOESs are compared, showing that the MZI has higher sensitivity, the CI has a controllable optical bias, and the CPI has better temperature stability. More specifically, the improvement work of applying IOESs to intense E-field measurement is illustrated. Finally, typical uses of IOESs in the measurement of intense E-fields are demonstrated, including application areas such as E-fields with different frequency ranges in high-voltage engineering, simulated nuclear electromagnetic pulse in high-power electromagnetic pulses, and ion-accelerating field in high-energy physics. PMID:23112663

  8. A review: applications of the phase field method in predicting microstructure and property evolution of irradiated nuclear materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yulan; Hu, Shenyang; Sun, Xin

    Here, complex microstructure changes occur in nuclear fuel and structural materials due to the extreme environments of intense irradiation and high temperature. This paper evaluates the role of the phase field method in predicting the microstructure evolution of irradiated nuclear materials and the impact on their mechanical, thermal, and magnetic properties. The paper starts with an overview of the important physical mechanisms of defect evolution and the significant gaps in simulating microstructure evolution in irradiated nuclear materials. Then, the phase field method is introduced as a powerful and predictive tool and its applications to microstructure and property evolution in irradiatedmore » nuclear materials are reviewed. The review shows that (1) Phase field models can correctly describe important phenomena such as spatial-dependent generation, migration, and recombination of defects, radiation-induced dissolution, the Soret effect, strong interfacial energy anisotropy, and elastic interaction; (2) The phase field method can qualitatively and quantitatively simulate two-dimensional and three-dimensional microstructure evolution, including radiation-induced segregation, second phase nucleation, void migration, void and gas bubble superlattice formation, interstitial loop evolution, hydrate formation, and grain growth, and (3) The Phase field method correctly predicts the relationships between microstructures and properties. The final section is dedicated to a discussion of the strengths and limitations of the phase field method, as applied to irradiation effects in nuclear materials.« less

  9. A review: applications of the phase field method in predicting microstructure and property evolution of irradiated nuclear materials

    DOE PAGES

    Li, Yulan; Hu, Shenyang; Sun, Xin; ...

    2017-04-14

    Here, complex microstructure changes occur in nuclear fuel and structural materials due to the extreme environments of intense irradiation and high temperature. This paper evaluates the role of the phase field method in predicting the microstructure evolution of irradiated nuclear materials and the impact on their mechanical, thermal, and magnetic properties. The paper starts with an overview of the important physical mechanisms of defect evolution and the significant gaps in simulating microstructure evolution in irradiated nuclear materials. Then, the phase field method is introduced as a powerful and predictive tool and its applications to microstructure and property evolution in irradiatedmore » nuclear materials are reviewed. The review shows that (1) Phase field models can correctly describe important phenomena such as spatial-dependent generation, migration, and recombination of defects, radiation-induced dissolution, the Soret effect, strong interfacial energy anisotropy, and elastic interaction; (2) The phase field method can qualitatively and quantitatively simulate two-dimensional and three-dimensional microstructure evolution, including radiation-induced segregation, second phase nucleation, void migration, void and gas bubble superlattice formation, interstitial loop evolution, hydrate formation, and grain growth, and (3) The Phase field method correctly predicts the relationships between microstructures and properties. The final section is dedicated to a discussion of the strengths and limitations of the phase field method, as applied to irradiation effects in nuclear materials.« less

  10. A portable mid-range localization system using infrared LEDs for visually impaired people

    NASA Astrophysics Data System (ADS)

    Park, Suhyeon; Choi, In-Mook; Kim, Sang-Soo; Kim, Sung-Mok

    2014-11-01

    A versatile indoor/outdoor pedestrian guidance system with good mobility is necessary in order to aid visually impaired pedestrians in indoor and outdoor environments. In this paper, distance estimation methods for portable wireless localization systems are verified. Two systems of a fixed active beacon and a receiver using an ultrasound time-of-flight method and a differential infrared intensity method are proposed. The infrared localization system was appropriate for the goal of this study. It was possible to use the infrared intensity method to generate a uniform signal field that exceeded 30 m. Valid distance estimations which were within 30 m of coverage indoors and within 20 m of coverage outdoors were made. Also, a pocket-sized receiver which can be adapted to a smartphone was found to be suitable for use as a portable device.

  11. University of Washington's eScience Institute Promotes New Training and Career Pathways in Data Science

    NASA Astrophysics Data System (ADS)

    Stone, S.; Parker, M. S.; Howe, B.; Lazowska, E.

    2015-12-01

    Rapid advances in technology are transforming nearly every field from "data-poor" to "data-rich." The ability to extract knowledge from this abundance of data is the cornerstone of 21st century discovery. At the University of Washington eScience Institute, our mission is to engage researchers across disciplines in developing and applying advanced computational methods and tools to real world problems in data-intensive discovery. Our research team consists of individuals with diverse backgrounds in domain sciences such as astronomy, oceanography and geology, with complementary expertise in advanced statistical and computational techniques such as data management, visualization, and machine learning. Two key elements are necessary to foster careers in data science: individuals with cross-disciplinary training in both method and domain sciences, and career paths emphasizing alternative metrics for advancement. We see persistent and deep-rooted challenges for the career paths of people whose skills, activities and work patterns don't fit neatly into the traditional roles and success metrics of academia. To address these challenges the eScience Institute has developed training programs and established new career opportunities for data-intensive research in academia. Our graduate students and post-docs have mentors in both a methodology and an application field. They also participate in coursework and tutorials to advance technical skill and foster community. Professional Data Scientist positions were created to support research independence while encouraging the development and adoption of domain-specific tools and techniques. The eScience Institute also supports the appointment of faculty who are innovators in developing and applying data science methodologies to advance their field of discovery. Our ultimate goal is to create a supportive environment for data science in academia and to establish global recognition for data-intensive discovery across all fields.

  12. Time-lapse monitoring of soil water content using electromagnetic conductivity imaging

    USDA-ARS?s Scientific Manuscript database

    The volumetric soil water content (VWC) is fundamental to agriculture. Unfortunately, the universally accepted thermogravimetric method is labour intensive and time-consuming to use for field-scale monitoring. Electromagnetic (EM) induction instruments have proven to be useful in mapping the spatio-...

  13. The magnetic nature of umbra-penumbra boundary in sunspots

    NASA Astrophysics Data System (ADS)

    Jurčák, J.; Rezaei, R.; González, N. Bello; Schlichenmaier, R.; Vomlel, J.

    2018-03-01

    Context. Sunspots are the longest-known manifestation of solar activity, and their magnetic nature has been known for more than a century. Despite this, the boundary between umbrae and penumbrae, the two fundamental sunspot regions, has hitherto been solely defined by an intensity threshold. Aim. Here, we aim at studying the magnetic nature of umbra-penumbra boundaries in sunspots of different sizes, morphologies, evolutionary stages, and phases of the solar cycle. Methods: We used a sample of 88 scans of the Hinode/SOT spectropolarimeter to infer the magnetic field properties in at the umbral boundaries. We defined these umbra-penumbra boundaries by an intensity threshold and performed a statistical analysis of the magnetic field properties on these boundaries. Results: We statistically prove that the umbra-penumbra boundary in stable sunspots is characterised by an invariant value of the vertical magnetic field component: the vertical component of the magnetic field strength does not depend on the umbra size, its morphology, and phase of the solar cycle. With the statistical Bayesian inference, we find that the strength of the vertical magnetic field component is, with a likelihood of 99%, in the range of 1849-1885 G with the most probable value of 1867 G. In contrast, the magnetic field strength and inclination averaged along individual boundaries are found to be dependent on the umbral size: the larger the umbra, the stronger and more horizontal the magnetic field at its boundary. Conclusions: The umbra and penumbra of sunspots are separated by a boundary that has hitherto been defined by an intensity threshold. We now unveil the empirical law of the magnetic nature of the umbra-penumbra boundary in stable sunspots: it is an invariant vertical component of the magnetic field.

  14. Three-dimensional motion detection of a 20-nm gold nanoparticle using twilight-field digital holography with coherence regulation.

    PubMed

    Goto, Kazufumi; Hayasaki, Yoshio

    2015-07-15

    In the twilight-field method for obtaining interference fringes with high contrast in in-line digital holography, only the intensity of the reference light is regulated to be close to the intensity of the object light, which is the ultra-weak scattered light from a nanoparticle, by using a low-frequency attenuation filter. Coherence of the light also strongly affects the contrast of the interference fringes. High coherence causes a lot of undesired coherent noise, which masks the fringes derived from the nanoparticles. Too-low coherence results in fringes with low contrast and a correspondingly low signal-to-noise ratio. Consequently, proper regulation of the coherence of the light source, in this study the spectral width, improves the minimum detectable size in holographic three-dimensional position measurement of nanoparticles. By using these methods, we were able to measure the position of a gold nanoparticle with a minimum diameter of 20 nm.

  15. Fracture analysis for a penny-shaped crack problem of a superconducting cylinder in a parallel magnetic field

    NASA Astrophysics Data System (ADS)

    Gao, S. W.; Feng, W. J.; Fang, X. Q.; Zhang, G. L.

    2014-11-01

    In this work, the penny-shaped crack problem is investigated for an infinite long superconducting cylinder under electromagnetic forces. The distributions of magnetic flux density in the superconducting cylinder are obtained analytically for both the zero-field cooling (ZFC) and the field cooling (FC) activation processes, where the magnetically impermeable crack surface condition and the Bean model outside the crack region are adopted. Based on the finite element method (FEM), the stress intensity factor (SIF) and energy release rate (ERR) at the crack tips in the process of field descent are further numerically calculated. Numerical results obtained show that according to the maximal energy release rate criterion, the FC process is generally easier to enhance crack initiation and propagation than the ZFC activation process. On the other hand, for the FC activation process, the larger the maximal applied magnetic field, more likely the crack propagates. Additionally, crack size has important and slightly different effects on the crack extension forces for the ZFC and FC cases. Thus, all of the activation processes, the applied field and the diameter of the penny-shaped crack have significant effects on the intensity analysis and design of superconducting materials.

  16. Time variations in geomagnetic intensity

    NASA Astrophysics Data System (ADS)

    Valet, Jean-Pierre

    2003-03-01

    After many years spent by paleomagnetists studying the directional behavior of the Earth's magnetic field at all possible timescales, detailed measurements of field intensity are now needed to document the variations of the entire vector and to analyze the time evolution of the field components. A significant step has been achieved by combining intensity records derived from archeological materials and from lava flows in order to extract the global field changes over the past 12 kyr. A second significant step was due to the emergence of coherent records of relative paleointensity using the remanent magnetization of sediments to retrace the evolution of the dipole field. A third step was the juxtaposition of these signals with those derived from cosmogenic isotopes. Contemporaneous with the acquisition of records, new techniques have been developed to constrain the geomagnetic origin of the signals. Much activity has also been devoted to improving the quality of determinations of absolute paleointensity from volcanic rocks with new materials, proper selection of samples, and investigations of complex changes in magnetization during laboratory experiments. Altogether these developments brought us from a situation where the field changes were restricted to the past 40 kyr to the emergence of a coherent picture of the changes in the geomagnetic dipole moment for at least the past 1 Myr. On longer timescales the field variability and its average behavior is relatively well documented for the past 400 Myr. Section 3 gives a summary of most methods and techniques that are presently used to track the field intensity changes in the past. In each case, current limits and potential promises are discussed. The section 4 describes the field variations measured so far over various timescales covered by the archeomagnetic and the paleomagnetic records. Preference has always been given to composite records and databases in order to extract and discuss major and global geomagnetic features. Special attention has been devoted to discussing the degree of confidence to be put in the data by considering the integration of multiple data sets involving different techniques and/or materials.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Adrian; Zhang, Yunfan; Parsons, Aaron R., E-mail: acliu@berkeley.edu

    Intensity mapping is a promising technique for surveying the large-scale structure of our universe from z  = 0 to z  ∼ 150, using the brightness temperature field of spectral lines to directly observe previously unexplored portions of our cosmic timeline. Examples of targeted lines include the 21 cm hyperfine transition of neutral hydrogen, rotational lines of carbon monoxide, and fine-structure lines of singly ionized carbon. Recent efforts have focused on detections of the power spectrum of spatial fluctuations, but have been hindered by systematics such as foreground contamination. This has motivated the decomposition of data into Fourier modes perpendicular and parallel tomore » the line of sight, which has been shown to be a particularly powerful way to diagnose systematics. However, such a method is well-defined only in the limit of a narrow-field, flat-sky approximation. This limits the sensitivity of intensity mapping experiments, as it means that wide surveys must be separately analyzed as a patchwork of smaller fields. In this paper, we develop a framework for analyzing intensity mapping data in a spherical Fourier–Bessel basis, which incorporates curved sky effects without difficulty. We use our framework to generalize a number of techniques in intensity mapping data analysis from the flat sky to the curved sky. These include visibility-based estimators for the power spectrum, treatments of interloper lines, and the “foreground wedge” signature of spectrally smooth foregrounds.« less

  18. Simple Carotid-Sparing Intensity-Modulated Radiotherapy Technique and Preliminary Experience for T1-2 Glottic Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenthal, David I., E-mail: dirosenthal@mdanderson.or; Fuller, Clifton D.; Barker, Jerry L.

    2010-06-01

    Purpose: To investigate the dosimetry and feasibility of carotid-sparing intensity-modulated radiotherapy (IMRT) for early glottic cancer and to report preliminary clinical experience. Methods and Materials: Digital Imaging and Communications in Medicine radiotherapy (DICOM-RT) datasets from 6 T1-2 conventionally treated glottic cancer patients were used to create both conventional IMRT plans. We developed a simplified IMRT planning algorithm with three fields and limited segments. Conventional and IMRT plans were compared using generalized equivalent uniform dose and dose-volume parameters for in-field carotid arteries, target volumes, and organs at risk. We have treated 11 patients with this simplified IMRT technique. Results: Intensity-modulated radiotherapymore » consistently reduced radiation dose to the carotid arteries (p < 0.05) while maintaining the clinical target volume coverage. With conventional planning, median carotid V35, V50, and V63 were 100%, 100%, and 69.0%, respectively. With IMRT planning these decreased to 2%, 0%, and 0%, respectively (p < 0.01). Radiation planning and treatment times were similar for conventional radiotherapy and IMRT. Treatment results have been excellent thus far. Conclusions: Intensity-modulated radiotherapy significantly reduced unnecessary radiation dose to the carotid arteries compared with conventional lateral fields while maintaining clinical target volume coverage. Further experience and longer follow-up will be required to demonstrate outcomes for cancer control and carotid artery effects.« less

  19. Direct detection of the optical field beyond single polarization mode.

    PubMed

    Che, Di; Sun, Chuanbowen; Shieh, William

    2018-02-05

    Direct detection is traditionally regarded as a detection method that recovers only the optical intensity. Compared with coherent detection, it owns a natural advantage-the simplicity-but lacks a crucial capability of field recovery that enables not only the multi-dimensional modulation, but also the digital compensation of the fiber impairments linear with the optical field. Full-field detection is crucial to increase the capacity-distance product of optical transmission systems. A variety of methods have been investigated to directly detect the optical field of the single polarization mode, which normally sends a carrier traveling with the signal for self-coherent detection. The crux, however, is that any optical transmission medium supports at least two propagating modes (e.g. single mode fiber supports two polarization modes), and until now there is no direct detection that can recover the complete set of optical fields beyond one polarization, due to the well-known carrier fading issue after mode demultiplexing induced by the random mode coupling. To avoid the fading, direct detection receivers should recover the signal in an intensity space isomorphic to the optical field without loss of any degrees of freedom, and a bridge should be built between the field and its isomorphic space for the multi-mode field recovery. Based on this thinking, we propose, for the first time, the direct detection of dual polarization modes by a novel receiver concept, the Stokes-space field receiver (SSFR) and its extension, the generalized SSFR for multiple spatial modes. The idea is verified by a dual-polarization field recovery of a polarization-multiplexed complex signal over an 80-km single mode fiber transmission. SSFR can be applied to a much wider range of fields beyond optical communications such as coherent sensing and imaging, where simple field recovery without an extra local laser is desired for enhanced system performance.

  20. PM2.5 Technology Assessment and Characterization Study in New York - PMTACS-NY: The 2001 Summer Field Intensive in Queens, NY

    NASA Astrophysics Data System (ADS)

    Demerjian, K. L.

    2002-12-01

    In the summer of 2001, an intensive field measurement campaign was carried out in Queens, NY as part of the PM2.5 Technology Assessment and Characterization Study in New York (PMTACS-NY) to characterize the physical and chemical composition of particulate matter and related precursors utilizing conventional and advanced instrumentation technologies. The measurement program, involving a team of scientists from federal, state, university and private sector organizations, was designed to provide detailed time resolved chemical and physical characterization of the urban PM2.5/co-pollutant complex in relation to the regional environment. A summary of the chemical and meteorological data defining specific events during the field intensive is presented as are results addressing specific hypothesis designed around PMTACS-NY program objectives. These include initial findings and conclusions related to 1) performance testing and evaluation of emerging measurement technologies and comparison with EPA mandated PM federal reference methods currently operational as part of the New York State and national PM2.5 monitoring network; 2) emissions characterization of CNG, standard diesel and CRT (Continuously Regenerating Technology) diesel retrofit powered vehicles; and 3) compositional comparisons of urban and regional PM2.5.

  1. Passive unmanned sky spectroscopy for remote bird classification

    NASA Astrophysics Data System (ADS)

    Lundin, Patrik; Brydegaard, Mikkel; Cocola, Lorenzo; Runemark, Anna; Åkesson, Susanne; Svanberg, Sune

    2011-11-01

    We present a method based on passive spectroscopy with aim to remotely study flying birds. A compact spectrometer is continuously recording spectra of a small section of the sky, waiting for birds to obscure part of the field-of-view when they pass the field in flight. In such situations the total light intensity received through the telescope, looking straight up, will change very rapidly as compared to the otherwise slowly varying sky light. On passage of a bird, both the total intensity and the spectral shape of the captured light changes notably. A camera aimed in the same direction as the telescope, although with a wider field-of-view, is triggered by the sudden intensity changes in the spectrometer to record additional information, which may be used for studies of migration and orientation. Example results from a trial are presented and discussed. The study is meant to explore the information that could be gathered and extracted with the help of a spectrometer connected to a telescope. Information regarding the color, size and height of flying birds is discussed. Specifically, an application for passive distance determination utilizing the atmospheric oxygen A-band absorption at around 760 nm is discussed.

  2. GigaGauss solenoidal magnetic field inside bubbles excited in under-dense plasma

    PubMed Central

    Lécz, Zs.; Konoplev, I. V.; Seryi, A.; Andreev, A.

    2016-01-01

    This paper proposes a novel and effective method for generating GigaGauss level, solenoidal quasi-static magnetic fields in under-dense plasma using screw-shaped high intensity laser pulses. This method produces large solenoidal fields that move with the driving laser pulse and are collinear with the accelerated electrons. This is in contrast with already known techniques which rely on interactions with over-dense or solid targets and generates radial or toroidal magnetic field localized at the stationary target. The solenoidal field is quasi-stationary in the reference frame of the laser pulse and can be used for guiding electron beams. It can also provide synchrotron radiation beam emittance cooling for laser-plasma accelerated electron and positron beams, opening up novel opportunities for designs of the light sources, free electron lasers, and high energy colliders based on laser plasma acceleration. PMID:27796327

  3. GigaGauss solenoidal magnetic field inside bubbles excited in under-dense plasma

    NASA Astrophysics Data System (ADS)

    Lécz, Zs.; Konoplev, I. V.; Seryi, A.; Andreev, A.

    2016-10-01

    This paper proposes a novel and effective method for generating GigaGauss level, solenoidal quasi-static magnetic fields in under-dense plasma using screw-shaped high intensity laser pulses. This method produces large solenoidal fields that move with the driving laser pulse and are collinear with the accelerated electrons. This is in contrast with already known techniques which rely on interactions with over-dense or solid targets and generates radial or toroidal magnetic field localized at the stationary target. The solenoidal field is quasi-stationary in the reference frame of the laser pulse and can be used for guiding electron beams. It can also provide synchrotron radiation beam emittance cooling for laser-plasma accelerated electron and positron beams, opening up novel opportunities for designs of the light sources, free electron lasers, and high energy colliders based on laser plasma acceleration.

  4. A Method of Treatment of Purulent-Inflammatory Diseases of the Hand in Outpatient Clinic with Using Electromagnetic Microwave Field

    NASA Astrophysics Data System (ADS)

    Rabenok, L.; Grimalsky, V.; De La Hidalga-W., J.

    2006-09-01

    The report is devoted to applications of the microwave therapy. 50 patients with acute purulent-inflammatory diseases of the hand were examined with using our method of treatment with electromagnetic (EM) microwave field in an outpatient clinic. We used a portable apparatus that operates in the millimeter (mm) wave range in 4 regimes. The intensity of EM radiation was 2-10 mW/cm2. A peculiarity of the method was an absence of any antibacterial medicine during the treatment. We conclude that using EM microwave fields seems very efficient in a complex treatment of acute purulent-inflammatory diseases of the hand in an outpatient clinic. An interpretation of the obtained results is given due to the resonant character of the interaction of EM radiation with molecular and cellular structures.

  5. Recovery of chemical estimates by field inhomogeneity neighborhood error detection (REFINED): fat/water separation at 7 tesla.

    PubMed

    Narayan, Sreenath; Kalhan, Satish C; Wilson, David L

    2013-05-01

    To reduce swaps in fat-water separation methods, a particular issue on 7 Tesla (T) small animal scanners due to field inhomogeneity, using image postprocessing innovations that detect and correct errors in the B0 field map. Fat-water decompositions and B0 field maps were computed for images of mice acquired on a 7T Bruker BioSpec scanner, using a computationally efficient method for solving the Markov Random Field formulation of the multi-point Dixon model. The B0 field maps were processed with a novel hole-filling method, based on edge strength between regions, and a novel k-means method, based on field-map intensities, which were iteratively applied to automatically detect and reinitialize error regions in the B0 field maps. Errors were manually assessed in the B0 field maps and chemical parameter maps both before and after error correction. Partial swaps were found in 6% of images when processed with FLAWLESS. After REFINED correction, only 0.7% of images contained partial swaps, resulting in an 88% decrease in error rate. Complete swaps were not problematic. Ex post facto error correction is a viable supplement to a priori techniques for producing globally smooth B0 field maps, without partial swaps. With our processing pipeline, it is possible to process image volumes rapidly, robustly, and almost automatically. Copyright © 2012 Wiley Periodicals, Inc.

  6. In Situ Magnetic Field Measurement using the Hanle Effect

    NASA Astrophysics Data System (ADS)

    Jackson, Jarom; Durfee, Dallin

    2016-05-01

    We have developed a simple method of in situ magnetic field mapping near zero points in magnetic fields. It is ideal for measuring trapping parameters such the field gradient and curvature, and should be applicable in most experiments with a magneto-optical trap (MOT) or similar setup. This method works by probing atomic transitions in a vacuum, and is based on the Hanle effect, which alters the polarization of spontaneous emission in the presence of a magnetic field. Unlike most techniques based on the Hanle effect, however, we look only at intensity. Instead of measuring polarization we use the change in directional radiation patterns caused by a magnetic field. Using one of the cooling beams for our MOT, along with a linear polarizer, a narrow slit, and an inexpensive webcam, we measure the three dimensional position of a magnetic field zero point within our vacuum to within +/-1 mm and the gradient through the zero point to an accuracy of 4%. This work was supported by NSF Grant Number PHY-1205736.

  7. Determination of the Fracture Parameters in a Stiffened Composite Panel

    NASA Technical Reports Server (NTRS)

    Lin, Chung-Yi

    2000-01-01

    A modified J-integral, namely the equivalent domain integral, is derived for a three-dimensional anisotropic cracked solid to evaluate the stress intensity factor along the crack front using the finite element method. Based on the equivalent domain integral method with auxiliary fields, an interaction integral is also derived to extract the second fracture parameter, the T-stress, from the finite element results. The auxiliary fields are the two-dimensional plane strain solutions of monoclinic materials with the plane of symmetry at x(sub 3) = 0 under point loads applied at the crack tip. These solutions are expressed in a compact form based on the Stroh formalism. Both integrals can be implemented into a single numerical procedure to determine the distributions of stress intensity factor and T-stress components, T11, T13, and thus T33, along a three-dimensional crack front. The effects of plate thickness and crack length on the variation of the stress intensity factor and T-stresses through the thickness are investigated in detail for through-thickness center-cracked plates (isotropic and orthotropic) and orthotropic stiffened panels under pure mode-I loading conditions. For all the cases studied, T11 remains negative. For plates with the same dimensions, a larger size of crack yields larger magnitude of the normalized stress intensity factor and normalized T-stresses. The results in orthotropic stiffened panels exhibit an opposite trend in general. As expected, for the thicker panels, the fracture parameters evaluated through the thickness, except the region near the free surfaces, approach two-dimensional plane strain solutions. In summary, the numerical methods presented in this research demonstrate their high computational effectiveness and good numerical accuracy in extracting these fracture parameters from the finite element results in three-dimensional cracked solids.

  8. Peering into Cells One Molecule at a Time: Single-molecule and plasmon-enhanced fluorescence super-resolution imaging

    NASA Astrophysics Data System (ADS)

    Biteen, Julie

    2013-03-01

    Single-molecule fluorescence brings the resolution of optical microscopy down to the nanometer scale, allowing us to unlock the mysteries of how biomolecules work together to achieve the complexity that is a cell. This high-resolution, non-destructive method for examining subcellular events has opened up an exciting new frontier: the study of macromolecular localization and dynamics in living cells. We have developed methods for single-molecule investigations of live bacterial cells, and have used these techniques to investigate thee important prokaryotic systems: membrane-bound transcription activation in Vibrio cholerae, carbohydrate catabolism in Bacteroides thetaiotaomicron, and DNA mismatch repair in Bacillus subtilis. Each system presents unique challenges, and we will discuss the important methods developed for each system. Furthermore, we use the plasmon modes of bio-compatible metal nanoparticles to enhance the emissivity of single-molecule fluorophores. The resolution of single-molecule imaging in cells is generally limited to 20-40 nm, far worse than the 1.5-nm localization accuracies which have been attained in vitro. We use plasmonics to improve the brightness and stability of single-molecule probes, and in particular fluorescent proteins, which are widely used for bio-imaging. We find that gold-coupled fluorophores demonstrate brighter, longer-lived emission, yielding an overall enhancement in total photons detected. Ultimately, this results in increased localization accuracy for single-molecule imaging. Furthermore, since fluorescence intensity is proportional to local electromagnetic field intensity, these changes in decay intensity and rate serve as a nm-scale read-out of the field intensity. Our work indicates that plasmonic substrates are uniquely advantageous for super-resolution imaging, and that plasmon-enhanced imaging is a promising technique for improving live cell single-molecule microscopy.

  9. Method for separating biological cells. [suspended in aqueous polymer systems

    NASA Technical Reports Server (NTRS)

    Brooks, D. E. (Inventor)

    1980-01-01

    A method for separating biological cells by suspending a mixed cell population in a two-phase polymer system is described. The polymer system consists of droplet phases with different surface potentials for which the cell populations exhibit different affinities. The system is subjected to an electrostatic field of sufficient intensity to cause migration of the droplets with an attendant separation of cells.

  10. Recommended methods for monitoring change in bird populations by counting and capture of migrants

    Treesearch

    David J. T. Hussell; C. John Ralph

    2005-01-01

    Counts and banding captures of spring or fall migrants can generate useful information on the status and trends of the source populations. To do so, the counts and captures must be taken and recorded in a standardized and consistent manner. We present recommendations for field methods for counting and capturing migrants at intensively operated sites, such as bird...

  11. Quantitative phase microscopy for cellular dynamics based on transport of intensity equation.

    PubMed

    Li, Ying; Di, Jianglei; Ma, Chaojie; Zhang, Jiwei; Zhong, Jinzhan; Wang, Kaiqiang; Xi, Teli; Zhao, Jianlin

    2018-01-08

    We demonstrate a simple method for quantitative phase imaging of tiny transparent objects such as living cells based on the transport of intensity equation. The experiments are performed using an inverted bright field microscope upgraded with a flipping imaging module, which enables to simultaneously create two laterally separated images with unequal defocus distances. This add-on module does not include any lenses or gratings and is cost-effective and easy-to-alignment. The validity of this method is confirmed by the measurement of microlens array and human osteoblastic cells in culture, indicating its potential in the applications of dynamically measuring living cells and other transparent specimens in a quantitative, non-invasive and label-free manner.

  12. A Three-Dimensional Target Depth-Resolution Method with a Single-Vector Sensor

    PubMed Central

    Zhao, Anbang; Bi, Xuejie; Hui, Juan; Zeng, Caigao; Ma, Lin

    2018-01-01

    This paper mainly studies and verifies the target number category-resolution method in multi-target cases and the target depth-resolution method of aerial targets. Firstly, target depth resolution is performed by using the sign distribution of the reactive component of the vertical complex acoustic intensity; the target category and the number resolution in multi-target cases is realized with a combination of the bearing-time recording information; and the corresponding simulation verification is carried out. The algorithm proposed in this paper can distinguish between the single-target multi-line spectrum case and the multi-target multi-line spectrum case. This paper presents an improved azimuth-estimation method for multi-target cases, which makes the estimation results more accurate. Using the Monte Carlo simulation, the feasibility of the proposed target number and category-resolution algorithm in multi-target cases is verified. In addition, by studying the field characteristics of the aerial and surface targets, the simulation results verify that there is only amplitude difference between the aerial target field and the surface target field under the same environmental parameters, and an aerial target can be treated as a special case of a surface target; the aerial target category resolution can then be realized based on the sign distribution of the reactive component of the vertical acoustic intensity so as to realize three-dimensional target depth resolution. By processing data from a sea experiment, the feasibility of the proposed aerial target three-dimensional depth-resolution algorithm is verified. PMID:29649173

  13. A Three-Dimensional Target Depth-Resolution Method with a Single-Vector Sensor.

    PubMed

    Zhao, Anbang; Bi, Xuejie; Hui, Juan; Zeng, Caigao; Ma, Lin

    2018-04-12

    This paper mainly studies and verifies the target number category-resolution method in multi-target cases and the target depth-resolution method of aerial targets. Firstly, target depth resolution is performed by using the sign distribution of the reactive component of the vertical complex acoustic intensity; the target category and the number resolution in multi-target cases is realized with a combination of the bearing-time recording information; and the corresponding simulation verification is carried out. The algorithm proposed in this paper can distinguish between the single-target multi-line spectrum case and the multi-target multi-line spectrum case. This paper presents an improved azimuth-estimation method for multi-target cases, which makes the estimation results more accurate. Using the Monte Carlo simulation, the feasibility of the proposed target number and category-resolution algorithm in multi-target cases is verified. In addition, by studying the field characteristics of the aerial and surface targets, the simulation results verify that there is only amplitude difference between the aerial target field and the surface target field under the same environmental parameters, and an aerial target can be treated as a special case of a surface target; the aerial target category resolution can then be realized based on the sign distribution of the reactive component of the vertical acoustic intensity so as to realize three-dimensional target depth resolution. By processing data from a sea experiment, the feasibility of the proposed aerial target three-dimensional depth-resolution algorithm is verified.

  14. Nanosecond pulsed electric fields (nsPEFs) low cost generator design using power MOSFET and Cockcroft-Walton multiplier circuit as high voltage DC source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sulaeman, M. Y.; Widita, R.

    2014-09-30

    Purpose: Non-ionizing radiation therapy for cancer using pulsed electric field with high intensity field has become an interesting field new research topic. A new method using nanosecond pulsed electric fields (nsPEFs) offers a novel means to treat cancer. Not like the conventional electroporation, nsPEFs able to create nanopores in all membranes of the cell, including membrane in cell organelles, like mitochondria and nucleus. NsPEFs will promote cell death in several cell types, including cancer cell by apoptosis mechanism. NsPEFs will use pulse with intensity of electric field higher than conventional electroporation, between 20–100 kV/cm and with shorter duration of pulsemore » than conventional electroporation. NsPEFs requires a generator to produce high voltage pulse and to achieve high intensity electric field with proper pulse width. However, manufacturing cost for creating generator that generates a high voltage with short duration for nsPEFs purposes is highly expensive. Hence, the aim of this research is to obtain the low cost generator design that is able to produce a high voltage pulse with nanosecond width and will be used for nsPEFs purposes. Method: Cockcroft-Walton multiplier circuit will boost the input of 220 volt AC into high voltage DC around 1500 volt and it will be combined by a series of power MOSFET as a fast switch to obtain a high voltage with nanosecond pulse width. The motivation using Cockcroft-Walton multiplier is to acquire a low-cost high voltage DC generator; it will use capacitors and diodes arranged like a step. Power MOSFET connected in series is used as voltage divider to share the high voltage in order not to damage them. Results: This design is expected to acquire a low-cost generator that can achieve the high voltage pulse in amount of −1.5 kV with falltime 3 ns and risetime 15 ns into a 50Ω load that will be used for nsPEFs purposes. Further detailed on the circuit design will be explained at presentation.« less

  15. Strong field QED in lepton colliders and electron/laser interactions

    NASA Astrophysics Data System (ADS)

    Hartin, Anthony

    2018-05-01

    The studies of strong field particle physics processes in electron/laser interactions and lepton collider interaction points (IPs) are reviewed. These processes are defined by the high intensity of the electromagnetic fields involved and the need to take them into account as fully as possible. Thus, the main theoretical framework considered is the Furry interaction picture within intense field quantum field theory. In this framework, the influence of a background electromagnetic field in the Lagrangian is calculated nonperturbatively, involving exact solutions for quantized charged particles in the background field. These “dressed” particles go on to interact perturbatively with other particles, enabling the background field to play both macroscopic and microscopic roles. Macroscopically, the background field starts to polarize the vacuum, in effect rendering it a dispersive medium. Particles encountering this dispersive vacuum obtain a lifetime, either radiating or decaying into pair particles at a rate dependent on the intensity of the background field. In fact, the intensity of the background field enters into the coupling constant of the strong field quantum electrodynamic Lagrangian, influencing all particle processes. A number of new phenomena occur. Particles gain an intensity-dependent rest mass shift that accounts for their presence in the dispersive vacuum. Multi-photon events involving more than one external field photon occur at each vertex. Higher order processes which exchange a virtual strong field particle resonate via the lifetimes of the unstable strong field states. Two main arenas of strong field physics are reviewed; those occurring in relativistic electron interactions with intense laser beams, and those occurring in the beam-beam physics at the interaction point of colliders. This review outlines the theory, describes its significant novel phenomenology and details the experimental schema required to detect strong field effects and the simulation programs required to model them.

  16. 14 CFR 29.1317 - High-intensity Radiated Fields (HIRF) Protection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false High-intensity Radiated Fields (HIRF...-intensity Radiated Fields (HIRF) Protection. (a) Except as provided in paragraph (d) of this section, each electrical and electronic system that performs a function whose failure would prevent the continued safe...

  17. 14 CFR 25.1317 - High-intensity Radiated Fields (HIRF) Protection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false High-intensity Radiated Fields (HIRF...-intensity Radiated Fields (HIRF) Protection. (a) Except as provided in paragraph (d) of this section, each electrical and electronic system that performs a function whose failure would prevent the continued safe...

  18. 14 CFR 27.1317 - High-intensity Radiated Fields (HIRF) Protection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false High-intensity Radiated Fields (HIRF...-intensity Radiated Fields (HIRF) Protection. (a) Except as provided in paragraph (d) of this section, each electrical and electronic system that performs a function whose failure would prevent the continued safe...

  19. 14 CFR 27.1317 - High-intensity Radiated Fields (HIRF) Protection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false High-intensity Radiated Fields (HIRF...-intensity Radiated Fields (HIRF) Protection. (a) Except as provided in paragraph (d) of this section, each electrical and electronic system that performs a function whose failure would prevent the continued safe...

  20. 14 CFR 25.1317 - High-intensity Radiated Fields (HIRF) Protection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false High-intensity Radiated Fields (HIRF...-intensity Radiated Fields (HIRF) Protection. (a) Except as provided in paragraph (d) of this section, each electrical and electronic system that performs a function whose failure would prevent the continued safe...

  1. 14 CFR 23.1308 - High-intensity Radiated Fields (HIRF) Protection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false High-intensity Radiated Fields (HIRF... Equipment General § 23.1308 High-intensity Radiated Fields (HIRF) Protection. (a) Except as provided in paragraph (d) of this section, each electrical and electronic system that performs a function whose failure...

  2. 14 CFR 29.1317 - High-intensity Radiated Fields (HIRF) Protection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false High-intensity Radiated Fields (HIRF...-intensity Radiated Fields (HIRF) Protection. (a) Except as provided in paragraph (d) of this section, each electrical and electronic system that performs a function whose failure would prevent the continued safe...

  3. 14 CFR 23.1308 - High-intensity Radiated Fields (HIRF) Protection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false High-intensity Radiated Fields (HIRF... Equipment General § 23.1308 High-intensity Radiated Fields (HIRF) Protection. (a) Except as provided in paragraph (d) of this section, each electrical and electronic system that performs a function whose failure...

  4. Intense transient electric field sensor based on the electro-optic effect of LiNbO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Qing, E-mail: yangqing@cqu.edu.cn; Sun, Shangpeng; Han, Rui

    2015-10-15

    Intense transient electric field measurements are widely applied in various research areas. An optical intense E-field sensor for time-domain measurements, based on the electro-optic effect of lithium niobate, has been studied in detail. Principles and key issues in the design of the sensor are presented. The sensor is insulated, small in size (65 mm × 15 mm × 15 mm), and suitable for high-intensity (<801 kV/m) electric field measurements over a wide frequency band (10 Hz–10 MHz). The input/output characteristics of the sensor were obtained and the sensor calibrated. Finally, an application using this sensor in testing laboratory lightning impulsesmore » and in measuring transient electric fields during switch-on of a disconnector confirmed that the sensor is expected to find widespread use in transient intense electric field measurement applications.« less

  5. Intense transient electric field sensor based on the electro-optic effect of LiNbO3

    NASA Astrophysics Data System (ADS)

    Yang, Qing; Sun, Shangpeng; Han, Rui; Sima, Wenxia; Liu, Tong

    2015-10-01

    Intense transient electric field measurements are widely applied in various research areas. An optical intense E-field sensor for time-domain measurements, based on the electro-optic effect of lithium niobate, has been studied in detail. Principles and key issues in the design of the sensor are presented. The sensor is insulated, small in size (65 mm × 15 mm × 15 mm), and suitable for high-intensity (<801 kV/m) electric field measurements over a wide frequency band (10 Hz-10 MHz). The input/output characteristics of the sensor were obtained and the sensor calibrated. Finally, an application using this sensor in testing laboratory lightning impulses and in measuring transient electric fields during switch-on of a disconnector confirmed that the sensor is expected to find widespread use in transient intense electric field measurement applications.

  6. Estimation of ionospheric sporadic E intensities from GPS radio occultation measurements

    NASA Astrophysics Data System (ADS)

    Arras, C.; Wickert, J.

    2018-06-01

    The radio occultation experiment aboard the FORMOSAT-3/COSMIC satellites enables the observation of phenomena in Earth's ionosphere on a global scale. Numerous radio occultation profiles are used to analyse the occurrence of sporadic E layers as well as its properties. We will present a new method to approach additionally to the presence of sporadic E also its intensity which is closely related to the blanketing frequency (fbEs) provided by ionosondes. We observed that the sporadic E occurrence and its intensity show a highly developed annual cycle with high occurrence rates and intensities in the actual summer hemisphere. The global latitude/longitude distribution of both parameters is strongly related to Earth's magnetic field which is reflected by the missing of sporadic E observations along the magnetic equator.

  7. Recent archaeomagnetic studies in Slovakia: Comparison of methodological approaches

    NASA Astrophysics Data System (ADS)

    Kubišová, Lenka

    2016-03-01

    We review the recent archaeomagnetic studies carried out on the territory of Slovakia, focusing on the comparison of methodological approaches, discussing pros and cons of the individual applied methods from the perspective of our experience. The most widely used methods for the determination of intensity and direction of the archaeomegnetic field by demagnetisation of the sample material are the alternating field (AF) demagnetisation and the Thellier double heating method. These methods are used not only for archaeomagnetic studies but also help to solve some geological problems. The two methods were applied to samples collected recently at several sites of Slovakia, where archaeological prospection invoked by earthwork or reconstruction work of developing projects demanded archaeomagnetic dating. Then we discuss advantages and weaknesses of the investigated methods from different perspectives based on several examples and our recent experience.

  8. Multistage morphological segmentation of bright-field and fluorescent microscopy images

    NASA Astrophysics Data System (ADS)

    Korzyńska, A.; Iwanowski, M.

    2012-06-01

    This paper describes the multistage morphological segmentation method (MSMA) for microscopic cell images. The proposed method enables us to study the cell behaviour by using a sequence of two types of microscopic images: bright field images and/or fluorescent images. The proposed method is based on two types of information: the cell texture coming from the bright field images and intensity of light emission, done by fluorescent markers. The method is dedicated to the image sequences segmentation and it is based on mathematical morphology methods supported by other image processing techniques. The method allows for detecting cells in image independently from a degree of their flattening and from presenting structures which produce the texture. It makes use of some synergic information from the fluorescent light emission image as the support information. The MSMA method has been applied to images acquired during the experiments on neural stem cells as well as to artificial images. In order to validate the method, two types of errors have been considered: the error of cell area detection and the error of cell position using artificial images as the "gold standard".

  9. The performance of various palaeointensity techniques as a function of rock magnetic behaviour - A case study for La Palma

    NASA Astrophysics Data System (ADS)

    Monster, Marilyn W. L.; de Groot, Lennart V.; Biggin, Andrew J.; Dekkers, Mark J.

    2015-05-01

    Three different palaeointensity methods were applied to six historical and three carbon-dated flows from the island of La Palma (Spain); in total fifteen sites were processed. The two 20th-century flows were sampled at multiple locations as their obtained directions and intensities can be compared directly to those from the International Geomagnetic Reference Field (IGRF). After determination of the declinations and inclinations of the natural remanent magnetisation (NRM) by thermal and alternating-field demagnetisation, the samples were subjected to standard rock magnetic analyses to determine their Curie and alteration temperatures. Based on these characteristics, the sites were allocated to one of four rock magnetic groups labelled L∗, L, C, and H, a division primarily based on the temperature-dependent behaviour of the low-field susceptibility that has been used in studies of other volcanic edifices. Scanning electron microscope (SEM) observations revealed little oxidation and exsolution (oxidation classes I to III). Palaeointensities were determined using the classic Thellier-Thellier method (Aitken and IZZI protocols), the microwave method and the domain-state-corrected multispecimen method. Thellier-Thellier and microwave results were analysed using the ThellierTool A and B sets of selection criteria as modified by Paterson et al. (2014). Their combined success rate was around 40%. Of the eight IGRF sites, two yielded average intensities within 10% of the IGRF value. For the microwave method, three sites reproduced the IGRF intensity within 10%. In the domain-state-corrected multispecimen protocol, just one site (site 9, 1971) passed the 'ARM-test' (applied in retrospect) and showed less than 3% progressive alteration. Its multispecimen result reproduced the palaeofield within error. The other IGRF sites over- or underestimated the palaeofield by up to 50%. The seven older sites produced plausible palaeointensities, generally within a few μT of model data, and if multiple methods were successful, the results were within error of each other. For all three PI methods, it seems that sites with low Curie temperatures (<150 °C; group L∗), are more likely to pass all selection criteria while substantially over- or underestimating the palaeofield. It is hypothesised that time-dependent processes after cooling of the lava would be a prime reason for this discrepancy: PI experiments with a laboratory thermoremanent magnetisation (TRM), imparted at a temperature above the site's dominant Curie temperature but below its alteration temperature, yielded the correct intensity of the laboratory-imparted TRM. When two or three methods agree to within a few μT, the obtained palaeointensity is close to the palaeofield. Multi-method consistency provides an additional palaeointensity reliability check.

  10. Line-scan hyperspectral imaging techniques for food and agricultural applications

    USDA-ARS?s Scientific Manuscript database

    Hyperspectral imaging technologies in the food and agricultural area have been evolved rapidly during the past 15 years owing to tremendous interest from both academic and industrial fields. Line-scan hyperspectral imaging is a major method that has been intensively researched and developed in diffe...

  11. Evaluation of magnetic nanoparticle samples made from biocompatible ferucarbotran by time-correlation magnetic particle imaging reconstruction method

    PubMed Central

    2013-01-01

    Background Molecular imaging using magnetic nanoparticles (MNPs)—magnetic particle imaging (MPI)—has attracted interest for the early diagnosis of cancer and cardiovascular disease. However, because a steep local magnetic field distribution is required to obtain a defined image, sophisticated hardware is required. Therefore, it is desirable to realize excellent image quality even with low-performance hardware. In this study, the spatial resolution of MPI was evaluated using an image reconstruction method based on the correlation information of the magnetization signal in a time domain and by applying MNP samples made from biocompatible ferucarbotran that have adjusted particle diameters. Methods The magnetization characteristics and particle diameters of four types of MNP samples made from ferucarbotran were evaluated. A numerical analysis based on our proposed method that calculates the image intensity from correlation information between the magnetization signal generated from MNPs and the system function was attempted, and the obtained image quality was compared with that using the prototype in terms of image resolution and image artifacts. Results MNP samples obtained by adjusting ferucarbotran showed superior properties to conventional ferucarbotran samples, and numerical analysis showed that the same image quality could be obtained using a gradient magnetic field generator with 0.6 times the performance. However, because image blurring was included theoretically by the proposed method, an algorithm will be required to improve performance. Conclusions MNP samples obtained by adjusting ferucarbotran showed magnetizing properties superior to conventional ferucarbotran samples, and by using such samples, comparable image quality (spatial resolution) could be obtained with a lower gradient magnetic field intensity. PMID:23734917

  12. Magnetic field tunability of optical microfiber taper integrated with ferrofluid.

    PubMed

    Miao, Yinping; Wu, Jixuan; Lin, Wei; Zhang, Kailiang; Yuan, Yujie; Song, Binbin; Zhang, Hao; Liu, Bo; Yao, Jianquan

    2013-12-02

    Optical microfiber taper has unique propagation properties, which provides versatile waveguide structure to design the tunable photonic devices. In this paper, the S-tapered microfiber is fabricated by using simple fusion spicing. The spectral characteristics of microfiber taper integrated with ferrofluid under different magnetic-field intensities have been theoretically analyzed and experimentally demonstrated. The spectrum are both found to become highly magnetic-field-dependent. The results indicate the transmission and wavelength of the dips are adjustable by changing magnetic field intensity. The response of this device to the magnetic field intensity exhibits a Langvin function. Moreover, there is a linear relationship between the transmission loss and magnetic field intensity for a magnetic field intensity range of 25 to 200Oe, and the sensitivities as high as 0.13056dB/Oe and 0.056nm/Oe have been achieved, respectively. This suggests a potential application of this device as a tunable all-in-fiber photonic device, such as magneto-optic modulator, filter, and sensing element.

  13. Histological evaluation of the influence of magnetic field application in autogenous bone grafts in rats

    PubMed Central

    Puricelli, Edela; Dutra, Nardier B; Ponzoni, Deise

    2009-01-01

    Background Bone grafts are widely used in oral and maxillofacial reconstruction. The influence of electromagnetic fields and magnets on the endogenous stimulation of target tissues has been investigated. This work aimed to assess the quality of bone healing in surgical cavities filled with autogenous bone grafts, under the influence of a permanent magnetic field produced by in vivo buried devices. Methods Metal devices consisting of commercially pure martensitic stainless steel washers and titanium screws were employed. Thirty male Wistar rats were divided into 3 experimental and 3 control groups. A surgical bone cavity was produced on the right femur, and a bone graft was collected and placed in each hole. Two metallic washers, magnetized in the experimental group but not in the control group, were attached on the borders of the cavity. Results The animals were sacrificed on postoperative days 15, 45 and 60. The histological analysis of control and experimental samples showed adequate integration of the bone grafts, with intense bone neoformation. On days 45 and 60, a continued influence of the magnetic field on the surgical cavity and on the bone graft was observed in samples from the experimental group. Conclusion The results showed intense bone neoformation in the experimental group as compared to control animals. The intense extra-cortical bone neoformation observed suggests that the osteoconductor condition of the graft may be more susceptible to stimulation, when submitted to a magnetic field. PMID:19134221

  14. Simulations of iron K pre-edge X-ray absorption spectra using the restricted active space method.

    PubMed

    Guo, Meiyuan; Sørensen, Lasse Kragh; Delcey, Mickaël G; Pinjari, Rahul V; Lundberg, Marcus

    2016-01-28

    The intensities and relative energies of metal K pre-edge features are sensitive to both geometric and electronic structures. With the possibility to collect high-resolution spectral data it is important to find theoretical methods that include all important spectral effects: ligand-field splitting, multiplet structures, 3d-4p orbital hybridization, and charge-transfer excitations. Here the restricted active space (RAS) method is used for the first time to calculate metal K pre-edge spectra of open-shell systems, and its performance is tested against on six iron complexes: [FeCl6](n-), [FeCl4](n-), and [Fe(CN)6](n-) in ferrous and ferric oxidation states. The method gives good descriptions of the spectral shapes for all six systems. The mean absolute deviation for the relative energies of different peaks is only 0.1 eV. For the two systems that lack centrosymmetry [FeCl4](2-/1-), the ratios between dipole and quadrupole intensity contributions are reproduced with an error of 10%, which leads to good descriptions of the integrated pre-edge intensities. To gain further chemical insight, the origins of the pre-edge features have been analyzed with a chemically intuitive molecular orbital picture that serves as a bridge between the spectra and the electronic structures. The pre-edges contain information about both ligand-field strengths and orbital covalencies, which can be understood by analyzing the RAS wavefunction. The RAS method can thus be used to predict and rationalize the effects of changes in both the oxidation state and ligand environment in a number of hard X-ray studies of small and medium-sized molecular systems.

  15. Achieving sub-millimetre precision with a solid-state full-field heterodyning range imaging camera

    NASA Astrophysics Data System (ADS)

    Dorrington, A. A.; Cree, M. J.; Payne, A. D.; Conroy, R. M.; Carnegie, D. A.

    2007-09-01

    We have developed a full-field solid-state range imaging system capable of capturing range and intensity data simultaneously for every pixel in a scene with sub-millimetre range precision. The system is based on indirect time-of-flight measurements by heterodyning intensity-modulated illumination with a gain modulation intensified digital video camera. Sub-millimetre precision to beyond 5 m and 2 mm precision out to 12 m has been achieved. In this paper, we describe the new sub-millimetre class range imaging system in detail, and review the important aspects that have been instrumental in achieving high precision ranging. We also present the results of performance characterization experiments and a method of resolving the range ambiguity problem associated with homodyne and heterodyne ranging systems.

  16. Effect of anisotropy on defect mode peculiarities in chiral liquid crystals

    NASA Astrophysics Data System (ADS)

    Gevorgyan, A. H.; Oganesyan, K. B.

    2018-01-01

    The effect of anisotropy on defect mode peculiarities in cholesteric liquid crystals is investigated. The light transmission through the cholesteric liquid crystal layer with an anisotropic layer defect inside is solved by Ambartsumian’s layer addition modified method. Two cases are considered. In the first case, it is assumed that the defect layer is non-absorbing, and the effect of refraction anisotropy on the reflection, relative photonic density of states and the total field intensity produced in the defect layer are studied. In the second case, the defect layer is assumed to be isotropic for refraction and anisotropic for absorption, and the influence of defect layer absorption anisotropy on reflection, absorption, relative photonic density of states and the total field intensity produced in the defect layer are investigated.

  17. A tunable optical Kerr switch based on a nanomechanical resonator coupled to a quantum dot.

    PubMed

    Li, Jin-Jin; Zhu, Ka-Di

    2010-05-21

    We have theoretically demonstrated the large enhancement of the optical Kerr effect in a scheme of a nanomechanical resonator coupled to a quantum dot and shown that this phenomenon can be used to realize a fast optical Kerr switch by turning the control field on or off. Due to the vibration of the nanoresonator, as we pump on the strong control beam, the optical spectrum shows that the magnitude of this optical Kerr effect is proportional to the intensity of the control field. In this case, a fast and tunable optical Kerr switch can be implemented easily by an intensity-adjustable laser. Based on this tunable optical Kerr switch, we also provide a detection method to measure the frequency of the nanomechanical resonator in this coupled system.

  18. Study of magnetic field expansion using a plasma generator for space radiation active protection

    NASA Astrophysics Data System (ADS)

    Jia, Xiang-Hong; Jia, Shao-Xia; Xu, Feng; Bai, Yan-Qiang; Wan, Jun; Liu, Hong-Tao; Jiang, Rui; Ma, Hong-Bo; Wang, Shou-Guo

    2013-09-01

    There are many active protecting methods including Electrostatic Fields, Confined Magnetic Field, Unconfined Magnetic Field and Plasma Shielding etc. for defending the high-energy solar particle events (SPE) and Galactic Cosmic Rays (GCR) in deep space exploration. The concept of using cold plasma to expand a magnetic field is the best one of all possible methods so far. The magnetic field expansion caused by plasma can improve its protective efficiency of space particles. One kind of plasma generator has been developed and installed into the cylindrical permanent magnet in the eccentric. A plasma stream is produced using a helical-shaped antenna driven by a radio-frequency (RF) power supply of 13.56 MHz, which exits from both sides of the magnet and makes the magnetic field expand on one side. The discharging belts phenomenon is similar to the Earth's radiation belt, but the mechanism has yet to be understood. A magnetic probe is used to measure the magnetic field expansion distributions, and the results indicate that the magnetic field intensity increases under higher increments of the discharge power.

  19. High-resolution records of non-dipole variations derived from volcanic edifices

    NASA Astrophysics Data System (ADS)

    de Groot, L. V.; Biggin, A. J.; Dekkers, M. J.

    2013-12-01

    Our understanding of the short-term behavior of the Earth's magnetic field is currently mainly hampered by a lack of coeval high-resolution records of geomagnetic intensity variations that are well distributed over the globe. Lavas are the only recorder of short-term fluctuations of the geomagnetic field that are available for all parts of the world and on geological time scales. Therefore, many efforts have been made to improve the methodology to obtain reliable estimates of the paleointensity from igneous rocks over the past decades. It is well known that some paleointensity methods will work on certain lavas with specific thermomagnetic behavior, but fail for others. We therefore propose a ';multi-method paleointensity approach' that consists of Thellier-style, multispecimen-style, and calibrated pseudo-Thellier-style (AGU fall 2012 contribution GP43A-1122, submitted) experiments to construct high-resolution records of regional variations in the intensity of the Earth's magnetic field. With our new approach we obtain a reliable estimate of the paleointensity for 60-70 percent of all cooling units sampled. By applying our new approach to suites of lavas from Hawai'i (USA), and the Canary Islands (Spain) we obtain important constraints for short-term local geomagnetic intensity highs, and insight into their possible driving mechanisms. Our new record for Hawai'i indicates that, approximately 1000 years ago, the local field intensity increased on the order of 50% for 200 years - a qualitatively similar phenomenon observed 200 years earlier in western Europe (Gallet et al., 2005; Gómez-Paccard et al., 2012) and 500 years later in southwestern USA (Bowles et al., 2002). When these records are combined with a record for Japan (Yu, 2012), a coherent picture emerges that includes the dipole component decaying steadily since at least 1000 years ago. Superimposed onto this decay are strong but shorter-term intensity variations at a regional level whose asynchronicity necessitates a highly non-dipolar nature. Our paleointensity data obtained for Tenerife reveal high paleointensities temporally coinciding with an intensity high occurring in the Middle East around 1000 BC. If our findings are related to this ';archeomagnetic jerk', it must have extended more than 50 ° westward in longitude. Gallet et al., 2005, EPSL vol. 236, pp. 339-347 Gómez-Paccard et al., 2012, EPSL, vol. 355-356, pp. 131-143 Bowles et al, 2002, EPSL, vol. 203, pp. 967-981 Yu et al., 2012, JGR, vol. 177, p. B08101

  20. Tsunami Source Identification on the 1867 Tsunami Event Based on the Impact Intensity

    NASA Astrophysics Data System (ADS)

    Wu, T. R.

    2014-12-01

    The 1867 Keelung tsunami event has drawn significant attention from people in Taiwan. Not only because the location was very close to the 3 nuclear power plants which are only about 20km away from the Taipei city but also because of the ambiguous on the tsunami sources. This event is unique in terms of many aspects. First, it was documented on many literatures with many languages and with similar descriptions. Second, the tsunami deposit was discovered recently. Based on the literatures, earthquake, 7-meter tsunami height, volcanic smoke, and oceanic smoke were observed. Previous studies concluded that this tsunami was generated by an earthquake with a magnitude around Mw7.0 along the Shanchiao Fault. However, numerical results showed that even a Mw 8.0 earthquake was not able to generate a 7-meter tsunami. Considering the steep bathymetry and intense volcanic activities along the Keelung coast, one reasonable hypothesis is that different types of tsunami sources were existed, such as the submarine landslide or volcanic eruption. In order to confirm this scenario, last year we proposed the Tsunami Reverse Tracing Method (TRTM) to find the possible locations of the tsunami sources. This method helped us ruling out the impossible far-field tsunami sources. However, the near-field sources are still remain unclear. This year, we further developed a new method named 'Impact Intensity Analysis' (IIA). In the IIA method, the study area is divided into a sequence of tsunami sources, and the numerical simulations of each source is conducted by COMCOT (Cornell Multi-grid Coupled Tsunami Model) tsunami model. After that, the resulting wave height from each source to the study site is collected and plotted. This method successfully helped us to identify the impact factor from the near-field potential sources. The IIA result (Fig. 1) shows that the 1867 tsunami event was a multi-source event. A mild tsunami was trigged by a Mw7.0 earthquake, and then followed by the submarine landslide or volcanic events. A near-field submarine landslide and landslide at Mien-Hwa Canyon were the most possible scenarios. As for the volcano scenarios, the volcanic eruption located about 10 km away from Keelung with 2.5x108 m3 disturbed water volume might be a candidate. The detailed scenario results will be presented in the full paper.

  1. Enhancement of invertase production by Aspergillus niger OZ-3 using low-intensity static magnetic fields.

    PubMed

    Taskin, Mesut; Esim, Nevzat; Genisel, Mucip; Ortucu, Serkan; Hasenekoglu, Ismet; Canli, Ozden; Erdal, Serkan

    2013-01-01

    The aim of this study is to investigate the effect of low-intensity static magnetic fields (SMFs) on invertase activity and growth on different newly identified molds. The most positive effect of SMFs on invertase activity and growth was observed for Aspergillus niger OZ-3. The submerged production of invertase was performed with the spores obtained at the different exposure times (120, 144, 168, and 196 hr) and magnetic field intensities (0.45, 3, 5, 7, and 9 mT). The normal magnetic field of the laboratory was assayed as 0.45 mT (control). Optimization of magnetic field intensity and exposure time significantly increased biomass production and invertase activity compared to 0.45 mT. The maximum invertase activity (51.14 U/mL) and biomass concentration (4.36 g/L) were achieved with the spores obtained at the 144 hr exposure time and 5 mT magnetic field intensity. The effect of low-intensity static magnetic fields (SMFs) on invertase activities of molds was investigated for the first time in the present study. As an additional contribution, a new hyper-invertase-producing mold strain was isolated.

  2. Intensity information extraction in Geiger mode detector array based three-dimensional imaging applications

    NASA Astrophysics Data System (ADS)

    Wang, Fei

    2013-09-01

    Geiger-mode detectors have single photon sensitivity and picoseconds timing resolution, which make it a good candidate for low light level ranging applications, especially in the case of flash three dimensional imaging applications where the received laser power is extremely limited. Another advantage of Geiger-mode APD is their capability of large output current which can drive CMOS timing circuit directly, which means that larger format focal plane arrays can be easily fabricated using the mature CMOS technology. However Geiger-mode detector based FPAs can only measure the range information of a scene but not the reflectivity. Reflectivity is a major characteristic which can help target classification and identification. According to Poisson statistic nature, detection probability is tightly connected to the incident number of photon. Employing this relation, a signal intensity estimation method based on probability inversion is proposed. Instead of measuring intensity directly, several detections are conducted, then the detection probability is obtained and the intensity is estimated using this method. The relation between the estimator's accuracy, measuring range and number of detections are discussed based on statistical theory. Finally Monte-Carlo simulation is conducted to verify the correctness of this theory. Using 100 times of detection, signal intensity equal to 4.6 photons per detection can be measured using this method. With slight modification of measuring strategy, intensity information can be obtained using current Geiger-mode detector based FPAs, which can enrich the information acquired and broaden the application field of current technology.

  3. SU-F-P-52: A Meta-Analysis of Controlled Clinical Trials Comparing Elective Nodal Irradiation with Involved-Field Irradiation for Conformal Or Intensity-Modulated Radiotherapy in Patients with Esophageal Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, W; Zhang, R; Zhou, Z

    Purpose: To compare elective nodal irradiation with involved-field irradiation for three-dimensional conformal radiotherapy or intensity-modulated radiotherapy in patients with esophageal cancer by a metaanalysis. Methods: Wanfang, CNKI, VIP, CBM databases, PubMed, Embase and Cochrane Library were searched to identify the controlled clinical trials of elective nodal irradiation with involved-field irradiation for three-dimensional conformal radiotherapy or intensity-modulated radiotherapy in patients with esophageal cancer. The obtained data were analyzed using Stata 11.0. The difference between two groups was estimated by calculating the odds ratio (OR) with 95% confidence interval (95% CI). Results: A total of 12 controlled clinical trials involving 1095 esophagealmore » cancer patients, which were selected according to inclusion and exclusion criteria, were included in this meta-analysis. The meta-analysis showed that the elective nodal irradiation group reduced the rates of out-field failure comparing with involved-field irradiation group (OR=3.727, P=0.007). However, the rates of ≥grades 3 acute radiation pneumonitis and esophagitis were significantly higher in the elective nodal irradiation group than in the involved-field irradiation group (OR=0.348, P=0.001, OR=0.385, P=0.000). 1-, 2-, 3-year local control rates (OR=0.966, P=0.837, OR=0.946, P=0.781; OR=0.732P=0.098) and 1-, 3-, 5-year survival rates were similar in the two groups ( OR=0.966, P=0.837; OR=0.946, P=0.781; OR=0.732, P=0.098; OR=0.952, P=0.756; OR=1.149, P=0.422; OR=0.768, P=0.120). It is the same with the rates of distant metastasis (OR=0.986, P=0.937). Conclusion: Compared with involved-field irradiation, the elective nodal irradiation can reduce the rates of out-field failure for three-dimensional conformal radiotherapy or intensity-modulated radiotherapy in patients with esophageal cancer. However, its advantage of local control and survival rates is not obvious and it increases the incidence of toxicities.« less

  4. Angle-dependent strong-field molecular ionization rates with tuned range-separated time-dependent density functional theory.

    PubMed

    Sissay, Adonay; Abanador, Paul; Mauger, François; Gaarde, Mette; Schafer, Kenneth J; Lopata, Kenneth

    2016-09-07

    Strong-field ionization and the resulting electronic dynamics are important for a range of processes such as high harmonic generation, photodamage, charge resonance enhanced ionization, and ionization-triggered charge migration. Modeling ionization dynamics in molecular systems from first-principles can be challenging due to the large spatial extent of the wavefunction which stresses the accuracy of basis sets, and the intense fields which require non-perturbative time-dependent electronic structure methods. In this paper, we develop a time-dependent density functional theory approach which uses a Gaussian-type orbital (GTO) basis set to capture strong-field ionization rates and dynamics in atoms and small molecules. This involves propagating the electronic density matrix in time with a time-dependent laser potential and a spatial non-Hermitian complex absorbing potential which is projected onto an atom-centered basis set to remove ionized charge from the simulation. For the density functional theory (DFT) functional we use a tuned range-separated functional LC-PBE*, which has the correct asymptotic 1/r form of the potential and a reduced delocalization error compared to traditional DFT functionals. Ionization rates are computed for hydrogen, molecular nitrogen, and iodoacetylene under various field frequencies, intensities, and polarizations (angle-dependent ionization), and the results are shown to quantitatively agree with time-dependent Schrödinger equation and strong-field approximation calculations. This tuned DFT with GTO method opens the door to predictive all-electron time-dependent density functional theory simulations of ionization and ionization-triggered dynamics in molecular systems using tuned range-separated hybrid functionals.

  5. Angle-dependent strong-field molecular ionization rates with tuned range-separated time-dependent density functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sissay, Adonay; Abanador, Paul; Mauger, François

    2016-09-07

    Strong-field ionization and the resulting electronic dynamics are important for a range of processes such as high harmonic generation, photodamage, charge resonance enhanced ionization, and ionization-triggered charge migration. Modeling ionization dynamics in molecular systems from first-principles can be challenging due to the large spatial extent of the wavefunction which stresses the accuracy of basis sets, and the intense fields which require non-perturbative time-dependent electronic structure methods. In this paper, we develop a time-dependent density functional theory approach which uses a Gaussian-type orbital (GTO) basis set to capture strong-field ionization rates and dynamics in atoms and small molecules. This involves propagatingmore » the electronic density matrix in time with a time-dependent laser potential and a spatial non-Hermitian complex absorbing potential which is projected onto an atom-centered basis set to remove ionized charge from the simulation. For the density functional theory (DFT) functional we use a tuned range-separated functional LC-PBE*, which has the correct asymptotic 1/r form of the potential and a reduced delocalization error compared to traditional DFT functionals. Ionization rates are computed for hydrogen, molecular nitrogen, and iodoacetylene under various field frequencies, intensities, and polarizations (angle-dependent ionization), and the results are shown to quantitatively agree with time-dependent Schrödinger equation and strong-field approximation calculations. This tuned DFT with GTO method opens the door to predictive all-electron time-dependent density functional theory simulations of ionization and ionization-triggered dynamics in molecular systems using tuned range-separated hybrid functionals.« less

  6. METHOD AND APPARATUS FOR INJECTING AND TRAPPING ELECTRONS IN A MAGNETIC FIELD

    DOEpatents

    Christofilos, N.C.

    1962-05-29

    An apparatus is designed for the manipulation of electrons in an exially symmetric magnetic field region and may be employed to trap electrons in such a field by directing an electron beam into a gradientially intensified field region therein to form an annular electron moving axially in the field and along a decreasing field gradient. Dissipative loop circuits such as resistive loops are disposed along at least the decreasing field gradient so as to be inductively coupled to the electron bunch so as to extract energy of the electron bunch and provide a braking force effective to reduce the velocity of the bunch. Accordingly, the electron bunch upon entering a lower intensity magnetic field region is retained therein since the electrons no longer possess sufficient energy to escape. (AEC)

  7. Nonclassical storage and retrieval of a multiphoton pulse in cold Rydberg atoms

    NASA Astrophysics Data System (ADS)

    Tian, Xue-Dong; Liu, Yi-Mou; Bao, Qian-Qian; Wu, Jin-Hui; Artoni, M.; La Rocca, G. C.

    2018-04-01

    We investigate the storage and retrieval of a multiphoton probe field in cold Rydberg atoms with an effective method based on the superatom model. This probe field is found greatly attenuated in light intensity and two-photon correlation yet suffering little temporal broadening as a result of the partial dipole blockade of Rydberg excitation. In particular, the output field energy exhibits an intriguing saturation effect against the input field energy accompanied by an inhomogeneous nonclassical antibunching feature as a manifestation of the dynamic cooperative optical nonlinearity. Our numerical results are qualitatively consistent with those in a recent experiment and could be extended to pursue quantum information applications of nonclassical light fields.

  8. Construction of imaging system for wide-field-range ESR spectra using localized microwave field and its case study of crystal orientation in suspension of copper sulfate pentahydrate (CuSO4 . 5H2O).

    PubMed

    Tani, Atsushi; Ueno, Takehiro; Yamanaka, Chihiro; Katsura, Makoto; Ikeya, Motoji

    2005-02-01

    A scanning electron spin resonance (ESR) microscope using a localized microwave field was redesigned to measure ESR spectra from 0 to 400 mT using electromagnets. Divalent copper ion (Cu2+) in copper sulfate pentahydrate (CuSO4 . 5H2O) was imaged, after the powdered samples were cemented in silicone rubber under a magnetic field. The ratio of the two signal intensities at g=2.27 and 2.08 clearly indicates the orientation of the particles. This method can be used for mapping the local magnetic field and its direction.

  9. Pulsed electric field increases reproduction.

    PubMed

    Panagopoulos, Dimitris J

    2016-01-01

    Purpose To study the effect of pulsed electric field - applied in corona discharge photography - on Drosophila melanogaster reproduction, possible induction of DNA fragmentation, and morphological alterations in the gonads. Materials and methods Animals were exposed to different field intensities (100, 200, 300, and 400 kV/m) during the first 2-5 days of their adult lives, and the effect on reproductive capacity was assessed. DNA fragmentation during early- and mid-oogenesis was investigated by application of the TUNEL (Terminal deoxynucleotide transferase dUTP Nick End Labeling) assay. Sections of follicles after fixation and embedding in resins were observed for possible morphological/developmental abnormalities. Results The field increased reproduction by up to 30% by increasing reproductive capacity in both sexes. The effect increased with increasing field intensities. The rate of increase diminished at the strongest intensities. Slight induction of DNA fragmentation was observed exclusively in the nurse (predominantly) and follicle cells, and exclusively at the two most sensitive developmental stages, i.e., germarium and predominantly stage 7-8. Sections of follicles from exposed females at stages of early and mid-oogennesis other than germarium and stages 7-8 did not reveal abnormalities. Conclusions (1) The specific type of electric field may represent a mild stress factor, inducing DNA fragmentation and cell death in a small percentage of gametes, triggering the reaction of the animal's reproductive system to increase the rate of gametogenesis in order to compensate the loss of a small number of gametes. (2) The nurse cells are the most sensitive from all three types of egg chamber cells. (3) The mid-oogenesis checkpoint (stage 7-8) is more sensitive to this field than the early oogenesis one (germarium) in contrast to microwave exposure. (4) Possible therapeutic applications, or applications in increasing fertility, should be investigated.

  10. Optimal field-splitting algorithm in intensity-modulated radiotherapy: Evaluations using head-and-neck and female pelvic IMRT cases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dou, Xin; Kim, Yusung, E-mail: yusung-kim@uiowa.edu; Bayouth, John E.

    2013-04-01

    To develop an optimal field-splitting algorithm of minimal complexity and verify the algorithm using head-and-neck (H and N) and female pelvic intensity-modulated radiotherapy (IMRT) cases. An optimal field-splitting algorithm was developed in which a large intensity map (IM) was split into multiple sub-IMs (≥2). The algorithm reduced the total complexity by minimizing the monitor units (MU) delivered and segment number of each sub-IM. The algorithm was verified through comparison studies with the algorithm as used in a commercial treatment planning system. Seven IMRT, H and N, and female pelvic cancer cases (54 IMs) were analyzed by MU, segment numbers, andmore » dose distributions. The optimal field-splitting algorithm was found to reduce both total MU and the total number of segments. We found on average a 7.9 ± 11.8% and 9.6 ± 18.2% reduction in MU and segment numbers for H and N IMRT cases with an 11.9 ± 17.4% and 11.1 ± 13.7% reduction for female pelvic cases. The overall percent (absolute) reduction in the numbers of MU and segments were found to be on average −9.7 ± 14.6% (−15 ± 25 MU) and −10.3 ± 16.3% (−3 ± 5), respectively. In addition, all dose distributions from the optimal field-splitting method showed improved dose distributions. The optimal field-splitting algorithm shows considerable improvements in both total MU and total segment number. The algorithm is expected to be beneficial for the radiotherapy treatment of large-field IMRT.« less

  11. High pressure effects in high-field asymmetric waveform ion mobility spectrometry.

    PubMed

    Wang, Yonghuan; Wang, Xiaozhi; Li, Lingfen; Chen, Chilai; Xu, Tianbai; Wang, Tao; Luo, Jikui

    2016-08-30

    High-Field Asymmetric Waveform Ion Mobility Spectrometry (FAIMS) is an analytical technique based on the principle of non-linear electric field dependence of coefficient of mobility of ions for separation that was originally conceived in the Soviet Union in the early 1980s. Being well developed over the past decades, FAIMS has become an efficient method for the separation and characterization of gas-phase ions at ambient pressure, often in air, to detect trace amounts of chemical species including explosives, toxic chemicals, chemical warfare agents and other compounds. However the resolution of FAIMS and ion separation capability need to be improved for more applications of the technique. The effects of above-ambient pressure varying from 1 to 3 atm on peak position, resolving power, peak width, and peak intensity are investigated theoretically and experimentally using micro-fabricated planar FAIMS in purified air. Peak positions, varying with pressure in a way as a function of dispersion voltage, could be simplified by expressing both compensation and dispersion fields in Townsend units for E/N, the ratio of electric field intensity (E) to the gas number density (N). It is demonstrated that ion Townsend-scale peak positions remain unchanged for a range of pressures investigated, implying that the higher the pressure is, stronger compensation and separation fields are needed within limits of air breakdown field. Increase in pressure is found to separate ions that could not be distinguished in ambient pressure, which could be interpreted as the differentials of ions' peak compensation voltage expanded wider than the dilation of peak widths leading to resolving power enhancement with pressure. Increase in pressure can also result in an increase in peak intensity. Copyright © 2016 John Wiley & Sons, Ltd.

  12. Preliminary outcome and toxicity report of extended-field, intensity-modulated radiation therapy for gynecologic malignancies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salama, Joseph K.; Mundt, Arno J.; Department of Radiation Oncology, University of Illinois, Chicago, IL

    2006-07-15

    Purpose: The aim of this article is to report a preliminary analysis of our initial clinical experience with extended-field intensity-modulated radiotherapy for gynecologic malignancies. Methods and Materials: Between November 2002 and May 2005, 13 women with gynecologic malignancies were treated with extended-field radiation therapy. Of the women, 7 had endometrial cancer, 4 cervical cancer, 1 recurrent endometrial cancer, and 1 suspected cervical cancer. All women underwent computed tomography planning, with the upper vagina, parametria, and uterus (if present) contoured within the CTV. In addition, the clinical target volume contained the pelvic and presacral lymph nodes as well as the para-aorticmore » lymph nodes. All acute toxicity was scored according to the Common Terminology Criteria for Adverse Events (CTCAE v 3.0). All late toxicity was scored using the Radiation Therapy Oncology Group late toxicity score. Results: The median follow-up was 11 months. Extended-field intensity-modulated radiation therapy (IMRT) for gynecologic malignancies was well tolerated. Two patients experienced Grade 3 or higher toxicity. Both patients were treated with concurrent cisplatin based chemotherapy. Neither patient was planned with bone marrow sparing. Eleven patients had no evidence of late toxicity. One patient with multiple previous surgeries experienced a bowel obstruction. One patient with bilateral grossly involved and unresectable common iliac nodes experienced bilateral lymphedema. Extended-field-IMRT achieved good local control with only 1 patient, who was metastatic at presentation, and 1 patient not able to complete treatment, experiencing in-field failure. Conclusions: Extended-field IMRT is safe and effective with a low incidence of acute toxicity. Longer follow-up is needed to assess chronic toxicity, although early results are promising.« less

  13. Comments on atomic stabilization in intense fields and relativity

    NASA Astrophysics Data System (ADS)

    Faisal, F. H. M.

    2000-07-01

    We comment on the problem of atomic stabilization for non-relativistic intensities, Up≪mc2, and discuss how it might be affected at relativistic intensities, Up⩾mc2. Two concepts of stabilization, type I and type II, are distinguished in the present discussion. It is pointed out that in the relativistic case investigations in 3D become unavoidable for any reliable information on the problem. We also point out that for ponderomotive energies greater than 2mc2, the threshold of real pairs production, both the frameworks of classical relativistic simulation, as well as of one-particle Dirac wavefunction, break down. New thinking is needed to develop non-perturbative QED methods in that situation.

  14. Au-Pt-Au nanoraspberry structures used for mercury ion detection

    NASA Astrophysics Data System (ADS)

    Huang, Jiang-Hao; Huang, Shuai; Wen, Xiaoyan; Li, Min; Lu, Haifei

    2017-12-01

    Detection of Hg2+ with high sensitivity is of great significance in the biochemical sensing field. Quantitative of Hg2+ was realized based on the influence of Hg2+ on the UV-vis absorption performance of Au-Pt-Au core-shell nanoraspberry (APA)-rhodamine-6G (R6G) structure. First, APA sol was added into R6G indicator solution and the UV-vis absorption signal intensity of R6G was evidently promoted. The signal intensity monotonously increased as more APA sol was added. However, when HgCl2 solution was introduced, the signal intensity declined. A linear relationship between Hg2+ concentration and signal intensity at 527 nm was revealed, based on which quantitative determination of Hg2+ could be realized. Hg2+ detection sensitivity was measured to be 0.031 a.u./M with a limit of detection of 10-7 M and the response time was 20 s. A high Hg2+ detection selectivity over Cu2+, Na+, Li+, and K+ was demonstrated. Due to its simplicity and high sensitivity, the proposed method could find an extensive application prospect in the Hg2+ detection field.

  15. Acoustics flow analysis in circular duct using sound intensity and dynamic mode decomposition

    NASA Astrophysics Data System (ADS)

    Weyna, S.

    2014-08-01

    Sound intensity generation in hard-walled duct with acoustic flow (no mean-flow) is treated experimentally and shown graphically. In paper, numerous methods of visualization illustrating the vortex flow (2D, 3D) can graphically explain diffraction and scattering phenomena occurring inside the duct and around open end area. Sound intensity investigation in annular duct gives a physical picture of sound waves in any duct mode. In the paper, modal energy analysis are discussed with particular reference to acoustics acoustic orthogonal decomposition (AOD). The image of sound intensity fields before and above "cut-off" frequency region are found to compare acoustic modes which might resonate in duct. The experimental results show also the effects of axial and swirling flow. However acoustic field is extremely complicated, because pressures in non-propagating (cut-off) modes cooperate with the particle velocities in propagating modes, and vice versa. Measurement in cylindrical duct demonstrates also the cut-off phenomenon and the effect of reflection from open end. The aim of experimental study was to obtain information on low Mach number flows in ducts in order to improve physical understanding and validate theoretical CFD and CAA models that still may be improved.

  16. Methods from Information Extraction from LIDAR Intensity Data and Multispectral LIDAR Technology

    NASA Astrophysics Data System (ADS)

    Scaioni, M.; Höfle, B.; Baungarten Kersting, A. P.; Barazzetti, L.; Previtali, M.; Wujanz, D.

    2018-04-01

    LiDAR is a consolidated technology for topographic mapping and 3D reconstruction, which is implemented in several platforms On the other hand, the exploitation of the geometric information has been coupled by the use of laser intensity, which may provide additional data for multiple purposes. This option has been emphasized by the availability of sensors working on different wavelength, thus able to provide additional information for classification of surfaces and objects. Several applications ofmonochromatic and multi-spectral LiDAR data have been already developed in different fields: geosciences, agriculture, forestry, building and cultural heritage. The use of intensity data to extract measures of point cloud quality has been also developed. The paper would like to give an overview on the state-of-the-art of these techniques, and to present the modern technologies for the acquisition of multispectral LiDAR data. In addition, the ISPRS WG III/5 on `Information Extraction from LiDAR Intensity Data' has collected and made available a few open data sets to support scholars to do research on this field. This service is presented and data sets delivered so far as are described.

  17. Damage Detection for Historical Architectures Based on Tls Intensity Data

    NASA Astrophysics Data System (ADS)

    Li, Q.; Cheng, X.

    2018-04-01

    TLS (Terrestrial Laser Scanner) has long been preferred in the cultural heritage field for 3D documentation of historical sites thanks to its ability to acquire the geometric information without any physical contact. Besides the geometric information, most TLS systems also record the intensity information, which is considered as an important measurement of the spectral property of the scanned surface. Recent studies have shown the potential of using intensity for damage detection. However, the original intensity is affected by scanning geometry such as range and incidence angle and other factors, thus making the results less accurate. Therefore, in this paper, we present a method to detect certain damage areas using the corrected intensity data. Firstly, two data-driven models have been developed to correct the range and incidence angle effect. Then the corrected intensity is used to generate 2D intensity images for classification. After the damage areas being detected, they are re-projected to the 3D point cloud for better visual representation and further investigation. The experiment results indicate the feasibility and validity of the corrected intensity for damage detection.

  18. Film Dosimetry for Intensity Modulated Radiation Therapy

    NASA Astrophysics Data System (ADS)

    Benites-Rengifo, J.; Martínez-Dávalos, A.; Celis, M.; Lárraga, J.

    2004-09-01

    Intensity Modulated Radiation Therapy (IMRT) is an oncology treatment technique that employs non-uniform beam intensities to deliver highly conformal radiation to the targets while minimizing doses to normal tissues and critical organs. A key element for a successful clinical implementation of IMRT is establishing a dosimetric verification process that can ensure that delivered doses are consistent with calculated ones for each patient. To this end we are developing a fast quality control procedure, based on film dosimetry techniques, to be applied to the 6 MV Novalis linear accelerator for IMRT of the Instituto Nacional de Neurología y Neurocirugía (INNN) in Mexico City. The procedure includes measurements of individual fluence maps for a limited number of fields and dose distributions in 3D using extended dose-range radiographic film. However, the film response to radiation might depend on depth, energy and field size, and therefore compromise the accuracy of measurements. In this work we present a study of the dependence of Kodak EDR2 film's response on the depth, field size and energy, compared with those of Kodak XV2 film. The first aim is to devise a fast and accurate method to determine the calibration curve of film (optical density vs. doses) commonly called a sensitometric curve. This was accomplished by using three types of irradiation techniques: Step-and-shoot, dynamic and static fields.

  19. Removal of Escherichia coli via low frequency electromagnetic field in riverbank filtration system.

    NASA Astrophysics Data System (ADS)

    Selamat, Rossitah; Abustan, Ismail; Rizal Arshad, Mohd; Mokhtar Kamal, Nurul Hana

    2018-04-01

    The removal of Escherichia coli (E. coli) via low frequency of electromagnetic field (LF-EMF) with different magnetic field was studied. LF-EMF is known as a high magnetic susceptibility method, which could affect E. coli growth without the usage of chemicals. The aim of this study was to investigate the removal of E. coli by using LF-EMF in water abstraction for the riverbank filtration (RBF) application. The effect of LF-EMF with the intensity of 2 to 10mT and 50Hz on coiled column of 1mm copper wire at 1 to 6 hours was assessed. The removal of E. coli after exposing to LF-EMF on the column model was measured using most probable number (MPN/100mL) and colonies forming unit (CFU/100mL) methods. Water flows into the column were varied up to 6 hours and with flowrate of 100 mL/min. Experimental results demonstrate that 100% of E. coli was removed at 8mT after 6 hours exposure. The magnetic field at 10mT removed 100% of E. coli after 4 hours exposure. The results obtained in this study proved that the LF-EMF was efficient in E. coli removal from RBF system. These finding indicated that the LF-EMF intensities and time of exposure can affect the removal of E. coli.

  20. [The research on separating and extracting overlapping spectral feature lines in LIBS using damped least squares method].

    PubMed

    Wang, Yin; Zhao, Nan-jing; Liu, Wen-qing; Yu, Yang; Fang, Li; Meng, De-shuo; Hu, Li; Zhang, Da-hai; Ma, Min-jun; Xiao, Xue; Wang, Yu; Liu, Jian-guo

    2015-02-01

    In recent years, the technology of laser induced breakdown spectroscopy has been developed rapidly. As one kind of new material composition detection technology, laser induced breakdown spectroscopy can simultaneously detect multi elements fast and simply without any complex sample preparation and realize field, in-situ material composition detection of the sample to be tested. This kind of technology is very promising in many fields. It is very important to separate, fit and extract spectral feature lines in laser induced breakdown spectroscopy, which is the cornerstone of spectral feature recognition and subsequent elements concentrations inversion research. In order to realize effective separation, fitting and extraction of spectral feature lines in laser induced breakdown spectroscopy, the original parameters for spectral lines fitting before iteration were analyzed and determined. The spectral feature line of' chromium (Cr I : 427.480 nm) in fly ash gathered from a coal-fired power station, which was overlapped with another line(FeI: 427.176 nm), was separated from the other one and extracted by using damped least squares method. Based on Gauss-Newton iteration, damped least squares method adds damping factor to step and adjust step length dynamically according to the feedback information after each iteration, in order to prevent the iteration from diverging and make sure that the iteration could converge fast. Damped least squares method helps to obtain better results of separating, fitting and extracting spectral feature lines and give more accurate intensity values of these spectral feature lines: The spectral feature lines of chromium in samples which contain different concentrations of chromium were separated and extracted. And then, the intensity values of corresponding spectral lines were given by using damped least squares method and least squares method separately. The calibration curves were plotted, which showed the relationship between spectral line intensity values and chromium concentrations in different samples. And then their respective linear correlations were compared. The experimental results showed that the linear correlation of the intensity values of spectral feature lines and the concentrations of chromium in different samples, which was obtained by damped least squares method, was better than that one obtained by least squares method. And therefore, damped least squares method was stable, reliable and suitable for separating, fitting and extracting spectral feature lines in laser induced breakdown spectroscopy.

  1. Dynamics of intracellular processes in live-cell systems unveiled by fluorescence correlation microscopy.

    PubMed

    González Bardeci, Nicolás; Angiolini, Juan Francisco; De Rossi, María Cecilia; Bruno, Luciana; Levi, Valeria

    2017-01-01

    Fluorescence fluctuation-based methods are non-invasive microscopy tools especially suited for the study of dynamical aspects of biological processes. These methods examine spontaneous intensity fluctuations produced by fluorescent molecules moving through the small, femtoliter-sized observation volume defined in confocal and multiphoton microscopes. The quantitative analysis of the intensity trace provides information on the processes producing the fluctuations that include diffusion, binding interactions, chemical reactions and photophysical phenomena. In this review, we present the basic principles of the most widespread fluctuation-based methods, discuss their implementation in standard confocal microscopes and briefly revise some examples of their applications to address relevant questions in living cells. The ultimate goal of these methods in the Cell Biology field is to observe biomolecules as they move, interact with targets and perform their biological action in the natural context. © 2016 IUBMB Life, 69(1):8-15, 2017. © 2016 International Union of Biochemistry and Molecular Biology.

  2. Visualizing and quantifying microtopographic change of dryland landscapes from an unmanned aircraft system

    USDA-ARS?s Scientific Manuscript database

    Background/Question/Methods: Soil and site stability are key attributes of assessing the health of dryland landscapes because these lands are susceptible to high rates of wind- and water-caused erosion. Field techniques for measuring and monitoring soil erosion in drylands are often labor intensive...

  3. Oak plantation establishment using mechanical, burning, and herbicide treatments

    Treesearch

    James H. Miller

    1993-01-01

    Abstract.Mechanical methods, prescribed burning, and herbicide treatments for establishing oak plantations are reviewed, with emphasis on herbicides. Integrated prescriptions for site preparation using these silvicultural tools are outlined for both clearcut forests and old field sites. The basic premise is that intensive cultural treatments will be...

  4. Field testing a mobile inelastic neutron scattering system to measure soil carbon

    USDA-ARS?s Scientific Manuscript database

    Cropping history in conjunction with soil management practices can have a major impact on the amount of organic carbon (C) stored in soil. Current methods of assessing soil C based on soil coring and subsequent processing procedures prior to laboratory analysis are labor intensive and time consuming...

  5. Asymmetric Flow-Field Flow Fractionation (AF4) of Aqueous C60 Aggregates with Dynamic Light Scattering Size and LC-MS

    EPA Science Inventory

    Current methods for the size determination of nanomaterials in aqueous suspension include dynamic or static light scattering and electron or atomic force microscopy techniques. Light scattering techniques are limited by poor resolution and the scattering intensity dependence on p...

  6. PREFACE TO SPECIAL SECTION: SOUTHERN OXIDANTS STUDY 1999 ATLANTA SUPERSITE PROJECT (SOS3)

    EPA Science Inventory

    The Atlanta Supersites Project consisted of a one-month intensive field program to compare advanced methods for measurement of PM2.5 mass, chemical composition, including single particle composition in real-time, and aerosol precursor species. The project was the first of EPA's ...

  7. Preliminary Study of 2-D Time Domain Electromagnetic (TDEM) Modeling to Analyze Subsurface Resistivity Distribution and its Application to the Geothermal Systems

    NASA Astrophysics Data System (ADS)

    Aji Hapsoro, Cahyo; Purqon, Acep; Srigutomo, Wahyu

    2017-07-01

    2-D Time Domain Electromagnetic (TDEM) has been successfully conducted to illustrate the value of Electric field distribution under the Earth surface. Electric field compared by magnetic field is used to analyze resistivity and resistivity is one of physical properties which very important to determine the reservoir potential area of geothermal systems as one of renewable energy. In this modeling we used Time Domain Electromagnetic method because it can solve EM field interaction problem with complex geometry and to analyze transient problems. TDEM methods used to model the value of electric and magnetic fields as a function of the time combined with the function of distance and depth. The result of this modeling is Electric field intensity value which is capable to describe the structure of the Earth’s subsurface. The result of this modeling can be applied to describe the Earths subsurface resistivity values to determine the reservoir potential of geothermal systems.

  8. [Nitrogen status diagnosis of rice by using a digital camera].

    PubMed

    Jia, Liang-Liang; Fan, Ming-Sheng; Zhang, Fu-Suo; Chen, Xin-Ping; Lü, Shi-Hua; Sun, Yan-Ming

    2009-08-01

    In the present research, a field experiment with different N application rate was conducted to study the possibility of using visible band color analysis methods to monitor the N status of rice canopy. The Correlations of visible spectrum band color intensity between rice canopy image acquired from a digital camera and conventional nitrogen status diagnosis parameters of leaf SPAD chlorophyll meter readings, total N content, upland biomass and N uptake were studied. The results showed that the red color intensity (R), green color intensity (G) and normalized redness intensity (NRI) have significant inverse linear correlations with the conventional N diagnosis parameters of SPAD readings, total N content, upland biomass and total N uptake. The correlation coefficient values (r) were from -0.561 to -0.714 for red band (R), from -0.452 to -0.505 for green band (G), and from -0.541 to 0.817 for normalized redness intensity (NRI). But the normalized greenness intensity (NGI) showed a significant positive correlation with conventional N parameters and the correlation coefficient values (r) were from 0.505 to 0.559. Compared with SPAD readings, the normalized redness intensity (NRI), with a high r value of 0.541-0.780 with conventional N parameters, could better express the N status of rice. The digital image color analysis method showed the potential of being used in rice N status diagnosis in the future.

  9. Avian magnetic compass can be tuned to anomalously low magnetic intensities.

    PubMed

    Winklhofer, Michael; Dylda, Evelyn; Thalau, Peter; Wiltschko, Wolfgang; Wiltschko, Roswitha

    2013-07-22

    The avian magnetic compass works in a fairly narrow functional window around the intensity of the local geomagnetic field, but adjusts to intensities outside this range when birds experience these new intensities for a certain time. In the past, the geomagnetic field has often been much weaker than at present. To find out whether birds can obtain directional information from a weak magnetic field, we studied spontaneous orientation preferences of migratory robins in a 4 µT field (i.e. a field of less than 10 per cent of the local intensity of 47 µT). Birds can adjust to this low intensity: they turned out to be disoriented under 4 µT after a pre-exposure time of 8 h to 4 µT, but were able to orient in this field after a total exposure time of 17 h. This demonstrates a considerable plasticity of the avian magnetic compass. Orientation in the 4 µT field was not affected by local anaesthesia of the upper beak, but was disrupted by a radiofrequency magnetic field of 1.315 MHz, 480 nT, suggesting that a radical-pair mechanism still provides the directional information in the low magnetic field. This is in agreement with the idea that the avian magnetic compass may have developed already in the Mesozoic in the common ancestor of modern birds.

  10. Avian magnetic compass can be tuned to anomalously low magnetic intensities

    PubMed Central

    Winklhofer, Michael; Dylda, Evelyn; Thalau, Peter; Wiltschko, Wolfgang; Wiltschko, Roswitha

    2013-01-01

    The avian magnetic compass works in a fairly narrow functional window around the intensity of the local geomagnetic field, but adjusts to intensities outside this range when birds experience these new intensities for a certain time. In the past, the geomagnetic field has often been much weaker than at present. To find out whether birds can obtain directional information from a weak magnetic field, we studied spontaneous orientation preferences of migratory robins in a 4 µT field (i.e. a field of less than 10 per cent of the local intensity of 47 µT). Birds can adjust to this low intensity: they turned out to be disoriented under 4 µT after a pre-exposure time of 8 h to 4 µT, but were able to orient in this field after a total exposure time of 17 h. This demonstrates a considerable plasticity of the avian magnetic compass. Orientation in the 4 µT field was not affected by local anaesthesia of the upper beak, but was disrupted by a radiofrequency magnetic field of 1.315 MHz, 480 nT, suggesting that a radical-pair mechanism still provides the directional information in the low magnetic field. This is in agreement with the idea that the avian magnetic compass may have developed already in the Mesozoic in the common ancestor of modern birds. PMID:23720547

  11. [Features of control of electromagnetic radiation emitted by personal computers].

    PubMed

    Pal'tsev, Iu P; Buzov, A L; Kol'chugin, Iu I

    1996-01-01

    Measurements of PC electromagnetic irradiation show that the main sources are PC blocks emitting the waves of certain frequencies. Use of wide-range detectors measuring field intensity in assessment of PC electromagnetic irradiation gives unreliable results. More precise measurements by selective devices are required. Thus, it is expedient to introduce a term "spectral density of field intensity" and its maximal allowable level. In this case a frequency spectrum of PC electromagnetic irradiation is divided into 4 ranges, one of which is subjected to calculation of field intensity for each harmonic frequency, and others undergo assessment of spectral density of field intensity.

  12. Reconstruction and separation of vibratory field using structural holography

    NASA Astrophysics Data System (ADS)

    Chesnais, C.; Totaro, N.; Thomas, J.-H.; Guyader, J.-L.

    2017-02-01

    A method for reconstructing and separating vibratory field on a plate-like structure is presented. The method, called "Structural Holography" is derived from classical Near-field Acoustic Holography (NAH) but in the vibratory domain. In this case, the plate displacement is measured on one-dimensional lines (the holograms) and used to reconstruct the entire two-dimensional displacement field. As a consequence, remote measurements on non directly accessible zones are possible with Structural Holography. Moreover, as it is based on the decomposition of the field into forth and back waves, Structural Holography permits to separate forces in the case of multi-sources excitation. The theoretical background of the Structural Holography method is described first. Then, to illustrate the process and the possibilities of Structural Holography, the academic test case of an infinite plate excited by few point forces is presented. With the principle of vibratory field separation, the displacement fields produced by each point force separately is reconstructed. However, the displacement field is not always meaningful and some additional treatments are mandatory to localize the position of point forces for example. From the simple example of an infinite plate, a post-processing based on the reconstruction of the structural intensity field is thus proposed. Finally, Structural Holography is generalized to finite plates and applied to real experimental measurements

  13. Evaluation of the photoionization probability of H2+ by the trajectory semiclassical method

    NASA Astrophysics Data System (ADS)

    Arkhipov, D. N.; Astashkevich, S. A.; Mityureva, A. A.; Smirnov, V. V.

    2018-07-01

    The trajectory-based method for calculating the probabilities of transitions in the quantum system developed in our previous works and tested for atoms is applied to calculating the photoionization probability for the simplest molecule - hydrogen molecular ion. In a weak field it is established a good agreement between our photoionization cross section and the data obtained by other theoretical methods for photon energy in the range from one-photon ionization threshold up to 25 a.u. Photoionization cross section in the range 25 < ω ≤ 100 a.u. was calculated for the first time judging by the literature known to us. It is also confirmed that the trajectory method works in a wide range of the field magnitudes including superatomic values up to relativistic intensity.

  14. Characteristic of laser diode beam propagation through a collimating lens.

    PubMed

    Xu, Qiang; Han, Yiping; Cui, Zhiwei

    2010-01-20

    A mathematical model of a laser diode beam propagating through a collimating lens is presented. Wave propagation beyond the paraxial approximation is studied. The phase delay of the laser diode wave in passing through the lens is analyzed in detail. The propagation optical field after the lens is obtained from the diffraction integral by the stationary phase method. The model is employed to predict the light intensity at various beam cross sections, and the computed intensity distributions are in a good agreement with the corresponding measurements.

  15. Comparison of laser and intense pulsed light sintering (IPL) for inkjet-printed copper nanoparticle layers

    PubMed Central

    Niittynen, Juha; Sowade, Enrico; Kang, Hyunkyoo; Baumann, Reinhard R.; Mäntysalo, Matti

    2015-01-01

    In this contribution we discuss the sintering of an inkjet-printed copper nanoparticle ink based on electrical performance and microstructure analysis. Laser and intense pulsed light (IPL) sintering are employed in order to compare the different techniques and their feasibility for electronics manufacturing. A conductivity of more than 20% of that of bulk copper material has been obtained with both sintering methods. Laser and IPL sintering techniques are considered to be complementary techniques and are highly suitable in different application fields. PMID:25743631

  16. Variational 3D-PIV with sparse descriptors

    NASA Astrophysics Data System (ADS)

    Lasinger, Katrin; Vogel, Christoph; Pock, Thomas; Schindler, Konrad

    2018-06-01

    3D particle imaging velocimetry (3D-PIV) aims to recover the flow field in a volume of fluid, which has been seeded with tracer particles and observed from multiple camera viewpoints. The first step of 3D-PIV is to reconstruct the 3D locations of the tracer particles from synchronous views of the volume. We propose a new method for iterative particle reconstruction, in which the locations and intensities of all particles are inferred in one joint energy minimization. The energy function is designed to penalize deviations between the reconstructed 3D particles and the image evidence, while at the same time aiming for a sparse set of particles. We find that the new method, without any post-processing, achieves significantly cleaner particle volumes than a conventional, tomographic MART reconstruction, and can handle a wide range of particle densities. The second step of 3D-PIV is to then recover the dense motion field from two consecutive particle reconstructions. We propose a variational model, which makes it possible to directly include physical properties, such as incompressibility and viscosity, in the estimation of the motion field. To further exploit the sparse nature of the input data, we propose a novel, compact descriptor of the local particle layout. Hence, we avoid the memory-intensive storage of high-resolution intensity volumes. Our framework is generic and allows for a variety of different data costs (correlation measures) and regularizers. We quantitatively evaluate it with both the sum of squared differences and the normalized cross-correlation, respectively with both a hard and a soft version of the incompressibility constraint.

  17. A systematic and feasible method for computing nuclear contributions to electrical properties of polyatomic molecules

    NASA Astrophysics Data System (ADS)

    Luis, Josep M.; Duran, Miquel; Andrés, José L.

    1997-08-01

    An analytic method to evaluate nuclear contributions to electrical properties of polyatomic molecules is presented. Such contributions control changes induced by an electric field on equilibrium geometry (nuclear relaxation contribution) and vibrational motion (vibrational contribution) of a molecular system. Expressions to compute the nuclear contributions have been derived from a power series expansion of the potential energy. These contributions to the electrical properties are given in terms of energy derivatives with respect to normal coordinates, electric field intensity or both. Only one calculation of such derivatives at the field-free equilibrium geometry is required. To show the useful efficiency of the analytical evaluation of electrical properties (the so-called AEEP method), results for calculations on water and pyridine at the SCF/TZ2P and the MP2/TZ2P levels of theory are reported. The results obtained are compared with previous theoretical calculations and with experimental values.

  18. Generalized reference fields and source interpolation for the difference formulation of radiation transport

    NASA Astrophysics Data System (ADS)

    Luu, Thomas; Brooks, Eugene D.; Szőke, Abraham

    2010-03-01

    In the difference formulation for the transport of thermally emitted photons the photon intensity is defined relative to a reference field, the black body at the local material temperature. This choice of reference field combines the separate emission and absorption terms that nearly cancel, thereby removing the dominant cause of noise in the Monte Carlo solution of thick systems, but introduces time and space derivative source terms that cannot be determined until the end of the time step. The space derivative source term can also lead to noise induced crashes under certain conditions where the real physical photon intensity differs strongly from a black body at the local material temperature. In this paper, we consider a difference formulation relative to the material temperature at the beginning of the time step, or in cases where an alternative temperature better describes the radiation field, that temperature. The result is a method where iterative solution of the material energy equation is efficient and noise induced crashes are avoided. We couple our generalized reference field scheme with an ad hoc interpolation of the space derivative source, resulting in an algorithm that produces the correct flux between zones as the physical system approaches the thick limit.

  19. Dosimetric Evaluation of Intensity Modulated Radiotherapy and 4-Field 3-D Conformal Radiotherapy in Prostate Cancer Treatment

    PubMed Central

    Uysal, Bora; Beyzadeoğlu, Murat; Sager, Ömer; Dinçoğlan, Ferrat; Demiral, Selçuk; Gamsız, Hakan; Sürenkök, Serdar; Oysul, Kaan

    2013-01-01

    Objective: The purpose of this dosimetric study is the targeted dose homogeneity and critical organ dose comparison of 7-field Intensity Modulated Radiotherapy (IMRT) and 3-D 4-field conformal radiotherapy. Study Design: Cross sectional study. Material and Methods: Twenty patients with low and moderate risk prostate cancer treated at Gülhane Military Medical School Radiation Oncology Department between January 2009 and December 2009 are included in this study. Two seperate dosimetric plans both for 7-field IMRT and 3D-CRT have been generated for each patient to comparatively evaluate the dosimetric status of both techniques and all the patients received 7-field IMRT. Results: Dose-comparative evaluation of two techniques revealed the superiority of IMRT technique with statistically significantly lower femoral head doses along with reduced critical organ dose-volume parameters of bladder V60 (the volume receiving 60 Gy) and rectal V40 (the volume receiving 40 Gy) and V60. Conclusion: It can be concluded that IMRT is an effective definitive management tool for prostate cancer with improved critical organ sparing and excellent dose homogenization in target organs of prostate and seminal vesicles. PMID:25207069

  20. The magnetic particle in a box: Analytic and micromagnetic analysis of probe-localized spin wave modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adur, Rohan, E-mail: adur@physics.osu.edu; Du, Chunhui; Manuilov, Sergei A.

    2015-05-07

    The dipole field from a probe magnet can be used to localize a discrete spectrum of standing spin wave modes in a continuous ferromagnetic thin film without lithographic modification to the film. Obtaining the resonance field for a localized mode is not trivial due to the effect of the confined and inhomogeneous magnetization precession. We compare the results of micromagnetic and analytic methods to find the resonance field of localized modes in a ferromagnetic thin film, and investigate the accuracy of these methods by comparing with a numerical minimization technique that assumes Bessel function modes with pinned boundary conditions. Wemore » find that the micromagnetic technique, while computationally more intensive, reveals that the true magnetization profiles of localized modes are similar to Bessel functions with gradually decaying dynamic magnetization at the mode edges. We also find that an analytic solution, which is simple to implement and computationally much faster than other methods, accurately describes the resonance field of localized modes when exchange fields are negligible, and demonstrating the accessibility of localized mode analysis.« less

  1. Nighttime atmospheric stability changes and their effects on the temporal intensity of a mesoscale convective complex

    NASA Technical Reports Server (NTRS)

    Hovis, Jeffrey S.; Brundidge, Kenneth C.

    1987-01-01

    A method of interpolating atmospheric soundings while reducing the errors associated with simple time interpolation was developed. The purpose of this was to provide a means to determine atmospheric stability at times between standard soundings and to relate changes in stability to intensity changes in an MCC. Four MCC cases were chosen for study with this method with four stability indices being included. The discussion centers on three aspects for each stability parameter examined: the stability field in the vicinity of the storm and its changes in structure and magnitude during the lifetime of the storm, the average stability within the storm boundary as a function of time and its relation to storm intensity, and the apparent flux of stability parameter into the storm as a consequence of low-level storm relative flow. It was found that the results differed among the four stability parameters, sometimes in a conflicting fashion. Thus, an interpolation of how the storm intensity is related to the changing environmental stability depends upon the particular index utilized. Some explanation for this problem is offered.

  2. Cosmic ray interactions in the ground: Temporal variations in cosmic ray intensities and geophysical studies

    NASA Technical Reports Server (NTRS)

    Lal, D.

    1986-01-01

    Temporal variations in cosmic ray intensity have been deduced from observations of products of interactions of cosmic ray particles in the Moon, meteorites, and the Earth. Of particular interest is a comparison between the information based on Earth and that based on other samples. Differences are expected at least due to: (1) differences in the extent of cosmic ray modulation, and (2) changes in the geomagnetic dipole field. Any information on the global changes in the terrestrial cosmic ray intensity is therefore of importance. In this paper a possible technique for detecting changes in cosmic ray intensity is presented. The method involves human intervention and is applicable for the past 10,000 yrs. Studies of changes over longer periods of time are possible if supplementary data on age and history of the sample are available using other methods. Also discussed are the possibilities of studying certain geophysical processes, e.g., erosion, weathering, tectonic events based on studies of certain cosmic ray-produced isotopes for the past several million years.

  3. Intensity inhomogeneity correction of SD-OCT data using macular flatspace.

    PubMed

    Lang, Andrew; Carass, Aaron; Jedynak, Bruno M; Solomon, Sharon D; Calabresi, Peter A; Prince, Jerry L

    2018-01-01

    Images of the retina acquired using optical coherence tomography (OCT) often suffer from intensity inhomogeneity problems that degrade both the quality of the images and the performance of automated algorithms utilized to measure structural changes. This intensity variation has many causes, including off-axis acquisition, signal attenuation, multi-frame averaging, and vignetting, making it difficult to correct the data in a fundamental way. This paper presents a method for inhomogeneity correction by acting to reduce the variability of intensities within each layer. In particular, the N3 algorithm, which is popular in neuroimage analysis, is adapted to work for OCT data. N3 works by sharpening the intensity histogram, which reduces the variation of intensities within different classes. To apply it here, the data are first converted to a standardized space called macular flat space (MFS). MFS allows the intensities within each layer to be more easily normalized by removing the natural curvature of the retina. N3 is then run on the MFS data using a modified smoothing model, which improves the efficiency of the original algorithm. We show that our method more accurately corrects gain fields on synthetic OCT data when compared to running N3 on non-flattened data. It also reduces the overall variability of the intensities within each layer, without sacrificing contrast between layers, and improves the performance of registration between OCT images. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Intensity standardisation of 7T MR images for intensity-based segmentation of the human hypothalamus

    PubMed Central

    Schreiber, Jan; Bazin, Pierre-Louis; Trampel, Robert; Anwander, Alfred; Geyer, Stefan; Schönknecht, Peter

    2017-01-01

    The high spatial resolution of 7T MRI enables us to identify subtle volume changes in brain structures, providing potential biomarkers of mental disorders. Most volumetric approaches require that similar intensity values represent similar tissue types across different persons. By applying colour-coding to T1-weighted MP2RAGE images, we found that the high measurement accuracy achieved by high-resolution imaging may be compromised by inter-individual variations in the image intensity. To address this issue, we analysed the performance of five intensity standardisation techniques in high-resolution T1-weighted MP2RAGE images. Twenty images with extreme intensities in the GM and WM were standardised to a representative reference image. We performed a multi-level evaluation with a focus on the hypothalamic region—analysing the intensity histograms as well as the actual MR images, and requiring that the correlation between the whole-brain tissue volumes and subject age be preserved during standardisation. The results were compared with T1 maps. Linear standardisation using subcortical ROIs of GM and WM provided good results for all evaluation criteria: it improved the histogram alignment within the ROIs and the average image intensity within the ROIs and the whole-brain GM and WM areas. This method reduced the inter-individual intensity variation of the hypothalamic boundary by more than half, outperforming all other methods, and kept the original correlation between the GM volume and subject age intact. Mixed results were obtained for the other four methods, which sometimes came at the expense of unwarranted changes in the age-related pattern of the GM volume. The mapping of the T1 relaxation time with the MP2RAGE sequence is advertised as being especially robust to bias field inhomogeneity. We found little evidence that substantiated the T1 map’s theoretical superiority over the T1-weighted images regarding the inter-individual image intensity homogeneity. PMID:28253330

  5. Migration of cell surface concanavalin A receptors in pulsed electric fields.

    PubMed Central

    Lin-Liu, S; Adey, W R; Poo, M M

    1984-01-01

    Concanavalin A (con A) receptors on the surface of cultured Xenopus myoblasts redistributed in response to monopolar, pulsed electric fields. The prefield uniform distribution of the receptors became asymmetrical, and was polarized toward the cathodal pole, in the same way as in DC fields. The extent of asymmetry depended on the duration of field exposure, pulse width (or alternatively, interpulse interval), frequency, and intensity. This relationship was most conveniently expressed by using duty cycle, a quantity determined by both pulse width and frequency. Pulses of average intensity 1.5 V/cm induced detectable asymmetry within 5 min. At the lowest average field intensity used, 0.8 V/cm, significant asymmetry was detected at 150 min. For pulses of high duty cycle (greater than 25%), steady state was reached after 30 min exposure and the steady state asymmetry was dependent on average field intensity. For low duty cycle fields, the time required to reach steady state was prolonged (greater than 50 min). Before reaching a steady state, effectiveness of the pulses, as compared with DC fields of equivalent intensity, was a function of duty cycle. A low duty cycle field (fixed number of pulses at low frequency or long interpulse interval) was less effective than high duty cycle fields or DC. PMID:6743751

  6. Geomagnetic Field Intensity during the Neolith in the Central East European Plain

    NASA Astrophysics Data System (ADS)

    Nachasova, I. E.; Pilipenko, O. V.; Markov, G. P.; Gribov, S. K.; Tsetlin, Yu. B.

    2018-05-01

    The conducted archeomagnetic studies resulted in data on variations in the geomagnetic field intensity in the central East European Plain (Sakhtysh I site area, ϕ = 56°48' N, λ = 40°33' E) during the time interval of 5-3 ka BC. The geomagnetic field intensity varied mainly within the range of 30-60 μT. In the first half of the 5th millennium BC, the mean level of geomagnetic field intensity was about 35 μT. In the second half of the 5th-early 4th millennium BC, it rose to about 50 μT and then decreased again to reach a mean value of about 40 μT in the period of 4-3 ka BC. Comparison of the geomagnetic field intensity variation based on the obtained data and the data on the Caucasus region for the same time interval demonstrates a certain similarity.

  7. A new method of artificial latent fingerprint creation using artificial sweat and inkjet printer.

    PubMed

    Hong, Sungwook; Hong, Ingi; Han, Aleum; Seo, Jin Yi; Namgung, Juyoung

    2015-12-01

    In order to study fingerprinting in the field of forensic science, it is very important to have two or more latent fingerprints with identical chemical composition and intensity. However, it is impossible to obtain identical fingerprints, in reality, because fingerprinting comes out slightly differently every time. A previous research study had proposed an artificial fingerprint creation method in which inkjet ink was replaced with amino acids and sodium chloride solution: the components of human sweat. But, this method had some drawbacks: divalent cations were not added while formulating the artificial sweat solution, and diluted solutions were used for creating weakly deposited latent fingerprint. In this study, a method was developed for overcoming the drawbacks of the methods used in the previous study. Several divalent cations were added in this study because the amino acid-ninhydrin (or some of its analogues) complex is known to react with divalent cations to produce a photoluminescent product; and, similarly, the amino acid-1,2-indanedione complex is known to be catalyzed by a small amount of zinc ions to produce a highly photoluminescent product. Also, in this study, a new technique was developed which enables to adjust the intensity when printing the latent fingerprint patterns. In this method, image processing software is used to control the intensity of the master fingerprint patterns, which adjusts the printing intensity of the latent fingerprints. This new method opened the way to produce a more realistic artificial fingerprint in various strengths with one artificial sweat working solution. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. Nanoscale electron manipulation in metals with intense THz electric fields

    NASA Astrophysics Data System (ADS)

    Takeda, Jun; Yoshioka, Katsumasa; Minami, Yasuo; Katayama, Ikufumi

    2018-03-01

    Improved control over the electromagnetic properties of metals on a nanoscale is crucial for the development of next-generation nanoelectronics and plasmonic devices. Harnessing the terahertz (THz)-electric-field-induced nonlinearity for the motion of electrons is a promising method of manipulating the local electromagnetic properties of metals, while avoiding undesirable thermal effects and electronic transitions. In this review, we demonstrate the manipulation of electron delocalization in ultrathin gold (Au) films with nanostructures, by intense THz electric-field transients. On increasing the electric-field strength of the THz pulses, the transmittance in the THz-frequency region abruptly decreases around the percolation threshold. The observed THz-electric-field-induced nonlinearity is analysed, based on the Drude-Smith model. The results suggest that ultrafast electron delocalization occurs by electron tunnelling across the narrow insulating bridge between the Au nanostructures, without material breakdown. In order to quantitatively discuss the tunnelling process, we perform scanning tunnelling microscopy with carrier-envelope phase (CEP)-controlled single-cycle THz electric fields. By applying CEP-controlled THz electric fields to the 1 nm nanogap between a metal nanotip and graphite sample, many electrons could be coherently driven through the quantum tunnelling process, either from the nanotip to the sample or vice versa. The presented concept, namely, electron tunnelling mediated by CEP-controlled single-cycle THz electric fields, can facilitate the development of nanoscale electron manipulation, applicable to next-generation ultrafast nanoelectronics and plasmonic devices.

  9. Simultaneous measurement of magnetic field and temperature based on an etched TCFMI cascaded with an FBG

    NASA Astrophysics Data System (ADS)

    Yan, Guofeng; Zhang, Liang; He, Sailing

    2016-04-01

    In this paper, a dual-parameter measurement scheme based on an etched thin core fiber modal interferometer (TCMI) cascaded with a fiber Bragg grating (FBG) is proposed and experimentally demonstrated for simultaneous measurement of magnetic field and temperature. The magnetic field and temperature responses of the packaged TCFMI were first investigated, which showed that the magnetic field sensitivity could be highly enhanced by decreasing of the TCF diameter and the temperature-cross sensitivities were up to 3-7 Oe/°C at 1550 nm. Then, the theoretical analysis and experimental demonstration of the proposed dual-parameter sensing scheme were conducted. Experimental results show that, the reflection of the FBG has a magnetic field intensity and temperature sensitivities of -0.017 dB/Oe and 0.133 dB/°C, respectively, while the Bragg wavelength of the FBG is insensitive to magnetic field and has a temperature sensitivity of 13.23 pm/°C. Thus by using the sensing matrix method, the intensity of the magnetic field and the temperature variance can be measured, which enables magnetic field sensing under strict temperature environments. In the on-off time response test, the fabricated sensor exhibited high repeatability and short response time of ∼19.4 s. Meanwhile the reflective sensing probe type is more compact and practical for applications in hard-to-reach conditions.

  10. Micromixer utilizing electrokinetic instability-induced shedding effect.

    PubMed

    Tai, Chang-Hsien; Yang, Ruey-Jen; Huang, Min-Zhong; Liu, Chia-Wei; Tsai, Chien-Hsiung; Fu, Lung-Ming

    2006-12-01

    This paper presents a T-shaped micromixer featuring 45 degrees parallelogram barriers (PBs) within the mixing channel. The presented device obtains a rapid mixing of two sample fluids with conductivity ratio of 10:1 (sample concentration:running buffer concentration) by means of the electrokinetic instability-induced shedding effects which are produced when a direct current (DC) electric field of an appropriate intensity is applied. The presented device uses a single high-voltage power source to simultaneously drive and mix the sample fluids. The effectiveness of the mixer is characterized experimentally as a function of the applied electrical field intensity and the extent to which the PBs obstruct the mixing channel. The experimental results indicate that the mixing performance reaches 91% at a cross-section located 2.3 mm downstream of the T-junction when the barriers obstruct 4/5 of the channel width and an electrical field of 300 V/cm is applied. The micromixing method presented in this study provides a simple low-cost solution to mixing problems in lab-on-a-chip systems.

  11. The anomalous demagnetization behaviour of chondritic meteorites

    NASA Astrophysics Data System (ADS)

    Morden, S. J.

    1992-06-01

    Alternating field (AF) demagnetization of chondritic samples often shows anomalous results such as large directional and intensity changes; 'saw-tooth' intensity vs. demagnetizing field curves are also prevalent. An attempt to explain this behaviour is presented, using a computer model in which individual 'mineral grains' can be 'magnetized' in a variety of different ways. A simulated demagnetization can then be carried out to examine the results. It was found that the experimental behaviour of chondrites can be successfully mimicked by loading the computer model with a series of randomly orientated and sized vectors. The parameters of the model can be changed to reflect different trends seen in experimental data. Many published results can be modelled using this method. A known magnetic mineralogy can be modelled, and an unknown mineralogy deduced from AF demagnetization curves. Only by comparing data from mutually orientated samples can true stable regions for palaeointensity measurements be identified, calling into question some previous estimates of field strength from meteorites.

  12. Femtosecond two-photon Rabi oscillations in excited He driven by ultrashort intense laser fields

    NASA Astrophysics Data System (ADS)

    Fushitani, M.; Liu, C.-N.; Matsuda, A.; Endo, T.; Toida, Y.; Nagasono, M.; Togashi, T.; Yabashi, M.; Ishikawa, T.; Hikosaka, Y.; Morishita, T.; Hishikawa, A.

    2016-02-01

    Coherent light-matter interaction provides powerful methods for manipulating quantum systems. Rabi oscillation is one such process. As it enables complete population transfer to a target state, it is thus routinely exploited in a variety of applications in photonics, notably quantum information processing. The extension of coherent control techniques to the multiphoton regime offers wider applicability, and access to highly excited or dipole-forbidden transition states. However, the multiphoton Rabi process is often disrupted by other competing nonlinear effects such as the a.c. Stark shift, especially at the high laser-field intensities necessary to achieve ultrafast Rabi oscillations. Here we demonstrate a new route to drive two-photon Rabi oscillations on timescales as short as tens of femtoseconds, by utilizing the strong-field phenomenon known as Freeman resonance. The scenario is not specific to atomic helium as investigated in the present study, but broadly applicable to other systems, thus opening new prospects for the ultrafast manipulation of Rydberg states.

  13. Time-resolved observation of coherent excitonic nonlinear response with a table-top narrowband THz pulse wave

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uchida, K.; Hirori, H., E-mail: hirori@icems.kyoto-u.ac.jp; CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012

    2015-11-30

    By combining a tilted-pulse-intensity-front scheme using a LiNbO{sub 3} crystal and a chirped-pulse-beating method, we generated a narrowband intense terahertz (THz) pulse, which had a maximum electric field of more than 10 kV/cm at around 2 THz, a bandwidth of ∼50 GHz, and frequency tunability from 0.5 to 2 THz. By performing THz-pump and near-infrared-probe experiments on GaAs quantum wells, we observed that the resonant excitation of the intraexcitonic 1s-2p transition induces a clear and large Autler-Townes splitting. Our time-resolved measurements show that the splitting energy observed in the rising edge region of electric field is larger than in the constant region.more » This result implies that the splitting energy depends on the time-averaged THz field over the excitonic dephasing time rather than that at the instant of the exciton creation by a probe pulse.« less

  14. Two-Wavelength Multi-Gigahertz Frequency Comb-Based Interferometry for Full-Field Profilometry

    NASA Astrophysics Data System (ADS)

    Choi, Samuel; Kashiwagi, Ken; Kojima, Shuto; Kasuya, Yosuke; Kurokawa, Takashi

    2013-10-01

    The multi-gigahertz frequency comb-based interferometer exhibits only the interference amplitude peak without the phase fringes, which can produce a rapid axial scan for full-field profilometry and tomography. Despite huge technical advantages, there remain problems that the interference intensity undulations occurred depending on the interference phase. To avoid such problems, we propose a compensation technique of the interference signals using two frequency combs with slightly varied center wavelengths. The compensated full-field surface profile measurements of cover glass and onion skin were demonstrated experimentally to verify the advantages of the proposed method.

  15. Flume and field-based calibration of surrogate sensors for monitoring bedload transport

    NASA Astrophysics Data System (ADS)

    Mao, L.; Carrillo, R.; Escauriaza, C.; Iroume, A.

    2016-01-01

    Bedload transport assessment is important for geomorphological, engineering, and ecological studies of gravel-bed rivers. Bedload can be monitored at experimental stations that require expensive maintenance or by using portable traps, which allows measuring instantaneous transport rates but at a single point and at high costs and operational risks. The need for continuously measuring bedload intensity and dynamics has therefore increased the use and enhancement of surrogate methods. This paper reports on a set of flume experiments in which a Japanese acoustic pipe and an impact plate have been tested using four well-sorted and three poorly sorted sediment mixtures. Additional data were collected in a glacierized high-gradient Andean stream (Estero Morales) using a portable Bunte-type bedload sampler. Results show that the data provided by the acoustic pipe (which is amplified on 6 channels having different gains) can be calibrated for the grain size and for the intensity of transported sediments coarser than 9 mm (R2 = 0.93 and 0.88, respectively). Even if the flume-based calibration is very robust, upscaling the calibration to field applications is more challenging, and the bedload intensity could be predicted better than the grain size of transported sediments (R2 = 0.61 and 0.43, respectively). The inexpensive impact plate equipped with accelerometer could be calibrated for bedload intensity quite well in the flume but only poorly in the field (R2 = 0.16) and could not provide information on the size of transported sediments.

  16. Effects of electromagnetic fields on the nonlinear optical properties of asymmetric double quantum well under intense laser field

    NASA Astrophysics Data System (ADS)

    Yesilgul, U.; Sari, H.; Ungan, F.; Martínez-Orozco, J. C.; Restrepo, R. L.; Mora-Ramos, M. E.; Duque, C. A.; Sökmen, I.

    2017-03-01

    In this study, the effects of electric and magnetic fields on the optical rectification and second and third harmonic generation in asymmetric double quantum well under the intense non-resonant laser field is theoretically investigated. We calculate the optical rectification and second and third harmonic generation within the compact density-matrix approach. The theoretical findings show that the influence of electric, magnetic, and intense laser fields leads to significant changes in the coefficients of nonlinear optical rectification, second and third harmonic generation.

  17. A Brownian dynamics study on ferrofluid colloidal dispersions using an iterative constraint method to satisfy Maxwell’s equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dubina, Sean Hyun, E-mail: sdubin2@uic.edu; Wedgewood, Lewis Edward, E-mail: wedge@uic.edu

    2016-07-15

    Ferrofluids are often favored for their ability to be remotely positioned via external magnetic fields. The behavior of particles in ferromagnetic clusters under uniformly applied magnetic fields has been computationally simulated using the Brownian dynamics, Stokesian dynamics, and Monte Carlo methods. However, few methods have been established that effectively handle the basic principles of magnetic materials, namely, Maxwell’s equations. An iterative constraint method was developed to satisfy Maxwell’s equations when a uniform magnetic field is imposed on ferrofluids in a heterogeneous Brownian dynamics simulation that examines the impact of ferromagnetic clusters in a mesoscale particle collection. This was accomplished bymore » allowing a particulate system in a simple shear flow to advance by a time step under a uniformly applied magnetic field, then adjusting the ferroparticles via an iterative constraint method applied over sub-volume length scales until Maxwell’s equations were satisfied. The resultant ferrofluid model with constraints demonstrates that the magnetoviscosity contribution is not as substantial when compared to homogeneous simulations that assume the material’s magnetism is a direct response to the external magnetic field. This was detected across varying intensities of particle-particle interaction, Brownian motion, and shear flow. Ferroparticle aggregation was still extensively present but less so than typically observed.« less

  18. Use of adjoint methods in the probabilistic finite element approach to fracture mechanics

    NASA Technical Reports Server (NTRS)

    Liu, Wing Kam; Besterfield, Glen; Lawrence, Mark; Belytschko, Ted

    1988-01-01

    The adjoint method approach to probabilistic finite element methods (PFEM) is presented. When the number of objective functions is small compared to the number of random variables, the adjoint method is far superior to the direct method in evaluating the objective function derivatives with respect to the random variables. The PFEM is extended to probabilistic fracture mechanics (PFM) using an element which has the near crack-tip singular strain field embedded. Since only two objective functions (i.e., mode I and II stress intensity factors) are needed for PFM, the adjoint method is well suited.

  19. Motion-induced eddy current thermography for high-speed inspection

    NASA Astrophysics Data System (ADS)

    Wu, Jianbo; Li, Kongjing; Tian, Guiyun; Zhu, Junzhen; Gao, Yunlai; Tang, Chaoqing; Chen, Xiaotian

    2017-08-01

    This letter proposes a novel motion-induced eddy current based thermography (MIECT) for high-speed inspection. In contrast to conventional eddy current thermography (ECT) based on a time-varying magnetic field created by an AC coil, the motion-induced eddy current is induced by the relative motion between magnetic field and inspected objects. A rotating magnetic field created by three-phase windings is used to investigate the heating principle and feasibility of the proposed method. Firstly, based on Faraday's law the distribution of MIEC is investigated, which is then validated by numerical simulation. Further, experimental studies are conducted to validate the proposed method by creating rotating magnetic fields at different speeds from 600 rpm to 6000 rpm, and it is verified that rotating speed will increase MIEC intensity and thereafter improve the heating efficiency. The conclusion can be preliminarily drawn that the proposed MIECT is a platform suitable for high-speed inspection.

  20. Computer vision research with new imaging technology

    NASA Astrophysics Data System (ADS)

    Hou, Guangqi; Liu, Fei; Sun, Zhenan

    2015-12-01

    Light field imaging is capable of capturing dense multi-view 2D images in one snapshot, which record both intensity values and directions of rays simultaneously. As an emerging 3D device, the light field camera has been widely used in digital refocusing, depth estimation, stereoscopic display, etc. Traditional multi-view stereo (MVS) methods only perform well on strongly texture surfaces, but the depth map contains numerous holes and large ambiguities on textureless or low-textured regions. In this paper, we exploit the light field imaging technology on 3D face modeling in computer vision. Based on a 3D morphable model, we estimate the pose parameters from facial feature points. Then the depth map is estimated through the epipolar plane images (EPIs) method. At last, the high quality 3D face model is exactly recovered via the fusing strategy. We evaluate the effectiveness and robustness on face images captured by a light field camera with different poses.

  1. Investigation of translaminar fracture in fibrereinforced composite laminates---applicability of linear elastic fracture mechanics and cohesive-zone model

    NASA Astrophysics Data System (ADS)

    Hou, Fang

    With the extensive application of fiber-reinforced composite laminates in industry, research on the fracture mechanisms of this type of materials have drawn more and more attentions. A variety of fracture theories and models have been developed. Among them, the linear elastic fracture mechanics (LEFM) and cohesive-zone model (CZM) are two widely-accepted fracture models, which have already shown applicability in the fracture analysis of fiber-reinforced composite laminates. However, there remain challenges which prevent further applications of the two fracture models, such as the experimental measurement of fracture resistance. This dissertation primarily focused on the study of the applicability of LEFM and CZM for the fracture analysis of translaminar fracture in fibre-reinforced composite laminates. The research for each fracture model consisted of two sections: the analytical characterization of crack-tip fields and the experimental measurement of fracture resistance parameters. In the study of LEFM, an experimental investigation based on full-field crack-tip displacement measurements was carried out as a way to characterize the subcritical and steady-state crack advances in translaminar fracture of fiber-reinforced composite laminates. Here, the fiber-reinforced composite laminates were approximated as anisotropic solids. The experimental investigation relied on the LEFM theory with a modification with respect to the material anisotropy. Firstly, the full-field crack-tip displacement fields were measured by Digital Image Correlation (DIC). Then two methods, separately based on the stress intensity approach and the energy approach, were developed to measure the crack-tip field parameters from crack-tip displacement fields. The studied crack-tip field parameters included the stress intensity factor, energy release rate and effective crack length. Moreover, the crack-growth resistance curves (R-curves) were constructed with the measured crack-tip field parameters. In addition, an error analysis was carried out with an emphasis on the influence of out-of-plane rotation of specimen. In the study of CZM, two analytical inverse methods, namely the field projection method (FPM) and the separable nonlinear least-squares method, were developed for the extraction of cohesive fracture properties from crack-tip full-field displacements. Firstly, analytical characterizations of the elastic fields around a crack-tip cohesive zone and the cohesive variables within the cohesive zone were derived in terms of an eigenfunction expansion. Then both of the inverse methods were developed based on the analytical characterization. With the analytical inverse methods, the cohesive-zone law (CZL), cohesive-zone size and position can be inversely computed from the cohesive-crack-tip displacement fields. In the study, comprehensive numerical tests were carried out to investigate the applicability and robustness of two inverse methods. From the numerical tests, it was found that the field projection method was very sensitive to noise and thus had limited applicability in practice. On the other hand, the separable nonlinear least-squares method was found to be more noise-resistant and less ill-conditioned. Subsequently, the applicability of separable nonlinear least-squares method was validated with the same translaminar fracture experiment for the study of LEFM. Eventually, it was found that the experimental measurements of R-curves and CZL showed a great agreement, in both of the fracture energy and the predicted load carrying capability. It thus demonstrated the validity of present research for the translaminar fracture of fiber-reinforced composite laminates.

  2. SU-F-T-349: Dosimetric Comparison of Three Different Simultaneous Integrated Boost Irradiation Techniques for Multiple Brain Metastases: Intensity-Modulatedradiotherapy, Hybrid Intensity-Modulated Radiotherapy and Volumetric Modulated Arc Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, X; Sun, T; Yin, Y

    Purpose: To study the dosimetric impact of intensity-modulated radiotherapy (IMRT), hybrid intensity-modulated radiotherapy (h-IMRT) and volumetric modulated arc therapy(VMAT) for whole-brain radiotherapy (WBRT) with simultaneous integrated boost in patients with multiple brain metastases. Methods: Ten patients with multiple brain metastases were included in this analysis. The prescribed dose was 45 Gy to the whole brain (PTVWBRT) and 55 Gy to individual brain metastases (PTVboost) delivered simultaneously in 25 fractions. Three treatment techniques were designed: the 7 equal spaced fields IMRT plan, hybrid IMRT plan and VMAT with two 358°arcs. In hybrid IMRT plan, two fields(90°and 270°) were planned to themore » whole brain. This was used as a base dose plan. Then 5 fields IMRT plan was optimized based on the two fields plan. The dose distribution in the target, the dose to the organs at risk and total MU in three techniques were compared. Results: For the target dose, conformity and homogeneity in PTV, no statistically differences were observed in the three techniques. For the maximum dose in bilateral lens and the mean dose in bilateral eyes, IMRT and h-IMRT plans showed the highest and lowest value respectively. No statistically significant differences were observed in the dose of optic nerve and brainstem. For the monitor units, IMRT and VMAT plans showed the highest and lowest value respectively. Conclusion: For WBRT with simultaneous integrated boost in patients with multiple brain metastases, hybrid IMRT could reduce the doses to lens and eyes. It is feasible for patients with brain metastases.« less

  3. Reactive molecular dynamics of the initial oxidation stages of Ni111 in pure water: effect of an applied electric field.

    PubMed

    Assowe, O; Politano, O; Vignal, V; Arnoux, P; Diawara, B; Verners, O; van Duin, A C T

    2012-12-06

    Corrosion processes occurring in aqueous solutions are critically dependent upon the interaction between the metal electrode and the solvent. In this work, the interaction of a nickel substrate with water molecules has been investigated using reactive force field (ReaxFF) molecular dynamics simulations. This approach was originally developed by van Duin and co-workers to study hydrocarbon chemistry and the catalytic properties of organic compounds. To our knowledge, this method has not previously been used to study the corrosion of nickel. In this work, we studied the interaction of 480 molecules of water (ρ = 0.99 g·cm(-3)) with Ni(111) surfaces at 300 K. The results showed that a water "bilayer" was adsorbed on the nickel surface. In the absence of an applied electric field, no dissociation of water was observed. However, the nickel atoms at the surface were charged positively, whereas the first water layer was charged negatively, indicating the formation of an electric double layer. To study the corrosion of nickel in pure water, we introduced an external electric field between the metal and the solution. The electric field intensity varied between 10 and 20 MeV/cm. The presence of this electric field led to oxidation of the metal surface. The structural and morphological differences associated with the growth of this oxide film in the presence of the electric field were evaluated. The simulated atomic trajectories were used to analyze the atomic displacement during the reactive process. The growth of the oxide scale on the nickel surface was primarily due to the movement of anions toward the interior of the metal substrate and the migration of nickel toward the free surface. We found that increasing the electric field intensity sped up the corrosion of nickel. The results also showed that the oxide film thickness increased linearly with increasing electric field intensity.

  4. Refraction-based X-ray Computed Tomography for Biomedical Purpose Using Dark Field Imaging Method

    NASA Astrophysics Data System (ADS)

    Sunaguchi, Naoki; Yuasa, Tetsuya; Huo, Qingkai; Ichihara, Shu; Ando, Masami

    We have proposed a tomographic x-ray imaging system using DFI (dark field imaging) optics along with a data-processing method to extract information on refraction from the measured intensities, and a reconstruction algorithm to reconstruct a refractive-index field from the projections generated from the extracted refraction information. The DFI imaging system consists of a tandem optical system of Bragg- and Laue-case crystals, a positioning device system for a sample, and two CCD (charge coupled device) cameras. Then, we developed a software code to simulate the data-acquisition, data-processing, and reconstruction methods to investigate the feasibility of the proposed methods. Finally, in order to demonstrate its efficacy, we imaged a sample with DCIS (ductal carcinoma in situ) excised from a breast cancer patient using a system constructed at the vertical wiggler beamline BL-14C in KEK-PF. Its CT images depicted a variety of fine histological structures, such as milk ducts, duct walls, secretions, adipose and fibrous tissue. They correlate well with histological sections.

  5. Gaussian statistics for palaeomagnetic vectors

    USGS Publications Warehouse

    Love, J.J.; Constable, C.G.

    2003-01-01

    With the aim of treating the statistics of palaeomagnetic directions and intensities jointly and consistently, we represent the mean and the variance of palaeomagnetic vectors, at a particular site and of a particular polarity, by a probability density function in a Cartesian three-space of orthogonal magnetic-field components consisting of a single (unimoda) non-zero mean, spherically-symmetrical (isotropic) Gaussian function. For palaeomagnetic data of mixed polarities, we consider a bimodal distribution consisting of a pair of such symmetrical Gaussian functions, with equal, but opposite, means and equal variances. For both the Gaussian and bi-Gaussian distributions, and in the spherical three-space of intensity, inclination, and declination, we obtain analytical expressions for the marginal density functions, the cumulative distributions, and the expected values and variances for each spherical coordinate (including the angle with respect to the axis of symmetry of the distributions). The mathematical expressions for the intensity and off-axis angle are closed-form and especially manageable, with the intensity distribution being Rayleigh-Rician. In the limit of small relative vectorial dispersion, the Gaussian (bi-Gaussian) directional distribution approaches a Fisher (Bingham) distribution and the intensity distribution approaches a normal distribution. In the opposite limit of large relative vectorial dispersion, the directional distributions approach a spherically-uniform distribution and the intensity distribution approaches a Maxwell distribution. We quantify biases in estimating the properties of the vector field resulting from the use of simple arithmetic averages, such as estimates of the intensity or the inclination of the mean vector, or the variances of these quantities. With the statistical framework developed here and using the maximum-likelihood method, which gives unbiased estimates in the limit of large data numbers, we demonstrate how to formulate the inverse problem, and how to estimate the mean and variance of the magnetic vector field, even when the data consist of mixed combinations of directions and intensities. We examine palaeomagnetic secular-variation data from Hawaii and Re??union, and although these two sites are on almost opposite latitudes, we find significant differences in the mean vector and differences in the local vectorial variances, with the Hawaiian data being particularly anisotropic. These observations are inconsistent with a description of the mean field as being a simple geocentric axial dipole and with secular variation being statistically symmetrical with respect to reflection through the equatorial plane. Finally, our analysis of palaeomagnetic acquisition data from the 1960 Kilauea flow in Hawaii and the Holocene Xitle flow in Mexico, is consistent with the widely held suspicion that directional data are more accurate than intensity data.

  6. Gaussian statistics for palaeomagnetic vectors

    NASA Astrophysics Data System (ADS)

    Love, J. J.; Constable, C. G.

    2003-03-01

    With the aim of treating the statistics of palaeomagnetic directions and intensities jointly and consistently, we represent the mean and the variance of palaeomagnetic vectors, at a particular site and of a particular polarity, by a probability density function in a Cartesian three-space of orthogonal magnetic-field components consisting of a single (unimodal) non-zero mean, spherically-symmetrical (isotropic) Gaussian function. For palaeomagnetic data of mixed polarities, we consider a bimodal distribution consisting of a pair of such symmetrical Gaussian functions, with equal, but opposite, means and equal variances. For both the Gaussian and bi-Gaussian distributions, and in the spherical three-space of intensity, inclination, and declination, we obtain analytical expressions for the marginal density functions, the cumulative distributions, and the expected values and variances for each spherical coordinate (including the angle with respect to the axis of symmetry of the distributions). The mathematical expressions for the intensity and off-axis angle are closed-form and especially manageable, with the intensity distribution being Rayleigh-Rician. In the limit of small relative vectorial dispersion, the Gaussian (bi-Gaussian) directional distribution approaches a Fisher (Bingham) distribution and the intensity distribution approaches a normal distribution. In the opposite limit of large relative vectorial dispersion, the directional distributions approach a spherically-uniform distribution and the intensity distribution approaches a Maxwell distribution. We quantify biases in estimating the properties of the vector field resulting from the use of simple arithmetic averages, such as estimates of the intensity or the inclination of the mean vector, or the variances of these quantities. With the statistical framework developed here and using the maximum-likelihood method, which gives unbiased estimates in the limit of large data numbers, we demonstrate how to formulate the inverse problem, and how to estimate the mean and variance of the magnetic vector field, even when the data consist of mixed combinations of directions and intensities. We examine palaeomagnetic secular-variation data from Hawaii and Réunion, and although these two sites are on almost opposite latitudes, we find significant differences in the mean vector and differences in the local vectorial variances, with the Hawaiian data being particularly anisotropic. These observations are inconsistent with a description of the mean field as being a simple geocentric axial dipole and with secular variation being statistically symmetrical with respect to reflection through the equatorial plane. Finally, our analysis of palaeomagnetic acquisition data from the 1960 Kilauea flow in Hawaii and the Holocene Xitle flow in Mexico, is consistent with the widely held suspicion that directional data are more accurate than intensity data.

  7. An optimized content-aware image retargeting method: toward expanding the perceived visual field of the high-density retinal prosthesis recipients

    NASA Astrophysics Data System (ADS)

    Li, Heng; Zeng, Yajie; Lu, Zhuofan; Cao, Xiaofei; Su, Xiaofan; Sui, Xiaohong; Wang, Jing; Chai, Xinyu

    2018-04-01

    Objective. Retinal prosthesis devices have shown great value in restoring some sight for individuals with profoundly impaired vision, but the visual acuity and visual field provided by prostheses greatly limit recipients’ visual experience. In this paper, we employ computer vision approaches to seek to expand the perceptible visual field in patients implanted potentially with a high-density retinal prosthesis while maintaining visual acuity as much as possible. Approach. We propose an optimized content-aware image retargeting method, by introducing salient object detection based on color and intensity-difference contrast, aiming to remap important information of a scene into a small visual field and preserve their original scale as much as possible. It may improve prosthetic recipients’ perceived visual field and aid in performing some visual tasks (e.g. object detection and object recognition). To verify our method, psychophysical experiments, detecting object number and recognizing objects, are conducted under simulated prosthetic vision. As control, we use three other image retargeting techniques, including Cropping, Scaling, and seam-assisted shrinkability. Main results. Results show that our method outperforms in preserving more key features and has significantly higher recognition accuracy in comparison with other three image retargeting methods under the condition of small visual field and low-resolution. Significance. The proposed method is beneficial to expand the perceived visual field of prosthesis recipients and improve their object detection and recognition performance. It suggests that our method may provide an effective option for image processing module in future high-density retinal implants.

  8. Measurement of L X-Ray Intensity Ratios for 92U and 90Th Elements Using Photoionization in an External Magnetic Field

    NASA Astrophysics Data System (ADS)

    Demir, D.; Sahin, Y.

    2007-03-01

    L x-ray intensity ratios Lell/Lγ, Lα/Lγ and Lβ/Lγ for 92U and 90Th are measured by using 59.5 keV incident photon energy at 110° and 125° scattering angles. The samples are located in the external magnetic field of intensities ±0.15T, ±0.30T, ±0.45T, ±0.60T and ±0.75T. The experimental results obtained for B = 0 are compared with the theoretical values calculated using Scofield's tables based on the Hartree-Slater theory. The contribution to the alignment of the external magnetic field is discussed. It is observed that the L x-ray intensity ratios decrease with the increasing magnetic field intensity.

  9. Perturbative Gaussianizing transforms for cosmological fields

    NASA Astrophysics Data System (ADS)

    Hall, Alex; Mead, Alexander

    2018-01-01

    Constraints on cosmological parameters from large-scale structure have traditionally been obtained from two-point statistics. However, non-linear structure formation renders these statistics insufficient in capturing the full information content available, necessitating the measurement of higher order moments to recover information which would otherwise be lost. We construct quantities based on non-linear and non-local transformations of weakly non-Gaussian fields that Gaussianize the full multivariate distribution at a given order in perturbation theory. Our approach does not require a model of the fields themselves and takes as input only the first few polyspectra, which could be modelled or measured from simulations or data, making our method particularly suited to observables lacking a robust perturbative description such as the weak-lensing shear. We apply our method to simulated density fields, finding a significantly reduced bispectrum and an enhanced correlation with the initial field. We demonstrate that our method reconstructs a large proportion of the linear baryon acoustic oscillations, improving the information content over the raw field by 35 per cent. We apply the transform to toy 21 cm intensity maps, showing that our method still performs well in the presence of complications such as redshift-space distortions, beam smoothing, pixel noise and foreground subtraction. We discuss how this method might provide a route to constructing a perturbative model of the fully non-Gaussian multivariate likelihood function.

  10. Comparison of flow cytometry, fluorescence microscopy and spectrofluorometry for analysis of gene electrotransfer efficiency.

    PubMed

    Marjanovič, Igor; Kandušer, Maša; Miklavčič, Damijan; Keber, Mateja Manček; Pavlin, Mojca

    2014-12-01

    In this study, we compared three different methods used for quantification of gene electrotransfer efficiency: fluorescence microscopy, flow cytometry and spectrofluorometry. We used CHO and B16 cells in a suspension and plasmid coding for GFP. The aim of this study was to compare and analyse the results obtained by fluorescence microscopy, flow cytometry and spectrofluorometry and in addition to analyse the applicability of spectrofluorometry for quantifying gene electrotransfer on cells in a suspension. Our results show that all the three methods detected similar critical electric field strength, around 0.55 kV/cm for both cell lines. Moreover, results obtained on CHO cells showed that the total fluorescence intensity and percentage of transfection exhibit similar increase in response to increase electric field strength for all the three methods. For B16 cells, there was a good correlation at low electric field strengths, but at high field strengths, flow cytometer results deviated from results obtained by fluorescence microscope and spectrofluorometer. Our study showed that all the three methods detected similar critical electric field strengths and high correlations of results were obtained except for B16 cells at high electric field strengths. The results also demonstrated that flow cytometry measures higher values of percentage transfection compared to microscopy. Furthermore, we have demonstrated that spectrofluorometry can be used as a simple and consistent method to determine gene electrotransfer efficiency on cells in a suspension.

  11. Direct comparison of repeated soil inventory and carbon flux budget to detect soil carbon stock changes in grassland

    NASA Astrophysics Data System (ADS)

    Ammann, C.; Leifeld, J.; Neftel, A.; Fuhrer, J.

    2012-04-01

    Experimental assessment of soil carbon (C) stock changes over time is typically based on the application of either one of two methods, namely (i) repeated soil inventory and (ii) determination of the ecosystem C budget or net biome productivity (NBP) by continuous measurement of CO2 exchange in combination with quantification of other C imports and exports. However, there exist hardly any published study hitherto that directly compared the results of both methods. Here, we applied both methods in parallel to determine C stock changes of two temperate grassland fields previously converted from long-term cropland. The grasslands differed in management intensity with either intensive management (high fertilization, frequent cutting) or extensive management (no fertilization, less frequent cutting). Soil organic C stocks (0-45 cm depth) were quantified at the beginning (2001) and the end (2006) of a 5 year observational period using the equivalent soil mass approach. For the same period and in both fields, NBP was quantified from net CO2 fluxes monitored using eddy covariance systems, and measured C import by organic fertilizer and C export by harvest. Both NBP and repeated soil inventories revealed a consistent and significant difference between management systems of 170 ± 48 and 253 ± 182 g C m-2 a-1, respectively. For both fields, the inventory method showed a tendency towards higher C loss/smaller C gain than NBP. In the extensive field, a significant C loss was observed by the inventory but not by the NBP approach. Thus both, flux measurements and repeated soil sampling, seem to be adequate and equally suited for detecting relative management effects. However, the suitability for tracking absolute changes in SOC could not be proven for neither of the two methods. Overall, our findings stress the need for more direct comparisons to evaluate whether the observed difference in the outcome of the two approaches reflects a general methodological bias, which would have important implications for regional terrestrial C budgets.

  12. Evaluation of Specific Absorption Rate as a Dosimetric Quantity for Electromagnetic Fields Bioeffects

    PubMed Central

    Panagopoulos, Dimitris J.; Johansson, Olle; Carlo, George L.

    2013-01-01

    Purpose To evaluate SAR as a dosimetric quantity for EMF bioeffects, and identify ways for increasing the precision in EMF dosimetry and bioactivity assessment. Methods We discuss the interaction of man-made electromagnetic waves with biological matter and calculate the energy transferred to a single free ion within a cell. We analyze the physics and biology of SAR and evaluate the methods of its estimation. We discuss the experimentally observed non-linearity between electromagnetic exposure and biological effect. Results We find that: a) The energy absorbed by living matter during exposure to environmentally accounted EMFs is normally well below the thermal level. b) All existing methods for SAR estimation, especially those based upon tissue conductivity and internal electric field, have serious deficiencies. c) The only method to estimate SAR without large error is by measuring temperature increases within biological tissue, which normally are negligible for environmental EMF intensities, and thus cannot be measured. Conclusions SAR actually refers to thermal effects, while the vast majority of the recorded biological effects from man-made non-ionizing environmental radiation are non-thermal. Even if SAR could be accurately estimated for a whole tissue, organ, or body, the biological/health effect is determined by tiny amounts of energy/power absorbed by specific biomolecules, which cannot be calculated. Moreover, it depends upon field parameters not taken into account in SAR calculation. Thus, SAR should not be used as the primary dosimetric quantity, but used only as a complementary measure, always reporting the estimating method and the corresponding error. Radiation/field intensity along with additional physical parameters (such as frequency, modulation etc) which can be directly and in any case more accurately measured on the surface of biological tissues, should constitute the primary measure for EMF exposures, in spite of similar uncertainty to predict the biological effect due to non-linearity. PMID:23750202

  13. A LAGRANGIAN GAUSS-NEWTON-KRYLOV SOLVER FOR MASS- AND INTENSITY-PRESERVING DIFFEOMORPHIC IMAGE REGISTRATION.

    PubMed

    Mang, Andreas; Ruthotto, Lars

    2017-01-01

    We present an efficient solver for diffeomorphic image registration problems in the framework of Large Deformations Diffeomorphic Metric Mappings (LDDMM). We use an optimal control formulation, in which the velocity field of a hyperbolic PDE needs to be found such that the distance between the final state of the system (the transformed/transported template image) and the observation (the reference image) is minimized. Our solver supports both stationary and non-stationary (i.e., transient or time-dependent) velocity fields. As transformation models, we consider both the transport equation (assuming intensities are preserved during the deformation) and the continuity equation (assuming mass-preservation). We consider the reduced form of the optimal control problem and solve the resulting unconstrained optimization problem using a discretize-then-optimize approach. A key contribution is the elimination of the PDE constraint using a Lagrangian hyperbolic PDE solver. Lagrangian methods rely on the concept of characteristic curves. We approximate these curves using a fourth-order Runge-Kutta method. We also present an efficient algorithm for computing the derivatives of the final state of the system with respect to the velocity field. This allows us to use fast Gauss-Newton based methods. We present quickly converging iterative linear solvers using spectral preconditioners that render the overall optimization efficient and scalable. Our method is embedded into the image registration framework FAIR and, thus, supports the most commonly used similarity measures and regularization functionals. We demonstrate the potential of our new approach using several synthetic and real world test problems with up to 14.7 million degrees of freedom.

  14. Archeomagnetism in Brazil: New archeointensity data from the Bahia region over the past five centuries

    NASA Astrophysics Data System (ADS)

    Hartmann, G. A.; Genevey, A.; Trindade, R. I.; Gallet, Y.; Etchevarne, C.; Afonso, M.

    2009-12-01

    There is a clear need of new archeomagnetic data from the southern hemisphere to better constrain the global geomagnetic field models over the past few millennia. In particular, less than 5% of all available absolute archeointensity data have been obtained from this hemisphere. We will present the first archeointensity data obtained for Brazil from the analysis of several groups of architectural brick fragments dated mainly from the so-called colonial period (with ages ranging between ~1550 AD and ~1850 AD). The fragments collected were produced in or close to the city of Salvador, Bahia State (13°S, 38.5°W) and their dating is ascertained with archives and archeological evidences, yielding precise age controls with, in most cases, uncertainties of less than 10 years. Intensity experiments were performed using the Thellier and Thellier (1959) method as modified by Coe (1967). The stability of the magnetic mineralogy was monitored using partial thermoremanent magnetization (pTRM) checks and pTRM tail tests (Riisager and Riisager, 2001) were used to detect possible biases due to the presence of multidomain grains. High-temperature intensity measurements were also carried out using the Triaxe magnetometer (Le Goff and Gallet, 2004). For both experimental procedures, effects related to the anisotropy of the TRM and to the dependence of TRM acquisition on the cooling rate were taken into account. A good agreement is observed when comparing the mean intensity values obtained using the two methods. We will further compare our new archeointensity results with the intensities expected in Brazil from global geomagnetic field models over the past 500 years.

  15. Conditions for the existence of Kelvin-Helmholtz instability in a CME

    NASA Astrophysics Data System (ADS)

    Páez, Andrés; Jatenco-Pereira, Vera; Falceta-Gonçcalves, Diego; Opher, Merav

    The presence of Kelvin-Helmholtz instability (KHI) in the sheaths of Coronal Mass Ejections (CMEs) has been proposed and observed by several authors in the literature. In the present work, we assume their existence and propose a method to constrain the local properties, like the CME magnetic field intensity for the development of KHI. We study a CME in the initiation phase interacting with the slow solar wind (Zone I) and with the fast solar wind (Zone II). Based on the theory of magnetic KHI proposed by Chandrasekhar (1961) we found the radial heliocentric interval for the KHI existence, in particular we constrain it with the CME magnetic field intensity. We conclude that KHI may exist in both CME Zones but it is perceived that Zone I is more appropriated for the KHI formation.

  16. Propagation of an ultra-short, intense laser in a relativistic fluid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ritchie, A.B.; Decker, C.D.

    1997-12-31

    A Maxwell-relativistic fluid model is developed to describe the propagation of an ultrashort, intense laser pulse through an underdense plasma. The model makes use of numerically stabilizing fast Fourier transform (FFT) computational methods for both the Maxwell and fluid equations, and it is benchmarked against particle-in-cell (PIC) simulations. Strong fields generated in the wake of the laser are calculated, and the authors observe coherent wake-field radiation generated at harmonics of the plasma frequency due to nonlinearities in the laser-plasma interaction. For a plasma whose density is 10% of critical, the highest members of the plasma harmonic series begin to overlapmore » with the first laser harmonic, suggesting that widely used multiple-scales-theory, by which the laser and plasma frequencies are assumed to be separable, ceases to be a useful approximation.« less

  17. A study of occurrence rates of Electromagnetic Interference (EMI) to aircraft with a focus on HIRF (external) High Intensity Radiated Fields

    NASA Technical Reports Server (NTRS)

    Shooman, Martin L.

    1994-01-01

    This report presents the methodology and results of a subjective study done by Polytechnic University to investigate Electromagnetic Interference (EMI) events on aircraft. The results cover various types of EMI from on-board aircraft systems, passenger carry-on devices, and externally generated disturbances. The focus of the study, however, was on externally generated EMI, termed High Intensity Radiated Fields (HIRF), from radars, radio and television transmitters, and other man-made emitters of electromagnetic energy. The study methodology used an anonymous questionnaire distributed to experts to gather the data. This method is known as the Delphi or Consensus Estimation technique. The questionnaire was sent to an expert population of 230 and there were 57 respondents. Details of the questionnaire, a few anecdotes, and the statistical results of the study are presented.

  18. Combined calculi for photon orbital and spin angular momenta

    NASA Astrophysics Data System (ADS)

    Elias, N. M.

    2014-08-01

    Context. Wavelength, photon spin angular momentum (PSAM), and photon orbital angular momentum (POAM), completely describe the state of a photon or an electric field (an ensemble of photons). Wavelength relates directly to energy and linear momentum, the corresponding kinetic quantities. PSAM and POAM, themselves kinetic quantities, are colloquially known as polarization and optical vortices, respectively. Astrophysical sources emit photons that carry this information. Aims: PSAM characteristics of an electric field (intensity) are compactly described by the Jones (Stokes/Mueller) calculus. Similarly, I created calculi to represent POAM characteristics of electric fields and intensities in an astrophysical context. Adding wavelength dependence to all of these calculi is trivial. The next logical steps are to 1) form photon total angular momentum (PTAM = POAM + PSAM) calculi; 2) prove their validity using operators and expectation values; and 3) show that instrumental PSAM can affect measured POAM values for certain types of electric fields. Methods: I derive the PTAM calculi of electric fields and intensities by combining the POAM and PSAM calculi. I show how these quantities propagate from celestial sphere to image plane. I also form the PTAM operator (the sum of the POAM and PSAM operators), with and without instrumental PSAM, and calculate the corresponding expectation values. Results: Apart from the vector, matrix, dot product, and direct product symbols, the PTAM and POAM calculi appear superficially identical. I provide tables with all possible forms of PTAM calculi. I prove that PTAM expectation values are correct for instruments with and without instrumental PSAM. I also show that POAM measurements of "unfactored" PTAM electric fields passing through non-zero instrumental circular PSAM can be biased. Conclusions: The combined PTAM calculi provide insight into mathematically modeling PTAM sources and calibrating POAM- and PSAM-induced measurement errors.

  19. Control of the Low-energy X-rays by Using MCNP5 and Numerical Analysis for a New Concept Intra-oral X-ray Imaging System

    NASA Astrophysics Data System (ADS)

    Huh, Jangyong; Ji, Yunseo; Lee, Rena

    2018-05-01

    An X-ray control algorithm to modulate the X-ray intensity distribution over the FOV (field of view) has been developed by using numerical analysis and MCNP5, a particle transport simulation code on the basis of the Monte Carlo method. X-rays, which are widely used in medical diagnostic imaging, should be controlled in order to maximize the performance of the X-ray imaging system. However, transporting X-rays, like a liquid or a gas is conveyed through a physical form such as pipes, is not possible. In the present study, an X-ray control algorithm and technique to uniformize the Xray intensity projected on the image sensor were developed using a flattening filter and a collimator in order to alleviate the anisotropy of the distribution of X-rays due to intrinsic features of the X-ray generator. The proposed method, which is combined with MCNP5 modeling and numerical analysis, aimed to optimize a flattening filter and a collimator for a uniform distribution of X-rays. Their size and shape were estimated from the method. The simulation and the experimental results both showed that the method yielded an intensity distribution over an X-ray field of 6×4 cm2 at SID (source to image-receptor distance) of 5 cm with a uniformity of more than 90% when the flattening filter and the collimator were mounted on the system. The proposed algorithm and technique are not only confined to flattening filter development but can also be applied for other X-ray related research and development efforts.

  20. Quantitative measurement of the near-field enhancement of nanostructures by two-photon polymerization.

    PubMed

    Geldhauser, Tobias; Kolloch, Andreas; Murazawa, Naoki; Ueno, Kosei; Boneberg, Johannes; Leiderer, Paul; Scheer, Elke; Misawa, Hiroaki

    2012-06-19

    The quantitative determination of the strength of the near-field enhancement in and around nanostructures is essential for optimizing and using these structures for applications. We combine the gaussian intensity distribution of a laser profile and two-photon-polymerization of SU-8 to a suitable tool for the quantitative experimental measurement of the near-field enhancement of a nanostructure. Our results give a feedback to the results obtained by finite-difference time-domain (FDTD) simulations. The structures under investigation are gold nanotriangles on a glass substrate with 85 nm side length and a thickness of 40 nm. We compare the threshold fluence for polymerization for areas of the gaussian intensity profile with and without the near-field enhancement of the nanostructures. The experimentally obtained value of the near-field intensity enhancement is 600 ± 140, independent of the laser power, irradiation time, and spot size. The FDTD simulation shows a pointlike maximum of 2600 at the tip. In a more extended area with an approximate size close to the smallest polymerized structure of 25 nm in diameter, we find a value between 800 and 600. Using our novel approach, we determine the threshold fluence for polymerization of the commercially available photopolymerizable resin SU-8 by a femtosecond laser working at a wavelength of 795 nm and a repetition rate of 82 MHz to be 0.25 J/cm(2) almost independent of the irradiation time and the laser power used. This finding is important for future applications of the method because it enables one to use varying laser systems.

  1. The Collection of Mosquito Eggs for Classroom and Field Investigations

    ERIC Educational Resources Information Center

    Steinly, Bruce A.

    2004-01-01

    A method for the collection of Aedes mosquito eggs is described whereby collection of mosquito eggs is used to monitor the intensity of egg deposition in urban and rural areas. The data is used to increase public awareness of the effect of human habitation and cultural practices on mosquito abundance.

  2. Evaluation of hyperspectral reflectance for estimating dry matter and sugar concentration in processing potatoes

    USDA-ARS?s Scientific Manuscript database

    The measurement of sugar concentration and dry matter in processing potatoes is a time and resource intensive activity, cannot be performed in the field, and does not easily measure within tuber variation. A proposed method to improve the phenotyping of processing potatoes is to employ hyperspectral...

  3. Electromagnetically-induced-transparency intensity-correlation power broadening in a buffer gas

    NASA Astrophysics Data System (ADS)

    Zheng, Aojie; Green, Alaina; Crescimanno, Michael; O'Leary, Shannon

    2016-04-01

    Electromagnetically-induced-transparency (EIT) noise correlation spectroscopy holds promise as a simple, robust method for performing high-resolution spectroscopy used in optical magnetometry and clocks. Of relevance to these applications, we report on the role of buffer gas pressure and magnetic field gradients on power broadening of Zeeman-EIT noise correlation resonances.

  4. Quantifying forest ground flora biomass using proximal sensing

    Treesearch

    Paul F. Doruska; Robert C. Weih; Matthew D. Lane; Don C. Bragg

    2003-01-01

    Current focus on forest conservation and forest sustainability has increased the level of attention pen to measures of pund flora in Sorest ecosystems. Traditionally, such data are collected via time- and resource-intensive methods of field identification, clipping, and weighing. With increased focus on community composition and structure measures of forest ground...

  5. Evaluation of RPM™ oak seedlings in afforesting floodplain crop fields along the Missouri River

    Treesearch

    Daniel C. Dey; John M. Kabrick; Michael A. Gold

    2005-01-01

    Regenerating oaks in agricultural floodplains is problematic because of their slow juvenile shoot growth, intense plant competition, seasonal flooding, and browsing by wildlife. Planting large nursery stock has been recommended to increase the competitiveness of oak seedlings. The Forrest Keeling Nursery in Missouri developed the Root Production Method (RPM™)...

  6. Directional phytoscreening: contaminant gradients in trees for plume delineation.

    PubMed

    Limmer, Matt A; Shetty, Mikhil K; Markus, Samantha; Kroeker, Ryan; Parker, Beth L; Martinez, Camilo; Burken, Joel G

    2013-08-20

    Tree sampling methods have been used in phytoscreening applications to delineate contaminated soil and groundwater, augmenting traditional investigative methods that are time-consuming, resource-intensive, invasive, and costly. In the past decade, contaminant concentrations in tree tissues have been shown to reflect the extent and intensity of subsurface contamination. This paper investigates a new phytoscreening tool: directional tree coring, a concept originating from field data that indicated azimuthal concentrations in tree trunks reflected the concentration gradients in the groundwater around the tree. To experimentally test this hypothesis, large diameter trees were subjected to subsurface contaminant concentration gradients in a greenhouse study. These trees were then analyzed for azimuthal concentration gradients in aboveground tree tissues, revealing contaminant centroids located on the side of the tree nearest the most contaminated groundwater. Tree coring at three field sites revealed sufficiently steep contaminant gradients in trees reflected nearby groundwater contaminant gradients. In practice, trees possessing steep contaminant gradients are indicators of steep subsurface contaminant gradients, providing compass-like information about the contaminant gradient, pointing investigators toward higher concentration regions of the plume.

  7. Measurement of the fluorescence of crop residues: A tool for controlling soil erosion

    NASA Technical Reports Server (NTRS)

    Daughtry, C. S. T.; Mcmurtrey, J. E., III; Chappelle, E. W.; Hunter, W. J.

    1994-01-01

    Management of crop residues, the portion of a crop left in the field after harvest, is an important conservation practice for minimizing soil erosion and for improving water quality. Quantification of crop residue cover is required to evaluate the effectiveness of conservation tillage practices. Methods are needed to quantify residue cover that are rapid, accurate, and objective. The fluorescence of crop residue was found to be a broadband phenomenon with emission maxima at 420 to 495 nm for excitations of 350 to 420 nm. Soils had low intensity broadband emissions over the 400 to 690 nm region for excitations of 300 to 600 nm. The range of relative fluorescence intensities for the crop residues was much greater than the fluorescence observed of the soils. As the crop residues decompose their blue fluorescence values approach the fluorescence of the soil. Fluorescence techniques are concluded to be less ambiguous and better suited for discriminating crop residues and soils than reflectance methods. If properly implemented, fluorescence techniques can be used to quantify, not only crop residue cover, but also photosynthetic efficiency in the field.

  8. Analysis of Safety Protection Measures for Maintenance Work of 500 kV Double-Circuit Transmission Lines on Same Tower

    NASA Astrophysics Data System (ADS)

    Yang, Qi; Zou, Dehua; Zhang, Jianjun; Li, Hui; Chen, Jianping; Li, Jinliang

    2017-05-01

    Four transmission lines on the same tower are widely used because of their obvious economic and social benefits. But it also has high power supply reliability, so the choice of reasonable maintenance mode is particularly important. In this paper, we deducted the maintenance influence of the energized line to non-energized line, calculated and analyzed protection measures of non-energized singular line of 500kV double-circuit transmission line on the same tower with ATP software, and calculated field intensity distribution of typical operating position of the energized double-circuit transmission line with the finite element software. The calculation shows that when using the outage maintenance method, hanging both ground current and personal security line can reduce the current flowing through the operator’s body effectively. When using the live maintenance method, the field intensity of operator body strengths up to 383.69kV/m, The operator needs to wear shielding cloth with at least 43.08 dB shielding efficiency, in order to meet the security requirements.

  9. Dense depth maps from correspondences derived from perceived motion

    NASA Astrophysics Data System (ADS)

    Kirby, Richard; Whitaker, Ross

    2017-01-01

    Many computer vision applications require finding corresponding points between images and using the corresponding points to estimate disparity. Today's correspondence finding algorithms primarily use image features or pixel intensities common between image pairs. Some 3-D computer vision applications, however, do not produce the desired results using correspondences derived from image features or pixel intensities. Two examples are the multimodal camera rig and the center region of a coaxial camera rig. We present an image correspondence finding technique that aligns pairs of image sequences using optical flow fields. The optical flow fields provide information about the structure and motion of the scene, which are not available in still images but can be used in image alignment. We apply the technique to a dual focal length stereo camera rig consisting of a visible light-infrared camera pair and to a coaxial camera rig. We test our method on real image sequences and compare our results with the state-of-the-art multimodal and structure from motion (SfM) algorithms. Our method produces more accurate depth and scene velocity reconstruction estimates than the state-of-the-art multimodal and SfM algorithms.

  10. Singularity computations. [finite element methods for elastoplastic flow

    NASA Technical Reports Server (NTRS)

    Swedlow, J. L.

    1978-01-01

    Direct descriptions of the structure of a singularity would describe the radial and angular distributions of the field quantities as explicitly as practicable along with some measure of the intensity of the singularity. This paper discusses such an approach based on recent development of numerical methods for elastoplastic flow. Attention is restricted to problems where one variable or set of variables is finite at the origin of the singularity but a second set is not.

  11. Measured electric field intensities near electric cloud discharges detected by the Kennedy Space Center's Lightning Detection and Ranging System, LDAR

    NASA Technical Reports Server (NTRS)

    Poehler, H. A.

    1977-01-01

    For a summer thunderstorm, for which simultaneous, airborne electric field measurements and Lightning Detection and Ranging (LDAR) System data was available, measurements were coordinated to present a picture of the electric field intensity near cloud electrical discharges detected by the LDAR System. Radar precipitation echos from NOAA's 10 cm weather radar and measured airborne electric field intensities were superimposed on LDAR PPI plots to present a coordinated data picture of thunderstorm activity.

  12. Reproducibility in Data-Scarce Environments

    NASA Astrophysics Data System (ADS)

    Darch, P. T.

    2016-12-01

    Among the usual requirements for reproducibility are large volumes of data and computationally intensive methods. Many fields within earth sciences, however, do not meet these requirements. Data are scarce and data-intensive methods are not well established. How can science be reproducible under these conditions? What changes, both infrastructural and cultural, are needed to advance reproducibility? This paper presents findings from a long-term social scientific case study of an emergent and data scarce field, the deep subseafloor biosphere. This field studies interactions between microbial communities living in the seafloor and the physical environments they inhabit. Factors such as these make reproducibility seem a distant goal for this community: - The relative newness of the field. Serious study began in the late 1990s; - The highly multidisciplinary nature of the field. Researchers come from a range of physical and life science backgrounds; - Data scarcity. Domain researchers produce much of these data in their own onshore laboratories by analyzing cores from international ocean drilling expeditions. Allocation of cores is negotiated between researchers from many fields. These factors interact in multiple ways to inhibit reproducibility: - Incentive structures emphasize producing new data and new knowledge rather than reanalysing extant data; - Only a few steps of laboratory analyses can be reproduced - such as analysis of DNA sequences, but not extraction of DNA from cores -, due to scarcity of cores; - Methodological heterogeneity is a consequence of multidisciplinarity, as researchers bring different techniques from diverse fields. - Few standards for data collection or analysis are available at this early stage of the field; - While datasets from multiple biological and physical phenomena can be integrated into a single workflow, curation tends to be divergent. Each type of dataset may be subject to different disparate policies and contributed to different databases. Our study demonstrates that data scarcity can be particularly acute in emerging scientific fields, and often results from resource scarcity more generally. Reproducibility tends to be a low priority among the many other scientific challenges they face.

  13. Model based estimation of image depth and displacement

    NASA Technical Reports Server (NTRS)

    Damour, Kevin T.

    1992-01-01

    Passive depth and displacement map determinations have become an important part of computer vision processing. Applications that make use of this type of information include autonomous navigation, robotic assembly, image sequence compression, structure identification, and 3-D motion estimation. With the reliance of such systems on visual image characteristics, a need to overcome image degradations, such as random image-capture noise, motion, and quantization effects, is clearly necessary. Many depth and displacement estimation algorithms also introduce additional distortions due to the gradient operations performed on the noisy intensity images. These degradations can limit the accuracy and reliability of the displacement or depth information extracted from such sequences. Recognizing the previously stated conditions, a new method to model and estimate a restored depth or displacement field is presented. Once a model has been established, the field can be filtered using currently established multidimensional algorithms. In particular, the reduced order model Kalman filter (ROMKF), which has been shown to be an effective tool in the reduction of image intensity distortions, was applied to the computed displacement fields. Results of the application of this model show significant improvements on the restored field. Previous attempts at restoring the depth or displacement fields assumed homogeneous characteristics which resulted in the smoothing of discontinuities. In these situations, edges were lost. An adaptive model parameter selection method is provided that maintains sharp edge boundaries in the restored field. This has been successfully applied to images representative of robotic scenarios. In order to accommodate image sequences, the standard 2-D ROMKF model is extended into 3-D by the incorporation of a deterministic component based on previously restored fields. The inclusion of past depth and displacement fields allows a means of incorporating the temporal information into the restoration process. A summary on the conditions that indicate which type of filtering should be applied to a field is provided.

  14. Synthesis of Green-Emitting (La,Gd)OBr:Tb3+ Phosphors

    PubMed Central

    Kim, Sun Woog; Jyoko, Kazuya; Masui, Toshiyuki; Imanaka, Nobuhito

    2010-01-01

    Green-emitting phosphors based on lanthanum-gadolinium oxybromide were synthesized in a single phase form by the conventional solid state reaction method, and photoluminescence properties of them were characterized. The excitation peak wavelength of (La1-xGdx)OBr:Tb3+ shifted to the shorter wavelength side with the increase in the crystal field around the Tb3+ ions by doping Gd3+ ions into the La3+ site, and, as a result, the green emission intensity was successfully enhanced. The maximum emission intensity was obtained for (La0.95Gd0.05)OBr:5%Tb3+, where the relative emission intensity was 45% of that of a commercial green-emitting LaPO4:Ce3+,Tb3+ phosphor.

  15. Development and Characterization of a Laser-Induced Acoustic Desorption Source.

    PubMed

    Huang, Zhipeng; Ossenbrüggen, Tim; Rubinsky, Igor; Schust, Matthias; Horke, Daniel A; Küpper, Jochen

    2018-03-20

    A laser-induced acoustic desorption source, developed for use at central facilities, such as free-electron lasers, is presented. It features prolonged measurement times and a fixed interaction point. A novel sample deposition method using aerosol spraying provides a uniform sample coverage and hence stable signal intensity. Utilizing strong-field ionization as a universal detection scheme, the produced molecular plume is characterized in terms of number density, spatial extend, fragmentation, temporal distribution, translational velocity, and translational temperature. The effect of desorption laser intensity on these plume properties is evaluated. While translational velocity is invariant for different desorption laser intensities, pointing to a nonthermal desorption mechanism, the translational temperature increases significantly and higher fragmentation is observed with increased desorption laser fluence.

  16. Limit on Excitation and Stabilization of Atoms in Intense Optical Laser Fields.

    PubMed

    Zimmermann, H; Meise, S; Khujakulov, A; Magaña, A; Saenz, A; Eichmann, U

    2018-03-23

    Atomic excitation in strong optical laser fields has been found to take place even at intensities exceeding saturation. The concomitant acceleration of the atom in the focused laser field has been considered a strong link to, if not proof of, the existence of the so-called Kramers-Henneberger (KH) atom, a bound atomic system in an intense laser field. Recent findings have moved the importance of the KH atom from being purely of theoretical interest toward real world applications; for instance, in the context of laser filamentation. Considering this increasing importance, we explore the limits of strong-field excitation in optical fields, which are basically imposed by ionization through the spatial field envelope and the field propagation.

  17. A diffusion-based truncated projection artifact reduction method for iterative digital breast tomosynthesis reconstruction

    PubMed Central

    Lu, Yao; Chan, Heang-Ping; Wei, Jun; Hadjiiski, Lubomir M

    2014-01-01

    Digital breast tomosynthesis (DBT) has strong promise to improve sensitivity for detecting breast cancer. DBT reconstruction estimates the breast tissue attenuation using projection views (PVs) acquired in a limited angular range. Because of the limited field of view (FOV) of the detector, the PVs may not completely cover the breast in the x-ray source motion direction at large projection angles. The voxels in the imaged volume cannot be updated when they are outside the FOV, thus causing a discontinuity in intensity across the FOV boundaries in the reconstructed slices, which we refer to as the truncated projection artifact (TPA). Most existing TPA reduction methods were developed for the filtered backprojection method in the context of computed tomography. In this study, we developed a new diffusion-based method to reduce TPAs during DBT reconstruction using the simultaneous algebraic reconstruction technique (SART). Our TPA reduction method compensates for the discontinuity in background intensity outside the FOV of the current PV after each PV updating in SART. The difference in voxel values across the FOV boundary is smoothly diffused to the region beyond the FOV of the current PV. Diffusion-based background intensity estimation is performed iteratively to avoid structured artifacts. The method is applicable to TPA in both the forward and backward directions of the PVs and for any number of iterations during reconstruction. The effectiveness of the new method was evaluated by comparing the visual quality of the reconstructed slices and the measured discontinuities across the TPA with and without artifact correction at various iterations. The results demonstrated that the diffusion-based intensity compensation method reduced the TPA while preserving the detailed tissue structures. The visibility of breast lesions obscured by the TPA was improved after artifact reduction. PMID:23318346

  18. Scattering in discrete random media with implications to propagation through rain. Ph.D. Thesis George Washingtion Univ., Washington, D.C.

    NASA Technical Reports Server (NTRS)

    Ippolito, L. J., Jr.

    1977-01-01

    The multiple scattering effects on wave propagation through a volume of discrete scatterers were investigated. The mean field and intensity for a distribution of scatterers was developed using a discrete random media formulation, and second order series expansions for the mean field and total intensity derived for one-dimensional and three-dimensional configurations. The volume distribution results were shown to proceed directly from the one-dimensional results. The multiple scattering intensity expansion was compared to the classical single scattering intensity and the classical result was found to represent only the first three terms in the total intensity expansion. The Foldy approximation to the mean field was applied to develop the coherent intensity, and was found to exactly represent all coherent terms of the total intensity.

  19. Phenomena induced by charged particle beams. [experimental design for Spacelab

    NASA Technical Reports Server (NTRS)

    Beghin, C.

    1981-01-01

    The injection of energetic particles along the Earth's magnetic field lines is a possible remote sensing method for measuring the electric fields parallel to the magnetic field with good time resolution over the entire magnetic field. Neutralization processes, return-current effects, dynamics of the beams, triggered instabilities, and waves must be investigated before the fundamental question about proper experimental conditions, such as energy, intensity and divergence of the beams, pitch-angle injection, ion species, proper probes and detectors and their location, and rendezvous conditions, can be resolved. An experiment designed to provide a better understanding of these special physical processes and to provide some answers to questions concerning beam injection techniques is described.

  20. High magnetic field behavior of NbFe2

    NASA Astrophysics Data System (ADS)

    Rauch, D.; Steinki, N.; Knafo, W.; Pfleiderer, C.; Duncan, W. J.; Grosche, F. M.; Süllow, S.

    2018-05-01

    We have carried out a high magnetic field study on single crystalline stoichiometric NbFe2, a material discussed in terms quantum criticality in itinerant ferromagnets, by means of high field resistivity experiments. Our experiments have been performed at the Laboratoire National des Champs Magnétiques Intenses in Toulouse, France. The resistivity of single crystalline NbFe2, has been investigated in external fields up to 15.5 T aligned along the c-axis in the temperature range of 1.4-55 K. The main focus of our study lies on the method to extract TN from the magnetoresistivity measurements, because TN could not be easily observed in temperature dependent resistivity for stoichiometric NbFe2.

  1. Iterative normalization method for improved prostate cancer localization with multispectral magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Samil Yetik, Imam

    2012-04-01

    Use of multispectral magnetic resonance imaging has received a great interest for prostate cancer localization in research and clinical studies. Manual extraction of prostate tumors from multispectral magnetic resonance imaging is inefficient and subjective, while automated segmentation is objective and reproducible. For supervised, automated segmentation approaches, learning is essential to obtain the information from training dataset. However, in this procedure, all patients are assumed to have similar properties for the tumor and normal tissues, and the segmentation performance suffers since the variations across patients are ignored. To conquer this difficulty, we propose a new iterative normalization method based on relative intensity values of tumor and normal tissues to normalize multispectral magnetic resonance images and improve segmentation performance. The idea of relative intensity mimics the manual segmentation performed by human readers, who compare the contrast between regions without knowing the actual intensity values. We compare the segmentation performance of the proposed method with that of z-score normalization followed by support vector machine, local active contours, and fuzzy Markov random field. Our experimental results demonstrate that our method outperforms the three other state-of-the-art algorithms, and was found to have specificity of 0.73, sensitivity of 0.69, and accuracy of 0.79, significantly better than alternative methods.

  2. Termination of atrial fibrillation using pulsed low-energy far-field stimulation

    PubMed Central

    Fenton, Flavio H.; Luther, Stefan; Cherry, Elizabeth M.; Otani, Niels F.; Krinsky, Valentin; Pumir, Alain; Bodenschatz, Eberhard; Gilmour, Robert F.

    2010-01-01

    Background Electrically-based therapies for terminating atrial fibrillation (AF) currently fall into two categories: anti-tachycardia pacing (ATP) and cardioversion. ATP utilizes low-intensity pacing stimuli delivered via a single electrode and is effective for terminating slower tachycardias, but is less effective for treating AF. In contrast, cardioversion uses a single high-voltage shock to terminate AF reliably, but the voltages required produce undesirable side effects, including tissue damage and pain. We propose a new method to terminate AF called far-field anti-fibrillation pacing (FF-AFP), which delivers a short train of low-intensity electrical pulses at the frequency of ATP, but from field electrodes. Prior theoretical work has suggested that this approach can create a large number of activation sites (“virtual” electrodes) that emit propagating waves within the tissue without implanting physical electrodes and thereby may be more effective than point-source stimulation. Methods and Results Using optical mapping in isolated perfused canine atrial preparations, we show that a series of pulses at low field strength (0.9-1.4 V/cm) is sufficient to entrain and subsequently extinguish AF with a success rate of 93 percent (69/74 trials in 8 preparations). We further demonstrate that the mechanism behind FFAFP success is the generation of wave emission sites within the tissue by the applied electric field, which entrains the tissue as the field is pulsed. Conclusions AF in our model can be terminated by FF-AFP using only 13% of the energy required for cardioversion. Further studies are needed to determine whether this marked reduction in energy can increase the effectiveness and safety of terminating atrial tachyarrhythmias clinically. PMID:19635972

  3. Clinical Research with Transcranial Direct Current Stimulation (tDCS): Challenges and Future Directions

    PubMed Central

    Brunoni, Andre Russowsky; Nitsche, Michael A.; Bolognini, Nadia; Bikson, Marom; Wagner, Tim; Merabet, Lotfi; Edwards, Dylan J.; Valero-Cabre, Antoni; Rotenberg, Alexander; Pascual-Leone, Alvaro; Ferrucci, Roberta; Priori, Alberto; Boggio, Paulo; Fregni, Felipe

    2011-01-01

    Background Transcranial direct current stimulation (tDCS) is a neuromodulatory technique that delivers low-intensity, direct current to cortical areas facilitating or inhibiting spontaneous neuronal activity. In the past ten years, tDCS physiological mechanisms of action have been intensively investigated giving support for the investigation of its applications in clinical neuropsychiatry and rehabilitation. However, new methodological, ethical, and regulatory issues emerge when translating the findings of preclinical and phase I studies into phase II and III clinical studies. The aim of this comprehensive review is to discuss the key challenges of this process and possible methods to address them. Methods We convened a workgroup of researchers in the field to review, discuss and provide updates and key challenges of neuromodulation use for clinical research. Main Findings/Discussion We reviewed several basic and clinical studies in the field and identified potential limitations, taking into account the particularities of the technique. We review and discuss the findings into four topics: (i) mechanisms of action of tDCS, parameters of use and computer-based human brain modeling investigating electric current fields and magnitude induced by tDCS; (ii) methodological aspects related to the clinical research of tDCS as divided according to study phase (i.e., preclinical, phase I, phase II and phase III studies); (iii) ethical and regulatory concerns; (iv) future directions regarding novel approaches, novel devices, and future studies involving tDCS. Finally, we propose some alternative methods to facilitate clinical research on tDCS. PMID:22037126

  4. [Investigation of non-ionizing radiation hazards from physiotherapy equipment in 16 medical institutions].

    PubMed

    He, Jia-xi; Zhou, Wei; Qiu, Hai-li; Yang, Guang-tao

    2013-12-01

    To investigate the non-ionizing radiation hazards from physiotherapy equipment in medical institutions and to explore feasible control measures for occupational diseases. On-site measurement and assessment of ultra-high-frequency radiation, high-frequency electromagnetic field, microwave radiation, and laser radiation were carried out in 16 medical institutions using the methods in the Measurement of Physical Agents in Workplace (GBZ/T189-2007). All the investigated medical institutions failed to take effective protective measures against non-ionizing radiation. Of the 17 ultra-short wave therapy apparatus, 70.6%, 47.1%, and 17.64% had a safe intensity of ultra-high-frequency radiation on the head, chest, and abdomen, respectively. Of the 4 external high-frequency thermotherapy apparatus, 100%, 75%, and 75%had a safe intensity of high-frequency electromagnetic field on the head, chest, and abdomen, respectively. In addition, the intensities of microwave radiation and laser radiation produced by the 18 microwave therapy apparatus and 12 laser therapeutic apparatus met national health standards. There are non-ionizing radiation hazards from physiotherapy equipment in medical institutions, and effective prevention and control measures are necessary.

  5. Time-dependent density-functional theory with optimized effective potential and self-interaction correction and derivative discontinuity for the treatment of double ionization of He and Be atoms in intense laser fields

    NASA Astrophysics Data System (ADS)

    Heslar, John; Telnov, Dmitry A.; Chu, Shih-I.

    2013-05-01

    We present a self-interaction-free time-dependent density-functional theory (TDDFT) for the treatment of double-ionization processes of many-electron systems. The method is based on the extension of the Krieger-Li-Iafrate (KLI) treatment of the optimized effective potential (OEP) theory and the incorporation of an explicit self-interaction correction (SIC) term. In the framework of the time-dependent density functional theory, we have performed three-dimensional (3D) calculations of double ionization of He and Be atoms by intense near-infrared laser fields. We make use of the exchange-correlation potential with the integer discontinuity which improves the description of the double-ionization process. We found that a proper description of the double ionization requires the TDDFT exchange-correlation potential with the discontinuity with respect to the variation of the total particle number (TPN). The results for the intensity-dependent rates of double ionization of He and Be atoms are presented.

  6. Rocket propulsion by thermonuclear micro-bombs ignited with intense relativistic electron beams.

    NASA Technical Reports Server (NTRS)

    Winterberg, F.

    1971-01-01

    Discussion of a method for the ignition of a thermonuclear microbomb by means of an intense relativistic electron beam with regard to its potential application to rocket propulsion. With such a system, exhaust velocities up to 1000 km/sec, corresponding to a specific impulse of 100,000 sec, seem to be within the realm of possibility. The rocket is propelled by a chain of thermonuclear microbombs exploded in a concave magnetic mirror produced by superconducting field coils. The magnetic pressure of the field reflects the fireball generated by the explosion. For the large capacitor bank required to generate the intense relativistic electron beam, a desirable lightweight design may be possible through use of ferroelectric materials. Because of the high cost of the T-D and He 3-D thermonuclear material, the system has to be optimized by minimizing the T-D and He 3-D consumption by a proper TD and He 3-D fuel to hydrogen propellant mass ratio, leading to a larger total system mass than would be absolutely necessary.

  7. Application of novel low-intensity nonscanning fluorescence lifetime imaging microscopy for monitoring excited state dynamics in individual chloroplasts and living cells of photosynthetic organisms

    NASA Astrophysics Data System (ADS)

    Eckert, Hann-Jörg; Petrášek, Zdeněk; Kemnitz, Klaus

    2006-10-01

    Picosecond fluorescence lifetime imaging microscopy (FLIM) provides a most valuable tool to analyze the primary processes of photosynthesis in individual cells and chloroplasts of living cells. In order to obtain correct lifetimes of the excited states, the peak intensity of the exciting laser pulses as well as the average intensity has to be sufficiently low to avoid distortions of the kinetics by processes such as singlet-singlet annihilation, closing of the reaction centers or photoinhibition. In the present study this requirement is achieved by non-scanning wide-field FLIM based on time- and space-correlated single-photon counting (TSCSPC) using a novel microchannel plate photomultiplier with quadrant anode (QA-MCP) that allows parallel acquisition of time-resolved images under minimally invasive low-excitation conditions. The potential of the wide-field TCSPC method is demonstrated by presenting results obtained from measurements of the fluorescence dynamics in individual chloroplasts of moss leaves and living cells of the chlorophyll d-containing cyanobacterium Acaryochloris marina.

  8. Progressive Muscle Atrophy and Weakness After Treatment by Mantle Field Radiotherapy in Hodgkin Lymphoma Survivors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leeuwen-Segarceanu, Elena M. van, E-mail: e.segarceanu@antoniusziekenhuis.nl; Dorresteijn, Lucille D.A.; Pillen, Sigrid

    Purpose: To describe the damage to the muscles and propose a pathophysiologic mechanism for muscle atrophy and weakness after mantle field radiotherapy in Hodgkin lymphoma (HL) survivors. Methods and Materials: We examined 12 patients treated by mantle field radiotherapy between 1969 and 1998. Besides evaluation of their symptoms, the following tests were performed: dynamometry; ultrasound of the sternocleidomastoid, biceps, and antebrachial flexor muscles; and needle electromyography of the neck, deltoid, and ultrasonographically affected arm muscles. Results: Ten patients (83%) experienced neck complaints, mostly pain and muscle weakness. On clinical examination, neck flexors were more often affected than neck extensors. Onmore » ultrasound, the sternocleidomastoid was severely atrophic in 8 patients, but abnormal echo intensity was seen in only 3 patients. Electromyography of the neck muscles showed mostly myogenic changes, whereas the deltoid, biceps, and antebrachial flexor muscles seemed to have mostly neurogenic damage. Conclusions: Many patients previously treated by mantle field radiotherapy develop severe atrophy and weakness of the neck muscles. Neck muscles within the radiation field show mostly myogenic damage, and muscles outside the mantle field show mostly neurogenic damage. The discrepancy between echo intensity and atrophy suggests that muscle damage is most likely caused by an extrinsic factor such as progressive microvascular fibrosis. This is also presumed to cause damage to nerves within the radiated field, resulting in neurogenic damage of the deltoid and arm muscles.« less

  9. SU-E-T-340: Use of Intensity Modulated Proton Therapy (IMPT) for Reducing the Dose to Cochlea in Craniospinal Irradiation (CSI) of Pediatric Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dormer, J; Kassaee, A; Lin, H

    2014-06-01

    Purpose: To evaluate use of intensity modulated proton therapy (IMPT) and number of beams for sparing cochlea in treatment of whole brain for pediatric medulloblastoma patients. Methods: In our institution, craniospinal irradiation patients are treated in supine position on our proton gantries using pencil beam scanning with each beam uniformly covering the target volume (SFUD). Each treatment plan consists of two opposed lateral whole brain fields and one or two spinal fields. For sparing the cochlea for the whole brain treatment, we created three different plans using IMPT for five pediatric patients. The first plan consisted of two lateral fields,more » the second two lateral fields and a superior-inferior field, and the third two lateral fields and two superior oblique fields. Optimization was performed with heavy weights applied to the eye, lens and cochlea while maintaining a dose prescription of 36 Gy to the whole brain. Results: IMPT plans reduce the dose to the cochlea. Increasing the number of treatment fields was found to lower the average dose to the cochlea: 15.0, 14.5 and 12.5 Gy for the two-field, three-field, and four-field plans respectively. The D95 for the two-field plan was 98.2%, compared to 100.0% for both the three-field and four-field plan. Coverage in the mid-brain was noticeably better in the three- and four-field plans, with more dose conformality surrounding the cochlea. Conclusion: IMPT plans for CSI and the whole brain irradiations are capable of sparing cochlea and reduce the dose considerably without compromising treating brain tissues. The reduction in average dose increases with three and four field plans as compared to traditional two lateral beam plans.« less

  10. The potential of detecting intermediate-scale biomass and canopy interception in a coniferous forest using cosmic-ray neutron intensity measurements and neutron transport modeling

    NASA Astrophysics Data System (ADS)

    Andreasen, M.; Looms, M. C.; Bogena, H. R.; Desilets, D.; Zreda, M. G.; Sonnenborg, T. O.; Jensen, K. H.

    2014-12-01

    The water stored in the various compartments of the terrestrial ecosystem (in snow, canopy interception, soil and litter) controls the exchange of the water and energy between the land surface and the atmosphere. Therefore, measurements of the water stored within these pools are critical for the prediction of e.g. evapotranspiration and groundwater recharge. The detection of cosmic-ray neutron intensity is a novel non-invasive method for the quantification of continuous intermediate-scale soil moisture. The footprint of the cosmic-ray neutron probe is a hemisphere of a few hectometers and subsurface depths of 10-70 cm depending on wetness. The cosmic-ray neutron method offers measurements at a scale between the point-scale measurements and large-scale satellite retrievals. The cosmic-ray neutron intensity is inversely correlated to the hydrogen stored within the footprint. Overall soil moisture represents the largest pool of hydrogen and changes in the soil moisture clearly affect the cosmic-ray neutron signal. However, the neutron intensity is also sensitive to variations of hydrogen in snow, canopy interception and biomass offering the potential to determine water content in such pools from the signal. In this study we tested the potential of determining canopy interception and biomass using cosmic-ray neutron intensity measurements within the framework of the Danish Hydrologic Observatory (HOBE) and the Terrestrial Environmental Observatories (TERENO). Continuous measurements at the ground and the canopy level, along with profile measurements were conducted at towers at forest field sites. Field experiments, including shielding the cosmic-ray neutron probes with cadmium foil (to remove lower-energy neutrons) and measuring reference intensity rates at complete water saturated conditions (on the sea close to the HOBE site), were further conducted to obtain an increased understanding of the physics controlling the cosmic-ray neutron transport and the equipment used. Additionally, neutron transport modeling, using the extended version of the Monte Carlo N-Particle Transport Code, was conducted. The responses of the reference condition, different amounts of biomass, soil moisture and canopy interception on the cosmic-ray neutron intensity were simulated and compared to the measurements.

  11. Transitional paleointensities from Kauai, Hawaii, and geomagnetic reversal models

    USGS Publications Warehouse

    Bogue, Scott W.; Coe, Robert S.

    1984-01-01

    Previously presented paleointensity results from an R-N transition zone in Kauai, Hawaii, show that field intensity dropped from 0. 431 Oe to 0. 101 Oe while the field remained within 30 degree of the reversed axial dipole direction. A recovery in intensity and the main directional change followed this presumably short period of low field strength. As the reversal neared completion, the field has an intensity of 0. 217 Oe while still 40 degree from the final direction. The relationship of paleointensity to field direction during the early part of the reversal thus differs from that toward the end, a feature that only some reversal models are consistent with. For example, a model in which a standing nondipole component persists through the dipole reversal predicts only symmetric intensity patterns. In contrast, zonal flooding models generate suitably complex field behavior if multiple flooding schemes operate during a single reversal or if the flooding process is itself asymmetric.

  12. Cavity electromagnetically induced transparency with Rydberg atoms

    NASA Astrophysics Data System (ADS)

    Bakar Ali, Abu; Ziauddin

    2018-02-01

    Cavity electromagnetically induced transparency (EIT) is revisited via the input probe field intensity. A strongly interacting Rydberg atomic medium ensemble is considered in a cavity, where atoms behave as superatoms (SAs) under the dipole blockade mechanism. Each atom in the strongly interacting Rydberg atomic medium (87 Rb) follows a three-level cascade atomic configuration. A strong control and weak probe field are employed in the cavity with the ensemble of Rydberg atoms. The features of the reflected and transmitted probe light are studied under the influence of the input probe field intensity. A transparency peak (cavity EIT) is revealed at a resonance condition for small values of input probe field intensity. The manipulation of the cavity EIT is reported by tuning the strength of the input probe field intensity. Further, the phase and group delay of the transmitted and reflected probe light are studied. It is found that group delay and phase in the reflected light are negative, while for the transmitted light they are positive. The magnitude control of group delay in the transmitted and reflected light is investigated via the input probe field intensity.

  13. Neutral particle beam intensity controller

    DOEpatents

    Dagenhart, W.K.

    1984-05-29

    The neutral beam intensity controller is based on selected magnetic defocusing of the ion beam prior to neutralization. The defocused portion of the beam is dumped onto a beam dump disposed perpendicular to the beam axis. Selective defocusing is accomplished by means of a magnetic field generator disposed about the neutralizer so that the field is transverse to the beam axis. The magnetic field intensity is varied to provide the selected partial beam defocusing of the ions prior to neutralization. The desired focused neutral beam portion passes along the beam path through a defining aperture in the beam dump, thereby controlling the desired fraction of neutral particles transmitted to a utilization device without altering the kinetic energy level of the desired neutral particle fraction. By proper selection of the magnetic field intensity, virtually zero through 100% intensity control of the neutral beam is achieved.

  14. Detection of Magnetic Field Intensity Gradient by Homing Pigeons (Columba livia) in a Novel “Virtual Magnetic Map” Conditioning Paradigm

    PubMed Central

    Mora, Cordula V.; Bingman, Verner P.

    2013-01-01

    It has long been thought that birds may use the Earth's magnetic field not only as a compass for direction finding, but that it could also provide spatial information for position determination analogous to a map during navigation. Since magnetic field intensity varies systematically with latitude and theoretically could also provide longitudinal information during position determination, birds using a magnetic map should be able to discriminate magnetic field intensity cues in the laboratory. Here we demonstrate a novel behavioural paradigm requiring homing pigeons to identify the direction of a magnetic field intensity gradient in a “virtual magnetic map” during a spatial conditioning task. Not only were the pigeons able to detect the direction of the intensity gradient, but they were even able to discriminate upward versus downward movement on the gradient by differentiating between increasing and decreasing intensity values. Furthermore, the pigeons typically spent more than half of the 15 second sampling period in front of the feeder associated with the rewarded gradient direction indicating that they required only several seconds to make the correct choice. Our results therefore demonstrate for the first time that pigeons not only can detect the presence and absence of magnetic anomalies, as previous studies had shown, but are even able to detect and respond to changes in magnetic field intensity alone, including the directionality of such changes, in the context of spatial orientation within an experimental arena. This opens up the possibility for systematic and detailed studies of how pigeons could use magnetic intensity cues during position determination as well as how intensity is perceived and where it is processed in the brain. PMID:24039812

  15. Detection of magnetic field intensity gradient by homing pigeons (Columba livia) in a novel "virtual magnetic map" conditioning paradigm.

    PubMed

    Mora, Cordula V; Bingman, Verner P

    2013-01-01

    It has long been thought that birds may use the Earth's magnetic field not only as a compass for direction finding, but that it could also provide spatial information for position determination analogous to a map during navigation. Since magnetic field intensity varies systematically with latitude and theoretically could also provide longitudinal information during position determination, birds using a magnetic map should be able to discriminate magnetic field intensity cues in the laboratory. Here we demonstrate a novel behavioural paradigm requiring homing pigeons to identify the direction of a magnetic field intensity gradient in a "virtual magnetic map" during a spatial conditioning task. Not only were the pigeons able to detect the direction of the intensity gradient, but they were even able to discriminate upward versus downward movement on the gradient by differentiating between increasing and decreasing intensity values. Furthermore, the pigeons typically spent more than half of the 15 second sampling period in front of the feeder associated with the rewarded gradient direction indicating that they required only several seconds to make the correct choice. Our results therefore demonstrate for the first time that pigeons not only can detect the presence and absence of magnetic anomalies, as previous studies had shown, but are even able to detect and respond to changes in magnetic field intensity alone, including the directionality of such changes, in the context of spatial orientation within an experimental arena. This opens up the possibility for systematic and detailed studies of how pigeons could use magnetic intensity cues during position determination as well as how intensity is perceived and where it is processed in the brain.

  16. Evaluating co-creation of knowledge: from quality criteria and indicators to methods

    NASA Astrophysics Data System (ADS)

    Schuck-Zöller, Susanne; Cortekar, Jörg; Jacob, Daniela

    2017-11-01

    Basic research in the natural sciences rests on a long tradition of evaluation. However, since the San Francisco Declaration on Research Assessment (DORA) came out in 2012, there has been intense discussion in the natural sciences, above all amongst researchers and funding agencies in the different fields of applied research and scientific service. This discussion was intensified when climate services and other fields, used to make users participate in research and development activities (co-creation), demanded new evaluation methods appropriate to this new research mode. This paper starts by describing a comprehensive and interdisciplinary literature overview of indicators to evaluate co-creation of knowledge, including the different fields of integrated knowledge production. Then the authors harmonize the different elements of evaluation from literature in an evaluation cascade that scales down from very general evaluation dimensions to tangible assessment methods. They describe evaluation indicators already being documented and include a mixture of different assessment methods for two exemplary criteria. It is shown what can be deduced from already existing methodology for climate services and envisaged how climate services can further to develop their specific evaluation method.

  17. Smartphone based hand-held quantitative phase microscope using the transport of intensity equation method.

    PubMed

    Meng, Xin; Huang, Huachuan; Yan, Keding; Tian, Xiaolin; Yu, Wei; Cui, Haoyang; Kong, Yan; Xue, Liang; Liu, Cheng; Wang, Shouyu

    2016-12-20

    In order to realize high contrast imaging with portable devices for potential mobile healthcare, we demonstrate a hand-held smartphone based quantitative phase microscope using the transport of intensity equation method. With a cost-effective illumination source and compact microscope system, multi-focal images of samples can be captured by the smartphone's camera via manual focusing. Phase retrieval is performed using a self-developed Android application, which calculates sample phases from multi-plane intensities via solving the Poisson equation. We test the portable microscope using a random phase plate with known phases, and to further demonstrate its performance, a red blood cell smear, a Pap smear and monocot root and broad bean epidermis sections are also successfully imaged. Considering its advantages as an accurate, high-contrast, cost-effective and field-portable device, the smartphone based hand-held quantitative phase microscope is a promising tool which can be adopted in the future in remote healthcare and medical diagnosis.

  18. Characterizing the response of a scintillator-based detector to single electrons.

    PubMed

    Sang, Xiahan; LeBeau, James M

    2016-02-01

    Here we report the response of a high angle annular dark field scintillator-based detector to single electrons. We demonstrate that care must be taken when determining the single electron intensity as significant discrepancies can occur when quantifying STEM images with different methods. To account for the detector response, we first image the detector using very low beam currents (∼8fA), and subsequently model the interval between consecutive single electrons events. We find that single electrons striking the detector present a wide distribution of intensities, which we show is not described by a simple function. Further, we present a method to accurately account for the electrons within the incident probe when conducting quantitative imaging. The role detector settings play on determining the single electron intensity is also explored. Finally, we extend our analysis to describe the response of the detector to multiple electron events within the dwell interval of each pixel. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Simple method for the characterization of intense Laguerre-Gauss vector vortex beams

    NASA Astrophysics Data System (ADS)

    Allahyari, E.; JJ Nivas, J.; Cardano, F.; Bruzzese, R.; Fittipaldi, R.; Marrucci, L.; Paparo, D.; Rubano, A.; Vecchione, A.; Amoruso, S.

    2018-05-01

    We report on a method for the characterization of intense, structured optical fields through the analysis of the size and surface structures formed inside the annular ablation crater created on the target surface. In particular, we apply the technique to laser ablation of crystalline silicon induced by femtosecond vector vortex beams. We show that a rapid direct estimate of the beam waist parameter is obtained through a measure of the crater radii. The variation of the internal and external radii of the annular crater as a function of the laser pulse energy, at fixed number of pulses, provides another way to evaluate the beam spot size through numerical fitting of the obtained experimental data points. A reliable estimate of the spot size is of paramount importance to investigate pulsed laser-induced effects on the target material. Our experimental findings offer a facile way to characterize focused, high intensity complex optical vector beams which are more and more applied in laser-matter interaction experiments.

  20. Intensity distributions and isolated attosecond pulse generation from molecular high-order harmonic generation in H2+ driven by nonhomogeneous field

    NASA Astrophysics Data System (ADS)

    Feng, Liqiang; Chu, Tianshu

    2017-10-01

    Intensity distributions and isolated attosecond pulse generation from the molecular high-order harmonic generation (MHHG) in H2+ and T2+ driven by the nonhomogeneous field have been theoretically investigated. (i) Generally speaking, the intensities of the harmonics driven by the homogeneous field can be enhanced as the initial vibrational state increases and much more intense harmonics can be obtained from the light nuclei. However, with the introduction of the nonhomogeneous effect, the enhanced ratios of the harmonic yields are decreased as the initial vibrational state increases. Moreover, the intensities of the harmonics from H2+ and T2+ are very sensitive to the nonhomogeneous effect of the laser field. (ii) The contributions of the MHHG from the two-H nuclei present the periodic variation as a function of the laser phase for the case of the symmetric nonhomogeneous field. However, for the case of the positive and the negative asymmetric nonhomogeneous fields, the left-H and the right-H play the dominating role in the MHHG, respectively. Moreover, as the angle between the laser polarization direction and the molecular axis increases, the intensity differences of the harmonics from the two-H nuclei are increased. (iii) By properly adding a half-cycle pulse into the positive asymmetric nonhomogeneous field, a supercontinuum with the bandwidth of 279 eV and an isolated 25 as pulse can be obtained.

  1. Statistical analysis of geomagnetic field intensity differences between ASM and VFM instruments onboard Swarm constellation

    NASA Astrophysics Data System (ADS)

    De Michelis, Paola; Tozzi, Roberta; Consolini, Giuseppe

    2017-02-01

    From the very first measurements made by the magnetometers onboard Swarm satellites launched by European Space Agency (ESA) in late 2013, it emerged a discrepancy between scalar and vector measurements. An accurate analysis of this phenomenon brought to build an empirical model of the disturbance, highly correlated with the Sun incidence angle, and to correct vector data accordingly. The empirical model adopted by ESA results in a significant decrease in the amplitude of the disturbance affecting VFM measurements so greatly improving the vector magnetic data quality. This study is focused on the characterization of the difference between magnetic field intensity measured by the absolute scalar magnetometer (ASM) and that reconstructed using the vector field magnetometer (VFM) installed on Swarm constellation. Applying empirical mode decomposition method, we find the intrinsic mode functions (IMFs) associated with ASM-VFM total intensity differences obtained with data both uncorrected and corrected for the disturbance correlated with the Sun incidence angle. Surprisingly, no differences are found in the nature of the IMFs embedded in the analyzed signals, being these IMFs characterized by the same dominant periodicities before and after correction. The effect of correction manifests in the decrease in the energy associated with some IMFs contributing to corrected data. Some IMFs identified by analyzing the ASM-VFM intensity discrepancy are characterized by the same dominant periodicities of those obtained by analyzing the temperature fluctuations of the VFM electronic unit. Thus, the disturbance correlated with the Sun incidence angle could be still present in the corrected magnetic data. Furthermore, the ASM-VFM total intensity difference and the VFM electronic unit temperature display a maximal shared information with a time delay that depends on local time. Taken together, these findings may help to relate the features of the observed VFM-ASM total intensity difference to the physical characteristics of the real disturbance thus contributing to improve the empirical model proposed for the correction of data.[Figure not available: see fulltext.

  2. Assessment of measurement errors and dynamic calibration methods for three different tipping bucket rain gauges

    NASA Astrophysics Data System (ADS)

    Shedekar, Vinayak S.; King, Kevin W.; Fausey, Norman R.; Soboyejo, Alfred B. O.; Harmel, R. Daren; Brown, Larry C.

    2016-09-01

    Three different models of tipping bucket rain gauges (TBRs), viz. HS-TB3 (Hydrological Services Pty Ltd.), ISCO-674 (Isco, Inc.) and TR-525 (Texas Electronics, Inc.), were calibrated in the lab to quantify measurement errors across a range of rainfall intensities (5 mm·h- 1 to 250 mm·h- 1) and three different volumetric settings. Instantaneous and cumulative values of simulated rainfall were recorded at 1, 2, 5, 10 and 20-min intervals. All three TBR models showed a substantial deviation (α = 0.05) in measurements from actual rainfall depths, with increasing underestimation errors at greater rainfall intensities. Simple linear regression equations were developed for each TBR to correct the TBR readings based on measured intensities (R2 > 0.98). Additionally, two dynamic calibration techniques, viz. quadratic model (R2 > 0.7) and T vs. 1/Q model (R2 = > 0.98), were tested and found to be useful in situations when the volumetric settings of TBRs are unknown. The correction models were successfully applied to correct field-collected rainfall data from respective TBR models. The calibration parameters of correction models were found to be highly sensitive to changes in volumetric calibration of TBRs. Overall, the HS-TB3 model (with a better protected tipping bucket mechanism, and consistent measurement errors across a range of rainfall intensities) was found to be the most reliable and consistent for rainfall measurements, followed by the ISCO-674 (with susceptibility to clogging and relatively smaller measurement errors across a range of rainfall intensities) and the TR-525 (with high susceptibility to clogging and frequent changes in volumetric calibration, and highly intensity-dependent measurement errors). The study demonstrated that corrections based on dynamic and volumetric calibration can only help minimize-but not completely eliminate the measurement errors. The findings from this study will be useful for correcting field data from TBRs; and may have major implications to field- and watershed-scale hydrologic studies.

  3. Dynamics in the solar chromosphere as a function of the magnetic field topology

    NASA Astrophysics Data System (ADS)

    Karlsen, N.; Carlsson, M.

    2002-06-01

    We have looked at the coupling between the magnetic field and chromospheric dynamics. Observations with the SUMER spectrograph of the continuum radiation at 1319 Å have been correlated with simultaneous MDI magnetograms and dopplergrams in high resolution mode. We have used 7 different observing runs for our analysis, all from 1996. The absolute value of the magnetic field crossing the SUMER slit lies in the range 0-100 gauss. We observe a correlation between continuum intensity and magnetic field strength all the way to the sensitivity limit of MDI (about 2 G as 3σ in the mean value). Relative intensity fluctuations at frequencies corresponding to propagating acoustic waves (>4.5 mHz) have smaller amplitudes with increasing radiation temperature (or magnetic field strength). The absolute intensity fluctuations show an increase with increasing radiation temperature. These findings are consistent with a picture where a basic intensity level is set by a magnetic heating process even in the darkest internetwork areas with superimposed intensity variations caused by acoustic waves.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukao, Shinji; Nakanishi, Yoshikazu; Mizoguchi, Tadahiro

    X-rays are radiated due to the bremsstrahlung caused by the collision of electrons with a metal target placed opposite the negative electric surface of a crystal by changing the temperature of a LiNbO{sub 3} single crystal uniaxially polarized in the c-axis direction. It is suggested that both electric field intensity and electron density determine the intensity of X-ray radiation. Electrons are supplied by the ionization of residual gas in space, field emission from a case inside which a crystal is located, considered to be due to the high electric-field intensity formed by the surface charges on the crystal, and anmore » external electron source, such as a thermionic source. In a high vacuum, it was found that the electrons supplied by electric-field emission mainly contribute to the radiation of X-rays. It was found that the integrated intensity of X-rays can be maximized by supplying electrons both external and by electric-field emission. Furthermore, the integrated intensity of the X-rays is stable for many repeated temperature changes.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Liping; Zhu, Fulong, E-mail: zhufulong@hust.edu.cn; Duan, Ke

    Ultrasonic waves are widely used, with applications including the medical, military, and chemical fields. However, there are currently no effective methods for ultrasonic power measurement. Previously, ultrasonic power measurement has been reliant on mechanical methods such as hydrophones and radiation force balances. This paper deals with ultrasonic power measurement based on an unconventional method: acousto-optic interaction. Compared with mechanical methods, the optical method has a greater ability to resist interference and also has reduced environmental requirements. Therefore, this paper begins with an experimental determination of the acoustic power in water contained in a glass tank using a set of opticalmore » devices. Because the light intensity of the diffraction image generated by acousto-optic interaction contains the required ultrasonic power information, specific software was written to extract the light intensity information from the image through a combination of filtering, binarization, contour extraction, and other image processing operations. The power value can then be obtained rapidly by processing the diffraction image using a computer. The results of this work show that the optical method offers advantages that include accuracy, speed, and a noncontact measurement method.« less

  6. Ultrasonic power measurement system based on acousto-optic interaction.

    PubMed

    He, Liping; Zhu, Fulong; Chen, Yanming; Duan, Ke; Lin, Xinxin; Pan, Yongjun; Tao, Jiaquan

    2016-05-01

    Ultrasonic waves are widely used, with applications including the medical, military, and chemical fields. However, there are currently no effective methods for ultrasonic power measurement. Previously, ultrasonic power measurement has been reliant on mechanical methods such as hydrophones and radiation force balances. This paper deals with ultrasonic power measurement based on an unconventional method: acousto-optic interaction. Compared with mechanical methods, the optical method has a greater ability to resist interference and also has reduced environmental requirements. Therefore, this paper begins with an experimental determination of the acoustic power in water contained in a glass tank using a set of optical devices. Because the light intensity of the diffraction image generated by acousto-optic interaction contains the required ultrasonic power information, specific software was written to extract the light intensity information from the image through a combination of filtering, binarization, contour extraction, and other image processing operations. The power value can then be obtained rapidly by processing the diffraction image using a computer. The results of this work show that the optical method offers advantages that include accuracy, speed, and a noncontact measurement method.

  7. Ultrasonic power measurement system based on acousto-optic interaction

    NASA Astrophysics Data System (ADS)

    He, Liping; Zhu, Fulong; Chen, Yanming; Duan, Ke; Lin, Xinxin; Pan, Yongjun; Tao, Jiaquan

    2016-05-01

    Ultrasonic waves are widely used, with applications including the medical, military, and chemical fields. However, there are currently no effective methods for ultrasonic power measurement. Previously, ultrasonic power measurement has been reliant on mechanical methods such as hydrophones and radiation force balances. This paper deals with ultrasonic power measurement based on an unconventional method: acousto-optic interaction. Compared with mechanical methods, the optical method has a greater ability to resist interference and also has reduced environmental requirements. Therefore, this paper begins with an experimental determination of the acoustic power in water contained in a glass tank using a set of optical devices. Because the light intensity of the diffraction image generated by acousto-optic interaction contains the required ultrasonic power information, specific software was written to extract the light intensity information from the image through a combination of filtering, binarization, contour extraction, and other image processing operations. The power value can then be obtained rapidly by processing the diffraction image using a computer. The results of this work show that the optical method offers advantages that include accuracy, speed, and a noncontact measurement method.

  8. On the Methods of Determining the Radio Emission Geometry in Pulsar Magnetospheres

    NASA Technical Reports Server (NTRS)

    Dyks, J.; Rudak, B.; Harding, Alice K.

    2004-01-01

    We present a modification of the relativistic phase shift method of determining the radio emission geometry from pulsar magnetospheres proposed by Gangadhara & Gupta (2001). Our modification provides a method of determining radio emission altitudes which does not depend on the viewing geometry and does not require polarization measurements. We suggest application of the method to the outer edges of averaged radio pulse profiles to identify magnetic field lines associated with'the edges of the pulse and, thereby, to test the geometric method based on the measurement of the pulse width at the lowest intensity level. We show that another relativistic method proposed by Blaskiewicz et al. (1991) provides upper limits for emission altitudes associated with the outer edges of pulse profiles. A comparison of these limits with the altitudes determined with the geometric method may be used to probe the importance of rotational distortions of magnetic field and refraction effects in the pulsar magnetosphere. We provide a comprehensive discussion of the assumptions used in the relativistic methods.

  9. Research on atmospheric transmission distortion of Gauss laser using multiple phase screen method

    NASA Astrophysics Data System (ADS)

    Zhang, Yizhuo; Wang, Qiushi; Gu, Haidong

    2018-02-01

    The laser beam is attenuated, broadened, defocused and may even be deflected from its initial propagation direction as it propagates through the atmosphere. It leads to the decrease of the laser intensity of the receiving surface. Gauss beam is the fundamental components of all possible laser waveforms. Therefore, research on the transmission of the Gauss laser has far-reaching consequences in optical communication, weaponry, target designation, ranging, remote sensing and other applications that require transmission of laser beams through the atmosphere. In this paper, we propose a laboratory simulation method using multi-phase screen to calculate the effects of atmospheric turbulence. Theoretical analysis of Gauss laser transmission in the atmosphere is given. By calculating the propagation of the Gauss beam TEM00, the far field intensity and phase distribution is shown. By the given method, the optical setup is presented and used for optimizing the adaptive optics algorithm.

  10. Numerical tilting compensation in microscopy based on wavefront sensing using transport of intensity equation method

    NASA Astrophysics Data System (ADS)

    Hu, Junbao; Meng, Xin; Wei, Qi; Kong, Yan; Jiang, Zhilong; Xue, Liang; Liu, Fei; Liu, Cheng; Wang, Shouyu

    2018-03-01

    Wide-field microscopy is commonly used for sample observations in biological research and medical diagnosis. However, the tilting error induced by the oblique location of the image recorder or the sample, as well as the inclination of the optical path often deteriorates the imaging quality. In order to eliminate the tilting in microscopy, a numerical tilting compensation technique based on wavefront sensing using transport of intensity equation method is proposed in this paper. Both the provided numerical simulations and practical experiments prove that the proposed technique not only accurately determines the tilting angle with simple setup and procedures, but also compensates the tilting error for imaging quality improvement even in the large tilting cases. Considering its simple systems and operations, as well as image quality improvement capability, it is believed the proposed method can be applied for tilting compensation in the optical microscopy.

  11. A mixed-mode crack analysis of isotropic solids using conservation laws of elasticity

    NASA Technical Reports Server (NTRS)

    Yau, J. F.; Wang, S. S.; Corten, H. T.

    1980-01-01

    A simple and convenient method of analysis for studying two-dimensional mixed-mode crack problems is presented. The analysis is formulated on the basis of conservation laws of elasticity and of fundamental relationships in fracture mechanics. The problem is reduced to the determination of mixed-mode stress-intensity factor solutions in terms of conservation integrals involving known auxiliary solutions. One of the salient features of the present analysis is that the stress-intensity solutions can be determined directly by using information extracted in the far field. Several examples with solutions available in the literature are solved to examine the accuracy and other characteristics of the current approach. This method is demonstrated to be superior in its numerical simplicity and computational efficiency to other approaches. Solutions of more complicated and practical engineering fracture problems dealing with the crack emanating from a circular hole are presented also to illustrate the capacity of this method

  12. External-Stimuli-Assisted Control over Assemblies of Plasmonic Metals.

    PubMed

    Watanabe, Kanako; Kuroda, Kotaro; Nagao, Daisuke

    2018-05-15

    Assembly of plasmonic nanoparticles (NPs) in suspensions is a promising approach for the control of optical and sensing properties that depend on the assembled states of plasmonic NPs. This review focuses on the controlling methods to assemble the NP via external stimuli such as pH, temperature, light, magnetic field, and electric field. External stimuli are introduced as powerful tools to assemble the NPs because of various operational factors, such as the intensity, application time, and frequency, which can be employed. In addition to a summary of recent studies on the controlling methods, a future study on the reversible control over assembled states of the plasmonic NPs via external stimuli is proposed.

  13. Development of a wavefront sensor for terahertz pulses.

    PubMed

    Abraham, Emmanuel; Cahyadi, Harsono; Brossard, Mathilde; Degert, Jérôme; Freysz, Eric; Yasui, Takeshi

    2016-03-07

    Wavefront characterization of terahertz pulses is essential to optimize far-field intensity distribution of time-domain (imaging) spectrometers or increase the peak power of intense terahertz sources. In this paper, we report on the wavefront measurement of terahertz pulses using a Hartmann sensor associated with a 2D electro-optic imaging system composed of a ZnTe crystal and a CMOS camera. We quantitatively determined the deformations of planar and converging spherical wavefronts using the modal Zernike reconstruction least-squares method. Associated with deformable mirrors, the sensor will also open the route to terahertz adaptive optics.

  14. Parallel computation of level set method for 500 Hz visual servo control

    NASA Astrophysics Data System (ADS)

    Fei, Xianfeng; Igarashi, Yasunobu; Hashimoto, Koichi

    2008-11-01

    We propose a 2D microorganism tracking system using a parallel level set method and a column parallel vision system (CPV). This system keeps a single microorganism in the middle of the visual field under a microscope by visual servoing an automated stage. We propose a new energy function for the level set method. This function constrains an amount of light intensity inside the detected object contour to control the number of the detected objects. This algorithm is implemented in CPV system and computational time for each frame is 2 [ms], approximately. A tracking experiment for about 25 s is demonstrated. Also we demonstrate a single paramecium can be kept tracking even if other paramecia appear in the visual field and contact with the tracked paramecium.

  15. Calculation of far-field scattering from nonspherical particles using a geometrical optics approach

    NASA Technical Reports Server (NTRS)

    Hovenac, Edward A.

    1991-01-01

    A numerical method was developed using geometrical optics to predict far-field optical scattering from particles that are symmetric about the optic axis. The diffractive component of scattering is calculated and combined with the reflective and refractive components to give the total scattering pattern. The phase terms of the scattered light are calculated as well. Verification of the method was achieved by assuming a spherical particle and comparing the results to Mie scattering theory. Agreement with the Mie theory was excellent in the forward-scattering direction. However, small-amplitude oscillations near the rainbow regions were not observed using the numerical method. Numerical data from spheroidal particles and hemispherical particles are also presented. The use of hemispherical particles as a calibration standard for intensity-type optical particle-sizing instruments is discussed.

  16. Angular-domain scattering interferometry.

    PubMed

    Shipp, Dustin W; Qian, Ruobing; Berger, Andrew J

    2013-11-15

    We present an angular-scattering optical method that is capable of measuring the mean size of scatterers in static ensembles within a field of view less than 20 μm in diameter. Using interferometry, the method overcomes the inability of intensity-based models to tolerate the large speckle grains associated with such small illumination areas. By first estimating each scatterer's location, the method can model between-scatterer interference as well as traditional single-particle Mie scattering. Direct angular-domain measurements provide finer angular resolution than digitally transformed image-plane recordings. This increases sensitivity to size-dependent scattering features, enabling more robust size estimates. The sensitivity of these angular-scattering measurements to various sizes of polystyrene beads is demonstrated. Interferometry also allows recovery of the full complex scattered field, including a size-dependent phase profile in the angular-scattering pattern.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paudel, N; Shvydka, D; Karpov, V

    Purpose: Hyperthermia, an established method of cancer treatment used in adjuvant to radiation and chemotherapy, can utilize metallic nanoparticles (NPs) for tumor heating with a microwave electromagnetic field. The high surface-area-to-volume ratio of nanoparticles makes them effective catalysts for free radical generation, thus amplifying the cell-killing effect of hyperthermia. We explore the effect of gold and platinum NPs in generating free radicals in aqueous media under a microwave field. Methods: Spin trap 5,5-Dimethyl-1-pyrroline-N-oxide (DMPO) was mixed separately with 3.2 nm Mesogold and Mesoplatinum colloidal nanoparticle suspensions in deionized water to trap radicals. The mixtures were injected into a number ofmore » glass capillaries and exposed to the 9.68GHz microwave field of an electron paramagnetic resonance (EPR) spectrometer. The microwave radiation from the spectrometer served to both generate and detect the trapped radicals. Each sample was scanned at 12mW microwave power to obtain the initial signal of hydroxyl radicals (OH.), then at 39.8mW followed by 79.8 or 125mW, and finally re-scanned at 12mW. Radical signal intensities obtained by double integration of EPR spectra from the initial and the final scans were then compared. Results: Nanoparticle samples had no intentionally-added free radicals before the initial measurement. While samples with DMPO-water solution showed no OH. signal, all those with AuNPs or PtNPs developed an OH. signal during their first exposure to the microwave field. Depending upon the applied microwave power and time interval between the initial and the final EPR scans, an OH. intensity increase of ∼10-60% was found. This contradicts the typical trend of exponential decay of the OH. signal with time. Conclusion: The consistent increase in OH. intensity establishes that gold and platinum nanoparticles facilitate free radical generation under microwave irradiation. Our results suggest that NP-aided hyperthermia is accompanied by the generation of free radicals, which enhance the cell-killing effects of hyperthermia.« less

  18. MAGNETIC END CLOSURES FOR PLASMA CONFINING AND HEATING DEVICES

    DOEpatents

    Post, R.F.

    1963-08-20

    More effective magnetic closure field regions for various open-ended containment magnetic fields used in fusion reactor devices are provided by several spaced, coaxially-aligned solenoids utilized to produce a series of nodal field regions of uniform or, preferably, of incrementally increasing intensity separated by lower intensity regions outwardly from the ends of said containment zone. Plasma sources may also be provided to inject plasma into said lower intensity areas to increase plasma density therein. Plasma may then be transported, by plasma diffusion mechanisms provided by the nodal fields, into the containment field. With correlated plasma densities and nodal field spacings approximating the mean free partl cle collision path length in the zones between the nodal fields, optimum closure effectiveness is obtained. (AEC)

  19. Influence and Correction from the Human Body on the Measurement of a Power-Frequency Electric Field Sensor

    PubMed Central

    Xiao, Dongping; Liu, Huaitong; Zhou, Qiang; Xie, Yutong; Ma, Qichao

    2016-01-01

    According to the operating specifications of existing electric field measuring instruments, measuring technicians must be located far from the instruments to eliminate the influence of the human body occupancy on a spatial electric field. Nevertheless, in order to develop a portable safety protection instrument with an effective electric field warning function for working staff in a high-voltage environment, it is necessary to study the influence of an approaching human body on the measurement of an electric field and to correct the measurement results. A single-shaft electric field measuring instrument called the Type LP-2000, which was developed by our research team, is used as the research object in this study. First, we explain the principle of electric field measurement and describe the capacitance effect produced by the human body. Through a theoretical analysis, we show that the measured electric field value decreases as a human body approaches. Their relationship is linearly proportional. Then, the ratio is identified as a correction coefficient to correct for the influence of human body proximity. The conclusion drawn from the theoretical analysis is proved via simulation. The correction coefficient kb = 1.8010 is obtained on the basis of the linear fitting of simulated data. Finally, a physical experiment is performed. When no human is present, we compare the results from the Type LP-2000 measured with Narda EFA-300 and the simulated value to verify the accuracy of the Type LP-2000. For the case of an approaching human body, the correction coefficient kb* = 1.9094 is obtained by comparing the data measured with the Type LP-2000 to the simulated value. The correction coefficient obtained from the experiment (i.e., kb*) is highly consistent with that obtained from the simulation (i.e., kb). Two experimental programs are set; under these programs, the excitation voltages and distance measuring points are regulated to produce different electric field intensities. Using kb = 1.9094, the corrected measurement of electric field intensity can accurately reflect the original environmental electric field intensity, and the maximal error is less than 6% in all the data comparisons. These results verify the effectiveness of our proposed method. PMID:27294936

  20. Influence and Correction from the Human Body on the Measurement of a Power-Frequency Electric Field Sensor.

    PubMed

    Xiao, Dongping; Liu, Huaitong; Zhou, Qiang; Xie, Yutong; Ma, Qichao

    2016-06-10

    According to the operating specifications of existing electric field measuring instruments, measuring technicians must be located far from the instruments to eliminate the influence of the human body occupancy on a spatial electric field. Nevertheless, in order to develop a portable safety protection instrument with an effective electric field warning function for working staff in a high-voltage environment, it is necessary to study the influence of an approaching human body on the measurement of an electric field and to correct the measurement results. A single-shaft electric field measuring instrument called the Type LP-2000, which was developed by our research team, is used as the research object in this study. First, we explain the principle of electric field measurement and describe the capacitance effect produced by the human body. Through a theoretical analysis, we show that the measured electric field value decreases as a human body approaches. Their relationship is linearly proportional. Then, the ratio is identified as a correction coefficient to correct for the influence of human body proximity. The conclusion drawn from the theoretical analysis is proved via simulation. The correction coefficient kb = 1.8010 is obtained on the basis of the linear fitting of simulated data. Finally, a physical experiment is performed. When no human is present, we compare the results from the Type LP-2000 measured with Narda EFA-300 and the simulated value to verify the accuracy of the Type LP-2000. For the case of an approaching human body, the correction coefficient kb* = 1.9094 is obtained by comparing the data measured with the Type LP-2000 to the simulated value. The correction coefficient obtained from the experiment (i.e., kb*) is highly consistent with that obtained from the simulation (i.e., kb). Two experimental programs are set; under these programs, the excitation voltages and distance measuring points are regulated to produce different electric field intensities. Using kb = 1.9094, the corrected measurement of electric field intensity can accurately reflect the original environmental electric field intensity, and the maximal error is less than 6% in all the data comparisons. These results verify the effectiveness of our proposed method.

  1. [Analysis of methods for measurement and assessment of occupational exposure to electromagnetic fields in dielectric heating].

    PubMed

    Aniołczyk, Halina; Mamrot, Paweł; Mariańska, Magda

    2012-01-01

    High-frequency (HF) welders are the most common devices that make use of dielectric heating. They are a source of high-intensity electromagnetic fields (EMFs). Manual operation of those welders makes that the limbs are exposed to EMFs of extremely high intensity, far in excess of the currently admissible values. The aim of this study was to update knowledge of actual exposure of HF welder operators to EMF and to optimize the procedure of exposure assessment. Measurements of the EMF intensity in the vicinity of 10 dielectric welders at work posts of 12 operators were performed. EMF measurements were made using the reference method, extended by auxiliary measurement points to measure induced currents I(L) in the limbs. Induced current measurements were performed in 20 operators tending the same HF welder. the highest values of the electric (E) and magnetic (H) fields measured at work posts were for whole body: E, up to 350 V/m, and H, up to 1.00 A/m; and for limbs: E, up to 600 V/m and H, up to 3.30 A/m. The W exposure indicator in the primary vertical measurement points was almost as high as 60. I(L) values measured at the wrist exceeded 64 mA and were individual-operator-dependent. EMF exposure of 25% of HF welder operators exceeded the national admissible values and after taking into account the operators' hands, this figure rose to 50%. The measured value of I(L), representing a measure of internal exposure to EMF, should serve as the main criterion in deciding whether working conditions are admissible.

  2. Beam distribution reconstruction simulation for electron beam probe

    NASA Astrophysics Data System (ADS)

    Feng, Yong-Chun; Mao, Rui-Shi; Li, Peng; Kang, Xin-Cai; Yin, Yan; Liu, Tong; You, Yao-Yao; Chen, Yu-Cong; Zhao, Tie-Cheng; Xu, Zhi-Guo; Wang, Yan-Yu; Yuan, You-Jin

    2017-07-01

    An electron beam probe (EBP) is a detector which makes use of a low-intensity and low-energy electron beam to measure the transverse profile, bunch shape, beam neutralization and beam wake field of an intense beam with small dimensions. While it can be applied to many aspects, we limit our analysis to beam distribution reconstruction. This kind of detector is almost non-interceptive for all of the beam and does not disturb the machine environment. In this paper, we present the theoretical aspects behind this technique for beam distribution measurement and some simulation results of the detector involved. First, a method to obtain a parallel electron beam is introduced and a simulation code is developed. An EBP as a profile monitor for dense beams is then simulated using the fast scan method for various target beam profiles, including KV distribution, waterbag distribution, parabolic distribution, Gaussian distribution and halo distribution. Profile reconstruction from the deflected electron beam trajectory is implemented and compared with the actual profile, and the expected agreement is achieved. Furthermore, as well as fast scan, a slow scan, i.e. step-by-step scan, is considered, which lowers the requirement for hardware, i.e. Radio Frequency deflector. We calculate the three-dimensional electric field of a Gaussian distribution and simulate the electron motion in this field. In addition, a fast scan along the target beam direction and slow scan across the beam are also presented, and can provide a measurement of longitudinal distribution as well as transverse profile simultaneously. As an example, simulation results for the China Accelerator Driven Sub-critical System (CADS) and High Intensity Heavy Ion Accelerator Facility (HIAF) are given. Finally, a potential system design for an EBP is described.

  3. Study on the quantitative relationship between Agricultural water and fertilization process and non-point source pollution based on field experiments

    NASA Astrophysics Data System (ADS)

    Wang, H.; Chen, K.; Wu, Z.; Guan, X.

    2017-12-01

    In recent years, with the prominent of water environment problem and the relative increase of point source pollution governance, especially the agricultural non-point source pollution problem caused by the extensive use of fertilizers and pesticides has become increasingly aroused people's concern and attention. In order to reveal the quantitative relationship between agriculture water and fertilizer and non-point source pollution, on the basis of elm field experiment and combined with agricultural drainage irrigation model, the agricultural irrigation water and the relationship between fertilizer and fertilization scheme and non-point source pollution were analyzed and calculated by field emission intensity index. The results show that the variation of displacement varies greatly under different irrigation conditions. When the irrigation water increased from 22cm to 42cm, the irrigation water increased by 20 cm while the field displacement increased by 11.92 cm, about 66.22% of the added value of irrigation water. Then the irrigation water increased from 42 to 68, irrigation water increased 26 cm, and the field displacement increased by 22.48 cm, accounting for 86.46% of irrigation water. So there is an "inflection point" between the irrigation water amount and field displacement amount. The load intensity increases with the increase of irrigation water and shows a significant power correlation. Under the different irrigation condition, the increase amplitude of load intensity with the increase of irrigation water is different. When the irrigation water is smaller, the load intensity increase relatively less, and when the irrigation water increased to about 42 cm, the load intensity will increase considerably. In addition, there was a positive correlation between the fertilization and load intensity. The load intensity had obvious difference in different fertilization modes even with same fertilization level, in which the fertilizer field unit load intensity increased the most in July. The results provide some basis for the field control and management of agricultural non-point source pollution.

  4. Linear least-squares method for global luminescent oil film skin friction field analysis

    NASA Astrophysics Data System (ADS)

    Lee, Taekjin; Nonomura, Taku; Asai, Keisuke; Liu, Tianshu

    2018-06-01

    A data analysis method based on the linear least-squares (LLS) method was developed for the extraction of high-resolution skin friction fields from global luminescent oil film (GLOF) visualization images of a surface in an aerodynamic flow. In this method, the oil film thickness distribution and its spatiotemporal development are measured by detecting the luminescence intensity of the thin oil film. From the resulting set of GLOF images, the thin oil film equation is solved to obtain an ensemble-averaged (steady) skin friction field as an inverse problem. In this paper, the formulation of a discrete linear system of equations for the LLS method is described, and an error analysis is given to identify the main error sources and the relevant parameters. Simulations were conducted to evaluate the accuracy of the LLS method and the effects of the image patterns, image noise, and sample numbers on the results in comparison with the previous snapshot-solution-averaging (SSA) method. An experimental case is shown to enable the comparison of the results obtained using conventional oil flow visualization and those obtained using both the LLS and SSA methods. The overall results show that the LLS method is more reliable than the SSA method and the LLS method can yield a more detailed skin friction topology in an objective way.

  5. A high precision extrapolation method in multiphase-field model for simulating dendrite growth

    NASA Astrophysics Data System (ADS)

    Yang, Cong; Xu, Qingyan; Liu, Baicheng

    2018-05-01

    The phase-field method coupling with thermodynamic data has become a trend for predicting the microstructure formation in technical alloys. Nevertheless, the frequent access to thermodynamic database and calculation of local equilibrium conditions can be time intensive. The extrapolation methods, which are derived based on Taylor expansion, can provide approximation results with a high computational efficiency, and have been proven successful in applications. This paper presents a high precision second order extrapolation method for calculating the driving force in phase transformation. To obtain the phase compositions, different methods in solving the quasi-equilibrium condition are tested, and the M-slope approach is chosen for its best accuracy. The developed second order extrapolation method along with the M-slope approach and the first order extrapolation method are applied to simulate dendrite growth in a Ni-Al-Cr ternary alloy. The results of the extrapolation methods are compared with the exact solution with respect to the composition profile and dendrite tip position, which demonstrate the high precision and efficiency of the newly developed algorithm. To accelerate the phase-field and extrapolation computation, the graphic processing unit (GPU) based parallel computing scheme is developed. The application to large-scale simulation of multi-dendrite growth in an isothermal cross-section has demonstrated the ability of the developed GPU-accelerated second order extrapolation approach for multiphase-field model.

  6. Field Performance of ISFET based Deep Ocean pH Sensors

    NASA Astrophysics Data System (ADS)

    Branham, C. W.; Murphy, D. J.

    2017-12-01

    Historically, ocean pH time series data was acquired from infrequent shipboard grab samples and measured using labor intensive spectrophotometry methods. However, with the introduction of robust and stable ISFET pH sensors for use in ocean applications a paradigm shift in the methods used to acquire long-term pH time series data has occurred. Sea-Bird Scientific played a critical role in the adoption this new technology by commercializing the SeaFET pH sensor and float pH Sensor developed by the MBARI chemical sensor group. Sea-Bird Scientific continues to advance this technology through a concerted effort to improve pH sensor accuracy and reliability by characterizing their performance in the laboratory and field. This presentation will focus on calibration of the ISFET pH sensor, evaluate its analytical performance, and validate performance using recent field data.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crijns, W; Vandenbroucke, D; Leblans, P

    Purpose: Computed Radiography (CR) dosimetry could offer film dosimetry resolution and flexibility but with reusability and instantaneous processing. For an experimental CR-plate, designed for radiotherapy (Zeff=18), CR’s typical out-of-field over-response to low energy photons was previously reduced to 8%. The present work assesses the impact of the residual over-response when open-fields are combined or when intensity modulated fields are used. Methods: Agfa Healthcare’s experimental CRplate was scanned and erased 4min after each irradiation using a flying-spot CR-15-X-engine based reader, which was adapted for radiotherapy dosimetry. A CR-plate specific calibration and uniformity correction was used.For open-fields two abutting half beams (5×10cm{supmore » 2}) captured out-offield and in-field doses in a single image. Additionally, both half beams were measured individually as well as a 3×18Gy open-field SBRT-lung treatment. For intensity modulated fields standard test patterns (Chair and Pyramid) and a clinical 5×5Gy rectal VMAT plan were captured. All measurements were compared to the corresponding dose calculations. Results: For open-fields the out-of-field overdose was clearly larger than the in-field overdose (10% vs. 4%). The sum of the individual measurements corresponded well with the combined measurement (dose difference, ΔD<−2.2%). The SBRT case had no overdose in the high dose region; ΔD=−5.6%±3.3%, the deviation was attributed to CR-fading effects (−0.3%/min) which were not corrected for.Compared to open-fields, intensity modulated deliveries had a further increased over-response out-offield (ΔD=+58% to +125% [Chair] +43% [Pyramid]), due to the increased amount of low energy photons for IMRT. However, this effect was not measured in-field where even decreased dose signals were observed (ΔD=−0.3% to +2.25% [Chair], −4.5% to −0.1% [Pyramid]). The rectal VMAT treatment had a dose difference +2.4%±6.0%. The in-field deviations were attributed to a residual non-uniformity. Conclusion: The experimental CRplate’s out-of-field over-response does not propagate in in-field overresponse errors when static or dynamic (IMRT/VMAT) abutting fields are used.« less

  8. Effect of near-earth thunderstorms electric field on the intensity of ground cosmic ray positrons/electrons in Tibet

    NASA Astrophysics Data System (ADS)

    Zhou, X. X.; Wang, X. J.; Huang, D. H.; Jia, H. Y.

    2016-11-01

    Monte Carlo simulations are performed to study the correlation between the ground cosmic ray intensity and near-earth thunderstorms electric field at YBJ (located at YangBaJing, Tibet, China, 4300 m a. s. l.). The variations of the secondary cosmic ray intensity are found to be highly dependent on the strength and polarity of the electric field. In negative fields and in positive fields greater than 600 V/cm, the total number of ground comic ray positrons and electrons increases with increasing electric field strength. And these values increase more obviously when involving a shower with lower primary energy or a higher zenith angle. While in positive fields ranging from 0 to 600 V/cm, the total number of ground comic ray positrons and electrons declines and the amplitude is up to 3.1% for vertical showers. A decrease of intensity occurs in inclined showers within the range of 0-500 V/cm, which is accompanied by smaller amplitudes. In this paper, the intensity changes are analyzed, especially concerning those decreasing phenomena in positive electric fields. Our simulation results could be helpful in understanding the decreases observed in some ground-based experiments (such as the Carpet air shower array and ARGO-YBJ), and also be useful in understanding the acceleration mechanisms of secondary charged particles caused by an atmospheric electric field.

  9. TRAVELING WAVE PYROTRON

    DOEpatents

    Post, R.F.

    1963-06-11

    The invention relates to a pyrotron, i.e., magnetic mirror device, designed for continuous operation in producing a high-temperature fusion reaction plasma and for directly converting the plasma energy into electrical power. The device utilizes a system in which an axially symmetric magnetic field is produced and transports plasma through a first zone of progressively rising field intensity, a second reaction zone of slowly increasing intensity, and thenceforth through a third zone of progressively decreasing intensity wherein the plasma expands against the magnetic field thereby producing electrical current in magnetic field generating solenoids associated with said third zone. (AEC)

  10. Strong-field plasmonic photoemission in the mid-IR at <1 GW/cm² intensity.

    PubMed

    Teichmann, S M; Rácz, P; Ciappina, M F; Pérez-Hernández, J A; Thai, A; Fekete, J; Elezzabi, A Y; Veisz, L; Biegert, J; Dombi, P

    2015-01-12

    We investigated nonlinear photoemission from plasmonic films with femtosecond, mid-infrared pulses at 3.1 μm wavelength. Transition between regimes of multi-photon-induced and tunneling emission is demonstrated at an unprecedentedly low intensity of <1 GW/cm(2). Thereby, strong-field nanophysics can be accessed at extremely low intensities by exploiting nanoscale plasmonic field confinement, enhancement and ponderomotive wavelength scaling at the same time. Results agree well with quantum mechanical modelling. Our scheme demonstrates an alternative paradigm and regime in strong-field physics.

  11. Method and apparatus for millimeter-wave detection of thermal waves for materials evaluation

    DOEpatents

    Gopalsami, Nachappa; Raptis, Apostolos C.

    1991-01-01

    A method and apparatus for generating thermal waves in a sample and for measuring thermal inhomogeneities at subsurface levels using millimeter-wave radiometry. An intensity modulated heating source is oriented toward a narrow spot on the surface of a material sample and thermal radiation in a narrow volume of material around the spot is monitored using a millimeter-wave radiometer; the radiometer scans the sample point-by-point and a computer stores and displays in-phase and quadrature phase components of thermal radiations for each point on the scan. Alternatively, an intensity modulated heating source is oriented toward a relatively large surface area in a material sample and variations in thermal radiation within the full field of an antenna array are obtained using an aperture synthesis radiometer technique.

  12. Potential theory of radiation

    NASA Technical Reports Server (NTRS)

    Chiu, Huei-Huang

    1989-01-01

    A theoretical method is being developed by which the structure of a radiation field can be predicted by a radiation potential theory, similar to a classical potential theory. The introduction of a scalar potential is justified on the grounds that the spectral intensity vector is irrotational. The vector is also solenoidal in the limits of a radiation field in complete radiative equilibrium or in a vacuum. This method provides an exact, elliptic type equation that will upgrade the accuracy and the efficiency of the current CFD programs required for the prediction of radiation and flow fields. A number of interesting results emerge from the present study. First, a steady state radiation field exhibits an optically modulated inverse square law distribution character. Secondly, the unsteady radiation field is structured with two conjugate scalar potentials. Each is governed by a Klein-Gordon equation with a frictional force and a restoring force. This steady potential field structure and the propagation of radiation potentials are consistent with the well known results of classical electromagnetic theory. The extension of the radiation potential theory for spray combustion and hypersonic flow is also recommended.

  13. [Welding arc temperature field measurements based on Boltzmann spectrometry].

    PubMed

    Si, Hong; Hua, Xue-Ming; Zhang, Wang; Li, Fang; Xiao, Xiao

    2012-09-01

    Arc plasma, as non-uniform plasma, has complicated energy and mass transport processes in its internal, so plasma temperature measurement is of great significance. Compared with absolute spectral line intensity method and standard temperature method, Boltzmann plot measuring is more accurate and convenient. Based on the Boltzmann theory, the present paper calculates the temperature distribution of the plasma and analyzes the principle of lines selection by real time scanning the space of the TIG are measurements.

  14. Chemical Distances for Percolation of Planar Gaussian Free Fields and Critical Random Walk Loop Soups

    NASA Astrophysics Data System (ADS)

    Ding, Jian; Li, Li

    2018-05-01

    We initiate the study on chemical distances of percolation clusters for level sets of two-dimensional discrete Gaussian free fields as well as loop clusters generated by two-dimensional random walk loop soups. One of our results states that the chemical distance between two macroscopic annuli away from the boundary for the random walk loop soup at the critical intensity is of dimension 1 with positive probability. Our proof method is based on an interesting combination of a theorem of Makarov, isomorphism theory, and an entropic repulsion estimate for Gaussian free fields in the presence of a hard wall.

  15. Chemical Distances for Percolation of Planar Gaussian Free Fields and Critical Random Walk Loop Soups

    NASA Astrophysics Data System (ADS)

    Ding, Jian; Li, Li

    2018-06-01

    We initiate the study on chemical distances of percolation clusters for level sets of two-dimensional discrete Gaussian free fields as well as loop clusters generated by two-dimensional random walk loop soups. One of our results states that the chemical distance between two macroscopic annuli away from the boundary for the random walk loop soup at the critical intensity is of dimension 1 with positive probability. Our proof method is based on an interesting combination of a theorem of Makarov, isomorphism theory, and an entropic repulsion estimate for Gaussian free fields in the presence of a hard wall.

  16. Design of the sample cell in near-field surface-enhanced Raman scattering by finite difference time domain method

    NASA Astrophysics Data System (ADS)

    Li, Yaqin; Jian, Guoshu; Wu, Shifa

    2006-11-01

    The rational design of the sample cell may improve the sensitivity of surface-enhanced Raman scattering (SERS) detection in a high degree. Finite difference time domain (FDTD) simulations of the configuration of Ag film-Ag particles illuminated by plane wave and evanescent wave are performed to provide physical insight for design of the sample cell. Numerical solutions indicate that the sample cell can provide more "hot spots' and the massive field intensity enhancement occurs in these "hot spots'. More information on the nanometer character of the sample can be got because of gradient-field Raman (GFR) of evanescent wave.

  17. Identifying different mechanisms in the control of a nitrogen-vacancy center system

    NASA Astrophysics Data System (ADS)

    Li, Shouzhi; Yang, Ling; Cao, Dewen; Wang, Yaoxiong; Shuang, Feng; Gao, Fang

    2017-10-01

    The nitrogen-vacancy (NV) center system has shown great potential in quantum computing due to its long decoherence time at room temperature by encoding the qubit in dressed states [28]. The corresponding control mechanisms, which is expressed by the pathways linking the initial and target states, can be naturally investigated with the Hamiltonian-encoding and observable-decoding (HE-OD) method in the interaction adiabatic representation. This is proved by the fact that the mechanisms change slightly with different detunings, magnetic and driving field intensities, and the dominant pathway is always | g 〉 → | d 〉 → | g 〉 , with | g 〉 and | d 〉 as the first two lowest dressed states. Cases are different in the diabatic representation. The orders of dominant pathways increase the driving field intensities. Tendencies of quantum pathway amplitudes with driving fields, magnetic fields and detunings change at different conditions, which can be analyzed from the Dyson series. HE-OD analysis show that the two states | g 〉 and | d 〉 in the interaction adiabatic representation are preferable to be employed as a qubit than the state pair |0〉 and | - 1 〉 in the diabatic representation under the current Hamiltonian and parameters.

  18. Short perturbations of cosmic ray intensity and electric field in atmosphere

    NASA Technical Reports Server (NTRS)

    Alexeyenko, V. V.; Chudakov, A. E.; Sborshikov, V. G.; Tizengauzen, V. A.

    1985-01-01

    Short perturbations of cosmic ray intensity were found to be a common phenomenon. Its meteorological origin and correlation with electric field is established. The phenomenon can be explained by the electric field if the strength of this field at high altitudes is much bigger than the measured one at surface.

  19. Electron emission phenomena controlled by a transverse electric field in compound emitters

    NASA Astrophysics Data System (ADS)

    Olesik, Jadwiga; Calusinski, Bogdan; Olesik, Zygmunt

    1996-09-01

    Influence of an inner electric field on such emission phenomena like: secondary emission, photoemission and field emission has been investigated. The applied sample-emitter was a glass wafer (thickness 0.2 mm) covered on both sides by semiconducting films In2O3:Sn. A voltage (in the interval -2000V divided by 0V) generating transverse electric field was applied to one of the films. This film had a thickness of about 200 nm. The second film (emitting electrons) had a thickness 100 nm or 10 nm. The secondary emission measurements were made by the retarding field method using four grid retarding potential analyzer. It was found that the secondary emission coefficient changes non- monotonically with increasing field intensity. Electron emission measurements without using a primary electron beam were made with the electron multiplier cooperating with a multichannel pulse amplitude analyzer. The measurements were performed in the vacuum of about 2 multiplied by 10-6 Pa. Influence of film thickness on the intensity of field controlled emission and field controlled photoemission was also studied. It was also found that the frequency of counts (generated by electrons in the electron multiplier) depends on the polarizing voltage approximately in an exponential way. Some departures from this dependence can be observed at higher Upol voltages (above 1000 V). Thus, at an appropriate high voltage Upol conditions for a cascade emission are created. At lower voltages the conditions correspond to a semiconductor with a negative electron affinity.

  20. Studying internal and external magnetic fields in Japan using MAGSAT data

    NASA Technical Reports Server (NTRS)

    Fukushima, N. (Principal Investigator); Maeda, H.; Yukutake, T.; Tanaka, M.; Oshima, S.; Ogawa, K.; Kawamura, M.; Miyazaki, Y.; Uyeda, S.; Kobayashi, K.

    1980-01-01

    Examination of the total intensity data of CHRONIT on a few paths over Japan and its neighboring sea shows MAGSAT is extremely useful for studying the local magnetic anomaly. In high latitudes, the signatures of field aligned currents are clearly recognized. These include (1) the persistent basic pattern of current flow; (2) the more intense currents in the summer hemisphere than in the winter hemisphere; (3) more fluctuations in current intensities in summer dawn hours; and (4) apparent dawn-dusk asymmetry in the field-aligned current intensity between the north and south polar regions.

Top